
Learn
Microservices
with Spring Boot

A Practical Approach to RESTful
Services using RabbitMQ, Eureka,
Ribbon, Zuul and Cucumber
—
Moises Macero

www.allitebooks.com

http://www.allitebooks.org

Learn Microservices
with Spring Boot

A Practical Approach to RESTful
Services using RabbitMQ,
Eureka, Ribbon, Zuul and

Cucumber

Moises Macero

www.allitebooks.com

http://www.allitebooks.org

Learn Microservices with Spring Boot: A Practical Approach to
RESTful Services using RabbitMQ, Eureka, Ribbon, Zuul and Cucumber

ISBN-13 (pbk): 978-1-4842-3164-7		 ISBN-13 (electronic): 978-1-4842-3165-4
https://doi.org/10.1007/978-1-4842-3165-4

Library of Congress Control Number: 2017962334

Copyright © 2017 by Moises Macero

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Cover image by Freepik (www.freepik.com)

Managing Director: Welmoed Spahr
Editorial Director: Todd Green
Acquisitions Editor: Steve Anglin
Development Editor: Matthew Moodie
Technical Reviewer: Manuel Jordan Elera
Coordinating Editor: Mark Powers
Copy Editor: Kezia Endsley

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit
http://www.apress.com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is
available to readers on GitHub via the book’s product page, located at www.apress.com/
9781484231647. For more detailed information, please visit http://www.apress.com/
source-code.

Printed on acid-free paper

Moises Macero
New York, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3165-4
http://www.allitebooks.org

iii

About the Author��ix

About the Technical Reviewer��xi

Table of Contents

Chapter 1: �Introduction���1

Setting the Scene���1

Who Are You?���2

How Is This Book Different from Other Books and Guides?�����������������������������������3

Reasoning Behind the Techniques���3

Learning: An Incremental Process��4

Is This a Guide or a Book?��4

Contents���5

From the Basics to Advanced Topics��5

Skeleton with Spring Boot, the Professional Way���5

Test-Driven Development���6

Connecting Microservices��6

Event-Driven System��6

End-to-End Testing���7

Summary���7

www.allitebooks.com

http://www.allitebooks.org

iv

Chapter 2: �The Basic Spring Boot Application���������������������������������������9

Business Requirements���9

The Skeleton App���10

Skinny vs. Real-Life Apps���10

Creating the Skeleton���11

Warming Up: Some TDD in Action��13

Summary���21

Chapter 3: �A Real Three-Tier Spring Boot Application�������������������������23

Introduction��23

Completing the Basics���26

Designing the Domain��33

The Business Logic Layer��38

The Presentation Layer (REST API)���41

The Multiplication Controller��43

The Results Controller��48

The Frontend (Web Client)��53

Playing with the Application (Part I)���58

New Requirements for Data Persistence���59

Refactoring the Code���63

The Data Layer���68

The Data Model��71

The Repositories���77

Completing User Story 2: Going Through the Layers���87

Playing with the Application (Part II)��94

Summary���97

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

v

Chapter 4: �Starting with Microservices���99

The Small Monolith Approach��99

Analyzing the Monolith���103

Moving Forward��105

Gamification Basics���106

Points, Badges, and Leaderboards���106

Applying It to the Example��107

Moving to a Microservices Architecture���108

Separation of Concerns and Loose Coupling��108

Independent Changes���109

Scalability���109

Connecting Microservices��110

Event-Driven Architecture��112

Related Techniques��113

Pros and Cons of Event-Driven Architecture��114

Further Reading��117

Applying Event-Driven Architecture to the Application���������������������������������118

Going Event-Driven with RabbitMQ and Spring AMQP���������������������������������������119

Using RabbitMQ in Your System���120

Spring AMQP���121

Sending Events from Multiplication���121

RabbitMQ Configuration���122

Modeling the Event���125

Sending the Event: Dispatcher Pattern���128

Deeper Look at the New Gamification Microservice������������������������������������134

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

vi

Receiving Events with RabbitMQ���154

The Subscriber’s Side���154

RabbitMQ Configuration���154

The Event Handler��157

Requesting Data Between Microservices��160

Combining Reactive Patterns and REST���160

Keeping Domains Isolated��162

Implementing the REST Client��165

Updating Gamification’s Business Logic��170

Playing with the Microservices��173

Summary���176

Chapter 5: �The Microservices Journey Through Tools�����������������������179

Introduction��179

Extracting the UI and Connecting It to Gamification��180

Moving the Static Content��182

Connecting UI with Gamification��184

Changes to Existing Services���187

A New, Better UI with (Almost) No Effort��190

The Current Architecture��200

Service Discovery and Load Balancing��202

Service Discovery���202

Load Balancing���205

Polyglot Systems, Eureka, and Ribbon���207

Routing with an API Gateway���209

The API Gateway Pattern��209

Zuul, Eureka, and Ribbon Working Together���214

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

vii

Hands-On Code��218

Implementing the API Gateway with Zuul���218

Playing with Service Discovery��237

Are Our Microservices Ready to Scale?���241

Load Balancing with Ribbon���244

Circuit Breakers and REST Clients���254

Circuit Breakers with Hystrix��254

Hystrix and Zuul��255

Hystrix from a REST Client��258

REST Consumers with Feign��261

Microservices Patterns and PaaS��263

Summary���264

Chapter 6: �Testing the Distributed System��267

Introduction��267

Setting the Scene���269

How Cucumber Works��271

Hands-On Code��273

Creating an Empty Project and Choosing the Tools��������������������������������������274

Making the System Testable���278

Writing the First Cucumber Test���287

Linking a Feature to Java Code��291

The Supporting Classes��302

Reusing Steps Across Features��308

Running Tests and Checking Reports���311

Summary���314

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

viii

�Appendix A: �Upgrading to Spring Boot 2.0��315

�Introduction��315

�Upgrading the Dependencies���316

�Fixing the Breaking Changes���319

�The CrudRepository Interface Does Not Include findOne( )���������������������������319

�Actuator Endpoints Have Been Moved���320

�Applying Optional Updates���321

�The WebMvcConfigurerAdapter Class Has Been Deprecated�����������������������321

�Working with Spring Boot 2.0��322

�Afterword���323

�Index��325

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

ix

About the Author

Moises Macero has been a software developer

since he was a kid. He has worked at big

companies and also at startups, where being

a full-stack developer was essential. During

his career, Moises has most often worked in

development, design, and architecture, for

small and large projects, and in both Agile and

waterfall environments. He likes working in

teams where he can not only coach others but

also learn from them.

Moises is also the author of the blog

thepracticaldeveloper.com, where he shares with others solutions for

technical challenges, guides and his view on ways of working in IT

companies. In his free time, he enjoys traveling and hiking.

You can follow Moisés on his twitter account @moises_macero.

www.allitebooks.com

www.thepracticaldeveloper.com
https://twitter.com/moises_macero
http://www.allitebooks.org

xi

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic

developer and researcher who enjoys learning

new technologies for his own experiments,

which focus on finding new ways to integrate

them.

Manuel won the 2010 Springy Award –

Community Champion and Spring Champion

2013. In his little free time, he reads the Bible

and composes music on his bass and guitar.

Manuel believes that constant education

and training is essential for all developers. You can reach him mostly

through his twitter account @dr_pompeii.

1© Moises Macero 2017
M. Macero, Learn Microservices with Spring Boot,
https://doi.org/10.1007/978-1-4842-3165-4_1

CHAPTER 1

Introduction
�Setting the Scene
Microservices are getting very popular these days. It’s not a surprise; this

software architecture style has a lot of advantages, like flexibility and ease

of scale. Mapping them into small teams in an organization also gives you

a lot of efficiency in development. However, going on the adventure of

microservices knowing only the benefits is a wrong call: you need to know

what you are facing and be prepared for that in advance. You can get a lot

of knowledge from many books and articles on the Internet but, when you

get hands-on code, the story changes.

This book covers some of the most important concepts of microservices

in a practical way, but not without explaining the concepts. First, we define

a use case: an application to build. Then we start with a small monolith,

based on some sound reasoning. Once we have the minimal application in

place, we evaluate if it’s worthy to move to microservices, and what would

be a good way to do so. How should we communicate these different pieces?

Then we can describe and introduce the event-driven architecture pattern

to reach loose coupling by informing other parts of the system about what

happened in your part of the process, instead of explicitly calling others to

action. Once you have the microservices in place, you see in practice how

the surrounding tools work: service discovery, routing, etc. We don’t cover all

of them at once but include them one by one, explaining the benefits of each

for the application. Also, we analyze what would be a good way to test the

distributed system, end-to-end.

2

The advantage of going step-by-step, pausing when it’s needed to settle

down the concepts, is that you will understand which problem each tool is

trying to solve. That’s why the evolving example is an essential part of this

book. You can also grasp the concepts without coding one single line: most

of the source code is included so you can read it if you prefer.

The source code included in this book is available on the GitHub repository

 https://github.com/microservices-practical. It’s divided into

different versions, which makes it easier for you to see how the application

evolves along the chapters. The book includes notes with the version that

is being covered in that section.

�Who Are You?
Let’s first start with this: how interesting is this book going to be for you?

This book is practical, so let’s play this game. If you identify with any of

these statements, this book might be good for you.

•	 I would like to learn how to build microservices with

Spring Boot and how to use the related tools.

•	 Everybody is talking about microservices but I have no

clue what a microservice is yet: either I read theoretical

explanations or just hype-enforcing articles. I can’t

understand the advantages, even though I work in IT…

•	 I would like to learn how to design and develop Spring

Boot applications, but people are recommending

Don-Quixote-sized books,1 sometimes even several

of them. Is there any single source from which I can get

a quick, practical grip on microservices without reading

1,000 pages?

1�Don Quixote. Even though it is a long book, it is still a masterpiece.

Chapter 1 Introduction

https://github.com/microservices-practical
https://en.wikipedia.org/wiki/Don_Quixote

3

•	 I got a new job, and they’re using a microservices

architecture. I’ve been working mainly in big,

monolithic projects, so I’d like to have some knowledge

and guidance to learn how everything works there.

•	 Every time I go to the cafeteria developers are talking

about microservices… I can’t socialize anymore with

my colleagues if I don’t get what they’re saying. Okay,

this is a joke; don’t read this book because of that,

especially if you’re not interested in programming.

Regarding the knowledge required to read this book, the following

topics should be familiar to you:

•	 Java (some code parts use Java 8 in this book)

•	 Spring (you don’t need strong experience but you should

know, at least, how dependency injection works)

•	 Maven (if you know Gradle, you’ll be fine as well)

�How Is This Book Different from Other
Books and Guides?
�Reasoning Behind the Techniques
Software developers and architects read many technical books and guides,

either because we’re interested in learning new technologies or just

because we need it for our work. We need to do that anyway since it’s a

constantly-changing world. We can find all kinds of books and guides out

there. Good ones are usually those from which you learn quickly, and ones

that teach you not only how to do stuff, but also why you should do it that

way. Using new techniques just because they’re new is the wrong way to

go about it; you need to understand the reasoning behind them so you use

them in the best way possible.

Chapter 1 Introduction

4

This book uses that philosophy: it navigates through the code and

design patterns, explaining the reasons to follow one way and not others.

�Learning: An Incremental Process
If you look at the guides available on the Internet, you’ll notice quickly that

they are not real-life examples. Usually, when you apply those cases to

more complex scenarios, they don’t fit. Guides are too shallow to help you

building something real.

Books, on the other hand, are much better at that. There are plenty

of good books explaining concepts around an example; they are good

because applying theoretical concepts to code is not always easy if you

don’t see the code. The problem with some of these books is that they’re

not as practical as guides. You need to read them first to understand the

concepts, then code (or see) the example, which is frequently given as a

whole piece. It’s difficult to put into practice concepts when you see the

final version directly. This book stays on the practical side and starts with

code that evolves through refactoring, so the concepts are understood

step-by-step. We cover the problem before exposing the solutions.

Because of this incremental way of presenting concepts, this book also

allows you to code as you learn and to reflect on the challenges by yourself.

�Is This a Guide or a Book?
The pages you have in front of you can’t be called a guide: it won’t take

you 15 or 30 minutes to finish them. But this is not the typical book either,

in which you go through concepts illustrated with some code fragments.

Instead, you start with a version of the code that is not yet optimal, and

you learn how to evolve it, after learning about the benefits you can extract

from that process.

That does not mean that you can’t just sit down and read it, but it’s better

if you code at the same time and play with the options and alternatives

presented. That’s the part of the book that makes it similar to a guide.

Chapter 1 Introduction

5

In any case, to keep it simple, from here onward we call this a book.

�Contents
�From the Basics to Advanced Topics
This book focuses first on some basics about how to design and implement

a production-ready Spring Boot application using well-known architecture

patterns (Chapters 2 and 3). From there, it takes you through the journey

of tools and frameworks related to microservices with the introduction of

a second piece of functionality in a different Spring Boot app (Chapters 4

and 5). It also shows you how to support such a distributed system with

end-to-end integration tests (Chapter 6).

If you already know how to design Spring Boot applications, you can

go quickly through Chapters 2 and 3 and focus more on the second part

of the book. There, we cover topics like service discovery, routing, event-

driven design, testing with Cucumber, etc. However, pay attention to the

strategy we set up in the first part—test-driven development, the focus on

the minimum viable product (MVP), and monolith-first.

�Skeleton with Spring Boot, the Professional Way
First, the book guides you through the creation of an application using

Spring Boot. It’s mainly focused on the backend side, but you will create a

simple web page to demonstrate how to expose functionality as a REST API.

It’s important to point out that we don’t create “shortcut code” just

to see Spring Boot running: that’s not the objective of this book. We use

Spring Boot as a vehicle to teach concepts, but we could use any other

technique, and the ideas of this book would still be valid.

You learn how to design and implement the application following the

well-known three-tier, three-layer pattern. You do this supported by an

incremental example, with hands-on code. The result will be more than

enough for you to understand the professional way of writing applications.

Chapter 1 Introduction

6

�Test-Driven Development
We use TDD to map the prerequisites presented to technical features (like

you should do in real life). TDD is a technique that sometimes can’t be

used at work (for many different reasons, none technical). But this book

tries to show it in a way that you can see the benefits from the beginning:

why it’s always a good idea to think about the test cases before writing your

code. AssertJ and Mockito will serve us to build useful tests efficiently.

The plan is the following: you’ll learn how to create the tests first, then

make them fail, and finally implement the logic to make them work.

�Connecting Microservices
Once you have your first application ready, we introduce a second one

that will interact with the existing functionality. From that moment on,

you’ll have a microservices architecture. It doesn’t make any sense to try to

understand the advantages of microservices if you only have one of them.

The real-life scenarios are always distributed systems with functionality

split into different services. As usual, to keep it practical, you’ll see how

moving to microservices fits your needs.

The book covers not only the reasons to split the system but also what

the disadvantages are that come with that choice. And once you make the

decision, you’ll learn which tools you should use to make the system work

as a whole, and not as isolated services: service discovery, API gateway,

load balancing, and some other supporting tools.

�Event-Driven System
An additional concept that does not always accompany microservices is an

event-driven architecture. This book uses it since it’s a pattern that fits very

well into a microservice architecture, and you’ll make your choice based

on good examples.

Chapter 1 Introduction

7

This asynchronous way of thinking introduces new ways of designing

code; you’ll look at it while coding your project, using RabbitMQ to

support it.

�End-to-End Testing
If you want to code your project the professional way, you need to have a

production-ready mindset, so we’ll cover this functionality with tests. We

explain how to tackle the trickiest ones in a microservices architecture:

the end-to-end tests. We’ll use Cucumber since it’s a framework that

fits perfectly in many projects, filling the gap between the business

requirements and the test development. Even though nobody should need

reasons here to be convinced of why it is a good idea to have a proper test

base, we explain them to keep the testing skeptics happy.

�Summary
This chapter introduced the main goals of this book: to teach you the

main aspects of a microservices architecture, by starting simple and then

growing your knowledge through the development of a sample project.

We also covered briefly the main contents of the book: from monolith-

first to microservices with Spring Boot, Test-Driven Development,

Event-Driven Systems and End-to-End testing with Cucumber.

Next chapter will start with the first step of our learning path: a basic

Spring Boot application.

Chapter 1 Introduction

9© Moises Macero 2017
M. Macero, Learn Microservices with Spring Boot,
https://doi.org/10.1007/978-1-4842-3165-4_2

CHAPTER 2

The Basic Spring
Boot Application
�Business Requirements
We could start writing code directly but that, even being pragmatic, would

be far from being a real case. Software should have a goal: in this case, we

do it purely for the fact of learning but, anyway, we’ll give it a reason

(a fictional one). This requirements-oriented approach is used throughout

the book to make it more practical.

We want to write an application to encourage users to train their math

skills every day. To begin with, we will have two-digit multiplications

presented to users, one every time they access the page. They will type

their alias (a short name) and the result of the operation, and for that they

should use only mental calculation. After they send the data, a success or

failure result will be presented.

In order to motivate the users, we will also introduce some simple

gamification techniques: a ranking of users based on points they get when

they try the calculation every day, and also when they succeed. We will

show this on the results page.

This is the main idea of the whole application we will build (our vision)

and this book will emulate an Agile way of working in which requirements

come in the form of user stories. Agile, in spite of being criticized by many

software developers, has become the standard methodology applied in

10

a vast majority of IT companies. The reality is that, when implemented

properly, it’s a way of working that allows teams to deliver software that

can be used as early as possible and to get a valuable feedback out of it.

Supported by Agile, we start simple, and then we build on top of that.

Consider the first user story here.

USER STORY 1

As a user of the application, I want to be presented with a random

multiplication that I can solve online—not too easy, so I can use mental

calculation and make my brain work every day.

To make this work, we’ll split the user story into several sub-tasks:

	 1.	 Create a basic service with the business logic.

	 2.	 Create a basic API endpoint to access this service

(REST API).

	 3.	 Create a basic web page to ask the users to solve that

calculation.

�The Skeleton App
�Skinny vs. Real-Life Apps
The first thing you’ll find if you search Spring Boot tutorial on Google is

the Getting Started guide from Pivotal (see https://spring.io/guides/

gs/spring-boot/). Following the guide, you can build a Hello World

(or Greetings) app, but that’s not exciting when you already have some

Chapter 2 The Basic Spring Boot Application

https://spring.io/guides/gs/spring-boot/
https://spring.io/guides/gs/spring-boot/

11

experience in software development. If you look for something more

challenging, you’ll find yourself diving into many other official Getting

Started guides that, despite being really useful, are totally disconnected

and don’t provide real-life code examples. They help you build skinny

apps.

Don’t take this wrong: these guides are very useful for daily work. For

example, you may not remember how to set up a RabbitMQ listener, and

in that case, you can scan these guides for a quick answer. The main goal

of such guides is to provide you with a quick example (that normally might

take around 15 minutes) that covers the basics you need to set up the

different functionalities of Spring Boot. Because of that, the applications

are sometimes built with shortcuts, like having all the code in the same

class or inserting data through command-line runners.

As you already know, the objective of this book is to help go further,

using Spring Boot to build applications that are closer to real-life cases.

You learn how to combine the different technologies together and set up

a code with no shortcuts, following good practices and including a proper

testing coverage.

�Creating the Skeleton
Hands-on code! The first thing you do is create a Spring Boot application

skeleton that will serve as the reference during the book. There are several

ways to do this. Navigate to the Spring Initializr web site at http://start.

spring.io/ and generate a project from there (see Figure 2-1).

Chapter 2 The Basic Spring Boot Application

http://start.spring.io/
http://start.spring.io/

12

Let’s give some values to the Group (microservices.book) and to the

Artifact (social-multiplication). Now click on Switch to the Full Version

and change the package name to microservices.book.multiplication.

Enter a custom description if you want. Then, under dependencies, select

Web. The last step is to select the Spring Boot version, 1.5.7 in this case.

That’s all you need for now. Leave the other settings as they are, as you’ll

work with Maven and Java.

Generate the project and extract the ZIP contents. The social-

multiplication-v1 folder contains everything you need to run your app,

Figure 2-1.  The Spring Initializr web site helps you create a basic
application

Chapter 2 The Basic Spring Boot Application

13

including a Maven wrapper (mvnw) that you can execute from the source

folder. If you prefer, you can use your own Maven installation instead.

Now you can use your favorite shell to run the application with this

command:

$ mvnw spring-boot:run

Your application will start. The last line you should see there is

something like this:

m.book.SocialMultiplicationApplication : Started

SocialMultiplicationApplication in 2.385 seconds

(JVM running for 6.07)

This app, as you might have guessed, is not practical yet. There is

no functionality in there, even though it’s occupying a port at 8080. But

it’s useful to generate the skeleton project this way, having the Maven

configuration in place and the root packages.

RUNNING THE SPRING BOOT APP

From here onward, it will be assumed that you know how to run the Spring

Boot application. It’s also recommended that you use your preferred IDE to

work with the code or import the Maven projects (Eclipse, IntelliJ, Spring Tool

Suite, etc.). The most popular IDEs have good integration with Spring Boot and

Maven and allow you to run it directly without typing anything in the command

line. If you need more help with this, just visit the official guides for these

integrated development environments.

�Warming Up: Some TDD in Action
Test-driven development is based on writing the application tests before the

main code logic, making these tests fail first, and then writing the code to

make them pass.

Chapter 2 The Basic Spring Boot Application

14

WHY IS TDD GOOD FOR DEVELOPERS?

There are many reasons why, but the most important one is that TDD forces

you and the business person to think about the prerequisites in a deeper way.

This includes thinking about what the code should do under certain situations

or use cases. It will help you clarify vague prerequisites and reject invalid ones.

However, there is one idea usually associated with TDD that sometimes is

taken to the extreme: continuous refactoring of code in several iterations.

You should find a balance—it’s not a good idea to write poor quality,

unmaintainable code just to make the tests pass and then later refactor them.

Let’s start thinking about what we need. We’ll start with

MultiplicationServiceTest, in which we want to check that a

Multiplication has been generated. The Multiplication class is shown

in Listing 2-1.

SOURCE CODE AVAILABLE WITH THE BOOK

You can find the code in this chapter in the v1 repository on GitHub at

https://github.com/microservices-practical.

Listing 2-1.  Multiplication.java (social-multiplication v1)

package microservices.book.multiplication.domain;

/**

 * This class represents a Multiplication in our application.

 */

public class Multiplication {

Chapter 2 The Basic Spring Boot Application

https://github.com/microservices-practical

15

 // Both factors

 private int factorA;

 private int factorB;

 // The result of the operation A * B

 private int result;

 public Multiplication(int factorA, int factorB) {

 this.factorA = factorA;

 this.factorB = factorB;

 this.result = factorA * factorB;

 }

 public int getFactorA() {

 return factorA;

 }

 public int getFactorB() {

 return factorB;

 }

 public int getResult() {

 return result;

 }

 @Override

 public String toString() {

 return "Multiplication{" +

 "factorA=" + factorA +

 ", factorB=" + factorB +

 ", result(A*B)=" + result +

 '}';

 }

}

Chapter 2 The Basic Spring Boot Application

16

Simple. It’s a basic class, and it contains the result as well. There is no

need to calculate it all the time across the application.

We define also the service interface, as shown in Listing 2-2.

Listing 2-2.  MultiplicationService.java (social-multiplication v1)

package microservices.book.multiplication.service;

import microservices.book.multiplication.domain.Multiplication;

public interface MultiplicationService {

 /**

 �* Creates a Multiplication object with two randomly-

generated factors

 * between 11 and 99.

 *

 * @return a Multiplication object with random factors

 */

 Multiplication createRandomMultiplication();

}

Also, because we want to generate random multiplications, we create a

service to provide random factors (see Listing 2-3). That will help us write

proper tests; it would be much more difficult if we use Random inside the

service implementation.

Listing 2-3.  RandomGeneratorService.java (social-multiplication v1)

package microservices.book.multiplication.service;

public interface RandomGeneratorService {

Chapter 2 The Basic Spring Boot Application

17

 /**

 �* @return a randomly-generated factor. It's always a

number between 11 and 99.

 */

 int generateRandomFactor();

}

Once you have the interfaces you need, you can write the first test

version, as shown in Listing 2-4.

Listing 2-4.  MultiplicationServiceTest.java (social-multiplication v1)

package microservices.book.multiplication.service;

import microservices.book.multiplication.domain.Multiplication;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.boot.test.mock.mockito.MockBean;

import org.springframework.test.context.junit4.SpringRunner;

import static org.assertj.core.api.Assertions.assertThat;

import static org.mockito.BDDMockito.given;

@RunWith(SpringRunner.class)

@SpringBootTest

public class MultiplicationServiceTest {

 @MockBean

 private RandomGeneratorService randomGeneratorService;

 @Autowired

 private MultiplicationService multiplicationService;

Chapter 2 The Basic Spring Boot Application

18

 @Test

 public void createRandomMultiplicationTest() {

 �// given (our mocked Random Generator service will

return first 50, then 30)

 �given(randomGeneratorService.generateRandomFactor()).

willReturn(50, 30);

 // when

 �Multiplication multiplication = multiplicationService.

createRandomMultiplication();

 // then

 assertThat(multiplication.getFactorA()).isEqualTo(50);

 assertThat(multiplication.getFactorB()).isEqualTo(30);

 assertThat(multiplication.getResult()).isEqualTo(1500);

 }

}

The @MockBean annotation is important in this test: it tells Spring to inject

a mock of the RandomGeneratorService bean, instead of letting it search for a

suitable implementation of the interface (which doesn’t exist yet).

We’re using some benefits of both Mockito and Spring Boot to make a

simple, concise unit test. We’re also using behavior-driven development

(BDD, supported by MockitoBDD) to define what should happen when

RandomGeneratorService is called. That makes the test even easier to read,

which is great for the goal we have: getting help from the person defining

our requirements to build the use cases.

If we only write these three classes and execute the test, it will

obviously fail, since there is no implementation of MultiplicationService

to test. Again, that’s exactly the point of TDD—we wrote the specs first,

then validate those with a business analyst (like a Product Owner in

Scrum; see https://tpd.io/prd-own), and then list which other cases

should be covered. All of this with no implementation of the solution.

Chapter 2 The Basic Spring Boot Application

https://tpd.io/prd-own

19

Once the test (requirement) is clear, we write the solution, as shown in

Listing 2-5.

Listing 2-5.  MultiplicationServiceImpl.java (social-multiplication v1)

package microservices.book.multiplication.service;

import microservices.book.multiplication.domain.Multiplication;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.stereotype.Service;

@Service

class MultiplicationServiceImpl implements

MultiplicationService {

 private RandomGeneratorService randomGeneratorService;

 @Autowired

 �public MultiplicationServiceImpl(RandomGeneratorService

randomGeneratorService) {

 this.randomGeneratorService = randomGeneratorService;

 }

 @Override

 public Multiplication createRandomMultiplication() {

 �int factorA = randomGeneratorService.

generateRandomFactor();

 �int factorB = randomGeneratorService.

generateRandomFactor();

 return new Multiplication(factorA, factorB);

 }

}

Chapter 2 The Basic Spring Boot Application

20

No surprises here either; it’s simple. Now you can run the test

successfully with the following command line (or you can also use your

preferred IDE):

$ mvnw -Dtest=MultiplicationServiceTest test

YOU COWBOY! THE APPLICATION FAILS…

If you try to run all the tests instead of just MultiplicationServiceTest,

you’ll get an error (No qualifying bean of type 'microservices.

book.multiplication.service.RandomGeneratorService'

available). The reason is that, by default when you create

the app from Spring Initializr, the package includes an empty

SocialMultiplicationApplicationTests that tries to load the full

application context. The same thing happens if you try to run the application.

When loading the context, Spring will try to find an implementation of

RandomGeneratorService to inject, but there is none. This doesn’t mean

you’re doing cowboy development, you’re just using an advantage of

TDD—you test as you develop, even if you don’t have the full application

up and running yet.

Let’s review the advantages of the TDD approach:

•	 We translate the requirements to code (by creating our

test), and that forces us to think about what we need and

what we don’t need. So far we only need to generate a

random multiplication; it’s our first business requirement.

•	 We build testable code. Imagine that we would have

started coding without having the test. It would

have been easier to include the random generation

logic directly inside the MultiplicationService

implementation, making it really difficult to test

Chapter 2 The Basic Spring Boot Application

www.allitebooks.com

http://www.allitebooks.org

21

afterward since the test would use random numbers,

thus being unpredictable. By having to write the test in

advance, we force ourselves to think of a good way to

verify the functionality, coming up with the separate

logic in RandomGeneratorService.

•	 Note that we didn’t need to write the implementation

of RandomGeneratorService. We can focus first on

what’s most important and later implement the helper

services. We leave the RandomGeneratorService

implementation for the next chapter.

�Summary
The main goal of this chapter was to introduce the requirements and the

test-driven development approach you’ll follow in this book. You created

a Spring Boot application by developing some basic functionality using

TDD.

The chapter also set the stage for you to think in an Agile way, which

is used more and more in software companies because of its benefits. You

took some time to refine your first business requirement, split it into sub-

tasks, and thought about a first unit test.

The next chapter goes much more into practical work: you’ll create the

first complete version of this application, including a simple UI. You’ll do

that using good design practices from the beginning: a three-tier, layered

software that will give you the flexibility to evolve your application.

Chapter 2 The Basic Spring Boot Application

23© Moises Macero 2017
M. Macero, Learn Microservices with Spring Boot,
https://doi.org/10.1007/978-1-4842-3165-4_3

CHAPTER 3

A Real Three-Tier
Spring Boot
Application
�Introduction
A multitier architecture will provide our application with a more

production-ready look. Most of the real-world applications follow this

architecture pattern and, to be more specific, the three-tier design is the

most popular one and widely extended among web applications. The three

tiers are:

•	 Client tier: Responsible for the user interface. Typically

what we call the frontend.

•	 Application tier: It contains all the business logic

together with the interfaces to interact with it and the

data interfaces for persistence. This maps with what we

call the backend.

•	 Data Store tier: It’s the database, file system, etc., that

persists the application’s data.

24

In this book we’re mainly focused on the application tier, although

we’ll use the other two as well. If now we zoom in, that application tier is

commonly designed using three layers:

•	 Business layer: The classes that model our domain and

the business specifics. It’s where the intelligence of the

application resides. Normally, it will be composed of

entities (our Multiplication) and Services providing

business logic (like our MultiplicationService).

Sometimes this layer is divided in two parts: domains

(entities) and applications (services).

•	 Presentation layer: In our case, it will be represented

by the Controller classes, which will provide

functionality to the Web client. Our REST API

implementation will reside here.

•	 Data layer: It will be responsible for persisting our

entities in a data storage, usually a database. It can

typically include Data Access Object (DAO) classes,

which work with direct representation of the database

model, or Repository classes, which are domain-

centric and translate from domains down to the

database layer (so they could use DAOs whenever they

don’t match).

The architecture pattern shown in Figure 3-1 is used in our application

while we develop the required functionalities.

Chapter 3 A Real Three-Tier Spring Boot Application

25

The advantages of using this software architecture are intrinsically

related to the fact of decoupling layers. Let’s summarize three important

advantages:

•	 The domain part is isolated and independent from the

solution, instead of mixed with interface or database

specifics.

•	 Non-business layers are interchangeable (like for

instance changing the database for a file storage

solution, or changing from REST to any other

interface).

•	 There is a clear separation of responsibilities: a class to

handle database storage of the objects, a separate class

for the REST API implementation, and another class for

the business logic.

Figure 3-1.  The application’s architecture pattern

Chapter 3 A Real Three-Tier Spring Boot Application

26

Spring is an excellent option to build this type of architecture, with

many out-of-the-box features that will help us easily create a production-

ready three-tier application.

�Completing the Basics
Before continuing with the layering… did we miss anything? We left behind

the implementation of our RandomGeneratorService. Let’s create the test

for it since we know what to expect. See Listing 3-1.

SOURCE CODE AVAILABLE WITH THE BOOK: V2

You can find the chapter’s code in the v2 repository on GitHub:

https://github.com/microservices-practical.

Listing 3-1.  RandomGeneratorServiceTest.java

(social-multiplication v2)

package microservices.book.multiplication.service;

import org.junit.Test;

import org.junit.runner.RunWith;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.boot.test.context.SpringBootTest;

import org.springframework.test.context.junit4.SpringRunner;

import java.util.List;

import java.util.stream.Collectors;

import java.util.stream.IntStream;

Chapter 3 A Real Three-Tier Spring Boot Application

https://github.com/microservices-practical

27

import static org.assertj.core.api.Assertions.assertThat;

@RunWith(SpringRunner.class)

@SpringBootTest

public class RandomGeneratorServiceTest {

 @Autowired

 private RandomGeneratorService randomGeneratorService;

 @Test

 �public void generateRandomFactorIsBetweenExpectedLimits()

throws Exception {

 �// when a good sample of randomly generated factors is

generated

 List<Integer> randomFactors = IntStream.range(0, 1000)

 �.map(i -> randomGeneratorService.

generateRandomFactor())

 .boxed().collect(Collectors.toList());

 // then all of them should be between 11 and 100

 �// because we want a middle-complexity calculation

 �assertThat(randomFactors).containsOnlyElementsOf

(IntStream.range(11, 100)

 .boxed().collect(Collectors.toList()));

 }

}

We use a Java 8 Stream of the first 1000 numbers to mimic a for loop.

Then, we transform each number with map to a random int factor, we box

each one to an Integer object, and finally we collect them into a list. The

test checks that all of them are within the expected range that we define

using a similar approach.

Chapter 3 A Real Three-Tier Spring Boot Application

28

PRODUCTION READINESS: DON’T OVERUSE SPRINGBOOT TESTS

We’ve created both tests as @SpringBoot tests, running with

SpringRunner, which causes the application context to be initialized,

therefore having the beans injected. Luckily, context is being cached and

reused by Spring, so it’s loaded only once per suite.1

This is an example of how Internet guides can be confusing sometimes. We don’t

need dependency injection nor the application context to test the functionalities

of these classes; in these situations, it’s better not to use @SpringBoot and just

test the implementation classes: build real unit tests that verify only one class.

We use tests with a Spring context for a different type of testing—integration

tests, which are intended to verify interactions between more than a class.

Even with context reuse, if we use @SpringBootTest, we’re wasting time

loading resources and we have to make sure we roll back transactions and clean

the Spring application context to avoid side-effects.

Keeping that in mind, let’s create an extra class for a real unit test

that doesn’t need a Spring context to be executed (note the name change

since we’re testing directly the implementation). We can safely remove

RandomGeneratorServiceTest since it’s covering the same test (although you

can see them both in the v2 folder for educational purposes). See Listing 3-2.

Listing 3-2.  RandomGeneratorServiceImplTest.java (social-

multiplication v2)

package microservices.book.multiplication.service;

import org.junit.Before;

import org.junit.Test;

1�https://docs.spring.io/spring/docs/current/spring-framework-
reference/testing.html#testing-ctx-management

Chapter 3 A Real Three-Tier Spring Boot Application

https://docs.spring.io/spring/docs/current/spring-framework-reference/testing.html#testing-ctx-management
https://docs.spring.io/spring/docs/current/spring-framework-reference/testing.html#testing-ctx-management

29

import java.util.List;

import java.util.stream.Collectors;

import java.util.stream.IntStream;

import static org.assertj.core.api.Assertions.assertThat;

public class RandomGeneratorServiceImplTest {

 private RandomGeneratorServiceImpl

randomGeneratorServiceImpl;

 @Before

 public void setUp() {

 �randomGeneratorServiceImpl = new

RandomGeneratorServiceImpl();

 }

 @Test

 �public void generateRandomFactorIsBetweenExpectedLimits()

throws Exception {

 �// when a good sample of randomly generated factors is

generated

 List<Integer> randomFactors = IntStream.range(0, 1000)

 �.map(i -> randomGeneratorServiceImpl.

generateRandomFactor())

 .boxed().collect(Collectors.toList());

 // then all of them should be between 11 and 100

 // because we want a middle-complexity calculation

 �assertThat(randomFactors).containsOnlyElementsOf(IntStr

eam.range(11, 100)

 .boxed().collect(Collectors.toList()));

 }

}

Chapter 3 A Real Three-Tier Spring Boot Application

30

Do you see any disadvantage? Well, there is a small one: now we

can’t avoid generating the RandomGeneratorServiceImpl class, but the

implementation of our method can return 0 to start with. See Listing 3-3.

Listing 3-3.  RandomGeneratorServiceImpl.java: Temporary

Solution (social-multiplication v2)

package microservices.book.multiplication.service;

import org.springframework.stereotype.Service;

import java.util.Random;

@Service

class RandomGeneratorServiceImpl implements

RandomGeneratorService {

 @Override

 public int generateRandomFactor() {

 return 0;

 }

}

Then we have our failing test compiling and waiting for us to write a

proper implementation, as shown in Listing 3-4.

Listing 3-4.  Console: Running RandomGeneratorServiceImplTest

(social-multiplication v2)

$ mvnw test -Dtest=RandomGeneratorServiceImplTest

[...]

 T E S T S

Running microservices.book.multiplication.service.

RandomGeneratorServiceImplTest

Chapter 3 A Real Three-Tier Spring Boot Application

31

Tests run: 1, Failures: 1, Errors: 0, Skipped: 0, Time elapsed:

0.109 sec <<< FAILURE! - in microservices.book.multiplication.

service.RandomGeneratorServiceImplTest

generateRandomFactorIsBetweenExpectedLimits(microservices.book.

multiplication.service.RandomGeneratorServiceImplTest) Time

elapsed: 0.108 sec <<< FAILURE!

java.lang.AssertionError: [...]

Let’s make it pass! We need to give it a little bit more logic than just

returning zero, as shown in Listing 3-5.

Listing 3-5.  RandomGeneratorServiceImpl.java

(social-multiplication v2)

package microservices.book.multiplication.service;

import org.springframework.stereotype.Service;

import java.util.Random;

@Service

class RandomGeneratorServiceImpl implements

RandomGeneratorService {

 final static int MINIMUM_FACTOR = 11;

 final static int MAXIMUM_FACTOR = 99;

 @Override

 public int generateRandomFactor() {

 �return new Random().nextInt((MAXIMUM_FACTOR - MINIMUM_

FACTOR) + 1) + MINIMUM_FACTOR;

 }

}

Chapter 3 A Real Three-Tier Spring Boot Application

32

Now, if we execute mvnw test -Dtest=RandomGeneratorServiceImpl

Test again, the test will pass. Great! And, since we have a better approach

to do unit testing, we need to do the same with MultiplicationService.

Let’s create MultiplicationServiceImplTest and apply this knowledge

there as well, as shown in Listing 3-6.

Listing 3-6.  MultiplicationServiceImplTest.java

(social-multiplication v2)

package microservices.book.multiplication.service;

import microservices.book.multiplication.domain.Multiplication;

import org.junit.Before;

import org.junit.Test;

import org.mockito.Mock;

import org.mockito.MockitoAnnotations;

import static org.assertj.core.api.Assertions.assertThat;

import static org.mockito.BDDMockito.given;

public class MultiplicationServiceImplTest {

 private MultiplicationServiceImpl

multiplicationServiceImpl;

 @Mock

 private RandomGeneratorService randomGeneratorService;

 @Before

 public void setUp() {

 �// With this call to initMocks we tell Mockito to

process the annotations

 MockitoAnnotations.initMocks(this);

 �multiplicationServiceImpl = new MultiplicationServiceImpl

(randomGeneratorService);

 }

Chapter 3 A Real Three-Tier Spring Boot Application

33

 @Test

 public void createRandomMultiplicationTest() {

 �// given (our mocked Random Generator service will

return first 50, then 30)

 �given(randomGeneratorService.generateRandomFactor()).

willReturn(50, 30);

 // when

 �Multiplication multiplication =

multiplicationServiceImpl.createRandomMultiplication();

 // assert

 assertThat(multiplication.getFactorA()).isEqualTo(50);

 assertThat(multiplication.getFactorB()).isEqualTo(30);

 assertThat(multiplication.getResult()).isEqualTo(1500);

 }

}

Note that we don’t inject a mock bean with @MockBean but just use

the plain @Mock annotation to create a mock service, which we then

programmatically use to construct the MultiplicationServiceImpl object.

At this point, we can also run the full suite of tests in the application

with mvnw test, and see how all of them pass.

�Designing the Domain
Prior to starting the development process, it’s important to have a clear

picture of the business domain, including the different objects (in the

most generic sense of the word) you can identify in your system and how

they relate. This exercise must be done as soon as possible when you’re

designing software. It will be the heart of your system and therefore the

most difficult part to change.

Chapter 3 A Real Three-Tier Spring Boot Application

34

Given our requirements, we can identify the following business objects:

•	 Multiplication: Contains the factors of the operation.

•	 User: Identifies the user who will try to solve a

Multiplication.

•	 MultiplicationResultAttempt: Contains a reference

to the Multiplication and a reference to the User,

together with the value submitted (the attempt to solve

the operation) and the actual result.

SOURCE CODE AVAILABLE WITH THE BOOK: V3

You can find these domain entities modeled in the v3 repository on GitHub:

https://github.com/microservices-practical.

Immutability and Lombok

We’ll see in a moment that the Multiplication class is final, and so

are its fields, which are accessible only with getters. That makes our class

immutable. Immutability comes with a lot of benefits, the most important

being that it saves you a lot of potential problems when working with a

multi-threaded system. If you want to know more about the advantages of

immutability, visit https://en.wikipedia.org/wiki/Immutable_object.

We also include Lombok in our code, by adding an extra dependency in the

pom.xml file (see https://projectlombok.org/). It’s an annotation

processor that will generate code before the compiler runs. What are the

advantages of that? You can keep your classes small, removing all the

boilerplate parts: getters, constructors, toString, hashCode, equals, etc.

They are all replaced with annotations. There are even some shortcuts for

grouping several of them (like @Data). The main disadvantage is that if your

IDE doesn’t have a plugin that supports Lombok, the code assistant won’t

work and the IDE integrated compiler will complain. However, there are plugins

Chapter 3 A Real Three-Tier Spring Boot Application

https://github.com/microservices-practical
https://en.wikipedia.org/wiki/Immutable_object
https://projectlombok.org/

35

for the most important ones. (From the home page, use the menu to navigate

to Install ➤ IDEs ➤ your preferred IDE.)

We’ll use Lombok from here onward since it’s also more convenient when

looking at the code inside these pages, but it’s up to you to keep your POJOs

with all the rest of the code if you want to do so.

Adding Lombok to the project is as easy as including a new

dependency in the pom.xml file, as shown in Listing 3-7.

Listing 3-7.  pom.xml: Adding Lombok (social-multiplication v3)

<dependency>

 <groupId>org.projectlombok</groupId>

 <artifactId>lombok</artifactId>

 <version>1.16.12</version>

</dependency>

Listings 3-8 through 3-10 show how to implement the domain entities

in Java using Lombok.

Listing 3-8.  Multiplication.java (social-multiplication v3)

package microservices.book.multiplication.domain;

import lombok.EqualsAndHashCode;

import lombok.Getter;

import lombok.RequiredArgsConstructor;

import lombok.ToString;

/**

 * This represents a Multiplication (a * b).

 */

@RequiredArgsConstructor

@Getter

@ToString

Chapter 3 A Real Three-Tier Spring Boot Application

36

@EqualsAndHashCode

public final class Multiplication {

 // Both factors

 private final int factorA;

 private final int factorB;

 // Empty constructor for JSON (de)serialization

 Multiplication() {

 this(0, 0);

 }

}

Listing 3-9.  User.java (social-multiplication v3)

package microservices.book.multiplication.domain;

import lombok.EqualsAndHashCode;

import lombok.Getter;

import lombok.RequiredArgsConstructor;

import lombok.ToString;

/**

 * Stores information to identify the user.

 */

@RequiredArgsConstructor

@Getter

@ToString

@EqualsAndHashCode

public final class User {

 private final String alias;

 // Empty constructor for JSON (de)serialization

 protected User() {

Chapter 3 A Real Three-Tier Spring Boot Application

37

 alias = null;

 }

}

Listing 3-10.  MultiplicationResultAttempt.java (social-multiplication v3)

package microservices.book.multiplication.domain;

import lombok.EqualsAndHashCode;

import lombok.Getter;

import lombok.RequiredArgsConstructor;

import lombok.ToString;

/**

 * Identifies the attempt from a {@link User} to solve a

 * {@link Multiplication}.

 */

@RequiredArgsConstructor

@Getter

@ToString

@EqualsAndHashCode

public final class MultiplicationResultAttempt {

 private final User user;

 private final Multiplication multiplication;

 private final int resultAttempt;

 // Empty constructor for JSON (de)serialization

 MultiplicationResultAttempt() {

 user = null;

 multiplication = null;

 resultAttempt = -1;

 }

}

Chapter 3 A Real Three-Tier Spring Boot Application

38

•	 @RequiredArgsConstructor generates a constructor

taking all the final fields.

•	 @Getter generates all the getters for our fields.

•	 @ToString includes a human-friendly toString()

method in our class.

•	 @EqualsAndHashCode creates the equals() and

hashCode() methods.

�The Business Logic Layer
Once you have the domain model defined, it’s time think about the other

part of the business logic: the application services. Having a look at our

requirements, we need:

•	 Some functionality to check if an attempt is correct or not

•	 A way of generating a mid-complexity multiplication

We’ll include this new logic in the existing service layer. We already

did the part to generate multiplications in the previous chapter (located in

the service layer package), so Listing 3-11 shows how to implement the

logic to verify the attempts (the checkAttempt method).

Listing 3-11.  MultiplicationService.java (social-multiplication v3)

package microservices.book.multiplication.service;

import microservices.book.multiplication.domain.Multiplication;

import microservices.book.multiplication.domain.

MultiplicationResultAttempt;

Chapter 3 A Real Three-Tier Spring Boot Application

39

public interface MultiplicationService {

 /**

 * Generates a random {@link Multiplication} object.

