

Learning	RabbitMQ

Table	of	Contents

Learning	RabbitMQ

Credits

About	the	Author

About	the	Reviewers

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and	more

Why	subscribe?

Free	access	for	Packt	account	holders

Preface

What	this	book	covers

What	you	need	for	this	book

Who	this	book	is	for

Conventions

Reader	feedback

Customer	support

Downloading	the	example	code

Errata

Piracy

Questions

1.	Introducing	RabbitMQ

Enterprise	messaging

Use	cases

Solutions

Patterns

Point-to-point

Publish-subscribe

Request-response

Understanding	RabbitMQ

Features

Comparison	with	other	technologies

Installation

Linux

Case	study:	CSN	(Corporate	Social	Network)

Summary

Exercises

2.	Design	Patterns	with	RabbitMQ

Messaging	patterns	in	RabbitMQ

Point-to-point	communication

Publish-subscribe	communication

Request-reply	communication

Message	router

Case	study:	Initial	design	of	the	CSN

Summary

Exercises

3.	Administration,	Configuration,	and	Management

Administering	RabbitMQ	instances

Administering	RabbitMQ	components

Administering	users

Administering	vhosts

Administering	permissions

Administering	exchanges

Administering	queues

Administering	bindings

Administering	policies

Administering	the	RabbitMQ	database

Full	backup	and	restore

Backing	up	and	restoring	the	broker	metadata

Installing	RabbitMQ	plugins

Configuring	RabbitMQ	instances

Setting	environment	variables

Modifying	the	RabbitMQ	configuration	file

Managing	RabbitMQ	instances

Upgrading	RabbitMQ

Case	study:	Administering	CSN

Summary

Exercises

4.	Clustering

Benefits	of	clustering

RabbitMQ	clustering	support

Creating	a	simple	cluster

Adding	nodes	to	the	cluster

Adding	RAM-only	nodes	to	the	cluster

Removing	nodes	from	a	cluster

Connecting	to	the	cluster

Case	study:	scaling	the	CSN

Summary

Exercises

5.	High	Availability

Benefits	of	high	availability

High	availability	support	in	RabbitMQ

Mirrored	queues

Federation	plugin

Shovel	plugin

Reliable	delivery

AMQP	transactions

Publisher	confirms

Client	high	availability

Client	reconnections

Load	balancing

Case	study:	introducing	high	availability	in	CSN

Summary

Exercises

6.	Integrations

Types	of	integrations

Spring	framework

Spring	AMQP

Spring	Integration

Integration	with	ESBs

Mule	ESB

WSO2

Integration	with	databases

Oracle	RDBMS

MongoDB

Hadoop

RabbitMQ	integrations

RabbitMQ	deployment	options

Puppet

Docker

Vagrant

Testing	RabbitMQ	applications

Unit	testing	of	RabbitMQ	applications

Integration	testing	of	RabbitMQ	applications

Case	study:	Integrating	CSN	with	external	systems

Summary

Exercises

7.	Performance	Tuning	and	Monitoring

Performance	tuning	of	RabbitMQ	instances

Memory	usage

Faster	runtime	execution

Message	size

The	maximum	frame	size	of	messages

The	maximum	number	of	channels

Connection	heartbeats

Clustering	and	high	availability

QoS	prefetching

Message	persistence

Mnesia	transaction	logs

Acknowledgements,	transactions	and	publisher	confirms

Message	routing

Queue	creation/deletion

Queue	message	TTL

Alarms

Network	tuning

Client	tuning

Performance	testing

Monitoring	of	RabbitMQ	instances

The	management	UI

Nagios

Monit

Munin

Comparing	RabbitMQ	with	other	message	brokers

Case	Study	:	Performance	tuning	and	monitoring	of	RabbitMQ	instances	in	CSN

Summary

Exercises

8.	Troubleshooting

General	troubleshooting	approach

Checking	the	status	of	a	particular	node

Inspecting	the	RabbitMQ	logs

The	RabbitMQ	mailing	list	and	IRC	channel

Erlang	troubleshooting

An	Erlang	Primer

The	Erlang	crash	dump

Problems	with	starting/stopping	RabbitMQ	nodes

Problems	with	message	delivery

Summary

Exercises

9.	Security

Types	of	threats

Authentication

Configuring	the	LDAP	backend

Security	considerations

Authorization

LDAP	authentication

Secure	communication

Secure	communication	with	the	management	interface

Secure	cluster	communication

EXTERNAL	SSL	authentication

Penetration	testing

Case	study	–	securing	CSN

Summary

Exercises

10.	Internals

High	level	architecture	of	RabbitMQ

Overview	of	RabbitMQ	components

Boot	component

Plug-in	loader	component

Recovery	component

Persistence	component

Metadata	persistence

Message	persistence	component

Networking	component

Other	components

Developing	plug-ins	for	RabbitMQ

Case	Study:	Developing	a	RabbitMQ	plugin	for	CSN

Summary

Exercises

A.	Contributing	to	RabbitMQ

RabbitMQ	community

RabbitMQ	repositories

Getting	the	sources

Building	the	RabbitMQ	server

Points	for	contribution

Index

Learning	RabbitMQ

Learning	RabbitMQ
Copyright	©	2015	Packt	Publishing

All	rights	reserved.	No	part	of	this	book	may	be	reproduced,	stored	in	a	retrieval	system,
or	transmitted	in	any	form	or	by	any	means,	without	the	prior	written	permission	of	the
publisher,	except	in	the	case	of	brief	quotations	embedded	in	critical	articles	or	reviews.

Every	effort	has	been	made	in	the	preparation	of	this	book	to	ensure	the	accuracy	of	the
information	presented.	However,	the	information	contained	in	this	book	is	sold	without
warranty,	either	express	or	implied.	Neither	the	author(s),	nor	Packt	Publishing,	and	its
dealers	and	distributors	will	be	held	liable	for	any	damages	caused	or	alleged	to	be	caused
directly	or	indirectly	by	this	book.

Packt	Publishing	has	endeavored	to	provide	trademark	information	about	all	of	the
companies	and	products	mentioned	in	this	book	by	the	appropriate	use	of	capitals.
However,	Packt	Publishing	cannot	guarantee	the	accuracy	of	this	information.

First	published:	December	2015

Production	reference:	1171215

Published	by	Packt	Publishing	Ltd.

Livery	Place

35	Livery	Street

Birmingham	B3	2PB,	UK.

ISBN	978-1-78398-456-5

www.packtpub.com

http://www.packtpub.com

Credits
Author

Martin	Toshev

Reviewers

Van	Thoai	Nguyen

Héctor	Veiga

Commissioning	Editor

Ashwin	Nair

Acquisition	Editor

Vinay	Argekar

Content	Development	Editor

Kirti	Patil

Technical	Editor

Danish	Shaikh

Copy	Editor

Vibha	Shukla

Project	Coordinator

Nidhi	Joshi

Proofreader

Safis	Editing

Indexer

Hemangini	Bari

Graphics

Disha	Haria

Production	Coordinator

Arvindkumar	Gupta

Cover	Work

Arvindkumar	Gupta

About	the	Author
Martin	Toshev	is	a	software	developer	and	Java	enthusiast	with	more	than	eight	years	of
experience	and	vast	expertise	originating	from	projects	in	areas	such	as	enterprise	Java,
social	networking,	source	code	analysis,	Internet	of	Things,	and	investment	banking	in
companies	such	as	Cisco	and	Deutsche	Telekom.	He	is	a	graduate	of	computer	science
from	the	University	of	Sofia.	He	is	also	a	certified	Java	professional	(SCJP6)	and	a
certified	IBM	cloud	computing	solution	advisor.	His	areas	of	interest	include	a	wide	range
of	Java-related	technologies	(Servlets,	JSP,	JAXB,	JAXP,	JMS,	JMX,	JAX-RS,	JAX-WS,
Hibernate,	Spring	Framework,	Liferay	Portal,	and	Eclipse	RCP),	cloud	computing
technologies,	cloud-based	software	architectures,	enterprise	application	integration,	and
relational	and	NoSQL	databases.	Martin	is	one	of	the	leaders	of	the	Bulgarian	Java	Users
group	(BGJUG),	a	regular	speaker	at	Java	conferences,	and	one	of	the	organizers	behind
the	jPrime	conference	in	Bulgaria	(http://jprime.io/).

http://jprime.io/

About	the	Reviewers
Van	Thoai	Nguyen	has	worked	in	the	software	industry	for	a	decade	in	various	domains.
In	2012,	he	joined	BuzzNumbers	as	one	of	the	core	senior	software	engineers,	where	he
had	opportunities	to	design,	implement,	and	apply	many	cool	technologies,	tools,	and
frameworks.	A	RabbitMQ	cluster	was	employed	as	the	backbone	of	the	real-time	data
processing	platform,	which	includes	various	data	collectors,	data	filtering,	enrichment,	and
storage	using	a	sharded	cluster	of	MongoDB	and	SOLR.	He	is	still	maintaining	the	open
source	.NET	RabbitMQ	client	library,	Burrow.NET
(https://github.com/vanthoainguyen/Burrow.NET),	which	he	built	during	the	time	he
worked	for	BuzzNumbers.	This	library	is	still	being	used	in	many	different	applications	in
that	company.	Van	is	interested	in	clean	code	and	design,	SOLID	principle,	and	BIG	data.
You	can	read	his	blog	at	http://thoai-nguyen.blogspot.com.au/.

Héctor	Veiga	is	a	software	engineer	specializing	in	real-time	data	integration	and
processing.	Recently,	he	has	focused	his	work	on	different	cloud	technologies,	such	as
AWS,	to	develop	scalable,	resilient,	and	high-performing	applications	with	the	latest	open
source	technologies,	such	as	Scala,	Akka,	or	Apache	Spark.	Additionally,	he	has	a	strong
foundation	in	messaging	systems,	such	as	RabbitMQ	and	AMQP.	He	also	has	a	master’s
degree	in	telecommunications	engineering	from	the	Universidad	Politécnica	de	Madrid
and	a	master’s	degree	in	information	technology	and	management	from	the	Illinois
Institute	of	Technology.

He	currently	works	as	part	of	the	Connected	Driving	real-time	data	collection	team	and	is
actively	developing	scalable	applications	to	ingest	and	process	data	from	several	different
sources.	He	utilizes	RabbitMQ	heavily	to	address	their	messaging	requirements.	In	the
past,	he	worked	at	Xaptum	Technologies,	a	company	dedicated	to	M2M	technologies.

Héctor	also	helped	with	the	reviewing	process	of	RabbitMQ	Cookbook	and	RabbitMQ
Essentials,	both	from	Packt	Publishing.

I	would	like	to	thank	my	parents,	Pilar	and	Jose	Carlos,	as	well	as	my	sister,	Paula,	for
always	supporting	me	and	motivating	me	to	keep	pushing	on.	Without	them,	all	this	would
not	have	been	possible.

https://github.com/vanthoainguyen/Burrow.NET
http://thoai-nguyen.blogspot.com.au/

www.PacktPub.com

Support	files,	eBooks,	discount	offers,	and
more
For	support	files	and	downloads	related	to	your	book,	please	visit	www.PacktPub.com.

Did	you	know	that	Packt	offers	eBook	versions	of	every	book	published,	with	PDF	and
ePub	files	available?	You	can	upgrade	to	the	eBook	version	at	www.PacktPub.com	and	as
a	print	book	customer,	you	are	entitled	to	a	discount	on	the	eBook	copy.	Get	in	touch	with
us	at	<service@packtpub.com>	for	more	details.

At	www.PacktPub.com,	you	can	also	read	a	collection	of	free	technical	articles,	sign	up
for	a	range	of	free	newsletters	and	receive	exclusive	discounts	and	offers	on	Packt	books
and	eBooks.

https://www2.packtpub.com/books/subscription/packtlib

Do	you	need	instant	solutions	to	your	IT	questions?	PacktLib	is	Packt’s	online	digital
book	library.	Here,	you	can	search,	access,	and	readPackt’s	entire	library	of	books.

http://www.PacktPub.com
http://www.PacktPub.com
mailto:service@packtpub.com
http://www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib

Why	subscribe?
Fully	searchable	across	every	book	published	by	Packt
Copy	and	paste,	print,	and	bookmark	content
On	demand	and	accessible	via	a	web	browser

Free	access	for	Packt	account	holders
If	you	have	an	account	with	Packt	at	www.PacktPub.com,	you	can	use	this	to	access
PacktLib	today	and	view	9	entirely	free	books.	Simply	use	your	login	credentials	for
immediate	access.

I	would	like	to	thank	all	of	the	people	that	supported	me	during	the	process	of	writing
this	book	and	especially	my	mother	Milena,	my	beloved	Tsveti	and	my	grandmother
Maria.	Without	them	this	would	not	have	been	possible.

http://www.PacktPub.com

Preface
Learning	RabbitMQ	provides	you	with	a	practical	guide	for	the	notorious	message	broker
and	covers	the	essentials	required	to	start	using	it.	The	reader	is	able	to	build	up
knowledge	along	the	way—starting	from	the	very	basics	(such	as	what	is	RabbitMQ	and
what	features	does	it	provide)	and	reaching	the	point	where	more	advanced	topics,	such	as
RabbitMQ	troubleshooting	and	internals,	are	discussed.	Best	practices	and	important	tips
are	provided	in	a	variety	of	scenarios;	some	of	them	are	related	to	external	systems	that
provide	integration	with	the	message	broker	or	that	are	integrated	as	part	of	the	message
broker	in	the	form	of	a	RabbitMQ	plugin.	Practical	examples	are	also	provided	for	most	of
these	scenarios	that	can	be	applied	in	a	broader	context	and	used	as	a	good	starting	point.

An	example	system	called	CSN	(Corporate	Social	Network)	is	used	to	illustrate	the
various	concepts	provided	throughout	the	chapters.

Each	chapter	ends	with	an	Exercises	section	that	allows	the	reader	to	test	his
understanding	on	the	presented	topic.

What	this	book	covers
Chapter	1,	Introducing	RabbitMQ,	provides	you	with	a	brief	recap	on	enterprise
messaging	and	a	short	overview	of	RabbitMQ	along	with	its	features.	Other	similar
technologies	are	mentioned	and	an	installation	guide	for	the	message	broker	is	provided	at
the	end	of	the	chapter.	The	basic	terminology	behind	RabbitMQ	such	as	exchanges,
queues,	and	bindings	is	introduced.

Chapter	2,	Design	Patterns	with	RabbitMQ,	discusses	what	messaging	patterns	can	be
implemented	using	RabbitMQ,	including	point-to-point,	publish-subscribe,	request-reply,
and	message	router	types	of	communication.	The	patterns	are	implemented	using	the
building	blocks	provided	by	the	message	broker	and	using	the	Java	client	API.

Chapter	3,	Administration,	Configuration	and	Management,	reveals	how	to	administer	and
configure	RabbitMQ	instances,	how	to	install	and	manage	RabbitMQ	plugins,	and	how	to
use	the	various	utilities	provided	as	part	of	the	RabbitMQ	installation	in	order	to
accomplish	a	number	of	administrative	tasks.	A	brief	overview	of	the	RabbitMQ
management	HTTP	API	is	provided.

Chapter	4,	Clustering,	discusses	what	built-in	clustering	support	is	provided	in	the
message	broker	and	how	it	can	be	used	to	enable	scalability	in	terms	of	message	queues.	A
sample	RabbitMQ	cluster	is	created	in	order	to	demonstrate	how	nodes	can	be
added/removed	from	a	cluster	and	how	RabbitMQ	clients	can	connect	to	the	cluster.

Chapter	5,	High	Availability,	extends	on	the	concepts	of	clustering	by	providing	an
overview	of	how	a	RabbitMQ	cluster	can	be	made	more	reliable	in	terms	of	mirrored
queues	and	how	messages	can	be	replicated	between	remote	instances	using	the
Federation	and	Shovel	plugins.	High	availability	in	terms	of	client	connections	and
reliable	delivery	is	also	discussed	with	AMQP	transactions,	publisher	confirms,	and	client
reconnections.

Chapter	6,	Integrations,	provides	you	with	a	number	of	practical	scenarios	for	integration
of	the	message	broker	with	the	Spring	framework,	with	ESB	(enterprise	services	bus)
systems	such	as	MuleESB	and	WS02,	and	with	database	management	systems	(RDBMS
and	NoSQL).	Deployment	options	for	RabbitMQ	using	systems	such	as	Puppet,	Docker,
and	Vagrant	are	discussed	in	the	chapter.	A	brief	overview	of	how	RabbitMQ	applications
can	be	tested	using	third-party	frameworks	is	provided	at	the	end	of	the	chapter.

Chapter	7,	Performance	Monitoring	and	Tuning,	gives	a	detailed	list	of	factors	that	must
be	considered	in	terms	of	performance	tuning	of	the	message	broker.	The	PerfTest	tool	is
used	to	demonstrate	how	the	RabbitMQ	performance	can	be	tested.	At	the	end	of	the
chapter,	several	monitoring	solutions	that	provide	support	for	RabbitMQ	such	as	Nagios,
Munin,	and	Monit	are	used	to	demonstrate	how	the	message	broker	can	be	monitored	in
terms	of	stability	and	performance.

Chapter	8,	Troubleshooting,	illustrates	a	number	of	problems	that	can	occur	during	the
startup	of	the	message	broker	and	normal	operation	along	with	the	various	causes	and
resolutions	in	such	cases.	A	brief	primer	on	the	Erlang	programming	language	is	provided

for	the	purpose	of	understanding	and	analyzing	the	RabbitMQ	crash	dump—either	directly
or	using	the	Crashdump	Viewer	for	convenience.

Chapter	9,	Security,	provides	a	high-level	overview	of	the	vulnerability	landscape	related
to	the	message	broker	along	with	a	number	of	techniques	to	secure	a	RabbitMQ	setup.
Authentication,	authorization,	and	secure	communication	are	among	the	most	important
concepts	covered	in	the	chapter.

Chapter	10,	Internals,	discusses	the	internal	architecture	of	the	message	broker	and
provides	a	detailed	overview	on	the	most	important	components	that	RabbitMQ	comprises
of.

Appendix	A,	Contributing	to	RabbitMQ,	provides	a	short	guide	on	how	to	get	the
RabbitMQ	sources,	how	to	set	up	a	development	environment,	and	how	to	build	the
message	broker.	A	short	discussion	on	how	to	contribute	to	the	RabbitMQ	ecosystem	is
provided	as	part	of	the	appendix.

What	you	need	for	this	book
In	order	to	get	the	most	out	of	this	book,	the	reader	is	expected	to	have	at	least	a	basic
understanding	of	what	messaging	is	all	about	and	a	good	understanding	in	at	least	one
object-oriented	programming	language.	As	the	book	features	the	RabbitMQ	Java	client
API	in	order	to	demonstrate	how	to	use	the	message	broker,	it	is	good	to	have	at	least	a
basic	understanding	of	the	Java	programming	language.	Most	of	the	examples	are	not
specific	to	a	particular	operating	system;	if	they	are,	it	is	explicitly	mentioned	whether	this
is,	for	example,	a	Windows-	or	Unix-based	distribution	such	as	Ubuntu.	For	this	reason,
there	is	no	particular	requirement	for	an	operating	system	in	order	to	run	the	examples.

Who	this	book	is	for
If	you	are	a	developer	or	system	administrator	with	basic	knowledge	in	messaging	who
wants	to	learn	RabbitMQ	or	further	enhance	your	knowledge	in	working	with	the	message
broker,	then	this	book	is	ideal	for	you.	For	a	full	understanding	of	some	the	examples	in
the	book,	basic	knowledge	of	the	Java	programming	language	is	required.	Feeling
comfortable	with	RabbitMQ	is	a	great	way	to	leverage	your	expertise	in	the	world	of
messaging	systems.

Conventions
In	this	book,	you	will	find	a	number	of	text	styles	that	distinguish	between	different	kinds
of	information.	Here	are	some	examples	of	these	styles	and	an	explanation	of	their
meaning.

Code	words	in	text,	names	of	third-party	applications,	utilities,	folder	names,	filenames,
file	extensions	andpathnames	are	shown	in	bold	as	follows:	“We	already	saw	how	easy	it
is	to	start/stop/restart	instances	using	the	rabbitmqctl	and	rabbitmq-server	utilities
that	are	part	of	the	standard	RabbitMQ	installation.”

A	block	of	code	displayed	in	a	box	with	console	font:

<dependency>

	<groupId>log4j</groupId>

	<artifactId>log4j</artifactId>

	<version>1.2.16</version>

</dependency>

A	block	of	configuration	or	output	is	also	displayed	in	a	box	as	follows:

sudo	apt-get	install	rabbitmq-server	–y

sudo	rabbitmq-plugins	enable	rabbitmq_management

sudo	service	rabbitmq-server	restart

New	terms	and	important	words	are	also	shown	in	bold.	Words	that	you	see	on	the
screen,	for	example,	in	menus	or	dialog	boxes,	appear	in	the	text	like	this:	“Clicking	the
Next	button	moves	you	to	the	next	screen.”

Reader	feedback
Feedback	from	our	readers	is	always	welcome.	Let	us	know	what	you	think	about	this
book—what	you	liked	or	disliked.	Reader	feedback	is	important	for	us	as	it	helps	us
develop	titles	that	you	will	really	get	the	most	out	of.

To	send	us	general	feedback,	simply	e-mail	<feedback@packtpub.com>,	and	mention	the
book’s	title	in	the	subject	of	your	message.

If	there	is	a	topic	that	you	have	expertise	in	and	you	are	interested	in	either	writing	or
contributing	to	a	book,	see	our	author	guide	at	www.packtpub.com/authors.

mailto:feedback@packtpub.com
http://www.packtpub.com/authors

Customer	support
Now	that	you	are	the	proud	owner	of	a	Packt	book,	we	have	a	number	of	things	to	help
you	to	get	the	most	from	your	purchase.

Downloading	the	example	code
You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

http://www.packtpub.com
http://www.packtpub.com/support

Errata
Although	we	have	taken	every	care	to	ensure	the	accuracy	of	our	content,	mistakes	do
happen.	If	you	find	a	mistake	in	one	of	our	books—maybe	a	mistake	in	the	text	or	the
code—we	would	be	grateful	if	you	could	report	this	to	us.	By	doing	so,	you	can	save	other
readers	from	frustration	and	help	us	improve	subsequent	versions	of	this	book.	If	you	find
any	errata,	please	report	them	by	visiting	http://www.packtpub.com/submit-errata,
selecting	your	book,	clicking	on	the	Errata	Submission	Form	link,	and	entering	the
details	of	your	errata.	Once	your	errata	are	verified,	your	submission	will	be	accepted	and
the	errata	will	be	uploaded	to	our	website	or	added	to	any	list	of	existing	errata	under	the
Errata	section	of	that	title.

To	view	the	previously	submitted	errata,	go	to
https://www.packtpub.com/books/content/support	and	enter	the	name	of	the	book	in	the
search	field.	The	required	information	will	appear	under	the	Errata	section.

http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support

Piracy
Piracy	of	copyrighted	material	on	the	Internet	is	an	ongoing	problem	across	all	media.	At
Packt,	we	take	the	protection	of	our	copyright	and	licenses	very	seriously.	If	you	come
across	any	illegal	copies	of	our	works	in	any	form	on	the	Internet,	please	provide	us	with
the	location	address	or	website	name	immediately	so	that	we	can	pursue	a	remedy.

Please	contact	us	at	<copyright@packtpub.com>	with	a	link	to	the	suspected	pirated
material.

We	appreciate	your	help	in	protecting	our	authors	and	our	ability	to	bring	you	valuable
content.

mailto:copyright@packtpub.com

Questions
If	you	have	a	problem	with	any	aspect	of	this	book,	you	can	contact	us	at
<questions@packtpub.com>,	and	we	will	do	our	best	to	address	the	problem.

mailto:questions@packtpub.com

Chapter	1.	Introducing	RabbitMQ
In	the	world	of	enterprise	messaging	systems	there	are	a	number	of	patterns	and	practices
that	are	already	successfully	applied	in	order	improve	to	scalability	and	interoperability
between	different	components	in	a	system	or	between	varying	in	size	and	complexity
systems.	RabbitMQ	is	one	such	messaging	solution,	which	combines	powerful	messaging
capabilities	with	easy	use	and	availability	on	a	number	of	target	platforms.

The	following	topics	will	be	covered	in	this	chapter:

Fundamentals	of	enterprise	messaging
RabbitMQ	brief	overview
RabbitMQ	features
Comparing	RabbitMQ	to	other	technologies
Installing	RabbitMQ

Enterprise	messaging
A	typical	enterprise	will	have	a	number	of	systems	that	must	typically	communicate	with
each	other	in	order	to	implement	a	well-defined	business	process.	A	question	that	is
frequently	tackled	for	this	reason	is	how	to	implement	the	communication	channel
between	these	types	of	systems?	For	example,	consider	the	following	diagram:

The	question	mark	in	the	preceding	picture	denotes	the	communication	media	for	the	six
systems	that	are	illustrated.	In	the	diagram,	we	can	think	of	these	separate	systems	as	the
components	of	one	large	system	and	the	problem	stays	the	same.	Before	discussing	the
various	alternatives	for	integration,	a	number	of	key	factors	are	considered,	as	follows:

Loose	coupling:	At	what	degree	do	the	different	systems	depend	on	each	other	or	can
operate	independently?
Real-time	workload	processing:	How	fast	is	the	communication	between	the
systems?
Scalability:	How	does	the	entire	system	scale	when	more	systems	are	added	and	the
workload	demands	an	increase?
Maintainability:	How	hard	it	is	to	maintain	the	integrated	systems?
Extensibility:	How	easy	it	is	to	integrate	new	systems?

Let’s	assume	that	the	systems	communicate	directly	via	some	kind	of	remote	procedure
calls	as	shown	in	the	following	diagram:

This	implies	that	separate	communication	links	must	be	established	between	each	pair	of
systems,	which	leads	to	tight	coupling,	a	lot	of	effort	to	maintain	all	of	the	links,	reduced
scalability,	and	reduced	extensibility	(for	every	new	system	that	is	added,	a	few	more
communication	links	with	other	systems	must	be	created).	However,	real-time
communication	requirements	might	be	met	with	some	additional	effort	to	design	the
communication	links.

A	second	approach	is	to	use	a	shared	file	system	in	order	to	exchange	files	between	the
systems	that	are	being	integrated,	as	illustrated	in	the	following	diagram:

A	shared	file	system	is	used	to	provide	the	communication	medium.	Each	system	may

export	data	to	a	file	that	can	be	imported	and	used	by	other	systems.	The	fact	that	each
system	may	support	its	own	data	format	leads	to	the	fact	that	each	system	must	have	a
particular	mechanism	to	import	data	from	every	other	system	that	it	needs	to	communicate
with.	This,	on	other	hand,	leads	to	the	same	problems	that	are	described	in	the	case	of
direct	communication.	Moreover,	real-time	communication	requirements	might	be	more
difficult	to	establish	and	reading	or	writing	data	from	disk	is	also	an	expensive	operation.

A	third	option	is	to	use	a	shared	database	as	shown	in	the	following	diagram:

Here,	all	the	systems	should	depend	on	the	same	database	schema.	Although	this	reduces
coupling	between	systems	and	improves	extensibility	(new	systems	must	conform	to	a
single	database	schema	in	order	to	integrate	with	other	systems),	real-time	workload
processing	is	still	an	issue.	Scalability	and	maintainability	depend	directly	on	the	type	of
database	that	is	being	used	and	they	could	turn	out	to	be	weak	factors	especially	if	it	is	a
relational	database	(this	may	not	be	the	case	if	NoSQL	solutions	are	applicable	for	the
particular	use	case).

Messaging	comes	to	the	rescue	when	considering	the	problems	that	arise	when	applying
the	previous	approaches.	Consider	the	following	diagram	for	the	Enterprise	Messaging
System:

A	message	is	the	central	unit	of	communication	used	in	enterprise	messaging	systems.	A
message	typically	consists	of	the	following:

A	message	header:	It	provides	metadata	about	the	message	such	as	encoding,	routing
information,	and	security-related	information
A	message	body:	It	provides	the	actual	data	that	is	carried	by	the	message,
represented	in	a	proper	format

The	messaging	system	itself	provides	mechanisms	to	validate,	store,	route,	and	transform
messages	that	are	being	sent	between	the	different	systems.	Each	system	is	responsible	for
crafting	its	own	message	that	is	transferred	via	the	messaging	system	(also	called	the
messaging	broker)	to	other	systems	that	are	connected	to	the	broker	and	configured	to
receive	that	particular	type	of	message.	Each	system	may	create	a	message	in	a	proper
format	that	is	specified	by	the	protocol	of	the	message	broker—meaning	that	the	system	is
only	coupled	with	that	particular	protocol.	If	the	broker	implements	a	protocol	that	is
based	on	a	well-recognized	standard,	then	this	would	further	decouple	the	systems	from
that	particular	message	broker	implementation.

Real-time	workload	processing	is	typically	quite	fast	as	the	particular	protocol	that	is
implemented	by	different	messaging	brokers	is	optimized	to	process	message	data	in	a
reliable	and	secure	manner	with	minimal	overhead.	Most	messaging	solutions	provide	a
number	of	facilities	that	allow	easy	configuration,	management,	and	monitoring;	thus,
simplifying	maintainability.	Clustering	support	is	also	considered	by	most
implementations	due	to	scalability	and	reliability	requirements	and	increasing	workload
demands.	Integrating	new	systems	is	a	matter	of	implementing	a	mechanism	for	direct
communication	with	the	message	broker.

In	case	the	different	systems	provide	different	implementations	of	messaging	protocols
(such	as	REST,	SOAP,	JSON-RPC,	JMX,	AMQP,	and	many	others),	a	messaging	system
could	further	provide	various	adapters	for	the	different	protocols	as	well	as	extended

mechanisms	for	routing	and	transformation	of	different	types	of	messages—this	extended
functionality	also	categorizes	the	message	brokers	as	Enterprise	Service	Bus	(ESB)
solutions.	One	major	drawback	of	an	ESB	is	that	it	must	implement	all	the	communication
requirements	of	all	systems	that	are	being	integrated	by	the	ESB,	otherwise	workarounds
must	be	used	in	order	to	implement	direct	communication	between	the	integrated	systems
(thus,	neglecting	the	usage	of	an	ESB).

Use	cases
There	are	a	variety	of	scenarios	where	messaging	systems	may	be	applied,	such	as	the
following:

Financial	services:	High	rate	real-time	trade	transactions	handled	between	different
systems
Social	networking:	Activity	streams	and	event	propagation	between	different
components	in	a	social	network
E-mailing:	Sending	e-mail	notifications	or	digests	periodically	to	a	large	number	of
users
Processing	large	volumes	of	data	upon	request,	such	as	image	rendering
Chat	services
Propagation	of	events	throughout	a	system
Any	type	of	real-time	system	integration	(system	of	systems)

As	you	can	see,	messaging	solutions	can	be	applied	to	a	variety	of	scenarios	that	typically
involve	a	number	of	systems	that	must	communicate	in	a	timely	manner	or	perform	a	large
number	of	time-consuming	tasks.	Messaging	solutions	are	also	extensively	being	deployed
by	Cloud	providers	in	order	to	provide	messaging	as	a	service	for	Cloud-based
applications.

Solutions
A	wide	variety	of	open	source	and	property	messaging	solutions	are	available	for	use,
which	are	based	on	the	multitude	of	use	cases.	The	choice	of	a	messaging	broker	depends
on	a	number	of	factors,	as	shown	in	the	following:

Supporting	tools,	documentation	and	services:	These	are	tools	for	management
and	monitoring	of	the	broker	along	with	possible	options	to	receive	support,	typically
the	support	is	guaranteed	only	for	commercial	brokers.	For	open	source,	this	depends
on	the	activeness	of	the	community.
Ease	of	configuration:	This	shows	how	easy	it	is	to	set	up	and	configure	the
message	broker.
Functionality:	The	features	implemented	by	the	solution	and	their	coverage	of	the
usage	scenario.	Here	the	supported	protocols	for	message	transfer	play	a	key	role	in
the	decision.
The	cost	and	licensing	model.

Patterns
A	messaging	system	provides	patterns	for	communication	between	system	endpoints.

Point-to-point
In	a	point-to-point	communication	model,	there	is	exactly	one	sender	and	one	receiver	of	a
message.	In	case	there	are	multiple	senders	that	are	applicable	for	the	purpose	of	receiving
the	message,	only	one	of	them	succeeds.	Such	receivers	are	also	referred	to	as	competing
consumers,	indicating	that	any	of	them	are	eligible	to	receive	the	message.	The	sender
does	not	receive	a	response	in	a	point-to-point	model.

Publish-subscribe
In	a	Publish-subscribe	communication	model,	there	is	one	sender	and	multiple	receivers
(subscribers)	of	the	message.	It	is	a	form	of	fire-and-forget,	where	the	sender	does	not
await	for	a	response	once	the	message	is	sent	to	the	broker.

Request-response
In	a	request-response	communication	model,	there	is	one	sender	and	one	receiver	that
sends	a	response	to	the	sender	of	the	message.

Understanding	RabbitMQ
The	RabbitMQ	messaging	server	is	an	open	source	implementation	of	the	AMQP	0-9-1
protocol	(Advanced	Message	Queuing	Protocol)	that	defines	how	messages	should	be
queued,	routed,	and	delivered	in	a	reliable	and	secure	manner.	AMQP	1.0,	which	is	an
OASIS	(Organization	for	the	Advancement	of	Structured	Information	Standards),	is
not	directly	supported	in	the	message	broker;	however,	RabbitMQ	provides	a	plugin	for
AMQP	1.0	(as	it	is	not	backward-compatible	with	AMQP	0-9-1).	OASIS	is	a	non-profit
organization	that	works	for	the	development	of	a	number	of	technology	standards.	As	an
open	standard,	AMQP	promotes	interoperability	among	the	messaging	brokers	that
implement	the	protocol.	It	also	defines	the	delivery	semantics	for	a	message,	which
dictates	how	many	times	that	message	can	be	sent	from	one	endpoint	to	another—zero	or
once,	exactly	once	or	multiple	times.	As	a	wire	protocol,	AMQP	provides	better
performance	in	regard	to	other	messaging	protocols	such	as	XMPP	(Extensible
Messaging	and	Presence	Protocol).

Before	we	discuss	more	about	RabbitMQ	as	a	message	broker,	we	will	introduce	some
terminologies	from	the	RabbitMQ	world	that	we	will	use	frequently	throughout	the	book:

exchanges:	These	are	the	RabbitMQ	server	endpoints	to	which	the	clients	will
connect	and	send	messages.	Each	endpoint	is	identified	by	a	unique	key.
queues:	These	are	the	RabbitMQ	server	components	that	buffer	messages	coming
from	one	or	more	exchanges	and	send	them	to	the	corresponding	message	receivers.
The	messages	in	a	queue	can	also	be	offloaded	to	a	persistent	storage	(such	queues
are	also	called	durable	queues)	that	provides	a	higher	degree	of	reliability	in	case	of
a	failed	messaging	server;	once	the	server	is	running	again,	the	messages	from
persistent	storage	are	placed	back	in	the	corresponding	queues	for	transfer	to
recipients.	Each	queue	is	identified	by	a	unique	key.
bindings:	These	are	the	logical	link	between	exchanges	and	queues.	Each	binding	is
a	rule	that	specifies	how	the	exchanges	should	route	messages	to	queues.	A	binding
may	have	a	routing	key	that	can	be	used	by	clients	in	order	to	specify	the	routing
semantics	of	a	message.
virtual	hosts:	The	logical	units	that	divide	RabbitMQ	server	components	(such	as
exchanges,	queues,	and	users)	into	separate	groups	for	better	administration	and
access	control.	Each	AMQP	client	connection	is	bound	to	a	concrete	virtual	host.

The	AMQP	protocol	allows	a	client	to	establish	a	one-way	logical	link	to	send	messages
for	exchange.	Each	logical	link	is	a	separate	AMQP	channel	that	may	provide	additional
options	for	the	reliable	transfer	of	messages.	In	this	regard,	a	single-client	TCP	connection
to	the	RabbitMQ	server	allows	multiple	AMQP	channels	of	communication.	Since	AMQP
does	not	provide	the	capability	to	retrieve	the	list	of	queues,	exchanges,	or	bindings	that
are	defined	in	the	RabbitMQ	message	broker,	client	applications	must	specify	the
exchange	name,	queue	names,	and,	optionally,	routing	information	by	means	of	routing
keys	for	particular	bindings.	AMQP	is	a	programmatic	protocol	that	allows	its	clients	to
create	and	delete	exchanges,	queues,	and	bindings	when	necessary.	RabbitMQ	addresses

some	limitations	of	AMQP	by	providing	custom	extensions	apart	from	the	fact	that	the
AMQP	protocol	itself	is	extensible.	In	order	to	simply	application	development,
RabbitMQ	provides	several	exchange	types	out	of	the	box,	as	follows:

direct	exchange:	This	delivers	a	message	based	on	a	routing	key	that	is	provided	in
the	message	header	(bindings	should	already	be	defined	between	the	direct	exchange
and	the	queue).	There	is	a	pre-created	direct	exchange	with	the	name	.amq.direct.	A
specialized	type	of	a	direct	exchange	called	default	exchange	with	the	empty	string
as	the	exchange	name	is	also	pre-created	in	the	message	broker.	It	has	the	special
property	where	the	binding	key	that	is	specified	by	the	client	should	match	the	name
of	the	queue	to	which	a	message	is	routed.
fanout	exchange:	This	delivers	a	message	to	all	the	queues	that	are	bound	to	the
exchange;	it	can	be	used	to	establish	a	broadcast	mechanism	for	the	delivery	of
messages	to	the	queues.	There	is	a	pre-created	fanout	exchange	with	name
.amq.fanout.
topic	exchange:	This	delivers	the	message	to	queues	based	on	a	routing	filter
specified	between	the	topic	exchange	and	queues;	it	can	be	used	to	establish	a
multicast	mechanism	for	the	delivery	of	messages.	There	is	a	pre-created	topic
exchange	with	the	name	.amq.topic.
headers	exchange:	This	can	be	used	to	deliver	messages	to	queues	based	on	other
message	header	attributes	(and	not	the	routing	key).	There	are	two	pre-created
headers	exchanges	with	names	.amq.headers	and	.amq.match.

Receivers	can	either	subscribe	to	a	queue	in	order	to	receive	messages	(also	called	push-
style	communication)	or	request	messages	on	demand	from	a	queue	(also	called	pull-style
communication).

Features
The	RabbitMQ	message	broker	provides	a	number	of	features	and	tools	that	support
production-level	deployment,	management,	and	configuration	of	the	RabbitMQ	server
instances	as	shown	in	the	following:

support	for	multiple	protocols:	Apart	from	AMQP,	RabbitMQ	provides	support	for
the	STOMP,	MQTT,	and	HTTP	protocols	by	the	means	of	RabbitMQ	plug-ins.
routing	capabilities:	As	we	already	saw,	we	can	implement	rules	to	route	messages
between	exchanges	and	queues	by	means	of	bindings,	moreover,	more	custom
exchange	types	can	be	defined	that	can	provide	additional	routing	capabilities.
support	for	multiple	programming	languages:	There	are	a	variety	of	supported
clients	for	a	great	variety	of	programming	languages.
reliable	delivery:	This	is	a	mechanism	that	guarantees	successful	message	delivery
by	the	means	of	acknowledgements.	It	can	be	enabled	between	the	producer	and	the
broker	as	well	as	the	broker	and	the	consumer.
clustering:	This	provides	a	mechanism	to	implement	scalable	applications	in	terms
of	the	RabbitMQ	message	broker.
federation:	This	is	an	alternative	mechanism	to	implement	scalable	applications	with
RabbitMQ	by	the	means	of	transferring	messages	between	exchanges	and	queues	in
different	broker	instances	without	the	need	to	create	a	RabbitMQ	cluster.
high	availability:	This	ensures	that	if	a	broker	fails,	communication	will	be
redirected	to	a	different	broker	instance.	It	is	implemented	by	the	means	of	mirroring
queues;	messages	from	a	queue	on	a	master	broker	instance	are	copied	to	a	queue	on
a	slave	broker	instance	and,	once	the	message	is	acknowledge,	the	messages	are
discarded	from	both	the	master	and	slave	instances.
management	and	monitoring:	A	number	of	utilities	are	built	around	the	RabbitMQ
broker	server	that	provide	these	capabilities.
Authentication	and	access	control.
pluggable	architecture:	RabbitMQ	provides	a	mechanism	to	extend	its	functionality
by	the	means	of	RabbitMQ	plug-ins.

