
About the Cover
Although capacity may be a problem for a doghouse, other requirements are 
usually minimal. Unlike skyscrapers, doghouses are simple units. They do not 
require plumbing, electricity, fire alarms, elevators, or ventilation systems, and they 
do not need to be built to code or pass inspections. 

The range of complexity in software design is similar. Given available software 
tools and libraries, many of which are free, hobbyists can build small or short-lived 
computer apps. Yet, design for software longevity, security, and efficiency can be 
intricate—as is the design of large-scale systems. How can a software developer 
prepare to manage such complexity? By understanding the essential building 
blocks of software design and construction.

About the Book
Software Essentials: Design and Construction explicitly defines and illustrates 
the basic elements of software design and construction, providing a solid under-
standing of control flow, abstract data types (ADTs), memory, type relationships, 
and dynamic behavior. This text evaluates the benefits and overhead of object-
oriented design (OOD) and contrasts software design options. With a structured 
but hands-on approach, the book: 

• Delineates malleable and stable characteristics of software design 
• Explains how to evaluate the short- and long-term costs and benefits of design 

decisions
• Includes extensive C# and C++ examples, supportive appendices, and a 

glossary of over 200 common terms
• Covers key topics such as inheritance, composition, polymorphism, 

overloading, and more
• Compares and contrasts design solutions, such as composition versus 

inheritance

While copious examples are given in C# and/or C++, often demonstrating 
alternative solutions, design—not syntax—remains the focal point of Software 
Essentials: Design and Construction. 
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Preface

WHY THIS BOOK?
Why should you read this book? The short answer is to study software 
design from a structured but hands-on perspective and to understand dif-
ferent models of control flow, memory, dynamic behavior, extensibility, 
etc. Software complexity and the growing impact of legacy systems moti-
vate a renewed interest in software design and modeling. We emphasize 
design (and construction) in this text, using and contrasting C# and C++.

Many CS texts are “learn-to” books that focus on one programming 
language or tool. When perspective is so limited to a specific tool or pro-
gramming language, high-level concepts are often slighted. Students may 
gain exposure to an idea via a “cookbook” implementation and thus fail to 
truly absorb essential concepts. Students and/or practitioners can under-
stand and apply design principles more readily when such concepts are 
explicitly defined and illustrated. Design, not just syntax, must be stressed. 
The progression of programming languages, software process methodolo-
gies, and development tools continues to support abstraction: software 
developers should exploit this abstraction and solve problems (design) 
without being tied to a particular syntax or tool.

Software design and modeling are neither new nor trendy topics. 
Software development often focuses on immediate effect: implement, test 
(minimally), and deploy. Yet, the complexity, scale, and longevity of mod-
ern software require an intricate understanding of a software system as 
a whole—components and relationships, user interfaces, persistent data, 
etc. To accommodate existing use while preserving longevity, a software 
developer must look forward for extensibility and backward for compat-
ibility. Hence, software developers must understand software design.
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WHO SHOULD READ THIS BOOK?
Anyone who desires a stronger understanding of deliberate software 
design or more exposure to evaluating design options should read this 
book. Targeted readers include software developers, professionals, and 
students who seek a sustainable perspective on software construction. 
Aspiring software developers, or even experienced developers, who desire 
an emphasis on design and an understanding of long-term versus short-
term analysis would benefit from the approach taken by this text.

Although a rudimentary understanding of software development is 
assumed, key terms and concepts are defined. Many different examples 
are given. Expertise with any particular language, platform, or IDE is 
not required. To assist those relatively new to programming, appendices 
are included to reinforce indirection and details relevant to C++ and C#. 
Moreover, an extensive glossary is included, defining over 200 common 
terms associated with software design and construction.

WHAT SHOULD READERS EXPECT 
TO GAIN FROM THIS TEXT?
By emphasizing software design and construction, this text may fill knowl-
edge gaps by providing: a practical summary of object-oriented design 
(OOD), a succinct summary of memory management principles, an anal-
ysis of software design alongside knowledge of background processes, and 
comparative design options. Two immediate benefits are the recognition 
of structured, readable code as well as the effective use of dynamic memory 
without unintentional memory leaks and data corruption. Additionally, 
developers with backgrounds in either C++ or C#/Java, but not necessarily 
both, may benefit from explanations of language differences.

With respect to OOD (object-oriented design), this text examines spe-
cific motives for and consequences of design. Readers should learn: when 
to use inheritance and when not; how to design compact and extensible 
code; to avoid inheritance when composition suffices; how to simulate 
multiple inheritance; and when the overhead of polymorphism is not war-
ranted. Overloading as a design option is also covered.

HOW IS THIS TEXT RELEVANT TO (PROFESSIONAL) 
SOFTWARE DEVELOPMENT?
In the rush to fill technical positions, the education of software devel-
opers often emphasizes skills over concepts: learn a new programming 
language, use a new tool, assess a user interface to add functionality to 
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an existing system, etc. A high-level system perspective is lost. Without 
such a perspective, software development may yield applications that are 
feature- rich but not easily usable. Hence, this book strives to fill in knowl-
edge gaps. To place design into context, we uncover background processes 
so that a software developer can gauge the impact of design.

Software design has evolved to a higher level of abstraction. Software 
tools, design, and testing methodologies as well as the construction of util-
ities and standard libraries, have decreased the complexity of producing 
software. Hardware and environmental dependencies have been abstracted 
away. Data storage and retrieval have been streamlined. Utilities provide 
functions for sorting, selection, and comparison. Standard algorithms 
have been encoded. Thus, this text emphasizes design choices. Although 
copious examples are given in C# and/or C++, often with redesigned alter-
natives, design (not syntax) remains the focal point.

WHO MIGHT NOT BENEFIT FROM READING THIS BOOK?
Developers with extensive software design and implementation experi-
ence may find this text too elementary, unless more exposure to deliberate 
software design or a transition to OOD is desired. Developers interested 
in examining real-time systems, event-handling software, or distributed 
systems should consult a different text.

Novice programmers may be overwhelmed. This book is not a “learn 
to program” book. It can be viewed as a “learn to program well” book, or 
a “software design” book. Although many code examples are given and 
supportive appendices provide specific C++ and C# language details, the 
book has a conceptual rather than a syntactic emphasis. Hence, a novice 
programmer who wishes to learn C++ or learn C# should consult another 
text or, as noted in the next section (detailed book outline), use this text in 
conjunction with an introductory programming text.
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Detailed Book Outline

In the next few pages, we describe the format of the book and suc-
cinctly summarize each chapter and appendix. To accommodate read-

ers from different backgrounds, we provide several sample reading paths 
through the text. We conclude by outlining the general chapter format.

This book consists of ten chapters, separated into four sections. In 
addition, four appendices supplement the text. These appendices isolate 
implementation details that tend to be language dependent. Readers may 
consult these appendices to reinforce details covered at the design level 
in the text or to discern language dependencies. References are provided. 
Another supplement provided is a glossary of over 200 common software 
design and engineering terms.

Section I: Software Construction reviews characteristics of modern 
software as well as software development. Both chapters are summative 
in nature.

Chapter 1 seeks to motivate the effort expended for deliberate software 
design. To establish a foundation for development, Chapter 1 defines soft-
ware engineering and the software development life cycle and illustrates 
the many modes of modeling. In short, Chapter 1 stresses that software 
development must rest on design to produce usable and reusable code that 
meets user expectations.

Chapter 2 traces the process of software execution, identifying tools that 
support abstraction and ease the task of programming. The main stages of 
a compiler are summarized. Programming language support for abstrac-
tion is discussed, as are key differences between structured and OO code.

Section II: Software Fundamentals summarizes fundamental elements 
of software, providing many examples, analyses, design principles, and 
guidelines.
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Chapter 3 covers structured control flow, controlled interruption, and 
readability. Boolean logic, its application, and use are examined. Recursion 
and iteration are briefly contrasted, noting overhead.

Chapter 4 reviews memory management, an oft-neglected topic. Several 
distinctions are made: heap versus stack memory; C++ versus C# mem-
ory; explicit versus implicit allocation; and explicit versus implicit deal-
location. The chapter closes by contrasting designs that emphasize storage 
versus computation.

Chapter 5 establishes the foundation of class design, noting essential dif-
ferences between C# and C++. The chapter outlines contractual design— 
software written to fulfill a contract with the user. Design assumptions, 
conditions, and invariants are enumerated as contractual documentation.

Section III: Software Design provides an in-depth evaluation of soft-
ware design using the object-oriented paradigm. The effect of design, 
rather than mechanics, is stressed. Again, many examples, analyses, and 
guidelines reinforce the prose.

Chapter 6 explores different ways in which to structure interdependent 
types and compares design alternatives. Inheritance as a design option 
is examined in detail, including the potential overuse of inheritance, its 
costs and benefits, and designs that simulate inheritance.

Chapter 7 examines the true benefit of OOD: language support for 
polymorphism. The design effects of polymorphism, with respect to both 
utility and longevity, are evaluated. As an example, code from an actual 
software product, a disassembler, is presented and dissected.

Chapter 8 takes the unusual step of comparing design alternatives, 
noting any impact of language choice. With multiple inheritance and its 
simulation as an example, the costs and benefits of different approaches 
are assessed. Different types of class design are also evaluated.

Section IV: Software Durability is summative in nature. The goal of its 
two chapters is to expose the reader to essential information and general 
software development goals. Both chapters are introductory: for a more 
detailed exposition, the reader is encouraged to consult additional texts.

Chapter 9 includes a brief review of the use of exceptions and provides 
an overview of software testing.

Chapter 10 explores software evolution and nonfunctional properties 
as characteristics of software longevity.

The appendices reinforce concepts covered in the text. Appendices 
A and B assist the C# or Java programmer who is transitioning to 
C++. Appendices C and D display the elegance of OOD by iteratively 
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tracing design examples that exhibit the consistency and simplicity of 
well-designed code.

Appendix A covers the “pointer” type, a language construct broadly 
supported in C and C++, but not in C# or Java. Proper use as well as inap-
propriate handling are illustrated through pertinent examples.

Appendix B (Heap Memory and Aliases) extends the discussion of 
Appendix A by examining use of the “pointer” type to hold the address 
of a memory block allocated on the heap. Explicit allocation and dealloca-
tion are demonstrated. Examples and discussion enumerate class respon-
sibilities when heap memory is allocated within a C++ object. Detailed 
examination of copy semantics closes the appendix.

Appendix C defines C++ function pointers, a programming language 
construct supported by C++ but not Java. C# provides the delegate con-
struct, which is similar. This appendix mirrors programming language 
evolution, with respect to increasing support for polymorphism. An 
inventory design example is traced from a crude, and rigid, C-like design 
through refinements to a streamlined and extensible C++ solution using 
virtual functions.

Appendix D examines operator overloading as a design technique 
that enhances abstraction. C++ supports extensive operator overloading. 
Java supports none. C# supports a limited set of overloaded operators. 
Examples of intuitive and effective operator overloading, including type 
conversion, are provided. Language differences are summarized.

SAMPLE READING PATHS FOR THIS BOOK
This book provides an overview of software design, with emphases on 
underlying memory and control models, deliberate design, contractual 
expectations, and comparative analysis of design. The text thus should 
appeal to readers with different backgrounds. To accommodate different 
levels of experience, sample suggested readings are given below. Regardless 
of experience, Chapter 4 and Appendices A and B cover material highly 
recommended for readers without a C++ background.

Sample suggested paths for reading this book:

Intermediate programmers: the whole text is applicable
As needed to fill in gaps: Section I and Appendices A and B
Emphasize: Sections II and III and Chapter 9
Optional: Appendices C and D, Chapter 10
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Engineers with rudimentary software knowledge:
Chapters 1 and 2, Appendix A, Chapter 3, Appendix B, Chapters 4, 5, 6, and 7

Experienced programmers who seek more exposure to deliberate software design:
As needed to fill in gaps: Chapters 1 and 2, Appendices A

Chapter 3 and Appendix B
Emphasize: Chapters 4, 5, and 6, Appendix C

Chapters 7 and 8
Optional: Appendix D, Section IV

C programmers transitioning to OOD:

Emphasize: Chapters 4, 5, and 6, Appendix C
Chapters 7 and 8, Appendix D

Optional: Section IV

C# or Java programmers familiar with OOD but transitioning to C++:

Transition: Appendices A and B, Chapter 4
Review: Chapters 5 and 6
Emphasize: Appendix C, Chapters 7 and 8, Appendix D
Optional: Section IV

Software engineers responsible for a large, OO (object-oriented) system:

Emphasize: Sections I, III, and IV
Optional: Section II, Appendices A and B

Professionals new to computer science (transitioning from a different field):

SUPPLEMENT with “LEARN TO PROGRAM” text
Emphasize: Chapters 1 and 2, Appendix A

Chapter 3, Appendix B, Chapters 4 and 5
Chapters 9 and 10

Novice programmers:

SUPPLEMENT with “LEARN TO PROGRAM” text
Emphasize: Chapters 1 and 2, Appendix A

Chapter 3, Appendix B, Chapters 4 and 5
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CHAPTER FORMAT
Each chapter begins with an introduction followed by a bulleted list of 
chapter objectives. Extensive code samples, design examples, figures, and 
summative tables augment the prose.

C++ code samples were compiled using g++ (version 4.6.3). C# code 
samples were compiled using Visual Studio 2012. Many code examples are 
open-ended (incomplete); hence, they were tested in a general framework. 
Since the text focuses on design rather than syntax, placeholders are often 
used for general initialization routines, common functionality (such as 
action() and process()), and relatively unrestricted user-defined types 
(such as myType, Base, and Derived). When assumptions are made, with 
respect to design, utility, memory management, maintainability, etc., such 
assumptions are noted. Code samples are distinguished according to source 
language (C++, C#) except when the distinction is not relevant.

Many figures are included to illustrate code structure, memory allo-
cation, and type relationships. Tables summarize key concepts for quick 
review and reference. Many tables delineate complex material to reinforce 
understanding.

The text is partitioned into four sections: software construction, fun-
damentals, design, and durability. Each section has two or three chapters, 
explaining and applying foundational knowledge. To present a thorough 
overview, common software terms are used, even if such terms fall in the 
purview of the professional, rather than the academic. These terms are 
bolded and defined in the glossary. Italicized comments highlight design 
principles. Each chapter ends with a summary and conceptual questions 
intended to review major concepts. Many chapters list relevant design 
insights after the summary.

Four appendices follow the main text. The first two appendices are pro-
vided for readers with limited C and C++ exposure, in order to support a 
transition from a garbage-collected language (such as Java or C#) to C++. 
The material covered therein establishes a key difference between C++ and 
C#: the management of program memory. The third appendix traces a 
design example, from non-extensible code to a maintainable design that 
rests on the abstractions provided by modern programming languages. 
The fourth appendix examines operator overloading, a design technique 
that strives to reduce software complexity for the application program-
mer: examples are given in both C++ and C#.

A glossary of over 200 terms and a list of references close out the book.
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PROGRAMMING LANGUAGE COMMENTS
This text strives to emphasize software design and to identify short- and 
long-term costs and benefits when evaluating design options. This text 
is not a programming language text. Many examples are given in C++ 
and C# in order to convey essential design ideas and to illustrate feasible 
implementation in a popular OOPL. For intricate language details, read-
ers should consult a programming language manual, text, or blog.

Do note that most popular languages continue to offer refinements 
and improvements in order to facilitate use. Adhering to the C++ stan-
dards release, compilers are now becoming available for C++11. This lat-
est release supplants C++98 but is backward-compatible with C++98, and 
thus, for the most part, C. Industry and academia are now beginning to 
integrate C++11 into development and education efforts.

New C++11 features enhance performance and improve support for 
multithreading and generics. To improve usability, C++11 supports lambda 
and regular expressions, moving the language into applications associated 
with Python. For a thorough discussion of C++11, please see Stroustrup 
(2013). Here, we briefly summarize C++11 features relevant to design topics 
covered in this text. The reader may wish to review these comments once 
the related portions of this text are read.

C++11 supports self-documenting code and design consistency. The 
provision of a nullptr, of type nullptr _ t (which is convertible to 
the Boolean type and any pointer type), clearly represents the notion of a 
null, or undefined, address. Inheritance design is also more evidently sup-
ported. As noted in Chapters 7 and 8, C# requires the use of the keyword 
“override” to tag redefined inherited functions in descendant classes, thus 
making design intent more apparent. C++11 provides a special identifier 
“override” that may be used in a similar manner. Similarly, C# requires the 
use of the keyword “sealed” to tag classes and methods that may not be 
redefined, again making design intent more apparent. C++11 provides a 
special identifier “final” that may be used in a similar manner.

C++11 defines “move semantics,” expanding design options for copy 
semantics. As discussed in Chapter 4 and Appendix B, copy semantics 
require a conscious choice between deep and shallow copying in order to 
produce safe code and avoid data corruption. Move semantics provide a 
means to optimize deep copying. Please see Appendix B.
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C h a p t e r  1

Software Complexity 
and Modeling

We begin by outlining characteristics of modern software and 
general processes used in its development. We describe software 

engineering principles and their application. Our intent is to motivate 
explicit modeling and deliberate design with an understanding of required 
qualities and restrictions. Modern software is inherently complex and 
demands a formal approach to system construction and maintenance.

Using a “simple” problem to illustrate hidden expectations, we iden-
tify requirements of usable software. We summarize the different stages 
of software development and the emergence of software engineering as a 
field dedicated to the efficient and effective development of software. After 
examining the software development life cycle (SDLC), we note the emerg-
ing importance of software integration. The chapter closes with an empha-
sis on documentation. Throughout our discussion, software design and 
modeling are emphasized.

CHAPTER OBJECTIVES

• Motivate the deliberate design of software
• Establish the scope of modern software

• Content, perspective, bounds, and targeted users
• Clarify the relevance of software engineering and its principles
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1.1  MODERN SOFTWARE
The size and complexity of software systems has exploded in the last fifty 
years. Consider software systems deployed mid-20th century and their asso-
ciated complexity. Systems designed to compute ballistic missile trajecto-
ries may be considered complex with respect to underlying mathematical 
computation. Business software designed to generate payroll checks and 
stubs, calculating taxes and vacation hours accrued, may be considered data 
intensive. However, early standalone systems did not support user interfaces 
(UIs) designed for the general user, gather and store data in multiple data-
bases, support distributed processing, or provide extensive error handling. 
Moreover, several decades ago, software systems were designed from scratch, 
customized for a targeted platform and an audience of specialized users.

Fast forward to the 21st century. Tremendous growth in the use and 
application of software has driven dramatic advances in software develop-
ment processes. Yet, despite all the improvements in design, implementa-
tion, and testing techniques, software development remains difficult. Why? 
Software systems are now intrinsically more complex, larger, and remain 
in service longer. Modern software must provide more than basic function-
ality. Consider the use and deployment of modern software. Security con-
cerns exist for all software deployed on the Internet, as do expectations 
of data integrity and privacy. Software applications are often embedded, 
e.g., in cellphones and microwaves. Commercial software must provide 
a responsive user interface for a general audience, often augmented with 
user tutorials. E-commerce applications directly support online sales but 
may also depend on the data mining of customer histories to generate 
additional purchase suggestions and so forth.

The saturation of software use in mundane life tasks (e-commerce, 
medicine, education, banking, etc.) raises concerns not critical 40 years 
ago. How does software ensure privacy and data integrity? What are rea-
sonable responses to erroneous user input? How does software guarantee 
scalability and ease of use? How can software be developed to run effi-
ciently and on multiple platforms? How can software be designed to sup-
port current products as well as add-ons and variants?

• Identify the key stages of the SDLC
• Discuss common process methodologies
• Consider modeling for software architecture and code construction
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Expectations increase as software use continues to expand. Distributed 
systems require efficient and secure data transmission. Embedded systems 
demand hardware and optimization expertise. This book strives to delin-
eate major expectations of software and how design and modeling can sup-
port the development of complex software when longevity is anticipated.

1.1.1  Software Design

Most ideas start simply. Someone has an insight and pursues it. Software 
development is the same. One starts with an initial product, receives feed-
back and then expands the size, breadth, and/or complexity. Hence, we start 
with a simple example to underscore the need to explicitly model and design.

Say a programmer assumes the task of designing and implementing a 
simple math tutor for elementary school children. Without taking time 
for design, a developer may code a repetitive loop that controls a multi-
step  query and response cycle: (1) generate a simple addition problem, 
(2) output problem, (3) prompt for solution, (4) accept input, (5) check 
input against expected answer, and (6) respond affirmatively or negatively. 
A flowchart models this simple feedback loop in Figure 1.1.

If implemented as the control flow model indicates, this software may 
be acceptable as a homework assignment for a novice programmer but is 
not an industrial-strength product. Why? Deficiencies abound. Looping 
never terminates, regardless of whether a given answer is correct or not. 
Error processing is missing—what happens if the student enters non-
numeric data? The form and content of a sample problem is not defined—
are negative numbers acceptable? User satisfaction is not considered: 
the same problem is repeated, over and over, until a correct answer is 
received. Overall, there is no specification of system design with respect 
to use, response, and repetition. The failure to design intentionally often 
yields narrowly scoped and brittle software. System design is prematurely 

Generate
sample problem

Output
sample problem

Prompt for
solution

No

Yes Is X
correct?

Accept input X

FIGURE 1.1 Query and respond loop.
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constrained when the form and bounds of input and appropriate response 
are assumed but not specified.

Several design details remain unanswered in this math tutor example, 
primarily specification of functionality and use. Deciding what to model 
and build is a process of identifying missing or implicit assumptions. One 
can easily generate questions about content (domain knowledge of tutor), 
use (tutor response), limitations (constraints), and expected audience. The 
list in Figure 1.2 enumerates several design questions that serve to estab-
lish the scope of the math tutor software. Minimally, a designer should 
determine required domain knowledge, form and bounds of input, error 
processing, and output.

I. Consider content of the math tutor. What material is covered?
 a. What operations are drilled?
  i. Addition? Subtraction? Multiplication? Division?
  ii. Mixed-mode? If so, in what combination?
  iii. Negation? Reciprocals? Exponents?
 b. What type of numerical data is processed?
  i. Integers? Reals? Fractions? Decimals?
  ii. One digit? Multiple digits?
 c. What is the level of difficulty?
  i. One level? Variable?
  ii. Set by user (external)? Auto up or downgrade (internal)?
 d. Is there choice?
II. Evaluate expected responses from the tutor. What are the triggers?

 a. What if the answer is incorrect?
  i. Repeat problem? Show solution? Provide hints?
  ii. Replace with easier query? Walk through example?
 b. What if the data input is invalid?
  i. Ignore? Re-prompt?
  ii. Identify format errors? Attempt to interpret?
 c. What if user response is tardy?
  i. Timeout? Hints? Partial solution?
III. Quantify the bounds of the tutor. How is knowledge disseminated?
 a. How is content managed for a session?
  i. Bounds on repetition? All problems unique?
  ii. Patterned responses? Different tutorials?
 b. How is a session resumed?
  i. Automatic progression? Start over?
  ii. Review? Repeat?
IV. Who are the users of the system?
 a. Single user?
  i. Statistics tracked? Level of difficulty retained?
 b. Multiple users?
  i. User id? Licensed?
  ii. Grouped? Networked?

FIGURE 1.2 Math tutor: unspecified details.

www.allitebooks.com

http://www.allitebooks.org


Software Complexity and Modeling   ◾   7  

To design intentionally, a software developer must state expectations 
and restrictions. Furthermore, if extensions are anticipated, design deci-
sions must yield modifiable software. Will multiplication be incorporated 
into the design? How important is support for mixed-mode arithmetic? 
Might it be desirable to retain a history of problem sessions? In short, for a 
viable, commercial product, software developers should not just sit down 
at the keyboard and pound out code.

Perhaps it was misleading to describe our example application as a 
“simple” math tutor. See Figure 1.3 for a refinement that offers more detail 
for the design and implementation of a “simple” tutor. Yet, even this refine-
ment illustrates a simple system without much of the complexity sum-
marized in Figure 1.2. Although the undesirable feature of interminable 
guessing on an unsolved problem has been removed, termination of the 
whole process is not modeled. Error processing is nonexistent. Auxiliary 
support, via examples, tutorials, or hints, is not documented. Skill level, 
arithmetic operations, and domain of arithmetic values are still missing.

As shown in this math tutor example, software design is complicated. 
Why? In addition to the expected scenario of immediate and correct use, 
other scenarios must be considered. Modern software must address broad 
expectations of use and longevity, as well as variety in targeted audiences 
and deployment. We examine next the dimensions of software utility.

1.1.2  Software Utility

Software solutions for business and society abound since computational 
and data processing tasks are now automated. However, the expanded 
domain of automated tasks is not the sole reason for the complexity of 

Generate
sample problem
numGuess=0

Output
sample problem

Prompt for
solution

Increment
numGuess Accept input X

No
No

Yes

Yes

numGuess
> max?

Is X
correct?

FIGURE 1.3 Modified query and respond loop.
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modern software systems. Software use is no longer confined to experts. 
Software systems target a wide range of users, possibly multinational, with 
differing levels of expertise. Software systems are more likely to be distrib-
uted and consist of several components integrated together. Hence, design 
priorities shift from computer performance issues, such as data storage 
and processor clock cycles, to user expectations, such as responsive inter-
faces and meaningful error processing.

For example, an online reservation system must process requests to 
reserve an item, whether the item is a library book, a plane ticket, or a seat 
in a theater. Typically, a reservation system must be accessible in-house and/
or externally, often via different browsers. Software applications hosted on a 
LAN (local area network) or the web, rather than a dedicated machine, must 
service remote requests, handle distributed data and other background pro-
cesses such as message passing, synchronization, recovery, traffic flow, etc. 
Fortunately, network software handles most background responsibilities for 
an application. Still, application software must be designed to work within 
the confines of network protocols. What works correctly on a single proces-
sor does not necessarily work well when distributed across a network.

Customers expect a responsive interface that is usable, secure, and robust. 
Vendors expect customer histories and retention of personal data. These 
expectations are not functional. That is, satisfying these expectations does 
not directly address the core functionality of the system: making a reserva-
tion. Software characteristics such as data persistence, usability, and security 
are considered nonfunctional requirements because their fulfillment does 
not immediately meet the strictly functional requirements of the software. 
Nonfunctional components include the user interface, error handling, storage 
of persistent data, performance tracking, security, and other requirements.

To support a broad customer base, multiple audiences with different 
degrees of experience and domain knowledge, software may be built in 
a generalized manner that enables customization. Ancillary files may 
be used for localization data, that is, data to customize the UI for a dif-
ferent language as well as default error messages and initialization data. 
Nonetheless, the end product must be correct and consistent. Hence, a 
commonality in design and implementation must be preserved.

The complexity of software design is also due to anticipated product 
longevity. Fiscal prudence, reinforced by perceptions of high replace-
ment cost, encourages the retention of legacy software systems. A prefer-
ence for integrating new features into existing systems entails a shift away 
from clean-slate design. Economic concerns aside, code often warrants 
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retention. Why? Often, it is less disruptive to extend a stable code base 
than to begin anew. Users familiar with a system’s form and functionality 
may be reluctant to migrate to an entirely new system.

The cost of upkeep (software maintenance) is justified when a software 
system has been used so extensively that its replacement would cause 
significant strife. An active customer base may not wish to work with a 
modified interface (or database). Professionals may be reluctant to migrate 
to new tools, whether the tools are word processors, compilers, or online 
tutors. In short, product identification may encourage retention of old 
software. Anything short of an immediate and exact replacement may be 
viewed as inferior or cause a service interruption.

When required to retain established functionality and/or form, devel-
opers do not have the luxury of designing from scratch. Developers must 
fit new features into an old system, possibly refactoring the legacy system 
to better absorb these new features. Software longevity and refactoring are 
subjects of increasing interest and warrant their own exposition.

1.1.3  Software Production

Modern software must meet expectations of responsive UIs, data reten-
tion, portability, and longevity. How then should software be produced? 
Methodically. Software construction is complex and thus expensive, 
requiring significant skill and experience. The cost of software devel-
opment provides the incentive to maximize usage and extend lifetime. 
Software is thus typically decomposed into modules so that these com-
ponents may be more easily reused and/or modified. Adherence to stan-
dards and convention, including design guidelines and patterns, supports 
reuse. Design for reuse drives development. After all, it costs nothing to 
copy software.

The preponderance of legacy systems encourages an emphasis on main-
tainability. Software maintainability refers to more than just bug fixes: it 
is the ability to update software to extend the UI, improve performance, 
expand error handling, migrate to a new platform, support a new localiza-
tion release, and/or add new functionality. Many software professionals, 
concerned by the negative association of bug fixes with the term “software 
maintainability,” prefer an alternate phrase: software evolution. Regardless 
of terminology, to properly maintain software, developers must under-
stand the intent, design, and implementation of a legacy system as well as 
any new features. Hence, ideal software development stresses documented 
design and modeling.
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To maximize commercial gain, software is often developed for multiple 
platforms and many audiences. Documents, design artifacts, and models 
provide the means to communicate present as well as past requirements 
and assumptions to all stakeholders in product development. Table 1.1 
summarizes why documentation is thus essential: documentation pro-
vides a common foundation for design, implementation, and verification. 
We examine business practices for such development next.

1.2  SOFTWARE ENGINEERING
Software engineering is the formalization of software project management 
and software development techniques. Software engineering brings a busi-
ness orientation to the technical work of defining, modeling, designing, 
and constructing complex software. Software engineers manage projects, 
that is: define client expectations; solicit feedback from stakeholders (all 
those involved in the project); estimate resource requirements; construct 
design, development, and testing plans; create schedules for design, devel-
opment, and testing; define benchmarks for progress and evaluation; and 
specify acceptance criteria. Different project methodologies exist yet every 
project methodology should be explicit and systematic.

Software engineering principles rest on conventions that imply the 
development of reliable and functional software. Characteristics of such 
software include abstraction, modularity, functional decomposition, por-
tability, scalability, and heterogeneity. Few software characteristics can be 
measured directly. In fact, the chief challenge of software engineering is 
that software is intangible.

Academicians often compare software engineering to other engineering 
disciplines, such as civil engineering. Although there is merit in the anal-
ogy—both disciplines follow formal practices that are organized and strive 
to meet standards—software is not a bridge. Since software is not a physical 
entity, it is malleable; its execution depends on hardware configurations 

TABLE 1.1 Software Documentation: Communicate Intent

Software Variants Teams of Software Developers
Multiple platforms Geographically dispersed
Different target audiences Concurrent development
Multiple releases Software evolution

Upgrades Add new features
New platforms, etc. Port to new platform, etc.

Compact, embedded versions Unit and integrated testing
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and user audiences (and their input). Software does not age, and it is essen-
tially free to replicate. Yet, relative to testing and maintenance, software’s 
lack of physical form is a liability: it is not easily examined.

Parallels exist between the maturation of other engineering disci-
plines and software engineering. A well-developed engineering discipline 
has standard procedures and formulae. Software engineering does also. 
Software professionals work in the many stages of software development, 
each stage focused on particular goals. In the next section, we briefly 
define these stages and subsequently consider each in turn. For more 
details, please consult a standard software engineering text.

1.2.1  The Software Development Life Cycle (SDLC)

The development of large, complex software systems depends on the efforts 
of many professionals. Project scope must be determined to construct a 
timeline and budget. Core software functionality must be defined, with all 
incompatibilities and constraints resolved. Software qualities, such as acces-
sibility or efficiency, must be prioritized. Since the potential for code reuse 
may affect the high-level structure of a system (by determining component 
use and layout), anticipated longevity and product use should be estimated.

Initially, project scope and impact should be identified. Thereafter, 
specific processes for modeling, design, and development phases may be 
adopted. Regardless of the methodology used for project management, 
however, the different stages of software development are categorized for-
mally as the SDLC.

SDLC falls under the purview of software engineering. Software engi-
neering is the application of engineering principles to software development. 
As a formal discipline, software engineering encompasses the systematic 
processes used in the design, development, and deployment of software 
geared toward long-term use. Software engineering is not merely project 
management plus software development: it encompasses all stages of system 
construction and support, including software maintenance (evolution).

Table 1.2 outlines the classic stages of software development. Today, 
to emphasize the overlapping intent of some stages, one might refer to 
four stages: specification (requirements and specification), development 
(architecture, design, implementation), validation (testing), and evolution 
(maintenance). Software engineers use different process methodologies to 
manage the stages of the SDLC.

Regardless of the process model used for scheduling these stages, the 
design and development of software requires comprehensive and clear 
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documentation. Systematic management of different versions of the soft-
ware is also required. Hence, configuration management and quality 
assurance are essential engineering practices for large-scale software 
development.

Underlying software engineering is the business perspective of a pro-
ducer satisfying consumer demands. This contractual emphasis can be 
seen in each stage of software development. Software engineers must 
meet with clients to identify user expectations and distinguish between 
“wants” and “needs.” Knowledge of the skill sets and expectations of the 
target audience(s) is essential. Software may be marketed to different tar-
get groups, each of which may demand modified requirements, modeling, 
and/or design. Although UI differences may be intuitive and seem sim-
ple, slight differences in functionality may trigger significant deviations 
in design. Table 1.3 enumerates some sample applications and associated 
software characteristics.

TABLE 1.2 Software Development Life Cycle

Stage Goal(s) Details
Requirements Contractual specifications

Specify “what”
Functional properties
Nonfunctional properties

Specifications Properties enumerated
Functionality delineated

How to satisfy requirements?
Timing? Performance? Etc.

Architecture Structural layout
Connectors identified

Software elements
Modules, interfaces

Design Software form and function Data types and algorithms
Implementation Software development Programming and integration
Testing Verification Unit and integrated
Maintenance Update for longevity Bug fixes and expansion

TABLE 1.3 Software Applications with Different Requirements

Application Deployment Details UI
Data processing Desktop General utility General 
E-commerce Web Financial interest Customer
Control systems Embedded Constrained footprint

Power consumption
Internalized

Games Web or gamebox Education, entertainment Interactive
Simulation Application 

specific
Computationally intensive Specialized
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Standalone systems, such as word processors, simple databases, and 
games, may be sold to any customer if designed with sufficient general-
ity. Alternatively, such systems may be targeted toward more specialized 
communities such as education and medicine. Custom software typically 
requires specific contracts for product development. Common examples 
include embedded systems, aircraft, military, and government. Often such 
systems have enhanced requirements for security and/or preservation of 
proprietary information.

Perceived as an essential but costly stage of software development, soft-
ware maintenance spans all stages of the SDLC and encompasses different 
types of modifications. When expanded functionality alters an existing 
system, changes may be pushed all the way back to the requirements stage. 
When improved quality is demanded, whether for performance, security, 
or usability, changes may be pushed back to the architectural level and 
so forth. Many professionals prefer the term software evolution because 
maintenance implies required cleanup rather than change for sustainabil-
ity. Software maintenance is not simply bug fixes.

Each stage of the software development life cycle should be adaptive. 
What happens if expectations cannot be met, requirements change, or 
deadlines slip? Responses vary somewhat according to how each stage is 
managed, whether the stages overlap, the means and frequency of com-
munication, etc. In the next section, we summarize common approaches 
to staging software development.

1.2.2  Software Process Methodologies

Software process methodologies model the organization of different stages 
of the software development life cycle. The classic methodology is the 
waterfall model, a strictly linear staging that fails to accommodate change. 
Other methodologies offer a more responsive progression. Table 1.4 sum-
marizes some common software process methodologies. Incremental 
or iterative methodologies seek to improve upon the waterfall model by 
endorsing incremental development with feedback between requirements 
analysis and design. The most modern popular approach that uses this 
methodology is agile software development (Martin, 2009).

Extreme Programming (XP) is a well-known agile software devel-
opment methodology. It relies on very short development cycles, with 
continuous customer feedback, so that requirements are identified and 
implemented incrementally. These short development cycles, or bursts, 
typically require code reviews and unit testing. Although effective, 
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especially for many web applications, and popular, especially for its pair 
programming techniques in academia, XP has been criticized for insuf-
ficient modeling and documentation. Large software systems may need a 
more comprehensive, initial design specification along with a full disclo-
sure of major functionality (Lakos, 1996).

Rational Unified Process (RUP) is a methodology built on top of object 
orientation: object-oriented design (OOD—Booch) and object modeling 
technology (OMT—Rumbaugh). It is a staged approach, like waterfall, 
but with continuous integration. Adaptation for different platforms and 
customization for localization and so forth can thus be accommodated. 
Another methodology that modifies the waterfall model is the “spiral” 
model. It focuses on prototyping and iterative development but includes 
risk management; that is, explicit specification of objectives, alternatives, 
and constraints. Validation is based on acceptance criteria.

With an emphasis on writing tests first, test-driven development (TDD) 
relies on a short development cycle just like XP. The initial step is to write 
(automated) test cases that define system requirements, or redefine func-
tionality that warrants modification. Without an adequate code base, these 
initial tests will fail. The next step is to write code so that the test cases 
pass, followed by a step that refactors the code to sustain design principles 
and remove duplicate code. Each test must be designed and constructed to 

TABLE 1.4 Software Process Methodologies

Approach Emphasis Characteristics Details
Waterfall Clean slate Overly linear

Dated
Independent 
stages 

Incremental 
(iterative)

Intermediate 
versions

Implicit prototyping 

Concurrent activity for
Specification
Development
Validation

=> RUP
=> Agile

Agile/scrum Rapid development/
executable software

Evolving requirements Self-organizing 
teams

RUP Iterative/components
Sanctity of 
requirements

Inception, elaboration, 
construction, 
transition

Continuous integration 

OOD, UML
Elevated role of 
testing

Spiral Prototyping
Risk management

Augmented waterfall
Top-down 
decomposition

Constraints
Alternatives 

Test-driven 
development

Tests
Fine granularity 

Tests written first
Test drive code dev

Incremental 
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model the requirements well. A poorly designed test will not yield appro-
priate results, causing the code written in response to be insufficient for 
the desired functionality. Using TDD, features are tackled individually so 
that system functionality is developed incrementally. Hence, TDD may 
not work well for software systems highly dependent on generalized user 
interfaces, distributed processing, or databases.

How does one choose an appropriate software process model? Identify 
the essential characteristics of the software product and its intended 
audience. For example, web applications that serve a broad audience of 
users must support a variety of platforms and may be subject to volatile 
requirements. A process methodology with a short turnaround time looks 
like a promising candidate. In contrast, a customized large-scale system 
must fulfill substantial security requirements. A process methodology 
that emphasizes thorough specifications and extensive validation may be 
preferred.

Every process methodology attempts to deftly manage software product 
development. One must delineate the different stages of software develop-
ment and then determine, via process methodology, how to schedule, staff, 
and coordinate each stage. Whether an iterative, linear, or cyclic process 
methodology is used, there must be communication between each stage of 
the SDLC. We next consider modeling as a means of communication that 
can be employed at any stage of the SDLC.

1.3  MODELS
What is a model? How is modeling related to design? What models are 
used for software development? Why should one bother modeling? We 
address these questions after some disclaimers. Models do not solve prob-
lems; models represent solutions. Models do not erase incompatibilities; 
models communicate intent and form. Models are not uniform, either in 
form or granularity. Models do not spring, fully formed, from tools; mod-
eling tools assist in the representation of a constructed model. Selecting a 
modeling tool does not yield a model. One type of model does not span 
all software products or software development processes. Many types of 
models exist.

Hmmm, so many disclaimers! Why? Software models come in many 
different forms and are not consistently used or appreciated. Software 
modeling is not a new field but neither is it a mature field. Modeling efforts 
can focus on any stage of software development. Models can be recorded 
using software tools, yielding complex diagrams. Yet, to many profession-
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als, a system description in a Word document is a model. No matter how a 
model is presented, a model satisfies the following definition.

Definition: A model is a conceptual description of a system that 
allows one to make predictions.

NOTE THAT A MODEL IS:

precise if it is exact or clearly bounded
accurate if it is correct, consistent, and represents factual observations
ambiguous if it supports more than one interpretation

An incomplete model may still yield utility if its limitations are known. 
Likewise, an imprecise model may still be usable if areas of imprecision 
are clearly identified. More troubling, however, is an ambiguous model: 
how does one know which interpretation applies or was used? Figure 1.4 
illustrates a simple control model for recharging a cell phone. The model 
is precise, accurate, and unambiguous. Yet, even in this simple model, 
there are implicit assumptions: accurate cell phone display (green light 
represents recharging complete); power compatibility between power 
source (outlet) and phone; and connector (cord) available for recharg-
ing. Models are much more difficult to construct for lengthy and complex 
endeavors.

As a form of complexity management, a model should replace copi-
ous descriptions. A model replaces lengthy documentation of observed or 
desired behavior with a more succinct summary. Models thereby reduce 
space requirements for a system description. By representing complex sys-
tems, models provide a tool for comprehension, design, and maintenance. 
Regardless of form, models should communicate structure, design, and 
response. As a record of design, models compensate for the human brain’s 
imperfect and bounded memory.

Locate outlet Plugin
cell phone Wait

Unplug
cell phone

Yes NoIs light
green?

FIGURE 1.4 Recharge cell phone.
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The complexity of a large software system is overwhelming: excessive 
and overlapping information can be disorienting, and the required details 
can be distracting. Since the brain has limited capacity for processing and 
retaining information, a readable form of documentation reduces the load 
on working memory. Much research has examined human capacity for 
absorbing and processing information (Torkel, 2009). Standard memory 
faults have been categorized (Schacter, 2003). Table 1.5 enumerates com-
mon memory omissions, when human memory has insufficient recall. 
Table 1.6 enumerates common memory faults, when human memory has 
inaccurate recall.

Models support both abstraction and generalization. Complex sys-
tems are typically reduced to a number of interacting subsystems. 
Understanding a large system requires an understanding of its constitu-
ent parts. Models of subsystems can then be viewed, as simply as possible, 
in isolation. To analyze subsystems, one must first assume that changes 
occur in isolation. Emergent behavior occurs when the subsystems are put 
back together and interactions enabled.

A model is a bridge between analysis and synthesis. Models permit a 
complex system to be specified, and system behavior understood before 
construction. To aid comprehension, models must distinguish between 
relevant and irrelevant details. Memory recall is supported by association, 
the ability to relate to the familiar. Thus, models should use a conventional 

TABLE 1.5 Memory Omissions

Absent Mindedness Blocking Transience
Attention lapses Repression Forgetfulness curve
Poorly encoded information Poor conceptual association Poor encoding 
Cognitive overload Lack of context Details short-term

Source: D. Schacter, Seven Sins of Memory: How the Mind Forgets and Remembers, 
Houghton Mifflin, 2003.

TABLE 1.6 Memory Faults

Bias Misattribution Persistence Suggestibility
Rescripted memory Déjà vu Excessive Recall False memory
Preservation of view Poor association Emotional affect Misleading info
Distorted influence Details missing Failure response External source

Source: D. Schacter, Seven Sins of Memory: How the Mind Forgets and Remembers, 
Houghton Mifflin, 2003.



18   ◾   Software Essentials 

form. Since reconstruction of experience is subject to bias, models must 
record essential assumptions and priorities so that recollection remains 
specific. Visual imagery helps.

Models abound. Many different types of models are used in software 
development, including domain models, architectural models, risk-driven 
models, deployment models, and design models. Specific representations 
of models include flowcharts, data flow models, decision tables, Petri 
nets, state charts, class diagrams, sequence diagrams, use cases, activity 
diagrams, and finite state machines. The wide variety of UML (Unified 
Modeling Language) constructs (see uml.org) illustrates the complexity 
of modeling and the many levels at which modeling may be used. Static 
models define structure at the component or class level as well as control 
flow. Dynamic (or execution) models illustrate interaction and response, 
often using a timeline.

Some conceptual models are neglected. For example, the instruction set, 
driver interfaces, and communication protocols of a particular computer 
are all models. Fundamental types and memory management within a 
particular programming language are also conceptual models. Many such 
representational models have some connection with the real world. For 
example, communication protocols usually include an acknowledgment 
of message receipt, which is typical of in-person or phone conversations. 
Usually, foundational models may be ignored because software develop-
ment is far removed from low-level details. However, for optimality or 
consistency, one may need to re-examine models underlying a system.

Appropriate use of software modeling is often not obvious. The absence 
of a standard notion of modeling impedes decisions of when and how to 
model. The plethora of model types makes tool selection difficult: differ-
ent modeling tools target different stages of the SDLC and even differ-
ent applications. Nonetheless, models should be used across the software 
development life cycle. Why? Models manage complexity and communi-
cate design.

As a record of design, models should be used throughout software 
development. Different texts cover different perspectives on the genera-
tion and use of models, such as Blaha and Rumbaugh (2005), Larman 
(2005) and Gomaa (2011). Much of this book emphasizes modeling expec-
tations via contractual documentation. Section III promotes the modeling 
of software relationships by explicit design. Here, we peruse the stages of 
the SDLC, starting with requirements specifications.
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1.3.1  Requirements Analysis and Specification

As the specification of user needs, the initial stage of the software develop-
ment life cycle should establish project scope and software requirements. 
The primary goal is to define functionality: what does the user need the 
software to do? The task of defining requirements is more challenging 
than it might seem: users often do not know what should be required, may 
confuse wants with needs, cannot fully or accurately describe technical 
expectations or product characteristics, or may have unrealistic expecta-
tions. Even with concerted effort then, specifications may be ambiguous, 
inconsistent, and/or incomplete. Re-examination of requirements is often 
warranted, even in the midst of other stages of the SDLC. Figure 1.5 pro-
vides an initial response to defining characteristics of a math tutor, as pre-
viously explored in Figure 1.2.

The requirements document specifies system functionality and use, that 
is, the what (and maybe the why) but not the how. A requirements docu-
ment serves as a touchstone for all subsequent stages; it is not static. Details 
may change as target audiences expand, technology changes, or budget 
allocations fluctuate. Nonetheless, core functionality, as well as interface 
and performance expectations, should be fairly stable. The requirements 
document should also specify system requirements such as compatibility 
with other packages and portability to a variety of platforms.

Well-specified functionality should accurately model (and, thus pre-
dict) the behavior of the system it emulates. Intuitive examples reflect 
real-world phenomena. Consider electronic bank transactions, online 
shopping, payroll systems, etc. Functionally, such systems can be viewed 
from either the front or the back end. The user most often considers only 
the front end: the automated bank teller, customer service representative, 
etc. The back-end database though is essential. This electronic store of 
account information and inventory replaces paper systems of the same 
and, more importantly, supports efficient data-intensive searches. Even 
computer games that simulate fantasy worlds may be viewed from the user 
interface, which includes video and gameplay, or from the back end where 
processing tracks player performance and handles object movement, state, 
and appearance. Both ends of a software system must be modeled, and the 
required functionality so specified.

Many different models may be used to reflect functional requirements. 
State machines, decision tables, state charts, and flowcharts are often used 
(Jorgenson, 2009). The scale of a model affects its utility: a small scale may 
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include relevant details but results in an unwieldy document; a large scale 
may omit critical details.

The process of defining and then refining system goals identifies critical 
functionality and desired properties. Thus, requirements and specifica-
tions overlap. Software engineers solicit client (stakeholder) requirements, 
taking care to differentiate between general criteria and customiza-
tion details. The requirements document must define user requirements 
as specified and validated. A requirements document specifies system 
requirements such as integration expectations, compatibility constraints, 

I. Functionality
 a. Generate arithmetic problems, appropriate to skill level
 b. Process user answers
  i. Verify correct response
  ii. Allow some number of guesses (retries) on a problem
 c. Provide tutorials
  i. explicitly by request
  ii. implicitly tied to skill regression
 d. Manage student skill level
  i. span from simple 1-digit addition up to 4-digit mixed mode
  ii. initially set by user
  iii. internally adjusted in response to user performance
II. Content knowledge of tutor

 a. Arithmetic operations: addition, subtraction, multiplication, division
 b. Mixed-mode supported (progressive, tied to level of difficulty)
 c. Legal values: integers, reals (decimal notation); negative and positive
III. Tutor response to user input
 a. Error processing
  i. Non-numeric entries discarded before re-prompt
  ii. Numeric data evaluated relative to pending problem
 b. Timed response
  i. Timeout on problem if user inactive for extended period
  ii. Logoff if user inactive for long extended period
 c. Problem repetition bounded
 d. Sessions
  i. Tied to skill level
  ii. Discreet; not resumed
IV. Users
 a. Student
  i. Tracked by id
  ii. Statistics on session retained
  iii. Associated with level of difficulty
 b. Teacher
  i. Tracked by id
  ii. Access to set of students
  iii. Read permission for student data
V. System requirements

FIGURE 1.5 Requirements for math tutor.
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and performance criteria. It details what the system should do; it is not a 
design document; it does not specify how the system works.

Nonfunctional properties (NFP) should be included as requirements, 
where a nonfunctional property is defined as a software characteristic 
that does not directly advance the goal of realizing core functionality. 
Also known as software qualities or nonfunctional requirements, NFPs 
embody software’s appeal: usability, scalability, reliability, etc. NFPs are 
difficult to model, implement, and assess.

With an initial set of requirements, a feasibility study may be under-
taken to determine costs and technical constraints. Cost may cause a reor-
dering of project priorities and thus a revision of the functional and/or 
nonfunctional requirements. Thus, requirement specification is often not 
a one-step process. With reasonable requirements, one may sketch the sys-
tem architecture. Software architecture is commonly associated with the 
topology of a system, and we examine it next.

1.3.2  Software Architecture

Software architecture came into prominence in the 1990s as a field of 
study. Why? The prevalence of large-scale software systems. Development 
costs and maintenance overhead emphasized the importance of sustain-
able design as well as the necessity of documenting and communicating 
design intent.

Intuition suggests that software architecture represents the struc-
tural form of a software system. Yet, many definitions abound (Shaw and 
Garlan, 1996; Gomaa, 2011). Elements of software architecture include 
components, connectors, interfaces, and the interactions between compo-
nents and connectors. What is a connector? It is a piece of software that 
connects two or more components in a system. Connectors come in many 
forms: shared memory, message passing, function calls, wrappers, and 
adaptors. An architectural configuration is the set of components and the 
associations between those components as defined by connectors. From a 
static viewpoint then, the architectural configuration is the system’s topol-
ogy. Architecture so modeled must portray an overview of the system as 
well as its core functionality: developers should not depend on analysis of 
individual components to derive a sense of the system.

Figure 1.6 presents a high-level decomposition of an online math tutor, 
as consistent with the principle “separation of concerns”—a key tactic in 
software modeling and design. The critical components of a system are 
defined separately to isolate (separate) the primary tasks (concerns) of the 
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system. In the math tutor model, the “analyzer” component determines 
whether the next action should be delegated to the “problem generator” 
or the “tutorial” component. This coarse model isolates both the UI (user 
interface) and the database: the “analyzer” is responsible for directing data 
selection and retention. Software components promote maintainability: 
upgrades and changes are confined to specific portions of a system so that 
software is easier to design, develop, test, and maintain.

Components may be distinguished by whether they request or provide 
services. This clear decoupling of request and response promotes consis-
tency and maintainability. Moreover, the isolation of providers supports 
scalability as system load increases. Figure 1.6 models separation of the 
front end (UI) and the back end (database) of a system. Neither the UI 
nor the database provide critical computation for system core function-
ality. Both serve to support core functionality by displaying, filtering, 
and storing data. We next examine the Model View Controller (MVC), 
an architectural pattern that epitomizes this separation of request and 
service.

1.3.3  Model View Controller

The MVC is both a conceptual and an architectural model that serves to 
separate functionality from form. Figure 1.7 displays the three conceptual 
entities of the MVC: the model, the view, and the controller. The user sees 
the views and interacts with a controller. The model contains the func-
tional software, that is, the business logic and the application data. A view 
is the presentation of data. A controller serves as a mediator, converting 
data to the view required and servicing requests. The functionality avail-
able to the user at any given point may be tied to the state of the model. 
Hence, the controller must observe the state of the model. MVC may 

UI

TutorialAnalyzerProblem
generator

Database

FIGURE 1.6 Conceptual design for math tutor.
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support multiple views and multiple controllers and therein lies the power 
of the model.

How does the MVC work? A controller sends commands to a view 
when it is necessary to change the presentation of the model, e.g., when a 
bar graph is converted to a line graph. A controller also notifies the model 
to update state. Upon a state change, such as data modification, the model 
may notify the controller to update its views. A view requests data from 
the model to construct its presentation.

The MVC supports the clear decomposition of functionality. Com-
ponents either request services or provide services. Expanding service to 
more users does not break the system: additional components are incor-
porated but  the  number of views is not increased. Thus, scalability is 
supported.

The MVC is adaptive. Different views may be developed for the same 
data (as generated and maintained by the model). Different controllers 
may also be developed for the same model. The MVC provides transpar-
ency while isolating clients from each other. A consistent model, MVC is 
maintainable and scalable: servers may be added as load increases.

Software architecture serves as the design template for both software 
construction and evolution. What then is the difference between archi-
tecture and design? It is primarily one of scope. Software architecture is a 
higher-level specification of elements (components) and their interactions 
(connectors) (Perry and Wolf, 1992). Software design is a lower-level specifi-
cation of modules, interfaces, algorithms, and data structures. Design leads 
directly to implementation details. Architecture remains higher level with 
an emphasis on major design decisions that affect the system in totality.

1.3.4  Code Construction

Modern software requires easier access, more storage, broader compat-
ibility, as well as support for nonfunctional properties. Requirements 

State update Component update
Controller
(mediator)

State change User action
ViewModel

(observer)

FIGURE 1.7 Model view controller.
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analysis, software architecture, and software design are thus more com-
plex. We have seen some simple models for requirements and architecture. 
We devote Chapters 5 through 8 to structural, behavioral, and compara-
tive design, using the object-oriented paradigm as a foundation. The ques-
tion we address here is: May code be considered a model?

At a high level of abstraction, models focus on conceptual content and 
omit most implementation details. Code is the embodiment of implemen-
tation details, and should follow the modeled software design. Yet, can one 
consider code itself a model?

Let us consider the classic Fibonacci number generation problem, 
frequently used in introductory programming courses. The first two 
Fibonacci numbers are 1 and 1. Each subsequent number in the sequence 
is computed as the sum of the previous two numbers. Hence, the third 
Fibonacci number is 2 (1 + 1 = 2), the fourth is 3 (1 + 2 = 3), the fifth is 
5 (2 + 3 = 5), etc. Mathematically, the Fibonacci numbers are represented 
as

 F0 = 1, F1 = 1 
 Fn = Fn–1 + Fn–2 n > = 2 

Two common approaches are used to generate the nth Fibonacci num-
ber. In one, storage trumps computation: the first n Fibonacci numbers 
are initially computed and then stored for all subsequent lookups. In the 
second, storage is minimized: only the last two numbers computed are 
stored, and upon request for the next Fibonacci number in the sequence, 
the smallest (oldest) value is replaced with the newly generated value. 
The latter model assumes that Fibonacci numbers will be requested only 
in sequence but can be easily modified to regenerate numbers from the 
sequence’s initial values (see Example 1.1).

Example 1.1: Fibonacci Number Generation: Store versus Compute

//lookup: Fi = f[i]; Fibonacci numbers stored //for lookup
int f[n];
f[0] = f[1] = 1;
for (int j = 2; j < n; j++)
 f[j] = f[j-1] + f[j-2];
//compute Fi = computeF(i);
int computeF(int i)
{
 int f1 = 1;
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 int f2 = 1;
 int fN;
 int index = 1;
 while (index < i)
 { fN = f1 + f2;
  f1 = f2;
  f2 = fN;
  index++;
 }
 return fN;
}

Software may represent a precise model of an external system. A mod-
el’s state transitions are defined responses to input and thus effectively 
represent system response to input, whether the input is valid or invalid. 
Examples include cruise control, elevator control, and autonomous robots. 
For such software systems, there is a direct correspondence between soft-
ware elements and those of the physical system. Yet, even with a strong 
association to a physical entity, software structure may not model all 
required elements of a software product. Recall that many software sys-
tems must include nonfunctional components, such as UI and security.

Graphical User Interfaces (GUIs) provide an example of software that 
itself is a model. Menus in a GUI represent a set of choices. Tiered drop-
down menus order choices hierarchically, according to semantic content. 
In this manner, the GUI organizes the information presented to the user. 
The model of information thus presented affects user satisfaction and 
determines the usability of the system. Information organization and pre-
sentation are not trivial tasks, especially when one piece of software must 
accommodate a wide range of users.

Historically, software modeling was the high-level specification of 
requirements, statically or dynamically. Software modeling is no longer 
strictly associated with requirements. An architectural model views sys-
tem components and their interactions, where each component consists 
of one or more software modules. The module level views data types and 
their interactions. The data type (class) level views data elements, their 
interactions, and functionality.

1.4  SOFTWARE INTEGRATION
Traditional software development starts with the specification of system 
functionality and form, via requirements gathering, followed by clean-
slate software design and implementation. The key characteristic is that 
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the system is built without existing dependencies on old software or with-
out expectations of supporting a known product with a loyal user base. 
Clean-slate software development is considered a luxury.

Software development is typically taught to the novice as a standalone 
process: design and implementation are pursued without regard to other 
software components. Although a novice programmer may use utility 
software, such as libraries that support IO or provide random number 
generators, any design emphasis remains focused on building a system 
from scratch. However, in industry, the integration of existing software 
components and subsystems is now prevalent. Why has the form of soft-
ware development shifted? Many reasons explain this shift, including (1) 
the success of modular design that promotes component reuse; (2) the size 
and longevity of software systems; and (3) the development of software 
product lines. Consider MS Office, a software product that embodies all 
three characteristics.

Once a commercial enterprise invests significant resources (time and 
money) to develop a software product, the incentive to reuse code is tre-
mendous. Budgetary expenditures for maintenance are justified when 
software evolution promises expanded functionality, improved perfor-
mance, updated standards, and a broader user base. Expansion by itself 
increases the complexity of software because any new functionality must 
be crafted for a broad user base. Different user audiences have differ-
ent skills, expertise, and domain knowledge, and hence, different, often 
incompatible, expectations as to ease-of-use, error processing, perfor-
mance, and reliability.

To justify development cost and maximize reuse potential, modern 
software systems are often multiplatform, and/or multipurpose. To main-
tain or replicate such a system, one must understand its requirements, 
architecture, design, constraints, etc. Even professionals with domain 
knowledge often face a steep learning curve. Explicit documentation is 
required of but not confined to API, modeling, localization, etc.

Software integration requires developers with broad knowledge and 
specific skills. To glue together existing pieces of software, software inte-
gration specialists must know how to resolve incompatible interfaces. To 
customize the appearance or augment functionality, software integration 
specialists must understand both reuse potential and limitations on such 
reuse. Hence, an understanding of interface design, database storage and 
access, and performance criteria is critical (Hammer and Timmerman, 
2008). Moreover, testing drives verification of the configuration of 
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integrated systems. Testing is necessarily more complex as one moves 
beyond unit or component testing and into system and integration testing.

With an emphasis on software architecture, software integration depends 
on knowledge of both structure and behavior. Does the integrated system 
need any quality improvements, such as better performance or increased 
security? Will any additional functionality be added? Software developers 
must identify current and targeted users of a legacy system, the feasibility of 
wrapping or migrating code, as well as performance and scalability details. 
For integration, both the front end (UI) and the back end (database, net-
work) should be well known. Again, we return to the idea of having system 
documentation, or a model, that describes intent, restrictions, and form.

1.5  DOCUMENTATION
Software engineering stresses the need for high-quality documentation, at 
every stage of the SDLC. The complexity and longevity of software systems 
drive the need to record system requirements, structure, and functionality 
via models and documentation. Client expectations, vetted for feasibility 
and cost, turn into requirements. Goal prioritization drives the specifica-
tion of functional and nonfunctional properties. The structure of a soft-
ware system, its components and interactions, is recorded as the software 
architecture. Software design may be detailed from scratch using a model-
ing tool like UML.

Yet, to a novice, documentation suggests adding comments to code. 
Code should be self-documenting, that is, the naming protocol and struc-
ture of the code should reflect the immediate effect of code execution 
(review Example 1.1). Nonetheless, self-documenting code or comments 
do not typically contain a cohesive description of the overall system design 
or requirements. Documentation scattered across hundreds of source files 
cannot effectively record system-level imperatives. Thus, a system-level 
description is mandated.

Even an experienced professional may not think of documentation 
beyond a design document. After all, a design document delineates system 
structure and function, removing the dependency on code or inline com-
ments. However, many forms of documentation record essential elements 
of a software system: requirements specify system functionality and soft-
ware qualities; a software architecture model displays the structure and 
linkage of software components; a design document delineates elements of 
software construction; a testing document outlines testing plans, coverage 
and, possibly, essential test cases.
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Whatever its form, documentation should provide an overview of the 
system as well as its core functionality: developers should not depend on 
a serial analysis of individual components to comprehend the form and 
effect of a system. Developers gain at best a module-level perspective if 
they must depend on perusing individual components for descriptions. 
A module-based perspective inhibits parallel development: programmer 
A cannot develop module X while programmer B develops module Y if 
module X is dependent on the design of module Y. Complex software sys-
tems require a “summary model.”

Internal documentation should complement higher-level documenta-
tion, recording details such as valid ranges for inputs and outputs, error 
processing, etc. Essentially, the developer must record assumptions made for 
correct execution of the software as well as anticipated software evolution.

The cost of missing high-level design documentation is long-term and 
unbounded. Upgrades to a software system, such as UI enhancements or 
expanded error processing, can be needlessly protracted and expensive if 
developers must make educated guesses about the software’s original func-
tionality and constraints. New features may interfere with old, undocu-
mented features, undermining integration testing. Maintenance is impeded 
if a developer, like a “hunt-and-peck” typist, must scan line by line through 
files looking for comments that describe functionality. Without a big-pic-
ture view of the system, inconsistent changes to the software are more likely.

Incomplete, inconsistent, or ambiguous specifications can be costly to a 
project: the end product may not meet the client’s needs, even if it “works.” 
Across the SDLC, insufficient documentation is problematic. Documenta-
tion serves to communicate and should compensate for personnel differ-
ences in location, background, experience, or assigned responsibility.

1.6  SUMMARY
Software is now more complex, not computationally but in terms of size, 
targeted audiences, supported platforms, UI responsiveness, longevity of 
code, quality of error processing, integration with existing code, distrib-
uted use, as well as breadth of automation. Software development is more 
complicated because software systems are larger, operational for longer, 
and embellished with more nonfunctional features. Communication 
between software developers on the same project is also complex: many 
software engineers and developers work on a product but not necessarily 
at the same time or in the same place.
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To streamline the processes of software development, software engi-
neering techniques formally delineate technical and business perspectives. 
Software development spans many phases: requirements specification 
for functionality; software architecture for structural layout of compo-
nents and interactions; software design, implementation, and testing. 
Throughout these stages, documentation is critical. At a high level, models 
are a form of documentation that promote an understanding of form and 
function and support communication between developers.

Models may be employed at each level of the SDLC to aid conceptual 
understanding and to communicate intent and application. A model pro-
vides a more succinct description of the system than a list of empirical 
trials and their results. The value of a model is amplified when it is con-
veyed from one person to another. Several audiences must be satisfied: 
software developers responsible for design, implementation, testing, or 
maintenance; application programmers who use the developer’s product 
to craft applications; and end users. Software should work as intended, 
that is, consistent with expectations for use and longevity. Hence, an effec-
tive model must specify not just the functional requirements but contex-
tual use, interfaces, error processing, security, etc.

DESIGN INSIGHTS

SOFTWARE

Modern software must provide more than functionality
Broad expectations of use, compatibility, and longevity
User interface must be usable, robust, and secure
Significant data retention (and analysis) expectations

Software is intangible = >
Free to copy
Difficult to test

Hard to discern software structure

MODELS

Communicate intent and design
Replace lengthy documents with succinct summaries
Provide a bridge between analysis and synthesis
Scale affects utility

A large scale may omit critical details
A small scale may include too many distracting details
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SOFTWARE DESIGN

Clean-slate design is a luxury
Deliberate design for completeness and correctness
Software maintenance is more than just bug fixes

Port to new platform
Augment functionality
Expand user interface
Record system usage, etc.

DOCUMENTATION

Record assumptions
Correct execution
Software evolution

Common foundation for:
Modeling
Design 
Implementation 
Testing 
Maintenance 

CONCEPTUAL QUESTIONS

 1. Why is modern software complex?

 2. When modeling interactive software, what details must be considered?

 3. How are NFP distinguished from functional properties?

 4. Why is software engineering different from other engineering 
disciplines?

 5. Describe the drawbacks of using a strictly linear software process 
model (the waterfall model).

 6. What are the key differences between requirements and design?

 7. Identify different software process models and discuss their differen-
tiated use.

 8. What is a model? Where are models used? What do models provide?

 9. Explain the difference(s) between static and dynamic models.

 10. Why is the MVC architecture popular?
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C h a p t e r  2

Software Development

Coding has evolved from a tedious process mired in machine 
instruction addresses to a high-level description of executable tasks. 

At the lowest level, software execution may be viewed as fetching, evalu-
ating, modifying, and storing data. To understand implementation and 
its costs, we first examine software execution at the machine level. Then 
we trace the progression of software development as it relies on operating 
systems, and software tools, primarily compilers. A short summary of the 
evolution of programming languages illustrates the importance of soft-
ware design and the appropriate modeling of data through abstract struc-
tures. We provide a brief overview of a standard modeling tool, Unified 
Modeling Language (UML), and close the chapter with a brief descrip-
tion of emerging standards for software construction.

Our discussion traces the transformation of the programmer’s per-
spective from a microscopic level to a more abstract and macroscopic 
level. As tools and support for software development have advanced, the 
software designer’s conceptual model of programming has shifted from 
isolated, concrete tasks to large, layered, intricate systems. Increasingly 
sophisticated, software development tools provide significant abstrac-
tion. Hence, modern software development should, but often does not, 
emphasize software architecture and design. We begin by examining 
software execution from the bottom up.
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2.1  SOFTWARE EXECUTION
Computers are electronic devices in which voltage states are used to rep-
resent 0 and 1. Running software then is essentially the evaluation of 
binary strings, sequences of zeroes and ones. A location storing a 0 or a 1 
is called a bit. A byte is 8-bits. Computers store billions of bytes in their 
main memory and even more in external storage. Computers operate on 
collections of bytes called words. The arithmetic logic unit (ALU) operates 
on single or paired words. The bit-width of the ALU determines the “size” 
of the processor and the “size” of a word. A 64-bit processor has an ALU 
that is 64-bits wide. A computer program thus must be broken down into 
many, many words for execution.

At the lowest level, computer memory, including registers, is associated 
with absolute addresses. Binary string values are placed in and retrieved from 
these addresses. Actions are performed according to the value of the binary 
strings so stored. Although binary strings and addresses can be represented 
in hexadecimal code when debugging, this compact and more readable form 
does not add enough abstraction to make writing hexadecimal code enjoy-
able or safe! For the most part, software developers work in a high-level lan-
guage (HLL) that is translated (typically, compiled) into machine level code.

Any particular binary string may be interpreted in different ways. 
Consider the string “01000001,” which can be interpreted as the positive 
number 65 or as the ASCII letter “A.” When a system is constructed, it 
establishes a consistent standard of interpretation. Thus, the binary string 
“1000001” is interpreted as 65 if it is associated with the integer type or as 
the letter “A” if it is associated with the character type. Critical here is the 
notion of interpretation. Often, the elegant simplicity of software derives 
from a flexible interpretation of type.

The notion of type is layered on the basic notion of storage. At the 
machine level, an executing program is unaware of types: it just shuffles 

CHAPTER OBJECTIVES

• Outline the fundamentals of software execution
• Identify general utility support provided by operating systems
• Emphasize the abstraction afforded by high-level languages
• Delineate key stages of compilation
• Define abstract data type (ADT) and the class construct
• Categorize UML constructs
• Enumerate basic software construction tenets
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bytes around. Type information is used in the translation of code written 
in a HLL. Consider the first two lines in Example 2.1. These lines represent 
code statements that declare four variables, where a variable is an abstract 
name for a memory location. The abstract names “a” and “b” represent 
Boolean values, values that can be true or false. True is denoted by any 
nonzero value and false is denoted by zero. The abstract names “x” and 
“y” represent integer values. The programmer need not know or track how 
much storage is allocated for a Boolean value, or for an integer value. The 
compiler does so.

Example 2.1: Type Affects Interpretation
bool a = 1, b = 1;
int x = 1, y = 1;

//Boolean OR
a + b;  =>  MOV $tmp, a
     OR $tmp, b
//integer addition
x + y;  =>  MOV $tmp, x
     ADD $tmp, y

All four named values are initialized to 1. The same operation “+” is 
performed on each pair of values. However, the operator “+” is overloaded, 
that is, its meaning differs according to type. For integers, “+” is simply 
addition. For Boolean values, “+” is the disjunction (OR) of two Boolean 
values. Again, the programmer need not be concerned about different 
type implementations of “+” operation. The compiler tracks type and gen-
erates different instructions!

Most software developers no longer think in terms of binary strings. 
Likewise, they no longer deal with low-level hardware details, such as 
device drivers and memory disks. Instead, reliance on utility software pre-
dominates. We briefly review such software in the next section.

2.2  GENERAL PURPOSE UTILITY AND SUPPORT
Desktop computers and laptops are typically general purpose and thus 
are capable of running diverse software applications. High-performance 
computers are far more specialized but also run a variety of software. For 
any application, utility software must be present to start the system, load, 
execute, and reload multiple software programs. Utility modules pro-
vide basic functions of I/O, data storage and retrieval, and computation. 
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Advances in software development yielded the design and implementa-
tion of utility modules for extensive reuse.

Operating systems (OS) evolved from repositories of code that per-
formed standard I/O operations. Abstraction hides differences between 
devices and thus supports higher-level perspectives of data and con-
trol. For example, the notion of volume control is standard even though 
sound cards differ from platform to platform. Programmers thus focus on 
computational tasks and software structure rather than low-level device 
details.

Operating systems automate the loading of computer programs into 
computer memory banks. An OS routine stores a software program into 
memory. During execution, program instructions are fetched (retrieved 
from memory) and executed on the processor. Operating systems manage 
different computer components (memory, device drives, processor) while 
supporting multiple processes (computer programs). Operating systems 
thus help streamline software development.

Operating systems consist of several modules to support seamless 
software execution. Figure 2.1 presents an abstract model of these ser-
vices. The kernel comprises the core functionality of operating systems. 
Several software programs handle different components. Device drivers 
abstract away I/O and memory-mapped addresses, control messages, and 
data transfer protocols. Process scheduling (and threading) abstract  away 
CPU assignment and process switching. Interrupt services abstract away 
device- specific and critical timing issues. Memory services abstract 
away memory to disk swapping and other virtual memory management 

Application software
Application programmer interface (API)

Operating system
System programs (compilers etc.)
OS kernel (controls hardware)

Memory CPU Devices

FIGURE 2.1 Operating system components.
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details. Process independence is enforced by hardware and the operating 
system.

Operating systems have been so well integrated into modern develop-
ment platforms their existence is usually assumed. Software designers, 
for the most part, do not consider I/O processing, linking, loading, and 
timing. By isolating the user and the developer from low-level hardware 
details, operating systems provide platform independence. That is, for the 
most part, one need not worry about the platform, or hardware configura-
tion, on which software runs.

The study of operating systems no longer may be a cornerstone of an 
undergraduate education in computer science. Current software develop-
ment often focuses on data management and front-end services such as 
user interfaces (UI). However, many back-end processes handled by oper-
ating systems, such as threading and memory management, impact soft-
ware performance and maintainability.

Alongside operating systems, compilers and assemblers elevate the art 
of software development. By hiding processor-specific details, compil-
ers sustain portability. For example, programmers use variable names to 
handle data; no longer must a programmer work with registers or specific 
machine addresses. A variable name is thus a symbolic address, abstractly 
representing a memory location that stores a data value. The substitution 
of symbolic addresses for machine addresses is fundamental in modern 
software.

Symbolic linkers resolve binary addresses when different components 
are merged together. In essence, assembly language code and symbolic 
linkers abstract away absolute addresses. How? Within each component, 
variable declarations (like the simple ones seen in Example 2.1) trigger 
the reservation of memory for data within that component. Each address 
so reserved may be considered a relative address, that is, its address is an 
offset to the base address of a component. A linker then links components 
together, translating relative addresses to absolute (specific) addresses.

To preserve integrity, and reduce human error, use of absolute 
addresses is discouraged. Absolute addresses in code compromise relo-
catability (the ability to load executable code into any arbitrary memory 
location). Why? Reference to an absolute address implies knowledge of 
where a program is loaded into memory, and the expectation that it be 
reloaded to the same location. Moreover, specific addresses are tied to 
specific representation of address length (platform dependent) and thus 
compromise portability.
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2.3  PROGRAMMING LANGUAGE EVOLUTION
Programming languages and software tools elevate the low-level tedium of 
bit evaluation to a conceptual level. Assembly language is the first layer of 
abstraction, replacing command bit strings with pseudo-mnemonic code 
that directs the use of registers and memory locations. Thus, program-
mers work with coded locations rather than direct memory addresses. 
Instruction sets for an assembly language are tied to a specific processor 
family, yielding little or no portability.

Although an improvement over hard coding binary strings, assembly 
languages provided only limited portability due to direct association with 
specific processors. In the 1960s, research and industry efforts focused on 
streamlining the coding process. Shortly after the introduction of assem-
bly language, HLLs such as Cobol and Fortran were developed. HLLs pro-
vide programmers with a set of reserved words, meant to be as readable 
as a restricted form of English. A programmer can then more easily and 
clearly write out instructions for manipulating and storing data.

2.3.1  Compilers

Example 2.2 presents a short C++ code example, computation of a 
Fibonacci number. Compare this HLL code with the equivalent assembly 
language code shown in Example 2.3. Which code would you rather write, 
read, modify? Compilers translate HLL code into assembly language code, 
and an assembler converts the assembly language into machine code. 
Some compilers produce machine code directly but can generate assem-
bler for debugging purposes.

Example 2.2: High-Level Language Code: C++
//Compute and return the nth Fibonacci number.
int fib_loop(int n)
{
 int result = 0, last_result = 1;
 int i;
 if (n < 0) return -1;//error.
 for (i = 0; i < n; ++i)
 {
  int tmp = result + last_result;
  last_result = result;
  result = tmp;
 }
 return result;
}
#if UNIT_TEST
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#include "stdio.h"
int main(int argc, char* argv[])
{
 printf("The zeroeth Fibonacci number is%d\n", fib_loop(0));
 printf("The first Fibonacci number is%d\n", fib_loop(1));
 printf("The second Fibonacci number is%d\n", fib_loop(2));
 printf("The third Fibonacci number is%d\n", fib_loop(3));
 printf("The tenth Fibonacci number is%d\n", fib_loop(10));
 return 0;//Success.
}
#endif
//Compile this program with the command:
//gcc -DUNIT_TEST -g -o fib_loop fib_loop.c
//Run this program with the commend:
//./fib_loop

Example 2.3: Assembly Language Produced for Example 2.2
//Obtain assembly listing using the commend:
//objdump -S fib_loop
//Obtained using the command "objdump -S fib_loop"
fib_loop: file format elf32-i386
Disassembly of section.text:
080483e4 <fib_loop>:
//Compute and return the nth Fibonacci number.
int fib_loop(int n)
{
80483e4: 55 push%ebp
80483e5: 89 e5 mov%esp,%ebp
80483e7: 83 ec 10 sub $0x10,%esp
int result = 0, last_result = 1;
80483ea: c7 45 f0 00 00 00 00 movl $0x0,-0x10(%ebp)
80483f1: c7 45 f4 01 00 00 00 movl $0x1,-0xc(%ebp)
int i;

if (n < 0) return -1;//error.
80483f8: 83 7d 08 00 cmpl $0x0,0x8(%ebp)
80483fc: 79 07 jns 8048405 <fib_loop+0x21>
80483fe: b8 ff ff ff ff mov $0xffffffff,%eax
8048403: eb 2f jmp 8048434 <fib_loop+0x50>

for (i = 0; i < n; ++i)
8048405: c7 45 f8 00 00 00 00 movl $0x0,-0x8(%ebp)
804840c: eb 1b jmp 8048429 <fib_loop+0x45>
{
int tmp = result + last_result;
804840e: 8b 45 f4 mov -0xc(%ebp),%eax
8048411: 8b 55 f0 mov -0x10(%ebp),%edx
8048414: 01 d0 add%edx,%eax
8048416: 89 45 fc mov%eax,-0x4(%ebp)
last_result = result;
8048419: 8b 45 f0 mov -0x10(%ebp),%eax
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804841c: 89 45 f4 mov%eax,-0xc(%ebp)
result = tmp;
804841f: 8b 45 fc mov -0x4(%ebp),%eax
8048422: 89 45 f0 mov%eax,-0x10(%ebp)
int result = 0, last_result = 1;
int i;

if (n < 0) return -1;//error.

for (i = 0; i < n; ++i)
8048425: 83 45 f8 01 addl $0x1,-0x8(%ebp)
8048429: 8b 45 f8 mov -0x8(%ebp),%eax
804842c: 3b 45 08 cmp 0x8(%ebp),%eax
804842f: 7c dd jl 804840e <fib_loop+0x2a>
{
int tmp = result + last_result;
last_result = result;
result = tmp;
}
return result;
8048431: 8b 45 f0 mov -0x10(%ebp),%eax
}
8048434: c9 leave
8048435: c3 ret

08048436 <main>:

#if UNIT_TEST
#include "stdio.h"

int main(int argc, char* argv[])
{
8048436: 55 push%ebp
8048437: 89 e5 mov%esp,%ebp
8048439: 83 e4 f0 and $0xfffffff0,%esp
804843c: 83 ec 10 sub $0x10,%esp
printf("The zeroeth Fibonacci number is%d\n", fib_loop(0));
804843f: c7 04 24 00 00 00 00 movl $0x0,(%esp)
8048446: e8 99 ff ff ff call 80483e4 <fib_loop>
804844b: ba b0 85 04 08 mov $0x80485b0,%edx
8048450: 89 44 24 04 mov%eax,0x4(%esp)
8048454: 89 14 24 mov%edx,(%esp)
8048457: e8 a4 fe ff ff call 8048300 <printf@plt>
printf("The first Fibonacci number is%d\n", fib_loop(1));
804845c: c7 04 24 01 00 00 00 movl $0x1,(%esp)
8048463: e8 7c ff ff ff call 80483e4 <fib_loop>
8048468: ba d4 85 04 08 mov $0x80485d4,%edx
804846d: 89 44 24 04 mov%eax,0x4(%esp)
8048471: 89 14 24 mov%edx,(%esp)
8048474: e8 87 fe ff ff call 8048300 <printf@plt>
printf("The second Fibonacci number is%d\n", fib_loop(2));
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8048479: c7 04 24 02 00 00 00 movl $0x2,(%esp)
8048480: e8 5f ff ff ff call 80483e4 <fib_loop>
8048485: ba f8 85 04 08 mov $0x80485f8,%edx
804848a: 89 44 24 04 mov%eax,0x4(%esp)
804848e: 89 14 24 mov%edx,(%esp)
8048491: e8 6a fe ff ff call 8048300 <printf@plt>
printf("The third Fibonacci number is%d\n", fib_loop(3));
8048496: c7 04 24 03 00 00 00 movl $0x3,(%esp)
804849d: e8 42 ff ff ff call 80483e4 <fib_loop>
80484a2: ba 1c 86 04 08 mov $0x804861c,%edx
80484a7: 89 44 24 04 mov%eax,0x4(%esp)
80484ab: 89 14 24 mov%edx,(%esp)
80484ae: e8 4d fe ff ff call 8048300 <printf@plt>
printf("The tenth Fibonacci number is%d\n", fib_loop(10));
80484b3: c7 04 24 0a 00 00 00 movl $0xa,(%esp)
80484ba: e8 25 ff ff ff call 80483e4 <fib_loop>
80484bf: ba 40 86 04 08 mov $0x8048640,%edx
80484c4: 89 44 24 04 mov%eax,0x4(%esp)
80484c8: 89 14 24 mov%edx,(%esp)
80484cb: e8 30 fe ff ff call 8048300 <printf@plt>
return 0;//Success.
80484d0: b8 00 00 00 00 mov $0x0,%eax
}
80484d5: c9 leave
80484d6: c3 ret
80484d7: 90 nop
80484d8: 90 nop
80484d9: 90 nop
80484da: 90 nop
80484db: 90 nop
80484dc: 90 nop
80484dd: 90 nop
80484de: 90 nop
80484df: 90 nop

HLLs abstract away instruction-set dependencies and thus provide 
portability; the same software code can run on different processors. 
Commands involving several small steps are replaced by logical represen-
tations. For example, setting a data value to 100 if its initial value is zero 
requires many low-level steps in assembly language:

LDA x load register A with data value represented by x
CMP 0 compare x with zero
JMPZ labelA skip next step if x is not zero
LDA 100 load register A with the value 100
STO x  store the value in register A in the memory associated 

with x
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This instruction is clearly and compactly represented in a HLL by a 
statement such as
 if (x == 0), x = 100

By translating HLL statements into the low-level steps required in assem-
bly language, compilers made coding easier and more reusable.

Major actions performed by compilers are partitioned: a front end, an 
optimizer, and a back end, as shown in Figure 2.2. The front end is tied to 
the particular HLL being translated. It processes the HLL source code into 
intermediate code that is optimized and then passed to the back end. The 
back end translates the optimized code into machine code or an assembly 
language tied to a specific processor. The middle part is the optimizer. In 
Figure 2.2, to emphasize that front end is tied to a specific HLL, the initial 
input (source code) is bolded. Likewise, to emphasize that the back end is 
tied to a specific processor family, the final output (machine code) is also 
bolded.

The essential actions of each compilation stage are summarized in 
Table 2.1. Each stage advances the translation of source code from a high-
level language into machine level code. The lexical scanner (analyzer)  
removes information not relevant to execution, such as comments and 
white space (tabs, punctuation, spaces). The scanner emits a stream of 
tokens, where each token represents the smallest meaningful unit. The 
parser analyzes tokens, verifying correct syntax, and ensuring that 
tokens are grouped together appropriately. For example, “a = b + c” is a 
statement composed of five tokens: a, =, b, +, and c. This single statement 
represents two operations: addition (b + c) and assignment (storage of 
sum “b + c”).