 *

 * @return a multiplication of randomly generated numbers

 */

 Multiplication createRandomMultiplication();

 /**

 * @return true if the attempt matches the result of the

 * multiplication, false otherwise.

 */

 �boolean checkAttempt(final MultiplicationResultAttempt

resultAttempt);

}

Since we’re doing TDD, we’ll create a dummy implementation that will

always result in a wrong attempt, as shown in Listing 3-12.

Listing 3-12.  MultiplicationServiceImpl.java Temporary Solution

(social-multiplication v3)

@Override

public boolean checkAttempt(final MultiplicationResultAttempt

resultAttempt) {

 return false;

}

Then we code our new test methods, knowing that one of them

(checking a successful result) will fail, so we need to go back to the

implementation and make it pass according to the use cases

(see Listing 3-13). Again TDD in practice!

Chapter 3 A Real Three-Tier Spring Boot Application

40

Listing 3-13.  MultiplicationServiceImplTest.java

(social-multiplication v3)

@Test

public void checkCorrectAttemptTest() {

 // given

 Multiplication multiplication = new Multiplication(50, 60);

 User user = new User("john_doe");

 �MultiplicationResultAttempt attempt = new Multiplication

ResultAttempt(user, multiplication, 3000);

 // when

 �boolean attemptResult = multiplicationServiceImpl.check

Attempt(attempt);

 // assert

 assertThat(attemptResult).isTrue();

}

@Test

public void checkWrongAttemptTest() {

 // given

 Multiplication multiplication = new Multiplication(50, 60);

 User user = new User("john_doe");

 �MultiplicationResultAttempt attempt = new Multiplication

ResultAttempt(user, multiplication, 3010);

 // when

 �boolean attemptResult = multiplicationServiceImpl.check

Attempt(attempt);

 // assert

 assertThat(attemptResult).isFalse();

}

Chapter 3 A Real Three-Tier Spring Boot Application

41

Tests are done and ready, so let’s go back and build the real stuff. As

you probably imagined, this is the real implementation of the method that

provides the real logic. See Listing 3-14.

Listing 3-14.  MultiplicationServiceImpl.java New Method

(social-multiplication v3)

@Override

public boolean checkAttempt(final MultiplicationResultAttempt

resultAttempt) {

 return resultAttempt.getResultAttempt() ==

 resultAttempt.getMultiplication().getFactorA() *

 resultAttempt.getMultiplication().getFactorB();

}

In the v3 code folder, you can also find the RandomGeneratorService

interface and the corresponding implementation, as was covered in the

previous chapter.

�The Presentation Layer (REST API)
Now that we have our domain entities and our simple business logic in

place, we’ll expose the supported interactions through a REST API so a

Web client or any other application can interact with our functionality.

REST is a well-known standard for web services in the industry because of

its simplicity: it’s just basic interfaces on top of HTTP.

It’s important to note here that we don’t strictly need a REST layer

for our application since we could use Spring MVC2 and then return the

view names and rendering our models directly in HTML or any other

view layer implementation. But then we would need to design views in

our codebase. That would make it harder to change the UI technology

(for instance migrating to AngularJS or having a mobile app). Besides,

2�https://docs.spring.io/spring/docs/current/spring-framework-
reference/html/mvc.html

Chapter 3 A Real Three-Tier Spring Boot Application

www.allitebooks.com

https://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
https://docs.spring.io/spring/docs/current/spring-framework-reference/html/mvc.html
http://www.allitebooks.org

42

with REST, we’re providing an interface that doesn’t require an UI, just

basic HTTP. Furthermore, this same API can be accessed from a different

backend service in the future (e.g., if another application wants to get a

random multiplication).

Spring has good support to build a REST API in a very fast manner,

but keep in mind that you should follow some conventions for URLs and

HTTP verbs that have become the de facto standard (see http://tpd.io/

rest-methods). In this book, we’ll use these standard mappings of actions

to URLs and HTTP verbs.

What are the interfaces that we want to expose for this application? We

can get them from the requirements:

•	 We want users to solve a multiplication so we want to

read a random, medium complexity multiplication as

consumers of the REST API.

•	 In order to solve the multiplication, we want to send a

result for a given multiplication, and because we want

to know who is solving it, we want to send it together

with the user’s alias.

So far that’s what we need: a read operation and a send action. After

having clarified the interactions, we can design our REST API, keeping in

mind the standards:

•	 GET /multiplications/random will return the random

multiplication.

•	 POST /results/ will be our endpoint to send results.

•	 GET /results?user=[user_alias] will be our way of

retrieving results of a particular user.

Chapter 3 A Real Three-Tier Spring Boot Application

http://tpd.io/rest-methods
http://tpd.io/rest-methods

43

As you can see, we design the API in two main contexts for the endpoints:

multiplications and results. This is a good practice. Don’t try to put

everything into the same context and controller. It’s better to separate

interfaces based on the business entities they relate to. We’ll create two

different Controller classes.

�The Multiplication Controller
Let’s follow TDD again and write the unit test as usual. First, we need

an empty implementation of the controller class to compile the code, as

shown in Listing 3-15.

Listing 3-15.  MultiplicationController.java Initial Version

(social-multiplication v3)

package microservices.book.multiplication.controller;

import �microservices.book.multiplication.service.

MultiplicationService;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.web.bind.annotation.RestController;

@RestController

public class MultiplicationController {

 private final MultiplicationService multiplicationService;

 @Autowired

 public �MultiplicationController(final MultiplicationService

multiplicationService) {

 this.multiplicationService = multiplicationService;

 }

}

Chapter 3 A Real Three-Tier Spring Boot Application

44

Now we build the unit test to check that the MultiplicationController

will return a random multiplication when performing a GET to the location

/multiplication/random, as shown in Listing 3-16.

Listing 3-16.  MultiplicationControllerTest.java

(social-multiplication v3)

// import statements...

@RunWith(SpringRunner.class)

@WebMvcTest(MultiplicationController.class)

public class MultiplicationControllerTest {

 @MockBean

 private MultiplicationService multiplicationService;

 @Autowired

 private MockMvc mvc;

 �// This object will be magically initialized by the

initFields method below.

 private JacksonTester<Multiplication> json;

 @Before

 public void setup() {

 JacksonTester.initFields(this, new ObjectMapper());

 }

 @Test

 public void getRandomMultiplicationTest() throws Exception{

 // given

 given(multiplicationService.createRandomMultiplication())

 .willReturn(new Multiplication(70, 20));

Chapter 3 A Real Three-Tier Spring Boot Application

45

 // when

 MockHttpServletResponse response = mvc.perform(

 get("/multiplications/random")

 .accept(MediaType.APPLICATION_JSON))

 .andReturn().getResponse();

 // then

 �assertThat(response.getStatus()).isEqualTo(HttpStatus.

OK.value());

 assertThat(response.getContentAsString())

 �.isEqualTo(json.write(new Multiplication

(70, 20)).getJson());

 }

}

Let’s look at the main changes introduced in this test:

	 1.	 It’s a @WebMvcTest, so it will initialize the Spring’s

web application context. However, it will only

load the configuration related to the MVC layer

(controllers), in contrast to @SpringBootTest,

which loads the entire configuration. By using this

annotation, we also get the MockMvc bean loaded.

	 2.	 Do you remember @MockBean from the previous

chapter? We use it here again instead of @Mock since

we need to tell Spring not to inject the real bean

(MultiplicationServiceImpl) but a mock object,

which we configure later with given() to return the

expected Multiplication. What we’re doing here is

isolating layers: we only want to test the controller,

not the service.

Chapter 3 A Real Three-Tier Spring Boot Application

46

	 3.	 The JacksonTester object will provide useful

methods to check JSON contents. It can be

automatically configured and autowired when

using @JsonTest annotation, but since we’re writing

a @WebMvcTest, we need to configure it manually

(within the method annotated with Before).

GOOD PRACTICES: @WEBMVCTEST AND @SPRINGBOOTTEST

MVC tests are intended to cover just the controller piece of your application.

HTTP requests and responses are mocked so the real connections are not

created. On the other hand, when you use @SpringBootTest, all the

configuration for the web application context is loaded and the connections

are going through the real web server. In that case, you don’t use the

MockMvc bean but a standard RestTemplate instead (or the new alternative

TestRestTemplate).

So, when should we choose one or the other? @WebMvcTest is intended to

test unitarily the controller from the server side. @SpringBootTest, on the

other hand, should be used for integration tests, when you want to interact

with the application from the client side.

That doesn’t mean that you can’t use mocks with @SpringBootTest; if

you’re writing an integration test, that could still be necessary. In any case,

it’s better not to use it just for a simple controller’s unit test.

If you execute the test now, you will get a 404 status code. That’s not

surprising, because the implementation of the logic is not there yet.

Listing 3-17 shows how to build the controller.

Chapter 3 A Real Three-Tier Spring Boot Application

47

Listing 3-17.  MultiplicationController.java Adding Logic (social-

multiplication v3)

/**

 * This class implements a REST API for our Multiplication

application.

 */

@RestController

@RequestMapping("/multiplications")

final class MultiplicationController {

 private final MultiplicationService multiplicationService;

 @Autowired

 public �MultiplicationController(final MultiplicationService

multiplicationService) {

 this.multiplicationService = multiplicationService;

 }

 @GetMapping("/random")

 Multiplication getRandomMultiplication() {

 return multiplicationService.createRandomMultiplication();

 }

}

It’s a very simple class (even shorter than the test!). That’s because

with some Spring annotations and a few lines of code, you can get all

you need:

	 1.	 The @RestController annotation specifies that the

class is a controller and all the @RequestMapping (or

@GetMapping in our case) annotated methods will

return the content in the response body. If we use a

plain @Controller annotation instead, we need to

Chapter 3 A Real Three-Tier Spring Boot Application

48

annotate our class (or every corresponding method)

with @ResponseBody. Thus, @RestController is a

shortcut annotation.

	 2.	 The @RequestMapping annotation at the class level

is setting the root context for all the methods (in our

case, multiplications).

	 3.	 Another shortcut annotation is @GetMapping, and

it’s equivalent to using @RequestMapping(method

= RequestMethod.GET). So, the resulting endpoint

will perform a GET operation to the URL composed

by the class’ specified context plus the method’s

request mapping, which results in

/multiplications/random.

That’s how easily we can build a REST API with Spring. If you run it

now, the test will pass as expected.

Some of you might think that writing unit tests for the controller layer

is not really important, because of the simplicity of these classes. That is

a good point, actually. However, if you write unit tests for this layer you

ensure a double check for changes in the API contract, which becomes

really useful especially in a microservices environment where multiple

teams can be managing different services. If you accidentally change

/multiplications/random for /multiplication/random, your test will fail,

same as if you change HTTP verbs or the data the endpoints handle. Your

REST API consumers will appreciate that you need to think twice before

changing the API contract.

�The Results Controller
This controller will check the results being POSTed by our users and tell

them if they are correct or not. We could choose from many different ways

to return the response but a good approach is to create a basic class that

Chapter 3 A Real Three-Tier Spring Boot Application

49

will wrap the result, by now consisting only of a boolean field: correct.

Bear in mind that if you return a boolean directly in the response instead of

wrapping it into a class, the default JSON serializer will not work.3

The first, empty version of the controller is shown in Listing 3-18.

Listing 3-18.  MultiplicationResultAttemptController.java Initial

Version (social-multiplication v3)

@RestController

@RequestMapping("/results")

final class MultiplicationResultAttemptController {

 private final MultiplicationService multiplicationService;

 @Autowired

 �MultiplicationResultAttemptController(final

MultiplicationService multiplicationService) {

 this.multiplicationService = multiplicationService;

 }

 // Here we'll implement our POST later

 @RequiredArgsConstructor

 @NoArgsConstructor(force = true)

 @Getter

 private static final class ResultResponse {

 private final boolean correct;

 }

}

3�https://stackoverflow.com/questions/33185217/is-it-possible-in-
spring-mvc-4-return-boolean-as-json

Chapter 3 A Real Three-Tier Spring Boot Application

https://stackoverflow.com/questions/33185217/is-it-possible-in-spring-mvc-4-return-boolean-as-json
https://stackoverflow.com/questions/33185217/is-it-possible-in-spring-mvc-4-return-boolean-as-json

50

Having modeled the ResultResponse, let’s write our unit test for

MultiplicationResultAttemptController. We’ll include the scenarios

of sending a correct attempt and a wrong attempt. Since there is no

mapping for the POST request we’re performing, the tests will fail throwing

a predictable 404 (not found), as shown in Listing 3-19.

Listing 3-19.  MultiplicationResultAttemptControllerTest.java

(social-multiplication v3)

@RunWith(SpringRunner.class)

@WebMvcTest(MultiplicationResultAttemptController.class)

public class MultiplicationResultAttemptControllerTest {

 @MockBean

 private MultiplicationService multiplicationService;

 @Autowired

 private MockMvc mvc;

 �// This object will be magically initialized by the

initFields method below.

 private JacksonTester<MultiplicationResultAttempt> jsonResult;

 private JacksonTester<ResultResponse> jsonResponse;

 @Before

 public void setup() {

 JacksonTester.initFields(this, new ObjectMapper());

 }

 @Test

 public void postResultReturnCorrect() throws Exception {

 genericParameterizedTest(true);

 }

 @Test

Chapter 3 A Real Three-Tier Spring Boot Application

51

 public void postResultReturnNotCorrect() throws Exception {

 genericParameterizedTest(false);

 }

 �void genericParameterizedTest(final boolean correct) throws

Exception {

 �// given (remember we're not testing here the service

itself)

 given(multiplicationService

 �.checkAttempt(any(MultiplicationResultAttempt.

class)))

 .willReturn(correct);

 User user = new User("john");

 Multiplication multiplication = new Multiplication(50, 70);

 �MultiplicationResultAttempt attempt = new

MultiplicationResultAttempt(

 user, multiplication, 3500);

 // when

 MockHttpServletResponse response = mvc.perform(

 �post("/results").contentType(MediaType.

APPLICATION_JSON)

 �.content(jsonResult.write(attempt).

getJson()))

 .andReturn().getResponse();

 // then

 �assertThat(response.getStatus()).isEqualTo(HttpStatus.

OK.value());

 assertThat(response.getContentAsString()).isEqualTo(

 �jsonResponse.write(new

ResultResponse(correct)).getJson());

 }

}

Chapter 3 A Real Three-Tier Spring Boot Application

52

We create a convenience method genericParameterizedTest just to

extract the common behavior to test that, when the service considers the

result correct, we’ll receive true as a response and false otherwise. As

mentioned, the main purpose of this test is to check the API.

Next, we can implement the POST mapping in the

MultiplicationResultAttemptController class to receive new attempts

from users, as shown in Listing 3-20.

Listing 3-20.  MultiplicationResultAttemptController.java Adding

the POST Method (social-multiplication v3)

@PostMapping

ResponseEntity<ResultResponse> postResult(@RequestBody

MultiplicationResultAttempt multiplicationResultAttempt) {

 return ResponseEntity.ok(

 new ResultResponse(multiplicationService

 .checkAttempt(multiplicationResultAttempt)));

}

It’s quite straightforward: @PostMapping annotation does a similar

thing to @GetMapping, but in this case handling a POST request. And,

because we want to receive the attempt data as part of the body of the

request, we need to annotate the method argument with @RequestBody.

In this case, the Spring developers decided not to infer this one even

when using @RestController, since the requests might come with

parameters as well and then that assumption would make things harder

(magic has a limit).

Now we can safely run the test with a successful result.

Hey, we just finished with the backend part for our first business

requirement! Now it’s time to play with a basic user interface.

Chapter 3 A Real Three-Tier Spring Boot Application

53

�The Frontend (Web Client)
Since you have finished your first REST API, you’re ready to build a basic

UI on top of it. You’ll provide a user-friendly interface for the application

(humans don’t like interacting with REST APIs in general). There are many

options but taking into account the simplicity of the application we’re

building, we’ll use just HTML and jQuery for communication with the

REST web services.

We could separate this part into a new project since we don’t have any

dependency thanks to our REST API. However, to start with, we’ll do that

inside the same project since then we can use the same embedded Tomcat

server used by Spring Boot to serve our static content. We’ll cover this

decision with more detail at the beginning of the next chapter, explaining

why it’s a good idea to follow this mini-monolith-first approach.

SPOILER ALERT: NOT A FRONTEND BOOK

You’ll see in the JavaScript and HTML code that they are extremely basic. The

reason is that this book is mainly focused on the backend services and how

to connect everything together. On the other hand, we can’t simply skip the

user interface since this book wouldn’t be so practical then, and we need to

deliver our user story with a screen to interact with. The advantage of having

our REST API in place is that we can change the frontend anytime without

impacting any other functionality: it’s good that we have loose coupling!

As you’ve no doubt learned in this book, it’s a good idea to start simple

and build from there. In this case, we’ll start with a basic index.html file,

a minimal amount of styles in styles.css, and some behavior for the web

page implemented in JavaScript using jQuery: multiplication-client.js.

We’ll place all these files in the static folder inside main/resources,

Chapter 3 A Real Three-Tier Spring Boot Application

54

created the first time when we generated the project using Spring Initializr.

Remember: The folder v3 of the code included with the book also contains

the full contents of these files. Let’s look at them one by one and add some

comments. See Listing 3-21.

Listing 3-21.  index.html (social-multiplication v3)

<!DOCTYPE html>

<html>

<head>

 <title>Multiplication v1</title>

 <link rel="stylesheet" type="text/css" href="styles.css">

 �<script src="https://ajax.googleapis.com/ajax/libs/

jquery/3.1.1/jquery.min.js"></script>

 <script src="multiplication-client.js"></script>

</head>

<body>

<div>

 <h1>Welcome to Social Multiplication</h1>

 <h2>This is your challenge for today:</h2>

 <h1>

 � x <span

class="multiplication-b"> =

 </h1>

 <p>

 <form id="attempt-form">

 �Result? <input type="text" name="result-

attempt">

 Your alias: <input type="text" name="user-alias">

 <input type="submit" value="Check">

 </form>

 </p>

Chapter 3 A Real Three-Tier Spring Boot Application

55

 <h2></h2>

</div>

</body>

</html>

Listing 3-21 is a simple landing page. We import the JavaScript file and

the styles (see Listing 3-22), and we include the reference to the jQuery

library (see Listing 3-23). Then we have the text in which we show the

challenge to the users, and next to it, the form from which the users can fill

their alias and send their attempts to solve the multiplication. Remember

that the user should do the operation mentally!

Listing 3-22.  styles.css (social-multiplication v3)

html, body {

 height: 100%;

}

html {

 display: table;

 margin: auto;

}

body {

 display: table-cell;

 vertical-align: middle;

}

Surely it’s not the fanciest CSS in the world: we are just making sure

the contents are shown in the center of the page, to avoid the feeling of

emptiness and to focus attention even on big screens. We’ll improve it in

coming chapters.

Chapter 3 A Real Three-Tier Spring Boot Application

56

Listing 3-23.  multiplication-client.js (social-multiplication v3)

function updateMultiplication() {

 $.ajax({

 url: "http://localhost:8080/multiplications/random"

 }).then(function(data) {

 // Cleans the form

 �$("#attempt-form").find("input[name='result-attempt']")

.val("");

 �$("#attempt-form").find("input[name='user-alias']")

.val("");

 �// Gets a random challenge from API and loads the data

in the HTML

 $('.multiplication-a').empty().append(data.factorA);

 $('.multiplication-b').empty().append(data.factorB);

 });

}

$(document).ready(function() {

 updateMultiplication();

 $("#attempt-form").submit(function(event) {

 // Don't submit the form normally

 event.preventDefault();

 // Get some values from elements on the page

 var a = $('.multiplication-a').text();

 var b = $('.multiplication-b').text();

 var $form = $(this),

 �attempt = $form.find("input[name='result-

attempt']").val(),

Chapter 3 A Real Three-Tier Spring Boot Application

57

 �userAlias = $form.find("input[name='user-alias']")

.val();

 �// Compose the data in the format that the API is

expecting

 �var data = { user: { alias: userAlias}, multiplication:

{factorA: a, factorB: b}, resultAttempt: attempt};

 // Send the data using post

 $.ajax({

 url: '/results',

 type: 'POST',

 data: JSON.stringify(data),

 contentType: "application/json; charset=utf-8",

 dataType: "json",

 success: function(result){

 if(result.correct) {

 �$('.result-message').empty().append("The

result is correct! Congratulations!");

 } else {

 �$('.result-message').empty().append("Oops

that's not correct! But keep trying!");

 }

 }

 });

 updateMultiplication();

 });

});

Chapter 3 A Real Three-Tier Spring Boot Application

58

What we do here with jQuery is two main things:

•	 When the content is loaded, we perform a REST API

call to get a random multiplication. Then we show the

factors in the placeholders using the class to locate

them.

•	 We register a listener for the submit event in our form

to intercept it and prevent it from doing the default

operation. We then get the data from the form, post the

data to the API to check the resulting attempt, and then

show a friendly message with the result to the users.

As mentioned, it’s not the nicest web application ever, but it does the

trick for the first deliverable we want to accomplish.

WE DID IT! USER STORY 1 IS FINISHED

We just finished our first user story! We implemented solutions for all the

requirements. And we made it using TDD, a proper REST API, and with a

three-tier design—this application follows good standards and is ready to be

extended!

�Playing with the Application (Part I)
You can now execute the application using mvnw spring-boot:run. You

can also package and send it to your business people for them to play with

(if they have a Java runtime environment installed). All you need is Maven

and Java (make sure you change the JAR filename if you’re using your own

versioning). See Listing 3-24.

Chapter 3 A Real Three-Tier Spring Boot Application

59

Listing 3-24.  Console: Packaging and Executing the Application

(social-multiplication v3)

$ mvnw package

...

$ cd ./target

$ java -jar social-multiplication-v3-0.3.0-SNAPSHOT.jar

...

INFO 12484 --- [main] m.book.

SocialMultiplicationApplication : Started

SocialMultiplicationApplication in 3.171 seconds (JVM running

for 3.77)

To play with it, you can navigate with a browser to localhost:8080/

index.html. Then you can play around with the operations and exercise

your mind a little bit: you’ll see different messages when you pass or fail

the operation. Figure 3-2 shows how it looks right now.

�New Requirements for Data Persistence
So far we’ve designed and implemented a service that is not keeping any

state at all: there is no database, file storage, etc. We are missing one of the

layers commonly present in many software applications: the data layer.

Figure 3-2.  The application’s entry screen

Chapter 3 A Real Three-Tier Spring Boot Application

60

Because we’re lucky and have plenty of work to do, our business users

come with this new requirement in the form of a user story.

USER STORY 2

As a user of the application, I want it to show me my last attempts, so I can

see how good or bad I’m doing over time.

We need some data storage for this request, since we need to keep

track of the user attempts. We’ll take several steps to accomplish this

requirement:

•	 Store all instances of the MultiplicationResultAttempt

class. That way, we can extract them later.

•	 Expose a new REST endpoint to get the latest attempts

for a given user.

•	 Create a new service (business logic) to retrieve those

attempts.

•	 Show that attempts’ history to the users on the web

page after they send a new one.

Note that this user story impacts our code in a different way:

we were checking the correctness of the attempt on the fly, so our

MultiplicationResultAttempt class doesn’t include a flag to indicate if

it’s correct or not. That was perfectly fine to cope with the requirements we

had, but now, if we use the same approach, our application would be very

inefficient and would have to calculate every time to extract the results.

That’s why we need a refactoring task, which must be included as part of

this user story.

Chapter 3 A Real Three-Tier Spring Boot Application

61

AGILE AND REFACTORING

When we work following the Agile methodology, we need to embrace

refactoring as a normal part of our tasks. We want to deliver value as soon

as possible, and then evolve the application in small increments. That means
that investing too much time at the beginning of the project to design the final
status of our application would be wrong: the requirements might change.

Finding a good balance is the key. Meet with your product owner or business

users and ask them their vision: what they want to have at the end of the

project. Then invest time in determining the minimum deliverable that gives

them value, the first chunk of the entire project that they could use and still

save time, make money, etc. This is the most difficult part when following

Agile, because normally the business stakeholders don’t want to sacrifice

any functionality, and you might face an I-want-all-or-nothing problem. But

this situation can be unlocked with effort and good communication between

the business end and the project execution en (project manager, product

owners, architects, and/or developers). After you define the vision and the

MVP (Minimum Viable Product) the iterative work starts—meetings with the

stakeholders to define the next portions of value to reach the target. The

earlier you do this, the better.

It’s critical to have a perfectly clear vision of what do you want to achieve

from the business point of view at the end of the project and also a perfectly

defined MVP with descriptive use cases. Then, since we’ll work with Sprints,

the work of the upcoming three-four Sprints should be more or less defined as

well. Total improvisation and changing direction in every Sprint are very bad

for a project unless it is based on experimenting.

Having said that, it’s critical that your business stakeholders understand what

refactoring is and embrace it as well. While working with Agile, there will be

situations in which the increment of value might be very little, but the amount of

effort to deliver it is big. You can’t be too strict in following the Agile manifesto

Chapter 3 A Real Three-Tier Spring Boot Application

62

and argue that refactoring doesn’t add value. When you see your plan for the

next three-four Sprints and you can see clearly that a change in software design

or architecture is needed, better plan it as early as you can. If you skip it, you will

regret later when the technical debt consumes your project’s resources.

We could challenge this book too: in our application we could argue that the

persistence requirement should have been clear from the beginning and thus

we should have designed the attempts in a different way. That’s right, however,

we’re using it to conduct this explanation as an example of Agile refactoring.

Let’s try to summarize what our refactoring task should include:

	 1.	 The attempt (MultiplicationResultAttempt) should

include a boolean to indicate if it’s correct or not. We’ll

store it and later we’ll be able to query the database.

	 2.	 The service (MultiplicationServiceImpl) should

not only return the result calculated “on the fly” but

save it in the attempt too.

	 3.	 The client shouldn’t be able to flag an attempt as

correct, so this field should not be read from the

REST API but instead calculated internally.

	 4.	 The tests need to be changed to reflect our new

circumstances.

Let’s divide the work between refactoring and changes to implement

persistence.

SOURCE CODE AVAILABLE WITH THE BOOK

You can find all the code referenced from here in the v4 repository on GitHub:

https://github.com/microservices-practical.

Chapter 3 A Real Three-Tier Spring Boot Application

https://github.com/microservices-practical

63

�Refactoring the Code
As explained, we need to perform some changes to the code to avoid

unnecessary calculations—we’ll store a boolean value in the attempt, so

we can query the database for the correct ones. See Listing 3-25.

Listing 3-25.  MultiplicationResultAttempt.java

(social-multiplication v4)

// Imports, annotations...

public final class MultiplicationResultAttempt {

 private final User user;

 private final Multiplication multiplication;

 private final int resultAttempt;

 private final boolean correct;

 // Empty constructor for JSON (de)serialization

 MultiplicationResultAttempt() {

 user = null;

 multiplication = null;

 resultAttempt = -1;

 correct = false;

 }

}

Because we added this new field to our class, Lombok will now

generate the new constructor and the getter. It will also take care

of updating the equals(), hashCode(), and toString() methods,

which is why Lombok is great for refactoring works. That also means

that we need to change the MultiplicationServiceImplTest and

MultiplicationResultAttemptControllerTest classes to adapt them to

the new constructor. See Listing 3-26.

Chapter 3 A Real Three-Tier Spring Boot Application

64

Listing 3-26.  MultiplicationServiceImplTest.java (social-

multiplication v4)

@Test

public void checkCorrectAttemptTest() {

 // given

 Multiplication multiplication = new Multiplication(50, 60);

 User user = new User("john_doe");

 �MultiplicationResultAttempt attempt = new

MultiplicationResultAttempt(

 user, multiplication, 3000, false);

 // when

 �boolean attemptResult = multiplicationServiceImpl.check

Attempt(attempt);

 // then

 assertThat(attemptResult).isTrue();

}

@Test

public void checkWrongAttemptTest() {

 // given

 Multiplication multiplication = new Multiplication(50, 60);

 User user = new User("john_doe");

 �MultiplicationResultAttempt attempt = new

MultiplicationResultAttempt(

 user, multiplication, 3010, false);

 �given(userRepository.findByAlias("john_doe")).

willReturn(Optional.empty());

 // when

 �boolean attemptResult = multiplicationServiceImpl.

checkAttempt(attempt);

Chapter 3 A Real Three-Tier Spring Boot Application

65

 // then

 assertThat(attemptResult).isFalse();

}

How do we set the proper value for the new correct field? Let’s

add that to our business logic inside the service implementation. See

Listing 3-27.

Listing 3-27.  MultiplicationServiceImpl.java (social-multiplication v4)

@Override

public boolean checkAttempt(final MultiplicationResultAttempt

attempt) {

 // Checks if it's correct

 boolean correct = attempt.getResultAttempt() ==

 �attempt.getMultiplication().

getFactorA() *

 �attempt.getMultiplication().

getFactorB();

 // Avoids 'hack' attempts

 �Assert.isTrue(!attempt.isCorrect(), "You can't send an

attempt marked as correct!!");

 �// Creates a copy, now setting the 'correct' field

accordingly

 MultiplicationResultAttempt checkedAttempt =

 new MultiplicationResultAttempt(attempt.getUser(),

 attempt.getMultiplication(),

 attempt.getResultAttempt(),

 correct);

 // Returns the result

 return correct;

}

Chapter 3 A Real Three-Tier Spring Boot Application

66

Note that the method argument, attempt, may contain a true value for the

correct field (in case we’re dealing with a smart user who wants to cheat the

application). What we do in this case is calculate the right value for correct

and set it in a new instance, checkedAttempt. We need to create a copy since

we want to keep our class immutable. As you can see in our logic, we also

throw an error to a potential cheater thanks to the convenient Assert class

included in Spring;4 the assertion will trigger an IllegalArgumentException.

We also have the opportunity to get rid of the inner class

ResultResponse we used in our controller. With our previous change

to include correct, it makes much more sense to return the same

MultiplicationResultAttempt type in our REST call, with the boolean

value indicating if the attempt was correct or not. See Listing 3-28.

Listing 3-28.  MultiplicationResultAttemptController.java

(social-multiplication v4)

@PostMapping

ResponseEntity<MultiplicationResultAttempt>

postResult(@RequestBody MultiplicationResultAttempt

multiplicationResultAttempt) {

 �boolean isCorrect = multiplicationService.checkAttempt

(multiplicationResultAttempt);

 �MultiplicationResultAttempt attemptCopy = new

MultiplicationResultAttempt(

 multiplicationResultAttempt.getUser(),

 multiplicationResultAttempt.getMultiplication(),

 multiplicationResultAttempt.getResultAttempt(),

 isCorrect

);

 return ResponseEntity.ok(attemptCopy);

}

4�https://docs.spring.io/spring/docs/current/javadoc-api/org/
springframework/util/Assert.html

Chapter 3 A Real Three-Tier Spring Boot Application

https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/util/Assert.html
https://docs.spring.io/spring/docs/current/javadoc-api/org/springframework/util/Assert.html

67

To complete the refactoring, we apply the corresponding changes

to our MultiplicationResultAttemptControllerTest to use the new

constructor and to verify the returned MultiplicationResultAttempt

object, instead of the former boolean. See Listing 6-29.

Listing 3-29.  MultiplicationResultAttemptControllerTest.java

(social-multiplication v4)

void genericParameterizedTest(final boolean correct) throws

Exception {

 �// given (remember we're not testing here the service

itself)

 // ...

 �MultiplicationResultAttempt attempt = new

MultiplicationResultAttempt(

 user, multiplication, 3500, correct);

 // when

 // ...

 // then

 �assertThat(response.getStatus()).isEqualTo(HttpStatus.

OK.value());

 assertThat(response.getContentAsString()).isEqualTo(

 jsonResult.write(

 �new MultiplicationResultAttempt(attempt.

getUser(),

 attempt.getMultiplication(),

 attempt.getResultAttempt(),

 correct)

).getJson());

}

Normally, if you change a return type for a response in your REST API,

you would need to change your frontend as well. However, in our case we

Chapter 3 A Real Three-Tier Spring Boot Application

68

don’t need to change anything by now. We used to return a simple JSON

object with a correct boolean inside; now we return a bigger JSON (from

MultiplicationResultAttempt) that also has a correct boolean. Luckily

for us, our multiplication-client.js will keep working. See Listing 3-30.

Listing 3-30.  multiplication-client.js (social-multiplication v4)

// Send the data using post

$.ajax({

 url: '/results',

 type: 'POST',

 data: JSON.stringify(data),

 contentType: "application/json; charset=utf-8",

 dataType: "json",

 async: false,

 success: function(result){

 if(result.correct) {

 �$('.result-message').empty().append("The result is

correct! Congratulations!");

 } else {

 �$('.result-message').empty().append("Oops that's

not correct! But keep trying!");

 }

 }

});

�The Data Layer
The refactoring task is finished, so now let’s continue layering our Spring

Boot application introducing our data layer. For this use case, we’ll benefit

from an ORM framework like Hibernate: we’ll persist data in our database

following a model that can be mapped to the Java objects. If you keep

Chapter 3 A Real Three-Tier Spring Boot Application

69

the model not too complex, it’s a solution that makes the work with the

persistence layer very straightforward. To achieve this, we’ll make use of

the starter package of Spring Boot for the Java Persistence API (JPA), which

includes Hibernate. JPA is just the standard specification for persistence

that is implemented by many different providers (Hibernate is one of

them), and it’s always a good idea to use standards instead of binding

ourselves to a specific implementation. If you want to know more about

JPA you can read the official documentation or visit the ObjectDB site at

http://www.objectdb.com/api/java/jpa/annotations.

The first step we need to take is to include two new dependencies in

our pom.xml file:

•	 The spring-boot-starter-data-jpa dependency

will give us access to the Spring Data JPA5 tooling, like

creating repositories in an easy and fast manner. This

starter provides support for JPA using Hibernate.

•	 The h2 artifact includes a lightweight, embedded

database engine called H2. We could have used

MySQL, PostgreSQL, or any other database engine, but

this one fits our requirements and makes our service

easier to explain for the book. See Listing 3-31.

Listing 3-31.  pom.xml Adding Data-Related Dependencies

(social-multiplication v4)

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-data-jpa</artifactId>

</dependency>

<dependency>

5�http://projects.spring.io/spring-data-jpa/

Chapter 3 A Real Three-Tier Spring Boot Application

http://www.objectdb.com/api/java/jpa/annotations
http://projects.spring.io/spring-data-jpa/

70

 <groupId>com.h2database</groupId>

 <artifactId>h2</artifactId>

 <scope>runtime</scope>

</dependency>

Then we fill the configuration in the application.properties file.

Since we used Spring Initializr to generate our project, this file should

be located in src/main/resources. If you prefer, you can also use YAML

format, but then rename the file to application.yml. See Listing 3-32.

Listing 3-32.  application.properties (social-multiplication v4)

Gives us access to the H2 database web console

spring.h2.console.enabled=true

Generates the database *only* if it's not there yet

spring.jpa.hibernate.ddl-auto=update

Creates the database in a file

spring.datasource.url=jdbc:h2:file:~/social-multiplication;

DB_CLOSE_ON_EXIT=FALSE;

For educational purposes we will show the SQL in console

spring.jpa.properties.hibernate.show_sql=true

The H2 console is a lightweight web UI for us to manage and query

the H2 database. The instructions about how to configure it with Spring

Boot can be found at https://tpd.io/h2-spring. As you can see, we

only needed to specify some basic properties; everything else is being

auto-configured by Spring Boot. An important part of the configuration

is the URL. We specify there that we want the database to be stored in a

file and the name of the database. If we don’t set it to file, we’d have an

in-memory database, and we’d lose our data every time we shut down

the service. Note that we’re using ~/, so the file will be located in your

operating system’s user home folder.

Chapter 3 A Real Three-Tier Spring Boot Application

https://tpd.io/h2-spring

71

PRODUCTION READINESS: USING A DIFFERENT DB ENGINE

H2 is a valid engine for the goals of our application, also because the intention

of this book is to not go into database details. You might want to explore some

better alternatives for a production database, and then you can configure it

following the instructions from the official Spring Boot documentation page for

that (see https://tpd.io/boot-prod-db). The good news is that they’re configured

in a very similar way to H2.

�The Data Model
This is the most important task we accomplish to model our persistence

layer: designing the data model. We defined previously how our business

entities look; now we need to define how we want them to relate from the

data’s point of view.

Sometimes data models don’t match the domain models: for example,

you may have in your domain CustomerWithPersonalDetails and

EmployeeWithPersonalDetails because you want to keep them simple,

but you may want to keep the customer, employee, and personal_details

tables separate to avoid data replication and save some space in the future.

In this case, we’ll do a direct mapping: domain entities match with data

entities. Figure 3-3 shows the data model.

Figure 3-3.  The current data model

Chapter 3 A Real Three-Tier Spring Boot Application

https://tpd.io/boot-prod-db

72

Not really complex, but it is a good example. We can explain it

from the User entity: they can have many attempts. At the same time,

attempts coming from different users may have a relation with the same

multiplication (if they have equal factors).

How can we model this with JPA? The easiest way is to use the provided

annotations. We won’t go into details about JPA because that could cover

an entire book, but we’ll cover the basics by looking at the changes to our

entities and explaining them. Let’s start with the Multiplication class, as

shown in Listing 3-33.

Listing 3-33.  Multiplication.java (social-multiplication v4)

package microservices.book.multiplication.domain;

import lombok.EqualsAndHashCode;

import lombok.Getter;

import lombok.RequiredArgsConstructor;

import lombok.ToString;

import javax.persistence.Column;

import javax.persistence.Entity;

import javax.persistence.GeneratedValue;

import javax.persistence.Id;

/**

 * This class represents a Multiplication (a * b).

 */

@RequiredArgsConstructor

@Getter

@ToString

@EqualsAndHashCode

@Entity

public final class Multiplication {

Chapter 3 A Real Three-Tier Spring Boot Application

73

 @Id

 @GeneratedValue

 @Column(name = "MULTIPLICATION_ID")

 private Long id;

 // Both factors

 private final int factorA;

 private final int factorB;

 // Empty constructor for JSON/JPA

 Multiplication() {

 this(0, 0);

 }

}

•	 The @Entity annotation is used to specify that the class

should be considered a JPA entity, so it can be stored

in a JPA repository. Note that we also have an empty

constructor, which is required by JPA to be able to

instantiate objects via reflection.

•	 We’ll use unique identifiers as primary keys, and for

that we’ll use the Java Long class. The annotation @Id

tells JPA that it’s going to be the primary key identifier,

and the @GeneratedValue indicates that it should be

autogenerated (we’re not setting it).

•	 In some cases we may want to explicitly set the column

name instead of letting JPA do it. To do so, we can use

the @Column annotation. Sometimes it’s useful because

we want to give a fixed name to a column and then use

it from a different entity to join two tables (which will

be the case here). We could also omit this annotation

and reference to this id field later using the field and

table names from MultiplicationResultAttempt.

Chapter 3 A Real Three-Tier Spring Boot Application

74

We need to make very similar changes to the User class, as shown in

Listing 3-34.

Listing 3-34.  User.java (social-multiplication v4)

@RequiredArgsConstructor

@Getter

@ToString

@EqualsAndHashCode

@Entity

public final class User {

 @Id

 @GeneratedValue

 @Column(name = "USER_ID")

 private Long id;

 private final String alias;

 // Empty constructor for JSON/JPA

 protected User() {

 alias = null;

 }

}

The most interesting changes are in MultiplicationResultAttempt,

since it’s the part in the model that links the other entities. See Listing 3-35.

Listing 3-35.  MultiplicationResultAttempt.java (social-

multiplication v4)

package microservices.book.multiplication.domain;

import lombok.EqualsAndHashCode;

import lombok.Getter;

Chapter 3 A Real Three-Tier Spring Boot Application

75

import lombok.RequiredArgsConstructor;

import lombok.ToString;

import javax.persistence.*;

/**

 * Identifies the attempt from a {@link User} to solve a

 * {@link Multiplication}.

 */

@RequiredArgsConstructor

@Getter

@ToString

@EqualsAndHashCode

@Entity

public final class MultiplicationResultAttempt {

 @Id

 @GeneratedValue

 private Long id;

 @ManyToOne(cascade = CascadeType.PERSIST)

 @JoinColumn(name = "USER_ID")

 private final User user;

 @ManyToOne(cascade = CascadeType.PERSIST)

 @JoinColumn(name = "MULTIPLICATION_ID")

 private final Multiplication multiplication;

 private final int resultAttempt;

 private final boolean correct;

 // Empty constructor for JSON/JPA

 MultiplicationResultAttempt() {

 user = null;

Chapter 3 A Real Three-Tier Spring Boot Application

76

 multiplication = null;

 resultAttempt = -1;

 correct = false;

 }

}

•	 In order to specify the relation between entities, JPA

provides several annotations: @OneToOne, @OneToMany,

@ManyToOne, and @ManyToMany. With some of these

annotations you can define also the details for how

you want to link them. Check the documentation if you

want to know more about this. With the configuration

above, our attempts table will have two foreign keys to

the respective identifiers of User and Multiplication

(if you need more knowledge about the primary key

and foreign key concepts, read the article at https://

tpd.io/ms-pk-fk).

•	 For our MultiplicationResultAttempt we choose a

cascade type PERSIST. What we want to achieve with

this is that we can store from our Java code directly the

attempts, and any other linked entity will be persisted

(if it’s not already there) in their corresponding tables

as well.

•	 As shown, we use @JoinColumn to reference other

entities using their identifiers (using the name provided

there via @Column).

Tables 3-1 through 3-3 show an example of how these entities look in

the different tables for a given iteration of the game (an attempt to solve a

multiplication sent by a given user).

Chapter 3 A Real Three-Tier Spring Boot Application

https://tpd.io/ms-pk-fk
https://tpd.io/ms-pk-fk

77

�The Repositories
Now that we have the needed tools in our project to implement persistence

and have our model designed, we can create our JPA repositories so we can

store and read our Java objects. Following our packaging structure and the

layered application pattern, we’ll create repositories in a new repository

package.

Let’s start with the repository to store MultiplicationResultAttempt

objects, as shown in Listing 3-36.

Listing 3-36.  MultiplicationResultAttemptRepository

(social-multiplication v4)

package microservices.book.multiplication.repository;

import microservices.book.multiplication.domain.

MultiplicationResultAttempt;

Table 3-1.  USER Table (social-multiplication v4)

USER_ID ALIAS

3 john

Table 3-3.  MULTIPLICATION_RESULT_ATTEMPT Table

(social-multiplication v4)

ID CORRECT RESULT_ATTEMPT MULTIPLICATION_ID USER_ID

11 true 2214 8 3

Table 3-2.  MULTIPLICATION Table (social-multiplication v4)

MULTIPLICATION_ID FACTORA FACTORB

8 41 54

Chapter 3 A Real Three-Tier Spring Boot Application

78

import org.springframework.data.repository.CrudRepository;

import java.util.List;

/**

 * This interface allow us to store and retrieve attempts

 */

public interface MultiplicationResultAttemptRepository

 extends CrudRepository<MultiplicationResultAttempt,

Long> {

 /**

 �* @return the latest 5 attempts for a given user,

identified by their alias.

 */

 �List<MultiplicationResultAttempt> findTop5ByUserAliasOrder

ByIdDesc(String userAlias);

}

Once again, a simple solution: just by creating an interface that

extends one of the provided interfaces in Spring Data JPA, we’ll have all the

functionality that we need in our application. In this case, CrudRepository

is a convenient solution (kind of magic interface) provided by Spring to

implement the operations to create, read, update, and delete entities

(CRUD). It uses Java generics so we just need to pass as parameters the

class annotated with @Entity for which we want a repository (the first

one), and the identifier type (in our case, we declared them as Long).

PagingAndSortingRepository is also an useful one which, besides CRUD

operations, provides pagination and sorting capabilities.

Have you noticed the findTop5ByUserAliasOrderByIdDesc method?

It’s using another cool feature from Spring Data JPA: query methods.

Just by following some given naming patterns, you can easily create

custom queries by defining the method in the interface. You can get more

Chapter 3 A Real Three-Tier Spring Boot Application

79

information about this on the official documentation page.6 If you don’t

like such magic, you can also create your method (name it whatever you

like) and use the @Query annotation with your custom JPQL (we’ll cover

some cases in the next chapter). You can find more information about this

alternative on the same page.

We can apply what we know now to create our UserRepository and

MultiplicationRepository classes. The latter one does not need any

custom query method, so it’s just the interface declaration (and yet we

have the power of all the predefined methods in CrudRepository). See

Listings 3-37 and 3-38.

Listing 3-37.  UserRepository (social-multiplication v4)

package microservices.book.multiplication.repository;

import microservices.book.multiplication.domain.User;

import org.springframework.data.repository.CrudRepository;

import java.util.Optional;

/**

 * This interface allows us to save and retrieve Users

 */

public interface UserRepository extends CrudRepository<User,

Long> {

 Optional<User> findByAlias(final String alias);

}

6�https://docs.spring.io/spring-data/jpa/docs/current/reference/
html/#repositories.query-methods

Chapter 3 A Real Three-Tier Spring Boot Application

https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#repositories.query-methods
https://docs.spring.io/spring-data/jpa/docs/current/reference/html/#repositories.query-methods

80

Listing 3-38.  MultiplicationRepository (social-multiplication v4)

package microservices.book.multiplication.repository;

import microservices.book.multiplication.domain.Multiplication;

import org.springframework.data.repository.CrudRepository;

/**

 * This interface allows us to save and retrieve

Multiplications

 */

public interface MultiplicationRepository extends

CrudRepository<Multiplication, Long> {

}

You might be wondering at this point why we’re not following TDD for

the repositories. The answer is simple: there is no new code, and we trust

the implementation provided by Spring, so we don’t need to include unit

tests for these skinny repositories.

CHOOSING WHICH METHODS TO EXPOSE

The Repository interface has a hidden trick: if you create interface

methods matching the signature of CrudRepository, the result is a partial

CrudRepository solution with only the methods you want to expose. You

can find this trick documented on the Javadoc.