All	of	these	features	will	be	covered	in	detail	in	the	next	chapters.

Comparison	with	other	technologies
As	RabbitMQ	is	not	the	only	player	in	the	world	of	enterprise	messaging	solutions,	it	is
good	to	see	what	makes	RabbitMQ	different	compared	to	other	messaging	systems.	A
short	list	of	alternative	solutions	(some	of	them	also	implementing	the	AMQP	protocol)
may	include	systems	such	as	Apache	ActiveMQ,	Apache	Kafka,	Apache	Qpid,	JBoss
Messaging,	Microsoft	BizTalk	Server,	and	WebSphere	Message	Broker.	There	are
different	benchmarks	that	can	be	found	throughout	the	internet	that	show	us	the	relative
results	in	comparison	to	the	different	types	of	brokers	in	terms	of	message	sending	(from
publisher	to	broker)	and	message	delivery	(from	broker	to	consumer).	In	case	you	need	to
compare	RabbitMQ	with	the	previously	mentioned	or	other	messaging	solutions,	you	can
apply	the	following	strategy:

Select	a	subset	of	technologies	that	are	suitable	for	your	use	case	based	on	the	variety
of	factors	that	are	listed	at	the	beginning	of	this	chapter
Perform	different	types	of	benchmark	based	on	the	variations	of	size	and	number	of
messages	that	will	be	sent	for	the	purpose	of	processing	by	each	solution	in	the
comparison	group,	based	on	the	format	of	messages	for	the	particular	use	case

Installation
You	can	download	a	RabbitMQ	distribution	package	for	the	operating	system	of	your
choice	from	http://www.rabbitmq.com/Windows.

For	Windows	operating	systems,	you	have	the	ability	to	use	the	provided	RabbitMQ
installer	(the	simpler	alternative)	or	manually	install	the	broker	using	the	provided	zip
distribution	archive	(requires	additional	setup	of	Windows	system	paths).	We	will	provide
an	overview	of	the	installation	process	for	Windows	7	using	the	installer	for	Rabbit	3.3.5
(rabbitmq-server-3.3.5.exe)	that	is	quite	straight-forward.	Initially,	the	installer	checks
whether	Erlang	is	installed	on	the	target	Windows	system	and,	if	it	cannot	find	it,	a	dialog
prompts	you	to	install	it,	as	shown	in	the	following	image:

If	you	click	Yes,	the	dialog	redirects	you	to	the	official	Erlang	website.	There,	you	will
find	the	appropriate	binaries	for	your	32-bit/64-bit	Windows	operating	system.	Download
and	install	the	Erlang	17.3	distribution	(compatible	with	RabbitMQ	3.3.5)	for	64-bit
Windows	(otp_win64_17.3.exe):

File	associations	can	be	established	and	the	Erlang	documentation	can	be	installed	as	a

http://www.rabbitmq.com/Windows

part	of	the	Erlang	installation	process:

The	next	step	is	to	specify	the	location	to	install	Erlang:

Finally,	you	have	the	option	to	place	an	Erlang	shortcut	in	the	Start	menu	folder.	After	the
installation	is	finished,	you	can	run	the	RabbitMQ	3.3.5	server	installer	again:

You	can	specify	in	addition	that	Start	menu	items	and	a	Windows	service	should	be	added
along	with	RabbitMQ	server	installation.	Adding	a	Windows	service	for	RabbitMQ	server
is	usually	recommended	as	it	provides	a	convenient	mechanism	to	manage	a	RabbitMQ
server	instance:

The	final	step	is	to	specify	the	location	to	install	the	RabbitMQ	server.	Once	the
installation	is	complete,	the	installer	tries	to	start	the	RabbitMQ	server	and,	if	your

Windows	firewall	is	turned	on,	you	might	be	prompted	to	allow	access	to	the	RabbitMQ
server	in	order	to	open	a	port	on	the	target	machine	(the	default	port	is	5672	for	a
RabbitMQ	server	node	instance).	In	order	to	check	whether	the	RabbitMQ	service	is
running,	you	can	open	services.msc	from	the	Windows	Run	menu	and	check	whether
the	RabbitMQ	service	has	started.	Additionally,	you	can	check	whether	the	RabbitMQ
instance	node	is	initiated,	by	default	on	port	5672,	by	executing	from	the	command
prompt:

netstat	–a

RabbitMQ	installation	also	provides	a	number	of	command-line	utilities	that	you	can	use
in	order	to	manage	the	RabbitMQ	instance,	which	is	located	under	the	rabbitmq_server-
3.3.5\sbin	folder	in	the	RabbitMQ	installation	directory.	You	can	use	the	rabbitmqctl
utility	to	check	the	status	of	a	broker,	start,	or	stop	it:

rabbitmqctl.bat	status

rabbitmqctl.bat	stop

rabbitmqctl.bat	start

In	addition	to	this,	rabbitmqctl	provides	a	number	of	other	commands	that	can	be	used	to
manage	the	RabbitMQ	broker.	There	is	a	RabbitMQ	management	plugin	that	provides	the
ability	to	manage	a	RabbitMQ	broker	from	a	web-based	interface	and	in	particular	to	do
the	following:

Manage	broker	objects	such	as	message	queues,	users,	and	permissions
Send	messages	to	the	broker
Receive	messages	from	the	broker
Monitor	and	manage	connections	to	the	broker
Monitor	broker	workload
Monitor	resource	usage	such	as	memory,	processes,	and	file	descriptors	that	are	used
by	the	broker

These	are	included	in	the	set	of	plugins	that	are	installed	by	default;	however,	it	must	be
enabled	by	executing	the	rabbitmq-plugins	utility	that	is	located	under	the
rabbitmq_server-3.3.5\sbin	folder	in	the	RabbitMQ	installation	directory	from	the
following	command	prompt:

rabbitmq-plugins.bat	enable	rabbitmq_management

After	the	management	plugin	is	enabled,	you	have	to	restart	the	RabbitMQ	server:

rabbitmq-server.bat	restart

The	management	plugin	starts	an	http	server,	on	port	15672,	by	default	in	order	to	verify
that	the	plugin	is	trying	to	open	http://localhost:15672/	from	a	browser.	You	will	be
prompted	to	provide	a	Username	and	Password	in	order	to	login:

By	default,	RabbitMQ	installs	with	a	user	with	a	guest	name	and	guest	password	that	are
only	available	from	local	host	connections	to	the	broker.	In	the	next	chapter,	we	will	see
how	to	manage	users	for	a	RabbitMQ	server.

Linux
For	various	Linux	distributions,	there	are	out-of-the-box	packages	provided	for	the
RabbitMQ	server.	Some	Linux	distributions	also	provide	you	with	the	ability	to	install	the
broker	directly	from	a	package	repository.	We	will	provide	an	overview	of	the	installation
process	for	Ubuntu	12.04	Desktop	edition	based	on	a	package	repository	that	we	can	also
download	and	install	directly,	a	RabbitMQ	Debian	package	for	the	purpose.	To	install	the
broker	and	enable	the	management	plugin,	open	a	terminal	and	execute	the	following
command:

echo	"deb	http://www.rabbitmq.com/debian/	testing	main"		|	sudo	tee		

/etc/apt/sources.list.d/rabbitmq.list	>	/dev/null

sudo	wget	http://www.rabbitmq.com/rabbitmq-signing-key-public.asc

sudo	apt-key	add	rabbitmq-signing-key-public.asc

sudo	apt-get	update

sudo	apt-get	install	rabbitmq-server	–y

sudo	rabbitmq-plugins	enable	rabbitmq_management

sudo	service	rabbitmq-server	restart

Tip
Downloading	the	example	code

You	can	download	the	example	code	files	from	your	account	at	http://www.packtpub.com
for	all	the	Packt	Publishing	books	you	have	purchased.	If	you	purchased	this	book
elsewhere,	you	can	visit	http://www.packtpub.com/support	and	register	to	have	the	files	e-
mailed	directly	to	you.

The	server	installation	also	installs	utilities	for	the	management	of	the	RabbitMQ	server—
used	in	the	same	way	as	in	the	Windows	installation	of	RabbitMQ.

http://www.packtpub.com
http://www.packtpub.com/support

Case	study:	CSN	(Corporate	Social
Network)
The	Corporate	Social	Network	(CSN)	is	a	social	networking	service	that	is	being
deployed	in	an	enterprise	and	allows	its	users	to	upload	content	and	interact	with	each
other.	In	particular,	the	system	allows	the	user	to	post	blogs,	upload	files,	subscribe	to
other	user	profiles	(in	order	to	track	the	activity	of	other	users),	and	chat	with	other	users.
The	social	network	uses	RabbitMQ	in	order	to	process	events	that	have	been	triggered	by
user	activity,	trigger	long-running	jobs	(such	as	batch	file	uploading),	and	serve	as	a
backbone	for	the	delivery	of	chat	messages	from	the	chat	feature	of	the	social	network.
The	following	diagram	provides	a	high-level	overview	of	the	components	of	the	system:

We	will	design	the	system	from	the	very	beginning	and	then	start	expanding	it.	In	the
meantime,	we	will	demonstrate	the	various	capabilities	of	RabbitMQ	by	applying	them	to
the	extensions	of	the	social	network.

Summary
In	this	chapter,	we	covered	the	fundamentals	of	enterprise	messaging	solutions	and
discussed	the	features	of	RabbitMQ	along	with	the	installation	process.	A	brief
comparison	with	other	messaging	brokers	was	provided	in	order	to	reveal	what	the
strengths	and	weaknesses	of	RabbitMQ	are	compared	to	the	other	alternatives.	We	also
introduced	a	case	study	project	CSN	that	makes	use	of	RabbitMQ	as	a	messaging	solution
for	propagation	of	events	throughout	the	system	and	lays	the	basis	for	further
demonstrations	on	the	various	features	of	RabbitMQ.

Exercises
Attempt	the	following	questions:

1.	 What	is	messaging?
2.	 What	are	the	typical	components	of	a	message	broker?
3.	 What	appropriate	usage	scenarios	can	you	think	of	for	the	application	of	messaging

systems?
4.	 Which	message	patterns	does	RabbitMQ	support	and	how?
5.	 What	are	the	advantages	of	using	AMQP	for	messaging	compared	to	other	protocols?
6.	 What	are	the	different	features	that	are	supported	by	RabbitMQ?
7.	 What	are	the	prerequisites	for	RabbitMQ	installation	on	a	target	operating	system?

Chapter	2.	Design	Patterns	with
RabbitMQ
As	a	robust	messaging	solution,	RabbitMQ	provides	different	utilities	for	distributing
messages	between	endpoints	in	the	communication	channel.	These	utilities	provide	an
implementation	of	best	practices	and	design	patterns	that	apply	to	messaging	solutions	and
form	the	backbone	of	a	messaging	broker	such	as	RabbitMQ.

Topics	covered	in	the	chapter:

Messaging	patterns	in	RabbitMQ
Point-to-point	communication
Publish-subscribe	communication
Request-reply	communication
Message	router

Messaging	patterns	in	RabbitMQ
Messaging	patterns	in	RabbitMQ	are	implemented	based	on	exchanges,	queues,	and	the
bindings	between	them.	We	can	distinguish	between	the	different	approaches	for
implementing	a	design	pattern	with	RabbitMQ:

For	point-to-point	communication	between	the	publisher	and	the	broker	you	can	use
a	default	or	a	direct	exchange	in	order	to	deliver	a	message	to	a	single	queue.
However,	note	that	there	might	be	multiple	subscribers	to	this	single	queue,	thus
implementing	publish-subscribe	between	the	broker	and	the	message	receivers	bound
to	that	queue.
For	publish-subscribe,	we	can	use	a	fanout	exchange,	which	will	deliver	a	message
from	an	exchange	to	all	queues	that	are	bound	to	this	exchange;	in	this	manner,	we
may	have	a	queue-per-subscriber	strategy	for	implementing	publish-subscribe.
For	request-response	communication,	we	can	use	two	separate	exchanges	and	two
queues;	the	publisher	sets	a	message	identifier	in	the	message	header	and	sends	the
request	message	to	the	request	exchange,	which	in	turn	delivers	the	message	to	the
request	queue.	The	subscriber	retrieves	the	message	from	the	request	queue,
processes	it,	and	sends	a	response	message	to	the	response	exchange	by	also	setting
the	same	message	identifier	found	in	the	request	message	to	the	response	message
header.	The	response	exchange	then	delivers	the	message	to	a	response	queue.	The
publisher	is	subscribed	to	a	response	queue	in	order	to	retrieve	response	messages
and	uses	the	message	identifier	from	the	response	message	header	to	map	the
response	message	to	the	corresponding	request	message.
For	message	routing	we	can	use	a	topic	exchange	in	order	to	deliver	messages
based	on	a	binding	key	pattern	or	a	headers	exchange	based	on	one	or	more	headers.

It	is	important	to	remember	that	AMQP	0-9-1	protocol	messages	are	load-balanced
between	consumers	in	a	round-robin	fashion.	In	this	case,	if	there	are	multiple	consumers
on	a	message	queue	(bound	using	the	basic.consume	AMQP	protocol	command)	then
only	one	of	them	will	receive	the	message,	signifying	that	we	have	competing	consumers.
The	same	applies	for	the	basic.get	AMQP	protocol	command	that	retrieves	a	message
from	a	queue	on-demand	(pull	style)	rather	than	by	consumption	(push	style).	If	a	message
arrives	on	a	queue	that	has	no	subscribers	then	the	message	will	stay	in	the	queue	until	a
new	subscriber	is	bound	to	the	queue	or	the	message	is	explicitly	requested	using
basic.get.	A	message	can	also	be	rejected	using	the	basic.reject	AMQP	protocol
command.	We	will	illustrate	each	of	the	preceding	message	patterns	with	concrete
examples	in	subsequent	sections.	Before	trying	out	the	examples,	you	have	to	include	the
AMQP	client	library	for	Java.	If	you	are	using	Maven,	you	can	include	the	following
dependencies	for	the	client	library	along	with	the	slf4j	dependencies	that	provide	the
slf4j	logging	features	used	to	provide	logging	capabilities	in	the	examples:

<dependency>

				<groupId>com.rabbitmq</groupId>

				<artifactId>amqp-client</artifactId>

				<version>3.4.1</version>

</dependency>

<dependency>

				<groupId>org.slf4j</groupId>

				<artifactId>slf4j-api</artifactId>

				<version>1.6.1</version>

</dependency>

<dependency>

				<groupId>org.slf4j</groupId>

				<artifactId>slf4j-log4j12</artifactId>

				<version>1.6.1</version>

</dependency>

<dependency>

				<groupId>log4j</groupId>

				<artifactId>log4j</artifactId>

				<version>1.2.16</version>

</dependency>

In	order	to	send	messages	to	RabbitMQ,	the	Sender	class	will	be	used:

import	java.io.IOException;

import	org.slf4j.Logger;

import	org.slf4j.LoggerFactory;

import	com.rabbitmq.client.ConnectionFactory;

import	com.rabbitmq.client.Connection;

import	com.rabbitmq.client.Channel;

public	class	Sender	{

				private	final	static	String	QUEUE_NAME	=	"event_queue";

				private	final	static	Logger	LOGGER	=					

						LoggerFactory.getLogger(Sender.class);

				private	static	final	String	DEFAULT_EXCHANGE	=	"";

				private	Channel	channel;

				private	Connection	connection;

}

The	initialize()	method	is	used	to	initialize	the	message	sender	by	doing	the	following:

Creating	a	ConnectionFactory	that	is	used	to	create	AMQP	connections	to	a	running
RabbitMQ	server	instance;	in	this	case,	this	is	an	instance	running	on	localhost	and
accepting	connections	on	the	default	port	(5672)
Creating	a	new	connection	using	the	connection	factory
Creating	a	new	channel	for	sending	messages	in	the	created	connection:

				public	void	initialize()	{

								try	{

												ConnectionFactory	factory	=	new	ConnectionFactory();

												factory.setHost("localhost");

												connection	=	factory.newConnection();

												channel	=	connection.createChannel();

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}

				}

The	send()	method	has	two	variants:	one	that	accepts	a	message	and	sends	it	to	the
default	queue	and	a	second	one	that	accepts	an	exchange	name,	exchange	type,	and	the
message	to	send.	The	first	variant	is	appropriate	for	point-to-point	communication	and
does	the	following:

Declares	a	queue	in	the	message	broker	using	the	queueDeclare()	method;	if	the
queue	is	already	created	then	it	is	not	recreated	by	the	method
Publishes	a	message	on	the	default	exchange	that	is	delivered	to	that	queue

The	second	variant	of	send()	is	appropriate	for	the	publish-subscribe	type	of
communication	and	does	the	following:

Declares	the	specified	exchange	along	with	its	type	on	the	message	bus	using	the
exchangeDeclare()	method;	the	exchange	is	not	recreated	if	it	exists	on	the	message
bus
Sends	a	message	to	this	exchange	with	a	routing	key	equal	to	the	empty	string	(we
are	indicating	that	we	will	not	use	the	routing	key	with	this	variant	of	the	method):

				public	void	send(String	message)	{

								try	{

												channel.queueDeclare(QUEUE_NAME,	false,	false,	false,	

null);

												channel.basicPublish(DEFAULT_EXCHANGE,	QUEUE_NAME,	null,

																				message.getBytes());

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}

				}

				

				public	void	send(String	exchange,	String	type,	String	message)	{

								try	{

												channel.exchangeDeclare(exchange,	type);

												channel.basicPublish(exchange,	"",	null,

																				message.getBytes());

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}

				}

The	destroy()	method	is	used	to	close	the	connection	and	all	connection	channels	to	the
message	broker:

								public	void	destroy()	{

								try	{

												if	(connection	!=	null)	{

																connection.close();

												}

								}	catch	(IOException	e)	{

												LOGGER.warn(e.getMessage(),	e);

								}

				}

}

Point-to-point	communication
The	following	diagram	provides	an	overview	of	the	scenario	that	we	will	implement:

For	point-to-point	communication,	the	sender	can	use	either	the	default	exchange	or	a
direct	exchange	(that	uses	the	routing	key	to	determine	to	which	queue	a	message	must	be
sent;	the	routing	key	should	match	the	binding	key	between	the	exchange	and	the	queue).
The	CompetingReceiver	class	can	be	used	to	subscribe	to	a	particular	queue	and	receive
messages	from	that	queue:

import	java.io.IOException;

import	org.slf4j.Logger;

import	org.slf4j.LoggerFactory;

import	com.rabbitmq.client.Channel;

import	com.rabbitmq.client.Connection;

import	com.rabbitmq.client.ConnectionFactory;

import	com.rabbitmq.client.ConsumerCancelledException;

import	com.rabbitmq.client.QueueingConsumer;

import	com.rabbitmq.client.ShutdownSignalException;

public	class	CompetingReceiver	{

				private	final	static	String	QUEUE_NAME	=	"event_queue";

				private	final	static	Logger	LOGGER	=																									

LoggerFactory.getLogger(Sender.class);

				private	Connection	connection	=	null;

				private	Channel	channel	=	null;

				public	void	initialize()	{

								try	{

												ConnectionFactory	factory	=																																					

new	ConnectionFactory();

												factory.setHost("localhost");

												connection	=	factory.newConnection();

												channel	=	connection.createChannel();

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}

				}

}

The	receive()	method	is	used	to	receive	a	message	from	the	queue	named	event_queue
by	doing	the	following:

Creating	the	event_queue	in	the	message	broker,	if	not	already	created,	using	the
queueDeclare()	method
Creating	a	QueueingConsumer	instance	that	is	used	as	the	handler	for	messages	from
the	event_queue	queue
Registering	the	QueueingConsumer	as	a	message	consumer	using	the
basicConsume()	method	of	the	Channel	instance	that	represents	the	AMQP	channel
to	the	message	broker
Consuming	a	message	from	the	event_queue	queue	using	the	nextDeliver()
method	of	the	QueueingConsumer	instance,	which	blocks	until	a	message	arrives	on
the	queue;	QueueingConsumer.Delivery	represents	the	received	message:

				public	String	receive()	{

								if	(channel	==	null)	{

												initialize();

								}

								String	message	=	null;

								try	{

												channel.queueDeclare(QUEUE_NAME,	false,	false,	false,	

null);

												QueueingConsumer	consumer	=																																					

new	QueueingConsumer(channel);

												channel.basicConsume(QUEUE_NAME,	true,																																									

consumer);

												QueueingConsumer.Delivery	delivery	=																													

consumer.nextDelivery();

												message	=	new	String(delivery.getBody());

												LOGGER.info("Message	received:	"	+	message);

												return	message;

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	catch	(ShutdownSignalException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	catch	(ConsumerCancelledException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	catch	(InterruptedException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}

								return	message;

				}

The	destroy()	method	closes	the	AMQP	connection	and	must	be	called	explicitly	when
needed;	closing	the	connection	closes	all	AMQP	channels	created	in	that	connection:

				public	void	destroy()	{

								if	(connection	!=	null)	{

												try	{

																connection.close();

												}	catch	(IOException	e)	{

																LOGGER.warn(e.getMessage(),	e);

												}

								}

				}

In	order	to	demonstrate	the	usage	of	the	CompetingConsumer	class	in	a	point-to-point
channel,	we	can	use	the	DefaultExchangeSenderDemo	class	to	send	a	message	to	the
default	exchange:

public	class	DefaultExchangeSenderDemo	{

				public	static	void	sendToDefaultExchange()	{

								Sender	sender	=	new	Sender();

								sender.initialize();

								sender.send("Test	message.");

								sender.destroy();

				}

				public	static	void	main(String[]	args)	{

								sendToDefaultExchange();

				}

}

When	invoking	the	main()	method,	a	message	is	sent	to	the	RabbitMQ	server	instance
running	on	localhost;	if	no	instance	is	running	then	a	java.net.ConnectionException	is
thrown	from	the	client.	Assuming	that	there	are	no	defined	queues	yet	in	the	message
broker,	if	you	open	the	RabbitMQ	management	console	you	will	notice	the	following
before	invoking	the	main()	method:

After	invoking	the	main()	method,	you	will	notice	that	the	event_queue	is	created:

Moreover,	there	is	one	unprocessed	message	in	the	queue;	the	Ready	section	gives	the
number	of	unprocessed	messages	on	the	particular	queue.	In	order	to	consume	the
message	CompetingReceiverDemo	class,	perform	the	following:

public	class	CompetingReceiverDemo	{

				public	static	void	main(String[]	args)																									throws	

InterruptedException	{

								final	CompetingReceiver	receiver1	=	new	CompetingReceiver();

								receiver1.initialize();

								final	CompetingReceiver	receiver2	=	new	CompetingReceiver();

								receiver2.initialize();

								Thread	t1	=	new	Thread(new	Runnable()	{

												public	void	run()	{

																receiver1.receive();

												}

								});

								Thread	t2	=	new	Thread(new	Runnable()	{

												public	void	run()	{

																receiver2.receive();

												}

								});

								t1.start();

								t2.start();

								t1.join();

								t2.join();

								receiver1.destroy();

								receiver2.destroy();

				}

}

We	create	two	CompetingReceiver	instances	and	invoke	the	receive()	methods	of	the
two	instances	in	separate	threads	so	that	we	have	two	subscribers	for	the	same	queue

waiting	for	a	message.	The	two	threads	are	joined	to	the	main	application	thread	so	that
method	execution	continues	once	both	consumers	receive	a	message	from	the	queue.
Since	our	queue	already	has	one	message,	one	of	the	two	consumers	will	receive	the
message	while	the	other	will	continue	to	wait	for	a	message.	If	we	invoke	the	main()
method	of	the	DefaultExchangeSenderDemo	class	once	again,	the	other	consumer	will
also	receive	a	message	from	the	queue	and	the	main()	method	of
CompetingReceiverDemo()	will	terminate.

Publish-subscribe	communication
The	following	diagram	provides	an	overview	of	the	scenario	that	we	will	implement:

For	publish-subscribers	we	can	use	a	fanout	exchange	and	bind	any	number	of	queues	to
that	exchange	regardless	of	the	binding	key.	The	PublishSubscribeReceiver	class	can	be
used	to	bind	a	specified	queue	to	a	fanout	exchange	and	receive	messages	from	it:

import	java.io.IOException;

import	org.slf4j.Logger;

import	org.slf4j.LoggerFactory;

import	com.rabbitmq.client.Channel;

import	com.rabbitmq.client.Connection;

import	com.rabbitmq.client.ConnectionFactory;

import	com.rabbitmq.client.ConsumerCancelledException;

import	com.rabbitmq.client.QueueingConsumer;

import	com.rabbitmq.client.ShutdownSignalException;

public	class	PublishSubscribeReceiver	{

				private	final	static	String	EXCHANGE_NAME	=	"pubsub_exchange";

				private	final	static	Logger	LOGGER	=	

LoggerFactory.getLogger(Sender.class);

				private	Channel	channel	=	null;

				private	Connection	connection	=	null;

				public	void	initialize()	{

								try	{

												ConnectionFactory	factory	=	new	ConnectionFactory();

												factory.setHost("localhost");

												connection	=	factory.newConnection();

												channel	=	connection.createChannel();

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}

				}

				.	.	.

}

The	receive()	method	can	be	used	to	retrieve	a	message	from	a	queue	that	is	bound	to

the	pubsub_exchange	fanout	exchange	and	does	the	following:

Creates	the	pubsub_exchange,	if	not	already	created
Creates	the	specified	queue	if	not	already	created
Binds	the	queue	to	the	pubsub_exchange	using	the	queueBind()	method	of	the
Channel	instance	that	represents	the	AMQP	channel	for	the	receiver;	notice	that	in
this	case	we	don’t	specify	any	particular	binding	key	and	for	that	reason	we	are	using
the	empty	string
Creates	a	new	QueueingConsumer	instance,	registered	using	the	AMQP	channel,	and
the	nextDelivery()	method	is	called	to	receive	a	message	from	the	channel:

				public	String	receive(String	queue)	{

								if	(channel	==	null)	{

												initialize();

								}

								String	message	=	null;

								try	{

												channel.exchangeDeclare(EXCHANGE_NAME,	"fanout");

												channel.queueDeclare(queue,	false,	false,	false,	null);

												channel.queueBind(queue,	EXCHANGE_NAME,	"");

												QueueingConsumer	consumer	=	new	QueueingConsumer(channel);

												channel.basicConsume(queue,	true,	consumer);

												QueueingConsumer.Delivery	delivery	=	

consumer.nextDelivery();

												message	=	new	String(delivery.getBody());

												LOGGER.info("Message	received:	"	+	message);

												return	message;

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	catch	(ShutdownSignalException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	catch	(ConsumerCancelledException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	catch	(InterruptedException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}

								return	message;

				}

And	we	also	have	a	destroy()	method:

				public	void	destroy()	{

								try	{

												if	(connection	!=	null)	{

																connection.close();

												}

								}	catch	(IOException	e)	{

												LOGGER.warn(e.getMessage(),	e);

								}

				}

}

In	order	to	demonstrate	the	usage	of	QueueingConsumer	for	establishing	a	publish-
subscribe	communication	channel,	we	will	use	the	FanoutExchangeSenderDemo	class	to
send	a	message	to	the	pubsub_exchange	fanout	exchange:

public	class	FanoutExchangeSenderDemo	{

				private	static	final	String	FANOUT_EXCHANGE_TYPE	=	"fanout";

				public	static	void	sendToFanoutExchange(String	exchange)	{

								Sender	sender	=	new	Sender();

								sender.initialize();

								sender.send(exchange,	FANOUT_EXCHANGE_TYPE,	"Test	message.");

								sender.destroy();

				}

				public	static	void	main(String[]	args)	{

								sendToFanoutExchange("pubsub_exchange");

				}

}

When	you	invoke	the	main()	method	of	the	FanoutExchangeSenderDemo	class,	you	may
notice	from	the	management	console	that	the	pubsub_exchange	exchange	is	created	in	the
RabbitMQ	server	instance	separate	from	the	predefined	exchanges:

If	you	restart	the	RabbitMQ	instance	then	you	will	not	see	the	pubsub_exchange	from	the
management	console	again,	because	the	exchange	is	not	marked	as	durable.	In	order	to
mark	a	queue/exchange	as	durable,	you	can	provide	an	additional	parameter	to	the
queueDeclare()/exchangeDeclare()	methods	of	the	Channel	class.	In	order	to	provide
further	message	delivery	guarantees	on	the	broker,	you	can	use	the	publisher	confirms	of
the	extension.

The	PublishSubscribeReceiverDemo	class	provides	a	demonstration	of	the
PublishSubscribeReceiver	class	for	the	establishment	of	a	publish-subscribe	channel:

public	class	PublishSubscribeReceiverDemo	{

				public	static	void	main(String[]	args)	throws	InterruptedException	{

								final	PublishSubscribeReceiver	receiver1	=	new	

PublishSubscribeReceiver();

								receiver1.initialize();

								final	PublishSubscribeReceiver	receiver2	=	new	

PublishSubscribeReceiver();

								receiver2.initialize();

								Thread	t1	=	new	Thread(new	Runnable()	{

												public	void	run()	{

																receiver1.receive("pubsub_queue1");

												}

								});

								Thread	t2	=	new	Thread(new	Runnable()	{

												public	void	run()	{

																receiver2.receive("pubsub_queue2");

												}

								});

								t1.start();

								t2.start();

								t1.join();

								t2.join();

								receiver1.destroy();

								receiver2.destroy();

				}

}

The	main()	method	creates	two	receivers	that	bind	to	two	different	queues:
pubsub_queue1	and	pubsub_queue2.	If	you	have	already	sent	a	message	to	the
pubsub_exchange	exchange,	it	will	be	delivered	to	both	queues	and	thus	sent	to	both
consumers.

Request-reply	communication
The	following	diagram	provides	an	overview	of	the	scenario	that	we	will	implement:

The	sender	will	send	a	message	to	the	default	exchange	with	a	routing	key	that	matches
the	name	of	the	designated	request	queue.	The	request	receiver	is	a	subscriber	to	the
request	queue.	After	a	request	message	is	received,	the	request	receiver	retrieves	the	value
of	the	replyTo	property	from	the	message	header,	creates	a	response	message,	and	sends	it
to	the	default	exchange	with	a	routing	key	that	matches	the	replyTo	property.	This	means
that	the	replyTo	property	points	to	a	queue	that	handles	response	messages	and	the	sender
is	subscribed	to	that	queue	in	order	to	receive	a	response.

Let’s	extend	our	Sender	class	with	the	following	sendRequest()	method,	which	sends	a
message	to	the	request_exchange	exchange,	and	the	receiveResponse()	method,	which
receives	a	message	from	the	response_queue	queue	as	follows:

private	static	final	String	REQUEST_QUEUE	=	"request_queue";

private	static	final	String	RESPONSE_QUEUE	=	"response_queue";

public	void	sendRequest(String	requestQueue,	String	message,	String	

correlationId)	{

				try	{

								channel.queueDeclare(REQUEST_QUEUE,	false,	false,	false,	null);

								channel.queueDeclare(RESPONSE_QUEUE,	false,	false,	false,	null);

								AMQP.BasicProperties	amqpProps	=	new	AMQP.BasicProperties();

								amqpProps	=	amqpProps.builder()

												.correlationId(String.valueOf(correlationId))

												.replyTo(RESPONSE_QUEUE).build();

												channel.basicPublish(DEFAULT_EXCHANGE,																																	

REQUEST_QUEUE,	amqpProps,																												message.getBytes());

				}	catch	(IOException	e)	{

								LOGGER.error(e.getMessage(),	e);

				}

}

public	String	waitForResponse(final	String	correlationId)	{

				QueueingConsumer	consumer	=	new	QueueingConsumer(channel);

				String	result	=	null;

				try	{

								channel.basicConsume(RESPONSE_QUEUE,	true,	consumer);

								QueueingConsumer.Delivery	delivery	=	consumer.nextDelivery(3000);

								String	message	=	new	String(delivery.getBody());

								if	(delivery.getProperties()	!=	null)	{

												String	msgCorrelationId	=	delivery.getProperties()

																.getCorrelationId();

												if	(!correlationId.equals(msgCorrelationId))	{

												LOGGER.warn("Received	response	of	another	request.");

												}	else	{

																result	=	message;

												}

								}

																																																				LOGGER.info("Message	

received:	"	+	message);

				}	catch	(IOException	e)	{

								LOGGER.error(e.getMessage(),	e);

				}	catch	(ShutdownSignalException	e)	{

								LOGGER.error(e.getMessage(),	e);

				}	catch	(ConsumerCancelledException	e)	{

								LOGGER.error(e.getMessage(),	e);

				}	catch	(InterruptedException	e)	{

								LOGGER.error(e.getMessage(),	e);

				}

				return	result;

}

The	sendRequest()	method	crafts	an	AMQP.BasicProperties	instance	and	provides	the
replyTo	and	correlationId	properties.	The	correlationId	must	be	a	unique	identifier
that	is	passed	back	in	the	response	message	and	can	be	used	by	the	sender	to	determine	the
request	for	which	a	response	is	received.

The	RequestReceiver	class	provides	a	sample	implementation	of	a	request	receiver:

public	class	RequestReceiver	{

				private	static	final	String	DEFAULT_QUEUE	=	"";

				private	static	final	String	REQUEST_QUEUE	=	"request_queue";

				private	final	static	Logger	LOGGER	=					

						LoggerFactory.getLogger(Sender.class);

				private	Connection	connection	=	null;

				private	Channel	channel	=	null;

				public	void	initialize()	{

								try	{

												ConnectionFactory	factory	=																																	new	

ConnectionFactory();

												factory.setHost("localhost");

												connection	=	factory.newConnection();

												channel	=	connection.createChannel();

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}

				}

				.	.	.

}

The	receive()	method	is	used	to	read	a	request	message	from	a	queue:

				public	void	receive()	{

								if	(channel	==	null)	{

												initialize();

								}

								String	message	=	null;

								try	{

												channel.queueDeclare(REQUEST_QUEUE,	false,																					

false,	false,	null);

												QueueingConsumer	consumer	=	new	QueueingConsumer(channel);

												channel.basicConsume(REQUEST_QUEUE,	true,	consumer);

												QueueingConsumer.Delivery	delivery	=	consumer.nextDelivery();

												message	=	new	String(delivery.getBody());

												LOGGER.info("Request	received:	"	+	message);

												//	do	something	with	the	request	message…

												BasicProperties	properties	=	delivery.getProperties();

												if	(properties	!=	null)	{

																AMQP.BasicProperties	amqpProps	=	new	

AMQP.BasicProperties();

																amqpProps	=	amqpProps.builder().correlationId(

String.valueOf(properties.getCorrelationId())).build();

																channel.basicPublish(DEFAULT_QUEUE,																									

properties.getReplyTo(),	amqpProps,	"Response	message.".getBytes());

												}	else	{

																LOGGER.warn("Cannot	determine	response																									

destination	for	message.");

												}

																

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	catch	(ShutdownSignalException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	catch	(ConsumerCancelledException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	catch	(InterruptedException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}

				}

And	again	we	have	a	destroy()	method	–	it	is	important	to	make	sure	that	you	close	your
connections	to	the	broker	if	you	are	no	longer	using	them:

				public	void	destroy()	{

								if	(connection	!=	null)	{

												try	{

																connection.close();

												}	catch	(IOException	e)	{

																LOGGER.warn(e.getMessage(),	e);

												}

								}

				}

}

In	order	to	send	a	request	message	we	can	use	the	RequestSenderDemo	class:

public	class	RequestSenderDemo	{

				private	static	final	String	REQUEST_QUEUE	=																	

"request_queue";

				

				public	static	String	sendToRequestReplyQueue()	{

								Sender	sender	=	new	Sender();

								sender.initialize();

								sender.sendRequest(REQUEST_QUEUE,	"Test	message.",	"MSG1");

								String	result	=	sender.waitForResponse("MSG1");

								sender.destroy();

								return	result;

				}

				public	static	void	main(String[]	args)	{

								sendToRequestReplyQueue();

				}				

}

In	order	to	receive	the	request	message	and	send	a	response	message,	you	can	use	the
RequestReceiverDemo	class:

public	class	RequestReceiverDemo	{

				

				public	static	void	main(String[]	args)	throws	InterruptedException	{

								final	RequestReceiver	receiver	=	new	RequestReceiver();

								receiver.initialize();

								receiver.receive();

								receiver.destroy();

				}

}

Message	router
The	following	diagram	provides	an	overview	of	the	scenario	that	we	will	implement:

Let’s	say	we	have	a	service	that	triggers	an	event	upon	the	creation	of	a	new	programming
seminar,	or	hackathon,	for	a	given	community.	We	want	to	send	all	seminar	events	to	a
particular	destination	receiver	and	all	hackaton	events	to	another	destination	receiver.
Moreover,	we	want	to	send	messages	to	the	same	exchange.	For	that	setup,	a	topic
exchange	is	a	rational	choice;	one	queue	will	be	bound	to	the	topic	exchange	with	the
seminar.#	routing	key	and	another	queue	will	be	bound	with	hackaton.#	routing	key.
The	#	character	is	special	and	serves	as	a	pattern	that	matches	any	character	sequence.

We	can	implement	this	type	of	message	sending	by	further	extending	our	Sender	class:

private	static	final	String	SEMINAR_QUEUE	=	"seminar_queue";

private	static	final	String	HACKATON_QUEUE	=	"hackaton_queue";				

private	static	final	String	TOPIC_EXCHANGE	=	"topic_exchange";

				

public	void	sendEvent(String	exchange,	String	message,	String	messageKey)	{

				try	{

								channel.exchangeDeclare(TOPIC_EXCHANGE,	"topic");

								channel.queueDeclare(SEMINAR_QUEUE,	false,	false,																			

false,	null);

								channel.queueDeclare(HACKATON_QUEUE,	false,	false,																	

false,	null);

								channel.queueBind(SEMINAR_QUEUE,	TOPIC_EXCHANGE,																	

"seminar.#");

								channel.queueBind(HACKATON_QUEUE,	TOPIC_EXCHANGE,																	

"hackaton.#");

channel.basicPublish(TOPIC_EXCHANGE,	messageKey,	null,

								message.getBytes());

				}	catch	(IOException	e)	{

								LOGGER.error(e.getMessage(),	e);

				}

}

In	order	to	demonstrate	event	sending,	we	can	use	the	TopicSenderDemo	class:

public	class	TopicSenderDemo	{

				private	static	final	String	TOPIC_EXCHANGE	=																					

"topic_exchange";

				public	static	void	sendToTopicExchange()	{

								Sender	sender	=	new	Sender();

								sender.initialize();

								sender.sendEvent(TOPIC_EXCHANGE,	"Test	message	1.",																					

"seminar.java");

								sender.sendEvent(TOPIC_EXCHANGE,	"Test	message	2.",																					

"seminar.rabbitmq");

								sender.sendEvent(TOPIC_EXCHANGE,	"Test	message	3.",																					

"hackaton.rabbitmq");

								sender.destroy();

				}

				

				public	static	void	main(String[]	args)	{

								sendToTopicExchange();

				}

}

Case	study:	Initial	design	of	the	CSN
The	following	diagram	extends	the	general	overview	of	a	CSN	in	regard	to	a	client
browser	that	provides	client-side	interaction	with	the	system:

Now	that	we	have	seen	how	to	implement	messaging	patterns	in	RabbitMQ,	we	can	apply
this	to	implement	the	following:

Global	event	handling;	we	can	use	the	default	exchange	along	with	a	single	queue
called	event_queue.	The	worker	nodes	as	illustrated	in	the	preceding	diagram	will
subscribe	to	the	event_queue	and	start	handling	events	for	long-running	tasks	in	a
round-robin	fashion;	the	CompetingReceiver	class	is	a	proper	alternative	for	the
implementation	of	a	point-to-point	receiver	on	the	worker	nodes.
Chat	service;	each	user	of	the	system	will	have	a	separate	queue	that	will	receive
messages	for	that	queue.	You	can	use	a	variant—a	point-to-point	channel—to	send	a
message	from	one	user	to	the	other.	For	group	chatting,	you	can	have	a	fanout	or
topic	exchange	(based	on	the	implementation	strategy)	for	the	particular	group	that
will	be	used	to	deliver	messages	to	all	use	queues.

To	implement	a	chat	client	that	is	displayed	in	the	client’s	browser	you	have	a	number	of
alternatives,	such	as:

Using	the	WebSocket	protocol,	since	it	allows	two-way	communication	between	the
browser	and	the	CSN	frontend	server;	the	frontend	server	sends	the	message	to	the
RabbitMQ	server	for	further	handling.	In	this	case,	you	may	need	to	create	a	mapping
between	the	WebSocket	endpoints	and	AMQP	queues.
Implementing	a	browser	plugin	that	makes	use	of	the	AMQP	protocol	directly;	this
allows	you	to	connect	clients	directly	to	the	RabbitMQ	broker.