Input Output
Front end:
Lexical scanner
Parser
Normalization
Verification

Middle:
Optimizer
Back end:
Code generator

source code
token stream
parse tree
parse tree

parse tree

optimized parse tree

optimized parse tree

token stream
parse tree
standardized parse tree
consistent parse tree

machine/assembly code

=>

FIGURE 2.2 Compilation stages.
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During normalization, the parse tree is standardized. Statements are 
converted to a standard form that is meaningful to the compiler, but not 
necessarily a programmer. For example,

return;  // #A: return of no value implied
return void;  // #standardizedA

C c = d;   // #B: object constructed and value 
// copied

C c(d);   // #standardardizedB: copy constructor 
// invoked

The verifier checks semantic relevance. For example, a continue state-
ment can exist only inside a loop.

Many optimizations occur automatically, unseen by software develop-
ers. Yet, software design impacts how often such optimizations may be 
applied. We review some optimizations, such as function inlining, in 
Chapter 3.

Compilers themselves support generality and abstraction! The same 
front end can be reused for multiple compiler versions, where each ver-
sion supports a given HLL but targets a different, specific processor fam-
ily. Likewise, the back end can be reused for multiple compiler versions, 
where each version processes the intermediate code from a specific HLL. 
Compilers profoundly enhanced the productivity of software developers.

TABLE 2.1 Compilation Processes
Scanner Remove comments and white space

Track source code lines
Tokenize 

Parser Syntactical analysis: report syntax errors
Early semantic checks

Normalizer Provide missing element
Replace alternate forms with preferred forms

Verifier Ensure consistent internal representation
Optimizer Target agnostic optimizations

Dead code removal; reduction in strength; hoisting;
common subexpression elimination

Target dependent optimizations
Peephole optimization

Generator Translation followed by dead or repeated instruction removal
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With all the advances in programming languages and operating system 
support, why is software development still so complex? Why is software 
often hard to understand, sustain, or replicate? As noted in Chapter  1, 
much of modern software complexity is due to its longevity and scale. 
In the next sections, we briefly examine standard data structures used in 
HLLs to constrain software complexity.

2.3.2  Software Design

As software use became more embedded in society, software costs came 
under increasing scrutiny. Commercial expectations for correct and effi-
cient software arose. Software development and code designs were ana-
lyzed. Concern developed over the proliferation of spaghetti code, code 
that had little inherent structure and no discernible control flow. Software 
is difficult to understand, test, and modify when its control flow cannot be 
easily traced or predicted.

When intense criticism of unstructured code surfaced, a focus on 
software design, specifically structured design, emerged. Pascal, a highly 
structured teaching language developed by Nicklaus Wirth, was used effec-
tively to instill the tenets of functional decomposition (top-down design) 
as an alternative to spaghetti code. Software became more readable when 
a program’s major responsibilities were thus decomposed at the high level 
first, with tasks assigned to lower-level functions. Example 2.4 displays a 
general main() routine used to demonstrate functional decomposition to 
novice programmers. Kernighan and Ritchie developed C, the successor 
of language B, at Bell Labs. C provided high-level language constructs but 
retained an emphasis on efficiency. Both Pascal and C promoted struc-
tured design, but Pascal enforced structured control flow more resolutely 
by prohibiting the goto statement.

Example 2.4: High-Level Functional Decomposition: C++
int main() //delineate major tasks of program
{
 startUp(); //function handles intro/initializ
 while (!done()) //function tests if terminus reached
 { query(); //function acquires data and/or direction
   process(); //function processes data and/or action
 }
 cleanup(); //function releases resources, stores data
 return 0;
}
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Structured programming supported clear control flow, functional 
decomposition, and the ability to clearly define composite types. Software 
so designed was more readable, and thus, more maintainable. However, 
structured programming provided little persistent connection between 
functions and data, using global data or passing parameters as the pri-
mary means to share data. Example 2.4 may not clearly illustrate the gen-
eration, sharing, or persistence of data, even though some data transfer 
likely exists between the query() and the process() functions. For greater 
consistency, software developers saw the benefit of associating data with 
its relevant functionality. Thus, the notion of an abstract data type (ADT) 
gained currency.

2.3.3  ADTs

Decades ago, modular programming proposed the isolation of functions 
that served the same purpose or addressed the same data. The intent was 
to better achieve the software engineering directives of low coupling and 
high cohesion. Coupling is a measure of the interdependency of two dif-
ferent software elements. The more tightly coupled, the more likely that 
a change in one element will force a change in the second. Hence, low 
coupling is associated with better software maintainability. Cohesion is 
a measure of how well the internals of a software element “stick together.” 
High cohesion implies a significant degree of isolated functionality (or 
data) and thus confinement of a software change to a particular portion 
of the system.

A module is a set of procedures alongside with data needed for its func-
tionality. By associating a module with specific functionality, modular 
programming yields design clarity and code readability. Cohesion fur-
ther reduced software maintenance cost. Why? If change is mandated for 
a particular feature, and that feature is restricted to one module, change 
is isolated to one module. The cost of cascading changes is thus avoided.

For a defined type, modular programming led to a distinction between 
an interface (published set of available functions) and an implementation 
(internal selection of data structures and associated functionality). This 
separation of concerns (interface and implementation) promised reduced 
maintenance cost if the modules so designed were highly cohesive.

ADTs promote the separation of form from function by isolating the 
implementation of a data type from its interface declaration. A classic 
example is a queue data type: its use requires the availability of enQueue(), 
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deQueue(), isEmpty(), isFull(), and clear() functions. Such functionality is 
independent of implementation: a queue data type could be implemented 
as a circular array or as a linked list. By separating interface from imple-
mentation, an ADT shifts the focus from implementation details to the 
functionality supported by the interface.

ADTs reinforced the dual perspective of utility software: external use 
by an application programmer, internal definition by a designer. This 
delineation between form and function supports the development of reus-
able, testable code since the application programmer is dependent only 
on the interface NOT the implementation. Internal changes need impact 
only the designer: no change should be required in application code when 
implementation changes. The application programmer codes only to the 
interface and thus must know only the form of function invocation, the 
data required to make a call, and any expected processing after the func-
tion terminates. We examine next the realization of an ADT via the class 
construct, which was greatly advanced by popular adoption of C++.

2.3.4  Class Construct

Bjarne Stroustrup developed C++ at Bell Labs. As an object-oriented 
programming language (OOPL), C++ was backward compatible with C. 
The name C++ played on the notion of shortcut increment via the “++” 
operator. C++ was an increment, an improvement, to C (although some 
pundits noted that post-increment implied use before the increment/
improvement). C++ quickly became popular because it was built on and 
was interoperable with C. C++ retained the same top priority as C: effi-
ciency! Enthusiasts for both languages appreciate the adage “pay only for 
what you use”. C++ greatly advanced the concept of the ADT through its 
class construct.

Essentially an ADT, a C++ class is a type definition that can be sepa-
rated into two files: an .h or header file and a .cpp or implementation file. 
Ideally, the header file should contain only the function prototypes speci-
fying the public interface. However, since the compiler needs type infor-
mation, to deduce size as needed for memory layout, the header file must 
contain the declarations of data members as well. Since the application 
programmer can thus look into the header file and see the private data 
members, the header file does not fully support information hiding. The 
.cpp or implementation file contains the function definitions. Example 
2.5 illustrates the decoupling of interface and implementation, as imple-
mented via the C++ class construct, for the classic stack data structure.
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Example 2.5: Stack ADT: Form and Function Decoupled (C++)
//stack.h FILE: declare data members and function prototypes
class Stack
{ //class-wide global: often used for bookkeeping
 static int countActive;
 //data members defined for each object instantiated
 int top;
 int size;
 int* dataP;

 //suppress copying: see chapter 4
 void operator=(const Stack&);
 Stack(const Stack&);
public:
 //constructor and destructor
 Stack(unsigned dataSize = 100);
 ~Stack();

 //public utility
 bool isEmpty();
 bool isFull();
 int pop();
 void push(int);
 void clear();

 //function to access static count
 static int numActive();
};

//stack .cpp FILE: implement functions; initialize static data
int Stack::countActive = 0;

//constructor with provision for default size
Stack::Stack(unsigned dataSize)
{ top = 0;
 size = dataSize;
 dataP = new int[size];
}

//destructor
Stack::~Stack() { delete[] dataP; }
void Stack::clear() { top = 0; return; }
bool Stack::isEmpty() { return top == 0; }
bool Stack::isFull() { return top == size; }

int Stack::pop()
{ int localValue = dataP[top];
 top--;
 return localValue;

}
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void Stack::push(int value)
{ dataP[top] = value;
 top++;
}

int Stack::numActive() { return countActive; }

As a type definition, the class construct is similar in other languages. 
Typically, data is encapsulated and tagged as private, that is, not directly 
accessible outside the class definition. Functionality can be either public 
(directly accessible outside the class), or private. These different accessibil-
ity rights allow elements of a class definition to be viewed as private (inter-
nal) or public (external) details.

Since the class construct is a type definition, no memory is allocated 
until a variable declaration triggers such an allocation. Object declara-
tions are also known as object instantiations because an object is syn-
onymous with an instance of the class. Object instantiation is more than 
memory allocation. Special functions, called constructors, are implicitly 
invoked by the compiler to initialize the object so instantiated, and usually 
bear the name of the class. See Chapter 5 for more detail.

An application programmer manipulates instantiated objects. How-
ever, object manipulation is restricted to the public interface of the class. 
As seen above, a stack object may be used but only for the public functions 
of push, pop, etc. To advance the notion of security via encapsulation, class 
data and member functions are private, by default. For additional acces-
sibility definitions and detail, see Chapter 5.

A class definition specifies data members along with associated func-
tionality. Each class method (member function) is a function declared in 
the scope of that class. An instance of a class is an actual data realization 
(memory allocation) of that class definition. Since every class member func-
tion must be able to distinguish between multiple instances of the class, the 
notion of the this pointer emerged. The this pointer holds the address of the 
active object and is an implicit parameter passed with each member func-
tion invocation, as seen in Example 2.6. For more details, see Appendix A.

Example 2.6: OO Code (C++): Implicit this Pointer
//sample object allocation
Stack s1; //s1 allocated at memory location B404
Stack s2; //s2 allocated at memory location B442
s1.push(42); //Stack::push(B404, 42)
s2.push(17); //Stack::push(B442, 17)
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Every object has its own data fields (that is, a copy of each defined data 
member), except for class-wide globals (static data members). To track 
object instantiation and destruction, one can define a static count in a 
class: this count can be incremented in each constructor and decremented 
in the destructor. countActive is a static data member for our stack 
class. One copy of a static data field is allocated for the ENTIRE class, 
independent of the number of objects instantiated. Frequently, static data 
fields are used to track class usage, such as the number of objects instanti-
ated, or the number of calls to a specific function. However, in general, the 
use of global data and class statics is discouraged.

Consider the two stack objects, s1 and s2, in Example 2.6. The state-
ment s1.push(42) is an invocation of the Stack::push() method that 
passes in the address of s1 (received as the this pointer) alongside the 
integer value to be stored in the stack object s1, i.e., Stack::push(&s1,42). 
Similarly, s2.push(17) is an invocation of the Stack::push() method 
that passes in the address of s2 alongside the integer value to be stored in 
the stack object s2, i.e., Stack::push(&s2,17). Figure 2.3 illustrates sam-
ple memory allocation for the code that declares and manipulates stack 
objects in Example 2.6. Using this sample memory assignment, the com-
ments in Example 2.6 indicates what method invocations look like from 
the compiler’s perspective.

2.3.5  Object-Oriented Programming Languages

In the mid-1990s, Java was developed at Sun Microsystems with James 
Gosling as the chief architect. Java met the burgeoning web’s need for 
an OOPL that provided portability. Java is similar to C++ but prioritizes 
portability and security in contrast to C++’s emphasis on efficiency. Java 
stressed object orientation by imposing the syntactical restriction that all 
code must be defined in a class construct. Thus, even a structured driver 
had to be declared in the form of an object.

Java became immediately popular for a few reasons. In Java, each prim-
itive type is associated with a specific size. Regardless of platform then, an 
int will always require the same amount of memory. If a Boolean requires 
one byte on platformA, it will require one byte on platformB and so forth. 

s1 s2

B404 B442

FIGURE 2.3 Memory layout for Example 2.6 objects => this pointers.
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Data declarations, and stack frame layouts, are thus consistent across plat-
forms, supporting the portability of Java code. Java also provided an easier 
development environment: programmers did not have to track memory 
management as closely as in C++. The learning curve for coding in Java 
is thus shorter and shallower. For more detail on memory management 
within a program, see Chapter 4.

OOPLs, such as C++, Java, and C#, emphasize the notion of encap-
sulation as well as abstraction. A type definition is wrapped up in one 
class (capsule), and hence, its data is protected. To further the concept 
of an independent capsule, design principles stress that a class definition 
should contain all the functionality needed to manipulate instances of 
the class (that is, objects) and no more. Classes so designed achieve high 
cohesion since there is no extraneous functionality or data. Classes so 
designed also achieve low coupling because all needed data AND func-
tionality are contained within the type definition: external dependencies 
are minimized. Encapsulation affords design control over the external 
interface and the internal implementation of data. Well-designed classes 
are better able to preserve type properties and thus support software 
maintainability.

Beyond providing language constructs that support abstraction and 
encapsulation, OO languages impacted software design. Encapsulation 
led directly to the notion of an object having an internal state, where the 
state of an object is the value of all its data members at a particular point. 
The emphasis on internal control further advanced a dual perspective. 
That is, functionality is grossly delineated into two categories: public type 
behavior that is available to the application programmer (such as pop(), 
clear(), etc. for a stack) and private internal functionality that provides 
common utility (e.g., copying) and is of interest to the class designer.

Only certain states may be significant. For a stack object, in fact for any 
container, empty and non-empty are distinct states. A state transition is 
the change in an object state that bears significance. Consider a stack data 
type that internally resizes and thus does not have the notion of “full.” 
Upon a pop() operation, a stack object may transition from a non-empty 
to an empty state. Similarly, on a push() operation, a stack object may 
transition from an empty to a non-empty state. In contrast, a push() 
operation on a non-empty stack does not trigger a state change. For data 
integrity, the class should control state and disallow unregulated public 
functions, such as unconditional mutator operations, that open a class up 
to unreserved modification. The class designer should structure the class 
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definition so that all state transitions are legal and consistent. Chapter 5 
examines class design in greater detail.

Customized data types, defined with the class construct, should be easy 
to use safely and consistently. Ideally, their use should be as intuitive as 
manipulating built-in types provided a programming language. Also, to 
ease software development, software designers may use explicit models. 
We examine a common modeling tool, UML, next.

2.4  UML
Developed by the Object Management Group (OMG), UML is freely avail-
able at uml.org. UML provides standard diagrams to represent design, 
and to a limited extent, to document software architecture. Awareness of 
UML is fairly ubiquitous. Although UML defines a plethora of modeling 
constructs, it is just a tool. It does not make modeling any easier; it often 
makes the representation of models easier.

UML is the de facto standard for representing software structures 
and functionality. A UML approach comprises several views: classes 
with attributes (data), operations, and relationships; specific realizations 
(instantiations) of these classes, commonly referred to as objects; pack-
ages of classes, alongside their dependencies; states and behavior of indi-
vidual classes; example scenarios of system usage; scenarios of interacting 
instances; and distributed component communication.

UML defines three types of diagrams: structural, behavioral, and inter-
action. We provide only a broad overview. For more details, please see 
uml.org. Structural diagrams document the static structure of the soft-
ware system and how different portions relate to each other. At a low level, 
software architecture models classes, objects, interfaces, components, 
relationships, and dependencies between elements. UML defines several 
different types of structure diagrams, as enumerated in Table 2.2. We use 
the class construct in subsequent chapters.

Behavioral Modeling Diagrams capture interactions within a model as 
well as system states and state transitions. By modeling dynamic behavior, 
one can track system use and response under both normal and abnor-
mal conditions. Behavioral diagrams record the effects of an operation 
or event and thus define functionality and identify error conditions and 
responses. Table 2.3 summarizes three types of behavioral diagrams: use 
case, activity, and state machine.

Interaction diagrams are a subset of behavior diagrams and model 
interactions between components, system, and environment. Table 2.4 
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lists several types of interaction diagrams. Behavioral diagrams commu-
nicate system response and sketch accommodation of different scenarios. 
Use cases, state machines, and sequence diagrams are often use in analysis 
and design. In this text, we focus on structural design and reuse; in this 
context, the class construct is most useful.

TABLE 2.2 UML Structure Diagrams

Diagram Relevance Intent Details
Class Basic building blocks 

of a model
Define type, interface, 
attributes 

Cardinality
Relationships 

Object Instantiation of class Sample data Runtime use
Composite Layering of structure Focus on construction 

and relationships
Collaborations 
supported

Component Provide well defined 
interface

Model higher level, 
complex structures

Built from one or more 
classes

Package System 
decomposition

Identify logical 
groupings

Identify high-level 
interactions and 
dependencies

Deployment Note execution 
environment

Provide hardware 
details

Identify dependencies

TABLE 2.3 UML Behavioral Diagrams

Diagram Relevance Intent Details
Use case Model user/system 

interactions
Define behavior, 
requirements, and 
constraints

Actors, associated 
goals (use cases), and 
dependencies

Activity Operational Workflows of 
components 

Note decision points 
and actions

State machine Reaction to external 
and internal input 

States and state 
transitions

Illustrate “run state” 
of a model

Model event-response, 
functionality, error 
conditions

TABLE 2.4 UML Interaction Diagrams

Diagram Relevance Intent Details
Communication Describe static 

structure and 
dynamic behavior 

Show sequence of 
messages at 
runtime

Interactions between 
objects

Sequence diagram Progressive 
timeline

Sequenced 
messages

Vertical timeline

Timing View of object’s 
state over time

Identify what 
modifies state

Timing constraints
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UML provides the means to visually model a software system’s struc-
ture and design, independent of any particular programming language 
or development process. UML provides modeling notations for typical 
software projects. As a documentation tool, UML communicates assump-
tions, restrictions, and design intent. Although focused on design, UML 
delineates essential components of a system and can document software 
architecture. Nonetheless, it is most often used to represent the design of 
OO software systems, patterns, and components.

With over a dozen different types of diagrams, some overlapping in 
effect, UML has been called the “Swiss Army knife” of notations. With 
multiple constructs to model a given design or architecture, it is often dif-
ficult, or at least confusing, to determine the potential equivalence of dif-
ferent diagrams. Ambiguity is not a friend of modeling. Although UML 
does enforce specification of interface detail, it lacks precision and does 
not provide an easy means to incorporate custom information or features.

Any technique for modeling and designing large complex systems 
yields lengthy and cumbersome documentation. UML is no exception. 
Highly descriptive documentation is unavoidable because large and com-
plex systems must be detailed at both macro and micro levels. Hence, it is 
difficult in UML, as it is likely to be in any representational schema, to suc-
cinctly note software evolution whether modification is viewed through 
the perspective of time, space, or product variant.

2.5  LIBRARIES AND FRAMEWORKS
Central to modern software development is the reuse of utilities so that 
the same routines for I/O and data manipulation, for example, do not have 
to be rewritten repeatedly. To use a cliché, no need to reinvent the wheel. 
A library is a collection of functions and data types. Software develop-
ers import the file containing a library to access the library’s functional-
ity. Developers must learn the interface to library routines but otherwise 
can focus on defining their own program. For example, with its extensive 
provision of algorithms, and standard data types (such as stacks, queues, 
sets, etc.), the Standard Template Library (STL) supports C++ software 
development.

Frameworks also support reuse, and relieve programmers from rou-
tine, tedious, repetitive software construction. Designed to ease the task of 
developing applications, frameworks are more structured than libraries. A 
framework defines the underlying structure of an application; the applica-
tion programmer may extend or redefine some of the built-in functionality 
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but must adhere to the overall structure of the framework. By simplify-
ing the specification of an interface, and by handling the details of I/O, a 
framework can accelerate application development. Caveat: your applica-
tion should fit conceptually into the framework used. Sample frameworks 
include media authoring tools, web applications, .NET platform, Linux, etc.

2.6  SOFTWARE CONSTRUCTION FUNDAMENTALS
As the premier professional organization for software engineering, the 
IEEE Computer Society strives to develop standards for and advance 
knowledge of software development. SoftWare Engineering Body of 
Knowledge (SWEBOK) is an endeavor to summarize current best prac-
tices of and tool usage within software development. Software construc-
tion is one area of focus and covers the concepts reviewed in this chapter. 
The essential details of software construction, as outlined by SWEBOK, 
are summarized in Table 2.5. For more details, see http://www.computer.
org/portal/web/swebok.

Software construction suggests code development but spans verifica-
tion of functionality via unit and integration testing as well as debugging. 
Although the four fundamentals listed in Table 2.5 apply also to the mod-
eling and design phases of software development, we examine them here 
in the context of coding.

SWEBOK’s fundamental to minimize code complexity seeks to pro-
duce clear and readable code. Constraining software complexity eases 
the tasks of modeling, documentation, and testing. To limit the software 
complexity of a code base, good programming practices should be fol-
lowed, including functional decomposition, encapsulation, appropriate 
use of control structures, self-documenting code using mnemonic names 
and constants, conscious design and implementation of error processing 

TABLE 2.5 SWEBOK Software Construction Essentials

Fundamentals Management Approach Practical Details
1 Minimize complexity Model Design 
2 Anticipate change Plan Programming languages

Coding
Reuse

3 Construct for 
verification

Measure Testing

4 Standards Communicate Quality
Integration
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strategies, effective and responsive resource management, and, of course, 
documentation.

SWEBOK’s fundamental to anticipate change recognizes the promi-
nence of legacy systems, and the drive to retain them. Good programming 
techniques should yield maintainable software, especially if sufficient 
documentation records model and design assumptions. Programming 
language selection should be undertaken with the understanding that 
software evolution is likely.

Construction for verification, SWEBOK’s third fundamental, elevates 
the critical importance of testing especially when reuse is anticipated. 
Code must be designed and implemented with an explicit plan to verify 
functionality, through both code reviews and testing. Unit and integration 
testing should be integrated in the development cycle. As much as pos-
sible, testing should be automated.

The fundamental to use and adhere to standards reflects the drive to 
develop software systems consistently and correctly, much like any engi-
neering product. In particular, an emphasis on standards in communica-
tion and in interfaces eases software integration and supports software 
evolution.

TABLE 2.6 Abstractions and Effects

Advance Abstraction Benefits Costs
Symbolic address Absolute address 

where data stored
Data not tied to 
specific location

Postpone data layout

Less control over 
locality

Re-locatable 
address

Symbol location 
relative to 
component

Variable load address
Linker map => 
optimize memory

Harder to debug
Load address less 
predictable

Typing Data type Automatic 
association with 
functionality

Compiler verification

Constrained 
manipulation

Functions Named set of 
instructions 

Clear control flow
Readability
Reuse

Call overhead
Return overhead
Parameters 

Class construct Encapsulated ADT Data integrity
Controlled access
Separated interface 
and implementation

Design responsibility

Dynamic binding 
(see Chapter 8)

Runtime function 
selection

Flexibility
Extensibility
Heterogeneity

Runtime overhead
Constrained inlining
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Each advance in software development may be viewed as the intro-
duction of another abstraction. The layering of abstractions serves to iso-
late software developers from “incidental” or arbitrary details, such as 
hardware specifics. In this manner, computing is truly general purpose 
and software has becomes more portable. Although each programming 
advance is an improvement, we show the net effects of some cornerstone 
abstractions, in Table 2.6. Each layer of software development (compiler, 
assembler, linker) presents a more abstract view than the one above it but 
at the same time refines a software solution.

2.7  SUMMARY
As the influence of software expanded, professional interest in code reuse 
increased. Access to standardized utility functions for mundane tasks, 
such as I/O, decreased development time, and cost. At this same time, 
operating systems grew in size and complexity, offering system support for 
background tasks, such as memory management and I/O. Consequently, 
it became feasible to rest on the advances of operating systems and build 
standard functions for reuse.

To place modern software in the context of reuse and high-level abstrac-
tion, this chapter examined the foundations of software development. Key 
abstractions reviewed include abstract data types and the modeling tool, 
UML. To stress the emergence of software development as a discipline, we 
ended the chapter with a review of standards for software construction.

DESIGN INSIGHTS

SOFTWARE

Low-level details (hardware) abstracted away
Typing supports multiple interpretations of binary values
High-level languages streamline software development

Compilers translate code into assembly (or executable)
Code is more portable with hardware dependencies removed

Operating systems absorbed much responsibility, including:
Loading and executing software
I/O, data storage and retrieval

MODELS

Ambiguous models are of limited utility
Models should precisely represent design
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Software development rests on many types of models
UML provides standard forms for representing design solutions

SOFTWARE DESIGN

Abstraction elevates the art of programming
Structured programming promotes software maintainability

Control constructs
Functional decomposition
Composite types

ADTs wrap functionality with associated data
Promote cohesion
Support maintainability

Class construct is ADT + encapsulation
Interface provides external face of type definition
Implementation hides internal details

Constrain software complexity for maintainability

DOCUMENTATION

Must be accurate and available

CONCEPTUAL QUESTIONS

 1. Why is abstraction important?

 2. How does the notion of type support abstraction?

 3. What does the operating system do?

 4. How did HLLs advance software development?

 5. What do compilers do?

 6. Why is functional decomposition preferred to spaghetti code?

 7. Define an ADT and describe its structure.

 8. Identify the key difference(s) between an ADT and the class 
construct.

 9. How do ADTs and classes support the dual perspective?

 10. List some common best practices.
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C h a p t e r  3

Functionality

Software is useful when it satisfies user demand or provides com-
mercial value. One chooses an editor (word processor) to store and 

format words (data), a calculator to compute numeric results and graph 
functions, and a database to store and retrieve tagged data (customer 
records…), etc. The use, development, and retention of software is thus 
tightly bound to its functionality. The high-level specification of func-
tionality via software requirements was summarized in Chapter 1. In this 
chapter, we examine lower-level modeling of functionality, with a focus on 
execution control.

The execution or control path of software is the order in which state-
ments are executed. This order does not usually correlate directly to the 
sequential listing of statements in source code files. One must understand 
different control structures to track the logic of running software. This 
chapter begins by defining and illustrating the conceptual types of control, 
structured control flow, and deliberate interruption of structured control. 
Boolean logic in controlling flow is illustrated. Recursion is explained 
and contrasted to iteration. The chapter closes by evaluating important 
but often considered tangential details, such as side effects and common 
optimizations.

CHAPTER OBJECTIVES

• Identify primary control structures
• Emphasize preference for controlled interruption
• Illustrate design imperative for readability
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3.1  CONTROL FLOW
Control refers to the execution order of code statements consecutively 
listed in a source code file. Three types of control flow—sequential, condi-
tional, and repetitive—determine the order in which consecutively listed 
statements fire. The sequential execution model is the traditional concep-
tual perspective: statements are executed in the exact order (sequence) 
specified. The state of data in the system is easy to infer at each statement 
boundary. Likewise, the response to a given input in a particular state 
should be evident. Interruptions to sequential execution may be problem-
atic, both for data consistency and for logical comprehension.

Say we are given consecutive statements: A; B; C;. Sequential execution 
processes the statements in the order specified, i.e., A, B, C. Conditional 
execution may cause one or more statements to be skipped. If statement 
A is a true/false test and the result of the Boolean test is true, statement 
B is executed; otherwise statement B is skipped. Repetitive execution is 
essentially shorthand notation for the repeated execution of a statement 
for a specific number of executions or until a terminating condition is 
reached. See Example 3.1 for sample code segments, Figure 3.1 for their 
corresponding flowcharts and Table 3.1 for a short summary of possible 
execution paths for arbitrary statements A, B, and C.

Example 3.1: Sample Code Structures

//SEQUENTIAL:  A1, B1, C1 executed in order specified
x = 100;  //statement A1
y = 10*x – 4; //statement B1
z = GetInput(); //statement C1

//CONDITIONAL:  A2 executes test condition
   B2 executes if A2 is true
    C2 executes, whether or not A2 is true

if (x < z)  //statement A2
 x = 100; //statement B2
y = x*2 – 100; //statement C2

//REPETITIVE:  B3 repeats for some number of passes
x = 10;  //statement A3

• Summarize Boolean logic and associated laws
• Contrast recursion and sequential execution
• Discuss optimization
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for (int k = 0; k < limit; k++)
 x = x*2 + 10;  //statement B3
y = 100;   //statement C3

One can model control flow using flowcharts. As is standard, arrows 
represent the flow of execution, boxes represent actions taken, diamonds 
represent a test (conditional evaluation) with two outcomes: a response 
associated with a true result and another response associated with a false 
result. Returning to the simple math tutor from Chapter 1, we replicate 
Figure 1.3 here as Figure 3.2.

Hmmm. The repetitive process for math drills has been modeled but 
without termination. Even the most diligent elementary school student 
does not want to add digits interminably. Few students benefit from repeat-
ing the same problem without assistance. How is termination supported? 
What responses are appropriate for an incorrect answer? No detail is given 
as to whether “numGuess” is an internal evaluation (up to three attempts 

A1

B1

C1

A2?

B2

C2
ConditionalSequential

Yes

No
A3

k=0

k<limit?No
Yes

B3

k++

C3
Repetitive

FIGURE 3.1 Flowcharts for Example 3.1.

TABLE 3.1  Possible Execution Paths for 
Example 3.1

Sequential Conditional Repetitive
A, B, C A, B, C A, C

A, C A, B, C
A, B, B, C
A, B, B, B, C
A, B,…, B, C
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permitted) or a response to an external query (“how many guesses do you 
want?”). Alternatively, each incorrect response could be met with a query 
asking the user’s preference for trying again.

Figures 3.1 and 3.2 illustrate two key points:

 1. Control flow models translate directly to code.

 2. Control flow models communicate solutions, after their design.

A model illustrates a solution to a design problem, such as how to struc-
ture the query/answer exchange in a tutoring session. The model designer 
must answer several questions and then model the determined response. 
Domain knowledge is essential. Consider just one question for a math 
tutor design: what termination criteria are valid for the math tutor? One 
cannot answer this question without knowing what audience is targeted, 
the level of expertise expected, etc.

Familiarity with control structures alone is not sufficient for model-
ing repetition and termination effectively. A software developer must know 
when to interrupt control flow, how to interrupt control flow while preserv-
ing readability, and how to use control flow to incorporate error processing.

3.1.1  Structured Control Flow

Control flow can be categorized into the three basic constructs of sequen-
tial, conditional, and repetitive, whether one considers blocks of code 
or statements. A code block or compound statement is a sequence of 
simple and (nested) compound statements that are executed in lexical  

Generate
sample problem
numGuess=0

Outout
sample problem

Prompt for
solution

Increment
numGuess Accept input X

No
No

Yes

Yes

numGuess
> max?

Is X
correct?

FIGURE 3.2 Flowchart for simple math tutor.
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order.  Statements within the block can be sequential, conditional, or 
repetitive. Control enters at the top of the block and usually exits from 
the bottom. This assumption of single entry and single exit supports static 
analysis and intuition. At any point within a given block, all uncondi-
tional statements above that point—most notably data allocation and ini-
tialization—can be assumed to have been executed.

Code can be represented as sequences of statements or blocks, 
with  control statements altering the f low of control in a predictable 
way, depending on whether the construct is conditional or repetitive. 
Direct jumps, such as the goto statement compromise the linearity of 
control f low and hence code readability. Most design guidelines pro-
scribe the use of gotos. In contrast, indirect jumps via function calls 
isolate  functionality and hence promote top-down decomposition and 
readability.

Conditional execution is effected using the if/else construct or the 
switch statement. If the condition associated with an if statement is true, 
then the following statement (block) is executed. If the condition is not 
true, and there is a corresponding else statement, the statement block fol-
lowing the else is executed. Regardless of the outcome of the conditional 
evaluation, flow continues with the statement following the if-else con-
struct. Example 3.2 provides sample conditional code segments using the 
if construct, ranging from a simple if in statement #A to a long, chained if/
else in statement #D.

Example 3.2: Conditional Evaluation: If/Else

if (size < 1) size = 100; //#A simple if

if (action == 1) z = x*y;  //#B simple if/else
else   z = x + y;

if (magnitude == 0) inflate = 0; //#C 3-way branch
else if (magnitude < 1) inflate/= 2; //chained if/else
else inflate *= 2;

if (command == 1)  { … } //#D long chained if/else
else if (command == 2) { … }
else if (command == 3) { … }
…
else if (command == 20) { … }
else    { … }
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Control flow should be evident from software structure. Although 
simple, the if/else construct may impede code analysis. It is difficult to 
track the state of values or the outcome of evaluations when Boolean 
expressions are overly complex or too many if/else statements are chained. 
Software developers should also be aware of the dangling-else problem: 
when a chained if statement contains fewer elses than ifs, it may be unclear 
how to match the else statements to the if statements.

Code segments #A and #B in Example 3.3 are equivalent even though 
the format (indentation) implies different control flows. However, indenta-
tion does not matter in C-like languages. C-like languages are “free for-
mat”: white space such as blanks and tabs are discarded by the compiler; 
the semicolon (“;”) is used to separate statements so that the compiler can 
identify statements independent of placement. Hence, format is stylistic 
and does not affect compilation. (In contrast, Python is a “fixed format” 
language: indentation implies scope.)

Example 3.3: Dangling Else

//#A form implies action2() fires when !conditionA (BUT not so!)
if (conditionA)
 if (conditionB)
  action1();
else
 action2();

//#B form implies action2() fires when !conditionA && !conditionB
if (conditionA)
 if (conditionB)
  action1();
 else
  action2();

//#C parentheses override default association
// action2() fires when !conditionA
if (conditionA)
{ if (conditionB)
  action1();
}
else
 action2();

In Example 3.3, action2() fires when !conditionA &&  !conditionB, 
for both code segments #A and #B. Why? The compiler follows the rule 
“match  an else to the closest preceding unmatched if.” Thus, “else 
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action2()” is matched to “if (conditionB)” in both code segments 
because the closest if is the same regardless of the indentation. Some lan-
guages enforce a syntactical solution to the dangling-else problem. For 
example, Ada requires an “END IF” terminator for each “IF” statement. 
Placing an “END IF” after “action1()” informs the compiler that there 
is no else to execute when conditionB is false, and so action2() fires 
when !conditionA (and conditionB) is not evaluated. C-like languages  
do not offer such definitive control flow; programmers must override the 
compiler’s resolution of the dangling-else by using parentheses, as illus-
trated by code segment #C.

When many alternative conditions must be tested in sequence, the 
resulting if/else statement may be long and difficult to read. Code that is 
difficult to read is hard to maintain. Often, switch or case statements are 
preferred. A switch statement is a block with several alternatives for execu-
tion. Each alternative case is labeled with a value that resolves to an inte-
ger. Upon entry to a switch statement, the control variable evaluates to an 
integer value. The case statement with a matching integer value is then 
executed. If no matching case statement is found, then the default case is 
executed. If the default case also does not exist, then no action is taken. 
Example 3.4 provides some sample conditional C-style code segments 
using the switch construct. In terms of effect, the statements labeled #B in 
Example 3.2 (if) and Example 3.4 (switch) are equivalent.

Example 3.4: Conditional Evaluation (C++): SWITCH

switch (action) //#B simple switch
{ case 1:  z = x*y;
   break;
 default: z = x + y;
}

int value = 100;
//break statement needed for each case
//if break missing, execution falls through to next case
// e.g., if command == 10, value will be incremented by 300
switch(command)
{ case 1: value++;
   break;
 case 2: value += 10;
   break;
 case 10: value += 100;
 case 20: value += 200;
   break;
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 default: value--;
}

//readability improved with enumeration literals
enum  laserOrient {up, down, left, right};
laserOrient myLaserPts;
…
switch(myLaserPts)
{ case up: …
   break;
 case down: …
   break;
 case left: …
   break;
 case right: …
   break;
 default: …
}

The syntax for switch statements varies from language to language, 
as do some finer details. Some languages provide ranges as a viable case 
statement option. C-like languages require a break statement at the end of 
each case statement. Without a break, the case statement that matches the 
control variable will execute and then fall through to the next case state-
ment. Fall-through can be used to drive execution of more than one con-
secutive case statement. However, fall-through compromises readability 
and maintainability and is thus discouraged.

The switch statement compares the control variable to the case state-
ments, one by one, in the order specified. Efficiency is obtained when the 
fewest number of comparisons are made, on average. Hence, program-
mers often order the case statements in decreasing order of the likelihood 
of producing a match with the control variable. For clarity, switch state-
ments are best used in place of lengthy if/else statements. For increased 
readability, enumeration literals (the enum construct in C-like languages) 
can replace case labels. If designed in a streamlined fashion, switch state-
ments should be fairly easy to extend.

Repetition comes in two flavors: iterative and conditional. Iterative rep-
etition repeats a statement (block) a specified number of times. Such enu-
merated (counted) repetition is implemented via for-loops. Conditional 
repetition repeats a statement (block) as long as a condition holds true. Both 
conditional and iterative loops test termination criteria with each pass of the 
loop: Is the specified number of iterations met? Or is the condition still true?

Conditional repetition is typically achieved via while/do or do/while 
loop constructs. These constructs are not strictly equivalent. If the 
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specified condition is initially false, the while/do statement (block) is not 
executed at all; for the do/while loop, it would execute once. Some lan-
guages offer a repeat/until construct that drives execution until a specific 
condition becomes true. Equivalent to do/while, the repeat/until construct 
also executes its associated statement (block) at least once.

Loop statements execute the controlled statement block repeatedly as 
long as the control condition is true. The while-statement tests the condi-
tion at the top of the loop. What does this pretest imply? On each iteration, 
before the controlled statement is entered, the test condition is evaluated. 
Only if the test condition holds will the loop body be executed. Thus, the 
body of the while loop may not be executed at all, e.g., when the test con-
dition fails initially. The do/while statement tests the loop condition at 
the bottom of the loop, and thus employs a post-test. After each iteration 
or execution of the controlled statement, the test condition is evaluated. 
Hence, the body of a do/while loop always execute at least once.

The for-loop is shorthand for a while loop with a built-in loop index that 
is initialized, as specified, before the loop is entered. The for-loop construct 
also specifies the terminating condition and update action executed upon 
the end of each loop pass. In the for-loop of Example 3.5, “int index = 0;” 
is the loop index initialization; “index < 100” is the terminating condi-
tion and “index++” is the index update operation (commonly a simple 
increment, as it is here).

Example 3.5: Use For-Loop for Counting: C++

int dB[100];
for (int index = 0; index < 100; index++)  //simple for loop
dB[index] = 1 + 10*index;  //array initialization

//while loop equivalent to preceding for loop
//NOT preferred: programmer responsible for index
int index = 0;
while (index < 100)
{ dB[index] = 1 + 10*index;
 index++;
}

Since any for-loop can be written as a while loop, why bother with 
for-loops? Safe code and readability are two immediate answers. The for-
loop automatically updates and tests the counter or loop index (index 
in Example 3.5), thus removing responsibility for counting from the 
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programmer. A common error within a while-loop occurs when the pro-
grammer fails to correctly test or update the index. For readability, loop 
constructs should be used as intended: for-loops for counted repetition; 
while-loop for conditional repetition (of unknown duration). Example 3.6 
shows reasonable uses of the while-loop construct, alongside a couple of 
poorly designed for-loops.

Example 3.6: Use While-Loop for Conditional Repetition: C++

//Boolean function: returns status (true or false)
bool done()
{ char userChoice;
 cout << "Enter a "q" or "Q" to quit" << endl;
cin >> userChoice;
return (userChoice == "q" || userChoice == "Q");
|

//truly conditional loop: number of iterations unknown
while (!done())
{ … }

//indefinite loop: exit may be possible via exception or break
while (true)
{ … }

//also indefinite loop: no termination criteria specified
//works but NOT preferred design
for (; ;)

//counting loop used as conditional loop: poor design; not readable
// more intuitive and consistent to use first while loop above
for (bool doneV = false; !doneV;)
{ …
 doneV = done();
}

3.1.2  Controlled Interruption to Sequential Execution

Control flow affects readability and, possibly, efficiency. Functional decom-
position supports a high-level perspective of control flow. A function is a 
named code block that is associated with an address. A programmer can 
thus call, or invoke, a function without a direct dependency on an address. 
The compiler does the background work to support such a call. A function 
call is processed as a jump statement: the compiler resolves the function 
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address, and stores the value of the program counter at the point of call (so 
that the function return can execute correctly). Functions may have local 
data: the compiler lays out memory for such data. Statement #1 in each 
function in Example 3.7 illustrates the allocation of local data (the pointer 
db) as does the passed parameter n in Example 3.14. The program counter 
and local data are laid out in a stack frame associated with the function.

Example 3.7: Premature vs. Timely Return: C++

//return may be executed before resource released => memory leak
void misManagedResources()
{ int* db = new int[100]; //#1 resource (memory) allocated

 if (done())    return; //#2 avoid work if not needed
   //resource not released => leak
 for (int j = 0; j < 100; j++) //j is loop index
  db[j] = process(j);
 someAction();
 delete[] db; //#3 resource (memory) released
 return;  //#4
}

void returnWithoutLeak()
{ int* db = new int[100]; //#1 resource (memory) allocated

 if (!done()) //#2 avoid work if not needed
 { for (int j = 0; j < 100; j++)
  db[j] = process(j);
 someAction();
 }
 delete[] db; //#3 all paths release resource 
 return; //#4
}

Functions, and code blocks, promote the notion of scope: the context 
or locality within which an identifier (variable name) is valid. C-like lan-
guages have block scope. Within a set of brackets, {}, identifiers may be 
declared and then used. In Example 3.7, the loop index j is in scope only 
within the for-loop; it cannot be accessed outside the for-loop. The inte-
ger pointer db is in function scope; it is considered a variable local to the 
function and thus cannot be accessed outside the function. A function 
may have multiple exit points, including interruptions to normal flow, 
such as an exception. We consider here nonstandard entry and exit points 
(as commonly denoted by break, continue, return, and goto statements 
within procedural languages).
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A break statement may occur within the controlled (compound) state-
ment of a switch or loop and behaves differently in each. In a C/C++ switch 
statement, by default control “falls through” from one case to the next one 
in lexical order. A break statement is typically used to exit the switch at 
the end of the case statement. Sequencing code in consecutive case labels 
without an intervening break statement is discouraged. Although possible 
to leverage this fall-through behavior, such usage is difficult to under-
stand, and makes the code less robust. The accepted practice of using 
break statements allows case labels and statements to be moved around as 
a unit without changing the behavior of the switch statement as a whole. 
If break does not follow every case statement, then the correctness of this 
rewriting rule cannot be guaranteed.

Example 3.8 modifies the second switch statement from Example 3.4 to 
demonstrate fall-through. Clarity is lost. It is difficult to discern the value 
of the integer value at a glance. When command is “1”, control will fall 
through all switch cases, yielding a value of 410 (100 + 1 + 10 + 100 + 
200 –1). When command is “2”, case 2 will be executed first, followed by 
all remaining cases, yielding a value of 409 (100 + 10 + 100 + 200 –1), etc.

Example 3.8: Conditional Evaluation: SWITCH

int value = 100;
switch(command)    //switch statement fall-through
{ case 1:   value++;
 case 2:   value += 10;
 case 10:   value += 100;
 case 20:   value += 200;
 default:   value--;
}

Within a loop, a break statement causes the loop to be exited immediately. 
Allocated resources must be released whether or not the break statement is 
executed. Termination via a break should be similar to exiting a function 
body via the return statement. Example 3.9 displays two loops (a for-loop 
with a break statement and a while-loop) that produce the same effect: ter-
minate scan of num array upon encountering the first even number.

Example 3.9: Use of Break Statement in Loop

//counting loop with conditional break (exit from loop)
for (int j = 0; j < n; j++)
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{ if (!(num[j]% 2)) break; //exit loop on first even number
 process(num[j]);
}

//equivalent conditional loop
int j = 0;
bool done = false;
while (!done && j < n)
{ done = num[j]% 2; //exit loop on first even number
 if (!done)
 { process(num[j]); j++; }
}

A continue statement may be used only within the controlled statement 
of a loop statement. It causes the next iteration of the enclosing loop (for or 
while) to begin. That is, it causes an immediate transfer of control to the 
end of the loop. In a for-loop, the loop update statement is still executed. 
In a while (or do) loop, the control conditional is executed in the normal 
fashion, and the controlled statement is re-entered from the top if it evalu-
ates to true (see Example 3.10). With an appropriate use of conditional 
evaluations, most loops with continue statements can be rewritten with-
out them. Code readability is sustained when language constructs, such as 
counting and conditional loops, are used as intended.

Example 3.10: Use of Continue Statement

//continue in counting loop
for (int j = 0; j < n; j++)
{ if (!(num[j]% 2)) continue; //skip even numbers
 process(num[j]);
}

//equivalent for-loop without continue;
for (int j = 0; j < n; j++)
 if (num[j]% 2) process(num[j]); //process odd numbers

//continue in conditional loop
while (!done())
{ bool filtered = action1();
 if (filtered) continue; //skip if filtered

 action2();
 action3();
}

//equivalent conditional loop without continue
while (!done())
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{ bool filtered = action1();
 if (!filtered)    //process if not filtered
 { action2();
  action3();
 }
}

The goto statement transfers control to the statement in the same func-
tion that follows the label matching the goto. Goto statements have been 
vilified for decades because their use easily produces “spaghetti code.” 
With unstructured jumps (gotos), control flow is hard to follow: jumps 
interfere with a clear understanding of logical progression. Spaghetti code 
thus undermines software readability and maintainability. Software 
design guidelines strongly discouraged use of the goto. Modern program-
ming languages often do not provide the construct. Initially, the goto 
statement was retained in C++ to support backward compatibility with C.

Structured programming is accepted practice and is supported by 
modern programming languages. Careful use of nonstandard entry and 
exit points as well as exceptions is warranted, especially if the meaning of 
the code is muddied by their absence, but no one needs a goto. The stric-
ture against using goto is unequivocal. Java and C# both disallow the use 
of goto by omitting it from the language. Their inclusion of the finally 
statement simplifies the release of resources in case of exceptions or quick 
returns. How? Any code in a finally clause is executed before leaving scope, 
regardless of the means of exit.

Conceptually, a goto statement makes sense only if the target label is 
not in a context in which additional initialization must be performed. 
Thus, the goto jump to INNER_LABEL in Example 3.11 is not permitted; 
how would the Boolean variable flag1, for example, be initialized? A 
goto that jumps out of nested statement blocks (even looping and condi-
tional code blocks) is permitted. Thus, the goto jump to OUTER_LABEL 
in Example 3.11 is permitted; the local variables simply go out of scope. 
If a goto causes a block with an associated finally clause to be exited, the 
finally clause is  executed, in a manner similar to the return statement. 
Gotos are discouraged because their use compromises readability, and 
thus, maintainability.

Example 3.11: Goto and Scope (C++)

//ILLEGAL goto: jumping into nested scope – variables not 
// initialized
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goto INNER_LABEL;
…
{ //allocate block variables
 int db[100];
 bool flag1 = false;
INNER_LABEL:
 action1();
 …
}

//permissible goto, although preferable to write structured 
// code
OUTER_LABEL:
x++;
{ //block variables come into scope
 int db[100];
 bool flag1 = false;

 …
 goto OUTER_LABEL; //exit scope
}

3.1.3  Readability

Control flow constructs affect the state of an executing program: one or 
more execution frames may be exited, and the objects allocated within 
those frames released. Expressions determine control flow, whether con-
ditional or repetitive, and so should be easily understood. We have seen 
simple examples of Boolean expressions: control of while loops, Boolean 
functions, and parity checks.

When Boolean expressions are complex, it is often necessary to doc-
ument meaning. If a conditional expression exceeds one or two lines of 
code, consider moving the expression into a predicate function. The name 
of the predicate can be chosen to suggest the condition(s) being tested. 
Modern compilers will inline predicate code as appropriate, so the run-
time consequences of this rewriting are typically nil.

At any given point in the code, a software developer should be able 
to evaluate any variable. Well-designed software puts data in valid, ini-
tial states and allows only those data manipulations that preserve data 
integrity. Note language differences: C++ does not initialize variables of 
built-in types to a default value upon declaration; C# does. Hence, C++ 
programmers must take care to initialize variables upon declaration; if 
applicable, C# programmers can rely on default values (typically, zero). 
In general, initialization code should run before code block entry so that 
locally defined variables are in a known state upon entry.
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With properly defined control flow, static analysis can verify that vari-
ables are in a known state during execution. Optimizations such as dead 
code removal or memory reuse can then be applied. One may also factor 
out duplicate code into a helper routine.

Even with appropriate use of control structures, readability may be 
compromised. Redundant evaluation and code repetition clutter code. 
Reworking conditional evaluations or the order in which they are applied 
can eliminate repeated clauses, as shown in Table 3.2. A clear understand-
ing of Boolean logic supports a clear coding style. We next examine the 
tenets of Boolean logic.

3.2  BOOLEAN LOGIC
Boolean logic rests on two values, {0,1}. Commonly, 0 is equated with false 
(or test failure), and 1 with true (or test success). Boolean sentences may be 
rewritten according to many rules; techniques of simplification and logical 
equivalences permit transformations that retain the truth value of a Boolean 
expression. A clear understanding of Boolean expressions helps one to 
write and read code, especially relative to the design of control structures.

Boolean values are commonly manipulated with two binary operators: 
AND, commonly denoted by “̂ ” or “&&”, and OR, denoted by “+” or “||”. 
The AND operation is known as conjunction and represents the combina-
tion of two Boolean values such that the result is true if and only if both 
values are true. The OR operation is known as disjunction and represents 
the combination of two Boolean values such that the result is false if and 
only if both values are false.

TABLE 3.2 Cluttered versus Readable Control Flow

Cluttered Code Equivalent Streamlined Statement
if (boolX) return true;
else return false;

return (boolX);

if (boolY){
  A;
  B;
}
else if (boolZ){
  A;
  C;
}

else A;

A;
if (boolY) B;
else if (boolZ) C;
}
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The logical OR differs from common usage of “or” in the English lan-
guage. The colloquial question “would you prefer vanilla or chocolate ice 
cream?” implies a choice between two alternatives and usually would be 
answered with “vanilla” or “chocolate.” However, as a logical question, the 
answer would be true (affirmative) if one wanted either or both flavors and 
false if neither flavor would suffice.

The logical operation EXCLUSIVE-OR or XOR denotes an evalua-
tion more consistent with the use of “or” in the English language: p XOR 
q is true if and only if exactly one of the Boolean values is true. Thus, 
one chooses exactly one flavor, chocolate or vanilla, of ice cream. A sin-
gle Boolean value or variable may be negated; negation is denoted by “!”. 
Table 3.3 is the classic truth table displaying the value of simple Boolean 
sentences.

Many useful identities can be used to rewrite Boolean expressions. The 
important axioms in Boolean Logic are reductions, identities, and dis-
tributions (see Table 3.4). A most useful theorem for simplifying logical 
expressions is DeMorgan’s theorem:

 !(P || Q) = !P && !Q
 !(P && Q) = !P || !Q

Both forms noted above can be derived from the distribution axioms. 
See Table 3.5 for verification of the equivalences so noted.

Boolean logic may be overused or poorly designed in programming. 
Conditionals can be used to partition input values into cases to be han-
dled separately. After an implementation is so written, cases contain-
ing the same action should be coalesced, not only to remove redundant 

TABLE 3.3 Truth Table

P Q P && Q P || Q P XOR Q !P
T T T T F F
T F F T T F
F T F T T T
F F F F F T

TABLE 3.4 Boolean Simplifications

Reductions Identities Distributions
P  &&  0  =  0 P  &&  1  =  P P  ||  (Q  &&  R)=(P  ||  Q)&&(P  ||  R)
P  ||  1  =  1 P  ||  0  =  P P  &&  (Q  ||  R)=(P  &&  Q)||(P  &&  R)
!!P  =  P
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action code but also to reduce the number of conditionals that must be 
evaluated (see Examples 3.12 and 3.13). DeMorgan’s laws and the proper-
ties of Booleans can be used to simplify expressions. When in doubt, one 
can build and check a truth table to verify that a simplification is, in fact, 
equivalent to the original expression.

Example 3.12: Simplifying Boolean Expressions

//simplify expressions => more efficient and readable
if ((a || b) && (a || c) && (a || d)) actionA();

//equivalent expression (distributive law), check via truth table
if (a || (b && c && d))   actionA();

Example 3.13: Decreasing the Number of Boolean Conditionals

//excessive evaluations: actionA executed in all cases
if (a) actionA();
else if (a || b)    //silly, only get here if
{ actionA();   //a false b TRUE
 actionB();  
}
else if (a || b || c)   //now both a and b false
{ actionA();   //c TRUE
 actionB();  
 actionC();   
}

if (a || b || c) actionA(); //equivalent to above
if (!a)
{ if (b || c)   actionB();
 if (!b && c)   actionC();
}

The complexity of a logical expression correlates to the number of 
inputs (variables) evaluated. From a software perspective, the number 

TABLE 3.5 DeMorgan’s Law Verified

P Q !(P || Q) !P && !Q !(P && Q) !P || !Q
T T F F F F
T F F F T T
F T F F T T
F F T T T T
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of variables evaluated is an expense, both conceptually and in terms of 
memory storage (and the corresponding required fetches to retrieve values 
from memory). Conditionals are costly because they cause a break in the 
linear flow of the code. Hence, for both clarity and efficiency, it is desirable 
to simplify logical tests.

Algebraic solutions are almost always faster than those based on Bool-
ean logic. Suppose that Boolean false can be converted into the integer 0 
and Boolean true is converted to integer 1. Consider

if (testTF)  b = 5;  //5 = 7 - 2
else   b = 7;  //7 = 7 - 0

as compared with b = 7 - 2 * testTF;. The latter is more compact 
and will run faster.

3.2.1  Short-Circuit Evaluation

Short-circuit evaluation provides efficient evaluation of compound Bool-
ean expressions. If the first portion of a compound Boolean expression 
determines the value of the entire expression, why bother evaluating the 
remainder? For example, the conjunction a AND b is true if and only if 
both a and b are true. Thus, if a is false, the value of b does not matter; the 
conjunction will be false regardless. Likewise, the disjunction a OR b is 
false if and only if both a and b are false. Thus, if a is true, the value of 
b does not matter; the disjunction will be true regardless.

C-like languages use short-circuit evaluation. Ada provides both full 
evaluation and short-circuit evaluation by defining distinguishing terms 
“AND” and “AND THEN”. Pascal does not provide short-circuit evalua-
tion, with some interesting effects. Consider the following loop, a classic 
walk through a linked list:

while (ptr != null && ptr->data != searchItem)
  ptr = ptr->next;

If the pointer value is null (due to the list being empty or to the complete 
traversal of the list without finding the desired item), there is no valid data 
to examine. Hence, ptr->data should not be examined. Short-circuit 
evaluation prevents the dereferencing of the pointer variable ptr when it 
is null: the loop terminates because the null (zero) pointer forces the con-
junction to be false. Short-circuit evaluation thus promotes safety since 
dereferencing a null pointer would trigger a runtime error.
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If written in Pascal, the above code would yield a runtime error if 
searchItem is not found. Why? Without short-circuit evaluation, both 
portions of the conjunction are evaluated so ptr->data is processed even 
when ptr holds zero as an address, resulting in a runtime error. Without 
short-circuit evaluation, the classic linked list traversal would have to be 
written in a clunky manner:

boolean search = true;
while (ptr != null)
 if (search)
  if (ptr->data != searchItem)
   ptr = ptr->next;
  else search = false;

When a condition is costly to evaluate, conditionals can be structured 
to avoid repeated evaluation, or stored in a Boolean variable. Also, Boolean 
expressions often can be reduced and simplified. Recalling the actions of 
short-circuit evaluation may help one simplify correctly. Consider a com-
pound Boolean expression used in an if/else construct. The else clause may 
be reached if the first term evaluates to false for conjunction, or true for 
disjunction. Table 3.6 illustrates both correct and incorrect simplifications 
that avoid the repeated evaluation of predicate P.

Care must be practiced when simplifying expressions. Without veri-
fication, one can alter intended control flow by erroneously simplifying 
Boolean expressions, as is also illustrated in Table 3.6. It is worth not-
ing that negations are often counterintuitive and thus difficult to interpret 
consistently.

TABLE 3.6 Simplifying Boolean Expressions

Inefficient Compound Incorrect Simplification
//actionB() when (!P && Q)

if (!P && !Q) actionA();
else if (!P) actionB();

//actionB() when Q

if (!P && !Q) actionA();
else if (Q) actionB();

Correct Simplification Correct Simplification
if (!P){
 if (!Q) actionA();
 else actionB();
}

if (!P){
 if (Q) actionB();
 else actionA();
}
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3.3  RECURSION
Repetition may be implemented through recursion, an elegant but over-
used construct. Recursion is the definition of a function, or structure, in 
terms of itself. Hallmarks of well-designed recursion require the clear 
specification of terminating or base cases and well-defined means to reach 
such terminating conditions.

Elementary examples of recursion include the calculation of math-
ematical terms that are themselves defined recursively. Classic examples 
are calculating the Fibonacci numbers as well as factorial values. See 
Example 3.14 for simple code solutions to these two problems that corre-
spond directly to their mathematical definitions. Both examples demon-
strate clearly defined recursion as well as reachable base cases.

Example 3.14: Recursive Fibonacci and Factorial

//Fibonacci  Fn = Fn-1 + Fn-2; F2 = 1; F1 = 1
int recurseFib(int n)
{ if (n < 3) return 1;
 return recurseFib(n-1) + recurseFib(n-2);
}

//Factorial  Fn = Fn * (Fn-1)!; F1 = 1; F2 = 2
int recurseFactorial(int n)
{ if (n < 3) return n;
 return n * recurseFactorial(n-1);
}

Why complain about these recursive functions? After all, many intro-
ductory CS textbooks use them. Recursion requires more overhead than 
iteration. Each recursive call requires the layout and initialization of mem-
ory for a distinct function call (see Chapter 4). A good compiler can con-
vert a tail-recursive function, such as the Factorial example, into a loop. 
A tail-recursive function is a function that has one recursive call and that 
call is the last statement in the function.

The Fibonacci recursive function is not tail-recursive because it has 
two recursive calls. This recursive function is grossly inefficient, comput-
ing many of the same values over and over again. As shown in Table 3.7, 
calculation of F8 recursively requires, in total: one call for F7; two calls 
for F6; three calls for F5; five calls for F4; eight calls for F3; thirteen calls 
for F2; and ten calls for F1. The iterative solution, shown in Example 3.15, 



80   ◾   Software Essentials 

uses a loop construct instead and does not perform redundant calcula-
tions. Recursive solutions may be grossly efficient if they calculate many 
redundant values.

Example 3.15: Iterative Fibonacci and Factorial

//Fibonacci  Fn = Fn-1 + Fn-2; F2 = 1; F1 = 1
int iterativeFib(int n)
{ if (n < 3) return 1;
 int f1 = 1;
 int f2 = 1;
 int sum;
 while (n > 2)
 { sum = f1 + f2;
  f1 = f2;
  f2 = sum;
  n--;
 }

TABLE 3.7 Layout of Recursive Calls Needed to Compute F8

Recursive Calls, Enumerated by Level: Initial Call Is to F8

Level1 Level2 Level3 Level4 Level5 Level6 Level7
F8 F7 F6 F5 F4 F3 F2

F1

F2

F3 F2

F1

F4 F3 F2

F1

F2

F5 F4 F3 F2

F1

F2

F3 F2

F1

F6 F5 F4 F3 F2

F1

F2

F3 F2

F1

F4 F3 F2

F1

F2
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 return sum;
}

//Factorial  Fn = Fn * (Fn-1)!; F1 = 1; F2 = 2
int iterativeFactorial(int n)
{ int sum = n;
 while (n > 1)
 { n--;
  sum = sum * n;
 }
 return sum;
}

Valid applications exist for recursion, as evident in standard CS data 
structures courses and textbooks. Tree structures are recursive in nature 
and thus recursive functions for tree traversals are a natural fit. Although 
local stack variables allow one to mimic recursion, and thus write iterative 
tree traversals, these solutions are often dense and hard to read. The cor-
responding recursive form is typically easier to understand.

Example 3.16 contrasts an iterative version of an in-order traversal 
of a binary search tree (BST) with its intuitive recursive form. With a 
little effort, one can see the correspondence: each recursive call to the 
left child of an interior BST node is mimicked by pushing the parent 
node address on the stack; when the leftward progression of a (sub)tree 
terminates, the parent node is popped off the stack, examined, and the 
traversal moves right. Not all recursive algorithms can be mimicked by 
readable iterative versions. Despite the simplicity of a recursive post-
order traversal, its iterative counterpart is difficult to understand (pos-
sibly because two local stacks must be used). For more details, consult 
a good data structures text. Nonetheless, software developers should 
understand how local stacks can hold values normally embedded in 
recursive function calls.

Example 3.16: Iterative versus Recursive InOrder Tree Traversal

//recursive version of an inorder BST traversal
void inorder(BST* root)
{      //base condition:
 if (!root) return;  //empty (sub)tree, terminate

 inorder(root->left);
 process(root->data);
 inorder(root->right);
}
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//iterative inorder BST traversal 
//local stack variable used to mimic recursion
void inorder_iter(BST* root)
{ stack<BST*> s; //holds local data
 BST*  current = root;
 bool  done = false;

 while (!done)
 { if (current)
  { s.push(current);
  current = current->left;
  }
  else
  { if (s.empty()) done = true;
  else
  { current = s.top();
   s.pop();
   process(current);
   current = current->right;
  }
  }
 }
}

At a system-level perspective, it should not matter whether recursion or 
iteration is used. Control flow though matters at design, implementation, 
and testing levels. If code readability is a priority and an algorithm is more 
clearly defined recursively (as is a postorder tree traversal), then recursion 
would be preferred. If performance criteria demand efficiency, then iteration 
may be preferred. When using recursion, one must ensure that the recursion 
is well-defined with clearly defined and reachable terminating conditions.

3.4  SEQUENTIAL EXECUTION
A computer program consists of instructions and data, both of which are 
stored in memory and retrieved when needed. The computer bus transfers 
information (memory content that is data or instructions) in blocks, where 
block size usually exceeds the size of a data item or single instruction. 
Thus, there is an inherent reduction in overhead when accessing sequen-
tial instructions or contiguous data: the address of the next instruction (or 
data item) may have already been transferred with the previous instruc-
tion (or data item). Since the address of the next instruction (or data item) 
can be inferred from the current one, code space is saved. Moreover, 
sequential execution is favored because linear paths are easier to read and 
comprehend.
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Pipelined staging of CPU computations favors sequential execution. 
Instruction execution can be decomposed into fetch, decode, and execute 
stages. Additional stages include memory references and writing back 
values to registers. Low-level parallelism is achieved by overlapping these 
stages in the instruction pipeline. Consider the instruction-level paral-
lelism of five stages of an instruction: instruction fetch #1 (F), instruc-
tion decode #2 (D), execute #3 (E), memory reference #4 (M), and register 
write back #5 (W). Each instruction advances one stage at the end of each 
clock cycle. Table 3.8 illustrates this staged parallelism. The instruction 
pipeline stalls when data is not readily available, possibly due to the dif-
fering speeds of accessing memory in a cache, main memory, or second-
ary store. The instruction pipeline is flushed when sequential execution is 
interrupted, causing an immediate loss of efficiency.

The benefit of low-level parallelism is lost when the instruction pipeline 
is flushed or stalled. To avoid interrupted sequential execution, software 
design may strive to achieve temporal locality and/or spatial locality. 
Temporal locality suggests that items recently referenced will likely be ref-
erenced again. If a word is to be read (or written) n times in a short inter-
val, one slow access retrieves it from (main) memory and the remaining 
n-1 accesses are fast cache accesses. Spatial locality suggests that items 
referenced are likely to be located near other referenced items. Since mem-
ory accesses are processed in blocks, neighboring words may be brought 
into the cache together. Temporal and spatial locality both depend on the 
cache to enhance performance by avoiding slow memory fetches. Matrix 
multiplication is a classic example of data access satisfying both these 
principles.

TABLE 3.8 Pipelined Instructions

Instr# Pipeline Stage
1 F D E M W
2 F D E M W
3 F D E M W
4 F D E M W
5 F D E M W
6 F D E M
clock 1 2 3 4 5 6 7 8 9



84   ◾   Software Essentials 

3.4.1  Optimization

Optimization covers hardware and software changes that yield faster run-
ning code and/or code that uses less space. Significant advances in com-
puting are due to hardware optimizations. Fast processing is supported 
by special registers, multiple levels of on-chip caches, and continued 
breakthroughs in supercomputing. Software optimizations include the 
customization of algorithms and data structures, data compression, soft-
ware design, memory management, and automatic code refinement via 
compilation.

Most software is developed without much attention paid to hardware. 
As noted in Chapter 2, this attitude is not the by-product of advances in 
software development but its intent. Design that is independent of hard-
ware is reusable and portable. Software design thus rests on high levels of 
abstraction as well as an idealized view of a computing system. As sum-
marized in Table 3.9, unchecked assumptions include infinite memory, 
uniform (and relatively cheap) access to memory, and a dedicated CPU. 
Nonetheless, memory is costly and some optimizations strive to reduce 
memory access.

Since the computer bus transfers information (memory content that is 
data or instructions) in blocks, there is an inherent reduction in overhead 
when accessing sequential instructions or contiguous data. We covered 
the various ways in which sequential execution was altered by branching 
in the first portion of this chapter. In Chapters 5 to 8, we discuss software 
design. We look at memory management in Chapter 4. Here, we note some 
compiler optimizations.

When the compiler resolves a type or a function call, it is called 
“static” because that resolution does not change at runtime. Static reso-
lution of function calls (static binding) and type determination (static 
typing) yield more efficient code because no runtime evaluation must 
be made. Runtime overhead is reduced whenever a runtime evaluation 
can be resolved instead by the compiler. Compiler work is considered to 

TABLE 3.9 Computing System Views

Ideal Reality
Masking 

Construct Cost
Infinite memory Memory bounded Virtual memory Paging
Uniform memory 
access

Memory 
Hierarchy

HLL code access 
not differentiated 

Secondary store slower 
and more expensive

Dedicated CPU Time-sliced Parallel threads Context switch 
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be mostly “free.” This efficiency, however, produces less flexible code. If 
a function call is resolved at compile-time, function selection cannot be 
modified at runtime. Chapter 7 provides extensive coverage of dynamic 
function invocation.

Software optimizations refine or restructure existing code to run more 
efficiently or use less space. Most application-specific optimizations are 
developed after working code has been evaluated: it is futile to opti-
mize code that does not run effectively or reliably. Moreover, as noted by 
renowned computer scientist, Donald Knuth, “premature optimization is 
the root of all evil.” Table 3.10 notes general software design principles for 
efficiency: minimizing I/O, judiciously inlining functions, avoiding the 
copying of data, and using constants where appropriate.

Typical optimizations either reduce computation or memory accesses. 
Computing values at compile-time or reusing values to avoid recomputa-
tion reduces processing at runtime. Simple coding practices can support 
such optimizations. Consider the use of constants. With a constant, the 
compiler makes a textual substitution of the actual value for the identi-
fier, thus removing the need for a memory fetch at runtime. Constants 
also permit the compiler to replace a runtime computation with an actual 
value. Consider Example 3.17. If the constant value pi were stored in a real 
variable rather than as a constant, both a runtime memory fetch of pi’s 
value and a runtime computation of (4.0 * pi) would be required.

Example 3.17: Code Optimization by Design: Use Constants

const double pi = 3.14159;
double r;
…
double area = 4.0 * pi * r * r;
//compiler: area = 12.56636 * r * r;

TABLE 3.10 Design Techniques for Efficiency

Expensive Construct Cost Response
I/O Memory access Minimize 
Function call Call and return overhead

Loss of spatial locality
Inline function call
Statically resolve function calls

Copying data Time and space overhead Aliases and Pass by Reference 
Temporary data Allocation/deallocation 

overhead
Fragmented heap 

Avoid generation of temporaries
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Many optimizations strive to reduce space used, whether for data or 
code. The elimination of local temporaries, loop invariant code, useless 
variables, dead code, and/or useless code all reduce the footprint of a pro-
gram and thus decrease space requirements. Compiler response may dif-
fer by language. The useless statement “x;”, where x is, say, a simple integer, 
is discarded as useless code without a response by the compiler in C-like 
languages. In Ada, a compiler error is generated.

Optimization may be achieved through careful software design. To 
avoid repetitive data accesses or CPU-intensive calculations, caching 
stores the result of frequent or costly computations. To remove an expen-
sive computation from a time-critical or frequently traversed control path, 
values may be precomputed and stored. Deferring object instantiation 
may be beneficial if an object ends up not being used. Such optimizations 
rest on the Pareto principle that 20% of software’s code is executed 80% of 
the time and determining, with a profiler, what code that is.

Data alignment is a rather specific optimization geared toward maxi-
mizing use of the cache. Table 3.11 lists some design recommendations 
for data declarations and use. Data compression is a huge field, primar-
ily because of the need for efficiently transmitting data across networks. 
Note that data compression is not necessarily an effective optimization, 
especially if cost of data compression and decompression exceed the tem-
porary benefit of reducing space requirements.

Optimizations may be misapplied. Good software design strives to 
minimize I/O, use constants where appropriate, avoid unneeded copying, 
and, thus, will yield more efficient code. Inlining is another optimization 
that can be effective. Often it is left to the compiler to do so. We examine 
function inlining next.

3.4.2  Inlining

Functional decomposition supports intentional software design through 
code reuse, isolation of functionality, and improved readability. When 

TABLE 3.11 Data Alignment

Data Declarations in Scope Why?
Large items first Large blocks reduce fragmentation
Arrays before scalars Large blocks reduce fragmentation
Data accessed together Achieve locality of reference
Data referenced together Achieve locality of reference
Static variables preferred Avoid runtime overhead
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designed well, functions improve software maintainability, an increas-
ingly important software endeavor. However, function calls are not free. 
Just like any branch statement, a function call breaks sequential process-
ing—twice, in fact: a jump to the function and then a return. Moreover, 
function calls require the preparation and storage of activation records 
(also known as stack frames).

Function inlining is an optimization technique that replaces the func-
tion invocation with the body (code) of the function itself. Although it 
may appear to be as simple as copying the block of the inlined method at 
the point of call, inlining must also allocate local variables and translate 
(multiple) return statements into jumps to the end of the inlined block of 
code. Small functions are less likely to have many local variables or mul-
tiple returns and thus are easier to inline.

Function inlining trades code size for performance. Inlining can 
yield code bloat and thereby reduce rather than increase the speed of an 
executing program due to expanded memory requirements. Compilers 
often inline only small functions. Why? With small functions, the over-
head of the function call most likely exceeds the execution cost of the 
function. Thus, a performance improvement is more likely when inlining 
a small function. Call, return, and stack frame setup are all avoided with 
inlining. Example 3.18 shows a sample inlining: function parameters 
are evaluated only once when copied into temporary (compiler tracked) 
memory.

Example 3.18: Inlining (C++)

int min(int x, int y)
{ if (x < y) return x;
 return y;
}

….
int smallValue;
…
smallValue = min(db[i], db[j]);

//when inlined, function call replaced by
int temp1 = db[i];
int temp2 = db[j];

if (temp1 < temp2) smallValue = temp1;
else   smallValue = temp2;
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The keyword “inline” is only a suggestion to the compiler. Caution 
should be observed when contemplating “manual” inlining. Writing code 
in place of a function call alters the software structure. This customization 
may be harder to maintain. If a manually inlined function is subsequently 
modified, then the process of updating the software is akin to a search 
and replace endeavor—an error-prone and tedious process. Every code 
location where the function call was replaced with manually inlined code 
must be updated. In general, manual inlining reduces software readability 
and maintainability.

Side effects often make it more difficult to inline functions. A function 
or expression produces a side effect when it modifies state or some data 
value(s) other than the value returned from the function call. Table 3.12 
delineates common side effects in terms of data modification, control flow, 
and external access.

Optimization is not intended to modify the functionality of software, but 
it may alter the means by which solutions are generated or stored. Software 
developers must first construct functional and usable software. Compilers 
will optimize code only if it is safe to do so. Compiler optimization direc-
tives are treated as mere suggestions. Compilers must guarantee that a 
code transformation does not alter functionality. It is much easier to ver-
ify that a transformation preserves correctness if it is confined to a single 
code block. Data dependencies tend to span more than one code block. 
Consequently, optimizations may be more extensive if function inlining 
draws data dependencies into one block.

3.5  SUMMARY
In this chapter, we examined control flow and its effect on software 
design and efficiency. We contrasted different control constructs, as well 
as recursion and iteration, and discussed Boolean logic. Tracing execu-
tion paths is often not easy, even with the assistance of debugging tools 
and profilers. Clear control flow, alongside functional decomposition and 

TABLE 3.12 Common Side Effects of Function Calls

Data Modification Control Flow External 
Global or static variable Raising exception File IO
Parameter passed 
by reference

Calling another function State change (embedded)

Allocating heap memory Event notification Signal 
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self-documenting code, should make that task easier. For efficient soft-
ware maintenance and effective placement of error processing, software 
developers should understand the logic that controls the execution path of 
running software. By examining the impact of software design on read-
ability and execution control, one determines the costs and benefits of 
structure and possibilities for optimization.

DESIGN INSIGHTS

SOFTWARE

Compilers will optimize code only if it is safe to do so
There is no point in optimizing code unless it is correct

MODELS

Software development rests on abstraction
Idealized view of computer

Infinite memory
Uniform cost

Control flow
Sequential, conditional, repetitive
Conditional and iterative loop constructs

Recursion
Elegant but often overused
Expresses intuitive decomposition
Often inefficient, especially when computing redundant values
Can be simulated with local stack variables

SOFTWARE DESIGN

For maintainability, construct readable software
Design clearly using appropriate control structures

Gotos disrupt structured control flow
Do NOT use

Use while loops for conditional repetition
Use for loops for iterative repetition
Simplify Boolean expressions

Optimize by design
Minimize I/O
Avoid copying data
Use constants
Promote inlining
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Declare data efficiently
Large and contiguous items first

Functional decomposition
Affords code reuse
Isolates functionality

Enhances readability
Promotes software maintainability

DOCUMENTATION

Code should be as self-documenting as possible

CONCEPTUAL QUESTIONS

 1. When are conditional statements hard to read?

 2. When are repetitive loops hard to read?

 3. Why is use of the GOTO discouraged? What constructs replace the 
GOTO?

 4. What advantage(s) does design with only single entry and single exit 
points provide?

 5. How can the validity of a simplified Boolean expression be verified?

 6. What drawbacks are associated with recursion?

 7. When would recursion be preferred to iteration?

 8. What does function inlining do? What is its effect?

 9. When is a function call too costly? Why?

 10. List some common best practices for design and data declarations.
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C h a p t e r  4

Memory

Memory usage directly impacts software correctness and perfor-
mance. In this chapter, we consider memory management within 

a program. We begin with an overview of memory used for running 
programs, differentiating between program stack and heap memory. We 
examine the task of copying data, when that data is stored in heap mem-
ory, noting differences inherent in programming languages. We briefly 
discuss memory allocation and deallocation schemes, including explicit 
deallocation, garbage collection, and reference counting.

Most importantly, we identify memory management details that impact 
software design. Although memory manipulation remains abstract, a 
competent software developer should understand the underlying mecha-
nism for managing memory as a resource. Reinforcing details and exam-
ples are provided in Appendices A and B. Those who are unfamiliar with 
both C and C++ should consult Appendix A before reading this chapter.

CHAPTER OBJECTIVES

• Outline memory organization
• Discuss program memory usage
• Identify programming language differences with respect to memory
• Illustrate allocation process
• Contrast deallocation processes
• Summarize garbage collection
• Evaluate design choices: storage versus computation
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4.1  ABSTRACTION OF MEMORY
Logically, memory is a physical resource that is ‘owned’ when it is allo-
cated to a process. Memory is available for use or assignment when it 
is not so allocated. Competition exists for memory, even within one 
single program. For example, independent of core functionality, the 
user interface requires memory as do backup utilities and databases. 
Operating system utilities are needed to manage the assignment (allo-
cation) and release (deallocation) of memory while preserving data 
integrity. At a given time, only one process can use (own) a given mem-
ory block. This basic model is simple: behavior is much more ‘interest-
ing’ when memory is shared. The sharing of memory should be explicit 
and tracked.

The operating system manages computer memory when software exe-
cutes. Control of memory allocation and deallocation processes typically 
resides within the runtime environment (OS and runtime library). Entire 
books have been devoted to operating systems and resource management. 
Here, we provide only a brief overview of how memory is allocated and 
used by a running program. For more information, please consult a stan-
dard operating system text.

There are many different physical types of memory (registers, cache, 
secondary store, etc.). Each type has different costs and performance 
characteristics. For example, main memory is memory directly accessible 
by the CPU. Co-located with the processing core, the cache is a smaller, 
faster memory store that holds data from main memory to reduce access 
time. Nonetheless, as far as an executing program is concerned, all mem-
ory is simply a means of storage. Adhering to the tenets of abstraction, 
we view memory as a uniform resource and leave the technical details of 
hardware to the operating system. At a superficial level, we can consider 
memory to be an unlimited resource, again leaving the technical details 
of mapping a memory address to an actual memory location to the oper-
ating system. This abstract view supports the design and implementation 
of portable code.

The operating system treats memory as blocks of contiguous mem-
ory cells. How a running program uses this memory does not concern 
the allocator. Each memory request will be filled or rejected based solely 
on whether memory is available or not. Likewise, a running program 
(process) does not care how the allocator finds free blocks or maintains 
bookkeeping details for managing memory. Processes make only the 
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fundamental assumption that each memory block is uniquely allocated; 
that is, if a request for memory is satisfied, the requestor assumes sole 
ownership.

Conceptually then, we view memory as a uniform resource whose 
management is remote. Defined as imaginary or alternate memory 
addresses that simulate real, physical memory, virtual memory embod-
ies this abstract view of memory. Virtual memory is the perception 
of memory as a set of uniform, addressed locations without artificial 
size or boundary limitations. Virtual memory abstracts away consid-
eration of the actual address ranges occupied by physical memory. 
Hardware support and operating system utilities are thus needed to 
map a virtual address to an actual, physical address. Processors have 
memory management units to provide this support for virtual mem-
ory. Although  some virtual memory blocks can be locked, most vir-
tual memory space may be mapped to any available block of physical 
memory.

The operating system manages blocks of memory of uniform size, 
called pages. By overlaying, that is, replacing one page of memory with 
another, the operating system may manipulate programs (and their 
associated data) that are larger than the main memory of a computer. 
Thus, the size of allocated virtual memory may exceed that of physical 
memory.

A process can only access two or three memory locations at a time, 
so virtual memory pages resident in physical memory sit idle most of 
the time. If referenced data is not loaded into actual memory, a page 
fault occurs and the needed page is then swapped with a resident page. 
When needed, data can be written out to secondary storage (usually 
a hard drive). Since secondary memory is much slower than main 
memory (RAM), there is a significant cost involved in swapping out 
one virtual memory page so that another can take its place. Caching 
uses a similar mechanism to share the limited physical high-end cache 
memory.

System performance can degrade dramatically if too many memory 
references cause page faults. When memory references are confined to a 
certain locality, a set of relatively contiguous blocks of memory, a minimal 
number of virtual memory pages need to access physical memory. This 
principle of ‘locality of reference’ can be used to enhance the performance 
of an algorithm, database, or application.
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4.2  HEAP MEMORY
In architectures traditionally called ‘Von Neumann’—typical of modern 
desktop systems—code and data share the same memory space. The exe-
cutable image for the process and any modules loaded dynamically by that 
process must be assigned blocks within the process’ memory pool, thus 
reducing the amount of virtual memory available for storing data objects. 
When the executable image of a program is loaded into memory, its layout 
can be viewed as a partition between the code section and the data section. 
The code section contains the software instructions while the data section 
is memory reserved for data used and generated by the running software.

Two portions of memory comprise the data section of a running pro-
gram: the heap and the runtime stack. The heap consists of blocks of 
memory allocated for program use when explicitly requested by a process 
as the program runs. Memory so allocated is called ‘dynamic’ because its 
address is not known or allocated until runtime. The runtime stack holds 
the activation records (stack frames) that record essential information, 
such as the program counter and local variables, for function calls. Since 
the size of a stack frame is known at compile-time, it is laid out statically.

The primary (heap) and stack allocators share the same initial pool of 
memory; each allocator starts at opposite ends of this chunk of memory 
and as each allocates memory, they ‘grow’ toward each other. In a typi-
cal implementation, the allocation limit for the primary allocator starts at 
low memory addresses and grows upward, while the allocation limit for 
the stack starts at a high address and grows downward (see Figure 4.1). 
Obviously, these two limits must not cross.

Processes request memory blocks of a specified size. In C, using the 
malloc or calloc calls, the caller passes in the size of data requested, 

7000 Heap

Stack
E500

FIGURE 4.1 Program heap-and-stack memory.
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usually using the sizeof operator. In C++, C#, and Java, the new operator 
is invoked with a typed pointer or reference: the size of memory requested 
can be inferred from the type. Example 4.1 gives sample C++ allocations; 
Figure 4.2 illustrates the corresponding memory diagrams. The alloca-
tor processes memory requests: it does not track address values held in 
pointer (or reference) variables. Consequently, the application program-
mer MUST be responsible for nulling out pointers (or references) when 
ownership of heap memory has been released!

Example 4.1: C++ Allocation of (Heap) Memory at Runtime
// C++ allocation of heap memory
// "ptr" is a pointer variable allocated on the stack
// "ptr" holds the address of the heap object return by new

MyType* ptr = new MyType; //#A: MyType object allocated

// deallocate heap memory via call to delete operator
delete ptr;   //#B: MyType object deallocated

// null out pointer to indicate it 'points to nothing'
ptr = 0;   //#C: programmer must reset pointer

// pointers can also hold the address of an array
ptr = new MyType[10];  //#D: 10 MyType objects allocated
…
// must use delete[] when deallocating an array on heap
delete[] ptr;   //#E: 10 MyType objects deallocated

The type of a pointer is an implicit size parameter, an int requires 4 
bytes of memory, a char requires 2, etc. In response to a call, the alloca-
tor finds and returns the starting address of a memory block large enough 
to hold the requested amount of memory. This block is guaranteed to be 
distinct from memory actively allocated to any other execution context 
(thread, stack frame, etc.). Later, when this memory is released, the block 
is returned to the pool and is available once again to be allocated.