Once we have our repositories, we want to use them. Our business

logic should take care of calling them to persist our entities. Back to

TDD: let’s include that in our unit test by verifying the attempt logic

(MultiplicationServiceImplTest), both for a correct and a wrong one.

See Listing 3-39.

Chapter 3 A Real Three-Tier Spring Boot Application

81

Listing 3-39.  MultiplicationServiceImplTest (social-multiplication v4)

// package, imports...

public class MultiplicationServiceImplTest {

 private MultiplicationServiceImpl

multiplicationServiceImpl;

 @Mock

 private RandomGeneratorService randomGeneratorService;

 @Mock

 �private MultiplicationResultAttemptRepository

attemptRepository;

 @Mock

 private UserRepository userRepository;

 @Before

 public void setUp() {

 �// With this call to initMocks we tell Mockito to

process the annotations

 MockitoAnnotations.initMocks(this);

 �multiplicationServiceImpl = new MultiplicationService

Impl(randomGeneratorService, attemptRepository,

userRepository);

 }

 @Test

 public void createRandomMultiplicationTest() {

 // [...] no changes here, keep it as it was before

 }

Chapter 3 A Real Three-Tier Spring Boot Application

82

 @Test

 public void checkCorrectAttemptTest() {

 // given

 �Multiplication multiplication = new Multiplication

(50, 60);

 User user = new User("john_doe");

 �MultiplicationResultAttempt attempt = new

MultiplicationResultAttempt(

 user, multiplication, 3000, false);

 �MultiplicationResultAttempt verifiedAttempt = new

MultiplicationResultAttempt(

 user, multiplication, 3000, true);

 �given(userRepository.findByAlias("john_doe")).

willReturn(Optional.empty());

 // when

 �boolean attemptResult = multiplicationServiceImpl.

checkAttempt(attempt);

 // then

 assertThat(attemptResult).isTrue();

 verify(attemptRepository).save(verifiedAttempt);

 }

 @Test

 public void checkWrongAttemptTest() {

 // given

 �Multiplication multiplication = new Multiplication

(50, 60);

 User user = new User("john_doe");

 �MultiplicationResultAttempt attempt = new

MultiplicationResultAttempt(

 user, multiplication, 3010, false);

 �given(userRepository.findByAlias("john_doe")).

willReturn(Optional.empty());

Chapter 3 A Real Three-Tier Spring Boot Application

83

 // when

 �boolean attemptResult = multiplicationServiceImpl.

checkAttempt(attempt);

 // then

 assertThat(attemptResult).isFalse();

 verify(attemptRepository).save(attempt);

 }

}

•	 We need to mock MultiplicationResultAttempt

Repository and UserRepository to keep the unit test

focused on the service layer. Note in the code that they

are also passed in the MultiplicationServiceImpl

constructor. You may want to update that line later,

when you modify that class, or you can also create the

new constructor at this point.

•	 In our checkCorrectAttemptTest() we’re including a

copy of the attempt (verifiedAttempt) to make it closer

to reality: the one sent by the user should have a false

value for the correct field. Then, in the last line, we

verify (using Mockito) that we call the repository to

store the one with correct set to true.

•	 The checkWrongAttemptTest() needs an update

to check that the repository is also called for wrong

attempts. Remember that the real call is not executed:

we’re just verifying that the mock objects are called

with those arguments.

So now we have a failing test again (the repositories are never called).

We need to add the repositories to our MultiplicationServiceImpl and

save the attempts in both cases. Listing 3-40 shows the changes.

Chapter 3 A Real Three-Tier Spring Boot Application

84

Listing 3-40.  MultiplicationServiceImpl (social-multiplication v4)

// [...]

@Service

class �MultiplicationServiceImpl implements

MultiplicationService {

 private RandomGeneratorService randomGeneratorService;

 �private �MultiplicationResultAttemptRepository

attemptRepository;

 private UserRepository userRepository;

 @Autowired

 �public �MultiplicationServiceImpl(final

RandomGeneratorService randomGeneratorService,

 �final Multiplication

ResultAttemptRepository

attemptRepository,

 �final UserRepository

userRepository) {

 this.randomGeneratorService = randomGeneratorService;

 this.attemptRepository = attemptRepository;

 this.userRepository = userRepository;

 }

 // [...]

 @Transactional

 @Override

 �public boolean checkAttempt(final Multiplication

ResultAttempt attempt) {

 // Check if the user already exists for that alias

 �Optional<User> user = userRepository.findBy

Alias(attempt.getUser().getAlias());

Chapter 3 A Real Three-Tier Spring Boot Application

85

 // Avoids 'hack' attempts

 �Assert.isTrue(!attempt.isCorrect(), "You can't send an

attempt marked as correct!!");

 // Check if the attempt is correct

 boolean isCorrect = attempt.getResultAttempt() ==

 �attempt.getMultiplication().

getFactorA() *

 �attempt.getMultiplication().

getFactorB();

 �MultiplicationResultAttempt checkedAttempt = new

MultiplicationResultAttempt(

 user.orElse(attempt.getUser()),

 attempt.getMultiplication(),

 attempt.getResultAttempt(),

 isCorrect

);

 // Stores the attempt

 attemptRepository.save(checkedAttempt);

 return isCorrect;

 }

}

•	 An important concept to understand here is that we

don’t really need to use all the new repositories. Since

we introduced before our CascadeType.PERSIST in the

MultiplicationResultAttempt entity, whenever we

save an attempt, the linked Multiplication and User

objects will be persisted too.

Chapter 3 A Real Three-Tier Spring Boot Application

86

•	 However, we still need the UserRepository to get the

user identifier given the alias. Every time we receive

an attempt it’s a new one from the REST API’s point

of view, so it’s linked to a Multiplication and User

with null IDs. If the user is an existing one, they will be

already in our database. We want to link this attempt

to the user so we need to retrieve the existing identifier

from database given the user’s alias. Using Java’s

Optional, we can later resolve nicely if it’s a new

(null ID) or an existing user with user.orElse(attempt.

getUser()).

•	 We changed the constructor so now the repository

implementations are also injected by Spring (we don’t

develop them; they are automagically generated).

•	 We store the attempt using the attempt’s repository. As

mentioned before, JPA will also store the linked entities.

EXERCISE (OPTIONAL)

Time for you to accept a challenge! With the current implementation, we have

a small issue with multiplications. We will persist every one of them as if

they were new, even if there are existing ones with the same combination of

factorA and factorB. Are you ready to solve it? We just covered the main idea

so… go for it!

Chapter 3 A Real Three-Tier Spring Boot Application

87

�Completing User Story 2: Going
Through the Layers
We have almost completed user story 2. Remember: we wanted

to show the users their last attempts. We’re now saving them,

so we can create a REST API endpoint to retrieve the latest ones

for a given user. We partially covered this when we introduced

the query method findTop5ByUserAliasOrderByIdDesc() in

MultiplicationResultAttemptRepository. Let’s link it back through all

layers to the UI.

The next layer is the service. Since this one does not contain much

business logic, let’s write our implementation first and then add our new

test case. See Listing 3-41.

Listing 3-41.  MultiplicationServiceImpl Adding a New Method

(social-multiplication v4)

@Service

class MultiplicationServiceImpl implements

MultiplicationService {

 // [...]

 @Override

 public List<MultiplicationResultAttempt>

getStatsForUser(String userAlias) {

 return attemptRepository.findTop5ByUserAliasOrderBy

IdDesc(userAlias);

 }

}

Chapter 3 A Real Three-Tier Spring Boot Application

88

Listing 3-42.  MultiplicationServiceImplTest Adding a Test (social-

multiplication v4)

public class MultiplicationServiceImplTest {

 // [...]

 @Test

 public void retrieveStatsTest() {

 // given

 �Multiplication multiplication = new Multiplication

(50, 60);

 User user = new User("john_doe");

 �MultiplicationResultAttempt attempt1 = new

MultiplicationResultAttempt(

 user, multiplication, 3010, false);

 �MultiplicationResultAttempt attempt2 = new

MultiplicationResultAttempt(

 user, multiplication, 3051, false);

 �List<MultiplicationResultAttempt> latestAttempts =

Lists.newArrayList(attempt1, attempt2);

 �given(userRepository.findByAlias("john_doe")).

willReturn(Optional.empty());

 �given(attemptRepository.findTop5ByUserAliasOrderById

Desc("john_doe"))

 .willReturn(latestAttempts);

 // when

 List<MultiplicationResultAttempt> latestAttemptsResult =

 �multiplicationServiceImpl.

getStatsForUser("john_doe");

Chapter 3 A Real Three-Tier Spring Boot Application

89

 // then

 �assertThat(latestAttemptsResult).isEqualTo

(latestAttempts);

 }

}

It’s the same for the Controller layer: all the logic is coming from the

query so we just need to pass the result. In this case, we need to make a

slight modification to the test class to include a new JacksonTester to

assert results using a list of attempts. See Listings 3-43 and 3-44.

Listing 3-43.  MultiplicationResultAttemptController Adding a New

Method (social-multiplication v4)

@RestController

@RequestMapping("/results")

final class MultiplicationResultAttemptController {

 // [...]

 @GetMapping

 �ResponseEntity<List<MultiplicationResultAttempt>>

getStatistics(@RequestParam("alias") String alias) {

 return ResponseEntity.ok(

 multiplicationService.getStatsForUser(alias)

);

 }

}

Listing 3-44.  MultiplicationResultAttemptControllerTest - adding a

test (social-multiplication v4)

@RunWith(SpringRunner.class)

@WebMvcTest(MultiplicationResultAttemptController.class)

Chapter 3 A Real Three-Tier Spring Boot Application

90

public class MultiplicationResultAttemptControllerTest {

 // [...]

 �// These objects will be magically initialized by the

initFields method below.

 �private JacksonTester<MultiplicationResultAttempt>

jsonResultAttempt;

 �private JacksonTester<List<MultiplicationResultAttempt>>

jsonResultAttemptList;

 @Before

 public void setup() {

 JacksonTester.initFields(this, new ObjectMapper());

 }

 // [...]

 @Test

 public void getUserStats() throws Exception {

 // given

 User user = new User("john_doe");

 �Multiplication multiplication = new Multiplication

(50, 70);

 �MultiplicationResultAttempt attempt = new

MultiplicationResultAttempt(

 user, multiplication, 3500, true);

 �List<MultiplicationResultAttempt> recentAttempts =

Lists.newArrayList(attempt, attempt);

 given(multiplicationService

 .getStatsForUser("john_doe"))

 .willReturn(recentAttempts);

Chapter 3 A Real Three-Tier Spring Boot Application

91

 // when

 MockHttpServletResponse response = mvc.perform(

 get("/results").param("alias", "john_doe"))

 .andReturn().getResponse();

 // then

 �assertThat(response.getStatus()).isEqualTo(Http

Status.OK.value());

 assertThat(response.getContentAsString()).isEqualTo(

 jsonResultAttemptList.write(

 recentAttempts

).getJson());

 }

}

On the UI side, we need to call this new REST API and present the

results on the screen. First, we add the logic to multiplication-client.js

to call the backend service for every attempt sent, as shown in Listing 3-45.

Listing 3-45.  multiplication-client.js Adding Attempts (social-

multiplication v4)

// [...]

function updateStats(alias) {

 $.ajax({

 url: "http://localhost:8080/results?alias=" + alias,

 }).then(function(data) {

 $('#stats-body').empty();

 data.forEach(function(row) {

 �$('#stats-body').append('<tr><td>' + row.id +

'</td>' +

 �'<td>' + row.multiplication.factorA + ' x ' +

row.multiplication.factorB + '</td>' +

Chapter 3 A Real Three-Tier Spring Boot Application

www.allitebooks.com

http://www.allitebooks.org

92

 '<td>' + row.resultAttempt + '</td>' +

 �'<td>' + (row.correct === true ? 'YES' : 'NO')

+ '</td></tr>');

 });

 });

}

$(document).ready(function() {

 updateMultiplication();

 $("#attempt-form").submit(function(event) {

 // [...]

 updateStats(userAlias);

 });

});

Then we add a pretty basic table to the HTML code to render the

results, as shown in Listing 3-46.

Listing 3-46.  index.html Adding Attempts Table (social-

multiplication v4)

<!DOCTYPE html>

<html>

<head>

 <title>Multiplication v1</title>

 <link rel="stylesheet" type="text/css" href="styles.css">

 <script �src="https://ajax.googleapis.com/ajax/libs/

jquery/3.1.1/jquery.min.js"></script>

 <script src="multiplication-client.js"></script>

</head>

Chapter 3 A Real Three-Tier Spring Boot Application

93

<body>

<div>

 <h1>Welcome to Social Multiplication</h1>

 <h2>This is your challenge for today:</h2>

 <h1>

 x <span

class="multiplication-b"> =

 </h1>

 <p>

 <form id="attempt-form">

 �Result? <input type="text" name="result-

attempt">

 �Your alias: <input type="text" name="user-

alias">

 <input type="submit" value="Check">

 </form>

 </p>

 <h2></h2>

 <h2>Stats</h2>

 <table id="stats" style="width:100%">

 <tr>

 <th>Attempt ID</th>

 <th>Multiplication</th>

 <th>You entered</th>

 <th>Correct?</th>

 </tr>

 <tbody id="stats-body"></tbody>

 </table>

</div>

</body>

</html>

Chapter 3 A Real Three-Tier Spring Boot Application

94

WE DID IT AGAIN! USER STORY 2 IS FINISHED

We completed our new requirements! We created our data model,

implemented it on our entities, and created the repositories to persist and

collect our data. We also exposed a new endpoint to retrieve these latest

attempts and included a new component in the UI. Time to play with our new

functionality!

�Playing with the Application (Part II)
Finally! We have a second version of the application, now with persistence

included. You already looked at the multiplication logic before, so now you

can focus on the new feature—persistence and displaying attempts.

Run the application either using the code or packaging it, as you saw

earlier. Then navigate to http://localhost:8080/index.html with your

browser. Try to solve some multiplications, making sure you try at least five

times. You’ll get something like Figure 3-4.

Chapter 3 A Real Three-Tier Spring Boot Application

95

Looking better! The interface is simple, but it’s good enough. Anyway,

we’ll improve it in a later chapter. If you want to look at the data, you can

navigate to http://localhost:8080/h2-console/. You’ll see the H2

Console login screen, where you can enter the JDBC URL (in case it’s not

already there): jdbc:h2:file:~/social-multiplication. Leave the other

fields as they are. See Figure 3-5.

Figure 3-4.  Improved application that lists previous tries

Chapter 3 A Real Three-Tier Spring Boot Application

96

When you click Connect, you are presented with a rudimentary

interface from which you can execute all kind of commands to the

database (see Figure 3-6). If you click on a table name, the console will

generate a standard select-all query for you that you can then execute

by clicking the Run button.

Figure 3-5.  Enter the JDBC URL here

Chapter 3 A Real Three-Tier Spring Boot Application

97

�Summary
In this chapter, you learned how to build your first real-life application

using Spring Boot. You’ll use it as one of your microservices in a later

chapter, when you’ll learn about functionality spread across multiple

applications.

We used a simulated Agile approach to deliver value as early as

possible and built a complete web application in just two iterations

(represented as two user stories). This chapter tried to show you how

it’s preferable to start simple and then apply modifications when they’re

needed: we started without a database, and later we evolved our code to

include it.

Another important concept in this chapter was test-driven

development: we took the use case and implemented the unit test, before

coding the implementation. If you get used to this approach, you’ll see

how many advantages it brings you—one of the the most important is the

improvement of your functional requirements’ definition.

Figure 3-6.  You can execute commands to the database from this
screen

Chapter 3 A Real Three-Tier Spring Boot Application

98

Without a doubt, the most important topic has been the proper

software design of the application: you used a three-tier approach, layering

it in domain, application, presentation, and data. This is a well-known

pattern for its benefits related to loose coupling and clear separation of

responsibilities. The first part of the chapter focused on the business logic

and the presentation layers, including a simple frontend to allow user

interaction. Then, we got new requirements that drove us to design and

develop a data layer. But, before that, we needed to stop for a while to

prepare our application for that—we needed a refactoring task, as usually

happens in real life. Finally, we designed and implemented our data model

and repositories, and connected them all the way up the layers to the user

interface to show the latest attempts sent by the users.

You can apply now the knowledge from this book to write well-

designed, layered Spring Boot applications. But there is still much more

to learn: once you get several of these applications, how are they going to

connect to each other? How do they see each other’s instances if they start

to scale up? These are the questions we’ll cover in coming chapters. It’s

time to move to microservices.

Chapter 3 A Real Three-Tier Spring Boot Application

99© Moises Macero 2017
M. Macero, Learn Microservices with Spring Boot,
https://doi.org/10.1007/978-1-4842-3165-4_4

CHAPTER 4

Starting with
Microservices
�The Small Monolith Approach
Chapter 3 ended with a single deployable application that contained

not only the different backend functionalities but also the frontend side.

Our application is a small monolith. As an alternative, we could have

started designing a complete system, identifying the different contexts

(or bounded contexts)1 in it, mapping them to microservices, and then

developing all of them from the beginning, at the same time.

You might be tempted to follow that strategy. One good reason to do

it is that you could have multiple teams working in parallel in different

microservices, so you could take advantage of mapping microservices

to teams from the beginning—happy days, you could finish earlier. My

experience says don’t do that, and I’m not the only one advocating for a

monolith-first approach (see https://tpd.io/monofirst).

When you develop software the Agile way, you can’t wait a long time

to deliver your software. Neither can you spend weeks designing your

complete system in advance, with details. Within the product or project

execution time, you better deliver full-working slices of your software.

If you start splitting your project into microservices from the beginning

1�https://tpd.io/bounded-ctx

https://tpd.io/monofirst
https://tpd.io/bounded-ctx

100

using a sheet of paper (or a nice digital drawing), that won’t be the case:

it will take much longer than building a monolith. Why? Because it’s

technically more difficult to deploy, orchestrate, and test a system based

on microservices.

There is another good reason for you not to start from scratch with

microservices: your system will likely have poor software design, worse

than when building a monolith. This prediction has more to do with

the way people work: when you divide the work into different pieces

and assign them to different teams, the teams often start caring about

their pieces of work and not about the entire system. Design, as it was

done at the beginning, can be corrupted easily. Teams can start ignoring

the company’s common guidelines and principles unless you keep all

microservices in control (and that is a very hard work for architects).

End-to-end testing is much more difficult to set up with all those pieces

evolving on their own. In this scenario, I’m assuming you already had

a clear picture of the APIs and ways of communication between your

different microservices. If you don’t even have that, I’d stick to the

monolith to start with, no doubt.

That’s not to say that you can’t be successful in predicting your

microservice boundaries in advance and developing them in parallel

but, in that case, you should pay much more attention to deployment,

integration testing, common standards compliance, clear APIs, logging

and monitoring, error handling, communication channels between teams,

etc. Failing only in one of these topics can jeopardize your project if you

start directly with microservices.

Consider a better approach: plan a monolithic application first. Plan it

in a way that it can be split later with little effort:

•	 Compartmentalize your code in root packages defining

your domain contexts. For instance, your application

may have functionalities related to customers (person,

company, address, etc.) and others related to orders (order

Chapter 4 Starting with Microservices

101

generation, dispatch, handling, etc.). Instead of packaging

your root structure directly by layers, you can create top

levels where you first split customers and orders. Then,

replicate the layering for each of them (e.g., controller,

repository, domain, and service) and make sure you

follow good practices for class visibility (implementations

are package-private). The main advantages you get with

this structure are that you keep business logic inaccessible

across domain contexts, and that later you should be able

to extract one complete root package as a microservice if

you need it, with less refactoring.

•	 Take advantage of dependency injection: base your

code on interfaces, and let Spring do its job injecting

the implementations. Refactoring using this pattern

is much easier. For example, you may change an

implementation to call to a different microservice

instead of keeping all the business logic in one place

(if that makes sense for you when you design your

boundaries).

•	 Once you have identified the contexts (e.g., customers

and orders) give them a consistent name across your

application. Move your domain logic here and there

(easier with a small monolith) during the design

phase until boundaries are clear, and then respect

the boundaries. Never take shortcuts tangling

business logic across contexts just because you can.

Always keep in mind that the monolith should be

prepared to evolve.

•	 Find common patterns and identify what can be later

extracted as common libraries, for example.

Chapter 4 Starting with Microservices

102

•	 Use peer reviews2 to make sure the architecture designs

are understood and followed.

•	 Clearly communicate to the project manager to plan

time in later releases to split the monolith. Explain the

strategy and create the culture: refactoring is going to

be necessary and there is nothing wrong with it.

Try to keep a small monolith at least until your first release. Don’t be

afraid of it—a small monolith will bring you lots of advantages:

•	 You make progress and have something to play with:

business users can start checking if that’s what they

wanted and make adjustments.

•	 You can easily change the Domain Model you made:

check if it’s good enough or not, and adapt it.

•	 Your team(s) will get used to the common technical

and functional company guidelines for the project.

•	 Common cross-domain functionality can be identified

and extracted as libraries.

•	 Everybody works with the first version of the complete

system, so it’s easier that they get to understand the

complete view and not just parts.

On the other hand, there are some disadvantages that you can try to

palliate:

•	 You know you’re building a monolith, and that does not

feel good. However, this shouldn’t bother you too much

if you’re following good design patterns to help you to

split it later (compartmentalize, use interfaces, etc.).

2�If you are not familiar with peer reviews, see https://www.atlassian.com/
agile/code-reviews.

Chapter 4 Starting with Microservices

https://www.atlassian.com/agile/code-reviews
https://www.atlassian.com/agile/code-reviews

103

•	 Your first deployment strategy will be partly obsolete.

But you can reuse your existing tools the same way, just

adapting them to multiple services.

•	 Too many people working at the same time in the

same codebase can be noisy and inefficient. My

recommendation here is to start small with the team

as well. Work with project managers: if the scope is

planned to deliver a good, small monolith, the team

doesn’t need to be big for the first release. Resources can

be employed in a different way: it would be even a better

idea to start in parallel two different alternatives for the

small monolith, with the same functionality, and then

discard one of them when you reach the first release.

�Analyzing the Monolith
Figure 4-1 depicts how the application looks like up to now.

Figure 4-1.  The application thus far

Chapter 4 Starting with Microservices

104

So far we have been building a small monolith. After extracting the

requirements for the first user story, we can identify at least three parts:

•	 The multiplication domain, which handles generation

and verification of operations.

•	 The user domain, which handles information related to

users.

•	 The UI component, which communicates with the

REST API and holds the web page.

These are the parts that could have been started independently,

and deployed as such, with some redesign of the references between

the multiplication’s domain objects and the user’s. Note that we’re not

considering UI a domain; it’s just a technical component of our application

that can be extracted separately. We’re exposing our application behavior

through a REST API so it makes more sense to have the Web UI in a

different, independently-deployable component. One of the reasons is that

we could have a mobile app consuming the same API, which doesn’t need

the Web interfaces. Also, the UI could evolve to a single page application

consuming APIs from different services (e.g., multiplication and user).

For all these reasons, you’ll see that UI code is often placed into a different

service in many software projects.

In any case, we didn’t split anything from scratch when creating our

application. The reasons, as you can imagine, are the ones covered in the

previous subsection about the advantages of a monolith-first approach.

Note that book examples can be traps: you can’t live the complete process

of design and development, so it’s more difficult to sell you the idea of

a better match between the small monolith and fast experimenting.

You could still be wondering why this book didn’t start directly with a

predefined set of services that work perfectly all together. I could have

skipped the monolith to make the code nicer, but that would go against

the basic idea of this book: being a practical, evolving a software project

Chapter 4 Starting with Microservices

105

as you would do in reality. But not only that, if we would have started with

the complete ecosystem of services and the needed tools to support them,

the entire business goal of our example application would have been

diluted by technical details. To explain it better in practice, if we would

have taken the decision of starting directly with microservices for our first

requirements (user story 1), we would have needed to go through almost

the entire book before delivering our first working application.

�Moving Forward
What are the next steps to evolve our application? We’re keeping the

multiplication application as it is for a little bit longer, since before doing

the complete refactor, we’ll introduce a second Spring Boot application in

our system. And that, as always, is driven by a new functionality.

USER STORY 3

As a user of the application, I want to be more motivated to participate every

day, so I don’t give up easily.

Note that this one can be also written from another perspective: “As the

administrator of the application, I want users to come back every day so I

can later monetize the recurrent visits.”

In this fictional scenario, there could be some people on the team

who know about gamification techniques and want to apply them here to

encourage users to come back every day to the page. Let’s say that the idea

sinks in, so now the architecture team decides how to solve it: that’s us.

Gamification seems a completely different world, nothing to do with

solving multiplications. It’s our perfect opportunity to design our model

and then make it a reality as a separate Spring Boot application, now that

we have the first version of the current application already up and running.

Chapter 4 Starting with Microservices

106

We’re moving to a microservices architecture now, in which our existing

Spring Boot application will become the multiplication microservice, and

the new application would become the gamification microservice.

But before going into more detail, let me introduce some basic

concepts about gamification techniques and discuss how we’re going to

apply them to our system.

�Gamification Basics
Gamification is the design process in which you apply techniques used

commonly in games to some other field, which was not initially a game.

Normally you do that because you want to get some well-known benefits

from games, among others getting players motivated and interacting with

your process, application, or whatever you’re gamifying.

It’s also important to clarify what is not gamification: it’s not about

trying to manipulate people. It’s not magic you can apply everywhere to

make people like something.

Applying game techniques can be rather complex, and goes easily into

big knowledge areas like motivation, personal interests, and psychology,

in general. We’ll cover a simplification of it based on some basic tools

available for the game designer—points, badges, and leaderboards.

�Points, Badges, and Leaderboards
One basic idea about making things a game is introducing points: every

time you perform an action, and you do well, you get some points. You

can even get points if you didn’t perform so well, but it should be a fair

mechanism: you get more if you do better. Winning points make the player

feel as if they’re progressing, which gives them feedback.

Leaderboards make the points visible to everybody, so they motivate

players by activating feelings of competition. We want to get more points

than the person above us and rank higher. This is even more fun if you play

with friends.

Chapter 4 Starting with Microservices

107

Last but not least, badges are virtual symbols of achieving a status. We

like badges; they say more than points. Also, they can represent different

things: you can have same points as another player (e.g., five correct

answers), but you could have won them in a different way (e.g., five in a

minute!).

There are different software applications that are not games but that

use these elements very well, StackOverflow being my favorite. You can

look at the stackoverflow.com web page if you don’t know it yet: everything

is designed with game elements to encourage people to keep participating.

It’s important to note that using these tools won’t make your

application a nicely designed game since there are many other aspects

that should be taken into account as well if we want to achieve a better

result. However, for the sake of the main goal of this book, this is more than

enough.

�Applying It to the Example
What we’ll do is assign points to every correct answer that users submit. To

keep it simple, we’ll only give points if they send a correct answer. Instead

of giving one point, which doesn’t feel as good, we’ll make it 10 points per

correct answer.

A leaderboard with the top scores will be shown on the page, so players

can find themselves in the ranking and compete with others.

We’ll create also some basic badges: Bronze (10 correct attempts),

Silver (25 correct attempts), and Gold (50 correct attempts). The badges

should not be extraordinarily difficult to obtain, because that wouldn’t

motivate our users. Because the first correct attempt can be hard to

achieve, we’ll also introduce the badge called First Correct!, to give quick

positive feedback.

We could introduce more badges in the future, some other game

mechanics, etc. But with these basics, we already have something that may

motivate our users to come back and keep playing, competing with their

peers.

Chapter 4 Starting with Microservices

108

�Moving to a Microservices Architecture
So we decided to move to a microservices architecture: we’ll create

a different part of our system that’s independently deployable

and decoupled from the previous business logic (the gamification

microservice). We’ll need to connect the existing Spring Boot application

(that now we can call the multiplication microservice) with the new one

and make sure that they can scale up independently. And the big question

is: why should we do that? Why not continue just with the one-project

(monolithic) approach? As usual, we’ll answer that question from a

practical point of view, based on some strong reasons.

�Separation of Concerns and Loose Coupling
If we put together the gamification logic with the existing logic, within the

same codebase and the same deployable artifact, we run the risk of mixing

them up in the future, throwing away all the advantages of the separation

of concerns. You may think that this won’t happen, but in reality the longer

you have these domains together, the higher the risk somebody will take

shortcuts. Especially if you also store your data in the same database.

As we saw when we were describing the advantages of a monolith-first

approach, keeping everything together eases the design and development

during the first phase of the project. However, if you want to migrate to

microservices for its advantages, it’s critical to find the proper timing

along the project’s lifecycle to stop growing your monolith. Otherwise,

you’ll find yourself traveling from a small-monolith to a medium-size-

monolith, and from there to a “certified monolith”. Of course, the risk is

tenfold if the software project is being managed under high pressure and

tight guidelines. This is a perfect environment for shortcuts and for the

monolith to grow without control.

Achieving loose coupling is hard. Let’s use the example in which new

requirements say that you want to show in a table every multiplication

Chapter 4 Starting with Microservices

109

with the number of points won: it’s so easy to write a join query that many

developers will use it. Even if you have different data stores, somebody

could write a class using the different domains together and add some

extra business logic on top of that. The problem is much more visible if

you think of a system with multiple domain contexts: soon you would

have spaghetti services mixing domain objects and business logic here and

there. The jungle. And then you’d need your machete and a lot of patience

to untangle everything. Having multiplication and gamification separated

in different microservices will force you to think of a loosely-coupled

solution: you can replicate part of the data, or have one service calling the

other one whenever it’s needed. We’ll see an example of this in our system.

�Independent Changes
Having independently deployable services for the multiplication and

gamification domains will allow us to test them separately, using their

APIs. In the future, we could have the gamification team evolving

their services without interfering in the development cycle of the

multiplication team. If they need new interfaces for communication,

they can just create fake calls or messages—therefore defining their

API changes—and move forward. Note again the main advantage here:

they know for sure that they won’t break anything in the multiplication

service, and they are not blocking each other. This peace of mind makes

project managers sleep at night.

�Scalability
Imagine that we make a great success with the multiplication game. Users

start using it from thousands to millions, and soon enough the cloud

server we chose starts running low on resources and not responding on

time to the multiplication checks. So we want to scale our system up and

apply some load balancing techniques.

Chapter 4 Starting with Microservices

110

If we would have one single deployable artifact (the entire system) the

only thing we can do is create several instances of that one. But that could

imply wasting resources, or at least not being as flexible as we could. If we

have multiple services, we can choose how to scale up, and a valid strategy

for this case could be scaling the multiplication service up to cope with

our new needs, but not the gamification one since it’s not so important

if points and leaderboards are calculated with a delay. Of course, that

strategy is more complex to achieve than the previous one, but let’s not

forget that servers and cloud computing cost money, and saving money is

good for every software project.

�Connecting Microservices
We will create gamification logic in a separate microservice. It should

somehow connect with our existing business process of solving an

attempt and getting feedback, extending it to be solving an attempt, getting

feedback, and winning points.

How do we span our process across those two microservices? If you ask

this question to people who never worked with an event-driven approach,

you’ll get usually some of these answers:

	 1.	 They could share the database so the gamification

service can use the data there directly.

	 2.	 The gamification service could poll data periodically

from the multiplication service and process it as needed

to assign points, badges, etc. That could be done by

exposing some extra REST APIs in our existing service.

	 3.	 When something happens in the multiplication

service (i.e., an attempt is sent), this one will call

gamification service and pass the data, so this one

can update the game stats. This is a kind of Remote

Procedure Call (RPC) approach.

Chapter 4 Starting with Microservices

111

Let’s analyze these alternatives. Option 1 is not a good approach since

many of the advantages of decoupling contexts would be lost the very

moment that services can access and mix up each other’s data.

Option 2 sounds better, but requires constant polling for new data and

keeping track of which attempts have been already processed (for instance,

by asking for attempts sent since the last time gamification processed

them).

Option 3 could be preferred over Option 2 since, in this case, we

don’t need the polling mechanism. But there is still one thing that

can be improved: multiplication service does not need to know about

gamification service. We should be able to design a system in which our

multiplication service can live without gamification and still behave as it is

now in the current status of the application.

So we can go for an improved variation of the third option, designing

a way of communication in which services are as decoupled as possible.

Multiplication will notify—to whoever is interested—that a new

multiplication attempt has been entered in the system, by sending an

event to a message bus. In the future, other pieces of logic could connect

their business processes in a transparent way to the existing one without

an impact on the others:

•	 Do we want to send an e-mail to the administrator

whenever a user exhibits a suspicious behavior,

meaning too many consecutive correct attempts? We

subscribe to the same MultiplicationSolvedEvent

and perform our business logic in a different

microservice.

•	 Do we want to gather analytics and build statistics like

correct attempts per user, per time of the day, etc.?

It’s also possible with a new microservice, without

impacting the others.

Chapter 4 Starting with Microservices

112

•	 Do we want to add a social network plugin to post

new correctly-solved attempts? Great, that’s another

microservice consuming the same event and doing its

part independently.

As you can see, designing our functionality following these reactive

patterns give us a lot of flexibility. This way of modeling our architecture is

known as event-driven architecture or reactive systems.

However, the event-driven strategy doesn’t fit in all the interactions

required between microservices. Within our business processes we

may have scenarios in which services need data from each other, not

necessarily related to an event. In those cases, we can’t use an event-

driven approach since they’re matching a request-response pattern. An

example of that, based on our previous examples, would be the social

network service. That one would need to access the user alias (and

probably some other to-be-implemented details). To illustrate how this

way of communication combines with an event-driven approach, we cover

a practical case using our application.

�Event-Driven Architecture
In this type of architecture, the different microservices send events

whenever an important action happens. Those events are exchanged

between microservices through a message broker (also called sometimes

event bus). Others can subscribe to events for which they are interested

and react to them.

Note an important concept: an action that already happened. Others

can’t change it and can’t prevent it from happening. That’s why event

names are commonly given as past actions: MultiplicationSolvedEvent.

What other microservices will do (if they are subscribed to this event) is

process it according to their own business logic, which could lead to other

events being published (e.g., ScoreUpdatedEvent). Systems based on this

Chapter 4 Starting with Microservices

113

action-reaction pattern are also known as reactive systems, a concept that

should not be confused with reactive programming (see https://tpd.io/

rprogsys), which is a programming style applied at a different level.

�Related Techniques
Event-driven architecture has an affinity for some other techniques:

event sourcing, domain-driven design, and CQRS. You can apply them

independently and you should always use them reasonably. When

designing your system, try not to be seduced by technology hypes, but use

them as tools to solve your problems.

Event sourcing is an approach to persist business entities. Instead

of modeling them with a static state that you can change over time, you

model them as sequences of immutable events. If we use a common

example such as Customer, there wouldn’t be a Customer table in your

data but a sequence of CustomerChanged events. Let’s imagine the case in

which we create a customer with given value name: John. We change it

to name: Jhonas and we notice we made a mistake and change it back to

name: John. In a traditional persistence method, if you check the data after

applying these changes, you will only see the name: John state. Using event

sourcing, your entity is the final status of reproducing the sequence of

events CustomerChanged -> name: John (created), CustomerChanged ->

name: Jhonas (mistake), CustomerChanged -> name: John (correction).

The common examples normally used for event sourcing are based on

banking applications, for which this pattern makes a lot of sense. Your

account is a compilation of transactions over time.

As you can imagine, event sourcing can be implemented easier in a

system that is based on events. However, it does not come for free: you

can design your event-driven architecture with a few events, but going

full event sourcing can increment significantly the number of events that

you need to model. The system will use event-driven architecture, but our

persistence is not based on event sourcing.

Chapter 4 Starting with Microservices

https://tpd.io/rprogsys
https://tpd.io/rprogsys

114

If you want to learn more about event sourcing, the article at https://

tpd.io/evsrc is a good starting point.

Domain-driven design (sometimes abbreviated as DDD) is a pattern

applied to software, first described by Eric Evans in his book Domain-

Driven Design: Tackling Complexity in the Heart of Software. More than a

pattern could be even defined as a philosophy for designing software, in

which your business domain is the core of your system.

When you follow DDD patterns, you can identify bounded contexts,

which are like subdomains that can be treated separately in your system.

This is very useful when designing microservices, since they can easily be

mapped to bounded contexts and benefit from the DDD approach. In this

book, we’re following some of these principles.

For extra reading about DDD, you can buy Eric Evans’ book or

download for free the InfoQ minibook at https://www.infoq.com/

minibooks/domain-driven-design-quickly.

CQRS (Command-Query Responsibility Segregation) is a pattern in

which the query model (for reading) and the command model (for writing)

are separated, thus enabling a very fast reading approach at the expense of

having a much more complex system. It can be used together with event

sourcing, being the event store the write model.

This article from Martin Fowler is a good starting point if you want to

read more about CQRS: https://martinfowler.com/bliki/CQRS.html.

�Pros and Cons of Event-Driven Architecture
Let’s use our application to explain the advantages and disadvantages

of an event-driven architecture in a practical way. Our scenario is the

following: if we send an attempt to solve a multiplication problem,

we’ll process it in the multiplication microservice and then send a

MultiplicationSolvedEvent. The new gamification microservice will

consume these types of events and assign a new score to the proper user.

They keep their data and their functionality separate.

Chapter 4 Starting with Microservices

https://tpd.io/evsrc
https://tpd.io/evsrc
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://www.infoq.com/minibooks/domain-driven-design-quickly
https://martinfowler.com/bliki/CQRS.html

115

As you’ll see, some of the following topics can’t be immediately

mapped to advantage or disadvantage. Those are characteristics of your

system that, on the one hand, may give you more work to do, but on the

other hand, you can benefit from.

�Loose Coupling

With event-driven architecture, we can achieve loose coupling between

our services, as described in the previous section when analyzing the

options to connect them. You can also split big processes into smaller

pieces, having them completed by multiple services in an independent

manner. In our system, the attempt-to-points process is divided into two

microservices.

This is a great advantage: we have our processes there, but they are

distributed. There is no place in the system that controls—and potentially

tangles—everything else.

�Transactions

On the other hand, in an architecture based on events you need to

assume that you don’t have ACID3 transactions across services anymore

(or understand that, if you want to support them, you need to introduce

complexity). Instead, you have eventual consistency, if you stop all

interactions with the system and let all the events propagate and be

consumed, you’ll get to a consistent state.

In our scenario, if the gamification service is down and we

don’t implement any mechanism to prevent it, the score will not be

updated. This means that there is no atomicity in the transaction Solve

Multiplication - Get Points. A solution for this is using a message broker

implementation that guarantees delivery of the events at least once.

3�https://en.wikipedia.org/wiki/ACID

Chapter 4 Starting with Microservices

https://en.wikipedia.org/wiki/ACID

116

Not having transactions across services is not bad per se. The big risk here

is that it requires a change in the way you design and translate your functional

requirements (e.g., what happens if the process is interrupted at step N?).

�Fault Tolerance

As a consequence of not having (or minimizing) transactions, fault

tolerance becomes more important in these systems. One of the services

might not be able to complete its part of the process, but that shouldn’t

make the whole system fail. You need to prevent that from happening

(e.g., by aiming for high availability with microservice redundancy and

load-balancing) and also think of a way to recover from possible errors

(e.g., by having a maintenance console from which you can recreate events).

In any case, including fault tolerance is good in any kind of system, not

only those using an event-driven approach. If you implement it properly,

your distributed system can reach higher availability than a monolith. Big

transaction scopes failing in a monolith will be rolled-back and users can’t do

anything. Events are queued for later processing so small parts of the system

can die independently and restart automatically. That’s much more powerful.

�Orchestration and Monitoring

Not having a centralized orchestration layer might be problematic in

systems where it’s critical to have process monitoring. In an event-driven

architecture, you span processes across services that are triggering and

reacting to events. You can’t follow them in a centralized way: they’re

distributed across your microservices. To monitor such processes, you

need to implement mechanisms to trace the flow of events and you need

a common logging system where you can keep track of what’s going on

between services.

Let’s imagine that the system evolves and there are four different

services reacting to the first event (MultiplicationSolvedEvent), with

some other subsequent events happening after that (ScoreUpdatedEvent ->

Chapter 4 Starting with Microservices

117

LeaderboardPositionChangedEvent -> CongratulationsEmailSent).

It would be difficult to keep track of what’s happening as an end-to-end

business process, unless we manually maintain good documentation or

introduce something else that does automatic tracing in our code. How

do we know, by just looking at the system from a high perspective, that an

e-mail might be sent when a multiplication is solved? We can implement

our own integrated mechanism to correlate events (by tagging them as

they cross the services), or we can use an existing tool like Zipkin.4

�Evaluate Before Making a Decision

To sum up, it’s important for you to weigh these factors (and their

advantages and disadvantages) when you consider implementing a system

using an event-driven approach. If you go for it because of the advantages,

keep the drawbacks in mind and prepare the solutions.

�Further Reading
To avoid breaking the practical approach of this book, you won’t find here

an extensive description of event-driven architecture concepts, but I provide

you with some good articles in case you’re eager to dive into the topics:

•	 This article from nginx describes the basics

about event-driven architecture in the context of

microservices. The full series is great for grasping the

important concepts. https://tpd.io/edd-mgm

•	 This article from Microsoft is a little bit more technical,

but it provides extra insight into the communication.

Some parts are not easy to read though. https://tpd.

io/ms-ev-arc

4�https://github.com/openzipkin/zipkin

Chapter 4 Starting with Microservices

https://tpd.io/edd-mgm
https://tpd.io/ms-ev-arc
https://tpd.io/ms-ev-arc
https://github.com/openzipkin/zipkin

118

•	 This article from O’Reilly is also interesting since it

shows two different variations you can implement

depending on your orchestration needs. https://tpd.

io/edvars

�Applying Event-Driven Architecture
to the Application
At this point of the chapter, it’s clear that we’ll use a new Spring Boot

application to implement the gamification logic. We decided to move to

microservices: our functionality is split into the multiplication application

(now the multiplication microservice) and the gamification application

(gamification microservice).

Besides, we’ll use an event-driven architecture applied to our

microservices, so we need now to model the interactions between these

two different contexts (multiplication and gamification) as events.

Figure 4-2 shows the logical view that illustrates what we want to

achieve in the chapter.

Figure 4-2.  Logical view of the interactions between the two
contexts

Chapter 4 Starting with Microservices

https://tpd.io/edvars
https://tpd.io/edvars

119

We want the multiplication service to behave as it is now, with the

only difference that we need to communicate to interested parties that a

multiplication has been solved correctly. In order to do that, we model the

MultiplicationSolvedEvent, which represents that business action in the

system.

Then, we’ll model the new business logic for gamification in a new

service, which will consume events of our new type from the event bus.

When a new event is received, it processes the data contained in it and

assigns points and badges to the user.

INCREMENTAL CHANGE

Note that we don’t expose the gamification functionality to the user interface

in this chapter since that would mean lots of refactoring. We want to keep the

focus on the event-driven architecture patterns and respect the incremental/

Agile mindset of this book, so the needed changes to expose that functionality

will be covered in the next chapter. Spoiler: we won’t finish our new user story

by the end of this chapter. But no worries, you’ll get there soon.

�Going Event-Driven with RabbitMQ
and Spring AMQP
RabbitMQ is an open source message broker that is nicely integrated with

Spring Boot. It is the perfect tool to send and receive messages in this

application. Besides, it implements AMQP (Advanced Message Queuing

Protocol) so we can write our code in a generic way, avoiding coupling

with the tool itself.

If you want to get full details about the AMQP Model in RabbitMQ,

the official tutorial is a good starting point, where you can learn more

about the concepts of queue, exchange, and route, and also learn about

the different types of exchanges: Direct, Fanout, Topic, and Headers. See

https://www.rabbitmq.com/tutorials/amqp-concepts.html.

Chapter 4 Starting with Microservices

https://www.rabbitmq.com/tutorials/amqp-concepts.html

120

�Using RabbitMQ in Your System
Let’s start with defining what we need from RabbitMQ to achieve what

we defined in our logical view. Don’t worry about the concepts now; we’ll

extend them through this chapter.

•	 We’ll create an exchange, which is a channel

to which multiplication will send basic

MultiplicationSolvedEvent messages. We choose

JSON to serialize them, since it’s a widely-extended

format and also human-readable.

•	 Our exchange will be of type topic. This is to illustrate

the most flexible way of sending messages.

•	 We’ll send our event message with a routing key called

multiplication.solved.

•	 On the subscriber side (the gamification microservice),

we’ll create a queue and bind it to our topic exchange

to receive the messages we’re interested in.

•	 We’ll make our queues durable. By doing this, we make

sure that even if the broker (RabbitMQ) goes down,

we’ll be able to process the events whenever they are

back (because the messages are persisted).

The flexibility of topic exchanges and routing keys comes from the

fact that multiple subscribers can bind queues to the same exchange

with different routing keys, thus potentially receiving a different subset of

messages. Think of the example of an online store: a microservice in charge

of canceling orders would subscribe to order.cancelled, while the one

responsible for sending e-mails would subscribe to order.* (which means

whatever happens to orders: cancel, delayed, etc.). As you may guess,

designing exchanges, queues, and routing keys is not easy, especially if you

want to achieve optimal performance. I recommend that you go through

Chapter 4 Starting with Microservices

121

the Spring AMQP tutorial5 on the RabbitMQ web site to get familiar

with all these concepts. Anyway, we cover this practical example while

implementing the subscriber’s side within the gamification microservice.

�Spring AMQP
We’ll interact with our RabbitMQ broker using Spring AMQP. All we need

to do from our Spring Boot applications to start using it is to include the

spring-boot-starter-amqp dependency.

We could configure our exchange and queue directly through

RabbitMQ (using the command line or the UI), but instead we’ll do that

from the Java code using Spring AMQP. The main advantage is that every

service keeps its AMQP configuration in control, not needing to depend on

a central place to maintain it.