Ajax	requests	with	long	polling;	this	option	is	not	preferred	since	it	implies	a	heavy
footprint	on	network	bandwidth	but	it	is	still	another	alternative.

Summary
In	this	chapter,	we	saw	how	to	implement	various	messaging	patterns	in	RabbitMQ.	We
also	discussed	how	to	design	the	various	components	of	a	CSN	(Corporate	Social
Network)	that	makes	use	of	such	messaging	patterns,	with	RabbitMQ	as	the	message
broker	used	in	the	system.	In	the	next	chapter	we	will	see	how	to	configure	and	administer
RabbitMQ.

Exercises
1.	 How	can	you	implement	different	enterprise	integration	patterns	with	RabbitMQ

other	than	the	ones	listed	in	this	chapter?	Refer	to	the	book	Enterprise	Integration
Patterns	by	Gregor	Hohpe	and	Bobby	Woolf.

2.	 Can	you	think	of	any	non-standard	applications	of	RabbitMQ	in	CSN?	List	them	and
think	of	a	general	design	for	implementing	them	in	CSN.

Chapter	3.	Administration,	Configuration,
and	Management
In	order	to	get	the	most	out	of	a	system,	you	need	to	know	how	to	configure	and	control	it.
Depending	on	the	type	of	system,	these	tasks	could	turn	out	to	be	quite	daunting	and
onerous	(consider	a	relational	database,	for	example).	However,	the	RabbitMQ	team	has
provided	very	convenient	facilities	for	administering	and	managing	the	message	broker.

Topics	covered	in	the	chapter:

Administering	RabbitMQ	instances
Administering	the	RabbitMQ	database
Installing	RabbitMQ	plugins
Configuring	RabbitMQ	instances
Managing	RabbitMQ	instances
Upgrading	RabbitMQ

Administering	RabbitMQ	instances
Administration	of	RabbitMQ	server	instances	can	be	considered	in	several	directions:

Starting/stopping/restarting	instances
Adding/removing/modifying/inspecting	users,	virtual	hosts,	exchanges,	queues,	and
bindings
Backup	and	recovery	of	the	RabbitMQ	database
Setting	up	a	different	database	for	message	persistence
Taking	care	of	broker	security
Inspecting	RabbitMQ	logs	for	errors
Optimizing	resource	utilization,	tuning	performance	and	monitoring	the	broker
Configuring	the	broker	using	environment	variables,	configuration	parameters,	and
policies
Managing	the	broker	by	writing	custom	applications	that	make	use	of	the	REST	API
exposed	by	the	RabbitMQ	management	plugin

Some	of	the	preceding	concepts	are	covered	in	subsequent	chapters.	We	already	saw	how
easy	it	is	to	start/stop/restart	instances	using	the	rabbitmqctl	and	rabbitmq-server
utilities	that	are	part	of	the	standard	RabbitMQ	installation.	Before	diving	into	the	nuts	and
bolts	of	RabbitMQ	administration,	let’s	review	the	standard	directory	structure	of	a	typical
RabbitMQ	server	installation.	In	Windows,	run	the	following	command	from	the
installation	folder	of	RabbitMQ:

				tree	/A

The	following	screenshot	displays	the	output	from	the	preceding	command:

Mnesia	is	a	distributed	NoSQL	database	used	by	RabbitMQ	to	store	information	about
users,	vhosts,	exchanges,	queues,	bindings,	index	files	(the	position	of	messages	in
queues),	and	cluster	information.	It	can	store	data	either	on	RAM	or	on	disk.	Although
persistent	messages	are	stored	along	with	the	Mnesia	files	(in	the	Mnesia	folder),	they	are
not	managed	by	Mnesia.	RabbitMQ	provides	its	own	persistent	storage	for	messages.	On
the	one	hand,	persistent	messages	are	stored	in	the	msg_store_persistent	directory	(both
when	they	are	persisted	when	received	on	a	queue	or	when	memory	consumption	grows
beyond	a	specific	threshold);	on	the	other	hand,	non-persistent	(transient)	message	are
persisted	in	the	msg_store_transient	directory	(when	memory	consumption	on	a	queue
grows	beyond	a	specific	threshold).

The	ebin	directory	contains	the	Erlang	compiled	sources.	They	are	cross-platform	and	are
interpreted	by	the	Erlang	virtual	machine	installed	on	the	machine	on	which	the
RabbitMQ	server	is	installed.

The	include	directory	includes	the	Erlang	header	files	(similar	in	notion	to	C++	header
files	but	for	Erlang).

The	log	directory	contains	the	RabbitMQ	log	files	and	the	Erlang	SASL	(System
Application	Support	Libraries)	log	files,	not	to	be	confused	with	SASL	(Simple
Authentication	and	Security	Layer),	for	which	RabbitMQ	also	provides	support,
covered	in	Chapter	9,	Security.	Erlang	SASL	provides	support	for	topics	such	as	error
logging,	alarm	handling,	and	overload	regulation.

The	plugins	directory	provides	packages	for	the	RabbitMQ	binaries.

The	sbin	directory	contains	the	RabbitMQ	scripts	used	for	server	administration,	such	as
rabbitmq-server.bat	and	rabbitmqctl.bat	under	Windows.

The	following	screenshot	illustrates	the	RabbitMQ	folder	structure	for	Ubuntu/Debian:

And	the	following	is	for	a	generic	Unix	installation:

Note	that	database	and	log	files	are	not	created	until	the	RabbitMQ	broker	is	started	for
the	first	time.	If	you	delete	the	RabbitMQ	database	and/or	log	files,	they	will	be	recreated
when	the	broker	is	started	again.

The	locations	of	some	parts	of	the	RabbitMQ	installation	files	can	be	configured	using
environment	variables,	such	as:

RABBITMQ_BASE	sets	the	location	of	the	RabbitMQ	database	and	log	files.	Note	that,	if
it	is	not	set	under	Windows,	then	the	default	location	for	the	variable	will	be
%APPDATA%\RabbitMQ	(meaning	that	your	database,	log,	and	configuration	files	will
be	stored	under	that	directory	unless	other	configuration	parameters	are	used	to
change	their	location).	You	can	set	this	directory	to	be	the	installation	folder	of	your
RabbitMQ	server	if	you	want	to	store	the	database,	log,	and	configuration	in	the	same
location	as	the	other	RabbitMQ	server	components.
RABBITMQ_CONFIG_FILE	sets	the	location	of	the	RabbitMQ	configuration	file	(without
the	.config	extension	of	the	file).
RABBITMQ_LOG_BASE	specifies	the	base	directory	for	storing	RabbitMQ	log	files.

For	more	information	on	the	various	environment	variables	related	to	the	directory
structure	of	the	RabbitMQ	server,	you	can	refer	to	the	RabbitMQ	server	documentation.

Administering	RabbitMQ	components
The	various	RabbitMQ	components	can	be	modified	in	any	of	the	following	ways:

From	the	web	interface	of	the	RabbitMQ	management	plugin
From	the	rabbitmqctl	script	(in	the	sbin	directory)
From	the	REST	API	of	the	RabbitMQ	management	plugin

So	far,	we	have	seen	how	to	programmatically	create	queues,	exchanges,	and	bindings.
However,	they	can	be	pre-created	in	the	broker	so	that	the	overhead	of	managing	them
from	source	code	on	the	producer/consumer	side	is	minimized.	Moreover,	we	can	also
create	users,	vhosts,	and	policies	using	the	management	plugin	or	the	rabbitmqctl	utility.
For	some	administrative	tasks,	you	can	use	a	command	line	utility	(rabbitmqadmin)	that
comes	with	the	RabbitMQ	management	plugin.	In	order	to	download	it,	navigate	to
http://localhost:1	5672/cli/	and	save	it	to	a	proper	location	(for	example,	the	sbin
directory	of	the	RabbitMQ	installation;	make	sure	you	save	it	with	a	.py	extension	since	it
is	a	Python	script,	and	ensure	you	have	Python	3	installed	before	using	the	script).	To	view
all	available	commands	for	the	rabbitmqadmin.py	script,	you	can	issue	the	following	from
the	command	line:

rabbitmqadmin.py	help

rabbitmqadmin.py	help	subcommands

Administering	users
You	can	easily	create	new	users	from	the	command	line.	For	example,	if	you	want	to
create	a	user	with	the	name	sam	and	the	password	d1v,	and	a	user	jim	with	the	password
tester,	you	can	issue	the	following	commands:

rabbitmqctl	add_user	sam	d1v

rabbitmqctl	add_user	jim	tester

The	preceding	users	are	regular	(non-administrative)	users	and	not	assigned	to	any	vhost.
At	that	point,	if	you	try	to	access	the	web	management	console	you	will	receive	a	login
failure.	In	order	to	make	sam	an	admin	user	you	can	issue	the	following	command:

rabbitmqctl.bat	set_user_tags	jim	administrator

Now	jim	is	able	to	administer	the	broker	and	login	to	the	management	console.	The	users
still	don’t	have	access	to	any	vhost	(even	the	default	one).	If	you	navigate	to	the	Admin	tab
in	the	management	console,	you	will	see	something	like	this:

The	following	command	can	be	used	to	list	all	users	in	the	broker	instance:

rabbitmqctl.bat	list_users

If	you	want	to	change	the	password	for	sam	to	t1ster,	you	can	issue	the	following
command:

rabbitmqctl.bat	change_password	jim	t1ster

If	you	want	to	delete	the	user	sam,	you	can	issue	the	following	command:

rabbitmqctl.bat	delete_user	jim

You	can	also	manage	users	from	the	RabbitMQ	web	management	interface	or	the
rabbitmqadmin.py	script.	Let’s	make	sam	an	administrator:

rabbitmqctl.bat	set_user_tags	sam	administrator

Administering	vhosts
We	have	already	mentioned	that	vhosts	are	used	to	logically	separate	a	broker	instance
into	multiple	domains,	each	one	with	its	own	set	of	exchanges,	queues,	and	bindings.	The
following	example	creates	the	chat	and	events	vhost:

rabbitmqctl.bat	add_vhost	chat

rabbitmqctl.bat	add_vhost	events

Note	that	it	might	be	a	better	idea	to	name	your	vhosts	hierarchically	(meaning	that	chat
becomes	/chat	and	vhost	becomes	/vhost;	any	child	vhosts	can	be	added	following	the
same	pattern—for	example,	/chat/administrators	and	/events/follow).

If	you	navigate	to	the	Admin	tab	in	the	management	console	and	click	on	Virtual	Hosts,
you	will	see	something	like	this:

The	following	command	can	be	used	to	list	all	virtual	hosts	in	the	broker	instance:

rabbitmqctl.bat	list_vhosts

You	can	use	the	following	command	to	the	delete	the	events	vhost:

rabbitmqctl.bat	delete_vhost	events

You	can	also	manage	vhosts	from	the	RabbitMQ	web	management	interface.

Administering	permissions
Now	that	we	have	seen	how	to	create	users	and	vhosts,	we	can	assign	permissions	to
particular	users	so	that	they	are	able	to	access	particular	vhosts	(and	all	of	the	RabbitMQ
components	associated	with	that	vhost).	The	following	example	grants	configure,	write,
and	read	permissions	to	all	resources	in	the	chat	vhost	to	the	user	jim:

rabbitmqctl.bat	set_permissions	–p	chat	jim	".*"	".*"	".*"

Note	that	in	some	cases	under	Windows,	any	of	the	rabbitmqctl	commands	may	not	be
properly	executed	due	to	Erlang	issues	with	encoding	under	Windows.	In	that	case,	you
can	also	use	the	rabbitmqadmin.py	script	as	follows:

rabbitmqadmin.py	declare	permission	vhost=chat	user=sam	configure=.*	

write=.*	read=.*

As	you	can	see,	the	configure,	write,	and	read	permissions	can	be	regular	expressions	that
match	the	names	of	the	vhosts	components	that	the	user	has	access	to.	You	can	list	all
permissions	in	the	broker	with	the	following	command:

rabbitmqctl.bat	list_permissions

Alternatively,	you	can	use	the	rabbitmqadmin.py	script	for	this	purpose:

rabbitmqadmin.py	list	permissions

You	can	delete	the	permission	given	to	the	user	sam	for	the	chat	vhost	using	the	following
command:

rabbitmqctl.bat	clear_permissions	-p	chat	sam

Alternatively	you	can	use	the	rabbitmqadmin.py	script	for	this	purpose:

rabbitmqadmin.py	delete	permission	vhost=chat	user=sam

If	you	omit	the	vhost	from	the	preceding	commands,	you	will	clear	all	permissions
assigned	to	the	user	sam.	You	can	also	list	all	vhosts	to	which	the	user	sam	is	assigned	with
the	following	command:

rabbitmqadmin	-u	sam	-p	d1v	list	vhosts

Administering	exchanges
You	can	create	exchanges	from	the	RabbitMQ	management	web	interface	or	the
rabbitmqadmin	script.	The	following	example	creates	the	logs	fanout	exchange	in	the
default	vhost:

rabbitmqadmin.py	declare	exchange	name=logs	type=fanout

The	following	example	creates	another	fanout	exchange	with	the	name	logs	in	the	chat
vhost	(first	we	set	permissions	for	the	guest	user	to	the	vhost;	otherwise,	we	have	to
specify	a	user	that	has	administrator	permissions	for	the	vhost):

rabbitmqadmin.py	declare	permission	vhost=chat	user=guest

configure=.*	write=.*	read=.*rabbitmqadmin.py	declare	-V	chat	exchange	

name=logs	type=fanout

When	declaring	an	exchange,	you	can	specify	additional	properties	such	as	exchange
durability.	To	delete	the	logs	exchange	from	the	chat	domain,	you	can	issue:

rabbitmqadmin.py	-V	chat	delete	exchange	name=logs

To	list	all	exchanges	in	the	chat	vhost,	you	can	issue:

rabbitmqadmin.py	-V	chat	list	exchanges

To	list	all	exchanges	in	the	default	vhost,	you	can	issue:

rabbitmqadmin.py	list	exchanges

Administering	queues
You	can	create	queues	from	the	RabbitMQ	management	web	interface	or	the
rabbitmqadmin	script.	The	following	example	creates	the	non-durable	error_logs	queue
in	the	default	vhost:

rabbitmqadmin.py	declare	queue	name=error_logs	durable=false

The	following	example	creates	a	queue	with	the	same	name	in	the	chat	vhost:

rabbitmqadmin.py	-V	chat	declare	queue	name=error_logs

To	delete	the	error_logs	queue	from	the	chat	vhost,	you	can	issue	the	following:

rabbitmqadmin.py	-V	chat	delete	queue	name=error_logs

To	list	all	queues	in	the	default	domain,	you	can	issue:

rabbitmqadmin.py	list	queues

Administering	bindings
Now	that	we	have	seen	how	straightforward	it	is	to	create	exchanges	and	queues,	let’s	see
how	to	create	bindings.	The	following	creates	a	binding	between	the	logs	fanout	exchange
we	already	created	and	the	error_logs	queue	in	the	default	vhost:

rabbitmqadmin.py	declare	binding	source=logs	destination=error_logs

In	order	to	test	that	the	binding	works,	we	can	use	the	rabbitmqadmin	script	to	publish	to
the	logs	exchange,	then	read	from	the	error_logs	queue	(here	you	can	check	if	the
message	is	successfully	retrieved	from	the	queue),	and	finally	clear	the	error_logs	queue
from	any	messages:

rabbitmqadmin.py	publish	exchange=logs	routing_key=	payload="new	log"

rabbitmqadmin.py	get	queue=error_logs

rabbitmqadmin.py	purge	queue	name=error_logs

Administering	policies
Policies	allow	you	to	define	(and	change)	certain	properties	of	exchanges	and	queues	at
runtime.	Since	no	more	than	one	policy	can	be	defined	per	exchange/queue,	a	policy	can
incorporate	multiple	settings	at	once.	Let’s	consider	the	following	scenarios:

We	decide	to	set	a	limit	on	the	capacity	of	a	queue;	if	it	is	exceeded	then	the
messages	are	either	dropped	or	dead-lettered	(meaning	they	are	redirected	to	an
alternative	exchange)
We	decide	to	set	a	limit	on	the	time	that	a	message	is	allowed	to	stay	in	a	queue;	if
that	time	is	exceeded	for	a	message	then	it	is	either	dropped	or	dead-lettered
We	want	to	define	a	dead-letter	exchange	that	receives	dead-letter	messages	from	one
or	more	queues

In	order	to	set	the	capacity	of	the	error_logs	queue	in	the	default	(‘/’)	vhost	to	200,000
bytes,	you	can	apply	the	following	policy:

rabbitmqctl		set_policy	max-queue-len	"error_logs"	"{""max-length-bytes""	:	

200000}"	apply-to	queue	

You	can	also	use	the	rabbitmqadmin.py	script	for	this	purpose:

rabbitmqadmin.py	declare	policy	name=max-queue-len	pattern=error_logs	

definition="{""max-length-bytes"":200000}"	apply-to=queues

The	following	policy	sets	the	maximum	queue	length	in	terms	of	messages	(if	you	want	to
apply	it	you	must	first	drop	the	previously	created	policy):

rabbitmqadmin.py	declare	policy	name=max-queue-len	pattern=error_logs	

definition="{""max-length"":200000}"	apply-to=queues

Notice	that	instead	of	the	name	of	the	queue	(error_logs	in	that	case),	you	can	specify	a
pattern	for	the	names	of	the	queues	to	which	the	policy	applies.	This	means	that	policies
apply	to	queues	that	match	the	pattern	and	they	are	added	after	the	policy	is	created.	To
delete	the	policy	you	can	issue:

rabbitmqctl.bat	clear_policy	max-queue-len

Alternatively	you	can	issue:

rabbitmqadmin.py	delete	policy	name=max-queue-len

Note	that	the	queue	length	might	also	be	set	from	the	client	using	the	x-max-length
arguments	passed	to	the	arguments	map	in	the	declaration	of	a	queue	from	the	client.

In	order	to	set	the	TTL	(time-to-live)	of	the	messages	to	all	queues	in	the	default	vhost	to
three	seconds,	you	can	apply	the	following	policy:

rabbitmqadmin.py	declare	policy	name=ttl	pattern=.*	definition="{""message-

ttl"":3000}"	apply-to=queues

Note	that	the	message	TTL	for	the	queue	might	also	be	set	from	the	client	using	the	x-
message-ttl	arguments	passed	to	the	arguments	map	in	the	declaration	of	a	queue	from

the	client	or	on	a	per-message	basis	using	the	expiration	field	set	properly	on	the
AMQP.BasicProperties	instance	passed	when	publishing	a	message.	You	can	also	set
expiration	for	the	entire	queue,	which	means	that	the	queue	will	be	automatically	deleted
after	a	certain	period	of	idle	time;	this	is	particularly	useful	when	a	large	number	of	queues
is	created	and	they	need	to	be	purged	over	time.	The	following	example	sets	the	queue
TTL	for	all	queues	starting	with	the	response	prefix	to	10	minutes:

rabbitmqadmin.py	declare	policy	name=queue-ttl										pattern=response.*	

definition="{""expires"":600000}"	apply-to=queues

Note	that	the	queue	TTL	might	also	be	set	from	the	client	using	the	x-queue	arguments
passed	to	the	arguments	map	in	the	declaration	of	a	queue	from	the	client.

If	a	message	TTL	expires,	the	queue	capacity	is	exhausted,	or	a	message	received	from	a
queue	is	explicitly	rejected	from	a	consumer,	it	can	be	routed	to	an	alternative	dead-letter
exchange.	The	following	diagram	provides	an	overview	of	the	scenario:

The	following	example	creates	the	logs_dlx	exchange	and	sets	it	as	a	dead-letter
exchange	to	the	error_logs	queue:

rabbitmqadmin.py	declare	exchange	name=logs_dlx	type=fanoutrabbitmqadmin.py	

declare	policy	name=ttl																pattern="^error_logs$"	definition="

{""dead-letter-exchange"":	""logs_dlx"",	""message-ttl"":3000}"	apply-

to=queues

Note	that	if	we	use	only	"error_logs"	instead	of	"^error_logs$"	then	error_logs_dlx
will	also	be	matched	and	we	don’t	want	this	to	happen.	Notice	that	in	the	preceding
example	we	combined	the	dead-letter-exchange	policy	with	the	message-ttl	policy.	You
can	list	all	policies	with	the	following	command:

rabbitmqadmin.py	list	policies

Note	that	you	have	to	make	sure	that	only	one	policy	applies	at	a	time	on	a	queue;	if	two
or	more	patterns	match	a	queue	name	then	it	becomes	unclear	which	policy	will	be
applied.	If	that	happens,	remove	policies	that	apply	to	a	queue	and	combine	them	in	a

single	composite	policy.	To	delete	the	max-queue-len	policy	we	created	earlier,	issue	the
following	command:

rabbitmqadmin.py	delete	policy	name=max-queue-len

In	order	to	test	that	the	dead-letter	exchange	is	properly	configured	we	can	use	the
following	scenario:

Create	a	queue	named	error_logs_dlx	that	binds	to	the	logs_dlx	exchange
Send	a	message	to	the	logs	exchange
Wait	for	more	than	three	seconds
Check	that	the	message	can	be	consumed	from	error_logs_dlx
Clear	the	error_logs_dlx	queue

The	following	example	can	be	used	to	test	the	preceding	scenario:

rabbitmqadmin.py	declare	queue	name=error_logs_dlx

rabbitmqadmin.py	declare	binding	source=logs_dlx								

destination=error_logs_dlx

rabbitmqadmin.py	publish	exchange=logs	routing_key=					payload="dlx	

message"

Wait	at	least	three	seconds	and	execute	the	following	in	order	to	verify	that	the	message	is
sent	to	the	dead-letter	queue	(clearing	the	queue	at	the	end):

rabbitmqadmin.py	get	queue=error_logs_dlx

rabbitmqadmin.py	purge	queue	name=error_logs			

Administering	the	RabbitMQ	database
The	RabbitMQ	database	stores	both	message	server	metadata	and	messages	from	queues.
In	the	next	sections	we	will	see	how	can	we	manage	this	database	for	the	purpose	of
disaster	recovery.

Full	backup	and	restore
As	we	have	already	seen,	RabbitMQ	uses	Mnesia	to	store	information	about	the	various
components	of	the	broker	as	well	as	cluster	configuration	and	a	custom	database	for
storing	persistent	messages.	In	that	regard	it	is	straightforward	to	back	up	the	contents	of
the	RabbitMQ	database:

Stop	the	broker
Copy	the	Mnesia	folder	and	archive	it
Restart	the	broker

The	restore	procedure,	as	you	might	have	guessed,	is	pretty	similar.	You	should	also
consider	the	fact	that	if	a	message	is	not	persistent	it	may	not	be	backed	up	using	the
preceding	procedure	since	it	is	not	written	to	the	persistent	store	of	RabbitMQ	(in	the
event	of	a	crash).	In	order	for	a	message	to	be	persistent,	the	exchange	and	queue	through
which	it	passes	must	be	durable	(marked	as	such	during	creation)	and	the	message	must	be
marked	as	persistent	(with	a	delivery	mode	set	to	2	from	the	sender).	A	response	for	a
successfully	received	persistent	message	is	not	sent	until	a	message	is	written	to	the
persistent	log	file	on	an	exchange.	You	may	be	wondering	about	the	case	when	a	live
backup	must	be	made	on	the	RabbitMQ	database	with	preservation	of	messages	at	a
particular	point	in	time.	In	this	case	you	have	a	number	of	options	to	consider,	such	as:

Using	the	exchange-to-exchange	bindings	extension	that	allows	you	to	pass	a
message	through	multiple	exchanges.	In	this	regard	you	can	create	a	separate
exchange	for	backup	purposes	and	bind	all	other	exchanges	to	that	one;	a	dedicated
queue	bound	to	that	exchange	can	be	used	to	save	messages	to	a	persistent	store
along	with	a	timestamp	for	a	custom	point-in	time	recovery	implementation.
Creating	a	federated	exchange	(in	the	same	or	another	broker),	linked	to	all
exchanges	in	the	broker,	that	receives	all	of	the	messages	published	to	exchanges
from	the	broker.	The	federated	exchange	can	then	be	bound	to	a	dedicated	queue	that
can	be	used	to	save	messages	to	a	persistent	store	along	with	a	timestamp	for	a
custom	point-in	time	recovery	implementation;	the	Federation	plugin	is	required	for
that	purpose.
Replicating	messages	from	all	queues	to	a	destination	exchange	using	shovels;	the
Shovel	plugin	is	required	for	that	purpose.

In	many	cases	however	you	may	need	to	backup/restore	only	the	configuration	of
RabbitMQ	components	at	a	particular	point	in	time.

Backing	up	and	restoring	the	broker	metadata
In	order	to	back	up	the	RabbitMQ	broker	metadata	(the	configuration	of	broker
components)	you	can	use	the	rabbitmqadmin	management	plugin	as	follows	(assuming	we
want	to	backup	the	broker	configuration	to	a	file	named	broker.export	in	the	current
directory):

rabbitmqadmin.py	export	broker.json

If	you	open	the	file	you	will	notice	that	there	is	a	section	for	each	type	of	component,
along	with	the	version	of	the	broker:

{		

			"rabbit_version":"3.4.4",

			"users":[

						{		

									"name":"sam",

									"password_hash":"y7CFOccmv5tReRwEskXapNOSsmM=",

									"tags":"administrator"

						},

						….

],

			"vhosts":[

						{		

									"name":"chat"

						},

						{		

									"name":"/"

						}

],

…

}

To	import	back	the	configuration,	you	can	use	the	following	command:

rabbitmqadmin.py	import	broker.json

Note	that	it	is	a	good	idea	to	add	a	user-readable	timestamp	to	the	name	of	the	export	file,
based	on	the	utilities	provided	by	your	OS	for	that	purpose.	You	can	also	perform	the
export/import	of	the	current	RabbitMQ	configuration	for	the	management	web	interface
from	the	Overview	tab.

Installing	RabbitMQ	plugins
So	far,	we	have	used	the	rabbitmq-plugins	utility	in	order	to	enable	the	management
plugin	(already	part	of	the	RabbitMQ	installation).	You	may	want	to	install	additional	(for
example,	community)	plugins	that	allow	you	to	extend	the	features	of	the	broker,	thus
giving	you	the	opportunity	to	implement	a	wider	range	of	messaging	scenarios.	Installing
a	plugin	is	a	two-step	process:

Download	the	ez	archive	(Erlang	ZIP	archive)	of	the	plugin	and	copy	it	to	the
plugins	folder	from	the	RabbitMQ	installation
Enable	the	plugin	with	the	rabbitmq-plugins	utility

Let’s	say	we	want	to	be	able	to	send	e-mails	from	our	messages	directly	from	the
RabbitMQ	instance	that	receives	the	messages.	For	that	reason,	you	can	install	the
rabbitmq_email	plugin	that	provides	the	AMQP-SMTP	and	SMTP-AMQP	protocol
conversion	plugins.	Download	the	AMQP-SMTP	plugin	from
https://www.rabbitmq.com/community-plugins/v3.4.x/gen_smtp-0.9.0-rmq3.4.x-
61e19ec5-gita62c02e.ez	and	copy	it	to	the	plugins	folder	in	the	RabbitMQ	installation.
You	can	see	that	the	plugin	can	now	be	managed	from	the	broker	by	issuing:

rabbitmq-plugins.bat	list

You	should	see	that	the	gen_smtp	plugin	is	present	in	the	lists	and	points	to	the	archive	we
copied	to	the	plugins	folder.	In	order	to	enable	it,	you	can	issue	the	following:

rabbitmq-plugins.bat	enable	gen_smtp

To	delete	a	plugin	you	can	disable	it	and	remove	it	from	the	plugins	directory.

https://www.rabbitmq.com/community-plugins/v3.4.x/gen_smtp-0.9.0-rmq3.4.x-61e19ec5-gita62c02e.ez

Configuring	RabbitMQ	instances
RabbitMQ	configuration	can	be	established	in	several	ways:

By	setting	proper	environment	variables
By	modifying	the	RabbitMQ	configuration	file
By	defining	runtime	parameters	and	policies	that	can	be	modified	at	runtime

Setting	environment	variables
Environment	variables	can	be	set	using	a	standard	mechanism	provided	by	your	OS	(for
example,	using	the	Control	Panel	in	Windows	or	setting	them	permanently	from	the	shell
in	Linux).	However	they	can	also	be	specified	in	the	scripts	used	to	run	the	RabbitMQ
broker,	such	as	the	rabbitmq-server	utility,	the	rabbitmq-service	utility	(used	in
Windows	to	start	RabbitMQ	as	a	Windows	service),	or	rabbitmq-env.conf	(using	in
Unix-like	operating	systems	by	RabbitMQ	to	configure	environment	variables).	At	the
beginning	of	the	chapter	we	covered	several	such	variables	related	to	the	location	of	the
RabbitMQ	database,	logs,	and	configuration	file.	Here	are	several	more	you	can	configure:

RABBITMQ_NODE_IP_ADDRESS:	The	IP	address	of	network	interface	to	which	you	want
to	bind	the	RabbitMQ	broker.	This	is	useful	if	you	have	multiple	such	interfaces	on
the	machine	where	the	broker	is	installed	and	you	want	to	bind	it	to	only	one	of	them
(an	empty	value	means	that	the	broker	is	bound	to	all	network	interface	addresses).
RABBITMQ_NODE_PORT:	The	port	on	which	the	RabbitMQ	broker	listens.
RABBITMQ_NODENAME:	The	name	of	the	RabbitMQ	broker	instance	(this	is	required	in
a	clustered	configuration—more	on	that	in	the	next	chapter).
RABBITMQ_SERVICENAME:	The	name	of	the	Windows	service	for	the	RabbitMQ	broker
instance.

Modifying	the	RabbitMQ	configuration	file
The	rabbitmq	configuration	file	(rabbitqm.config)	can	be	used	to	provide	additional
configuration	of	the	broker,	such	as	how	much	RAM	the	broker	is	allowed	to	consume
before	messages	are	flushed	to	the	hard	disk	(vm_memory_high_watermark);	what	IP
addresses	and	ports	of	the	network	interfaces	the	broker	listens	on	(tcp_listeners);	or
what	the	maximum	file	size	is	of	the	RabbitMQ	message	stores—	both	transient	and
persistent	(msg_store_file_size_limit).	If	that	limit	is	exceeded	then	messages	are
garbage-collected.	The	default	location	for	rabbitmq.config	is	under	the
%RABBITMQ_BASE%	directory;	if	RabbitMQ	is	not	specified	under	Windows	the	default
location	of	the	file	will	be	under	%APPDATA%.	There	is	a	sample	configuration	file	in	the	etc
directory	for	the	installation	of	the	RabbitMQ	server.	If	you	copy	it	and	save	it	under	the
root	installation	directory	of	RabbitMQ	with	the	name	rabbitmq.config,	you	can	simply
uncomment	and	change	the	various	configuration	parameters	based	on	your	preferences.
Here	is	a	sample	configuration	that	sets	limits	on	the	used	RAM	and	message	store	size:

[

	{rabbit,

		[

			{vm_memory_high_watermark,	0.4},

			{msg_store_file_size_limit,	16777216}

]

	}

]

Managing	RabbitMQ	instances
RabbitMQ	provides	a	number	of	utilities	for	managing	RabbitMQ	instances	since	the
AMQP	protocol	provides	limited	support	for	that	purpose	(and	it	is	not	a	responsibility	of
the	protocol	in	general	to	do	so).	So	far	we	have	seen	how	we	can	administer	RabbitMQ
from	the	command	line	using	the	rabbitmqctl	or	the	rabbitmqadmin	utilities.	However
there	are	many	scenarios	where	more	sophisticated	tools	for	provisioning	and	managing
the	RabbitMQ	broker	components	are	needed	(for	example,	in	the	form	of	an	alternative
web	interface).

In	that	case,	the	management	plugin	provides	an	interface	of	REST	(Representational
State	Transfer)-based	web	services.	In	order	to	see	all	the	available	services	in	your
current	installation	of	the	management	plugin	you	can	navigate	from	the	browser	to
http://localhost:15672/api/—there	is	a	short	description	with	basic	examples	and	a
reference	guide	for	the	various	services.	For	testing	purposes,	you	can	use	any	utility	(such
as	cURL)	that	allows	you	to	send	HTTP	requests	to	the	manage	REST	API.	As	everything
in	REST	is	a	resource	that	is	managed	with	CRUD	operations	provided	by	the	HTTP
methods	(such	as	GET,	POST,	PUT,	DELETE),	so	are	RabbitMQ	resources.	If	you	take	a	closer
look	you	will	notice	that	all	of	the	resources	are	precisely	the	various	types	of	RabbitMQ
components	(such	as	vhosts,	users,	permissions,	queues,	exchanges,	and	bindings);	no
rocket	science	here.	The	REST	interface	respects	the	current	user	permissions	(configure,
write,	read	for	particular	components)	when	checking	for	permissions	for	performing	a
certain	action.

Let’s	assume	that	we	want	to	implement	a	simple	utility	called	ComponentFinder	that
allows	us	to	list	particular	RabbitMQ	components	in	a	given	vhost	based	on	a	regular
expression.	For	that	purpose	we	will	create	a	new	Maven	project	that	uses	the	REST	client
from	the	Apache	Jersey	library	provided	as	a	Maven	dependency,	along	with	the	standard
JSON	utility	in	Java:

<dependency><groupId>com.sun.jersey</groupId><artifactId>jersey-

client</artifactId><version>1.19</version></dependency>

<dependency>

			<groupId>org.json</groupId>

			<artifactId>json</artifactId>

			<version>20140107</version>

</dependency>

Here	is	the	class	for	the	ComponentFinder	utility:

import	java.util.Scanner;

import	java.util.regex.Pattern;

import	org.json.JSONArray;

import	org.json.JSONObject;

import	org.slf4j.Logger;

import	org.slf4j.LoggerFactory;

import	com.sun.jersey.api.client.Client;

import	com.sun.jersey.api.client.WebResource;

import	com.sun.jersey.api.client.filter.HTTPBasicAuthFilter;

public	class	ComponentFinder	{

				private	final	static	Logger	LOGGER	=	LoggerFactory

								.getLogger(ComponentFinder.class);

private	static	final	String	API_ROOT	=																									

"http://localhost:15672/api";

The	main()	method	provides	the	logic	for	the	tool,	reading	from	the	standard	input	and
processing	the	request	based	on	the	input	parameters.	A	simple	HTTP	client	is	used	for	the
purpose:

				public	static	void	main(String[]	args)	{

								Scanner	scanner	=	null;

								try	{

												scanner	=	new	Scanner(System.in);

												System.out.println("Enter	component	type	in																					

plural	form	(for	example,	queues,	exchanges)	");

												String	type	=	scanner.nextLine();

												System.out.println("Enter	vhost	(leave	empty																					

for	default	vhost)	");

												String	vhost	=	scanner.nextLine();

												System.out.println("Enter	name	pattern	(leave																					

empty	for	match-all	pattern)");

												String	pattern	=	scanner.nextLine();

												Client	client	=	Client.create();

												String	path;

												if	(vhost.trim().isEmpty())	{

																path	=	API_ROOT	+	"/"	+	type	+																													

"?columns=name";

												}	else	{

																path	=	API_ROOT	+	"/"	+	type	+																													

"/"	+	vhost	+	"?columns=name";

												}

												WebResource	resource	=	client.resource(path);

												resource.header("Content-Type",																																	

"application/json;charset=UTF-8");

												resource.addFilter(new	HTTPBasicAuthFilter("guest",	

"guest".getBytes()));

												String	result	=	resource.get(String.class);

												JSONArray	jsonResult	=	new	JSONArray(result);

												LOGGER.debug("Result:	\n"	+	jsonResult.toString(4));

filterResult(jsonResult,	pattern);

								}	finally	{

												if	(scanner	!=	null)	{

																scanner.close();

												}

								}

				}

The	filterResult()	helper	method	is	used	to	filter	the	response	from	the	management
API	based	on	a	regular	expression:

private	static	void	filterResult(JSONArray	jsonResult,																	

String	pattern)	{

								//	filter	the	result	based	on	the	pattern

								for	(int	index	=	0;	index	<	jsonResult.length();																	

index++)	{

												JSONObject	componentInfo	=																																	

(JSONObject)	jsonResult.get(index);

												String	componentName	=																																	(String)	

componentInfo.get("name");

												if	(Pattern.matches(pattern,	componentName))	{

																LOGGER.info("Matched	component:	"	+																									

componentName);

																//	do	something	else	with	component

												}

								}

				}}

Upgrading	RabbitMQ
Upgrading	RabbitMQ	can	be	considered	in	two	directions:

Upgrading	the	Erlang	installation
Upgrading	the	broker	installation

In	both	cases,	it	is	good	practice	to	perform	a	full	backup	of	the	RabbitMQ	broker	before
performing	an	upgrade.	Also	you	should	check	out	the	release	notes	for	all	the	versions
issued	between	the	old	and	the	new	version	to	see	if	there	are	any	specific	steps	that	must
be	performed	during	the	update.	Typically,	installation	of	a	RabbitMQ	broker	preserves
data	and	updates	only	the	RabbitMQ	installation	and	the	database	structures	used	for
representing	the	broker	metadata	and	message	stores.	It	is	important	to	make	sure	that,	if
you	have	to	update	nodes	in	a	cluster,	you	first	stop	all	nodes	and	use	the	same	version	of
RabbitMQ	for	the	update	over	all	nodes	in	the	cluster.

Case	study:	Administering	CSN
For	easier	management,	we	have	decided	to	pre-configure	our	CSN	RabbitMQ	broker
(using	a	custom	script)	with	two	separate	vhosts:

v_chat:	For	handling	all	chat	messages	in	CSN
v_events:	For	handling	of	all	events	in	CSN

Moreover	we	have	decided	to	separate	the	users	that	are	allowed	to	access	each	vhost.	The
users	of	the	v_events	group	are	further	divided	into	the	following	logical	groups:

Administrators	have	the	ability	to	create	event	queues,	and	publish	and	consume
messages
event_publishers	have	the	ability	to	publish	messages
event_subscribers	have	the	ability	to	consume	messages

As	you	may	guess,	we	can	implement	the	preceding	logical	separation	easily	for	the	users
in	the	v_events	host	using	policies.	The	users	of	the	v_chat	vhosts	have	full	configure,
read,	and	write	access	to	the	components	of	the	vhost.

Another	thing	we	want	to	provide	is	the	ability	to	log	all	messages	that	pass	through	the
broker	for	backup	and	restore	purposes.	We	also	decide	to	set	limitations	on	the	RAM	and
disk	storage	used	by	the	broker	using	a	custom	rabbitmq.config	file.

You	can	provision	the	additional	components	as	part	of	the	setup	process	easily	by	using
custom	code	and	the	REST	API,	which	allows	to	create	the	vhosts,	users	for	them	(with
the	appropriate	policies	to	act	as	access	control	based	on	the	logical	separation	of	the
users),	and	a	backup	exchange	that	receives	a	copy	of	all	messages	passed	to	all	other

exchanges	in	the	broker.	A	custom	utility	(that	could	be	part	of	the	backup	databases	as
well)	subscribes	to	that	exchange	and	stores	the	messages	in	the	database.

Summary
In	this	chapter,	we	saw	how	to	administer	a	standalone	RabbitMQ	broker	along	with	its
components,	users,	vhosts,	permissions,	queues,	exchanges,	bindings,	and	policies.	We
discussed	the	structure	of	a	typical	RabbitMQ	installation	(along	with	the	parameters	that
allow	us	to	configure	different	locations	for	various	parts	of	the	broker)	and	how	to
provide	further	configuration	in	terms	of	environment	variables	and	the	rabbitmq.config
file.	We	discussed	administrative	tasks	such	as	backing	up	and	restoring	the	RabbitMQ
database,	updating	a	RabbitMQ	broker,	and	plugin	installation	and	management	of	the
broker	using	the	management	REST	API.	In	the	next	chapter	we	will	explore	what
clustering	support	the	message	broker	provides	for	the	purpose	of	scalability.