For all satisfied memory requests, the allocator returns the base 
address of the block just allocated. The caller knows the size of the block it 
requested, so there is no need for the allocator to return this information. 
The allocator maintains information about memory available for alloca-
tion in a ‘free’ list. Likewise, the addresses of allocated blocks are stored in 
an ‘allocated’ list. The allocator records the size of each block allocated, so 
that the correct amount of memory can be returned to the pool of avail-
able memory when blocks are deallocated.
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Memory requests may fail and obviously will do so when the amount of 
memory requested exceeds that available. When the amount of memory 
requested is available but is not contiguously located, that is, when there 
is no one block big enough to satisfy the request, a memory request will 
also fail. This state of memory is called fragmented memory. Consider a 
request to allocate an array of 500 reals (double variable type). If a dou-
ble is of size 8 bytes, 4000 bytes are needed. If 30,000 bytes are available 
but all blocks are of size 3200 or smaller, the memory request will fail. 
To indicate an unsatisfied memory request, the allocator may throw an 
OutOfMemory exception.

To release memory in C++, one passes the address of the memory to be 
returned by calling the delete operator with a pointer variable. Normally, 
there is no response to the explicit release of a memory block. However, if 
an invalid pointer is supplied as the base address of the block, the alloca-
tor may throw an exception. Java and C# do not use explicit deallocation.

ptr (ptr)

C300 7800 7800 ???

#A: pointer variable `ptr´ (of type MyType) allocated on stack
MyType object allocated on heap: address placed in ptr

ptr (ptr)

C300 7800 7800 ???

ptr

C300 0

ptr (ptr)

C300 7A00 7A00 ???

ptr (ptr)

C300 7A00 7A00 ???

#B: MyType object deallocated: value in ptr UNCHANGED

#C: programmer must reset pointer

#D: array of 10 MyType objects allocated on heap

#E: array of 10 MyType objects deallocated on heap

FIGURE 4.2 Heap allocation at runtime.
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4.2.1  C++ Deallocation

In C and C++, deallocation of heap memory is explicit: the programmer 
must call free in C or delete (or delete[] for arrays) in C++. The freed 
memory block is then taken off the allocated list and returned to the free 
list. Failure to release memory yields a memory leak. Why? Once a han-
dle (pointer) goes out of scope, the memory so referenced is no longer 
accessible: the memory remains allocated on the heap even though it can 
no longer be accessed (and thus used). The allocator does not know that 
this memory block is inaccessible. To the allocator, the block is still in use 
because no explicit request for release was received.

A common mantra for C++ programmers is ‘match every new with a 
delete.’ If only design could be so simple! Due to aliasing and transfer 
of ownership, matching each new with a delete is not a trivial endeavor.

Example 4.2 presents three functions. The first function leaks mem-
ory because there is no call to the delete operator before the pointer 
holding the address of the heap memory goes out of scope. The second 
function does not leak memory because there is a call to the delete 
operator before the pointer goes out of scope. The third function does 
not leak memory because it passes out ownership of the heap memory. 
Heap memory must be deallocated, via the delete operator, or trans-
ferred to another owner, before the pointer or reference to that heap 
memory goes out of scope. Otherwise, access to that heap memory is 
lost and cannot be reclaimed.

Example 4.2: C++ Primitives: Allocation/Deallocation Clear
// function code: primitives used, no class objects
// application programmer ERROR: NEW not matched with DELETE
void leakMemory()
{ int* heapData;
 heapData = new int[100];
 …
 return;
} // memory leak obvious: no explicit deallocation

// function code ok: NEW matched with DELETE
void noMemoryLeak()
{ int* heapData;
 heapData = new int[100];
 …
 // heap memory explicitly deallocated: delete matches new
 delete[] heapData;
 return;
}
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// function code ok: access to heap memory passed back to callee
//CALLEE MUST ASSUME RESPONSIBILITY (ownership) FOR HEAP MEMORY
int* passMemory()
{ int* heapData;
 heapData = new int[100];
 …
 return heapData;
}

Explicit deallocation, as demanded by C and C++, requires that a 
programmer retain responsibility for both allocation and deallocation of 
heap memory. Correct memory management rapidly becomes complex: 
aliases, transfer of ownership, call by reference, and shared use all com-
plicate the task of tracking ownership. It is a challenge to reliably ensure 
appropriate deallocation of memory. See Dingle (2006).

In the 1970s, C programming dominated software development. The 
need to manage memory was overt and (often reluctantly) addressed. 
When C++ became popular in the 1990s, the object-oriented paradigm 
came into vogue. Objects encapsulated dynamic memory allocation and 
obscured the need for directly managing memory. If class designers failed to 
manage memory correctly, memory leaks occurred even when application 
programmers ‘followed the rules.’ We illustrate such insufficient C++ class 
designs in a few examples. Please see Appendix B for more detail.

Example 4.3 displays function definitions that contain object allo-
cation(s) that should not result in memory leaks. (To review parameter 
passing, please see Appendix A.) How do these functions leak memory? 
The leakMemory function in Example 4.2 failed to either deallocate (via 
a call to the delete[] operator) or to transfer ownership. These deficien-
cies are not evident in Example 4.3. Each function in Example 4.3 looks 
correctly written, and seems to follow standard design guidelines. The first 
function invokes the delete operator to match the call to new. The second 
function only allocates a local object via pass by value. The third function 
simply assigns one object to another. If the fault is not in the application 
code, examination of the hiddenLeak class definition is warranted.

Example 4.3: C++: Why Memory Leaks?
// function code looks correct
void whyLeakMemory1()
{ hiddenLeak* naive;
 naive = new hiddenLeak[100];
 …
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 delete[] naive; //delete[] matches new[]
}

void whyLeakMemory2(hiddenLeak localVar)
{ … }

void whyLeakMemory3()
{ hiddenLeak steal;
 hiddenLeak share;
 …
 steal = share;
 return;
}

The first function, whyLeakMemory1(), in Example 4.3 looks like the 
second function, noMemoryLeak(), defined in Example 4.2. The call to 
the new[] operator is matched with a call to the delete[] operator. The 
application programmer has followed the memory management mantra: 
every new is matched with a delete. How does memory leak then? What 
is missing?

The second function, whyLeakMemory2(), in Example 4.3, also looks 
innocuous. The only code evident is the definition of the formal parameter, 
which is passed by value. If there is a memory leak then, it must be associ-
ated with the copy constructor. The third function, whyLeakMemory3(),  
in  Example 4.3, merely assigns one locally allocated (stack) object to 
another. Again, no action appears to be missing. If there is a memory leak 
then, it must be associated with the assignment operator.

Example 4.3 differs from Example 4.2 in that it uses objects not the 
built-in integer type for its data variables. If a leak occurs, it is due to the 
internal design of the hiddenLeak class. A class without any internally 
allocated heap memory will not yield memory leaks. However, a class that 
internally allocates heap memory will yield memory leaks unless it is care-
fully designed. Such errors may be deadly. Application programmers will 
be unable to easily detect the source, or to correct it.

Analysis of the Example 4.3 leaks indicate that the class design for 
 hiddenLeak does not have proper deallocation, support for call by value 
or for assignment. In other words, the hiddenLeak class is missing a 
destructor, a copy constructor, and an overloaded assignment operator. 
Example 4.4 shows the inferred inadequate design of class hiddenLeak. In 
Example 4.5, we revise this class design by defining the missing functions. 
We describe them briefly below. For more details, please see Appendix B.
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Example 4.4: C++ Class without Proper Memory Management
// IMPROPERLY DESIGNED: heap memory allocated in constructor
// MISSING: destructor, copy constructor, overloaded =
class hiddenLeak{
 private:
  int* heapData;
  int size;
 public:
  hiddenLeak(unsigned s = 100)
  { size = s; heapData = new int[size]; }
  …
};

Example 4.5: C++ Class with Proper Memory Management
// class definition,.h file, memory managed properly
class noLeak{
private:
 int* heapData;
 int size;
public:
 noLeak(unsigned s = 100)
 { size = s; heapData = new int[size]; }
 // copy constructor supports call by value
 noLeak(const noLeak&);
 // overloaded = supports deep copying
 void operator=(const noLeak&);
 // destructor deallocates heapData
 ~noLeak() {delete[] heapData;}
 …
};

// .cpp, implementation file
// copy constructor
noLeak::noLeak(const noLeak& source)
{ size = source.size;
 heapData = new int[size];
 for (int j = 0; j < size; j++)
 heapData[j] = source.heapData[j];
}

// overloaded = supports deep copying
void noLeak::operator=(const noLeak& rhs)
{ if (this != &rhs)  //avoid self-assignment
 { delete[] heapData;  //dellocate 'old' memory
  size = rhs.size;
  heapData = new int[size];
  for (int j=0; j < size; j++)
    heapData[j] = rhs.heapData[j];
 }
 return;
}
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C++ classes must define a destructor when any class method (usually 
the constructor) allocates heap memory that is retained by an object. The 
destructor is a special function that has no return type (not even void) 
and bears the same name as the class, preceded by ‘~’. The compiler implic-
itly invokes the destructor when objects go out of scope or when the delete 
operator is called. Thus, the class destructor is poised to deallocate any 
heap memory before its handle (an object data member) goes out of scope. 
A destructor is appropriately defined in Example 4.5.

Classes must also define a copy constructor when objects allocate 
heap memory. Why? The compiler automatically provides a default copy 
constructor that simply copies each field value directly. After copying, 
two objects will contain exactly the same data values. Pointer values 
(addresses) are treated no differently than other data members. This stan-
dard (bitwise) copy yields a shallow (aliased) copy, whenever an object 
contains a pointer data field that holds the address of heap memory. After 
copying data fields from one object to another, the two different objects 
will have the same value in their pointer fields and thus will point to the 
same memory.

Consider the three diagrams of variables a and b in Figure 4.3. One can 
view these diagrams as representations of pass by value: a is the formal 
parameter and b is the actual argument passed in at the point of call. If the 
class designer does not define a copy constructor, the compiler provides 
the default bitwise copy constructor. With shallow copying, the formal 
parameter a now accesses the heap memory allocated to the actual param-
eter b, as seen in the first diagram, violating the security of pass by value. 
Moreover, when the function terminates, a goes out of scope. If a destruc-
tor is defined, as it should be, the destructor deallocates the heap mem-
ory that a ‘points to.’ But this memory is the heap memory ‘owned’ by b! 
Moreover, b does not know that its heap memory has been released and 
can thus be reassigned to another ‘owner.’ Data corruption is now pos-
sible, if b, under the impression of continued ownership, alters ‘its’ heap 
memory. The desired deep (true) copy, as displayed by the third diagram 
in Figure 4.3, results when the class designer defines the copy constructor 
appropriately.

The copy constructor is a special function that has no return type (not 
even void), bears the same name as the class, and takes one passed param-
eter that is an object of the same type. An appropriate copy constructor 
is defined in Example 4.5. This copy constructor copies all nonpointer 
fields directly. For the newly constructed object, additional heap memory 
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is allocated, of the same size as the source object, and then the data values 
from the source object’s heap memory are copied to the new object’s heap 
memory.

If an overloaded assignment operator is not defined, the compiler 
automatically generates an assignment operator that merely performs a 
bitwise copy. Assignment, a = b, would then result in unintentional 
aliasing, as illustrated by the memory diagrams in Figure 4.3. While the 
copy constructor is invoked to construct a new object, the assignment 
operator is invoked through an existing object. Thus, a = b translates 
to the function invocation noLeak::operator=(&a, b). Like the copy 
constructor, the assignment operator must allocate new heap memory 
and then copy data values resident in the source heap memory. Before 
doing so, however, the assignment operator has the additional respon-
sibility of deallocating heap memory owned by a before a’s values are 
overwritten with a copy of b’s values. Memory leaks if such dealloca-
tion does not occur. For more discussion, please see Appendix B.

If copying is not desired, as it is not for large collections such as hash 
tables, a C++ class designer may simply suppress copying, that is, do not 
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Shallow copy a = b => Unintentional aliasing

Deep copy a = b => Data corruption averted

Shallow copy a = b => Premature deallocation, a goes out of scope
=> heap memory (‘owned’ by a) deallocated
=> but b stills ‘owns’ its heap memory
=> Data corruption possible

FIGURE 4.3 Shallow copy versus deep copy.
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support assignment or call by value. Example 4.6 modifies the class design 
of Example 4.5 to do so. The copy constructor and the overloaded assign-
ment operator are declared via function headers in the private section of 
the class alongside a comment ‘copying suppressed.’ There is no need to 
define these suppressed methods since there is no intent to use them. As 
private functions then, they cannot be invoked. Thus, if any application 
code attempts to assign one noCopy object to another, pass by value a 
noCopy object into a function, or return by value a noCopy object from a 
function, the compiler will generate an error.

Example 4.6: C++ Class Design with Copying Suppressed
class noCopy{
private:
 int* heapData;
 int size;
 // copying suppressed!
 noCopy(const noCopy&);
 void operator=(const noCopy&);
public:
 noCopy(unsigned s = 100)
 { size = s; heapData = new int[size]; }

 //destructor deallocates heapData
 ~noCopy () {delete[] heapData;}
 …
};

If copying is not desired, why declare the copy constructor or overloaded 
assignment operator at all? If not defined, the compiler will provide default 
versions, which provide bitwise copying and thus produce the errors dis-
cussed above. Declaration of the copy constructor and the overloaded assign-
ment operator as private suppresses the compiler’s provision of default versions.

Scott Meyers has written definitive guidelines on C++ class design, 
including thorough coverage of C++ memory management. Please consult 
the classic work of Meyers (1998) or a more recent version. His guidelines 
cover memory management within a class. Appendix B further illustrates 
a class design with internal heap memory and provides relevant C++11 
details.

4.2.2  C#/Java Heap Memory Management

Java and C# offer a different memory management model. Like C++, heap 
memory is allocated via the new operator. In fact, the heap is used much 
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more extensively in Java and C# because all objects are allocated on the 
heap. However, C# and Java programmers labor under no requirement to 
deallocate memory. Memory usage and availability is tracked on a system 
level and, when necessary, a broad reclamation is triggered. We examine 
garbage collection in more detail in a subsequent section.

Java and C# code produces fewer memory leaks than C++ but incurs 
greater, and less predictable, overhead. We examine reasons why memory 
leaks cannot be completely prevented in a later section. At the moment, 
look at Example 4.7, which presents the C# version of the class designed in 
Example 4.4. Since explicit deallocation is not necessary in C#/Java, there 
is no need for a destructor. What about copying?

Example 4.7: C# Heap Memory Internal to a Class
// C# class allocates heap memory of variable size
// no need to deallocate => no destructor needed
class noLeak{
 private int[] heapData;
 private uint size;

 public noLeak(uint s = 100)
 { size = s; heapData = new int[size]; }
 …
}

By default, copying is shallow, also known as bitwise copying. A bitwise 
copy simply copies the bit string resident in the source to the destination. 
The distinction between shallow and deep copying is often not obvious in 
programming languages. Shallow copies may lead to unintentional alias-
ing, and thus, errors. When two objects point to the same heap memory 
and both objects assume ownership, there is potential for data corruption, 
in any language. In C++, there is also potential for premature dealloca-
tion (via destructor invocation). Deep copies are safer because each object 
points to and owns distinct heap memory.

In C# and Java, the default bitwise copying works well for simple 
objects since objects in these languages are just references. Copying in 
C# and Java thus establishes aliases. To acquire a deep copy, the C# (or 
Java) class designer must implement the Cloneable interface and define 
a Clone() method. Additionally, application programmers must clone 
objects. Example 4.8 outlines C# copy semantics with corresponding 
memory diagrams in Figure 4.4. Cloning in C# shifts responsibility to the 
application programmer. The Clone() method returns an object of type 
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Object so the caller must cast the return value back to the desired type. 
This type reclamation for copying is not intuitive. In contrast, copying in 
C++ is more onerous for the class designer but less so for the application 
programmer.

Example 4.8: C# Cloning
public class uCopy: ICloneable
{ private anotherClass refd;

 // 'anotherClass' instance allocated on heap
  // address of subobject held in reference 'ref'
 public uCopy()
 { refd = new anotherClass(); }
 …

  // deep copy: more heap memory allocated via clone
 // subobject copied into new memory
 public object Clone()
 {  uCopy local = this.MemberwiseClone() as uCopy;
   local.refd = this.refd.Clone() as anotherClass;
  return local;
 }
 …
}
…
// application code
uCopy u1 = new uCopy(); // #A: uCopy object allocated

// intuitive but yields shallow copy
uCopy u2 = u1; // #B: shallow copy of uCopy object

// deep copy: must cast to retrieve type information
u2 = u1.Clone() as uCopy; // #C: clone of uCopy object

Data corruption arises from inappropriate aliasing. Data corruption 
may be immediate or delayed. If two objects hold the address of the same 
heap memory, either can alter the memory contents, thus ‘corrupting’ that 
data for the other object. Hence, in any programming language, the class 
designer must determine whether or not copying should be supported, 
and if so, whether deep or shallow copying is appropriate.

4.3  MEMORY OVERHEAD
For an executing program, heap memory is more expensive than stack 
allocated memory. Why? Stack memory is laid out at compile-time when 



106   ◾   Software Essentials 

compiler determines the size of stack frames. At runtime then, there is 
no overhead for computing the location of allocated memory. Dedicated 
hardware, such as the stack register, supports fast updates to stack mem-
ory references. In contrast, heap memory is controlled through the alloca-
tor (and deallocator), incurring runtime overhead.

4.3.1  Allocation

Efficient memory allocation is not a trivial endeavor. Standard approaches 
include first-fit and best-fit. First-fit allocates the first block found on the 
free list that is large enough to satisfy the memory request; best-fit finds 
the smallest block that satisfies the memory request, and in so doing, 
minimizes possible fragmentation. The efficacy of different algorithms 
depends on the order and size of memory requests. Profiling tools may 
identify time spent in memory allocation and reclamation.

A memory block cannot be allocated more than once so individual 
addresses uniquely identify (the first byte of) specific allocated blocks. 
Typically, the allocated size is retained in a block header so that the last 
byte allocated can be determined from the block address. When a block 
is released (deallocated), through a call to free (C) or delete (C++), the 
address of the allocated memory is passed to the allocator via a pointer. The 
allocator can thus easily determine how much memory should be released.

Memory allocation requires both computational and space overhead. 
Block size must be stored (in a block header) for each allocated block. 
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#A: uCopy object allocated
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FIGURE 4.4 C# cloning.
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Physical memory has a cost associated with it, and programs tend to use 
large amounts of it. Therefore, it is still necessary to reclaim and reuse 
memory as the program is running. Even virtual memory has its limits: 
memory is a resource that must be conserved or at least recycled.

4.3.2  Memory Reclamation

Two primary methods used for memory reclamation are explicit deal-
location and implicit deallocation. Garbage collection and refer-
ence counting are implicit deallocation methods. As the name implies, 
explicit deallocation relies on code statements (calls to delete or free) to 
explicitly release a block of memory when it is no longer needed. In con-
trast, as an internal process, garbage collection periodically reviews the 
state of all allocated blocks, reclaiming those that are no longer reachable 
(an unreachable block of memory cannot be used). Data is considered 
reachable if it can be directly addressed by a variable in the set of vari-
ables currently active, or indirectly addressed via a pointer (reference) 
embedded in an active variable (or in a variable referenced by an active 
variable, etc.).

Garbage collection typically runs as a background process; it is invoked 
when insufficient heap memory is available or the heap is too fragmented. 
The time between when a memory block is no longer needed and when it 
is reclaimed may be large since no explicit request for reclamation is rec-
ognized. For example, in Java, the call System.gc() is only a suggestion, 
not a directive. Memory tends to stay allocated, resulting in more physical 
memory remaining claimed than under explicit deallocation.

Modern programs often prioritize data manipulation. Memory alloca-
tion and reclamation impacts the overall performance of an application. 
The computational overhead of locating a block, marking it as allocated, 
storing its size, and returning its base address to the caller should be as 
efficient as possible. Allocation, and its overhead, is consistent across 
languages whether a language supports explicit deallocation or relies on 
garbage collection. The overhead of explicit deallocation is borne incremen-
tally, as each deallocation request is processed. In contrast, the overhead of 
garbage collection occurs in a pause, when the program must stop running. 
However, with implicit deallocation, the heap is more likely to become 
fragmented, resulting in a more costly search for free blocks during allo-
cation and thus degraded performance.

C++ lead the growth of large-scale software development, with a con-
comitant increase in the number of software developers, many without 
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extensive knowledge of software design or experience with machine hard-
ware. Hence, the reliability of programmer-managed memory became 
a significant concern. Experienced professionals summarized coding 
principles to reduce bugs due to memory errors. Figure 4.5 enumerates 
common C++ recommendations with respect to managing memory. 
However, design guidelines cannot be enforced by any compiler and thus 
are always insufficient. The popularity of garbage collected languages 
such as Java and C# is somewhat due to reduced memory management 
responsibilities.

Since garbage collection is not a perfect process, C#/Java profession-
als should track memory ownership. Why? Effective garbage collection 
depends on appropriate values in references, that is, nonzero for valid 
addresses and zero for inactive references. Both C# and Java provide auxil-
iary constructs, such as weak references and ‘finalize()’ methods, to assist 
the garbage collection process. For more details, see sun.com or msdn.
microsoft.com.

 1) Match every new with a delete

 2) Class design: DEFINE

constructor,

destructor,

 3) Class design: DEFINE (or suppress)

copy constructor,

overloaded assignment operator

 4) Use Reference Count to track aliases

Increment with each added reference

Decrement when alias goes out of scope

Deallocate when count is zero

 5) Explicitly transfer ownership

Pass pointer by reference

Assume ownership

Reset passed (old owner’s) pointer to null

FIGURE 4.5 C++ design guidelines to prevent memory leaks.
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4.3.3  Garbage Collection

Memory management is difficult; common problems associated with 
memory management are summarized in Table 4.1. Data corruption 
occurs when hidden aliases permit uncoordinated updates to memory. 
Errors due to data corruption are difficult to detect because they often 
occur far from their source. Memory leaks occur when heap memory is not 
released before handles goes out of scope. Performance degradation may 
often be traced to poor usage of the heap. If the heap becomes too frag-
mented, like a hard drive, the allocator spends more time searching for 
available blocks. A memory request may fail when there is enough mem-
ory but it is not contiguously located. Garbage collection is an attempt to 
address these problems and does so with varying degrees of success.

Garbage collection involves the ‘automatic’ reclamation of heap mem-
ory no longer in use (garbage) and thus removes the responsibility of 
memory deallocation from software developers. Heap compaction is a 
separate process but may follow (or be intertwined with) garbage collec-
tion. Compaction shifts heap memory still in use to one end of the heap to 
maximize the amount of contiguous memory available for allocation and 
thus minimize fragmentation.

Garbage collection strategies date back to the development of the 
programming language LISP. The popularity of Java renewed interest in 
garbage collection algorithms and analyses. Research continues because 
garbage collection is not a perfect process: memory leaks still exist in 
Java and C#. For advanced readings and current research, please con-
sult sun.com. In the following paragraphs, we provide only a general 
overview.

The standard approach to garbage collection relies on the mark-and-
sweep algorithm. Example 4.9 outlines this intuitive, recursive algorithm 
for marking all reachable data. Developed over fifty years ago, and refined 

TABLE 4.1 Common Difficulties with Program Memory

Memory Problem Cause Consequence Effect
Data corruption Hidden aliases Ownership 

undermined
Data values 
overwritten

Performance 
degradation

Fragmented heap More time to allocate 
memory

Software slowed
Poor scalability 

Memory leak Heap memory not 
collected

Heap memory 
unusable

Lost resource

C++ memory leak Handle to memory 
lost

Memory inaccessible Memory allocated 
but unusable
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in the intervening years, the basic algorithm has not changed. When 
the garbage collector is invoked, the running software is suspended. 
Examination of the suspended software’s stack and static memory yields 
a root set of variables (data) in local or global scope. All memory blocks 
associated with this root set are marked. Then, each variable r (associated 
with a newly marked block) is examined to determine if it holds one (or 
more) references to any other data: this step is the call to mark(r) from 
the markSweep()routine. Each recursive level of mark(r) corresponds 
to another step in a chain of references traced from the root set. This 
last, recursive step is repeated until no additional blocks are marked. At 
this point, all reachable memory has been marked. The sweep stage then 
sweeps through the heap, reclaiming all unmarked blocks of memory.

Example 4.9: Classic Mark-and-Sweep Algorithm
// start with direct references, the root set:
// all visible variables (active memory) at time of sweep
// trace out to all variable indirectly referenced
void markSweep()
{ for each Object r in rootSet
  mark(r);
}

// recursive depth-first marking
// terminates when all reachable objects marked
void mark(Object x)
{
 if (!x.marked)
 { x.marked = true;
  for each Object y referenced by x
   mark(y);
 }
}

// if heap object marked: KEEP
// clear marked status in preparation for subsequent sweeps
// if heap object unmarked: RECLAIM (garbage)
void sweep()
{
 for each Object x on heap
  if (x.marked)  x.marked = false;
  else   release(x);
}

All variables that are reachable from the root set will be marked for 
preservation even if such variables are not actively used in the program 
and should be reclaimed. A reference that holds an address of an object 
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that is no longer used will prevent that object from being reclaimed. Hence, 
design guidelines recommend the nulling or zeroing out of pointers and 
references once an object is considered inactive.

For one variable to hold the address of another, it must contain a refer-
ence or pointer as a field. Whether or not a field within an allocated memory 
block represents a pointer requires knowledge of the type associated with 
that field. Some conservative garbage collection algorithms do not rely on 
type information and treat every collection of bytes that could represent 
a pointer as if it actually does. Why? To ensure that only those memory 
blocks that are most definitively inaccessible are reclaimed. Consequently, 
inactive blocks may end up being marked as ‘in use’ when in fact they are 
not. The mark-and-sweep algorithm may thus fail to reclaim all possible 
inactive blocks. On the other hand, it will not reclaim any blocks that are 
still in use. Reclaiming a block that is still in use could eventually lead to 
memory being allocated to two different clients simultaneously, leading 
potentially to unwanted aliases and data corruption.

Garbage collection thus distinguishes between live and dead data. 
Intuitively, when data is not longer used, it should be considered to be 
‘garbage’ and thus reclaimed. However, only those objects (data vari-
ables) that are inaccessible are collected. An object that is no longer 
in use but is still accessible because its heap address ‘lingers’ (in some 
reference) cannot be reclaimed. Garbage collection may in fact miss 
some garbage.

Mark-and-sweep techniques require a suspension of the running pro-
gram to trace out, that is, mark, all memory still in use. A pause in process-
ing may not be a viable option for many real-time applications but may not 
be noticeable in others. Small applications that do not use much memory, or 
applications that run for only a limited time before termination (or restart), 
may never require garbage collection. An advantage of garbage collection is 
that it requires no overhead unless the garbage collector runs.

4.3.4  Reference Counting

Reference counting is an incremental approach: the overhead of memory 
management is dispersed across all allocation and deallocation requests. 
Each memory block has a counter associated with it that indicates how 
many references (or handles) refer to that memory block. Reference count-
ing thus explicitly tracks aliases. If the reference count is zero then the 
memory block may be reclaimed since it is no longer in use. Reference 
counting tracks individual blocks while in use. This algorithm can be 
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implemented in software when there is interest in managing large data 
stores internal to a program. It may be the easier technique to implement, 
but it cannot detect cyclic references and thus cannot collect all garbage. 
Figure 4.6 displays a cycle of four objects (allocated data blocks). There 
are no external reference to this cycle. Yet, none of the four blocks will be 
reclaimed because each has a positive reference count, due to a reference 
from another (unused) block in the cycle.

To avoid costly copying, one may implement reference counting on a 
class level, mimicking its implementation as a utility. This designed opti-
mization is valuable only when data sharing is intended. Large data collec-
tions, such as registries and hash tables, are more efficiently and securely 
managed when data is shared rather than copied. The design trick is to cen-
tralize access, say through the class name, so that only one copy of the data 
is employed. Class design proceeds by suppressing all constructors (via 
protected or private accessibility) and providing a public, static instantia-
tion routine. Upon the first request to instantiate, the data is allocated and 
the reference count set to one. Subsequent requests to instantiate involve 
no allocation of memory, simply an increment of the reference count: the 
same address of the data initially allocated is returned for all instantiation 
requests. Aliases abound in this scheme. Deallocation requests decrement 
the reference count. When the reference count reaches zero, the data may 
be deallocated.

Both reference counting and mark-and-sweep illustrate the effect of 
retaining a reference to data when that data is no longer used: the memory 
block cannot be reclaimed. Specious references, called lingerers or loiter-
ers in Java, are the source of performance degradation due to heap frag-
mentation. The explosive growth of Java led to its quick adoption for many 
software projects. Often, programs were designed without adequate con-
sideration of memory usage. Performance degradation and poor scaling 
results motivated more program analysis. Profilers followed Java on the 
market as developers sought to identify heap fragmentation and sources 
of inefficiency.

Neither reference counting nor mark-and-sweep algorithms tackle 
heap fragmentation, other than incidentally by returning blocks that can 
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FIGURE 4.6 Reference counting defeated by cyclic references.
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be coalesced with adjacent free blocks. Compaction algorithms comprise 
another phase of heap management. Compaction moves data, that is, 
reassigns allocated memory so that allocated memory resides in one sec-
tion, maximizing the size of available, contiguous memory. Compaction 
is expensive and complicated. To constrain fragmentation, design recom-
mendations include minimizing allocations and use of temporaries, and 
allocating data in large blocks (review Tables 3.10 and 3.11).

4.4  DESIGN: STORAGE VERSUS COMPUTATION
Memory management is complex but important. Although low-level 
memory management details can, and should be ignored, software design 
often must explicitly address memory usage. Why? Memory access can 
become the bottleneck of a system. Processor speeds cannot rescue a data-
intensive system from a poor design. For more detail on efficient memory 
coding, see Loshin (1999). Here, we contrast different designs for storage 
versus computation.

In general, one trades space for performance. That is, increased storage 
requirements are justified if the additional space holds, say, (intermediate) 
calculations so that values can be retrieved directly with little or no com-
putation. If requests for specific computations are frequently made and if 
the data values involved in such computations are infrequently modified, 
then storing computations for future lookup is a reasonable design option.

For example, given a stable data set that must support frequent que-
ries that are dependent on the mean value of the set, a design that 
stores the mean likely yields better performance than a design that 
calculates the mean upon each request. Conversely, given an unstable 
data set (where values are frequently inserted or deleted) that must 
support infrequent queries, a design that calculates the mean upon 
request may reduce computational overhead. Example 4.10 sketches 
these two different designs.

Design selection may depend on estimations of the volume of queries 
and the stability of the data set. The more stable the data set and the more 
frequent the inquiries as to a computed value, the greater the benefit of 
storing values like the mean (minimum, maximum, etc.). The converse 
also holds.

Caution is recommended when a class design uses unbounded storage, 
such as the generic list type available in modern programming languages. 
Why? Generic containers are so easy to use that software designers may 
not explicitly evaluate how much is being stored and whether such storage 
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is necessary. Consider Example 4.11 which encapsulates the task of moni-
toring access to ordered data.

Example 4.10: Storage versus Computation: C# Code
using System;
using System.Collections.Generic;
public class storeMean
{
 private List<int> values = new List<int>();
 private float  mean;
 …
 public void add(int x)
 { values.Add(x);

  int sum = 0;
  foreach (int k in values)
   sum += k;
  mean = sum/values.Count;
  return;
 }

 public void delete(int x)
 { values.Remove(x);

  int sum = 0;
  foreach (int k in values)
   sum += k;
  mean = sum/values.Count;
  return;
 }

 public float mean() {return mean;}
}

public class computeMean
{
 private List<int> values = new List<int>();
 …
 public void add(int x) { values.Add(x); }

 public void delete(int x) { values.Remove(x); }

 public float mean()
 {
  int sum = 0;
  foreach (int k in values)
   sum += k;
  return sum / values.Count;
 }
}
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Each tracker object encapsulates a number and then process queries 
that test whether a proffered number is less than, equal to, or greater 
than the tracked number. At any given point, a tracker object may yield 
cumulative statistics as to the number of queries processed that were less 
than, equal to, or greater than the tracked number. For example, if a query 
passed in ‘5’ to a tracker object that encapsulated ‘43’ then the ‘lessThan’ 
count would be incremented. Example 4.11 illustrates a simple design.

Example 4.11: Counts Stored; Queries Discarded: C# Code
public class tracker
{ private int num;
 private int less = 0;
 private int equal = 0;
 private int more = 0;

 public tracker(int x) { num = x; }

 public int query(int y)
 { if (y < num)  { less++; return -1; }
  if (y == num)  { equal++; return 0;  }
  more++;  return 1;
 }

 public int getLessCt() { return less; }
 public int getEqualCt() { return equal; }
 public int getMoreCt() { return more; }
}

An overdesigned response is presented in Example 4.12. The class 
designer uses a list to store each query and then, upon demand, must walk 
through the entire collection to determine the relative counts of numbers 
that fell below, matched, or were above the encapsulated value. A tremen-
dous amount of storage is used, and computational overhead is increased. 
Any design that both maximizes storage overhead and postpones compu-
tation should be reassessed.

Example 4.12: Queries Stored: C# Code
using System;
using System.Collections.Generic;
public class tBigMem
{ private int  num;
 private List<int> queries = new List<int>();

 public tracker(int x) { num = x; }
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 public int query(int y)
 { queries.Add(y);
  if (y < num)  return -1;
  if (y == num)  return 0;
  return 1;
 }

 public int getLessCt()
 { int count = 0;
  foreach (int q in queries)
   if (q < num) count++;
  return count;
 }

 public int getEqualCt()
 { int count = 0;
  foreach (int q in queries)
   if (q == num) count++;
  return count;
 }

 public int getMoreCt()
 { int count = 0;
  foreach (int q in queries)
   if (q > num) count++;
  return count;
 }

}

4.5  SUMMARY
In this chapter, we examined the assignment and release of memory within 
a running program. Modern programming languages abstract away most 
memory management details. Software developers can thus design code 
that is more portable and maintainable because it is not directly tied to 
specific memory addresses.

To illustrate differences in memory management, we examined alloca-
tion and copying in C++ and C#. Examples traced the distinction between 
shallow and deep copying. We also summarized explicit deallocation 
in C++, providing common examples of memory leaks. Noting that C# 
and Java provide implicit deallocation, we summarized essential details 
of garbage collection. We also briefly commented on reference counting. 
Memory management is not a trivial endeavor and no approach can eas-
ily prevent all memory leaks and data corruption. Hence, the competent 
software developer should understand the memory models of different 
programming languages and their effects on software design.



Memory   ◾   117  

At the chapter end, we contrasted different designs: storage of data for 
future lookup (as a means to reduce computational overhead) versus com-
putation upon demand. Design evaluation must explicitly consider trade-
offs: how much memory is required and what is the expected frequency 
of requests for computation? Enhanced performance can justify extra 
memory.  Computational savings usual arise when data is stable, interme-
diate values can be calculated easily, and the frequency of queries is sig-
nificant. Any design that requires both a significant amount of data and 
extensive computation should be re-evaluated.

DESIGN INSIGHTS

SOFTWARE

Memory viewed abstractly and thus treated uniformly
Access cost dependent on location

Cache, secondary store, etc.
Data corruption errors hard to trace
Language differences with respect to managing program memory

Use of runtime stack and heap
Explicit versus implicit deallocation
Copy semantics may not be obvious
Imprecision of memory management may not be evident

Garbage collection
Requires suspension of executing software
No overhead if garbage collector does not run

MODELS

Program memory: data section – heap and run-time stack
Heap more expensive than run-time stack

Compiler lays out stack frames
No run-time overhead

Heap memory allocated at run-time via call to allocator
Heap fragmentation dampens performance

Copy semantics
Deep vs. shallow copying
Affect data usage and class design

SOFTWARE DESIGN

Design guidelines are not enforced by the compiler
Guidelines provide an inadequate safeguard

Judiciously allocate data in order to minimize heap fragmentation
Objects may encapsulate dynamic memory allocation
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Obscure need for memory management
May suppress copying by design

C++ rests on explicit deallocation
=> programmer must manage memory
Deallocate heap memory before last handle goes out of scope
Memory leaks prevented when each ‘new’ matched with a ‘delete’
Matching ‘new’ with ‘delete’ difficult

Parameter passing, aliasing, transfer of ownership
C# rests on implicit deallocation

Zeroing out references aids garbage collector

DOCUMENTATION

Record memory management responsibilities
Explicitly identify copy semantics

Copying suppressed, shallow copy, deep copy

CONCEPTUAL QUESTIONS

 1. Describe standard views of memory.

 2. What are the advantages and disadvantages of heap memory?

 3. Why do Java and C# rely on implicit deallocation?

 4. Why does C++ rely on explicit deallocation?

 5. Why is tracking the ownership of (heap) memory difficult?

 6. What is the primary difference between deep and shallow copying?

 7. When is it appropriate to suppress copying?

 8. What is garbage collection? How is ‘garbage’ defined?

 9. What is compaction, and why is it necessary?

 10. What are the flaws in garbage collection and reference counting?

 11. List some common best practices for C++ class design and data dec-
larations, relative to safe, and efficient use of memory.
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C h a p t e r  5

Design and 
Documentation

Form affects function, in terms of ease of use and maintainability. 
In this chapter, we examine the design and documentation of soft-

ware, using the class construct as the focal point of design. Promoting 
internal control of state, we cover essential functions of a class: construc-
tors, destructors, accessors, mutators, and private utility functions. We 
note language differences when important. The intent is to scaffold soft-
ware design on top of class construction, emphasizing the separation of 
internal elements from the external interface. We also present an effective 
means of documenting design, the specification of a contract between the 
class designer and the users of a class.

CHAPTER OBJECTIVES

• Define systematic OO class design
• Delineate standard components of class functionality
• Introduce notion of contractual design
• Define programming by contract
• Illustrate deliberate design with contractual expectations
• Identify relevant OOD principles
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5.1  OBJECT-ORIENTED DESIGN
Object-Oriented Design (OOD) dominated software development in the 
1990s and early 21st century. A design approach that rests on the notions 
of abstraction, encapsulation, and information hiding, OOD supported 
the development of many large-scale software systems and advanced the 
concept of code reuse. The popularity of Design Patterns publicized 
OOD design principles. Both OOD and Design Patterns encouraged the 
adoption of UML (Unified Modeling Language) as a design modeling tool.

We examine basic OOD principles for two reasons. The OO model pro-
vides a conceptual framework for cleanly delineating the different per-
spectives of software utility and responsibility. The organization of data, 
coincident with functionality, yields the dual perspective of designer and 
user. This dual perspective provides the abstraction necessary to design 
and maintain large software systems. Second, there are now many, many 
legacy systems written in object- oriented programming languages such as 
C++, Java, and C#, using OO constructs and design principles. To main-
tain these systems and to refactor them in preparation for continued use, 
one must understand the structure and effect of classic OO design. For the 
same reasons, we analyze design alternatives in Chapter 8.

The structural elements of OOD serve as an illustration of deliberate 
design, providing the foundation for comparative design and modeling. 
Details considered here include lifetime of objects, association, ownership, 
and cardinality. Are objects temporary or relatively persistent? Can object 
instantiation be postponed? Is the relationship (association) between two 
objects permanent or transient? Who owns a subordinate object? Can that 
ownership be transferred or shared? How many objects exist in a relationship? 
Is that number fixed? Other questions arise. Deliberate design must identify 
all assumptions. All these details are relevant to software design in general 
and are transferable to larger views of software, such as software architecture.

The reader must recognize that compilers do not enforce design. By follow-
ing established design principles, documenting assumptions, and model-
ing relationships effectively, one can develop maintainable, extensible code. 
However, the compiler will not verify design merit for the developer; it merely 
follows a long, complex set of instructions for source code translation.

5.2  CLASS FUNCTIONALITY
The class construct formalized the implementation of an abstract data 
type (ADT), and, in so doing, legitimized the idea of encapsulating data 
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alongside functionality. Encapsulation permits a software designer to 
specify invariants, properties that always hold. Preservation of invari-
ants reduces the need for testing and promotes software maintainability. 
Class invariants should be under the internal control of class methods, 
removing unneeded dependencies on the application programmer. In 
this manner, class design ensures that objects remain in a consistent, 
legal state. Two immediate benefits occur: the class may be treated as 
abstractly as a built-in type since the application programmer need not 
know any internal details, and the class is more secure because it is more 
difficult for an incompetent or malicious programmer to put an instance 
of the class in an invalid state.

We examine the systematic design of functionality within the class con-
struct, but this categorization of functionality applies to software design 
in general. Functionality can be delineated by intent: initialize data; allo-
cate, deallocate, or manage resources; change or view data values; and 
examine or resolve data dependencies. Fulfillment of functionality may 
be conditional: a request for access or change may be denied. Table 5.1 
categorizes the standard functionality defined within a class design: con-
structors, destructor, accessors, mutators, private utility functions, and 
public interface functions. Functions defined within the scope of a class 
are often called “methods.”

Regardless of category, each method in a well-designed class should 
support abstraction and encapsulation and, as much as possible, allow 
the application programmer to treat the custom type as if it were a built-
in type. Responsibility for proper initialization and preservation of state 

TABLE 5.1 Types of Functions Defined in Class Construct

Function Intent Use
Constructor Set object in initial valid state

Initialize data
Allocate resources

Explicit with new operator
Implicit in C++ (stack objects)

Destructor Release resources
Bookkeeping details

Language dependent

Accessor View data values Depends on accessibility
Mutator Change data values

Preserve validity of state
Depends on accessibility

Private utility Preserve data dependencies
Manage resources

Internal to class

Public interface Support type definition
Provide needed utility

Unrestricted
Type related
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should be internalized and not left for the application programmer. Hence, 
it is common to differentiate between private functions that may be called 
only from within other class methods and public functions that the appli-
cation programmer can directly invoke.

To illustrate design details, we use a sample data class, Icon, that serves 
as a representation of a visual element in a computer game. Example 5.1 
shows the C++ code for this sample class; Example 5.2 shows the C# code. 
Although this data type is incomplete and not immediately usable in a 
computer game, we use it to illustrate a type definition that is foundational 
but subject to variation. A computer game would be seeded with multiple 
Icon objects, but it is likely that there would be substantive differences 
between Icon objects. We define sample data fields to represent object 
form, and sample functions to represent movement and/or change within 
a game session.

Example 5.1: Sample OO Class Design in C++

class Icon  //data members and functions, private by default
{  //data allocated for each instantiated Icon object
 double  mass, glow, energy;
 int  x, y;
 bool  active;  //dependent on energy

 //static data: ONE data member PER class
 static int count;  //tracks #allocated Icon objects

  //private function: accessible only by Icon methods
 void adjustEnergy();
   public:
 //constructor must set state, that is, initialize fields
 // and increment static count: one more Icon object
 Icon(…)
 { …
  active = (mass*glow < energy); //invariant
  count++;
 }

  //destructor decrement count: one fewer active Icon object
 // no resources to release
 ~Icon() { count−−; }

  //accessor functions: control view of data member
 // may choose NOT to return value
 double getEnergy() const
 { if (active) return energy;
  return  0;
 }
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     bool isActive() const {return active; }

     int getCount() const {return count; }

 //mutator function: control state
 // may reject change request
 bool incEnergy(double moola)
 { if (!active || moola < mass) return false;
  if (moola > 1)    energy + = moola;
  return true;
 }
 //public functions
 void  oscillate() { … }
 void  flair()  { … }
…
};

Example 5.2: Icon Class in C#

public class Icon
{
 private double  mass;
 private double  glow;
 private double  energy;
 private int  x;
 private int  y;
 private bool  active;

 //static data: ONE data member PER class
 private static int count = 0;

 private void adjustEnergy();

 public Icon(…) { … }

 public static int getCount() const {return count;}
 public double getEnergy() const { … }
 public bool incEnergy(double) { … }
 public void oscillate() { … }
 public void flair() { … }

  //C# property: get (accessor) and set (mutator)
 public bool  Active
 { get {return active; } }
 …
}

The Icon class defines several private data members to model grid 
placement (x, y), size, and effect. A Boolean value (active) can be used 
to control whether or not an object responds to requests. Each object 
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instantiated from this class definition will have its own copy of these data 
fields. One static integer tracks the number of objects instantiated from 
the class. If a data member is defined as static, one copy is allocated on the 
class level; all objects share that copy. (Static data members are initialized 
in the class definition for C#/Java but initialized in the .cpp file for C++.) 
Compare the functionality defined in this example to the types of func-
tions summarized in Table 5.1.

5.2.1  Constructors

Constructors are special functions that are responsible for an internal and 
controlled initialization of objects upon instantiation. Constructors return 
no value and the function name is simply that of the class. The compiler 
patches in calls to a constructor when an object is instantiated. Thus, ini-
tialization should not be the responsibility of the application programmer; 
it is specified by the class designer and internally controlled. The provision 
of a public initialize() method runs counter to the design of a well-
encapsulated class. As a method that can be called at any point, rather 
than only at the point of instantiation, a public initialize() method 
undermines class control: at any time, an object could be reset to an ini-
tial state. Constructors may be overloaded, that is, more than one may be 
defined, each distinguished by its parameter list.

In Java and C#, object declaration is merely a declaration of a typed ref-
erence: subsequently, the new operator must be called to allocate an object 
on the heap and place its address in the reference so declared. In C++, by 
default, objects are allocated on the stack, so the constructor fires implic-
itly upon variable declaration. Heap objects may be allocated in C++: a 
typed pointer variable holds the address as returned from the new opera-
tor. Calls to the new operator trigger constructor invocation.

Example 5.3 illustrates different object instantiations in C++: state-
ments #A, #C, and #E result in calls to the no-argument (often called 
default) constructor; statements #B, #D, and #F result in calls in the over-
loaded constructor that takes an integer value as a passed parameter. In 
C++, when an array of objects is allocated, the compiler patches in mul-
tiple calls to the default (no-argument) constructor, one call for each array 
element. What if the software developer wants the objects in the array 
to be “constructed” (initialized) by a different constructor? Extra code is 
needed to overwrite array elements, as shown in statements #F and #G. 
Appendix B provides more detail.
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Example 5.3: C++ Object Instantiation

 //C++ variable declarion => stack allocation
 myType stackObjX;   //#A no-argument constructor
 myType stackObjY(10);   //#B overloaded constructor …

 //C++ new operator => heap allocation
 myType* heapPtrX = new myType; //#C no-argument
 myType* heapPtrY = new myType(3);  //#D overloaded

 //C++ array declaration: ONLY no-arg constructor invoked
 myType db[100];  //#E 100 calls to no-arg constructor

 //overwrite default initialization
 for (int j = 0; j < 100; j++)
 {
 myType replace(j);  //#F constructor takes int
 db[j] = replace;   //#G overwrite array entry

 }

In C#, all objects are allocated on the heap, through an invocation of the 
new operator and thus an explicit invocation of a constructor. Moreover, 
an array of C# objects is really an array of references, where each reference 
must be assigned the heap address of an allocated object. Initializing an 
array of C# objects thus already requires stepping through the array via a 
for-loop. Example 5.4 illustrates different object instantiations in C#.

Example 5.4: C# Object Instantiation

  //C# object variable declaration: myType reference
 // no object allocated yet
 myType objA;

  //C# object variable declaration and instantiation
 // object allocated on heap by new operator
 myType objB = new myType();
 myType objC = new myType(12);
 …

 //C# object variable instantiation
  // reset previously declared references objA and objC
  // to hold address of heap object allocated by new
 objA = new myType();
 objC = new myType(15);

 //C# array declaration: array of 100 myType references
 myType db = new myType[100];
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 //C# array initilization:
 // each reference (array element)
 //  holds address of heap object allocated by new
 for (int j = 0; j < 100; j++)
  db[j] = new myType(j);
 }

Constructors are responsible for setting the initial state of an object and 
establishing the class invariants before any client code runs. Such initializa-
tion may include specifying default values as well as allocating resources. 
Not all field values must be set to a default value or to a parameter of the 
constructor. If a data dependency exists between two or more data mem-
bers then the constructor may set the values of some data members (possi-
bly relative to the values of other data members). For example, whether or 
not an Icon object is active depends on its energy level relative to its mass 
and glow. The constructor establishes this invariant.

5.2.2  Accessors and Mutators

Accessor methods, typically called get() functions, provide a con-
trolled peek inside an object; such functions often return the value of 
a targeted private data member. For example, in containers, it is com-
mon to query the number of data items held or the size of the container. 
Accessor functions such as getCount() or getSize() provide this 
information without exposing private data members. Accessors should 
be const functions, that is, no accessor should modify the state of an 
object. Accessors may check state before returning a value, as is done 
in the method Icon::getEnergy(); if the object is inactive, its energy 
value is not returned, only the value zero.

Mutator methods, typically called set() functions, provide the means 
to alter state by changing the value of one or more data fields. To con-
trol the alteration of state, the implementation code of set()functions 
may often be conditional. A request to set a data field may be rejected 
if the value provided would put the object in an invalid state. Common 
examples of refused requests include out-of-bounds values or values that 
violate a dependency between two or more fields in the class definition. 
The mutator method Icon::incEnergy(x) in the Icon class rejects the 
change request if the Icon object is inactive, if the passed value x is less 
than the mass data field, or if x is not greater than 1. By keeping data 
fields private, and thus externally inaccessible, and by providing set()
functions that preserve class invariants, a class designer preserves data 
integrity. C# provides paired set and get methods via “properties.”

www.allitebooks.com
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Design must distinguish between accessors and mutators. Mutators 
alter state in a controlled, acceptable manner. Accessors do not change state. 
No class method should give external access to private data, which would 
yield the potential to change state, unless the provision of such access is a 
deliberate design decision.

Example 5.5 illustrates an accessor that compromises object state by 
aliasing an external data variable to an internal data member. How? It is 
not obvious how data integrity is undermined. The accessor getControl()
returns an integer value by reference (statement #A). Hence, the caller’s 
integer variable alias is aliased, or shares the same memory space, as the 
private data member hiddenInt so returned (statement #C). Any subse-
quent changes to alias will change the private data field  hiddentInt of 
the object insecure.

Example 5.5: Aliasing Undermines Encapsulation: C++ Code

class myType {
 int hiddentInt;
   public:
 myType(int x = 101) {hiddenInt = x; }

  //mutator that rejects out of range values
 void setValue(int x)
 { if (x > 10) hiddenInt = x;
  return;
 }

 //standard accessor: return by value
 int myType::getValue() { return hiddenInt; }

  //"get" implies accessor but a reference returned
 int& getControl(){return hiddenInt;} //#A
  …
};
…
//APPLICATION CODE
myType insecure;

insecure.setValue(200); //change request OK
insecure.setValue(-13); //change request rejected
cout << insecure.getValue() << endl; //#B

int& alias = insecure.getControl(); //#C
cout << insecure.getValue() << endl; //#D

alias = -13;   //#E private data member altered
cout << insecure.getValue() << endl; //#F
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Contrast the output values from statements #B, #D, and #F. Since the 
object insecure has not been legitimately changed via the defined muta-
tor, each output statement should print “200.” Yet, statement #F outputs 
“–13.” Why? The assignment to alias statement #E results in an unseen 
alteration of the hiddentInt data member of object insecure. This 
example is in C++ but aliasing is possible in any language. See Appendix 
A to review return values.

5.2.3  Utility Functions

Private utility functions support functional decomposition and reuse 
within a class and thus reduce code complexity. In C++, a common private 
utility function for copying data should be used when both the copy con-
structor and overloaded assignment operator must be defined to correctly 
manage heap allocated data. Example 5.6 is the quintessential C++ class 
that provides support for deep copying. Appendix B contains the full class 
design, without a private utility function.

Example 5.6: C++ Class Memory Management

//good MemoryManagement:
// constructor, copy constructor, overloaded =, destructor
class goodMM{
 private:
 int* heapData;
 int size;
 void copyData(int* source);
public:
 goodMM(unsigned s = 100)
 { size = s; heapData = new int[size]; }

 goodMM(const goodMM&);
 void operator=(const goodMM&);
 ~goodMM() {delete[] heapData;}
 …
};

//.cpp file: implementation details
//private utility function has access to private data (size)
void goodMM::copyData(int* source)
{ heapData = new int[size];
 for (int j = 0; j < size; j++)
  heapData[j] = source[j];
}
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//copy constructor: new memory allocated, old values copied 
goodMM::goodMM(const goodMM& x)
{ size = x.size;
 copyData(x.heapData);
}

//overloaded assignment operator
//  delete old lhs memory
//  copy old values from rhs into new memory for lhs
void goodMM::operator=(const goodMM& rhs)
{ if (this != &rhs) //skip self-assignment
 { delete[] heapData;
  size = rhs.size;
  copyData(rhs.heapData);
 }
 return;
}

A private utility function may be used to internally adjust state. For 
example, a resize() function may expand the size of a container. Why 
should this method be private rather than public? The application pro-
grammer should not be responsible for maintaining the container in a 
usable condition. When overflow is imminent, resizing should be inter-
nally triggered to avoid capacity overflow. The application programmer 
uses services provided by a container, such as add and delete functions to 
store and retrieve data but should not manipulate internals. We present 
such capability in Example 5.8 when we examine priority queues.

Redefining private utility accessibility as “protected” opens access to 
descendants. Functions in the protected interface are those that provide 
utility to child classes via the inheritance construct. Protected utility 
functions exemplify code reuse: all derived classes can use the parent util-
ity function so it need be defined only once.

Functions in the public interface are precisely those methods expected 
by the application programmer. Such functions must provide the func-
tionality needed for the type definition. In the Icon example, key public 
functionality includes calls to oscillate() and flair(). In the classic 
stack example, key public functions would be push(), pop(), clear(), 
isEmpty(), and, possibly, isFull().

Design principles advocate removing any unwarranted dependencies 
on the application programmer as well as restricting exposure of internal 
details. Public interface functions then should not require knowledge of 
internal form. For example, an application programmer should not know 
or care how a queue holds its data. Arrays and linked lists are common 
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implementations for holding data but the application programmer should 
program to the interface of a class not to its implementation. In the Icon 
class, for example, the calculation and control of energy consumption is 
internalized, as it should be. The application programmer thus cannot 
directly alter the rate of energy consumption or modify the relationship of 
mass, glow, and movement to energy consumption.

5.2.4  Destructors

The role of destructors is language-dependent. C# and Java do not have 
destructors but support the notion of a “finalizer.” A finalize() routine 
is called implicitly by the garbage collector before an object is reclaimed. 
Since no one really knows when, if ever, the garbage collector runs, the 
finalize() method is of limited design utility. Destructors are essen-
tial in C++. Standard C++ design guidelines suggest that they always be 
defined.

Java and C# rely on implicit deallocation and thus do not need destruc-
tors. With implicit deallocation, most memory management responsibility 
is removed from software designers. The complexity of memory manage-
ment within a program is thus drastically diminished. Heap memory may 
be allocated explicitly via the new operator but there is no delete operator 
because a garbage collector handles reclamation of dynamically allocated 
memory. Consequently, explicit deallocation (via destructor invocation) is 
not possible in C#, or Java.

If a code segment is labeled as “unsafe” in C# then pointers may be used 
and the programmer thus acquires indirect access to memory. The use of 
“unsafe” code in C# is discouraged as it compromises portability. Thus, 
the following short discussion applies primarily to destructors in C++.

The compiler implicitly invokes the destructor when an object goes 
out of scope. Like constructors, destructors return no value. The destruc-
tor’s name is simply that of the class preceded by the special symbol “~.” 
Destructors are essential when an object internally acquires resources at 
runtime. The destructor must then release these resources. For example, 
destructors could release any files opened during an object’s lifetime. 
More commonly, if an object dynamically allocates data, a C++ destruc-
tor would deallocate this heap memory to prevent a memory leak. From 
Chapter 4, recall the problem of internal memory leaks in C++ classes. 
Refer again to Example 5.6 to review a destructor managing memory.

Destructors may also be used for bookkeeping tasks. A technique 
employed in resource management, as well as debugging, is to track the 
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number of active object instances. To do so, a class can use a static count 
variable that is incremented upon every object construction and decre-
mented upon object deallocation. The Icon class in Example 5.1 employs 
this design. Thus, a game designer who wishes to track the number of 
allocated Icon objects could consult the static count. Since this static data 
is private, as it should be, a static accessor function is needed in the class 
interface, as shown in Example 5.1.

5.3  PROGRAMMING BY CONTRACT
OOD reinforces a dual perspective: the application programmer (or user) 
manipulates types from an external view, invoking public functions to 
satisfy application needs; the class designer defines and implements types 
from an internal view, specifying relationship, defining properties, and 
preserving state.

Consider data storage. Ideally, containers should support functionality 
for data storage independent of the type of data stored. The classic stack 
data structure provides functions to add and remove data as well as the 
capability to determine if the stack is empty. Functions such as isEmpty() 
operate in the same manner regardless of the data type stored in the stack. 
This functional independence from data type is true for queues, priority 
queues, trees, etc. To promote consistent use (and reuse) of containers, 
regardless of data type stored, we must model and design generically.

Next, consider data classification systems. Whether used to delineate 
inventory, library materials, or courses offered at a university, for example, 
data types may be defined hierarchically. A basic data item definition pro-
vides a foundation for classification by collecting all common features. 
Specialization adds detail to the basic type definition to expand its use in 
a classification system. Type specialization may lead to functional varia-
tion. To promote consistent type use (and expansion), regardless of sub-
type specialization, we must model and design within a type framework.

These two examples, containers and classification systems, span a range 
of software utility. Containers are type agnostic: primary tasks of stor-
ing and retrieving data are implemented usually without regard to type. 
Classification systems are grounded in type: the order in which items are 
sorted, stored, or evaluated usually depends on (sub)type. In either case, 
to ensure that use is consistent with intent, software must be properly 
modeled, designed, and documented. There is a plethora of tools and con-
ventions available for recording a model or design. There are also many 
different standards and formats for documentation. We examine here a 
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documentation convention that effectively communicates assumptions 
about environment and use that must be met by application programmers.

Documentation records design intent and implementation details in 
support of anticipated software evolution. The notion of documentation 
as a contract supports the dual perspective inasmuch as the application 
programmer uses the provided public interface, and the class designer 
implements this public utility under established, published expectations. 
Introduced by Bertrand Meyers, the architect of the OOPL Eiffel, Design 
by Contract embodies a professional perspective on software development 
and documentation. Microsoft now advances a similar perspective, code 
contracts. Eiffel Software owns the registered trademark of Design by 
Contract.

Programming by Contract an academic rendering of Design by Con-
tract. The central idea is that documentation serves as a contract between 
the application programmer and the class designer. If the application pro-
grammer adheres to the restrictions detailed in the documentation, then 
objects should behave as expected.

5.3.1  Defensive Programming

Programming by Contract is an alternative to defensive programming. It 
outlines a formal agreement between class designer and application pro-
grammer. The contract identifies requirements to be met on each side for 
safe and consistent use of the defined type. By specifying shared respon-
sibilities for secure code between class designer and application program-
mer, the established contract alleviates the need for extensive testing. In 
contrast, defensive programming assumes nothing: software may or may 
not be used correctly. Hence, defensive programming incurs the overhead 
of extensive testing to prevent inappropriate actions.

We examine classic data structures to illustrate the differences between 
a contractual approach to design, as documented via Programming by 
Contract, and defensive programming. Consider a stack. Popping from 
an empty stack is illegal. What value would be returned from an empty 
container? How can a data value be returned from an empty container? 
Would an oblivious return unintentionally establish an alias to memory 
(data) outside the container and thus allow the modification of data owned 
by another object? Standard design responses to an attempt to pop() from 
an empty stack are either to check internally and reject the request or 
to assume an external check is performed before the pop() function is 
invoked.
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A defensive approach is safe because it rejects pop() requests when 
the stack is empty, thus preventing unintended consequences. No pre-
condition is thus required. Design may be tricky though. How does the 
pop() routine communicate a rejected request? An easy solution is to 
return a default value, such as zero indicating failure, when the stack is 
empty. However, this approach is not possible when zero, or the default 
value, is a legal data value that could be stored on the stack. Another 
option is to return the value popped through a parameter (passed by refer-
ence), allowing the pop() function to return a Boolean value: true if the 
pop() operation succeeds; false if it fails.

Defensive programming increases code complexity through internal 
checks. The overhead of unconditional testing degrades performance. In 
this stack example, the cost of safety is an internal check with every pop() 
call. Often, this overhead may be unwarranted and particularly onerous. 
Consider two scenarios: (1) an application programmer uses a stack to 
hold a huge data set, and extracts chunks of the data in bulk, as shown 
in Example 5.7; (2) a client uses a stack to reverse input for a data set of 
known size. In either case, a check is not needed because the client will 
not be accessing an empty stack. To avoid an internal check on pop(), the 
application programmer must know when the stack might be empty.

Example 5.7: Stack Object with Little Danger of Being Empty: 
C++ Code

 myStack dataStore;
 …
 for (int j = 0; j < 500; j++)
  dataStore.push(getData(j));

 … //no pop operations
  // => enter for-loop with stack of 500 ints
 int  transitStore[100];
 //check for empty Stack unwarranted
 for (int j = 0; j < 100; j++)
  transitStore[j] = dataStore.pop();

An alternative to defensive programming, contractual design shifts the 
responsibility for safety outside the class: the application programmer 
must meet the stated precondition (stack is not empty) before invoking 
pop(). Thus, the application programmer must track or check state. If a 
precondition is not met, the behavior of the system after the function call 
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is undefined. Violation of the required precondition voids the contract 
between the class designer and the application programmer. No guarantee 
then remains for any resulting behavior.

Without an internal check, pop() may proceed with its attempt to 
remove a value from the stack data structure. Such action may result in the 
return of an invalid value. Consider a stack implemented as an array: the 
“top” of the stack is an index into the array. When the stack is empty, this 
index is invalid. In C++, use of an invalid index results in the extraction 
of an invalid data value (whatever value resident in memory so indexed). 
Why? C++ does not automatically provide run-time checks on array 
bounds. Hence, an application programmer may not know that a returned 
value was invalid. More problematic is the possibility of data corruption. 
Without internal knowledge of an invalid pop(), the routine would run 
as usual, decrementing the internal index controlling access to the array 
holding the stack data. Subsequent calls to push() would fall outside array 
bounds, possibly causing data corruption.

A standard precondition for pop() is that the stack object is not empty. 
The postcondition for pop() is that a stack object may be empty after pop-
ping an element. The application programmer should not have to count 
additions and removals. If necessary, the application programmer can use 
the query function, isEmpty(), to extract state information.

In a well-designed class, object state may change only through the 
execution of member functions. Member functions may specify precondi-
tions that must be met before invocation. Unfortunately, a common result 
of precondition violation is data corruption, potentially leading to delayed 
failure—an error whose source is hard to trace.

In practice, encapsulation supports the development of reliable code 
because internal state is controlled: application code cannot put an object 
into an invalid state if the class has been designed well. Ideally, the class 
designer delineates the public and private functionality so that objects are 
always initialized correctly and that no method invocation modifies inter-
nal data without permission. With controlled and checked modification, 
objects thus are always in a valid state.

The tradeoffs between a defensive and a contractual design are explicit: 
security versus efficiency; overhead of testing versus assumptions of cor-
rect use; code clutter of extra testing (or exception clauses) versus doc-
umentation of contractual obligations. What is the difference between 
testing and reliance on exceptions? A conditional test is an overhead borne 
by all requests. Exceptions are a safeguard: code must be wrapped in a 
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try block but there is no runtime overhead until an exception is thrown. 
Exceptions can be used in both defensive programming and contractual 
design. Note, however, that use of exceptions increases software complex-
ity. Critics say exceptions clutter code. For more details, see Chapter 9.

Without a contract, the class designer should not depend on proper 
usage and so may wish to layer an internal check for empty on top of 
all pop() calls. In so doing, all users are penalized by the unavoidable, 
internal overhead. Thus, Programming by Contract presents an attractive 
alternative when the application programmer can track state changes and 
meet the stated preconditions.

Programming by Contract delineates contractual obligations across 
five documentation categories: function preconditions, function post-
conditions, interface invariants, implementation invariants, and class 
invariants. We describe each category briefly and then give an example. 
Table 5.2 summarizes the five categories.

5.3.2  Precondition and Postcondition

The intent of precondition and postcondition is to identify data dependen-
cies as well as assumptions about the environment in which functions exe-
cute. To satisfy expectations as to proper use, the application programmer 
must meet preconditions before invoking any function. The class designer 
must guarantee postconditions so that the application programmer can 
track state, a possible prerequisite to satisfying the precondition(s) of sub-
sequent function calls. Since encapsulation and design can guarantee data 
integrity, testing overhead may thus be reduced. Nonetheless, for con-
sistent use of functions, precondition and postcondition should be used, 
whether or not the software is object-oriented (Table 5.3).

Function responsibilities vary. Constructors create objects in a valid 
state. If applicable, destructors release assigned resources and record book-
keeping details. Accessor functions return copies of data values rather 
than aliases to internal data. Mutator operations change state (the values 

TABLE 5.2 Programming by Contract

Specification Intent Characteristics
Precondition Safe entry into function Required incoming state
Postcondition Identify state changes Possible altered state
Interface invariant Promote consistent use Services supported
Implementation invariant Software maintenance Design specifications
Class invariant Communicate type and use Designed functionality
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of data members) while preserving validity of state. Private utility func-
tions provide functional decomposition within a class design. Additional 
methods implement the core functionality of the type defined by the class. 
In short, all class member functions ensure legal state transitions.

Invariants serve to document stable state conditions. Invariants also 
describe design decisions in the context of class structure, noting conditions 
and relationships that should be preserved within a class. Interface invari-
ants are external constraints. Implementation invariants are internal con-
straints. Table 5.4 delineates the invariants for Programming by contract.

Preconditions enumerate all conditions that must be met before a call is 
made, e.g., a stack must be non-empty before pop() is invoked. The caller 
must fulfill all preconditions so the class operation need not verify any 
precondition. The intent of preconditions is to avoid error through improper 
use and to reduce overhead by minimizing internal testing. Preconditions 
must be published for those requesting service. Callers must recognize 
the potential of severe consequences if preconditions are not satisfied. 
Preconditions must be verifiable! How else could an application program-
mer invoke a function with assurance that a precondition is met? An 
application programmer must be able to determine if a precondition is 
true or not, e.g., check to determine if a stack is empty.

TABLE 5.3 Common Preconditions and Postconditions

Precondition
State satisfied Resource held Data valid Ownership

Icon active
Stack non-empty

File handle
Allocated memory

Within range
Correct precision

Callee owner
Shared

Postcondition
State altered Resource released Data stored Ownership

Icon inactive
Stack empty

File closed
Memory released

Stack full
Aged

Transferred
Released

TABLE 5.4 Common Invariants for Programming by Contract

Interface Invariant Implementation Invariant Class Invariant
Constraints Internal design

Data structures
Utility functions

Relationships
Association
Cardinality

Expected use Interface (portion echoed) Environment
Data validity Data dependencies Ownership
Error response Error response Error response
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It is not always easy to verify preconditions, especially for resource 
management. Why? Resource use can span multiple actions. Consider 
long-term file use. File existence is typically a one-time check before open-
ing a file for reading. Yet, the file could be deleted after the existence check 
but before reading from the file. What would be an appropriate response 
when attempting to read using an invalid file handle? Usually a runtime 
error is unacceptable. Under Programming by Contract, if the user satis-
fied the contract by meeting the specified precondition of “the file exists,” 
undefined behavior would not be acceptable either. Exception handling 
would be an acceptable response. Although throwing an exception incurs 
overhead, it preserves system integrity.

In addition to specifying state, preconditions may define the validity of 
a passed parameter, by defining a range of acceptable values. Preconditions 
do not specify the type of passed parameters in a statically typed language 
because the compiler checks type. In a dynamically typed language like 
Python, for example, a precondition may specify the types for which the 
operation holds.

In general, postconditions specify the effect of function execution. A 
postcondition should identify data and state changes, such as resource 
acquisition or release. In the OO paradigm, postconditions identify the 
state of an object after a function is executed, e.g., stack is non-empty after 
push(), stack is empty after clear(). Postconditions are not descriptions 
of the function’s action; they must clearly publish potential and actual 
state changes so that the application programmer can track state changes 
and verify preconditions for subsequent function calls.

Preconditions are not a new idea. Programming by Contract emphasizes 
the shared responsibility between the caller and the callee. Preconditions 
describe the required state necessary for correct behavior. If the required 
preconditions are not met, there is no guarantee about resulting behavior. 
Precondition and postcondition serve to guide the correct use of a func-
tion. Specification of precondition and postcondition thus remain relevant 
regardless of whether the function is declared public, private, or protected 
in a class or, in fact, whether the function is encapsulated in a class at all.

5.3.3  Invariants

Interface invariants provide an overview of the public use of a class and 
inform the application programmer of constraints. For example, if, in 
C++, the overloaded assignment operator and the copy constructor have 
been suppressed, the interface invariant would note that copying was not 
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supported. This approach is illustrated in the definition of a priority queue 
in Example 5.8.

Example 5.8: C++ Overview of Priority Queue

class PriorityQ
{
 ...
 //private data members
 //implementation details deliberately omitted here

 //copying suppressed
 PriorityQ (PriorityQ&);
 PriorityQ& operator=(const PriorityQ&);

 //private utility functions to preserve state
 void resize();
 void age();
public:
 PriorityQ (unsigned size = DEFAULT_CAPACITY);
 ~PriorityQ ();
 …
 int count() const;
 bool isStored(const Item&) const;

 void enQ(const Item&);
 void deQ(const Item&);
 bool isEmpty() const;

 //possible supplemental public functions
 void clear();
 Item& getFirst() const;
 Item& getLast() const;
};

Published prominently, interface invariants provide a higher level of 
abstraction than preconditions, and describe restrictions on the use of 
objects, often realized as preconditions that apply upon entry to all or 
most public functions. For example, in the Icon class, the state of an Icon 
(its mass, glow, and energy) affects its movement. Interface invariants 
may define relationships between two (or more) mutators, e.g., an inactive 
Icon has no energy reading (although it still may have energy reserves). 
Interface invariants, like preconditions, reduce the need for internal test-
ing, as they clearly document restrictions on state and state transitions.

Implementation invariants provide detail sufficient for software main-
tenance. All relevant design choices should be recorded: choice and 
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expected use of subordinate data structures, legal values of data fields, 
ownership responsibilities, relationships between fields (e.g., inven-
tory value drives commission percentage), and bookkeeping details. 
Reasonable examples of implementation invariants include: interface of 
subobject echoed for utility; linked list structure used to support frequent 
modification of sorted data; internal (static) registry guarantees unique 
ID. By identifying implementation structures and design constraints, 
implementation invariants communicate design intent, and prioritization 
of requirements.

Class integrity can be more easily maintained when implementation pri-
orities and details are clearly specified. What happens when a class design 
must be modified? The software developer must reexamine the class and 
determine the means by which additional or altered functionality can be 
incorporated. This task is more easily accomplished when the class design 
and the motives for such design are clearly documented. Programming by 
Contract thus supports software maintainability by requiring an explicit 
record of design assumptions. When designers must upgrade performance 
or expand functionality, they can refer back to the original implementa-
tion invariants to understand the initial design.

Class invariants provide a data type overview and may be less detailed 
than other invariants. Conceptually, class invariants represent the inter-
section of interface and implementation invariants, e.g., describing 
design decisions that affect form and function. Reasonable examples of 
class invariants include container stores no duplicate values; object ID is 
unique; ownership relative to subobjects (owned, shared, or transferable). 
All operations should be designed to preserve the class invariants. The 
closed nature of a class gives the designer complete control over all opera-
tions that modify data fields.

To illustrate the use of Programming by Contract, we walk through the 
contract specification for a priority queue in the next section.

5.3.4  Design Example

A standard queue typically provides enQ(), deQ(), isEmpty() func-
tionality, and possibly the ability to clear(), and test for capacity via 
isFull().  A resize() function may be implemented internally to be 
invoked automatically if the queue exceeds capacity (in which case, the 
need for the query method isFull() is obviated). Items in a standard 
queue are added in a FIFO (first-in, first-out) manner so that as long as 
items continue to be retrieved from the queue, no item will languish in the 
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queue indefinitely. A common analogy used is a queue of patrons waiting 
to buy movie tickets: no cuts in line allowed.

A priority queue is much like a queue, providing enQ(), deQ(), 
isEmpty() functionality as well as possibly clear() and either an auto-
matic (internal) resizing or a test for capacity via isFull(). Externally 
then, a priority queue looks the same as a regular queue. However, the 
enqueueing process is not FIFO: items are added to the queue in order 
of priority. Hence, an incoming item can “cut” ahead of an item resident 
in the queue. A low-priority item may languish indefinitely or starve in a 
priority queue. To reduce the possibility of starvation, a priority queue 
may internally age items to increase their priority. Aging is an internal 
mechanism to advance items in the queue based on some combination 
of their priority and “age,” that is, how long the item has been enqueued.

Programming by Contract should convey the restrictions and expected 
use of a data type. We walk through the five documentation categories 
of Programming by Contract for the PriorityQ type in Example 5.8. 
Implementation is in C++ but the concepts apply to other implementa-
tions. For each documentation category, we summarize sample specifica-
tions in a table. Some descriptions are considered “minimal” because the 
class design specifies these details, and hence, they should be documented. 
Other descriptions are denoted as “problematic” because they are inac-
curate, inconsistent with the design or of questionable validity. Finally, we 
note descriptions that are “unnecessary” because they are directly implied 
by the code, enforced by the compiler, or are of questionable relevance.

The interface invariant specifies restrictions on use for the applica-
tion programmer. Table 5.5 presents sample interface invariants for the 
PriorityQ example. What would be reasonable restrictions on the use of 
a PriorityQ object? Often the copying of containers is restricted to avoid 
the overhead of copying a large data set or to prevent data redundancy. 
Although it is more common to suppress copying with registries and 
hash tables than with queues, we illustrate this approach here with our 
PriorityQ type.

Details are often language specific. In this C++ example, to suppress 
copying, the overloaded assignment operator is declared private and not 
defined. Hence, the assignment “x = y;” where both x and y are PriorityQ 
objects will generate a compile-time error. Likewise, the copy constructor 
is declared private, and not defined. Call by value is thus not supported: 
the application programmer cannot pass PriorityQ objects into functions 
by value or return them by value. This suppression of copying prevents the 
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troubled aliasing of shallow copying, with its data corruption potential, 
and removes the need to provide code to support deep copying. (Recall the 
C++ memory management discussion from Chapter 4.)

Interface invariants do not need to document restrictions enforced by 
the compiler. For example, in statically typed languages, there is no need 
to specify the type of any parameter passed. If types do not match, the 
compiler will catch the error; compile-time errors are resolved well before 
software deployment. Any comments on use or effect must be consistent 
with design. Remember to consider this documentation as a contract. 
Hence, it is unwise to describe restrictions or error conditions that may 
not occur, e.g., if PriorityQ object is of fixed capacity, starvation is always 
avoided.

The implementation invariant documents the perspective of the class 
designer, providing detail on how the PriorityQ is implemented, as shown 
in Table 5.6. The use of a heap data structure to support efficient enqueue-
ing and dequeueing in a PriorityQ is common. A heap data structure is 
essentially a short, fat binary tree, where all levels are complete except pos-
sibly the lowest level where items are stored in leftmost order. Hence, we 
can implement a heap data structure of n elements with an array indexed 
from 1 to n, where node A[i] has parent A[i/2], left child A[2*i], and right 
child A[2*i + 1]. For further detail, see a good data structures text.

The internal effects of using a heap data structure should be docu-
mented. Why was the heap data structure chosen to implement a prior-
ity queue? Immediate answers include (1) efficient access via an array, 
(2) reduced memory overhead, (3) support for ordering (the relative priority 

TABLE 5.5 PriorityQ Interface Invariants (Application Programmer)
Minimal: illegal calls (unspecified or unsupported behavior)

• Call by value not supported
• Copying via assignment not supported
• Cannot extract (deQ(), getFirst(), getLast()) if PriorityQ empty

Problematic: inconsistent with default behavior or internal response
• Cannot add beyond capacity (resize())
• Starvation prevented (age() may or may not prevent all starvation)
• deQ() highest priority item

• External perception of priority may differ from internal
• age() may interfere with presumed priority

Unnecessary: condition enforced by compiler
• Constructor cannot pass a negative number
• Valid type (Item&) passed
• Constructor must provide initial size (default defined by constructor)
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of queue items), even with additions and deletions, and (4) ease of resizing. 
Aging priority queue items is also relatively straightforward to implement: 
one need only to traverse the underlying array structure. If this PriorityQ 
class must be modified in the future, say to change the notion of priority, 
these implementation details should be known so that modification may 
be as easy as possible.

For software maintenance, it is advisable to identify internal data 
structure(s) and comment on effect of such choice. Implementation 
invariants do just that. Implementation invariants also outline any inter-
nal functions or algorithms that impact structure. In the priority queue 
example, the heap order property of the underlying array is not under-
mined if our aging mechanism simply increments an age factor that is 
then added to the data value to derive a composite priority value. In con-
trast, if aging proportionately weights items so there is a nonlinear adjust-
ment, the heap may become disordered, requiring an internal reordering, 
an additional overhead.

Preconditions remind the application programmer of the prerequi-
sites of a legal call. To avoid the overhead of defensive programming, pre-
conditions must specify any required state(s) before function entry. For 
example, containers must be non-empty before any data is extracted and 

TABLE 5.6 PriorityQ Implementation Invariants (Class Designer)
Minimal: implied by interface, internal data structures, private utility functions

• Dynamically allocated array used to implement PriorityQ
• Underlying heap data structure (with heapify() etc). Why?

– Efficient access and resizing
– Ordered collection, with efficient reordering

• Copying via assignment not supported
• Call by value not supported
• No default behavior for accessors
• Nop if clear() called on empty PriorityQ
• age() strives to avoid starvation

• Age factor associated with data value for internal priority
• Outline aging algorithm: linear or proportional scaling?

• resize() will double internal array when capacity reached
Problematic: of questionable validity or relevance

• Ordered Array (NO!: min or maxheap supports item extraction via root index)
• No starvation (may be difficult to guarantee)

Unnecessary: implied by function prototype
•  isEmpty() non-destructive (implied by const)
•  enQ() and deQ() trigger reordering (implicit in heap functionality)
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much have sufficient capacity for data insertion (or provide internal resiz-
ing capabilities). See Table 5.7 for descriptions of preconditions for our 
PriorityQ example. One need not specify the data types of permissible 
values that are enqueued: function prototypes provide these details.

Postconditions must document state changes so that state may be tracked 
externally if needed. The connection between postconditions and func-
tion invocation may not be obvious. The explanation is one of cause and 
effect. To ensure that the application programmer satisfies any precondi-
tions that involve object state, the application programmer must be able to 
query state. For the application programmer to know when it is necessary 
to query state, the application programmer must know when an object has 
the potential to change state.

The application programmer can discern information about external 
data and resources. If a file must be opened before a call, the application 
programmer can do so, or determine that it cannot be done. State infor-
mation about an object, however, is internal. State changes are also inter-
nal and are not immediately discernible.

Table 5.8 describes postconditions for our PriorityQ example. When-
ever an item is added to the queue, the queue can no longer be empty. 

TABLE 5.7 PriorityQ Preconditions
Minimal: implied by above invariants

• Extract (deQ(),getFirst(),getLast()) only from non-empty 
PriorityQ

Problematic: of questionable validity
•  isStored() cannot be called with empty PriorityQ

Unnecessary: implied by function prototype
•  enQ() has valid item

TABLE 5.8 PriorityQ Postconditions
Minimal: describes state or potential for state change

• PriorityQ may be empty after deQ()
• PriorityQ empty after clear()
• PriorityQ non-empty after enQ()

Problematic: of questionable validity or relevance
• DEAFULT_CAPACITY is public

Unnecessary: describes what functions does
• PriorityQ object exists after constructor fires
• PriorityQ unchanged by getFirst(), getLast() (const functions)
• One fewer item in PriorityQ after deQ()
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Whenever an item is removed from the queue, the queue may be empty. 
It is unnecessary to describe what functions do. Programmers should be 
aware of the effect of class methods. After a constructor fires, an object has 
been instantiated and placed in an initial state. After a mutator executes, 
an object has likely been updated and so forth.

Class invariants provide an overview of the type defined, its use, and 
expectations. Table 5.9 describes the characteristics of our priority queue, 
along with design details that affect use, such as the avoidance of star-
vation and overflow. Class invariants often appear as a common subset 
of interface and implementation invariants. It is not surprising then that, 
for the PriorityQ, the class invariant notes the suppression of copying via 
both assignment and call by value. Again, this documentation technique 
is akin to specifying a contract. Do not suggest excessive or application-
specific restrictions, such as no duplicate values contained in the queue, 
when such restrictions are not enforced.

To emphasize the demarcation between form and use, an effective 
design must document its structure and intended use, both for the appli-
cation programmer and for the class designer. Documentation standards 
attempt to provide the means to do so. More than an arbitrary convention, 

TABLE 5.9 PriorityQ Class Invariant
Minimal: implied by above invariants

• Container stores data
• Highest priority item dequeued first
• Priority is combination of age and value
• Items aged (internally) to avoid starvation

• Container capacity
• Default capacity
• Size may be specified upon instantiation
• Internal resizing averts capacity overflow

• Call by value not supported
• Copying via assignment not supported
• Extract (deQ(),getFirst(),getLast()) only from non-empty 

PriorityQ
Problematic: of questionable validity

• No starvation
• PriorityQ objects do not contain duplicate values

• Perspective: aging changes composite value
• Application dependent

Unnecessary: implied by type definition
• Starvation possible
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Programming by Contract, with its emphasis on shared responsibility, 
effectively reflects software design. It capitalizes on the encapsulated design 
of objects, with separation of public and private interfaces, and thus clearly 
details the dual perspectives of application programmer and class designer.

5.3.5  Contractual Expectations

A contract emphasizes responsibilities from both internal and external 
perspectives. Internal responsibilities lie with the class designer. At min-
imum, control of an object’s state should be internalized. The standard 
alternative to a contractual relationship is defensive programming. No 
assumptions are made about correct input or fulfillment of preconditions 
in defensive programming. Hence, this approach requires extensive error 
checking. Class methods must check arguments and object state. This 
overhead is acceptable for infrequently invoked functions but becomes 
expensive for repetitive calls.