However, the main drawback of not starting RabbitMQ fully-configured

is that services can’t assume, for instance, that the exchange is there before

they start. Our gamification microservice should contain configuration to

create the topic exchange, just in case it starts before the multiplication

microservice. However, that’s not a big issue since Spring AMQP will not

create duplicated exchanges or queues but take the existing ones if they

are already there.

�Sending Events from Multiplication
Let’s get practical! We want to make our existing multiplication

microservice work in an event-driven ecosystem. We made our technical

choices: RabbitMQ as a broker and Spring AMQP to interact with it from

the Java code.

5�https://www.rabbitmq.com/tutorials/tutorial-three-spring-amqp.html

Chapter 4 Starting with Microservices

https://www.rabbitmq.com/tutorials/tutorial-three-spring-amqp.html

122

Remember: we’re aiming to have multiplication sending a

MultiplicationSolvedEvent every time a new attempt is sent by a user.

Later we’ll implement our new gamification microservice, which will

subscribe to that event and react upon it.

�RabbitMQ Configuration
As mentioned, we need to edit the pom.xml file to include the new

dependency spring-boot-starter-amqp. This starter contains the

dependencies to use Spring AQMP (spring-messaging) and RabbitMQ

(spring-rabbit). See Listing 4-1.

Listing 4-1.  pom.xml (social-multiplication v5)

<dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-amqp</artifactId>

</dependency>

Now we can start modifying our code. We create a new class called

RabbitMQConfiguration under a new package called configuration. We

add the @Configuration annotation so Spring will use it when setting up

the application context to generate the beans that we’ll define. This class

will be automatically processed since it’s located in a child package with

respect to our main Application class, and our @SpringBootApplication

annotation includes @ComponentScan.

From our publisher’s side (multiplication), the minimum

configuration we need is a TopicExchange to send our event. But we’ll also

add configuration to change the default message format to JSON; later

we’ll see why. See Listing 4-2.

Chapter 4 Starting with Microservices

123

Listing 4-2.  RabbitMQConfiguration.java (social-multiplication v5)

/**

 * Configures RabbitMQ to use events in our application.

 */

@Configuration

public class RabbitMQConfiguration {

 @Bean

 �public TopicExchange multiplicationExchange(@

Value("${multiplication.exchange}") final String

exchangeName) {

 return new TopicExchange(exchangeName);

 }

 @Bean

 �public RabbitTemplate rabbitTemplate(final

ConnectionFactory connectionFactory) {

 �final RabbitTemplate rabbitTemplate = new Rabbit

Template(connectionFactory);

 �rabbitTemplate.setMessageConverter(producerJackson2

MessageConverter());

 return rabbitTemplate;

 }

 @Bean

 �public Jackson2JsonMessageConverter producer

Jackson2MessageConverter() {

 return new Jackson2JsonMessageConverter();

 }

}

Chapter 4 Starting with Microservices

124

•	 We create the TopicExchange bean using a name

defined by us in a property that we need to add

to our application.properties file (a new line

multiplication.exchange=multiplication_

exchange). The name itself is not important but take

into account that we’ll need to use the same one when

we configure our new gamification microservice. The

@Value annotation and the syntax inside are the way to

inject a property value in Spring Boot.

•	 With the second and third methods, we change the

default serialization mechanism. The last one injects

a Jackson2JsonMessageConverter, which takes

Java objects and serializes them to JSON. With the

rabbitTemplate() bean declaration, we override the

default RabbitTemplate injected by Spring. We take

as an argument the ConnectionFactory (injected

by Spring in the application context) and create a

RabbitTemplate bean that uses our JSON message

converter. Later we’ll inject that RabbitTemplate and

use it to publish our event message.

Changing the serialization method to JSON instead of using the

default Java serialization mechanism is good practice in general for several

reasons:

•	 Java serialization of messages uses a header

(__TypeId__) to tag the full name of the class. That

means we need all subscribers that are going to

deserialize the message to use the same class name,

in the same package. This introduces tight coupling

between services.

Chapter 4 Starting with Microservices

125

•	 If we want to connect in the future with other polyglot

services, we can’t rely on a Java serialization.

•	 Trying to analyze possible errors in the channel

(queues and exchanges) is a nightmare if you don’t use

a human-readable format (at least in early stages of

development).

If you want to check in detail the technical differences between these

two serialization mechanisms (JSON and Java Serialized Object), you can

read the article at https://tpd.io/rmqjson.

�Modeling the Event
Let’s create the piece of information that will be exchanged by these two

microservices: the event. Keep in mind the principles of the event-driven

architecture: an event happens in the past and should be generic (unaware

of the subscribers). We’ll indicate that a multiplication attempt has been

solved and whoever is subscribed to that is irrelevant for our multiplication

microservice.

We create this new class under a new package called event and make it

implement Serializable since that’s a requirement of the JSON message

converter. See Listing 4-3.

Listing 4-3.  MultiplicationSolvedEvent.java (social-multiplication v5)

package microservices.book.multiplication.event;

import lombok.EqualsAndHashCode;

import lombok.Getter;

import lombok.RequiredArgsConstructor;

import lombok.ToString;

import java.io.Serializable;

Chapter 4 Starting with Microservices

https://tpd.io/rmqjson

126

/**

 * Event that models the fact that a {@link microservices.book.

multiplication.domain.Multiplication}

 * has been solved in the system. Provides some context

information about the multiplication.

 */

@RequiredArgsConstructor

@Getter

@ToString

@EqualsAndHashCode

public class MultiplicationSolvedEvent implements Serializable

{

 private final Long multiplicationResultAttemptId;

 private final Long userId;

 private final boolean correct;

}

Let’s focus now on the contents. When modeling events, you have a wide

spectrum of options regarding the information you put there. In this case, we

could have included the whole MultiplicationResultAttempt object. That

would travel in the message together with the contents of the referenced

User and Multiplication objects. But why would you that? People who

follow that approach are normally based on the “just in case we need it” idea.

To illustrate the risks of fat events, I’ll use another example. Imagine that

we are receiving events when user details are updated, and we decided to

model the event including the changes made to the user. Think of the case

in which there are multiple subscribers, one of them is failing and the broker

is dispatching those rejected messages back again. Now the order of events

is not the real sequence of the changes. We can’t be sure on the consumer’s

side if that change reflects the latest status. As a possible solution, we could

use a timestamp on events, but then extra logic is needed on the consumer’s

end to handle time: discarding older changes, etc.

Chapter 4 Starting with Microservices

127

Including data in events modeling changes in a mutable object is

risky. In this case, it might be better to notify that the user with the given

identifier has been updated, and leave the consumers to ask for the latest

state whenever they decide to process their logic.

Another potential drawback of including too much data in

events can be shown in the following example: if in future we

include an extra microservice (e.g., a stats analyzer) and it needs to

use the timestamp of attempts, we could just add the timestamp to

MultiplicationSolvedEvent. But, in that case, we would be tailoring the

events from the publisher’s side to the needs of all our consumers. We

would have not only a fat event but also a smart publisher who knows

too much about the business logic of their consumers: an anti-pattern

of event-driven architecture. In general, it’s more advisable to let the

consumers ask for the data they need and avoid including it as part of the

event’s content.

Going back to our case, we have the advantage that our attempt

represents a reality that’s immutable: we don’t expect to modify attempts

once they’re processed by multiplication service. Using that in our

benefit, we can include a reference to the user (userId) and also pass a

boolean value indicating if the attempt was correct or not. This chunk

of information is generic and immutable, and can save some extra REST

requests from potential consumers (which is the side effect of having too

skinny events).

As you can see, there is no black and white approach, but it should

be clear at this point that modeling events is as important as modeling

your domain. Think carefully about which ones you need to start with

(don’t include too many of them at once) and try to keep them as simple

as possible, creating small, generic contents that are good enough for the

subscribers and consistent if they are received in an unexpected order.

Chapter 4 Starting with Microservices

128

�Sending the Event: Dispatcher Pattern
The event dispatcher (or event publisher) and event handler (or event

subscriber) are two common patterns for asynchronous communication.

Instead of having events being published or consumed across all your

classes, these centralized points for event input/output make your service

interactions easier to find and understand.

On the other hand, having all the event dispatchers or listeners in a

single class may end up with a huge class and a lot of redirection logic.

However, this can be seen as an advantage in a microservices architecture:

if the EventDispatcher or the EventHandler classes become too big, it’s

probably because your microservice is not so micro anymore. Why would

you deal with so many events within a single microservice? You should

reflect on that and try to identify if it is the case that your microservice

has too many responsibilities. It could also be that the microservice really

needs to handle many events; then a good solution is just split event

dispatchers/handlers into multiple classes, based on the business logic.

Let’s focus first on the multiplication microservice and see how to

implement the Dispatcher pattern there. Later in this chapter, we’ll

cover the subscriber’s logic when we navigate through the gamification

microservice’s codebase. See Listing 4-4.

Listing 4-4.  EventDispatcher.java (social-multiplication v5)

package microservices.book.multiplication.event;

import org.springframework.amqp.rabbit.core.RabbitTemplate;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.beans.factory.annotation.Value;

import org.springframework.stereotype.Component;

/**

 * Handles the communication with the Event Bus.

 */

Chapter 4 Starting with Microservices

129

@Component

public class EventDispatcher {

 private RabbitTemplate rabbitTemplate;

 �// The exchange to use to send anything related to

Multiplication

 private String multiplicationExchange;

 // The routing key to use to send this particular event

 private String multiplicationSolvedRoutingKey;

 @Autowired

 EventDispatcher(final RabbitTemplate rabbitTemplate,

 �@Value("${multiplication.exchange}") final

String multiplicationExchange,

 �@Value("${multiplication.solved.key}")

final String multiplicationSolved

RoutingKey) {

 this.rabbitTemplate = rabbitTemplate;

 this.multiplicationExchange = multiplicationExchange;

 �this.multiplicationSolvedRoutingKey = multiplication

SolvedRoutingKey;

 }

 �public void send(final MultiplicationSolvedEvent

multiplicationSolvedEvent) {

 rabbitTemplate.convertAndSend(

 multiplicationExchange,

 multiplicationSolvedRoutingKey,

 multiplicationSolvedEvent);

 }

}

Chapter 4 Starting with Microservices

130

The class gets the RabbitTemplate from the Spring’s application

context, together with the name of the exchange, and the routing

key from the application properties. Then we use the template to

convertAndSend our object (in this case, converted to JSON based on

the provided configuration). Besides, our MultiplicationSolvedEvent

will use the routing key multiplication.solved. Remember that this

event will be captured by the consumer’s queue using the routing pattern

multiplication.*. We’ll cover that later in the chapter. See Listing 4-5.

Listing 4-5.  Application.Properties: Adding RabbitMQ Values

(social-multiplication v5)

... (other properties)

RabbitMQ configuration

multiplication.exchange=multiplication_exchange

multiplication.solved.key=multiplication.solved

The only part we’re missing in our code is sending the event from our

business logic. As introduced in previous subsections, we’ll do that for

every attempt received from users. The change is very straightforward:

we just inject the EventDispatcher and use it to send a new

MultiplicationSolvedEvent.

It’s important to point out that Spring AMQP supports transactions.

Since we have our method annotated with @Transactional, the

event will not be sent in case of an exception even if we placed our

eventDispatcher.send() at the beginning of the method and the

exception happened afterward. For better readability, place the event

senders at the end of the logic, or at least after the action happens. See

Listing 4-6.

Chapter 4 Starting with Microservices

131

Listing 4-6.  MultiplicationServiceImpl.java: Adding Event Logic

(social-multiplication v5)

@Service

class MultiplicationServiceImpl implements

MultiplicationService {

 private RandomGeneratorService randomGeneratorService;

 �private MultiplicationResultAttemptRepository

attemptRepository;

 private UserRepository userRepository;

 private EventDispatcher eventDispatcher;

 @Autowired

 �public MultiplicationServiceImpl(final RandomGenerator

Service randomGeneratorService,

 �final MultiplicationResult

AttemptRepository attempt

Repository,

 �final UserRepository

userRepository,

 �final EventDispatcher

eventDispatcher) {

 this.randomGeneratorService = randomGeneratorService;

 this.attemptRepository = attemptRepository;

 this.userRepository = userRepository;

 this.eventDispatcher = eventDispatcher;

 }

 @Override

 public Multiplication createRandomMultiplication() {

 �int factorA = randomGeneratorService.generateRandom

Factor();

Chapter 4 Starting with Microservices

132

 �int factorB = randomGeneratorService.

generateRandomFactor();

 return new Multiplication(factorA, factorB);

 }

 @Transactional

 @Override

 �public boolean checkAttempt(final

MultiplicationResultAttempt attempt) {

 // Check if the user already exists for that alias

 �Optional<User> user = userRepository.

findByAlias(attempt.getUser().getAlias());

 // Avoids 'hack' attempts

 �Assert.isTrue(!attempt.isCorrect(), "You can't send an

attempt marked as correct!!");

 // Check if the attempt is correct

 boolean isCorrect = attempt.getResultAttempt() ==

 �attempt.getMultiplication().

getFactorA() *

 �attempt.getMultiplication().

getFactorB();

 �MultiplicationResultAttempt checkedAttempt = new

MultiplicationResultAttempt(

 user.orElse(attempt.getUser()),

 attempt.getMultiplication(),

 attempt.getResultAttempt(),

 isCorrect

);

Chapter 4 Starting with Microservices

133

 // Stores the attempt

 attemptRepository.save(checkedAttempt);

 // Communicates the result via Event

 eventDispatcher.send(

 �new MultiplicationSolvedEvent(checkedAttempt.

getId(),

 checkedAttempt.getUser().getId(),

 checkedAttempt.isCorrect())

);

 return isCorrect;

 }

 @Override

 �public List<MultiplicationResultAttempt> getStatsForUser

(String userAlias) {

 �return attemptRepository.findTop5ByUserAliasOrderBy

IdDesc(userAlias);

 }

}

EXERCISE

We updated the logic to include the EventDispatcher and our tests

will still pass, but it’s not complete anymore. We want to use Mockito

to verify that, within our logic, a correct event is sent. Update the test to

include that assertion. If you need help, you can check the solution in the

MultiplicationServiceImplTest class (social-multiplication v5).

Chapter 4 Starting with Microservices

134

�Deeper Look at the New Gamification
Microservice
�Code Overview

Within this section, we’ll cover the implementation of our new

Gamification microservice and we will see how to receive events from the

existing multiplication microservice, which we just modified.

Given that this is the second Spring Boot application we build, we

won’t review all the details. Instead, we’ll focus on the most interesting

parts. In any case, the Exercise blocks will guide you through the rest of the

changes needed.

SOURCE CODE AVAILABLE WITH THE BOOK: V5

You can find all the code related to this chapter (both multiplication and

gamification microservices) inside the v5 repository on GitHub (the social-

multiplication and gamification projects) at: https://github.

com/microservices-practical.

Exercise

Prior to starting coding the new microservice, you need to create a project for

it. As you did before, you can use Spring Initializr (http://start.spring.io). Call

the new application gamification and use the microservices.book.

gamification package. Besides the Web dependency, you should also

include Lombok, H2, and AMQP.

After extracting the project, open the pom.xml and align the dependency

versions to the ones in the multiplication application. This way, you avoid a

potentially different behavior from the one described in this book.

Chapter 4 Starting with Microservices

https://github.com/microservices-practical
https://github.com/microservices-practical
http://start.spring.io

135

�The Domain

First, let’s take some time to understand the gamification domain model.

It consists of the following:

•	 ScoreCard: Models one incremental set of points that a

given user gets at a given time.

•	 Badge: An enumeration of all possible badges in the

game.

•	 BadgeCard: Represents a badge linked to a certain user,

won at a certain time.

•	 LeaderBoardRow: A position in the leaderboard that is

the total score together with the user.

•	 GameStats: Score and badges for a given user. It can be

used for a given game iteration (one attempt’s result)

or for a collection of attempts (aggregating score and

badges).

Cards (score and badge) contain the moment in time they were

obtained. The result of a game iteration may contain one or more

ScoreCards and one or more BadgeCards. See Figure 4-3.

Figure 4-3.  The gamification domain model

Chapter 4 Starting with Microservices

136

Let’s take a quick look at the codebase for these domain classes. See

Listings 4-7 through 4-11.

Listing 4-7.  Badge.java (gamification v5)

package microservices.book.gamification.domain;

/**

 * �Enumeration with the different types of Badges that a user

can win.

 */

public enum Badge {

 // Badges depending on score

 BRONZE_MULTIPLICATOR,

 SILVER_MULTIPLICATOR,

 GOLD_MULTIPLICATOR,

 // Other badges won for different conditions

 FIRST_ATTEMPT,

 FIRST_WON

}

Listing 4-8.  BadgeCard.java (gamification v5)

/**

 * �This class links a Badge to a User. Contains also a

timestamp with the moment in which the user got it.

 */

@RequiredArgsConstructor

@Getter

@ToString

@EqualsAndHashCode

@Entity

Chapter 4 Starting with Microservices

137

public final class BadgeCard {

 @Id

 @GeneratedValue

 @Column(name = "BADGE_ID")

 private final Long badgeId;

 private final Long userId;

 private final long badgeTimestamp;

 private final Badge badge;

 // Empty constructor for JSON / JPA

 public BadgeCard() {

 this(null, null, 0, null);

 }

 public BadgeCard(final Long userId, final Badge badge) {

 this(null, userId, System.currentTimeMillis(), badge);

 }

}

Listing 4-9.  ScoreCard.java (gamification v5)

/**

 * This class represents the Score linked to an attempt in the game,

 * with an associated user and the timestamp in which the score

 * is registered.

 */

@RequiredArgsConstructor

@Getter

@ToString

@EqualsAndHashCode

@Entity

Chapter 4 Starting with Microservices

138

public final class ScoreCard {

 �// The default score assigned to this card, if not

specified.

 public static final int DEFAULT_SCORE = 10;

 @Id

 @GeneratedValue

 @Column(name = "CARD_ID")

 private final Long cardId;

 @Column(name = "USER_ID")

 private final Long userId;

 @Column(name = "ATTEMPT_ID")

 private final Long attemptId;

 @Column(name = "SCORE_TS")

 private final long scoreTimestamp;

 @Column(name = "SCORE")

 private final int score;

 // Empty constructor for JSON / JPA

 public ScoreCard() {

 this(null, null, null, 0, 0);

 }

 public ScoreCard(final Long userId, final Long attemptId) {

 �this(null, userId, attemptId, System.current

TimeMillis(), DEFAULT_SCORE);

 }

}

Chapter 4 Starting with Microservices

139

Listing 4-10.  GameStats.java (gamification v5)

/**

 * �This object contains the result of one or many iterations of

the game.

 * �It may contain any combination of {@link ScoreCard} objects

and {@link BadgeCard} objects.

 *

 * �It can be used as a delta (as a single game iteration) or to

represent the total amount of score / badges.

 */

@RequiredArgsConstructor

@Getter

@ToString

@EqualsAndHashCode

public final class GameStats {

 private final Long userId;

 private final int score;

 private final List<Badge> badges;

 // Empty constructor for JSON / JPA

 public GameStats() {

 this.userId = 0L;

 this.score = 0;

 this.badges = new ArrayList<>();

 }

 /**

 �* �Factory method to build an empty instance (zero points

and no badges)

 * @param userId the user's id

 �* �@return a {@link GameStats} object with zero score and

no badges

Chapter 4 Starting with Microservices

140

 */

 public static GameStats emptyStats(final Long userId) {

 �return new GameStats(userId, 0, Collections.

emptyList());

 }

 /**

 * @return an unmodifiable view of the badge cards list

 */

 public List<Badge> getBadges() {

 return Collections.unmodifiableList(badges);

 }

}

Listing 4-11.  LeaderBoardRow.java (gamification v5)

/**

 * Represents a line in our Leaderboard: it links a user to a

total score.

 */

@RequiredArgsConstructor

@Getter

@ToString

@EqualsAndHashCode

public final class LeaderBoardRow {

 private final Long userId;

 private final Long totalScore;

 // Empty constructor for JSON / JPA

 public LeaderBoardRow() {

 this(0L, 0L);

 }

}

Chapter 4 Starting with Microservices

141

�The Data

Strictly speaking, what we need to persist from our model is the total

score of a user and the linked badges. Instead of accumulating the score

in a single object/row, we will store the cards and aggregate them when

querying the total score of a user. This way, we keep the traceability of

user’s score over time.

Therefore, our persisted data will be composed of two tables, which are

direct representations of ScoreCard and BadgeCard classes.

First, let’s look at our repository for BadgeCard objects. Nothing new

there, using the CrudRepository from Spring Data and a query method

which, by naming conventions, will be processed as a query to get badges

for a given user, most recent first. See Listing 4-12.

Listing 4-12.  BadgeCardRepository.java (gamification v5)

package microservices.book.gamification.repository;

import microservices.book.gamification.domain.BadgeCard;

import org.springframework.data.repository.CrudRepository;

import java.util.List;

/**

 * Handles data operations with BadgeCards

 */

public interface BadgeCardRepository extends

CrudRepository<BadgeCard, Long> {

 /**

 * Retrieves all BadgeCards for a given user.

 * @param userId the id of the user to look for BadgeCards

 * @return the list of BadgeCards, sorted by most recent.

 */

Chapter 4 Starting with Microservices

142

 �List<BadgeCard> findByUserIdOrderByBadgeTimestampDesc

(final Long userId);

}

ScoreCardRepository is a little bit more interesting since in this case we

need an aggregation for the total score. For the sake of learning, the result

of the query will be mapped to a new object: a LeaderBoardRow. This is an

example of how the business model (the leaderboard) doesn’t need to map

one to one to the data model (an aggregation of scores). See Listing 4-13.

Listing 4-13.  ScoreCardRepository.java (gamification v5)

package microservices.book.gamification.repository;

import microservices.book.gamification.domain.LeaderBoardRow;

import microservices.book.gamification.domain.ScoreCard;

import org.springframework.data.jpa.repository.Query;

import org.springframework.data.repository.CrudRepository;

import org.springframework.data.repository.query.Param;

import java.util.List;

/**

 * Handles CRUD operations with ScoreCards

 */

public interface ScoreCardRepository extends

CrudRepository<ScoreCard, Long> {

 /**

 �* Gets the total score for a given user, being the sum of

the scores of all his ScoreCards.

 �* @param userId the id of the user for which the total

score should be retrieved

 * @return the total score for the given user

 */

Chapter 4 Starting with Microservices

143

 �@Query("SELECT SUM(s.score) FROM microservices.book.

gamification.domain.ScoreCard s WHERE s.userId = :userId

GROUP BY s.userId")

 �int getTotalScoreForUser(@Param("userId") final Long

userId);

 /**

 * �Retrieves a list of {@link LeaderBoardRow}s representing

the Leader Board of users and their total score.

 * @return the leader board, sorted by highest score first.

 */

 �@Query("SELECT NEW microservices.book.gamification.domain.

LeaderBoardRow(s.userId, SUM(s.score)) " +

 �"FROM microservices.book.gamification.domain.

ScoreCard s " +

 "GROUP BY s.userId ORDER BY SUM(s.score) DESC")

 List<LeaderBoardRow> findFirst10();

 /**

 * �Retrieves all the ScoreCards for a given user,

identified by his user id.

 * @param userId the id of the user

 * �@return a list containing all the ScoreCards for the

given user, sorted by most recent.

 */

 �List<ScoreCard> findByUserIdOrderByScoreTimestampDesc(final

Long userId);

}

This class gets closer to a real-life example, in which the magical

query methods based on naming patterns are not enough to accomplish

our goal. We need to use queries written in the Java Persistence Query

Language (JPQL). They are not native queries (specific of the underlying

Chapter 4 Starting with Microservices

144

database engine) but generic ones, based on the code. That’s a big power

of JPQL: we can use queries and still keep the database implementation

abstraction. JPQL provides a set of functions, operators, expressions,

etc., that should suffice to perform most queries. However, take into

account that this language is a specification and there are some database

implementations that may not support it completely.

Our query will create new LeaderBoardRow objects for the query

results, using the userId and the aggregation of the score for a given user.

It also covers the sorting of results with the highest score first.

�The Business Logic

There will be two main parts of the code in charge of the business logic of

the gamification microservice:

•	 The GameService interface and its implementation

GameServiceImpl: Used to calculate score and badges,

based on the received attempts.

•	 LeaderBoardService and LeaderBoardServiceImpl:

Used to retrieve the top 10 users with the highest score.

Let’s define the interfaces first. See Listings 4-14 and 4-15.

Listing 4-14.  GameService.java (gamification v5)

package microservices.book.gamification.service;

import microservices.book.gamification.domain.GameStats;

/**

 * This service includes the main logic for gamifying the

system.

 */

public interface GameService {

Chapter 4 Starting with Microservices

145

 /**

 * Process a new attempt from a given user.

 *

 * @param userId the user's unique id

 �* @param attemptId the attempt id, can be used to retrieve

extra data if needed

 * @param correct indicates if the attempt was correct

 *
 �* @return a {@link GameStats} object containing the new

score and badge cards obtained

 */

 �GameStats newAttemptForUser(Long userId, Long attemptId,

boolean correct);

 /**

 * Gets the game statistics for a given user

 * @param userId the user

 * @return the total statistics for that user

 */

 GameStats retrieveStatsForUser(Long userId);

}

Listing 4-15.  LeaderBoardService.java (gamification v5)

package microservices.book.gamification.service;

import microservices.book.gamification.domain.LeaderBoardRow;

import java.util.List;

/**

 * Provides methods to access the LeaderBoard with users and scores.

 */

public interface LeaderBoardService {

Chapter 4 Starting with Microservices

146

 /**

 �* �Retrieves the current leader board with the top score

users

 * @return the users with the highest score

 */

 List<LeaderBoardRow> getCurrentLeaderBoard();

}

EXERCISE

It’s TDD time! Now that you know how the interfaces look, write the unit tests

to verify their functionality before writing the real implementation. Remember

these tips:

•	 First, write empty implementation classes of the interfaces.

•	 Use when/given/then structure for better readability.

•	 �Cover all the use cases, including the badge scenarios: First

Won, Bronze (100 points or more), Silver (500 points or

more), and Gold (999 points or more).

You can find the completed tests in the v5 code repository, within the

gamification project.

The main game logic is inside the GameServiceImpl class. More

specifically, it’s inside the newAttemptForUser() method. Let’s go through

the implementation, shown in Listing 4-16.

Listing 4-16.  GameServiceImpl.java newAttemptForUser()

(gamification v5)

@Service

@Slf4j

class GameServiceImpl implements GameService {

Chapter 4 Starting with Microservices

147

 private ScoreCardRepository scoreCardRepository;

 private BadgeCardRepository badgeCardRepository;

 GameServiceImpl(ScoreCardRepository scoreCardRepository,

 BadgeCardRepository badgeCardRepository,

 this.scoreCardRepository = scoreCardRepository;

 this.badgeCardRepository = badgeCardRepository;

 }

 @Override

 public GameStats newAttemptForUser(final Long userId,

 final Long attemptId,

 final boolean correct) {

 �// For the first version we'll give points only if it's

correct

 if(correct) {

 �ScoreCard scoreCard = new ScoreCard(userId,

attemptId);

 scoreCardRepository.save(scoreCard);

 �log.info("User with id {} scored {} points for

attempt id {}",

 userId, scoreCard.getScore(), attemptId);

 �List<BadgeCard> badgeCards =

processForBadges(userId, attemptId);

 return new GameStats(userId, scoreCard.getScore(),

 �badgeCards.stream().

map(BadgeCard::getBadge)

 .collect(Collectors.toList()));

 }

 return GameStats.emptyStats(userId);

 }

Chapter 4 Starting with Microservices

148

 /**

 �* �Checks the total score and the different score cards

obtained

 �* to give new badges in case their conditions are met.

 */

 private List<BadgeCard> processForBadges(final Long userId,

 �final Long

attemptId) {

 List<BadgeCard> badgeCards = new ArrayList<>();

 �int totalScore = scoreCardRepository.

getTotalScoreForUser(userId);

 �log.info("New score for user {} is {}", userId,

totalScore);

 List<ScoreCard> scoreCardList = scoreCardRepository

 .findByUserIdOrderByScoreTimestampDesc(userId);

 List<BadgeCard> badgeCardList = badgeCardRepository

 .findByUserIdOrderByBadgeTimestampDesc(userId);

 // Badges depending on score

 checkAndGiveBadgeBasedOnScore(badgeCardList,

 �Badge.BRONZE_MULTIPLICATOR, totalScore, 100,

userId)

 .ifPresent(badgeCards::add);

 checkAndGiveBadgeBasedOnScore(badgeCardList,

 �Badge.SILVER_MULTIPLICATOR, totalScore, 500,

userId)

 .ifPresent(badgeCards::add);

 checkAndGiveBadgeBasedOnScore(badgeCardList,

 �Badge.GOLD_MULTIPLICATOR, totalScore, 999,

userId)

 .ifPresent(badgeCards::add);

Chapter 4 Starting with Microservices

149

 // First won badge

 if(scoreCardList.size() == 1 &&

 �!containsBadge(badgeCardList, Badge.

FIRST_WON)) {

 �BadgeCard firstWonBadge = giveBadgeToUser(Badge.

FIRST_WON, userId);

 badgeCards.add(firstWonBadge);

 }

 return badgeCards;

 }

 @Override

 public GameStats retrieveStatsForUser(final Long userId) {

 �int score = scoreCardRepository.

getTotalScoreForUser(userId);

 List<BadgeCard> badgeCards = badgeCardRepository

 .findByUserIdOrderByBadgeTimestampDesc(userId);

 return new GameStats(userId, score, badgeCards.stream()

 �.map(BadgeCard::getBadge).collect

(Collectors.toList()));

 }

 /**

 * Convenience method to check the current score against

 * the different thresholds to gain badges.

 * It also assigns badge to user if the conditions are met.

 */

 private Optional<BadgeCard> checkAndGiveBadgeBasedOnScore(

 �final List<BadgeCard> badgeCards, final Badge

badge,

 �final int score, final int scoreThreshold, final

Long userId) {

Chapter 4 Starting with Microservices

150

 �if(score >= scoreThreshold &&

!containsBadge(badgeCards, badge)) {

 return Optional.of(giveBadgeToUser(badge, userId));

 }

 return Optional.empty();

 }

 /**

 �* Checks if the passed list of badges includes the one

being checked

 */

 �private boolean containsBadge(final List<BadgeCard>

badgeCards,

 final Badge badge) {

 �return badgeCards.stream().anyMatch(b -> b.getBadge().

equals(badge));

 }

 /**

 * Assigns a new badge to the given user

 */

 �private BadgeCard giveBadgeToUser(final Badge badge, final

Long userId) {

 BadgeCard badgeCard = new BadgeCard(userId, badge);

 badgeCardRepository.save(badgeCard);

 �log.info("User with id {} won a new badge: {}", userId,

badge);

 return badgeCard;

 }

}

Chapter 4 Starting with Microservices

151

If we focus on the newAttemptForUser, we’ll understand the game

logic: when we receive a correct attempt, we create a ScoreCard object

(with a default score of 10) and persist it in the database. Then, we

invoke the method processForBadges(), which will query the database

for a given user ID and assign new badges when necessary. Finally, we

combine the scores with badges in a GameStats object and return this

result. The rest of the class is intended to help that method and a simple

retrieveStatsForUser() implementation.

Note that we haven’t covered yet the interaction of this microservice

with the multiplication microservice: there is no event logic. This is a good

practice to keep layers isolated: we don’t make our service layer dependent

on the interface, so we don’t pass the event as an argument. The link

between the event bus and the business logic is the EventHandler. This

way, we can replace the interface of our microservice without needing

changes in other layers (e.g., if we decide to remove the events and put

something else there).

EXERCISE

The service implementation LeaderBoardServiceImpl is pretty

straightforward: it will use its existing repository method to return the 10

users with the highest score. Try to build it. If you need help, you can find the

solution in the v5 code repository, within the gamification project.

�The REST API (Controllers)

An incoming event will trigger the main business logic in the gamification

service but still, we need to expose the results of the game. How many

points does a user have? What is the current leaderboard? These requests

will come from a user interface or client service accessing our system, so

we’ll create a REST API for them.

Chapter 4 Starting with Microservices

152

The LeaderBoardController exposes an endpoint called /leaders,

which will retrieve the current leaderboard. See Listing 4-17.

Listing 4-17.  LeaderBoardController.java (gamification v5)

/**

 * �This class implements a REST API for the Gamification

LeaderBoard service.

 */

@RestController

@RequestMapping("/leaders")

class LeaderBoardController {

 private final LeaderBoardService leaderBoardService;

 �public LeaderBoardController(final LeaderBoardService

leaderBoardService) {

 this.leaderBoardService = leaderBoardService;

 }

 @GetMapping

 public List<LeaderBoardRow> getLeaderBoard() {

 return leaderBoardService.getCurrentLeaderBoard();

 }

}

On the other hand, UserStatsController is taking care of the

endpoint /stats, and it returns a JSON representation of the GameStats

object: score and badges. Here we use a parameter userId to query for the

statistics of a given user. In this case, if we want statistics for a user with ID

9, we need to request GET /stats?userId=9. See Listing 4-18.

Chapter 4 Starting with Microservices

153

Listing 4-18.  UserStatsController.java (gamification v5))

/**

 * �This class implements a REST API for the Gamification User

Statistics service.

 */

@RestController

@RequestMapping("/stats")

class UserStatsController {

 private final GameService gameService;

 public UserStatsController(final GameService gameService) {

 this.gameService = gameService;

 }

 @GetMapping

 �public GameStats getStatsForUser(@RequestParam("userId")

final Long userId) {

 return gameService.retrieveStatsForUser(userId);

 }

}

Besides the code, we’re going to change the default HTTP application)

port to 8081, to avoid a collision when we start them together on the local

machine. To get this working, you need to set the Spring Boot’s property

server.port in gamification’s application.properties:

server.port=8081

Chapter 4 Starting with Microservices

154

�Receiving Events with RabbitMQ
�The Subscriber’s Side
Early in this chapter, we saw how to connect the multiplication

microservice with RabbitMQ and publish an event when a user sends an

attempt. Now let’s see how the subscriber looks (our gamification service).

�RabbitMQ Configuration
We’ll need to place a new class RabbitMQConfiguration as we did

for multiplication. But in this case, it’s going to be a little bit more

complicated. We have six methods: five declare beans and the last one

implements the interface RabbitListenerConfigurer.

To understand this configuration, the concept of binding a queue to an

exchange is an important one here. Our subscriber creates a queue from

which it’s going to consume messages. Those messages are published to

an exchange with a routing key (in our case multiplication.solved). This

is where the flexibility of a topic exchange resides: all the messages sent

through the exchange are “tagged” with a routing key, and the consumers

can select the messages that go to their queues by specifying either an

explicit routing key or a pattern (like in our case, multiplication.*)

when they bind their queues to the exchange. You can look at the official

RabbitMQ tutorial page6 to learn more about topics and to see various

examples of routing. See Listing 4-19.

Listing 4-19.  RabbitMQConfiguration.java (gamification v5)

/**

 * Configures RabbitMQ to use events in our application.

 */

6�https://www.rabbitmq.com/tutorials/tutorial-five-spring-amqp.html

Chapter 4 Starting with Microservices

https://www.rabbitmq.com/tutorials/tutorial-five-spring-amqp.html

155

@Configuration

public class RabbitMQConfiguration implements

RabbitListenerConfigurer {

 @Bean

 �public TopicExchange multiplicationExchange

(@Value("${multiplication.exchange}") final String

exchangeName) {

 return new TopicExchange(exchangeName);

 }

 @Bean

 �public Queue gamificationMultiplicationQueue

(@Value("${multiplication.queue}") final String

queueName) {

 return new Queue(queueName, true);

 }

 @Bean

 �Binding binding(final Queue queue, final TopicExchange

exchange,

 �@Value("${multiplication.anything.routing-

key}") final String routingKey) {

 �return BindingBuilder.bind(queue).to(exchange).

with(routingKey);

 }

 @Bean

 �public MappingJackson2MessageConverter consumer

Jackson2MessageConverter() {

 return new MappingJackson2MessageConverter();

 }

Chapter 4 Starting with Microservices

156

 @Bean

 �public DefaultMessageHandlerMethodFactory message

HandlerMethodFactory() {

 �DefaultMessageHandlerMethodFactory factory = new

DefaultMessageHandlerMethodFactory();

 �factory.setMessageConverter(consumerJackson2MessageConv

erter());

 return factory;

 }

 @Override

 �public void configureRabbitListeners(final Rabbit

ListenerEndpointRegistrar registrar) {

 �registrar.setMessageHandlerMethodFactory(messageHandler

MethodFactory());

 }

}

Let’s review some important parts within this class:

•	 The first three methods are to connect a new queue

(declared by gamificationMultiplicationQueue())

and a TopicExchange (declared by

multiplicationExchange()) by binding them together

(binding(), which takes the exchange and the queue

as arguments).

•	 We make the Queue durable (the second true argument

when creating it). We introduced this idea before: by

doing this we can process pending events even after the

broker goes down, given that they are persisted.

•	 Note that the value of the property multiplication.

exchange must be the same as defined in multiplication:

multiplication_exchange). We use the pattern

Chapter 4 Starting with Microservices

157

multiplication.* for the value of the routing key

property (multiplication.anything.routing-key).

For the queue name (multiplication.queue property),

we can use any convention we prefer. All these values

should be defined in the application.properties file.

•	 The last three methods configure JSON deserialization

in the subscriber. In this case, it’s done differently

if you compare it with our multiplication’s

RabbitMQConfiguration. Now we don’t use a

RabbitTemplate (since we’re not sending messages

from this microservice) but methods annotated with

@RabbitListener. Therefore we need to configure the

RabbitListenerEndpointRegistrar in a way that uses

a MappingJackson2MessageConverter.

Listing 4-20.  application.properties changes (gamification v5)

Other properties ...

RabbitMQ configuration

multiplication.exchange=multiplication_exchange

multiplication.solved.key=multiplication.solved

multiplication.queue=gamification_multiplication_queue

multiplication.anything.routing-key=multiplication.*

�The Event Handler
Remember that, when we introduced the event handler pattern, we did it

together with the event dispatcher. The goal is similar: having a centralized

place from where we can process the received events and trigger the

corresponding business logic.

Chapter 4 Starting with Microservices

158

We create as many methods annotated with @RabbitListener as

events to be consumed. This annotation handles all the complexity of

receiving a message from the broker through the queue that we defined

(we need to pass the queue name as a parameter to the annotation).

Since we’re passing the argument type MultiplicationSolvedEvent,

the message converter (set up in RabbitMQConfiguration) will deserialize

the received JSON to an object of this class. To avoid inter-dependencies

between our microservices, we copy our MultiplicationSolvedEvent

class to the gamification project. We’ll cover this idea more in detail at the

end of this chapter when we talk about domain isolation. See Listing 4-21.

Listing 4-21.  EventHandler.java (gamification v5)

package microservices.book.gamification.event;

import lombok.extern.slf4j.Slf4j;

import microservices.book.gamification.service.GameService;

import org.springframework.amqp.

AmqpRejectAndDontRequeueException;

import org.springframework.amqp.rabbit.annotation.RabbitListener;

import org.springframework.stereotype.Component;

/**

 * This class receives the events and triggers the associated

 * business logic.

 */

@Slf4j

@Component

class EventHandler {

 private GameService gameService;

 EventHandler(final GameService gameService) {

 this.gameService = gameService;

 }

Chapter 4 Starting with Microservices

159

 @RabbitListener(queues = "${multiplication.queue}")

 �void handleMultiplicationSolved(final Multiplication

SolvedEvent event) {

 �log.info("Multiplication Solved Event received: {}",

event.getMultiplicationResultAttemptId());

 try {

 gameService.newAttemptForUser(event.getUserId(),

 event.getMultiplicationResultAttemptId(),

 event.isCorrect());

 } catch (final Exception e) {

 �log.error("Error when trying to process

MultiplicationSolvedEvent", e);

 �// Avoids the event to be re-queued and

reprocessed.

 throw new AmqpRejectAndDontRequeueException(e);

 }

 }

}

Note that we’re also wrapping the logic inside a try-catch block and

throwing an AmqpRejectAndDontRequeueException in case an exception is

thrown. By doing that, we make sure the event is not repeatedly requeued

whenever something is wrong (which is the default behavior), but directly

rejected. Since we don’t have anything in place to handle rejected events,

they will be simply discarded. If you want to get deeper into good practices

with RabbitMQ, you can look at how to configure a dead letter exchange

and put our failing messages there for further processing (like retrying,

logging, or raising alerts).7

7�https://www.rabbitmq.com/dlx.html

Chapter 4 Starting with Microservices

https://www.rabbitmq.com/dlx.html

160

�Requesting Data Between Microservices

�Combining Reactive Patterns and REST
In the section “Connecting Microservices”, we briefly introduced the

concept of microservices calling each other to gather data. In this section,

we expand on the idea by using our architecture as a reference.

Imagine that we get a change to our gamification design. Our game

designers come up with a new badge called Lucky Number. They tell us

that the users can only get this badge if they solve a multiplication attempt

involving the number 42 (which seems to be a lucky number—at least for

them).

Let’s apply what we know so far to fit the new requirement into our

design. First, we can conclude that the context of that new business

logic is our gamification microservice: it’s the one that assigns badges

and this is a badge’s logic. However, we have a small issue: gamification

doesn’t know anything about the factors. They are not coming inside the

MultiplicationSolvedEvent.

Also, we know that doesn’t sound good to include the factors in our

event just because now it’s required in our consumer. In this case, it might

be simple and yet look like a generic event, but if you follow the approach of

tailoring publishers to consumers, you may end up with fat, too smart events.

When you want to share data across microservices, you don’t

do that using your reactive patterns (event-has-happened) but use a

request/response pattern instead. You could also do that using the same

underlying technologies (AMQP/RabbitMQ), but it’s much easier to

use one of the most common implementations of the request/response

pattern to transfer objects: REST APIs.

To solve this new challenge, the gamification microservice can contact

the multiplication microservice and ask for the factors of the multiplication

given the identifier of the attempt (contained in the event). Then, if it finds

the lucky number, it will assign the badge. Don’t get nervous if you’re

Chapter 4 Starting with Microservices

161

already visualizing this architecture and thinking that we’re going to

couple our microservices; in the next chapter, you’ll see how this approach

doesn’t prevent you from having a loosely coupled system. See Figure 4-4.

As you can see in the updated logical view, we need to expose

a new endpoint in the multiplication microservice to give access to

multiplication attempts (which include the multiplication factors) by their

attempt’s identifier. Then, we need to create a REST client in gamification

to retrieve the factors. Finally, we use them in our logic to assign the badge

if one of them is the lucky number.

EXERCISE

At this point in the book, creating an endpoint in the multiplication

service to retrieve a MultiplicationResultAttempt by ID should

be very easy. Make sure that it responds to GET /results/{id}

and don’t forget to include the tests. Hint: This time you should use a

Figure 4-4.  Updated logical view

Chapter 4 Starting with Microservices

162

@PathVariable annotation in the controller since the ID is embedded

in the URI and is not a parameter. Your new method’s declaration in

MultiplicationResultAttemptController should be:

@GetMapping("/{resultId}")

ResponseEntity getResultById(@PathVariable("resultId") Long

resultId)

Also, you’ll need to use the MultiplicationRepository, which will cause

a minor refactor of other classes. If you need help, check the solution located

in the social-multiplication project, inside the v5 folder.

�Keeping Domains Isolated
There is a major effect of including this new functionality in our system

that deserves some lines in the book: the gamification microservice will

need to handle attempts, so the attempt’s business concept needs to be

understood by both microservices. That means that we need to model a

MultiplicationResultAttempt inside gamification somehow.

Even though this might not seem a complex issue, it’s one of the key

factors of success or failure when you design a microservices architecture.

A common pitfall is thinking of extracting the domain package from

the multiplication microservice as a separate library that can be shared

with gamification, thus having access to MultiplicationResultAttempt.

It’s a very bad idea though—your domain would be out of control and

other microservices could potentially start relying on it for their logic, thus

introducing multiple inter-dependencies if you (or others) need updates

in the model. You should always keep ownership of the domain entities in

one microservice, so there is only one source of truth.

Chapter 4 Starting with Microservices

163

A better alternative is to generate simple copies of your model and

share them with others. This is actually an approach based on Data

Transfer Objects (DTOs). If you go this way, bear in mind that maintaining

those DTOs takes time and might also introduce dependencies if you

don’t follow some other good practices. For example, if those DTOs are

Java representations of JSON objects that you’re transferring through a

REST API, you should maintain different DTO packages per API version

or you’ll create a lot of headaches for your consumers (they won’t be able

to deserialize the JSON if you introduce changes in the structure). On the

other hand, having these DTO packages can save a lot of development time

if you have many API consumers, because they won’t need to replicate

data structures.

If you don’t mind dealing with bare responses (let’s say JSON) in your

consumers, the ideal approach is to keep the microservices as isolated

as possible: don’t share anything. This has the advantage of minimizing

dependencies: if you need only a couple of fields, you deserialize those

and ignore everything else. That way, your microservice will be impacted

only if those specific fields change.

An extra advantage of not sharing is that you can adapt the foreign

model entities as you wish: in this case, we’ll flatten the Attempt-

Multiplication-User structure to a single class, given that multiplication

doesn’t need such a structure.

Let’s get practical. On the gamification side, we’re going to create this

MultiplicationResultAttempt version in a new client.dto package.

This class contains factorA and factorB as fields. See Listing 4-22.

Listing 4-22.  MultiplicationResultAttempt.java (gamification v5)

package microservices.book.gamification.client.dto;

import com.fasterxml.jackson.databind.annotation.JsonDeserialize;

import lombok.EqualsAndHashCode;

import lombok.Getter;

Chapter 4 Starting with Microservices

164

import lombok.RequiredArgsConstructor;

import lombok.ToString;

import �microservices.book.gamification.client.

MultiplicationResultAttemptDeserializer;

/**

 * Identifies the attempt from a user to solve a multiplication.