Exercises
1.	 What	utilities	can	you	use	to	create	users,	vhosts,	and	policies	in	a	RabbitMQ	broker?
2.	 What	utilities	can	you	use	to	create	exchanges,	queues,	and	bindings?
3.	 How	can	you	back	up	and	restore	RabbitMQ	broker	metadata?
4.	 How	can	you	set	limits	on	the	maximum	RAM	and	disk	space	for	storing	messages	in

RabbitMQ?
5.	 What	happens	when	the	various	resource	limits	set	on	the	broker	are	exceeded?
6.	 Assuming	you	need	to	migrate	the	RabbitMQ	message	stores	to	a	larger	disk

mounted	on	the	current	machine,	how	can	you	do	it?
7.	 A	new	version	of	RabbitMQ	comes	out	that	provides	a	major	security	fix.	How	can

you	upgrade	your	installation	of	RabbitMQ?

Chapter	4.	Clustering
So	far,	we	have	been	dealing	with	a	single	RabbitMQ	instance,	thus	demonstrating	the
various	capabilities	of	the	message	broker.	However	RabbitMQ	provides	a	built-in
clustering	mechanism	that	can	be	used	in	a	variety	of	scenarios	related	to	large	scale
production	deployments	of	RabbitMQ.

Topics	covered	in	the	chapter:

Benefits	of	clustering
Clustering	support	in	RabbitMQ
A	case	study	on	scaling	the	CSN

Benefits	of	clustering
So	far	we	have	discussed	how	to	use	a	single	RabbitMQ	instance	for	handling	various
types	of	message.	However,	in	many	production	scenarios	the	number	of	messages	that
needs	to	be	processed	may	increase	rapidly	over	time	that	this	should	not	impact	the	time
required	to	process	a	single	message	–	now	we	have	a	problem.	To	resolve	it	we	need	to
be	able	to	scale	our	RabbitMQ	server	deployment.	RabbitMQ	clustering	support	provides
a	mechanism	for	horizontally	scaling	RabbitMQ	instances.	This	essentially	means	that
multiple	RabbitMQs	can	be	configured	to	work	as	a	single	logical	unit	in	the	form	of	a
clustered	message	broker.

This	provides	the	means	to	distribute	workloads	among	instances	in	a	cluster,	link	clients
to	different	instances	in	a	cluster	(thus	distributing	the	number	of	clients	linked	to	a	single
instance),	or	even	establish	high	availability	of	the	messaging	broker:

RabbitMQ	clustering	support
RabbitMQ	clustering	is	based	on	the	underlying	Erlang	message-passing	interface.
Messages	between	Erlang	processes	are	just	Erlang	terms	which	can	be	processed	by	the
receiving	instance.	Communication	between	the	nodes	is	established	by	means	of	the	so
called	magic	cookie	(or	Erlang	cookie),	which	provides	a	mechanism	to	authenticate
nodes	in	a	cluster	with	each	other.	Once	a	new	node	is	started,	its	cookie	(the
.erlang.cookie	file)	is	read	from	the	home	directory	of	the	user	(denoted	by	the	$HOME
environment	variable	in	Uni-based	operating	systems	or	by	the	%HOMEPATH%	variable	in
Windows-based	operating	systems).	If	the	cookie	does	not	exist	then	it	is	created	based	on
information	from	the	current	node.	Once	retrieved,	the	cookie	is	set	for	the	Erlang	process
with	erlang:set_cookie(node(),	Cookie).	Later,	when	we	try	to	connect	the	node	to	a
RabbitMQ	cluster,	we	retrieve	the	cookie	with	erlang:get_cookie()	and	compare	it
against	the	cookies	of	the	other	nodes	in	the	cluster	–	if	they	don’t	match,	the	connection
of	the	node	to	the	cluster	is	rejected.

All	nodes	in	the	cluster	see	information	about	the	elements	of	a	cluster	such	as	virtual
hosts,	users,	permissions,	exchanges,	bindings,	and	queues.	When	you	add	new	nodes	to
the	cluster	they	only	receive	the	cluster	metadata	and	not	the	contents	of	the	queues	in	the
cluster,	which	not	only	saves	you	disk	space	but	also	improves	performance	since
messages	are	not	replicated	by	default	across	the	cluster	nodes	(although	they	can	be
replicated	across	RabbitMQ	instances	for	high-availability,	as	we	shall	see	in	a	separate
chapter).

In	order	to	be	able	to	establish	a	RabbitMQ	cluster,	the	following	prerequisites	must	be
met:

All	of	the	machines	where	RabbitMQ	instances	reside	must	have	the	same	version	of
RabbitMQ	and	Erlang	installed
All	of	the	instances	must	have	the	same	Erlang	cookie	(since	Erlang	message	passing
is	used	to	establish	communication	between	the	brokers)

Creating	a	simple	cluster
Let’s	create	a	simple	RabbitMQ	cluster	with	three	nodes	on	the	local	machine.	The	steps
we	can	follow	in	order	to	do	this	are:

Disable	all	plug-ins	before	starting	the	node	instances	–	this	is	required	in	order	to
avoid	problems	with	plug-ins	such	as	the	management-plugin,	which	already	runs	on
port	15672	–	if	you	don’t	disable	it	and	it	is	already	running	as	part	of	the	another
RabbitMQ	instance	on	the	same	machine,	then	attempting	to	start	a	node	will	fail
since	the	node	will	try	to	start	the	management	plug-in	on	the	same	port	unless	you
provide	a	different	configuration	with	a	different	management	port	for	the	particular
plug-in.
You	don’t	have	to	worry	about	this	since	the	RabbitMQ	management	plug-in	is	aware
of	clusters	and	it	is	sufficient	to	start	the	plug-in	only	for	one	of	the	instances	in	the
cluster.	If	you	want	to	enable	a	failover	configuration	for	the	management	plug-in
you	can	start	it	for	two	or	more	nodes	running	on	different	ports.
Start	three	independent	RabbitMQ	node	instances	on	the	current	machine.
Add	nodes	to	the	cluster	by	specifying	at	least	one	active	node	in	the	cluster	for	the
purpose.	You	can	specify	more	than	one	active	node	in	the	cluster	but	at	least	one	is
needed	to	join	the	node	to	all	the	other	nodes	currently	in	the	cluster.

The	first	step	can	be	accomplished	by	executing	the	following	command:

rabbitmq-plugins.bat	disable	rabbitmq_management

The	second	step	is	also	pretty	straightforward.	The	root	node	in	the	cluster	is	already
present	–	that	is	the	instance	of	RabbitMQ	that	we	were	running	so	far.	You	just	need	to
execute	the	following	commands	in	order	to	the	start	two	more	independent	nodes	(named
instance2	and	instance3	and	running	on	different	ports):

set	RABBITMQ_NODENAME=instance1	&	

set	RABBITMQ_NODE_PORT=5701	&	

rabbitmq-server.bat	–detached

set	RABBITMQ_NODENAME=instance2	&	

set	RABBITMQ_NODE_PORT=5702	&	

rabbitmq-server.bat	–detached

If	you	are	using	a	Unix-based	operating	system,	the	preceding	commands	will	look	like
the	following:

RABBITMQ_NODENAME=instance1	&&	RABBITMQ_NODE_PORT=5701	&&./rabbitmq-

server.sh	–detached

RABBITMQ_NODENAME=instance2	&&	RABBITMQ_NODE_PORT=5702	&&	./rabbitmq-

server.bat	–detached

If	you	are	using	the	default	installation	on	Windows	then	a	standalone	instance	will
already	be	running	with	some	specified	name	(upon	installation	of	the	broker)	and	using
the	default	node	port	of	5672	and	distribution	port	of	25672	(the	20000	+	node	port	value).
That	is	why	we	need	to	specify	different	names	and	distribution	ports	when	starting	the
instances.

Adding	nodes	to	the	cluster
Now	let’s	add	the	two	nodes	we	created	and	started	to	the	cluster	–	currently	consisting
only	of	a	single	node.	To	verify	this,	you	can	run	the	following	command:

rabbitmqctl.bat	cluster_status

You	will	see	something	like	this	in	the	output:

[s

{nodes,

			[{disc,[rabbit@DOMAIN]}]},

{running_nodes,[rabbit@DOMAIN]},

{cluster_name,<<»rabbit@Domain»>>},

{partitions,[]}

]

The	cluster	configuration	lists	the	current	nodes	in	the	cluster	–	these	could	be	either	DISK
or	RAM	nodes.	By	default,	nodes	are	created	as	DISK	nodes,	meaning	that	they	persist
cluster	metadata	on	disk.	RAM	nodes	allow	for	optimizations	among	the	cluster	nodes
since	they	store	everything	in	memory	rather	than	persisting	information	on	disk.	This
trade-off	between	loss	of	data	and	performance	depends	on	the	particular	messaging
requirements	of	the	application.	In	the	preceding	example,	we	can	see	that	there	is	only
one	DISK	node	currently	running	and	that	the	name	of	the	cluster	is	inherited	from	the
name	of	the	root	node.

Let’s	add	the	instance1	node	to	the	cluster:

rabbitmqctl.bat	-ninstance1	stop_app

rabbitmqctl.bat	-n	instance1	join_cluster	rabbit@DOMAIN

rabbitmqctl.bat	-n	instance1	start_app

In	case	instance1	was	not	a	new	instance	and	already	had	some	metadata	such	as	queues,
exchanges,	or	vhosts,	then	after	the	app_stop	step	you	have	to	clear	the	state	of	the	node
as	follows	before	joining	it	to	the	cluster:

rabbitmqctl.bat	–n	instance1	reset

If	the	preceding	commands	succeed,	you	should	get	the	following	sequence	of	messages:

Stopping	node	instance1@Domain…

Clustering	node	instance1@Domain	with	rabbit@DOMAIN…

Starting	node	instance1@Domain…

Now	let’s	also	add	the	second	node	to	the	cluster:

rabbitmqctl.bat	-n	instance2	stop_app

rabbitmqctl.bat	-n	instance2	join_cluster	rabbit@DOMAIN

rabbitmqctl.bat	-n	instance2	start_app

Note	that	you	have	to	provide	only	a	single	node	in	the	cluster	rather	than	a	list	of	all
nodes	–	RabbitMQ	automatically	clusters	the	node	with	all	other	nodes	existing	in	the
cluster	.	We	simply	specify	just	one	of	them	(the	only	condition	is	that	the	node	must	be
up-and-running).

If	we	check	again	the	configuration	of	the	cluster	again:

rabbitmqctl.bat	cluster_status

We	will	see	something	like	this:

[

{nodes,

			[{disc,[instance1@DOMAIN,	instance2@DOMAIN,	rabbit@DOMAIN]}]},

{running_nodes,[instance1@DOMAIN,	instance2@DOMAIN,	rabbit@DOMAIN]},

{cluster_name,<<»rabbit@Domain»>>},

{partitions,[]}

]

Since	the	management	console	is	already	enabled	for	the	root	node	in	the	cluster
(rabbit@DOMAIN),	if	we	go	the	Overview	tab	we	will	see	the	three	nodes	under	the	Nodes
section:

At	that	point	we	have	a	fully	functional	RabbitMQ	cluster	with	three	DISC	nodes.	Let’s
see	how	to	add	RAM	nodes	to	our	cluster.

If	you	notice,	there	are	some	statistics	displayed	for	the	root	node	such	as	used/available
Erlang	processes,	used/available	memory,	and	a	few	others.	However,	for	the	other	two
nodes	we	added	to	the	cluster	a	Node	statistics	not	available	message	is	being	displayed.
This	is	due	to	the	fact	that	we	have	disabled	the	management	plug-in	for	the	two	nodes
before	starting	them	and	it	requires	the	rabbitmq_management_agent	plug-in	that	is
required	in	order	to	display	statistics	for	the	instances	from	the	RabbitMQ	management
plug-in	running	over	a	cluster	node.	The	following	enables	the	management	agent	plug-in
on	the	instances:

rabbitmq-plugins.bat	-n	instance1	enable	rabbitmq_management_agent

rabbitmq-plugins.bat	-n	instance2	enable	rabbitmq_management_agent

If	we	now	go	to	the	Overview	tab,	we	will	see	that	statistics	are	displayed	for	all	three
nodes:

We	can	also	configure	the	RabbitMQ	cluster	nodes	directly	in	the	RabbitMQ	configuration
—we	just	specify	a	list	of	running	RabbitMQ	instances	as	identified	by	their	name—and
once	the	node	starts	up	it	will	try	to	cluster	against	the	list	of	nodes.	There	are	some
prerequisites	when	RabbitMQ	tries	to	create	the	cluster	from	the	configuration—the	nodes
must	be	in	a	clean	state,	the	same	version	of	RabbitMQ	must	be	running	over	them,	and
they	must	have	the	same	Erlang	cookie.	To	make	sure	that	the	nodes	are	in	a	clean	state	(if
they	are	not	newly	created),	reset	their	state	with	the	rabbitmqctl	utility:

rabbitmqctl.bat	-n	instance1	reset

To	make	sure	they	are	running	the	same	version	of	RabbitMQ	you	can	use	the
rabbitmqctl	utility	again:

rabbitmqctl.bat	–n	instance1	status

Note	that,	in	our	case,	the	preceding	code	is	not	relevant	since	we	are	running	the
instances	from	the	same	installation	of	RabbitMQ.	If	the	instances	were	running	on
different	versions	of	the	broker	(on	the	same	or	different	machines),	then	we	could
upgrade	all	of	the	nodes	with	the	same	version	of	RabbitMQ.	In	order	to	perform	the
upgrade,	however,	we	must	designate	one	of	the	DISK	nodes	as	the	upgrader	node	that
will	synchronize	the	cluster	nodes	once	the	upgrade	is	done	–	that	node	should	be	stopped
last	and	started	first	when	the	entire	cluster	is	brought	down	to	upgrade	the	nodes.	To
make	sure	the	nodes	have	the	same	cookie,	just	copy	it	over	to	all	the	nodes	from	the	root
node	in	the	cluster.

Another	consideration	is	that	nodes	might	be	running	behind	firewalls	and	in	that	case	you
have	to	make	sure	that	the	ports	used	by	RabbitMQ	are	opened–one	is	4369	(unless
changed)	and	is	used	by	the	epmd	port	mapper	process	that	is	used	to	resolve	host	names	in
the	cluster.	The	other	port	is	the	distribution	port	for	the	node	–	for	instance1	in	our	case
that	is	5701	and	for	instance2	5702	(these	are	the	ports	we	assigned	to	the	nodes	when
starting	them).

Adding	RAM-only	nodes	to	the	cluster
Adding	a	RAM	only	node	to	our	cluster	is	similar	to	how	we	add	a	DISK	node	but	with
one	additional	parameter.	The	following	example	adds	the	instance3	RAM	node	to	the
cluster:

set	RABBITMQ_NODENAME=instance3	&	set	RABBITMQ_NODE_PORT=5703	&	rabbitmq-

server.bat	–detached

rabbitmqctl.bat	-n	instance3	stop_app

rabbitmqctl.bat	-n	instance3	join_cluster	--ram	rabbit@DOMAIN	

rabbitmqctl.bat	-n	instance3	start_app

If	we	now	check	the	cluster	status:

rabbitmqctl.bat	cluster_status

We	will	see	that	the	instance3	node	is	registered	as	a	RAM	node	to	the	cluster:

[

{nodes,

			[{disc,[instance1@DOMAIN,	instance2@DOMAIN,	rabbit@DOMAIN],	

					{ram,[instance3@Domain]}

]},

	{running_nodes,[instance3@Domain,	instance1@DOMAIN,	instance2@DOMAIN,														

rabbit@DOMAIN]},

{cluster_name,<<»rabbit@Domain»>>},

{partitions,[]}

]

You	can	also	switch	the	node	to	DISK	mode	using	the	rabbitmqctl	utility	–	you	must	first
stop	the	running	RabbitMQ	application	on	the	node:

rabbitmqctl.bat	-n	instance3	change_cluster_node_type	disk

Removing	nodes	from	a	cluster
Let’s	assume	that	we	want	to	remove	the	instance2	node	from	the	cluster.	First	we	have
to	stop	the	RabbitMQ	application	on	that	node	and	leave	only	the	Erlang	process	running:

rabbitmqctl.bat	-n	instance2	stop_app

At	that	point	instance2	is	still	registered	to	the	cluster	but	is	not	running	(this	can	be
verified	from	the	status	of	the	cluster).	Now	you	have	to	remove	the	node	itself	from	the
cluster.	This	can	be	done	by	resetting	the	node	or	directly	removing	the	node	from	the
cluster	first	and	later	resetting	it.	Even	if	you	remove	the	node	from	the	cluster	without
resetting	it,	the	node	configuration	still	implies	that	it	is	part	of	a	cluster	and	it	still	needs
to	be	reset.	To	first	remove	the	instance2	node	from	the	cluster,	you	can	execute	the
following	command:

rabbitmqctl.bat	forget_cluster_node	instance2@Domain

At	that	point	the	instance2	node	is	removed	from	the	cluster.	You	also	have	to	reset	its
state:

rabbitmqctl.bat	-n	instance2	reset

Connecting	to	the	cluster
Now	let’s	see	how	to	connect	to	the	cluster	we	created	and	experiment	with	it.	Let’s
assume	that	we	have	a	publisher	sending	messages	on	one	instance	of	the	cluster	and	a
subscriber	on	another	instance	of	the	cluster,	as	outlined	in	the	following	diagram:

The	ClusterSender	class	provides	the	implementation	of	a	message	sender	that	uses	the
default	exchange	in	order	to	publish	to	the	event_queue	queue	–	it	is	a	modified	variant	of
the	Sender	class	we	used	when	we	discussed	messaging	patterns	with	RabbitMQ	–	refer	to
Chapter	2,	Design	Patterns	with	RabbitMQ,	for	details	of	the	implementation.	There	is
one	core	difference	–	the	initialize()	method	accepts	a	list	of	addresses	(hostname/port
pairs)	that	represent	the	instance	to	which	the	sender	connects	upon	initialization:

public	class	ClusterSender	{

				private	final	stsatic	Logger	LOGGER	=	

LoggerFactory.getLogger(Sender.class);

				private	final	static	String	QUEUE_NAME	=	"event_queue";

				private	static	final	String	DEFAULT_EXCHANGE	=	"";

				private	Channel	channel;

				private	Connection	connection;

				public	void	initialize(Address…	hosts)	{

								try	{

												ConnectionFactory	factory	=

	new	ConnectionFactory();

												factory.setHost("localhost");

												connection	=	factory.newConnection(hosts);

												channel	=	connection.createChannel();

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}

				}

				public	void	send(String	message)	{

								try	{

												channel.queueDeclare(QUEUE_NAME,	

false,	false,	false,	null);

												channel.basicPublish(DEFAULT_EXCHANGE,

	QUEUE_NAME,	null,	message.getBytes());

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}

				}

				public	void	destroy()	{

								try	{

												if	(connection	!=	null)	{

																connection.close();

												}

								}	catch	(IOException	e)	{

												LOGGER.warn(e.getMessage(),	e);

								}

				}

}

The	ClusterReceiver	class	provides	the	implementation	of	a	receiver	that	retrieves	a
single	message	from	the	event_queue	queue.	It	also	extends	the	variant	of	a	receiver	we
already	introduced	earlier	and	the	initialize()	method	is	also	extended	to	accept	a	list
of	addresses	that	represent	one	or	more	nodes	in	the	cluster	we	would	like	to	connect	to:

public	class	ClusterReceiver	{

				private	final	static	String	QUEUE_NAME	=	"event_queue";

				private	final	static	Logger	LOGGER	=																

LoggerFactory.getLogger(ClusterReceiver.class);

				

				private	Connection	connection	=	null;

				private	Channel	channel	=	null;

				public	void	initialize(Address…hosts)	{

								try	{

												ConnectionFactory	factory	=																					new	

ConnectionFactory();

												factory.setHost("localhost");

												connection	=	factory.newConnection(hosts);

												channel	=	connection.createChannel();

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}

				}

				

				public	String	receive(Address…hosts)	{

								if	(channel	==	null)	{

												initialize(hosts);

								}

								String	message	=	null;

								try	{

												channel.queueDeclare(QUEUE_NAME,																								false,	

false,	false,	null);

												QueueingConsumer	consumer	=																				new	

QueueingConsumer(channel);

												channel.basicConsume(QUEUE_NAME,	true,	consumer);

								

												QueueingConsumer.Delivery	delivery	=																			

consumer.nextDelivery();

												message	=	new	String(delivery.getBody());

												LOGGER.info("Message	received:	"	+	message);

												return	message;

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	catch	(ShutdownSignalException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	catch	(ConsumerCancelledException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	catch	(InterruptedException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}

								return	message;

				}

				public	void	destroy()	{

								if	(connection	!=	null)	{

												try	{

																connection.close();

												}	catch	(IOException	e)	{

																LOGGER.warn(e.getMessage(),	e);

												}

								}

				}

Let’s	first	subscribe	the	receiver	to	the	instance3	node	by	running	the	main()	method	of
the	ClusterSenderDemo	class:

public	class	ClusterReceiverDemo	{

				private	static	final	String	NODE_HOSTNAME	=	"localhost";

				

				//	this	is	the	port	on	which	instance3	is	running

				private	static	final	int	NODE_PORT	=	5703;

				

				public	static	void	main(String[]	args)	throws	InterruptedException	{

								final	ClusterReceiver	receiver	=	new	ClusterReceiver();

								receiver.initialize(new	Address(NODE_HOSTNAME,	NODE_PORT));

								receiver.receive();

								receiver.destroy();

				}

}

After	you	have	subscribed	to	the	cluster	(on	the	instance3	node)	run	the	main()	method
of	the	ClusterSenderDemo	class	in	order	to	send	a	message	on	the	default	exchange	(on
the	rabbit	node):

public	class	ClusterSenderDemo	{

				private	static	final	String	NODE_HOSTNAME	=	"localhost";				

				//	default	port	5672	which	corresponds	

				//	to	the	'rabbit@Domain'	instance	

				//	is	being	used	for	the	connection	to	the	broker

				public	static	void	sendToDefaultExchange()	{

								ClusterSender	sender	=	new	ClusterSender();

								Address	address	=	new	Address(NODE_HOSTNAME);

								sender.initialize(address);

								sender.send("Test	message.");

								sender.destroy();

				}

				

				public	static	void	main(String[]	args)	{

								sendToDefaultExchange();

				}

}

You	will	notice	that	the	receiver	received	the	message	successfully:

INFO		ClusterReceiver:51	-	Message	received:	Test	message.

In	order	to	understand	what	exactly	happened,	it	is	essential	to	understand	that	it	is
actually	the	connection	channel	that	routes	the	message;	the	default	exchange	is	just	a
logical	name	used	to	indicate	to	the	channel	where	to	route	the	message.	In	that	regard	the
channel	that	connected	the	sender	to	the	rabbit	node	routed	the	message	directly	to	the
event_queue	queue.	Although	the	sender	is	connected	to	the	rabbit	node,	it	is	the
instance3	node	that	is	the	owner	of	the	event_queue	queue	and	so	it	must	receive	all	the
messages	that	are	designated	for	that	queue.	In	that	regard	the	queue	will	have	pushed
messages	to	the	receiver	even	if	it	was	subscribed	to	another	node	(e.g.	instance1)	that
was	not	the	owner	of	the	queue.

Let’s	see	what	would	happen	in	the	scenario	of	a	node	failure:

The	rabbit	node	fails	–	in	that	case	the	sender	will	not	be	able	to	send	a	message.	If
however	we	had	specified	at	least	one	more	node	that	was	running	when	creating	the
RabbitMQ	connection	from	the	subscriber,	then	the	message	would	have	been	sent	to
that	node:

The	instance1	node	fails	–	nothing	will	happen	in	that	case.	The	sender	and	the
receiver	will	continue	to	function	as	usual.	If	the	event_queue	was	declared	on	that
node	(rather	than	instance3),	then	that	would	disconnect	the	receiver	even	if	it	was
still	connected	on	a	running	node:

The	instance3	node	fails.	That	would	disconnect	the	receiver	even	if	more	nodes
were	specified	for	the	RabbitMQ	connection	from	the	receiver	(and	the	receiver	was
connected	to	that	node):

Based	on	several	facts,	it	can	be	concluded	that:

RabbitMQ	clustering	support	is	targeted	at	horizontal	scaling	based	on	queue
distribution	among	the	nodes	rather	than	high	availability	in	the	case	of	node	failure
The	Java	API	does	not	support	out-of-the	box	failover	scenarios	in	terms	of
receiver/sender	clients	in	the	case	of	node	failures;	if	a	node	fails,	an	exception	is
thrown	that	must	be	handled	by	the	client	and	reconnection	is	not	attempted

Case	study:	scaling	the	CSN
Over	time,	the	users	of	the	CSN	increased	rapidly	and	the	workload	of	the	system	was
increasing	even	more	rapidly	on	a	daily	basis.	It	was	estimated	that	this	growth	might
cause	issues	with	the	single	RabbitMQ	broker	instance,	which	essentially	turned	out	to	be
a	bottleneck.

That	is	why	the	team	behind	the	CSN	decided	to	introduce	several	new	RabbitMQ
instances	installed	on	separate	powerful	servers	and	separate	the	queues	from	the
v_events	vhost	on	one	node	and	the	queues	from	the	v_chat	host	on	two	other	nodes:

This	not	only	improved	the	performance	of	the	system	(as	shown	by	the	benchmarks	the
CSN	did	over	the	new	configuration)	but	also	mitigated	the	risk	of	resource	depletion	on
the	single	RabbitMQ	server	the	system	had.

Note	that	we	are	providing	clustering	support	only	on	behalf	of	the	message	broker	and
this	concept	can	be	applied	to	the	other	components	of	the	system.

Summary
In	this	chapter,	we	saw	how	to	create	a	cluster	of	RabbitMQ	nodes	for	the	purpose	of
scaling	out	our	broker.	We	saw	how	this	allowed	for	the	even	distribution	of	queues	on
different	nodes	in	the	cluster,	thus	increasing	storage	capacity	and	performance	in	the
cluster.	We	discussed	what	DISK	and	RAM	nodes	are	and	how	they	can	be	added	and
removed	from	a	cluster;	we	also	demonstrated	how	to	connect	to	the	cluster	from	a	Java
publisher/subscriber	client	and	how	a	cluster	tolerates	failure	on	some	of	the	nodes.
Finally,	we	further	extended	the	CSN	with	multiple	RabbitMQ	instances,	forming	a
RabbitMQ	cluster.	The	clustering	mechanism	supported	by	RabbitMQ	has	some
drawbacks	such	as,	for	example,	the	lack	of	support	for	establishing	high	availability	as	a
means	of	making	image	processing	more	reliable.

Exercises
1.	 Why	do	we	store	queue	contents	in	a	single	node	in	the	RabbitMQ	cluster	rather	than

replicating	it	over	all	nodes?
2.	 What	types	of	cluster	nodes	does	RabbitMQ	support?	What	is	the	purpose	of	each	of

them?
3.	 What	type	of	data	is	being	sent	between	the	nodes	of	a	cluster?
4.	 How	do	nodes	in	a	RabbitMQ	cluster	communicate?
5.	 How	can	you	add	a	node	to	a	cluster?
6.	 How	can	you	remove	a	node	from	a	cluster?
7.	 How	can	you	check	the	cluster	status?
8.	 What	happens	to	the	subscribers	of	a	queue	if	its	node	goes	down?
9.	 What	considerations	should	be	taken	into	account	when	deploying	RabbitMQ	cluster

nodes	on	different	machines	in	the	network?
10.	 What	drawbacks	can	you	mention	in	the	clustering	mechanism	provided	by

RabbitMQ?

Chapter	5.	High	Availability
Even	though	messaging	allows	for	a	very	loosely	coupled	type	of	communication,	it	is
common	in	many	scenarios	that	a	large	downtime	or	message	loss	are	not	acceptable,
especially	when	guaranteed	delivery	must	take	place.	In	the	previous	chapter,	we
described	how	RabbitMQ	supports	clustering	and	how	it	focuses	on	queue	scalability
rather	than	providing	high	availability.	In	this	chapter,	we	will	further	discover
mechanisms	for	establishing	high	availability	at	the	level	of	the	message	broker.

Topics	covered	in	the	chapter:

Benefits	of	high	availability
High	availability	support	in	RabbitMQ
Client	high	availability
Case	Study:	Introducing	high	availability	in	CSN

Benefits	of	high	availability
When	we	design	and	develop	large	systems	that	need	to	be	up-and-running	most	of	the
time,	we	need	to	consider	what	would	happen	when	a	single	component	fails.	This	could
be	due	to	a	hardware,	network,	or	any	other	type	of	failure.	Some	systems,	for	example,
have	an	SLA	(service	level	agreement)	that	specifies	a	99.99	percent	uptime.	In	this
regard,	high	availability	should	be	considered	for	every	such	component	that	could	turn
out	to	be	a	bottleneck,	including	the	message	broker.	This	not	only	allows	you	to	justify
the	SLAs	(service	level	agreements)	defined	over	your	system,	which	increases
confidence	in	its	reliability,	it	also	allows	you	to	implement	a	system	that	minimizes	as
much	as	possible	the	impact	of	having	a	system	that	fails	from	time	to	time	for	a	certain
amount	of	time—at	least	until	some	manual	intervention	takes	place	in	order	to	bring	it
up.	This	imposes	the	risk	of	losing	money;	the	more	users	are	impacted	by	a	system
failure,	the	more	likely	it	is	your	SLAs	oblige	you	to	pay	out.	In	reality,	there	are	general
solutions	that	allow	you	to	provide	high	availability	clusters	for	systems	that	do	not	have
built-in	support	for	creating	such	clusters.	Luckily	RabbitMQ	provides	mechanisms	for
that,	as	we	will	discover	later	in	this	chapter.

Moreover,	we	may	want	to	perform	upgrades	without	having	to	disrupt	users	of	our
system	or	backup	data	while	the	system	is	running.

High	availability	may	be	considered	when:

A	connection	fails	(for	example,	due	to	a	network/node	failure).	In	that	case,	your
client,	either	a	publisher	or	a	consumer,	must	be	able	to	reconnect	automatically	to
the	cluster.	You	can	use	a	load	balancer	that	provides	capabilities	for	detecting	node
failures	or	extending	your	client	with	support	for	reconnection	to	the	cluster.
A	node	fails.	In	that	case,	other	nodes	in	the	cluster	should	be	able	to	take	over	the
processing	of	messages	in	the	cluster.	There	are	various	cluster	topologies	that	allow
for	the	implementation	of	high	availability	in	a	cluster.	One	is	an	active/active
topology,	where	all	nodes	can	take	over	the	load	for	a	failed	node.	Another	type	is	an
active/passive	topology,	where	there	are	some	passive	nodes	that	can	become	active
and	take	over	the	load	for	a	failed	node.	There	are	yet	other	variations	that	are
derived	on	the	basis	of	these,	considering	the	number	of	passive	nodes	available,	or
passivating	nodes,	when	failed	nodes	become	available	again.

High	availability	support	in	RabbitMQ
RabbitMQ	provides	an	extension	of	the	default	clustering	mechanism	that	allows	the
replication	of	the	contents	of	a	queue	over	one	or	more	nodes.	It	takes	the	active-active
approach	for	establishing	a	highly	available	cluster,	and	you	can	select	how	many	nodes	to
replicate	a	queue	in	a	master-slave	configuration	(one	node	is	designated	as	the	master	and
all	other	nodes	as	the	slaves):

Replicate	to	all	nodes	in	the	cluster
Replicate	to	a	certain	number	of	nodes	in	the	cluster
Replicate	to	certain	nodes	in	the	cluster	(specified	as	a	list	of	node	names)

In	terms	of	RabbitMQ,	this	extension	is	called	mirrored	queues.

Note	that	there	is	an	opportunity	to	establish	an	active-passive	RabbitMQ	cluster	using
helper	technologies	that	allow	you	to	use	redundant	servers	in	order	to	establish	that	type
of	clustering;	this	was	the	preferred	approach	in	most	production	scenarios	before	built-in
support	for	mirrored	queues	was	provided.	However,	mirrored	queues	are	now	the
preferred	approach	since	they	are	way	faster	and	easier	to	configure	than	custom	active-
passive	high	availability	configurations	using	third-party	solutions.	However,	they	inherit
the	drawbacks	of	the	RabbitMQ	built-in	clustering	mechanism	on	top	of	which	they	step:

It	cannot	be	applied	across	instances	in	distant	locations	(for	example,	datacenters	in
different	regions	in	the	world)	due	to	the	fact	that	it	is	very	sensitive	to	latency	issues.
Such	issues	cause	communication	failures	in	the	cluster.	One	solution	could	be	to
ensure	that	only	high-bandwidth	leased	lines	are	available	across	the	datacenters,	thus
eliminating	the	risk	of	latency	problems.
Even	if	a	queue	on	a	node	is	marked	as	durable,	its	contents	cannot	be	directly	copied
over	to	another	node	in	case	the	current	one	fails	unless	the	mirrored	queue	policy
you	define	matches	the	queue	name.	You	should	make	sure	that	any	new	durable
queues	you	add	to	the	cluster	(and	need	to	be	mirrored)	are	matched	by	a	proper
policy	that	specifies	the	nodes	on	which	to	replicate	the	contents	of	that	queue.
Otherwise,	if	no	policy	is	in	effect	and	if	the	node	on	which	the	durable	queue	is
defined	fails,	then	it	should	be	restored	again	in	order	to	be	able	to	use	that	queue.

Having	regard	to	the	fact	that	RabbitMQ	clustering	is	not	proper	for	nodes	over	a	WAN,
queue	mirroring	must	be	supported	with	additional	mechanisms	that	provide	such
distribution	of	queue	contents.	The	federation	and	shovel	plugins	come	to	the	rescue	in
that	scenario.	The	federation	plugin	allows	you	to	replicate	messages	between	exchanges
or	between	queues,	while	the	shovel	plugin	allows	you	to	send	messages	from	a	queue	in
one	broker	instance	to	an	exchange	in	another	broker	instance.	Apart	from	the	fact	that
this	provides	a	mechanism	for	establishing	custom	message	broker	topologies,	it	provides
for	a	more	resilient	mechanism	for	communication	between	instances	in	an	unreliable
network	environment,	and	also	the	possibility	of	running	different	versions	of	the
RabbitMQ	broker	on	each	instance.	Moreover,	the	different	instances	remain	completely
independent	of	each	other.

In	regard	to	the	fact	that	there	is	a	policy	matching	each	queue	we	want	to	mirror,	we	must
always	consider	testing	either	manually	or	automatically	that	our	setup	is	correct	by
intentionally	bringing	down	one	or	more	nodes.

Mirrored	queues
The	steps	for	creating	a	mirrored	queue	are	pretty	straight-forward	based	on	the	fact	that
we	already	know	how	to	configure	a	RabbitMQ	cluster:

Create	the	RabbitMQ	cluster
Create	the	mirroring	policy	over	the	particular	queue	from	the	cluster	(this	can	be
done	from	any	node	in	the	cluster)

The	node	on	which	the	queue	is	created	becomes	the	master	and	all	other	nodes	matched
by	the	mirroring	policy	become	the	slaves.	When	the	master	node	fails	then	one	of	the
slave	nodes	is	designated	as	the	new	master;	typically,	this	is	the	eldest	slave	node.	The
following	diagram	outlines	a	node	with	three	nodes	(the	one	we	already	described	when
we	discussed	clustering)	and	one	mirrored	queue	called	mirrored_queue	defined	on	the
rabbit	node:

Assuming	the	rabbit	node	is	already	running,	we	will	add	the	instance1	DISK	node
(that	persists	metadata	on	disk)	and	the	instance3	RAM	node	(that	persists	metadata	in-
memory)	to	the	cluster	in	the	same	way	we	did	in	the	previous	chapter:

set	RABBITMQ_NODENAME=instance1	&	set	RABBITMQ_NODE_PORT=5701	&		rabbitmq-

server	–detached

rabbitmqctl	–n	instance1	stop_app

rabbitmqctl	–n	instance1	join_cluster	rabbit@DOMAIN

rabbitmqctl	–n	instance1	start_app

set	RABBITMQ_NODENAME=instance3	&		set	RABBITMQ_NODE_PORT=5703	&	rabbitmq-

server	–detached

rabbitmqctl	–n	instance3	stop_app

rabbitmqctl	–n	instance3	join_cluster	--ram	rabbit@DOMAIN	

rabbitmqctl	–n	instance3	start_app

Let’s	declare	the	mirrored_queue	on	the	instance1	node:

rabbitmqadmin.py	declare	queue	name="mirrored_queue"

And	finally	let’s	make	the	queue	mirrored	on	all	nodes:

rabbitmqctl	set_policy	ha-all	"mirrored_queue"	"{""ha-mode"":""all""}"

If	you	go	to	the	RabbitMQ	management	console	and	click	on	the	Queues	tab	you	will
notice	that	mirrored_queue	now	has	a	+2	under	node,	indicating	that	there	are	two	slaves,
and	under	Features	you	can	see	a	ha-all	feature,	which	indicates	the	mirrored	queue
policy:

If	you	click	on	mirrored_queue	you	see	further	information	about	the	queue	along	with
the	slave	nodes	on	which	the	queue	is	mirrored:

Each	time	a	message	is	sent	to	a	node	in	the	RabbitMQ	cluster,	the	channel	routes	the
message	directly	to	the	master	node,	which	passes	it	over	to	the	slave	instances.	However
in	the	event	a	new	slave	is	created	for	the	queue	(for	example,	if	a	new	node	is	joined	to
the	cluster	and	we	have	a	mirrored	queue	policy	that	replicates	queue	contents	over	all
nodes),	then	it	must	be	synchronized	with	the	already	existing	messages	in	the	master
queue.	Another	scenario	when	synchronization	is	necessary	is	when	the	node	of	a	durable
slave	queue	is	shut	down	and	later	restored;	in	that	case,	the	contents	of	the	durable	queue
are	cleared	by	RabbitMQ	and	it	behaves	as	if	a	new	slave	is	joined	to	the	master	that	needs
synchronization.	The	master	queue	blocks	until	it	synchronizes	with	the	slave(s).
Synchronization	must	be	triggered	either	manually	(which	is	the	default	behavior)	or
automatically	(which	can	be	defined	as	part	of	the	mirrored	queue	policy).

Let’s	assume	we	have	added	a	new	node	to	the	cluster	we	have.	In	that	case	we	have	to
trigger	synchronization	manually	using	the	following	command:

rabbitmqctl	sync_queue	mirrored_queue

If	you	don’t	want	to	perform	synchronization	each	time	a	new	slave	joins	you	can
reconfigure	your	policy	as	follows:

rabbitmqctl	set_policy	ha-all	"mirrored_queue"	"{""ha-mode"":""all"",	""ha-

sync-mode"":""automatic""}"

You	may	be	wondering	whether	replication	of	messages	and	queue	synchronization	impact
the	performance	of	the	cluster;	the	short	answer	is,	yes	they	do.	However	this	performance

hit	can	be	minimized	by	carefully	defining	the	topology	of	your	cluster.	Let’s	assume	that
we	have	a	large	cluster	with	several	queues	defined	on	each	node	and	each	queue	is
mirrored	over	all	other	nodes	in	the	cluster.	This	implies	a	lot	of	communication	between
the	nodes	in	the	cluster,	which	may	introduce	severe	delays	in	message	senders	or
receivers.	One	strategy	that	can	be	incorporated	in	order	to	avoid	this	is	to	have	only	one
slave	queue.	You	can	do	this	by	defining	that	you	only	want	to	replicate	messages	to	one
(random)	node	using	the	following	policy:

rabbitmqctl	set_policy	ha-exactly	"mirrored_queue"	"{""ha-

mode"":""exactly"",""ha-params"":2,""ha-sync-mode"":""automatic""}"

The	ha-exactly	policy	replaces	the	ha-all	policy	in	effect	for	the	mirrored_queue
queue	(although	both	policies	exist	in	the	cluster	metadata),	as	visible	from	the	RabbitMQ
management	console:

The	instance1	node	is	selected	by	RabbitMQ	as	the	slave	queue	node.	If	you	want	to
specify	a	concrete	node	for	that	purpose	(let’s	say	instance3),	you	can	set	the	following
policy:

rabbitmqctl	set_policy	ha-by-name	"mirrored_queue"	"{""ha-

mode"":""nodes"",""ha-params"":[""rabbit@DOMAIN"",	

""instance3@Domain""],""ha-sync-mode"":""automatic""}"

In	that	case,	the	rabbit	node	is	designated	as	the	master	and	the	instance3	node	as	the
slave.	You	should	be	careful	with	the	names	you	specify	in	the	nodes	policy	(also	consider
case-sensitivity);	RabbitMQ	will	ignore	invalid	nodes	and	set	master/slave	nodes	wrongly.
Moreover,	if	you	specify	nodes	that	do	not	contain	the	current	master	node	(the	node
where	the	queue	is	originally	created),	the	policy	will	enforce	the	first	node	synchronized
with	the	master	slave	node	in	the	list	to	become	the	new	master.	If	no	such	node	is	present
in	the	list,	RabbitMQ	will	continue	using	the	current	master	until	a	node	from	the	list	is
synchronized	with	it.	You	should	be	careful	when	changing	mirroring	policies	and	having
unsynchronized	slaves;	this	may	cause	unexpected	behavior.	Consider	the	following
scenario	where	the	master	queue	on	the	rabbit	node	has	two	messages	that	must	be
synchronized	with	the	slaves	on	the	other	two	nodes	(instance1	and	instance3):

If	the	master	queue	node	(in	this	case	rabbit)	fails,	then	RabbitMQ	will	try	to	elect	a	new
master	from	one	of	the	synchronized	slaves	(for	example,	from	new	or	restored	nodes	that
joined	the	cluster).	Since	we	don’t	have	such	a	slave,	RabbitMQ	will	behave	as	if	there	are
no	slaves	and	processing	on	that	queue	will	fail.	If	we	don’t	want	that	to	happen,	we	can
additionally	set	the	ha-promote-on-shutdown	parameter	to	always	on	the	mirroring
policy;	this	will,	however,	impose	the	risk	of	losing	messages	in	regard	to	the	increased
degree	of	high	availability.