To determine the bounds of the contract, the class designer must esti-
mate consequences of contract violation. Although testing may be reduced 
with a contract, and its assumption of correct use, the impact of error 
must still be assessed. What would be the impact of data corruption and 
memory leakage? Is failure acceptable? What failures are acceptable? How 
often is error expected? The cost of failure cannot be too large.

In evaluating the costs and impact of software design, consider cur-
rent and future applications. Is high performance desired? Confirm that 
preconditions are reasonable and verifiable. Move beyond the standard 
tradeoff of safety versus efficiency; consider amortized overhead, both for 
software development and for use. Anticipate expectations. How is the 
class to be used?

Contractual obligations, as enumerated by Programming by Contract, 
are important when making design decisions. In Chapters 6 and 8, we will 
examine design options. When design alternatives exists, utility, and pref-
erence are more easily identified if assumptions as to use and maintenance 
are clearly documented.

5.4  OO DESIGN PRINCIPLES
Our discussion on class form, functionality, and documentation covered 
basic design principles. Additional comments may be made with respect to 
OOD. Yet, such comments can be distilled down to the software engineer-
ing emphasis on low coupling and high cohesion. Several OO principles 
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relative to class design embody these two principles. The two principles 
noted below summarize concepts covered in this chapter.

Single Responsibility Principle (SRP)
Every object should have a single, encapsulated responsibility.

Thus, there can be only one reason to modify a class.

Responsibility Driven Design (RDD)
Identify all object responsibilities (functionality) and required 

information.

Single responsibility emphasizes the notion of cohesion and promotes 
software maintenance. By focusing class functionality on a primary goal, 
the class designer precisely targets use, and potential reuse. Class integrity 
is easier to preserve. Our example of the priority queue exemplifies this 
principle: the queue stores items in order of importance; the queue does 
not do anything else. When conditions for preservation of state (imple-
mentation invariant) are consistent with expectations of use (interface 
invariant), the single responsibility principle holds.

Responsibility-driven design works in tandem with Programming by 
Contract to specify design and all contractual expectations as to use. The 
implementation invariant specifies the design of the object, with a focus 
on functionality and internal responsibility for state. The interface invari-
ant specifies the public functionality and any client responsibility for 
consistent use. Clear and cohesive interfaces reinforce class design. Thus, 
a priority queue provides the public functionality to store, retrieve, and 
check for data. Internally, the priority queue implements the functions to 
resize the container when needed and to periodically age the stored data 
items so as to prevent starvation.

5.5  SUMMARY
In this chapter, we used the class construct to illustrate a systematic design 
of software. Following principles of OOD, we emphasized design that 
controlled internal elements as separated from the form of an external 
interface. Standard class methods were differentiated along the lines of 
functionality (constructor, destructor, accessor, mutator, private utility, 
and core public utility). When relevant, we discussed language differences 
between C++ and C#/Java.
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Programming by Contract was concisely but thoroughly summarized 
as an effective means of documenting design. The clear specification of 
code expectations across five categories (preconditions, postconditions, 
interface invariant, implementation, invariant, class invariant) stream-
lines the process of uncovering and documenting design assumptions. 
Documentation then yields a contract between the class designer and 
those who use the class. We closed the chapter by noting two design 
principles that are sustained by the class construct and Programming by 
Contract. Concepts covered here promote the development of usable and 
reusable software.

DESIGN INSIGHTS

SOFTWARE

Compilers do NOT enforce design

MODELS

Dual Perspective
External utility: client
Internal implementation: class designer
Advanced by ADT and class construct
Supported by notion of contract 

Programming by Contract
Alternative to defensive programming
Contractual design
Specifies correct usage and guaranteed response
Reduces need for extensive testing

SOFTWARE DESIGN

Class design encapsulates and protects state
Minimizes exposure of internal details
Removes dependencies on application programmer
Client cannot place object in an invalid state

Class functionality
Constructors: initialize objects

Public initialize() method undermines encapsulation
Accessors provide controlled view

Should not change state
Mutators control state change(s)

Change request may be rejected
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Private utility functions
Provide internal functional decomposition
Promote code reuse
Reduce code complexity

DOCUMENTATION

Deliberate design must identify all assumptions
Invariants 

Reduce need for testing
Promote software maintainability

CONCEPTUAL QUESTIONS

 1. What is the notion of internal control?

 2. Describe the major components of a standard class design.

 3. What are the differences in C++ class design versus C# class design?

 4. Why is a constructor needed?

 5. What are the benefits of private utility functions?

 6. Why should a class designer minimize the provision of set and get 
routines?

 7. When are destructors needed?

 8. What are the major differences between defensive programming and 
contractual design? What are the benefits and drawbacks of each 
approach?

 9. Describe the major components of Programming by Contract.

 10. How does Programming by Contract support the dual perspective?
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C h a p t e r  6

Structural Design

Building on the previous chapter, we examine how class designs 
may be used together. We cover the basic relationships modeled in 

Object-Oriented Design (OOD): has-a, holds-a, and is-a. These relation-
ships are also known as composition, containment, and inheritance, 
respectively. Each type of relationship is examined in detail, with exam-
ples and descriptions of intended use. The relevance, costs, and benefits of 
each design are evaluated. A comparative evaluation of these relationships 
reinforces the underlying impetus for each design.

Understanding OOD is important for constructing reliable, large-scale 
systems. Moreover, it is now essential for understanding legacy systems 
and design patterns. Analysis of structural relationships and evaluation of 
their characteristics yields insights applicable to software design in general. 
Relationships define the connection between structure and effect. Their char-
acteristics support the processes of evaluating form, intent, and maintenance.

The software engineering goals of low coupling and high cohesion 
supersede any preference for a particular type of design. Likewise, the 
conscious tracking of association, ownership, and cardinality transcend 
design perspectives. Hence, this chapter closes by placing well-known and 
accepted OOD principles into context.

CHAPTER OBJECTIVES

• Define basic relationships in OOD
• Motivate appropriate use of relationships
• Illustrate composition, containment, and inheritance
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6.1  RELATIONSHIPS
We begin by examining the structure of interdependent types. Using 
relationships found in object-oriented programming, we describe cri-
teria relevant to software design and maintenance, characteristics such 
as association, cardinality, and ownership. An association between two 
objects may be temporary, stable, or for the lifetime of the primary object. 
Cardinality may vary, sustaining a one-to-one or a one-to-many relation-
ship. Ownership implies that the primary object has a responsibility for 
the secondary object, requiring allocation, deallocation, replacement, or 
transfer of responsibility.

We consider basic structural relationships: has-a (composition), holds-
a (containment), and is-a (inheritance). Traditionally, OOP texts have 
discussed aggregation, which defines a structure wherein the aggregate 
object contains many subobjects of the same type. We find it more useful 
to distinguish between relationships where there is a type dependency, 
as in has-a, and where there is not, as in holds-a. Aggregation merely 
addresses form and less so intent and effect. For example, both a container 
and a building toy (such as a Lego set) may be described as aggregates. 
As we shall see, however, a container illustrates a holds-a relationship. 
In contrast, a building toy is strongly dependent on its components and 
thus illuminates a has-a relationship. In the context of has-a and holds-a, 
we can readily evaluate essential characteristics such as ownership and 
association.

The simplest relationship is none: two types do not interact. Next in 
simplicity is the uses-a relationship, that is one type uses, typically by call 
by value or call by reference, another type in a transient fashion. This per-
spective, with its focus on interface, is that of the application programmer. 
The remaining relationships represent associations that are more endur-
ing and that may represent some type dependency. We examine these rela-
tionships in detail.

• Examine the relevance of association, ownership, and cardinality in 
design

• Evaluate the imperative of code reuse
• Identify relevant OOD principles
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6.1.1  Composition

To model composition, we use an intuitive example: a plane has-a engine. 
Type dependency clearly exists in the has-a relationship: a plane is not 
well defined without an engine, and in fact is inoperable. In the has-a 
relation, the subObject affects the state of the composing object because 
it provides functionality: the state of the engine affects the state of the 
plane. If an engine is in a failed state then the functionality of the plane 
is compromised.

In composition, the association between the composing object and 
the subobject is stable. Lifetimes are often directly correlated; that is, the 
subobject exists for the lifetime of the object. The cardinality of a sub-
object is usually fixed within the lifetime of the object. For example, if a 
plane model is designed with two engines then it must have two engines. 
Likewise, if the plane design dictates four engines, as in Figure 6.1, then 
the plane must have four engines.

As a data member of the class, the subobject would typically be instan-
tiated upon object construction. However, it is possible to postpone the 
construction of a subobject until use, employing the same logic as just-
in-time manufacturing. In this case, the object becomes responsible for 
subobject allocation (and possibly, deallocation) and must determine the 
legality of copying and assignment. Review Example 6.1, keeping in mind 
that internally allocated heap memory requires careful design in C++ (as 
shown in detail in Chapters 4 and 5).

Example 6.1: Postponed Instantiation of SubObject: C++ Code

class justInTime
{ // need appropriate memory management details
 //  Suppress or define: copy constructor and operator=
 bigData* generator;
 …
 public:
 justInTime() { generator = 0; }
 …
 void process()
 {
  if (!generator) generator = new bigData;
  generator.process();
 }
 …
};
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In a typical has-a relation, the subobject, like a plane engine, is owned 
by the object and is not usually shareable or transferable. Although it may 
be replaceable, replacement should be considered carefully and, if sup-
ported, controlled via qualifying conditions and testing.

6.1.2  Containment

Standard containers model the holds-a relationship quite easily as there is 
no type dependency on the subobjects. A stack provides the same utility 
no matter what type of data it holds or how much data it holds. A stack is 
well defined when empty, full, or in-between. The operations of push(), 
pop(), clear(), etc. function in the same manner regardless of the type 
of data processed. The data held provide no direct (public interface) func-
tionality for the container.

To model containment, we use another intuitive example, sketched in 
Example 6.2: a student holds-a calculator. Initially, this relationship may not 
appear to be that of a standard container like a stack, queue, dictionary, or 
hash table. However, if a student is well defined without a calculator then a 
student may have zero calculators and still function as a student. A student 
is not dependent on a calculator if calculators do not drive student function-
ality, or if another tool, such as a cell phone, can replace a calculator. When 
an internal data structure provides some functionality but could easily be 
replaced without compromising functionality, a holds-a relation may suffice.

Example 6.2: Student Holds-a Calculator: C++ Code

class Student  // simple, fixed calculator
{ Calculator c; // automatically instantiated
 …
 public:
 …
 Student() {}
 void replace(Calculator value)
 { c = value; // bitwise copy: value transfer }
};

// ownership of subobject(s) implies memory management

Plane Engine

4

FIGURE 6.1 UML diagram for plane has-a (4) engines.
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// => must provide destructor
// => support or suppress overloaded assignment operator
class StudentOwner  // replaceable calculator
{ Calculator* c; // handle only, no object yet
 …
 public:
 …
 // assumption constructor: ownership of transfer assumed
 StudentOwner(Calculator*& transfer)
 { c = transfer;
  transfer = 0;
 }
 // again ownership transferred in
 bool replace(Calculator*& bkup)
 { Calculator* temp = c;
  c = bkup;
  delete temp;
  bkup = 0;
 }
};

class PrecisionStudent  // zero, one or more calculators
{ Calculator* c;
 int  numCalc;
 public:
 …
 PrecisionStudent(unsigned quantity)
 { numCalc = quantity;
  c = new Calculator[numCalc];
  …
  // initialization
 }
};

In contrast to the has-a relation, the holds-a relation does not imply 
ownership. The student may or may not own a calculator, may share, bor-
row, or lend a calculator. The student is not typically responsible for the 
creation or destruction of calculator(s) because the perspective is that any 
ownership responsibility is only temporary. If the student must dispose 
of a calculator, the response differs according to ownership details. If the 
calculator is shared, the reference count would be decremented. If the 
student is the sole owner and the calculator is dynamically allocated, say 
upon demand, then the calculator should be “destroyed” (reference zeroed 
out or destructor invoked). Ownership could also be transferred out to 
another student or a reclamation site.

A container may hold subobjects, copies of subobjects, or references to 
subobjects. The number of subobjects may vary across the lifetime of a con-
tainer. Likewise, a student may hold varying numbers of calculators. In fact, 
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considering the different types of calculators available (simple, graphing, 
pocket), the actual subtype of calculators held may vary over the lifetime of 
the student. Only a temporary association exists between the object and the 
subobject. The student need not hold the same calculator for a lifetime. The 
subobjects may be passed in and out, may be shareable, or may be absent.

Independent of the implementation language, a containment relationship 
provides much flexibility because of its variability in cardinality, ownership, 
and association. However, design differences do exist because of language 
differences. Recall the memory management discussions in Chapters 4 and 
5. In C++, memory management must be addressed for any object with 
internally allocated heap memory. The class must track ownership so that 
all heap-allocated memory is deallocated before objects owning the heap-
allocated memory go out of scope. In all languages, aliases should be tracked 
so that dead objects may be reclaimed and also so that data is not corrupted.

Copying in containers is an essential design decision. What does the 
container hold? References? Copies of data? Original data? Is the container 
responsible for copying? What are the effects of supporting or suppress-
ing copying? Copying becomes interesting whenever data is referenced 
indirectly, that is, via a reference or a pointer. What does one copy? The 
address holder (reference or pointer) or the actual data values? Recall the 
difference between shallow and deep copying. Appendix B and Chapter 4 
cover memory management concepts in detail.

In both C# and C++, a decision must be made about copying. If no deci-
sion is made in C++ (the means to copy is neither defined nor suppressed), 
the compiler generates, by default, a copy constructor and an overloaded 
assignment operator that will yield shallow copies, unintended aliasing, 
and possibly data corruption. If no decision is made in C#, no copy con-
structor will be provided.

6.1.3  Class Design: Has-a or Holds-a?

When modeling type interaction, how does one decide whether to design 
for composition (has-a) or containment (holds-a)? First, consider type 
dependency. If the state of the subobject affects the object then type depen-
dency is clear. If the object must use some functionality provided by the 
subobject then the object is dependent on the subobject. In both cases, one 
should model composition (has-a). Dependency suggests that the compos-
ing object is of little value without the subobject.

To evaluate design differences, we return to our plane/engine and stu-
dent/calculator examples. Since an engine provides core functionality, the 
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relationship modeled must be has-a. However, a calculator may or may not 
be perceived as providing essential functionality. If a liberal arts student is 
not dependent on a calculator for core functionality and can exist without 
a calculator, a holds-a relationship is appropriate. In contrast, if an engi-
neering student must use a calculator, a has-a relationship is implied.

In addition to type dependency and functionality, consider cardinal-
ity. How many subobjects exist? Can the number be zero? Is the number 
of subobjects determined upon construction? Is the number of subob-
jects fixed across the object’s lifetime? Can the number of subobjects vary 
directly through public add or delete methods or indirectly via state 
changes for the object? The more stable the structure, the more likely that 
a has-a relationship should be modeled. If a subobject goes in and out of 
use, then evaluate association. A subobject may be considered less essen-
tial if it can be missing. If the association between object and subobject(s) 
is transitory, it is likely that a holds-a relationship should be modeled.

Whether an object contains one or more subobjects, consider owner-
ship. Who owns the subobject(s)? Is ownership permanent? Ownership 
implies responsibility, even with implicit deallocation, and suggests a 
has-a (composition) relationship. Yet, the ability to transfer ownership of 
a subobject, either assuming or releasing ownership, does not solely imply 
either has-a or holds-a. One must carefully examine conditions under 
which such transfers occur. Frequent and unconditional transfers suggest 
a weak dependency on the subobject and hence a stronger affinity to a 
holds-a relationship. If transfers occur to update state or for replacement 
value, then a has-a relationship may be warranted.

6.2  INHERITANCE
Inheritance (is-a) is a key OO principle, providing immediate code reuse 
and establishing a type relationship between the parent (or base) class 
and the child (or derived) class. Note the inconsistent terminology. When 
C++ came to the forefront of the software community in the late 1980s, 
inheritance design guidelines used the term “base” to indicate the base 
or foundation of an inheritance hierarchy. The word “derived” referred 
to any class that inherited from another class, whether the derived class 
was an immediate descendant or transitive progeny (grandchild, etc.). Ten 
years later, when Java emerged as a popular alternative to C++, inheri-
tance design guidelines used the term “parent” to indicate the immediate 
ancestor in an inheritance relation and the term “child” for the class that 
inherited directly from a parent class.
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Many designers, especially those well versed in C++, prefer the terms 
base and derived, possibly because of familiarity but also because the term 
“derived” is inclusive of all descendants, whether the inheritance relation 
is immediate or transitive. We use both sets of terms but prefer to use par-
ent and child when considering only a pair of classes and base and derived 
when examining a deep class hierarchy.

Syntactically, a child class declares itself to be an extension of the par-
ent class. Clearly, the parent class must have already been defined. Child 
class(es) inherit ALL data members and member functions from a parent 
class but cannot access any parent data or functionality that is declared 
private. Examples 6.3 and 6.4 provide sample C++ and C# code, respec-
tively, that manipulates objects declared from a parent class and two dif-
ferent child classes. Inheritance defines a relationship between parent and 
child (and, transitively, between parent and grandchild). Sibling relation-
ships are not defined or supported.

Example 6.3: Inheritance in C++=> Child Stands in for Parent

Parent pObj;
Child1 c1Obj;
Child2 c2Obj;

pObj.parentFn();   // cannot invoke pObj.childFn()

// child objects can invoke inherited public functionality
c1Obj.parentFn();  c2Obj.parentFn();
c1Obj.childFn();  c2Obj.childFn();

// function invocation restricted to parent interface
pObj = c1Obj;   // sliced: child additions not accessible
pObj.parentFn();   // access only parent functionality

// Substitutability: an instance of a derived class
// can stand in for an instance of a base class
// Not a symmetric relation: parent cannot stand in for child
Parent* pPtr;
…
// pPtr: handle of type Parent =>
//   Parent functionality accessible; child functionality not
pPtr = new Parent; pPtr->parentFn(); delete pPtr;
pPtr = new Child1; pPtr->parentFn(); delete pPtr;
pPtr = new Child2; pPtr->parentFn(); delete pPtr;

// COMPILATION ERRORS: NO SIBLING RELATIONSHIP
c2Obj = c1Obj;  c1Obj = c2Obj;
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Example 6.4: Inheritance in C#=> Child Stands in for Parent

Parent pObj;
// Substitutability:
// parent object (reference) can hold address of child object
// Not symmetric: child reference cannot hold parent address
// pObj: handle of type Parent =>
// Parent functionality accessible; child functionality not
pObj = new Parent();  pObj.parentFn();
pObj = new Child1();  pObj.parentFn();
pObj = new Child2();  pObj.parentFn();

As shown in Examples 6.3 and 6.4, the application programmer can 
invoke public parent functionality through an instance of the child class. 
A child class variable may be assigned to a parent class variable, but not 
vice versa. Why? Since a child inherits from a parent, the child can provide 
what the parent provides. Thus, a child object can be used in place of a 
parent object. Since a child class may define additional functionality (and/
or data) that is not present in the parent class, the parent cannot stand in 
for a child because the parent would not be able to provide this additional 
capability. When an application programmer manipulates a variable of a 
specific type, any function defined in that type’s public interface should 
be callable. Thus, child class functions (that expand the inherited parent 
interface) cannot be invoked through a parent class variable.

Inheritance introduces an additional level of accessibility: protected 
interfaces. Protected data and functionality are essentially closed (pri-
vate) to external entities but open (public) to descendants in a class hier-
archy. There are no sibling relationships in class hierarchies. An object 
may access only its own or its ancestors’ data and functionality. It cannot 
access any data or functionality from a sibling class unless those data and 
functionality are public.

A child class has access to all public data and functionality of the parent 
(base) class as well as all protected data and functionality of the parent. 
When manipulating a parent class object, the application programmer 
has access to all public data and functionality of the parent class. When 
manipulating a child class object, the application programmer has access 
to all public data and functionality of the parent as well as all public data 
and functionality of the child.

Purity of the inheritance relation is not guaranteed. A child class can 
close off access to inherited functionality for both its descendants and/
or the application programmer. C++ supports direct suppression: derived 
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classes may override an inherited public or protected method with a pri-
vate method thus preventing invocation of the parent function through a 
child object. C# and Java do not permit a child class to reduce an inherited 
interface: a compiler error stops a child class from restricting access to an 
inherited method by redefining an inherited public method as protected 
or private (or an inherited protected method as private). But this restric-
tion has only syntactical impact. Whether or not access can be restricted, a 
child may redefine, override, or NOP inherited functionality. Thus, in C# 
or Java, if a child class does not wish to support an inherited function, it 
can simply redefine it and provide a null or meaningless implementation. 
This design option is also possible in C++ (see Examples 6.5 and 6.6).

Example 6.5: C++ Direct Suppression of Inherited Functionality

class Child: public Parent
{ … // fields private by default
  void parentFn()  { // now private => suppressed }
 public:
  …
};
…
Parent pObj;
Child cObj;
pObj.parentFn();
cObj.parentFn(); // compilation error: not accessible

Example 6.6: C# Designed NOP of Inherited Functionality

public class Child: Parent
{ …
 public void parentFn() {// NOP}
  …
}
// application code
Parent pObj = new Parent();
Child cObj = new Child();
pObj.parentFn(); // parent functionality
cObj.parentFn();  // compiles & runs & does nothing

6.2.1  Automate Subtype Checking

When is an inheritance design valuable? When is it not? Unfortunately, 
these questions are often not asked. Yet, software designers should know 
when to use inheritance, and when not, especially since inheritance can be 
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simulated with composition. To illustrate an effective inheritance design, 
we revisit the Icon example from the previous chapter, where the design 
goal was to represent Icons and their movement in a computer game. 
We expand the Icon type definition to include the data and functional-
ity needed to support movement. Icons can spin, slide, or hop, with the 
restriction that any particular icon is capable of only one type of move-
ment. A spinner cannot hop, a hopper cannot slide, etc. Furthermore, 
the type of movement associated with an Icon does not change. Thus, 
a slider cannot spin, not now, not ever. We incorporate into our design 
the ability to track what “type” of movement an Icon object exhibits. 
Example 6.7 shows the monolithic class design accommodating these 
features.

Example 6.7: C++ Monolithic Class for Icon Movement

class Icon
{ float speed, glow, energy;
 int x, y;
 int subtype; // spinner, slider or hopper

 bool clockwise; // need for spinner
 bool expand; // need for spinner

 bool vertical; // need for slider
 int distance; // need for slider

 bool visible; // need for hopper
 int xcoord, ycoord; // need for hopper

 void spin();
 void slide();
 void hop();
public:
 // constructor must set subtype: client must pass value
 Icon(unsigned value)
 { …
  subtype = value;     // use enum for readability
  // and then use conditional to set associated fields
 }
 // tedious subtype checking: subtype drives movement
 void move()
 { if (subtype == 1)  spin();
  else if (subtype == 2)  slide();
  else    hop();
 }
 // tedious subtype checking: subtype drives flair details
 void flair()
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 { if (subtype == 1)  … // spinner
  else if (subtype == 2)  … // slider
  else    … // hopper
 }
 …
};

What are the limitations of this monolithic design? One huge class car-
ries all data and (private) functionality needed for the specialized move-
ments. Each Icon object should behave consistently, according to its 
“type” of movement. That is, spinners do not hop, hoppers do not slide, 
sliders do not spin, etc. Consequently, the class designer must track move-
ment “subtype.” Movement determines power consumption and the value 
of energy reserves and thus the state of an Icon object. The constructor 
must set the “subtype” and then in every method impacted by movement, 
there must be a “subtype” check. This tedious, error prone approach is 
shown in the Icon::move() method.

This Icon design is neither cohesive nor extensible. If a fourth type of 
movement were to be later incorporated, say a zigZagger, the Icon class 
must be modified to add the data and functionality needed to support 
zigzagging. All methods that require special movement, such as move() 
and flair(), must be modified to include an extra test for the zigZagger 
subtype. Example 6.8 shows this tedious, error-prone means of expanding 
a type system without inheritance.

Example 6.8: Tedious Type Expansion without Inheritance

// ALL methods in Icon that check subtype must be altered
// ERROR PRONE software maintenance
void Icon::move() // subtype drives movement
{  if (subtype == 1)  spin();
  else if (subtype == 2)  slide();
  else if (subtype == 3)  hop();
  else    zigzag();
}
//tedious manner of checking subtype
// subtype drives details of function flair
void Icon::flair()
{  if (subtype == 1)  … // spinner
  else if (subtype == 2)  … // slider
  else if (subtype == 3)  … // hopper
   else    … // zigZagger
}
…
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Since each specialized type of movement demands its own data and 
functionality, this “subtype” must be tracked. It is onerous and error-prone 
to do so “manually,” that is, via a switch statement. An inheritance design 
provides an attractive alternative, as illustrated in Figure 6.2. Example 6.9 
provides the corresponding code. Cohesion and readability are improved 
by the isolation of specialized movement in child classes.

Example 6.9: C++ Icon Class Hierarchy

class Icon
{ protected:
 float  speed, glow, energy;
 int  x, y;
 public:
 // constructor sets base values
 Icon(…)  {…}
 void move() {…}
 void flair() {…}
 …
};

class Spinner: public Icon
{ protected:
 bool  clockwise, expand;
 void spin();
 public:
 // constructor may invoke parent constructor
 Spinner(…):Icon(…) {…}
 void move()  {spin();…}
 void flair()  {…}
 …
};

class Slider: public Icon
{ protected:

Icon

Slider HopperSpinner

FIGURE 6.2 UML diagram for inheritance.
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 bool  vertical;
 int  distance;
 void slide();
 public:
 // constructor may invoke parent constructor
 Slider(…):Icon(…) {…}
 void move()  {slide();…}
 void flair()  {…}
 …
};

class Hopper: public Icon
{ protected:
 bool  visible;
 int  xcoord, ycoord;
 void hop();
 public:
 Hopper(…):Icon(…) {…}
 void move()  {hop();…}
 void flair()  {…}
 …
};

The base Icon class models the commonality of movement: location, 
speed, power consumption, and energy reserves. Derived classes special-
ize movement: clockwise or counterclockwise spinning; vertical or hori-
zontal sliding; and, hopping. What happens if a zigZagger subtype is 
needed? Add another child class. In Figure 6.2, a fourth child class could 
derive from the parent class without affecting any of the other, defined 
classes. The Icon class is not affected. Type extension should not impact 
the parent class.
Icon data members are declared protected so that derived classes may 

access such data. Parent classes may also provide protected utility meth-
ods. Designing an inheritance relation, and determining accessibility 
(protected or private), may be tricky. Private accessibility restricts access 
to the immediate class and thus ensures design consistency. Protected 
accessibility opens access only to descendants, but the number (and time 
of development) of descendants is not constrained.

In the Icon inheritance hierarchy, specialized data and functional-
ity associated with each type of Icon movement is incorporated into the 
child classes. What happened to the subtype field that was defined in the 
monolithic Icon class of Example 6.7? It is no longer needed because 
subtype is no longer “manually” tracked. The derived class name denotes 
the subtype. When a game designer wants a Hopper, a Hopper object is 
instantiated. When a game designer wants a Spinner, a Spinner object 
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is instantiated, etc. We may now easily add a zigZagger subtype simply 
by defining another derived class. Inheritance often is preferred because it 
supports this extensibility. zigZagger is added without impacting the base 
Icon class, as defined in Example 6.9, or any of the derived (sibling) classes.

Inheritance is not always the best design approach. Design extensions 
may undermine previous design decisions. We revisit this example in 
Chapter 8 to evaluate the long-term viability of design decisions.

6.2.2  Inheritance Design

From a design perspective, an inheritance relation may be seen as inheri-
tance of interface or inheritance of implementation. We consider each 
approach independently. Design complexity increases when the two 
motives are mixed. There is no software mechanism to enforce separation 
of these two design perspectives. Some languages attempt to steer design 
toward inheritance of interface. Modeled in part on Smalltalk, both Java 
and C# provide an “object” class that serves as an implicit base class for all 
defined classes. That is, even if a standalone class is defined, it will inherit 
automatically from the Object class. Thus, all types have an is-a relation-
ship with the Object class. Although this language construct does not 
yield any better OO designs in general, it does force conformance to an 
implicit, common interface.

Inheritance of interface is considered type extension and thus the “pure” 
form of inheritance. The central concept is that the child operates as the 
same type as the parent. The child can stand in for the parent, that is, a 
child object can serve as a substitute for a parent object (substitutability) 
because it supports the same interface as the parent. An implicit design 
assumption of type extension is that the child may extend but should not 
constrain the functionality provided by the parent. The child class retains 
all properties of parent class but may add attributes and/or methods only 
if such extension does not interfere with the notion of the parent type. 
Hence, the child class may provide a larger set of functionality. In short, 
the parent type is not compromised by the definition of the child class.

An intuitive example of type extension is a categorization of athletes. A 
biAthlete is-a runner (a runner who also bikes). A triAthlete is-a biAth-
lete (a bi-athlete who also swims). This pure form of inheritance is said 
to unambiguously support the is-a relationship because the child type 
is a pure extension of the parent type: the child type retains, supports, 
and possibly extends parent interface. Figure 6.3 displays this example of 
expanded functionality in child classes.
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Inheritance of interface rests on an external perspective: how are types 
used and what functionality do they provide? In contrast, inheritance 
of implementation rests upon an internal perspective: develop a type by 
incorporating existing code. Inheritance of implementation is also known 
as code reuse and is considered an expedient, practical approach to soft-
ware design even though it can compromise type consistency.

Inheritance of implementation is often described as an impure form of 
inheritance since it may not completely support the is-a relationship. The 
child class inherits all data and functionality from the parent class but 
suppresses all or part of the parent interface. Thus, the child cannot stand 
in as a substitute for the parent. Inheritance of implementation is often 
called contraction because the child class represents a more restricted 
form of the parent class. The child class may redefine or limit properties 
of parent class. To provide functional variety in a class hierarchy, a child 
class overrides or redefines behavior inherited from a parent.

Opinion may be divided as to the form of inheritance used in a particular 
design. Compare the standard queue to the priority queue. Both queue 
types typically provide enQ(), deQ(), isEmpty() functionality and, pos-
sibly, the ability to clear(), and either an automatic (internal) resizing 
or a test for capacity via isFull(). Externally, a priority queue looks the 
same as a regular queue. Internal perspective differs. Items in a standard 
queue are added in a FIFO (first-in, first-out) manner while items in a 

Runner

BiAthlete

bikes()

TriAthlete

swims()

FIGURE 6.3 Type extension.
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priority queue are enqueued by a measure of value (priority). Moreover, 
internal aging mechanisms can modify an item’s relative priority place-
ment in a priority queue.

Since the queue and the priority queue types provide the same interface, 
making substitutability possible, many argue that a priority queue is-a 
queue. Specifically, a priority queue is a specialized version of a queue. One 
can use a priority queue in place of a standard queue, especially if order-
ing is not important and starvation is unlikely. A counterargument is that 
the two different containers may yield different effects. In an active, fluid 
environment of adding and removing items from a container, a queue can 
guarantee no starvation but a priority queue cannot. In handling a stream 
of requests, a queue can guarantee service in order of request but a priority 
queue cannot. One may need to guarantee no starvation. One may desire 
FIFO ordering. Thus, the effects of using the two different types may drive 
the choice of data structure. Hence, one cannot unequivocally state that 
the two types are interchangeable.

Software design and maintenance responsibilities are most confus-
ing when a class uses a mix of inheritance of interface (type extension) 
and inheritance of implementation (code reuse). With mixed motives, it 
becomes critical that goals, priorities, and assumptions be documented in 
the implementation and class invariants.

Inheritance gives software no more computational power than any other 
structural relation. However, the inheritance construct, as supported by 
object-oriented programming languages, enables the software designer to 
easily specify type relationships. One can reuse code without having to 
handle many tedious and laborious syntactical details. Frequently, soft-
ware development time is reduced and software maintenance is improved 
when using inheritance. Yet, many professionals prefer composition over 
inheritance. Why? We contrast the cost and benefits of inheritance versus 
those of composition in the next section.

6.3  CODE REUSE
How is class design affected when one must reuse code? Assume we have 
been given a simple class minMax that has already defined, as shown in 
Example 6.10. This class accepts incoming streams of numeric data, track-
ing the minimum and maximum values. Many resource management 
and inventory problems need to track minimum and maximum values: 
a resource allocator may track the upper and lower bounds of memory 



168   ◾   Software Essentials 

requests; inventory control may wish to note the values of the most and 
least expensive items; a meter may record the maximum and minimum 
readings; etc. The minMax type encapsulates this functionality.

Example 6.10: Simple Data Class: C++ Code

class minMax
{ …
  unsigned min, max;
 public:
  minMax() {max= 0; min = MAX_INT;}

  void rec(unsigned x)
  {  if (x > max) max = x;
   if (x < min) min = x;
  }
  unsigned getMin() {return min;}
  unsigned getMax() {return max;}
};

After the successful design, implementation, testing, and deployment 
of the minMax class, the need for a minMaxMean class arises. One could 
design this second class from scratch or reuse the minMax class. When 
functionality is already in place, with a known interface, enthusiasm for 
clean-slate design evaporates. The existing class can be incorporated into 
a new design using either an inheritance or a composition relationship. 
Selection of the most appropriate relationship must identify implicit trade-
offs, as well as design effects.

Inheritance offers immediate reuse, support of the is-a relationship, 
and access to protected data and functionality. Composition also offers 
immediate reuse, but without access to protected data and functional-
ity, and does not support the is-a relationship. Since the minMax class 
does not have a protected interface, or any protected data, will employ-
ing inheritance or composition to reuse minMax make much difference? 
Not structurally. Both the minMaxMeanInherit class and the minMax 
MeanCompose class contain exactly one minMax component. The min 
MaxMeanInherit class holds one minMax parent component and the 
minMaxMeanCompose class contain exactly one minMax data member. 
The two classes thus have the same memory overhead. Compare the two 
classes, and their interfaces, as defined in Example 6.11.
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Example 6.11: Reuse via Inheritance versus Composition (C++)

class minMaxMeanInherit: public minMax
{ …
  unsigned sum, count;
 public:
  minMaxMeanInherit() {sum = count = 0;}

  void rec(unsigned x) // not recursive
  { minMax::rec(x); // resolve scope
   count++;  sum += x;
  }
  float getMean() {return sum/count;}
};

class minMaxMeanCompose
{ …
  minMax m;
  unsigned sum, count;
 public:
  minMaxMeanCompose() {sum = count = 0;}
  void rec(unsigned x)
  { m.rec(x);
   count++;  sum += x;
  }
  float getMean() {return sum/count;}

  // echo subobject interface
  unsigned getMin() {return m.getMin();}
  unsigned getMax() {return m.getMax();}
};

With inheritance, the application programmer automatically receives 
access to the parent component functionality via a derived object so the 
class designer need not echo the interface. In contrast, when a minMax 
component is held as a subobject, the application programmer cannot 
access this encapsulated data member of minMaxMeanCompose. Hence, 
any required public functionality of minMax must be echoed. Small, 
echoed functions, such as accessors, would most likely be inlined.

Consider another newly requested type: maxRange, which is a class 
that must track the interval, that is, the magnitude difference between the 
minimum and maximum values. The minMax class can be reused again. 
Which approach, inheritance or composition, is most appropriate? Again, 
there is no difference with respect to space requirements: both forms of 
reuse require exactly one minMax component. Contrast the two classes 
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defined in Example 6.12: they seem almost identical. Why bother with the 
distinction between code reuse via inheritance or composition?

Example 6.12: Reuse via Inheritance versus Composition (C++)

class maxRangeInherit: public minMax
{ …
 public:
 unsigned getRange()  {return getMax() – getMin();}
};

class maxRangeCompose
{ …  minMax m;
 public:
 unsigned getRange() {return getMax() – getMin();}

  // subobject interface echoed
  unsigned getMin() { return m.getMin();}
  unsigned getMax() { return m.getMax();}
};

Without a designed echo or deliberate suppression, the interfaces of the 
maxRange classes would be different. Under the inheritance relationship, 
the application programmer can extract the min and the max values via 
the public parent methods getMin and getMax because maxRangeInherit 
is-a minMax object. In contrast, under the composition design, the 
 application programmer has no access to minMax methods because minMax 
is a private subobject. To achieve equivalent, broad interfaces, the public 
interface of minMax may be echoed in the composition design, as it was in 
Example 6.11. Alternatively, to achieve equivalent, narrow interfaces, the 
inherited public functions may be suppressed (via declaration as private 
functions). In Example 6.13, neither class supports the public interface 
of the reused minMax type. Downgrading an interface is called “closing 
down a class” because of the loss of access to functionality; it is permissible 
in C++ but not in Java or C#.

Example 6.13: Suppressed Interface (C++)

class maxRangeInherit2: public minMax
{ …  // inherited interface suppressed
  unsigned getMin() {}
  unsigned getMax() {}
 public:
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  unsigned getRange()  {return getMax() 
– getMin();}

};
class maxRangeCompose2
{ …
  minMax m;
 public:
   unsigned getRange(){return m.getMax() – m.getMin();}
};

Choosing inheritance rather than composition, or vice versa, yields 
little difference in this example. Code is reused either way. There is no 
variability in the relationship between the minMax component and the 
minMaxMean type (or the maxRange type). Each design defines an object 
with exactly one embedded minMax component. The relationship between 
parent and child (or object and subobject) is fixed, in terms of lifetime 
association, unit cardinality, and ownership. Moreover, substitutability is 
not imperative. That is, there appears to be no client need for an object 
that could be of type minMax at one point and then of type minMaxMean 
at another point.

Contrast this minMax example to the Icon class hierarchy and to 
the TriAthlete example. Icons provided varying behavior, according 
to subtype, while BiAthlete and TriAthlete augmented behavior. 
Both class hierarchies suggest a strong type dependency on the parent 
class and also a need for substitutability. Both class hierarchies define a set 
of related subtypes that would likely be used in a heterogeneous collection. 
Inheritance design is thus more strongly warranted.

6.3.1  Class Design: Has-a or Is-a?

In choosing an appropriate design, one must evaluate implicit tradeoffs, as 
well as the effects of the relationship in question. What are the costs and 
benefits of deriving a child class from a defined class? Alternatively, what 
are the costs and benefits of using an instance of a defined class as a data 
member? The consequences of using inheritance instead of composition 
may not be obvious. Structurally, the layouts of the two designs are simi-
lar, whether an instance of the reused class serves as a parent component 
or as a private data member. However, design involves more than form. 
What is the impact on ease of use? Conceptual understanding? Interface 
flexibility? Software maintainability?

Table 6.1 summarizes the key characteristics of composition, contain-
ment, and inheritance. With inheritance, the child class may access the 



172   ◾   Software Essentials 

public and protected interfaces of the parent class. Externally, the applica-
tion may access the public interface of the parent object through a child 
object. In contrast, composition shuts off all external access to the sub-
object. Internally, the composing object may access the public but not the 
protected interface of the subobject. The composing object may shoulder 
the responsibility of managing the subobject. To avoid overhead, instanti-
ation of the subobject might be postponed until use. With delayed instan-
tiation, construction, and cleanup responsibilities must be assumed by the 
class.

Inheritance supports type extension; composition does not. With type 
extension comes substitutability and polymorphism (covered in detail 
in Chapters 7 and 8). In addition to the flexibility of runtime selection of 
functions, software maintainability is enhanced. New subtypes may be 
added without breaking application code, as seen in the Icon example. 
Additionally, an application programmer familiar with a parent interface 
may more easily adjust to an extended child interface. One could argue 
that composition permits the definition of a polymorphic subobject, 
thus magnifying the flexibility of this relationship. See Chapter 8 for an 
expanded discussion on polymorphic subobjects.

In comparison to inheritance then, composition reduces accessibility, 
increases internal responsibility, and cannot provide the benefits of sub-
stitutability and extensibility. Yet, practitioners prefer composition over 
inheritance. Why? A popular answer is control: the composing object has 
more design options with respect to manipulating a subobject than a child 
object has for its parent component. A composing object may replace or dis-
card its subobject. Using a null reference or pointer, the overhead of a sub-
object may be avoided by postponing instantiation. The class designer may 
choose what portions, if any, of the subobject’s interface to echo.

Table 6.2 summarizes the design effects of has-a, holds-a, and is-a. 
Composition may also be preferred over inheritance because of reduced 
overhead. With inheritance, a child object always has an implicit parent 
class component. This unavoidable overhead should be warranted. The 

TABLE 6.1 Relationship Details: Class to Subordinate (or Parent)

Standard Characteristics of OO Relationships

Relationship Association Cardinality Ownership Dependency Replacement
Composition Stable Variable Transferable Yes Yes
Containment Temporary Variable No No Not relevant
Inheritance Permanent Fixed: 1-1 Implied Yes No
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parent component of the child object’s memory is automatically initial-
ized: the compiler generates code to invoke the parent no-argument con-
structor before the child constructor fires. The child class designer can 
specify the invocation of a different parent constructor but cannot cir-
cumvent the allocation or initialization of this parent component.

Inheritance is a precisely defined, implicit structural relationship that 
offers less flexibility than composition. Each child object has exactly one 
parent component, no more, no fewer. This parent component is not 
replaceable; it may be considered owned by the child object but cannot be 
deallocated before the child object goes out of scope. Essentially, a lifetime 
association exists between parent and child.

Inheritance increases coupling, as the child type is tightly coupled  to 
the parent type, and decreases cohesion because the type definition is 
spread across the inheritance hierarchy. However, a has-a relationship also 
increases coupling and decreases cohesion for the same reasons. Yet, inheri-
tance is a valuable design option. If a child class must support another inter-
face, then inheritance provides access automatically; composition requires 
the interface to be echoed. If the application requires polymorphism or sub-
stitutability then inheritance is the best approach. If type extension is antici-
pated, then, for software maintainability, inheritance is preferred.

A standard motive for inheritance is code reuse in order to reduce devel-
opment time and thus cost. The class targeted for use as the parent in an 
inheritance relationship is already designed, implemented, debugged, and 
tested. However, this class could also be used as a subobject in a composi-
tion relationship. If an extended type should reuse functionality, either 
inheritance or composition provides that capability. Thus, when consider-
ing whether to use inheritance or composition, code reuse as an argument 

TABLE 6.2 Design Effects of OO Relationships

Object Use of Subordinate (or Parent) Subobject

Relationship
Internal 
Access 

External 
Access Overhead

(Subobject) 
Interface Control

Holds-a Public None Minimal Not relevant None
Has-a Public None Variable Suppressed Replacement

Avoidable May echo Deferred 
instantiation

Is-a Public
Protected 

Public Unavoidable Support
Extend
Suppress

None
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is moot: the class will be reused either way; it is the impact of design that 
must be evaluated.

The argument for inheritance that rests on access to protected data and 
functionality is also somewhat moot. While inheritance provides access to 
protected and public data and functionality, composition provides access 
only to public. However, one can easily define a wrapper class for the sole 
intent of opening up a protected interface. This derived class could then be 
used in a composition relationship to mimic inheritance.

Say, as in Example 6.14, a class defines a protected function, such as 
getKey(). If access to this function is desired, an inheritance design 
seems the obvious choice. However, a derived class, that serves only to 
expand the accessibility of getKey(), may be defined. This intermediary 
class can then be used, in place of the original parent, as a subobject. This 
extra step seems silly. After all, the publicEyes class incurs the overhead 
of inheritance that a composition relationship seeks to avoid. However, 
the flexibility of composition, including delayed instantiation, may now be 
achieved by the deCode class.

Example 6.14: Opening Up Protected Interface: C++ Code

class familyEyes
{ …
 protected:
 int  getKey();
 …
};

class publicEyes: public familyEyes
{ …
 public:
 // open access
 int getKey()  { return familyEyes::getKey();}
 …
};
class deCode
{ …
 publicEyes* p;
 public:
 int getKey()
 { if (!p) p = new publicEyes(…);
  return p->getKey();
 }
 …
};
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The external benefit of reuse via inheritance may be limited. Although 
every object of a derived class may be substituted for an object of the base 
class, public utility is still restricted to that published in the parent class 
interface. If a child class extends its inherited interface by defining addi-
tional methods, one cannot call those additional methods through a par-
ent handle. In Example 6.15, the child function LOL() cannot be invoked 
through a parent handle.

Example 6.15: Parental Interface Limits Use: C++ Code

class narrowParent {..};

class widerChild: public narrowParent
{ …
 public:
 // method added to interface, not in parent interface
 void LOL();
 …
};

// application code
narrowParent* db[100];
for (int j = 0; j < 100; j++)
 db[j] = GetObj();
for (int j = 0; j < 100; j++)
{
 db[j)->process(); // ok, in parent interface
 db[j)->LOL();  // COMPLICATION ERROR}
}

A preference for has-a over is-a, or vice versa, with respect to software 
maintenance, cannot be unilaterally supported without consideration of 
future application needs. If a class hierarchy may be extended or if het-
erogeneous collections must be supported, then inheritance should be 
preferred. If a class interface is unstable or the overhead of a parent com-
ponent should be avoided, then composition may be preferred.

When evaluating design options, software maintenance arguments 
must be posited carefully. Predicting the cost of future software maintenance 
is not equivalent to comparing existing differences in overhead. To reduce 
software maintenance costs, software developers should adhere to good 
software design principles, such as the open closed principle (OCP, see 
chapter end), high cohesion, low coupling, and thorough documentation.

When determining the most appropriate relationship to model, assess 
intended use. What is the expected impact? Evaluate current priorities 
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and predict future demands. Standard review includes breadth of the pub-
lic interface, anticipated reuse, stability, memory usage, and cost (size). 

Documentation details about an object’s relationship to a subobject include:

Accessibility
Private
Full or partial access

Echoed functionality
Association
Temporary or permanent
Delayed instantiation
Stable but replaceable
Cardinality
Fixed by class design 

Same for all objects
Fixed at instantiation

Stable for object lifetime
Variable within object lifetime
Ownership
Owned (internal responsibility)
External resource

Shared, transferable

We evaluate the merit of inheritance in more detail in the next chapter 
by examining substitutability and heterogeneous collections.

6.3.2  Contractual Expectations

Contractual obligations, as enumerated by Programming by Contract, 
may drive design decisions when choosing between inheritance and com-
position. Either design can be perceived as beneficial. What does the appli-
cation currently demand? What of future demand?

Inheritance preserves an interface, offering familiarity to an application 
programmer. As shown in more detail in the next two chapters, inheritance 
supports the use of heterogeneous collections, and, in this manner, pro-
motes extensibility. However, it is a rigid design, with unavoidable overhead.

Composition wraps the subobject, hiding its interface, and removing 
responsibility from the application programmer. Composition yields a class 
design with more control over, and thus more responsibility for, subobjects. 
A chief benefit of composition is flexibility with respect to cardinality and 
instantiation. It also isolates application code from unstable interfaces.
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6.4  OO DESIGN PRINCIPLES
Several OO design principles summarize observations made in this chapter. 
The composite principles states practitioners’ preference for composition over 
inheritance. Why? Composition is a more flexible relationship, and offers 
more control over internal design than inheritance. For low coupling, class 
designers may adhere to the principle of least knowledge. Ideally, when classes 
interact, in any relationship, class design should not be dependent on private 
implementation details of any other class. In concert with clear documenta-
tion, deliberate design identifies relationships and their consequential effects.

Composite Principle
Use composition in preference to inheritance.

Open Closed Principle (OCP)
A class should be open for extension and closed for modification.

Principle of Least Knowledge
Every object should assume the minimum possible about the 

structure and properties of other objects.

Nonetheless, inheritance is an attractive design option, especially if 
one desires substitutability and the support of heterogeneous collections. 
A good inheritance design adheres to the open closed principle (OCP): 
individual classes are preserved but type extensions are seamless. OCP 
promotes software maintainability. When a class hierarchy, like the Icon 
class hierarchy, relies on implicit subtype selection to distinguish appro-
priate functionality (movement), it illustrates an effective use of inheri-
tance. Type extension is thus seamlessly supported.

6.5  SUMMARY
Building on the foundation of maintainable class design, and clear docu-
mentation of assumptions, we examined the basic relationships modeled in 
Object-Oriented Design (OOD). Composition, containment, and inheritance 
were each examined in detail, with examples, descriptions, and comparative 
evaluations. By modeling different relationships, contrasting designs, extend-
ing analysis to software maintainability, we thus motivate intentional design.

Since composition and inheritance both readily promote code reuse, 
software developers must understand the effects of different designs to choose 
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appropriately. Inheritance is warranted when substitutability and type check-
ing is needed. Inheritance typically suggests better maintenance due to the 
ease of type extension. Cut-and-paste programming, a technique known to be 
error-prone and a maintenance headache, is avoided with inheritance.

We close this chapter with a comment on professional goals of software 
design. Software developers should understand the costs and benefits of 
different design approaches to appropriately choose among alternatives. 
Comparative analyses may be difficult when short-term and long-term 
priorities conflict. Nonetheless, one should anticipate design impact on 
performance as well as software maintainability. Whether working inside 
the OO realm or outside, a professional developer must be able to rec-
ognize basic design concepts. A competent software designer can simu-
late missing features and determine when and how to avoid expensive 
approaches. In essence, design effectively.

DESIGN INSIGHTS

SOFTWARE

Assessing current overhead differs from predicting future cost

MODELS

Type dependency should be evident 
Inheritance: Common Interface 

Substitutability
Polymorphism 

Composition: Internalized functionality
Varying cardinality
Postponed instantiation

Aggregation defines form
Not type dependency

SOFTWARE DESIGN

Strength of type dependency driven by 
Association
Ownership
Cardinality 

Inheritance supports maintainability
Built-in type checking
Extensibility 

Composition may wrap unstable interface
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Code reuse achievable via either inheritance or composition
Different effects
Different impact on maintainability

Containment models collections with weak type dependency
Composition suggest type dependency

Stable association, lifetimes correlated
Flexible ownership, cardinality, association

DOCUMENTATION

Explicitly record design decisions
Why inheritance chosen?
Why composition chosen?

CONCEPTUAL QUESTIONS

 1. What is the relevance of design details such as lifetime, association, 
cardinality, and ownership of memory?

 2. Describe the major differences between has-a and holds-a.

 3. When is type dependency important in design?

 4. Describe the major differences between has-a and is-a.

 5. What type of design yields the most effective code reuse?

 6. What are the language differences with respect to inherited 
interfaces?

 7. When is the composite principle not applicable?

 8. When is the open closed principle in conflict with the composite 
principle?
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C h a p t e r  7

Behavioral Design

Programming language support for automatic type checking greatly 
advanced the pace and breadth of software development. Chapter 6 

explored this capacity for reuse as supported via the inheritance construct. 
This chapter continues the examination of inheritance with a focus on its 
support for dynamic function selection, also known as polymorphism. 
We begin by defining three forms of polymorphism used in software and 
then examine subtype polymorphism in depth.

To highlight an effective design using subtype polymorphism, we 
examine abstract classes and the resulting support of heterogeneous col-
lections and ease of software maintenance. In addition to small, intuitive 
examples, we dissect code from a real-world software tool, a disassembler, 
to illustrate appropriate use of abstract classes. To understand process and 
cost, and to expose readers to a truly elegant software solution, we care-
fully explain and illustrate virtual function tables. Such an examination 
is unusual in a text; more often, background processes are dismissed as 
tedious. However, in the author’s experience, this knowledge successfully 
reinforces an understanding of polymorphism. To assess unavoidable, but 
common, design difficulties, the chapter closes by looking at type intro-
spection and specific language requirements.

CHAPTER OBJECTIVES

• Define common forms of polymorphism
• Overloading, generics, and subtyping

• Contrast static and dynamic binding
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7.1  INHERITANCE FOR FUNCTIONALITY
In the previous chapter, we examined structural design with an empha-
sis on inheritance, the hallmark construct of object-oriented design. As 
noted there, the mere structural design of inheritance can be mimicked 
with composition. A composing class can gain access to all the public data 
and functionality of the “parent” component. If access to protected data 
and functionality is desired, then a wrapper class can be defined with the 
sole purpose of opening up the protected data and functionality. What 
then is so important about inheritance, the major design construct of 
OOD?

The true power of inheritance is not structural reuse but behavioral 
modification. By defining an interface in the base class and provid-
ing variant behavior in descendant classes, a class designer can pro-
vide quite a range of functionality, all maintainable under a uniform 
interface. Heterogeneous collections and substitutability, two design 
touchstones of extensible code, are feasible only under a common 
interface.

We examine the design of class hierarchies and how functional-
ity (behavior) can vary within class hierarchies. OOPLs support poly-
morphism, that is, dynamic binding of function calls so that a single 
object handle can provide access to varying behavior at runtime. What 
are the costs and benefits of polymorphism? How does one design effec-
tively using polymorphism? We address these questions and also con-
sider abstract classes as the means to standardize form within a class 
hierarchy.

7.2  POLYMORPHISM
Looking at the Greek roots of the word “polymorphism,” we discern its 
meaning: many (poly) and form (morph). Polymorphism in software then 

• Illustrate effective use of dynamic binding
• Examine the structure and utility of virtual function tables
• Define and demonstrate the utility of abstract classes

• Analyze production code for disassembler
• Demonstrate the use and benefits of heterogeneous collections
• Assess the cost of type identification
• Identify relevant OOD principles
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refers to a function, method, class, or type name that is associated with 
more than one form or implementation. Software employs different types 
of polymorphism in design.

7.2.1  Overloading

Ad hoc polymorphism refers to function overloading. A single function 
(or method) name can have more than one definition. The function sig-
nature (the function name and the number, type, and order of passed 
parameters) distinguishes each different implementation. Constructors 
are commonly overloaded. Object instantiation often invokes the default, 
or no-argument, constructor. When inheritance is used, the compiler 
invokes the parent default, or no-argument, constructor unless the class 
designer specifies an alternative constructor.

Many functions that provide routine processing are commonly over-
loaded. Take care to distinguish between two different design motives for 
overloaded functions: (1) each implementation executes modified instruc-
tions so the function bodies look different; and, (2) each implementation 
executes essentially the same actions on different data so the function 
bodies look the same.

Overloaded constructors exemplified the first case. Example 7.1 illus-
trates another, intuitive example—variants of an initialization routine. An 
array could be reset or initialized in different ways: all elements initialized 
with a common value such as zero, all elements initialized with a specified 
integer value, all elements scaled up or down by an additive or multiplica-
tive factor.

Example 7.1: Overloaded Functions: Altered Functionality
void reset()
{ for (int k=0; k < size; k++)
  A[k] = 0.0;
}

void reset(double value)
{ for (int k=0; k < size; k++)
  A[k] = value;
}

void reset(bool op, int factor)
{ if (op)
  for (int k=0; k < size; k++)
   A[k]*= factor;
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 else
  for (int k=0; k < size; k++)
   A[k] += factor;
}

The second case is illustrated by functions that have the same function 
body but operate on different types of data. Example 7.2 illustrates the 
swapping of a pair of values. Many versions of the same function must 
be defined in a statically typed language because the type of the values 
swapped differs. Such functions are candidates for templates or generics.

Example 7.2: C++ Overloaded Functions: 
Consistent Behavior => Generic functions
void swap(int& x, int& y)  void swap(float& x, float& y)
{ int hold = x;   { float hold = x;
 x = y; x = y;
 y = hold; y = hold;
} }

template <typename someType>
void swap(someType& x, someType& y)
{ someType hold = x;
 x = y;
 y = hold;
}

7.2.2  Generics

The swap routine is a classic example of an overloaded function that pro-
vides the same functionality regardless of data supplied. Swapping two 
values entails the same actions, whether for integers, reals, Icon objects, 
etc. Likewise, regardless of data type, the same actions unfold for sort-
ing, searching, and often finding the minimum or maximum. Consider 
an iterative version of binary search. The code for the algorithm always 
looks the same. In fact, even the comparison operators are used in the 
same manner. When the type of the underlying data does not matter, why 
not use a placeholder for the data type? The placeholder could then be 
replaced with an actual type when needed. That is exactly what generic, 
or templated, code does. Overloaded functions that differ only by type of 
data used (such as swap, sort, etc.) are good candidates for templated or 
generic code.

Parametric polymorphism refers to generic or templated code. 
Generics are functions, methods, or classes that are defined without a 
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specific type provision. The multiple overloaded swaps in Example 7.2 
are easily written in one generic version, with a placeholder for the type 
of data swapped. The compiler can then generate multiple versions, 
each instantiated with a specific type as supplied by the application 
programmer.

A data structure that serves primarily to store and retrieve data, that 
is, any container, is a good candidate for template code: the functional-
ity of storing and retrieving is not affected by type. A stack pushes, pops, 
tests for empty, and clears no matter the type of data it contains. Likewise, 
functionality is independent of the data type in a queue, a set, etc. A pri-
ority queue stores data in order; so as long as the data type stored sup-
ports comparison, a priority queue also functions independent of type. 
C++ advanced the use of generics by developing and disseminating the  
Standard Template Library (STL).

7.2.3  Subtype Polymorphism

Table 7.1 summarizes three different types of polymorphism. Relative to 
OOD, however, we are most interested here in subtype polymorphism: 
the use of one name to signify any one of a number of (sub)types in a class 
hierarchy. The key utility of subtype polymorphism is increased flexibility 
for runtime functionality. That is, the static resolution of a function call 
(the compiler’s translation into a direct JUMP statement) is replaced by 
dynamic resolution. To do so, the compiler must generate code that sup-
ports an indirect jump.

Dynamically bound functions or virtual methods usually have multi-
ple implementations in a class hierarchy. Calling a virtual method through 
a polymorphic handle can thus yield different results on different runs 
of the same software. How? Function call resolution is postponed until 

TABLE 7.1 Types of Polymorphism

Overloading Generic SubType
Functions Different versions Type-less Overridden
Identified Function signature 

parameter list
Type placeholder Class scope same 

function signature
How used Constructors

Function variants
Compiler generates 
code with type

Heterogeneous 
collections base class 
interface

Impact Common name Design reuse Dynamic binding
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runtime—the compiler does not resolve virtual function calls. By waiting 
until runtime to bind a function call to actual function code, function 
selection is postponed and thus can vary at runtime. When a function 
call is not permanently associated with a specific function address, soft-
ware is more flexible. Subtype polymorphism thus enables the design of 
flexible and extensible software because of dynamic binding. In the next 
section,  we trace a sample class design, comparing static and dynamic 
binding.

7.3  STATIC BINDING VERSUS DYNAMIC BINDING
Conceptually, a function call is a JUMP statement where, at the point 
of call, statement execution is transferred to the first instruction of the 
named function. For efficiency, function calls are statically bound, that 
is, resolved at compile-time. The compiler translates the function invoca-
tion into a JUMP statement, generates the code necessary to store and 
transfer data, and to record the program counter (which holds the address 
of the current instruction) so that control can be transferred back to the 
point of call once function execution terminates. When a function call is 
resolved at compile-time, by translation to a direct JUMP statement, the 
same function is always called.

In C++ and in C#, function calls are statically bound by default. Example 
7.3 shows the design of a simple C++ class hierarchy, where all defined 
functions are statically bound by default. The C# class design is similar, as 
will be shown in Example 7.6. The base (FirstGen) class defines two pub-
lic functions (whoami) and (simple), in addition to an overloaded con-
structor. Its immediate descendant, (SecondGen), redefines one of these 
two inherited functions, (simple), and defines a new function (expand) 
as well. At the third level of the class hierarchy, the ThirdGen class rede-
fines the inherited functions (simple) and (expand) and defines another 
public function (grand).

Example 7.3: C++ Class Design: Default Static Binding
// C++ class design – by default, function calls statically bound
//  efficient but rigid
class FirstGen
{ protected:
   int x, y;
   int level;
 public:
   FirstGen(int a = 1, int b = 10)
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   { x = a; y = b; level = 1; }
   int whoami(){ return level; }
   int simple(){ return x + y; }
};

class SecondGen: public FirstGen
{ public:
   SecondGen(int a = 10, int b = 100): FirstGen(a,b)
   { level = 2; }
   int simple(){ return x * y; }
   int expand(){ return x * y * level; }
};

class ThirdGen: public SecondGen
{ public:
  ThirdGen(int a = 100, int b = 1000): SecondGen(a,b)
 { level = 3; }
   int simple(){ return x * y + x + y; }
    int expand(){ return x * y * level + x + y + level; }
    int grand() { return (x+y)*(x+y) * level; }
};

To explore the differences between static and dynamic binding, 
especially with respect to (sub)type identification, we analyze the class 
hierarchy of Example 7.3 in detail. All three classes define a default (no-
argument) constructor with specified default values. The FirstGen class 
defines a whoami function that returns the value of the protected data 
member level. Since the value of level is set in each class constructor, 
whoami effectively identifies the subtype of an object instantiated from the 
FirstGen class hierarchy: 1 for a FirstGen object; 2 for a SecondGen 
object; 3 for a ThirdGen object. The whoami function thus does not have 
to be redefined in each descendant class: the value of level as set in each 
constructor will be picked up by the whoami function defined in the 
FirstGen class.
whoami is a classic design technique used to build in type identifica-

tion. As long as the application programmer tracks the correspondence 
between an integer value and its associated type, this design is extensi-
ble: any subsequently derived class need only initialize the protected data 
member level to the unique value that is to be associated with the new 
class definition. The phrase “as long as” implies a significant dependency, 
one that may be beyond an individual’s control. Modern language con-
structs provide an alternative to functions such as whoami, as shown in 
this chapter, thus removing dependencies on software maintenance and 
client code.
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The FirstGen class hierarchy expands the inherited interface at each 
level, yielding three different definitions for the simple function and two 
different definitions for the expand function. Here, we consider only the 
simple function and evaluate how design impacts utility at the applica-
tion level. Example 7.4 provides sample code that declares and manipu-
lates objects from the class hierarchy defined in Example 7.3. Recall that 
a pointer (reference) typed to hold the address of a base class object can 
hold the address of a base class object or the address of any derived class 
object. Thus, the firstPtr pointer array may hold the address of any type 
in the FirstGen class hierarchy, whereas the secondPtr pointer array 
may hold addresses of SecondGen and ThirdGen objects. Statements 
#A, #B, and #C show the varied initialization of the two pointer arrays. 
Figure 7.1 shows sample memory layout of the typed pointer arrays and 
objects defined in Example 7.4.

Example 7.4: C++ Binding: Dependent on Class Design
int main()
{ FirstGen f1;  // default internals, x=1, y=10
 SecondGen f2;  // default internals, x=10, y=100
 ThirdGen f3;  // default internals, x=100, y=1000

 FirstGen* firstGPtr[3];
 SecondGen* secondGPtr[2];

 firstGPtr[0] = &f1;    // #A
 firstGPtr[1] = secondGPtr[0] = &f2;  // #B
 firstGPtr[2] = secondGPtr[1] = &f3;  // #C

  // invocation thru C++ stack objects ALWAYS statically bound
  // same as cout << FirstGen::simple(&f1) << endl;
 cout << f1.simple() << endl;  // #D: output 11 = 1 + 10

  // same as cout << SecondGen::simple(&f2) << endl;
 cout << f2.simple() << endl;  // #E: output 1000 = 10*100

  // same as cout << ThirdGen::simple(&f3) << endl;
 cout << f3.simple() << endl;  // #F: output 101100

     //  = 100*1000 +100+1000
 // invocation thru C++ pointer can be dynamically bound
 // BUT NOT HERE!
 for (int i=0; i< 3; i++)
  cout << firstGPtr[i] -> simple(); // #G
 for (int i=0; i< 2; i++)
  cout << secondGPtr[i] -> simple(); // #H
 return 0;
}
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The values printed at tagged lines #D, #E, and #F in Example 7.4 are 
as expected: the output is consistent with the type of object through 
which the call to simple is invoked. The values printed at statement #G 
are according to the type (FirstGen) of the typed pointer: simple thus 
computes “x + y,” yielding 11, 110, and 1100, although the definition of 
the function simple is overridden in each descendant class! Since each 
pointer in the firstGPtr array holds the address of a different subtype, 
one might expect the simple function to compute “x * y” and “x * y + x + 
y” for a SecondGen object and a ThirdGen object, respectively.

Why does the output statement at point #G yield 11, 110, and 1100 and 
not the same output as statements #D to #F, namely, 11, 1000, and 101100? 
After all, the first element of the pointer array contains the address of f1, 
the second element contains the address of f2, and so forth. Since C++ 
employs static binding by default, each simple function call through a 
firstGPtr array pointer is resolved at compile-time. Most likely, the 
simple function call is inlined so that code to compute “x + y” is gener-
ated in place. The compiler processes statements individually so it does 
not track the type of the object whose address is placed in a firstGPtr 
array pointer.

A trace of the messages printed at output point #H yields a similar 
uniformity: simple always computes “x * y,” yielding 1000 and 100,000, 
despite the fact that the two pointers in the secondGPtr array hold 
addresses of objects of different subtype. Each simple call is statically 
bound, and most likely inlined, computing “x * y” upon each call. In 
essence, with static binding, the subtype of the object whose address is 
held in the pointer does not matter.

To achieve dynamic binding in C++ (and C#), one must specify that a 
function is “virtual” in the base class. Simply adding the keyword virtual to 
a function name is the only change needed in Example 7.3 to make dynamic 
binding possible. Example 7.5 shows this modification. Once a function has 
been tagged virtual in a class, all descendant classes inherit that function 
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FIGURE 7.1 Sample memory layout for Example 7.4.
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as a virtual function, with the potential for dynamic binding. We explain 
subsequently why a function is “once virtual, always virtual.” Using the class 
FirstGen, as modified by the virtual keyword in Example 7.5, the applica-
tion code in Example 7.4 would now produce dynamic function resolution 
at statement #G, yielding output: 11, 1000, 101100.

Example 7.5: C++: Virtual for Dynamic Binding
// C++ – dynamic function identified by keyword virtual
// ONLY change to Example 7.3 to achieve dynamic binding
class FirstGen
{ protected:
   int x, y;
   int level;
 public:
   FirstGen(int a = 1, int b = 10)
   { x = a; y = b; level = 1; }

   int whoami(){ return level; }
   virtual int simple(){ return x + y; }
};

class SecondGen: public FirstGen
{ public:
    SecondGen(int a = 10, int b = 100): FirstGen(a,b)
   { level = 2; }

   virtual int simple(){ return x * y; }
   virtual int expand(){  return x * y * level; }
};

class ThirdGen: public SecondGen
{ public:
    ThirdGen(int a = 100, int b = 1000):SecondGen(a,b)
   { level = 3; }

 virtual int simple(){  return x * y + x + y; }
 virtual int expand(){  return x * y * level + x + y + level; }
 virtual int grand() {  return (x+y)*(x+y) * level; }
};

With respect to dynamic binding, C# operates much like C++: static 
binding is employed by default; methods must be declared “virtual” to 
postpone function resolution until runtime. In C#, to override an inher-
ited, virtual function, a method must be labeled “override.” Attempts to 
redefine, and thus provide alternative behavior, without using the key 
word “override” will trigger compilation errors. This forced pairing of 
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“virtual” with “override” clarifies the intent of class design, and is illus-
trated in Example 7.6. The class hierarchy in Example 7.6 is the same as 
that in Example 7.5 except that it is written in C#.

Example 7.6: C# Virtual Functions Tagged and then Overridden
// C# class design – tagged function calls dynamically bound
// redefined functions must be labeled ‘override’
class FirstGen
{ protected int level;
 public Gen(int a = 100, int b = 1000)
 { level = 1; }

 public virtual int simple(int x, int y)
 { return x + y; }
}

class SecondGeb: FirstGen
{  public SecondGen(int a = 100, int b = 1000): base(a,b)
 { level = 2; }

 public override int simple(int x, int y)
 { return x * y; }

 public virtual int expand(int x, int y)
 { return x * y * level; }
}

class ThirdGen: SecondGen
{  public ThirdGen(int a = 100, int b = 1000): base(a,b)
 { level = 3; }

 public override int simple(int x, int y)
 { return x * y + x + y; }

 public override int expand(int x, int y)
 { return x * y * level + x + y + level; }

 public virtual int grand(int x, int y)
 {return (x+y)*(x+y) * level;}
}

The application code in Example 7.7 is analogous to that of Example 7.4 
except that it is written in C#. At output point #G, the values printed are 
“11,” “1000,” and then “101100.” Why? The function call to simple() is not 
resolved until runtime. That is, the compiler does not translate the method 
invocation into a direct JUMP statement. Instead, the compiler generates 
the code necessary to determine, at runtime, which function to call.
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Example 7.7: C# Application Code for Example 7.6
// application code
FirstGen  a = new FirstGen();
SecondGen  b = new SecondGen();
ThirdGen  c = new ThirdGen();

FirstGen[]  firstGPtr = new FirstGen[3];
SecondGen[]  secondGPtr = new SecondGen[2];

firstGPtr[0] = a;
firstGPtr[1] = secondGPtr[0] = b;
firstGPtr[2] = secondGPtr[1] = c;

for (int i=0; i< 3; i++);
  Console.WriteLine(firstGPtr[i].simple(2,3)); #G

for (int i=0; i< 2; i++)
  Console.WriteLine(secondGPtr[i].simple(2,3)); #H

In Example 7.7, each reference in the firstGPtr array is examined at 
runtime in order to determine the type of the object whose address is held 
therein. Since firstGPtr[0] holds the address of a type FirstGen object, 
the simple function from class FirstGen is invoked. Since firstGPtr[1] 
holds the address of a type SecondGen object, the simple function from 
class SecondGen is invoked, etc. Similar reasoning verifies that the output 
at point #H will be “1000” and then “101100.”

If the keywords “virtual” and “override” were missing in the class hier-
archy of Example 7.6, then the C# application code in Example 7.7 would 
have yielded the same static binding effects as that acquired from the C++ 
class hierarchy in Example 7.3. What about Java? Java uses dynamic bind-
ing so all methods are implicitly virtual. Java does not then have (or need) 
a keyword “virtual.” Java application code is thus more consistent than 
either C++ or C#: there is no guesswork with respect to binding, and no 
need to consult the class hierarchy; function call resolution is consistently 
postponed until runtime. We explain the technical details for dynamic 
resolution of function calls in a later section.

Figure 7.2 shows sample memory diagrams for the C# application code 
in Example 7.7, illustrating C# object layout. C# programmers need not 
deviate from their usual manipulation of objects, since objects are refer-
ences; C++ programmers must use base class pointers to acquire dynamic 
binding. Why? The (sub)type of an accessed object may easily change 
when that object is accessed via a reference (or pointer). How? Change an 
address, change the object (and thus possibly the subtype) referenced. The 
type of a stack object cannot change.
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In both Examples 7.4 and 7.7, the sample arrays firstGPtr and 
 secondGPtr represent heterogeneous collections: aggregates of differ-
ent types of data that can be treated uniformly. Heterogeneous collections 
are a powerful data structure that supports a standard (common) interface 
for all types within the collection. Varying functionality (behavior) results 
when each different subtype satisfies the standard interface but imple-
ments different responses to the same call. In the FirstGen example, the 
simple function comprises the standard interface; the message output, as 
it differs per class, signifies the variable response or implementation.

The whoami function in Examples 7.3 and 7.6 need not be virtual. The 
whoami function is defined in the base class and not redefined in any 
descendant classes. Since this function returns the protected data member 
level, as set by each class constructor, it accurately reflects the identity of 
the subtype of the object. The accuracy of the whoami design depends on 
the vigilance of both the class designer and the application programmer. 
If the class designer omits the correct initialization of the protected data 
member level in any subsequently designed descendant classes, the design 
falters. If the application programmer misinterprets the value returned from 
the whoami function, the design falters. We re-evaluate the utility of the 
whoami function when we examine design options in Chapter 8.

7.3.1  Heterogeneous Collections

Polymorphism promotes extensibility—the ability to extend a given class 
hierarchy without breaking any pre-existing application code. Additional 
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FIGURE 7.2 Sample memory layout for C# application code in Example 7.7.
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classes, say FourthGen, FifthGen, and SixthGen, could easily be 
added to the class hierarchy in Examples 7.5 and 7.6. Such a type exten-
sion would not break the application code: neither for-loop exercising 
the polymorphic functionality would need to change. The only needed 
change would be the initialization (and, possibly, size) of the heteroge-
neous collection.

To design for software maintainability, isolate code that deals directly 
with type. Example 7.8 illustrates an effective wrapping of C++ initial-
ization code in a routine, GetObjAddr(). Similarly, Example 7.9 illus-
trates an effective wrapping of C# (Java) initialization code in a routine, 
GetObj(); the C# code is the same as C++ code except a base class refer-
ence is returned (instead of a pointer). The more important difference is 
that C++ programmers must manage heap memory. If the class hierarchy 
used in Examples 7.5 and 7.6 is extended by the definition of additional 
derived classes, such as a FourthGen or FifthGen, the only code that 
needs to change is that in GetObjAddr() or GetObj().

Example 7.8: C++ Polymorphic Object Creation
// function that evaluates environment, possibly file input
//  generates an object of some type from class hierarchy
//  => can return address of any object from class hierarchy
//  => subtype of object allocate determined at run-time
//  BASE pointer can hold address of ANY class hierarchy object
// at compile-time:
//   return pointer holding address generated at run-time
//   cannot ‘guess’ what (sub)type of object allocated
FirstGen* GetObjAddr()
{
 if (condA) return new FirstGen; // base class
 else if (condB) return new SecondGen; // derived type
 else if (condC) return new ThirdGen; // derived type II
 …
} // ownership of object passed back

Example 7.9: C# Polymorphic Object Creation
// function that evaluates environment, possibly file input
//  generates an object of some type from class hierarchy
//  => can return address of any object from class hierarchy
//  => subtype of object allocate determined at run-time
// BASE reference can hold address of ANY class hierarchy object
// at compile-time:
//  return reference (address of object generated at run-time)
//   cannot ‘guess’ what (sub)type of object allocated
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FirstGen GetObj()
{
 if (condA) return new FirstGen();  // base class
 else if (condB) return new SecondGen();   // derived type
 else if (condC) return new ThirdGen(); // derived type II
  else throw new IndexOutOfRangeException("Bad condition");
} // ownership of object passed back

As shown in Examples 7.10 and 7.11, code that traverses a heteroge-
neous collection is stable. Nowhere in either sample application code is 
the subtype of a particular object known. This design technique of isolat-
ing initialization code to promote software maintainability may be used 
across programming languages.

Example 7.10: C++ Heterogeneous Collection
// initialization of heterogeneous collection:subtype hidden
// at compile-time, do NOT know type of object generated
FirstGen*  bigPtrArray[100];
for (int k = 0; k < 100; k++)
 bigPtrArray[k] = GetObjAddr();

// dynamic behavior
for (int k = 0; k < 100; k++)
 bigPtrArray[k]-> simple();

…
// MEMORY MANAGEMENT: release heap memory before leaving scope
// deallocate dynamically allocated objects
for (int k = 0; k < 100; k++)
 delete bigPtrArray[k];

Example 7.11: C# Heterogeneous Collection
// initialization of heterogeneous collection:subtype hidden
// at compile-time, do NOT know type of object generated
FirstGen[] bigArray = new FirstGen[100];
for (int k = 0; k < bigArray.Length; k++)
 bigArray[k] = GetObj();

// dynamic behavior
for (int k = 0; k < bigArray.Length; k++)
 bigArray[k]-> simple(3,9);

Using a function to isolate initialization code is an effective design 
technique. Constructors embody this idea. However, initializing a hetero-
geneous collection of polymorphic objects of, say, base type Z, is a respon-
sibility external to the class Z. The code shown in Examples 7.10 and 7.11 
initialize heterogeneous collections external to the FirstGen class.
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In a statically typed language like C++, C#, or Java, the only method that 
may not be virtual is the constructor. Why? To allocate an object on the stack 
in C++, the compiler must know the size, and therefore, the type of the object. 
C# and Java follow the same programming language design as C++. However, 
several design patterns mimic virtual construction (Gamma, 1995).

7.4  VIRTUAL FUNCTION TABLE
What code is generated by the compiler so that function resolution is 
postponed until runtime? The solution is both elegant and efficient: a 
jump table. When the compiler processes a dynamically bound func-
tion call, it generates code for an indirect jump using a collection of jump 
tables. Essentially, each class has its own table, called its virtual function 
table or vtab. By storing the addresses of each dynamically bound (vir-
tual) function, the vtab provides the means to resolve a function call at 
runtime. For more details, see Ellis (1990).

Each virtual function in a class definition is associated with an offset 
within the virtual function table (vtab). We sketch out an example vtab for 
conceptual reinforcement. Function addresses may not be laid out exactly 
as displayed here: language standards need not specify layout. However, 
for any one particular function, the offset in every vtab for that class hier-
archy will be the same.

Assuming that a pointer (address) is allocated (defined by) 4 bytes, 
the first virtual function address will be stored at offset 0; the second 

TABLE 7.2 Vtabs for Example 7.5

FirstGen virtual function table (vtab)
Table Entry Virtual function Address (class definition)
Offset 0 simple() FirstGen::simple()

SecondGen virtual function table (vtab)
Table Entry Virtual function Address (class definition)
Offset 0 simple() SecondGen::simple()

Offset 4 expand() SecondGen::expand()

ThirdGen virtual function table (vtab)
Table Entry Virtual function Address (class definition)
Offset 0 simple() ThirdGen::simple()

Offset 4 expand() ThirdGen::expand()

Offset 8 grand() ThirdGen::grand()
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virtual function address will be stored at offset 4, the third virtual 
function address will be stored at offset 8, etc. As shown in Table 7.2 
(the virtual function tables corresponding to Example 7.5), the off-
set for function simple is always 0; the offset for function expand is 
always 4, etc. Only the addresses of those functions tagged as virtual 
are placed in the class vtab. Recall that the functions simple, expand, 
and grand were all denoted virtual in Example 7.5. whoami was not 
labeled virtual.

Rather than translating a function call directly into a JUMP statement, 
as done with statically bound calls, the compiler generates additional 
instructions:

 1. Dereference the pointer through which the function is invoked

 2. Get the type tag of the object whose address is stored in pointer

 3. Go to the class vtab of the object whose type was just resolved

 4. Add the offset associated with the function name for the vtab entry

 5. Extract the address of the target function from the vtab entry

 6. Jump to the extracted address

These instructions extract the desired function address out of the 
appropriate vtab at runtime. The compiler lays out the indirection needed 
for dynamically bound function calls. The programmer need not become 
enmeshed in function pointers, as illustrated in Appendix C, in order to 
support dynamic binding.

In Java, all calls are dynamically bound: a flexible but costly model. In 
C++ and C#, to acquire dynamic binding, the class designer must label 
functions that are to be dynamically bound with the keyword virtual. 
This virtual tag is a flag to the compiler to store the function address in the 
class virtual function table (or vtab). In C#, the class designer must use the 
keyword override in a descendant class to redefine the function. Note 
that every redefined function must be labeled “override.” C# thus makes 
it clear when an inherited function is redefined, suggesting polymorphic 
behavior. The vtabs for Example 7.6 (C# code) would be essentially the 
same as those displayed in Table 7.2.

By default, C++ object variables are allocated on the stack, that is, 
assigned a (relative) address within a stack frame by the compiler. When an 
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object is assigned a (relative) memory address, a space for all its data mem-
bers is also allocated and mapped. A stack object’s type cannot then change 
because of the potential change in size. Function invocation through a C++ 
object thus cannot be postponed because the type of a stack object cannot 
vary. Hence, one cannot achieve dynamic binding directly through C++ 
objects. In contrast, Java and C# define objects as references. Since base 
class references are address holders that can contain the address of any type 
defined in the class hierarchy, dynamic binding is immediately achievable 
through such variables.

In C++, dynamic function invocation is a two-step process: (1) declare 
a function virtual in the base class and (2) call the virtual function 
through a base class pointer. Why use a pointer? So that type may vary at 
runtime! C++ stack objects cannot “change type” but a base class pointer 
can hold the address of a base class object, or the address of any derived 
class object. Pointer values (addresses of objects) can change at runtime. 
Really, the C++ approach of using pointers is the same as the C# and 
Java object model since a reference is a just pointer that the compiler 
dereferences.

Appendix C provides a detailed analysis of software design with respect 
to the use of virtual functions. Appendix C evaluates different designs, 
starting with a non-extensible, non-OO approach, and tracing through 
iterative modifications, ending with the simplest and most extensible 
design—one that employs virtual functions.

7.5  SOFTWARE DESIGN
Polymorphism promotes extensibility: it is trivial to add a new class 
FourthGen to the previous examples. The only code that would have 
to change would be the object selection functions shown in Examples 
7.8 and 7.9. The array of base class pointers need not change: it can store 
the addresses of FourthGen objects as easily as it stored the addresses 
of SecondGen objects. Polymorphism thus supports extensibility and 
heterogeneous collections, as also demonstrated in Examples 7.5 to 
7.11. One can traverse a heterogeneous collection and trigger vary-
ing behavior via polymorphic calls. The only constraint is that the 
 polymorphic call must conform to the interface as defined by the base 
class.

Polymorphism also promotes the OO tenet of substitutability: the 
address of any object from the class hierarchy can be held in a base pointer 
(or reference). Hence, any object can stand in for a parent object and 
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support the parent’s interface whether through inherited or overridden 
functionality.

Dynamically bound function calls provide a great degree of flexibility. 
Yet the impact on performance is significant. The software must absorb 
the runtime overhead of resolving function addresses. Moreover, the 
key optimization technique of inlining function calls cannot be applied. 
Recall from Chapter 3 that a function is inlined when the function call 
is replaced by the actual function code. The intent is to avoid the loss of 
instruction-level parallelism that occurs whenever nonsequential code, 
such as a JUMP statement, is executed. Inlining is most feasible when the 
function is small. However, if one cannot determine which function to 
invoke at compile-time, the compiler cannot substitute actual function 
code for a function call, no matter how small the function. Thus, it can be 
especially costly to implement virtual set and get methods.

7.5.1  Abstract Classes

Heterogeneous collections support polymorphic objects: an element of the 
collection can be any subtype in a given class hierarchy. With polymorphic 
objects, dynamic binding may yield differing behavior (if one or more derived 
classes override an inherited virtual function). Heterogeneous collections 
thus rely on the interface as defined in the base class. Any function invoked 
from a heterogeneous collection must be declared publicly in the base class 
interface. Through the base (common) interface, the invocation of the same 
named function is resolved at runtime. What if the base class cannot com-
pletely define or provide all functionality? Use abstract classes.