 */

@RequiredArgsConstructor

@Getter

@ToString

@EqualsAndHashCode

@JsonDeserialize(using =

MultiplicationResultAttemptDeserializer.class)

public final class MultiplicationResultAttempt {

 private final String userAlias;

 private final int multiplicationFactorA;

 private final int multiplicationFactorB;

 private final int resultAttempt;

 private final boolean correct;

 // Empty constructor for JSON/JPA

 MultiplicationResultAttempt() {

 userAlias = null;

 multiplicationFactorA = -1;

 multiplicationFactorB = -1;

 resultAttempt = -1;

 correct = false;

 }

}

Chapter 4 Starting with Microservices

165

A simplified version of the original: flattened and without identifiers.

Note the @JsonDeserialize annotation pointing to a class that we don’t

have yet: it’s to instruct our @RestTemplate’s message converter to use

a special deserializer to read the JSON data. We need this since the

JSON structure we’ll receive doesn’t match with our Java class (since it’s

matching the original MultiplicationResultAttempt in the multiplication

microservice), so the default deserializer won’t work. We’ll cover that

implementation in the following subsection.

�Implementing the REST Client
To start with, we need to tell gamification how to find multiplication: we’ll

use a new line in our application.properties and reference it from the

code. For now, we will point it directly to the host and port in which we

know that the microservice is deployed. We’ll learn how to do this properly

in the next chapter when we go through service discovery and routing. See

Listing 4-23.

Listing 4-23.  application.properties (gamification v5)

REST client settings

multiplicationHost=http://localhost:8080

Let’s now implement the custom JSON deserializer for the

MultiplicationResultAttempt. We use some classes from the Jackson

library, which is included inside Spring Boot. See Listing 4-24.

Listing 4-24.  MultiplicationResultAttemptClient.java (gamification v5)

package microservices.book.gamification.client;

import com.fasterxml.jackson.core.JsonParser;

import com.fasterxml.jackson.core.JsonProcessingException;

import com.fasterxml.jackson.core.ObjectCodec;

Chapter 4 Starting with Microservices

166

import com.fasterxml.jackson.databind.DeserializationContext;

import com.fasterxml.jackson.databind.JsonDeserializer;

import com.fasterxml.jackson.databind.JsonNode;

import �microservices.book.gamification.client.dto.

MultiplicationResultAttempt;

import java.io.IOException;

/**

 * �Deserializes an attempt coming from the Multiplication

microservice

 * into the Gamification's representation of an attempt.

 */

public class MultiplicationResultAttemptDeserializer

 extends JsonDeserializer<MultiplicationResultAttempt> {

 @Override

 �public �MultiplicationResultAttempt deserialize(JsonParser

jsonParser,

 �DeserializationContext

deserializationContext)

 throws IOException, JsonProcessingException {

 ObjectCodec oc = jsonParser.getCodec();

 JsonNode node = oc.readTree(jsonParser);

 �return new �MultiplicationResultAttempt(node.

get("user").get("alias").asText(),

 �node.get("multiplication").get("factorA").asInt(),

 �node.get("multiplication").get("factorB").asInt(),

 node.get("resultAttempt").asInt(),

 node.get("correct").asBoolean());

 }

}

Chapter 4 Starting with Microservices

167

As you can see, it’s pretty readable. We need to create a subclass of

JsonDeserializer, passing the type we want to use as a result. Then, we

implement the deserialize() method, from which we get a JsonParser

that we can use to traverse the JSON node tree and get the values we’re

looking for.

The next step is to write an interface to abstract the communication

logic. From the business logic point of view, we just want to retrieve the

attempt, no matter which kind of technical interface we’re using. See

Listing 4-25.

Listing 4-25.  MultiplicationResultAttemptClient.java (gamification v5)

package microservices.book.gamification.client;

import microservices.book.gamification.client.dto.

MultiplicationResultAttempt;

/**

 * �This interface allows us to connect to the Multiplication

microservice.

 * Note that it's agnostic to the way of communication.

 */

public interface MultiplicationResultAttemptClient {

 �MultiplicationResultAttempt retrieveMultiplicationResultAtt

emptbyId(final Long multiplicationId);

}

For the implementation, we use RestTemplate, a class provided by

Spring that makes it very easy to communicate with REST APIs. To have it

available in our Spring’s application context, we need to configure it as a

bean. We’ll create a new configuration class to keep our code organized (in

the configuration package). See Listing 4-26.

Chapter 4 Starting with Microservices

168

Listing 4-26.  RestClientConfiguration.java (gamification v5)

package microservices.book.gamification.configuration;

import org.springframework.boot.web.client.RestTemplateBuilder;

import org.springframework.context.annotation.Bean;

import org.springframework.context.annotation.Configuration;

import org.springframework.web.client.RestTemplate;

/**

 * Configures the REST client in our application

 */

@Configuration

public class RestClientConfiguration {

 @Bean

 �public RestTemplate restTemplate(RestTemplateBuilder builder) {

 return builder.build();

 }

}

Then, we can inject the RestTemplate in MultiplicationResult

AttemptClientImpl, together with the multiplicationHost property, and

perform a GET request with the passed identifier. See Listing 4-27.

Listing 4-27.  MultiplicationResultAttemptClientImpl.java

(gamification v5)

package microservices.book.gamification.client;

import �microservices.book.gamification.client.dto.

MultiplicationResultAttempt;

import org.springframework.beans.factory.annotation.Autowired;

import org.springframework.beans.factory.annotation.Value;

import org.springframework.stereotype.Component;

Chapter 4 Starting with Microservices

169

import org.springframework.web.client.RestTemplate;

/**

 * �This implementation of MultiplicationResultAttemptClient

interface connects to

 * the Multiplication microservice via REST.

 */

@Component

class �MultiplicationResultAttemptClientImpl implements

MultiplicationResultAttemptClient {

 private final RestTemplate restTemplate;

 private final String multiplicationHost;

 @Autowired

 �public �MultiplicationResultAttemptClientImpl

(final RestTemplate restTemplate,

 �@Value("${multiplicationHost}") final String

multiplicationHost) {

 this.restTemplate = restTemplate;

 this.multiplicationHost = multiplicationHost;

 }

 @Override

 �public MultiplicationResultAttempt retrieveMultiplication

ResultAttemptbyId(final Long multiplicationResultAttemptId) {

 return restTemplate.getForObject(

 �multiplicationHost + "/results/" +

multiplicationResultAttemptId,

 MultiplicationResultAttempt.class);

 }

}

Chapter 4 Starting with Microservices

170

We don’t need to link the deserializer here, since we set the annotation

inside MultiplicationResultAttempt. The getForObject() method

takes the class as an argument, then infers that it should use the custom

deserializer.

EXERCISE

You can try to finish this task by yourself! You can follow TDD again,

updating GameServiceImplTest to verify that the new badge is assigned

to the users whenever they’re sending an attempt with the number 42

as one of the factors. You’ll need to create the new badge and adapt the

GameServiceImpl class.

We will cover the business logic implementation but will leave the tests

out of the book (since they are easy and don’t add new concepts). If you

want to look at them, they are located in the v5 repository, under the

gamification project.

�Updating Gamification’s Business Logic
Now that we have all the pieces we need to connect both services, we can

update our business logic in gamification to check if conditions are set to

assign the new badge called Lucky Number to the user.

First, we need to create the new badge by adding a value to our

enumeration, as shown in Listing 4-28.

Listing 4-28.  MultiplicationResultAttemptClientImpl.java

(gamification v5)

public enum Badge {

 // ...

 FIRST_WON,

 LUCKY_NUMBER

}

Chapter 4 Starting with Microservices

171

Now we can inject the client in the game logic and process the

returned attempt to assign the badge if the lucky number is present. See

Listing 4-29.

Listing 4-29.  MultiplicationResultAttemptClientImpl.java

(gamification v5)

@Service

@Slf4j

class GameServiceImpl implements GameService {

 public static final int LUCKY_NUMBER = 42;

 private ScoreCardRepository scoreCardRepository;

 private BadgeCardRepository badgeCardRepository;

 private MultiplicationResultAttemptClient attemptClient;

 GameServiceImpl(ScoreCardRepository scoreCardRepository,

 BadgeCardRepository badgeCardRepository,

 M�ultiplicationResultAttemptClient

attemptClient) {

 this.scoreCardRepository = scoreCardRepository;

 this.badgeCardRepository = badgeCardRepository;

 this.attemptClient = attemptClient;

 }

 // ...

 /**

 * Checks the total score and the different score cards obtained

 * to give new badges in case their conditions are met.

 */

 �private List<BadgeCard> processForBadges(final Long userId,

 � final Long

attemptId) {

Chapter 4 Starting with Microservices

172

 �List<BadgeCard> badgeCards = new ArrayList<>();

 �int totalScore = scoreCardRepository.getTotal

ScoreForUser(userId);

 �log.info("New score for user {} is {}", userId, totalScore);

 List<ScoreCard> scoreCardList = scoreCardRepository

 .findByUserIdOrderByScoreTimestampDesc(userId);

 List<BadgeCard> badgeCardList = badgeCardRepository

 .findByUserIdOrderByBadgeTimestampDesc(userId);

 // Badges depending on score ...

 // First won badge ...

 // Lucky number badge

 MultiplicationResultAttempt attempt = attemptClient

 �.retrieveMultiplicationResultAttemptbyId(attemp

tId);

 if(!containsBadge(badgeCardList, Badge.LUCKY_NUMBER) &&

 �(LUCKY_NUMBER == attempt.getMultiplication

FactorA() ||

 �LUCKY_NUMBER == attempt.getMultiplication

FactorB())) {

 BadgeCard luckyNumberBadge = giveBadgeToUser(

 Badge.LUCKY_NUMBER, userId);

 badgeCards.add(luckyNumberBadge);

 }

 return badgeCards;

 }

 // ...

}

Chapter 4 Starting with Microservices

173

�Playing with the Microservices
In spite of not having finished user story 3, we can already test if our

microservices are working fine together.

If you didn’t do it yet, you need to download and install RabbitMQ.

Just follow the web site’s instructions for your operating system. Once you

install it, start the broker (the installation guides include instructions for

that as well). Make sure you also enable the rabbitmq_management plugin

with the command rabbitmq-plugins enable rabbitmq_management (see

https://www.rabbitmq.com/management.html if you need more details).

That will give you access to a Web UI to manage RabbitMQ (on http://

localhost:15672/ if you installed it on your local machine). Keep the

configuration as it is by default.

Once the RabbitMQ server is up, you can start both Spring Boot

applications. Remember that you can do that from your IDE by running

the class annotated with @SpringBootApplication or by packaging the

applications with mvn package and then running the resulting JAR files

with java -jar your_jar_file. If everything goes well, multiplication

should start on port 8080 and gamification on port 8081.

You can navigate to http://localhost:8080/index.html and start

trying to solve some multiplications, as you did in the previous chapter.

The difference now is that every time you send an attempt, a new event

is published. You can notice that by looking at the Gamification log, as

shown in Listing 4-30.

Listing 4-30.  Gamification Logging After Received Attempt

(gamification v5)

2017-09-15 18:43:25.050 INFO 16276 --- [main]

m.book.GamificationApplication : Started

GamificationApplication in 8.225 seconds (JVM running for 8.938)

2017-09-15 18:43:34.351 INFO 16276 --- [cTaskExecutor-1]

m.book.gamification.event.EventHandler : Multiplication

Solved Event received: 65

Chapter 4 Starting with Microservices

https://www.rabbitmq.com/management.html

174

2017-09-15 18:43:58.194 INFO 16276 --- [cTaskExecutor-1]

m.book.gamification.event.EventHandler : Multiplication

Solved Event received: 66

Hibernate: insert into score_card (card_id, attempt_id, score,

score_ts, user_id) values (null, ?, ?, ?, ?)

2017-09-15 18:43:58.253 INFO 16276 --- [cTaskExecutor-1]

m.b.g.service.GameServiceImpl : User with id 1

scored 10 points for attempt id 66

Hibernate: select sum(scorecard0_.score) as col_0_0_ from

score_card scorecard0_ where scorecard0_.user_id=? group by

scorecard0_.user_id

2017-09-15 18:43:58.274 INFO 16276 --- [cTaskExecutor-1]

m.b.g.service.GameServiceImpl : New score for user 1

is 50

Hibernate: select scorecard0_.card_id as card_id1_1_,

scorecard0_.attempt_id as attempt_2_1_, scorecard0_.score as

score3_1_, scorecard0_.score_ts as score_ts4_1_, scorecard0_.

user_id as user_id5_1_ from score_card scorecard0_ where

scorecard0_.user_id=? order by scorecard0_.score_ts desc

Hibernate: select badgecard0_.badge_id as badge_id1_0_,

badgecard0_.badge as badge2_0_, badgecard0_.badge_timestamp

as badge_ti3_0_, badgecard0_.user_id as user_id4_0_ from

badge_card badgecard0_ where badgecard0_.user_id=? order by

badgecard0_.badge_timestamp desc

If you send successful attempts, you can also see how the data is

persisted in the gamification database. Do you remember that you had

access to the multiplication database through the H2 console? You

do the same for gamification, but this time you’ll find it on http://

localhost:8081/h2-console/. Similarly, you need to make sure that

you use the proper URL to access it: jdbc:h2:file:~/gamification. If

you query the tables after sending correct attempts, you should see the

different badges and scores linked to users. See Figure 4-5.

Chapter 4 Starting with Microservices

175

To try the lucky number, we need to cheat the system a bit. It’s not so

easy to get a multiplication with a 42 factor by accident (although you can try

if you are a very patient person). If you prefer not to wait, you can use curl to

post your own multiplication to the system, as shown in Listing 4-31.

Listing 4-31.  Gamification: Posting a Multiplication with a Lucky

Number (gamification v5)

$ curl -X POST -H "Content-Type: application/json" -d '{"user":

{"alias":"moises"},"multiplication":{"factorA":"42","factorB":"

10"},"resultAttempt":"420"}' http://localhost:8080/results

If you’re running the application on a Windows machine, you can use a

terminal emulator to run curl (like Git Bash, included if you install the Git

package from https://git-scm.com). You can also use Postman,8 which

gives you a full UI from which you can send all types of requests. It’s quite

intuitive, but you can check the documentation if you need help.

8�https://www.getpostman.com/

Figure 4-5.  You can query the gamification database using H2

Chapter 4 Starting with Microservices

https://git-scm.com
https://www.getpostman.com/

176

�Summary
In this chapter, we introduced the concept of microservices. Before we

delved into the microservices idea, we analyzed our plan to approach

it: starting with a monolith. We used our application to compare how

expensive it would have been to begin directly with a microservices

approach, and covered the plan to prepare the monolith to be split later.

We received a new requirement in the form of a user story and went

through it to specify a second service to design and implement, based on

gamification techniques. We learned the basics of these techniques to

motivate players: points, badges, and leaderboards. Following a pragmatic

approach, we started with simple logic that works.

About microservice interactions, we saw that there are different ways

of connecting microservices together to fulfill business processes, and we

chose to go for an event-driven architecture. We reviewed its benefits and

applied it directly to our application to see it in practice. We compared it to

some other related techniques (event sourcing, CQRS, etc.) and saw how

they can work together, very nicely in some cases, taking in consideration

that a good evaluation of the technology versus the requirements is critical

to avoid being misled by technology hypes.

The second part of the chapter explained how to implement

the asynchronous communication that supports our event-driven

architecture, using Spring AMQP with RabbitMQ as implementations.

We did the first the change on the publisher’s side, the multiplication

microservice. Then, we went through the implementation of the new

microservice, the gamification Spring Boot application. On our way, we not

only saw how to implement the subscriber’s side, but we also looked at new

ways to send more advanced queries to the database and the gamification

model and logic in code.

Chapter 4 Starting with Microservices

177

We ended this chapter with a system based on microservices, but

we didn’t finish our user story 3: we need to provide UI access to the

leaderboard and, on the technical side, we need to fix some hard links we

made between our applications (by pointing to specific host and port).

The next chapter covers a refactoring of the code to create a properly

split system and, while we’re doing that, we’ll need to understand and

apply two important concepts behind microservices: routing and service

discovery.

Chapter 4 Starting with Microservices

179© Moises Macero 2017
M. Macero, Learn Microservices with Spring Boot,
https://doi.org/10.1007/978-1-4842-3165-4_5

CHAPTER 5

The Microservices
Journey Through
Tools
�Introduction
We completed the previous chapter with a pending task: finishing user

story 3 and letting our users see their progress in the game. The reason

is that, in order to build a good microservices architecture, we need the

UI part of the system extracted in a new service so it can interact as an

independent party with our multiplication and gamification services. We’ll

cover the reasoning with more detail in the next section.

As soon as we put the UI aside and communicate it to the

microservices, we’ll find out that our environment is getting even more

complicated. That shouldn’t be a surprise though, since we know that’s the

case of any microservices architecture. Many advantages, at the expense of

a more complex system.

If we do a rapid analysis of what’s going to happen in this chapter, it

will start with the UI calling two services by their specific hostname and

ports, spreading the infrastructure of our services with tightly-coupled

links between them, and creating a system that is not scalable and is

very hard to maintain. Since that’s a wrong approach, we’ll introduce the

180

concept of service discovery and how that can help us locate services by

keeping them loosely coupled. Then we’ll analyze how that scenario would

perform if we aim for high availability by scaling up our services. Finally,

after some evaluation of our architecture, we’ll get to the conclusion that

it’s actually a good idea to include a routing service (gateway) that can

handle the load balancing on the server side.

Most of the tools we’ll cover to accomplish our mission are part of the

Spring Cloud family: Eureka, Ribbon, Zuul, Hystrix, etc. We’ll also explain

how Sidecar and Feign work, which are part of Spring Cloud too. Don’t

you worry by the overwhelming amount of tools with fancy names, as we’ll

go through them one by one and explain why they’re useful and under

which circumstances you should rely on them. And, as usual, we’ll analyze

the problem we want to solve first and only after that we’ll implement the

solution.

Then we’ll reach the end of the chapter knowing all these fantastic

tools and where to find them and we’ll ask ourselves a question: could we

make it easier? Couldn’t we just focus on microservices’ business code

and forget about all the tooling around? The answers to these questions

are at the end of the chapter, when we’ll explain how the fully integrated

solutions for microservices work.

�Extracting the UI and Connecting
It to Gamification
First things first: I promised you good reasons for all the decisions we

take along the book. It’s time to explain why we want to extract our static

content out of the multiplication microservice. An image can illustrate this

very clearly, so look at Figure 5-1.

Chapter 5 The Microservices Journey Through Tools

181

On the left side of Figure 5-1, we can see how our system would look

if we move forward without the UI extraction. The static content will be

served by the multiplication microservice, as before. If we include the new

leaderboard table HTML/JavaScript, that code should have references to

the gamification’s REST API. That’s not a good design pattern though: the

UI would be no longer limited to multiplication functionalities since it

would include functionality that spans both microservices.

Figure 5-1.  Extracting the static content out of the multiplication
microservice

Chapter 5 The Microservices Journey Through Tools

182

The first disadvantage of that approach is inter-dependency: if we change

the gamification API, we would also need to change the multiplication

microservice and redeploy it afterward. The second disadvantage is that

we would lose flexibility to scale: the availability of the UI server is linked

to the availability of the multiplication microservice. Maybe we need more

resources in the future to serve UI pages, but we may not want to scale all

the functionality offered by the microservice.

The right side of Figure 5-1 shows the way to continue with our

microservices adventure. (It’s not a final step, but at least it takes us in the

right direction.) We extract the static content out of multiplication and put

it in a different web server component (that we’ll deploy on the 9090 port).

The JavaScript code will link to the REST APIs offered by multiplication

and gamification, which do not contain a user interface. With this

approach, we gain independence for changes in our UI and microservices,

which don’t depend on each other. Besides, we could now scale up or

down our UI server following a different strategy than the multiplication

microservice.

Now that we know our plan and the reasons behind it, let’s execute it.

�Moving the Static Content
The goal is to move all the static content (HTML, CSS, and JavaScript) to

a separate service. We don’t need Spring Boot for it: we just need a good,

reliable and—if possible—lightweight web server. There are many good

ones: Tomcat, Nginx, Jetty, etc. We’ll use Jetty since it’s built on top of Java,

making it very easy to install and execute on both Linux and Windows

platforms.1

1�You could also choose Tomcat for consistency with the Spring Boot microservices
but, in this case, I picked Jetty since it’s really easy to explain how to download
and configure it in the book.

Chapter 5 The Microservices Journey Through Tools

183

SOURCE CODE AVAILABLE WITH THE BOOK: V6

You can find the first source code’s upgrade of this chapter inside the v6

repository on GitHub: https://github.com/microservices-practical.

It includes the UI extraction, so you’ll find three folders with the different

services: Multiplication, Gamification, and UI.

First, we need to download and install Jetty in our system. We’ll

use a helpful Jetty feature that allows us to create a new Jetty Base in a

different folder, keeping separate the web server and the web app (and

its configuration). This is a nice approach because we normally would

like to keep our custom server configuration layer under version control

and separated from the server binary files, making much easier a future

solution for automated deployment.

We create a new jetty base (an ui folder) to place our static content

following the instructions on the section, “Creating a New Jetty Base”

(see https://tpd.io/runjetty). We’ll get two folders as a result: start.d

and webapps. This last one represents the root context of our server, so

we’ll create a new folder ui inside webapps and place there our static

context. Listing 5-1 shows the resulting file structure.

Listing 5-1.  UI File Structure (UI v6)

ui

├─── start.d
│ deploy.ini
│ http.ini
│
└─── webapps
 └─── ui

Chapter 5 The Microservices Journey Through Tools

https://github.com/microservices-practical
https://tpd.io/runjetty

184

 index.html

 multiplication-client.js

 styles.css

The last step is to open the http.ini file in our favorite text editor and

comment and change the value of the jetty.http.port to 9090 property,

so we run the UI on a different port number, thus avoiding a clash with our

Spring Boot applications.

Now we can run our Jetty server from the UI folder (the top-level one)

and navigate to http://localhost:9090/ui/index.html to see our web

page served from our new web server. See Listing 5-2.

Listing 5-2.  Running Jetty (UI v6)

[/code/v6/ui]$ java -jar [YOUR_JETTY_HOME_FOLDER]/start.jar

�Connecting UI with Gamification
Now it’s time to create a new JavaScript file gamification-client.js in

which will model our interactions with the gamification service.

See Listing 5-3.

Listing 5-3.  gamification-client.js (UI v6)

function updateLeaderBoard() {

 $.ajax({

 url: "http://localhost:8081/leaders"

 }).then(function(data) {

 $('#leaderboard-body').empty();

 data.forEach(function(row) {

 �$('#leaderboard-body').append('<tr><td>' + row.

userId + '</td>' +

Chapter 5 The Microservices Journey Through Tools

185

 '<td>' + row.totalScore + '</td>');

 });

 });

}

function updateStats(userId) {

 $.ajax({

 url: "http://localhost:8081/stats?userId=" + userId,

 success: function(data) {

 $('#stats-div').show();

 $('#stats-user-id').empty().append(userId);

 $('#stats-score').empty().append(data.score);

 �$('#stats-badges').empty().append(data.badges.

join());

 },

 error: function(data) {

 $('#stats-div').show();

 $('#stats-user-id').empty().append(userId);

 $('#stats-score').empty().append(0);

 $('#stats-badges').empty();

 }

 });

}

$(document).ready(function() {

 updateLeaderBoard();

 $("#refresh-leaderboard").click(function(event) {

 updateLeaderBoard();

 });

});

Chapter 5 The Microservices Journey Through Tools

186

It consists of a couple of functions that will perform GET requests to the

Gamification microservice (in this case running on port 8081) to retrieve

the data and populate the tables. Also, we’ll provide a button to refresh the

leaderboard (not surprisingly named refresh-leaderboard), so we attach

a click listener to it.

Note that we’re using the URLs http://localhost:8081/...

inside gamification-client, and http://localhost:8080/... in

multiplication-client.js. We’re not only hard-coding the URLs but also

pointing to specific services by their host addresses and ports, which may

be changing along with time. We should never use this approach, because

if we move our microservices around, we’ll need to change the host, port,

URI context (e.g., /results), etc. Another problem we have when pointing

at specific ports is that our system does not scale transparently. If we

want to include an extra instance of the multiplication service, we should

implement the logic to detect it and to do load balancing from our

web client.

Luckily, there are solutions to solve this dangerous approach we just

took. We’ll cover a better alternative in a next section within this chapter,

using service discovery and a gateway service. But before that, let’s adapt

our microservices to this new architecture and give a new look to our web

client.

Chapter 5 The Microservices Journey Through Tools

187

�Changes to Existing Services
Even though splitting the UI service into a new project could seem

harmless for multiplication and gamification, that’s not the case. We’ll

serve now the static content from an origin (localhost:9090) which

is different from where the backend services reside. In this case, port

numbers are not the same (8080 and 8081). We’ll have some issues with

this if we don’t apply changes in the backend, because Spring Security

is using the Same-Origin Policy by default. Note that, in our case, it’s

about different ports but this issue would happen as well if you work with

different hostnames.

You could see the issue by yourself if you skip this part, continue with

the UI changes, and execute all the services as explained by the end of

this section. Then, you should open the Development Tools within your

browser (e.g., by pressing Ctrl+Shift+I in Chrome) and make sure that the

console is visible (in Chrome it’s one of the default tabs at the bottom).

Now if you navigate to http://localhost:9090/ui/index.html, you’ll see

some red messages, as depicted in Figure 5-2.

Chapter 5 The Microservices Journey Through Tools

188

Figure 5-2.  CORS error messages

Chapter 5 The Microservices Journey Through Tools

189

To fix this problem, we need to enable CORS (Cross-Origin Resource

Sharing) for our backend services to allow requests coming from a

different origin. To accomplish that, we need to add some Spring

configuration to both of our services. Listing 5-4 shows the class added to

gamification; we also need to create an identical class inside multiplication

to enable CORS there as well.

Listing 5-4.  WebConfiguration.java (gamification v6)

package microservices.book.gamification.configuration;

import org.springframework.context.annotation.Configuration;

import org.springframework.web.servlet.config.annotation.

CorsRegistry;

import org.springframework.web.servlet.config.annotation.

EnableWebMvc;

import org.springframework.web.servlet.config.annotation.

WebMvcConfigurerAdapter;

/**

 * @author moises.macero

 */

@Configuration

@EnableWebMvc

public class WebConfiguration extends WebMvcConfigurerAdapter {

 /**

 * Enables Cross-Origin Resource Sharing (CORS)

 �* More info: http://docs.spring.io/

spring/docs/current/spring-framework-reference/html

/cors.html

 * @param registry

 */

Chapter 5 The Microservices Journey Through Tools

190

 @Override

 public void addCorsMappings(final CorsRegistry registry) {

 registry.addMapping("/**");

 }

}

Note that, for simplicity, we’re enabling CORS for every origin

(we didn’t specify any restriction) and for every mapping (with the

pattern /**). When your system is mature and your infrastructure is set up,

you may want to be stricter here by passing some property values to your

applications to allow only some specific domains as origins. For extended

details on how to fine-tune your configuration, read the official Spring

documentation at https://tpd.io/spr-cors.

�A New, Better UI with (Almost) No Effort
We have delivered so far a very minimalistic UI design to keep it simple

and to release our first version of the application as soon as possible so

our users can start playing. Now, taking advantage from the extraction and

given that we need some room for our leaderboard, we’ll update the design

of our page using Bootstrap.

Regarding page layout, we’ll split it into two different areas:

•	 On the left side, we’ll place the multiplication attempt

form, and we’ll show the statistics to the user: total

score and badges (coming from gamification).

•	 On the right side, we’ll display the leaderboard with the

top users (coming from Gamification) and, below that,

the existing table with the latest attempts sent by the

user who just played (provided by the Multiplication

microservice).

Chapter 5 The Microservices Journey Through Tools

https://tpd.io/spr-cors

191

We won’t go into deep details about Bootstrap since they have a pretty

good documentation that’s very easy to follow (even for Java developers,

see http://getbootstrap.com/css/). The Grid system, Forms, and Buttons

will be the main features used in this application. See Listing 5-5.

Listing 5-5.  index.html Adding Bootstrap (gamification v6)

<!DOCTYPE html>

<html>

<head>

 <title>Multiplication v1</title>

 <link href="css/bootstrap.min.css" rel="stylesheet">

 �<script src="https://ajax.googleapis.com/ajax/libs/

jquery/3.1.1/jquery.min.js"></script>

 <script src="multiplication-client.js"></script>

 <script src="gamification-client.js"></script>

 �<meta name="viewport" content="width=device-width,

initial-scale=1">

</head>

<body>

<div class="container">

 <div class="row">

 <div class="col-md-12">

 �<h1 class="text-center">Welcome to Social

Multiplication</h1>

 </div>

 </div>

 <div class="row">

 <div class="col-md-6">

 <h3 class="text-center">Your new challenge is</h3>

 <h1 class="text-center">

Chapter 5 The Microservices Journey Through Tools

http://getbootstrap.com/css/

192

 � x <span

class="multiplication-b">

 </h1>

 <p>

 <form id="attempt-form">

 <div class="form-group">

 <label for="result-attempt">Result?</label>

 �<input type="text" name="result-attempt"

id="result-attempt" class="form-control">

 </div>

 <div class="form-group">

 <label for="user-alias">Your alias:</label>

 �<input type="text" name="user-alias"

id="user-alias" class="form-control">

 </div>

 �<input type="submit" value="Check" class="btn

btn-default">

 </form>

 </p>

 <div class="result-message"></div>

 <div id="stats-div" style="display: none;">

 <h2>Your statistics</h2>

 <table id="stats" class="table">

 <tbody>

 <tr>

 <td class="info">User ID:</td>

 <td id="stats-user-id"></td>

 </tr>

 <tr>

 <td class="info">Score:</td>

 <td id="stats-score"></td>

Chapter 5 The Microservices Journey Through Tools

193

 </tr>

 <tr>

 <td class="info">Badges:</td>

 <td id="stats-badges"></td>

 </tr>

 </tbody>

 </table>

 </div>

 </div>

 <div class="col-md-6">

 <h3>Leaderboard</h3>

 <table id="leaderboard" class="table">

 <tr>

 <th>User ID</th>

 <th>Score</th>

 </tr>

 <tbody id="leaderboard-body"></tbody>

 </table>

 <div class="text-right">

 �<button id="refresh-leaderboard" class="btn

btn-default" type="submit">Refresh</button>

 </div>

 <div id="results-div" style="display: none;">

 <h2>Your latest attempts</h2>

 <table id="results" class="table">

 <tr>

 <th>Attempt ID</th>

 <th>Multiplication</th>

 <th>You entered</th>

 <th>Correct?</th>

Chapter 5 The Microservices Journey Through Tools

194

 </tr>

 <tbody id="results-body"></tbody>

 </table>

 </div>

 </div>

 </div>

</div>

<script src="js/bootstrap.min.js"></script>

</body>

</html>

As promised, no significant effort: the HTML is still compact and

readable. We removed the styles.css and now rely on the one provided

by Bootstrap (which we need to download from their page and place inside

our css folder). The main introduced changes are:

•	 There are new head and body inner tags to include

Bootstrap and our new gamification-client.js.

•	 Grid system tags have been added to distribute the

page in two areas, each of them taking half of the screen

(6/12): it’s just a set of divs and rows.

•	 The form has some style changes to make it look better

than before.

•	 The leaderboard section is now a table similar to the

latest attempts table, with a button to refresh it.

•	 The new stats table is now on the left side, and it uses

the info class in Bootstrap to give some color to the

first column.

•	 Both tables with statistics and latest attempts remain

hidden until a first attempt is sent.

Chapter 5 The Microservices Journey Through Tools

195

Besides that, we’ll change our existing multiplication-client.js to

support the new functionality. The main changes are:

•	 When the page loads, we retrieve the data not only for

the latest results (now renamed to updateResults) but

also for the information coming from Gamification—

Score and Badges (the new Stats table) and the

Leaderboard.

•	 Note that we introduced a delay (300 milliseconds) to

retrieve information from the server. This is to make

sure we give some time to the event to propagate and

we get the updated information. We just want to keep

the UI simple so this is a basic solution, but if you want

to explore better options, you can read about how the

server can notify the client when the data is ready using

technologies like WebSockets.

•	 The updateStats function has been renamed to

updateResults to avoid confusion. Also, this function

now returns the user identifier since it’s needed later by

the new updateStats to retrieve the information from

the server.

Listing 5-6.  multiplication-client.js (gamification v6)

function updateMultiplication() {

 $.ajax({

 url: "http://localhost:8080/multiplications/random"

 }).then(function(data) {

 // Cleans the form

 �$("#attempt-form").find("input[name='result-attempt']")

.val("");

Chapter 5 The Microservices Journey Through Tools

196

 �$("#attempt-form").find("input[name='user-alias']"

).val("");

 �// Gets a random challenge from API and loads the data

in the HTML

 $('.multiplication-a').empty().append(data.factorA);

 $('.multiplication-b').empty().append(data.factorB);

 });

}

function updateResults(alias) {

 var userId = -1;

 $.ajax({

 async: false,

 url: "http://localhost:8080/results?alias=" + alias,

 success: function(data) {

 $('#results-div').show();

 $('#results-body').empty();

 data.forEach(function(row) {

 �$('#results-body').append('<tr><td>' + row.id +

'</td>' +

 �'<td>' + row.multiplication.factorA + ' x '

+ row.multiplication.factorB + '</td>' +

 '<td>' + row.resultAttempt + '</td>' +

 �'<td>' + (row.correct === true ? 'YES' :

'NO') + '</td></tr>');

 });

 userId = data[0].user.id;

 }

 });

 return userId;

}

Chapter 5 The Microservices Journey Through Tools

197

$(document).ready(function() {

 updateMultiplication();

 $("#attempt-form").submit(function(event) {

 // Don't submit the form normally

 event.preventDefault();

 // Get some values from elements on the page

 var a = $('.multiplication-a').text();

 var b = $('.multiplication-b').text();

 var $form = $(this),

 �attempt = $form.find("input[name='result-

attempt']").val(),

 �userAlias = $form.find("input[name='user-alias']")

.val();

 �// Compose the data in the format that the API is expecting

 �var data = { user: { alias: userAlias}, multiplication:

{factorA: a, factorB: b}, resultAttempt: attempt};

 // Send the data using post

 $.ajax({

 url: 'http://localhost:8080/results',

 type: 'POST',

 data: JSON.stringify(data),

 contentType: "application/json; charset=utf-8",

 dataType: "json",

 async: false,

 success: function(result){

 if(result.correct) {

 $('.result-message').empty()

Chapter 5 The Microservices Journey Through Tools

198

 �.append("<p class='bg-success

text-center'>The result is correct!

Congratulations!</p>");

 } else {

 $('.result-message').empty()

 �.append("<p class='bg-danger

text-center'>Oops that's not correct!

But keep trying!</p>");

 }

 }

 });

 updateMultiplication();

 setTimeout(function(){

 var userId = updateResults(userAlias);

 updateStats(userId);

 updateLeaderBoard();

 }, 300);

 });

});

PRODUCTION READINESS: RESPONSIVE WEB DESIGN

Thanks to Bootstrap we added one key feature to our web application: now it’s

responsive. That means it will look good on smaller screens like smartphones,

adapting the content to the screen size. You can test it by resizing the browser

or using the web developer tools to simulate different devices.

Chapter 5 The Microservices Journey Through Tools

199

After the changes, we can go to our page and see the renovated

web client; it’s looking much nicer thanks to Bootstrap (see Figure 5-3).

Remember that now we have to include an extra stepto see our system

running:

	 1.	 Start the RabbitMQ broker.

	 2.	 Run the Multiplication microservice (now without

UI) from the IDE, or package it and run it from the

command line.

	 3.	 Do the same for gamification microservice.

	 4.	 Execute the Jetty server from the root UI folder

(running java -jar [YOUR_JETTY_HOME_FOLDER]/

start.jar). Then you can navigate to http://

localhost:9090/ui/index.html.

Figure 5-3.  The renovated web client

Chapter 5 The Microservices Journey Through Tools

200

�The Current Architecture
Let’s revisit the logical view of our system, which now includes the UI

server as a separate service and the browser, representing the real client

making requests to the backend services.

Our architecture is growing toward a real microservice architecture,

step by step. That’s great, because we want to benefit from advantages like

having more independent changes and a more flexible scalability. But

we’re not there yet.

As introduced when we connected the gamification’s UI leaderboard

to our backend services, we can still see two major issues with our current

design:

•	 Our UI page still knows the structure of the backend: It

needs to know that there is a gamification microservice

and a multiplication microservice. The problem here is

that, if we split or combine some of our microservices

in the future, we will impact the UI, requiring

modifications to align with the new backend structure.

•	 The UI has hardcoded URLs to locate multiplication

and gamification microservices. The same happens

with gamification and its link to multiplication. We

should change those direct links, otherwise, our system

won’t scale.

This is when a major transition in our architecture occurs. To solve

these problems, we need to introduce some patterns such as service

discovery, load balancing, the API gateway (or routing), etc. In the world

of microservices, they usually come together with the names of the tools

or frameworks that implement those patterns: Eureka, Consul, Ribbon,

Zuul, etc.

Chapter 5 The Microservices Journey Through Tools

201

As mentioned earlier, it’s difficult to find our way across these tools:

when do we need them? Should we implement all of them to have a proper

microservices architecture? Those are the questions that we’ll answer

in the coming sections. First, we’ll introduce service discovery and load

balancing. Once you understand how it works, we’ll cover the API gateway

pattern and see how all the pieces work together. Then, as usual, we’ll

apply these patterns to our code and see the benefits for our system.

PRODUCTION READINESS: DEPLOYMENT AND TESTING

You might have noticed that the system is getting more complex to manage.

Our current architecture status is already showing how important automated

deployment and testing become if we want to achieve success when

implementing a microservices architecture:

•	 �To start the full application, we need to start manually

the many parts of it (as in the previous section). This is

annoying. We could think of creating a script file to start up

these different parts, and that would be really good since

we would create our first automated deployment strategy.

We won’t cover that part within the book but, as you can

imagine, deploying your microservices is not as easy as

deploying a single monolith.

•	 �To feed the system with data and start testing it, we need to

go to our page and solve some attempts for some different

users, then verify that gamification is doing its job. Doing

this manually is a lot of work, and we’re not even covering

all different use cases. We need end-to-end tests, which are

covered in the next chapter.

Chapter 5 The Microservices Journey Through Tools

202

�Service Discovery and Load Balancing
�Service Discovery
Coming back to the current architecture as a reference, we left our

gamification microservice contacting the multiplication’s REST API to

retrieve some data. Gamification knows where to find multiplication since

it has a property pointing to http://localhost:8080/, and contact it to

retrieve the multiplication factors, as depicted in Figure 5-4.

Figure 5-4.  It’s almost a real microservice architecture

As mentioned, that’s a wrong design. Why should gamification know

the physical location (IP and port number) of multiplication? In an

environment with dozens of services that may be deployed everywhere,

Chapter 5 The Microservices Journey Through Tools

203

that approach is unmaintainable. It does not scale at all: what if we

introduce a second instance of the multiplication microservice? Which

one should we invoke from gamification?

Note that this is a similar problem to the one that we mentioned

when explaining how the UI shouldn’t know about our microservices

architecture. The difference is that, in this case, the communication is

between two microservices.

A Service Discovery tool will give us the solution we’re looking for.

These kinds of tools consist of several pieces:

•	 The Service Registry, which keeps track of all service

instances and their names.

•	 The Register Agent, which every service should use to

provide its configuration so others can find it.

•	 The Service Discovery Client, which contacts the

registry asking for a service using its alias.

There are different service discovery tools, among others Consul

and Eureka, that are nicely supported by Spring. We’ll use Eureka in this

book, which is part of the very popular Netflix OSS stack. Spring provides

wrappers for those Netflix tools within the successful Spring Cloud project:

Spring Cloud Netflix.

Keep in mind that you could follow similar instructions to the ones in

this book to make the following setup work with a different implementation

(for example, Consul). What’s important to understand is the concept—

we need to provide a mechanism to services so they can find each other’s

instances without hard-coding links between them. As we’ll also detail later,

behind each reference between services may exist one or several instances,

so the load balancing aspect is closely linked to service discovery.

Now that we introduced the concept and the involved parts of it,

let’s see—in an evolved logical view—how they can fit into our existing

architecture. Figure 5-5 is not going to be our final solution, but it’s good

Chapter 5 The Microservices Journey Through Tools

204

to have a look at this state to better understand how our entire system will

work, and later understand what are the differences and the synergies

between service discovery and the API gateway.

Figure 5-5.  How service discovery fits into our system

Chapter 5 The Microservices Journey Through Tools

205

We can see the three pieces of service discovery working together

in Figure 5-5. First, there is a new separate component: the Service

Registry. We will deploy it as a new microservice. Multiplication and

gamification microservices will register themselves by contacting it

when they start, using their Registry Agents. At that point, they will get

an alias in the registry, which is by default the microservice’s name

(we’ll see that in practice later). Now they can be found by using the

http://multiplication/ or http://gamification/ addresses, instead

of http://[HOST]:[PORT] URLs. However, for those addresses to work,

our microservices must use their Registry Client, which will translate the

aliases to specific URLs using the mapping located at the Service Registry.

In this scenario, only Gamification’s registry client would come into play,

translating http://multiplications/ into http://localhost:8080.

If you look at this pattern with some nostalgic vision, doesn’t it look

familiar to you? It’s pretty similar to a dynamic DNS: we assign an alias to a

service so it can move around locations without us needing to care about

the particular place (or IP) in which the service is deployed.

�Load Balancing
There is still a gap in our architecture: how does Eureka work with multiple

instances of the same service? The guys at Netflix solved that challenge

too: they implemented Ribbon to provide client-side load balancing

integrated with Eureka.

If we spin up two instances of multiplication microservice, they will

both register in Eureka with the same alias (since they have the same

application name). Let’s say we have our new instance located at http://

localhost:8082. When the gamification microservice, as a client, wants

to contact http://multiplication/, Eureka will return both URLs and

it’s up to the consumer to decide which instance should be called (using

Ribbon—the load balancer—together with Eureka’s registry client). By

default, Ribbon would apply a simple Round-Robin strategy, but we’ll see

in practice how to change that later. See Figure 5-6.

Chapter 5 The Microservices Journey Through Tools

206

Figure 5-6.  How load balancing fits into our system

Chapter 5 The Microservices Journey Through Tools

207

Note that client-side load balancing is a tricky concept since it does

not look natural when reading it for the first time. You might be asking

yourself: why should the caller worry about the load balancing part or

the number of instances of another service? You’re right, it shouldn’t.

That’s precisely why Eureka and Ribbon provide us with that functionality

transparently, so we don’t need to take care of that within the code. We call

the service as if it were only one instance of it. But remember: Ribbon just

hides the load balancing, but it’s still there, on your client.

THE PROBLEM OF OUR LOGICAL VIEW

The last figure showed us the UI connecting directly to one of the instances

of our multiplication microservice (on port 8080), which is a bad idea but it’s

the best we can do for now. The problem is that we can’t integrate service

discovery directly in the UI so, how can we solve this? The next section about

routing and the API gateway pattern will provide an answer to this problem.

�Polyglot Systems, Eureka, and Ribbon
There is a million-dollar question for polyglot-environment fans at this

point: what should we do if one of our microservices is not written using

Spring? How are we supposed to include Eureka and Ribbon? The answer

implies, as usual, adding an extra player in our microservices ecosystem:

the Spring Cloud Sidecar (see https://tpd.io/spr-sidecar). Sidecar is

a project inspired by Netflix Prana and, as its name suggests, requires you

to start an instance of this application appendix per non-Java application

instance for which you want to use Ribbon and Eureka (which would be

the motorbike’s part of your sidecar, I presume).

We won’t use Sidecar in our system, but you can see Figure 5-7

how that would look in the hypothetical case of having a gamification

microservice written in a different language other than Java.

Chapter 5 The Microservices Journey Through Tools

https://tpd.io/spr-sidecar

208

Figure 5-7.  The hypothetical case of having the gamification
microservice written in a different language other than Java

Chapter 5 The Microservices Journey Through Tools

209

The Sidecar microservice (deployed on port 5678 following the

documentation example) acts as a proxy and requires your application to

expose a health endpoint so it can be discovered and monitored about its

status. It uses Eureka to register (and update) the different instances of the

non-Java application (via the Registry Agent) and to get the available instances

of other microservices (via the Registry Client). The application attached to

Sidecar can then access to the Sidecar’s APIs to find instances of other services.

Note that it’s up to the non-Java application to do the load balancing, since it

will get the list of all the available instances (not a specific one) from Sidecar.

To achieve high availability, the Sidecar microservices should be

scaled and monitored as well, which introduces an extra required layer

of redundancy in your system. As you can imagine, maintaining this

approach with a few microservices can be fine, but having it for a big part

of your system might become a nightmare. It’s up to us (as team members,

technical leads, or architects) to balance these kinds of drawbacks when

designing our architecture and make a good choice. In this case, two valid

alternatives are either going for language programming consistency across

your system (coding most of your microservices in Java and Spring Boot)

or exploring a different load balancing/high availability strategy for the

non-Java microservices.

�Routing with an API Gateway
�The API Gateway Pattern
As you just saw, we can get a distributed system supported by Service

Discovery and Load Balancing, which allows us to scale up our

microservices without tightly coupling to our infrastructure. But there are

some problems that we still need to figure out:

•	 Our web client is running on a browser: It’s clear that it

can’t run any service discovery client nor take care of

load balancing. We need an extra piece to connect it to

Chapter 5 The Microservices Journey Through Tools

210

the microservices living in the backend, without losing

the load balancing capabilities.

•	 Tasks like authentication, API versioning, or any request

filtering in general, don’t fit into our distributed scenario yet.

A centralized point of control is required for our system

APIs (multiplication and gamification REST endpoints).