Mirrored	queues	are	great	for	establishing	high	availability.	However,	the	following
questions	remain	open	due	to	the	fact	that	mirrored	queues	make	use	of	the	RabbitMQ
clustering	mechanism:

How	can	we	establish	high	availability	over	long	distances	since	the	clustering
mechanism	is	not	cooperative	over	the	WAN?
How	can	we	upgrade	cluster	nodes	both	in	terms	of	Erlang	and	RabbitMQ	versions?
How	can	we	create	a	cluster	of	geographically	distributed	RabbitMQ	clusters?

The	Federation	and	Shovel	plugins	provide	the	answers	to	the	preceding	questions.

Federation	plugin
The	RabbitMQ	federation	plugin	allows	messages	to	be	sent	from	an	exchange	in	one	host
to	an	exchange	in	another	or	from	a	queue	in	one	host	to	a	queue	in	another.	This	is	done
by	upstream	links	defined	over	the	federated	exchanges/queues	in	the	upstream	host	(the
host	that	receives	the	messages).	The	mechanism	provided	by	the	Federation	plugin	is	not
dependent	upon	RabbitMQ	clustering	but	is	cooperative	with	it,	meaning	that	messages
can	be	federated	between	exchanges	or	queues	in	different	clusters.	The	Federation	plugin
must	be	enabled	on	the	RabbitMQ	nodes	that	participate	in	the	message	federation.	All
nodes	in	a	RabbitMQ	cluster	must	have	the	Federation	plugin	enabled	in	case	replication
of	messages	using	the	plugin	happens	between	RabbitMQ	clusters.	To	enable	the	plugin
on	a	particular	node	execute	the	following	command:

rabbitmq-plugins	enable	rabbitmq_federation

rabbitmq-plugins	enable	rabbitmq_federation_management

The	rabbitmq_federation_management	plugin	enables	management	of	the	federation
uplinks	from	the	RabbitMQ	management	console.

Let’s	assume	that	we	want	to	create	a	federated	exchange	and	a	federated	queue	defined	in
a	new	three-node	cluster	that	link	respectively	to	an	upstream	exchange	and	an	upstream
queue	in	our	existing	three-node	cluster,	as	shown	in	the	following	diagram:

The	following	commands	define	our	new	local	cluster:

set	RABBITMQ_NODENAME=remote1	&	

set	RABBITMQ_NODE_PORT=5711	&	

set	RABBITMQ_SERVER_START_ARGS=-rabbitmq_management	listener	[{port,55555}]	

&

rabbitmq-server.bat	–detached

rabbitmq-plugins.bat	-n	remote1	enable	rabbitmq_management

rabbitmq-plugins.bat	-n	remote2	disable	rabbitmq_management

rabbitmq-plugins.bat	-n	remote3	disable	rabbitmq_management

set	RABBITMQ_NODENAME=remote2	&	

set	RABBITMQ_NODE_PORT=5712	&	

rabbitmq-server.bat	–detached

rabbitmqctl.bat	-n	remote2	stop_app

rabbitmqctl.bat	-n	remote2	join_cluster	remote1@Martin

rabbitmqctl.bat	-n	remote2	start_app

set	RABBITMQ_NODENAME=remote3	&	

set	RABBITMQ_NODE_PORT=5713	&	

rabbitmq-server.bat	–detached

rabbitmqctl.bat	-n	remote3	stop_app

rabbitmqctl.bat	-n	remote3	join_cluster	remote1@Martin	

rabbitmqctl.bat	-n	remote3	start_app

Essentially,	the	steps	we	perform	in	order	to	start	a	second	cluster	on	a	local	machine	are
as	follows:

We	start	the	remote1	node	and	specify	additionally	RABBITMQ_SERVER_START_ARGS,
which	specifies	the	port	on	which	we	want	to	start	the	RabbitMQ	management	plugin
(we	are	already	using	the	management	plugin	for	the	initial	cluster	on	default	port
15672	and	so	we	won’t	be	able	to	enable	its	use	for	the	management	plugin	UI	in	the
second	cluster).	Another	option	is	to	specify	a	different	configuration	file	for	the
remote1	node	before	starting	it	using	the	RABBITMQ_CONFIG_FILE	environment
variable	and	specify	the	management	plugin	port	inside	that	specific	node
configuration	file.
We	enable	the	management	plugin	on	the	remote1	node.
We	disable	the	management	plugin	on	the	remote2	and	remote3	nodes	(this	is	just	a
precaution	in	case	RabbitMQ	tries	to	start	the	management	plugin	by	default	on	the
nodes).	Note	that	so	far	we	have	been	using	the	default		enabled_plugins	file	that
stores	the	configuration	of	each	plugin	that	must	be	enabled	and	so	far	we	have	been
modifying	the	file	using	the	rabbitmq-plugins	utility	before	starting	each	node.
However,	it	is	better	to	specify	a	separated	enabled_plugins	file	for	each	node,
which	can	be	achieved	by	setting	the	RABBITMQ_ENABLED_PLUGINS_FILE	environment
variable	prior	to	starting	each	RabbitMQ	node.
We	start	the	remote2	and	remote3	nodes	and	join	them	in	the	same	cluster	using	the
remote1	node	in	the	usual	manner	we	use	to	set	up	a	cluster.

We	need	to	enable	the	Federation	plugin	on	the	nodes	in	the	cluster,	create	the	upstream
links,	and	set	the	proper	federation	policies	on	the	remote1	and	remote3	nodes,	as	shown
in	the	preceding	diagram.	You	can	think	of	the	later	process	as	creating	a	“subscription”
from	the	federated_exchange	exchange	in	the	remote	cluster	to	the	upstream_exchange
in	the	initial	cluster	and	a	“subscription”	from	the	federated_queue	queue	in	the	remote
cluster	to	the	upstream_queue	queue	in	the	initial	cluster.	The	following	enables	the
Federation	plugin	on	the	remote3	node	in	the	remote	cluster:

rabbitmq-plugins	-n	remote1	enable	rabbitmq_federation

rabbitmq-plugins	-n	remote1	enable	rabbitmq_federation_management

To	verify	the	cluster	is	successfully	created,	try	opening	http://localhost:55555	and
verify	that	you	see	the	three	cluster	nodes	in	the	management	UI:

Let’s	define	the	exchanges	and	clusters	in	our	clusters.	We	will	define	the	exchanges	as
direct	and	bind	additionally	the	federated_queue	queue	refined	in	the	remote3	node	to
the	federated_exchange	exchange	defined	in	the	remote1	node:

rabbitmqadmin.py	-N	instance1	declare	exchange	name=upstream_exchange	

type=direct

rabbitmqadmin.py	-N	instance3	declare	queue	name=upstream_queue	

durable=false

rabbitmqadmin.py	-N	remote1	-P	55555	declare	exchange	

name=federated_exchange	type=direct

rabbitmqadmin.py	-N	remote3	-P	55555	declare	queue	name=federated_queue	

durable=false

rabbitmqadmin.py	-N	remote1	-P	55555	declare	binding	

source=federated_exchange	destination=federated_queue	routing_key=federated

Note	that	when	creating	the	nodes	using	the	rabbitmqadmin	utility,	we	must	specify	the
port	of	the	RabbitMQ	management	plugin	(here,	55555)	since	the	utility	uses	the	HTTP
API	of	the	management	plugin.	If	we	omit	the	port,	the	items	will	be	created	in	the	first
cluster	(since	the	default	management	plugin	port	of	15672	is	used).

The	final	configuration	we	should	make	is	to	actually	create	the	federation	links	by
creating	upstreams	in	the	remote	cluster	and	binding	them	to	the	target	federated	exchange
or	queue	using	policies:

rabbitmqctl	-n	remote1	set_parameter	federation-upstream	upstream	"

{""uri"":""amqp://localhost:5672"",""expires"":3600000,	

""exchange"":""upstream_exchange"",	""queue"":""upstream_queue""}"

	

rabbitmqctl	-n	remote1	set_policy	federate-exchange--apply-to	exchanges	

"federated_exchange""{""federation-upstream"":""upstream""}"

rabbitmqctl	-n	remote1	set_policy	federate-queue--apply-to	queues	

"federated_queue""{""federation-upstream"":""upstream""}"

We	first	create	an	upstream	that	points	to	the	rabbit	node	in	the	first	cluster
(amqp://localhost:5672)	and	specifies	upstream_exchange	and	upstream_queue	as	an
upstream	exchange	and	a	queue.	We	can	omit	them	from	the	definition	of	the	upstream
link,	but	in	that	case	the	policy	would	expect	that	their	names	should	match	those	of	the
federated	exchange	and	queue.	After	that,	we	define	a	federation	policy	for	the
federated_exchange	that	references	the	upstream	link	(thus	retrieving	messages	from	the

upstream_exchange).	Lastly,	we	define	a	policy	for	the	federated_queue	that	references
the	upstream	link	(thus	retrieving	messages	from	the	upstream	exchange).

You	may	be	wondering	how	the	federation	link	authenticates	against	the	upstream	cluster
or	how	we	specify	a	vhost	in	which	our	upstream	exchanges	and	queues	reside.	The
answer	to	both	of	these	question	is	related	to	the	capabilities	of	the	amqp	URI	scheme.	We
can	additionally	provide	a	username	and	password	along	with	the	vhost;	by	default,	the
guest	user	and	the	default	vhost	are	assumed	by	the	federation	links.

We	have	already	enabled	the	federation_management_agent	on	the	remote	cluster	so	we
can	observe	the	federation	configuration	in	the	management	UI.	If	we	navigate	to
Federation	Upstreams	under	the	Admin	tab,	we	can	see	what	federation	upstreams	we
have	configured,	along	with	the	attributes	we	have	assigned	to	them	(in	our	particular	case
a	one-hour	buffer	for	queuing	messages	from	the	upstream):

We	can	also	check	the	status	of	the	federation	links	from	Federation	Status	under	the
Admin	tab:

If	we	navigate	to	the	Exchanges	tab,	we	will	observe	the	federate-exchange	policy
present	as	a	feature	on	our	federated_exchange	exchange:

If	we	navigate	to	the	Queues	tab	we	will	observe	similar	behavior	for	the
federated_queue	queue:

If	we	navigate	to	the	management	UI	of	the	first	cluster	(running	on	port	15672)	we	will
observe	that	a	generic	exchange	and	queue	are	created	for	the	exchange	federation	link	in
the	upstream	cluster	configuration:

In	order	to	verify	that	the	federation	links	work,	we	will	send	two	messages,	one	to	the
upstream_exchange	with	the	federated	binding	key	(earlier	we	created	a	binding	with

that	key	between	federated_exchange	and	federated_queue)	and	one	to	the	default
exchange	with	the	upstream_queue	key:

rabbitmqadmin.py	publish	exchange=upstream_exchange	routing_key=federated	

payload="first	test	message"

rabbitmqadmin.py	publish	exchange=amq.default	routing_key=upstream_queue	

payload="second	test	message"

If	you	subscribe	to	the	federated_queue	in	the	remote	cluster	using	the	ClusterReceiver
Java	class	from	the	previous	chapter,	you	will	notice	that	in	both	cases	the	subscriber
instance	receives	the	test	messages.	In	the	first	case,	the	upstream_exchange	exchange
sends	the	message	to	the	federated_exchange	exchange	in	the	remove	cluster	and	the
federated_exchange	exchange	routes	the	message	to	the	federated_queue	queue,	using
the	federated	routing	key	matching	the	binding	key	defined	between	the	exchange	and
the	queue	in	the	remote	cluster.	In	the	second	case,	the	federated	link	sends	the	message
from	the	upstream_queue	queue	directly	to	the	federated_queue.

You	can	play	around	with	the	cluster	by	bringing	down	nodes	from	one	of	the	clusters	and
investigating	how	the	exchange/queue	federation	behaves	in	certain	scenarios;	since	the
federation	plugin	is	aware	of	RabbitMQ	clusters,	it	will	try	to	migrate	exchange/queue
federation	links	in	case	a	node	in	the	upstream/downstream	cluster	fails.	What	would
happen	if	the	instance3	node	that	is	the	node	for	the	upstream_queue	queue	fails?	If	we
bring	down	the	node	and	send	the	two	test	messages	again	we	will	find	that	both	of	them
arrive	successfully	at	the	federated_queue	queue.

Shovel	plugin
The	Federation	plugin	is	not	the	only	mechanism	that	allows	for	successfully	sending
messages	between	RabbitMQ	instances	over	the	WAN.	The	shovel	plugin	can	be	used	to
send	a	message	from	a	queue	defined	in	a	single	RabbitMQ	instance	to	an	exchange
defined	in	another	RabbitMQ	instance	located	possibly	in	a	different	geographic	location.
This	means	that	the	shovel	plugin	can	also	be	used	to	transfer	messages	over	the	WAN	and
moreover,	it	is	also	cooperative	in	clustered	configurations.	The	Shovel	plugin	works	at	a
lower	level	than	the	Federation	plugin	and	can	be	defined	either	statically	(in	the
RabbitMQ	configuration	file)	or	dynamically,	via	parameters	similarly	to	how	federation
upstreams	are	created.	Dynamic	shovels	are	a	newer	addition	to	the	Shovel	plugin
(introduced	with	the	release	3.3.0	of	RabbitMQ).	Having	regard	to	static	shovels,	which
provide	only	the	option	to	send	messages	from	a	source	queue	to	a	destination	exchange,
dynamic	shovels	provide	all	scenarios	for	queue/exchange-to-queue/exchange	message
sending	in	addition	to	a	simplified	configuration.

In	order	to	use	the	Shovel	plugin	you	must	enable	it	on	the	target	nodes	along	with	the
management	plugin	extensions	(if	needed).	The	following	commands	enable	a	dynamic
shovel	between	the	upstream_queue	in	the	source	cluster	and	the	federated_exchange	in
the	target	cluster	(the	same	configuration	can	be	achieved	using	static	shovels	but	without
the	benefits	of	dynamic	configuration):

rabbitmq-plugins	-n	remote1	enable	rabbitmq_shovel

rabbitmq-plugins	-n	rabbit	enable	rabbitmq_shovel_management

rabbitmqctl	-n	remote1	set_parameter	shovel	test_shovel	

"{""src-uri"":	""amqp://localhost:5672"",	""src-queue"":	

""upstream_queue"",	""dest-uri"":	""amqp://localhost:5712"",	""dest-

exchange"":	""federated_exchange""}"

If	you	open	localhost:55555	(the	management	web	interface	for	the	remote	cluster)	in
the	browser	and	navigate	to	Shovel	Management,	when	clicking	the	Admin	tab	you	will
notice	that	there	is	one	dynamic	shovel	configured:

You	can	also	inspect	the	status	of	the	shovel	when	navigating	to	the	Shovel	Status	under
the	Admin	tab	and	verify	that	the	shovel	is	up-and-running:

In	fact,	we	can	specify	the	dynamic	shovel	in	the	upstream	cluster	with	regard	to	the
federation	plugin	where	we	need	to	specify	the	upstreams	and	the	federation	policies	in
the	node	where	the	federated	exchanges/queues	reside.

To	verify	that	the	shovel	works,	we	can	create	a	second	binding	between	the
federation_upstream	and	the	federation_queue	with	a	binding	key	of	upstream_queue,
and	send	a	test	message	to	the	default	exchange	in	the	first	cluster	(the	routing	key	of	the
message	is	passed	along	from	the	upstream_queue	queue	in	the	source	cluster	to	the
federated_exchange	exchange	in	the	destination	cluster):

rabbitmqadmin.py	-N	remote1	-P	55555	declare	binding	

source=federated_exchange	destination=federated_queue	

routing_key=upstream_queue

rabbitmqadmin.py	publish	exchange=amq.default	routing_key=upstream_queue	

payload="second	test	message"

If	we	subscribe	to	the	federation_queue	queue,	we	will	notice	that	the	message	is
successfully	received.

The	following	table	provides	a	summary	of	the	different	options	supported	by	the
Federation	and	Shovel	plugins:

Reliable	delivery
So	far	we	have	been	looking	at	high	availability	mostly	in	terms	of	node	redundancy.
What	about	network	connections?	Network	failures	introduce	another	degree	of
uncertainty	when	transferring	messages	via	a	single	RabbitMQ	node	or	an	entire	cluster	of
nodes.	Let’s	refer	to	the	cluster	we	created	originally:

What	happens	if	the	sender	sends	a	message	to	the	default	exchange	with	a	key	of	test
(the	name	of	the	test	queue	defined	in	instance3)	By	default,	both	publisher	and
subscriber	do	not	expect	any	acknowledgements.	Remember	that	performance	is	by
default	the	target	priority	for	the	broker.	Here	is	what	happens:

The	sender	sends	a	message	and	does	not	await	a	confirmation	that	the	broker	has
successfully	processed	the	message	(delivered	it	to	the	test	queue)
The	broker	receives	the	message	and	routes	it	to	the	test	queue,	which	may	or	may
not	persist	it	on	disk	or	replicate	it	among	the	other	nodes	in	the	cluster	(depending
on	how	durability	and	mirroring	are	configured)
The	broker	sends	the	message	to	the	receiver	without	awaiting	acknowledgement
from	the	receiver	(by	default	the	queue	is	created	with	autoAck=true,	meaning	that
the	message	is	discarded	from	the	queue	once	sent	to	the	receiver	without	awaiting	a
confirmation)

The	preceding	message	flow	does	not	take	into	account	reliable	delivery.	In	particular:

If	the	sender	has	sent	the	message	(the	first	step	is	completed)	but	the	broker	instance
fails	while	processing	the	message,	then	the	message	is	lost	and	publishing	is
unsuccessful.
If	however	the	message	is	successfully	sent	to	the	broker	(the	second	step	is
completed)	and	the	test	queue	is	created	with	autoAck=false,	then	the	receiver

must	send	an	acknowledgement/rejection	of	the	message.	Only	when	the	queue
receives	an	explicit	acknowledgement	from	the	receiver	will	it	discard	the	message.
If	the	receiver	gets	the	message	but	the	broker	node	that	hosts	the	queue	fails	before
processing	the	acknowledgement	from	the	queue,	then	it	may	send	the	message	a
second	time	to	the	receiver	once	up-and-running	again	(assuming	the	message	is	lost
and	hence	consumption	is	unsuccessful).

In	both	of	the	preceding	scenarios	we	need	a	mechanism	that	will	guarantee	that
publishing/acknowledging	messages	is	successful	at	the	broker.	This	is	possible	via
AMQP	transactions.

AMQP	transactions
The	AMQP	0-9-1	specification	defines	the	tx	class	of	protocol	operation	that	allows	us	to
establish	transactions	with	the	broker:

tx.select,	for	starting	a	transaction	with	the	broker
tx.commit,	for	committing	a	transaction	at	the	broker
tx.rollback,	for	rolling	back	a	transaction	at	the	broker

A	transaction	is	initiated	by	the	client	using	the	tx.select	AMQP	command	and	then
committed	or	rolled-back	depending	on	the	particular	use	case.	The	TransactionalSender
class	provides	an	example	of	a	sender	that	uses	transactions	(queue,	exchange,	or	binding
declarations	are	omitted	for	the	sake	of	simplicity):

import	java.io.IOException;

import	org.slf4j.Logger;

import	org.slf4j.LoggerFactory;

import	com.rabbitmq.client.Channel;

import	com.rabbitmq.client.Connection;

import	com.rabbitmq.client.ConnectionFactory;

public	class	TransactionalSender	{

				private	final	static	Logger	LOGGER	=	

LoggerFactory.getLogger(TransactionalSender.class);

				public	void	send(String	exchange,	String	key,	String	message){

								Connection	connection	=	null;

								Channel	channel	=	null;

								try	{

												ConnectionFactory	factory	=	new	ConnectionFactory();

												factory.setHost("localhost");

												connection	=	factory.newConnection();

												channel	=	connection.createChannel();

												channel.txSelect();channel.basicPublish(exchange,	key,	null,	

																	message.getBytes());

												channel.txCommit();

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

												if	(channel	!=	null)	{

																try	{

																				channel.txRollback();

																}	catch	(IOException	re)	{

																				LOGGER.error("Rollback	failed:	"	+																						

re.getMessage(),	re);

																}

												}

								}	finally	{

												if(connection	!=	null)	{

																try	{

																				connection.close();

																}	catch	(IOException	e)	{	LOGGER.warn("Failed	to	close	

connection:	"	+	

																				e.getMessage(),	e);

																}

												}

								}

				}

}

In	the	preceding	example,	you	can	publish	as	many	messages	as	you	want	between
txSelect()	and	txCommit()	and	all	of	them	are	committed/rolled	back	at	once.	This
means	that	AMQP	transactions	are	very	suitable	for	creating	batch	publishing	of
messages.	In	practice,	this	can	improve	the	performance	of	our	application	if	we	need	to
guarantee	that	messages	are	successfully	processed	by	the	broker	and	we	decide	to	use
AMQP	transactions	for	the	purpose.

The	following	example	demonstrations	using	AMQP	transactions	with	subscriber
acknowledgements:

import	java.io.IOException;

import	org.slf4j.Logger;

import	org.slf4j.LoggerFactory;

import	com.rabbitmq.client.Channel;

import	com.rabbitmq.client.Connection;

import	com.rabbitmq.client.ConnectionFactory;

import	com.rabbitmq.client.ConsumerCancelledException;

import	com.rabbitmq.client.QueueingConsumer;

import	com.rabbitmq.client.ShutdownSignalException;

public	class	TransactionalReceiver	{

				private	final	static	Logger	LOGGER	=	

LoggerFactory.getLogger(TransactionalReceiver.class);

				

				private	static	final	String	REQUEST_QUEUE	=	"tx_queue";

				public	void	receive()	{

								Connection	connection	=	null;

								Channel	channel	=	null;

								try	{

												ConnectionFactory	factory	=	new	ConnectionFactory();

												factory.setHost("localhost");

												connection	=	factory.newConnection();

												channel	=	connection.createChannel();

			QueueingConsumer	consumer	=	new	QueueingConsumer(channel);

												channel.basicConsume(REQUEST_QUEUE,	false,	consumer);

												QueueingConsumer.Delivery	delivery	=																						

consumer.nextDelivery();

												String	message	=	new	String(delivery.getBody());

												LOGGER.info("Request	received:	"	+	message);

												channel.txSelect();

												channel.basicAck(delivery.getEnvelope().getDeliveryTag(),	

																false);

												channel.txCommit();

								}	catch	(IOException	e)	{

												LOGGER.error(e.getMessage(),	e);

												if	(channel	!=	null)	{

																try	{

																				channel.txRollback();

																}	catch	(IOException	re)	{																									

LOGGER.error("Rollback	failed:	"	+	re.getMessage(),	re);

																}

												}

								}	catch	(ShutdownSignalException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	catch	(ConsumerCancelledException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	catch	(InterruptedException	e)	{

												LOGGER.error(e.getMessage(),	e);

								}	finally	{

												if(connection	!=	null)	{

																try	{

																				connection.close();

																}	catch	(IOException	e)	{

																				LOGGER.warn("Failed	to	close	

																								connection:	"	+																																					

e.getMessage(),	e);

																}

												}

								}

				}

}

In	the	preceding	example,	we	set	autoAck	to	false	when	we	bind	the	consumer	to	the
queue	and	then	we	use	the	basicAck	method	to	acknowledge	that	the	message	is	processed
successfully	by	the	consumer.

Publisher	confirms
While	AMQP	transactions	provide	a	reliable	mechanism	for	ensuring	that	the	broker	has
processed	a	message	upon	publishing,	it	is	quite	heavyweight.	There	are	two	reasons	for
this:

Transactions	make	publishing	messages	synchronous;	the	publisher	cannot	send	a
message	over	the	same	channel	until	the	previously	sent	message	has	been	confirmed
Transactions	are	onerous	operations	on	their	own.

For	that	reason,	the	broker	introduces	an	extension	called	publisher	confirms	(not	defined

in	the	AMQP	spec).	Publisher	confirms	work	by	creating	a	channel	in	publish	model,	thus
making	the	broker	responsible	for	sending	acknowledgements	upon	successful	processing
of	messages	over	the	channel.	Moreover,	confirms	are	asynchronous,	meaning	that
multiple	messages	can	be	sent	and	confirmed	independently	by	the	broker.	In	order	to
enable	publisher	confirms	you	can	modify	the	TransactionalPublisher	class	as	follows:

Use	the	confirmSelect()	method	instead	of	txSelect()	on	the	channel	in	order	to
enable	publisher	confirms
Register	a	handler	for	message	acknowledgements/rejections	from	the	broker

The	following	snippet	demonstrates	the	preceding	points:

channel.addConfirmListener(new	ConfirmListener()	{					public	void	

handleNack(long	deliveryTag,	boolean	multiple)	throws	IOException	{

												LOGGER.warn("Message(s)	rejected.");

				}

				public	void	handleAck(long	deliveryTag,						boolean	multiple)

								throws	IOException	{

												LOGGER.warn("Message(s)	confirmed.");

				}});

channel.confirmSelect();

channel.basicPublish(exchange,	key,	null,	message.getBytes());

Client	high	availability
Now	that	we	have	seen	how	to	establish	high	availability	at	the	level	of	the	broker	along
with	some	mechanisms	to	improve	reliability	when	publishing/consuming	messages,	we
have	to	explore	what	mechanisms	we	have	to	ensure	client	reliability	in	the	event	of
broker	failures.

Client	reconnections
Later	versions	of	the	RabbitMQ	Java	client	provide	a	mechanism	for	handling	automatic
recovery	in	the	event	of	connection	failures	with	the	broker.	In	earlier	versions	of	the
client	this	has	to	be	done	manually	or	with	the	help	of	a	wrapper	library	that	provides
recovery	on	top	of	an	existing	RabbitMQ	client	(there	are	various	implementations	in	the
public	space).	Recovery	via	the	Java	client	API	is	enabled	with	a	single	line	of	code:

factory.setAutomaticRecoveryEnabled(true);

The	preceding	method	invoked	on	a	RabbitMQ	connection	factory	does	a	number	of
things	in	the	context	of	a	publisher/consumer	connection,	such	as	reopening	channels,
recovering	consumers,	restoring	connection/channel	settings	and	listeners,	and	redeclaring
queues/exchanges/bindings.

Load	balancing
Another	option	you	have	in	order	to	improve	reliability	upon	connection	to	the	broker	is	to
use	a	hardware/software	TCP	load-balancer	(such	as	HAProxy	and	Balance).	It	requires
more	configuration	but	you	can	manage	the	IP	addresses	of	cluster	nodes	in	the
configuration	of	the	load	balancer	rather	than	the	configuration	of	the	client.	Apart	from
that,	you	get	a	mechanism	for	the	even	distribution	of	traffic	among	nodes	in	the	cluster
using	the	features	provided	by	the	TCP	load	balancer.

Case	study:	introducing	high	availability
in	CSN
With	the	increase	in	utilization	of	the	CSN,	it	was	decided	to	establish	additional
mechanisms	that	would	allow	a	more	resilient	day-to-day	usage	of	the	CSN.	The	system
was	performing	well	but	with	no	guarantees	in	respect	of	information	loss.	Since	event
propagation	is	considered	a	highly	important	concept	in	the	normal	operation	of	the	CSN,
message	loss	in	that	area	was	established	as	a	major	risk.	For	that	reason,	the	team	decided
to	apply	additional	mechanisms	for	minimizing	that	risk.	In	particular,	the	innovations	that
were	introduced	were:

Support	for	automatic	recovery	in	the	CSN	web	and	worker	nodes	and	the	browser
plugin.
Support	for	publisher	confirms	when	sending	messages	from	the	web	node.
Additional	remote	RabbitMQ	instance	for	the	purpose	of	disaster	recovery.	The	CSN
web	and	worker	nodes	and	the	browser	plugin	were	enhanced	to	take	the	remote
instance	into	consideration	upon	automatic	recovery	(by	extending	those	nodes	with
the	address	of	the	remote	instance).	The	remote	instance	defined	as	upstream	the
nodes	in	the	original	RabbitMQ	cluster,	along	with	a	policy	for	replication	of	all
queues	from	the	v_events	vhost:

Summary
In	this	chapter,	we	saw	how	to	extend	the	concept	of	RabbitMQ	clustering	with	mirrored
queues,	which	allow	us	to	establish	high	availability	at	the	level	of	the	broker.
Furthermore,	we	discussed	additional	mechanisms	for	improving	reliability	(in	terms	of
connecting	to	the	broker	and	processing	messages	such	as	AMQP	transactions),	publisher
confirms,	and	client	reconnections.

Exercises
1.	 How	is	high	availability	established?
2.	 How	do	mirrored	queues	work?
3.	 What	is	the	Federation	plugin	used	for?
4.	 How	does	the	Federation	plugin	behave	when	used	between	exchanges/queues	in

clusters?
5.	 What	is	the	Shovel	plugin	used	for?
6.	 How	can	you	ensure	a	message	has	been	processed	successfully	by	the	broker	upon

publishing?
7.	 How	can	you	establish	high	availability	in	terms	of	client	connectivity	to	a	RabbitMQ

cluster?

Chapter	6.	Integrations
So	far,	we	have	been	looking	at	what	features	does	RabbitMQ	provide	in	terms	of	fast	and
reliable	message	sending—from	message	patterns	and	broker	administration	to	clustering
and	high	availability.	In	this	chapter,	we	will	go	further	by	providing	an	overview	of	how
the	broker	integrates	with	other	systems	and	how	the	other	systems	integrate	with	the
broker.

The	following	topics	will	be	covered	in	the	chapter:

Spring	framework	integrations
Integration	with	ESBs
Integration	with	databases
RabbitMQ	integrations
RabbitMQ	deployment	options
Testing	RabbitMQ	applications

Types	of	integrations
Let’s	take	a	look	at	the	standard	setup	that	we	have	been	discussing	so	far	(including	a
producer,	consumer,	and	three-node	RabbitMQ	cluster):

If	we	consider	the	client	domain	(publisher/subscriber),	we	can	perform	the	following:

We	can	use	a	client	AMQP	library	written	in	any	programming	language	(thus
integrating	RabbitMQ	with	a	particular	programming	language).	We	are	already
using	the	out-of-the-box	RabbitMQ	Java	client.	As	RabbitMQ	supports	a	multitude
of	AMQP	clients,	you	can	use	one	that	best	suits	your	application	or	write	your	own
AMQP	client	in	your	programming	language	of	choice,	if	one	is	missing.
We	can	use	a	wrapper	library	written	on	top	of	a	client	library.	Many	applications	that
use	RabbitMQ	as	a	message	broker	are	deployed	as	part	of	a	web	or	dependency
injection	container.	For	this	reason,	there	are	wrappers	around	the	client	libraries	for
different	containers,	such	as	the	ones	provided	by	the	Spring	framework	and
implemented	on	top	of	the	RabbitMQ	Java	client	library	and	Spring	AMQP	library.

If	we	consider	the	RabbitMQ	domain	(the	RabbitMQ	cluster),	we	can	perform	the
following:

We	can	send	messages	via	other	protocols	such	as	STOMP,	MQTT,	or	HTTP.
We	can	send	messages	via	AMQP	from	an	ESB	(enterprise	service	bus)	such	as
Mule	ESB	or	WSO2	that	integrate	with	a	number	of	other	protocols.
We	can	persist	messages	by	subscribing	to	the	broker	directly	from	a	database	(either
relational	or	NoSQL)	using	the	utilities	provided	by	the	database	rather	than	a
separate	application	that	subscribes	to	the	broker	and	persists	to	the	database.	For
example,	this	could	be	a	PL/SQL	stored	procedure	that	subscribes	directly	to	the
message	broker	(in	case	of	an	Oracle	relational	database	management	system).

Spring	framework
Many	applications	that	are	deployed	along	with	a	dependency	injection	container	such	as
Spring	make	use	of	the	additional	utilities	provided	by	the	container	in	order	to	use	a
variety	of	features	out	of	the	box.	In	terms	of	RabbitMQ,	these	features	are	as	follows:

Spring	AMQP:	This	provides	you	with	an	abstraction	layer	and	core	library	on	top
of	the	AMQP	protocol.	The	Spring	RabbitMQ	library	uses	it	to	provide	utilities	for
interaction	with	the	RabbitMQ	message	broker.
Spring	Integration:	The	framework	provides	an	implementation	of	the	enterprise
integration	patterns	as	defined	by	Gregor	Hohpe	and	Bobby	Wolfe	in	their	book	on
this	topic.	As	such,	the	Spring	integration	framework	serves	the	purpose	of	providing
a	convenient	Spring-based	DSL	for	the	configuration	of	an	enterprise	integration	bus
that	enables	different	systems	to	communicate	with	each	other.	In	this	regard,	the
framework	provides	producer/consumer	adapters	for	RabbitMQ.
Spring	XD	(extreme	data):	The	framework	provides	capabilities	for	easier	handling
and	analytics	on	big	data	from	a	variety	of	sources—RabbitMQ	message	broker
being	one	of	them.

Spring	AMQP
The	Spring	AMQP	framework	along	with	the	more	concrete	Spring	RabbitMQ	support
that	builds	on	top	of	that	framework	provides	the	biggest	portion	of	RabbitMQ	in	the
Spring	framework.	There	are	three	main	building	blocks	behind	Spring	RabbitMQ:

The	RabbitTemplate	class	that	provides	a	convenient	utility	to	publish	messages	or
subscribe	to	a	RabbitMQ	broker
The	RabbitAdmin	class	that	provides	a	convenient	utility	to	create/remove
exchanges,	queues,	and	bindings
The	message	listener	containers	that	provide	a	convenient	mechanism	to	create
asynchronous	listeners	that	bind	to	a	RabbitMQ	message	queue

Each	of	these	can	be	used	either	directly	or	configured	via	a	Spring	XML	or	annotation-
based	configuration.	In	order	to	include	the	Spring	Rabbit	library	in	your	application,	you
need	to	add	the	following	Maven	dependency	to	the	pom.xml	file	of	your	project:

<dependency>

<groupId>org.springframework.amqp</groupId>

				<artifactId>spring-rabbit</artifactId>

				<version>1.4.5.RELEASE</version>

</dependency>

The	following	snippet	demonstrates	the	use	of	the	RabbitTemplate	class	to	send	a
message	to	a	queue	named	sample-queue	via	the	default	exchange:

CachingConnectionFactory	factory	=	null;

try	{

				factory	=	new	CachingConnectionFactory("localhost");

				RabbitTemplate	template	=	new	RabbitTemplate(factory);

				template.convertAndSend("",	"sample-queue",																	"sample-

queue	test	message!");

}	finally	{

				If(factory	!=	null)	{

								factory.destroy();

				}

}

Initially,	we	create	an	instance	of	the	CachingConnectionFactory	class	provided	by
Spring	RabbitMQ	that,	by	default,	caches	a	predefined	number	of	channels	(and	is	very
convenient	to	use	in	a	concurrent	environment),	but	the	cache	mode	can	be	set	to	cache
connections	rather	than	channels	and	the	cache	size	of	the	factory	can	be	changed	as	well.
We	can	specify	a	number	of	additional	properties	on	a	CachingConnectionFactory
instance	such	as	the	host	and	port	against	which	to	connect	(or	multiple	addresses,	in	case
of	a	RabbitMQ	cluster),	a	virtual	host,	username,	password,	or	even	a	different	thread	pool
implementation	(implementation	of	the	Java	ExecutorService,	Spring-based	or	a	custom
one)	used	by	the	factory	when	it	creates	connections/channels.	We	then	use
convertAndSend()	of	the	RabbitTemplate	class	to	send	a	message	by	specifying	an
exchange	and	routing	key.	In	the	final	block,	we	destroy	the	connection	factory.

The	following	example	demonstrates	the	use	of	the	RabbitAdmin	class	to	create	a	queue
called	sample-queue	and	bind	it	to	an	exchange	called	sample-topic-exchange	using	the
sample-key	binding	key:

CachingConnectionFactory	factory	=	new	

CachingConnectionFactory("localhost");

RabbitAdmin	admin	=	new	RabbitAdmin(factory);

Queue	queue	=	new	Queue("sample-queue");

admin.declareQueue(queue);

TopicExchange	exchange	=	new	TopicExchange("sample-topic-exchange");

admin.declareExchange(exchange);

admin.declareBinding(BindingBuilder.bind(queue).

to(exchange).with("sample-key"));

factory.destroy();

The	RabbitTemplate	and	RabbitAdmin	classes	are	convenient	utilities	that	allow	you	to
send/retrieve	messages	from	the	broker	and	create	broker	items.	If	you	want	to	listen
asynchronously	for	messages	sent	to	a	queue,	you	can	create	one	using	a	listener	container
as	follows:

CachingConnectionFactory	factory	=	new	

CachingConnectionFactory("localhost");

SimpleMessageListenerContainer	container	=	new	

SimpleMessageListenerContainer(factory);

Object	listener	=	new	Object()	{

public	void	handleMessage(String	message)	{

System.out.println("Message	received:	"	+	message);

				}

};

MessageListenerAdapter	adapter	=	new	MessageListenerAdapter(listener);

container.setMessageListener(adapter);

container.setQueueNames("sample-queue");

container.start();

First,	we	create	SimpleMessageListenerContainer	that	is	used	to	manage	the	listener’s
life	cycle;	it	allows	the	listener	to	bind	to	more	than	one	queue.	Then	we	create	an	instance
of	the	listener	by	supplying	the	handleMessage()	method;	we	can	also	use	an	instance	of
the	MessageListener	interface	from	the	Spring	AMQP	library	in	order	to	avoid	the	usage
of	MessageListenerAdapter	from	the	preceding	example.	After	we	have	set	the	listener
and	queue	names	on	the	listener	container	instance,	we	can	bind	the	listener
asynchronously	using	the	start()	method.

All	of	these	examples	demonstrate	the	use	of	the	utilities	provided	by	the	Spring
RabbitMQ	library	without	using	any	additional	Spring	configuration.

We	can	decouple	the	configuration	of	RabbitTemplate,	RabbitAdmin,	and	listener
container	instances	using	the	Spring	configuration.	The	additional	benefit	is	that	the
source	code	becomes	even	more	concise.	The	following	sample	Spring	XML
configuration	file	demonstrates	how	to	configure	the	Spring	RabbitMQ	utilities:

<beans	xmlns=http://www.springframework.org/schema/beans	

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"	

xmlns:rabbit=http://www.springframework.org/schema/rabbit

xsi:schemaLocation="http://www.springframework.org/schema/rabbit

http://www.springframework.org/schema/rabbit/spring-rabbit.xsd

http://www.springframework.org/schema/beans

http://www.springframework.org/schema/beans/spring-beans.xsd">

<rabbit:connection-factory	id="connectionFactory"	host="localhost"	/>

<rabbit:template	id="amqpTemplate"	connection-factory="connectionFactory"	

exchange=""	routing-key="sample-queue-spring"/>

<rabbit:admin	connection-factory="connectionFactory"	/>

<rabbit:queue	name="sample-queue-spring"	/>

<rabbit:topic-exchange	name="sample-spring-exchange">

<rabbit:bindings>

<rabbit:binding	queue="sample-queue-spring"																	

pattern="sample-key-spring"	/>

</rabbit:bindings>

</rabbit:topic-exchange>

<rabbit:listener-container

				connection-factory="connectionFactory">

				<rabbit:listener	ref="springListener"	method="receiveMessage"	queue-

names="sample-queue-spring"	/>

</rabbit:listener-container>

<bean	id="springListener"	class="ContainerListenerSpringExample"	/>

</beans>

We	first	declare	the	connection	factory	instance	and	then	use	it	to	create	a	RabbitTemplate
instance,	RabbitAdmin	instance,	and	listener	container.	The	RabbitTemplate	instance	is
configured	to	use	the	default	exchange	with	a	sample-queue-spring	routing	key	by
default.	On	the	creation	of	a	connection	to	the	broker,	a	topic	exchange	called	sample-
spring-exchange	will	be	defined.	A	new	asynchronous	listener	that	binds	to	the	sample-
queue-spring	queue	will	be	created.