An abstract class is an incomplete type definition, providing form 
but not all the implementation details needed for a complete definition. 
That is, not all the methods specified in the abstract class interface are 
implemented, as shown in Example 7.12. An application programmer can-
not instantiate objects from an abstract class, as shown in Example 7.13. 
Inheritance must be used so that derived classes may complete the class 
definition. In essence, abstract classes provide a common interface for a 
class hierarchy and serve as a placeholder for extension, thus clearly sup-
porting the is-a relationship.

Example 7.12: C++ Abstract Class Shape: Pure Virtual Function
// C++ class design: abstract class due to pure virtual methods
class Shape
{ public:
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  virtual void rotate(int) = 0;
  virtual void draw() = 0;
  …
};

// inherited methods defined => descendant class not abstract
class Circle: public Shape
{  point center;
  int radius;
 public:
   Circle(point p, int r):center(p), radius(r) {}

   // once virtual, always virtual, need not tag as  
// virtual void rotate(int){}

  // for readability tag as virtual
  virtual void draw();
  …
};

Example 7.13: C++ Code: Cannot Instantiate Abstract Class
// application code
Shape s; // cannot instantiate object from abstract class
Shape* sptr; // Utility: hold address of derived objects

// given abstract class Shape and derived subtypes
//  Circle, Square, Triangle, Star, …
// initialize array of Shape pointers
// each pointer can contain address of different subtype
// given input function GetObject() that constructs
//  some Shape subtype (on heap) and returns its address
// contents of array could be dependent on input file
int main()
{
 Shape* composite[100];
 for (int i=0; i<100; i++)
  composite[i] = GetObjectAddr();
  …
 // what is drawn?
 for (int i=0; i<100; i++)
  composite[i]->draw();
}

Abstract classes may provide default or NOP (no operation) behavior 
but remain incomplete to force descendant classes to satisfy the inherited 
interface. How does one define an incomplete class? Java and C# provide 
a keyword abstract that indicates that a class or function is abstract, 
that is, its definition is incomplete, as shown in Example 7.14. C++ does 
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not provide a keyword. Instead, the idea of “initializing a function to 
zero” is emphasized. By setting the function header of a virtual function 
“=0;”, a class designer specifies a virtual function without a definition, 
that is, a pure virtual function. Any function that has no implementa-
tion is abstract and depends on derived classes to provide implementation 
details. Since it has no implementation, a pure virtual function has an 
entry in the class vtab initialized with the value “0.”

Example 7.14: C# Abstract Class
abstract class Shape  // abstract easily noted with keyword
{ public virtual void rotate(int);
 public virtual void draw();
  …
}

In the classic Example 7.12, the Shape class is an abstract class and 
the descendant Circle class must provide a definition for each inherited 
pure virtual function. Hence, the application programmer can instanti-
ate Circle objects but cannot instantiate any Shape objects. The same 
design effect could be met by making the Shape constructor protected 
without providing any additional (overloaded) public constructors. The 
Shape class would then be abstract because the application program-
mer would have no public constructor to invoke. The descendant Circle 
class would have to provide a public constructor in order not to remain 
abstract.

Without using the keyword abstract, which is unavailable in C++, one 
can design an abstract class in two primary ways. If a class definition has 
at least one declared but undefined function then the class is abstract. In 
Example 7.12, both rotate() and draw() are pure virtual functions, forc-
ing Shape to be abstract. The compiler cannot support instantiation of 
Shape objects because it cannot resolve function calls to rotate() and 
draw(). An abstract class forces the design and implementation of descen-
dant classes. The derived class(es) must define each pure virtual (also known 
as deferred or abstract) method inherited from the base class. If the derived 
class does not define an inherited but undefined function, the derived class 
remains abstract, like its parent class. If the descendant Circle class did 
not define either rotate() or draw(), it would remain an abstract class.

A second means of designing an abstract class without the keyword 
abstract is a careful manipulation of constructors. Failure to provide public 
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constructors makes a class abstract. Why? If a class definition provides no 
public constructors then the application code cannot directly instantiate 
any objects from this class. However, if the base class defines at least one 
protected constructor then inheritance may be used. When a derived class 
defines at least one public constructor, derived class objects may be instan-
tiated. If the base class defines only protected constructors, the design and 
implementation of descendant classes are forced. Why? A derived class can 
invoke a protected constructor but an application programmer cannot. The 
application programmer must have a public constructor to invoke. If the 
base class provides only a protected constructor and the derived class pro-
vides a public constructor, then the application programmer can invoke 
only the derived constructor. At which point, the compiler patches in a 
call to the parent of the derived class. The subtle detail is that the applica-
tion programmer is not invoking the base constructor; the derived class 
is doing so.

Abstract classes enforce a common interface for a class hierarchy, 
thereby promoting extensibility. A uniform interface supports the manip-
ulation of polymorphic objects, typically in heterogeneous collections. 
Applications that handle data with common core functionality, but vary-
ing details, are served well by abstract classes. For example, inventory sys-
tems support common functionality (toy selection in stores, car models 
in a dealership) but hold data with varying characteristics. Classification 
systems also benefit from abstract classes. Table 7.3 summarizes the intent 
and effects of abstract classes. As explained in Chapter 8, abstract classes 

TABLE 7.3 Abstract Classes

Design Intent Implementation Details Effects
Incomplete type definition
Deferred methods

Not all functions defined
Function prototypes serve 
as placeholders

Cannot instantiate objects
Inheritance required

Base class defines uniform 
interface for class hierarchy

Derived class(es) override 
or augment behavior

Inheritance anticipated

Polymorphism: 
calls through base-typed 
pointer (reference) 
resolved wrt base interface

Typed pointer or reference 
holds address of derived 
object

Heterogeneous collections
Varying behavior
Extensibility

Generalization of overriding Derived class(es) define 
behavior

Derived class remains 
abstract unless it 
redefines inherited 
deferred methods
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are a noted design type. In the next section, we examine a real-world 
design and implementation that rests on the use of abstract classes.

7.6  REAL-WORLD EXAMPLE: DISASSEMBLER
To illustrate the utility of abstract classes, we analyze a real-world example: 
part of the code design for a disassembler. C++ code provided here is simi-
lar to production code but is simplified for presentation (T. Hildebrandt, 
private communication, 1999). A disassembler is a reverse engineering 
tool and is often used by embedded systems engineers to quantify code 
coverage.

Conceptually, a disassembler is the inverse operation of an assembler: 
it translates machine code into assembly language code. Machine code 
lacks symbolic constants and comments. More problematic, it contains 
 variable-width instructions and manipulates different types of stor-
age where the size of memory used may be unknown. Hence, the task 
of regenerating all the assembly code corresponding to an execution of a 
program is a difficult one.

In a disassembler, the process of identifying type, and thus inferring 
size, is one of trial and error. Consequently, the disassembler must be 
written in a manner that supports multiple passes at resolving the type 
of a value. Consider resolution of an arbitrary value as a guessing game. 
What details help resolve type? Is the value read only? Does the value have 
an address? Does the value derive from a known class? Can the value be 
cloned? Think of a value as being held in some location. Characteristics of 
this location yield more clues about the possible type of the value. Is the 
location a register or an addressed memory location? Is the location sized 
to hold an integer or a real?

To guess, and then guess again, the disassembler needs a malleable 
representation for storage in a computer until it can resolve the location 
type, and then the type of the value held in that location: As shown in 
Example 7.15, the design of the disassembler rests on an abstract base class 
called AbsoluteLocation. The disassembler must determine whether a 
value is constant (cannot be written) or variable (value may be updated 
at runtime). Constants may be stored in a symbol table by the compiler 
and then retained by a debugger but do not require physical storage when 
the program runs. Since variables may change value at runtime, some 
memory must be assigned to contain that value. Physical storage options 
include registers and memory locations. Design details are summarized 
in Table 7.4.
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Example 7.15: Abstract Base Class for Disassembler (C++)
class AbsoluteLocation
{
  protected:
 enum  Class{unknown, constant, variable, constantInt, 

constantFloat, memory, aRegister};
  public:
 virtual ~AbsoluteLocation() {}

 virtual AbsoluteLocation* Clone() const = 0;

 virtual bool IsKnown()   const {return false;}
 virtual bool IsReadOnly()  const {return true; }
 virtual bool HasAddress()  const {return false;}

 virtual Class GetClass()  const {return unknown;}

 virtual   bool IsA(Class C) const  {return (C == unknown);}
  virtual bool DerivesFromA(Class C) const {return IsA(C);}

 // various Set() – NOP as default
 // various GetAs() –  zero (cast) returned as default
};

The disassembler must track the fundamental types supported by the 
program language whose trace is being disassembled. Typical candidates 
include float, double, int, long, bool, but for simplicity, we consider 
only float and int here. For readability, the enumerated type “Class” in 
the AbsoluteLocation class definition lists the many types that must be 
tracked. The enum value is used for readability when testing and tracking 
type. A simplified class hierarchy encapsulating this example is presented 
in Figure 7.3.

TABLE 7.4 AMC Disassembler Design

Design for Memory Location Discernment 

Disassembler AbsoluteLocation Class AbsoluteLocation Interface
Gathers information 
about locations

Defines abstraction 
handling of location

Supplies self-identification 
functions

View trace Supports collection of 
different locations

IsA(), derivesFromA(), 
IsReadOnly(),…

Note access to address Defines interface for 
manipulating locations

Supports reinterpretation of 
data

Postpone resolution 
of contents(type) of 
address

Support evaluation of 
multiple perspectives on 
one location

Simulates different views of 
processor
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The iterative evaluation conducted by the disassembler is supported 
by the use of subtypes (within a class hierarchy) to represent a location, 
whose identity is to be determined through the process of elimination. 
Essential functions of the AbsoluteLocation interface are summarized  
in Table  7.5 and include: Clone(), which makes a copy of the object; 
IsKnown(), which returns a Boolean, affirming (or denying) the classi-
fication of location; IsA(), which returns a Boolean, affirming (or deny-
ing) ancestry; HasAddress() and IsReadOnly(), which return Boolean 
values, affirming the need for (or the lack of a need for) physical storage, 
respectively; and GetClass(), which returns an enumerated value, iden-
tifying type. Multiple GetAs() and Set() functions support evaluation of 
multiple perspectives on one location.

The middle tier of descendant classes defines the need for storage: 
none for constants; physical storage for variables. These derived classes 
provide additional information on the value but remain abstract because 
Clone() cannot be not defined without more precise knowledge of type. 

AbsoluteLocation

AbsoluteConstant

AbsoluteConstantInt AbsoluteConstantFloat AbsoluteAddress AbsoluteRegister

AbsoluteVariable

FIGURE 7.3 Disassembler type hierarchy.

TABLE 7.5 AbsoluteLocation Interface: Key Virtual Functions

Function Name Purpose Details
Clone Makes copy Uses this pointer
IsKnown True only if type known Default false
IsReadOnly True only if no storage Default true
HasAddress True only if needs storage Default false
GetClass Returns class enum value Default unknown
IsA Verify type test Default: compare to unknown
DerivesFromA Verifies ancestry Default: invoke IsA
Set Supply value for address Default NOP
GetAs Translation between 

various address types
Default return 0
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Additionally, as shown in Example 7.16, the AbsoluteVariable class 
redefines the inherited NOP set functions as pure virtual, forcing descen-
dant classes to define their own set functions. Why? Descendant classes 
gain enough type information to implement set methods. For utility, child 
classes of the AbsoluteVariable class must provide a set function to 
identify the result of type interpretation.

As shown in Example 7.17, those descendant classes that define Clone() 
are no longer abstract. Not until the type of variable or constant is known 
can the derived class provide an implementation for Clone(). Why? Data 
cannot be copied without size information! The disassembler code can 
instantiate objects from this tier of classes and hold the addresses of these 
objects in base (AbsoluteLocation) pointers.

Example 7.16: Derived Classes Still Abstract: C++ Code
// abstract base class for constants
// remains abstract because Clone() not defined
class AbsoluteConstant: public AbsoluteLocation
{
 public:
 virtual ~AbsoluteConstant() {}

 virtual bool IsKnown()   const {return true;}
 virtual Class GetClass()  const {return constant;}
 virtual bool IsA(Class C)  const {return (C == constant);
}
 virtual bool DerivesFromA(Class C) const
  {return IsA(C) || AbsoluteLocation::DerivesFromA(C);}
};

// abstract base class for variables
// remains abstract because Clone() not defined
// pure virtual set() functions
//  => force each derived class to define set()
class AbsoluteVariable: public AbsoluteLocation
{
  public:
 virtual ~AbsoluteVariable() {}

  // variables require memory so IsReadOnly overridden
 virtual bool IsReadOnly()  const {return false;}
 virtual Class GetClass()  const {return variable;}
 virtual bool IsA(Class C)  const {return (C == variable);}

 virtual bool DerivesFromA(Class C) const
  {return IsA(C) || AbsoluteLocation::DerivesFromA(C);}

 // plus various set(), each "=0;"
};
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Example 7.17: Derived Classes: Clone() Defined: C++ Code
// class NO LONGER abstract: Clone() defined
class AbsoluteConstantInt: public AbsoluteConstant
{ unsigned long value;
  public:
  AbsoluteConstantInt(unsigned long val): value(val) {}
 virtual ~AbsoluteConstantInt() {}

 virtual AbsoluteLocation* Clone() const
  {  return new AbsoluteConstantInt (*this); }
 virtual Class GetClass() const  {return constant Int;}
 virtual bool IsA(Class C) const
  { return (C == constantInt); }

 virtual bool DerivesFromA(Class C) const
  {return IsA(C) || AbsoluteConstant::DerivesFromA(C);}

 // + various GetAs() – retrieve object of correct size
};

// class NO LONGER abstract: Clone() defined
class AbsoluteConstantFloat: public AbsoluteConstant
{ float value;
  public:
 AbsoluteConstantFloat(float val): value(val) {}
 virtual ~AbsoluteConstantFloat() {}
 virtual AbsoluteLocation* Clone() const
  {  return new AbsoluteConstantFloat (*this);}
 virtual Class GetClass() const  {return constantFloat;}
 virtual bool IsA(Class C) const
  { return (C == constantFloat);}

 virtual bool DerivesFromA(Class C) const
  {return IsA(C) || AbsoluteConstant::DerivesFromA(C);}

  // + various GetAs() – retrieve object of correct size
};

// class NO LONGER abstract, represents processor register
//  Clone() and set() functions defined
class AbsoluteRegister: public AbsoluteVariable
{ RegHandle handle;
  public:
 AbsoluteRegister(RegHandle r): handle(r) {}
 virtual ~AbsoluteRegister() {}
 virtual AbsoluteLocation* Clone() const
  {  return new AbsoluteRegister (*this); }
 virtual Class GetClass() const  {return variable;}
 virtual bool IsA(Class C) const  {return (C == a Register) ;}

 virtual bool DerivesFromA(Class C) const
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  {return IsA(C) || AbsoluteVariable::DerivesFromA(C);}

 // plus various GetAs() & set(), each defined
};

// class NO LONGER abstract: Clone() and set() defined
// represents an absolute memory address
class AbsoluteAddress: public AbsoluteVariable
{ unsigned long address;
  public:
 AbsoluteAddress(unsigned long a): address(a) {}
 virtual ~AbsoluteAddress() {}
 virtual AbsoluteLocation* Clone() const
  {  return new AbsoluteAddress (*this); }
 virtual Class GetClass()  const {return memory;}
 virtual bool HasAddress()  const {return true;}
 virtual bool IsA(Class C) const  {return (C == memory);}
 virtual bool DerivesFromA(Class C) const
  {return IsA(C) || AbsoluteVariable::DerivesFromA(C);}

 // plus various set(), each defined
};

7.6.1  Virtual Function Table

Table 7.2 represented the virtual function table, also known as vtab, gener-
ated by the compiler for each class in Example 7.3, as revised with func-
tions tagged as virtual in Example 7.5. In the FirstGen/SecondGen/
ThirdGen example, there was one additional virtual function in each 
descendant class so there was one additional entry in each descen-
dant class vtab. In the Disassembler example, not counting SetAs and 
GetAs functions, there are eight virtual functions in the base class 
AbsoluteLocation. Thus, there are at least eight corresponding entries 
in each subtype vtab. Function entries are ordered within the table so that 
all classes in the class hierarchy can use the same offset for a specific func-
tion name. For example, assuming that function addresses are laid out 
in an order corresponding to function declaration, the Boolean function 
IsKnown() is always the third entry in the class vtab, for all classes in the 
AbsoluteLocation class hierarchy. Hence, when the compiler encoun-
ters a function invocation for IsKnown(), the compiler may equate this 
function invocation with an offset of 8 bytes (offset of 0 for first function; 
offset of 4 for second function; etc.) into the class vtab.

When a class designer defines a child class, the compiler copies the par-
ent vtab over as a default vtab for the child class. For each inherited virtual 
function that the child redefines, the compiler updates the corresponding 
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entry in the child class vtab so that it contains the address of the child class 
method. Overridden functions should be evident in Tables 7.6 through 7.9, 
the vtabs for the dissembler example.

The dictum, relevant to C++ and C#, once virtual ALWAYS virtual 
makes sense. When a function is defined as virtual, it will be virtual in all 
descendant classes. Why? Polymorphic calls are made through a base class 
pointer (or reference). The compiler checks the base class for function acces-
sibility and form and will then determine if the call is virtual or not. If it is, 
the compiler generates the extra instructions needed to extract an appro-
priate function address from the vtab at runtime. It does not matter if the 
derived class then fails to declare the function virtual: the derived class 
already has an entry in its vtab, initialized with the base class function 
address if it is not overridden. Although it is not necessary in C++ to label 
an inherited virtual function as virtual, design guidelines recommend 
using the keyword virtual so that class designs are as self-documenting as 
possible. C# code is clearer than C++ because designers must use the key-
word override when redefining an inherited virtual function.

TABLE 7.6 AbsoluteLocation Virtual Function Table (vtab)

Table Entry Virtual Function Address (Class Definition)
Offset 0 ~AbsoluteLocation() AbsoluteLocation::

Offset 4 AbsoluteLocation* Clone() Undefined: no address

Offset 8 bool IsKnown() const AbsoluteLocation::

Offset C bool IsReadOnly() AbsoluteLocation::

Offset 10 bool HasAddress() AbsoluteLocation::

Offset 14 Class GetClass() AbsoluteLocation::

Offset 18 bool IsA(Class C) AbsoluteLocation::

Offset 1C bool DerivesFromA(Class C) AbsoluteLocation::

TABLE 7.7 AbsoluteConstant Virtual Function Table (vtab)

Table Entry Virtual Function Address (Class Definition)
Offset 0 ~AbsoluteConstant() AbsoluteConstant::

Offset 4 AbsoluteLocation* Clone() Undefined: no address

Offset 8 bool IsKnown() const AbsoluteConstant::

Offset C bool IsReadOnly() AbsoluteLocation::

Offset 10 bool HasAddress() AbsoluteLocation::

Offset 14 Class GetClass() AbsoluteConstant::

Offset 18 bool IsA(Class C) AbsoluteConstant::

Offset 1C bool DerivesFromA(Class C) AbsoluteConstant::
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Design decisions may be difficult. Design variants often imply different 
effects. To clarify impact, Table 7.10 summarizes the key similarities and 
differences of function name reuse. The choice between inheritance and 
composition often rests on the importance of type extensibility versus the 
need to avoid fixed overhead and to filter interface changes.

Polymorphic functionality, via a common interface, supports type 
extension and usually justifies the overhead of inheritance. If applications 
are likely to require heterogeneous collections then inheritance is an obvi-
ous choice. However, if the base class cannot provide a stable interface, 
then a robust design employing polymorphism is unlikely. In contrast, 
a wrapped interface, via composition, buffers the client from interface 
modifications. As repeatedly recommended, document whatever design 
choice(s) are made.

Polymorphism is a key object-oriented construct. Polymorphic objects 
yield different behavior by postponing function resolution until run-
time. Essential to such design is the use of virtual functions. Compilers 
use hidden virtual function tables (vtabs) to retrieve appropriate func-
tion addresses at runtime. Polymorphic designs are flexible, promote 

TABLE 7.8 AbsoluteConstantInt Virtual Function Table (vtab)

Table Entry Virtual Function Address (Class Definition)
Offset 0 ~AbsoluteConstantInt() AbsoluteConstantInt::

Offset 4 AbsoluteLocation* Clone() AbsoluteConstantInt::

Offset 8 bool IsKnown() const AbsoluteConstant::

Offset C bool IsReadOnly() AbsoluteLocation::

Offset 10 bool HasAddress() AbsoluteLocation::

Offset 14 Class GetClass() AbsoluteConstantInt::

Offset 18 bool IsA(Class C) AbsoluteConstantInt::

Offset 1C bool DerivesFromA(Class C) AbsoluteConstantInt::

TABLE 7.9 AbsoluteConstantFloat Virtual Function Table (vtab)

Table Entry Virtual Function Address (Class Definition)
Offset 0 ~AbsoluteConstantFloat() AbsoluteConstantFloat::

Offset 4 AbsoluteLocation* Clone() AbsoluteConstantFloat::

Offset 8 bool IsKnown() const AbsoluteConstant::

Offset C bool IsReadOnly() AbsoluteLocation::

Offset 10 bool HasAddress() AbsoluteLocation::

Offset 14 Class GetClass() AbsoluteConstantFloat::

Offset 18 bool IsA(Class C) AbsoluteConstantFloat::

Offset 1C bool DerivesFromA(Class C) AbsoluteConstantFloat::
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substitutability, and support heterogeneous collections but incur the over-
head of runtime binding. Software maintainability is improved by its use 
of a common interface, support of type extension, and “automatic” type 
resolution. However, polymorphism is not free. Extra instructions must 
be executed at runtime to support the indirect jump needed for runtime 
resolution. Most importantly, dynamic function calls cannot be inlined.

7.7  LANGUAGE DIFFERENCES
Software development should start at a high level, moving from require-
ments to modeling, to architecture, to design, and then to implementation. 
By retaining an abstract perspective as long as possible, software may be 
developed with minimal dependencies on language features. Unfortunately, 
especially when dealing with legacy systems, software design may not 
always proceed independent of the implementation language. In this sec-
tion, we examine some language details that may impact design.

7.7.1  Type Introspection

Polymorphism removes need for “manual type checking” as a means 
to select functions at runtimes. Appendix C traces the design iterations 
of an inventory system dependent on type checking. Please consult this 
appendix to understand fully the overhead of type checking, from a 

TABLE 7.10 Function Name Reuse
Overloaded Number, type and order of parameters varies

Selection based on function signature
Parameters drive selection

Constructors often overloaded
Overloaded for type => Generics

Overridden Same name, same signature, same class hierarchy
Return type NOT part of function signature

May or may not be dynamically bound (C#, C++)
Redefines inherited functionality

Masks parent functionality
May NOP inherited method

Virtual Same name, same signature, same class hierarchy
Return type NOT part of function signature

Dynamically bound
Requires vtab == overhead of indirect call
Type of this pointer not known until run-time
Prevents function inlining

May be overridden in derived classes
Extensible 
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design perspective. After following this comprehensive example, readers 
should appreciate the built-in support for polymorphism as provided by 
OOPLs.

What if legacy code did not anticipated the need for subtype extension 
and did not incorporate virtual functions into a widely used class hierar-
chy? In Java, there is no problem because all functions are dynamically 
bound so there is no need to label functions as virtual. But such an omis-
sion impacts C++ and C# code since both languages use static binding as 
the default. Nonetheless, in C++ and C#, type extension is still possible. 
A common solution is the simulation of dynamic binding. Essentially, 
the application programmer must check for (sub)type and then select the 
appropriate function.

Type introspection is the examination of object type at runtime via 
a language construct. C++ provides the dynamic_cast operator, Java 
provides isa, and C# provides as. Considered a tool for application 
programmers, type introspection often exposes poor design or failure to 
model system requirements for extensibility.

The tedious and error-prone nature of forced type checking is illus-
trated in Examples 7.18 and 7.19: a lengthy switch (or a multi-arm if-else) 
statement is needed to check for all possible subtypes. Type extraction is 
not implicit, as it is for virtual functions. Wherever the application pro-
grammer must select functionality based on subtype, this process of elim-
ination must be repeated—not an extensible approach. If a new subtype is 
created, every place that performs type checking must add another arm to 
the if-else or switch statement. Some improvement may be realized when 
type checking code is isolated in a function but such improved functional 
decomposition does not mitigate the difficulty of ensuring all updates in a 
large software system.

Type checking code in an application implies inadequate design. The prin-
ciples of OOD have been compromised. Why? Forced to verify type before 
action, an application programmer thus assumes the burden of state control 
that should have been internalized. Software that must include type check-
ing is not maintainable. Application programmers must remember to check 
for subtype in all appropriate places: a vulnerable proposition in the modern 
era of large-scale, long-lived software systems. Say subtype extraction is per-
formed in 15 different places of a software system. What happens if a new 
descendant is added to the type hierarchy? This type extension forces an 
update in those 15 different places. What happens if one update is missed? 
Software becomes inconsistent and possibly unreliable.
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Testing type, incrementally, as shown in the multi-arm if statement of 
Examples 7.18 and 7.19, is inefficient. If one must exclude 8 subtypes before 
a match is found on the 9th subtype, then 9 dynamic casting operations 
(language independent) are required. Excessive type verification can be 
ameliorated somewhat by building whoami functionality into the base 
class. This approach was illustrated previously in Example 7.3, where the 
whoami function, as defined in the base FirstGen class, returned the 
value of the data member level, as set in each descendant constructor. 
The key idea is that one call to a whoami function returns the identity 
of the subtype, typically a number (or an enumerated value for readabil-
ity). The application programmer can then use that number and a static 
cast to reclaim type, as shown in Example 7.20, thereby reducing the num-
ber of casts to one. The whoami design fix effectively reduces the cost of 
determining type but responsibility for correct usage still resides exter-
nally. Type-checking methods cannot compensate for poor maintainabil-
ity due to a lack of virtual functions.

Example 7.18: Type Extraction in C++
class Base
{ public:
 virtual void surprise();

 // NOT virtual => statically bound call
  // => even if overridden, always yields Base functionality
 void process();
};

// APPLICATION CODE: heterogeneous collections
//  virtual function surprise() == automatic type checking
//  non-virtual function process() == no type checking
//  => manual type-checking if Derived behavior desired
// when function is not virtual in the Base class

// process() non-virtual => forced type checking
// dynamic_cast –
// run-time type check of object whose address held in pointer
// pointer value returned if type matches
// zero if cast fails

for (int i=0; i<100; i++)
{
  // elegant: compiler sets up dynamic invocation
  HeteroDB[i]->surprise();

  // clunky, tedious, not extensible
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  if (Child1* ptr = dynamic_cast<Child1*> (HeteroDB[i]))
 ptr->process();
   else if (Child2* ptr = dynamic_cast<Child2*> (HeteroDB[i]))
 ptr->process();
   else if (Child3* ptr = dynamic_cast<Child3*> (HeteroDB[i]))
 ptr->process();
  …   // for all relevant subtype variants, test cast
   else … // catchall: process unmatched subtype
}

Example 7.19: Type Extraction in C#
// same setup: Base class with virtual surprise()
//   and non-virtual process()
// APPLICATION CODE
for (int i=0; i<100; i++)
{ // elegant: compiler sets up dynamic invocation
 HeteroDB[i].surprise();

 // clunky, tedious, not extensible
 if (HeteroDB[i] is Child1)
 { Child1 x = HeteroDB[i] as Child1);
  x.process();
 }
 else if (HeteroDB[i] is Child2)
 { Child2 x = HeteroDB[i] as Child2);
  x.process();
 }
 else if (HeteroDB[i] is Child3)
 { Child3 x = HeteroDB[i] as Child3);
  x.process();
 }
 …  // for all relevant subtype variants, test cast
 else …  // catchall: process unmatched subtype
}

Example 7.20: Type Reclamation with Static Cast in C++
// virtual whoami() in class hierarchy yields identifying int
//  myObj is base class pointer, just like HeteroDB[i]
int typeId  myObj->whoami();

switch  typeId:
{ case 0: SubType0  ptr = static_cast<SubType0*> (myObj);
  ptr->process();
  break;
 case 1: SubType1  ptr = static_cast<SubType1*> (myObj);
  ptr->process();
  break;
 …
 case 8: SubType8  ptr = static_cast<SubType8*> (myObj);
  ptr->process();
}
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For completeness, we next examine two anomalies particular to C++: 
destructor invocation and accessibility. Actually, once the compiler’s 
actions are understood, neither aberration turns out to be an anomaly: the 
compiler generates code consistently.

7.7.2  C++ Virtual Destructors

Without language support for implicit deallocation, C++ relies on pro-
grammer expertise and convention to properly handle heap memory. 
Common C++ guidelines for class design, with respect to memory man-
agement, were discussed in Appendix B as well as Chapters 4 and 5. We 
complete this examination by a brief look at destructors in a class hierar-
chy when derived classes allocate heap memory.

Destructors fire in reverse order of constructors, from derived to 
base. Since the compiler patches in destructor calls, invocation is not 
the responsibility of the application programmer. Yet, as noted ear-
lier, a C++ class designer must carefully specify cleanup details when 
memory is internally allocated in a class. To avoid memory leaks and 
data corruption, the class designer must make an explicit decision about 
copy semantics: suppress copying or support deep copying. That is not all, 
however! Correct memory management becomes more complex when 
heterogeneous collections are used and derived classes allocate heap 
memory.

When an object goes out of scope and the object is of type Base, only 
the Base destructor is invoked. When an object goes out of scope and the 
object is of type Derived, first the Derived destructor is invoked and then 
the Base destructor is invoked. The Base destructor is implicitly invoked 
from the Derived destructor. When the delete operator is invoked through 
a handle, if the handle is of Base type, only the Base destructor invoked. 
If the handle is of Derived type, both Derived and Base destructors are 
invoked.

When a Base class handle goes out of scope, with a statically bound 
destructor call, the Base class destructor is invoked. When a Base class 
pointer contains the address of a Base object, there is no problem. What 
if the Base class handle holds the address of a Derived object? The com-
piler does not track the effect of the assignment; the compiler resolves calls 
based on the type of the pointer. Hence, with static resolution the Base 
class destructor is invoked and the Derived class destructor is not. Failure 
to invoke the Derived class destructor is not a problem unless the Derived 
class allocates dynamic memory. In which case, there is a memory leak. 
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Why? The Derived class destructor was not invoked so the deallocation 
code in the Derived destructor did not run.

Consider Example 7.21. Test this code yourself. When delete is called 
on the base class pointer b, the call to the destructor is statically bound so 
only the Base class destructor fires: the 500 integers allocated on the heap 
for the Derived class object thus leak, through no fault of the application 
programmer. Memory leaks arise because the Derived class allocates heap 
memory but the Derived destructor was not invoked.

Example 7.21: C++ Memory Leak: Only Base Destructor Called
// class hierarchy: Base ok; Derived class allocates heap memory
class Base
{ …
  public:
 Base() { … } // #A
 ~Base() { … }
 …
};

class Derived: public Base
{ int*  ptr;
 int  size;
 …
 // copying suppressed
  public:
 Derived(int aSize = 900)
 { size = aSize;
  ptr = new int[size];  // heap memory allocated
  cout << "allocated" << size << "ints";
 }

 ~Derived()
 { delete[] ptr;   // deallocate heap memory
  cout << "deallocated" << size << "ints";
 }
 …
};

void hiddenProblem() // Application code correct BUT MEMORY LEAK
{ Base*  b = new Derived(500);
 …
 // Destructor call statically resolved:
 // Base destructor non-virtual
 //  compiler resolves call based on type of pointer b
 // Base destructor invoked: 500 ints leak
 //  => Derived destructor not invoked!!   

=> MEMORY LEAK
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 delete b; // #B destructor invoked

 Base*  db[10];

 for (int k = 0; k < 10; k++)
  db[] = new Derived;

 for (int k = 0; k < 10; k++)
  delete db[k]; // #C destructor invoked
 return;
}

Base class pointers often hold addresses of Derived class objects. In 
statements #B and #C of Example 7.21, the application programmer cor-
rectly calls delete for each heap object. Since the destructors are stati-
cally resolved, only the Base class destructor is invoked: the Derived 
destructor is not invoked through a Base handle. Big problem! The appli-
cation programmer has followed all the rules (match every new with a 
delete; deallocate when ownership is surrendered but not transferred) 
and yet there is an invisible memory leak!

How does the class designer ensure the invocation of the derived 
destructor when delete is invoked with a base class pointer? Through 
dynamic resolution of destructor invocation. The setup is the same as 
with other virtual functions. A Base class pointer may hold the address of 
Derived object. Thus, the (sub)type of the object whose address is held in 
the base class pointer must be examined at runtime to trigger the execu-
tion of the proper destructor. The firing of a Derived destructor yields the 
subsequent execution of the Base destructor.

The fix is easy: make the Base destructor virtual. That is all! We do 
not take the space needed to replicate Example 7.21. All code is the same 
except the keyword virtual is placed in front of the Base class destruc-
tor in statement #A. Hence, when "delete b" (in statement #B) or 
"delete db[k]" (in statement #C) is compiled, the compiler patches 
in an indirect call to the destructor via the virtual function table. As 
with other dynamically invoked calls, the choice of destructor will be 
postponed until runtime. If the Base class pointer holds the address of a 
Derived class object, the Derived class vtab will yield the address of the 
Derived class destructor, triggering a call to the Derived destructor first, 
followed by a call to the Base class destructor. Rerun the application 
code in Example 7.21, once the Base class has been defined with a virtual 
destructor. No memory leaks!
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7.7.3  Accessibility of C++ Virtual Functions

In Chapter 6, we discussed the possibility of suppressing an inherited inter-
face. C++ allows direct suppression: a class designer may redefine a public 
inherited method as private or protected (as well as redefining a protected 
inherited method as private). Java and C# do not allow such “closing 
down” of a class. On the one hand, the approach taken by Java and C# 
might appear to be a simple syntactic constraint since a public inherited 
method could be redefined, still as public but with no meaningful func-
tionality. In this manner, an inherited interface could be effectively nar-
rowed, regardless of language.

On the other hand, consistent accessibility reduces code complexity and 
makes it easier to reason about control flow and so forth. Consider the inter-
play of accessibility and virtual functions in C++. Example 7.22 defines a class 
hierarchy with both virtual functions and reductions in inherited accessibility.

Example 7.22: C++ Derived Class: Partial Suppression
// virtual functions in base
// derived class suppresses part of inherited interface
class Diva
{ …
  public:
 virtual void sing() {…}
 virtual void hum() {…}
 …
};

class Shy: public Diva
{ …
 // public inherited virtual function SUPPRESSED
 virtual void sing() {…}
  public:
 // public inherited virtual function overridden
 virtual void hum() {…}
 …
};

The class definitions in Example 7.22 suggest that an application pro-
grammer may call two functions, sing() and hum(), through a base class 
object but only one, hum(), through a derived class object. Yes, that is true. 
Example 7.23 provides sample application code. All code except statement 
#D compiles. Since sing() is a private method in the Shy class interface, 
the call to sing() through a Shy object triggers a compilation error.
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Example 7.23: C++ Dynamic Invocation of a Private Function
Diva  b;
Shy  d;
b.sing(); // #A
b.hum(); // #B
d.hum(); // #C
d.sing(); // #D compiler error, Shy::sing() private

Diva* bPtr = &b;
bPtr->sing(); // #E
bPtr->hum();  // #F

bPtr = &d; // d Derived object; Derived::printMsg() private
bPtr->sing(); // #G
bPtr->hum();  // #H

What happens when calls to virtual functions are made through base 
class pointers? Remember that, to support dynamic binding, the compiler 
generates the extra instructions needed to extract a function address, at 
runtime, from the appropriate class vtab. The compiler looks only at the 
type of the pointer through which a function call is made. Thus, the com-
piler examines the base class, class Diva in Example 7.23, to match the 
invoked function with a declared function in the base class interface and 
to verify that it has public accessibility.

Virtual function sing() does have public accessibility in class Diva. 
Thus, all the function calls in statements #E through #H compile and 
execute. To the compiler, statement #G is no different than statement 
#E. What is the outcome? The private function Shy::sing() is executed 
at runtime. An application programmer has thus defeated a restricted 
interface!

The interplay of accessibility and dynamic binding, when an inherited, 
virtual function is suppressed, may seem counterintuitive. Once the com-
piler’s actions are analyzed, however, the software response is logical. The 
compiler resolves the legality of a call relative to the type of the handle 
through which the call is made. Then the compiler generates the code 
needed for dynamic function resolution (an indirect jump). The (sub)type 
of the object whose address is held in a base class pointer (reference) at 
runtime is immaterial at compile-time. This (sub)type is used at runtime 
to identify the appropriate vtab: accessibility is not rechecked at runtime. 
Put a simple output message in the class methods of Example 7.22 and test 
this code yourself!
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7.8  OO DESIGN PRINCIPLES
Once again, the open close principle (OCP) applies to our emphasis on soft-
ware maintainability. Polymorphism is used when a base type defines key 
functionality but defers complete implementation to descendant classes, 
or when variant behavior among subtypes is to be supported within a het-
erogeneous collection. As software evolves, the base class should be stable 
(closed to modification). Furthermore, the design of additional descen-
dant classes is expected (open for extension).

The Liskov Substitution principle (LSP) implies the power of hetero-
geneous collections. Any subtype can stand in for a base class object. 
Great variability can thus be achieved in stable software systems.

Open Close Principle (OCP)
A class should be open for extension and closed for modifi cation.

Liskov Substitution Principle (LSP)
Given a type T with a subtype S defined via inheritance, any object 
of subtype S can serve in place of an object of type T.

7.9  SUMMARY
This chapter examined and illustrated the functional impact of employing 
inheritance in software design, noting the major benefits of substitutabil-
ity and heterogeneous collections. Polymorphism provides tremendous 
support for the design of elegant and extensible software and thus, if prop-
erly used, improves software maintainability. Abstract classes were also 
illustrated. Using a real-world example, we demonstrated that careful and 
deliberate design uses abstract classes and polymorphism in a meaningful 
manner.

In this chapter, we took the unusual tact of explaining virtual function 
tables, and clarifying use via examples. Knowledge of this background process 
will surely aid the reader. We closed the chapter by looking at type introspec-
tion, a couple of subtle language differences and relevant design principles.

DESIGN INSIGHTS

SOFTWARE

Software maintenance enhanced by well-designed polymorphism
Heterogeneous collections, abstract classes, extensibility
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Dynamic binding provides flexibility at a cost:
Incurs the run-time overhead of an indirect jump
Prevents function inlining, an effective optimization

Static binding is efficient but rigid
Compilers process statements individually and do not track assignment
Type checking in client code implies inadequate design

MODELS

True power of inheritance is not structural reuse
Behavioral modification!

Inheritance versus composition
Type extension versus possibly reduced overhead
Polymorphism versus buffer for unstable interface
Substitutability versus flexibility

SOFTWARE DESIGN

Isolate code that is highly dependent on explicit type
whoami is a designed type extraction method

Reduces overhead of reclaiming type
Rests on external dependencies

Common interface required for heterogeneous collections
Abstract classes
Interface construct

Polymorphism
Promotes type extension 
Suggests software maintainability
Removes need for external type validation

Polymorphism is NOT free
run-time binding overhead
unable to inline functions

DOCUMENTATION

Explicitly record design decisions
Evaluate expectations for

Substitutability, polymorphism, type extension

CONCEPTUAL QUESTIONS

 1. What are the three common forms of polymorphism?

 2. How is the notion of type relevant in each form of polymorphism?

 3. How does each type of polymorphism impact software maintainability?

 4. What is the essential difference between static and dynamic binding?
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 5. Describe the different effects of static and dynamic binding.

 6. Why would static binding be a reasonable choice for default behavior?

 7. When would a heterogeneous collection be useful?

 8. What does the phrase “once virtual, always virtual” mean?

 9. What is an abstract class, and how is it used?

 10. Why is tracking (sub)type not desirable?

 11. Define type extensibility.
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C h a p t e r  8

Design Alternatives 
and Perspectives

Design records choice. Frequently, multiple solutions exist for a 
given problem. How does one recognize an optimal, or even a prefer-

able, design? How does a class designer balance short-term and long-term 
costs and benefits?

To highlight and explain design evaluation, we contrast different design 
solutions in this chapter. We begin by examining the class construct from 
design and use perspectives. Bjarne Stroustrup, the architect of C++, enu-
merated several different design types of classes, and we illustrate some 
of them here to identify motives for selection and clarify terminology. 
We then examine different inheritance designs, as compiled by Timothy 
Budd, a noted author in OOD, again identifying motives for selection and 
use of each different type of design.

The latter half of the chapter returns to the question of design choice: 
when is inheritance preferred over composition? The discussion here, 
however, is rooted in the necessity of modeling multiple inheritance 
when a language does not support such a design. Various approaches to 
simulating multiple inheritance are examined and then contrasted to the 
provision of multiple inheritance in C++. The chapter concludes by sum-
marizing characteristics relevant when analyzing design options.
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8.1  COMPARATIVE DESIGN
Bits are bits and loops are loops. Why care about variability in structure if 
the resulting behavior is the same? Reasons abound but one of the stron-
gest design incentives is software maintainability. Software evolves, that is, 
changes over time. Some changes may be obvious, such as user interface 
modifications. Other changes may not be readily apparent, such as perfor-
mance under heavy load, porting software to a new platform, augmenting 
error processing, or incorporating a data mining algorithm. No matter 
the modification, software that conforms to the modeled and documented 
requirements is easier to modify than code that is not.

Isolation and comparison of design options is part of deliberate design, 
an approach that evaluates immediate use and anticipates change. By 
clarifying intent and effect, one can more easily evaluate trade-offs, such 
as short-term versus long-term use, efficiency versus generality, etc. We 
examine multiple design approaches and variants, including the applica-
tion of and simulation of inheritance.

8.2  CLASS DESIGN TYPES
Design intent affects modeling, use, and reuse. Stroustrup identified differ-
ent class designs and their utility in OOD (Stroustrup, 2000). Using these 
designs and clarifying commonly used terms, we examine the following 
class design types: concrete, abstract, node, delegate, interface (wrapper), 
and handle. Each class design type implies a distinct use and/or form.

8.2.1  Concrete Class

A concrete class is the representation of a relatively simple concept with 
all operations defined to support that type. In early object-oriented 

CHAPTER OBJECTIVES

• Define and illustrate common class design types
• Concrete, abstract, node, wrapper, delegate, handle

• Examine common inheritance design intents
• Specialization, specification, extension, limitation, generalization

• Contrast composition and inheritance
• Polymorphic subobjects

• Discuss multiple inheritance
• Illustrate and analyze design alternatives to multiple inheritance
• Identify relevant OOD principles
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programming (OOP), common examples of concrete classes included vec-
tor, date, and complex number classes. Currently, these types are often 
built-in (or provided via libraries). Recall the concrete minMaxRec class 
from Chapter 6: its utility is confined; its design simple. Concrete classes 
have a clear, targeted use and, typically, constrained functionality.

A concrete class is immediately usable because its class designer provides 
a fully functional, complete interface. Design is streamlined because there 
is a one-to-one correspondence between interface and implementation. 
Member function calls are statically bound; consequently, function calls 
may be inlined. Concrete classes are thus considered efficient.

Concrete classes may be considered standalone type definitions. Design 
and effect should be understood in isolation, without reference to other 
classes. Inheritance is not anticipated. Some OOPLs provide the syntacti-
cal means to suppress inheritance. To prevent a class from being used as 
a base for inheritance in Java, one labels a class 'final'; in C#, one labels 
a class 'sealed'. C++98 provides no keyword for directly suppressing 
inheritance, but could support a workaround via design—a tedious and 
less maintainable solution, as detailed below.

By defining all constructors private, a class designer prevents instan-
tiation at both the public (application programmer) level and the pro-
tected (descendant) level. Inheritance is suppressed because a child class 
is unable to invoke any parent constructor. Application use is also sup-
pressed: no object can be directly instantiated. The class designer must 
then define a public, static method that can be called through the class 
name. The method must be static because, without a public constructor, 
the client is not able to instantiate an object (through which to invoke 
public class methods). As a class method, this static function can access 
private data and functionality and thus instantiate an object and return 
its address to the caller. This approach is essentially the Singleton pattern, 
a collapsed version of the Factory pattern that is used to control instan-
tiation (Gamma et al., 1995). C++11 provides a special identifier 'final' 
that, when used, forces the compiler to suppress redefinition.

Contrast the clarity of using a language construct to suppress inheri-
tance, as shown in Example 8.1, with the use of a more complex design to 
control instantiation, as shown in Example 8.2. Note that the C++ solution 
does more than prevent inheritance; it forces instantiation through a pub-
lic static method—an unnatural process best reserved for the Singleton 
pattern. Thus, in legacy code, C++ programmers often did not attempt to 
suppress inheritance.
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Example 8.1: Suppressing Inheritance in C# and Java
// C#    // Java

sealed class Childless  final class Childless

{ … }    { … }

Example 8.2: Suppressing Inheritance via Design in C++
// failure to provide public and protected constructors
// => class unusable except through its own public interface
// => first call must be through static method getInstance
class Childless
{ // private constructor, copy constructor, overloaded =
 Childless();
 Childless(const Childless&);
 void operator=(const Childless&);

 public:
  // call through class name to get handle to object
  static Childless* getInstance();
  …
  // public functions
};

A concrete class has no relationships with other classes (other than, 
possibly, simple composition). Programming by Contract details are thus 
fairly constrained. The interface invariant clearly specifies the intended 
use of the class, as defined by the public functions. The implementation 
invariant records assumptions, preferences for internal data structures, 
and design priorities such as efficiency or maintainability.

8.2.2  Abstract Class

In contrast to a concrete class, whose design yields immediate utility, an 
abstract class is a placeholder for extensibility and is not immediately 
usable. Inheritance is anticipated; in fact, it is required for any function-
ality to be exercised. The base class defines a common interface for the 
class hierarchy. The base class need not implement any functionality for 
its declared member functions, although it is possible for the base class 
to define default or minimal behavior. Abstract classes are designed for 
generality, for heterogeneous collections. Common examples of abstract 
classes are Shape, Vehicle, Toy, Ad. In the previous chapter, we saw the 
AbsoluteLocation class as an abstract class that established and 
enforced a uniform interface. Contrast Figure 8.1 with Figure 8.2. The two 
UML class constructs look the same, except the name of an abstract class 
is italicized.
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We covered abstract classes in Chapter 7 but expand our discussion 
here. Abstract classes define a common interface that supports the use 
of heterogeneous collections. Implementation of functionality is typically 
deferred to derived classes. A deferred method is a function that has been 
declared but not defined in a class. How could an invocation of a deferred 
method be resolved? It cannot: there is no possible translation to a JUMP 
statement. Without a function implementation, there is no function code 
to lay out in memory and thus no address associated with the function. 
A compiler cannot then resolve a function invocation. To forestall such 
errors, the compiler prevents object instantiation from an abstract class.

Later edition OOPLs provide the keyword abstract so that software 
designers can clearly label abstract classes, thus increasing readability and 
software maintainability. As shown in Chapter 7, with or without a key-
word, design techniques can prevent the instantiation of objects from a 
class meant to be abstract. In a class design, if no constructor is public 
but at least one constructor is protected, then only a derived child can 
invoke a constructor from that class. Hence, inheritance is required. If a 
class contains at least one function that is declared but not defined, then 
the class is abstract. In other words, if a class contains a method that has 
no corresponding implementation code, then the method is abstract (or 
pure virtual). Since there is no means to execute an abstract function then 

FIGURE 8.1 Concrete class in UML.

FIGURE 8.2 Abstract class in UML.
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one cannot instantiate an object from a class with an abstract method. 
Again, contrast the clarity of using a self-documenting  language keyword 
to define an abstract class, as shown in Example 8.3, with a design solution 
to define abstract classes, as shown in Example 8.4.

Example 8.3: Abstract Classes in C# and Java
abstract class Vehicle
{ … }

Example 8.4: Abstract Classes in C++
// no keyword abstract => at least one method must be pure virtual
class Toy
{ public:
 virtual bool safe() = 0;
 …
};
// no keyword abstract
// => protected constructor, no public constructor
class Vehicle
{
 protected:
 Vehicle();
 public:
 …

};

An abstract class defines the interface for its descendants and estab-
lishes a dependency on descendants. Thus, the interface invariant for an 
abstract class must note the expected use (and any restrictions) of the pub-
lic interface. The implementation invariant must describe the responsibili-
ties to be met by descendant classes, the intended utility of polymorphic 
methods, and any default behavior that the abstract class may provide.

8.2.3  Node Class

In between the concrete and abstract class design types lies an intermedi-
ate class design type. A node class sits in the middle of a class hierarchy: 
it is neither the root (base) class defining the interface for the class hier-
archy nor is it a terminal leaf node that is not intended for further deriva-
tion. As a middling node, a node class relies on the services provided by 
the base class or the interface defined by the base class. However, a node 
class implements some services itself, for the application programmer or 
descendant classes. Thus, inheritance is anticipated but not immediately 
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required. Tied to both parent and child, a node class increases coupling 
and also decreases cohesion because it expands a type definition across 
multiple classes.

A node class may itself be abstract but further refines the abstract 
notion of type as defined by its parent. Commonly, node classes provide 
some (possibly default) services. This type of “mix” design increases soft-
ware complexity so the design contributions of a node class should be war-
ranted. An intuitive example is an Aircraft class that extends a Vehicle class 
(Aircraft is-a Vehicle) and serves as parent for Jet, Fighter, PropPlane classes. 
Similarly, a Watercraft class could extend the Vehicle class (Watercraft is-a 
Vehicle) and serve as parent for Sailboat, Freighter, Yacht classes. In the dis-
assembler example from Chapter 7, the node classes AbsoluteConstant 
and AbsoluteVariable were descendants of AbsoluteLocation and 
parents of AbsoluteConstantInt and AbsoluteAddress, respectively, 
as previously noted in Figure 7.1.

A node class must clearly document inherited and extended data and 
functionality. The implementation invariant must distinguish between 
utility code and public, possibly deferred, methods. Assumptions, design 
limitations, and prioritization of qualities (efficiency, extensibility, etc.) 
should be recorded.

8.2.4  Wrappers

The meanings of concrete, abstract, and node classes are clear and their 
applicability is straightforward. In contrast, the class design types called 
wrapper, delegate, and handle are not clearly distinguished from each 
other. These terms are often used interchangeably when their meaning 
and intent differ. The critical design differences are succinctly noted here. 
A wrapper defines and controls a consistent interface that may be layered 
over one of multiple implementations. A delegate serves to provide func-
tionality; it may be replaceable or polymorphic and thus provides flex-
ibility in subordinate behavior. A handle promotes access to target data 
without being tied to a specific object or data set.

Wrappers are what the name implies: an extra layer or coating. A wrap-
per class layers an interface over an existing class (or set of classes) to iso-
late users from an unstable class or interface. As an added interface layer, 
wrappers are commonly used to buffer application code from change. 
Although they may provide extra functionality, wrappers primarily serve 
to maintain a stable interface. Wrappers streamline the reuse of legacy 
code by defining a more modern or palatable interface.
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A wrapper class provides a shell to encompass an existing class, and 
thus promotes software maintainability. By wrapping the interface of pro-
prietary software, a wrapper class isolates application code from change. 
If a new version of the wrapped code is released with a modified interface, 
the internals of the wrapper class may need to be modified but its interface 
can usually stay the same. Thus, application code need not be modified 
immediately. For any code, a wrapper class can provide a more uniform, 
general, or simpler interface. This extra layer removes dependencies on 
wrapped code and decreases coupling, which is especially desirable when 
the wrapped code is unstable. Hence, if used well, this type of class design 
reduces software complexity.

Wrapper classes are also known as interface classes and are a common 
solution in Design Patterns, e.g., Façade (Gamma et al., 1995). Wrappers 
promote the reuse of existing classes for new or modified applications. 
Wrappers may redefine interfaces and modify class functionality or acces-
sibility to meet client needs. An effective reuse of code, wrappers may set 
up a uniform means to customize code for different clients.

Although counterintuitive, wrappers may also be used to expose an 
interface. Say that a class designer wishes to reuse a class with a protected 
interface but does not wish to support an inheritance relationship. How can 
one gain access to the protected interface if composition is used in place of 
inheritance? Use a wrapper class to open up the protected interface. This 
approach is especially useful when simulating multiple inheritance with 
single inheritance and composition, as will be seen in Example 8.17.

Typically, wrappers are designed using composition: the wrapper 
has-a subobject and wraps up the interface for the subobject class. The 
interface invariant details of a wrapper class are similar to those of any 
class: describe core utility provided and restrictions on use. The imple-
mentation invariant should explain what is being wrapped and why. Is 
the wrapped code unstable, proprietary, or dated? What dependencies 
are hidden? How does the wrapper streamline use for the client? Record 
expectations with respect to maintenance and/or performance.

Consider an application that must support multiple queries across a 
stable collection of numeric values. It is expedient to reuse an existing con-
tainer type. Figure 8.3 illustrates a modQuery wrapper class that wraps 
a priority queue alongside an integer that tracks the number of queries. 
The wrapper provides a public interface that retrieves (but does not delete) 
min, max, and random values. By wrapping a priority queue, the mod-
Query class suppresses unwanted public functions, such as clear() and 
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isEmpty(), while supporting the retrieval of data. The type of internal 
container manipulated by the modQuery class is irrelevant to the appli-
cation programmer. If the modQuery class were to replace the priority 
queue with a stack or a simple array, the client would not know or care.

8.2.5  Delegate

A delegate class provides functionality and promotes flexibility. 
Delegates are often held as subobjects inside another class, and may 
be instantiated internal or external to the containing class. A delegate 
can be replaced or varied without impacting the external interface. 
Figure 8.4 illustrates an idVerifier delegate class. The delegate sup-
ports a public interface that provides validation of proper ID initializa-
tion as well as age and ID verification. Consider a class that desires an 
ID parameter but does not want to reimplement verification, valida-
tion, or age requests. An idVerifier instance may be used as a del-
egate: forward all requests through the delegate to avoid the unneeded 
cost of reimplementing known functionality (see Example 8.5).

Delegates provide functionality to an enclosing class, thus isolating the 
application code from change: the enclosing class can easily modify or 
replace its delegate. Furthermore, if a delegate is a polymorphic subobject, as 
shown in Example 8.6, a variety of functionality may be provided. Consider 

FIGURE 8.3 Wrapper class in UML.

FIGURE 8.4 Delegate class in UML.
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the class hierarchy in Figure 8.5. If each delegate subtype provides a differ-
ent implementation of process(), then a call to dynamicProcess() will 
yield variant behavior. When a delegate is typed to hold the address of a base 
class object, any object in the class hierarchy can be used. C# offers a specific 
delegate construct.

Example 8.5: Delegate Use in C++
class seminarAttendee
{ // delegate could be object or pointer
 // indirection supports postponed instantiation
 idVerifier  delegate;
 …
 void replaceDelegate(…)
 { idVerifier  newImproved(…);
  delegate = newImproved;
 }
 public:
 // class functionality, including constructor
 …
 // pass requests to delegate
 bool registerD() { return delegate.isSet(); }
 bool isValid() { return delegate.verify(); }
 bool renew()
 { if (!registerD() || ! isValid()) return false;
 return (delegate.getAge() > 18)
 }
};

Example 8.6: Polymorphic Delegate in C++
// contrast simple echo with indirect (layered) echo
class HasADelegate
{ idVerifier  delegate;
 BaseType*  polyD;

 void replaceDelegate()
 { delete polyD;
 if (…)  polyD = new MinType(…);
 else if (…) polyD = new MaxType(…);
 else if (…) polyD = new MeanType(…);
 }
 public:
 // simple echo
 int getAge() [ return delegate.getAge(); }
 // additional layer of indirection supports polymorphism
 void dynamicProcess()
 { return polyD->process();}
 …
};
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What is the difference between a delegate and a wrapper? A delegate 
is an internal data member that provides functionality. A wrapper is 
an external class that isolates the client from change or streamlines 
an interface. The two overlap. A wrapper could wrap up a delegate. 
Differences may be slight and focus on intent. A delegate serves to pro-
vide utility. A wrapper serves to redefine an interface. The interface 
invariant details of a delegate class should describe core utility pro-
vided and restrictions on use. Documentation should indicate if the 
application programmer has any responsibility for seeding or replac-
ing a delegate. The implementation invariant should explain the moti-
vation for using delegates and enumerate cardinality, ownership, and 
stability (replacement) details.

8.2.6  Handle: Smart Pointers

Colloquially, a handle refers to the means of accessing data or an object. 
Every variable is an abstraction of an assigned memory location but pro-
vides direct access to data through its name. Pointers and references hold 
data that is interpreted as addresses and thus provide an indirect means 
to access data (but the layer of indirection is not obvious when using a 
reference). Regardless of type then, variables are all considered handles. 
One piece of data may have multiple handles, as is evident when a pointer 
variable holds the address of another variable.

What then is a handle class design type? Conceptually, a handle sup-
ports the dual perspective of internal functionality versus external use. 
A type definition can be viewed in two parts: the handle is the user 
interface and the representation is the object state. Internal details for 
 managing state are independent of external use of the handle. Thus, the 

BaseType

MaxType MeanTypeMinType

FIGURE 8.5 Delegate polymorphism.
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class designer may vary implementation without changing the interface. 
The Bridge design pattern is essentially a handle: a consistent means of 
access that supports varying functionality and/or varying data representa-
tion (Gamma et al., 1995).

How does a handle class differ from a delegate? Significant differences 
are not obvious. A handle class controls access to data but does not aug-
ment or alter functionality. See Table 8.1.

Smart pointers, such as the unique _ ptr and shared _ ptr tem-
plate classes in C++11 STL, embody handles. A smart pointer is just a 
wrapped pointer that serves the essential need in C++ to manage internal 
class memory. By wrapping a raw pointer inside a class, with a defined 
destructor, the memory leaks illustrated in Chapters 4, 5, and 7 may be 
avoided.

Example 8.7 illustrates two wrapped pointers: a simple wrapped 
pointer as well as a wrapped pointer that assumes ownership of the 
pointer so wrapped. A wrappedPtr object is instantiated with a 
pointer, passed in by the client. When this wrappedPtr object goes 
out of scope, its destructor is automatically invoked so the deallocation 
of wrapped heap memory is guaranteed. The second class design dif-
fers only in that the grabMemoryPtr constructor assumes ownership 
of the memory whose address is held in the passed pointer. The passed 
pointer is zeroed out, preventing the caller from using the raw pointer 
after it has been wrapped. Thus, the grabMemoryPtr class design may 
be viewed as more secure. Nonetheless, both designs depend on the 
application programmer constructing the smart pointer with a valid 
address.

TABLE 8.1 Stroustrup Class Design Types

Design Type Characteristics Interface Base for Inheritance
Concrete Simple, efficient Tight, cohesive Not desired
Abstract Defines interface of 

class hierarchy
Common general Required

Node Intermediate in 
class hierarchy

Inherited Anticipated

Delegate Wrapped subobject Layered Unlikely
Handle Object management Transparent Possible
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Example 8.7: Wrapped Pointers in C++
// automatic invocation of destructor prevents memory leaks
// dependent on convention:
//  Application programmer MUST use wrapped pointer
//   should not (but can) use raw pointer
class wrappedPtr
{  SomeType*  ptr;
 public:
  // address copied from pointer passed by value
  wrappedPtr(SomeType* p): ptr(p) {}

  ~wrappedPtr() {delete ptr;}

  // forward call transparently
  SomeType* operator->() {return ptr;}
};

// automatic invocation of destructor prevents memory leaks
// Constructor
// assumes ownership of memory addressed by pointer parameter
// => Application programmer cannot use raw pointer
// does NOT support sharing via aliases
class grabMemoryPtr
{  SomeType*  ptr;
 public:
  // pointer passed by reference: value zeroed out
  grabMemoryPtr(SomeType*& p): ptr(p) {p = 0;}

  ~grabMemoryPtr()   {delete ptr;}

  // forward call transparently
  SomeType* operator->() {return ptr;}
};

Use of a smart pointer forces the invocation of a destructor when a 
pointer goes out of scope, and in so doing, prevents memory leaks. Why 
is a smart pointer considered a handle rather than a delegate? The smart 
pointer provides no functionality other than heap protection: it does not del-
egate a subset of behavior; it does not have any other critical type-depen-
dent functionality.

Our frequent use of the term “wrapper” in the discussion of handles 
indicates why the term “wrapper” has colloquially subsumed the “term” 
handle. Formally, however, it is interesting to evaluate why a smart pointer 
is considered a handle rather than a wrapper. A smart pointer does not 
wrap up an interface. In fact, with judicious operator overloading in 
C++, calls to the functionality provided via the wrapped pointers may be 
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 forwarded transparently. The overloaded operator->() does just that. 
For more details, see Appendix D.

8.3  DESIGN SPECIFICATIONS FOR INHERITANCE
An interface usually publishes class functionality. However, the full 
design utility and usability of a class often cannot be fully comprehended 
in isolation. How are classes to be used together? The distinction between 
different types of class design helps determine the appropriate use of a 
type in context. Design may be problematic when it is difficult to identify 
the appropriate variety of class design to employ. Our brief discussion of 
the subtle differences between handle, delegate, and wrapper classes illus-
trates such confusion. Whatever type of class design is selected, a software 
designer still must evaluate tradeoffs and document carefully.

As outlined above, class design takes different forms with different 
intent. Similarly, the structure and use of inheritance is also variously 
motivated and implemented. We examine here five of Budd’s different 
categories of inheritance designs, distinguishing between original (clean-
slate) design and modified (reused) design (Budd, 2002). Clean-slate 
designs support the is-a relationship associated with inheritance. Code-
reuse designs typically do not.

The first three inheritance design examples listed in Table 8.2 all sup-
port the is-a relationship. Not surprisingly, these design setups are best 
pursued with clean slate development. Specialization describes subtyp-
ing, that is the child class inherits core functionality from the parent class 
but redefines or overrides some inherited behavior. Our Icon class hier-
archy from Chapter 6 illustrated the specialization of movement by the 
different child classes of the parent Icon class. Many class designs, where 
the parent provides default behavior and the child augment or redefines 
that behavior, under the same interface, illustrate specialization.

TABLE 8.2 Budd’s Inheritance Design Classes

Inheritance Design Characteristics Inherited Interface Relationship
Specialization Redefines behavior Retained Is-a
Specification Completes abstract base Implemented Is-a
Extension Type expansion Extended Is-a
Limitation Restrict use of parent Suppressed Code reuse
Generalization Inverted class hierarchy Compromised Code reuse



Design Alternatives and Perspectives   ◾   237  

As noted earlier, a priority queue may be viewed as just another queue 
because the external interfaces of the two queue types are the same. 
However, the internal ordering of items in the priority queue may under-
mine the is-a relationship. Why? The possibility of starvation may pre-
clude the use of a priority queue in place of a regular queue. Nonetheless, 
this example underscores the subtle interpretation of specialization: it 
may not unambiguously support the is-a relationship.

Specification refers to node classes that inherit a common but not 
fully functional interface from an abstract parent class. The child class 
must define (specify) the behavior outlined by the parent class because 
the parent class definition is incomplete. Since the parent class is thus an 
abstract class, no object can be instantiated from the parent class. The key 
difference between specification and specialization is that, under specifi-
cation, the parent type definition is incomplete and thus unusable until a 
child class is defined. In our Icon example, if the move() method was an 
abstract method then the client could not instantiate any Icon objects. 
The Icon class would then provide no utility until a child class “speci-
fied” the move()function by providing implementation details (that is, the 
function body of the move() method).

The power of specification comes from the common interface defined 
by the base class. All derived classes must conform to this interface, must 
define the functions whose forms were declared but not defined, and thus 
must implement a core set of required behaviors to be usable. Specification 
classes are thus candidates for polymorphism, and may likely be used in 
heterogeneous collections. Specification differs from specialization in that 
the child class is not a refinement of existing usable type but a realization of 
incomplete abstract specification.

A car is-a vehicle is a clear example of specification. Vehicle’s definition 
ensures that all derivations (car, plane, boat) move but implementation 
details have been deferred to child classes. The same postponement of util-
ity was seen in Figure 8.2: a Toy object is not usable because it is abstract; 
derived Toy objects may be instantiated, however, assuming the derived 
classes provide implementation of inherited abstract methods. The disas-
sembler example from Chapter 7 is a real-world example of specification.

Extension is the pure form of inheritance. The inherited parent inter-
face is extended but not compromised or redefined. Each child class intro-
duces new abilities by adding new methods but does not override parent 
class methods. In this manner, the is-a relation is supported. In contrast, 
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subtyping (specialization) retains the is-a relationship but its modification 
of inherited behavior may compromise the notion of substitutability.

As noted in Chapter 6, a simple example of extension is a TriAthlete 
class. A TriAthlete is-a BiAthlete, that is a TriAthlete runs and bikes like a 
BiAthlete but also swims. A BiAthlete is-a Runner, that is a BiAthlete runs 
like a Runner but also bikes. Extension differs from specification in that 
the base class is not abstract but an existing usable type. Extension differs 
from specialization in that the derived classes extend, and do not compro-
mise, the inherited interface.

The last two types of inheritance design delineated in Table 8.2 describe 
class designs that reuse existing classes. Both these designs exhibit obvi-
ous flaws. Forced reuse of software often is not effective or a good return 
on investment. When software designers do not have the luxury of design-
ing from scratch, optimal design may not be easily achieved. Frequently, 
insufficient resources (time, labor) are available to refactor and thus 
improve existing software. Software designers thus must reuse classes that 
have already been designed, developed, tested, and deployed. When reus-
ing classes, a key design question is: should composition be preferred over 
inheritance for reuse?

Limitation is a special case of subclassing for specialization where the 
behavior of the subclass is smaller than that of the parent. Often a portion 
of the inherited interface is suppressed or redefined in a more restricted 
manner. For example, a double-ended queue (deque) supports insertion 
and deletion from both ends of the queue. One can derive a stack from 
a deque by simply suppressing access to one end of the queue. Although 
utility is then easily realized, the derived stack class cannot function as a 
deque. Therefore, substitutability is not supported, unlike the specifica-
tion design of the priorityQ.

Generalization is a contorted application of inheritance whose pri-
mary motive is the expedient reuse of code to create a more general class 
design. Say a class design has already been deployed but demand arises 
for more flexiblity or broader utility. What options should a class designer 
pursue? Redesigning an existing class is not attractive when software 
development must proceed with severe time constraints. A Player is-a 
Warrior is an intuitive example of an inverted relationship: a Player is a 
generalized notion of an actor in an online game; a Warrior is a specific 
realization of such. Ideally, the Player class should rest at the top of the 
class hierarchy and the Warrior class should be a descendant class. When 
a class hierarchy is inverted and no true is-a relationship exists, the parent 
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(Warrior) interface most likely will be compromised as the Player subclass 
must modify and generalize the properties of parent class.

8.4  INHERITANCE VERSUS COMPOSITION
Inheritance is one of the most touted constructs of OOP. We examined 
this construct in detail, and contrasted it to composition, in both Chapters 
6 and 7. We revisit it here with an emphasis on polymorphic subobjects.

A common observation leading to an endorsement of inheritance is that 
the parent class has already been designed, implemented, debugged, and 
tested. Perceived as an easy means to reuse code and shorten the develop-
ment life cycle, inheritance is thus often overused. Yet, for any class X 
that is already designed, implemented, debugged, and tested, code reuse 
is possible whether X serves as the base for inheritance or is the type of 
a subobject defined in a composition relationship. Although both design 
variants profit from code reuse, inheritance yields different effects from 
composition. We compared these design approaches in Chapter 6, noting 
the classic composite principle: prefer composition over inheritance.

Many professionals adhere to the composite principle. Their underlying 
assumption is that the need for the is-a relationship often is not signifi-
cant enough to justify its costs. When using composition, the class designer 
maintains more control over the class, and thus can more easily acquire 
efficiency and/or flexibility. The authors of the seminal Design Patterns 
book (Gamma et al., 1995) state a preference for composition over inheri-
tance. Yet, many patterns detailed in this classic book rely on inheritance.

What does inheritance provide that composition does not? Type exten-
sion, substitutability, and support for heterogeneous collections. When 
the precise type of object needed is not known until runtime and, in fact, 
could easily change, as in the disassembler example in Chapter 7, polymor-
phism is required and thus inheritance is warranted. When extensibility is 
needed because anticipated code modifications may add new subtypes, as 
in the Icon example, inheritance is again justified. When the contents of 
a collection may vary and the heterogeneous subtypes contained therein 
offer polymorphic behavior, inheritance is required. Reasonable designs 
that use inheritance must take advantages of some of the key benefits of 
inheritance: support of is-a relationship, type extension (extensibility), 
immediate access to protected data and functionality, code reuse, substi-
tutability, and polymorphism.

The practical motive for inheritance is code reuse. Hence, inheritance 
is valued for expedient software development. The designer of the child 
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class can automatically reuse the functionality of the parent class. The 
child class has access to all public data and functionality of parent and all 
protected data and functionality of parent. If parent functionality can be 
reused, software development time can be reduced significantly. However, 
if the parent interface is not essential, the child class could just as easily 
gain use of the parent’s public functionality via composition.

With inheritance, the child class has an implicit parent class compo-
nent, which implies unavoidable overhead because the parent component 
is always part of a child class object’s memory. The parent component 
is initialized by a parent class constructor. Thereafter, for state or data 
changes, the child class is restricted to the parent’s public and protected 
data and functionality.

Inheritance is often perceived as a rigid design. A child class object has 
exactly one parent component. The relationship is fixed: the child absorbs 
the overhead of the parent component even if the parent is not used. The 
parent component is not shareable, other than through the risky venture of 
an aliased pointer. The parent component is thus considered owned by the 
child object. This lifetime association prevents replacement of the parent 
component. If more than one parent component is desired, the child class 
may resort to composition to obtain additional parent component copies.

In contrast to inheritance, composition affords design variety in terms 
of cardinality, association, ownership, and subobject instantiation. Thus, 
composition offers control in design and thereby explains the professional 
preference embodied in the composite principle.

Through composition, a class design may:

Wrap up existing code
Providing isolation from change

Alter cardinality
postpone instantiation
Support replacement
Transfer or share ownership

An immediate benefit of composition is the ability to avoid overhead when 
desired.

What benefits are lost when inheritance is replaced by composition? Is the 
primary drawback the loss of access to the protected data and functionality 
of the parent class? No! One need only define a wrapper class to open up this 
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protected interface to circumvent this restriction, as was shown in Chapter 6. 
No, the primary drawbacks of using composition as a design alternative 
to inheritance is the application’s loss of polymorphism and the resulting 
absence of substitutability and support for heterogeneous collections.

In determining design motives, perspectives, and alternatives, one must 
evaluate costs and benefits with respect to immediate and future use. If 
inheritance is a viable option, consider the client code’s need for extensibil-
ity, heterogeneous collections, and substitutability. Consider the stability 
of the parent class and the desirability of sustaining its interface through 
child classes. Examples 8.8 and 8.9 contrast the use of inheritance versus a 
composition design with polymorphic subobjects. The code is in C++ but, 
without the interface construct, the effect is the same in C#.

Example 8.8: Inheritance versus Composition (C++)
class B
{ protected:
  virtual void filter();
 public:
  …
  virtual void store();
};

class QueenInheritB: public B
{ public:
  // keyword used for documentation
  // once virtual always virtual!!
  virtual void store()
  { B::store();
   filter();
   …
  }
  …
};

class QueenComposeB
{
 B subObject;
 public:
  // cannot access protected B::filter()
  // virtual character of B::store() not relevant
  void store()
  { subObject.store();
   …
  }
  …
};
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Example 8.9: Composition with Exposed Interface (C++)
class Be: public B
{ public:
 … // make inherited protected method public
  void filter()  { B::filter(); }
};

class QueenComposeB2
{  Be subObject;
 public:
  // can filter by using intermediary class
  void store()
  { subObject.store();
   subObject.filter();
  }
};

In Example 8.8, queenInheritB illustrates classic inheritance while 
queenComposeB displays an alternative using composition. Does this design 
choice greatly impact utility? Both queenInheritB and queenComposeB 
contain a B object: under inheritance, the B object is the parent component; 
under composition, the B object is a data field. The public B::store() 
method is accessible to both QueenB classes. The protected B::filter() 
method is not. Yet, this restriction is avoided with the introduction of 
the Be class that promotes the filter() method to public visibility. As 
shown in Example 8.9, the QueenComposeB2 class regains access to 
the protected filter() method using a wrapper subobject of type Be, 
where Be inherits from B and opens up its protected interface. Thus, the 
QueenComposeB2 class, in Example 8.9, provides utility comparable to 
that of the QueenInheritB class in Example 8.8. In both classes, the 
store() method makes two statically resolved calls: one to B::store() 
the second to B::filter().

The differences between inheritance and composition as design 
for code reuse largely rest on the perceived need for extensibility and 
support of the parent interface. If neither substitutability nor use of 
heterogeneous collections is a priority then the f lexibility offered by 
composition seems attractive. The variability afforded by composition 
with respect to cardinality and instantiation of subobjects becomes 
even more attractive when one considers polymorphic subobjects, as 
in Example 8.10. Rather than settling for a permanent 1-1 relationship 
with a parent, a composing class can interact with a variety of poly-
morphic subobjects.
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Example 8.10: Polymorphic Subobjects: C++ 
class flexQueen
{
  B* subObjP;
 public:
  flexQueen()
  { // subObjP = 0;
   subObjP = new B;
   // subObjP = new Be;
   // subObjP = new Bee;
   // subObjP = new B[size];
  … // other choices
  }

  virtual void store()
  { subObjP->store(); // dynamic behavior
   …
  }

  void replaceB(B*& worker)
  { delete subObjP;
 subObjP = worker;
   worker = 0;
  }
  …

};

Despite its silly name, the QueenB example illustrates simple design 
variants that impact control and flexibility as well as manipulation via 
interfaces. Consider a hierarchy of B types (B, Be, Bee, BeNot,...), where 
each subtype can override the inherited virtual store() method. With an 
internal base class pointer (or reference), we can define a polymorphic B 
subobject. In this manner, we define different QueenB types. Would this 
design be preferred to inheritance? Once cannot answer this question 
without knowing the design imperatives of the client code that will use 
QueenB objects.
flexQueen holds a pointer to a B object and thus displays the most 

flexibility. Since this pointer may hold the address of any type of object in 
the B hierarchy, it serves as a polymorphic handle: flexQueen may hold a 
subobject of any type from the B hierarchy, yielding a variety of function-
ality via the virtual store() method. In contrast, in Example 8.8, both 
queenInheritB and queenComposeB are constrained to the function-
ality of store() and filter() as provided by the base B class. Why? The 
parent component of queenInheritB is stable, and of fixed type, B. The 
subObject data field of queenComposeB2 is stable and of fixed type, B.
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Additional flexibility is afforded by (1) retaining a handle to a type B 
object, rather than storing a B object directly, (2) postponing instantiation 
of the polymorphic B object, (3) assuming ownership of an external poly-
morphic B object, (4) replacing a polymorphic B object, and (5) sharing 
polymorphic B object. Technically, the pointer could also hold the address 
of the first element in an array so flexQueen could alternately be designed 
to hold an array of a variable number of B objects. One could also design 
a subobject to be an array of pointers to yield a heterogeneous collection.

8.5  MULTIPLE INHERITANCE
Multiple inheritance specifies the derivation of a class from two or more 
base classes. The derived class thus has two (or more) is-a relationships, 
affording the usual benefits of reuse via the parent classes, support for het-
erogeneity, and polymorphism. The child class then, of course, assumes the 
overhead of two (or more) parent components. Ideally, it should be clear 
what data and functionality is inherited from which parent. Such clarity 
is possible when the parent classes do not overlap in form or function; in 
which case, the parent classes are described as orthogonal (see Figure 8.6).

Even with orthogonal parent classes, multiple inheritance increases 
software complexity. Minimally, cohesion decreases because the child 
class definition is spread across three or more different classes. Coupling 
increases because the child class is tied to two or more parent classes. 
Multiple inheritance also may yield two specific design difficulties: ambi-
guity and redundancy. We examine these constraints subsequently.

C++ supports multiple inheritance. C# and Java do not. We conjecture 
that multiple inheritance is not supported in C# and Java because these 
languages, developed after C++, were better positioned to weigh the costs 
and benefits of supporting such a complex design technique. To compen-
sate for the restricted use of inheritance, C# and Java provide an interface 
construct. Why? An interface forces the definition of a function. Thus, if 

FIGURE 8.6 UML orthogonal parent classes.
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a class implements an interface then it must define all functions declared 
in the interface. Example 8.11 illustrates a simple interface: media() is the 
only function prototype declared. Every class that implements this inter-
face must define this function. Using interfaces, the class designer ensures 
that many different classes can support the same interface while providing 
differing functionality.

Example 8.11: C# Interface
public interface ISocial
{ string media(); }

// classes must implement methods defined in interface
public class chat: ISocial
{ …
 public string media() { return "lol"; }
}

public class twit: ISocial
{ …
 public string media() { return "memememe"; }
}

public class tweet: ISocial
{ …
 public string media() { return "and then they…";}
}

With some attention to detail, classes may be designed to mimic multiple 
inheritance while retaining the ability to support heterogeneous collections. 
The key idea is to replace all but one parent class with an interface. Clearly, 
the functionality of the mimicked parent must be replicated, as must any 
data. However, consistency of use, via a common interface, is supported.

We examine multiple inheritance as directly supported in C++ and as 
simulated in C++, C#, and Java. We walk through design alternatives for 
the same example so that the reader understands the impact of different 
design choices. It is difficult to provide a real-world example of multiple 
inheritance that cannot be designed as well, or better, by simulating mul-
tiple inheritance.

Our first example models members of a university community: students 
and employees. Both types contain data associated with location and iden-
tity: name, address, identification number, email address, etc. The student 
type must have functionality and data associated with taking and com-
pleting courses: registration, tuition payment, term schedule, transcript, 
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date of graduation, GPA, etc. The employee type must have functionality 
and data associated with work: position, pay, vacation hours, supervisor, 
date of hire, etc. (see Figure 8.7).

Multiple inheritance becomes a design option when we consider 
StudentEmployees. StudentEmployees should retain all the data and 
functionality associated with the Student type and most of the data and 
functionality associated with the Employee type. How then to model a 
StudentEmployee in a manner that reuses the Student and Employee types? 
Four options come readily to mind: (1) multiple inheritance; (2) inheri-
tance from Employee alongside composition with a Student sub object; 
(3) inheritance from Student alongside composition with a Employee sub-
object; and (4) composition with both Student and Employee subobjects. 
We examine each option in turn.

8.5.1  Multiple Inheritance Imperfections

Multiple inheritance is supported in C++, that is a child class can directly 
derive from two parents, e.g., a StudentEmployee can inherit directly 
from both Student and Employee. The StudentEmployee class reuses 
the code and data from the Student class, just as if it were single inheri-
tance. Likewise, the StudentEmployee class reuses the code and data 
from the Employee class, just as if it were single inheritance. Hence, the 
StudentEmployee class can specify the invocation of specific parent con-
structors and can override virtual functions. A StudentEmployee object 
may access public and protected data and functionality from either of its 
parent classes. As shown in Figure 8.8, inherited functionality includes 
queries for active state, full-time status, class rank, and employee rank. 
One nagging detail is that the getAge() method has the same signature 
in both parents. Which method is invoked?

Ambiguity is an implicit design problem with multiple inheritance. 
If two parent classes yield an interface subset that contains identical 

FIGURE 8.7 Student and employee types.
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functions, then which one of the same-named functions should be called 
through a child object? In this example, both parents provide a public 
getAge() query and the design of the child class did not produce such a 
function for the child component. Which inherited query should be called? 
Who knows? There is no obvious choice. The C++ language standard does 
not identify any assumptions about the order in which parent classes are 
declared in multiple inheritance. In other words, one cannot design or pro-
gram in a manner dependent on the order of parent declaration. Thus, com-
pilers cannot use this order as a means to select functions from overlapping 
interfaces. Since there is no rule for the compiler to follow, when faced with 
overlapping interfaces, the compiler generates an error.

Ambiguity is managed by forced override. The child class, by design, 
must override the getAge() function to resolve the inherited ambigu-
ity. The overridden function in the child class may call zero, one or both 
parent functions in crafting an appropriate response. The overlapping 
function getAge() highlights a design flaw that is primarily syntactic: 
there would be no ambiguity if the Employee class had named its func-
tion something like getSeniority(), as aptly named in Example 8.12. 
Note that the StudentEmployee class can internally invoke public or 
protected parent class functionality from either parent by resolving scope.

FIGURE 8.8 StudentEmployee via multiple inheritance.



248   ◾   Software Essentials 

Example 8.12: Resolving Ambiguity: C++ Multiple Inheritance
class StudentEmployee: public Employee, public Student
{ …
 public:
 int getAge() {return Student::getAge();}
 int getSeniority() {return Employee::getAge();}
};

Compilers do not deal well with ambiguity. In translating HLL source 
code to executable code, compilers systematically follow long, complex 
sets of rules. When faced with a choice, a compiler must be able to look 
up the resolution of that choice. Compilers cannot capriciously determine 
the selection of alternatives. Hence, the intent of all code statements must 
be clear. When resolving a function call, it must be obvious to the com-
piler which function to invoke. Hence, the class designer of the multiple 
inherited child class must override overlapping function(s), determining 
internally what, if any, of the inherited parent functionality to use.

With multiple inheritance, the possibility of overlap arises when parent 
types do not serve distinct purposes. In our example, both Student and 
Employee types model members of a university community. Some com-
monality then is to be expected. Consider schedules. Students have a sched-
ule of classes and Employees have a work schedule; each type of schedule 
may have different characteristics. Class schedules cannot be modified 
after the drop date, and work schedules may be subject to approval. If the 
Student class had the functionality to test the ability to change a schedule 
and the Employee class also had the functionality to test the ability to 
change a schedule, then there is an overlap. The StudentEmployee class 
designer must resolve the ambiguity before the code compiles.

Redundancy is an implementation complexity in multiple inheri-
tance. The compiler does not force its resolution. Let us refine the Student, 
Employee, and StudentEmployee classes as illustrated in Figure 8.9: 
Student inherits from a Person class and Employee does also. This design 
yields diamond inheritance.