•	 Our REST APIs are following the system’s architecture,

thus making our consumers dependent on it. This

problem is more difficult to see, so we’ll cover it with an

example.

To tackle these challenges, we’ll implement an API Gateway in our

system. Following our current direction, we choose Zuul since it’s also

part of Spring Cloud Netflix and integrates easily with the rest of the tools

included in that framework. In a similar way to the service registry, Zuul

will work in our architecture as an extra microservice that we need to

connect to the others.

Let’s see step by step how the API gateway works so we can understand

how it solves our problems.

First, let’s park the UI load balancing issue assuming there is a

dedicated one per microservice and analyze our third challenge: having

our consumers aware of our microservices architecture. To better

understand why this is not a good idea, consider the hypothetical scenario

depicted in Figure 5-8: we want to extract the Statistics functionality to a

new microservice so we want to move the /stats/ endpoint there. Since

the consumer (in this case our web client) is aware of the microservices

structure, it needs to be updated as well to point to the new URL

(something like http://statsmanager/stats). This annoying side-effect

becomes even worse if we offer our REST APIs to external parties, which

should adapt their applications to every microservice refactoring work

we make. Instead of going that way, we want to create a REST API that

Chapter 5 The Microservices Journey Through Tools

211

doesn’t reveal our inner structure to our consumers. That will give us total

flexibility to later change parts of it without impacting others. What we

want to achieve is having URLs like http://application/leaders and

http://application/results (architecture-agnostic), instead of having

http://gamification/leaders and http://multiplication/results.

Figure 5-8.  The hypothetical case of splitting /stats to a new
microservice

The API gateway pattern will give us the solution to this problem. Our

chosen tool, Zuul, will handle the routing of requests to the proper service

once we configure some URL patterns, keeping the consumers totally

unaware of the internal structure. With that solution in place, we have total

flexibility to move our functionality around the system: we just need to

change the routing table, as shown in Figure 5-9.

Chapter 5 The Microservices Journey Through Tools

212

Note that introducing an API gateway in our system aligns nicely with

the monolith-first approach. Remember that we said it’s preferable to start

with big chunks of functionality in small monoliths, and then start splitting

them once the domain boundaries are clear and the system is evolving.

With an API gateway in front of our system, our API consumers will see

a monolith all the time, while we can evolve it transparently to have a

Figure 5-9.  The introduction of an API Gateway and a Routing table

Chapter 5 The Microservices Journey Through Tools

213

distributed, scalable architecture behind it. For the same reason, including

this pattern in an existing monolith is a perfect way of splitting it and

evolving it to a microservices architecture step by step.

With the API gateway, we could also integrate into a central place

features like Authentication since all the requests will go through that

service. We could use Spring Security for example, and integrate it with Zuul

with a custom Zuul filter. You can look at the API Gateway Pattern Tutorial

on Spring’s web site if you want to learn more about how to make that

solution work (see https://tpd.io/apigwsec). As an alternative, we could

also integrate within our Zuul microservice a third-party Authentication

and Authorization provider, such as Auth0 or Okta Single Sign-On.

Keep in mind that these benefits of the API gateway pattern—

abstracting our inner structure and centralizing the API access to our

system—don’t require service discovery or load balancing. We could also

set up a routing table, which points directly to the microservice instances,

based on some URI patterns in Zuul (that’s actually how we’ll start evolving

our code within the next section). However, we already learned that we

need those capabilities in our system to provide high availability and be

able to keep the system working even if some microservices are down.

Now we’re close to understanding how everything combines. In

Figure 5-9, we simplified our logical view and placed a load balancer in

front of every group of microservice instances. However, now that we have

an API gateway microservice that lives in our backend, what if we make it

responsible for the load balancing functionality for frontend requests? By

doing that, we solve the problem we haven’t tackled yet: not being able to

provide load balancing on the web client side. In the next subsection, we’ll

cover the integration of Zuul, Eureka, and Ribbon to fully understand how

these different tools (and architecture patterns) work together in the world

of microservices.

Chapter 5 The Microservices Journey Through Tools

https://tpd.io/apigwsec

214

PRODUCTION READINESS: EDGE SERVICES

Many people often get scared when conversations arise about having

centralized parts in a microservices architecture. Parts that are critical, like

routing and filtering, may become a single point of failure. This API gateway

service in particular, as the gate to our microservices, is also known as an

edge service.

The key to making this kind of services work in a microservices infrastructure

is to apply proper load balancing to them. To do that, we usually need to go

a level deep, and use solutions such as an infrastructure DNS load balancer, in

which for example our gateway located at http://gateway.ourwebapp.com

is backed by three different server instances. Most cloud providers offer these

services out of the box, and we can also implement it by ourselves with tools

like Nginx. If you want to know more about edge services with a practical

example from Netflix, see https://tpd.io/lb-ms.

�Zuul, Eureka, and Ribbon Working Together
Let’s focus now on how we can leverage our system by including service

discovery and load balancing in our API gateway. In other words, let’s learn

how Zuul, Eureka, and Ribbon work together to give us the full solution

we’re looking for.

Chapter 5 The Microservices Journey Through Tools

https://tpd.io/lb-ms

215

Figure 5-10 represents our system with the introduction of the

API gateway microservice, which relies on service discovery and load

balancing to find others and to allow others to find it.

Look first at the upper side of the figure: the web client is no longer

connected directly to the microservices but to the gateway instead,

sending all the requests through it (we’ll make it available on port 8000

within our system).

The gateway microservice, which will be implemented with Zuul

and Spring Boot, contains a routing table that points to microservice

aliases registered in Eureka, instead of physical addresses. This is where

the integration between Zuul, Eureka, and Ribbon combines perfectly

to give us a full solution based on an API gateway, service discovery, and

load balancing. When Zuul receives a request, it decomposes the URL

and locates the pattern in the routing table. Every pattern is mapped to

a microservice alias so Zuul uses Eureka to go to the registry and find

the available instances. Then Ribbon comes into play and picks one of

the instances based on the load balancing strategy (Round-Robin by

default). Finally, Zuul redirects the original request to the corresponding

microservice instance.

Chapter 5 The Microservices Journey Through Tools

216

Figure 5-10.  The system with the introduction of the API gateway
microservice

Chapter 5 The Microservices Journey Through Tools

217

Now, if we focus on the side of the figure below the gateway, we can

see how our gamification microservice has two options to retrieve the

results from the multiplication microservice. It can go like before and use

its own connection to the service registry, but it can also use the new API

gateway service to achieve its goal. Here we are facing one of the most

controversial topics in microservices: should the services use the gateway

to call each other or should they keep using Eureka/Ribbon for the internal

communication? There is no right or wrong answer here: it depends on

your scenario and, more specifically, on how your infrastructure is set up.

However, keeping the routing and load balancing capabilities centralized

can bring some advantages:

•	 We can keep microservices unaware of the location

of a given functionality. No matter if we’re splitting a

monolith or we decide to move some functionality

to a different microservice, we can have all the other

microservices working without any impact if they

always pass through the API gateway. We get even

looser coupling between our microservices.

•	 Load balancing is frequently a critical topic in our

infrastructure. Configuring it properly is complicated:

it may depend on geographical areas, network latency,

microservice load, etc. Normally, those policies

are better kept centralized and that means that we

shouldn’t rely on the implementation of every service.

Client-side load balancing is not a good approach for

backend services in these situations since every service

has a local view of the possible infrastructure issues,

but a global perspective may be required instead.

Chapter 5 The Microservices Journey Through Tools

218

On the other hand, if you take the decision of using the API gateway

to process all your requests within the system, take into account that it

becomes an even more critical edge service and you need to support it with

a good redundancy strategy to keep it highly available—internally and

externally.

For this application, we’ll use the API gateway microservice as the

only responsible for routing the requests, so we keep gamification and

multiplication microservices unaware of each other. If we translate that

to our last figure, it means that gamification and multiplication will use

Eureka and Ribbon only to locate the gateway, which could be itself

replicated in several instances. Since this is getting too theoretical, let’s

jump to the next section in which we’ll evolve our system step by step to

make this last logical view a reality.

�Hands-On Code
Finally! Now that we understood the concepts, we can apply these patterns

to our microservices architecture and include Zuul, Eureka and Ribbon in

our Spring Boot applications. Instead of doing that in a single step, we’ll

introduce these tools in two phases. The first one will be Zuul, our API

gateway service.

�Implementing the API Gateway with Zuul

SOURCE CODE AVAILABLE WITH THE BOOK: V7

You can find the new version of the code with the Gateway routing the

requests inside the v7 repository on GitHub: https://github.com/

microservices-practical.

Chapter 5 The Microservices Journey Through Tools

https://github.com/microservices-practical
https://github.com/microservices-practical

219

To add a gateway service with Zuul, we need to create a new Spring Boot

application. We can navigate again to the Spring Initialzr (http://start.

spring.io) and fill in our data, selecting Zuul as a dependency we want

to use. Our project name will be gateway and the package name will be

microservices.book.gateway, as shown in Figure 5-11.

Then we extract it, import it into our preferred IDE, and navigate

directly to our application.properties file (located under src/main/

resources). We’ll rename it to application.yml since, in this case, the

YAML format will make our configuration more readable.

To make our Spring Boot application behave as a Zuul gateway, we

just need to add an annotation to our main class: @EnableZuulProxy. See

Listing 5-7.

Figure 5-11.  Use Spring Initialzr to create the gateway microservice

Chapter 5 The Microservices Journey Through Tools

http://start.spring.io
http://start.spring.io

220

Listing 5-7.  GatewayApplication.java (gateway v7)

package microservices.book.gateway;

import org.springframework.boot.SpringApplication;

import �org.springframework.boot.autoconfigure.

SpringBootApplication;

import org.springframework.cloud.netflix.zuul.EnableZuulProxy;

@EnableZuulProxy

@SpringBootApplication

public class GatewayApplication {

 public static void main(String[] args) {

 SpringApplication.run(GatewayApplication.class, args);

 }

}

Zuul allows you to configure routing directly in the properties file,

which makes it very convenient and straightforward. In this case, we can

start with this configuration, as shown in Listing 5-8.

Listing 5-8.  application.yml (gateway v7)

server:

 port: 8000

zuul:

 prefix: /api

 routes:

 multiplications:

 path: /multiplications/**

 url: http://localhost:8080/multiplications

 results:

Chapter 5 The Microservices Journey Through Tools

221

 path: /results/**

 url: http://localhost:8080/results

 leaders:

 path: /leaders/**

 url: http://localhost:8081/leaders

 stats:

 path: /stats/**

 url: http://localhost:8081/stats

endpoints:

 trace:

 sensitive: false

ribbon:

 eureka:

 enabled: false

Let’s look at what we’re configuring within this file:

•	 The Gateway’s server port is changed to 8000.

Remember: that will be our entry point for all our REST

API consumers.

•	 The last part is setting the ribbon.eureka.enabled

property to false since we decided not to introduce

Eureka and Ribbon yet so we can evolve our

application in small increments.

•	 We also set Zuul’s /trace endpoint as not sensitive (not

requiring authentication). We’ll use it later to see Zuul

in action.

•	 The rest of the configuration (under zuul) is there to set

up routing.

Chapter 5 The Microservices Journey Through Tools

222

•	 We set a prefix for all our requests. All the requests

coming in need to have that part in the URL,

which will be removed by Zuul when redirecting

the request. In our example, the expected URL is

http://localhost:8000/api/multiplications

and it will be redirected to http://localhost:8080/

multiplications (the /api prefix is removed). It’s a

handy way to group routes and apply different policies.

We could also have two gateway configurations to

handle /internal and /public prefixes, for instance.

•	 For every different URL pattern, we configure the

routing to the proper service (hard-coding physical

addresses by now). Note that we have two patterns

pointing to the same service since, for instance, both

the /multiplications and /results entities are being

managed by the multiplication microservice.

The resulting mapping will be the following:

Request Pattern Target

http://localhost:8000/api/

multiplications/**

http://localhost:8080/

multiplications/**

http://localhost:8000/api/

results/**

http://localhost:8080/

results/**

http://localhost:8000/api/

leaders/**

http://localhost:8081/

leaders/**

http://localhost:8000/api/

stats/**

http://localhost:8081/

stats/**

Chapter 5 The Microservices Journey Through Tools

223

If we look at the request patterns, we notice how we managed to

achieve our first goal: now it’s possible to make requests to our application

to a central place. API consumers don’t know anything about our

microservices: they all go through http://localhost:8000.

The next step is to include a WebConfiguration class enabling

CORS for the gateway project too (as we did for the multiplication and

gamification microservices). This is needed here as well for the same

reason: the frontend, gateway, and microservices are located at different

origins (port numbers in our case).

Now we need to link everything. To apply the changes to our frontend,

we just modify our gamification and multiplication JavaScript clients to

point to the gateway service at http://localhost:8000/. Note that we also

need to append the prefix api/ to all our requests. Make sure to use this

new variable in all the API calls spread in both files. See Listing 5-9.

Listing 5-9.  gamification-client.js/multiplication-client.js Changing

Server URL (ui v7)

var SERVER_URL = "http://localhost:8000/api";

On the backend side, we need to update gamification to call

multiplication using the API gateway instead of doing so directly. To do

that, we need to update the property that we included in its application.

properties file, as shown in Listing 5-10.

Listing 5-10.  application.properties Changing Server URL

(gamification v7)

REST client settings

multiplicationHost=http://localhost:8000/api

Chapter 5 The Microservices Journey Through Tools

224

It looks like we got everything set up. Since the gateway is a

microservice itself, now we just need to start it together with the rest of our

existing services. Let’s summarize the steps to make our system work once

more:

	 1.	 Run the RabbitMQ server (if it’s not yet running in

the background).

	 2.	 Run the gateway microservice.

	 3.	 Run the multiplication microservice.

	 4.	 Run the gamification microservice.

	 5.	 Run the Jetty web server from the ui root folder.

Remember that you can run microservices directly from your

IDE, using mvnw spring-boot:run from the project’s root folder or by

packaging them (mvnw package) and using the java -jar [resulting-

artifact-name.jar]) command in the console. Also note that the order of

those steps is not important apart from the first one, which is required for

multiplication and gamification to work properly. You can run Steps 2-5 in

any order you prefer.

If we navigate to http://localhost:9090/ui/index.html, we

should see our application up and running. This time when we post new

multiplications and retrieve the leaderboard, we’re contacting the API

gateway instead of the microservice instances.

We can verify how Zuul works if, after some requests from the UI, we

navigate to http://localhost:8000/trace. There we’ll see all the requests

being handled by Zuul and their corresponding responses, including the

time taken to process them. If you do that from your browser, the JSON

response might be difficult to read, but you can copy/paste it into an

online formatter such as https://jsonformatter.org.

Chapter 5 The Microservices Journey Through Tools

https://jsonformatter.org

225

Figure 5-12 represents the current status of our system, with the

gateway routing the requests to the corresponding services. Note that there

is no service discovery in place yet, which is what we’ll do next.

Figure 5-12.  Current status of the system, with the gateway routing
the requests to the corresponding services

Chapter 5 The Microservices Journey Through Tools

226

�Implementing Service Discovery

Following our plan defined during the first part of the chapter, we’ll add service

discovery and load balancing to all our microservices, including our new

gateway service. Doing that, we’ll be able to safely scale and distribute our

services, since we won’t be bound anymore to specific host/port configurations.

SOURCE CODE AVAILABLE WITH THE BOOK: V8

You can find the new version of the code with service discovery (Eureka) and

load balancing (Ribbon), together with the API gateway service inside the v8

repository on GitHub: https://github.com/microservices-practical.

First, we’ll create the service registry. We could do that manually but for

simplicity let’s use the Spring Initializr again, at http://start.spring.io.

This time we only need to select the Eureka Server as a dependency. Name

the project service-registry and keep the package name as the default of

microservices.book.serviceregistry. See Figure 5-13.

Figure 5-13.  Use the Spring Initializr to create the service registry

Chapter 5 The Microservices Journey Through Tools

https://github.com/microservices-practical
http://start.spring.io/

227

As usual, we take the contents of the downloaded ZIP file and place it

together with the other services in our project structure and import it into

our IDE. The Spring assistant is only helping you create an empty project

with the right dependencies; it’s not configuring your service registry. Let’s

do that.

To convert our service into a Eureka Registry server, we also use an

annotation (as in the Gateway) in the application class:

@EnableEurekaServer. See Listing 5-11.

Listing 5-11.  ServiceRegistryApplication.java (service-registry v8)

package microservices.book.serviceregistry;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.

SpringBootApplication;

import org.springframework.cloud.netflix.eureka.server.

EnableEurekaServer;

@EnableEurekaServer

@SpringBootApplication

public class ServiceRegistryApplication {

 public static void main(String[] args) {

 �SpringApplication.run(ServiceRegistryApplication.class,

args);

 }

})

We also need to change the default server port of Spring Boot, 8080,

to the default port expected by Eureka Clients, which is 8761. We could

set it to any other port number but, in that case, we would need extra

configuration in all our microservices to override the default port. An

extra curious thing is that the Eureka registry will try to register itself using

Chapter 5 The Microservices Journey Through Tools

228

also the port 8761, so if you don’t change this port or disable the Eureka

feature for registering the own instance (eureka.client.register-with-

eureka=false), the application will fail when we start it because it’s not

able to find itself. We’ll just change the port to the default one since having

the server registering itself is a good practice so it can be later scaled up.

See Listing 5-12.

Listing 5-12.  application.properties (service-registry v8)

server.port=8761

That’s all we require to have a service registry with Eureka. We could

now run this skinny microservice as any other Spring Boot application, but

it’s not yet connected to anything else in our architecture.

It’s time to configure the rest of the services (social-multiplication,

gamification, and gateway) so they can include the Eureka client and

send their information to our new Eureka Server. To accomplish this, we

first must add the proper dependency to each service’s pom.xml file. The

changes we’ll introduce are:

	 1.	 A dependency management block to resolve the

Spring Cloud’s dependencies.

	 2.	 A new property to reference the Spring Cloud’s

version.

	 3.	 Our new dependency to use the service discovery,

spring-cloud-starter-eureka.

	 4.	 An extra dependency to expose the status of our

microservices, spring-boot-starter-actuator.

Usually, we’d just need to include the new dependencies (Steps 3

and 4) but, in case of gamification and multiplication microservices, the

first and second tasks are required because it’s the first time we use Spring

Cloud dependencies there. Let’s look at the pom.xml file for gamification,

Chapter 5 The Microservices Journey Through Tools

229

where you can spot the main differences (see Listing 5-13). Make sure to

apply the same changes to multiplication and to the API gateway, which in

this case already included the Spring Cloud configuration since we created

it with Zuul.

Listing 5-13.  pom.xml (gamification v8)

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 �xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>microservices.book</groupId>

 <artifactId>gamification-v8</artifactId>

 <version>0.8.0-SNAPSHOT</version>

 <packaging>jar</packaging>

 <name>gamification-v8</name>

 �<description>Social Multiplication App - Gamification

(Microservices - the Practical Way book)</description>

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>1.5.7.RELEASE</version>

 <relativePath/> <!-- lookup parent from repository -->

 </parent>

 <properties>

 �<project.build.sourceEncoding>UTF-8</project.build.

sourceEncoding>

Chapter 5 The Microservices Journey Through Tools

230

 �<project.reporting.outputEncoding>UTF-8</project.

reporting.outputEncoding>

 <java.version>1.8</java.version>

 �<spring-cloud.version>Dalston.SR1</spring-cloud.

version>

 </properties>

 <dependencyManagement>

 <dependencies>

 <dependency>)

 <groupId>org.springframework.cloud</groupId>

 �<artifactId>spring-cloud-dependencies</

artifactId>

 <version>${spring-cloud.version}</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-web</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-amqp</artifactId>

 </dependency>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

Chapter 5 The Microservices Journey Through Tools

231

 �<artifactId>spring-cloud-starter-eureka

</artifactId>

 </dependency>)

 <dependency>

 <groupId>org.springframework.boot</groupId>

 �<artifactId>spring-boot-starter-actuator

</artifactId>

 </dependency>

 <!-- ... rest of dependencies -->

 </dependencies>

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 �<artifactId>spring-boot-maven-plugin

</artifactId>

 </plugin>

 </plugins>

 </build>

</project>)

The extra dependency we added to our services is the Spring

Boot Actuator. Once we add this to a Spring Boot application, it will

automatically make available some endpoints that are very useful for

monitoring: metrics, mappings, health, loggers, etc. Our service discovery

and load balancer configuration will use the /health endpoint to check if

the service is up or not. Note that we won’t route these endpoints through

our API gateway since we don’t want external consumers accessing them

(and, obviously, our infrastructure should deny public direct access to our

microservices in production).

Chapter 5 The Microservices Journey Through Tools

232

After configuring our registry clients’ POMs, there are some more

changes we need to perform for each Spring Boot application that wants to

use the service registry (see Listings 5-14) through 5-16:

•	 We add the @EnableEurekaClient annotation to the

main application class, which will activate the service

discovery agent.

•	 We add some configuration to our application.

properties file, telling Eureka where to find the service

registry.

•	 To make our application name configurable and

not automatically created, we include a bootstrap.

properties file (in the same folder as application.

properties) in which we set up the service name.

That way we make sure that future changes of the

project name will not impact our infrastructure. Note

that we need to include it in that new file and not in

application.properties since the service registration

happens during application bootstrap and, during that

phase, the application properties are not loaded yet.

Listing 5-14.  GamificationApplication.java (gamification v8)

package microservices.book;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.

SpringBootApplication;

import org.springframework.cloud.netflix.eureka.

EnableEurekaClient;

@EnableEurekaClient

@SpringBootApplication

Chapter 5 The Microservices Journey Through Tools

233

public class GamificationApplication {

 public static void main(String[] args) {

 SpringApplication.run(GamificationApplication.class, args);

 }

}

Listing 5-15.  application.properties (gamification v8)

Service Discovery configuration

eureka.client.service-url.default-zone=http://localhost:8761/

eureka/

Listing 5-16.  bootstrap.properties (added) (gamification v8)

spring.application.name=gamification

Remember to add the annotation and those two new properties

to multiplication (application name multiplication) and gateway

(application name gateway) as well. We also add a bootstrap.properties

file to our new service registry microservice to make sure that the

application name is consistent (see Listing 5-17).

Listing 5-17.  bootstrap.properties (added) (service-registry v8)

spring.application.name=service-registry

Three simple steps, small code changes, and including some new

dependencies. That’s all we need to make our existing services work with a

service discovery tool.

The last task we need to do to finalize our service discovery setup for

the entire system is change the routing configuration in our API gateway

service (Zuul). Remember that we left direct links there, but now we

Chapter 5 The Microservices Journey Through Tools

234

can connect Zuul with Eureka server since the gateway is also using the

discovery client to find the registry and map service names to specific

addresses. The current configuration is shown in Listing 5-18.

Listing 5-18.  application.yml (gateway v8)

server:

 port: 8000

zuul:

 ignoredServices: '*'

 prefix: /api

 routes:

 multiplications:

 path: /multiplications/**

 serviceId: multiplication

 strip-prefix: false

 results:

 path: /results/**

 serviceId: multiplication

 strip-prefix: false

 leaders:

 path: /leaders/**

 serviceId: gamification

 strip-prefix: false

eureka:

 client:

 service-url:

 default-zone: http://localhost:8761/eureka/

endpoints:

 routes:

 sensitive: false

Chapter 5 The Microservices Journey Through Tools

235

•	 The main difference is that every route has the

serviceId property instead of url. This is the most

important change and the one that gives us the flexibility

of having services that can change their locations

dynamically and can scale up with multiple instances.

That property value should be equal to the service name,

which we configured in each bootstrap.properties file.

•	 We set strip-prefix to false since we’re using explicit

routes, so we don’t need to remove anything from the

specified path. This property is set to true by default for

the dynamic routes to strip the service name from the URL.

•	 With the ignoredServices property we tell Zuul not to

dynamically register routes for services registered with

Eureka. We still want to decide our routing by ourselves.

•	 Eureka client is configured in the gateway too, so it can

find the registry.

•	 We removed the part of the configuration that disables

Ribbon, the load balancer. We’ll see it in action later in

this chapter.

CHEATING OURSELVES WITH SERVICE DISCOVERY AND THE GATEWAY

The default behavior in Zuul to automatically add routes for services in the

registry is risky if not used properly. As mentioned, if we don’t add the zuul.

ignoredServices property, we’ll get the following routing configuration for
free, without needing to add anything to our properties file:

•	 /multiplication/multiplications/** –> multiplication

microservice + /multiplications/**

•	 /multiplication/results/** –> multiplication

microservice + /results/**

Chapter 5 The Microservices Journey Through Tools

236

•	 /gamification/leaders/** –> gamification microservice +

/leaders/**

•	 /gamification/stats/** –> gamification microservice +

/stats/**

However, if we work with those URLs, we can no longer say that our

consumers are microservice-agnostic: they would be pointing again to our

inner structure. We lose one of the main benefits of the API gateway.

But some people know how to play that game and make it work. If we model

our microservices to provide functionality around one single business entity,

we can use the dynamic routing. Think of this situation for a moment: we split

the functionality inside the multiplication microservice and extract the

/results endpoint to a new microservice, results-manager. After that,

we refactor the code in our controllers to move the functionality to the root

(e.g., @RequestMapping("/multiplications") would become plainly

@RequestMapping("/")). Then, to make everything work transparently,

we change the application name of our multiplication microservice to

multiplications (nasty), and the name of that fictional results manager to

results. Since the strip-prefix property is true by default, the service

name is removed from the URL when it goes through the gateway. Since your

head might be about to explode, let’s detail the result in three simple steps:

	1.	T he client requests GET http://localhost:8000/api/

multiplications/1.

	2.	 Zuul has a dynamically-added route from the registry, mapping

/multiplications (service name) to the multiplications

service. Since strip-prefix is true, it maps it to GET

http://localhost:8080/1.

	3.	 We refactored our controller to accept root requests, so the

multiplication with ID 1 is returned. This works because now

the microservice only handles multiplication entities.

Chapter 5 The Microservices Journey Through Tools

237

The same would apply to the /results endpoint. Going even further, we could

also split the gamification microservice, and then we would end up with a system

in which the routes are magically set. This way of working with the gateway and

service discovery is sadly spread across many quick guides over the Internet,

confusing people about the real purpose of service discovery. In the real world,

microservices do not necessarily map with a single business entity. On the

contrary, the API gateway pattern is there for us to be in full control of where and

how we redirect requests to microservices; and service discovery is not about

automagically discovering functionality, but about providing an efficient way to find

and load-balance between one or several instances of the same microservice.

If you don’t like to specify explicit routes (which is fair when your system has

dozens of microservices), there are ways to load them dynamically by creating

your own implementation of the RouteLocator interface or use any of the

existing ones.

�Playing with Service Discovery
With the extra added microservice (service-registry) and the changes

we made to the others to use it, we can now play with our system and

see how service discovery works in combination with the API gateway.

When a new request is coming in, Zuul uses the discovery client to find

a proper URL for the given serviceId and then redirects the request

there. No physical addresses are specified, so we get flexibility to move or

refactor services across our system, deploy several instances, etc. With the

introduction of the API gateway and service discovery microservices, we

finally got the benefits we want.

To start the system, we need to follow the steps we already know,

adding an extra one to execute the service registry.

	 1.	 Run the RabbitMQ server (if not yet running).

	 2.	 Run the service registry microservice.

Chapter 5 The Microservices Journey Through Tools

238

	 3.	 Run the gateway microservice.

	 4.	 Run the multiplication microservice.

	 5.	 Run the gamification microservice.

	 6.	 Run the Jetty server from the ui root folder.

Same as before, the only one for which the order is important is

the first. Note that it’s only convenient, but not required, that we start

the service registry before the microservices. If we don’t do that, our

microservices will work anyway, since they retry the registering process

until the registry becomes available.

You may experiment in some occasions that the interaction between

the gateway and the service registry takes some time be effective, thus

potentially getting some server errors (HTTP status code 500) from the

gateway if you play with the application within the first minute after

booting all the microservices. just need to give the service registry some

more time to do its job. Later in this chapter, we’ll cover how to deal with

these errors in a better way using the Circuit Breaker pattern.

The service discovery feature is noticeable in different ways. First,

when we start the microservices, we see a set of messages in the console

output, as shown in Listing 5-19.

Listing 5-19.  Console Output Multiplication (multiplication v8)

2017-09-27 15:41:45.238 INFO 656 --- [main] com.

netflix.discovery.DiscoveryClient : Getting all instance

registry info from the eureka server

2017-09-27 15:41:45.471 INFO 656 --- [main] com.

netflix.discovery.DiscoveryClient : The response status is

200

2017-09-27 15:41:45.472 INFO 656 --- [main] com.

netflix.discovery.DiscoveryClient : Starting heartbeat

executor: renew interval is: 30

Chapter 5 The Microservices Journey Through Tools

239

2017-09-27 15:41:45.474 INFO 656 ---

[main] c.n.discovery.InstanceInfoReplicator :

InstanceInfoReplicator onDemand update allowed rate per min is 4

2017-09-27 15:41:45.477 INFO 656 --- [main] com.

netflix.discovery.DiscoveryClient : Discovery Client

initialized at timestamp 1506519705477 with initial instances

count: 3

2017-09-27 15:41:45.503 INFO 656 --- [main] o.s.c

.n.e.s.EurekaServiceRegistry : Registering application

multiplication with eureka with status UP

2017-09-27 15:41:45.504 INFO 656 --- [main] com.

netflix.discovery.DiscoveryClient : Saw local status change

event StatusChangeEvent [timestamp=1506519705504, current=UP,

previous=STARTING]

2017-09-27 15:41:45.505 INFO 656 --- [nfoReplicator-0] com.

netflix.discovery.DiscoveryClient : DiscoveryClient_

MULTIPLICATION/localhost:multiplication:8080: registering

service...

2017-09-27 15:41:45.540 INFO 656 --- [nfoReplicator-0] com.

netflix.discovery.DiscoveryClient : DiscoveryClient_

MULTIPLICATION/localhost:multiplication:8080 - registration

status: 204)

As we can see, Eureka is registering the service successfully after

verifying that the registry is alive. We can also verify the status of the

different services from our browser. The web interface of our Eureka server

(the Eureka Server Dashboard) is located at http://localhost:8761/.

There we can find a web page displaying information about which services

are registered and their status, together with some details about the

registry itself, as shown in Figure 5-14.

Chapter 5 The Microservices Journey Through Tools

240

From the user’s point of view, there are not many changes. We can still

send attempts and refresh the leaderboard. The big changes are behind

the scenes: requests are going through the API gateway, which uses the

registry to find the instances and redirect them to the proper microservice.

Our system is evolving nicely to a proper microservices architecture.

Note that we left behind the coolest part about service discovery:

scaling up our system by starting multiple instances of the same

microservice. We’ll see how Ribbon solves that for us but, before that, we

need to verify if our microservices are prepared for it.

Figure 5-14.  Eureka Dashboard displaying information about
services

Chapter 5 The Microservices Journey Through Tools

241

�Are Our Microservices Ready to Scale?
Before continuing our way through all these tools, let’s stop for a moment

to analyze what we’re going to do. We want to start multiple instances of

our services, and let Zuul—the API gateway—decide to which instance to

redirect each request, supported by Eureka and the service registry. But,

can we really do that? Is that going to work with our current microservice

implementations?

One of the most critical things when we start working with scalable

systems is that we need to be aware of some important basic concepts

when designing our microservices. We can’t just add tools to provide

service discovery and routing and hope that everything will work out-of-

the-box. We need to be aware of where are we heading and prepare for it.

Let’s analyze if our data strategy and our communication interfaces are

aligned with our objectives.

�Databases and Stateless Services

First, our services need to be stateless, meaning that they shouldn’t keep

any data or state in memory. Otherwise, we need to have session affinity: all

requests from the same user should end up in the same microservice instance,

because it’s keeping some context information. To avoid overcomplicating our

applications, it’s better if we always design stateless microservices.

In our system, the databases are embedded in the services, thus

preventing us from scaling up correctly. Every instance of our service

shouldn’t have its own database since that would cause retrieving different

data per request. All instances need to keep their data in the same place, in

the same, shared database server.

The H2 database can work in server mode too. We only need to enable

an option to make this work for our databases: the automatic mixed mode.

We just need to add the suffix AUTO_SERVER=TRUE to all our JDBC URLs.

Remember to add it to both the multiplication and gamification JDBC

URLs. See Listing 5-20.

Chapter 5 The Microservices Journey Through Tools

242

Listing 5-20.  application.properties: Modifying JDBC URL

(gamification v8)

...

Creates the database in a file

spring.datasource.url=jdbc:h2:file:~/gamification;DB_CLOSE_ON_

EXIT=FALSE;AUTO_SERVER=TRUE

Keep in mind that, as a result of our new data strategy, the microservice

logic can scale nicely but we can’t say the same of the database: it would

be only one shared instance. To solve that part in a production system, we

would need to choose a database engine that scales and create a cluster at

our database tier. Depending on the DB engine we choose, the approach

might be different. For example, H2 has a simple clustering mode that is

based on data replication and MariaDB uses Galera, which provides load

balancing as well. The good news is that, from the code point of view,

we can handle a database cluster as a simple JDBC URL, keeping all the

database tier logic aside of our project.

�Event-Driven Architecture and Load Balancing

From the REST communication point of view, we can conclude that the

system works properly thanks to the shared database engine. No matter

which instance handles our request, the result of posting an attempt or

retrieving data will be consistent. But, what happens with the process

spanning both microservices?

Our system handles the business process attempt-to-points based on

an event triggered from the multiplication microservice and consumed

from the gamification microservice. The question now is, how does that

work if we start more than one gamification instance?

In this case, everything will work fine enough without any modification.

Every gamification instance will act as a worker that connects to a shared

queue in RabbitMQ. Only one instance consumes each event, processes

Chapter 5 The Microservices Journey Through Tools

243

it, and stores the result in the shared database. Anyway, in a system that

goes to production, we would normally need to adjust the current set up

to minimize the impact if the same event is received twice, and also try to

prevent events being lost because of one microservice dying unexpectedly.

The RabbitMQ Reliability Guide (see https://www.rabbitmq.com/

reliability.html) is a good starting point if you want to learn more about

what you can do to prevent or react to some different issues that might

happen in your system.

Last but not least, RabbitMQ can also work in clusters. In a production

environment we need to configure our infrastructure in that way so the

system keeps working even if one of the RabbitMQ server instances goes

down. Similarly to the single database URL for a cluster, from our code’s

point of view nothing changes: we would connect to RabbitMQ as if there

is only one instance. See Figure 5-15.

Figure 5-15.  The system working with multiple instances

Chapter 5 The Microservices Journey Through Tools

https://www.rabbitmq.com/reliability.html
https://www.rabbitmq.com/reliability.html

244

�Load Balancing with Ribbon
Time for some cool stuff! Now that we know that our microservices can

scale, our goal is to put that in practice with one of our services and use

load balancing to redirect requests to the multiple instances. Providing

high availability (or resilience) is one of the most important features that

you need to have in your distributed system—services may fail, one of

the geographical areas in which your service is deployed might be not

responding well, the service could be saturated with traffic, etc.

As introduced previously, Spring Cloud Netflix Ribbon is a good choice

for implementing load balancing with Spring Boot. It comes with Eureka

so it combines nicely with Zuul. Take into account that, even though

we’re covering them separately, using Eureka without Ribbon (or service

discovery without load balancing) is not a typical scenario, since in that

case you only benefit from mapping a physical location (IP and port) to a

service alias (one-to-one).

That said, it’s not surprising to find out that to include Ribbon in our

Gateway service we don’t have to do anything else. Ribbon comes by

default with Eureka, and it’s automatically configured by Spring Boot.

We’ll add some extra configuration later in this subsection to override the

defaults but, for now, let’s play a little bit with the standard configuration.

To quickly verify that load balancing works, we’ll add some logging to

our /random endpoint in the multiplication service, which will print a line

in the service log indicating the port number. We can use Lombok’s @Slf4j

annotation, which will offer an initialized log with which we can print a

message in console containing the injected property server.port. Keep

in mind that we need to explicitly add server.port to our application.

properties (and set it to 8080); otherwise the property won’t be found.

See Listing 5-21.

Chapter 5 The Microservices Journey Through Tools

245

Listing 5-21.  MultiplicationController.java Adding Logs

(multiplication v8)

@Slf4j

@RestController

@RequestMapping("/multiplications")

final class MultiplicationController {

 private final MultiplicationService multiplicationService;

 private final int serverPort;

 @Autowired

 �public MultiplicationController(final MultiplicationService

multiplicationService, @Value("${server.port}") int

serverPort) {

 this.multiplicationService = multiplicationService;

 this.serverPort = serverPort;

 }

 @GetMapping("/random")

 Multiplication getRandomMultiplication() {

 �log.info("Generating a random multiplication from

server @ {}", serverPort);

 �return multiplicationService.createRandom

Multiplication();

 }

}

Chapter 5 The Microservices Journey Through Tools

246

EXERCISE

We would like to print a line in the log also when the results endpoint is

called. That means that you need to implement a similar solution in the

MultiplicationResultAttemptController class. In this case, you

invoke the log with this command:

log.info("Retrieving result {} from server @ {}",

resultId, serverPort);

�Playing with Load Balancing

Now we can start all the services of our distributed system again, as we did

in the previous subsection. After we have everything up and running, we

want to start a second instance of our multiplication microservice.

This service instance is linked to a port number. To start a new instance

of a given service, we need to change that port number (server.port)

to avoid clashing, which is very easy to achieve because we have several

ways to override Spring Boot properties. To start a second instance of our

multiplication service using Maven, we can run any of the two commands

shown in Listing 5-22 (note that to be able to run the second command,

you first need to package your Spring Boot application into a JAR file).

Listing 5-22.  Console: Running a Second Instance of Multiplication

(multiplication v8)

~/book/code/v8/social-multiplication$./mvnw spring-boot:run

-Drun.arguments="--server.port=8180"

~/book/code/v8/social-multiplication/target$ java -jar social-

multiplication-v8-0.8.0-SNAPSHOT.jar --server.port=8180

Chapter 5 The Microservices Journey Through Tools

247

As you can see, changing the server port is simple. We pass an

argument that overrides the server.port property to use the port 8180

instead of the default 8080. Now, we should have two instances of our

multiplication service running at the same time on both ports and sharing

the same database (which is initialized by the first running instance).

If we go to the Eureka Server Dashboard (http://localhost:8761/),

we should see the two instances of our multiplication microservice

registered in Eureka, as shown in Figure 5-16.

Let’s now see both instances working. Navigate to the UI client as usual

(http://localhost:9090/ui/index.html) and refresh the page several

times (thus calling the /random endpoint). Then check the logs for your

multiplication service instances at ports 8080 and 8180. You’ll see the log

lines there, so you can verify how Ribbon is doing a simple round-robin

strategy and redirecting each request to a different service each time.2 We’ll

see how to change this load balancing strategy later.

To make it more interesting, let’s kill one of the multiplication instances

(e.g., by closing the terminal window or pressing Ctrl+C). In theory, that

instance should be removed immediately from the registry, and all traffic

would be redirected to the only instance still alive. In practice, you may find

out that one out of every two times that you refresh the page you get ugly

errors in the Gateway’s log output, as shown in Listing 5-23.

2�Note that it might take some seconds before both instances are registered in
Eureka and the load balancer initiates the round-robin strategy. Be patient!

Figure 5-16.  The Eureka Server Dashboard shows two instances of
our multiplication microservice are registered

Chapter 5 The Microservices Journey Through Tools

248

Listing 5-23.  Gateway’s Log Output After Killing One Instance

(multiplication v8)

2017-09-27 18:30:55.798 WARN 14012 --- [nio-8000-exec-7]

o.s.c.n.z.filters.post.SendErrorFilter : Error during

filtering

com.netflix.zuul.exception.ZuulException: Forwarding error

 at org.springframework.cloud.netflix.zuul.filters.

route.RibbonRoutingFilter.handleException(RibbonRoutingFi

lter.java:183) ~[spring-cloud-netflix-core-1.3.1.RELEASE.

jar:1.3.1.RELEASE]

 ...

Caused by: com.netflix.hystrix.exception.

HystrixRuntimeException: multiplication timed-out and no

fallback available.

 at com.netflix.hystrix.AbstractCommand$22.

call(AbstractCommand.java:819) ~[hystrix-core-1.5.12.

jar:1.5.12]

 ...

Caused by: java.util.concurrent.TimeoutException: null

 at com.netflix.hystrix.AbstractCommand.handleTimeoutVi

aFallback(AbstractCommand.java:997) ~[hystrix-core-1.5.12.

jar:1.5.12]

After two or three minutes, you can try again to send multiple requests.

By that time it should work as expected: all requests will be redirected

to the only available instance. Within that period, you can verify on the

Eureka’s dashboard how it takes that time to notice that the instance is

no longer alive. We’ll see next how we can improve this behavior by fine-

tuning our tools.

Chapter 5 The Microservices Journey Through Tools

249

WE DID IT! THE API GATEWAY, SERVICE DISCOVERY, AND LOAD
BALANCER ARE NOW IMPLEMENTED!

We evolved our distributed system to a proper microservices architecture! We

split the UI and added the gateway, service discovery and load balancing. We

implemented a nice solution for the requirements of User Story 3. There are

still some parts that should be improved, but we can celebrate our success!

Production Readiness: Scaling Up the Service Registry

Bear in mind that, if you implement a system like this in production, you also

need to provide high availability for the registry. This feature is coming out-

of-the-box with Eureka Server, and you can see from the documentation (in

the “Peer Awareness” section at http://projects.spring.io/spring-

cloud/spring-cloud.html#_peer_awareness) how easy is to configure

it, just by creating a profile per instance you want to make available.

�Fine-Tuning the Load Balancing Strategy

As we just saw, Spring Boot configures Ribbon by default with a round-

robin strategy for load balancing. It also sets the status-check mechanism

to none (by injecting the NoOpPing implementation of the IPing interface,

see https://tpd.io/cust-rb for further details). That implies that the

load balancer will not verify if the services are alive (NoOpPing simply

returns true for the isAlive method). It makes sense from a conceptual

point of view since it should be our service registry, Eureka, the one that

registers and deregisters instances.

However, Eureka is very slow at noticing that a service went down

unexpectedly (in my experience, it takes an average of three minutes).

It’s not pinging them but checking leases: every instance needs to

contact the registry after some time (30 seconds by default) to renew

the lease (we can picture it as the instance saying “I’m alive!”). After a

Chapter 5 The Microservices Journey Through Tools

http://projects.spring.io/spring-cloud/spring-cloud.html#_peer_awareness
http://projects.spring.io/spring-cloud/spring-cloud.html#_peer_awareness
https://tpd.io/cust-rb

250

longer time (90 seconds by default), the service registry will de-register

instances that didn’t renew the lease in that time window. Changing

the leaseRenewalIntervalInSeconds parameter might look like a

good idea but it’s actually discouraged by the official docs.3 As a result,

instances going down unexpectedly will not be removed from the registry

immediately, but after a period of minutes, and during that time our

application will fail.

We can solve this problem using a Ribbon functionality to ping

services and apply load balancing depending on the result (thus having

some logic on the client side to detect if the instances are down). To get

that working, we need to configure two Spring beans: an IPing to override

the default check-status mechanism and an IRule to change the default

load balancing strategy. Besides, we need to annotate our main class

GatewayApplication to point to this configuration class. See Listings 5-24

and 5-25.

Listing 5-24.  RibbonConfiguration.java (gateway v8)

package microservices.book.gateway.configuration;

import com.netflix.client.config.IClientConfig;

import com.netflix.loadbalancer.*;

import org.springframework.context.annotation.Bean;

public class RibbonConfiguration {

 @Bean

 public IPing ribbonPing(final IClientConfig config) {

 return new PingUrl(false,"/health");

 }

3�https://tpd.io/ek-rnew

Chapter 5 The Microservices Journey Through Tools

https://tpd.io/ek-rnew

251

 @Bean

 public IRule ribbonRule(final IClientConfig config) {

 return new AvailabilityFilteringRule();

 }

})

Listing 5-25.  GatewayApplication.java (gateway v8)

@EnableZuulProxy

@EnableEurekaClient

@RibbonClients(defaultConfiguration = RibbonConfiguration.

class)

@SpringBootApplication

public class GatewayApplication {

 public static void main(String[] args) {

 SpringApplication.run(GatewayApplication.class, args);

 }

}

•	 Note that RibbonConfiguration is not annotated with

@Configuration. It’s injected in a different way. We

need to reference it from a new annotation added to

the main application class called @RibbonClients. The

reason is that we could optionally have multiple ribbon

clients with different load balancing configuration.

•	 The PingUrl implementation will check if services

are alive. We change the default URL and point it

to /health since we know that endpoint exists (it’s

included by Spring Actuator). The false flag is just to

indicate that the endpoint is not secured.

Chapter 5 The Microservices Journey Through Tools

252

•	 The AvailabilityFilteringRule is an alternative to

the default RoundRobinRule. It also cycles through the

instances but, besides that, it takes into account the

availability being checked by our new pings to skip

some instances in case they don’t respond.

If we now test the scenario where multiple instances are registered

and kill one of them, we’ll notice that the reaction time to redirect all the

traffic to the only instance alive is much lower. Keep in mind that the status

of Eureka’s Service Registry within that time will be exactly the same as

before: it still takes its time to deregister the instance. The improvement is

on the client side (the load balancer): the gateway checks that the instance

doesn’t really work and picks another one.

This configuration is just an example. You can find some other

options for load balancing strategies on the official repository.4 There

are implementations that allow us to balance load depending on

response time, geographical affinity, etc. The best idea for a proper

production environment is to design our plan, test it (putting some load

into your system and monitoring the results), and then adjust it based

on the results.

Figure 5-17 shows our updated logical view, with service discovery and

load balancing in place. We introduced a similar view when explaining the

concepts, but now we made it a reality in our source code.