Here	is	a	sample	usage	of	the	RabbitTemplate	class	using	the	preceding	configuration

(Note	that	the	asynchronous	listener	is	also	created	and	bound	upon	context
initialization.):

AbstractApplicationContext	context	=	new	

ClassPathXmlApplicationContext("configuration.xml");

RabbitTemplate	template	=	context.getBean(RabbitTemplate.class);

template.convertAndSend("Sample	Spring	test	message.");

context.destroy();

Spring	Integration
The	Spring	integration	framework	provides	support	for	RabbitMQ	by	means	of	proper
adapters	to	send	a	message	or	subscribe	to	a	queue.	In	order	to	use	the	Spring	integration
AMQP	adapters,	you	have	to	include	the	following	dependencies	in	the	build
configuration	of	your	Maven	project:

<dependency>

				<groupId>org.springframework.integration</groupId>

				<artifactId>spring-integration-core</artifactId>

				<version>4.0.4.RELEASE</version>

</dependency>

<dependency>

				<groupId>org.springframework.integration</groupId>

				<artifactId>spring-integration-amqp</artifactId>

				<version>4.0.4.RELEASE</version>

</dependency>

We	will	implement	the	following	simple	Spring	integration	message	bus:

First,	we	subscribe	to	a	queue	in	the	RabbitMQ	broker	using	a	Spring	integration	AMQP
inbound	channel	adapter.	The	inbound	channel	adapter	is	bound	to	a	Spring	integration
channel	that	routes	messages	to	a	Spring	integration	AMQP	outbound	channel	adapter
from	where	it	is	sent	to	a	RabbitMQ	message	broker.	(We	will	use	the	same	RabbitMQ
broker	as	the	one	to	which	the	inbound	channel	adapter	binds.)	Note	that	the	channel
works	with	a	common	representation	of	a	message—the	purpose	of	the	adapters	is	to
convert	that	representation	to/from	the	AMQP	representation	of	a	message.	The	following
Spring	configuration	describes	the	preceding	components	and	the	connection	between
them	using	the	test-queue	queue	as	a	source	queue	and	the	test-destination-queue	queue
as	a	destination	queue:

<?xml	version="1.0"	encoding="UTF-8"?>

<beans:beans

xmlns=http://www.springframework.org/schema/integration

xmlns:xsi=http://www.w3.org/2001/XMLSchema-instance

xmlns:beans=http://www.springframework.org/schema/beans

xmlns:amqp=http://www.springframework.org/schema/integration/amqp

xmlns:rabbit=http://www.springframework.org/schema/rabbit

xmlns:context=http://www.springframework.org/schema/context

xmlns:stream=http://www.springframework.org/schema/integration/streamxsi:sc

hemaLocation="http://www.springframework.org/schema/beanshttp://www.springf

ramework.org/schema/beans/spring-

beans.xsdhttp://www.springframework.org/schema/contexthttp://www.springfram

ework.org/schema/context/spring-context.xsd

http://www.springframework.org/schema/rabbit

http://www.springframework.org/schema/rabbit/spring-rabbit.xsd

http://www.springframework.org/schema/integration

http://www.springframework.org/schema/integration/spring-integration-

4.1.xsd

http://www.springframework.org/schema/integration/stream

http://www.springframework.org/schema/integration/stream/spring-

integration-stream-4.1.xsd

http://www.springframework.org/schema/integration/amqp

http://www.springframework.org/schema/integration/amqp/spring-integration-

amqp.xsd">

				<rabbit:connection-factory	id="connectionFactory"	host="localhost"	/>

				<channel	id="test-channel"	/>

				

				<rabbit:queue	name="test-queue"	/>

				<rabbit:queue	name="test-destination-queue"	/>

				<rabbit:template	id="amqpTemplate"	connection-

factory="connectionFactory"	exchange=""	routing-key="test-queue"	/>

				<rabbit:admin	connection-factory="connectionFactory"	/>

				

				<amqp:inbound-channel-adapter	channel="test-channel"	queue-names="test-

queue"	connection-factory="connectionFactory"	/>

				<amqp:outbound-channel-adapter	channel="test-channel"	exchange-name=""	

routing-key="test-destination-queue"	amqp-template="amqpTemplate"	/>

				<rabbit:connection-factory	id="connectionFactory"	host="localhost"	/>

</beans:beans>

The	following	example	demonstrates	the	use	of	the	preceding	configuration	to	send	a
message	to	the	test-queue	queue	that	is	delivered	via	the	Spring	integration	channel	to	the
test-destination-queue	queue:

AbstractApplicationContext	context	=	new	

ClassPathXmlApplicationContext("configuration-int.xml");

RabbitTemplate	template	=	context.getBean(RabbitTemplate.class);

template.convertAndSend("test	message…");

Integration	with	ESBs
Various	ESBs	also	provide	features	to	integrate	with	a	RabbitMQ	message	broker.	In	the
previous	example,	we	saw	how	to	use	Spring	integration	as	an	ESB	that	provides
RabbitMQ	adapters.	In	the	following	section,	we	will	take	a	look	at	the	Mule	and	WSO2
ESBs	that	also	provide	integration	with	RabbitMQ.

Mule	ESB
The	Mule	ESB	provides	you	with	a	runtime	and	development	environment	based	on	the
Eclipse	IDE	called	Anypoint	Studio	that	allows	you	to	create	integration	workflows
easily	using	either	a	graphical	editor	or	directly	from	the	XML	configuration	file	of	your
Mule	ESB	project.	The	AnypointStudio	comes	with	a	preinstalled	runtime	of	the	Mule
ESB	enterprise	edition	but	you	can	also	set	up	a	community	edition	of	MuleESB	with	the
development	studio.	The	first	step	is	to	download	the	trial	version	of	the	AnypointStudio
from	the	official	MuleSoft	website	and	install	it.	Start	the	studio	and	create	a	new	project
by	clicking	on	the	Create	a	Project	button:

Then	specify	the	name	and	Maven	settings	for	the	new	project:

Specify	the	location	and	JDK	version	of	your	project;	specify	an	already	installed	JDK	by
clicking	on	the	Configure	JREs	link,	and	finally,	click	on	the	Finish	button:

After	you	create	the	new	Mule	project,	you	will	notice	that	a	graphical	editor	appears,
where	you	can	specify	the	integration	flow	of	your	application	using	the	drag-and-drop
items	on	the	right-hand	side	of	the	editor.	You	can	see	a	number	of	preinstalled	connectors
on	the	right-hand	side.	However,	an	AMQP/RabbitMQ	connector	is	missing	and	must	be
installed	separately.	To	install	this,	navigate	to	Help	->	Install	New	Software	…	in	the
AnypointStudio;	select	Anypoint	Connectors	Update	Site	from	the	Work	With	drop
down;	type	in	the	Search	AMQP	and	select	Mule	AMQP	Transport,	as	shown	in	the
following	screenshot:

We	will	create	the	same	flow	that	we	created	with	Spring	integration	without	the	need	to
specify	a	channel.	(It	is	implicitly	represented	by	the	Mule	ESB.)	From	the	Endpoints
section,	drag	and	drop	an	AMQP-0-9	item	to	the	workspace.	Select	a	second	AMQP-0-9
item	and	drag-and-drop	it	in	the	Process	area	of	the	workspace,	next	to	the	first	item:

Double-click	on	the	flow	window	that	contains	the	two	items	and	change	the	name	to
rabbitmq-sample-flow.	Click	on	the	first	AMQP	endpoint	and	specify	the	following	(this
will	be	our	inbound	endpoint	that	will	subscribe	to	the	test-queue	queue):

Display	Name:	rabbitmq-inbound-endpoint
Queue	Name:	test-queue
Queue	Durable:	enabled
Advanced	->	Exchange	Patterns	->	One	Way:	default

You	need	to	specify	explicitly	on	the	queue-related	attributes	so	that	Mule	precreates	the
specified	queue	in	the	endpoint	in	case	it	is	missing.	In	the	preceding	case,	we	specify	that
the	test-queue	queue	is	durable	(but	we	can	explicitly	specify	queue	durability	as	false	in
the	Mule	XML	configuration	and	the	queue	will	still	be	created).

Click	on	the	second	AMQP	endpoint	and	specify	the	following	(this	will	be	our	outbound
endpoint	that	will	send	messages	to	the	test-destination-queue	queue):

Display	Name:	rabbitmq-outbound-endpoint
Queue	Name:	test-destination-queue
Routing	Key:	test-destination-queue
Queue	Durable:	enabled
Advanced	->	Exchange	Patterns	->	One	Way:	default

Apart	from	the	endpoints,	you	also	need	to	specify	an	AMQP	connector	configuration	in
your	Mule	configuration,	and	specify	it	for	both	endpoints	using	the	connector-ref
attribute	so	that	they	connect	to	the	designated	RabbitMQ	broker.	The	Mule	configuration
for	the	projects	is	the	following:

<?xml	version="1.0"	encoding="UTF-8"?>

<mule	xmlns:tracking="http://www.mulesoft.org/schema/mule/ee/tracking"	

xmlns:http="http://www.mulesoft.org/schema/mule/http"

xmlns:amqp="http://www.mulesoft.org/schema/mule/amqp"	

xmlns="http://www.mulesoft.org/schema/mule/core"	

xmlns:doc="http://www.mulesoft.org/schema/mule/documentation"

xmlns:spring="http://www.springframework.org/schema/beans"	version="EE-

3.7.0"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:schemaLocation="http://www.mulesoft.org/schema/mule/http	

http://www.mulesoft.org/schema/mule/http/3.1/mule-http.xsd

http://www.mulesoft.org/schema/mule/core	

http://www.mulesoft.org/schema/mule/core/3.1/mule.xsd

http://www.mulesoft.org/schema/mule/amqp	

http://www.mulesoft.org/schema/mule/amqp/3.1/mule-amqp.xsd

http://www.mulesoft.org/schema/mule/ee/tracking	

http://www.mulesoft.org/schema/mule/ee/tracking/3.1/mule-tracking-ee.xsd

http://www.springframework.org/schema/beans	

http://www.springframework.org/schema/beans/spring-beans-current.xsd">

			<amqp:connector	name="localhostAMQPConnector"	

activeDeclarationsOnly="true"	doc:name="AMQP-0-9	Connector"/>

				<flow	name="rabbitmq-sample-flow">

<amqp:inbound-endpoint	responseTimeout="10000"	doc:name="rabbitmq-inbound-

endpoint"	queueName="test-queue"	queueDurable="true"	connector-

ref="localhostAMQPConnector"/>

<amqp:outbound-endpoint	responseTimeout="10000"	doc:name="rabbitmq-

outbound-endpoint"	queueName="test-destination-queue"	routingKey="test-

destination-queue"	queueDurable="true"	connector-

ref="localhostAMQPConnector"/>

</flow>

</mule>

In	order	to	use	the	AMQP	transport,	you	need	to	provide	the	Mule	AMQP	transport	and
RabbitMQ	Java	client	on	your	classpath.	The	Maven	dependency	for	the	transport	library
is	as	follows:

<dependency>

				<groupId>org.mule.transports</groupId>

				<artifactId>mule-transport-amqp</artifactId>

				<version>3.3.0</version>

</dependency>

However,	Anypoint	studio	can	dynamically	deploy	the	AMQP	client	and	Mule	AMQP
transport	dependencies	to	your	Mule	ESB	at	runtime,	and	so,	you	need	to	copy	them
manually	to	the	runtime	libraries	in	the	following	path:

<anypoint_install_path>\plugins\org.mule.tooling.server.

<version>\mule\lib\mule

If	you	are	using	version	3.4.1	of	the	Mule	AMQP	transport	and	version	3.2.1	of	the	client,
copy	mule-transport-amqp-3.4.1.jar	and	amqp-client-3.2.1.jar	files	from	the	local
Maven	repository	to	that	directory.	If	you	don’t	do	this,	you	may	get	an	error	that	states
Mule	ESB	fails	to	find	a	namespace	handler	for	the	AMQP	transport	declarations	in	your
Mule	configuration.

Mule	ESB	uses	byte	array	representation	of	messages,	so	if	you	want	to	convert	the	byte
array	into	a	string,	you	can	either	use	a	proper	AMQP	transformer	and	register	it	in	the
Mule	runtime	or	convert	the	byte	array	manually	in	your	application.	To	test	your	setup,
you	can	send	a	test	message	to	the	test-queue	queue	using	the	RabbitTemplateExample
class	with	that	queue	and	bind	a	listener	such	as	the	one	specified	by	the
ContainerListenerExample	class	to	test-destination-queue.	However,	the
handleMessage()	method	should	be	refactored	a	little	bit	in	order	to	accept	a	byte	array	as
a	message:

public	void	handleMessage(Object	message)	{

				System.out.println("Message	received:	"	+	new	String((byte[])message));

}

WSO2
WSO2	is	an	open	source	ESB	that	is	used	by	a	number	of	enterprises	including	eBay.	It
also	provides	integration	with	the	AMQP	protocol.	There	is	also	an	Eclipse-based	IDE	for
WSO2	(WSO2	Developer	Studio)	to	develop	WSO2	applications.	Download	the	WSO2
distributable	that	contains	the	WSO2	ESB	along	with	an	administrative	web	interface	and
unzip	it	to	a	proper	location.	Navigate	to	the	bin	directory	and	execute	the	following
command	to	start	the	WSO2	message	broker	(assuming	that	we	are	running	a	Windows
OS):

wso2server.bat	--run

After	the	server	has	successfully	started,	you	should	be	able	to	open	the	administrative
web	from	the	https://localhost:9443	URL	and	log	in	with	the	admin/admin	default
credentials.	A	screen	similar	to	the	following	will	be	displayed:

The	WSO2	ESB	steps	on	the	WSO2	carbon	platform,	which	is	an	OSGi-based
middleware.	The	WSO2	carbon	platform	provides	support	for	the	provisioning	of
dependencies	(OSGi	bundles)	from	an	Equinox	p2	repository.	The	WSO2	RabbitMQ
AMQP	transport	is	also	provided	in	a	p2	repository	that	can	be	downloaded	locally	from
the	WSO2	website.	After	you	download	the	p2	repository	of	the	AMQP	transport	bundles
and	unzip	it,	navigate	to	Configure	->	Features	from	the	administrative	interface	and
specify	the	path	to	the	local	repository	along	with	a	proper	name	from	the	repository,	and
click	on	Add.	Then,	specify	the	newly	added	repository,	unselect	Group	features	by
category,	click	on	Find	Features,	specify	the	Axis2	Transport	RabbitMQ	AMQP
feature,	click	on	the	Install	button,	and	follow	the	steps	from	the	installation	process.	Add
the	following	to	the	listeners	configuration	in
<wso2_install_path>/repository/conf/axis2/axis2.xml	in	order	to	create	a
RabbitMQ	transport	listener	for	WSO2:

<transportReceiver	name="rabbitmq"

class="org.apache.axis2.transport.rabbitmq.RabbitMQListener">

<parameter	name="AMQPConnectionFactory"	locked="false">	<parameter	

name="rabbitmq.server.host.name"	locked="false">localhost</parameter>

<parameter	name="rabbitmq.server.port"	locked="false">5672</parameter>	

<parameter	name="rabbitmq.server.user.name"	

locked="false">guest</parameter>	

<parameter	name="rabbitmq.server.password"	locked="false">guest</parameter>

</parameter>

</transportReceiver>

The	locked	attribute	specifies	that	the	parameters	cannot	be	overridden	by	a	WSO2
service.	Add	the	following	to	configure	the	RabbitMQ	transport	sender	in	the	axis2.xml
configuration	file:

<transportSender	name="rabbitmq"	

class="org.apache.axis2.transport.rabbitmq.RabbitMQSender"/>

Apart	from	this,	the	ESB	runtime	may	not	need	to	load	the	RabbitMQ	transport	libraries
(even	though	they	have	been	installed	from	the	p2	repository),	and	so	you	may	need	to
copy	them	from	the	p2	repository	to	the
<wso2_install_path>\repository\components\lib	directory.	As	the	libraries	might	be
a	little	outdated	with	regard	to	the	version	of	RabbitMQ	that	you	are	using,	you	can	also
download	the	source	code	of	the	WSO2	transports	from	GitHub,	build	the	Maven	project
for	the	RabbitMQ	transport,	and	replace	the	old	version	in	the	preceding	directory.	You
need	to	make	sure	that	the	version	of	the	transport	library	works	with	your	version	of	the
RabbitMQ	broker.

After	you	have	installed	the	RabbitMQ	AMQP	transport	and	added	the	configuration	for
the	sender	and	receiver,	restart	the	WSO2	server	in	order	to	load	the	new	feature	along
with	the	configured	transports.

Now,	we	are	ready	to	configure	a	proxy	service	that	will	allow	us	to	transfer	messages
from	test-queue	to	test-destination-queue	using	the	WSO2	ESB.

First,	create	an	endpoint	that	will	be	used	by	the	RabbitMQ	transport	sender	by	navigating
to	Main	->	Endpoints	->	Add	Endpoint	->	Address	Endpoint:

Specify	the	following	settings:

Name:	rabbitmq_sender_endpoint
Address:	rab-bitmq:/rabbitmq_proxy_service?
rabbitmq.server.host.name=127.0.0.1	&	rab-bitmq.server.port=5672	&

rabbitmq.server.user.name=guest&rabbitmq.server.password=guest&rabbitmq.queue.name=test-

destination-queue

Click	on	the	Save	&	Close	button.	Click	on	the	Switch	Off	link	under	the	Action
menu	in	order	to	enable	the	endpoint.	The	address	uses	the	RabbitMQ	transport	that
we	defined	in	the	Apache	Axis2	configuration	along	with	the
rabbitmq_proxy_service	proxy	service	that	uses	the	specified	RabbitMQ
parameters	to	send	a	message	to	the	test-destination-queue	queue.	The	same
rabbitmq_proxy_service	service	will	be	used	to	retrieve	messages	from	the	test-
queue	queue,	and	if	the	two	queues	are	missing,	they	will	be	created	from	the
RabbitMQ	transport.	Create	the	proxy	service	by	clicking	on	Add	->	Proxy	Service	-
>	Custom	Proxy,	and	click	on	Switch	to	Source	View	in	order	to	provide	the
service	configuration	without	using	the	wizard:

<?xml	version="1.0"	encoding="UTF-8"?>

<proxy	xmlns="http://ws.apache.org/ns/synapse"

							name="rabbitmq_proxy_service"

							transports="rabbitmq"

							statistics="disable"

							trace="disable"

							startOnLoad="true">

			<target	endpoint="rabbitmq_sender_endpoint">

						<inSequence>

									<log	level="full"/>

									<property	name="OUT_ONLY"	value="true"/>

									<property	name="FORCE_SC_ACCEPTED"	value="true"	

scope="axis2"/>

						</inSequence>

			</target>

			<parameter	name="rabbitmq.queue.name">	test-queue</parameter>

			<parameter	name="rabbitmq.connection.factory">												

AMQPConnectionFactory</parameter>

			<description/>

</proxy>

The	proxy	uses	the	RabbitMQ	transport	in	order	to	subscribe	to	the	test-queue	queue	using
AMQPConnectionFactory	to	create	an	AMQP	connection.	The	inSequence	section
specifies	how	a	message	received	from	the	test-queue	queue	is	processed.	We	enable	full
logging	(that	also	prints	the	message	in	the	WSO2	console)	and	we	specify	that	we	do	not
expect	a	response	once	we	forward	the	message	to	an	endpoint	(using	the	OUT_ONLY
attribute).	FORCE_SC_ACCEPTED	is	used	to	indicate	that	the	ESB	must	send	an
acknowledgement	after	the	message	was	successfully	received.	We	also	provide	a
reference	to	the	rabbitmq_sender_endpoint	endpoint	so	that	received	messages	are	sent
using	the	RabbitMQ	transport	sender	to	this	endpoint.	Click	on	the	Save	button	in	order	to
save	and	deploy	the	proxy	service.	In	order	to	check	whether	your	setup	works	fine,	you
can	use	the	Java	client	library	or	Spring	framework	in	order	to	send	a	message	to	the	test-
queue	queue	and	subscribe	to	the	test-destination-queue	queue	as	shown	earlier.	As	the
WSO2	endpoint	is	exposed	as	an	Apache	Axis2	SOAP	web	service,	you	need	to	send	a
SOAP	message	to	the	RabbitMQ	broker	and	additionally	specify	the	content	type	as
text/xml	and	content	encoding	as	utf-8	along	with	a	SOAP_ACTION	message	header	that
specifies	the	SOAP	action	you	are	specifying	in	the	message.	The	following	snippet	uses
the	Java	client	library	in	order	to	create	an	AMQP	message	in	the	proper	format	to	be

handled	by	the	WSO2	proxy	service:

String	soapMessage	=	"<soapenv:Envelope	"	+	

"xmlns:soapenv=\"http://schemas.xmlsoap.org/soap/envelope/\">\n"	+	

<soapenv:Header/>\n"	+	<soapenv:Body>\n"	+	<p:test	

xmlns:p=\"http://test.service.sample.com\">	\n"	+	

<in>"	+	"sample	message"	+	"</in>\n"	+

</p:test>\n"	+	"</soapenv:Body>\n"	+	</soapenv:Envelope>";

BasicProperties.Builder	props		=	new	BasicProperties.Builder();

props.contentType("text/xml");

props.contentEncoding("utf-8");

Map<String,	Object>	headers	=	new	HashMap<String,	Object>();

headers.put("SOAP_ACTION",	"test");

props.headers(headers);

channel.basicPublish(DEFAULT_EXCHANGE,	QUEUE_NAME,	

props.build(),	message.getBytes());

In	case	you	don’t	want	to	format	and	parse	SOAP	messages	as	this	can	introduce
unnecessary	complexity	in	your	integration	scenario,	then	you	can	use	the	WSO2	message
broker	that	handles	AMQP	messages	and	integrates	with	the	WSO2	ESB	via	JMS.

Integration	with	databases
Most	relational	and	NoSQL	databases	provide	a	built-in	language	to	create	programs
directly	at	the	database	level.	Whether	this	is	PL/SQL	or	Java	for	the	Oracle	database,
T/SQL	for	the	MSSQL	server,	or	JavaScript	for	MongoDB,	most	of	them	can	leverage	the
use	of	the	client	utilities	provided	by	RabbitMQ	in	order	to	establish	a	direct	connection	to
the	message	broker	and	persist	data	from	AMQP	messages.	In	many	cases,	it	might	be
easier	and	more	proper	to	use	a	database	API	along	with	a	RabbitMQ	client	library	written
in	the	same	language	via	a	proper	application	running	outside	the	database.	In	this	section,
we	will	look	at	how	to	integrate	the	RabbitMQ	broker	with	several	widely	used	databases.

Oracle	RDBMS
If	you	decide	to	use	PL/SQL,	you	will	have	to	supply	your	own	PL/SQL	AMQP	client
implementation,	which	can	turn	out	to	be	a	lot	of	work	unless	you	manage	to	find	a
publicly	available	implementation.	(At	the	time	of	writing	this,	no	such	free	or	commercial
distribution	is	available.)	As	the	Oracle	database	provides	support	for	multiple	languages,
we	can	use	Java	stored	procedures	in	the	database.	In	order	to	create	a	publisher	or
subscriber	as	a	stored	procedure,	we	can	use	the	following	procedure:

Load	the	RabbitMQ	Java	client	library	in	the	database
Load	the	Java	stored	procedures	to	publish/subscribe	(static	Java	methods)
Define	PL/SQL	procedures	that	call	the	loaded	Java	stored	procedures

We	will	use	Oracle	database	12c.	The	loadjava	command-line	utility	supplied	by	the
Oracle	database	allows	us	to	load	Java	classes,	source	files,	or	resource	files	in	a	database
schema.	We	can	use	the	utility	to	load	the	RabbitMQ	Java	client	library	along	with	the
additional	required	libraries	using	the	utility	as	follows	(assuming	that	we	are	retrieving
the	libraries	from	the	local	Maven	repository	in	a	Windows	operating	system):

cd	%userprofile%/.m2

loadjava	-u	c##demo	-resolve	-resolver	"((*	C##DEMO)	(*	PUBLIC))"	

repository\log4j\log4j\1.2.16\log4j-1.2.16.jar

loadjava	-u	c##demo	-resolve	-resolver	"((*	C##DEMO)	(*	PUBLIC))"	

repository\commons-logging\commons-logging\1.2\commons-logging-1.2.jar

loadjava	-u	c##demo	-resolve	-resolver	"((*	C##DEMO)	(*	PUBLIC))"	

repository\org\slf4j\slf4j-api\1.6.1\slf4j-api-1.6.1.jar

loadjava	-u	c##demo	-resolve	-resolver	"((*	C##DEMO)	(*	PUBLIC))"	

repository\org\slf4j\slf4j-log4j12\1.6.1\slf4j-log4j12-1.6.1.jar

loadjava	-u	c##demo	-resolve	-resolver	"((*	C##DEMO)	(*	PUBLIC))"	

repository\com\rabbitmq\amqp-client\3.4.1\amqp-client-3.4.1.jar

We	used	the	resolve	option	in	order	to	try	resolving	the	loaded	Java	classes	from	the
specified	JAR	files.	In	case	there	is	a	resolution	failure,	a	console	output	will	provide
information	on	the	resolution	error.	In	case	there	are	missing	classes	during	the	loading	of
libraries,	you	must	find	and	load	the	libraries	that	contain	these	classes	first.	We	are	also
specifying	resolver,	which	serves	as	CLASSPATH	to	resolve	dependencies	from	database
schemas.	In	this	particular	case,	we	are	using	the	C##DEMO	user	schema	and	the	PUBLIC
schema,	which	contains	the	core	Java	classes.

Navigate	to	the	directory	of	your	compiled	Java	classes	created	in	Chapter	2,	Design
Patterns	wi	th	RabbitMQ,	and	load	them	using	the	loadjava	utility:

loadjava	-u	c##demo	-resolve	-resolver	"((*	C##DEMO)	(*	PUBLIC))"	

Sender.class

loadjava	-u	c##demo	-resolve	-resolver	"((*	C##DEMO)	(*	PUBLIC))"	

DefaultExchangeSenderDemo.class

loadjava	-u	c##demo	-resolve	-resolver	"((*	C##DEMO)	(*	PUBLIC))"	

CompetingReceiver.class

loadjava	-u	c##demo	-resolve	-resolver	"((*	C##DEMO)	(*	PUBLIC))"	

CompetingReceiverDemo*.class

Note	the	*	operator	after	the	name	of	the	CompetingReceiverDemo	class.	This	will	also
load	the	inner	classes	defined	in	the	CompetingReceiverDemo	class.

Now,	you	can	bind	the	static	methods	from	the	sender	and	receiver	demo	classes	to	the
PL/SQL	stored	procedures	using	a	tool	such	as	SQL*Plus	or	SQLDeveloper:

CREATE	OT	REPLACE	PROCEDURE	RABBITMQ_SENDER	AS	

	LANGUAGE	JAVA	NAME	

'org.packt.rabbitmq.book.samples.chapter2.DefaultExchangeSenderDemo.sendToD

efaultExchange()';

	

CREATE	OT	REPLACE	PROCEDURE	RABBITMQ_RECEIVER	AS	

	LANGUAGE	JAVA	NAME	

'org.packt.rabbitmq.book.samples.chapter2.CompetingReceiverDemo.main(java.l

ang.String[])';

To	test	the	stored	procedures,	you	can	first	enable	DBMS_OUTPUT.	In	SQLDeveloper,	you
can	do	this	from	the	Dbms	Output	view	or	use	the	SET	SERVEROUTPUT	ON	command	in
SQL*Plus.	In	order	to	enable	the	mapping	of	System.out	and	logger	output	to
DBMS_OUTPUT,	invoke	the	set_output()	stored	procedure	with	a	buffer	size	of	2,000	bytes
as	follows:

EXECUTE	DBMS_JAVA.SET_OUTPUT(2000);

To	test	your	RabbitMQ	sender	stored	procedure,	execute	the	following:

EXECUTE	RABBITMQ_SENDER;

To	test	your	RabbitMQ	receiver	stored	procedure,	execute	the	following	and	send	some
test	messages	to	the	event_queue	queue	used	by	the	sender	and	receiver:

EXECUTE	RABBITMQ_RECEIVER;

You	can	observe	the	loaded	Java	classes	from	the	current	user	schema	using	the	following
query:

SELECT	*	FROM	USER_OBJECTS	WHERE	object_type	LIKE	'%JAVA%';

In	case	any	of	the	loaded	Java	classes	fails	to	resolve	(in	case	we	were	not	using	the
resolve	option	with	the	loadjava	utility),	then	our	class	would	be	marked	as	INVALID	in
the	Status	column.	If	this	happens,	you	can	try	to	reload	the	proper	libraries	by	first
dropping	them	(using	the	dropjava	utility	with	the	same	parameters)	and	then	loading
them	again	using	the	loadjava	utility.

MongoDB
MongoDB	is	a	document	store	that	stores	data	hierarchically	in	a	JSON	format	(compiled
by	the	database	to	a	binary	JSON	format	called	BSON).	MongoDB	is	used	in	a	variety	of
scenarios	where	performance	and	eventual	consistency	are	favored	with	regard	to	the
transactional	consistency	provided	by	relational	databases	such	as	Oracle.	In	order	to
integrate	RabbitMQ	with	MongoDB,	it	may	be	more	appropriate	to	use	the	NodeJS
MongoDB	driver	along	with	a	NodeJS	AMQP	client	implementation	to	establish	the
integration	using	server-side	JavaScript	or	creating	a	Java	application	that	uses	the
MongoDB	Java	driver	along	with	the	RabbitMQ	Java	library	either	directly	or	via	the
Spring	framework	(using	Spring	Data	for	MongoDB	and	Spring	AMQP	for	RabbitMQ).

Hadoop
To	integrate	with	a	Hadoop	cluster,	you	can	use	a	Java	application	that	serves	as	a
mediator	between	the	Hadoop	cluster	and	RabbitMQ	instance/cluster.	Another	option	is	to
use	the	Apache	Flume	project,	which	provides	a	mechanism	to	aggregate	data	from
multiple	sources	in	a	Hadoop	database.	Apache	Flume	has	an	AMQP	plugin	that	can	be
used	to	create	a	RabbitMQ	source	from	which	to	retrieve	data	for	further	processing	and
storage	in	a	Hadoop	cluster.

RabbitMQ	integrations
RabbitMQ	provides	adapters	for	various	other	types	of	protocol	in	the	form	of	RabbitMQ
plugins.	Such	protocols	include	STOMP,	MQTT,	HTTP,	Websocket,	and	others.	Each
adapter	plugin	follows	a	common	usage	pattern:

The	login	information	is	passed	in	terms	of	the	capabilities	provided	by	the	particular
protocol	to	the	RabbitMQ	broker	for	authentication
SSL	support	is	provided	for	most	of	the	protocol	adapter	plugins
Adapter	plugins	expose	TCP	ports	on	which	they	accept	the	connection	via	the
protocol	that	they	implement,	for	example,	by	default,	the	STOMP	adapter	is
configured	to	use	61613	(TCP)	and	61614	(SSL),	and	for	MQTT,	these	are	1883
(TCP)	and	8883	(SSL)
Adapter	plugins	use	a	particular	syntax	to	specify	the	RabbitMQ	endpoint	elements
such	as	exchanges,	queues,	and	bindings	that	are	used	when	protocol	messages	are
translated	to	particular	operations	on	the	broker	(such	as	subscriptions	on	the	sending
of	messages	to	the	broker)

You	can	install	protocol	adapter	plugins	with	the	rabbitmq_plugins	utility.	For	example,
the	STOMP	plugin	comes	with	the	RabbitMQ	broker	installation	and	must	be	enabled	with
the	following	command:

rabbitmq-plugins.bat	enable	rabbitmq-stomp

In	case	you	want	to	use	RabbitMQ	directly	from	the	browser	using	Websockets,	you	can
additionally	install	the	rabbitmq-web-stomp	plugin,	which	is	a	bridge	between	a	SockJS
Websocket	server	and	the	rabbitmq-stomp	plugin	to	communicate	with	the	broker	via
Websockets.	There	is	also	a	separate	plugin	called	rabbitmq-web-stomp-examples	that
demonstrates	the	use	of	rabbitmq-web-stomp	using	a	web	browser.

RabbitMQ	deployment	options
So	far,	we	have	been	manually	configuring	our	RabbitMQ	instances.	However,	it’s
common	for	many	production	systems	to	use	automatic	provisioning	and	management	of
the	configuration	of	components,	including	the	message	broker.	There	are	a	number	of
ways	in	which	we	can	deploy	and	manage	a	RabbitMQ	broker	instance:

Installing	and	configuring	the	broker	manually	in	a	virtual	machine	that	is	used	to
distribute	it
Automatically	provisioning	in	a	virtual	container	hosted	directly	on	the	operating
system	using	a	tool	such	as	Docker,	which	provides	integration	with	RabbitMQ
Deploying	or	using	managed	RabbitMQ	instances	in	the	cloud;	many	platform-as-a-
service	cloud	providers	enable	the	use	of	such	instances	in	the	form	of	messaging-as-
a-service	or	RabbitMQ-as-a-service	(such	as	the	Google	Cloud	and	CloudAMQP
platforms)
Automatically	provisioning	a	target	operating	system	using	a	recipe	written	in	a
domain-specific	language	with	a	provisioning	tool	such	as	Puppet	or	Chef	(both	of
them	provide	integration	with	RabbitMQ	with	some	limitations	with	regard	to	the
target	operating	systems)
Using	a	combination	of	the	preceding	points;	automatically	creating	a	VirtualBox	(or
other)	virtual	machine	or	virtual	container	using	Docker,	and	automatically
provisioning	the	RabbitMQ	instances	along	with	their	configurations	using	Puppet	or
Chef—this	can	be	achieved	with	a	tool	such	as	Vagrant

In	this	section,	we	will	look	at	some	of	the	most	widely	used	tools	that	allow	us	to	deploy
and	configure	the	message	broker	using	any	of	the	preceding	mechanisms.

Puppet
Download	the	open	source	version	of	the	Puppet	tool	for	your	operating	system	(we	will
be	using	the	one	for	Windows)	from	the	Puppetlabs	site	and	install	it:

puppet	module	install	puppetlabs-rabbitmq

After	you	install	Puppet,	you	can	install	the	RabbitMQ	module	using	the	following
command.	Note	that	the	RabbitMQ	Puppet	plugin	does	not	support	a	Windows-based
configuration	at	the	time	of	writing	this	book;	you	can	try	it	with	a	Debian-based
distribution	such	as	RedHat	or	supply	your	own	Puppet	class	that	does	the	provisioning	on
Windows.

Create	a	file	named	rabbitmq.pp	with	the	following	contents	that	specifies	the
configuration	of	your	RabbitMQ	instance:

class	{	'rabbitmq':

				port	=>	'5666',

				service_manage	=>	true,

				environment_variables	=>	{

								'RABBITMQ_NODENAME'	=>	'RabbitMQ_Puppet',

								'RABBITMQ_SERVICENAME'	=>	'RabbitMQ_Puppet'

				}

}

To	provision	the	instance	on	the	same	local	machine,	use	the	following	command:

puppet	apply	rabbitmq.pp

Note	that	in	a	production	scenario,	you	will	typically	use	a	master/client	Puppet	setup
rather	than	local	provisioning.

Docker
A	Docker	file	contains	the	instructions	to	build	a	docker	image.	A	RabbitMQ	broker
instance	is	started	in	a	separate	process	running	from	a	Docker	image.	The	image	runs	the
RabbitMQ	instance	in	a	Docker	container.	As	Docker	contains	Linux-specific	commands,
you	must	run	the	image	in	a	Linux	environment	(for	example,	Ubuntu).	The	steps	required
in	order	to	run	the	image	are	as	follows:

Download	and	install	Docker.	If	you	are	using	Ubuntu,	you	can	install	it	using	the
following	command:

wget	-qO-	https://get.docker.com/	|	sh

Download	and	build	the	Docker	Ubuntu	container,	and	then	download	and	build	the
RabbitMQ	Docker	image	from	the	Docker	Hub	repository	using	the	following
commands:

sudo	docker	build	-t="dockerfile/ubuntu"	github.com/dockerfile/ubuntu

sudo	docker	build	-t="dockerfile/rabbitmq"	

github.com/dockerfile/rabbitmq

Run	the	RabbitMQ	server	from	the	image	using	the	following	command:

sudo	docker	run	-d	-p	5672:5672	-p	15672:15672	dockerfile/rabbitmq

The	–p	argument	specifies	port	redirection.	In	the	preceding	case,	RabbitMQ	ports	5672
and	15672	from	the	docker	image	are	mapped	to	ports	5672	and	15672	from	the	host
machine.	The	steps	defined	in	the	RabbitMQ	image	are	as	follows:

1.	 Specify	the	Ubuntu	Docker	container	that	will	run	the	RabbitMQ	message	broker.
2.	 Install	the	RabbitMQ	message	broker.
3.	 Enable	the	management	plugin.
4.	 Define	/data/mnesia	and	/data/log	as	the	directories	for	the	RabbitMQ	database

and	log	files.
5.	 Start	the	RabbitMQ	broker	instance.
6.	 Expose	the	RabbitMQ	broker	instance	and	management	plugin	ports	(5672	and

15672)	from	the	container.

Vagrant
In	case	you	decide	to	create	a	VirtualBox	VM	with	RabbitMQ	using	a	Vagrant	script,	then
perform	the	following	steps:

1.	 Download	and	install	Vagrant.
2.	 Download	and	install	VirtualBox.
3.	 Create	a	puppet	file	that	provisions	the	RabbitMQ	message	broker	and	enables	the

management	plugin.
4.	 Create	a	Vagrantfile	that	creates	the	VirtualBox	VM	and	runs	the	Puppet	script.
5.	 Fire	up	the	VM	using	the	following	command:

vagrant	up

Testing	RabbitMQ	applications
Testing	is	essential	to	ensure	that	a	system	works	as	expected.	In	this	sense,	the	message
broker	is	no	exception.	In	the	next	sections,	we	will	cover	very	briefly	the	different	aspects
of	testing	applications	that	use	RabbitMQ	as	a	message	broker.

Unit	testing	of	RabbitMQ	applications
You	can	test	applications	that	publish/subscribe	to	a	RabbitMQ	broker	by	isolating	client
API	calls	to	the	broker	using	a	mocking	framework	such	as	JMock	or	Mockito	in	case	of
Java.	The	mocking	library	to	use	depends	on	the	language	that	you	are	using	to	interact
with	the	broker,	but,	in	general,	you	would	mock	calls	to	the	broker	as	you	would	with	any
other	type	of	external	system	that	is	used	by	your	application.

Integration	testing	of	RabbitMQ	applications
In	case	you	are	using	only	AMQP	0-9-1	features	in	your	communication	with	the
RabbitMQ	broker,	you	can	use	an	embedded	AMQP	server.	Apache	Qpid	provides	an
embedded	version	that	you	can	use	in	your	integration	tests.	In	order	to	use	it,	you	can
include	the	following	Maven	dependency:

<dependency>

				<groupId>org.apache.qpid</groupId>

				<artifactId>qpid-broker</artifactId>

				<version>0.14</version>

				<scope>test</scope>

</dependency>

In	order	to	create,	configure,	and	start	a	Qpid	broker	instance,	you	can	use	the	following
code:

BrokerOptions	configuration	=	new	BrokerOptions("config.json");

Broker	broker	=	new	Broker();

broker.startup(configuration);

The	config.json	file	specifies	the	Qpid	configuration.	After	you	start	the	AMQP	server,
you	can	use	a	proper	test	configuration	to	redirect	your	AMQP	client	communication	to
the	embedded	AMQP	server	in	your	test	framework.	In	case	you	are	using	RabbitMQ-
specific	extensions	such	as	publisher	confirms,	you	may	want	to	start	up	RabbitMQ	as	an
external	process	in	your	test	suite.