Conceptually, there is no problem: a Student is-a Person and an 
Employee is-a Person. Implementation protocol, however, yields space 
inefficiency and may interfere with data consistency. Why? Recall the fixed 
overhead of inheritance: a derived class object is laid out with an implicit 
parent class component, whether or not that component is used. Thus, 
a Student object has a Person component and an Employee object has a 
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Person component. Since a StudentEmployee object has both a Student 
component and an Employee component, it then has two Person com-
ponents: one Person component via its Student component and another 
Person component via its Employee component (see Figure 8.10).

Data duplication is clear. Why would redundancy be more problematic 
than simply wasting a few bytes? Data consistency may be undermined. 
Say that Person class has a chgAddr() function. This function is overrid-
den by the Student class, possibly to distinguish between school and home 
addresses but is not overridden by the Employee class. An instantiation 
of the StudentEmployee class can be accessed via a StudentEmployee 
handle, a Student handle, or an Employee handle. Invoking chgAddr() 
on this particular object but through handles of different types will 
modify different (grand)parent address components. Thus, it is pos-
sible to have incompatible, conflicting addresses (without awareness 
of such). Data inconsistency is a problem when data is retrieved from 
different sources but assumed to be the same. Thus, an altered address 

Person

StudentEmp

EmployeeStudent

FIGURE 8.9 Diamond inheritance.

personObj studentObject employeeObject

studentEmployeeObject

FIGURE 8.10 Redundancy of diamond inheritance.
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may be problematic if the address value is subsequently accessed via an 
Employee handle and then assumed to be the same as that accessed via 
a Student handle.

C++ offers a syntactical solution to the data redundancy of diamond 
inheritance: virtual inheritance. The class designer must anticipate the 
possibility of diamond inheritance and derive each parent class “virtually” 
as demonstrated in Example 8.13. If any parent is not derived virtually 
from the common ancestor, then the compiler will not suppress redun-
dant copies of that ancestral component.

Example 8.13: Virtual Multiple Inheritance (C++)
// diamond inheritance anticipated => use virtual inheritance
class Student: public virtual Person { … };
class Employee: public virtual Person { … };

// regular (non-virtual) inheritance
class Consultant: public Person { … };

// NO REDUNDANCY: both parents derived virtually from Person
// => compiler suppresses redundant Person component
class StudentEmp: public Student, public Employee {…};

// REDUNDANCY: one parents did NOT derive virtually from Person
// => compiler does NOT suppresses redundant Person component
class StudentConsultant: public Student, public Consultant{…};

Aside from the confusing and overloaded meaning of the key word vir-
tual, virtual inheritance is not widely applicable. Correct foresight as to 
the future use of classes is required. This provision is akin to suggesting 
that a class designer have a crystal ball to see into the future. Tagging 
every inherited relationship as “virtual” is overkill, especially since mul-
tiple inheritance is a relatively uncommon design choice.

If multiple inheritance is used, the child class should override every 
function that accesses common, but redundant, ancestral data to confine 
use to a specific ancestral component. More importantly, great care must 
be taken to use handles appropriately so that data integrity is preserved. In 
other words, the client must now track usage according to type, despite the 
promise of OOD to remove type checking as an external responsibility. 
Simulating inheritance via composition does not remove the redundancy 
but does provide more explicit control.
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Despite its drawbacks, multiple inheritance offers strong support for 
heterogeneous collections. Since Student is-a Person and Employee is-a 
Person, a heterogeneous collection based on the Person type could refer-
ence objects of type Person, Student, Employee, and StudentEmployee.

8.5.2  Single Inheritance with Composition

Without language support, multiple inheritance must be simulated. The 
interface construct facilitates support of heterogeneous collections but the 
class designer must reclaim the functionality lost through a restricted use 
of inheritance. A common solution is to use single inheritance with com-
position. Ideally, the derived class inherits from the class with which it has 
a stronger type association (or dependency) and contains a subobject of 
the second type. We examine both alternatives for single inheritance with 
composition for the StudentEmployee design.

If StudentEmployee2 derives from the Employee class and contains 
a Student subobject, as shown in Examples 8.14 and 8.15, then every 
StudentEmployee2 is-a Employee. Since the interface of the Employee 
type is accessible via the StudentEmployee2 type, all Employee public 
functions may be called through a StudentEmployee2 object. The Student 
class, however, is hidden as a data member in StudentEmployee2. Thus, 
the StudentEmployee2 class must wrap up all Student function calls; that 
is, echo a portion of the delegate interface. Use of the interface construct in 
C# and Java forces the interface (of the subobject) to be echoed, presumably 
yielding fewer design omissions. Moreover, a C# StudentEmployee2 object 
can substitute for an Employee or Student object while, without multiple 
inheritance, a C++ StudentEmployee2 object cannot. Why? C++ does not 
have the interface construct. Thus, in C++, the class designer is not forced 
to echo the Student::active() method, and a StudentEmployee2 object 
cannot be viewed as a Student object.

Example 8.14: C++ StudentEmployee: Employee Parent
class StudentEmployee2: public Employee
{  // contain data member for Student component
  Student s;
 public:
  // echo desired Student functionality
  bool active() { return s.active(); }
 …
};
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Example 8.15: C# StudentEmployee: Employee Parent
interface IStudent
{ bool active();
 …
}

public class StudentEmployee2: Employee, IStudent
{ // contain data member for Student component
 private Student s;

 // interface forces echo of Student functionality
 public bool active() { return s.active(); }
 …
}

When simulating inheritance via composition, one type must be deemed 
subordinate. The subordinate type loses the is-a relationship and no lon-
ger offers substitutability and extensibility as afforded by inheritance. The 
strength of type dependency may drive this design decision. The stronger 
the association between a parent type and a child type, the more utility the 
child may derive from the parent interface. Whenever a type is subordi-
nated, a portion of its interface may be echoed.

This second design, StudentEmployee2 is-a Employee, is workable but  
likely inferior to situating the Student class as the parent of StudentEmployee. 
Why? StudentEmployee should derive more of its functionality from the 
Student class because its type dependency is stronger. The resulting impli-
cation is that the design should maximize the direct reuse of inherited 
functionality without having to wrap it.

When StudentEmployee3 derives from the Student class and has an 
Employee subobject, as shown in Examples 8.16 and 8.17, then every 
StudentEmployee3 is-a Student. This design makes more intuitive sense 
than the previous one because a Student becomes an Employee to finance 
education: education remains, or should remain, the paramount focus. 
Hence, it is likely that a larger portion of the interface inherited from the 
Student class will be used than that from the Employee class.

Example 8.16: C++ StudentEmployee: Student Parent
class StudentEmployee3: public Student
{  // contain zero or more Employee components
  Employee* e;
 public:
  // echo desired Employee functionality
 …
};
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Example 8.17: C# StudentEmployee: Student Parent
interface EmployeeI
{…}

public class StudentEmployee3: Student, EmployeeI
{
 private Employee e;

 // interface forces echo of Employee functionality
 …
}

This third design, StudentEmployee3 is-a Student and contains an 
Employee object, offers the additional benefit of flexibility relative to 
the car dinality, association, and lifetime of the Employee subobject. 
A StudentEmployee3 could have two jobs, zero jobs, or be in-between 
jobs and still remain a student. The enduring type value of Student to a 
StudentEmployee3 indicates why it is less desirable to subordinate Student 
to Employee.

A drawback to modeling inheritance with composition is loss of access 
to the protected interface. Say the Employee class has protected function-
ality for computing reimbursement. The StudentEmployee3 has no access 
to that functionality if the Employee is a subordinate object rather than a 
parent. Brunt force design suggest that the functionality merely be copied 
or reimplemented. However, such a cut-and-paste approach to program-
ming is known to be deficient, in regards to both testing and maintenance. 
Another approach is to introduce an intermediary class, whose sole intent 
is to open up the protected interface of the Employee class, as was shown 
in Chapter 6 and Example 8.9.

With the protected interface of Employee opened via an intermediary 
class, the StudentEmployee3 class now has indirect access to the protected 
reimburse() functionality via its subobject. The wrapper class could 
be used by software, other than the StudentEmployee3 class, possibly 
undermining design intent. Nonetheless, the wrapper is an effective fix 
for the loss of access to protected data and functionality when simulating 
inheritance.

8.5.3  Simulated Design without Inheritance

The fourth design alternative avoids inheritance completely, as shown in 
Example 8.18. StudentEmployee4 is composed of both an Employee sub-
object and a Student subobject. Any portion of either interface that should 
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be supported must be echoed. In C++, heterogeneous collections cannot 
be easily supported because the StudentEmployee is not an Employee, is 
not a Student and thus, due to the complete lack of inheritance, is not a 
Person. The use of interfaces in C# and Java, however, do support stream-
lined use of heterogeneous collections.

Example 8.18: C# StudentEmployee4: No Parents
interface IEmployee   interface IStudent
{ …}    { …}

public class Employee: IEmployee {…}
public class Student: IStudent {…}

public class StudentEmployee4: IStudent, IEmployee
{
 private Employee e;
 private Student s;

 // interface forces Employee & Student functionality
 …
}

Evaluation of the different design options begins with an assessment of 
the costs and benefits as enumerated in Table 8.3. In general, composition 
offers greater flexibility in both design and implementation. Cardinality 
can vary: a composing object can hold more than one subobject; the num-
ber of subobjects may be fixed by design or may vary. The association 
between composing object and subobject is malleable: the composing object 
may replace, null out, or transfer ownership of subobject. The lifetime of a 
subobject, as suggested by its varying association, is neither fixed nor per-
manent: a composing object may postpone instantiation of a subobject until 
needed and may delete a subobject well before its own lifetime is terminated.

TABLE 8.3 Multiple Inheritance Design Options

Student Employee Benefits Costs
Parent Parent Maximal heterogeneity

Substitutability, etc.
Software complexity

Subobject Parent ??? Counterintuitive
Parent Subobject Reflects logical type dependency

May hold 0 or more jobs
Loss of is-a

Subobject Subobject Type neutrality Not extensible
Design overhead
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8.6  MULTIPLE INHERITANCE DESIGN
Selecting a design from alternatives may be difficult. The StudentEmployee3 
type is a straightforward example because the Employee subtype is clearly 
subordinate to the Student subtype. What happens when it is not so 
obvious which subtype to subordinate? We return to the Icon examples 
from Chapters 5 and 6, repeating our initial monolithic class design in 
Example 8.19.

Example 8.19: C++ Monolithic Class for Icon Movement
class Icon
{
 float  speed, glow, energy;
 int  x, y;
 int  subtype;  // spinner, slider or hopper

 bool  clockwise;  // need for spinner
 bool  expand;  // need for spinner

 bool  vertical;  // need for slider
 int  distance;  // need for slider

 bool  visible;  // need for hopper
 int  xcoord, ycoord; // need for hopper

 void  spin();
 void  slide();
 void  hop();
 public:
 // constructor must set subtype, possibly input externally
 Icon(…)
 { …
  subtype = value; // use enum for readability
  // and then use conditional to set associated fields
 }

 void move()
 { if (subtype == 1)  spin();
  else if (subtype == 2) slide();
  else  hop();
 }
 …
};

Under the design imperative to write extensible code, in Chapter 6, a base 
class and three descendant classes replaced this monolithic Icon class. As 
was evident in Figure 6.2, the Icon class hierarchy easily absorbed additional 
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subtypes, such as zigZagger, whereas the original monolithic class could 
not. What if an Icon object with multiple movement capabilities is now 
needed? When asked to design a SpinHopper or a SlideSpinner sub-
type, multiple inheritance might be an immediate choice for C++ program-
mers. However, this design yields diamond inheritance and its associated 
drawbacks. If implementation is in a different language, multiple inheri-
tance is not an option, and a subordinate parent must be chosen. Unlike 
the StudentEmployee example, it is not clear which type to subordinate. 
Whether inheritance is used or is simulated via composition, it is difficult to 
avoid redundancy of data members declared in the base Icon class.

Is a return to the monolithic class, a poor design, as shown in Example 
8.20, warranted? Probably not! Poor design cripples the possibilities 
of  extension. Moreover, the logic needed to track subtypes, now that 
multiple-movement subtypes are incorporated, is labyrinth and thus not 
maintainable.

Example 8.20: C++ Monolithic Class for Icon Multi-Movement
class Icon
{ float  speed, glow, energy;
 int  x, y;
 int  subtype;  // spinner, slider or hopper

 bool  clockwise;  // need for spinner
 bool  expand;  // need for spinner

 bool  vertical;  // need for slider
 int  distance;  // need for slider

 bool  visible;  // need for hopper
 int  xcoord, ycoord; // need for hopper

 void  spin();
 void  slide();
 void  hop();
 public:
 // constructor must set subtype, possibly input externally
 Icon(…)
 { …
  subtype = value; // use enum for readability
  // and then use conditional to set associated fields
 }

 void move()
 { if (subtype == 1)  spin();



Design Alternatives and Perspectives   ◾   257  

  else if (subtype == 2) slide();
  else if (subtype == 3) hop();
  else if (subtype == 4) // spinSlider
  { prepHalf();
  spin();
  prepHalf();
  slide();
  }
  else if (subtype == 5) // spinHopper
  …
  else   // slideHopper
  …
 }
 …
};

How design proceeds depends on whether we have the luxury of clean-
slate design or are working with existing code (the monolithic Icon class 
or the Icon class hierarchy). With clean-slate design, we can anticipate the 
difficulties of multiple inheritance and also note the lack of clear subordi-
nation in subtypes.

What is essential in our design? If game designers need heterogeneous 
collections of Icon objects then a common interface is required. C++ 
enforces commonality via an abstract class; C#/Java do so via an abstract 
class or interface.

Examples 8.21 and 8.22 illustrate an abstract Iconclast class, pro-
viding the essential interface for heterogeneous collections: move (and 
other) capabilities. Any class that inherits from Iconclast must define 
the move() function; otherwise, the derived class will also be abstract.

Example 8.21: C++ Abstract Class and Descendants: Data Missing
class Iconoclast // abstract
{ public:
 virtual void move() = 0;
 …
};

class Spinner: public Iconoclast
{ bool  clockwise; // need for spinner
 bool  expand;  // need for spinner
 public:
 Spinner();
 …
 virtual void move() { … }
};
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class Slider: public Iconoclast
{ bool  vertical; // need for slider
 int  distance; // need for slider
 public:
 Slider();
 …
 virtual void move() { … }
};

class SpinSlider: public Iconoclast
{ Slider  firstMovement;
 Spinner  secondMovement;
 public:
 SpinSlider();
 …
 // use subobjects for movement
 virtual void move() { … }
};

Example 8.22: C# Abstract Class and Descendants: Data Missing
abstract class Iconoclast
{ public virtual void move();
 …
}

class Spinner: Iconoclast
{ private bool clockwise; // need for spinner
 private bool expand;  // need for spinner
 public Spinner();
 …
 public override void move() { … }
}

class Slider: Iconoclast
{ private bool vertical; // need for slider
 private int distance; // need for slider
 public Slider();
 …
 public override void move() { … }
 …
}

class SpinSlider: Iconoclast
{ private Slider firstMovement;
 private Spinner secondMovement;
 public SpinSlider();
 …
 // use subobjects for movement
 public override void move() { … }
 …
}
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The common interface ties together all Iconoclast types. Thus, any 
number and order of Iconoclast objects may be held in the same het-
erogeneous collection, as demonstrated by both C++ and C# application 
code in Example 8.23. The SpinSlider design uses composition to mimic 
inheritance but gains familiarity via the Iconoclast interface.

Example 8.23: Heterogeneous Collection of Iconoclast Objects
// C++ array of base class (Iconoclast) pointers
Iconoclast*  icon[100];
…
// GetIcon() returns base class pointer, address held therein
// may point to any (sub)type in class hierarchy
for (int j = 0; j < 100; j++)
 icon[j] = GetIcon();
…
for (int j = 0; j < 100; j++)
 icon[j)->move();

// C# array of references typed to abstract class Iconoclast
Iconoclast[]  icon = new Iconoclast[100];
…
// GetIcon() returns base class reference, address held therein
// may point to any (sub)type in class hierarchy
for (int j = 0; j < 100; j++)
 icon[j] = GetIcon();
…
for (int j = 0; j < 100; j++)
 icon[j].move();

Yet, these examples are incomplete. Where are all the common data 
members: energy, glow, speed, and the coordinates x and y? If defined 
directly in the base Iconoclast class then SpinSlider will have three cop-
ies: one inherited from Iconoclast, one indirectly through Spinner, one 
indirectly through Slider. If defined by derived classes, then SpinSlider will 
have two copies: one indirectly through Spinner; one indirectly through 
Slider. Clearly, it is easier for a multiple-movement Icon class to resolve 
redundancy across two copies than three copies. Data members defined 
in any base class can be provided default values. Data members can also 
be held indirectly, via a pointer or reference, and stubbed out when not 
needed. Hence, the base class could provide overloaded constructors so 
that at least one constructor would opt out of instantiating redundant data 
members when multiple copies are not needed. This solution, however, 
increases software complexity.
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When using established classes, design can be difficult. If we must add 
a SpinSlider using the definition of the monolithic class, as illustrated 
in Example 8.19, the most expedient route is demonstrated in Example 
8.20. However, this modification violates the tenets of OOD. Every func-
tion that relies on subtype identification must use a multiarm if-else, or a 
case statement, to determine object subtype. Whenever a new subtype is 
defined, the class must be opened up again, requiring the recompilation of 
the Icon class, and possibly many other recompilations. Recompilation is 
not a trivial endeavor for a large software system.

Given an Icon class hierarchy, and the need to add a multi-movement 
Icon such as SpinSlider, we have the same choices as faced with the 
StudentEmployee example. If simulating multiple inheritance with com-
position, the choice of subordinate subtype would be arbitrary, however.

8.6.1  Evaluating Design Options

What are the general costs of using composition in place of inheritance? 
As shown earlier, loss of access to the protected interface may be a limi-
tation but it can be overcome using a wrapper class. Most significant is 
the loss of the is-a relationship. Interfaces somewhat mitigate this loss 
by preserving the ability to place objects in heterogeneous collections. 
Interfaces, however, do not readily address design with respect to redun-
dant data members. Compensation for loss of inheritance may unavoid-
ably increase design complexity. Table 8.4 enumerates the effects of 
inheritance design.

TABLE 8.4 Inheritance Effects

Motivation Benefits Costs

Inheritance of Interface
Design type system Type familiarity Fixed overhead
Is-a relationship Substitutability Fixed cardinality
Type extension Extensibility Lifetime association
Polymorphism Heterogeneity Dependency on parent

Inheritance of Implementation
Code reuse Access to protected data Code complexity
Reduced dev time Access to protected methods Increased coupling
Reduced test time Stability of parent component Decreased cohesion
Less code replication Not responsible for parent Fixed relationship
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Cost of change may be correlated to the strength of the type dependency 
in a relationship, as well as the stability of an interface. If a parent class is 
modified—an undesirable but possible outcome—a child class receives such 
updates “automatically” through recompilation. Yet, a child class may need to 
make its own modifications, in response to parental changes, especially if the 
inherited interface changes. Any change to a common interface in a class hier-
archy may significantly impact the client. If a subobject class is modified, the 
composing class may be forced to recompile if either the size or the interface 
of the subobject changes. A composing object, however, can isolate its applica-
tion code because it wraps its subobject: if the subobject’s interface changes, 
the composing object is not forced to modify its external interface.

8.6.2  Relevance of Type

To choose an appropriate relationship, the relevance of type is a domi-
nant factor. Recall that the modeling of StudentEmployee as a Student 
that wraps an Employee was preferred to modeling StudentEmployee as 
an Employee and wrapping a Student. The preeminence of Student func-
tionality drove that distinction, as it should.

What if we added a StudentAthlete type? Must we thoroughly exam-
ine all possible options, as explored previously for StudentEmployee? 
Unlikely. In our previous design evaluations, it became evident that 
the Employee type should be subjugated to the Student type because, 
ideally anyway, the essence of being a student is more important to a 
StudentEmployee than being an Employee. Nonetheless, both Student 
and Employee types are central definitions in a university system: one 
can be a Student without being an Employee and vice versa. The same 
type relevance is not evident for Athlete. One can be a Student without 
being an Athlete. One cannot be an Athlete on campus without being a 
Student. There is no expectation of managing, say, a database of Athletes 
who are not Students, as there was for manipulating Employees who 
were not Students. Hence, the notion of an Athlete can easily be subju-
gated to that of a Student.

As noted in Chapter 6, the design impact of inheritance may be dif-
ficult to ascertain. Pure inheritance, or type extension, focuses on inter-
face retention. This support of the is-a relationship suggests a continuity of 
type. Practical inheritance, or code reuse, strives to expeditiously develop 
code by reusing functionality and structure that has already been designed, 
implemented, and tested. Expectations for maintenance should factor 
prominently in design. Maintenance costs are dependent on design but 
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it is often difficult to predict how classes may be used as software evolves. 
Classes more likely to be modified may be preferentially wrapped, espe-
cially if interfaces are unstable.

Multiple inheritance makes it more difficult to evaluate design impact 
because of the possibility of mixing the two motives of type extension and 
code reuse. One parent could provide code reuse while another provides 
type extension. Table 8.5 summarizes the costs and benefits of simulating 
multiple inheritance.

Examine design rationales carefully. While it is true that inheritance 
increases coupling because the child class is tightly coupled to the par-
ent, the composing class will be similarly tightly coupled to its subobject 
in composition. Cohesion is decreased whenever a single type defini-
tion spans multiple classes. Inheritance decreases cohesion because the 
child class type definition is spread across the inheritance hierarchy. 
Composition also dilutes cohesion: the functionality of a composing 
class may be understood best by examining the subobject. Coupling and 
cohesion then are not necessarily convincing arguments for choosing either 
inheritance or composition.

Critical differences between inheritance and composition include flex-
ibility and type support. In composition, the subobject may easily change 
because there is no external dependency on its hidden interface. If the type 
of the subobject class is changed, application code should not be impacted. 
With inheritance, type variability, via substitutability, and type extension 
are promoted via built-in language constructs. Tracking subtype then is 
not the responsibility of the application programmer.

8.7  OO DESIGN PRINCIPLES
Two design principles exalt interfaces as a key component in design. The 
interface segregation principle (ISP) promotes high cohesion and low 
coupling by confining the breadth of an interface. Narrow interfaces 

TABLE 8.5 Use of Composition to Simulate Multiple Inheritance

Motivation Design Benefits Costs

Missing language support Control No protected access
Clear subordinate type Variable cardinality No substitutability
Efficiency Replaceable subobject No extensibility
Polymorphic subobject Postponed instantiation No heterogeneous containers
Conflicting types Insulating layer No direct polymorphism
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focus the intent of a class design and imply specific and thus clear utility. 
Wide interfaces undermine cohesion and maintainability. The Program 
to Interface Not Implementation (PINI) principle underscores the OOD 
tenets of abstraction and encapsulation by serving to isolate the applica-
tion programmer from volatile or arbitrary implementation details. These 
two principles drive class design, especially when classes are designed 
together, whether for inheritance or composition.

The Dependency Inversion principle (DIP) reinforces the importance of 
an extensible, possibly abstract, interface at the base of a class hierarchy. 
The unappealing Generalization inheritance design (Player is-a Warrior) 
illustrates the deficits of dependency inversion: the parent class depends 
on the child class to promote broad utility and type extensibility. When 
designing composition relationships, DIP suggests choice when determin-
ing which class type to subordinate: the application programmer should 
be isolated from the least abstract type. Then, if any lower-level implemen-
tation details must change, the client code is shielded.

Interface Segregation Principle (ISP)
Interfaces should be small and contain only a few, related 

methods.

Program to Interface, Not to Implementation (PINI)
Use abstract classes and interfaces to model  functionality 

 independent of implementation. 
Implementation can then vary independently.

Dependency Inversion Principle (DIP)
High-level abstractions are more stable and less prone to change. 
It is preferable that low-level abstractions depend on high-level 

abstractions.

8.8  SUMMARY
Software design’s immediate goal is to achieve required functionality in 
a manner that meets user expectations. Longer-term goals may add per-
formance criteria, software maintainability, extension of a software prod-
uct line, etc. Software design thereby becomes a complicated endeavor, 
with implicit tradeoffs. The inability to optimize all criteria simultaneously 
requires that the software designer remain aware of trade offs in design. 
Thus, this chapter focused on design alternatives and perspectives.
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The reader should now be able to assess different design motives and 
structures for class design and inheritance relationships. Designs alter-
natives for simulating multiple inheritance should be well understood. 
Additionally, the costs and benefits of directly modeling multiple inheri-
tance, if supported by the implementation language, should be evident.

Solution selection, model structure, and design should depend on goals 
and priorities rather than comfort due to experience. Inheritance supports 
the is-a relationship, yields code reuse, type familiarity, interface recog-
nition, direct polymorphism, and substitutability. Composition supports 
the has-a relationship, yields code reuse, buffers an unstable interface, and 
provides flexibility with respect to cardinality, ownership, and overhead. 
As a model for software development, OOD clearly illustrates tradeoffs 
and supports an evaluation of both long-term and short-term cost and 
benefits.

DESIGN INSIGHTS

SOFTWARE

Compilers do NOT handle ambiguity
Interfaces promote consistency and use of heterogeneous collections

MODELS

Inheritance for specialization models refinement
Inheritance for specification models abstraction
Inheritance for extension models type extension

SOFTWARE DESIGN

Multiple inheritance may be simulated
Type dependency drives selection of subordinate type

Composition offers more flexibility than inheritance
Wrappers support an external perspective

Isolate unstable code
Redefine interfaces

Possibly supplementing or modifying functionality
Delegates support an internal perspective

Provide utility and flexibility
Replaceable

May be polymorphic
Handles control access to data and manage resources 

Do not provide or alter functionality
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DOCUMENTATION

Design options require choice
Tradeoffs must be evaluated
Immediate use versus anticipated change

Design records choice
Document intent and effect

CONCEPTUAL QUESTIONS

 1. Why is the choice between is-a and has-a important?

 2. How can inheritance be suppressed?

 3. Explain the value of protected constructors.

 4. When would suppression of inheritance be appropriate?

 5. What are the costs and benefits of multiple inheritance?

 6. How can multiple inheritance be simulated?

 7. Describe the notion of type subordination and how it affects design 
choices.

 8. What are the key differences among wrappers, delegates, and handles?

 9. Are the language differences, with respect to abstract classes, 
important?

 10. When should composition be chosen in lieu of inheritance, and vice 
versa?
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IV
Software Durability
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C h a p t e r  9

Software Correctness

How correct is software? Many questions arise with respect to the 
notion of software correctness. Does software run without error? 

How does it handle error conditions? Does it meet specified requirements? 
Does it satisfy user expectations?

In this chapter, we provide short summaries of both exception handling 
and software testing. As a part of software design, exception handling 
catches runtime errors so that software execution is not interrupted. 
Software testing is an essential part of the software development life cycle, 
charged with verifying (and thus preserving) functional and nonfunc-
tional properties as software ages.

9.1  EXCEPTIONS
Error processing is essential for modern software. It is preferable to catch 
and possibly correct a small error (such as a data value or format error) than 
to terminate running software. Normal control flow is interrupted when 

CHAPTER OBJECTIVES

• Summarize intent and design impact of exception handling
• Provide a high-level view of testing
• Examine testing with respect to: scale, perspective, and coverage
• Discuss the relevance of software qualities to software correctness
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a hardware error or an encoded software error (such as division by zero) 
is detected: current scope is exited and control transfers to error-handling 
code. Exception objects represent error events and are either built into the 
language implementation or defined by the software developer. Exception 
handlers are code segments designed to handle (process) specific errors 
(exceptions). Thus, handlers are matched to exception objects. Some han-
dlers can be designed to catch (or handle) a wide range of errors.

Exceptions automate some error processing. Upon an error condi-
tion (exception), the normal flow of execution branches to an exception 
handler, where error-handling code is executed, and then control flow 
returns to normal processing. The compiler generates code that sets up 
the required context changes when standard, expected control flow jumps 
to exception handlers.

As a built-in error-processing language construct, exceptions provide a 
software design alternative to excessive conditional evaluations. Moreover, 
exceptions can detect and respond to errors that cannot be uncovered via 
conditional evaluation. For example, when a library routine receives erro-
neous input or enters a state that prevents continued processing, an excep-
tion could alert the caller that the request could not be completed normally.

Most hardware exceptions are handled “automatically.” Low-level ker-
nel code or device drivers translate most interrupts and some processor 
exceptions into events. Other processor exceptions are translated into 
software exceptions. For example, code that attempts to access off-limits 
memory (such as memory allocated to the operating system), generates an 
exception. Other memory exceptions include stack overflow and failure to 
satisfy a heap allocation request. If these exceptions are “caught,” the error 
condition can be “handled” and, ideally, normal control flow resumed.

Three statements typically support exception handling in modern pro-
gramming languages: try, throw, and catch. In many languages, these 
three specific words are, in fact, reserved words. A try block is the speci-
fication of a code block that is to be guarded or enclosed by exception 
handling. Essentially then, the try block is a signal to the compiler that, 
when the software runs, if exceptions are thrown in the guarded code 
then execution should jump to the appropriate error-handling code. A 
catch block is an exception handler, the specification of code to execute 
when an exception arises. A named catch block is associated with one or 
more exceptions that are identified. An unnamed catch block processes 
all (remaining) exceptions. Throw is an intentional, direct raising of an 
exception.
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Exception handling is an oft neglected component of software design. 
Code should be analyzed to determine its vulnerability to error. The 
expected frequency and severity of error should be estimated alongside 
the cost of error response. What type of errors merit the overhead of 
exception handling? This question cannot be answered independent of an 
application, and its prioritization of design goals.

When disruptive errors are anticipated and exception handling is to be 
used, code is placed in a try block. The try block is followed by one or more 
“catch” blocks and an optional “finally” block. Example 9.1 illustrates 
some common exceptions, using pseudo-code that is similar to exception 
handling code in modern languages. Figure 9.1 shows the corresponding 
possible execution paths through this code.

Example 9.1: Pseudo-Code for Exception Handling

try   // exact syntax is LANGUAGE DEPENDENT
{
 x = y/z;  // A1: division by zero possible
 ptr->data = 100; // A2: null pointer possible
 if (myExceptionCond) // A3: throw specified exception
  throw new MyException(“Error”, and_other_data);
 ...
}
catch (ZeroDivide& e) // code block B
{
 // Re-throw if we cannot handle this exception.
 if (! this.CanHandle(e)) throw;
 ...
}
catch (nullAccess& e) // code block C
{  ... }
catch (myException& e) // code block D
{  ... }
catch (...)   // “catch-all”: all exceptions not  
    yet caught
{  ... } // code block E
finally   // code block F
{ // code executed upon normal exit and after any catch
}

What is the cost of exception handling? First, we examine how excep-
tions are processed to gauge runtime effect. Subsequently, we consider cost 
from the software design perspective.

Each exception arises or is thrown at a particular point in a running 
program: that code location is recorded in the program counter. Each 
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exception handler is also associated with a code location, the address 
of the first instruction tied to the corresponding named catch block. 
Processing exceptions consist of matching a thrown exception to its han-
dler. The runtime system must attempt to find an exception handler that 
matches the thrown exception. The search proceeds from the point of the 
exception being raised or thrown. The current scope (the scope in which 
the exception is thrown) is searched first. If no match is found, and there 
is no catch-all block, scope is exited, the stack unwinds (pops off a stack 
frame), and the search continues. From the current scope upward, if there 
is a valid cast from the exception object type to a catch clause type, then 
that catch clause is selected, and its code executed.

Code within a finally block is executed regardless of the exit path from 
scope. If the code runs correctly, the finally block is executed. If an excep-
tion is thrown and caught, the finally block is executed. If an exception is 
thrown and not caught in scope, the finally block is executed. If an excep-
tion is thrown and caught and another exception arises (or is thrown) in 
the catch block, the finally block is executed. This possibility of multiple 
execution paths is shown in Figure 9.1.

If a catch clause is executed, then the exception is considered handled. 
Normal execution then resumes after the execution of the corresponding 
finally clause. The try block is not re-entered, unless it is in a loop. A catch 
clause may re-throw the caught exception or throw a new exception: both 
actions cause the exception so thrown to propagate up, after executing the 
finally clause. An exception may also be thrown within a finally clause, 
again causing scope to be exited and the exception to propagate.

A1

A2

A3

F

A1

A2

A3

F

A1

A2

A3

D

A1

A2

C

F

F F

A1

B

F

No error Other Exception Exception A3 Exception A2 Exception A1

FIGURE 9.1 Possible control paths for Example 9.1.
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In the search for a matching exception handler, successive stack frames 
are released, one after another, until a matching catch clause is found. 
Control repeatedly pops out of current scope until the exception is matched 
to an appropriate catch clause. If no matching catch clause is found, the 
application will exit. Such drastic termination is usually unexpected and 
has the undesirable side-effect of releasing all resources allocated to the 
application, including any of the user’s unsaved data. Hence, the applica-
tion architect should consider a catch-all or finally clause at a point where 
the user’s data is still available. Some applications automatically save all 
pertinent data and attempt to restart the application when an unexpected 
exception bubbles up to the application level.

When a hardware exception—for example, an integer overflow—
occurs, the runtime environment creates an object of the appropriate type 
and then jumps to the exception handler in the context of the currently 
executing routine. In this way, hardware-generated exceptions are handled 
uniformly, using the same mechanism as software-generated (“thrown”) 
exceptions.

When an exception is thrown, the exception object (along with its exe-
cution context) is constructed and control is transferred to an exception 
handler. Execution of a throw statement interrupts normal control flow: 
control is transferred to the named exception handler. The contents of the 
stack and any global data structures remain accessible. All the informa-
tion in the nested frames (popped off the runtime stack) is lost, unless it 
is explicitly retained.

Resources management should anticipate premature exit from scope 
due to error and error handling. A return statement should be allowed after 
resource allocation only if those same resources are released in the finally 
clause. C# provides a using statement that ensures the release of resources 
allocated within its control clause regardless of how the controlled statement 
is exited (normally, or due to an exception or return statement).

In a debugging environment, the exception handler tracks the stack 
frames unwound in response to an exception. If the exception is unhandled 
(or caught by the debugger), the analyst can then extract a crude stack trace, 
which is potentially helpful in determining the cause of the exception. In 
execution environments using garbage collection for memory management, 
it is feasible to maintain the entire execution context between the point when 
an exception is thrown to the point when it is handled. The “exception ana-
lyzer” feature introduced in Microsoft Visual Studio 2010 does so.
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9.1.1  Exceptions and Software Design

Exceptions reflect a structured approach to processing errors. All execu-
tions change the state of a program; the intent of exception handling is to 
recover from the state of an error condition so that normal processing may 
resume. An exception handler may generate a summary or detailed trace 
of the execution state when an exception occurs, but is not required to 
do so. Normal execution, and its associated output, is suspended while 
the exception handler unwinds the stack and looks for a matching catch 
clause.

From the software design perspective, what does exception handling 
cost? To some, the wrapping of code in try blocks, with associated catch 
blocks, clutters code. Specification of error conditions obscures the funda-
mental intent of code segments. The presence of multiple exception handlers 
shifts the focus away from normal control flow toward error processing. 
Software design should accommodate exception handling as needed. The 
distinction between normal and exceptional control paths should be pre-
served. It is easier to follow normal control flow. Using exceptions places 
additional design and documentation responsibilities upon the developer. 
One must document:

 1. When exceptions may arise

 2. Reasons for throwing an exception

 3. How exceptions are handled (or not) and why

 4. How exceptions (and handling) affect the calling routine

Design and documentation must be explicit when using exception 
handling.

Although arguments for sustained readability and constrained soft-
ware complexity have merit, especially if exception handlers are poorly 
specified or layered inappropriately, readability must be balanced with 
the need to handle error. Exceptions may be underused. When con-
sidering the use of exceptions, evaluate language support and cost as 
well as application priorities (such as performance versus safety). The 
stigma of additional memory and execution overhead associated with 
exceptions remains. Commonly, developers consider exceptions to be 
optional—it being implied that supporting exceptions is more expen-
sive than not.
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Assess expected use and cost. In a trial execution, how many times 
is an exception of a given type thrown? How effective is recovery? And 
so forth. As objects, exceptions can be instantiated from a type hierar-
chy. Development tools aimed toward normal software development can 
be used in the design and visualization of exception class hierarchies. 
Profiling tools that track the lifetimes of objects of a given type can pro-
vide insight into the runtime behavior of exception objects.

Exceptions do not directly advance the targeted functionality of a piece 
of software and thus may be underused or not incorporated thoughtfully 
into a design. In prototyping, exception conditions are commonly ignored 
or handled only as they arise. Hence, when prototype code is converted 
into production code, it is not uncommon to skip a thorough review of 
exception conditions and corresponding handlers. In addition, documen-
tation of exceptions is usually inadequate.

In a modern development environment, one can analyze a code base and 
list any and all exceptions that could be thrown. However, documentation 
is still necessary to indicate the conditions under which each exception may 
arise and how best to handle the exceptions. The complexity of such analysis 
may be significant, as would be the resources (manpower) necessary to con-
duct it. Yet, failure to make a decision about error response is the same as the 
decision to let runtime errors interfere with normal processing.

9.2  TESTING DESIGN
Software testing is a large subject area, both commercially and academi-
cally. In this section, we provide an overview of models and techniques 
used. Our motivation is to provide fundamental information and define 
common terms used in testing vocabulary. Our quick examination is not 
at all comprehensive. Readers are encouraged to consult a good software 
testing text for more information (Ammann and Offult, 2008; Perry, 2006). 
Several sites provide information on software testing information includ-
ing http://softwaretestingfundamentals.com/software-testing-methods/.

9.2.1  Scale

Software must be verified that it works as intended. Both functionality 
and  nonfunctional properties (such as performance or security) are rel-
evant. Since it is infeasible to test exhaustively, test case design is critical. At 
what level is software tested? What is the granularity of the tests? Table 9.1 
summarizes standard delineation of tests.
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Unit testing rests on individual software units. The preponderance of 
the class construct in Java and C#, with the ability to embed a main rou-
tine in any class design, facilitates unit testing. When unit tests are so 
embedded, preservation of functionality is more easily verified after code 
changes. Unit tests may be stubbed out until the function or class is fully 
defined.

A unit should be the smallest testable portion of software. In a proce-
dural language, it would be a function. In an object-oriented language, it 
would be a method or set of methods associated with a class. Modules are 
not considered units because they usually contain many functions and 
data fields. Unit testing offers the clear advantage of uncovering defects 
or deficits early in the development cycle, a much cheaper prospect than 
discovering errors during system or acceptance testing. Unit testing also 
facilitates debugging because errors may be confined in scope. The use of 
a version control system in concert with unit testing streamlines the task 
of tracking changes.

Integration testing aims to uncover defects or deficiencies in interfaces 
and interactions between components. Integration testing may be diffi-
cult, especially if there is little control over use of previously developed 
packages. A good software architectural model provides the foundation 
for component level and integration testing. Testing typically simpli-
fies the execution environment. A common assumption is that compo-
nents can be tested independently. Caution should be exercised, however, 
because this assumption is not always valid: the software architecture or 
model should identify dependencies between components.

System testing follows integration testing and seeks to verify that the 
integrated system meets the specified requirements. Terminology may be 
inconsistent here: some refer to system integration testing. Acceptance 

TABLE 9.1 Levels of Testing

Type Motive Details
Unit Small scale

Functional
Embedded, repetitive
Can be automatic

Integration Correct use of interface
Resolve incompatibilities

Difficult
Legacy software

System Meets specifications Nonfunctional may be difficult to verify
Acceptance Meets expectations

Contractual fulfillment
Formal
Can be extensive
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testing formally determines whether the software satisfies the acceptance 
criteria: it may be internal (as an alpha release) or external. Conducted 
within an organization, internal acceptance testing must be conducted by 
professionals who are not directly responsible for software development. 
External acceptance testing is performed outside an organization. Often 
a distinction is made between customer and end-users. Customers are 
the clients who requested the software development or modification and 
hence approved the requirements specifications. End-users evaluate soft-
ware use directly or in an embedded product.

Testing aims to confirm that software meets expectations. We distin-
guish verification from validation. Software verification confirms that the 
software meets specified requirements. Verification may be staged through-
out the development process by reviewing requirement specifications, 
models of software architecture, design specifications, and even code. Test 
cases are designed to mirror requirements. Validation evaluates software 
more broadly by determining if the software meets user needs. Validation 
measures whether the correct system was built, in addition to verifying 
that the system was built according to specification. If the requirements 
specification is inaccurate or incomplete, a software system could be veri-
fied but not validated.

9.2.2  Perspective

Structurally, there are two perspectives on testing: white box testing and 
black box testing. In black box testing, the internal characteristics of the 
software are not known. No assumptions may be made about structure, 
design, or implementation. Hence, most black box testing is functional. In 
white box testing, software internals are known. Hence, tests may be tar-
geted directly toward the software structure, design, and implementation. 
Although opaque and transparent may have been more accurate terms, 
the terminology for black and white box testing meant to imply the ability 
to look inside the “box” of software and see the internals.

As an example, consider, again, our math tutor software. What might 
black box testing entail for such a system? To answer this question, we 
review the specified functionality. Minimally, the operations (addition, 
subtraction, etc.), the types of input (integers, reals, etc.), and the range 
of values (negative, positive, two digits, etc.) must be known. Additional 
analysis is needed to evaluate probable input for user queries, repeti-
tion, tutorials, etc. Once specified, functionality must be translated into 
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a pairing of input and output values. The pairing of legal input with cor-
rect response forms the foundation for testing. To verify appropriate error 
processing, illegal or invalid input must also be vetted. See Table 9.2 for a 
sample summary of test input. In contrast, white box testing would entail 
testing targeted at the software structure.

9.2.3  Coverage

Testing begins with the design and review of a test plan, that is, specifica-
tion of what is to be tested, desired outcomes, and frequency of analy-
sis. Test plans focus on requirement specifications, and should include a 
schedule with an estimate of required resources. Test cases or scripts are 
designed and reviewed relative to the plan. Test data must be carefully 
scoped. The test environment must be set up to mimic the end-users envi-
ronment. Test execution results in verification or a defect report. A test 
report yields composite results.

Testing is essential but expensive. Some may argue that testing is devel-
opmental overhead because it does not directly advance the completion 
of functional software. Nonetheless, core functionality and user interface 
touchstones must be tested. How much more must be tested? The answer 
is application specific. Test coverage measures how much of a software 
system is exercised during testing.

Table 9.3 summarizes common quantifications of test coverage. Code 
coverage is perhaps the most familiar; it measures how much of the code 
has been exercised. Specific inquiries as to what has been covered (such 

TABLE 9.2 Functional Verification for Math Tutor

Validate Input Expected Response Assumptions
Legal input Non-numeric data Error message Number of errors may be 

bounded
Numeric data, 
improper format

Error message
Possible default 
correction

Automatic corrections 
should be simple

Valid input Numeric data, 
improper value

Error message
Review of properties 
possible

Division by zero, integer 
exponent, etc.

Numeric data
Incorrect value

Correct math fact Possible hint or example

Numeric data
Correct value

Verification
Congratulations

May correlate with 
automatic level of 
difficulty increase
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as, has a particular path been executed?) fall under particular types of test 
coverage (such as branch coverage). Some types of coverage are easier to 
automate than others.

A system model or architecture may serve as a scaffold for automated 
testing. Typically, it is infeasible to comprehensively test a large software 
system. Test developers must then devise appropriate test cases to exer-
cise core functionality, verify UI responsiveness, confirm the relevance 
and value of error processing, detail recovery options, etc. One must be 
able to interpret outputs, especially those in response to error conditions. 
Testing becomes more intricate when valid input ranges are not static or 
are state-dependent. Determining valid input ranges and interpreting 
error responses experimentally can be expensive.

9.2.4  Data Values

What is in a test? Data and requests for service that will exercise the soft-
ware. Specific inputs are correlated with expected outputs. Unexpected 
output thus indicates a problem. How are appropriate data values deter-
mined? There are a variety of techniques. Table 9.4 lists common means of 
determining data values. Equivalence partitioning separates or partitions 
all possible data values into different sets, where the values in each set 
cover a particular condition (or trigger a particular response) in the soft-
ware. That is, the data values in any one partition are equivalent. If testing 
uses one data value from each partition then all conditions of the software 
should be covered. In this manner, equivalence partitioning reduces the 
number of tests required to cover functional responses in the software.

TABLE 9.3 Test Coverage

Type Intent Details
Code Proportion of code exercised Tracks frequency
Branch All alternatives exercised at 

decision points?
If-else structures
Switch statements and so forth

Condition Both true and false outcomes? Optimization may consider results
Function How often function called Identify most frequently called 

functions and functions not invoked
Feature How often feature requested May result in multiple function calls
Path All possible control paths 

executed?
Exhaustive
Expensive

Model Verify functionality Broad category
Many models
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Equivalence partitioning is used in conjunction with boundary value 
analysis, a software testing technique that focuses on values that straddle 
the boundary of partitions. Partitions are in essence ordered since the set 
of all partitions represent all possible data values, both valid and invalid. 
Invalid data is not illegal; it is just not relevant to the structure or function 
under test. Unless requirements prohibit error processing (possibly due to 
overhead), test data should include invalid data in order to verify an appro-
priate response to erroneous input.

For example, 27 is a legal value for a day in the month of February; 30 
is not; 29 rarely but sometimes is. Hence, the partitions for data values 
for days in the month of February would include <=0; 1…28; 29; >=30. 
Boundary values would then be 0, 1, 28, 29, and 30. The minimum and 
maximum values that straddle a partition are boundary values. Both sides 
of a boundary should be tested. Thus, there are two boundary values to 
test for each boundary.

Control flow testing strives to exercise the different execution paths 
that might be followed during software execution. Appropriate data val-
ues must be selected to exercise each path. Branch testing is similar to 
control flow testing but strives to execute all possible branches, even those 
rarely taken. For software that must be reliable, or is high-risk and must be 
secure, it may be essential to verify response for all possible actions.

A collection of test cases designed to test specific portions or function-
ality of software is called a test suite. Each group of test cases may be 
associated with environmental requirements or state prerequisites before 
the test cases can be run. A test script is a list of instructions to be executed 
when a test case is run.

A test harness is a collection of code (execution engine), accompanied 
by data (test suites), used to exercise software. A harness is an automated 
framework: test cases are run under specific, varying conditions, and the 

TABLE 9.4 Testing Techniques

Technique Type Details
Equivalence partitioning Black Reduce testing by noting equivalent values
Boundary value analysis Black Boundary values as error conditions
Control flow testing White Could be exhaustive
Branch testing White Force execution of seldom exercised branches
Scenario testing White Nonfunctional properties
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behavior and output of the software tested is recorded. In essence, targeted 
functions are called, often multiple times, with different parameter values, 
and the resulting execution(s) are observed. Test harnesses provide con-
sistency to the testing process as the same test suites may be used over and 
over again. The construction and content of the test harness depends on 
the type of testing executed.

Thus far, we have outlined testing with an emphasis on software func-
tionality. What of software qualities, the nonfunctional properties of 
software? Software qualities may shift the emphasis in testing. We next 
examine several qualities, mostly nonfunctional properties, starting with 
security.

9.3  SOFTWARE QUALITIES
Security testing is a huge field that continues to grow as distributed and 
concurrent computing applications increase. Such applications demand 
privacy and safeguards for data. Hence, software designers must pro-
vide minimum guarantees of protection from malicious (or haphazard) 
attack. Security testing falls across half a dozen categories: confiden-
tiality, integrity, authentication, availability, authorization, and non- 
repudiation. Security testing mandates an assessment of vulnerabilities 
and response. Once vulnerabilities are potentially identified, attacks may 
be simulated.

Security measures tested are listed in Table 9.5. Security testing is but 
one type of testing that is associated with a nonfunctional property (NFP). 
Table 9.6 enumerates general nonfunctional properties, including secu-
rity, that are frequently tested.

TABLE 9.5 Security Measures

Measure Response Intended Guarantee
Confidentiality Confirm information disclosed 

ONLY to intended recipient
Privacy
Data integrity

Integrity Verify correctness of data Reliable transmission
Authentication Confirm identity

Verify access rights
Trusted communication

Availability Ensure software available No denial of service attacks
Authorization Verify validity of request Access control
Non-repudiation Verification of send and receive Sender cannot deny transmission

Receiver cannot deny receipt
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Compatibility testing verifies that a software package operates compara-
bly across differing platforms. For example, web applications must be tested 
on different web browsers to verify that presentation and response are simi-
lar. Compatibility with databases, peripherals, and operating systems may be 
tested. Mobile phone applications require testing on different hardware.

Conformance (or compliance) testing determines whether software 
conforms to applicable standards. For example, compilers must meet the 
specifics of a language standard. Compliance testing may need to be exter-
nal to provide impartial verification of standards compliance, especially if 
independent certification is desired.

Load testing evaluates system response and performance under nor-
mal load conditions as well as expected peak load conditions. The intent 
is to model actual use of the application at periods of normal demand as 
well as high demand and then to identify any failure states or bottlenecks. 
Load testing is frequently used to evaluate the performance of software 
designed for multiple users, such as e-commerce applications.

Closely related to load testing, stress testing assesses system response 
in overloaded conditions, such as excessive concurrency or denial of ser-
vice attacks. Scalability testing is similar to load and stress testing. The 
software system is tested for its ability to scale up or out when user load 
increases, number of transactions increases, data volume or communica-
tion load increases, etc.

To verify a timely and acceptable resumption of normal execution, 
recovery testing forces software failure. Data integrity, data transmission, 

TABLE 9.6 Nonfunctional Testing

Type Motive Details
Compatibility Comparable behavior across 

platforms
Product consistency

Conformance Meets standard Content and interface
Load Comparable behavior under 

different loads
May identify stress points

Performance Efficiency
Reliability and so forth

Broad category

Recovery Assess recovery cost Consistent resumption
Security Function without interference Broad category
Scalability Sufficient resources for load Cost of scaling
Stress Test load for failure Simulate excessive demand
Usability Assess ease of use

Consistent interaction?
Selective test subjects
Need domain knowledge?
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network connectivity all may need to be evaluated after recovery. Multiple 
modes of failure (hardware, network, database, excessive load, etc.) may 
trigger extensive recovery testing.

Our curtailed review of nonfunctional testing is not exhaustive. For 
more information, please consult a modern software engineering text 
and/or testing text. We close by briefly summarizing regression testing, an 
essential process when software is refactored to sustain software quality 
characteristics such as modularity, low coupling, etc.

Regression testing determines whether changes to legacy software have 
or have not compromised the functionality and/or performance of the 
system. Test case reuse is common with regression testing, as is the use 
of tools for automated regression testing. To verify that system function-
ality and/or performance have not been compromised, tests are run and 
evaluated against a fixed set of expected results. If the results deviate from 
expectations, then the regression analysis indicates that the new version of 
software has altered the system in an unexpected or undesirable manner.

9.4  SUMMARY
Exception handling is often overlooked despite providing an automated 
and effective means of handling runtime errors. Software design impacts 
the ease of implementing and layering exception handling. Inappropriate 
coupling increases the difficulty of isolating potential error conditions and 
constructing an appropriate and efficient error response. Well-designed 
software minimizes coupling, implying an effective delineation of struc-
ture and isolated functionality. With low coupling, updating software in 
one component is less likely to trigger a fault elsewhere in the software; 
cascading changes are thus less likely to occur. Clear and cohesive design 
remains essential as software ages.

Software testing is essential for verifying and preserving functional and 
nonfunctional properties as software ages. Software design impacts the 
ability to systematically test software.

DESIGN INSIGHTS

SOFTWARE

Run-time errors usually unacceptable
Error recovery suggests an unrestricted return to normal processing
Software must be verified to work as intended
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Functional and non-functional properties
Testing of invalid data verifies error response

MODELS

Exception handling built into software design
Exception handling layered

Exceptions propogate up
Resource management must consider premature exit 

SOFTWARE DESIGN

Exceptions 
Can catch errors not identified by conditional evaluation
Control error response
Prevent run-time disruption

Exceptions 
Increase code complexity

Readability must be balanced with error control
Assess 

Expected frequency and severity of error
Cost of error response

DOCUMENTATION

Requirements aid black box testing
Models and software architecture aid white box testing

CONCEPTUAL QUESTIONS

 1. When is conditional evaluation insufficient for error processing?

 2. Why is functional decomposition valued when designing exception 
handling?

 3. What are the tradeoffs associated with exception handling?

 4. How do Java and C# support unit testing?

 5. Why are nonfunctional properties relevant to software design and 
testing?

 6. When is security considered a functional requirement?

 7. How does an accurate system model assist the testing process?

 8. How does system design impact testing?
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C h a p t e r  10

Software Longevity

If published years ago, this book would end before this chapter. Why? 
Software development has changed: emphasis has shifted away from 

clean-slate software construction and toward maintaining legacy systems. 
Software evolution and software integration are now essential. Software 
developers must work with existing software and applications. In addition 
to providing functionality, software developers should address the central 
question, relative to software longevity: What makes software viable?

In this chapter, we review the traditional perspective of software 
maintenance alongside a more recent emphasis on software evolution. 
We describe several nonfunctional properties and note their increased 
relevance to software. From a high level, we examine refactoring, the 
process of changing the internal structure of code without modifying 
external functionality. In extreme cases of software degradation, software 
must be reengineered. Hence, we close the chapter by describing reverse 
engineering.

CHAPTER OBJECTIVES

• Close the book with an orientation toward future study
• Define and establish relevance of software maintenance
• Distinguish software evolution from software maintenance
• Summarize key nonfunctional properties
• Define and provide an overview of refactoring
• Identify the relevance of reverse engineering
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10.1  SOFTWARE MAINTENANCE
Software maintenance dominates the software life cycle, consuming 
well over half the resources devoted to software development. Software 
maintenance encompasses more than just bug fixes: platform upgrades; 
UI modifications; functional, interface, and/or hardware extensions; inte-
gration with new components (databases, browsers, etc.); performance 
enhancements; porting; and other maintainability enhancements.

As the final stage of the waterfall model, software maintenance was 
defined as reactive: correcting software errors. Viewed as a postdelivery activ-
ity, software maintenance was not perceived as accommodating new 
functionality or hardware advances. To limit software maintenance costs, 
professional and academic research efforts focused on making software 
development more precise, more streamlined, and thus safer and cheaper. 
If software development could just be “done right” the first time, then the 
software maintenance phase could be minimized. To accommodate hard-
ware changes and extended user expectations, software updates now sug-
gest that software evolution is an essential part of the software life cycle. 
Successful software product development must include plans for efficient 
maintenance.

In addition to correcting deficits in existing systems, software mainte-
nance must accommodate requirements changes that drive new or modi-
fied functionality as well as expanded UIs. To more accurately represent 
the responsibilities of the software maintenance stage, and to counter the 
negative connotations of this term, we use a newer term, “software evolu-
tion.” In the next section, we examine the causes, responses, techniques, 
and effects of software evolution.

10.2  SOFTWARE EVOLUTION
Why discuss software evolution? Over the past several decades, huge 
amounts of money and time have been invested in developing and main-
taining software. Such systems are integral to most business operations,  
including medicine, transportation, government, education, etc., and 
must  be maintained. Trepidation about software development costs 
underlies an accepted reluctance to replace systems in their entirety, that 
is redesign (and implement and test and deploy) a system from scratch. 
Yet, change is inevitable. Hardware advances, expansion (or contraction) 
of customer bases, algorithmic or data mining improvements, and prod-
uct line changes all drive software change. Additional functionality, or 
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demand for improvement in nonfunctional properties, such as reliability, 
performance, or usability, also drives software change. Whether to expand 
or preserve market presence, or to support the infrastructure of business, software 
must maintain its utility in the face of technological advances.

Business needs and technology advances continue to spur software 
upgrades and extensions. How can the impetus for software change be 
categorized? Lehman and Belady enumerated laws of software change, 
some of which are listed in Table 10.1.

Software must evolve as systems age. Exposed to advancing technology, 
users expect more responsive, more reliable, safer software. Additional func-
tionality, performance upgrades, expanded GUI, security, etc. all impact 
system structure. An accumulation of small changes erodes the original 
design, especially if not documented thoroughly.

Software systems that are maintained, usually for commercial reasons, 
are called legacy systems. Large systems are typically difficult to modify. 
When updating software, developers must work around restrictions: 
working software cannot be taken offline (without replacement), user 
expectations must be met (for continuity of use), and performance cri-
teria cannot degrade even if more functionality must be integrated and 
so forth. Targeted change must be incorporated into the existing model 
and design. The cost and difficulty of such modifications increase tremen-
dously when expectations of evolution are not anticipated.

TABLE 10.1 Lehman and Belady Laws of Software Change

Property Motive Details
Continuing change Modifications required to 

satisfy increased user 
expectations

System value degrades if not 
updated

Increasing complexity Add-ons and modifications 
increase software complexity

Internal restructuring needed 
(refactoring)

Self-regulation Assess and retain measures of 
effectiveness

Support functional and 
performance evaluation 

Conservation of 
familiarity

Steady incremental expansion 
(increased complexity)

Users remain competent wrt 
UI and software utility 

Continuing growth Increase functionality to 
retain users

Maintain user satisfaction as 
technology advances

Declining quality Inevitable decline unless 
adapted to technological 
advances

Environment changes 
regardless
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Insufficient modeling, design, and documentation impede software 
evolution. System functionality may not be readily understood when 
requirements or design specifications are missing, poorly documented, 
or incomplete. Moreover, when successive, small software updates are not 
reflected in documentation, a system’s model may not match its imple-
mentation. Hence, a valid system perspective may be compromised. 
Nonetheless, software developers must understand the underlying intent 
and organization of a legacy system to properly integrate new components 
and/or sustain continued maintenance efforts. Reverse engineering is thus 
often employed to extract an accurate model.

Software evolution often is a form of reengineering, where the goal is 
to understand a system to then transform it. Systems are restructured to 
remove deficiencies or to meet performance or cost expectations. Software 
must absorb additional functionality to retain appeal. Reengineering is 
required when a portion of a system bears excessive maintenance costs or 
when a customer base demands modernization. Refactoring is a form of 
reengineering specific to an internal restructuring of software.

Software evolution is not clean-slate modeling or design (Table 10.2). 
The mandate to update, port, or extend existing software begins by assess-
ing the current state of the software, juxtaposed with new expectations: 
one cannot merely guess. Identifying obsolete features and scheduling their 
removal may be part of evolution. Verification of functionality must be 
confirmed via regression testing: unmodified portions of the system 
must preserve their essential functionality and nonfunctional properties; 
modified portions of the system must reflect desired changes.

TABLE 10.2 Software Evolution Stages

Stage Typical Motive Goal
Requirements Update expectations Validate change
Architecture Migration to new environment Reengineering

Maintenance
Design Preserve functionality

Maintainable code
Restructure software to better 
absorb modification

Test case Modification and addition of 
test cases

Verification of functionality and 
nonfunctional properties

Data Migration to new database 
schema

Verification of information 
preservation

Runtime Modify system without 
disruption

Reconfiguration, adaptation, and 
upgrade

Language Integration needs Handle incompatibilities
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10.3  NONFUNCTIONAL PROPERTIES
Traditionally, software development focused on implementing required 
functionality within desired performance constraints. Little attention 
was paid to nonfunctional requirements such as usability, readability, and 
extensibility. Less attention was paid to software maintenance; design was 
often idiosyncratic. Modern software development places more emphasis on 
modeling, design, and testing, with retention of legacy systems as an explicit goal.

Software requirements enumerate required functionality. Thus, even 
when tied to specific hardware configurations and data sets, require-
ments emphasize software utility. With expanded software use, however, 
requirements have increasingly emphasized user experience. How are the 
user needs and expectations met? Ease of use, security, performance, etc. 
are not strictly functional properties because achievement of such char-
acteristics does not advance or support required functionality. Qualities 
that reflect the operation of the software rather than its functionality can 
make one product more attractive than another. Called constraints or the 
“ilities,” nonfunctional properties (NFPs), or requirements, are usually 
difficult to design and measure.

We categorize NFPs, as shown in Tables 10.3 through 10.5, according to 
whether the nonfunctional property primarily pertains to error-handling 
response, performance, or structure. Starting with security, we provide a 
brief overview of several NFPs in these categories but note that this exami-
nation is not exhaustive.

Security is a rather broad term, covering data integrity, service pro-
tection, privacy, and performance. Security implies a systematic defense 
against intrusion that would interfere with normal processing. Adherence 

TABLE 10.3 Error-Sensitive NFP

NFP Meaning Relevance
Security Only authorized changes

Only authorized views
Protection of service
Data integrity
Privacy

Robustness Respond reasonably to erroneous 
or uncommon input

Stable software execution

Recoverability No data lost due to failure Data persistence
Availability Operate with limited resources Stable software execution
Reliability Provide predictable results Preserve functionality
Safety-critical Fail safe for high risk ventures such 

as aviation software
Reduce catastrophe and liability
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to protocols and verification are usually required in any secure system. 
Security may be perceived as a functional requirement, particularly for 
applications such as for banking and e-commerce. Nonetheless, for many 
systems, security remains pure overhead.

Robustness characterizes the ability to withstand error and continue 
processing. Robust software does not crash in adverse conditions such 
as erroneous data errors, invalid requests, peak capacity loads, and 
malicious attacks. A system is said to be robust if very few errors cause 
software to abort or malfunction. Clearly, critical software such as mon-
itoring software, aviation software, etc. must be robust. Less obvious, 
however, is that robust software is costly: design must include signifi-
cant error processing, state testing, and recovery paths in addition to the 
required functionality.

Recoverability is a term traditionally associated with databases: the 
ability to roll back to a state prior to aborted transactions to preserve data 
integrity. The notion of recoverability with respect to a general software is 
the same: the ability for a system to recover from spurious input or errone-
ous states and resume normal processing.

Availability is an engineering term that is related to reliability: the more 
reliable the system, the more it is available for use. Once a system is func-
tional, its availability can be measured directly: the proportion of time a 
system is functional. Measures associated with availability include mean 
time to failure (MTTF) and mean time to repair (MTTR). If the MTTF 
is 990 hours and the MTTR is 10 hours then the availability is MTTF/
(MTTF + MTTR) = 990/1000 = 99.00%. The unavailability is (1 − avail-
ability): 1.00%. One can only predict, not assess, the availability of a sys-
tem model or design.

Reliability has long been studied in engineering and is a measure of the 
mean time between failure (MTBF). The many definitions of reliability 
include the ability of a system to remain functional for a specified period 
of time; the probability that a system will remain functional; the ability of 
a system to fail well. Reliability is especially important in embedded and 
real-time systems. Like availability, reliability is hard to measure precisely 
until a system has been built. However, if one can quantify expected input 
and correlate it to error processing responses, one can estimate the prob-
ability that a system remains functional.

Safety-critical software must not be allowed to fail and, thus, demands, 
intense scrutiny. Safety is functionally built into the system through the 
design, implementation, and test phases. Requirements analyses include 
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the identification of hazards, faults, as well as sources of error and inconsis-
tency. Failure modes can then be built into the software system. Response 
to failure and error must ensure continued operation and control hazards. 
Often, design strives to minimize the number and complexity of safety-
critical components, interfaces, and functions.

Summarized in Table 10.4, performance NFPs assess the operation of 
the software: how does the system run from a qualitative perspective? 
Users expect stability and consistent response. Acceptable performance 
then is often perceived as fulfillment of expected functionality without 
much variation in response time, regardless of load.

Accessibility is a common term used to describe the extent to which 
a product, service, or system is available, generally without restriction, 
to any user. Accessibility is often used in context of assistive technol-
ogy, that is, technology aimed for users with special needs or disabilities. 
Accessibility measures the ability to directly access software function-
ality, despite possible vision, or hearing impairment. With respect to 
software systems, accessibility has also been used to measure Internet 
access, a quality that may have legal and/or political concerns in addi-
tion to technical.

Usability differs from accessibility with respect to target audiences, 
level of satisfaction, and directed outcomes. How easy is software to use? 
When a user must make a selection, valid options should be presented so 
as to facilitate choice. Information regarding correct usage should be read-
ily available (via help screens, tutorials, etc.). User-friendly is an older term 
subsumed by usability. Usability includes the notion of effective function-
ally where user-friendly did not.

TABLE 10.4 Performance NFP

NFP Meaning Relevance
Accessibility Usable by wide audience Reduce dependency on standard 

vision, hearing, etc.
Usability Intuitive access

Small response time
Shallow learning curve
Access consistent with use

Performance Rapid response Timely
Efficiency Resource use reasonable to load Contain cost

Maximize use
Operability Provide required functionality in 

timely manner
Usable

Stability Insensitive to external factors 
such as load

Indiscernible variation in 
performance 
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Usability is gauged by satisfaction with respect to expectations of effi-
ciency and/or outcome. Is the software responsive? Is the user interface 
appealing? Are user selections obvious, or heavily dependent on domain 
knowledge? When an interface presents an intuitive organization of mate-
rial, and supports online learning, the software is considered usable. When 
an interface is overly cluttered, requires extensive domain knowledge or 
prior consultation with a manual, it is not considered usable. Usability 
must be evaluated with respect to the expertise and experience of actual 
or targeted users.

Performance as a specific NFP is assessed as the running time of a piece 
of software. Classically, analysis focused on algorithmic complexity that 
is a measure of how processing time increases when the size of input data 
increases. Succinctly put, algorithms with smaller growth rates scale bet-
ter. Why use a linearly bounded search on sorted data when a logarithmic 
algorithm can search in less time? Tricky details, such as data represen-
tation and linkage, affect the use and efficiency of specific algorithms. 
Standard tradeoffs between time and space impact many algorithms. For 
more details, see any standard algorithms text. Since efficient algorithms 
often are harder to understand, and thus maintain, a general guideline is 
to use simple solutions for small problems.

Efficiency is defined as effective processing using resources commensu-
rate with workload. Performance and efficiency may be impacted by the 
need to support nonfunctional properties, such as security. Additionally, 
software design for generality (extensibility) often impedes efficiency. For 
example, to be more flexible, dynamic evaluation may be preferred (over 
static type checking and/or static function calls) despite the performance 
overhead incurred.

Operability is another engineering term. It refers to the ability to keep a 
system running in a safe and reliable condition. With respect to software 
systems, operability is a measure of the system’s ability to meet functional 
expectations, that is, provide all needed functionality. With the growth 
in distributed systems, operability becomes more complex as many, dis-
tributed components must work together, use a variety of communication 
protocols, and meet expectations relative to response time.

Until a system is built, performance NFPs may be no easier to directly 
measure than other NFPs. However, the complexity of response time and 
resource usage can be theoretically bounded. Such analysis, however, 
depends on formal specification of the algorithms and data structures 
used in support of software qualities.
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Structural NFPs may be measured against the form of the software. 
Are hardware details isolated, and thus amenable to change? If so, then 
portability is supported. Are the software components decoupled and eas-
ily identified? If so, then maintainability is anticipated. Are inventory and 
classification systems designed to incorporate new types of items? If so, 
then extensibility is expected. Table 10.5 enumerates common structural 
NFPs.

Maintainable software should be easy to update. Typical modifications 
include correct a fault, extend functionality, port to different platform, 
accommodate new requirements, adjust user interfaces, modify data stor-
age, enhance security, etc. The cost of software maintenance depends on 
system structure, design, and readability.

Extensibility is an NFP meant to assess the ability to extend the soft-
ware system as different needs develop or the spectrum of users expands. 
Whether extension incorporates new functionality, modifies existing 
functionality, or alters the user interface, system updates should minimally 
impact the current system. Maintaining legacy software by extending its 
capabilities should be as cheap and as easy as possible. Extensibility is hard 
to measure, as it requires predictive power. Nonetheless, a stable system 
architecture should absorb change and curtail the impact of modification.

Interoperability measures how easily a system can interface with other 
systems or components without restriction. Interfaces must be known, data 
must be used in a common format and communication must rest on a stan-
dard protocol. Interoperability thus implies adherence to standards and 
minimizes the design of standalone, incompatible (proprietary) software.

Portable software may be easily moved to different hardware platforms 
and still operate. Closely related to portability is compatibility: the use 
of software in different environments. To maximize commercial gain, 

TABLE 10.5 Structural NFP

NFP Meaning Relevance
Maintainability Easy to modify Retention of legacy systems
Extensibility Easy to add features Software evolution
Interoperability Works with other software Software integration
Portability Works on many platforms Broad software usage
Compatibility Used in different environments Broad software usage
Scalability Can work on larger problems

Can accommodate more users
Handle variable workload
Functions under peak demand

Testability Easy to place in accessible state Verification
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software is often developed for several, different computing platforms. To 
streamline installation, configuration files are placed in specified loca-
tions and are used to store hardware- and software-specific information. 
Specific programming languages, such as Java and Javascript, are used 
within common browsers to support portability and compatibility for web 
applications.

Scalability is an engineering term denoting the ability of a system or 
network to be enlarged, or “scaled” up, in response to increased work-
load. Scalability is not achieved simply by adding more hardware. Search 
engines and algorithms for communication, computation, and data 
storage must efficiently handle an increased load. Latency and through-
put must remain at acceptable levels. A scalable system demonstrates 
improved performance with additional capacity, with such improvement 
proportional to added capacity. A system that fails when load increases 
does not scale.

Horizontal scaling (scaling out) implies the extension of system struc-
ture, such as adding more nodes to a network or more servers to the client– 
server model. An example of horizontal scaling is cluster  computing, that 
is, the configuration of hundreds of desktop computers. In place of a 
high-performance computer, a cluster distributes a problem and solves it 
incrementally. Increased demand for data storage often accompanies hori-
zontal scaling. Vertical scaling (scaling up) implies an internal increase in 
resources, such as the addition of more CPUs or memory.

Testability, how thoroughly a system can be systematically tested, can-
not be directly measured until the software system is relatively complete. 
Can testing be automated? Is component functionality clearly documented 
and understandable? Can component state be controlled? How easy is it to 
observe state change and test results? Software structure supports or impedes 
testing. Component coupling interfers with testing if emergent behavior is 
not confined to clearly defined interfaces. Clear separation of concerns, 
where each component has a single, well-defined responsibility, eases test-
ing. Unit testing and test-driven development have increased the aware-
ness of the necessity of testing.

Whew! So many nonfunctional properties! And we did not even cover 
all known NFPs. It is unlikely that any one system will prioritize so many 
nonfunctional properties. NFPs are difficult to model. Yet, requirements 
should explicitly identify essential nonfunctional properties. Design 
should deliberately incorporate prioritized nonfunctional properties.
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10.4  REFACTORING
Refactoring is the internal restructuring of software that does NOT mod-
ify the software functionality. In other words, code is altered, but exter-
nally, the system runs in the same manner: a client should be unaware 
of any refactorings. Typically, refactoring is undertaken in preparation 
for planned or anticipated changes. Since well-designed software permits 
easier, and thus cheaper, integration of new features, refactorings strive to 
improve a system’s internal structure.

Software longevity often implies degradation of structure, especially 
if successive modifications have been incrementally incorporated. Yet, 
for viability, software must be updated to absorb technological advances 
and meet rising user and performance expectations. Refactoring thus is 
an essential software development activity. Martin Fowler’s (1999) book, 
Refactoring: Improving the Design of Existing Code, brought refactoring to the 
forefront of software maintenance endeavors. Fowler’s book has a distinct 
Java (and thus OO) orientation but provides a systematic delineation of 
refactoring, with intent and effect clearly noted.

Refactoring is applicable to OOD, especially when relationships are nei-
ther adequately modeled nor appropriately designed. A common deficit 
is the overuse or misuse of inheritance. As discussed in earlier chapters, 
“manual” type checking is not extensible and can be costly: case state-
ments are rigid and error-prone and should not be used to select func-
tionality. The likelihood of cut-and-paste programming (a maintenance 
problem) increases when inheritance is missing. However, if inheritance is 
overused, performance may be impacted. As noted in Chapter 8, composi-
tion is often preferred over inheritance.

Fowler categorized different motives for refactorings. When data stor-
age or retrieval is too costly, employ a refactoring to organize data. When 
methods (functions) are too large or too small or require too many param-
eters, apply a refactoring to resolve granularity. When cohesion is too 
low or coupling too high, choose a refactoring that restructures classes. 
Additional types of refactorings include simplifying conditional expres-
sions or method calls. Some refactorings in this classic text are due to lan-
guage limitations. Java has no structs, no pointers (and thus no function 
pointers) and constrained parameter passing. Just as some patterns are 
not needed in a particular language, some refactorings are not relevant 
either. For more information, see the text or Fowler’s web site: http://www.
refactoring.com.
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Across all stages of software development (modeling, design, imple-
mentation, testing), documentation is usually insufficient, inconsistent, 
and/or incorrect. Personnel turnover, distributed development, deadline 
pressures, and a singular emphasis on code production over design all 
contribute to poor documentation. Many refactorings are simply renam-
ings that make code more self-documenting.

Renaming may seem as a mechanical, uninspiring type of refactoring 
but it can expose duplicate code, identify poor encapsulation, indicate an 
interface that is too wide or too narrow, etc., leading to additional refactor-
ing (see Example 10.1). Renaming must adhere to a standard convention, 
use the same name for the same meaning, and avoid arbitrary dependen-
cies (such as type or size) in name selection. Renaming should give mean-
ing to code and clearly delineate functionality, use, and/or effect. Software 
tools now automate many renaming refactorings, thus streamlining the 
tedious processes of updating all references to a name.

Example 10.1: Renaming to Expose Duplicate Code: C#

// 3 differently named functions: each produces same effect
//   double all array elements equal to passed value
void  doubleValue(int[] intArray, int value)
{
  foreach (i in intArray)
   if (value == intArray[i])
    intArray[i] *= 2;
  return;
}

// renaming refactoring should expose redundancy
void  magnifyElem(int x, int[] myDB)
{
  foreach (i in myDB)
   if (x == myDB[i])
    myDB[i] = myDB[i] * 2;
  return;
}

// renaming refactoring should expose redundancy
//   even with variant structure
void magnifyElem(int p, int[] iArr)
{
  for (int i = 0; i < iArr.Length; i++)
   if (p == iArr[i])
    iArr[i] = 2* iArr[i];
  return;
}
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Refactoring targets key pieces of software, often the most critical or 
most frequently executed pieces of code. Dependencies must be identi-
fied to suppress ripple effects of change. After each refactoring, the soft-
ware must be tested to ensure that system functionality is unaltered. Test 
cases verify functionality in an automatic or embedded fashion. Prior to a 
refactoring, code is copied before modification so that it may be restored, 
if needed. The refactoring is then applied, the code compiled, and tested.

Fowler and Beck summarized many software characteristics that make 
maintenance and evolution difficult and described these characteristics as 
“code smells.” Tables 10.6 and 10.7 delineate some of these smells accord-
ing to whether they occur due to insufficient design (or maintenance) or 
overdesign.

Refactoring must not undermine an effective design. Explicit and doc-
umented design helps prevent excessive refactoring. For example, delega-
tion is used to isolate callers from proprietary code, unstable classes, or 
unstable interfaces. Layering via delegation decouples client code from 
legacy system constraints. Delegation that appears excessive must be 
placed in the context of the larger system. Perhaps, delegation is needed to 
protect client code. The cost of replacing delegation with inheritance can 
be significant.

TABLE 10.6 Fowler’s Code Smells and Refactorings: Insufficient Design

Code Smell Details Refactoring(s)
Duplicated code Same expression

Same code
Similar code
Same problem

ExtractMethod
ExtractClass
FormTemplateMethod
SubstituteAlgorithm

Long methods Insufficient decomposition
Loss of delegation
Poor maintainability

ExtractMethod
DecomposeConditional
ReplaceMethod

Large class Expensive, not extensible
Poor cohesion
Duplicate functionality

ExtractClass
ExtractInterface
ExtractMethod

Long parameter list Tedious design
Not maintainable
Dependency on caller for 
acquiring data 

ReplaceParameterWithMethod
IntroduceParameterObject
PreserveWholeObject

Divergent change Poor cohesion
Change in different directions

ExtractClass 

Switch statements Not extensible, rigid
Is selection criteria dependent 
on type or method?

ReplaceTypeCodeWithSubClass
ExtractMethod
MoveMethod
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Caution must be taken when considering replacing inheritance with 
delegation. Although composition is often preferred over inheritance, 
consider software evolution. Extensibility is compromised if inheritance is 
replaced with delegation. Consider the smell, Refused Bequest in Table 10.7. 
Refactoring to replace inheritance with delegation because a particular 
class does not use inherited functionality is risky. Why? Immediate use is 
not necessarily a good predictor of future need. Software designers must 
evaluate the need for extension and not compromise future design.

Some smells may be language dependent. For example, Fowler identi-
fies Primitive Obsession as a smell in his foundational book and provides 
refactorings that replace primitive data with objects. Relevant examples 
given, in Java, do indicate a proliferation of primitives that may be better 
organized via the class construct in Java. However, C++ and C# provide 
the struct construct, and thus are more amenable to mixing procedural 
and object-oriented design. Appropriate refactoring may differ according 
to the implementation language.

Refactoring risks include the introduction of error, inappropriate refac-
torings that compromise design intent, excessive refactoring that degrades 
the system structure, and a low-level focus on relatively unimportant code 
segments. Low-level refactorings must be applied judiciously: system-level 
goals should not be neglected or obscured.

TABLE 10.7 Fowler’s Code Smells and Refactorings: Over Design

Code Smell Details Refactoring(s)
Speculative 
generality

Overdesigned
Excessive delegation
Excessive abstraction
Not maintainable

CollapseHierarchy
InlineClass
RemoveParameter

Message chains Excessive delegation
Long call sequences
Excessive accessor calls

HideDelegate
ExtractMethod
MoveMethod

Middleman Excessive external delegation
Extra intermediary classes

InlineMethod
ReplaceMiddleman
ReplaceDelegateWithInheritance

Incomplete 
library

Cannot modify library
Use wrapper

IntroduceForeignMethod
IntroduceLocalExtension

Comments Code not self-documenting
Poorly designed code needs 
explanation

Renamings…
ExtractMethod
IntroduceAssertion

Refused bequest Child does not use inherited 
methods

PushDownMethod
PushDownField
ReplaceInheritanceWithDelegation
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Refactoring is prominent in software evolution. Refactoring to Patterns 
by Joshua Kerievsky (2005) summarized techniques used to refactor code 
so that the revised internal structure reflects proper use of design patterns. 
Code is restructured to be more extensible and better able to absorb modi-
fications. Processes employed in refactoring to patterns include extracting 
(refactoring code so as to implement pattern), removing (inappropriately 
used), and transforming a pattern.

Refactoring in Large Software Projects, by Roock and Lippert (2003), exam-
ines and details large refactorings (e.g., API, DB). Large-scale refactoring 
resembles reengineering. Explicit requirements and acceptance tests must 
verify the preservation of functionality. Architectural structure and inter-
connection among subsystems, packages, and layers must be explicitly 
outlined. The authors stress granularity: subsystem integration may be 
more important than discerning internal structure. Architectural drift or 
erosion, incompatible refactorings, and cyclic dependencies all contribute 
to costly refactoring.

Clean-slate software design is the modeling, design, and implementa-
tion of a system without the impediment of retaining or reusing exist-
ing software. Clean-slate design is an ideal; most systems, even if designed 
from scratch, reuse libraries, or other utilities and thus must conform 
to established interfaces. Legacy systems support established interfaces. 
Users may be familiar with these interfaces, even if they are designed 
suboptimally. Migration to a refined system then poses more than techni-
cal challenges.

Legacy software is often poorly understood. Documentation may be inad-
equate or so voluminous as to be incomprehensible. Documentation can be 
incomplete, poorly organized, misleading, dated, and/or impenetrable.

Software is difficult to modify when it is large, hard to read, insufficiently 
layered, or inadequately modularized. Overdesigned software is problem-
atic. Constructs established for generality (such as abstract classes) may 
not be essential but still increase software complexity: consider removal if 
performance is compromised by the overhead of flexibility. Underdesigned 
code is also problematic. Insufficient class and relationship design results 
in insufficient encapsulation (or internalization) of functionality, leading 
to excessive external analysis, and duplicate code, such as manual type 
checking. Code is easily replicated via “cut and paste,” and pundits refer to 
“cut-and-paste programming” to describe poorly designed duplicate code. 
Cut-and-paste programming leads to error propagation, code bloat, and 
degraded software design.
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In a large system, incompatible or redundant details may degrade perfor-
mance but do complicate maintainability. Design defects compromise lon-
gevity. Refactoring addresses internal deficiencies and transforms code into 
software that more easily absorbs modifications as the system evolves. As a 
form of reengineering that orchestrates internal change to meet new standards 
or performance expectations, refactoring aims to reduce software complex-
ity. Refactoring is an iterative process, involving multiple internal modifica-
tions to alter the software structure so that it may absorb future changes or 
upgrades. Incremental adjustments include renaming for readability, restruc-
turing for consistency, and reducing code duplication for maintainability.

Table 10.8 summarizes the “root causes” of inadequate software devel-
opment (Bates, 1996; Brown et al., 1998). The presentation plays on the 
notion of the “seven deadly sins.” Whether or not the humor resonates 
with the reader, it should be clear that rushed development, without suf-
ficient resources for modeling, design, and testing, more likely leads to 
compromised software. We reiterate then the need for refactoring.

10.5  REVERSE ENGINEERING
Software systems designed and developed from a model support a com-
prehensive, global perspective. Without a model or sufficient documenta-
tion, a developer lacks the high-level view necessary to determine minimal 
testing requirements and to integrate modifications. With diligence, 

TABLE 10.8 Poor Software Causes

Sin Results Details
HASTE Compromised quality

Incomplete functionality
Incomplete error processing
Incomplete user interface

Schedule constraints
=> 
Insufficient Documentation
Inadequate Testing 

LAZINESS Expedient solution
Longevity not considered

Poor configuration control

PRIDE External software not used “not invented here”
APATHY Failure to anticipate change 

Lack of reusable design 
No long-term vision
Insufficient decomposition

BIAS Idiosyncratic designs No alternatives evaluated
GREED Insufficient modeling

Inadequate design 
Poor or no documentation

Insufficient abstraction
Excessive complexity
Inadequate testing

IGNORANCE Depend only on experience
Poor choices

Dependency on language, 
platform, tools, etc.

Source: Adapted from Bates, M. E., The Online Deskbook, Pemberton Press, 1996.
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developers can reverse engineer a software system, that is construct a 
model of the software from the software itself.