4�https://tpd.io/lb-opts

Chapter 5 The Microservices Journey Through Tools

https://tpd.io/lb-opts

253

Figure 5-17.  Updated logical view, with service discovery and load
balancing in place

Chapter 5 The Microservices Journey Through Tools

254

�Circuit Breakers and REST Clients
�Circuit Breakers with Hystrix
In the real world, errors happen. Services can be unreachable or not

respond on time. Our distributed system shouldn’t fail as a whole because

one of the parts failed to answer. The circuit breaker pattern is the solution

for those scenarios in which our entire system is likely to fail if one of the

parts does not respond.

This pattern is based on two states. If the circuit is closed, that means

the request can reach its destination and the response is received.

Everything is working fine. If there are errors or a timeout expires, the

connection point is down, and the circuit gets open. That implies calling

to a different part of the system, which will act as a backup player, giving a

default response for a failure. The result is a manageable response that the

system can handle without further errors.

Spring Cloud Netflix also contains a well-known implementation of

this pattern, called Hystrix. In our project, one of the places where we can

connect it is to the gateway, so it can provide a default response when a

service fails to respond. Actually, if we review the stack trace that we got

when playing with load balancing and killing one of the multiplication

instances, we can see that it is giving us a hint about what to do, as shown

in Listing 5-26.

Listing 5-26.  Console Output After Killing One Multiplication

Instance (gateway v8)

 ...

Caused by: com.netflix.hystrix.exception.

HystrixRuntimeException: multiplication timed-out and no

fallback available.

 ...

Chapter 5 The Microservices Journey Through Tools

255

�Hystrix and Zuul
To connect Zuul with Hystrix, we can use the ZuulFallbackProvider

interface. If we inject a bean implementing this interface in our Spring

Boot context, we’ll be able to provide Hystrix fallbacks (predefined

HTTP responses) when a service is not reachable by the API gateway.

When Zuul fails to redirect the request, it will check if there is a fallback

for that specific service (using the getRoute() methods of available

ZuulFallbackProviders). If there is one, it will construct and return a

default response (using the fallbackResponse() method).

Let’s use it for multiplication, as an example (in real life we should do

that for all the routes for which we can provide a fallback). We’ll send an

error message embedded in factorA when /random gets called and the

service is not available, so it’ll be shown instead of the multiplication to

solve. See Listing 5-27.

Listing 5-27.  HystrixFallbackConfiguration.java (gateway v8)

@Configuration

public class HystrixFallbackConfiguration {

 @Bean

 public ZuulFallbackProvider zuulFallbackProvider() {

 return new ZuulFallbackProvider() {

 @Override

 public String getRoute() {

 �// Might be confusing: it's the serviceId

property and not the route

 return "multiplication";

 }

 @Override

 public ClientHttpResponse fallbackResponse() {

Chapter 5 The Microservices Journey Through Tools

256

 return new ClientHttpResponse() {

 @Override

 �public HttpStatus getStatusCode() throws

IOException {

 return HttpStatus.OK;

 }

 @Override

 �public int getRawStatusCode() throws

IOException {

 return HttpStatus.OK.value();

 }

 @Override

 �public String getStatusText() throws

IOException {

 return HttpStatus.OK.toString();

 }

 @Override

 public void close() {}

 @Override

 �public InputStream getBody() throws

IOException {

 �return new ByteArrayInputStream("{\"

factorA\":\"Sorry, Service is Down!

\",\"factorB\":\"?\",\"id\":null}".

getBytes());

 }

 @Override

 �public HttpHeaders getHeaders() {

Chapter 5 The Microservices Journey Through Tools

257

 �HttpHeaders headers = new

HttpHeaders();

 �headers.setContentType(MediaType.

APPLICATION_JSON);

 �headers.setAccessControlAllowCredential

s(true);

 �headers.setAccessControl

AllowOrigin("*");

 return headers;

 }

 };

 }

 };

 }

}

It’s not a very friendly interface, but it’s what they provide. In our

case, we just adapt the body to the expected format for /random (a

Multiplication object in JSON) but insert our message instead of the real

factors. Note that we also needed to add the CORS headers to the response,

since this one is not processed automatically by our WebConfiguration.

To test our new fallback, we can repeat our last experiment. We start

every microservice as usual and a second instance of multiplication.

After some time in which we verify that load balancing is working fine,

we kill one of the multiplication instances. We’ll see our fallback in action

returning the predefined response, which will be displayed in our UI. Note

that it’s not a perfect solution, but at least we give some information to the

user about what happened instead of leaving the multiplication factors

empty. See Figure 5-18.

Chapter 5 The Microservices Journey Through Tools

258

Hystrix provides much more functionality than its integration with

Zuul. You can use it from any REST consumer you develop by just adding

annotations like @HystrixCommand and @EnableCircuitBreaker, and then

configuring the fallbacks. We first covered the particular case of integration

with Zuul since it’s one of the trickiest ones; now let’s see how to make it

work with a standard REST client.

�Hystrix from a REST Client
We have another point in our system where a circuit breaker fits perfectly:

the REST API call from gamification to multiplication to check if one of the

factors is the lucky number. Our business process shouldn’t fail if it doesn’t

have access to the service at that given point of time. We have two options

for the fallback response—to include the lucky number or not. Let’s be

greedy this time: the user won’t receive that badge if the service is down.

First, let’s add Hystrix to the gamification microservice. To do that,

we need to include a new dependency in the pom.xml file, as shown in

Listing 5-28.

Figure 5-18.  UI showing that the service is down

Chapter 5 The Microservices Journey Through Tools

259

Listing 5-28.  pom.xml Adding Hystrix (gamification v8)

<dependency>

 <groupId>org.springframework.cloud</groupId>

 <artifactId>spring-cloud-starter-hystrix</artifactId>

</dependency>

Now we go to our REST client implementation,

MultiplicationResultAttemptClientImpl, and annotate the method

using RestTemplate with HystrixCommand. Apart from that, we create our

method to return the default response, defaultResult, which returns two

factors that are not the lucky number. See Listing 5-29.

Listing 5-29.  MultiplicationResultAttemptClientImpl.java Adding

Hystrix (gamification v8)

@Component

class MultiplicationResultAttemptClientImpl implements

MultiplicationResultAttemptClient {

 private final RestTemplate restTemplate;

 private final String multiplicationHost;

 @Autowired

 �public MultiplicationResultAttemptClientImpl(final

RestTemplate restTemplate,

@Value("${multiplicationHost}") final String multiplicationHost) {

 this.restTemplate = restTemplate;

 this.multiplicationHost = multiplicationHost;

 }

Chapter 5 The Microservices Journey Through Tools

260

 @HystrixCommand(fallbackMethod = "defaultResult")

 @Override

 �public MultiplicationResultAttempt retrieveMultiplicationRe

sultAttemptbyId(final Long multiplicationResultAttemptId) {

 return restTemplate.getForObject(

 �multiplicationHost + "/results/" +

multiplicationResultAttemptId,

 MultiplicationResultAttempt.class);

 }

 �private MultiplicationResultAttempt defaultResult(final

Long multiplicationResultAttemptId) {

 return new MultiplicationResultAttempt("fakeAlias",

 10, 10, 100, true);

 }

}

The last change we need to make in gamification is to add the

@EnableCircuitBreaker annotation to our main class, as shown in

Listing 5-30.

Listing 5-30.  GamificationApplication.java Adding Hystrix

(gamification v8)

package microservices.book;

import org.springframework.boot.SpringApplication;

import org.springframework.boot.autoconfigure.

SpringBootApplication;

import org.springframework.cloud.client.circuitbreaker.

EnableCircuitBreaker;

import org.springframework.cloud.netflix.eureka.

EnableEurekaClient;

Chapter 5 The Microservices Journey Through Tools

261

@EnableEurekaClient

@EnableCircuitBreaker

@SpringBootApplication

public class GamificationApplication {

 public static void main(String[] args) {

 �SpringApplication.run(GamificationApplication.class,

args);

 }

}

Testing that everything works as expected is not easy if we limit

ourselves to a real scenario. We need to send via UI a correct attempt; that

one will go through the multiplication microservice, and then we need

to kill it after it sends the MultiplicationSolvedEvent, so gamification

can’t reach it. Luckily, there is a simpler solution to test the Hystrix’s

predefined response: we can just modify the multiplication host property

inside gamification’s application.properties file to a nonexistent URL

(something like multiplicationHost=http://localhost:8001/api).

Now we can test it. We start again all our set of microservices (like we

did before). We only need an instance of multiplication this time. With

the new version of gamification pointing to a wrong multiplication URL,

Hystrix will do its job and return the default response every time we post a

correct attempt. If you want to double-check that Hystrix is working (as a

classic skeptical developer), you can debug the gamification microservice

and set a breakpoint inside the defaultResult() method.

�REST Consumers with Feign
We can’t finish this chapter without mentioning Feign, since it’s another

famous member of Spring Cloud Netflix.

Chapter 5 The Microservices Journey Through Tools

262

Feign allows us to consume REST services as if they were part of our

code. We can generate @FeignClients and map their methods to requests.

The main advantage is that we can avoid handling requests directly with

@RestTemplates across our code, so we can treat the external interfaces

as if they were part of our codebase. You can see an example within the

official documentation (see https://tpd.io/feigndoc), the StoreClient

interface, in Listing 5-31.

Listing 5-31.  StoreClient.java Sample from Documentation

@FeignClient("stores")

public interface StoreClient {

 @RequestMapping(method = RequestMethod.GET, value = "/stores")

 List<Store> getStores();

 �@RequestMapping(method = RequestMethod.POST, value =

"/stores/{storeId}", consumes = "application/json")

 Store update(@PathVariable("storeId") Long storeId, Store store);

}

Feign combines well with Eureka, Ribbon, and Hystrix. The Feign

client uses Eureka and Ribbon to find services and perform load balancing.

Also, it uses annotations at the interface level to specify which classes

contain Hystrix fallbacks.

In our system, we could use it to remove the

MultiplicationResultAttemptClientImpl class and use just the interface

with some annotations. We also need to move in that case the Hystrix

fallback method to a separate class.

We won’t use it in the book since the benefits of using Feign are not so

valuable for us: it’s oriented to the case in which services are calling each

other directly, without using the API gateway. It takes time to configure it

and make it work with the rest of the tools and, in our case, we can achieve

the same goal with a few lines of code using RestTemplate.

Chapter 5 The Microservices Journey Through Tools

https://tpd.io/feigndoc

263

�Microservices Patterns and PaaS
Over the previous sections we covered some important patterns that

we should apply to a microservices architecture: service discovery, load

balancing, API gateway, and circuit breakers. We saw that there are tools

to implement them, Spring Cloud Netflix being the de-facto solution

for Spring Boot. Along the way, we introduced a new service registry

microservice and an API gateway microservice, which are now part of our

ecosystem.

Now that you understand all these patterns and how they work, you

might be asking yourself: do I need to take care of all this plumbing every

time I want to set up a microservices architecture? Isn’t there any kind of

framework that includes all of this for me, from a higher abstraction level

than Spring? Couldn’t I just focus on writing my Spring Boot application

and put it somewhere so it works directly?

The common answer to these questions is that you can abstract many

of these patterns by using a Platform as a Service (PaaS) solution. These

platforms contain not only service discovery, load balancing, routing (API

gateway), and Circuit Breaker patterns, but also centralized logging and

integrated authentication, among other functionalities. These platforms

usually reside in the cloud, and their providers offer you plans to subscribe

and use not only those patterns but also their storage, CPU, network, etc.

There are many different PaaS from many different providers: Amazon

AWS, Google App Engine, Pivotal’s CloudFoundry, Microsoft Azure, etc.

All of them offer similar services. The first thing you do is to “package”

your microservices (e.g., using a buildpack) and deploy them directly to

the platform, where they are automatically discovered after some basic

configuration. You don’t need to deploy a service registry or a gateway

because they are part of the platform: you just configure some routing

rules and load balancing policies. Databases and message brokers are

offered as elastic services that scale transparently on demand. You create

them by using a wizard and then you get the URLs to use them directly in

your applications.

Chapter 5 The Microservices Journey Through Tools

264

If you want to see an example of how easy deploying a Spring Boot

application is in one of these platforms, you can have a look at the

CloudFoundry Guide to deploy a Spring application (see https://tpd.io/

cf-gs). Within the same documentation site, you can also check how easy

is to scale the services (just running a command cf scale myApp -i 5 to

get five instances) and how routing works by assigning multiple instances

to the same hostname. It’s not surprising to find out that Pivotal offers a

circuit breaker as a service (based on Hystrix).

The advantage we have at this point is that we know what we need

when we’re designing our microservices architecture. We can balance

all these options and decide where and how we want to implement the

patterns. Depending on our needs, time, and budget, we can choose a

solution based on implementing everything ourselves or rely on some

platforms or frameworks.

�Summary
In this chapter, we learned some of the most important concepts

surrounding microservices: service discovery, load balancing, API

gateway, and circuit breakers. We used the tools available in Spring Cloud

Netflix to implement these patterns (Eureka, Ribbon, Zuul, and Hystrix),

and we got our services nicely connected between them, supporting high

availability through scaling.

We went through several steps, illustrated with diagrams, that helped

us understand why we need these tools. Then, in the second part of the

chapter, we included them in our codebase using an incremental approach

and we experimented with our system’s load balancing and circuit breaker

features.

Chapter 5 The Microservices Journey Through Tools

https://tpd.io/cf-gs
https://tpd.io/cf-gs

265

This book, yet being practical, teaches you the ideas behind the

patterns. By this time you can design your microservices architecture using

the tools shown in this book or explore some other alternatives to get the

same result. As an example, we saw how PaaS solutions implement these

patterns and can speed up your project’s development time if it fits your

requirements and your budget.

We’ve finished our system by implementing all the requirements we

had and evolving it until reaching a good microservices architecture with

Spring Boot. The next chapter (the last one) focuses on solving an extra

challenge in the world of microservices: end-to-end integration testing.

Chapter 5 The Microservices Journey Through Tools

267© Moises Macero 2017
M. Macero, Learn Microservices with Spring Boot,
https://doi.org/10.1007/978-1-4842-3165-4_6

CHAPTER 6

Testing the
Distributed System
�Introduction
In previous chapters, we built a complex, distributed system, composed

of three functional microservices (UI, multiplication, gamification) and

two supporting microservices (the API gateway built with Zuul and the

service registry implemented with Eureka). Besides, our system uses an

event-driven approach to fulfill the business processes that span multiple

microservices (in this case, only attempt-to-points).

When you have an environment like this, composed of many pieces,

it’s very likely that one of them fails. It also happens with a monolithic

system: you may have modules, or components, that need to be glued

together. But, in a microservices architecture, it is even more critical to

verify that all the components—the microservices—work together, given

that these parts can be built and deployed independently.

They can evolve in different ways: we could, for instance, introduce a

change in Multiplication’s REST API to rename factorA and factorB to

factor1 and factor2. We could change our unit tests and make the build

pass successfully for that specific microservice. However, with that change

268

we would be breaking the overall functionality: Gamification is using

that REST API to perform its logic (by checking the factors for the lucky

number). We would have a similar issue if we change something in the

MultiplicationSolvedEvent.

Having test suites that verify microservices independently is not

enough: we need a good strategy to verify that the entire end-to-end use

cases are working after changes.

Unit tests, integration tests, component tests, contract tests, and end-

to-end tests—you should rely on all of them when building microservices.

If you’re not very familiar with these different types of tests, you may

now pause your reading for a moment to watch this presentation

about microservice testing at https://martinfowler.com/articles/

microservice-testing/.

Among all kinds of tests, end-to-end tests are on the top of the

pyramid: there shouldn’t be many in your system since they’re difficult to

maintain. But, on the other hand, they are the ones guarding your business

processes with the integration of all your microservices together, so having

less does not mean that they’re less important.

In this chapter, we’ll focus on end-to-end tests for a microservices

architecture (our system). The reason is that they are usually the most

difficult ones to implement and maintain, so it’s worthy to dedicate a

chapter in this book. We’ll cover some good practices with the Cucumber

framework, to keep them simple and focused on the business.

We started coding our application using a TDD approach. Now we’ll

follow a similar strategy with these end-to-end tests, focusing first on

the complete scenarios and then implementing the logic to verify that

everything works.

Chapter 6 Testing the Distributed System

https://martinfowler.com/articles/microservice-testing/
https://martinfowler.com/articles/microservice-testing/

269

�Setting the Scene
Let’s establish a reasonable objective. To verify that everything is working

in our application, we should cover at least a couple of functionalities:

	 1.	 When users send requests to the application, they

should receive the corresponding response and,

based on whether the attempt is right or not, they

will get some points.

	 2.	 The leaderboard should reflect the ranking of users

correctly.

Now, we should also decide at which level we want to implement our

end-to-end cases. Since our system exposes all the functionality through

REST APIs, we’ll go for end-to-end service testing. They’re much easier

to maintain than end-to-end UI testing (which can be implemented for

example with Selenium1), since they depend on an extra layer of our

system and are very sensitive to changes (as the Cucumber documentation

states, “Validating a business rule through a UI is slow, and when there is a

failure, it is difficult to pinpoint where the error is”2).

Finally, we must choose the approach and the technology we’ll use for

our end-to-end scenarios. We use Cucumber (https://cucumber.io/),

a very powerful tool that’s focused on behavior. You write your test

specifications in human language, and they will be the script of your test

execution and used to output reports.

Note that Cucumber can be used for behavior-driven development

(BDD) too: we could implement the end-to-end scenarios before any

other part of our code and start from there, building functionality until we

make them pass. We can’t go full BDD at this point since we already have

our code in place. It would have been also a bad idea for this book to start

1�http://www.seleniumhq.org/
2�https://cucumber.io/docs/reference

Chapter 6 Testing the Distributed System

https://cucumber.io/
http://www.seleniumhq.org/
https://cucumber.io/docs/reference

270

with these end-to-end test scenarios since you would get many questions

in your head from the beginning. However, you can try to follow BDD in

your projects: it’s a nice way to make sure that requirements are clear and

documented from an early stage.

In any case, we will start coding our scenarios first and building all the

rest of the test implementation afterward, so we don’t lose the focus on the

business.

It’s much better to see Cucumber in practice to understand how it

works, so Listing 6-1 shows a quick look at one of the test scenarios.

Listing 6-1.  multiplication.feature (e2e-tests v9)

Feature: Users are able to send their multiplication

 attempts, which may be correct or not. When users

 send a correct attempt, they get a response indicating

 that the result is the right one. Also, they get points

 and potentially some badges when they are right, so they

 get motivation to come back and keep playing. Badges are

 won for the first right attempt and when the user gets 100,

 500 and 999 points respectively. If users send a wrong

 attempt, they don't get any point or badge.

 �Scenario: The user sends a first right attempt and gets a badge

 When the user john_snow sends 1 right attempts

 �Then the user gets a response indicating the attempt is right

 And the user gets 10 points for the attempt

 And the user gets the FIRST_WON badge

 �Scenario: The user sends a second right attempt and gets

points only

 Given the user john_snow sends 1 right attempts

 And the user gets the FIRST_WON badge

 When the user john_snow sends 1 right attempts

 �Then the user gets a response indicating the attempt is right

Chapter 6 Testing the Distributed System

271

 And the user gets 10 points for the attempt

 And the user does not get any badge

Perfectly readable. It’s human-friendly and specifies what we want to

do. The best part of it: this is the definition of our test that will be used by

code and it can be executed by Cucumber. This language is Gherkin, and

you can find the full specification on the official page at https://tpd.io/

gherkin-doc. We’ll also cover the basics in a nutshell in the following

section.

Cucumber has a lot of advantages, among others is the fact

that business users can read and modify the test scenarios directly

and determine if they work. That’s the great superpower of

Cucumber, since it eliminates the gaps between development and

business requirements. If they’re written in Gherkin, they can’t be

misunderstood: they are the executables. Besides, these Gherkin files

can serve as use case documentation. We know they’ll be maintained

for sure when functionalities change because those changes would

otherwise break the tests.

�How Cucumber Works
Cucumber implementations are available for multiple languages and

frameworks. They all share the same functionalities, which are described

on the official Reference Documentation page at https://cucumber.io/

docs/reference.

The idea is that we organize our features into multiple .feature files.

In each of them, we include the description of the feature on the top. That

description is going to be ignored by the engine. Every feature consists

of multiple scenarios, which technically are your different test case

definitions. Finally, each scenario is defined by multiple steps, using the

BDD keywords: Given, When, and Then (plus And and But).

Chapter 6 Testing the Distributed System

https://tpd.io/gherkin-doc
https://tpd.io/gherkin-doc
https://cucumber.io/docs/reference
https://cucumber.io/docs/reference

272

Each scenario in a feature (or test case definition) will be executed

within the same cached objects. This concept is very important to

understand to implement our tests correctly: we can share the state

between steps of the same scenario, but not across scenarios. That means

that we can hold some data in memory (i.e., use some class fields) to

execute several steps, even if they belong to multiple classes. Sometimes

this may be confusing for Java developers since, in a JUnit test, the classes

are instantiated per test method (unless we use static fields and

@BeforeClass, which is usually not a good idea).

The steps can be parameterized using arguments, so we can reuse

the same step definition in multiple scenarios with different values. We

can also pass a data table to the same scenario (whose rows are called

Examples). The scenario will then be executed once per data row.

Let’s use this step to understand how arguments work. See Listing 6-2.

Listing 6-2.  multiplication.feature (e2e-tests v9)

When the user john_snow sends 1 right attempts

In principle, Gherkin itself does not know which of our words are

arguments. We define that at the code level. In this case, we’d like to pass

to our step the user alias, the number of attempts and if they are right or

wrong. Listing 6-3 shows how this step needs to be implemented in Java to

support it.

Listing 6-3.  MultiplicationFeatureSteps.java (e2e-tests v9)

@Given("^the user ([^\\s]+) sends (\\d+) ([^\\s]+) attempts")

public void the_user_sends_attempts(final String userAlias,

final int attempts, final String rightOrWrong) throws Throwable

{

 // Implements the logic

}

Chapter 6 Testing the Distributed System

273

We’ll look at the coding details in the following section, but as you can

see, it’s just a matter of configuring the step with some regular expressions,

which will match the words in the sentence. Two word-expressions and a

numeric one will do the trick in this particular case.

Note that, if we change words in the sentence (the ones that are not

arguments), we need to update the method’s expression as well. The good

news is that most IDEs can integrate with Cucumber via plugins, which

will warn us if the sentences don’t have a valid matching pattern in code.

The results of the execution of our features, with details about

scenarios and steps, can be output in multiple formats for reporting.

Those include the Cucumber specific ones (colored Gherkin) but also

the standard JUnit reports, which can be used by continuous integration

frameworks.

That’s all in a nutshell. Let’s now go practical and write some code to

make it work for our application.

�Hands-On Code
We’ll create two features, as defined at the beginning of this chapter—the

first one focuses on testing the interactions through attempts and the

second one checks the functionalities of the leaderboard.

SOURCE CODE AVAILABLE WITH THE BOOK: V9

You can find the new version of the code with the new end-to-end tests project

(the tests_e2e folder) and the modifications to make the system testable

in the v9 repository on GitHub: https://github.com/microservices-

practical.

Chapter 6 Testing the Distributed System

https://github.com/microservices-practical
https://github.com/microservices-practical

274

�Creating an Empty Project and Choosing
the Tools
Since we want to interact with the system as an external agent, we’ll create

a new project with the code needed to do that. In this case, we’re not

creating a new microservice so we can change the set of tools to use.

To keep it simple, we’ll start with plain Java 8 code and some libraries

and frameworks to achieve a robust end-to-end test strategy:

•	 Cucumber: More specifically cucumber-jvm, the Java

implementation of this tool.

•	 Cucumber JUnit: It will give us the integration with JUnit.

•	 Cucumber Picocontainer: We’ll use it for the leaderboard

feature, to use dependency injection in our tests.

•	 JUnit: We add this dependency to get the core support

for testing in Java.

•	 AssertJ: Provides a natural way to do assertions.

•	 Apache Fluent HttpClient: We’ll use it to connect to the

application’s REST API.

•	 Jackson 2: It allows us to deserialize JSON without too

much effort.

As you can see, we don’t need Spring Boot for this. An easy way to

create an empty Maven project is using one of the archetypes. We can use

an installed version of Maven or we could also copy the wrapper from one

of our previous projects (.mvn folder and executable) in an empty folder

that we’ll name tests_e2e. Then execute the following:

./mvnw archetype:generate -DgroupId=microservices.book

-DartifactId=e2e-tests-v9 -DarchetypeArtifactId=maven-

archetype-quickstart -DinteractiveMode=false

Chapter 6 Testing the Distributed System

275

The next step is to open our almost-empty pom.xml and include

the dependencies listed. We need three different Maven artifacts to use

Jackson 2. In the example in Listing 6-4, we extracted some versions as

properties to better handle upgrades from a common place.

Listing 6-4.  pom.xml (e2e-tests v9)

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

 xsi:schemaLocation="http://maven.apache.org/POM/4.0.0

http://maven.apache.org/maven-v4_0_0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>microservices.book</groupId>

 <artifactId>tests-e2e-v9</artifactId>

 <packaging>jar</packaging>

 <version>0.9.0-SNAPSHOT</version>

 <build>

 <plugins>

 <plugin>

 <groupId>org.apache.maven.plugins</groupId>

 <artifactId>maven-compiler-plugin</artifactId>

 <configuration>

 <source>1.8</source>

 <target>1.8</target>

 </configuration>

 </plugin>

 </plugins>

 </build>

 <name>tests-e2e-v9</name>

 �<description>End to End tests - Microservices - The

Practical Way (Book)</description>

Chapter 6 Testing the Distributed System

276

 <properties>

 �<project.build.sourceEncoding>UTF-8</project.build.

sourceEncoding>

 �<project.reporting.outputEncoding>UTF-8</project.

reporting.outputEncoding>

 <java.version>1.8</java.version>

 <jackson-2-version>2.8.9</jackson-2-version>

 <cucumber-version>1.2.5</cucumber-version>

 </properties>

 <url>http://maven.apache.org</url>

 <dependencies>

 <dependency>

 <groupId>info.cukes</groupId>

 <artifactId>cucumber-java</artifactId>

 <version>${cucumber-version}</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>info.cukes</groupId>

 <artifactId>cucumber-junit</artifactId>

 <version>${cucumber-version}</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>info.cukes</groupId>

 <artifactId>cucumber-picocontainer</artifactId>

 <version>${cucumber-version}</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.apache.httpcomponents</groupId>

Chapter 6 Testing the Distributed System

277

 <artifactId>fluent-hc</artifactId>

 <version>4.5.3</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>junit</groupId>

 <artifactId>junit</artifactId>

 <version>4.12</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>org.assertj</groupId>

 <artifactId>assertj-core</artifactId>

 <version>3.8.0</version>

 <scope>test</scope>

 </dependency>

 �<!-- the core, which includes Streaming API, shared

low-level

 abstractions (but NOT data-binding) -->

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-core</artifactId>

 <version>${jackson-2-version}</version>

 <scope>test</scope>

 </dependency>

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-annotations</artifactId>

 <version>${jackson-2-version}</version>

 <scope>test</scope>

 </dependency>

Chapter 6 Testing the Distributed System

278

 <dependency>

 <groupId>com.fasterxml.jackson.core</groupId>

 <artifactId>jackson-databind</artifactId>

 <version>${jackson-2-version}</version>

 <scope>test</scope>

 </dependency>

 </dependencies>

</project>

�Making the System Testable
One of the main problems with some systems is that they are not testable

enough. The root problem can be different in each case, but a common

one is related to a misconception of the black-box testing approach,

which states that we just interact with the system from the outside and

use what we have available to check that the behavior is as expected. The

implementation of the system remains unknown to the tester. The main

advantage of applying black-box testing for end-to-end scenarios is that

we can verify that the whole system works from the user’s point of view.

However, we shouldn’t push that idea to the limits. If we find ourselves

parsing multiple logs or making complicated scripts to verify some

generated outputs (like files, or even the database), we should stop and

think if it wouldn’t be better to offer more tools to verify the behavior of the

system, or even provide test-specific interfaces in our system. We should

consider if what we have available is good enough.

Building hacker-like assertion scripts (like those parsing logs) is even

more common in companies where there is a marked separation between

developers and testers. In any case, it doesn’t help at all: those scripts are

going to become a nightmare to maintain, especially if they are based on

outputs that are not a consequence of functional requirements (like logs).

Chapter 6 Testing the Distributed System

279

They might change without notice and break the entire suite of tests with a

false negative (since the test would fail, but the logic still works).

Diving into our system as an example, it turns out that we don’t have

any API to get the resulting score for an attempt identifier. What we have

is a line output in the Gamification log, User with id {} scored {}

points for attempt id {}. But, as explained, if we use that line in our

test assertions, we might end up with test failures if that line changes or is

removed, which may easily happen since it’s not a functional requirement.

As an alternative, we can consider including the REST API to get

the score for a given attempt. We could argue that there is no functional

requirement to include that into our API and therefore it should never be

there. However, certainly it makes sense to have it there: it’s not exposing

any logic, it might be useful for the functionality in the future, and it is

simply a test requirement now. This is the approach that we’ll follow—

avoiding to overcomplicate things, we’ll build some support in our

application to better support testing.

In the next paragraphs, we’ll explain how we need to adapt our

application to be testable: including new API interfaces, using test profiles,

and taking good care of test data separately.

�New API Interfaces

As mentioned, we need to get the score data by its attempt identifier. Since

this is a feature that might be useful in the future, we won’t include it only

for test but as a new available endpoint. We need it to verify that a posted

attempt has generated points for the user, so if the attempt id is 1, we can

call GET /scores/1 and get the score associated with that try. To achieve

Chapter 6 Testing the Distributed System

280

that, we’ll create a new controller in the gamification service and its

corresponding unit test. See Listing 6-5.

Listing 6-5.  ScoreController.java (New) (Gamification v9)

package microservices.book.gamification.controller;

import microservices.book.gamification.domain.ScoreCard;

import microservices.book.gamification.service.GameService;

import org.springframework.web.bind.annotation.GetMapping;

import org.springframework.web.bind.annotation.PathVariable;

import org.springframework.web.bind.annotation.RequestMapping;

import org.springframework.web.bind.annotation.RestController;

/**

 * This class implements a REST API for the Gamification User

Statistics service.

 */

@RestController

@RequestMapping("/scores")

class ScoreController {

 private final GameService gameService;

 public ScoreController(final GameService gameService) {

 this.gameService = gameService;

 }

 @GetMapping("/{attemptId}")

 public ScoreCard getScoreForAttempt(

 @PathVariable("attemptId") final Long attemptId) {

 return gameService.getScoreForAttempt(attemptId);

 }

}

Chapter 6 Testing the Distributed System

281

We can’t forget to include the new routing configuration in the

gateway, as shown in Listing 6-6.

Listing 6-6.  application.yml (Gateway v9)

zuul:

 ignoredServices: '*'

 prefix: /api

 routes:

 # ... other existing routes ...

 scores:

 path: /scores/**

 serviceId: gamification

 strip-prefix: false

EXERCISE

We need to expose an extra endpoint, this time inside the Multiplication

microservice: /users/{userId}. The reason is that, inside our second

feature to test, the leaderboard functionality, we want to map user aliases

(specified in the Gherkin file) to internal user identifiers.

This should be an easy task for you by this time. Anyway, if you need help,

you’ll find the UserController and the UserRepository classes in the v9

repository on GitHub.

�Test Profiles

Spring Boot has profiles, which are different configurations that we

can load for our system (through overriding or extending properties).

We’ll create a test profile for our microservices to be used in the test

environment. That won’t change any logic inside the system, but will help

us verify the features.

Chapter 6 Testing the Distributed System

282

We have two main objectives with the introduction of the test profiles

that we’ll cover in the next pages:

•	 We want to handle dummy data that we’ll discard after

the tests.

•	 We want to be able to clean up the system and return it

to a fresh state.

Note that for our end-to-end testing strategy we can’t benefit from

some Spring testing features like transaction rollback at the end of our

tests. Those features are really powerful for all kind of tests that are

executed within the scope of a single Spring application (including

integration tests within a microservice). But they’re not useful here for

several reasons:

•	 The tests are executed from a different project (because of

the black-box testing approach) that interacts with other

applications via REST calls. The test annotations, and in

general any use we do in the test project of the Spring Test

capabilities, will be ignored by our microservices.

•	 When following and end-to-end approach, we

normally like to test how the infrastructure works as

well. That includes real transactions to the database

and messages flowing through RabbitMQ.

•	 Even if we would create a profile in our microservices

that mimics the transaction rollback behavior, keep in

mind that our process is not a single transaction. The

attempt-to-points process is the result of multiplication

storing the attempt in database and sending an event

(one transaction), plus gamification consuming

the event and calculating the new score (another

transaction). If we roll back the first one after it finishes,

the second one would fail.

Chapter 6 Testing the Distributed System

283

Therefore, for our end-to-end approach, we need to take care of

dummy data and clean up by ourselves. Let’s see how.

�Handling Test Data

We’ll put some test data in our system to prove that everything works,

but we don’t want that data in our production environment. To avoid it,

we’re going to create a different database for testing purposes. We need

to override the database URL property to give it a different name, for both

gamification and multiplication services. As explained, we’ll do that in a

different Spring profile (test), which for a properties file can be defined

just by naming convention (our -test suffix). See Listing 6-7.

Listing 6-7.  application-test.properties (Gateway v9)

spring.datasource.url=jdbc:h2:file:~/gamification-test;DB_

CLOSE_ON_EXIT=FALSE;AUTO_SERVER=TRUE

Keep in mind that we don’t need to include any other property in that

profile since they will be loaded from the plain application.properties file.

Spring handles these files with inheritance. If we start our application with the

test profile active, we load into our application context all properties from

the main properties file (the one with no suffix) plus the ones from the specific

profile (that will override the main values if they have the same key).

Besides separating data, we also want to start every test case with

a clean database, so we make sure that existing data (coming from

previously executed tests) won’t impact the result of our test execution.

There are many ways to achieve this, but a simple one from the point of

view of maintenance (and aligned with a DevOps vision) is to embed that

cleanup functionality in our application. Since the service owns the logic

to create entities, there is no one better than a developer to write and

maintain a REST endpoint to delete the data and do a fresh initialization

of a service. Don’t worry about the potential risk of doing this: we’ll expose

this functionality only while running in test mode.

Chapter 6 Testing the Distributed System

284

We create an AdminController in both the gamification and

multiplication microservices. To restrict it correctly, we include the

@Profile annotation, which will tell Spring to load that bean only when

the profile is test. See Listing 6-8.

Listing 6-8.  AdminController.java (Gamification v9)

@Profile("test")

@RestController

@RequestMapping("/gamification/admin")

class AdminController {

 private final AdminService adminService;

 public AdminController(final AdminService adminService) {

 this.adminService = adminService;

 }

 @PostMapping("/delete-db")

 public ResponseEntity deleteDatabase() {

 adminService.deleteDatabaseContents();

 return ResponseEntity.ok().build();

 }

}

Now, every time we do a POST /[service]/admin/delete-db, it will

clean the database. Given that this is a functionality we want to make

sure is properly hidden, we’ll also verify with unit tests that it’s accessible

only when the profile test is set. We accomplish that by using in our tests

the annotation @ActiveProfiles and making sure that, in the case of

no profile set, the endpoint returns a NOT_FOUND status. Let’s implement

a couple of tests inside multiplication and gamification to verify this—

AdminControllerEnabledTest and AdminControllerDisabledTest—see

Listings 6-9 and 6-10.

Chapter 6 Testing the Distributed System

285

Listing 6-9.  AdminControllerEnabledTest.java (Gamification v9)

@RunWith(SpringRunner.class)

@ActiveProfiles(profiles = "test")

@WebMvcTest(AdminController.class)

public class AdminControllerEnabledTest {

 @MockBean

 private AdminService adminService;

 @Autowired

 private MockMvc mvc;

 /**

 �* This test checks that the controller is working as

expected when

 �* the profile is set to test (see annotation in class

declaration)

 * @throws Exception if any error occurs

 */

 @Test

 public void deleteDatabaseTest() throws Exception {

 // when

 MockHttpServletResponse response = mvc.perform(

 post("/gamification/admin/delete-db")

 .accept(MediaType.APPLICATION_JSON))

 .andReturn().getResponse();

 // then

 �assertThat(response.getStatus()).isEqualTo(HttpStatus.

OK.value());

 verify(adminService).deleteDatabaseContents();

 }

}

Chapter 6 Testing the Distributed System

286

Listing 6-10.  AdminControllerDisabledTest.java (Gamification v9)

@RunWith(SpringRunner.class)

@WebMvcTest(AdminController.class)

public class AdminControllerDisabledTest {

 @MockBean

 private AdminService adminService;

 @Autowired

 private MockMvc mvc;

 /**

 * This test checks that the controller is NOT ACCESSIBLE

 * when profile is not set to test

 *

 * @throws Exception if any error occurs

 */

 @Test

 public void deleteDatabaseTest() throws Exception {

 // when

 MockHttpServletResponse response = mvc.perform(

 post("/gamification/admin/delete-db")

 .accept(MediaType.APPLICATION_JSON))

 .andReturn().getResponse();

 // then

 �assertThat(response.getStatus()).isEqualTo(HttpStatus.

NOT_FOUND.value());

 verifyZeroInteractions(adminService);

 }

}

Chapter 6 Testing the Distributed System

287

Lastly, to align that with our routing strategy in Zuul, we create a

test profile also in the gateway service and load the appropriate routing

configuration only for test mode. Note that for a YAML properties file, we

have an extra way to create a profile, adding three dashes and the profile

name (although you can also create an application-test.yml if you

prefer). See Listing 6-11.

Listing 6-11.  application.ym: Adding a Profile (Gateway v9)

... (our previous application.yml content)

Adds admin routes for testing purposes

spring:

 profiles: test

zuul:

 routes:

 gamification-admin:

 path: /gamification/admin/**

 serviceId: gamification

 strip-prefix: false

 multiplication-admin:

 path: /multiplication/admin/**

 serviceId: multiplication

 strip-prefix: false

�Writing the First Cucumber Test
After we prepared our system for the tests, let’s focus back again on our

end-to-end project, which we left empty. The first step is to create a feature

in a Gherkin file inside src/test/resources, with some scenarios. We’ll

name it multiplication.feature. If you have an IDE that has an available

plugin for Cucumber (like IntelliJ), it’s time to install it so you can benefit

Chapter 6 Testing the Distributed System

288

from syntax coloring, compiler warnings when steps in features don’t

match with expressions in code, etc.

The first feature we want to create is the main functionality provided by

our application: users are sending their attempts and receiving responses.

If the attempt is correct, they receive points and, in some cases, badges.

Let’s write the full description in our feature and define our different

scenarios and steps. See Listing 6-12.

Listing 6-12.  Multiplication.feature (tests-e2e v9)

Feature: Users are able to send their multiplication

 attempts, which may be correct or not. When users

 send a correct attempt, they get a response indicating

 that the result is the right one. Also, they get points

 and potentially some badges when they are right, so they

 get motivation to come back and keep playing. Badges are

 won for the first right attempt and when the user gets 100,

 500 and 999 points respectively. If users send a wrong

 attempt, they don't get any point or badge.

 �Scenario: The user sends a first right attempt and gets a badge

 When the user john_snow sends 1 right attempts

 �Then the user gets a response indicating the attempt is right

 And the user gets 10 points for the attempt

 And the user gets the FIRST_WON badge

 �Scenario: The user sends a second right attempt and gets points only

 Given the user john_snow sends 1 right attempts

 And the user gets the FIRST_WON badge

 When the user john_snow sends 1 right attempts

 �Then the user gets a response indicating the attempt is right

 And the user gets 10 points for the attempt

 And the user does not get any badge

Chapter 6 Testing the Distributed System

289

 Scenario: The user sends a wrong attempt and gets nothing

 When the user john_snow sends 1 wrong attempts

 �Then the user gets a response indicating the attempt is wrong

 And the user gets 0 points for the attempt

 And the user does not get any badge

 # Checks the Bronze, Silver and Gold badges

 �Scenario Outline: The user sends a right attempt after

<previous_attempts> right attempts and then gets a badge

<badge_name>

 �Given the user john_snow sends <previous_attempts> right

attempts

 When the user john_snow sends 1 right attempts

 �Then the user gets a response indicating the attempt is

right

 And the user gets 10 points for the attempt

 And the user gets the <badge_name> badge

 Examples:

 | previous_attempts | badge_name |

 | 9 | BRONZE_MULTIPLICATOR |

 | 49 | SILVER_MULTIPLICATOR |

 | 99 | GOLD_MULTIPLICATOR |

As we saw already, the good part about Gherkin is that we don’t

need to describe what we want to test with that file; it’s perfectly

understandable. We check the cases in which the user sends a right and

a wrong attempt, and then the different badge scenarios. For the badges

based on the number of good attempts, we can use a table with examples

since the scenario outline is exactly the same.

Chapter 6 Testing the Distributed System

290

Note that in our Gherkin file we’re reusing some of the steps, and also

writing them in a way that can be easily parsed later. Sentence rewording

is a skill that you learn after the first time you write scenarios. Don’t

worry about the wording as you write; just focus on the content, writing

sentences in the most human-friendly way you can imagine, and then

do a second round by identifying phrases that can be parameterized and

combined using arguments. For instance, while writing this feature, I

found myself writing the sentences in Listing 6-13.

Listing 6-13.  Multiplication.feature: Fragment That Can Be

Improved (tests-e2e v9)

First example of a sentence that can be combined with another

one

And the user does not get points for the attempt

Another example

And the user gets the badge linked to the first attempt

When you pay attention to the complete feature definition, you notice

that the first one can be generalized to the common one to check the score

(and set to 0), and the second one can be rephrased so it is generic and we

can use it for any badge. See Listing 6-14.

Listing 6-14.  Multiplication.feature: Improved Fragment

(tests-e2e v9)

First example translated to existing sentence

And the user gets 0 points for the attempt

Second example made generic

And the user gets the FIRST_WON badge

Chapter 6 Testing the Distributed System

291

In a real-life case, this is part of the process of software development:

the business user will write a gherkin file without paying attention to

step reusability, but then the developer can suggest light modifications

to make it more efficient from a technical point of view. You may argue

that that should never happen and we should keep the Gherkin file as it

comes, and then implement some method references in the background.

That’s also feasible, but the fact is that we can find some modifications that

keep our feature definitions pretty readable but at the same time nicely

parameterized, so we reduce maintenance and help to write more flexible

sentences (instead of ad hoc, one-time use). Keep the sentences functional

and human-friendly, but generic enough to reuse them if needed. That

should be your goal.

�Linking a Feature to Java Code
Once we have a .feature file describing the use cases, we write our Java

code to process them and perform the desired actions and assertions.

First, we need to link our feature to a test class in Java. Let’s create

MultiplicationFeatureTest within the microservices.book package.

Cucumber provides a test runner (Cucumber, which we need to pass to

JUnit’s @RunWith annotation) and a @CucumberOptions annotation that we

can use to set up some plugins. In this case, we’d like to add some extra

reports, so we configure it there. See Listing 6-15.

Listing 6-15.  MultiplicationFeatureTest.java (tests-e2e v9)

package microservices.book;

import cucumber.api.CucumberOptions;

import cucumber.api.junit.Cucumber;

import org.junit.runner.RunWith;

Chapter 6 Testing the Distributed System

292

/**

 * @author moises.macero

 */

@RunWith(Cucumber.class)

@CucumberOptions(plugin = { "pretty", "html:target/cucumber",

"junit:target/junit-report.xml" },

 features = "src/test/resources/multiplication.feature")

public class MultiplicationFeatureTest {

}

To define the steps within that class, we could start from scratch, but

we can also benefit from an interesting feature in Cucumber: the auto-

generation of code for undefined steps. From the project’s root folder, we

execute ./mvnw test. That should run our tests but, since there are no

defined steps linked to our defined .feature file, the Cucumber runner

will generate very helpful content at the end of our console output, as

shown in Listing 6-16.

Listing 6-16.  Console Output: Auto-Generated Steps (tests-e2e v9)

...

You can implement missing steps with the snippets below:

@When("^the user john_snow sends (\\d+) right attempts$")

public void the_user_john_snow_sends_right_attempts(int arg1)

throws Throwable {

 �// Write code here that turns the phrase above into

concrete actions

 throw new PendingException();

}

@Then("^the user gets a response indicating the attempt is

right$")

Chapter 6 Testing the Distributed System

293

public void the_user_gets_a_response_indicating_the_attempt_is_

right() throws Throwable {

 �// Write code here that turns the phrase above into

concrete actions

 throw new PendingException();

}

@Then("^the user gets (\\d+) points for the attempt$")

public void the_user_gets_points_for_the_attempt(int arg1)

throws Throwable {

 �// Write code here that turns the phrase above into

concrete actions

 throw new PendingException();

}

@Then("^the user gets the FIRST_WON badge$")

public void the_user_gets_the_FIRST_WON_badge() throws

Throwable {

 �// Write code here that turns the phrase above into

concrete actions

 throw new PendingException();

}

@Given("^the user john_snow sends (\\d+) right attempts$")

public void the_user_john_snow_sends_right_attempts(int arg1)

throws Throwable {

 �// Write code here that turns the phrase above into

concrete actions

 throw new PendingException();

}

...

Chapter 6 Testing the Distributed System

294

That code needs some modification, but it’s a good start. We copy it

into a new class called MultiplicationFeatureSteps within the same

microservices.book package. That class will contain the logic for all the

steps included in this feature. Bear in mind that the order of the steps in

your Java class is not important, but you may want to keep some order of

appearance for readability when comparing it to the feature.

First, let’s correct the different step definitions defined in the Given,

When, and Then annotations. We want to use some extra words as

arguments, not only numbers, which are the only ones interpreted as

arguments in the autogenerated code:

•	 User alias: We’d like to pass the user alias as an

argument (text), so we can reuse the same steps for

different attempts of various users.