Case	study:	Integrating	CSN	with
external	systems
As	the	workload	of	CSN	continued	to	increase	and	the	CSN	team	expanded	as	well,	a
number	of	new	enhancements	to	the	system	were	introduced:

The	CSN	web	and	worker	nodes	were	refactored	to	use	Spring	AMQP	instead	of	the
Java	client	library	for	communication	with	the	broker,	which	improved	maintenance
of	the	nodes.
The	browser	plugin	used	to	accept	chat	messages	was	removed	in	favor	of	SockJS
websockets	used	along	with	the	newly	provisioned	rabbitmq-web-stomp	plugin.	This
further	improved	the	maintenance	of	the	system.
A	separate	application	was	used	to	store	data	from	the	broker	to	the	Oracle	database,
but	it	was	decommissioned	in	favor	of	the	Java	stored	procedures	used	to	retrieve
messages	from	the	broker	for	the	purposes	of	backup.
More	integration	tests	to	test	the	communication	with	the	message	broker	were
introduced	as	part	of	the	system	building.
Puppet	scripts	to	deploy	the	separate	components	of	the	system,	including	the
RabbitMQ	broker,	were	created.

Summary
In	this	chapter,	we	covered	a	lot	of	areas	related	to	the	integration	of	the	RabbitMQ
message	broker	with	other	types	of	system.	The	Spring	AMQP	and	Spring	integration
frameworks	were	introduced	as	layers	of	abstraction	on	top	of	the	RabbitMQ	Java	client
libraries.	Demonstrations	on	the	use	of	RabbitMQ	with	the	Mule	and	WSO2	ESBs	were
introduced	following	the	pattern	that	we	implemented	using	the	Spring	integration
framework.	We	discussed	how	to	integrate	different	types	of	database	directly	with	the
message	broker	and	what	types	of	adapter	for	other	protocols	the	RabbitMQ	broker
provides.	In	the	end,	we	saw	how	different	provisioning	tools	provide	support	for
RabbitMQ	so	that	it	can	be	deployed	in	a	purely	automated	manner	and	how	to	test
applications	using	the	broker.

Exercises
1.	 How	does	the	Spring	framework	integrate	with	RabbitMQ?
2.	 How	does	RabbitMQ	integrate	with	the	Mule	and	WSO2	ESBs?
3.	 How	can	you	create	an	Oracle	stored	procedure	to	publish/subscribe	to	a	RabbitMQ

broker?
4.	 How	does	RabbitMQ	provide	support	with	other	messaging	protocols?
5.	 How	can	you	provide	integration	of	RabbitMQ	with	MySQL	and	Cassandra?
6.	 What	deployment	options	do	you	have	for	RabbitMQ?
7.	 How	can	you	test	applications	that	communicate	with	a	RabbitMQ	message	broker?

Chapter	7.	Performance	Tuning	and
Monitoring
Performance	is	a	critical	requirement	for	many	applications.	Each	component	in	the
communication	flow	between	the	components	in	a	system	impacts	performance,	including
the	message	broker.	In	this	chapter,	we	will	focus	our	attention	on	optimizing	and
monitoring	the	performance	of	the	RabbitMQ	message	broker	and	using	various
benchmarks	to	compare	RabbitMQ	against	other	brokers.

The	following	topics	will	be	covered	in	this	chapter:

Performance	tuning	of	RabbitMQ	instances
Monitoring	RabbitMQ	instances
Comparing	RabbitMQ	with	other	message	brokers

Performance	tuning	of	RabbitMQ
instances
Tuning	the	performance	of	a	system	is,	in	many	cases,	a	nontrivial	process	that	is
conducted	gradually	over	time.	This	also	applies	to	the	message	broker	itself.	The
RabbitMQ	team	has	done	a	pretty	good	job	in	optimizing	the	various	bits	and	pieces	of	the
broker	over	time.	One	such	example	is	topic	exchanges.	Version	2.4.0	significantly
improved	the	performance	of	message	routing	from	topic	exchanges	using	a	tire	data
structure.	Another	one	is	the	significant	improvement	in	performance	predictability	in
version	2.8.1	during	the	heavy	loading	of	the	message	broker	due	to	improved	memory
management.	However,	there	are	many	scenarios	that	require	the	tuning	of	the	broker
based	on	the	usage	patterns	and	properties	of	the	system,	as	we	shall	see	in	this	chapter.

To	understand	better	how	to	tune	the	performance	of	our	broker,	let’s	take	a	look	at	the
standard	three-tier	broker	setup:

We	can	consider	performance	tuning	at	each	level	of	message	passing	as	follows:

The	sender	may	decide	to	optimize	the	way	it	establishes	the	connection	to	the	broker
(the	number	of	channels	created,	usage	of	multiple	threads	for	the	creation	of
channels,	and	sending	of	messages),	the	size	of	the	messages	(whether	the
compression	or	batching	of	messages	is	proper),	whether	to	use	AMQP	transactions
or	publisher	confirms	(which	may	hit	message	performance	in	terms	of	reliable
delivery—reliability	typically	always	implies	a	trade-off	for	performance),	and
message	TTL	(time	to	live).
The	network	link	between	the	sender/consumer	and	broker	might	be	an	issue.	While
in	systems	where	RabbitMQ	is	a	component	that	provides	loosely-coupled

communication	between	the	system	components	running	on	the	same	server	or	server
cluster,	network	links	may	not	be	an	issue,	but	if	we	use	RabbitMQ	to	process
messages	being	sent	from	a	system	on	a	remote	network,	this	may	be	an	issue.	In	this
case,	it	is	a	shared	responsibility	between	the	AMQP	client	and	server	to	tune	the	way
channels	are	created	in	a	connection	or	the	size	of	messages	processed	in	the	channel.
One	possible	solution	would	be	to	establish	a	dedicated	line	between	the
sender/consumer	and	broker.	Network	tuning	may	improve	the	communication	link;
network	optimizations	are	out	of	scope	for	this	chapter.
Broker	optimizations	are	for	focus	points	when	we	discuss	performance	tuning	in
terms	of	RabbitMQ.	This	involves	a	number	of	aspects	such	as	memory	management,
CPU	utilization	(in	terms	of	multiple	cores),	storage	of	persistent	and	transient
messages	on	the	disk,	faster	execution	of	Erlang	code	from	the	RabbitMQ	broker,
impact	of	node	synchronization	and	queue	mirroring	in	a	cluster,	per	queue	message
TTL	customization,	queue	creation/deletion	rates,	message	sending/consumption
rates,	and	complexity	of	binding	key	patterns.
The	consumer	may	use	similar	optimization	techniques	as	the	sender	with	the
addition	of	broker	subscription	management	(such	as	preventing	excessive
subscriptions	to	the	broker).

To	check	the	performance	load,	you	need	to	prepare	a	maximum-sized	volume	of
messages	of	the	expected	size	to	send	for	the	processing	and	measuring	of	latency	and
throughput.	Let’s	kick	off	our	performance	tuning	guide	by	taking	into	account	these
considerations.

Memory	usage
Persistent	messages	are	always	written	to	the	disk	once	they	arrive	on	a	queue,	while
transient	messages	will	be	written	to	the	disk	under	high	memory	consumption	(based	on
the	memory	limit	specified	for	use	by	the	RabbitMQ	broker	instance).	Each	disk	operation
slows	down	the	message	processing.	By	default,	RabbitMQ	is	configured	to	use	up	to	40%
of	the	physical	RAM	on	the	machine	on	which	an	instance	runs;	although	this	is	not
guaranteed	as	it	only	implies	a	threshold	at	which	publishers	are	notified	to	slow	down
message	sending	(throttled).	Be	careful	to	set	the	parameter	properly	in	case	multiple
RabbitMQ	instances	are	running	on	the	same	physical/virtual	machine.	Assuming	that	you
have	a	single	instance	running	per	workstation,	you	can	increase	the	parameter	so	that
RabbitMQ	may	consume	more	memory	for	its	queues.	This	can	be	done	either	in	the
RabbitMQ	configuration	file	or	using	the	rabbitmqctl	utility	as	follows:

rabbitmqctl	set_vm_memory_high_watermark	0.7

You	should	see	a	message	that	tells	you	whether	the	memory	threshold	has	been	set
successfully:

Setting	memory	threshold	on	rabbit@DOMAIN	to	0.7…

In	this	case,	we	are	assuming	that	a	single	instance	is	running	on	the	workstation	and	there
are	no	other	applications	running	on	the	same	server.	In	case	you	run	a	cluster	of	three
nodes	on	the	same	machine,	you	may	want	to	set	the	parameter	to	each	of	them	to
something	less	than	0.33	(for	example,	0.25):

rabbitmqctl	set_vm_memory_high_watermark	0.25

rabbitmqctl	-n	instance1	set_vm_memory_high_watermark	0.25

rabbitmqctl	-n	instance2	set_vm_memory_high_watermark	0.25

Before	RabbitMQ	hits	the	memory	limit	in	order	to	start	the	persistence	of	messages	on
the	disk	(persistent	messages	are	already	stored	on	the	disk	as	they	are	persisted	upon
arrival	in	the	queue,	but	they	need	to	be	removed	from	memory	anyway),	saving	to	the
disk	starts	earlier	(by	default,	when	50%	of	the	maximum	memory	limit	is	reached).	To
change	this	threshold	(let’s	say,	to	80%),	you	need	to	set	the
vm_memory_high_watermark_paging_ratio	parameter	per	each	RabbitMQ	node	as
follows:

rabbitmqctl	eval	"application:set_env(rabbit,	

vm_memory_high_watermark_paging_ratio,	0.8).	"

You	can	also	set	the	parameter	in	the	RabbitMQ	configuration	file	before	the	node	is
started.	The	memory	consumption	in	the	broker	is	affected	by	the	number	of	client
connections,	number	of	queues	and	messages	in	each	of	them,	enabled	plugins	and	the
amount	of	memory	that	they	use,	in-memory	Mnesia	metadata	and	message	store	index,
and	the	additional	amount	of	memory	used	by	the	Erlang	VM.

Faster	runtime	execution
Erlang	supports	the	HiPE	(High	Performance	Erlang)	compilation	for	some	platforms
that	improves	the	performance	of	message	processing	by	the	RabbitMQ	broker.	(At	the
time	of	writing,	this	was	still	in	the	experimental	phase.)	The	HiPe	compiler	is	pretty
similar	in	comparison	to	a	server	Java	virtual	machine—more	native	optimizations	are
done	on	the	startup	of	the	server	Java	application	resulting	in	an	improved	runtime
execution.	In	many	scenarios,	the	start	up	time	of	the	RabbitMQ	broker	may	not	be	critical
so	HiPe	compilation	may	be	a	good	optimization.	Behind	the	scenes,	the	Erlang	VM
precompiles	the	RabbitMQ	modules	by	passing	the	[native]	parameter	to	the	compiler	that
triggers	the	HiPE	compilation.	On	some	platforms,	however	(such	as	Windows	at	the	time
of	writing),	the	HiPE	compilation	is	not	supported.	In	order	to	enable	the	HiPE
compilation	for	RabbitMQ,	you	can	set	the	hipe_compile	parameter	to	true	in	the
RabbitMQ	configuration	file.	In	case	the	HiPE	compilation	is	not	enabled	for	the
particular	platform	where	the	RabbitMQ	instances	are	running,	you	will	get	a	message	in
the	instance	logs	that	the	HiPE	compilation	is	not	performed.

Message	size
Smaller	messages	can	improve	the	latency	(time	to	process	a	single	message)	and
throughput	(message	rate	per	period	of	time).	To	reduce	the	message	size,	you	can	use	a
proper	format	for	the	marshalling	and	unmarshalling	of	messages,	for	example,	JSON
instead	of	XML.	Try	to	avoid	additional	information	as	part	of	the	message	in	order	to
reduce	the	size	of	the	message	further.

The	maximum	frame	size	of	messages
A	frame	is	a	basic	unit	of	data	transfer	in	the	AMQP	protocol.	There	are	different	types	of
AMQP	frames	used	to	establish	the	AMQP	protocol	life	cycle.	The	transfer	frame	is
particularly	used	to	transfer	the	message	data	between	the	RabbitMQ	broker	and	clients.
The	size	of	the	message	frame	can	affect	the	latency	and	throughout.	Typically,	this	value
should	not	be	changed	but	in	case	you	have	messages	bigger	than	128	MB	(the	default
maximum	frame	size),	then	message	fragmentation	occurs—the	message	is	split	into
multiple	frames.	The	more	fragmentation	there	is,	the	less	throughout	there	is	for	the
messages.	The	minimum	size	of	frames	in	RabbitMQ	is	4	KB.	Although	the	smaller
maximum	size	of	frames	may	degrade	the	throughput,	it	may	improve	the	latency,	but	you
need	to	measure	the	performance	of	your	setup.	To	change	the	maximum	frame	size,	you
can	set	the	frame_max	parameter	to	a	particular	value	(in	bytes)	in	the	RabbitMQ
configuration	file.

The	maximum	number	of	channels
The	number	of	channels	created	from	a	connection	to	the	RabbitMQ	server	can	affect	the
performance.	An	application	can	achieve	better	throughput	if	more	channels	are	used,	and
the	application	uses	a	channel-per-thread	approach	to	send	messages.	However,	the	more
channels	there	are	in	the	RabbitMQ	message	broker,	the	more	memory	is	consumed.	To
set	the	maximum	number	of	channels	that	an	application	can	use,	use	the	channel_max
parameter	in	the	RabbitMQ	configuration	file.	The	default	value	is	zero	meaning	that	there
is	no	limit	for	the	number	of	channels	that	an	application	can	create.

Connection	heartbeats
Connection	heartbeats	provide	a	mechanism	to	detect	a	dead	TCP	connection	from	the
client	(sender/consumer)	and	RabbitMQ	broker.	The	mechanism	works	by	setting	a
heartbeat	timeout	from	the	RabbitMQ	client.	(By	default,	it	is	set	to	580	seconds,	which
can	be	a	pretty	big	timeout	depending	on	your	messaging	use	cases.)	The	RabbitMQ
server	sends	a	heartbeat	frame	to	the	client	and	waits	for	a	response.	If	either	side	of	the
connection	detects	that	more	than	two	heartbeats	have	been	missed,	then	a	TCP
connection	is	detected	that	can	be	typically	handled	by	the	client	by	catching	a	proper
exception	(MissedHeartbeatException	is	thrown	by	the	RabbitMQ	Java	client).	A
heartbeat	is	sent	every	timeout/2	period	of	time.	The	heartbeat	timeout	can	be	changed	by
either	setting	the	heartbeat	parameter	in	the	RabbitMQ	configuration	file	or	using	a	proper
method	in	the	RabbitMQ	client	library	to	set	a	value	for	the	heartbeat	period	before
creating	a	connection	to	the	broker.	Make	sure	that	the	heartbeat	is	set	to	at	least	a	few
seconds	as	the	performance	can	degrade	(especially	in	cases	when	the	broker	performs
intense	message	processing).

Clustering	and	high	availability
Clustering	can	affect	the	performance	of	the	broker	in	terms	of	several	different	aspects.
Heartbeats	cannot	be	sent	only	between	the	clients	and	RabbitMQ	broker	but	also	between
nodes	in	a	RabbitMQ	cluster	in	order	to	detect	node	availability.	The	net_ticktime
parameter	specifies	the	frequency	of	sending	heartbeat	messages	between	nodes	in	the
cluster.	The	default	value	is	60	seconds,	which	means	that	a	heartbeat	is	being	sent
roughly	every	15	seconds	(four	times	per	net_ticktime	period).	Decreasing	this	value	to
just	a	few	seconds	in	a	large	cluster	can	have	a	slight	effect	on	the	performance	of	the
cluster.	This	applies	to	cluster_keepalive_interval	that	is	used	to	send	keepalive
messages	from	a	node	to	all	the	other	nodes	in	the	cluster	and	indicates	that	the	node	is	up
(the	default	is	10,000	milliseconds).	A	much	larger	value	than	60	seconds	imposes	a	risk
of	detecting	a	dead	node	too	late	in	time.

Another	factor	could	be	the	rate	of	exchange/queue	creation	and	deletion	in	a	cluster.	As
every	queue	creates	a	new	Erlang	process	and	the	information	about	the	queue	must	be
synchronized	with	all	the	nodes	in	the	cluster,	this	can	consume	additional	resources	and
decrease	the	performance.	Imagine	that	you	have	a	large	number	of	queues	and	exchanges
being	created	in	a	cluster,	each	one	of	them	creates	a	separate	Erlang	process	on	the	cluster
node	on	which	it	is	created,	and	information	about	each	queue	must	propagate	to	each
node	in	the	cluster	using	Erlang	message	passing.	Each	cluster	node	needs	to	persist	the
information	about	the	exchanges,	queues,	and	other	items	in	the	cluster	on	the	disk
(depending	on	the	type	of	node).	Now,	imagine	that	you	have	a	large	cluster	and	each
queue	being	created/deleted	is	mirrored	over	all	the	nodes	in	the	cluster,	then	you	have	a
recipe	for	performance	issues.

The	following	is	a	short	list	of	guidelines	considering	the	performance	in	terms	of
clustering	and	high	availability:

Try	to	minimize	the	number	of	exchanges	and	queues	created	and	deleted	in	a
RabbitMQ	cluster.
If	you	have	a	large	enough	number	of	disk	nodes	and	you	want	to	scale,	you	can	add
RAM	nodes	instead	of	DISK	nodes	in	order	to	improve	the	performance	in	terms	of
exchange/queue	creation.
Mirror	a	queue	on	several	other	nodes	in	the	cluster	rather	than	all	the	nodes	in	the
cluster.	The	replication	factor	depends	on	your	reliability	constraints,	but	replicating
the	queue	contents	over	all	the	nodes	in	the	cluster	can	hit	the	performance	seriously,
especially	when	you	have	a	large	RabbitMQ	cluster.
Choose	carefully	which	queues	need	to	be	mirrored	and	avoid	the	mirroring	of
queues	that	need	to	imply	message	reliability.
Last	but	not	least,	try	to	distribute	the	queues	evenly	among	the	nodes	in	a	cluster.

QoS	prefetching
If	you	have	been	sending	messages	to	a	queue	and	one	or	a	few	consumers	subscribe	to
this	queue,	the	consumers	may	try	to	fetch	and	buffer	a	large	number	of	messages	for
consumption	before	sending	any	acknowledgments,	which	can	actually	drain	resources	on
the	consumer	node	and	slow	it	down.	To	prevent	this,	you	can	use	the	basic.qos
operation	during	the	channel	creation	(when	creating	the	channel	from	the	client)	to
specify	the	maximum	number	of	messages	that	can	be	prefetched	(buffered)	by	a
consumer	before	they	are	acknowledged.	For	example,	using	the	Java	client,	you	can	set
the	prefetch	count	to	50	per	channel	consumer	using	the	following	line	of	code:

channel.basicQos(50);

A	channel	can	have	a	prefetch	count	limit	regardless	of	the	number	of	consumers:

channel.basicQos(100,	true);

The	general	recommendation	is	to	set	a	higher	prefetch	count	(for	example,	40	or	50)	in
order	to	improve	the	performance.	However,	a	large	prefetch	count	can	prevent	the	event
distribution	of	messages	among	the	consumers	and	so	the	value	must	be	tuned	with
caution.

Message	persistence
Message	persistence	in	RabbitMQ	also	affects	the	processing	time	for	messages.	We
already	discussed	that	transient	and	persistent	messages	need	to	be	persisted	on	the	disk	by
RabbitMQ.	The	persistence	layer	in	RabbitMQ	provides	a	message	store	to	store	messages
on	the	disk	and	also	a	queue	index	to	keep	information	about	the	location	of	a	message	in
a	queue	and	additional	information	(for	example,	whether	the	message	has	been
acknowledged	or	not)	in	memory.	When	under	memory	pressure,	the	queue	index	may
still	preserve	small	messages	in-memory	and	flush	only	large	messages	to	the	message
store.	The	default	size	of	messages	that	RabbitMQ	tries	to	keep	in-memory	is	4	kilobytes
and	is	specified	by	the	queue_index_embed_msgs_below	parameter,	which	can	be
modified	in	the	RabbitMQ	configuration	file.	Setting	a	larger	value	of	the	parameter	can
allow	you	to	store	more	messages	in-memory,	thus	reducing	IO	operations.	However,	as
each	queue	index	points	to	a	segment	file	held	in-memory	that	can	store	16,	384,
increasing	the	value	of	the	queue_index_embed_msgs_below	parameter	even	slightly	may
increase	the	memory	consumption	drastically	on	the	broker	with	regard	to	improved
performance.	Another	way	that	the	performance	might	be	affected	based	on	your	scenario
would	be	using	a	custom	backing	store	that	allows	you	to	store	messages	in	a	manner
different	from	the	default	backing	store	that	writes	them	to	the	disk.	This	can	either
improve	or	decrease	the	performance	of	your	message	broker.	In	Chapter	10,	Internals	we
will	demonstrate	how	to	write	a	RabbitMQ	plugin	that	uses	a	custom	database	as	a
message	store	for	RabbitMQ.

For	more	information	about	message	persistence	and	backing	stores	used	in	RabbitMQ,
you	can	review	the	following	posts	from	the	RabbitMQ	documentation:

Check	this	link	for	persistence	configuration:	https://www.rabbitmq.com/persistence-
conf.html
RabbitMQ	backing	stores:	http://www.rabbitmq.com/blog/2011/01/20/rabbitmq-
backing-stores-databases-and-disks/

https://www.rabbitmq.com/persistence-conf.html
http://www.rabbitmq.com/blog/2011/01/20/rabbitmq-backing-stores-databases-and-disks/

Mnesia	transaction	logs
The	Mnesia	database	used	by	RabbitMQ	supports	the	atomicity	of	operations	via
transactions.	Each	transaction	log	is	stored	in	the	memory	before	being	flushed	to	the	disk
(in	the	database	itself)	and	this	is	performed	periodically	by	Mnesia.	This	can	affect	the
performance	due	to	the	number	of	disk	writes.	To	reduce	disk	writes,	you	can	increase	the
size	of	the	transaction	log	entries	kept	by	Mnesia	in-memory	by	setting	the
dump_log_write_threshold	parameter	in	the	configuration	file	(default	value	is	100).

Acknowledgements,	transactions	and	publisher
confirms
In	case	you	release	the	reliability	constraints,	you	can	improve	the	performance	by
avoiding	the	usage	of	message	acknowledgements,	AMQP	transactions,	and	publisher
confirms.	In	case	this	is	not	acceptable,	you	can	at	least	release	some	constraints.	For
publishers,	you	can	use	publisher	confirms	for	a	batch	of	messages.	For	consumers,	you
can	send	a	single	acknowledgment	(using	the	basic.ack	AMQL	command)	for	multiple
messages	by	specifying	a	multiple	flag	set	to	true	and	delivery_tag	set	to	0	rather	than
sending	an	acknowledgement	for	each	message	separately.	Prefer	publisher	confirms
instead	of	AMQP	transactions	for	much	better	performance.

Message	routing
The	performance	can	be	hit	not	only	by	the	complexity	of	the	binding	key,	but	also	by	the
type	of	exchange	that	you	use.	Topic	exchanges	are	slower	than	direct	or	fanout
exchanges,	and	a	headers	exchange	can	be	slower	than	a	direct	exchange	that	is	dependent
on	the	number	of	message	keys	used	to	determine	where	a	message	will	be	routed	by	the
headers	exchange.	A	headers	exchange	can	be	slower	than	a	topic	exchange.	In	case	both
types	of	exchanges	are	an	option	for	your	messaging	scenario,	make	sure	that	you	measure
the	performance	using	both	types	of	exchanges.

Queue	creation/deletion
We	already	discussed	that	queue	creation	and	deletion	might	be	one	of	the	factors	that
affects	the	performance	in	terms	of	synchronization	between	nodes	in	a	cluster.	There	are
other	queue	parameters	that	can	affect	the	performance	(both	running	a	single	node	and
cluster).	Queues	can	be	created	with	the	auto-delete	flag	set	to	true.	For	example,	using
the	Java	client	and	an	already	created	channel,	you	can	declare	sample_queue	as	auto-
delete:

channel.queueDeclare("sample_queue",	false,	false,	true,	null);

If	the	queue	does	not	have	any	consumers,	it	is	never	deleted.	However,	after	the	already
existing	subscribers	are	removed	(either	unsubscribed	from	the	queue	or	dropped	due	to	a
connection	failure),	then	the	queue	is	automatically	deleted	and	must	be	created	again.	If
you	have	a	large	number	of	such	queues,	then	intensive	queue	creation	and	deletion	can
affect	message	processing.	You	can	also	achieve	the	same	effect	by	setting	a	rather	small
value	for	the	queue	TTL	(Time-to-live),	fro	example,	just	a	few	milliseconds.	In	this	case,
after	there	are	no	consumers	and	no	operations	to	retrieve	a	message	from	the	queue	have
been	performed	for	the	specified	TTL	period	of	time,	then	the	queue	is	dropped.	The
following	example	sets	a	TTL	of	just	five	milliseconds	on	the	sample_queue	queue	when
it	is	declared	using	the	x-expires	parameter.	Note	that	you	can	set	it	as	a	policy	for	all	the
queues	using	the	rabbitmqctl	utility	as	well;	refer	to	the	RabbitMQ	documentation.

Map<String,	Object>	args	=	new	HashMap<String,	Object>();

args.put("x-expires",	5).

channel.queueDeclare("sample_queue",	false,	false,	false,	args)

Queue	message	TTL
In	order	to	avoid	the	saturation	of	a	queue,	which	can	slow	down	the	processing	of
subsequent	messages	and	increase	the	risk	of	overconsumption	when	one	or	more
consumers	are	present	as	we	already	saw	in	QoS	prefetching,	we	can	set	a	per-queue
message	TTL.	The	following	example	sets	a	message	TTL	for	the	sample_queue	queue
using	the	x-message-ttl	parameter	set	to	two	minutes:

Map<String,	Object>	args	=	new	HashMap<String,	Object>();

args.put("x-message-ttl",	120000).

channel.queueDeclare("sample_queue",	false,	false,	false,	args);

You	can	also	set	a	per-message	TTL	but	this	will	not	solve	the	problem	with	queue
saturation	as	messages	stay	in	the	queue	even	after	their	TTL	has	expired	and	are	dropped
when	they	reach	the	top	of	the	queue	(just	before	being	consumed).

Alarms
Alarms	are	triggered	by	the	RabbitMQ	broker	when	memory	or	disk	size	limits	are
exceeded.	We	already	saw	how	to	configure	memory	usage	using
set_vm_memory_high_watermark.	This	parameter	also	specifies	when	producer	throttling
(intentional	slowing	down	of	message	sending)	takes	place.	Producer	connection	can	also
be	blocked	entirely	in	case	a	memory	goes	critically	high;	the	management	UI	shows	this
condition	in	the	Connections	tab	for	the	blocked	connections.	Disk	size	can	also	be	an
issue	for	the	performance.	By	default,	RabbitMQ	requires	at	least	50	MB	of	free	disk
space	on	the	location	of	the	RabbitMQ	message	store.	If	this	threshold	is	hit,	the	throttling
of	the	producers	and	connection	blocking	starts	taking	place.	A	general	recommendation
from	the	RabbitMQ	documentation	is	to	set	the	minimum	free	disk	size	to	the	amount	of
memory	installed	on	the	machine.	To	do	this,	you	can	set	the	disk_free_limit	parameter
in	the	RabbitMQ	configuration	file.	You	can	also	set	a	value	relative	to	the	amount	of
memory	on	the	machine	by	setting	disk_free_limit	to	{mem_relative,	1.0}.	You
should,	however,	check	the	RabbitMQ	log	files	on	the	particular	node	to	make	sure	that
RabbitMQ	has	managed	to	detect	the	size	of	the	memory	on	the	machine	properly.	For
example,	on	an	8	GB	machine	with	a	default	setting	of	40%	for	the	maximum	memory
limit	for	use	by	the	broker,	you	can	see	something	similar	to	the	following:

Memory	limit	set	to	3241MB	of	8104MB	total.

You	can	also	use	the	rabbitmqctl	utility	to	check	the	current	setting	of	the
disk_free_limit	and	set_vm_memory_high_watermark	parameters:

rabbitmqctl	status

This	outputs	a	lot	of	additional	information	such	as	the	number	of	used	file	descriptors,
used	Erlang	processes,	and	so	on:

{vm_memory_high_watermark,0.4},

	{vm_memory_limit,3399178649},

	{disk_free_limit,50000000},

	{disk_free,87735959552},

	{file_descriptors,

					[{total_limit,8092},{total_used,4},{sockets_limit,7280},

{sockets_used,2}]},{processes,[{limit,1048576},{used,201}]},

If	a	memory	or	disk	alarm	has	been	raised,	this	will	be	displayed	as	part	of	the	preceding
output;	if	no	alarms	have	been	triggered,	the	parameter	is	an	empty	list:

{alarms,[]}

Now,	you	can	see	that	when	a	memory	or	disk	alarm	triggers,	the	performance	can	slow
down	drastically.	So,	apart	from	a	decent	amount	of	memory	and	large	enough	limit	of
maximum	memory	for	use	by	the	broker,	you	also	need	a	decent	amount	of	disk	space	to
store	transient	and	persistent	messages	along	with	a	proper	setting	of	the	minimum	disk
free	space	threshold	taken	into	consideration	by	the	message	broker.

Network	tuning
The	RabbitMQ	documentation	mentions	several	network	improvements	that	can	increase
the	message	throughput	with	the	most	significant	one	being	the	TCP	buffer	size.	The
operating	system	typically	allocates	memory	automatically	for	a	TCP	connection	buffer,
but	you	can	explicitly	specify	the	size	of	the	TCP	buffer	used	by	RabbitMQ	connections
using	the	RabbitMQ	configuration.	Another	factor	is	Nagle’s	algorithm	that	provides	you
with	more	efficient	handling	of	really	small	TCP	packets.	However,	the	algorithm	can
typically	be	disabled	in	case	you	don’t	send	small-sized	TCP	packets	as	this	can	even
decrease	the	performance.	The	following	configuration	of	the	tcp_listen_options
parameter	in	the	RabbitMQ	configuration	sets	the	TCP	buffers	for	the	publisher/consumer
connections	to	256	KB	and	disables	the	Nagle’s	algorithm	explicitly	(it	is	disabled	by
default	in	the	later	versions	of	RabbitMQ	clients	but	can	be	enabled	when	creating	a
connection	from	the	client).	For	example,	ConnectionFactory	in	the	Java	client	uses	a
SocketConfigurator	instance	to	configure	the	TCP	socket	to	connect	to	the	broker	and
disables	the	algorithm	by	default	on	the	socket	with	socket.setTcpNoDelay(true):

		{nodelay,			true}		

		{sndbuf,				262144},

		{recbuf,				262144}

In	case	you	have	a	large	number	of	connections,	you	can	set	this	value	to	a	smaller	value
and	also	increase	the	number	of	file	handles	used	by	the	RabbitMQ	instance.	To	do	this,
you	can	use	the	ulimit	command	in	Linux	before	starting	up	your	Rabbit	instance.	The
following	example	sets	the	maximum	open	files	handle	to	65536:

ulimit	-n	65536

Another	tuning	option	suggested	by	the	RabbitMQ	documentation	is	the	size	of	the	Erlang
thread	pool	used	to	handle	IO	operations.	A	general	recommendation	is	to	use	at	least	12
threads	per	core.	To	set	a	value,	you	can	set	the	following	environment	variable	prior	to
starting	the	broker	(in	this	example,	we	set	the	value	to	96	for	an	eight-core	machine):

RABBITMQ_SERVER_ADDITIONAL_ERL_ARGS="+A	96"

However,	you	don’t	have	any	guarantees	that	increasing	the	value	will	improve	the
throughput;	you	need	to	do	the	proper	measurements.

Client	tuning
You	can	improve	the	publisher/consumer	performance	in	terms	of	message	publishing	or
message	consumption	using	more	threads	to	create	channels	to	the	message	broker.	In
terms	of	consumers,	you	must	be	careful	when	you	share	a	channel	among	multiple
threads	(each	using	a	separate	set	of	queues)	and	you	have	QoS	enabled	for	the	shared
channels.	This	can	introduce	unpredictable	behavior	among	the	consumers.	Another	case
is	when	you	have	multiple	subscriptions	from	different	threads	and	you	need	to
acknowledge	multiple	messages	at	once,	this	requires	proper	coordination	among
consumer	threads,	which	will	increase	the	complexity	of	your	consumer.

Performance	testing
We	already	discussed	a	variety	of	tuning	options	and	we	can	use	this	knowledge	to	create
a	proper	strategy	for	the	performance	tuning	of	our	RabbitMQ	instance/cluster.	The
process	can	be	divided	roughly	into	two	phases	executed	iteratively:

Perform	a	RabbitMQ	optimization	as	suggested	in	the	previous	sections,	such	as
changing	a	configuration	parameter,	policy,	or	a	routing	pattern,	reducing	the
message	size,	or	increasing	system	resources	such	as	RAM	or	disk	space	(along	with
tuning	of	the	proper	RabbitMQ	parameters).
Measure	the	performance	of	your	broker’s	setup	and	see	if	the	performance
improves.	Always	consider	conducting	performance	tests	on	the	maximum
performance	limits	in	non-peak	hours	even	with	the	risk	of	crashing	your	system.

An	ideal	scenario	would	be	if	you	have	a	test	environment	that	mimics	your	production
environment	as	closely	as	possible,	and	you	can	measure	the	performance	over	this	setup
and	apply	settings	to	the	real	environment	without	disrupting	users	or,	even	better,	have	a
load	balancer	that	would	allow	you	to	measure	and	tune	the	performance	on	only	one
node/cluster	while	the	other	nodes/clusters	continue	to	operate	normally.	Unfortunately,
this	is	not	always	the	case,	so	you	may	need	to	do	performance	measurements	and	load
testing	directly	on	your	production	environment—better	finding	a	bottleneck	sooner	than
discovering	it	later	the	hard	way.	When	conducting	performance	testing,	you	can	consider
the	following	basic	factors	and	do	proper	combinations	on	any	of	them	(based	on	your	use
cases):

The	size	of	messages
The	number	of	messages
The	type	of	messages	(transient/persistent)
The	number	of	connections
The	number	of	channels
The	number	of	producers	and	consumers
The	ratio	of	the	number	of	producers	and	consumers
The	number	of	pre-existing	messages	in	a	queue	or	set	of	queues

Typically,	you	try	to	use	a	tool	that	suits	your	own	needs	in	terms	of	performance	testing
or	use	an	already	existing	one.	We	will	first	briefly	cover	the	PerfTest	Java	utility	that
comes	with	the	RabbitMQ	Java	client	and	see	how	to	use	it	in	order	to	conduct
performance	measurements	of	our	RabbitMQ	message	broker	setup.	Then,	we	will	see
how	to	build	our	own	tool	on	top	of	PerfTest	in	order	to	execute	performance	tests	against
our	current	message	broker	setup	in	a	loosely	coupled	manner	(independent	of	the
message	broker	implementation)	and	see	later	how	to	extend	this	tool	with	support	for
additional	message	brokers.

You	can	download	the	RabbitMQ	Java	client	by	cloning	the	rabbitmq-codegen	and
rabbitmq-java-client	GitHub	repository.	You	also	need	to	install	Python	2.x	and	the
latest	version	of	Ant	in	order	to	build	the	Java	client	(Python	3.x	is	not	supported	at	the
time	of	writing	this	book).	To	download	and	build	the	project	after	you	have	installed

Python	and	Ant,	execute	the	following:

git	clone	https://github.com/rabbitmq/rabbitmq-codegen

git	clone	https://github.com/rabbitmq/rabbitmq-java-client

cd	rabbitmq-java-client

ant	dist

You	can	then	either	include	the	rabbitmq-java-VERSION	JAR	in	the	build	path	of	your
project	(and	use	it	with	a	testing	library	such	as	JUnit	or	TestNG	to	build	your
performance	test	suite	or	build	a	custom	tool	on	top	of	it)	or	execute	the	PerfTest	utility
directly	from	the	command	line	and	observe	statistics.	The	following	example	shows	the
available	options	for	the	PerfTest	utility	in	Windows	(in	a	Linux	distribution,	you	can	use
the	runjava.sh	script	alternatively):

cd	build/dist

runjava.sh	com.rabbitmq.examples.PerfTest	–help

As	you	can	see,	it	takes	into	account	many	of	the	factors	that	can	affect	the	performance
and	we	already	covered	this	in	this	section.	In	addition,	it	allows	you	to	set	different
criteria	to	conduct	performance	measurements	including	the	prefilling	of	queues	with
messages.	It	lacks	features	for	the	testing	of	the	performance	in	a	cluster,	such	as	setting
up	mirroring	policies	or	precreating	multiple	queues	with	proper	distribution	over	the
cluster	nodes.	However,	you	can	easily	build	your	own	tool	on	top	of	PerfTest	that	does
that	for	you.	Let’s	assume	that	we	have	our	three-node	RabbitMQ	local	cluster	up	and
running.	The	tool	performs	the	following	functions:

It	starts	up	a	number	of	consumers	in	separate	consumer	threads;	only	one	consumer
is	started	by	default
It	starts	up	a	number	of	producers	in	separate	producer	threads;	only	one	producer	is
started	by	default
It	starts	sending	messages	from	the	producers	and	consuming	them	from	the
consumers
It	displays	the	collected	statistics	for	the	time	period	(starting	with	one	second)	and
the	number	of	sent	and	consumed	messages	for	this	period	along	with	the	minimum,
average,	and	maximum	latency	for	a	message

Before	running	the	tool,	you	must	take	into	account	several	important	facts:

If	you	specify	the	number	of	messages	to	the	publisher,	be	sure	to	specify	the	same	or
smaller	number	of	messages	to	be	consumed	from	the	consumers;	otherwise,	the	tool
will	hang	and	will	not	display	any	statistics	(at	least	one	consumer	will	still	be
waiting	for	messages).	For	example,	if	you	have	one	producer	and	you	want	to	send
10,000	messages	to	two	consumers,	you	must	specify	a	value	of	50,000	or	less	for	the
consumer	message	count.
If	you	specify	the	number	of	messages	to	the	producer,	be	sure	to	specify	a	large
enough	amount	of	messages	(that	will	require	more	than	a	second	of	processing)	in
order	to	get	accurate	statistics;	for	a	small	amount	of	messages,	PerfTest	will	not	give
you	accurate	statistics.

The	following	example	runs	the	tool	with	auto-acknowledgment	by	sending	messages

from	a	single	producer	and	binding	a	single	consumer:

cd	build/dist

runjava.bat	com.rabbitmq.examples.PerfTest	-a

We	can	observe	the	following	result:

starting	consumer	#0

starting	producer	#0

time:	1.000s,	sent:	23959	msg/s,	received:	20884	msg/s,	min/avg/max	

latency:	210

/65998/93740	microseconds

time:	2.000s,	sent:	51274	msg/s,	received:	51371	msg/s,	min/avg/max	

latency:	495

19/59427/94140	microseconds

time:	3.000s,	sent:	53224	msg/s,	received:	52846	msg/s,	min/avg/max	

latency:	487

12/57278/68175	microseconds

time:	4.000s,	sent:	53228	msg/s,	received:	53752	msg/s,	min/avg/max	

latency:	477

22/56663/65392	microseconds

time:	5.000s,	sent:	53878	msg/s,	received:	53533	msg/s,	min/avg/max	

latency:	487

26/57483/70630	microseconds

…

You	can	see	that	after	the	first	second,	we	produce	and	consume	roughly	about	52,000
messages	per	second	with	auto-acknowledgement	enabled.	Now,	let’s	execute	the	same
test	with	the	acknowledgment	of	each	message	from	the	consumer:

runjava.bat	com.rabbitmq.examples.PerfTest

We	can	observe	the	following	result:

starting	consumer	#0

starting	producer	#0

time:	1.000s,	sent:	15088	msg/s,	received:	11151	msg/s,	min/avg/max	

latency:	262

6/133696/214058	microseconds

time:	2.001s,	sent:	25932	msg/s,	received:	23126	msg/s,	min/avg/max	

latency:	137

341/213911/272298	microseconds

time:	3.001s,	sent:	26605	msg/s,	received:	22065	msg/s,	min/avg/max	

latency:	249

500/333672/455356	microseconds

time:	4.002s,	sent:	22690	msg/s,	received:	19948	msg/s,	min/avg/max	

latency:	444

164/570170/643165	microseconds

time:	5.002s,	sent:	24013	msg/s,	received:	20410	msg/s,	min/avg/max	

latency:	562

357/654099/717019	microseconds

…

You	can	see	now	that	the	performance	drops	more	than	twice	(roughly	about	21,000
messages	per	second)	with	acknowledgments	from	the	consumer,	which	is	a	significant
performance	hit.	Let’s	also	make	messages	persistent	before	running	the	performance

measurement:

runjava.bat	com.rabbitmq.examples.PerfTest	-f	persistent

We	can	observe	the	following	result:

starting	consumer	#0

starting	producer	#0

time:	1.004s,	sent:	11297	msg/s,	received:	6623	msg/s,	min/avg/max	latency:	

3168

/227397/373579	microseconds

time:	2.006s,	sent:	15388	msg/s,	received:	11577	msg/s,	min/avg/max	

latency:	338

389/456810/586714	microseconds

time:	3.006s,	sent:	13493	msg/s,	received:	10476	msg/s,	min/avg/max	

latency:	570

519/711663/886369	microseconds

time:	4.006s,	sent:	12850	msg/s,	received:	9844	msg/s,	min/avg/max	latency:	

8203

60/1052631/1172428	microseconds

time:	5.010s,	sent:	14719	msg/s,	received:	11384	msg/s,	min/avg/max	

latency:	113

1484/1183177/1235015	microseconds

This	is	even	worse:	about	10,000	messages	per	second	when	message	persistence	takes
place.	You	can	specify	further	options	such	as	publisher	confirms,	number	of
consumers/producers,	messages,	and	others	depending	on	your	setup	and	messaging
requirements.