Reverse engineering is an established engineering methodology used 
to extract product knowledge by exposing the underlying design, struc-
ture, functionality, and operation of a device (or software). Motivations 
for reverse engineering include building a replica and extracting a model. 
This last motivation is the intent of analyzing legacy software: circumvent 
inadequate documentation to maintain, and possibly integrate, a legacy 
system with more modern software.

Reverse engineering dissects a system to understand it. Reverse engi-
neering must (1) identify system components and (2) evaluate connec-
tors and relationships between components. Also recommended is the 
construction of a system model to advance the high level of abstraction 
associated with an extensible and malleable system. As reverse engineer-
ing recovers the software architecture, requirements, design models, and 
implementation details, documentation must be updated.

Program comprehension is tedious and time-consuming since modern 
systems can be constructed from millions of lines of code. System core 
functionality must be distinguished from user interface behavior. Inputs, 
outputs, memory, and transformations must be classified and correctly 
mapped. Often, in poorly organized software, UI functions are inter-
spersed with functional code. Such code is brittle because one cannot 
modify either the UI code or core functionality independently. Selective 
refactoring may expose features obscured by excessive coupling.

Profiling tools help determine core functionality, resource manage-
ment, and use. Profilers, test cases, and traces help establish the base 
functionality of a system and evaluate the UI. Profilers identify persis-
tent and temporal data as well as the most frequently exercised control 
paths. Debuggers allow the setting of breakpoints, precise locations in 
the software, so that the state of the software can be examined at critical 
junctures. By manually changing state during a debugging session, alter-
native execution paths can be evaluated. Reverse Engineering techniques 
include tracing execution, analyzing functional provisions as well as ver-
sion comparison.

Assessing dynamic behavior is difficult. Exhaustive coverage is infeasi-
ble and incomplete coverage may be misleading. Correlation of outcomes 
to specific scenarios should be explicit. Analyses of real-time systems, 
embedded systems, and concurrent or distributed systems may be highly 
variable.
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Specifying functional obligations is a form of contract analysis. At an 
architectural level, contractual analysis identifies essential components 
and connectors. A timeline of past modifications to the software system 
can be retrieved through version analysis. Is the system design stable? 
Architectural drift or erosion may be uncovered. At the code and inte-
gration level, contractual (functional) analysis must identify how classes 
(components) collaborate or how data is used. Difficulties arise when an 
interface is not used as intended. A misconstrued UI indicates poor struc-
ture or delineation of functionality. Internal misuse of a class interface 
indicates poor design and decomposition. Design or model inconsisten-
cies may warrant examination of the source code for type casting, alias-
ing, and improper accessibility (all problematic techniques discussed in 
Chapters 4–8).

Reverse engineering is often conducted bottom-up. Construction of a 
system model proceeds in stages, identifying deficiencies and inconsis-
tencies as they arise. Legacy software is tested to establish functionality, 
code is analyzed to establish structure, structure is evaluated to deter-
mine architectural form, and then, at the highest level of abstraction, the 
requirements of the system are enumerated.

Some reverse engineering efforts focus on extracting an accurate sys-
tem model from legacy software that is not documented well or whose 
documentation is dated and not reflective of the system in use. When 
legacy software is owned or licensed, the source code is often available. 
Reverse engineer efforts may seek to replicate software or modify propri-
etary software so that (illegal) copies may be made. In these cases, the 
source code is not typically available.

Software cracking is the modification of software with the intent to remove 
or circumvent restrictions on use. The software may not be owned or may 
have been purchased or licensed with restriction. Cracking software seeks to 
disable features such as copy protection; adware; verification via serial num-
ber, hardware key, data check, or CD check. Software patents and licensing 
agreements exist so cracked copies are illegal. We mention software cracking 
because its first steps are reverse engineering: the software’s executable image 
(binary) is analyzed to avoid the branch that requires verification, triggers 
adware, or prevents copying. The operation code for branching is replaced 
with an NOP (no operation). Another cracking technique is to replace the 
expiration date on trial software. Debuggers, disassemblers, decompilers, and 
UML tools can be used in software cracking.
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10.6  SUMMARY
Modern software development must support legacy software, whether inte-
grating new features or upgrading platforms or enhancing user interfaces. 
Software maintenance is a critical, and oft revisited, stage of software devel-
opment. In this chapter, we review the traditional perspective of software 
maintenance alongside the more recent emphasis on software evolution.

From a high level, we examined refactoring, the process of changing 
the internal structure of code without modifying functionality. A legacy 
software system may need to be refactored. Typically, the intent is to 
improve the design of the software by removing inefficient code or tightly 
coupled code. Refactoring may be necessary for desired performance 
improvements or to prepare a legacy system for anticipated modifications. 
Simplification of the software may also be warranted for the sake of pro-
totyping, feasibility studies, or performance analysis. In extreme cases, 
software must be reengineered, or at least understood on a structural level, 
so we close the chapter by describing reverse engineering with respect to 
software.

DESIGN INSIGHTS

SOFTWARE

External pressures drive software evolution
Technological advances
User expectations

Software maintenance involves more than bug fixes
Software maintenance (evolution) keeps legacy systems viable
Nonfunctional properties address user experience
Key software qualities

Security, performance and structural NFPs

MODELS

Models provide a global perspective for software evolution
Reverse engineering can extract models from legacy systems
Requirements traditionally have a functional emphasis
Modern software requirements must model non-functional properties

SOFTWARE DESIGN

Refactoring alters the internal structure of code 
=> future modifications better absorbed



304   ◾   Software Essentials 

Refactoring should not impact the functionality of existing software
Regression testing used to verify consistent functionality

Refactoring can improve performance and reduce software complexity
Renaming may expose duplicate code, etc.

Retention of legacy systems is modern software design goal

DOCUMENTATION

Documentation not consistently updated as software evolves 
Documentation needed for refactoring but often dated or incomplete

CONCEPTUAL QUESTIONS

 1. What is a legacy system?

 2. Why not design software from scratch?

 3. What are the primary objectives of software maintenance?

 4. How does software evolve?

 5. Why is the term software evolution preferred?

 6. Why did nonfunctional properties become important design criteria?

 7. Which are the most important nonfunctional properties?

 8. What are the main differences between security, performance, and 
structural NFPs?

 9. When is reverse engineering relevant to software development?

 10. What is refactoring and why is it more relevant now than 30 years ago?

 11. Why is regression testing used in refactoring?
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Glossary: Definitions 
and Conceptual Details

absolute address: is the actual address to which a variable is mapped, 
which is the memory location that holds the variable’s value.

abstract class: is a class definition that is not fully implemented; one or 
more class methods remain undefined with the result that no 
objects can be instantiated from the class.

abstract data type (ADT): is a conceptual model of form and function; a 
data definition is separated into an interface and an implementa-
tion where the implementation details are hidden so that an ADT is 
characterized by its utility, which is the functionality provided via its 
interface. For example, a stack is an ADT that provides a LIFO (last-
in, first-out) ordering of data; implementation details of the stack 
container are not relevant to its use.

abstraction: in software design is the separation of conceptual informa-
tion from implementation details. For example, a variable name 
is an abstraction of a memory location, a class interface is an 
abstraction of its functionality, a flowchart is an abstraction of 
control flow.

accessor: is a class method that accesses encapsulated (hidden) data 
internal to the class. Such functions typically return data by value.

ad hoc polymorphism: refers to function overloading: two or more func-
tions use the same name but can be distinguish by their function 
signatures (the number, order, and type of passed parameters).

age: refers to an internal accounting of how long an item has been resi-
dent in a collection; typically used to advance low priority items 
in a priority queue to avoid starvation.

aggregation: is a form of object composition where the composing object 
usually contains multiple subobjects but may not necessarily own 
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these subobjects. The subobjects do not typically provide func-
tionality to the composing object.

agile software development: is an incremental (iterative) software devel-
opment methodology based on adaptive planning: requirements 
and design evolve; interactions with stakeholders drive rapid 
responsive; code is valued over documentation.

aliasing: occurs when two or more handles (variables) reference the same 
memory location. Call by reference, for example, sets up an alias 
between the formal and the actual parameters. Aliasing may 
be used for efficiency since it allows data to be shared, and thus 
avoids copying. However, aliases must be tracked carefully for 
data integrity.

ambiguity: describes a lack of precision that confounds analysis. 
Compilers cannot handle ambiguity. For example, in a multiple 
inheritance relationship, when two parent classes define the same 
named function, it is unclear which method is invoked through a 
child class object. The compiler cannot resolve such an ambigu-
ous call. Hence, the class designer must resolve the ambiguity by 
redefining the method (which can simply redirect the call).

assembly language: is a computer language tied to the processor on 
which it runs and is one step up from machine level code. An 
assembler translates assembly language code into an executable 
form (machine code).

association: is the manner in which two or more variables are related. 
Typically used to refer to ties between objects in OOD, association 
may be flexible or fixed. For example, a derived class object has a 
permanent, fixed association with its parent component.

base class: is the topmost (or original ancestor) in a class hierarchy. In 
a single inheritance relationship, the parent class could also be 
referred to as the base class. This term is more often associated 
with C++ than C# or Java.

binary: is the numerical basis of computing: a number system based on 
two values 0 or 1. Numerically, 10 is 2, 11 is 3, 100 is 4, 101 is 5, etc. 
Yet, binary string values can be interpreted in multiple, different 
ways (as characters, as real numbers, etc.).

bit: is the smallest storage unit in memory. A bit holds a zero or one.
Boolean logic: governs the representation of true and false values as well 

as the rules that determine the truth value of a given equation. For 
example, the truth value of a conjunction (AND) of two Boolean 
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values is true if and only if both values are true; the truth value 
of a disjunction (OR) of two Boolean values is false if and only if 
both values are false.

branch prediction: is the process of predicting which way a branch (if-
else) will go to preserve, if possible, the low-level parallelism of the 
instruction pipeline.

business logic: is also known as domain logic and is the portion of soft-
ware that handles the required functionality (data processing) of 
the (business) application.

byte: is 8 bits and is the standard size of a collection of bits.
caching: is the storage of frequently accessed data so that it can be 

retrieved quickly. Modern processor chips have on-chip caches. 
Programmers may design their own caches to avoid the overhead 
of memory access, but should do so with care due to the difficulty 
of ensuring data integrity with two or more copies of the same 
piece of data.

call by reference: is a parameter passing mode that is considered effi-
cient but insecure. No local memory is allocated for values passed 
in and/or out. Instead, aliases are established, thereby avoiding 
the overhead of data allocation and initialization. However, local 
modification of data does affect external values.

call by value: is a parameter passing mode that is considered secure but 
inefficient. Local memory is allocated and initialized for values 
passed in and/or out. Thus, local modification of data should not 
affect external data values. References and pointers undermine 
the security of call by value.

cardinality: is a measure of the number of items in a set, and, in OOD, 
reflects the number of subobjects defined in a relationship. For 
example, containers have a varying cardinality of subobjects, 
ranging from zero for an empty container to unbounded for a 
resizable container.

cascading changes: imply that modification to one piece of software will 
necessitate modification to a second piece of software, which will 
then necessitate modification to a third piece of software, and so 
on. Tightly coupled code is more prone to cascading changes.

child class: is the immediately derived or descendant class in an inheri-
tance relationship and, as such, inherits all the parent data and 
functionality but may access only that data and functionality that 
is public or protected.
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class construct: is a language construct supported in modern OOPL. A 
class construct is used to define a type by specifying data fields 
(members) and member functions (methods). Essentially an ADT 
with encapsulation, the class construct distinguishes between 
public (external) and private (internal) accessibility to defined 
member data and functions.

class invariant: is a documented summary of the properties and char-
acteristics of a class that should always hold. A class invariant 
specifies constancy in state (such as range of values, dependencies 
between fields, data characteristics), with the implied guarantee 
that manipulating objects instantiated from the class via the class 
methods should not violate any part of the class invariant. Under 
Programming by Contract, the class invariant specifies design 
details and documents intent for software evolution.

clean slate: is a colloquial term that refers to software design that starts 
from scratch. That is, the software designer need not reuse, sup-
port, or integrate any existing code.

code bloat: is the generation of excessively large amounts of code, often 
unnecessarily. Causes of code bloat include inappropriate optimi-
zations (such as function inlining and loop unrolling), poor soft-
ware design, and redundant instantiation of templates.

code complexity: is a term used to describe how easy or difficult software 
is to read, understand, and maintain. Like software complexity, 
code complexity is not a performance measure.

code obfuscation: refers to the deliberate design of code so that it is hard 
to read and understand. Code obfuscation (hiding) attempts to 
safeguard proprietary code from reverse engineering.

code reuse: is the use of existing software to build new software. Software 
libraries are well-known examples of code reuse: the utilities pro-
vided by libraries, such as I/O and pseudo-random number gen-
erators, are used over and over again by many different software 
systems. Code reuse may be more formally known as software 
reuse.

cohesion: is a software engineering measure of functional or type integ-
rity within a design. Cohesion describes how well a software entity 
(function, class, component) hangs or sticks together. The more 
cohesive an entity is, the less dependent it is on external entities 
and thus the more maintainable.
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compaction: is the shifting of allocated memory to one portion of the 
heap to reduce fragmentation and thus improve software perfor-
mance. Like the reclamation phase of garbage collection, compac-
tion is pure overhead.

compiler: is the software program that translates the high-level language 
(HLL) source code written by a software developer into assembly or 
machine code. Work done by the compiler is typically called static 
(static typing, static binding) because it does not change at runtime.

composite principle: refers to the preference in software design of com-
position over inheritance. This design principle is popular with 
practitioners and has been advanced by the Gang of Four in their 
seminal Design Patterns book.

composition: is the structure of a complex data type as defined by the 
composite of several data fields (members), where each data mem-
ber is an essential element and provides some functionality to the 
more complex data type. Composition models the has-a relation.

concrete class: is a class definition that is fully implemented; all class meth-
ods are defined so that objects can be instantiated from the class.

configuration management: is the process of tracking and controlling 
changes in large software systems. Software configuration man-
agement (SCM) tools assist with version control etc.

connector: is a software architectural term referring to what connects 
two components: function call, communication protocol, inter-
face component, etc.

constant: is an identifier that does not need memory allocated because 
its value does not change. The compiler can thus substitute in the 
constant value wherever this identifier occurs.

constructor: is a special class method that is called by the compiler when 
an object is instantiated, thus removing the need for an application 
programmer to call an initialize() routine. It should be designed 
to set the object in a valid, initial state. Constructors return no 
value and have the same name as the class.

container: is a data structure whose primary responsibility is to hold or 
contain data. Common containers include stacks, queues, and sets.

containment: is a conceptual model of the holds-a relation. An object 
contains or holds one or more subobjects. The subobjects do 
not provide functionality and are not typically owned by the 
container.
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contraction: refers to an inheritance design that reduces (contracts) the 
inherited parent interface by suppressing (or NOPing) one or 
more inherited public functions.

control flow: is the trace of the statements executed in sequence as soft-
ware runs, which is the software’s executable path.

copy constructor: is the constructor that initializes a newly allocated 
object by copying the state (value of all data members) of a passed 
object. If not defined by the class designer, the C++ compiler 
generates a copy constructor that performs a bitwise copy on all 
fields—a design landmine if a C++ class allocates heap memory 
internally. C# does not provide a copy constructor.

coupling: is a software engineering measure of the degree of dependency 
between two software entities. Low coupling implies little depen-
dency on external entities.

CPU: is the abbreviation for central processing unit, the computational 
core of a computer.

cracking: software cracking is the deliberate reverse engineering of pro-
prietary software to make copies and/or avoid verification checks 
(such as valid date, specific hardware). Cracked copies are illegal.

cut and paste programming: is a programming technique whereby func-
tionality or structure is replicated by copying the code statements 
defining the functionality or structure from one portion of the 
software system to another. Highly susceptible to error, cut and 
paste programming should be avoided as it undermines software 
maintainability.

data corruption: occurs when two or more handles (variables) unknowingly 
reference the same memory location. One handle can thus change 
the value of the memory location unbeknownst to the other handle.

data mining: is a colloquial term often used in place of data analytics. 
Most often interpreted as the process of scouring large databases 
in search of patterns or correlations between data items, data min-
ing has commercial and artificial intelligence applications.

deep copy: refers to the allocation and initialization of a complete copy of 
a piece of data. Safe but expensive, deep copies are often avoided 
by using aliasing.

default constructor: is older, C++ terminology for the constructor that is 
provided, by default, by the compiler when the class designer does 
not provide one. The default constructor takes no arguments. 
Hence, the term is often confused with no-argument constructor.
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defensive programming: is a style of programming in which no assump-
tions are made about correct usage of the software. Hence, the 
software must build in many tests for error conditions, such as 
illegal input, or use exception handling to prevent improper usage 
from interrupting program execution.

deferred methods: also known as abstract methods, deferred meth-
ods are functions declared in a class interface but not defined. 
Definition (implementation) is deferred to derived classes.

delegate: is an object that serves to provide functionality or services. 
Typically, a delegate is a data member composed within another 
object. If so encapsulated, delegates may be easily replaced or 
modified. Delegation is an established software design technique: 
consider the Proxy pattern. Delegates may be polymorphic.

dependency inversion principle: prioritizes designs that move from 
the abstract to the concrete. High-level abstractions are stable; 
low-level abstractions are not. Therefore, high-level abstractions 
should not depend on low-level abstractions.

derived class: is a descendant or child class in an inheritance relation-
ship. This term is more often used with C++ than with C# or Java. 
Technically, it is more inclusive because a derived class may be a 
grandchild class and so forth.

design patterns: are a collection of established solutions to reoccurring 
problems. A design pattern is a general and reusable code solution 
with expected costs and benefits. For example, several creational 
patterns address the need for virtual construction in a statically 
typed language.

destructor: is a special class method in C++ that is called by the compiler 
when an object goes out of scope. It should be designed to release any 
resources (such as heap memory) held by the object but may also be 
used to update bookkeeping details. Destructors return no value and 
have the same name as the class, preceded by the special “~” symbol.

diamond inheritance: occurs in multiple inheritance when a child inher-
its from two parents that share a common grandparent. Diamond 
inheritance suggests data redundancy in multiple inheritance 
because the grandchild class inherits two copies of the grandpar-
ent component (one through each parent).

disassembler: is a software tool that examines the executable (object 
code) of another program and extracts a representation similar to 
the original assembly language code.
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distributed system: refers to a software system with components distrib-
uted in different locations where the underlying network coordi-
nates actions via message passing.

dual perspective: describes two different views of software development. 
Externally, the application programmer uses a defined class via its 
published interface, and thus is interested in utility but not imple-
mentation details. The class designer has an internal perspective 
and must structure the class to meet design expectations. The class 
designer must: choose implementation structures; decide what 
functions to overload, override, suppress, or NOP; define invari-
ants and implement so as to maintain internal control of state.

dynamic binding: refers to the runtime resolution of a function call. An 
alternative to static binding (when the compiler translates a func-
tion invocation to a JUMP statement), dynamic binding post-
pones function resolution until runtime using a virtual function 
table. Dynamic binding supports polymorphism and heteroge-
neous collections.

e-commerce: is electronic commerce: the purchase, sale, and/or ex -
changes of goods and services over the Internet.

embedded system: is a special-purpose software system, responsible for 
a few dedicated functions, which is embedded in another device. 
Examples abound, including digital watches, traffic lights, vac-
uum machines, etc.

emergent behavior: may be difficult to quantify because it is the behavior 
of the system as a whole and thus cannot be easily determined by 
isolated analysis of the system’s constituent parts.

encapsulation: is a key characteristic of OOP and OOD: the data members 
and associated functionality of a type are bundled together (encap-
sulated) in a class definition, thus promoting high cohesion.

exception: is a hardware or software error that disrupts the execution of 
software. Exceptions can be named and processed within soft-
ware so that runtime errors are avoided.

exception handling: is a systematic response to exceptions. Errors so 
raised are processed and normal execution resumes. Exception 
handlers are (small) pieces of code that execute when associated 
exceptions are raised.

explicit allocation: is the direct allocation (acquisition) of heap-allocated  
memory via a runtime call, e.g., use of the new operator in C++/ 
C#/Java.
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explicit deallocation: is the direct deallocation (release) of heap-allocated 
memory via a runtime call, e.g., use of the delete operator in C++.

extension: is a pure form of inheritance where the child class preserves 
inherited functionality but also extends the functionality pro-
vided by the parent.

extreme programming (XP): is an incremental software development 
methodology that emphasizes short development cycles (incorpo-
rated with stakeholder feedback) so that requirements and code 
are built incrementally.

FIFO: is a popular abbreviation for first-in, first-out. FIFO ordering 
describes containers, like queues, that release data in the order in 
which it was stored.

fragmentation: of the heap occurs when the pattern of memory alloca-
tions (and, possibly, deallocations) yields lots of holes in the heap, 
that is, many small chunks of free memory dispersed among 
many allocated blocks. Heap fragmentation causes the allocator 
to slow down, as it must spend more time searching for free blocks 
and may cause memory requests to fail if there is not enough con-
tiguous memory available.

framework: is a reusable software platform used to develop applications. 
The user can selectively override specific functionality for cus-
tomization. Examples include APIs, compilers, code libraries, and 
tools sets.

friend: is a C++ construct that permits a class designer to selectively 
open up the class to external functions and classes. Any function 
or class declared a friend in classX has access to all the data and 
functionality of classX, even that declared private or protected. 
The friend construct is not symmetric, transitive, or inherited.

function signature: is defined by the function name and the number, 
type, and order of parameters passed into the function.

functional decomposition: is a style of programming also known as struc-
tured decomposition or top-down programming. A program or 
function is designed first at the high level, breaking major tasks into 
lower level functions.

garbage collection: is the reclamation of heap memory no longer in use 
(garbage).  Garbage collection removes responsibility for memory 
deallocation from the programmer but is an imperfect process. 
Executing software must pause for the garbage collector to run. 
Garbage collection is not controlled by the programmer and may in 
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fact not ever be invoked for small or short-lived applications that use 
little heap memory.

generalization: is a less desirable form of inheritance where the derived 
class strives to makes the inherited functionality and inter-
face more general, typically in preparation for further, future 
derivations.

generic: functions and types are definitions wherein the structure and 
primary functionality are defined but the primitive data types 
are not defined internally, rather a type placeholder is used. For 
example, one can define a generic swap routine, capable of swap-
ping values of any type. Likewise, it is common to define generic 
containers, such as stacks and queues, and then, when needed, 
define the type of data held in the container.

handle: is a the means of accessing data stored in memory. A variable is a 
handle. A handle class controls access to data but does not provide 
or alter functionality.

hard coding: is a discouraged practice whereby a programmer uses liter-
als (such as “3.14”) rather than constant variables (such as const 
float pi = 3.14). Hard coding is not maintainable: if a value 
changes, all occurrences of those literals must be updated. In 
contrast, use of constant variables promotes maintainability: if a 
value changes (say, const float pi = 3.14159), the program-
mer need only update one statement—the constant variable.

has-a: is also known as composition. A class has-a data member that pro-
vides essential functionality to the composing object. This relation 
is often preferred to inheritance because it affords more flexibility 
relative to cardinality, association, and ownership.

heap: has multiple meanings: (1) data structure and (2) portion of mem-
ory in a program. The heap data structure is a tree structure that 
can be easily (and efficiently) represented by an array, where A[1] 
represents the root node, A[2] represents the left child of the root, 
A[3] represents the right child of the root,…. For a given array ele-
ment A[i], the left child is A[2*i], the right child is A[2*i + 1], and the 
parent (for i > 0) is A[i/2]. Priority queues are often implemented 
via the heap data structure because of this efficient representa-
tion and the ease of traversing the tree by directly accessing array 
elements. The (runtime) heap is a portion of program memory 
that is used for the dynamic allocation of memory. Heap memory 
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provides  much flexibility but incurs runtime overhead and can 
result in performance degradation if poorly managed.

heterogeneous collection: is a container of many objects where each 
object can be of any type in a specific class hierarchy, which is a 
collection of polymorphic objects. Support for heterogeneous col-
lections is a key benefit of dynamic binding.

hexadecimal: is a base-16 numbering system: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, 
C, D, E, F. Commonly used to denoted memory locations.

high-level language (HLL): is a programming language that provides 
built-in control structures, and the means to define composite 
data structures. HLLs provide a significant degree of abstraction, 
isolating the programmer from hardware details.

holds-a: is also known as containment; a class holds one or more data 
members but does not derive any utility from these subobjects, 
thus implying a lack of type dependency.

identifier: is a (user-defined) name that refers to an entity in source code, 
such as a constant, variable, function, etc.

implementation: of a class is the code that provides functionality and 
embodies the design decisions made with respect to internal 
structure and support for a defined type. Algorithms and data 
structures are key design decisions.

implementation invariant: is a set of design decisions, software char-
acteristics, or properties that must hold for any implementa-
tion of the defined class. As a documentation artifact under 
Programming by Contract, the implementation invariant pro-
vides a design record for class maintenance.

implicit allocation: is the indirect allocation (acquisition) of memory, 
without explicit calls to the allocator. Either the compiler allocates 
memory, via stack frames, or memory is automatically allocated 
at runtime (as in dynamically typed languages like Python).

implicit deallocation: relies on garbage collection to reclaim heap-
allocated  memory because no action is taken in the software to 
deallocate memory when handles go out of scope.

indirection: refers to the ability to access memory indirectly, via a pointer 
variable, or to invoke a function indirectly, via a delegate or func-
tion pointer.

information hiding: is an ideal in software design that specifies the hid-
ing of implementation details so that the application programmer 
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not design software that is dependent on arbitrary implementation 
characteristics. Information hiding is difficult to realize because 
compilers need type information (size) to lay out objects correctly.

inheritance: is a key OO relationship where a child class is defined in 
terms of its parent class. The child class “inherits” all data and 
functionality defined in the parent class. Inheritance supports the 
is-a relationship. The child class can directly use all public and 
protected data and functionality so inherited. Structurally, inher-
itance can be mimicked with composition but inheritance designs 
are more maintainable, especially when polymorphism is used. 
OOPLs provide the inheritance construct to automatically pull in 
the data members and functionality of the parent class.

inheritance of implementation: describes the impure form of inheri-
tance: code reuse. The child class reuses code from the parent class 
but does not necessarily support the inherited interface.

inheritance of interface: describes the pure form of inheritance where 
the derived class maintains the interface and functionality of the 
base class so the derived object is-a base object.

inlining: is a compiler optimization technique that replaces a function 
call with the body of the function, thereby avoiding the overhead 
of function call and return. Inlining can thus improve perfor-
mance. However, inappropriate inlining can lead to code bloat 
and, ironically, decreased performance.

instantiation: refers to the allocation and initialization of an object. This 
term implies the invocation of a constructor to place the object in 
a known, initial state.

interface: is the set of functions defined for a class (or component, or mod-
ule). A class interface may be delineated by accessibility: public for the 
client; protected for descendants; private for internal utility.

interface invariant: is a set of properties, state conditions, or means of 
use that must be observed for the public interface of a class to 
support the application programmer’s expectations. As a docu-
mentation artifact under Programming by Contract, the interface 
invariant is a contractual specification for the client.

interface segregation principle: is the ideal of a maintainable interface: 
small and cohesive. Different functionality should be isolated in 
different interfaces.

invariant: a portion of code that should remain the same. Loop invariants 
describe a condition that should hold true with every execution of 
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a loop. Class invariants describe a condition that should hold true 
for all objects instantiated from the class.

is-a: is an inheritance relationship where the derived class maintains the 
interface and functionality of the base class so the derived object 
is-a base object. Substitutability is possible when the is-a relation-
ship is supported.

legacy code: is existing software that continues to be used, despite the 
availability of newer technology or improved methodologies. 
Often such systems function for convenience of established users’ 
needs. Typically, replacement cost is considered prohibitive.

lifetime: is the length of time that a variable (piece of data) remains allo-
cated. Note allocation does not imply utility or access.

limitation: is an undesirable form of inheritance where the derived class 
limits substitutability by restricting some of the inherited parent 
behavior (either through suppression or NOP).

liskov substitution principle: is the OOD principle that verifies the 
interoperability of (sub)types defined in a class hierarchy. The 
key idea is that inheritance designs support the substitution of a 
derived class object in place of a base object.

literal: is not associated with memory, and thus cannot be modified. A 
literal is a value that is just as it appears, e.g., “7,” “Hello.” For 
maintainability, if a literal value is subject to change as software 
evolves, it is recommended to use constants instead.

model view controller (MVC): is an architectural pattern commonly used 
in software to separate out three entities: the data (model), the view 
(of data), and the controller (update and manipulate data). MVC 
supports code and reuse and maintainability because modifica-
tions to the view do not impact data representation and so forth.

modular programming: is a software design that strives to separate a 
program’s key functionalities (behaviors or concerns) into sep-
arate components. Modular programming reduces coupling, 
increases cohesion, and promotes code reuse.

mutator: is a class method that alters the value of one or more data mem-
bers of an object. A mutator need not induce a state change. For 
example, popping an item off a stack object does not necessarily 
change the state of the stack, unless the stack transitions from a 
non-empty stack to an empty state.

no-argument constructor: refers to a constructor that takes no argu-
ments. Ideally, this term should be distinguished from the 



318   ◾   Glossary

default constructor, which is the (no-argument) constructor pro-
vided by the compiler when the class designer fails to define any 
constructors.

node class: is an intermediate class in a class hierarchy that inherits form 
(and possibly some functionality) from a parent class and antici-
pates extension. A node class itself may be partially abstract.

nonfunctional property (requirement): defines expectations or limita-
tions on the design or implementation of a software system that 
are not directly related to functional requirements. These software 
qualities include performance criteria as well as quality measures 
such as maintainability or scalability.

NOP: stands for No Operation and is an operation code (opcode) that 
indicates that no operation should be undertaken.

object-oriented design (OOD): refers to software design that rests on the 
definition and use of objects, as well as the specification of appro-
priate relationships between objects.

object-oriented programming language (OOPL): support OOD by pro-
viding the class construct and built-in constructs for inheritance 
and polymorphism. A software developer can thus easily define 
an inheritance relationship with dynamic binding, without using 
arcane constructs such as function pointers.

open closed principle: specifies that a class should be open for extension 
but closed for modification, and is a key design principle of OOD.

operating system: is the software, typically preloaded onto desktop 
computers, that handles the basic tasks of the computer such 
as IO (input from keyboard, output to screen or file), schedul-
ing processes,  organizing files and directories, and executing 
applications.

operator overloading: is the definition of class methods that can be 
invoked in application code through a symbol, such as the symbol 
“+.” C++ fully supports operator overloading but, in some cases, 
must rely on the somewhat controversial friend construct to do 
so. Java does not support any operator overloading. C# selectively 
supports operator overloading.

orthogonal: refers to different entities that do not overlap so they can be 
treated separately. In a multiple inheritance relationship, if two 
parent classes are orthogonal, their interfaces have no common 
functions and thus do not confound design with ambiguity.
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overloaded: functions are functions that share a name but are distin-
guished by different parameter lists. Constructors are commonly 
overloaded in class definitions.

overridden: functions occur in class hierarchies when a derived class 
redefines the implementation of an inherited function. Overridden 
functions must have the exact same function signature as the 
method inherited from the parent (or base) class.

ownership: refers to the handle (variable/object) responsible for a piece 
of data (another object). Ownership should be tracked to avoid 
memory leaks and data corruption due to unwarranted aliasing.

parametric polymorphism: is another name for templated or generic 
code. A templated class or function is written with a type place-
holder. When explicitly instantiated, a type (or, the type param-
eter) is supplied and the compiler generates a copy of that class or 
function with the parameter type filled in.

parent class: is the foundation of derivation in an inheritance relation-
ship, and establishes the interface to be used in the is-a relation-
ship. Conceptually, there is no limit on the number of child classes 
that can derive from a parent class.

peripherals: are devices ancillary to a computer, such as printers, second-
ary storage, modems, etc.

pointer: is a variable that holds the address of data in memory. The pointer 
construct provides the programmer with the power of indirection 
and explicit aliasing but is not available in all languages.

polymorphism: is the dynamic binding of function calls within the 
scope of a class hierarchy. All calls are dynamically bound in Java. 
In C++ and C#, a base class must specify a method as “virtual” 
for the function to be dynamically bound. A derived class may 
override an inherited function, and thus provide variant behavior 
for a virtual function. When a virtual function is called through 
a base class pointer or reference, the base class function is called 
if the reference holds an address of a base class object; the derived 
function is called if the reference holds an address of a derived 
class object. In this manner, a single (polymorphic) call may yield 
many (different) results.

portability: is a measure of whether a software program can run on mul-
tiple hardware platforms or not. That is, how easy it is to move 
(port) a software program from one platform to another.
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postconditions: are conditions that hold after a function finishes execu-
tion. By evaluating postconditions, an application programmer 
can track state and thus ensure the legitimacy of subsequent calls.

preconditions: are conditions that should be met before a function exe-
cutes. By satisfying stated preconditions, an application program-
mer ensures correct execution of a function.

principle of least knowledge: is a design guideline that promotes low 
coupling by stating that one object should know as little as pos-
sible of another.

priority queue: is a queue that provides the same interface as a standard 
queue. Internally, although, a priority queue orders items by pri-
ority, not in FIFO order. If data is low priority, then when queued 
in a priority queue, it may be stored indefinitely, that is, starve.

private: confirms the encapsulated nature of class data members and 
methods. Any method or data member declared to have private 
accessibility cannot be externally accessed by either the applica-
tion programmer or descendant classes.

process: is a computer program, or instance of a computer program, run-
ning concurrently with other programs (processes).

profiler: is a software tool that runs other software programs and tracks 
details of usage. Profiles may provide execution traces, track 
memory usage, and collect coverage data. Profilers can be used to 
evaluate heap fragmentation (to identify memory leaks or exces-
sive use of temporaries). Profilers can assess the frequency of 
function calls so that optimization efforts may be targeted.

program counter: holds the address of the currently executing instruc-
tion. In modern hardware architectures, the program counter is 
stored in a special register. The value held in the program counter 
is pushed onto the runtime stack when a function is invoked so 
that, when the function terminates, control can be returned to 
the caller.

protected: accessibility restricts access to class data members and meth-
ods to descendants. Any method or data member declared to be 
protected cannot be externally accessed by the application pro-
grammer but can be accessed by descendant classes.

pseudo-code: refers to a English-like coding form that is used to repre-
sent the encoding of a software solution when it is not desirable to 
follow the precise syntax of a particular programming language 
(such as C or Java).
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public: denotes opens access to class data members and methods. Any 
application programmer or class may access public data and 
methods. Public data members violate encapsulation and are thus 
discouraged.

pure virtual: is a C++ term that refers to a function declared but 
not defined in a class interface. Also known as deferred or 
abstract methods, pure virtual functions make a class abstract. 
Inheritance is anticipated because descendant classes must pro-
vide implementation details.

queue: is a standard data structure that serves as a container. Items are 
stored in a FIFO (first-in, first-out) order. Thus, enqueueing adds 
to the back of the queue; dequeueing removes from the front of 
the queue.

readability: refers to how easy it is to read and understand a piece of 
software. Readability directs impact software maintainability. 
Software construction guidelines suggest coding techniques such 
as functional decomposition, encapsulation, and self-documenting 
code to promote readability.

redundancy: is an inheritance problem that occurs when a child inher-
its from two parents that share a common grandparent. The 
child class object thus receives two copies of the grandparent 
components. Data integrity may be a problem. C# and Java do 
not support multiple inheritance and thus do not encounter this 
problem. C++ designs may avoid such redundancy through vir-
tual inheritance.

refactoring: is the iterative and systematic alteration of the internal 
structure of existing software. External behavior is preserved! 
Refactoring is performed in anticipation of software upgrades so 
that the code is better structured to absorb change.

reference: is a variable that holds the address of data in memory. Multiple 
references can address the same memory, thereby establishing 
aliases and supporting sharing. However, poorly tracked aliases 
(references) can lead to data corruption. One can view a reference 
as a pointer that the compiler automatically dereferences.

reference counting: is a garbage collection technique that associates a ref-
erence count with each allocated memory block. Every reference 
to this block increases the reference count. Each time a reference is 
reassigned or goes out of scope, the reference count is decremented. 
A reference count of zero indicates that there is no access to this 
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memory block, and thus, there is no use of this memory block and it 
may be reclaimed.

reflection: is the ability of a computer program to examine type (and 
modify) code at runtime without knowing precisely the names of 
the interfaces, fields, and methods.

regression testing: evaluates software after an upgrade to ensure that 
system functionality and/or performance has not been altered 
from one version to the next. Tests are run and evaluated against 
a set of fixed results. Conformance to expectations indicates that 
the tests pass.

relocatable: code is not assigned an absolute address. Rather, the relocat-
able address is the combination of a base address and an offset. 
Typically, the number of bytes in an offset represents the distance 
of the code (function or data) from the starting address of the 
component’s layout. Since the component can be loaded into any 
open memory address, the base address can vary but the offset 
remains constant. The code is relocatable because whenever it is 
loaded into memory, addresses are recalculated using the new 
base and the constant offset.

requirements: are specifications that define the essential functional-
ity of a software system, i.e., what a software system should do. 
Behavioral requirements can be modeled with state charts, 
sequence diagrams, etc. Requirements that include nonfunctional 
characteristics (such as performance) are often distinguished as 
NFR (nonfunctional requirements).

responsibility driven design: is the design principle that stresses the clear 
identification of class functionality (actions) and dependencies.

reverse engineering: is the analysis of a hardware or software system to 
determine its structure and functionality. Historically, reverse 
engineering was undertaken to reproduce an existing product 
when the design blueprints were unavailable (as in replicating a 
competitor’s product) or whose original design has degraded due 
to successive modifications. In software, reverse engineering is 
often undertaken to understand an existing system that is inad-
equately documented.

root set: is the set of variables in scope when program execution is paused 
so that the garbage collector may run. A trace emanating from the 
root set identifies all active variables so that the garbage collector 
will not reclaim active variables.
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scalability: is a measure of how well a software system performs under 
increased load conditions (when additional resources are added).

self-documenting code: is the deliberate selection of identifier names 
that describe use and intent. Variable names such as min and max 
clearly imply intent as do function calls like Fibonnaci(n).

separation of concerns: is a design approach that separates the major, 
different features or functionalities of the program into different 
modules and yields more maintainable code that is easier to reuse.

shallow copy: refers to establishing an alias (a secondary reference) to a 
piece of data to avoid the overhead of allocation and initialization 
of a true copy. Efficient but vulnerable, shallow copies may lead to 
data corruption.

side-effect: is an unintended or secondary effect of a direct action. Side 
effects are commonly associated with function calls, where an 
indirect result of the call will be a change in value for some mem-
ory (the direct result of the function call being the functionality 
associated with the function called).

single responsibility principle: is the design principle that prioritizes the 
encapsulation of the primary functionality in a class design, and 
no more.

smart pointer: is a wrapped pointer that serves to guard against memory 
leaks in C++. When a smart pointer goes out of scope, its destruc-
tor is invoked so that any heap memory referenced by the smart 
pointer is appropriately deallocated. The auto_ptr construct in the 
STL is essentially a smart pointer.

software architecture: has many different definitions. A structural defi-
nition considers software architecture to be the layout of the dif-
ferent components of a software system and the relationships 
between those components.

software complexity: is an assessment of software’s structure, readability, 
and maintainability. How intricate, layered, complex is the soft-
ware? Common measures of software complexity include control 
flow, coupling, branching, data, data access, and cyclomatic com-
plexity (the number of independent paths through the software).

software development life cycle (also known as software development 
process): is the set of processes undertaken to develop a software 
system. Typical stages include requirements gathering, design, 
implementation, testing (verification), and maintenance. Different 
methodologies exist for undertaking software development.
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software engineering (SE): is the application of engineering principles 
to developing and managing software systems. SE covers the 
requirements analysis, design, implementation, testing, mainte-
nance, and reengineering of software.

software evolution: is a more modern term referring to adaptive software 
maintenance, which is the upgrading of an existing software sys-
tem to provide more functionality, improved performance, etc.

software integration: is the combination of several software subsystems 
into a working software product. Using predefined subsystems, 
such as databases, UIs, etc., developers can shorten the implemen-
tation and testing phases of software development.

software maintenance: is the modification or upgrade of a software 
system. Traditionally, software maintenance was assumed to be 
corrective: fixing software defects or improving performance. 
Much of software maintenance, however, involves the support 
of an expanding software system and thus includes functional 
enhancements, refinements of UIs, platform extensions, etc.

source code: is a set of executable instructions, usually written in a high-
level language, that comprise a program.

spaghetti code: is unstructured code that is not readable or maintainable. 
Spaghetti code is a style of programming usually associated with 
the emergence of computer programming in the 1960s and exten-
sive use of the GOTO statement.

spatial locality: refers to the use of data elements that are stored in prox-
imity to each other.

specialization: is a form of inheritance where the derived class modifies 
or extends the parent functionality in a manner that specializes 
the behavior according to subtype.

specification: is a form of inheritance where the derived class fills in 
details or provides implementation that is missing in the abstract 
parent class.

stack: has multiple meanings: (1) data structure and (2) portion of mem-
ory in a program. The stack data structure is a common container 
that stores data in a LIFO (last-in, first-out) order. Its classic inter-
face supports pushing (storing) and popping (retrieving) items. 
The runtime stack is a portion of program memory that holds 
functions and data currently in scope. Upon function entry, an 
activation record (or stack frame) is pushed onto the runtime 
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stack. Upon function exit, its activation record (or stack frame) is 
popped off the runtime stack. 

stack frame: also known as an activation record, a stack frame is a layout 
of the composite data necessary to correctly process a function 
call and thus includes the program counter as well as space for 
local variables.

standard template library (STL): for C++, provides generic versions of 
standard data structures, such as stacks and vectors, as well as 
standard algorithms for operating on these containers.

starvation: is a possible side-effect of using a priority queue: a low- priority 
item may be continually bumped in line as higher-priority items 
are enqueued ahead of it. Use of an internal aging mechanism 
may be used to avoid starvation.

static binding: refers to the resolution of function calls by the compiler. 
Static binding is not flexible but is efficient. Once resolved, a func-
tion call cannot be modified, but no overhead is incurred at run-
time to process the call.

static function (method): refers to functions that are declared and 
defined within class scope but are not accessible via an instanti-
ated object. Rather such functions are invoked through the (scope 
of the) class name.

static variable: refers to data members that are declared and defined 
within class scope but are not accessible via an instantiated object. 
Rather data members are invoked through the (scope of) the class 
name. When a class definition is loaded, one instance of the static 
variable is allocated. Every object instantiated from the class defi-
nition thus shares this one copy.

structured programming: is often heralded as the emergence of software 
design, as well as a response to overuse of the GOTO. Structured 
programming promotes functional decomposition and appropri-
ate use of control constructs. The deliberate organization of data 
and functionality should make the underlying structure or design 
of the software evident.

substitutability: is an effect of the is-a relationship: a derived object can 
stand in for, or act as a substitute for, a base class object.

subtype polymorphism: rests on inheritance and dynamic binding. A 
derived class can override (redefine) an inherited function. If this 
function is dynamically bound then, at runtime, either the base or 
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a derived class method is invoked, dependent on the (sub)type of 
object through which the method is invoked.

syntactic sugar: is a derogatory term that implies that a language con-
struct does not provide significant additional design support but 
merely sweetens the code.

templates: are the generic type and generic function support in C++.
temporal locality: refers to the use of data elements within a relatively 

small time window.
test coverage: evaluates how much of a software program has been “cov-

ered” or tested.
test driven development (TDD): is an incremental software develop-

ment methodology that emphasizes tests. Tests are written first 
and then code is developed to pass the test. This code is then refac-
tored to adhere to good design principles.

test harness: is a set of test code and data used to test targeted software, 
often by varying test conditions from one test run to another.

test suite: is a collection of test cases used to test software; often, the test 
suite targets specific functionality or behavior.

this pointer: is a construct in OOPLs that facilitates data access while 
maintaining data integrity. The this pointer is the address of the 
object through which a class method is invoked. The compiler 
automatically patches it in as an implicit parameter whenever a 
class method is invoked through an object. Static class methods 
are called through the class name and thus do not have a this 
pointer as an implicit parameter.

thread: is a lightweight process, the smallest unit of a running program 
that can be scheduled by the operating system. A process may con-
tain multiple threads that share resources, such as memory.

type extension: is typically viewed as a pure form of inheritance: the 
derived class extends, by adding functionality and/or data, the 
capabilities of the parent class.

type introspection: refers to the ability to examine the (sub)type of a 
variable at runtime.

unified modeling language (UML): is a standardized, graphical, model-
ing language freely available to model both structure and behav-
ior in OO software systems. See uml.org.

unit testing: promotes the testing of software components on a unit 
level (function, class, module). Tests are written after the code is 
designed and implemented.
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user interface (UI): is the layer of software responsible for support-
ing human (the user’s) interaction with the software system. 
Traditionally, operating systems provided rudimentary UIs. 
Modern UIs are typically GUI (graphical user interface).

validation: assesses whether the system satisfies the specified require-
ments as well as client expectations; that is, does the system func-
tion correctly and behave as needed?

variable: is a data identifier that is associated with memory. Thus, the 
value held in a variable may change (vary).

verification: determines whether or not software performs as expected. 
Unlike validation, software verification seeks to assess functional-
ity relevant only to the specified requirements.

version control: is the formal management of changes to software. 
Different versions are numbered and identified with a timestamp.

virtual function: is a function tagged in its class definition so that it can 
or will be dynamically bound.

virtual function table (VTAB): is a table of function pointers associated 
with a class. Each entry contains the address of the correspond-
ing function declared in the class interface. When a function 
is defined, its address is placed in the table. If it is undefined 
(abstract), then the vtab entry contains a zero.

virtual inheritance: is a tagged definition of inheritance in C++ that 
attempts to resolve the redundancy problem.

weak reference: a reference (address holder) that provides the same capa-
bility to address memory as a (strong) reference but will not pre-
vent the garbage collector from reclaiming an object.

wrapper: is a class that serves to wrap up, or encapsulate, an existing 
class. Wrappers typically facilitate code reuse by adjusting inter-
faces while retaining existing functionality.
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Appendix A: Memory 
and the Pointer 
Construct

This appendix reviews programming language constructs that 
enable programmers to address program memory within software. 

We cover the C++ pointer construct and examine references, as supported 
in C++ and used in C# and Java. We review parameter passing as a means 
to reinforce an understanding of references. This appendix supplements 
discussions in Chapters 2, 4, 5, and 7. Readers are not expected to have 
experience with either C or C++.

A.1  POINTERS
Chapter 2 outlined the evolution of programming languages and software 
development. The benefits of increased abstraction were noted, as was 
the move away from programming based directly on system hardware. 
Freedom from tedious details, such as mapping out memory assignments 
and tracking specific locations of data, made software development easier, 
faster, and more appealing. Code without hard-coded memory locations 
better supported software maintenance and portability.

Nonetheless, as programming languages became higher level, and pro-
grammers farther removed from the hardware, the desire to directly access 
memory remained. Hence, in C, and then C++, the pointer construct was 
provided to hold addresses. Using pointers, programmers can indirectly 
access data stored in memory. What is the difference between direct and 
indirect access? Direct access is when data is accessed directly (one step) 
through its variable name, as in: “index++;.” Indirect access reflects an 
additional layering. Since a pointer holds an address of a variable, two 
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steps are needed to access or store data in that address: (1) the address of 
the desired variable is extracted from the pointer and (2) the desired vari-
able so addressed is accessed. Step 1 is called “deferencing a pointer” and is 
accomplished using the “*” in front of the pointer variable. The statement 
“(*indexPtr)++;” illustrates these two steps.

Syntactically, it does not matter whether a pointer holds the address 
of memory on the runtime stack or the heap, but any memory accessed 
must be within range of the addresses allocated to the running program. 
If a pointer variable contains an invalid address, that is, a value outside 
the range of program memory, a runtime error results if that pointer 
variable is deferenced. At the abstract level of software design, there is no 
easy means to distinguish invalid addresses from valid addresses. Hence, 
care must be taken to initialize and maintain appropriate values in 
pointer variables. A pointer variable should be initialized to the address 
of a variable, or to zero (or null) to indicate that it currently does not 
contain a valid address.

Example A1 illustrates the declaration of a simple integer variable and 
a pointer variable. The symbol “*” following the type name in a variable 
declaration defines the variable to be a pointer, see line #A. The symbol “*” 
could also immediately precede the variable name, as in line #B. Note that 
“*” does not distribute: line #C declares two variables: an int pointer and 
an int. Placement of “*” is somewhat arbitrary. Software developers should 
be consistent: pick a convention and stick with it.

Example A1: C++ Pointer Declaration, 
Initialization and Simple Use
// C++ code: two variable declarations
int x;  //stack allocation of integer variable
int* iPtr;  //stack allocation of pointer variable    #A
int *iPtr2;  //stack allocation of pointer variable    #B
int* iPtr3,x2; //stack allocation of pointer and then int #C

x = 100;  //x initialized to hold value 100 #D
iPtr = &x;  //iPtr initialized to hold address of x #E

cout << x << &x << endl; //output x’s value and then address #F
cout << *iPtr << iPtr << endl; //same as above #G

cout << ++x << x++ << endl; //outputs 101 101 #H
cout << x++ << ++x << endl; //outputs 102 104 #I
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*iPtr = 200;   //indirect access #J
cout << x << endl;  //is 104 or 200 output? Why? #K

cout << ++(*iPtr) << (*iPtr)++ << endl; //outputs 201 201 #L
cout << (*iPtr)++ << ++(*iPtr) << endl; //outputs 202 204 #M

cout << x << endl; //is 104 or 204 output? Why?
cout << *iPtr << endl; //is 104 or 204 output? Why?

The symbol “&” in front of a variable name tells the compiler to extract 
the memory address of that variable, as in statement #E of Example A1. 
The symbol “*” in front of a pointer variable name tells the compiler to 
extract the value located in memory whose address is held in the pointer. 
Compare the output of statements #F and #G.

Figure A1 displays a sketch of sample memory assignments for the vari-
ables x and iPtr in Example A1. Initially, both variables are declared but 
not defined. That is, no value is assigned to either variable. The memory 
diagrams in Figure A1 reflect this lack of assigned value with question 
marks. Actually, there would be values in memory: whatever residual bit 
string lingers in a variable’s memory location would be interpreted as its 
value. Convention suggests that one always initialize variables. The danger 
of using uninitialized pointers is particularly negative.

Consistent with the notion of an int type, the variable x holds the value 
of a whole number, the value 100 as assigned in statement #D. Consistent 

B500 ?? B504 ???

After initial stack allocation (#C)

B500

B500

B504

B504
200

B500

B500

After assignment of inital values (#E)

After indirect update (#J)

100

FIGURE A1 Memory sketch for Example A1.
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with the notion of a pointer type, the variable iPtr holds the value of the 
memory address of variable x, as assigned in statement #E. Any variable 
on the left-hand side of an assignment statement is subject to an altered 
value. Unless declared as const, pointer values can change, just like any 
other type of variable.

Example A1 displays a classic contrast between pre- and post- increment 
of an integer value. The first set of cout statements (#F and #G) uses the 
integer variable x. As a pre-increment operation, ++x increases the value 
of x from 100 to 101 before the value of x is displayed. As a post-increment 
operation, x++ increases the value of x from 101 to 102 after it is dis-
played. Hence, 101 is displayed twice (#H). The cout statement #I reverses 
the use of pre- and post-increment, so the output is 102 and 104.

Statement #J illustrates an indirect assignment via a pointer variable. 
*iPtr indicates to the compiler that the assignment targets the data value 
whose memory address is stored in the pointer variable iPtr. Hence, the 
value of 200 is written into memory location B500, which is the memory 
address associated with the integer variable x in Figure A1. The value of the 
pointer variable is not altered; the value held in the memory that it addresses 
is altered.

In Example A1, the #L and #M cout statements mimic #H and #I. 
Instead of referring directly to our stored integer, via the variable x, we 
use the dereferenced pointer *iPtr. Note that *iPtr and x are aliased: 
they refer to the same memory. Hence, a change to one is equivalent to a 
change to the other. Thus, when *iPtr assumes the value 200, the data 
altered is the data resident in memory location B500. That is, x is now 200. 
In statements #L and #M, increments to *iPtr are really increments to the 
integer variable x.

Due to precedence constraints, we must enclose *iPtr in parentheses 
before applying the post-increment operator. Failure to do so will not result 
in a compilation error. What would happen of statements #L and #M used 
*iPtr++ instead of (*iPtr)++? Let us reason through the syntax. *iPtr++ 
represents two operations: dereferencing a pointer and post-increment. The 
post-increment operator is invoked first because ++ has higher precedence 
than *. What would be incremented?: iPtr, the value of the pointer variable. 
Hence, B500 would be incremented to B504, assuming pointers are allocated 
4 bytes. Then the value of the “integer” stored in B504 would be output, which 
is not the value expected. Yet, after the cout statements execute, iPtr would 
still be perceived as a pointer variable holding an appropriate address. Any 
changes to memory made through this pointer will result in data corruption. 
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Why? iPtr would no longer hold the address of x. It holds the address of 
memory 4 bytes beyond x. Who knows what values would be altered?

Pointers are typed in C++. Why? To more strongly regulate the use of 
pointer variables, pointers may be assigned only the address of a variable 
whose type matches its own. Thus, int pointers may hold only addresses 
of int variables; float pointers may hold only addresses of float vari-
ables and so forth. Type incompatibilities trigger compilation errors. Any 
statement assigning the address of an int variable to a float pointer 
variable will not compile and so forth. This restriction is relaxed some-
what with respect to inheritance: a base class pointer may hold the address 
of a derived class object, as seen in Chapters 7 and 8.

Pointers are not so constrained in C. An untyped pointer, the void 
pointer, is broadly used in C code. The address of any type of variable may 
be held in a void pointer. Use of void pointers in C++ is discouraged.

Example A2 shows the declaration, initialization, and use of differ-
ently typed pointer variables. Figure A2 show the corresponding sample 
memory allocation. What does the output statement #B yield? 9.9 for the 
float value. What int value is output? Who knows? Although clearly 
iPtr holds the address of y, y was not initialized. Whatever bit string was 
left in the memory associated with y is output.

Example A2: C++ Typed Pointers
float a = 7.5; //stack allocation of float variable
float a2; //stack allocation of float variable
float b = 107; //stack allocation of float variable
int y; //stack allocation of int variable

float* fPtr; //stack allocation: pointer variable
float* fPtr2 = &a; //stack allocation & initialization
int* iPtr; //stack allocation: pointer variable

fPtr = &y; //error: float pointer cannot hold address of int
iPtr = &a; //error: int pointer cannot hold address of float
// #A Initial stack allocation complete here

fPtr = &a2; //pointer holds address of uninitialized float
fPtr2 = fptr; //pointer value can be overwritten
 //two different pointers can hold same address
*fPtr = 9.9; //float 'pointed to' by fPtr is assigned new value

iPtr = &y; //pointer holds address of uninitialized int

cout << *fPtr << *iPtr << endl;
// #B pointer values updated by this point
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A.2  INAPPROPRIATE USE OF POINTERS
Example A3 illustrates illegal and unwise manipulations of pointers. 
Figure A3 sketches the corresponding memory allocation. A pointer may 
not hold the address of a constant value. Nor may a pointer point to a literal 
value. Why? There is no program memory associated with constants or lit-
erals. The cross-through statements in Example A3 indicate compilation 
errors. More problematic are statements that compile but have unknown 
effect because the pointer variable may or may not contain a valid address.

Example A3: Danger of the Uninitialized: C++
// C++ code: missing and illegal initialization
float* fPtr3; //uninitialized pointer variable
int* iPtr3 = 0; //pointer initialized to zero
const float pi = 3.14159;

fPtr3 = &pi; //pointer cannot hold address of constant
iPtr3 = &1000; //pointer cannot hold address of literal

if (iPtr3) *iPtr3 = 100; //Safety check. Effect? #A

*fPtr3 = 99.99; //will compile. Effect? #B

Consistent with convention, iPtr3 was initialized to zero (points to noth-
ing). What happens if iPtr3 were dereferenced?: a runtime exception. Why? 
The memory location 0 is in the operating system domain and is inaccessi-
ble to user programs. Modern software uses exceptions to preserve software 
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FIGURE A2 Memory sketch for Example A2.
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integrity. It is preferable to generate a runtime exception from a null pointer 
than to permit data corruption. To avoid runtime errors, a simple safety check, 
verifying that the pointer is not null or zero, can be performed, as in state-
ment #A of Example A3. What happens when statement #A executes? iPtr3 
was initialized to zero (false), indicating that it does not contain a valid mem-
ory address. Thus, 100 is not assigned to the memory “pointed to” by iPtr3.

What is troubling about statement #A in Example A3? fPtr3 was not 
initialized! Lack of initialization does NOT mean that variables have no 
value. It means that no one knows what value they have: whatever bit 
string resides in the memory associated with the variable will be inter-
preted as its value. Thus, whatever bit string resides in the memory associ-
ated with the pointer fPtr3 will be interpreted as an address of a float. 
If the residual bit string yields an address outside the range of valid pro-
gram addresses, a runtime error occurs. Otherwise, the memory location 
is overwritten by the value 99.99. Data corruption! Although unintentional 
data alterations often do not affect running software, data corruption can 
lead to failure. Such errors can be hard to trace since they may occur far 
from the source. Design guidelines explicitly recommend that program-
mers initialize pointer variables either to the address of an appropriate 
variable or to zero (or null), indicating that pointers point to nothing.

Multiple handles (pointers) can hold the same address, giving program-
mers multiple ways to access a specific memory location. Thus, pointers 
support the sharing of data. Pointers may lead to data corruption if the 
value in memory is changed through an alias without the knowledge (or 
permission) of other aliases.

A.3  REFERENCES
C++ has pointers. Java does not. C# supports pointers in a restricted man-
ner and only in unsafe mode. Is there indirect addressing in C# or Java? 
Yes! All three languages have references. Like a pointer, a reference is an 
address holder. Unlike a pointer, a reference is an established alias. Thus, 
the programmer cannot change the association between a reference vari-
able and its aliased memory location.

B50C B510
Pointers that do not contain valid addresses should not be dereferenced

0?????

FIGURE A3 Pointer variables with invalid addresses.



338   ◾   Appendix A

Example A4: C++ References
// C++ code: aliases (two or more handles point to same memory)
int z;
int& alias = z; // reference to int variable declared
int& illegal; // compile-time error: no alias specified
int* iPtr = &z; // int pointer declared and defined
// #A Initial stack allocation complete here

z++;
alias++;
cout << z << alias << *iPtr << endl;
// #B post increment of (uninitialized) variables complete here

z = 100;
cout << z << alias << *iPtr << endl;
// #C assignment to int z

alias = 1;
cout << z << alias << *iPtr << endl;
// #D assignment to alias complete here

Example A4 illustrates the declaration, initialization, and use of C++ 
references. Figure A4 sketches the corresponding memory allocations. A 
reference is manipulated in the same syntactical manner as the variable 
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with which it is aliased. Contrast that to a pointer variable. One must use 
“*” to dereference a pointer variable and “&” to extract the address of a 
variable. A common saying is that a reference is a pointer that the com-
piler dereferences for you. The reference is conceptually the same in C# 
and Java.

A.4  THE this POINTER
Pointers provide the means to address memory, and thus potentially 
undermine portability. Yet, pointers are used extensively in object- 
oriented programming (OOP). How then can OOP be more abstract than 
structured programming? OOP hides many pointers, specifically, a special 
type of pointer called the this pointer.

The this pointer/reference is defined for each object instantiated in 
an OO program, whether the code is written in C++, C#, or Java. The 
this pointer/reference holds the address of the object with which it is 
associated. The this pointer/reference is needed to resolve access to 
data members and member functions defined in a class but referenced 
in individual objects. We walk through Example A5 to explain this 
concept.

Example A5: Sample C++ Class Definition
// class definition in.h file
class hitCount
{ int count;
 int min;
 …
   public:
 hitCount()  { count = 0; min = 0;}
 void query() { count++;}
 bool threshold(int); // function defined in .cpp
 …
};

…
hitCount a, b, c;
a.query();  // #A equivalent to hitCount::query(B100)

for (int k = 0; k < 10; k++)
 b.query(); // #B equivalent to hitCount::query(B108)

for (int k = 0; k < 100; k++)
 c.query(); // #C equivalent to hitCount::query(B110)
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Example A5 defines a C++ class that includes the functionality to track 
the number of queries made of an object. For clarity, most other func-
tionality has been omitted. Object instantiation for three variables is also 
presented, and Figure A5 shows sample memory allocations for these 
objects. This discussion is relevant for Java and C# code, the key difference 
being that, from the C#/Java application programmer perspective, this 
is a reference.

Discussed briefly in Chapters 2 and 3, functions are named blocks of 
code that are laid out in the code section of program memory. Functions 
defined in classes, often called methods, are defined in class scope. Thus, 
the query() function defined for the hitCount class is really named 
hitCount::query(). A query() function defined in a dataStore class 
would be named dataStore::query(), etc. Class scope allows many dif-
ferent classes to define methods with the same name, such as query(). To 
identify the appropriate function, class methods must be invoked through an 
object instantiated from that class. But how does the hitCount::query() 
method invoked in line #A of Example A5 know that it should update the hit 
count of object a? Likewise, how does the hitCount::query() method 
invoked in #B of Example A5 know that it should update the hit count of 
object b? Etc.

To control access to encapsulated data members, the compiler translates 
the method invocation a.query() to hitCount::query(&a). That is, the 
compiler passes in an implicit parameter — the address of the object a. 
When the data member count is incremented in the method query(), it 
is the data member of a, namely a.count++. Similarly, when the compiler 
translates the invocation b.query(), it again passes in an implicit param-
eter — the address of the object b. When count is now incremented, it is 
b.count++. The implicit parameter so passed is called the this pointer; 
the this pointer is the address of the object through which a class method 
is invoked.

The this pointer may be used to disambiguate references. What does 
that mean? In a class method, to clearly note association, formal param-
eters often carry the same name as the associated data field. One cannot 
use the same name in one scope to reference different memory locations. 

B100 1 B108 10 B110 100

FIGURE A5 Three hitCount objects.
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The this pointer clarifies that the field being referenced is a data member 
of the object through which the function was invoked. Example A5a shows 
the implementation code for a second method declared in the  hitCount 
class, where this method has a passed parameter with the same name as a 
data member. Like other C++ pointers, the this pointer must be derefer-
enced first before accessing any data field of its object. Again the derefer-
enced pointer must be put is parentheses because field access, “.”, has higher 
precedence than “*”. An equivalent, and more readable, syntax is achieved 
using the -> operator. Thus, “(*this).min” is equivalent to “this->min”.

Example A5a: C++ this Pointer Used to Disambiguate
 // method definition in .cpp file
 bool hitCount::threshold(int min)
 { return (min < (*this).min); }

A.5  PARAMETER PASSING
Two parameter passing modes are commonly used in modern program-
ming languages: call by reference and call by value. “Formal parameter” 
refers to the parameter as named in the function definition while “actual 
argument” refers to the value or variable passed for a specific function 
invocation. Call by value encompasses both pass by value (when a value 
is passed into a function) and return by value (when a value is returned 
from a function). Similarly, call by reference encompasses both pass by 
reference and return by reference. What is the difference between the two 
parameter passing modes? Memory use. C++ and C# support both modes. 
Java supports only call by value, which is the default parameter passing 
mode for both C++ and C#.

Call by value is considered a secure but inefficient means of passing 
data in and out of functions. For pass by value, the formal parameter is 
allocated its own local memory (in the stack frame associated with the 
function), which then is initialized with the value of the passed param-
eter. Hence, one can pass a literal value, a constant value, or a variable. 
In all cases, the value is copied; the original data is unaffected. In return 
by value, a temporary of the appropriate type is allocated memory in the 
function stack frame. The return value is then copied into this location 
when the function returns to the point of call. Copying data incurs a sig-
nificant overhead if the passed or returned value is large. Nonetheless, for 
primitive (built-in) types, call by value guarantees that data outside the 
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function will not be affected by actions on the passed values. We consider 
call by value with respect to objects in Appendix C.

Call by reference is considered to be an efficient but insecure means of 
passing data in and out of functions. Instead of providing local memory 
into which the passed (or returned) data values are copied, call by reference 
establishes aliases. One cannot use literal values or constant values with 
call by reference. For pass by reference, the formal parameter is aliased 
with the actual argument. In return by reference, the function returns the 
address of the variable so returned. Call by reference is often used as an 
alternative to call by value when data objects are large and the overhead of 
local memory allocation and initialization should be avoided. To ensure 
that passed values do not change, while retaining the efficiency of passing 
by reference, C++ design guidelines recommend passing by const refer-
ence. As shown in Chapter 4 and Appendix B, copy constructors and over-
loaded assignment operators typically illustrate this approach.

Example A6 contrasts pass by value and pass by reference with the cor-
responding memory diagrams illustrated in Figure A6. Since pass by value 
allocates a local copy (p) for the passed parameter (safe), the function’s 
action of incrementing p has no impact on the actual argument: after the 
function call, the value of safe is the same as before the call. In contrast, 
pass by reference aliases the formal parameter with the actual argument. 
Thus, a change to q is a change to the actual argument insecure.

Example A6: Pass by Value and Pass by Reference (C++)
// C++ code: parameter passing
// formal parameter: p
void passByValue(int p)  { p++; }

// formal parameter: q
void passByReference(int& q) { q++; }

const int noMemory = 22;
int  safe = 100;
int  insecure = 100;
// #A
passByValue(11);  // actual parameter: literal '11'
// #B
passByValue(noMemory); // actual parameter: noMemory
// #C
passByValue(safe);  // actual parameter: safe
// #D
passByReference(insecure); // actual parameter: insecure
// #E
cout << safe << insecure << endl;  // outputs 100 101
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Example A7 contrasts return by value and return by reference. Figure 
A7 presents the corresponding memory diagrams. In return by value, 
the value returned is copied into the temporary allocated on the function 
stack frame. Since the value is copied, one can return a literal value, a 
value held in a constant, or a value held in a variable (regardless of where 
that variable resides). Programmers must be careful when returning by 
reference since doing so establishes an alias. Literal values and constant 
values cannot be returned by reference because there is no memory associ-
ated with such values.

Example A7: Return by Value and Return by Reference (C++)
// C++ code: parameter passing
int returnByValue1()
{ // ok to return literal: value copied
 return 42;
}

int returnByValue2()
{ const int noMemory = 43;
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FIGURE A6 Local memory holds copied value for PassByValue.
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 // ok to return const: value copied
 return noMemory;
}

int returnByValue3()
{ int stackMemory = 44;
 // ok to return local variable: value copied
 return stackMemory;
}

int& returnByReference()
{ int stackMemory = 66;
 // NOT ok to return (address of local variable)
 return stackMemory;
}

int  hitch = returnByValue1();  // #A
int  hiker = returnByValue2();  // #B
int  guide = returnByValue3();  // #C
int&  riskyAlias = returnByReference(); // #D
…
riskyAlias++; // What data is incremented? // #E

Aliases are problematic when the scope of the alias exceeds that of the 
memory. Consider the runtime stack. Each stack frame contains data nec-
essary for entering function scope and exiting function scope, including 
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FIGURE A7 Stack frames go out of scope.
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memory for local variables. What happens if a reference to a local variable is 
returned from a function call, as in statement #E of Example A7? The caller 
then holds an address to memory in a stack frame. However, stack frames 
are popped off the runtime stack as part of the routine return from a func-
tion call! The caller would then be left with a handle to memory that will be 
reassigned, again establishing an unseen vulnerability for data corruption. 
Guidelines mandate that one should not return local variables by reference.

Even without knowledge of stack frames, a programmer should 
remember that local variables go out of scope when a function is exited. 
When returning a reference, programmers must ensure that the address 
returned is currently valid, and will remain valid after function scope is 
exited. Aliases to heap memory should be more stable. Nonetheless, in 
C++, as shown in Appendix B, one must track ownership of heap memory 
so memory leaks do not occur.
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Appendix B: Heap 
Memory and Aliases

This appendix reviews the use of heap memory in C++, C#, and Java. 
We contrast stack and heap allocation as well as explicit and implicit 

deallocation. We examine class design responsibilities when heap memory 
is allocated internal to an object. This appendix augments material presented 
in Chapters 4 and 5. Readers are not expected to have experience with either 
C or C++, but those without such exposure should first read Appendix A.

B.1  HEAP VERSUS STACK ALLOCATION
Chapter 4 provided an overview of a program memory, distinguishing 
between the runtime stack and the heap. The runtime stack is used to hold 
data as it comes into scope via function calls. When a function is invoked, 
the stack frame associated with the function is pushed onto the runtime 
stack. When a function terminates, its scope is exited, and its stack frame 
popped off the runtime stack. A stack frame holds all variables local to 
the function, whether allocated by declaration, pass by value, or return 
by value. The memory used in stack frames is determined by the compiler 
and hence is viewed as static allocation.

In contrast, memory allocated on the heap is termed dynamic allocation 
because memory requests are made at runtime through a call to the new 
operator. The size of memory requested need not be specified until runtime. 
Dynamic memory deallocation is more complex. As examined in Chapter 
4, different languages provide different schemes. C++ uses explicit deallo-
cation: conceptually, each allocation request (call to new operator) must be 
matched with a corresponding deallocation request (call to delete operator). 
C# and Java use implicit deallocation, that is, garbage collection.

Stack allocation and deallocation is easy and lossless. The compiler 
takes care of the generation and manipulation of stack frames, and 
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supporting hardware make such processing very efficient. However, stack 
memory allocation is rigid since memory allocation size must be known 
at compile-time. Heap allocation incurs the runtime overhead of invoking 
the allocator via the call to new. Heap deallocation is complex, and often 
imprecise. However, heap memory usage provides more flexibility: mem-
ory requirements need not be known until runtime, and thus can vary 
from one run to another (without re-compiling code). These contrasting 
characteristics of memory management may be summed up as efficient 
versus flexible, secure versus vulnerable, and lossless versus leaky.

C# and Java allocate objects only on the heap. As shown in Example B1, 
one must call the new operator to allocate an object. Object declarations in 
C# and Java are merely declarations of references. If an object declaration is 
not combined with initialization (as is the case for #A in Example B1), C#/Java 
references are zeroed out. Since the C#/Java programmer must always call the 
new operator, and thus specify a constructor, there are no hidden assumptions 
about which constructor is triggered. In Example B1, statement #B invokes 
the no-argument (often default, compiler-provided) constructor, statement #C 
invokes an overloaded constructor that takes a passed integer value.

Example B1: Object Definition (Allocation)
// C#/Java object definition: objects are references
// variables zeroed out if not initialized
myType objA; // #A objA zeroed out
myType objB = new myType(); // #B no-arg constructor
myType objC = new myType(42); // #C constructor takes int

// C++ object definition: by default, stack allocation
myType objD; // #D default constructor invoked
myType objE(42); // #E constructor that takes int

// C++ object definition: specification of heap allocation
myType* objPtr1;  // #F objPtr1 not zeroed
myType* objPtr2 = new myType; // #G call to allocator
….

// must deallocate C++ heap object when no longer used
delete objPtr2;  // #H heap memory released

C++ allocates objects on the stack, by default. C++ allocates heap 
objects in the same manner as Java and C#, via a call to the new opera-
tor. C++ programmers commonly use pointers, rather than references, to 
hold the addresses of heap-allocated memory. As noted in statement #F 
of Example B1, C++ does not zero out pointers. Otherwise, the process 
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of initializing the pointer variable is much the same as that in C#/Java: 
a call to the new operator results in the allocation of heap memory and 
the return of that address. In Example B1, a C# no-argument constructor 
is called to initialize objB, whereas a C# constructor that takes an inte-
ger value is called to initialize objC. Two similar C++ constructors are 
involved in the declarations of objD and objE, but it may not be as evident 
in C++ that constructors are invoked.

A C++ programmer must remember to deallocate all heap objects 
before their handles (the pointer variables that contain their addresses) 
go out of scope. Otherwise, access to the heap memory will be lost; that 
is, a memory leak will occur. Figure B1 provides memory diagrams cor-
responding to Example B1.

All caveats discussed in Appendix A relative to pointers apply here 
because C++ heap objects require the use of pointers. The uninitialized 
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C++ pointer, objPtr1 (statement #B), will not be zeroed out. Whatever bit 
string resides in the memory associated with the pointer will then be inter-
preted as an address. If subsequent code statements dereference objPtr1, 
what happens? Possibilities include: a runtime exception because the mem-
ory address is reserved for the operating system; alteration of memory not 
owned, thus leading to data corruption; alteration of memory that is sub-
sequently overwritten with valid data so that no ill effect persists. Without 
proper initialization, it is hard to predict behavior. Without a language 
construct to enforce consistency, programmers must rely on convention. 
C++ design guidelines always stress the necessity of initializing and, when 
memory is released, zeroing out pointers. Why? Programmers can then 
interpret a nonzero value as a legal address.

Care must also be taken when initializing objects. OOP provides the 
means to define a class initialization routine via a special function called 
a constructor. Constructors bear the same name as their class and return 
no value (not even void). When stack objects are declared in C++, the 
compiler automatically patches in a call to the default constructor.

An object definition is a two-step process: memory is allocated and then 
a constructor fires to initialize data fields and put the object into an initial, 
valid state. In C# and Java, because one must explicitly invoke the new oper-
ator, one must explicitly identify the constructor to invoke. Constructors 
may be overloaded. That is, a class may define more than one constructor. 
Each constructor bears the name of the class, and returns no value, but is 
distinguished by the number, type, and order of formal parameters.

The terms default constructor and no-argument constructor are inter-
changed and often confused. Default constructor is an older, C++ term 
and refers to the constructor provided by the compiler if the class designer 
does not define any constructors. The default constructor never takes any 
arguments. How could the compiler decide what arguments to pass? Java 
and newer languages refer to the no-argument constructor as the con-
structor (defined or default) that takes no arguments. When requesting 
the allocation of heap objects, whether in C++ or C#/Java, the constructor 
must be explicitly invoked, and thus, it is trivial to invoke a constructor 
other than the default (or no-argument) constructor. Details become a bit 
trickier, as we see below, for the stack allocation of C++ arrays.

An array of objects is allocated and initialized in two (or three) steps in 
C# and Java. First, a reference to an array is declared. Then, this reference 
is initialized to hold the address of an array of references, that is, the pro-
grammer specifies the size of the array, indicating how many references will 
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be housed in the array. These two steps are combined into one statement, 
#A in Example B2. Lastly, the array of references is initialized to hold the 
addresses of the individually allocated objects. In the body of the for-loop, 
statement #B in Example B2, a specific constructor may be invoked to initial-
ize each object as it is allocated on the heap with a call to the new operator.

Example B2: Array Allocation: C# versus C++
// C# and Java object arrays: array of references
// #A an array of 100 references allocated
myType[]  db = new myType[100];

// #B each C#/Java reference individually initialized
// to hold address of heap-allocated object
for (int j = 0; j < db.Length; j++)
 db[j] = new myType(j);

// #C C++: array of objects allocated on stack
// default constructor implicitly invoked for each object
// PROBLEM IF CLASS myType DOES NOT HAVE NO-ARGUMENT CONSTRUCTOR
myType db[100];

// #D may overwrite default C++ initialization
for (int j = 0; j < 100; j++)
{ myType local(j); // non-default constructor
 db[j] = local;  // #D.2
}

// #E C++: if myType provides only constructors with arguments
// => must use pointers
myType* db[100];
for (int j = 0; j < 100; j++)
 db[j] = new myType(j);

C++ object arrays are allocated, by default, on the stack. In the array 
declaration of statement #C in Example B2, the syntax suggests that the 
compiler has no choice but to patch in calls to the no-argument construc-
tor for each object initialization. Why? There is no means to specify any 
other constructor in the array variable declaration. Nonetheless, one can 
overwrite the default initialization, as shown in #D2. However, if a class 
does not provide a public constructor that takes no arguments, one cannot 
even allocate an array of objects on the stack in C++. What can a program-
mer do then? (1) Use a container from the STL as an alternative to an array. 
(2) Allocate an array of pointers and then allocate objects individually on 
the heap, as shown in statement #E, just as is done in Java and C#. Figure 
B2 correlates to Example B2.
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B.2  OWNERSHIP
C++ programmers must track and deallocate heap memory. When should 
a programmer deallocate? Match every new to a delete is a simplistic man-
tra that is difficult to follow in the midst of function calls and aliases. We 
provide examples next of pointer usage with respect to memory owner-
ship. The first function in Example B3 calls the new operator to allocate 
a single integer on the heap. When this function executes at runtime, the 
address of the heap integer so allocated is returned (and assigned to the 
local pointer variable heapInt). In the unlikely event that there is insuffi-
cient memory available to allocate one integer, the new operator will throw 
an exception. Unless specified, a failed memory request does not return a 
zero. Programmers must specify a “nothrow” form of the new operator so 
that zero is returned to indicate a failed memory allocation request. For 
more detail on secure coding, see Robert Seacord’s (2013) book.

Example B3: C++ Memory Management
// C++ code: allocation, transfer and deallocation of heap memory
void matchNewDelete1()
{ int* heapInt = new int;
 …
 delete heapInt;
}

void matchNewDelete2()
{ int* heapIntA = new int[100];
 …
 delete[] heapIntA;
}

int* transferOwnershipOut(int threshold)
{ int* heapInt = new int;
 *heapInt = threshold;

db

83D0 7000 7000
Statement #A: C# stack reference to a heap array of 100 references

... ... ... ... ...

db

83D0 7000 7000

Statement #B: C# heap array of 100 references initialized to hold objects’ addresses

... ... ... ... ...

FIGURE B2 Memory diagrams for Example B2.
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 …
 return heapInt;
}

void assumeOwnership(int*& ptrPassedByRef)
{ int* heapInt = ptrPassedByRef;
 ptrPassedByRef = 0; // no longer owner
 *heapInt = 999;
 …
 delete heapInt;
 return;
}

int* assumeThenTransfer(int*& ptrPassedByRef)
{ int* heapInt = ptrPassedByRef;
 ptrPassedByRef = 0; // no longer owner
 …
 return heapInt;
}
….
matchNewDelete1();   // call #1
matchNewDelete2();   // call #2

int* myPtr = transferOwnershipOut(33); // call #3
*myPtr = 21;

assumeOwnership(myPtr);   // call #4
if (myPtr) cout << *myPtr << endl; // is there output?

myPtr = transferOwnershipOut(55); // call #5
int* yourPtr = assumeThenTransfer(myPtr); // call #6
if (myPtr) cout << *myPtr << endl;
if (yourPtr) cout << *yourPtr << endl;

The second function in Example B3 calls the new[] operator to allocate 
an array of 100 integers on the heap. When this function executes at runtime, 
the address of the first element of the array of 100 heap integers is returned 
(and assigned to the pointer variable heapIntA). All array elements must be 
allocated contiguously. Thus, requests for large arrays are more likely to fail 
because of insufficient heap memory. Hence, if large amounts of heap data 
may be requested, and failure is possible, exceptions or the “nothrow” ver-
sion of the new operator should be employed to avoid runtime error.

Calls to the new and new[] operators execute similarly in C#/Java. 
Most modern languages provide the means to explicitly allocate dynamic 
memory. C++ requires explicit deallocation as well. C++ supports the 
delete operator, which takes a passed pointer and releases (to the alloca-
tor) the heap memory associated with that pointer. Released heap memory 
may be reassigned in subsequent calls to the new operator. Since pointers 
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are typed in C++, the delete operator can infer the size of the allocated 
memory being released. For arrays, the delete[] operator should be 
invoked. In C++, every new should be matched with a delete, and every 
new[] should be matched with a delete[]. Aliases, transfer of ownership, 
parameter passing, etc. make such a simplistic design guideline difficult to 
follow, especially without adequate documentation.

As noted in Chapter 4, Java and C# provide implicit deallocation. That 
is, programmers may request memory from the heap, via the new operator 
but do not need to invoke a delete operator (none is provided in Java) to 
deallocate such memory. Garbage collection reclaims allocated but “dead” 
memory from the heap. Garbage collection frees the programmer from the 
headaches of tracking memory but has its own drawbacks. Program exe-
cution must be suspended for the garbage collector to run; garbage collec-
tion is not perfect (not all dead memory is reclaimed); and, while waiting 
to be collected, dead blocks of memory, interspersed among free blocks, 
fragment the heap. Although a fragmented heap negatively impacts per-
formance, many programmers do not attempt to track ownership, mini-
mize the use of temporaries, or share data to decrease the amount of data 
allocated but left to linger until the garbage collector runs. C++ program-
mers must be more conscious of the use of heap memory because, in C++, 
heap memory must be explicitly deallocated. Nonetheless, we recommend 
that all programmers consciously consider program memory usage to 
design safer and cleaner code.

Example B3 illustrates appropriate management of heap memory. 
Functions are used to isolate memory allocation and to clearly identify 
when that memory is released or the responsibility to do so (ownership) is 
passed. Figure B3 provides the corresponding memory diagrams. When 
heap memory is allocated and then deallocated in the same scope, as in 
the first two functions, it is easy to verify that no memory leaks. Note 
that array allocation requires that the delete[] operator be used. If the 
delete operator is used to deallocate an array, there is a memory leak 
because only the first array element would be deallocated. In our example, 
that would be a leak of 99 integers.

The last two functions in Example B3 assume the ownership of the heap 
memory passed into the function (via a pointer passed by reference). The 
int pointer passed by reference into each function is zeroed out. Why? 
Upon assumption of memory, the function must indicate that the caller 
no longer owns the memory. By zeroing out the pointer passed by refer-
ence, the function records its assumption of ownership. Upon return from 
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the function call, the caller now has a pointer variable that points to noth-
ing because the caller has released its ownership of heap memory.

It is crucial to track ownership. If ownership is transferred, the pointer 
that releases ownership must be nulled or zeroed out. Recall a null pointer 
indicates that it does not contain a valid address.

B.2.1  Internal (Object) Heap Memory

We continue our examination of memory ownership by considering class 
designs that allocate heap memory internally. That is, an object contains 
a pointer (reference) as a data member and that pointer holds the address 
of heap memory. When is that memory transferred or deallocated? We 

C300 78007800 ???

Call to function matchNewDelete: heap object allocated (then deallocated)

C300 7A007A00 ???