•	 Correctness: We’d like to specify if the attempt is right or

wrong (text).

•	 Badge name: We want to pass the badge name (text)

instead of hard-coding it in different steps.

To accomplish that, we just need to replace these words in our

sentence patterns with regular expressions. We can use ([^\s]+) as a

simple regular expression to match the word between spaces. Then, when

replaced with the hard-coded word, it will do the trick. Let’s apply the

change to the original version, as shown in Listing 6-17.

Listing 6-17.  MultiplicationFeatureSteps.java : Adding Arguments

(tests-e2e v9)

// Original

@When("^the user john_snow sends (\\d+) right attempts$")

public void the_user_john_snow_sends_right_attempts(int arg1)

throws Throwable {

Chapter 6 Testing the Distributed System

295

 �// Write code here that turns the phrase above into

concrete actions

 throw new PendingException();

}

// Modified with extra parameters

@Given("^the user ([^\\s]+) sends (\\d+) ([^\\s]+) attempts")

public void the_user_sends_attempts(final String userAlias,

 �final int attempts, final String rightOrWrong) throws

Throwable {

 �// Write code here that turns the phrase above into

concrete actions

 throw new PendingException();

}

Note that we need to add the extra arguments to the method too, which

must follow the same order of appearance as in the sentence.

That’s how we parameterize our steps. Now we can write sentences

such as “the user john_snow sends 12 right attempts” or “the user jack_

smith sends 3 wrong attempts” and both will be handled by the same step

method.

We still miss the real logic of the steps. To avoid creating a huge class

with a lot of logic, we’ll use our object-oriented common sense and split it:

•	 The MultiplicationFeatureSteps class will contain

the main logic of our tests, orchestrating the actions

and asserting the results. We should try to keep every

step below 10 lines of code.

•	 The MultiplicationApplication is a new class that

we’ll create to model the exposed services in our

application: sending an attempt, getting statistics, etc.

Chapter 6 Testing the Distributed System

296

•	 The ApplicationHttpUtils is a class we’ll add to

provide basic support to perform HTTP calls so that we

can access the REST API of our application.

Listing 6-18 shows the final version of MultiplicationFeatureSteps.

Listing 6-18.  MultiplicationFeatureSteps.java (tests-e2e v9)

public class MultiplicationFeatureSteps {

 private MultiplicationApplication app;

 private AttemptResponse lastAttemptResponse;

 private Stats lastStatsResponse;

 public MultiplicationFeatureSteps() {

 this.app = new MultiplicationApplication();

 }

 @Before

 public void cleanUp() {

 app.deleteData();

 }

 �@Given("^the user ([^\\s]+) sends (\\d+) ([^\\s]+) attempts")

 public void the_user_sends_attempts(final String userAlias,

 final int attempts,

 �final String

rightOrWrong)

 �throws

Throwable {

 int attemptsSent = IntStream.range(0, attempts)

 �.mapToObj(i -> app.sendAttempt(userAlias, 10, 10,

 �"right".

equals(rightOrWrong) ?

 �100 : 258))

Chapter 6 Testing the Distributed System

297

 // store last attempt for later use

 �.peek(response -> lastAttemptResponse =

response)

 �.mapToInt(response -> response.isCorrect()

? 1 : 0)

 .sum();

 �assertThat(attemptsSent).isEqualTo("right".

equals(rightOrWrong) ? attempts : 0)

 �.withFailMessage("Error sending attempts to the

application");

 }

 �@Then("^the user gets a response indicating the attempt is

([^\\s]+)$")

 �public void the_user_gets_a_response_indicating_the_

attempt_is(

 final String rightOrWrong) throws Throwable {

 assertThat(lastAttemptResponse.isCorrect())

 .isEqualTo("right".equals(rightOrWrong))

 .withFailMessage("Expecting a response with a "

 + rightOrWrong + " attempt");

 }

 @Then("^the user gets (\\d+) points for the attempt$")

 public void the_user_gets_points_for_the_attempt(

 final int points) throws Throwable {

 long attemptId = lastAttemptResponse.getId();

 Thread.currentThread().sleep(2000);

 �int score = app.getScoreForAttempt(attemptId).

getScore();

 assertThat(score).isEqualTo(points);

 }

Chapter 6 Testing the Distributed System

298

 @Then("^the user gets the ([^\\s]+) badge$")

 public void the_user_gets_the_type_badge(

 final String badgeType) throws Throwable {

 long userId = lastAttemptResponse.getUser().getId();

 Thread.currentThread().sleep(200);

 lastStatsResponse = app.getStatsForUser(userId);

 �List<String> userBadges = lastStatsResponse.

getBadges();

 assertThat(userBadges).contains(badgeType);

 }

 @Then("^the user does not get any badge$")

 �public void the_user_does_not_get_any_badge() throws

Throwable {

 long userId = lastAttemptResponse.getUser().getId();

 Stats stats = app.getStatsForUser(userId);

 List<String> userBadges = stats.getBadges();

 if (stats.getScore() == 0) {

 assertThat(stats.getBadges()).isNullOrEmpty();

 } else {

 �assertThat(userBadges).isEqualTo(lastStatsResponse.

getBadges());

 }

 }

 @Given("^the user has (\\d+) points$")

 �public void the_user_has_points(final int points) throws

Throwable {

Chapter 6 Testing the Distributed System

299

 long userId = lastAttemptResponse.getUser().getId();

 �int statPoints = app.getStatsForUser(userId).

getScore();

 assertThat(points).isEqualTo(statPoints);

 }

 public AttemptResponse getLastAttemptResponse() {

 return lastAttemptResponse;

 }

 public Stats getLastStatsResponse() {

 return lastStatsResponse;

 }

 public MultiplicationApplication getApp() {

 return app;

 }

}

Be aware that this class won’t compile until we implement the

MultiplicationApplication, Stats, and AttemptResponse classes. That

part is pretty straightforward, so we’ll cover that later in the chapter to

avoid diversions from our implementation of Cucumber’s feature steps.

The first important concept to understand is that this class will be

instantiated per the scenario we execute, so we can keep the state across

the different steps of the script. Therefore, we can use class fields to share

information between steps. In this case, we need to keep a reference to our

application model app, and to the last responses received for an attempt-

request (lastAttemptResponse) and a stats request (lastStatsResponse).

Chapter 6 Testing the Distributed System

300

Given the similarity with JUnit, it’s not a surprise that the method

annotated with @Before is going to be executed before every scenario.

In this case, we invoke the application method called cleanUp(),

which will call (as we’ll see later in the chapter) our new API endpoints

created specifically for tests: /gamification/admin/delete-db and /

multiplication/admin/delete-db. We want to execute every scenario

with a clean database.

Having that knowledge, the implementation of our steps is

just a Java-as-usual task. We just need to use our application class

MultiplicationApplication to call the REST API (supported by

ApplicationHttpUtils). As you can see here, we use AssertJ to check

the results in our MultiplicationFeatureSteps class. Note that

Cucumber does not give us a full testing framework: it’s just a tool to

link feature definitions in Gherkin to Java code using a BDD approach.

To be able to build our tests we need to combine it with JUnit and

most likely other frameworks/libraries like AssertJ, TestNG, Mockito,

etc., depending on our needs. Figure 6-1 shows an overall view of the

different parts in our end-to-end project and how it connects to the

existing system.

Chapter 6 Testing the Distributed System

301

Figure 6-1.  Overall view of the end-to-end project and how it
connects to the existing system

Chapter 6 Testing the Distributed System

302

Last but not least, it’s worth it to mention that Cucumber does not

distinguish between the annotations @Given, @When, and @Then to link

the steps to code. You can see some examples in the feature file: the step

^the user ([^\s]+) sends (\d+) ([^\s]+) attempts is being used in

a Given and a When statement indistinctly, but the step is defined with a @

Given annotation in the code. This is useful to implement cases like these,

in which the same step can be reused to set up the scenario and to assert

an expected result.

PRODUCTION READINESS: SLEEP GUARDS IN CI SYSTEMS

Maybe you noticed that we’re using some sleep() calls to wait before

continuing with some steps. We need them there because our system is

eventually consistent—the event will take some time to be consumed by the

second microservice, and that one will take its time to complete the operation.

The sleep() methods are there just to illustrate this; make sure you don’t

use those waits in a real CI system. They can become easily the source of

many spurious errors (e.g., if you have a congested CI machine that doesn’t

respond in time).

Take this as an exercise and implement a retry mechanism in the system that

performs the REST call several times until it gets a valid response or a timeout

expires.

�The Supporting Classes
As introduced earlier, Cucumber is not a full end-to-end test framework.

It delivers nicely on its promises: linking feature definitions in a human-

friendly language to test suites in code, with defined steps. In our system,

we need to build some extra logic to fulfill our end-to-end strategy. Note

that this logic is not Cucumber- nor Spring-Boot specific, so you can take

Chapter 6 Testing the Distributed System

303

this whole subsection as a challenge and implement the rest of the code

yourself, using the methods you saw in the MultiplicationFeatureSteps

class as a reference.

The MultiplicationApplication class, which we left pending to

be implemented, will model the system behavior (see Listing 6-19). The

methods represent actions that a REST consumer can perform. Note that it

relies on ApplicationHttpUtils, which we haven’t covered yet. However,

as you can imagine, it performs the real HTTP connection plumbing.

Listing 6-19.  MultiplicationApplication.java: Adding Arguments

(tests-e2e v9)

public class MultiplicationApplication {

 �private static final String APPLICATION_BASE_URL = "http://

localhost:8000/api";

 private static final String CONTEXT_ATTEMPTS = "/results";

 private static final String CONTEXT_SCORE = "/scores/";

 private static final String CONTEXT_STATS = "/stats";

 private static final String CONTEXT_USERS = "/users/";

 �private static final String CONTEXT_LEADERBOARD = "/

leaders";

 �private static final String CONTEXT_DELETE_DATA_GAM = "/

gamification/admin/delete-db";

 �private static final String CONTEXT_DELETE_DATA_MULT = "/

multiplication/admin/delete-db";

 private ApplicationHttpUtils httpUtils;

 public MultiplicationApplication() {

 �this.httpUtils = new ApplicationHttpUtils(APPLICATIO

N_BASE_URL);

 }

Chapter 6 Testing the Distributed System

304

 �public AttemptResponse sendAttempt(String userAlias, int

factorA, int factorB, int result) {

 �String attemptJson = "{\"user\":{\"alias\":\"" +

userAlias + "\"}," +

 �"\"multiplication\":{\"factorA\":\"" + factorA

+ "\",\"factorB\":\"" + factorB + "\"}," +

 �"\"resultAttempt\":\"" + result + "\"}";

 �String response = httpUtils.post(CONTEXT_ATTEMPTS,

attemptJson);

 ObjectMapper objectMapper = new ObjectMapper();

 �objectMapper.configure(DeserializationFeature.FAIL_ON_

UNKNOWN_PROPERTIES, false);

 try {

 �return objectMapper.readValue(response,

AttemptResponse.class);

 } catch (IOException e) {

 throw new RuntimeException(e);

 }

 }

 public ScoreResponse getScoreForAttempt(long attemptId) {

 �String response = httpUtils.get(CONTEXT_SCORE +

attemptId);

 if (response.isEmpty()) {

 return new ScoreResponse(0);

 } else {

 ObjectMapper objectMapper = new ObjectMapper();

 �objectMapper.configure(DeserializationFeature.FAIL_

ON_UNKNOWN_PROPERTIES, false);

 try {

 �return objectMapper.readValue(response,

ScoreResponse.class);

Chapter 6 Testing the Distributed System

305

 } catch (IOException e) {

 throw new RuntimeException(e);

 }

 }

 }

 public Stats getStatsForUser(long userId) {

 �String response = httpUtils.get(CONTEXT_STATS +

"?userId=" + userId);

 ObjectMapper objectMapper = new ObjectMapper();

 �objectMapper.configure(DeserializationFeature.FAIL_ON_

UNKNOWN_PROPERTIES, false);

 try {

 �return objectMapper.readValue(response, Stats.

class);

 } catch (IOException e) {

 throw new RuntimeException(e);

 }

 }

 public User getUser(long userId) {

 �String response = httpUtils.get(CONTEXT_USERS +

userId);

 ObjectMapper objectMapper = new ObjectMapper();

 �objectMapper.configure(DeserializationFeature.FAIL_ON_

UNKNOWN_PROPERTIES, false);

 try {

 �return objectMapper.readValue(response,

User.class);

 } catch (IOException e) {

 throw new RuntimeException(e);

 }

 }

Chapter 6 Testing the Distributed System

306

 public List<LeaderBoardPosition> getLeaderboard() {

 String response = httpUtils.get(CONTEXT_LEADERBOARD);

 ObjectMapper objectMapper = new ObjectMapper();

 �objectMapper.configure(DeserializationFeature.FAIL_ON_

UNKNOWN_PROPERTIES, false);

 try {

 �JavaType javaType = objectMapper.getTypeFactory().

constructCollectionType(List.class,

LeaderBoardPosition.class);

 return objectMapper.readValue(response, javaType);

 } catch (IOException e) {

 throw new RuntimeException(e);

 }

 }

 public void deleteData() {

 httpUtils.post(CONTEXT_DELETE_DATA_GAM, "");

 httpUtils.post(CONTEXT_DELETE_DATA_MULT, "");

 }

}

This class basically retrieves the JSON representations from the

REST APIs and maps them to plain objects using Jackson. We also

need to create the Stats, AttemptResponse, User, ScoreResponse, and

LeaderBoardPosition classes.

EXERCISE

Create the Stats, AttemptResponse, User, ScoreResponse, and

LeaderBoardPosition simple classes. Don’t forget to either follow the

same structure as the received JSON or code the parsers yourself. To keep

it simple, the listed classes represent the same structure. For instance, you

Chapter 6 Testing the Distributed System

307

need to reference User from AttemptResponse. If you need help, remember

that you can find the complete source code inside the v9 repository on GitHub

(tests_e2e folder).

The last supporting class of this little framework to connect to our

system is ApplicationHttpUtils (see Listing 6-20). This one uses Apache

HTTP Fluent API to execute the requests and get the responses from the

API Gateway. See https://tpd.io/fl-api for more information about the

Apache HTTP Fluent API.

Listing 6-20.  ApplicationHttpUtils.java (tests-e2e v9)

public class ApplicationHttpUtils {

 private final String baseUrl;

 public ApplicationHttpUtils(final String baseUrl) {

 this.baseUrl = baseUrl;

 }

 public String post(final String context, final String body) {

 try {

 �HttpResponse response = Request.Post(baseUrl +

context)

 �.bodyString(body, ContentType.APPLICATION_

JSON)

 .execute().returnResponse();

 assertIs200(response);

 return EntityUtils.toString(response.getEntity());

 } catch (IOException e) {

 throw new RuntimeException(e);

 }

 }

Chapter 6 Testing the Distributed System

https://tpd.io/fl-api

308

 public String get(final String context) {

 try {

 �HttpResponse response = Request.Get(baseUrl +

context)

 .execute().returnResponse();

 assertIs200(response);

 return EntityUtils.toString(response.getEntity());

 } catch (IOException e) {

 throw new RuntimeException(e);

 }

 }

 private void assertIs200(final HttpResponse httpResponse) {

 �assertThat(httpResponse.getStatusLine().

getStatusCode()).isEqualTo(200);

 }

}

�Reusing Steps Across Features
This section introduces the second feature to test, and while coding it,

you’ll see how you can use steps defined before, thus saving a lot of time

and code duplication.

We now cover the leaderboard functionality with some end-to-end

tests. Let’s test two basic scenarios:

	 1.	 From a fresh start, when the user sends more right

attempts than another, and therefore becomes first

in the ranking.

	 2.	 Given a situation in which a user is above another in

the ranking, and the one below the user can pass to

a higher ranking position by getting a higher score.

Chapter 6 Testing the Distributed System

309

The feature file is nothing more than writing the same story in

Gherkin, as shown in Listing 6-21.

Listing 6-21.  leaderboard.feature (tests-e2e v9)

Feature: Users are listed from highest score to lowest, and

when

 they get points they can move up on the ranking.

 Scenario: A user sends a higher number of right attempts and

 it's positioned at the first place in the ranking.

 When the user john sends 2 right attempts

 And the user peter sends 1 right attempts

 Then the user john is the number 1 on the leaderboard

 And the user peter is the number 2 on the leaderboard

 Scenario: A user passes another one when gets higher score.

 Given the user john sends 3 right attempts

 And the user peter sends 2 right attempts

 And the user john is the number 1 on the leaderboard

 When the user peter sends 2 right attempts

 Then the user peter is the number 1 on the leaderboard

 And the user john is the number 2 on the leaderboard

As you can see, we’re using the steps defined in the

MultiplicationFeatureSteps class to set up the scene (sending attempts).

The tricky part here is that we don’t want to put our new steps together

with others in the same class since we want to organize them properly

and avoid having a huge class with all the steps of all our features together.

We will create a new class called LeaderboardFeatureSteps. But, if we do

that, how can we access to the functionality—and data—existing inside

MultiplicationFeatureSteps? Remember that the “send attempt” step stores

the result within its class (lastAttemptResponse), which is inaccessible from

leaderboard feature’s steps class. That is, unless we can pass it to our new class.

Chapter 6 Testing the Distributed System

310

The good news is that we can solve this with standard dependency

injection, which is provided by the cucumber-picocontainer

dependency (note that we don’t need Spring for it to work). Since

Cucumber will instantiate a new object of every class that contains

steps (one of its annotations), we can use constructor injection to tell

Cucumber to inject the instance of MultiplicationFeatureSteps into

LeaderboardFeatureSteps. To accomplish this, we only need to pass

the step definition class as a constructor argument. The lightweight

dependency injection library made ad hoc for Cucumber (Picocontainer)

will do the trick for us.

Taking dependency injection into account for our new class, we

can now code it and include the only new step needed to verify the

functionality of the leaderboard. As you can see in Listing 6-22, we don’t

need any annotation whatsoever to make the dependency injection works.

Listing 6-22.  LeaderboardFeatureSteps.java (tests-e2e v9)

public class LeaderboardFeatureSteps {

 private MultiplicationFeatureSteps mSteps;

 �public LeaderboardFeatureSteps(final MultiplicationFeature

Steps mSteps) {

 this.mSteps = mSteps;

 }

 �@Then("^the user ([^\\s]+) is the number (\\d+) on the

leaderboard$")

 �public void the_user_is_the_number_on_the_leaderboard(final

String user, final int position) throws Throwable {

 Thread.currentThread().sleep(500);

 �List<LeaderBoardPosition> leaderBoard = mSteps.

getApp().getLeaderboard();

 assertThat(leaderBoard).isNotEmpty();

Chapter 6 Testing the Distributed System

311

 �long userId = leaderBoard.get

(position - 1).getUserId();

 �String userAlias = mSteps.getApp().getUser(userId).

getAlias();

 assertThat(userAlias).isEqualTo(user);

 }

}

It’s a straightforward feature—we just need to check the position of the

user, and the orchestration of steps made by the Cucumber scenario will

do everything else. Remember that, to make it work, we also need to create

the main test class LeaderboardFeatureTest with the corresponding

runner and Cucumber options, as shown in Listing 6-23.

Listing 6-23.  LeaderboardFeatureTest.java (tests-e2e v9)

@RunWith(Cucumber.class)

@CucumberOptions(plugin = { "pretty", "html:target/cucumber",

"junit:target/junit-report.xml" },

 �features = "src/test/resources/leaderboard.feature")

public class LeaderboardFeatureTest {

}

�Running Tests and Checking Reports
It’s time to see it working. As usual, we need to start our set of services, but

now remember that we need to activate the test profile for the gateway

(to route the admin endpoints), the multiplication, and the gamification

services (to use a test database and expose admin beans). To do that, just

execute them with the Maven wrapper as shown in Listing 6-24 (or follow

the instructions of your preferred IDE).

Chapter 6 Testing the Distributed System

312

Listing 6-24.  Command Line: Running a Specific Profile

(Gamification v9)

mvnw spring-boot:run -Drun.profiles=test

Here’s a summary of the steps:

	 1.	 Run the RabbitMQ server (if not yet running).

	 2.	 Run the service registry microservice (no specific

profile).

	 3.	 Run the gateway microservice (test profile).

	 4.	 Run the multiplication microservice (test profile).

	 5.	 Run the gamification microservice (test profile).

	 6.	 Run the jetty server from the ui root folder

(optional, since our tests don’t use the UI).

When the application is up and running, simply execute the tests for

the e2e-tests project as usual with Maven:

mvnw test

You’ll see a pretty printed output in which Cucumber is telling you the

status of the scenarios and steps that are executing, as shown in Figure 6-2.

Chapter 6 Testing the Distributed System

313

Besides that, and thanks to the @CucumberOptions annotation that we

used for our main test classes, you’ll have a Cucumber report and JUnit

(surefire) XML reports in the target folder. They can be published to the

CI system so you can see the results from a centralized place.

Figure 6-2.  Pretty printed output of test execution in Cucumber

Chapter 6 Testing the Distributed System

314

�Summary
In this chapter, you saw the importance of having good test suites in a

distributed system. All the layers are important, but choosing the end-to-

end approach might become a tough decision due to the maintenance and

complexity that it commonly requires.

You saw how a combination of Cucumber and structuring the test

project into layers can provide a simple and powerful solution to cover an

end-to-end strategy. Cucumber provides a business-friendly language to

design the test cases—Gherkin—and it integrates with Java, so it’s a choice

that combines perfectly with our use case.

Also, the chapter paid extra attention to some details that can ease

development—step parameterization and reusability, understanding

how Cucumber works when instantiating tests, and how to benefit from

dependency injection. And, most importantly, you saw how making your

code testable makes everything simpler just by adding some optional logic

to your services.

What you got here is a great achievement too. You can now test the

system end-to-end, not only verifying that each part works on its own, but

also that the overall business cases make sense. Having a framework like

this will pay off even more as the project matures, because it provides an

extra layer of stability that’s difficult to obtain otherwise.

Chapter 6 Testing the Distributed System

315© Moises Macero 2017
M. Macero, Learn Microservices with Spring Boot,
https://doi.org/10.1007/978-1-4842-3165-4

�APPENDIX A

�Upgrading to Spring
Boot 2.0
�Introduction
This book uses the Spring Boot version 1.5.7 for the different microservices

that are part of the evolving application. Spring Boot 2.0, which is to be

released after writing this book, introduces some breaking changes to the

system since it’s a major update.

This appendix helps you upgrade your applications to Spring Boot

2.0 in case you want to use it.

SOURCE CODE AVAILABLE WITH THE BOOK: V10

The repository v10 on GitHub (see https://github.com/

microservices-practical) contains the system code, working with

Spring Boot 2.0. It works exactly the same way as the previous version (v9),

just with the new version. All changes made to the application are tagged with

a comment starting with BOOT2 so you can easily find them by performing a

text search.

Note that, since there is no official version at the time of writing the book,

we’re using a milestone version: 2.0.0.M2.

https://doi.org/10.1007/978-1-4842-3165-4
https://github.com/microservices-practical
https://github.com/microservices-practical

316

�Upgrading the Dependencies
If you want to use the latest version of Spring Boot, you need to change

your pom.xml files. Keep in mind that you also need to upgrade the Spring

Cloud release version, but it does not follow exactly the same schedule as

Spring Boot—it’s a few weeks delayed.

Therefore, the plan this appendix follows is to include the Spring Boot

2.0 Milestone 2 (2.0.0.M2), since it has an equivalent working version

for Spring Cloud early releases: Finchley.M2. To be able to use milestone

versions in your projects, you also need to append to your pom.xml the

additional Spring repositories where these versions reside.

Listing A-1 shows the file for the multiplication microservice as a

reference; you need to apply these same changes to all the other Spring

Boot applications (upgrading the Spring Boot and Spring Cloud versions

and adding the repositories and pluginRepositories blocks).

Listing A-1.  pom.xml (multiplication v10)

<?xml version="1.0" encoding="UTF-8"?>

<project xmlns="http://maven.apache.org/POM/4.0.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

�xsi:schemaLocation="http://maven.apache.org/POM/4.0.0 http://

maven.apache.org/xsd/maven-4.0.0.xsd">

 <modelVersion>4.0.0</modelVersion>

 <groupId>microservices.book</groupId>

 <artifactId>social-multiplication-v10</artifactId>

 <version>0.10.0-SNAPSHOT</version>

 <packaging>jar</packaging>

 <name>social-multiplication-v10</name>

 �<description>Social Multiplication App (Learn Microservices

with Spring Boot)</description>

APPENDIX A Upgrading to Spring Boot 2.0

317

 <parent>

 <groupId>org.springframework.boot</groupId>

 <artifactId>spring-boot-starter-parent</artifactId>

 <version>2.0.0.M2</version>

 </parent>

 <properties>

 �<project.build.sourceEncoding>UTF-8</project.build.

sourceEncoding>

 �<project.reporting.outputEncoding>UTF-8</project.

reporting.outputEncoding>

 <java.version>1.8</java.version>

 �<spring-cloud.version>Finchley.M2</spring-cloud.

version>

 </properties>

 <dependencyManagement>

 <dependencies>

 <dependency>

 <groupId>org.springframework.cloud</groupId>

 �<artifactId>spring-cloud-dependencies

</artifactId>

 <version>${spring-cloud.version}</version>

 <type>pom</type>

 <scope>import</scope>

 </dependency>

 </dependencies>

 </dependencyManagement>

 <dependencies>

 <!-- All our existing dependencies... -->

 </dependencies>

APPENDIX A Upgrading to Spring Boot 2.0

318

 <build>

 <plugins>

 <plugin>

 <groupId>org.springframework.boot</groupId>

 �<artifactId>spring-boot-maven-plugin

</artifactId>

 </plugin>

 </plugins>

 </build>

 <repositories>

 <repository>

 <id>spring-snapshots</id>

 <name>Spring Snapshots</name>

 <url>https://repo.spring.io/snapshot</url>

 <snapshots>

 <enabled>true</enabled>

 </snapshots>

 </repository>

 <repository>

 <id>spring-milestones</id>

 <name>Spring Milestones</name>

 <url>https://repo.spring.io/milestone</url>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 </repository>

 </repositories>

 <pluginRepositories>

 <pluginRepository>

 <id>spring-snapshots</id>

 <name>Spring Snapshots</name>

APPENDIX A Upgrading to Spring Boot 2.0

319

 <url>https://repo.spring.io/snapshot</url>

 <snapshots>

 <enabled>true</enabled>

 </snapshots>

 </pluginRepository>

 <pluginRepository>

 <id>spring-milestones</id>

 <name>Spring Milestones</name>

 <url>https://repo.spring.io/milestone</url>

 <snapshots>

 <enabled>false</enabled>

 </snapshots>

 </pluginRepository>

 </pluginRepositories>

</project>

�Fixing the Breaking Changes
�The CrudRepository Interface Does Not Include
findOne( )
The book’s code uses the findOne() method included in the

CrudRepository interface to retrieve a single entity from the database

using Spring Data JPA. For some reason (documentation is not available

yet at the time of writing), that method has been removed in an earlier

version to the one included by the Spring Boot starter, which uses the

version 2.0.0.M4 of spring-data-commons (you can see it by running mvnw

dependency:tree from any of the root project folders).

That doesn’t have a big impact on the code, but you need to change

these method references to make everything compile again. The code

APPENDIX A Upgrading to Spring Boot 2.0

320

uses findOne() in three classes inside the multiplication project:

MultiplicationServiceImpl, UserController, and UserControllerTest.

Follow the same strategy to replace it in those three places: changing

it to the preferred findById() method and using the returned Optional to

throw an IllegalArgumentException if the identifier does not exist in your

database. Listing A-2 shows one of the code snippets as a reference.

Listing A-2.  MultiplicationServiceImpl.java (multiplication v10)

@Override

public MultiplicationResultAttempt getResultById(final Long

resultId) {

 // BOOT2: changed from findOne

 return attemptRepository.findById(resultId)

 .orElseThrow(() -> new IllegalArgumentException(

 "The requested resultId [" + resultId +

 "] does not exist."));

}

�Actuator Endpoints Have Been Moved
We know from the release notes1 that in Spring Boot 2.0, the actuator

endpoints have been moved under /application. That means that you

need to change the load balancing strategy configuration inside the API

gateway to point to /application/health instead of just /health. If you

don’t change this, Ribbon will think all services are down and the API

Gateway won’t work. See Listing A-3.

1�https://tpd.io/bootm1-rn

APPENDIX A Upgrading to Spring Boot 2.0

https://tpd.io/bootm1-rn

321

Listing A-3.  RibbonConfiguration.java (gateway v10)

@Bean

public IPing ribbonPing(final IClientConfig config) {

 // BOOT2: changed from /health to /application/health

 return new PingUrl(false,"/application/health");

}

�Applying Optional Updates
�The WebMvcConfigurerAdapter Class Has Been
Deprecated
The current code uses the class WebMvcConfigurerAdapter to disable

CORS in the multiplication, gamification, and gateway microservices. That

class has been deprecated in favor of the WebMvcConfigurer interface,

since starting with Java 8, interfaces can include default implementations

and Spring Boot 2.0 no longer supports earlier Java versions.

This change is optional here since it’s just deprecated, but it’s better

to adapt to the change as soon as possible. Listing A-4 shows the change

in one of the classes; be sure to apply this change to all three of the classes

(inside the aforementioned microservices projects).

Listing A-4.  WebConfiguration.java (gateway v10)

@Configuration

@EnableWebMvc

//BOOT2 changed to interface WebMvcConfigurer instead of

subclass of WebMvcConfigurerAdapter

public class WebConfiguration implements WebMvcConfigurer

{ //... }

APPENDIX A Upgrading to Spring Boot 2.0

322

�Working with Spring Boot 2.0
Those are all the changes you should apply to make the system work with

Spring Boot 2.0. Note that I couldn’t try the release version, so it might

happen (though it’s unlikely) that there are other breaking changes to

come, not covered by this appendix. If that is the case, you can visit the

Spring Boot 2.0 release notes page to check. (See https://github.com/

spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes.)

On that same page, you’ll find the new features coming with Spring

Boot 2.0 as well. Some of the major new functionalities are support for Java

9 and some great features in Spring 5, such as the Reactive Web framework

(Spring WebFlux). Have a look at them and keep learning!

APPENDIX A Upgrading to Spring Boot 2.0

https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes
https://github.com/spring-projects/spring-boot/wiki/Spring-Boot-2.0-Release-Notes

323© Moises Macero 2017
M. Macero, Learn Microservices with Spring Boot,
https://doi.org/10.1007/978-1-4842-3165-4

�Afterword
In this book, we covered the main topics related to microservices

architecture. We started with a look inside a Spring Boot application,

traveling from an empty project to a microservice properly structured in

layers. To build it, we followed a test-driven development approach.

The book tried to explain from the beginning why it’s a good idea

to start with a small monolith. Actually, it’s an idea supported by

many people very experienced with microservices—start with a single

project, identify boundaries, and decide if it’s worthwhile to split your

functionality. What happens frequently is that it’s difficult to understand

the why if you never worked with microservices and only with monolithic

applications. However, at this point in time, I’m pretty sure you understand

the pain you might suffer if you go for microservices from scratch.

Setting up the ecosystem without having a strong knowledge baseline

will cause chaos, at the least. Service discovery, routing, load balancing,

communication between services, error handling—it’s important that you

know what you’ll face on your way before you start your adventure with

microservices.

In this particular adventure, you built a web application to allow users

to practice multiplication every day without any help, to train their brains.

That was the first microservice, but the real challenge started when we

introduced the second one: a service that reacts to events happening in

our previous logic and calculates the score and assigns badges to make the

application look like a game. At that point, the book covered some basics

about gamification and applied it to our system using an event-driven

pattern.

https://doi.org/10.1007/978-1-4842-3165-4

324

Then we got deep into some core concepts of microservices, including

how they can find each other with service discovery and apply load

balancing to them when they scale up and down, how to route from the

outside to the corresponding piece of the system using an API gateway,

how to provide resilience using the circuit breaker pattern, etc. We made

it practical, but I tried to put the focus on the concepts too. The reason is

that nowadays you can find these patterns embedded in many cloud PaaS,

including Cloud Foundry, Google App Engine, and Amazon AWS.

Some of those platforms will manage the microservice ecosystem

for you: you just push your Spring Boot application to the cloud, set the

number of instances and how they should be routed, and everything else

is handled by the platform. Pivotal’s Cloud Foundry even includes the

same tools we used (Spring Cloud Netflix). However, you always need to

understand what you’re doing. Pushing your applications to the cloud

without knowing what is happening behind the curtains is risky. If errors

arise, it might be impossible for you to know which part of the magic

(something that you don’t understand) is not doing its job.

Finally, I stressed the importance of having a good test base in a system

based on microservices. You saw how to implement end-to-end scenarios

to protect your business flows using Cucumber and its human-friendly

language, Gherkin.

This book doesn’t cover everything you need to know to work with

microservices. That would be impossible. There are some other important

topics surrounding this type of architecture—containerization, centralized

logging, continuous integration and deployment, etc. I recommend that you

continue learning these topics following the same practical approach. You can

keep evolving the architecture built in this book, focusing on the problems you

want to solve and learning concepts incrementally, one by one.

I hope that, now that you’ve reached the end of the book, you have

a better understanding of the topics and you can use them at work or

in your personal projects. I’ve enjoyed writing this book a lot and, most

importantly, I’ve learned along the way. Thanks.

Afterword

325© Moises Macero 2017
M. Macero, Learn Microservices with Spring Boot,
https://doi.org/10.1007/978-1-4842-3165-4

Index

A
API gateway microservice

advantages, 217
benefits, 213
consumers, 212
gateway pattern, 209
implementation, 210
REST APIs, 210
URL patterns, 211
Zuul, 213

application.properties
Changing Server URL
(gamification v7), 223–224

application.yml (gateway v7),
220–221

configuration, 221
Eureka and ribbon,

214, 216, 218
functions, 224
GatewayApplication.java

(gateway v7), 220
implementing service

discovery, 226, 228–233,
235–237

mapping, 222

routing, 225
Spring Initialzr, 219
variables, 223

B
Business layer

MultiplicationService, 38
MultiplicationServiceImpl,

39, 41
MultiplicationService

ImplTest, 40–41
presentation layer (REST API)

(see REST API)

C
Circuit breakers, see Hystrix

D
Databases and stateless

services, 241
Data layer

Agile methodology, 61
application.properties, 70

https://doi.org/10.1007/978-1-4842-3165-4

326

data models
Multiplication class, 72–73
MultiplicationResult

Attempt, 74, 76
User class, 74

dependencies, 69
index.html, 92–93
JPA, 69
multiplication, 94–97
multiplication-client, 91–92
MultiplicationResultAttempt, 60
MultiplicationResult

AttemptController, 89
MultiplicationResultAttempt

ControllerTest, 89, 91
MultiplicationServiceImpl, 87
MultiplicationServiceImpl

Test, 88–89
repositories

MultiplicationRepository, 80
MultiplicationResult

AttemptRepository, 77
Multiplication

ServiceImpl, 84–85
MultiplicationServiceImpl

Test, 81–82
UserRepository, 79

Distributed system, testing
API interfaces, 279–280
black-box testing, 278
creation, empty project and

tools selection, 274–275,
277–278

Cucumber and structuring, 314
Cucumber implementations,

271, 273
Cucumber test, 287, 289–291
data, 283–287
black-box testing approach, 278
hacker-like assertion

scripts, 278
end-to-end service testing, 269
functionalities, 269
Java Code, 291–292, 294,

296–297, 299–302
leaderboard functionality,

308–311
multiplication.feature

(e2e-tests v9), 270
profiles, 281, 283
REST API, 267, 279
running tests and checking

reports, 311–313
supporting classes, 302–303,

305–306, 308

E
End-to-end testing, 7
Eureka, 207, 249
Eureka and Ribbon, 214
Event-driven architecture

advantages and
disadvantages, 114

application, 118–119
description, 117
evaluation, 117

Data layer (cont.)

Index

327

fault tolerance, 116
and load balancing, 242–243
loose coupling, 115
MultiplicationSolved

Event, 112
orchestration and

monitoring, 116
reactive systems, 113
techniques, 113
transactions, 115

Event-driven system, 6

F
Feign, 261–262
findOne() method, 319

G
Gamification

business logic, 170–172
creation, 107
database, 174
logging, 173–174
points, badges and

leaderboards, 106
techniques, 106

H, I
Hystrix

circuit breaker pattern, 254
REST client, 258–261
Spring Cloud Netflix, 254
and Zuul, 255–258

J, K
Java Persistence API (JPA), 69

L
Load balancing, 205–207

Eureka, 249
Eureka Server Dashboard, 247
event-driven

architecture, 242–243
GatewayApplication.java

(gateway v8), 251
gateway’s log output, 248
PingUrl implementation, 251
with Ribbon, 244, 246
RibbonConfiguration, 251
RibbonConfiguration.java

(gateway v8), 250–251
round-robin strategy, 249
server.port property, 246, 247
and service discovery, 253
Service Registry, 249
UI, 249

M, N, O
Microservices

architecture
changes, 109
connection, 110, 112
event-driven (see Event-

driven architecture)
scalability, 109
separation, 108

Index

328

concept of, 176
domains isolation, 162–163, 165
gamification (see Gamification)
implementation, REST

Client, 165–169
patterns and PaaS, 263–264
RabbitMQ (see RabbitMQ)
reactive patterns and REST,

160–161
sending events

business logic, 144–151
data, 141–144
dispatcher pattern, 128, 130,

132–133
gamification domain model,

135–137, 139–140
implementation, new

gamification
microservice, 134

modeling, 125–127
RabbitMQ configuration,

122, 124–125
REST API, 151, 153

small monolith (see Small
monolith approach)

Spring AMQP, 121
Mini-monolith-first approach, 53

P, Q
Platform as a Service (PaaS),

263–264
Polyglot systems, 207
Presentation layer, see REST API

R
RabbitMQ

configuration, 122, 124–125
defining, 120–121
download and install, 173
event handler, 157, 159
RabbitMQConfiguration,

154–157
rabbitmq_management, 173
and Spring AMQP, 121
subscriber, 154

Refactoring
multiplication-client, 68
MultiplicationResultAttempt, 63
MultiplicationResultAttempt

Controller, 66–67
MultiplicationResultAttempt

ControllerTest, 67
MultiplicationService

Impl, 65–66
MultiplicationServiceImpl

Test, 64–65
REST API, 5, 306

controllers, 151–153
index.html, 54–55
multiplication-client, 56–58
MultiplicationController, 43, 47
MultiplicationControllerTest, 44
MultiplicationResultAttempt

Controller, 49–50, 52
MultiplicationResultAttempt

ControllerTest, 50–52
Spring MVC, 41
styles, 55

Microservices (cont.)

Index

329

REST consumers with
Feign, 261–262

Ribbon and Eureka, 207

S
Service discovery

and API, 204
Console Output Multiplication

(multiplication v8), 238–239
dynamic DNS, 205
Eureka, 239
features, 238
gamification, 202
implementation

application.properties
(gamification v8), 233

application.properties
(service-registry v8), 228

application.yml
(gateway v8), 234

bootstrap.properties
file, 233, 235

dynamic routing, 236
Eureka Server, 226
gamificationApplication.java

(gamification v8), 232
pom.xml (gamification v8),

228–231
RouteLocator interface, 237
routing configuration, 235
ServiceRegistryApplication.

java (service-registry v8),
227

Spring Boot application,
231–232

Spring Cloud
dependencies, 228

multiplication and gamification
microservices, 205

multiplication’s REST API, 202
Ribbon, 240
service registry, 237
tools, 203

Sidecar microservice, 209
Skeleton app

creation, 11, 13
skinny vs. real-life, 10

Small monolith approach
advantages, 102
analyzing, 103, 105
communication, 100
construction, 100
designing, 99
disadvantages, 102
gamification, 105
mapping, 99
plan, 100, 102

Spring Boot 2.0
actuator endpoints, 320
business requirements, 9
findOne(), 319
.repositories and plugin

Repositories, 316–317, 319
WebMvcConfigurer

Adapter, 321
@SpringBootTest, 45
Spring Cloud Sidecar, 207

Index

330

T
Test-driven development (TDD), 6

advantages, 20–21
MultiplicationServiceImpl, 19–20
MultiplicationServiceTest, 14,

16–17
RandomGeneratorService, 16

Three-tier design
application, 23, 58–59
application’s architecture, 25
business logic layer (see

Business layer)
client, 23
data layer (see Data layer)
data store, 23
Multiplication class, 35
MultiplicationResultAttempt,

37–38
RandomGeneratorService

ImplTest, 28, 30–33
RandomGeneratorService

Test, 26, 28
User class, 36–37

U, V
UI extraction

architecture, 200–202
areas, 190

changes, 195
connection with gamification,

184, 186
and gamification, REST

API, 181
Grid system, Forms, and

Buttons, 191
index.html Adding

Bootstrap, 191–194
multiplication-client.js,

195–198
renovated web client, 199
service changes, 187–190
static content

Jetty Base, 183
Linux and Windows, 182
multiplication microservice,

180, 181
UI File Structure (UI v6), 183

styles.css, 194

W, X, Y
WebMvcConfigurerAdapter, 321
@WebMvcTest, 45

Z
Zuul, 214

and Hystrix, 255–258

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Chapter 1: Introduction
	 Setting the Scene
	 Who Are You?
	 How Is This Book Different from Other Books and Guides?
	 Reasoning Behind the Techniques
	 Learning: An Incremental Process
	 Is This a Guide or a Book?

	 Contents
	 From the Basics to Advanced Topics
	 Skeleton with Spring Boot, the Professional Way
	 Test-Driven Development
	 Connecting Microservices
	 Event-Driven System
	 End-to-End Testing

	 Summary

	Chapter 2: The Basic Spring Boot Application
	 Business Requirements
	 The Skeleton App
	 Skinny vs. Real-Life Apps
	 Creating the Skeleton

	 Warming Up: Some TDD in Action
	 Summary

	Chapter 3: A Real Three-Tier Spring Boot Application
	 Introduction
	 Completing the Basics
	 Designing the Domain
	 The Business Logic Layer
	 The Presentation Layer (REST API)
	 The Multiplication Controller
	 The Results Controller

	 The Frontend (Web Client)
	 Playing with the Application (Part I)
	 New Requirements for Data Persistence
	 Refactoring the Code
	 The Data Layer
	 The Data Model
	 The Repositories

	 Completing User Story 2: Going Through the Layers
	 Playing with the Application (Part II)
	 Summary

	Chapter 4: Starting with Microservices
	 The Small Monolith Approach
	 Analyzing the Monolith
	 Moving Forward

	 Gamification Basics
	 Points, Badges, and Leaderboards
	 Applying It to the Example

	 Moving to a Microservices Architecture
	 Separation of Concerns and Loose Coupling
	 Independent Changes
	 Scalability

	 Connecting Microservices
	 Event-Driven Architecture
	 Related Techniques
	 Pros and Cons of Event-Driven Architecture
	 Loose Coupling
	 Transactions
	 Fault Tolerance
	 Orchestration and Monitoring
	 Evaluate Before Making a Decision

	 Further Reading
	 Applying Event-Driven Architecture to the Application

	 Going Event-Driven with RabbitMQ and Spring AMQP
	 Using RabbitMQ in Your System
	 Spring AMQP

	 Sending Events from Multiplication
	 RabbitMQ Configuration
	 Modeling the Event
	 Sending the Event: Dispatcher Pattern
	 Deeper Look at the New Gamification Microservice
	 Code Overview
	 The Domain
	 The Data
	 The Business Logic
	 The REST API (Controllers)

	 Receiving Events with RabbitMQ
	 The Subscriber’s Side
	 RabbitMQ Configuration
	 The Event Handler

	 Requesting Data Between Microservices
	 Combining Reactive Patterns and REST
	 Keeping Domains Isolated
	 Implementing the REST Client
	 Updating Gamification’s Business Logic

	 Playing with the Microservices
	 Summary

	Chapter 5: The Microservices Journey Through Tools
	 Introduction
	 Extracting the UI and Connecting It to Gamification
	 Moving the Static Content
	 Connecting UI with Gamification
	 Changes to Existing Services
	 A New, Better UI with (Almost) No Effort

	 The Current Architecture
	 Service Discovery and Load Balancing
	 Service Discovery
	 Load Balancing
	 Polyglot Systems, Eureka, and Ribbon

	 Routing with an API Gateway
	 The API Gateway Pattern
	 Zuul, Eureka, and Ribbon Working Together

	 Hands-On Code
	 Implementing the API Gateway with Zuul
	 Implementing Service Discovery

	 Playing with Service Discovery
	 Are Our Microservices Ready to Scale?
	 Databases and Stateless Services
	 Event-Driven Architecture and Load Balancing

	 Load Balancing with Ribbon
	 Playing with Load Balancing
	 Fine-Tuning the Load Balancing Strategy

	 Circuit Breakers and REST Clients
	 Circuit Breakers with Hystrix
	 Hystrix and Zuul
	 Hystrix from a REST Client
	 REST Consumers with Feign

	 Microservices Patterns and PaaS
	 Summary

	Chapter 6: Testing the Distributed System
	 Introduction
	 Setting the Scene
	 How Cucumber Works
	 Hands-On Code
	 Creating an Empty Project and Choosing the Tools
	 Making the System Testable
	 New API Interfaces
	 Test Profiles
	 Handling Test Data

	 Writing the First Cucumber Test
	 Linking a Feature to Java Code
	 The Supporting Classes
	 Reusing Steps Across Features
	 Running Tests and Checking Reports

	 Summary

	Appendix A: Upgrading to Spring Boot 2.0
	Introduction
	Upgrading the Dependencies
	Fixing the Breaking Changes
	The CrudRepository Interface Does Not Include findOne()
	Actuator Endpoints Have Been Moved

	Applying Optional Updates
	The WebMvcConfigurerAdapter Class Has Been Deprecated

	Working with Spring Boot 2.0

	Afterword
	Index