Call to function matchNewDelete2: heap object allocated (then deallocated)

C300 7B00 7B00 B000 7B00

C300 7B00 7B00  0

33  21
Call to function transferOwnershipOut: caller assumes ownership

heap object allocated, initialized (and then address passed out)

7B00 B00021  999

Call to function assumeOwnership: address passed in
passed pointer zeroed out, data value updated indirectly (then deallocated)

C300 7C00 7C00 B00055 7C00
Call to function transferOwnershipOut: caller assumes ownership

heap object allocated, initialized (and then address passed out)

C300 7C00 B000 B004 7C007C00  0
Call to function assume�enTransfer: address passed in
passed pointer zeroed out (and then address passed out)

FIGURE B3 Memory diagrams for Example B3.
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cover various scenarios. Our discussion is applicable only to C++ because 
C# and Java do not explicitly deallocate heap memory. Yet, C#/Java pro-
grammers may improve performance (and the efficacy of garbage collec-
tion) by tracking ownership and zeroing out references when appropriate.

The names of the two variables in Example B4 suggest that one variable 
leaks but the other does not. In the context of stack allocated objects, this 
distinction does not make sense. Both objects are allocated memory in the 
stack frame associated with strangeFn(). This frame is popped off the 
runtime stack when the function exits, so where is the memory leak? Not 
on the stack. Could there be a memory leak from the heap? There is no 
explicit call to the new operator in the function of Example B4.

Example B4 C++ Application Code Obscures Leak
// application code uses hiddenLeak and noLeak objects
// NO CALLS to NEW => calls to DELETE inappropriate
void strangeFn()
{ hiddenLeak objA;
 noLeak objB;

 cout << "I am following design guidelines" << endl;
}

The internal structure of either type of object declared in Example B4 is 
unknown but appropriate class design is assumed. Perhaps that assump-
tion is not warranted. The hiddenLeak class in Example B5 allocates heap 
memory in the constructor, and thus invokes the new operator. However, 
the class code does not contain evidence of any call to a matching delete. 
We have found the problem. How do we correct it? C++ provides a special 
function called the destructor.

Example B5: C++ Class Design Must Address Memory
// IMPROPERLY DESIGNED: heap memory allocated in constructor
// NO DEALLOCATION: no delete[] to match new[]
class hiddenLeak{
 private:
 int* heapData;
 int size;
 public:
 hiddenLeak(unsigned s = 100)
 { size = s; heapData = new int[size]; }
 …
};



Appendix B   ◾   357

A destructor is a special class function that bears the same name as the 
class, preceded by the special character “~.” Like constructors, the destruc-
tor returns no value, not even void. Unlike constructors, the destructor 
cannot be overloaded: each class has only one destructor and it takes no 
arguments. The application programmer does not invoke the destructor. 
The C++ compiler automatically patches in a call to the destructor when 
a stack object goes out of scope, or when a heap object is deallocated via 
the delete (or delete[]) operator. Essentially, the destructor is a cleanup 
routine: it performs any actions, such as deallocating heap  memory, that 
must be executed before an object goes out of scope.

Although some C++ design guidelines suggest that class designers 
should always define a destructor, many class designs meet expectations 
without a destructor. When is a destructor required? When an object 
allocates heap memory. The class designs in Example B5 and Example B6 
appear similar, except that the noLeak class provides a destructor: now 
there is a matching delete for the new call in the constructor!

Example B6: C++ Destructor Deallocates Heap Memory
// Heap memory:
// allocated in constructor; deallocated in destructor
class noLeak{
 private:
 int* heapData;
 int size;
 …
 public:
 noLeak(unsigned s = 100)
 { size = s;  heapData = new int[size]; }

 // destructor deallocates heapData
 ~noLeak() {delete[] heapData;}
 …
};

When the (stack) objects go out of scope in Example B4, the noLeak 
destructor will be implicitly invoked and the heap memory allocated 
internal to objB will be deallocated. There is no hiddenLeak destruc-
tor to invoke. Hence, the heap memory allocated internal to objA will 
remain allocated but unused: the pointer (handle) that provides access to 
that memory, objA.heapData, goes out of scope when objA goes out of 
scope. Memory leaks can be prevented with destructors. C++ class design 
also requires an explicit decision about the extent to which copying is sup-
ported. We examine such details next.
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B.3  COPYING
C# and Java offer a measure of security when manipulating references. A 
declared but undefined (that is, uninitialized) reference will be zeroed out, 
thus preventing any inappropriate manipulation of memory. However, 
a design vulnerability arises when passing objects by value. Example B7 
rewrites the class from Example A5 in C#, and provides sample applica-
tion code that passes a hitCount object by value. Figure B4 traces cor-
responding memory modifications. Pass by value is not necessarily secure 
for objects in C# or Java, as it can lead to data modification. After the 
execution of the function call is statement #D of Example B7, the object a 
has an internal count of 2 rather than 1. Why?

Example B7: C# Pass by Value (Objects Are References)
public class hitCount
{ private int count;
 private int min;
 …
 public hitCount() { count = 0; min = 0;}
 public void query() { count++;}
 …
}

// parameter passed by value == object reference passed
// => address copied into local reference (p)
// => both p and actual argument 'point' to same heap memory
void someFunction(hitCount p)
{ …
 p.query();
 return;
}

…
// application code
hitCount a = new hitCount();
hitCount b = new hitCount();
hitCount c = new hitCount(); // #A: 3 heap objects

a.query();  // #B equivalent to hitCount::query(B100)

for (int k = 0; k < 10; k++)
 b.query(); // #C equivalent to hitCount::query(B108)

for (int k = 0; k < 100; k++)
 c.query(); // #D equivalent to hitCount::query(B110)

someFunction(a); // #E pass by value not secure for objects
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C#/Java object declarations are references allocated on the stack. The 
actual object is allocated on the heap, via a call to the new operator. Thus, 
when the programmer manipulates an object, the programmer is manipu-
lating a reference (an address that the compiler automatically dereferences). 
Hence, when an object is passed (by value) in C#/Java, really a reference 
(the heap address of the object) is passed. If a mutator is then called using 
this reference within the function, the aliased object does change state. In 
 someFunction, the formal parameter p has the same value as the actual 
argument, a: both contain the address (B100) of the hitCount object allo-
cated on the heap. Thus, when p.query() fires in someFunction, count++ 
modifies the memory of the object at location B100, that is, object a.

If rewritten in C++, this code would be secure. Why? C++ passes an 
object, not a reference, and the C++ compiler automatically provides a 

B100 0 0 0B108 B110

After statement #A: 3 heap objects, each with internal count == 0

B100 1 0 0B108 B110

After statement #B: 1 heap object queried

B100 1 10 0B108 B110

After statement #C: 2 heap object queried

B100 1 10 100B108 B110

After statement #D: 3 heap object queried

B100 1  2 10 100B108 B110

After statement #E: 1st heap object altered via embedded query in function call

FIGURE B4 Three hitCount objects.
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default “copy constructor.” A copy constructor is an overloaded construc-
tor that is invoked upon call by value. It constructs a new object and copies 
the values from the original object (the formal parameter or the return 
temporary in the stack frame) to the new object. However, we could eas-
ily construct an example that would be problematic in C++, and will do 
so, subsequently. First, we review the mechanics of copying—an endeavor 
that is more complicated with objects, aliases, and heap memory than 
with built-in types.

B.3.1  Shallow versus Deep Copying

Often, programmers assume that copying occurs “automatically,” just like 
variable initialization. For built-in types, that is true. Whenever copying is 
necessary for assignment, or for call by value, the compiler usually patches 
in code for a bitwise copy. Hence, the bit string that resides in one variable 
(whether it is the right-hand side of the assignment statement or the actual 
argument in a function call) is copied into the memory of another variable 
(the left-hand side of assignment, or the formal parameter, respectively). 
This form of copying is called shallow copying because only the first-level 
data (the bit string accessed directly in memory) is manipulated. Shallow 
copying may produce aliases when the values copied are addresses, as in 
Example B1 and thus is not always sufficient.

Deep copying is a layered copying process that is often necessary 
for objects. Deeping copying yields a true copy because values that are 
addresses are not copied directly: the values in the addressed memory 
are copied instead. Figure B5 illustrates the memory layout of two dis-
tinct objects, where each object has a handle (pointer or reference) to heap 
memory. What is the result of the assignment objA = objB, if only a bit-
wise copy is employed? objA loses access to its heap memory because it 
takes on the address value from objB. Now the two different objects share 
the same memory, as sketched in Figure B6. In addition to the memory 
leak at location 8104, objA can now change data associated with objB, 
without, necessarily, the awareness of objB.

E2E0 8104 E300 850485048104

FIGURE B5 Two objects with differently valued memory references.
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To have individual memory allocation, such that the heap memory asso-
ciated with objA becomes identical in size and value to the heap memory 
associated with objB, as shown in Figure B7, more work is required. The 
class designer must acknowledge (and document) the need to support 
deep copying. C#/Java programmers must design and support a clone-
able interface, which places some responsibility on the application pro-
grammer. C++ class designers must implement an overloaded assignment 
operator: an established procedure that we outline next.

B.3.2  Copying Heap Memory

Memory ownership concerns arise when copying data from heap memory. 
Why? Copying an address value establishes an alias: two references (or 
pointers) hold the same address. Aliases provide value when deliberately 

E2E0 81048504 8504 8504E300

FIGURE B6 Shallow copy: objA = objB.

E2E0 8104 2 8104 E300 8504 8504200

Initial layout of objA and objB

E2E0 8104 2 8104 E300 8504 200 8504

objA deallocates its heap memory to prevent memory leak

E2E0 8700 200 8700 E300 8504 200 8504

objA gets new heap memory, of appropriate size, and copies values from objB

FIGURE B7 Deep copy: objA = objB.
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used to avoid data redundancy or integrity problems. Aliases are problem-
atic when not tracked. If two different pointers (references) hold the same 
address to a heap object and each pointer assumes that it owns this heap 
data, then either pointer can manipulate this data, including deallocating 
it, without regard to any other “owner.” In C++, with a properly defined 
destructor, but without properly defined copying, if objB were to go out of 
scope before objA, then objA would continue to point to memory that it 
no longer owned. Premature deallocation, data corruption, and memory 
leaks are all undesirable side-effects of unforeseen aliasing.

Figure B7 illustrates properly defined deep copying: the value of every 
nonpointer field is copied directly from one object to another; in lieu of 
copying pointer values, additional heap memory is allocated, and then the 
data values indirectly accessed via the source pointer are copied. After a 
deep copy, the two objects have the same sized heap memory, with the same 
data values, but they do not share the same memory space. Subsequently, 
if one object modifies its heap data, the heap data of the second object will 
be unaffected. As importantly, if objB were to go out of scope before objA, 
there would be no negative impact on objA because objA would continue 
to point to memory that it solely owned.

Copying in C++ is more onerous for the class designer but less so 
for the application programmer. The compiler automatically provides a 
default assignment operator and a default copy constructor. Both simply 
implement bitwise copying. Hence, to avoid shallow copying, the C++ 
designer must redefine (overload) the assignment operator and the copy 
constructor.

To correctly manage internally allocated heap memory, a C++ class 
designer must define the destructor and either suppress or define the copy 
constructor and the overloaded assignment operator. In C++11, a class 
designer may also employ move semantics, see Appendix B. Example B8 
displays a C++ class with properly managed internal memory. A destruc-
tor, copy constructor, and overloaded assignment operator have all been 
defined. Objects thus allocate heap memory internally but no memory 
leaks and no unintended aliasing occur with call by value or assignment.

Example B8: C++: Deep Copying Supported
// good MemoryManagement: destructor deallocates heap memory
// SUPPORTS deep copy for call by value via copy constructor
// SUPPORTS deep copy for assignment via overloaded assignment
class goodMM{
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 private:
 int* heapData;
 int size;
 public:
 goodMM(unsigned s = 100)
 { size = s; heapData = new int[size]; }

 // DEEP copying supported: copy constructor
 goodMM(const goodMM&);
 // DEEP copying supported: overloaded assignment operator
 void operator=(const goodMM&);

 // destructor deallocates heapData
 ~ goodMM() {delete[] heapData;}
 …
};

// .cpp file: implementation details
// copy constructor: new memory allocated, old values copied
goodMM:: goodMM(const goodMM& x)
{ size = x.size;
 heapData = new int[size];
 for (int j=0; j < size; j++)
 heapData[j] = x.heapData[j];
}

// overloaded assignment operator
// delete old memory, heap memory of left-hand side object of =
// allocate new heap memory for right-hand side object of =
// copy old values from rhs to lhs
void goodMM::operator=(const goodMM& rhs)
{ if (this !=&rhs) // avoid self-assignment
 { delete[] heapData;
 size = rhs.size;
 heapData = new int[size];
 for (int j=0; j < size; j++)
  heapData[j] = rhs.heapData[j];
 }
 return;
}

Example B9 also displays a C++ class with properly managed internal 
memory: copying is suppressed. A destructor is defined, but the copy con-
structor and overloaded assignment operator are declared as private. No 
implementation need be defined for these private, suppressed functions. 
The application programmer can allocate objects but cannot copy from 
one object to another (via call by value or assignment). Objects thus allo-
cate heap memory internally, but no memory leaks and no unintended 
aliasing occur because call by value and assignment are not supported.
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Example B9: C++: Copying Suppressed
// copy constructor and overloaded= declared private
class copySuppress{
 private:
 int* heapData;
 int size;

 // copying suppressed
 copySuppress(const copySuppress&);

 // assignment suppressed
 void operator=(const copySuppress&);
 public:
 copySuppress(unsigned s = 100)
 { size = s; heapData = new int[size]; }

 // destructor deallocates heapData
 ~copySuppress() {delete[] heapData;}
 …
};

// .cpp file: no need to define suppressed, private methods

In Example B8, note that both the overloaded assignment operator and 
the copy constructor take a goodMM object passed by const reference. The 
passed parameter provides the source data for copying. By convention, it 
is passed by reference to avoid the overhead of allocating and initializing a 
local copy. It is passed by const reference for security: any attempt to alter 
the formal parameter in the body of the function would cause a compila-
tion error. The two function bodies are also similar: both copy nonpointer 
data directly; allocate new data on the heap of the same size as that which 
the source object holds; and then copy the data values from the source 
heap memory.

The copy constructor is invoked when the construction of a new object 
is warranted. Without an existing object, there is no “old” heap memory to 
deallocate. The assignment operator differs: it is invoked through an exist-
ing object. Hence, to prevent a memory leak, it must deallocate the “old” 
heap memory associated with the object through which it was invoked.

Example B10 demonstrates application code that declares objects from 
the two classes defined in Examples B8 and B9. As expected, any attempt 
to copy copySuppress objects will trigger a compilation error. Why? 
When assignment is attempted in statement #B, the compiler looks up 
assignment and finds that it is declared private in the copySuppress 
class. Hence, external access is invalid and the compiler complains. When 
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pass by value is attempted in statement #C, the compiler searches for the 
copy constructor and finds that it is declared private in the copySuppress 
class. Hence, external access is invalid and the compiler again complains.

Consider next the assignment b = a; in statement #A of Example B10. 
b  is the object through which the function operator= is invoked. The 
assignment b = a; is thus equivalent to goodMM.operator=(&b,a). a is the 
explicitly passed parameter; &b is the implicitly passed this pointer. What 
if the assignment statement were 'b = b;'? Such clear cases of self-assign-
ment are usually optimized away by a modern compiler. However, not all 
cases of self-assignment are evident due to aliases. Thus, the this pointer is 
used to check for self-assignment in a C++ overloaded assignment operator.

Example B10: C++ Memory Handled Appropriately
// function that passes parameters using call by value
// copy constructor provides deep copy: NO ALIASING
// data (from address held in pointer) copied
// => local parameter altered; passed parameter safe
void noLeakyFn(goodMM x)
{ …
 x.chgState();
 return; // destructor invoked for local object
}

// application code allocates goodMM and copySuppress objects
// assignment or call by value preserves object integrity
goodMM a(20);
goodMM b(200);
copySuppress c(20);
copySuppress d(200);

b = a; // #A b's 200 ints deallocated
d = c; // compiler error #B

noLeakyFn(b); // b's state secure
noLeakyFn(d); // compiler error #C

B.3.3  C++11 Move Semantics

The appropriate choice of deep or shallow copying is essential for designing 
correct software. As we have seen, unintended aliases can lead to data cor-
ruption (in any language) as well as premature deallocation in C++. Deep 
copying prevents such aliasing but is much more expensive than shallow 
copying, especially for large objects. Can one avoid this expense? Yes, by 
stealing! C++11 offers the ability to do so through “move semantics.”
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The key idea behind move semantics is to avoid the overhead of a con-
structor/destructor pairing when a temporary is generated and used with-
out long-term persistence. Consider returning a C++ object by value: the 
copy constructor is invoked to copy the (stack) object into the temporary 
returned. With deep copying, this process may be expensive. In any case, 
the cost is not warranted: when the function is exited, the (stack) object 
goes out of scope so there is no danger of its heap memory being cor-
rupted or prematurely deallocated. Yet, a shallow copy will not suffice as it 
establishes an alias to stack memory just before the (stack) object goes out 
of scope and its destructor is invoked. The move constructor assumes (or 
steals) the data content of the source object, thus avoiding a call to the new 
operator and the copying of data values. 

Similar inefficiencies arise when using deep copying for assignment. 
Consider the assignment statement c = a + b. When a and b are types 
for which the “+” operator is overloaded, a temporary of the same type will 
be returned from the operator+ method. Immediately, the temporary 
will be assigned to c. Again, a shallow copy establishes an unseen alias 
that may lead to data corruption, while a deep copy is inefficient. The move 
assignment operator acquires the memory of the temporary, thus prevent-
ing data corruption and achieving efficiency. 

As shown in Example B11, the move constructor and move assign-
ment operator are distinguished from the standard copy constructor and 
assignment operator by “&&.”  Also note that the passed parameter (source 
object) cannot be “const” because it must release ownership of its memory. 

Example B11: C++: Move Semantics
// copying avoided: assume data of rvalue reference
// move constructor
// move assignment operator
class copyAcquire{
  private:
 int* heapData;
 int size;

public:
 copyAcquire(unsigned s = 100)
 {   size = s;   heapData = new int[size]; }

 // (deep) copy constructor
 copyAcquire(const copyAcquire& a)
 { … }
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 // copying avoided via move constructor &&
 //  source object c yields ownership 
 copyAcquire(copyAcquire&& c)
 : size {c.size}, heapData {c.heapData}
 {
 c.size = 0; c.heapData = nullptr;
 }

 // assignment with deep copy
 copyAcquire& operator=(const copyAcquire& a)
 { … }

 // move assignment && exchanges ownership
 copyAcquire& operator=(copyAcquire&& c)
  { swap(size, c.size);
  swap(heapData, c.heapData);

   return *this;
 }
 
 // destructor deallocates heapData
 ~copyAcquire() { delete[] heapData; }
 …
};

How do move semantics work? The move constructor steals the mem-
ory from the source object (passed parameter) and sets its heap pointer to 
null. The move assignment operator swaps its existing heap memory with 
that of the passed parameter. Whenever a move constructor or a move 
assignment operator fires, its passed parameter is an expiring temporary 
and thus is able to release its memory. 

Verifying the legitimacy of a move constructor versus a copy con-
structor call is not the class designer’s responsibility. The compiler dis-
tinguishes between references that permit assignment (lvalues, as in the 
left-hand side of an assignment statement) and those that do not (rvalues, 
as in the right-hand side of an assignment statement). Thus, the compiler 
may transfer (rather than copy) memory if the source value is an rvalue 
and its class supports move semantics.  

When using C++11, a class designer need not support move semantics. 
A move constructor and a move assignment operator should be defined 
when deep copying is needed but may be expensive. In which case, the 
class designer should also define a copy constructor and an overloaded 
assignment operator for standard deep copying. The compiler resolves 
which constructor or assignment operator should be called, based on 
whether the object triggering the call is an rvalue or an lvalue.
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With respect to copy semantics, C++11 also offers a syntactical means 
to suppress copying: the “delete”-ing of the copy constructor and the over-
loaded assignment operator. Example B12 presents a C++11 revision of 
Example B9: a C++ class that suppresses copying. 

Example B12: C++11: DELETE Copy Constructor, 
Assignment Operator
// copying suppressed: 
// copy constructor and operator= “delete”d
class copySuppress{
 private:
 int* heapData;
 int size;
 public:
 // copying suppressed
 copySuppress(const copySuppress&) = delete;
 copySuppress(copySuppress&&) = delete;

 // assignment suppressed
 void operator=(const copySuppress&)= delete;
 void operator=(copySuppress&&)= delete;

 copySuppress(unsigned s = 100)
 {   size = s;  heapData = new int[size]; }

 // destructor deallocates heapData
 ~copySuppress() { delete[] heapData; }
 …
};

// .cpp file: no need to define deleted methods
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Appendix C: 
Function Pointers

C.1  C++ FUNCTION POINTERS
As noted in Chapter 2, software development became more abstract as 
programming languages became more sophisticated. By freeing software 
development from machine-level details, software could be designed and 
implemented to run on a variety of platforms. Programmers no longer 
accessed memory locations directly but manipulated data values via vari-
able names. Control flow no longer centered on explicit goto statements 
but centered on function calls and the appropriate use of control con-
structs. Software design stressed functional decomposition. Modern pro-
gramming languages thus streamlined software development by removing 
dependencies on hardware and memory assignment.

Why then return to the question of manipulating memory? Memory 
management is essential to constructing safe software. Efficient memory 
management is essential to producing efficient software. One of the hall-
marks of C, the industry forerunner of modern software development, 
was the provision of high-level constructs (control structures, composite 
data, etc.) alongside the means (the pointer) to access memory. The pointer 
construct allows programmers to hold addresses.

Appendix A reviewed the pointer construct, the means to store a memory 
address in a variable and thus directly access memory (and indirectly access 
the value held in that memory). In this appendix, we examine the function 
pointer, embedded function pointers, and then discuss language support 
for dynamic function invocation (covered thoroughly in Chapter 7).

In theory, and in C, as an address holder, a pointer can hold the address 
of any type of memory. C provides a void pointer type that can hold the 
address of any memory location: data type is irrelevant to void pointers. 
Pointers are typed in C and C++ to provide a bit more safety. A typed 



370   ◾   Appendix C

pointer can hold only a memory address that is associated with a compat-
ible type: an int pointer can hold only the address of an int variable; a 
minMaxRec pointer can hold only the address of a minMaxRec object; 
etc. The pointer construct is a powerful programming construct. Pointers 
give software developers the means to access memory indirectly. Control 
over memory location can thus be retained in the program without tying the 
code directly to specific hardware locations.

Recall that a function is an isolated set of programming statements, pos-
sibly associated with local variable(s) and/or passed data and potentially 
returning data. This set of programming statements is laid out in the code 
section of program memory function and thus is associated with an address. 
The function name then is a symbolic representation of the function address.

A function call or invocation is an instruction mandating a jump to 
the function so named. The compiler usually translates a function call 
directly into a JUMP statement. In other words, a function invocation can 
be perceived as a circular goto statement where the target destination is the 
named function, and control returns to the point of call after the function 
executes. Although function calls are more readable and maintainable than 
JUMP statements, we stress here that, relative to control flow, a function 
name is really the same as an address. Fortunately, the compiler handles 
the many details necessary to ensure correct processing, such as setting up 
the stack frame or activation record to hold the program counter so that 
control automatically jumps back to point of call when a function ends.

A pointer is simply a variable that holds an address. Since a function is 
(the symbolic representation of ) an address, a pointer can hold the address 
of a function. This type of pointer is called a function pointer. Formally, a 
function pointer is typed to hold the address of function. The function sig-
nature and its return type define the function type. There is no conversion 
between different function types. Example C1 illustrates the declaration 
and initialization of differently typed function pointers, the general form 
of a function pointer declaration, as well as a type definition (typedef) 
that supports readability by defining a function pointer type for reuse.

Example C1: C++ Function Pointers
// sample function forward declarations
void FN();  // function takes no parms, returns nothing
int iFN();  // function takes no parms, returns int
void FNi(int); // function takes int parm, returns nothing
int iFNi(int); // function takes int parm, returns int
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// function pointer declarations
// corresponding to above "function types"
void (*FP)();
int (*iFP)();
void (*FPi)(int);
int (*iFPi)(int);

// generic form of function pointer declaration
return_type (*FPname)(fnParmList);

// typedef to define 'function pointer' type => readable code
typedef bool (*boolFP)();

// functions return bool, take no argument: same function type!
bool done() { … }
bool active() { … }

// function pointer declaration using defined function type
boolFP fP1 = done;
boolFP fP2 = active;

Function pointers add a layer of indirection to control flow and thus 
provide the means to design flexible execution paths. A programmer can 
use a function pointer to dynamically (at runtime) select a function to exe-
cute. How? Change the (function) address held in the (function) pointer at 
runtime. Example C2 illustrates sample function invocations via function 
pointers as well as a couple of invalid calls.

Example C2: C++ Function Invocation via Function Pointers
// function invocation through pointer
(*iFP)();  // OK call after dereferencing
iFP();  // OK call without dereferencing
FPi(22);  // OK correct parameter list
FPi(22.3);  // compiler ERROR bad argument, no casting
int check = iFP(); // OK return value used
iFP();  // OK return value discarded
int err = FPi(22); // compiler ERROR: no return value

To call a function, one dereferences a function pointer. Since the func-
tion pointer can hold the address of any function that matches its type, 
calling a function through a function pointer causes the postponement of 
function selection until runtime. By breaking the one-to-one correspon-
dence between function invocation and function selection, significant 
flexibility is achieved: the value of the function pointer will determine 
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what function is invoked, and, like any variable, the value of a function 
pointer can be changed when code executes.

How should a function be selected? The programmer can design selec-
tion criteria to be evaluated at runtime, and whose changing values drive 
the choice of different functions. Data values can be resident in memory, 
calculated from other data values, supplied by the user, or read from a file. 
To design viable control paths, one must carefully consider the value of 
the data that drives the initialization of the function pointer, the choice of 
external files that yields the data, etc.

C.2  DESIGN EXAMPLE: LIBRARY INVENTORY
To illustrate the design flexibility achieved using function pointers and to 
prepare the reader for understanding the complexity of polymorphism, 
as covered in Chapter 7, we walk through an iterative design of a system 
with significant potential for longevity, reuse, and extension. We choose 
an inventory system because inventories track many different types of 
items, but manipulate them relatively uniformly, whether for sales or clas-
sification. Thus, (sub)type is a significant factor in design but a common 
interface unites all subtypes.

Our example tracks the design of a library catalog (Dingle, 2002), which 
may initially hold books, DVDs, CDs, reference materials, etc. Consider a 
library resource as the basic entity. Then view each particular item (book, 
DVD, etc.) as a subtype. In processing items, the library system must pro-
vide much functionality: check out, renew, replace, report lost, etc. Our 
design example focuses solely on the renewal process but the concepts 
covered apply to other functionality as well.

The basic renewal process is similar for all items; extra details may 
vary according to subtype. Our design goal is to construct the renewal 
function in an extensible manner. That is, renewals should be processed 
uniformly, regardless of what (sub)type of library item is being renewed. 
Consequently, the inventory system that should not break with the addi-
tion of a new subtype, such as eBooks.

C.2.1  Pass #1: Non-OO Code

Example C3 illustrates the first pass of our design, using function point-
ers directly. The code is not OO. More importantly, it is not extensible. A 
switch statement is used to initialize the function pointers. Whenever a 
new subtype of library item is added to the system inventory, this switch 
statement would have to be modified.
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Example C3: Library Inventory: Pass #1 (C-Style Code)
// subtype specific renewal actions isolated in functions
void BkRenew() { … }
void DVDRenew() { … }
…
enum ItemType{BOOK, DVD, …}; // structured but not OO design

ItemType what;
void  (*RenewFP)(); // function pointer

// external initialization of function pointer
switch(what){
 case  BOOK: RenewFP = &BkRenew; break;
 case  DVD: RenewFP = &DVDRenew; break;
 …
 case  REFERENCE: RenewFP = 0;
}

// call general renewal routine, pass function pointer
// general routine performs tasks common to all subtypes
// function pointer holds address of specific renewal routine
// classic CALLBACK design
// specific renewal called via passed function pointer
…
if (RenewFP) RenewItem(RenewFP);

// general renewal routine
void RenewItem(void (*FP)())
{ // actions common to all subtypes // #A
 …
 // subtype specific actions invoked through FP
 (*FP)();
}

This first pass at designing a flexible and extensible inventory system has 
significant drawbacks. The application programmer is left with the respon-
sibility to track type. Even with the use of an enumerated type (enums) to 
improve readability, this design is essentially hard coding, and is also error-
prone. There is no association between subtype and functionality. The appli-
cation programmer sets the value of the function pointer. Thus, the function 
pointer could easily be initialized with an incorrect function address.

Our initial design, shown in Example C3, is tedious, error-prone, and 
not extensible. The function pointer is not controlled and could easily 
be set to an incorrect value. Furthermore, every library process (check-
out, return, replace, etc.) that depends on subtype to select an appropri-
ate function must use a similar switch statement to initialize function 
pointers correctly. What happens if a new subtype is added? Each of these 
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multiple switch statements must be updated with the option of initializing 
the function pointer to hold the address of the appropriate function for the 
new subtype. Clearly, maintenance is then tedious. Why is it error-prone? 
It is usually not a trivial task to find all relevant switch statements, espe-
cially if the library system is large and distributed across many modules.

C.2.2  Pass #2: Struct Ties Together Data and Functionality

Our second pass attempts to reduce the software complexity of the ini-
tial design by tying together data type and functionality. As shown in 
Example C4, the LibItem struct defines library item data as well as the 
renewal function pointer. Functional decomposition is explicit. The pre-
ProcessRenewal function collects actions common to all LibraryItem 
variants (noted in statement #A of Example C3). This function is defined 
internal to the LibItem data type, ensuring some degree of consistency.

Example C4: Library Inventory: Pass #2 (C-Style Code)
// old-style: type overlay
struct LibItem  // vulnerable: public by default
{ string title;
 int  loanPeriod;
 …
 // Function Pointer must be initialized
 void (*Trenew)();

 union { // subtype overlay
  string  authorBook;
  int  runTimeDVD;
  …
 } u;
 void preProcessRenewal();  // #A
};

// application C-style code for initializing book
LibItem* book = (LibItem*) malloc(sizeof(LibItem));
book->Trenew = &BkRenew;

// application C-style code for initializing DVD
LibItem* dvd = (LibItem*) malloc(sizeof(LibItem))
dvd->Trenew = &DVDRenew;

// general renewal routine uses embedded function pointer
void RenewItem(LibItem* x)
{ // actions common to all subtypes
 x->preProcessRenewal(); // #A.1
 // type-specific actions invoked via function pointer
 (*x->Trenew)();  // #B
}
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This second pass retains the primary drawback of the first: the applica-
tion code still “manually” sets function pointers, resulting in software that 
is tedious to maintain, error-prone, and not extensible. Since the special-
ized renewal function is still external, the function pointer is still initialized 
externally, and thus vulnerable to improper initialization. The application 
programmer could easily initialize the function pointer of a DVD variable 
with the book renewal function, or vice versa. There would be no com-
piler error because all the renewal functions conform to the same function 
pointer type. Although the function pointer is embedded in the LibItem 
strut, and thus associated with the LibItem type, its value is not forced to 
be consistent with the data type variant. Moreoever, the function pointer is 
public so it can be easily modified, even after an appropriate initialization. 
Type overlays, as shown via the union construct are not an effective means 
of distinguishing between various subtypes: data integrity is not assured.

C.2.3  Pass #3: Object Encapsulates Data and Functionality

Shown in Example C5, our third pass exploits the security inherent in 
the encapsulation provided by the class construct. All data members are 
private by default and thus not vulnerable to random alteration by the 
application programmer. Once initialized, the renewal function pointer 
should not change. Furthermore, the use of a class hierarchy to define 
subtypes provides an extensible design. If a new LibraryItem subtype is 
needed, simply design another child class. Additional benefits of inheri-
tance include the centralization of common data and functionality. Each 
subtype has common publication, loan, and name data. Each subtype 
inherits the renew function, as defined in the parent class, which then 
calls the preProcessRenewal function.

Example C5: Library Inventory: Pass #3 (C++ Code)
// objects but no substitutability yet
class LibraryItem // safer: default private
{ string title;
 Date  publication;
 int loanPeriod;
 …
 void preProcessRenewal();
 protected:  // only descendant classes may access
 // Function Pointer: syntax UGLY
 // necessary to counter scope change
 void (LibraryItem::*FP)();   // #A
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 public:
 LibraryItem(){ FP = 0; … }
 void renew()
 { if (FP)
  { preProcessRenewal();
   (this->*FP());  // #B
  }
 }
};

class Book: public LibraryItem
{ string author;
 …
 void BookRenew();
 public:
 // constructor sets function pointer
 Book() { FP = BookRenew(); … }
};

class DVD: public LibraryItem
{ int runningTime;
 …
 void DVDRenew();
 public:
 // set function pointer
 DVD()  { FP = DVDRenew(); … }
};

Since each variant is now defined via a child class, each specific renewal 
function can now be encapsulated in the appropriate subtype class definition. 
Renewal functions are now private, and associated with subtype. Function 
pointer initialization is no longer the responsibility of the application pro-
grammer because the function pointers are embedded in the class construct. 
The dependency on application programmer has shifted to class designer. 
The class constructor now initializes the function pointer.

Although this third pass has removed the responsibility for declaring 
and initializing function pointers from the client, the class designer must 
still deal with such tedium. The constructor in the LibraryItem base 
class sets the renewal function pointer to zero, indicating that there is no 
renewal function associated with LibraryItem. Why? LibraryItem 
is an incomplete definition of an actual item in the library inventory. 
Consequently, each descendant class must initialize the function pointer 
to its own renewal function.

Note that every object instantiated from a particular class has its own 
individual function pointer data member, although every renewal func-
tion pointer from a particular class is initialized to the same value. The 
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LibraryItem protected function pointer is initialized in each child class 
constructor and its value is not subsequently altered! There is thus no need 
to have multiple function pointers for all Book objects: only one renewal 
function pointer is needed for the Book class. Likewise, there is no need 
to have multiple function pointers for all DVD objects: only one renewal 
function pointer is needed for the DVD class and so forth.

The redundancy of extra function pointers, one per object versus 
one per class as defined in Example C5, quickly increases as additional 
functions are designed for dynamic invocation. Consider other library 
processes (checkout, return, replace, etc.) that must be customized for 
subtypes. Extrapolation of the renewal example for each such routine 
yields one additional function pointer member in each descendant class of 
the LibraryItem class. Thus, if there were seven library processes, there 
would be seven function pointer members per descendant class.

What is the net effect of this design with its embedded function point-
ers? A huge allocation of function pointer data members, seven function 
pointer data members per object! But we need only one function pointer 
for each dynamically resolved function in a particular class. That is, we 
need a table of (here, seven) function pointers per class. Let us call it a 
virtual function table (vtab)! Clearly, it is easier and safer to use the virtual 
function construct as supported by OOPL. The compiler is responsible for 
the construction, initialization, and maintenance of vtabs.

C.2.4  Pass #4: Virtual Functions!

Our fourth pass illustrates the use of virtual functions as the means of 
achieving the dynamic selection of functions (Example C6). Virtual func-
tions are covered in detail in Chapter 7. This final design of the library 
renewal process achieves our goal of designing a flexible and extensible 
inventory system. New subtypes can be easily added, and specialized rou-
tines can be easily modified, all without negatively impacting application 
code.

Example C6: Library Inventory: Pass #4 (C++ Code)
// Virtual Functions!!!
class LibraryItem  // safer: default private
{ string title;
 int  loanPeriod;
 …
 void preProcessRenewal();
public:
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 LibraryItem();
 …
 // default behavior: no renewal
 virtual void renew(){}
};

class Book: public LibraryItem
{ string author;
 …
public:
 …
 // once virtual, always virtual
 // use keyword to document
 // override renewal to customize behavior
 virtual void renew();
};

class DVD: public LibraryItem
{ int  runningTime;
 …
public:
 // override renewal to customize behavior
 virtual void renew();
};

// application code
LibraryItem* baseptr;
…
// get address of some LibraryItem object: exact subtype 
unknown
//  may change upon different runs of software
//  object initialized by file, file usage can change
baseptr = getLibraryItem();
…
// renew function called depends on
//   subtype of object held in baseptr
// #2 call virtual function through base pointer
baseptr->renew();
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Appendix D: Operator 
Overloading

D.1  ABSTRACTING FUNCTIONALITY
Operator overloading supports the definition of functions that may be 
invoked via a built-in operator, such as “+”. When used in an expression, a 
symbol (or operator), such as “+”, is interpreted by the compiler as a func-
tion call. The compiler automatically patches in the operands as param-
eters to the function call. Using operators, a programmer can represent 
actions, or operations, in a concise, intuitive, and readable fashion. Since 
most operators can be applied to multiple types, and each type may have a 
different implementation of an operator, operators are “overloaded.”

Consider addition. This simple operation has at least two obvious 
implementations: real addition and integer addition, each of which trig-
gers different numerical algorithms. Now introduce strings. What does 
the statement “x + y” imply, the addition of two numbers or the concatena-
tion of two strings? The type of x and y must be known to correctly infer 
the appropriate operation. Compilers have overloaded operators for a long 
time.

Example D1 displays four equivalent invocations of the operation “x + y.” 
From the programmer’s perspective, statement #1 uses “operator syntax” 
for addition while statement #2 uses “function call” syntax (assuming 
function “add” is defined). Statements #3 and #4 illustrate legal calls using 
function call syntax but from the compiler’s perspective. Statement #3 rep-
resents how a C++ compiler translates “x + y” into an invocation of a class 
method, through the object x. Statement #4 represents how a C++ or a C# 
compiler translates “x + y” into a call to an overloaded operator that is not 
invoked through an object.

Which one of the four calls in Example D1 is the most readable? Used 
with primitive types, operator syntax is the most intuitive means of 
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triggering an operation. Function call syntax is less abstract and does not 
allow the application programmer to treat a programmer-defined type as 
a primitive.

Example D1: Syntactical Variants of Operator Invocation

x + y;  //#1 operator syntax

add(x,y)  //#2 function call syntax

x.operator+(y) //#3 OO method call C++ syntax

operator+(x,y) //#3 OO static method call C# syntax

Implicit casting of an operand may impact the choice of what function 
is invoked via an overloaded symbol. Why? Operand type is evaluated 
as part of a function signature. If an operand type changes, the function 
signature changes, and thus, the function invoked may also change. For 
example, if x is an integer value and y is a real, then y may be truncated to 
an integer and added to x via integer addition. In contrast, if x is a real and 
y is an integer value, then y may be promoted to a real and added to x via 
real addition. Casting offers convenience but causes some difficulty when 
overloading operators for user-defined types. We explore the impact of 
type in more detail when we examine mixed-mode arithmetic.

As a design technique, operator overloading has been both heralded for 
increasing abstraction and dismissed as syntactical sugar. C++ fully sup-
ports operator overloading, permitting a programmer to overload all but 
four operators. Java does not support any operator overloading. C# takes 
the middle ground by supporting limited operator overloading while plac-
ing restrictions on the mechanics of such overloading. We examine opera-
tor overloading in both C++ and in C#. As always, we strive to highlight 
design alternatives and the impact of different design choices.

D.1.1  Operator Overloading Overview

An operator is a symbol that represents the application of a function. “x + 
y” represents the “addition” of x and y; however, the type of x defines 
addition. Use of an operator in an expression is thus the invocation of a 
function. The symbol “+” is common and intuitive. Hence, the statement 
“x + y” is more readable than the statements “add(x,y)” or “x.add(y).” Opera-
tor overloading can thus increase abstraction and readability. Table  D1 
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delineates the different types of operators commonly available in modern 
programming languages, identifies values returned from such operations, 
and denotes whether the operations are destructive, that is, alter the oper-
and. Although counterintuitive, for example, “+” is not destructive: nei-
ther operand is altered; “+” returns a temporary object holding the value 
of the sum.

In OOD, operator overloading enables the client to use a symbol rather 
than a function call to invoke an operation via an object. If a binary 
operator is overloaded as a class method, then the function (operation) 
is invoked through the left operand and the right operand is passed as a 
parameter. This approach is taken by C++. If a binary operator is over-
loaded as a global or static class method, then the function (operation) is 
invoked through the function name (symbol) and both the left and the 
right operands are passed as parameters. This approach is taken by both 
C++ and C# as illustrated in Example D1.

Except for assignment, which is implemented by default as a bitwise 
copy, operators are undefined for user-defined types. Class designers must 
overload the operator’s meaning for the targeted class. The parsing phase 
of the compiler does not change with the addition of a class-based mean-
ing for an operator: “x + y” is always parsed as a binary operation; the 
resolution of type, and thus the identification of the specific operation, 
comes later. The compiler resolves the type of the operands after verifying 
the legality of the token sequence “x + y.” Thus, neither the parity nor the 
precedence of an operator may change when overloaded. Furthermore, a 
class designer may not define functions for new symbols. Why? The com-
piler is written relative to a language standard, and that language’s use of 
symbols as operators, so the set of symbols may not be expanded.

TABLE D1 Types of Operators

Semantic Meaning Operators Destructive Value Returned
Mathematical +, −, *, /, % No Temporary
Relational/comparison <, < =, = =, ! =, >, > = No Boolean
Logical &&, ||, ! No Boolean
Shortcut increment/
decrement

++, – – Yes Object/Primitive

Access [], ->, * No subObject
Function () Possibly Varies
Stream I/O <<, >> No/Yes Stream
Assignment =, + =, * =, − =, /= Yes Lvalue
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D.2  OVERLOADING C++ OPERATORS
To illustrate overloaded operators, we first sketch the design of a C++ 
class. We present this design incrementally to highlight the intent and 
effect of overloading different operators. Subsequently, we examine opera-
tor overloading in C#, noting essential language differences. Example D2 
lays out a basic sequence class. We assume, but do not show, that this class 
provides public functionality for insertion, deletion, and query. We focus 
on functionality provided by overloaded operators that allow the applica-
tion programmer to treat a sequence object as if it were a primitive type.

D.2.1  Assignment

The Sequence class allocates heap memory. Adhering to fundamental 
C++ design principles, the class MUST then define a constructor and 
destructor. If copying is to be supported, the class must also define a copy 
constructor and an overloaded assignment operator. C++ programmers 
must explicitly design copy semantics for classes with heap memory. 
Chapter 4 reviews C++ memory management details. We extend this 
example to illustrate the benefits of overloading additional operators.

Example D2: C++: Assignment Overloaded for Memory Management

//Sequence.h
class Sequence
{ unsigned capacity;
 unsigned size
 int*  ptr;

 void  initArray(const Sequence&);
 public:
 Sequence (unsigned x = 100)
 { size = 0;
  capacity = x;
  ptr = new int[capacity];
  for (int i = 0; i < capacity; i++)
   ptr[i] = 2*i;
 }
 …
 //dynamic memory allocated
 //need destructor, copy constructor, overloaded =
 ~Sequence() { delete[] ptr;  }
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 Sequence(const Sequence&);
 Sequence&  operator=(const Sequence&);
};

//Sequence .cpp
void Sequence::initArray(const Sequence& source)
{  size = source.size;
 capacity = source.capacity;
 //allocate & initialize new memory
 ptr = new int[capacity];
 for (int i=0; i< size; i++)
  ptr[i] = source.ptr[i];
}

Sequence::Sequence(const Sequence& copy)
{ initArray(copy);    }

//reference returned iot support chaining
Sequence& Sequence::operator=(const Sequence& rhs)
{ if (this != &rhs) //NOP self-assignment
 { // deallocate old memory
 delete[] ptr;
 initArray(rhs);
 }
 return *this;
}

D.2.2  Array Access

Our Sequence class contains numeric sequences; this design exercise 
explores the use of operator overloading as a means to make data access to 
these encapsulated sequences seem as simple as accessing array elements. 
Array access is direct and intuitive. “x = A[i]” extracts the i+1st element from 
the array A and assigns that value to the variable x. To mimic this indexed 
access for the Sequence class, we overload the [] or index operator, as shown 
in Example D3. Bounds checking, a safety feature not provided in C++, is 
provided in the overloaded operator. Access to Sequence data is thus both 
convenient and safe: the application programmer can manipulate a sequence 
object as if it were an array, but without concern about over or underflow.

Why is a reference returned from the overloaded []? To identify the 
location of the indexed element. Recall that an array name is viewed as an 
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address, specifically the address of the first element of the array. The loca-
tion of each individual array element is calculated as an offset from the 
base address of the array: the jth element has an offset of (j*ElementSize). 
In a zero-based array, A[0] is thus the address of the first element, A[1] 
the address of the second element, etc. A[i] is thus associated with the 
address of the i+1st element. The compiler automatically deferences the 
array address so that the programmer manipulates array elements as data 
rather than as addresses.

Example D3: C++ [] Overloaded for Intuitive Access

// intended use: Sequence a(SIZE);
// …
// a[index] = b;
// overloaded operator provide bounds checking
// requires #include cassert
int& Sequence::operator[](int index)
{ assert(0 <= index) && (index <= capacity));
 return ptr[index];
}

Programmers do not typically think of function invocation when they 
use symbols for arithmetic operations, array access, or input/output. Why 
not manipulate user-defined types in the same manner as built-in types? 
Operator overloading is effective when the design of the overloaded operator sup-
ports the application programmer’s expectations, as seen via the overloaded [] 
operator. What of other operators?

D.2.3  Simple Addition

The addition of two Sequences may be interpreted as the summation of 
“corresponding” values. Addition is a nondestructive operation: neither 
operand is altered, a temporary value holding the sum of the two operands 
is returned. For example, if the first Sequence holds values 1, 14, 10, and 
the second holds values 2, 6, –3, then the sum of the two Sequences is 3, 
20, 7 (but neither of the original Sequences is altered).

We present two versions of overloading “+” in Example D4. Which ver-
sion is preferred? The second version is slightly “prettier,” but its most sig-
nificant benefit is that it provides bounds checking, via the overloaded [] 
operator. The first version accesses the ptr array data member directly in 
statement #D4.1, and thus the array index will not be checked for validity. 
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Statement #D4.2 invokes the operator[] method that uses the cassert facil-
ity to check array bounds at runtime.

Example D4: C++: + Overloaded
//version #1: access data members directly, no bounds checking
Sequence Sequence::operator+(const Sequence& b)
{
 Sequence local(b);
 for (int i=0; i< size; i++)
 local.ptr[i] += ptr[i]; // #D4.1
 return local;
}

//version #2: bounds checking via previously overloaded []
Sequence Sequence::operator+(const Sequence& b)
{
 Sequence local(b);
 for (int i=0; i< size; i++)
 local[i] += ptr[i]; //#D4.2
 return local;
}

What were our goals in overloading addition? What did the applica-
tion programmer expect? Does the application programmer make any 
assumptions about use that are not met by our design? Compilers do not 
evaluate design. Thus, there is no automatic verification of the design effect 
of overloaded operators. Tracing the application code in Example D5, 
it becomes evident that the overloaded addition for Sequence “works” 
when the operands are both of the expected Sequence type.

Statement #D5.1 illustrates the overloading of the [] operator while state-
ment #D5.3 illustrates the addition of a large sequence to a tiny sequence. 
If Sequence addition should concatenate trailing values to a composite 
sequence, when two unequal-sized sequences are added, then this addi-
tion “works.” What if a tiny sequence is added to a large sequence, as 
done in statement #D5.2? Ouch! Both versions of the overloaded “+” in 
Example D4 allocate a local object that is initialized (via the copy con-
structor) by the passed parameter (the second operand of the addition 
operation). When a smaller sequence is added to a larger sequence, over-
flow (and, thus data corruption) is possible in our first version. Why? The 
local sequence object is smaller than the sequence through which the 
function was invoked, and array bounds are not automatically checked 
in C++ (statement #D4.1). The second version of overloaded addition does 
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check bounds and thus would yield a runtime error (statement #D4.2). 
Neither option is attractive.

Example D5: C++: Application Code for Simple Arithmetic
// two Sequence objects instantiated: different capacities
Sequence tiny(5), large;
…
tiny[0] = data; // #D5.1 operator syntax
tiny.operator[](0) = data; // function call syntax

// addition yields temp which is then assigned to Lvalue
tiny = large + tiny; // #D5.2 operator syntax
tiny.operator=(large.operator+(tiny)); //function call syntax

tiny = tiny + large; // #D5.3 operator syntax
tiny.operator=(tiny.operator+(large)); //function call syntax

In Example D6, we redo the implementation of the overloaded “+” to han-
dle capacity inconsistency. When “+” is invoked, a local Sequence object is 
constructed, via the copy constructor, as a copy of the larger Sequence 
object. Then, element by element, values from the smaller Sequence are 
added to the local Sequence, until every item in the smaller sequence has 
been used.

Example D6: C++ Overloaded +
Sequence Sequence::operator+(const Sequence& b)
{ //find larger sized operand for local copy
 if (size > b.size)
 { Sequence local(*this);
  for (int i=0; i< b.size; i++)
   local[i] += b[i];
  return local;
 }

 else
 { Sequence local(b);
  for (int i=0; i< size; i++)
   local[i] += ptr[i];
  return local;
 }
}

//overload + to add increment to each element in a Sequence
//  local Sequence allocated because '+' nondestructive
Sequence Sequence::operator+(int increment)
{
 Sequence local(capacity);
 for (int i=0; i< size; i++)
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  local[i] += increment;
 return local;
}

D.2.4  Mixed-Mode Addition

In Example D6, we also provide a second (overloaded) version of the 
overloaded “+”: adding a fixed increment to each element stored in a 
Sequence. This second version of addition allows mixed-mode arith-
metic: the first operand is a Sequence; the second operand is an integer 
value that will be added to each element in the Sequence represented by 
the left operand. Again, “+” is not destructive. The Sequence operand is 
not altered: “+” generates a temporary Sequence object that holds the 
result of addition.

The application code in Example D7 uses the updated version of the 
overloaded “+” operators. Once we support the ability to “add” an incre-
ment to each element in a sequence via the “+” operator, the application 
programmer can compile statements such as “a = b + 8” in Example D7. 
However, design inconsistencies persist. If “a = b + 8” is legal, then so 
should “a = 8 + b,” since addition is expected to be commutative. Yet, 
“8 + b” does not compile because the left operand of the “+” operation is 
a literal value, 8, not an object. Hence, there is no object, no this pointer, 
through which to evaluate the call. “8.operator+(b)” is not a legal call. 
When mixed-mode arithmetic is supported, the client has no intuition to 
always use the object as the left operand in an expression.

Example D7: C++ Application Code for Arithmetic and Assignment
Sequence  a(200), b(200);
Sequence  x;
…
a = b + 8; //# D7.1 ok
  //same as a = b.operator+(8);
a = 8 + b; //# D7.2 COMPILATION ERROR even though
  //# D7.2 conceptually same as #A
  //same as a = 8.operator+(b);
x = a + b; //# D7.3 ok, ' = ' overloaded; no leaks

a = a + b; //# D7.4 same as #C7.3 except different Lvalue

//application programmer then reasonably expects:
a += b; //# D7.5 COMPILATION ERROR: '+=' not overloaded

x = x + 1; //# D7.6 ok, conceptually same as #C7.1
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x += 1; //# D7.7 COMPILATION ERROR if'+=' not overloaded

x++;  //# D7.8 COMPILATION ERROR if'++' not overloaded

Another compilation error occurs if shortcut assignment operators are 
used. Statement “a = a + b” compiles but “a += b” does not. Why? In 
C++, “+=” is treated as a distinct operation, not as a composite of addition 
followed by assignment. The operator “+=” is not overloaded so when the 
C++ compiler tries to resolve the call, it searches for, and does not find, a 
“operator+=” function in the Sequence class. C# does not have this prob-
lem with short-cut assignment because “+=” is parsed as a combination of 
the two operators “+” and “=”. Hence, once the “+” operator is overloaded, 
the operator “+=” can be processed because assignment in C# is always 
defined.

We have overloaded “+” for two operands of type Sequence as well as 
for mixed-mode arithmetic. If “+” and “=” are supported, then support for 
“+=” may be assumed by the client. Example D8 shows the overloading 
of “+=” to support shortcut assignment. However, if mixed-mode “+” is 
supported and “+=” is supported, then maybe “++” should be supported.

Support for simple incrementation is commonly assumed. Since “x = 
x + 1” is legal, it is reasonable to expect that “x += 1” compiles. Likewise, 
an application programmer might expect “x++” to compile. However, the 
post-increment operator would have to be overloaded to support this state-
ment. Otherwise, when the compiler tries to resolve the statement “x++,” it 
searches for, and does not find, a “operator++” function in the Sequence 
class, and consequently generates an error.

Example D8: C++ Shortcut Assignment
//overloaded += (shortcut for addition AND assignment)
// a += b is destructive //same as a = a + b
// += invoked through object a => object a altered
Sequence&  Sequence::operator+=(Sequence& b)
{
 for (int i=0; (i< b.size) && (i< size); i++)
  ptr[i] += b[i];

 if (b.size > size)
  for (int i= size; i< capacity && i< b.size; i++)
   ptr[i] += b[i];
 return *this;
}
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Even with fairly intuitive operations, such as addition, operator over-
loading in C++ may present design challenges. Why? When using tools, 
such as compilers, programmers expect consistent use, compatible with 
their experience and knowledge. Our initial design did not address implicit 
assumptions about the broad use of addition. An experienced program-
mer expects a += b to be supported if a = a + b is supported. Also, if a = 
a + 1 is a valid statement, then, for consistency, a++ and ++a should also 
be valid. Even if one cannot remember the formal name, commutativity, 
one expects that “a + b” yields the same value as “b + a.”

How does one design around the impasse of invoking a class method 
through a literal? Recall that operation “a + b” is translated as the function 
call “a.operator+(b),” which is equivalent to “Sequence::operator+(&a, b)” 
from the compiler’s perspective. Hence, the a.operator+(b) call works when 
a is an object: b can be either an object or an integer because two versions 
of the overloaded operator+ are defined in the Sequence class, as shown in 
Example D6 (the first method takes a Sequence object as a parameter, the 
second takes an int). However, the a.operator+(b) call does not work when 
a is a literal: “7.operator+(b)” is not a valid invocation of a class method and 
we cannot turn it into one. Class designers cannot rewrite the compiler.

To support overloading binary operators when the left operand is not 
an object, use global functions. Global functions are not invoked through 
an object, and thus do not pass a this pointer as an implicit parameter. 
Both operands must be passed as parameters. The provision of a global 
function can then meet commutative expectations. “7 + a” will compile if 
a global function operator+(int,Sequence) is defined. If the operation 
is commutative, as in this example, one need not implement much new 
code. The global function simply forwards the call to the class method, 
reversing the order of the operands, as shown in Example D9.

Example D9: C++: Commutative Operation => Forward Call
//Addition COMMUTATIVE: a + b == b + a
//Global function to accommodate "7 + a" invocation
// REUSE class method!!
// pass call "7 + a" to "a + 7", that is "a.operator+(7)"
Sequence operator+(int inc, const Sequence& b)
{ //forward call: b.operator+(inc)
 return b + inc;
}
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D.2.5  Incrementation

Overloading “++” in C++ is a bit tricky because “++” is a placeholder for 
two different functions: pre-increment and post-increment. With pre-
increment, the updated object state is returned to the caller. With post-
increment, the object state is updated internally, but the original state of 
the object is returned to the caller. In this manner, pre- and post-incre-
ment mimic the application of these operators with primitives. Example 
D10 displays standard code for illustrating the use of pre- and post-incre-
ment on integers.

Example D10: C++: Pre- and Post-Increment
int  x = 10, y = 14;

//Pre increment: cout receives updated value: x + 1
//Post increment: cout passed original value: y

cout << ++x << y++ << endl;  //11 and 14 output

Conceptually, both functions have the same function signature (func-
tion name: operator++), and the same number of parameters (the implicit 
this pointer). The compiler uses the placement of the “++” symbol before 
or after the object to determine whether pre- or post-increment is appro-
priate. The C++ compiler must then be able to distinguish between two 
different class methods for incrementation. Hence, the class designer must 
define two operator++ functions: one for pre-increment; one for post-
increment. By convention, a dummy int is placed in the parameter list 
for post-increment, forcing a distinction between the two functions. This 
dummy int is ignored in the implementation of operator++.

Example D11 illustrates the design of pre- and post-increment for an intui-
tive example: a Clock. Note that a private utility function, tick(), is defined. 
For pre-increment, tick()is called and then the function returns the object, 
which has just now been “incremented.” For post-increment, a copy of the 
incoming object is stored, tick()is called and then the function returns the 
copy of the incoming object: the current, incremented object is not returned. 
This design technique of storing object state is also used for the post- 
decrement operator.

Example D11: C++ Pre- and Post-Increment for Clock Class
// overloading ++: how to distinguish between pre & post?
// => C++ compiler inserts a dummy int for post call
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// operator++()  —  pre-increment
// operator--()  —  pre-decrement

// operator++(int)  —  post-increment
// operator--(int)  —  post-decrement

// => no work for application programmer
// =>class designer constructs appropriate function signature

// GOAL: APPLICATION CODE THAT SHOULD BE SUPPORTED
Clock a(12,30,true), b(3,45,false);
cout << ++a << b++ << endl;
// cout << a.operator++() << b.operator++(1) << endl;

//Clock.h
class Clock
{ int hour, min;
 bool AM;
 Clock tick(); // private utility function
 public:
 Clock(int, int, bool);
 Clock operator++();
 Clock operator++(int);
};

//Clock.cpp
Clock Clock::operator++() { return tick(); }
Clock Clock::operator++(int x)
{
 Clock oldState = *this;
 tick();

 return *oldState;
}

Clock Clock::tick()
{
 ++min;
 if (min == 60) { ++hour; min = 0; }
 if (hour == 13) hour = 1;
 if (hour == 12 && min == 0) AM = !AM;
        return *this;

}

D.3  LANGUAGE DIFFERENCES
Operator overloading can effectively increase abstraction and code read-
ability, and thus promotes software maintainability. Yet operator overload-
ing is not universally endorsed. Many view operator overloading merely 
as syntactical sugar. That is, operator overloading just makes code look 
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prettier; no computational benefit accrues. Not surprisingly then, differ-
ent languages provide different levels of support for operator overloading.

C++ fully supports operator overloading. In C++, one can overload all 
operators except: “.”, “.*”, “::”, and “?:”. Design difficulties associated with 
operator overloading in C++ include inconsistent support of programmer 
expectations as well as violation of encapsulation through the friend construct.

Java does not support any operator overloading, possibly in response to 
deficiencies evident in C++, or perhaps because the specification of a com-
plete and consistent conceptual framework is not trivial. C# partially sup-
ports operator overloading. In C#, one can overload the binary arithmetic 
operators (and thereby, the shortcut assignment operators “automati-
cally”), pre- and post-increment and decrement, some logical operators 
as well as the comparison operators. All operators overloaded in C# are 
static methods.

D.4  OVERLOADING C# OPERATORS
C# supports limited operator overloading. All operators overloaded in C# 
are static methods, as shown in Example D12. Every function that imple-
ments an overloaded operator in C# must process all operands as param-
eters. An overloaded unary operator passes one parameter; an overloaded 
binary operator passes both operands as parameters. Since C# overloaded 
operators must be static class methods, there is no this pointer represent-
ing the left operand when the operator is applied. C# overloaded operators 
are thus not invoked through the left operand.

Example D12: C# Overloaded Operators: Static Class Methods
// static class method => assess to all private data
// => both operands passed (no implicit this parameter)
class TypeA
{ // addition non-destructive
 public static TypeA operator+(TypeA a, TypeA b)
 {…} // must return a new TypeA object

 public static TypeA operator+(TypeA a, int b)
 {…} // must return a new TypeA object

 public static TypeA operator+(int b, TypeA a)
 {…} // must return a new TypeA object

 //+= automatically overloaded => a += b; supported
}
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D.4.1  Assignment and Increment

The assignment operator may not be overloaded in C#. In a class design, 
the Cloneable interface must be implemented, and Clone() invoked by the 
client to make a deep copy of an object. Yet, in C#, overloaded arithmetic 
operators cause assignment overload. For example, if “+” is overloaded, 
then “+=” is “automatically” overloaded. Why? By the language standard, 
C# compilers treat “+=” as two distinct operations: addition followed by 
assignment. Thus, if one overloads “+”, the compiler will translate the 
operation “+=” into two calls: a call to the overloaded “+” operator, fol-
lowed by a call to the assignment operator. Since “=” is defined for all 
types (as a bitwise copy), “+=” is thereby “automatically” overloaded. In 
contrast, C++ compilers process shortcut assignment operators as distinct 
operations. In C++, overloading “+=” is required for design consistency if 
“+” is overloaded and “=” is supported.

C# compilers’ treatment of assignment also affects the design of over-
loaded pre- and post-increment and decrement operators. Recall that the 
C++ class designer had to overload two versions of operator++: the pre-
increment that directly incremented the target object; and, the post-
increment that saved the state of the current (target) object, incremented 
the target object, and returned a copy of the saved object. In this manner, 
the application programmer could invoke the post-increment operator 
while still manipulating the object in its state prior to incrementation. A 
similar process is required for pre- and post-decrement.

In C#, the class designer may define only one overloaded version of the 
increment (decrement) operator. This version is invoked whether the cli-
ent uses pre- or post-increment (decrement). Why? The C# compiler takes 
the value returned from the pre- or post-increment (decrement) operator 
and assigns it to the operand as a separate process. For pre-increment, the 
returned value is assigned to (that is, replaces) the operand before the next 
operation. For post-increment, the returned value is assigned to (that is, 
replaces) the operand after the next operation.

Example D13 presents two common implementations of the overloaded 
operator++. The first version, #D13.1, directly and immediately alters the 
state of the operand. This version would thus yield the same results for 
pre- and post-incrementation: the separate assignment of the returned 
value would be redundant for post increment. The second version, #D13.2, 
makes a copy of the operand and increments this copy. Upon completion 
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of the post-increment and the manipulation of the object, the compiler 
would then assign this copy to the original operand.

Example D13: Design Confusion: C# Overloaded Operator++
// only one increment definition
// => used for both pre & post increment
// => ??DESIGN??: destructive OR non-destructive??

 // version #1: directly modify operand
 public static TypeA operator++(TypeA operand) // #D13.1
 { operand.data++; // state change for operand
 return operand
 }

 // version #2: construct copy, modify and return copy
 public static TypeA operator+(TypeA operand) // #D13.2
 { TypeA separateCopy = new TypeA();
 separateCopy.data = operand.data + 1; //operand untouched
 return separateCopy;
 }

Which version is correct? The second version allows the returned copy 
to be used “prior” to incrementation, as is appropriate for post increment. 
Unfortunately, there are no means to enforce design. Without distinct ver-
sions of the overloaded operator++ (one for pre and one for post), confu-
sion often results. With a singular implementation for increment, there is 
no obvious difference between pre- and post-increment in C#. Given that 
many blog postings are not correct, and that it is difficult to dig through 
the language standard, design is not obvious.

D.4.2  Relational Operators

Relational operators in C# must be overloaded in pairs. Thus, if one over-
loads “<”, one must overload “>”, etc. The compiler will generate an error if 
the class designer fails to do so. C# thus enforces conceptual expectations 
from the application programmer’s perspective. If the concept of “not 
equal” is meaningful, then so must be the concept of “equal.”

Is mixed-mode arithmetic a design problem in C#? C# overloads opera-
tors using static class methods. Hence, for a binary operation both oper-
ands must be passed. If an operation supports mixed-mode arithmetic, 
then the C# class would define 3 overloaded functions, taking parameters: 
(type, type), (type, int), (int, type). Refer back to Example D12. Unlike 
C++, there is no difficulty in supporting mixed-mode operations because 
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overloaded operators are not invoked through the left operand. Thus, it is 
okay if the left operand is not an object of the appropriate type (such as a 
literal).

D.5  OVERLOADING STREAM OPERATORS
In C++, the stream operators “<<” and “>>” may be overloaded but not as 
class methods. Why? The left operand is an IO stream and the C++ utility 
classes cannot be opened up to add overloaded functions for user-defined 
types. This difficulty is the same as that encountered with mixed-mode 
arithmetic. When the call “7.operator+(x)” could not be supported via 
class methods, we defined a global function. However, because addition 
is usually commutative, the implementation of this global function was 
simple: the operands of the call were inverted and the call was passed back 
to the class method. In this manner, the global function had no need to 
access the private data of the operands.

Supporting the stream operators is not so easy. Although global func-
tions can be easily defined, operator>>(cin, object) and operator<<(cout, 
object), these functions must have access to the object’s private data 
members. But how? Class designers should not make private data mem-
bers public just to accommodate overloaded stream operators. Public 
data members violate the principles of encapsulation and information 
hiding, making every object vulnerable to uncontrolled state changes. 
The answer is friends.

C++ provides a means to control external access to private data and 
functionality: the “friend” construct. Using the reserved word “friend,” 
a class designer may select which external functions, and/or classes, that 
are privileged with private access. If methodA is declared a friend of 
class TypeY, then the code in the function body of methodA may access 
the private data and functionality of class TypeY. Declaring an external 
class a friend is bolder than identifying a single function: if class TypeX 
is declared a friend of class TypeY, then all functions in class TypeX have 
access to all private methods and data members of class TypeY.

Friend declarations may be placed anywhere in a C++ class header file. 
Software developers often adhere to one of two approaches for declaring 
friends: place in the public section to emphasize communication with the 
application programmer; place in the private section to avoid cluttering 
the public interface. Placement of friend declarations makes no difference 
to the compiler but, for code readability, class designers should be con-
sistent. In either case, documentation should note external support for 
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overloaded operator(s). Example D14 provides sample code for overload-
ing the stream operators for the Clock class to output hour and minute. 
The global function that overloads the input operator must be declared a 
friend, as illustrated in Example D15.

Example D14: C++ Overloading the Stream Operators: Friends
ostream& operator<<(ostream& out, const Clock& c)
{ out << c.hour << ':' << c.min;
 …
 return out;
}

// in application code, cin >> object; cout << object;
// more abstract than object.input() or object.display()
Clock classEnd(1, 55, true);
cout << classEnd++ << ++classEnd << classEnd;

The friend construct is controversial. Critics observe that the friend con-
struct violates encapsulation, exposes private data to external functions, and 
increases coupling. Java enthusiasts note that Java is more OO than C++ 
because it does not support the friend construct. C++ enthusiasts emphasize 
that class designer controls access because friends must be explicitly denoted. For 
software maintainability, the class designer should document all friend-
ships, typically in the implementation invariant.

The friend relationship is not transferable or assumable. Other restric-
tions on the friend construct ameliorate its violation of encapsulation. A 
friend relationship is not transitive. If A is a friend of B and B is a friend 
of C, A is not automatically a friend of C. C must explicitly declare A as 
a friend. The friend relationship cannot be inherited. If A is a friend of 
Parent, A is not a friend of Child, unless the Child also declares A as a 
friend. It is not symmetric. If A is a friend of B, B is not friend of A, unless 
class A also declares B as a friend. The friend construct is necessary in C++ 
to support mixed-mode operations and the stream operators.

D.6  TYPE CONVERSION
Data types promote safe and consistent manipulation of memory. Casting 
is the action of converting the value of one type to the equivalent value of 
another type. Most everyone is familiar with casting an integer to real, as 
when 3 is represented as 3.0. Implicit casting or type conversion is an action 
undertaken automatically by the compiler, without direction from the 
programmer. Explicit casting or type conversion is an action undertaken 
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when so directed by the programmer. Both implicit and explicit type con-
version are shown in Example D15.

Example D15: C++ Overloading Type Conversion
int  i;
float f;
f = i;  //implicit conversion
f = (float) i; //explicit conversion, C-style
f = float (i); //explicit conversion, functional style

// int => Clock object
//  handled via overloaded constructor: Clock(int)
//  constructor creates Clock object, returns nothing
// Clock object => int
//  function returns type (converted value)
//  non-destructive: Clock object state not changed
//overload type conversion: operator othertype();
//  operator int();

//goal: overload type conversion operator
Clock myTime(10, 10, 1);
Clock convertTime(1604);
int  i;
…
i = (int)myTime;  //time converted to int value
    //same as myTime.operator int(i);

While type conversion is supported for primitives, class designers may 
support comparable type conversion by overloaded the “()” operator. 
Consider Example D16, which demonstrates overloading the type conver-
sion of a Clock object to an integer value.

Example D16: C++ Converting Clock Object to Int Value
class Clock
{  int  hour, min
  Clock tick();
 public:
  Clock(int, int, int);
  Clock(int);   //convert constructor
  int operator int(); //conversion operator

  Clock operator++();
  Clock operator++(int);
  friend ostream& operator<<(ostream&, const Clock&);
};

Clock::Clock(int time)  //convert constructor
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{ int holder = time % 2400;
 hour = holder/100;
 if (13 <= hour && hour <= 23) hour -= 12;
 min = holder – (hour*100);
 …
}

int Clock::operator int()  //conversion operator
{ int time = hour;
 if (time == 12) time = 0;
 …
 time *= 100; time += min;
 return time;

}

Example D17 presents an overview of the Sequence class, support-
ing a broad range of overloaded C++ operators. Example D18 presents a 
comparable design in C#. Both examples focus on the interface supported, 
that is, the range of operators overloaded for the application programmer. 
Note language differences. C# class designers may overload fewer opera-
tors; C++ must deal with accessibility issues.

Within the context of language support, the design evaluation of any 
operator overloading must answer the question: is the conceptual frame-
work so defined sufficient? For this example, one might ask if the rela-
tional operators (“<”, “>”) should be supported. Since Sequences are not 
ordered, “no” is a reasonable response. However, the notion of equality, 
and thus inequality, is relevant.

Example D17: C++ Sequence Class
//Sequence.h
class Sequence
{ unsigned capacity;
 unsigned size
 int*  ptr;

 void  initArray(const Sequence&);
public:
 Sequence (unsigned x = 100);
 ~Sequence() { delete[] ptr;  }

 //memory management functionality required for copying
 Sequence(const Sequence&);
 Sequence& operator=(const Sequence&);

 int& operator[](int);

 Sequence operator+(const Sequence&);
 Sequence operator+(int);
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 Sequence& operator+=(Sequence& b);
 Sequence operator++()
 Sequence operator++(int)

 Sequence operator-(const Sequence&);
 Sequence operator-(int);
 Sequence& operator-=(Sequence& b);
 Sequence operator— —()
 Sequence operator— —(int)

 bool  operator==(const Sequence&);
 bool  operator!=(const Sequence&);
};

//operators with global scope: forward call to class methods

Sequence operator+(int, const Sequence&);
Sequence operator-(int, const Sequence&);

Example D18: C# Sequence Class
public class Sequence
{ private unsigned capacity;
 private unsigned size
 private int[] ptr;

 public Sequence (unsigned x = 100) { … }

 public static Sequence operator+(Sequence, Sequence) {…}
 public static Sequence operator+(int, Sequence) {…}
 public static Sequence operator+(Sequence, int) {…}

 public static Sequence operator-(Sequence, Sequence) {…}
 public static Sequence operator-(int, Sequence) {…}
 public static Sequence operator-(Sequence, int) {…}

 public static bool operator==(Sequence, Sequence) {…}
 public static bool operator!=(Sequence, Sequence) {…}

 public static Sequence operator++(Sequence) {…}
 public static Sequence operator— —(Sequence) {…}
};

All C++ operators are inherited EXCEPT the assignment operator. 
Every C++ class that supports dynamically allocated data should overload 
its own assignment operator. Technically, overloaded operators can be vir-
tual (see Chapter 7) since they are functions after all. However, the syn-
tax of using virtual functions obviates any abstraction benefits associated 
with overloaded operators. Additionally, if a child class extends the parent 
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class then the child class should overload any operator(s) that manipulate 
child class data members.

D.7  DESIGN PRINCIPLES FOR OPERATOR OVERLOADING
A thorough design addresses expectations of the application programmer. 
Problems arise when the expectations of the application programmer exceed 
the overloaded functionality provided by the class. What does the application 
programmer expects once addition is overloaded? Addition has a broad con-
ceptual framework. What operators are associated with addition? Operator 
overloading strives to increase the level of abstraction, allowing the applica-
tion programmer to treat user-defined types as built-in types. To manipulate 
a user-defined type as if it were a primitive type, a client assumes all operators 
associated with a process, such as addition, to be supported.

In short, the class designer must evaluate the conceptual framework 
provided by the set of operators overloaded within a class. All related 
operators should be overloaded, if meaningful for the class design. If “<” 
is overloaded, then “>” should be overloaded, etc. C# enforces some of 
this last design expectation. C++ does not. Table D2 delineates common 
operators and notes associations between similar operators.

When overloading operators, the class designer should distinguish 
between destructive and nondestructive operators. Why? Adhering to the 
principles of OO design, a class should control the state of all instantiated 
objects. Destructive operators should be under the purview of the class. If 
one invokes an operation through an object and the operation is destruc-
tive (such as + =), then the state of the object is altered. Simple addition is 
not destructive: a temporary object holds the sum.

For C++ class designers, a recommended guideline is to define  all 
destructive operations as nonstatic (regular) class methods. Non-
destructive operators need not be so restricted. An exception is the 
input stream operator “>>”. This operator must be overloaded as a global 

TABLE D2 Operators in Conceptual Framework

Operator Related Operators Associated Operations
+ + =, ++, − =, – –
* / * =, /=
<< >>
< > < =, > =
= = ! =
&& || !
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function even though, by accepting input, it alters state. We cover this 
operator in a later section. Table D3 delineates C++ operators and how 
they should be overloaded.

In C++, one may overload operators as nonstatic class methods or global 
(outside class scope) methods. The former invokes the function through 
the left operand and passes the left operand through the implicit this 
pointer. Thus, the this pointer holds the address of the left operand and 
the number of parameters passed is one less than the parity of the opera-
tion. When an operator is overloaded as a global function, both operands 
must be passed as parameters.

Example D18 provides a thorough overview of the Sequence class, as 
implemented in C#. Syntactical differences aside, the overloaded operators 
are conceptually the same as those defined in Example D17, which provides 
the corresponding C++ version. Table D4 enumerates the operators that 
may be overloaded in C#, including parenthetically, the shortcut assignment 
operators implied by the overloaded arithmetic, logical, and shift operators.

Are we done yet with addition? Does our Sequence class design sup-
port a reasonably complete conceptual framework for addition? What 
about subtraction? If “+” is supported, it may be reasonable to expect sup-
port for “–”. Here we go again! With “–”, one must consider “–=”, “––” as 
well as mixed-mode arithmetic. Operator overloading can be a complex design 
problem. Class designers must strive to provide a coherent set of overloaded 
operators for consistent manipulation of objects.

TABLE D3 C++ Operators

Class Method Only 
(Destructive)

Global Method Only 
(Access Private Data) Either (Nondestructive)

[] << +, −, *, /, %
() >> <, >
=, + =, − =, * =, /=, %= < =, > =
->  = =, ! =
++, – – ||, &&
!

TABLE D4 C# Operators

Relational 
(Pairwise)

Arithmetic 
(=> Assignment) Increment

Logical 
(=> Assignment)

Shift/Bit 
(=> Assignment)

= =, ! = +, −, *, /, % ++ &, |, ! ~
<, > (/=, % =) –– true, false <<, >>
< =, > = (+ =, − =, * =) (& =, | =, ! =) (<< =, >> =)
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D.8  OVERLOADING FOR MEMORY MANAGEMENT IN C++
We close this appendix by reviewing overloaded operators with respect to 
memory allocation. This advanced material is relevant primarily to appli-
cations that must closely manage memory. Such applications would be 
written in C++.

D.8.1  Transparency

C and C++ provide efficiency at the cost of safety. Memory leaks in C 
and C++ have been problematic. Although garbage collected languages, 
such as C# and Java, cannot resolve all memory leaks because garbage 
collection is not a perfect process, they do reduce the incidence of leaks. A 
classic memory leak, as noted in Example D19, is allocating heap memory, 
via a call to the new operator, but not invoking the corresponding delete 
operator before the handles goes out of scope.

Example D19: C++ Classic Memory Leak: No Delete
{ //enter scope
 Type* local = new Type(); //heap object
 …
 //leave scope WITHOUT transferring ownership
 //leave scope WITHOUT deallocating heap object
}

Compilers cannot generate a call to new to match a call to delete. Where 
would the compiler place such a call? Given aliasing and transferring 
ownership, it is difficult to determine scope. By restricting scope, how-
ever, a design solution can “force” the generation of a missing delete. The 
wrapped pointer is such a design. The idea is to encapsulate memory man-
agement responsibilities. The class constructor “automatically” allocates 
heap memory via a call to new, AND the destructor “automatically” deal-
locates this heap memory via a call to delete. Called the smart pointer, this 
design is shown in Example D20. For more details, see Stroustrup (2000).

Example D20: C++ Classic Memory Leak Avoided
// SMART POINTERS: pointer wrapped in class
// constructor & destructor manage heap memory
// object (wrapped pointer) goes out of scope
// => destructor invoked, leak averted

{ //enter scope
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 Type* local = new Type(); // heap object
 SmartPtr s(local); // wrap object
 …
 local->Typefn(); // #D20.1
 s->Typefn(); // #D20.2: compilation error
 // leave scope WITHOUT transferring ownership
 // leave scope WITHOUT deallocating heap object
 // DESTRUCTOR for s called => heap object deallocated
}

In a confined scope, a smart pointer can solve the problem of memory 
leaks if an application programmer forgets to deallocate. However, the 
wrapped pointer makes the data type private and thus inaccessible. In 
Example D20, no call to any Type functionality could be made via the s 
object. Statement #D20.1 compiles; statement #D20.2 does not. Operator 
overloading overcomes this limitation of smart pointers. How? We over-
load the access operators, as shown in Example D21. Subsequently, any 
call to a function in the embedded pointer’s interface is supported.

Example D21: Overload C++ Access Operators
//OVERLOAD ACCESS OPERATORS -> *
// to make access of wrapped object transparent
class SmartPtr
{ Type* ptr;
 public:
 SmartPtr(Type* p): ptr(p) {}
 ~SmartPtr()  { delete ptr; }

 //overload to provide transparency
 Type* operator->() { return ptr; }
 Type& operator*() { return *ptr; }
};

// application code, wrapper transparent
{ Type* local = new Type(); // heap object
 Type local2; // stack object
 SmartPtr s(local); // wrap heap object
 …
 local->Typefn();
 s->Typefn(); //"s.operator->" yields ptr
 local2 = *local;
 local2 = *s; //"s.operator*" yields *ptr
 // any problems?: local may still think it owns heap memory
}

We make one additional change to our smart pointer class. Since aliases 
easily lead to data corruption, we modify the smart pointer constructor 
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so that it assumes ownership of the memory passed in via the pointer. 
Example D22 shows this simple but effective modification of Example D21.

Smart pointers add a layer of indirection to support memory manage-
ment. Overloading access operators “->” and “*” allows a smart pointer to 
be used in the same manner as the object that it wraps. Operator overload-
ing thus effectively echoes the interface of a private data member.

Example D22: Overload C++ Access Operators and Assume 
Memory Ownership
class SmartPtr2 //assume ownership of wrapped pointer
{ Type* ptr;
 public:
 SmartPtr2(Type*& p): ptr(p) { p = 0;}
 ~SmartPtr2() { delete ptr; }
 Type* operator->() { return ptr; }
 Type& operator*() { return *ptr; }
};

// leak AND data corruption averted
{ Type* local = new Type(); // heap object
 SmartPtr2 s(local); // wrap heap object
 …
 // local null after wrapped in smart pointer
 // where documented?? Problems?
 // DESTRUCTOR for s called => heap object deallocated
}

Through the STL, C++98 provided the auto _ ptr template class that 
embodied a smart pointer. C++11 deprecates auto _ ptr, replacing it with 
three generic types: unique _ ptr wraps a “raw” pointer and assumes 
sole ownership; shared _ ptr models shared ownership via a reference 
count—the last shared _ ptr going out of scope deallocates the owned 
pointer; weak _ ptr provides access but cannot prevent deallocation. This 
refinement distinguishes the utility of a smart pointer (a simple wrapper, 
a reference counter, a secondary reference). The notion of an encapsulated 
pointer, as a means to safeguard memory management, and avoid “raw” 
pointers, remains. For more details, see Josuttis (2012).

D.8.2  Optimization

Memory management is overhead. Calls to the heap manager do not 
advance the state of any computation. A call to the new operator requires 
the allocator to search through the free list for an available memory block. 
When the heap is fragmented, the allocator spends more time looking 
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for a free block. A call to delete requires the heap manager to return the 
released memory block to the free list, and, possibly, coalesce adjacent free 
blocks.

In applications that demand high performance, it may be desirable to 
avoid the overhead of calls to the heap manager, especially if many pieces 
of dynamic data quickly go in and out of scope. One optimization tech-
nique is to localize the allocation and deallocation processes so as to avoid 
this overhead. Three basic steps do so: (1) request a large block of memory; 
(2) retain this block of memory as a local pool of memory; and (3) man-
age this pool directly within the class. Calls to the heap manager are thus 
avoided until the local pool of memory is exhausted or the memory pool 
is no longer needed. In C++, one can overload the new and delete opera-
tors to achieve this customization. We only outline this optimization tech-
nique. For more details, see Bulka and Mayhem (1999).

To maintain its own local pool of memory, a C++ class must implement 
an allocator within the overloaded new operator and a deallocator within 
the overloaded delete operator. The first call to the new operator triggers 
a (layered) call to the real new operator: heap memory is allocated and its 
address passed back to the overloaded new operator. The overloaded oper-
ator then “allocates” a smaller piece of memory and passes its address back 
to the caller. Subsequent object calls to new are passed to the overloaded 
class method new, which can now service the call directly from the local 
pool of memory held by the class. For each such call, the overloaded new 
operator passes back a pointer allocated from the local pool rather than 
passing on the call to the heap manager.

A mirror process for delete is handled by the overloaded class delete 
method. Each object call to delete triggers a local deallocation, circum-
venting the heap manager, and thus reducing overhead. If the local pool 
of memory is exhausted by successive calls to new, without correspond-
ing calls to delete, the new operator can again call the heap manager 
and replenish its local pool of memory. When the local pool is no longer 
needed, the delete operator calls the heap via the standard delete to return 
the allocated memory.
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