The	following	example	allows	you	to	predict	what	would	be	the	relative	time	to	produce
and	consume	1,000,000	messages	of	size	4	KB	using	a	single	producer	and	consumer
without	acknowledgments:

runjava.bat	com.rabbitmq.examples.PerfTest	-a	-C	1000000	-D	1000000	-s	4096

On	the	sample	three-node	RabbitMQ	cluster,	it	took	about	20	seconds	to	process	all	the
messages.

Monitoring	of	RabbitMQ	instances
We	have	been	discussing	various	performance	tuning	tips	that	would	allow	us	to	create	a
more	scalable	broker	setup.	However,	in	order	to	be	able	to	observe	how	our	setup
behaves	in	various	scenarios,	it	is	not	sufficient	to	do	only	partial	performance
measurements	using	PerfTest,	a	custom	performance	tool,	or	even	a	third-party
performance-testing	solution.	In	a	production	environment,	we	would	typically	want	to
have	a	real-time	monitoring	solution	that	would	allow	us	to	observe	how	our	broker
behaves	at	any	point	in	time	enabling	us	to	take	measures	as	fast	as	possible	when
something	goes	wrong	with	our	RabbitMQ	instances.

The	RabbitMQ	management	plugin	provides	you	with	a	good	real-time	overview	of	the
resource	utilization	of	the	instances	of	a	cluster	and	the	message	rates	per	queue	or
exchange.	However,	we	may	want	to	have	a	central	monitoring	infrastructure	that
monitors	all	the	parts	of	our	infrastructure,	including	the	message	broker.	Moreover,	we
may	want	to	make	use	of	advanced	features	provided	by	a	typical	monitoring	solution
such	as	the	ability	to	receive	notifications	(e-mail,	SMS,	and	so	on)	when	something
wrong	happens	with	the	broker	such	as	a	failed	RabbitMQ	instance	or	an	exceeded
memory	/	CPU	/	free	disk	threshold.	For	this	reason,	we	can	leverage	a	monitoring
solution	to	do	the	job.

We	will	briefly	discuss	the	capabilities	provided	by	the	management	plugin,	and	then	we
will	see	how	to	monitor	RabbitMQ	using	Nagios,	Monit,	or	Munin	assuming	that	we	are
running	our	RabbitMQ	instances	in	a	Linux	environment.

The	management	UI
When	you	navigate	to	the	Overview	tab	of	the	RabbitMQ	management	web	interface	and
click	on	a	node,	you	can	observe	the	resource	consumption	by	this	node	in	real	time	under
the	Statistics	section:

You	can	observe	the	number	of	file	descriptors	or	socket	descriptors	that	are	used,	Erlang
processes,	and	memory	currently	used	by	the	message	broker	along	with	the	current	free
disk	space.	On	the	same	page,	you	can	observe	more	information	about	the	distribution	of
memory	among	the	different	components	of	the	message	broker	under	the	Memory
details	section	by	clicking	on	the	Update	button	first	in	order	to	take	a	memory	snapshot:

You	can	also	check	the	message	rates	from	Queues	and	Exchanges	by	clicking	on	a
particular	queue	or	exchange.

Nagios
Nagios	is	an	open	source	system	monitoring	application	that	provides	a	number	of	plugins
to	extend	its	capabilities	along	with	various	types	of	integrations	with	different	network
protocols	and	applications.	In	order	to	install	Nagios	in	Ubuntu,	you	can	use	the	following
command:

sudo	apt-get	update

sudo	apt-get	install	nagios3	nagios-nrpe-plugin

When	prompted	during	the	installation,	specify	a	proper	password	for	the	Nagios
administrative	panel.	To	check	whether	the	Nagios	service	is	running,	execute	the
following	command:

sudo	service	nagios3	status

You	should	now	be	able	to	log	in	to	the	Nagios	administrative	interface	from
http://localhost/nagios3	and	provide	the	nagiosadmin	user	along	with	the	password
that	you	specified	during	the	installation.	The	next	thing	to	do	is	to	install	some	Nagios
health	checks	(or	write	your	own	if	the	installed	ones	are	not	proper):

git	clone	https://github.com/jamesc/nagios-plugins-rabbitmq

sudo	chown	-R	nagios:nagios	nagios-plugins-rabbitmq/

mv	nagios-plugins-rabbitmq	/usr/lib/nagios/plugins/

sudo	apt-get	install	libnagios-plugin-perl

sudo	apt-get	install	libnagios-object-perl

apt-get	install	perl-Nagios-Plugin	

apt-get	install	libreadonly-xs-perl

sudp	perl	-MCPAN	-e	'install	Bundle::LWP'

perl	-MCPAN	-e	'install	Monitoring::Plugin'

sudo	cp	-R	/usr/share/perl/5.14.2/CPAN/LWP/	/etc/perl/

sudo	cpan	install	JSON

In	short,	the	process	described	in	the	preceding	commands	is	as	follows:

1.	 We	download	the	sources	of	the	health	checks	from	the	nagios-plugins-rabbitmq
GitHub	repository.	You	can	see	the	available	checks	(provided	as	Perl	scripts)	under
the	nagios-plugins-rabbitmq/scripts	directory;	they	use	the	RabbitMQ
management	REST	API.

2.	 We	change	the	permissions	of	the	sources	and	move	them	to	the	Nagios	plugins
directory.

3.	 We	install	the	Monitoring:Plugin	Perl	plugin	along	with	the	additional	dependencies
that	is	needed	in	order	to	write	plugins	for	Nagios	under	Perl;	this	is	required	as	the
RabbitMQ	health	checks	that	we	downloaded	are	provided	as	Perl	scripts	that	depend
on	this	library.

To	verify	that	you	can	run	a	check,	you	can	execute	the	following:

cd	nagios-plugins-rabbitmq/scripts

./check_rabbitmq_server

If	you	are	prompted	to	provide	a	hostname,	then	check	whether	your	compiles	are	fine.
You	need	to	define	a	particular	command	using	this	script	in	the	commands.cfg
configuration	file	of	Nagios:

sudo	vim	/etc/nagios3/commands.cfg

define	command	{

	command_name	check_rabbitmq_server

	command_line	/usr/lib/nagios/plugins/nagios-plugins-

rabbitmq/scripts/check_rabbitmq_server	-H	localhost	--port=15672	-u	guest	-

p	guest

}

You	can	now	restart	the	service	with	the	following:

sudo	service	nagios3	restart	

When	you	navigate	to	the	Configuration	menu	under	the	System	section,	select
Commands	from	the	dropdown	and	click	on	view;	you	should	see	the	you	check-
rabbitmq-server	command	in	the	list.	In	a	similar	way,	you	can	define	the	other	already
provided	RabbitMQ	checks	if	you	need	them	to	monitor.

You	can	create	a	service	definition	that	uses	the	command	and	allows	you	to	specify	which
groups	you	would	like	to	notify,	for	example,	in	case	the	RabbitMQ	server	goes	down.
You	can	do	this	with	the	other	RabbitMQ	health	checks	as	well.	You	can	also	write	your
own	health	checks	for	RabbitMQ,	for	example,	using	Java	and	RabbitMQ	management
REST	API	or	the	rabbitmqctl	utility.

Monit
Monit	is	a	Unix	utility	to	monitor	processes.	You	can	also	use	it	to	monitor	the	RabbitMQ
instance	process	in	a	pretty	straightforward	manner.	Monit	requires	a	pid	file	that	stores
the	process	ID	for	the	currently	running	process.	In	the	earlier	versions	of	the	rabbitmq-
server	script	init	script	under	/etc/init.d,	you	had	to	add	the	creation	and	deletion
of	this	pid	file	manually	upon	the	service	startup/shutdown.	However,	the	later	versions	of
RabbitMQ	store	a	pid	file	for	the	RabbitMQ	Erlang	process	under	the
/var/run/rabbitmq/pid	directory.

In	order	to	install	Monit,	execute	the	following	command:

sudo	apt-get	install	monit	

You	can	then	add	the	following	configuration	to	the	/etc/monit/monitrc	file	in	order	to
monitor	the	RabbitMQ	process	from	the	localhost:

set	httpd	port	2812	and

use	address	localhost

allow	localhost

allow	@monit	

allow	@users	readonly

CHECK	PROCESS	rabbitmq-server	WITH	PIDFILE	/var/run/rabbitmq/pid

		GROUP	rabbitmq

		START	PROGRAM	"/usr/sbin/service	rabbitmq-server	start"

		STOP	PROGRAM	"/usr/sbin/service	rabbitmq-server	stop"

		IF	DOES	NOT	EXIST	FOR	3	CYCLES	THEN	RESTART

		IF	FAILED	PORT	5672	4	TIMES	WITHIN	6	CYCLES	THEN	RESTART

You	can	start	monit	in	the	background	with	the	following	command:

sudo	service	monit	start

sudo	monit

You	can	then	check	the	status	of	the	monited	processes	(including	the	Erlang	process	of
RabbitMQ)	using	the	following	command:

sudo	monit	status

You	should	see	an	output	similar	to	the	following:

Process	'rabbitmq-server'

		status																												Running

		monitoring	status																	Monitored

		pid																															1046

		parent	pid																								1039

		uptime																												6d	12h	6m	

		children																										2

		memory	kilobytes																		13680

		memory	kilobytes	total												14484

		memory	percent																				0.6%

		memory	percent	total														0.7%

		cpu	percent																							0.0%

		cpu	percent	total																	0.0%

		port	response	time																0.000s	to	localhost:5672	[DEFAULT	via	

TCP]

		data	collected																				Mon,	31	Aug	2015	01:47:59

Munin
You	can	use	Munin	as	a	nice	alternative	to	Nagios	for	the	monitoring.	The	following
command	installs	Munin	in	Ubuntu	(note	that	the	Apache	HTTP	server	must	also	be
installed):

sudo	apt-get	install	apache2

sudo	apt-get	install	munin

You	must	then	edit	the	Munin	configuration:

vim	/etc/munin/munin.conf

Uncomment	the	following	and	change	the	value	of	the	htmldir	attribute	to
/var/www/munin:

dbdir		/var/lib/munin

htmldir	/var	/www/munin

logdir	/var/log/munin

rundir		/var/run/munin

tmpldir	/etc/munin/templates

Add	the	following	to	the	Munin	configuration	file	in	order	to	enable	monitoring	on	the
localhost:

[MuninMonitor]

				address	127.0.0.1

				use_node_name	yes

Open	the	Munin	Apache	configuration	and	change	the	alias	to	allow	external	connections:

sudo	vim	/etc/munin/apache.conf

Alias	/munin	/var/www/munin

<Directory	/var/www/munin>

				Order	allow,deny

				#Allow	from	localhost	127.0.0.0/8		::1

				Allow	from	all

				Options	None

Create	the	/var/www/munin	directory,	change	permissions	to	the	munin	user	and	group,
and	finally	restart	the	apache2	and	munin-node	services:

sudo	mkdir	/var/www/munin

sudo	chown	munin:munin	/var/www/munin

sudo	service	munin-node	restart

sudo	service	apache2	restart

If	you	navigate	to	http://localhost/munin/,	you	should	be	able	to	see	the	Munin
administrative	interface:

Now,	we	need	to	install	the	Munin	RabbitMQ	set	of	plugins.	To	do	so,	execute	the
following	commands	in	order	to	download	the	Munin	plugins	directly	to	the	Munin
plugins	directory:

cd	/etc/munin/plugins/

sudo	git	clone	https://github.com/ask/rabbitmq-munin

sudo	cp	rabbitmq-munin/*	.

Add	the	following	configuration	to	the	/etc/munin/plugin-conf.d/munin-node	file:

sudo	vim	/etc/munin/plugin-conf.d/munin-node

[rabbitmq_connections]

user	root

[rabbitmq_consumers]

user	root

[rabbitmq_messages]

user	root

[rabbitmq_messages_unacknowledged]

user	root

[rabbitmq_messages_uncommitted]

user	root

[rabbitmq_queue_memory]

user	root

Finally,	restart	the	munin-node	service	and	check	whether	you	have	the	munin	plugins
available	from	the	administrative	interface:

sudo	service	munin-node	restart

Comparing	RabbitMQ	with	other
message	brokers
It	is	not	uncommon	that	when	it	comes	to	choosing	a	message	broker	for	your	system,	you
may	not	choose	RabbitMQ	as	a	proper	solution	without	any	comparison	with	other
message	brokers.	Although	RabbitMQ	is	a	great	technology,	it	can	turn	out	that	there	is	a
better	message	broker	(either	in	turns	of	features	or	performance)	based	on	your
requirements.	For	this	reason,	you	can	benchmark	RabbitMQ	against	other	message
brokers	such	as	Qpid,	ActiveMQ,	ZeroMQ,	HornetMQ,	and	Kafka,	just	to	name	a	few.
For	this,	you	can	follow	the	approach	provided	by	the	PerfTest	tool	and	build	a	wrapper
utility	(that	can	abstract	PerfTest	for	RabbitMQ)	that	allows	you	to	produce	and	consume
messages	of	different	numbers	and	sizes	on	each	of	the	brokers	that	you	would	like	to
benchmark	along	with	RabbitMQ.

Case	Study	:	Performance	tuning	and
monitoring	of	RabbitMQ	instances	in
CSN
The	CSN	team	decided	to	scale	the	system	both	vertically	and	horizontally	in	terms	of	the
RabbitMQ	message	broker	by	introducing	more	RAM	and	disk	space	on	each	of	the
RabbitMQ	instance	servers	and	change	the	RabbitMQ	configuration	parameters
accordingly	so	that	the	broker	can	use	more	memory	and	disk	space,	if	needed.	The	team
also	decided	to	introduce	more	RAM	nodes	for	the	chat	queues	along	with	a	deployment
of	Nagios	to	monitor	all	the	parts	of	the	system	(including	the	message	broker)	and	send
notifications	to	the	team	in	case	of	issues	with	resource	utilization	based	on	defined
thresholds.

Summary
In	this	chapter,	we	provided	a	list	of	performance	tuning	tips	that	can	be	used	to	build	a
proper	approach	for	the	tuning	of	the	performance	of	the	RabbitMQ	message	broker.	We
discussed	how	to	measure	the	performance	using	the	PerfTest	utility	provided	by	the
RabbitMQ	Java	client	and	monitor	the	performance	in	real	time	using	either	the
management	interface	or	third-party	monitoring	solution,	such	as	Nagios,	Monit,	or
Munin.	At	the	end,	we	discussed	how	we	can	compare	the	performance	of	RabbitMQ
against	a	few	other	message	brokers	that	are	widely	used	in	practice	and	compete	against
RabbitMQ.

Exercises
1.	 How	can	you	optimize	the	performance	of	a	single	RabbitMQ	instance?
2.	 How	can	you	optimize	the	performance	of	a	single	RabbitMQ	cluster?
3.	 How	do	acknowledgments	and	publisher	confirms	affect	the	performance?
4.	 What	tool	can	you	use	to	measure	the	performance	of	a	RabbitMQ	instance?
5.	 How	can	you	set	memory	and	disk	free	limits	per	RabbitMQ	instance?
6.	 What	is	QoS	prefetching	and	how	does	it	affect	the	performance?
7.	 How	do	message	persistence	and	message	TTL	affect	the	performance?
8.	 How	can	you	monitor	memory,	disk,	and	CPU	consumption	of	a	RabbitMQ	instance?
9.	 How	can	you	evaluate	RabbitMQ	against	other	message	brokers	in	terms	of

performance?
10.	 Is	RabbitMQ	better	than	ActiveMQ	or	ZeroMQ	in	terms	of	performance?

Chapter	8.	Troubleshooting
Running	and	maintaining	a	system	successfully	requires	a	good	understanding	of	its
components	along	with	the	various	utilities	that	can	be	used	to	troubleshoot	problems
occurring	in	any	of	these	components.	In	this	chapter,	we	will	look	into	some	techniques
that	can	be	applied	to	troubleshoot	the	problem	that	is	occurring	with	your	RabbitMQ
instances	along	with	several	common	issues	occurring	in	practice.

The	topics	to	be	covered	in	the	chapter	are	as	follows:

General	troubleshooting	approach
Problems	with	starting/stopping	the	RabbitMQ	nodes
Problems	with	message	delivery

General	troubleshooting	approach
As	RabbitMQ	instances	run	on	top	of	the	Erlang	virtual	machine,	we	can	leverage	the
troubleshooting	utilities	provided	by	Erlang	to	troubleshoot	problems	occurring	in	the
message	broker.	The	variety	of	errors	occurring	may	range	from	problems	relating	to
starting/stopping	the	broker	instance	to	performance	issues—we	already	covered
performance	tuning	and	monitoring	in	the	previous	chapter;	therefore,	you	can	already
apply	that	knowledge	to	troubleshooting.	We	will	use	a	top-down	approach	to
troubleshoot	issues,	as	follows:

1.	 Check	the	status	of	a	particular	node.
2.	 Inspect	RabbitMQ	logs.
3.	 Check	the	RabbitMQ	community	mailing	list	or	ask	in	the	IRC	chat.
4.	 Use	Erlang	utilities	to	troubleshoot	a	particular	node.

Checking	the	status	of	a	particular	node
You	can	check	the	status	of	a	particular	node	using	the	rabbitmq	utility	as	follows:

rabbitmqctl.bat	-n	instance1	status

In	the	preceding	example,	we	are	checking	the	status	of	the	instance1	RabbitMQ	node.
You	will	observe	an	output	of	the	status	command	similar	to	the	following	(we	are
omitting	resource-related	statistics,	such	as	memory	usage	and	number	of	processes,	as	we
already	covered	them	in	the	previous	chapter):

[{pid,10312},

	{running_applications,

					[{rabbitmq_shovel,"Data	Shovel	for	RabbitMQ","3.4.4"},

						{rabbitmq_management_agent,"RabbitMQ	Management	Agent","3.4.4"},

						{rabbit,"RabbitMQ","3.4.4"},

						{os_mon,"CPO		CXC	138	46","2.3"},

						{gen_smtp,"An	erlang	SMTP	server/client	framework",

										"0.9.0-rmq3.4.x-61e19ec5-gita62c02e"},

						{ssl,"Erlang/OTP	SSL	application","5.3.8"},

						{public_key,"Public	key	infrastructure","0.22.1"},

						{crypto,"CRYPTO","3.4.2"},

						{mnesia,"MNESIA		CXC	138	12","4.12.4"},

						{amqp_client,"RabbitMQ	AMQP	Client","3.4.4"},

						{xmerl,"XML	parser","1.3.7"},

						{asn1,"The	Erlang	ASN1	compiler	version	3.0.3","3.0.3"},

						{sasl,"SASL		CXC	138	11","2.4.1"},

						{stdlib,"ERTS		CXC	138	10","2.3"},

						{kernel,"ERTS		CXC	138	10","3.1"}]},

	{os,{win32,nt}},

	{erlang_version,

					"Erlang/OTP	17	[erts-6.3]	[64-bit]	[smp:8:8]	[async-threads:30]\n"}

In	the	preceding	piece	of	output,	you	can	observe	a	lot	of	useful	information,	such	as	the
following:

RabbitMQ	message	broker	version
Erlang	distribution
Operating	system
RabbitMQ	Erlang	applications	along	with	their	versions

This	is	a	good	starting	point	to	troubleshoot.

Inspecting	the	RabbitMQ	logs
The	RabbitMQ	logs	are	located	in	the	logs	directory	by	default	in	the	RabbitMQ
installation	directory	in	Windows	or	in	the	/var/log/rabbitmq	directory	in	Unix-like
operating	systems.	This	location	can	be	changed	by	setting	the	RABBITMQ_LOG_BASE
environment	variable.	You	can	inspect	the	error	logs	for	more	detailed	errors	that	are
related	to	either	the	particular	instance	or	in	regard	to	communication	with	other	nodes	in
the	cluster.	The	RabbitMQ	logs	can	be	rotated	using	the	rabbitmqctl	utility	with	the
rotate_logs	command.	Along	with	the	RabbitMQ	log	file	for	the	node,	there	is	an
alternative	log	file	(ending	with	an	SASL	suffix),	which	is	generated	by	the	Erlang	SASL
(System	Architecture	Support	Libraries)	application	libraries	that	provide	different
forms	of	logging	reports,	including	crash	reports.

The	following	message	specifies	that	free	disk	monitoring	(required	for	comparison
against	the	free	disk	threshold,	set	by	the	disk_free_limit	configuration	parameter)	is
not	supported	on	the	platform	that	runs	the	RabbitMQ	node:

=INFO	REPORT====	2-Sep-2015::20:41:47	===

Disabling	disk	free	space	monitoring	on	unsupported	platform:

{{'EXIT',{eacces,[{erlang,open_port,

																										[{spawn,"C:\\Windows\\system32\\cmd.exe	/c	dir	/-

C	/W	\"d:/software/RabbitMQ/rabbitmq_server-3.4.4/db/rabbit@DOMAIN-

mnesia\""},

																											[stream,in,eof,hide]],

																										[]},

																		{os,cmd,1,[{file,"os.erl"},{line,204}]},

																		{rabbit_disk_monitor,get_disk_free,2,[]},

																		{rabbit_disk_monitor,init,1,[]},

																		{gen_server,init_it,6,[{file,"gen_server.erl"},

{line,306}]},

																		{proc_lib,init_p_do_apply,3,

																												[{file,"proc_lib.erl"},{line,237}]}]}},

In	this	particular	example,	the	message	is	descriptive	enough	and	can	save	you	the	effort
of	looking	further	in	the	Erlang	stack	trace.	In	the	SASL	log	file,	the	same	error	looks
similar	to	the	following:

=CRASH	REPORT====	2-Sep-2015::20:41:45	===

		crasher:

				initial	call:	rabbit_disk_monitor:init/1

				pid:	<0.28939.1>

				registered_name:	[]

				exception	exit:	unsupported_platform

						in	function		gen_server:init_it/6	(gen_server.erl,	line	322)

				ancestors:	[rabbit_disk_monitor_sup,rabbit_sup,<0.143.0>]

				messages:	[]

				links:	[<0.262.0>]

				dictionary:	[]

				trap_exit:	false

				status:	running

				heap_size:	1598

				stack_size:	27

				reductions:	646

		neighbours:

If	you	are	trying	to	consume	a	message	from	a	non-existent	queue	(for	example,	test-
queue),	you	may	see	a	message	such	as	the	following	in	the	logs:

=ERROR	REPORT====	20-Jul-2015::12:31:20	===

Channel	error	on	connection	<0.514.0>	(127.0.0.1:63451	->	127.0.0.1:5672,	

vhost:	'/',	user:	'guest'),	channel	2:

{amqp_error,not_found,"no	queue	'test-queue'	in	vhost	'/'",'basic.consume'}

In	case	you	lose	a	connection	with	a	cluster	node,	you	will	get	a	message	that	can	be	easily
interpreted,	as	follows:

=ERROR	REPORT====	2-Sep-2015::23:12:27	===

**	Node	instance1@Domain	not	responding	**

**	Removing	(timedout)	connection	**

In	case	you	are	running	a	RabbitMQ	cluster	and	you	already	have	the	web	management
console	started	on	the	default	port,	you	can	hit	the	following	problem	(as	displayed	in	the
RabbitMQ	log	file):

=ERROR	REPORT====	20-Jul-2015::12:25:41	===

**	Generic	server	rabbit_web_dispatch_registry	terminating	

**	Last	message	in	was	{add,rabbit_mgmt,

																												[{port,15672}],

																												#Fun<rabbit_web_dispatch.1.31447083>,

																												#Fun<rabbit_mgmt_app.0.15521781>,

																												{[],"RabbitMQ	Management"}}

**	When	Server	state	==	undefined

**	Reason	for	termination	==	

**	{{could_not_start_listener,[{port,15672}],eaddrinuse},

				[{rabbit_web_dispatch_sup,check_error,2,[]},

					{rabbit_web_dispatch_registry,handle_call,3,[]},

					{gen_server,try_handle_call,4,[{file,"gen_server.erl"},{line,607}]},

					{gen_server,handle_msg,5,[{file,"gen_server.erl"},{line,639}]},

					{proc_lib,init_p_do_apply,3,[{file,"proc_lib.erl"},{line,237}]}]}

This	indicates	that	15672	could	not	be	opened	(if	another	cluster	node	is	running	the
management	console,	you	do	not	need	to	enable	it	for	other	cluster	nodes	anyway,	unless
you	want	to	specify	a	different	port	on	which	you	want	to	run	the	management	plugin	for
the	purpose	of	high	availability).	However,	if	the	15672	port	is	not	in	use,	this	may
indicate	a	mismatch	between	the	Erlang	distribution	and	the	RabbitMQ	server,	preventing
the	management	plugin	to	open	the	15672	port.	This	leads	us	to	use	alternative
mechanisms	for	further	troubleshooting	of	the	problem.

The	RabbitMQ	mailing	list	and	IRC	channel
At	this	point,	you	may	have	already	discovered	the	output	of	the	status	command	and
inspected	the	logs;	however,	you	might	still	be	clueless	about	what	the	reason	for	the	error
that	we	saw	in	the	previous	section	could	be:

**	Generic	server	rabbit_web_dispatch_registry	terminating	

Now,	you	may	look	for	a	similar	issue	on	the	rabbitmq-users	or	rabbitmq-discuss
mailing	lists.	If	you	don’t	find	a	similar	issue	suggested	with	a	proper	solution	for	the
problem,	you	can	drop	a	message	to	the	mailing	list	describing	your	problem	in	detail	and
sending	the	RabbitMQ	logs,	along	with	the	Erlang	crash	dump.	The	Erlang	crash	dump
file	is	generated	when	the	Erlang	VM	abnormally	terminates,	and	it	is	generated	in	the
directory	where	your	RabbitMQ	server	starts	(for	example,	the	sbin	directory	from	the
RabbitMQ	installation	in	Windows).

Erlang	troubleshooting
The	erl_crash.dump	file	is	created	in	the	startup	directory	of	the	RabbitMQ	server	when
something	goes	wrong	with	the	message	broker.	It	is	not	the	only	means	by	which	you	can
troubleshoot	the	message	broker	using	information	that	is	provided	by	the	Erlang	runtime,
you	can	also	directly	connect	to	the	Erlang	process	of	the	RabbitMQ	instance	and	query	it
for	the	purpose	of	troubleshooting.

An	Erlang	Primer
To	be	able	to	dig	into	the	root	cause	of	a	problem	requires	a	good	understanding	of	the
Erlang	programming	language.	In	this	section,	we	will	cover	the	basics	of	Erlang	and
make	use	of	this	knowledge	in	the	last	chapter	of	the	book,	when	we	discuss	how	to	create
a	plugin	for	RabbitMQ	and	how	to	implement	RabbitMQ.

To	begin,	you	need	to	add	the	<erlang_home>\bin	directory	to	your	PATH	and	execute	the
following	command	from	the	command	line:

erl

The	command	will	fire	up	the	Erlang	REPL	(Read-Eval-Print-Loop)	shell,	where	you
can	type	the	Erlang	commands.	To	connect	to	a	particular	node	that	is	running	on	the	local
workstation,	you	can	provide	the	domain	name	of	the	instance	with	the	–sname	option
(sname	stands	for	‘short	names’	and	it	is	the	default	instance-naming	format	that
RabbitMQ	uses),	as	shown	in	the	following:

erl	–sname	rabbit@DOMAIN

In	order	to	use	the	preceding	command,	you	need	to	stop	the	rabbit@DOMAIN	node	first.

You	can	start	by	evaluating	the	following	expression	using	the	Erlang	interpreter	(don’t
forget	the	dot	at	the	end	of	each	expression):

(4	+	6)	*	2.

Not	only	can	the	arithmetic	expressions	be	evaluated.	Let’s	transform	the	preceding
example	using	two	variables,	as	follows:

X	=	4.

Y	=	6.

(X	+	Y)	*	2.

If	you	reassign	the	X	variable	to	10,	as	follows:

X	=	10.

You	will	get	an	error	as	shown	in	the	following:

**	exception	error:	no	match	of	right	hand	side	value	10

To	reassign	the	variable,	you	need	to	first	unbind	it	using	the	f()	function:

f(X).

Note	that	you	can	unbind	all	variables	by	simply	calling	the	following	function:

f().

The	preceding	expression	is	not	of	much	use;	therefore,	let’s	make	a	function	out	of	it
from	the	Erlang	shell:

F	=	fun(X,Y)	->	(X	+	Y)	*	2	end.

The	fun	keyword	can	be	used	to	define	an	anonymous	function.	In	the	previous	case,	this
function	is	bound	to	the	F	variable.	Now,	you	can	evaluate	the	former	expression	using	the
following	function:

F(4,6).

Functions	in	Erlang	are	typically	defined	in	modules.	A	module	in	Erlang	is	defined	as	a
file	with	an	.erl	extension,	which	is	further	compiled	to	an	Erlang	object	file	with	a
.beam	extension	that	represents	the	actual	byte	code	that	is	executed	by	the	Erlang	virtual
machine.	You	can	define	the	preceding	function	in	a	module	called	sample	(saved	in	a
sample.erl	file.	Please	note	that	the	name	of	the	file	should	match	the	module
declaration):

-module(sample).

-export([double/2]).

double(X,Y)	->	(X+Y)	*	2.

The	–module	declaration	specifies	the	name	of	the	module,	followed	by	one	or	more	-
export	declarations	that	explicitly	specify	which	functions	from	the	module	are	exported
by	the	module	and	can	be	used	by	other	modules.	You	should	specify	the	name	of	the
function	along	with	its	arity	(number	of	parameters	that	the	function	accepts).	Functions
with	the	same	name	but	different	numbers	of	parameters	are	treated	as	separate	function
declarations	by	Erlang.	In	the	module,	there	is	a	double	function—this	declaration	is	valid
only	in	a	module	and	cannot	be	executed	from	the	shell—you	should	use	the	fun	keyword
for	this,	as	we	saw	earlier.

To	compile	the	module,	you	must	first	navigate	to	the	directory	of	your	module	using	the
cd()	function	and	then,	the	c()	function,	to	compile	the	module	to	a	beam	file.	Assuming
the	sample.erl	file	is	created	in	the	D:\sources	directory,	you	can	execute	the	following
from	the	Erlang	REPL	in	order	to	compile	the	module:

cd('D:/sources').(sample).

If	compilation	is	successful,	you	will	see	a	message	as	follows:

{ok,sample}

This	is	actually	a	tuple	that	is	returned	from	the	c()	function,	which	indicates	a	successful
status	(ok)	and	the	name	of	the	compiled	module.	A	tuple,	in	Erlang,	is	a	container	with	a
fixed	number	of	elements	that	can	be	of	different	types.	In	order	to	invoke	the	double
function	from	the	sample	module,	you	can	write	the	following:

sample:double(6,4).

Use	the	m()	function	or	the	module_info()	method	(which	returns	a	list	with	the	result)
that	is	available	for	each	Erlang	module	to	check	for	information,	such	as	available

functions,	about	the	module:

m(sample).

sample:module_info().

These	can	also	be	pretty	useful	utilities	to	inspect	the	existing	modules	in	a	system	such	as
RabbitMQ.

Variable	definitions	do	not	specify	the	type	of	the	variable,	it	is	determined	at	runtime	(as
seen	in	the	double	function).	We	have	the	following	types	of	data:

integers:	There	is	no	limit	to	the	size	of	an	integer	in	Erlang,	for	example,	257.
floats:	For	example,	45.6.
atoms:	They	are	used	to	create	constants;	you	can	think	of	them	as	values	of	an
enumeration	or	constant,	for	example,	X,	Y.
booleans:	true	or	false.
references:	They	are	used	to	create	unique	identifiers	for	objects.
bit	strings:	They	are	used	to	represent	sequences	of	bits	as	segments	of	particular
value	that	optionally	have	a	length	and	a	type,	for	example,	<<	<<0:1,1:1,	0:1>>.	In
this	particular	example,	the	bit	string	represents	the	bit	sequence	“010”.	Bit	strings
are	very	useful	to	parse	binary	streams	of	data,	for	example,	parsing	a	protocol
message	based	on	a	protocol	mask.	As	you	can	see,	this	mechanism	can	be	directly
used	to	parse	an	AMQP	message.
binaries:	They	are	simply	bit	strings,	where	each	segment	of	the	string	is	a	sequence
of	bits	that	is	divisible	by	eight.	For	example,	<<111,	172,	15>>.
pids:	They	are	used	to	represent	process	identifiers.
ports:	They	are	used	to	represent	Erlang	ports;	essentially	a	separate	processes	is
started	for	an	Erlang	process	that	maps	to	an	OS	port	and	provides	a	communication
with	the	external	world.
funs:	They	are	used	to	create	function	objects	(closures).
tuples:	They	are	containers	for	a	fixed	number	of	items,	possibly	of	different	types.
lists:	They	are	containers	for	a	variable	number	of	items,	possibly	of	different
types.
maps:	They	are	containers	for	a	key-value	pair	of	items.
records:	They	are	containers	for	a	mixed	type	of	data,	similar	to	C	structs	and
compiled	to	tuples.

Erlang	uses	the	concept	of	pattern	matching	in	order	to	bind	one	or	more	variables	to	the
particular	values.	It	is	used	to	assign	variables	(denoted	by	atoms)	using	more	complex
expressions	that	direct	assignment.	Consider	the	following	examples:

{X,b}	=	{a,b}.

[10,[Y],15]	=	[10,[[1,2,3]],15].

{X,X}	=	{a,b}.

[A,2]	=	[10].

The	first	expression	binds	X	to	a,	the	second	expressions	binds	Y	to	the	[1,2,3]	list,	and
the	third	and	fourth	expressions	result	in	exceptions	as	pattern	matching	fails	in	these
cases.	We	will	briefly	cover	error	handling	later	in	the	chapter.

Another	useful	concept	is	list	comprehensions,	where	you	can	iterate	over	a	list	and	return
a	modified	list	using	a	filter	function	and	a	generator	for	the	elements	of	the	new	list.
Consider	the	following	example:

[X+1	||	X	<-	[4,5,6],	X	rem	2	==	0].

The	result	is	the	[5,7]	list,	all	even	elements	are	filtered	and	incremented	by	one	in	the
new	list.	We	can	rewrite	the	preceding	example	using	a	recursive	function,	as	Erlang
enforces	the	functional	programming	style	along	with	idioms	derived	from	languages	such
as	Prolog;	the	language	does	not	provide	a	looping	construct.	The	filter_list_sample
function	implements	the	same	behavior	as	the	list	comprehension	using	an	if	statement:

filter_list_sample(L)	->	filter_list_sample_helper(L,	[]).

filter_list_sample_helper([],	Res)	->	Res.

filter_list_sample_helper([X|L],	Res)	->	

if	

				X	rem	2	==	0	->	

				filter_list_sample_helper(L,	[X+1|	Res]).

				true	->	

										filter_list_sample_helper(L,	Res)

end.

If	you	add	this	to	the	sample	module	that	we	created	earlier,	export	the
filter_list_sample	function	from	the	module,	and	recompile	it,	you	can	invoke	the
preceding	function	with	the	following:

sample:filter_list_sample([4,5,6]).

The	result	is	returned	in	reverse	order	due	to	the	recursion;	implement	a	function	that
reverses	the	resulting	list	as	an	exercise.	Note	that	if	you	have	multiple	definitions	of	the
same	function	(in	this	case,	filter_list_sample_helper),	you	should	separate	them	with
a	semicolon.	Multiple	expressions	in	the	same	function	are	separated	by	a	comma.	You
can	also	use	the	case	expression	instead	of	the	if	expression	in	the	preceding	example,	as
shown	in	the	following:

filter_list_sample_helper([X|L],	Res)	->	

case	X	rem	2	of

0	->	filter_list_sample_helper(L,	[X+1|	Res]).

				_	->	filter_list_sample_helper(L,	Res)

end.

The	underscore	(_)	indicates	any	match	(in	this	case,	this	could	be	only	1).

There	are	many	scenarios	where	Erlang	may	throw	an	error,	and	we	can	differentiate
between	the	three	types	of	runtime	errors,	as	follows:

1.	 regular	errors:	Thrown	by	an	erlang:error()	call.	This	is	the	equivalent	of	a	throw
statement	in	the	programming	languages	such	as	C++	or	Java,	stacktrace	is	included
as	a	part	of	the	error.

2.	 throw	errors:	Thrown	by	a	throw()	function.	This	is	typically	used	to	exit	a	deeply
nested	function	call	and	does	include	a	stacktrace	rather	it	includes	a	value	that	was
handled	earlier	in	the	call	stack.

3.	 exit	errors:	Thrown	by	an	erlang:exit()	call.	This	is	used	to	signal	that	a	process	is
exiting	(a	value	of	normal	passed	to	the	function	indicates	that	the	process	exits
normally,	other	exit	codes	indicate	an	error).

All	the	types	of	errors	can	be	caught	using	a	try	…	catch	block.	The	following	example
demonstrates	the	use	of	the	different	types	of	exceptions	in	Erlang:

exception_sample(Val)	->	

				case	Val	of

								1	->	throw("Invalid	value:	1").

								2	->	error("Invalid	value:	2").

								3	->	exit("Invalid	value:	3").

								_	->	"Success"

				end.

				

exception_handler(Val)	->

				try	

								exception_sample(Val)

				catch

								error:	Error	->	{error,	Error}.

								throw:	Error	->	{throw,	Error}.

								exit:	Error	->	{exit,	Error}				

				end.

Export	the	exception_handler()	function	as	part	of	the	sample	module	and	execute	it
with	different	arguments	to	see	how	it	behaves:

sample:exception_handler(1).

sample:exception_handler(2).

sample:exception_handler(3).

sample:exception_handler(4).

You	should	receive	the	following	output:

{throw,"Invalid	value:	1"}

{error,"Invalid	value:	2"}

{exit,"Invalid	value:	3"}

"Success"

When	an	Erlang	process	exits	as	a	result	of	an	error	that	is	not	handled	by	the	process,	you
will	get	a	result	that	is	in	a	format	similar	to	the	RabbitMQ	node	crashing	as	RabbitMQ
nodes	are	started	as	Erlang	processes.

So	far,	we	discussed	the	basic	constructs	of	the	language.	However,	Erlang	excels	when	it
comes	to	distributed	programming.	Processes	in	Erlang	are	lightweight,	they	are	created
by	the	Erlang	VM	without	actually	interacting	with	the	underlying	operating	system	(and
creating	any	OS-level	threads	or	processes).	Communication	between	processes	is
possible	via	message	passing.	The	Erlang	VM	takes	the	responsibility	of	handling	the
process	execution	underneath	on	one	or	more	CPUs	in	the	system	on	which	the	Erlang
VM	runs.	Thus,	reducing	context	switching’	you	don’t	need	to	go	to	the	kernel	scheduler
to	switch	between	the	currently	executing	threads.	This,	and	the	ability	to	dynamically
allocate	process	stacks	(thus	saving	the	effort	to	reserve	a	lot	of	RAM),	provides	the

possibility	of	creating	thousands	of	Erlang	processes	at	once.	If	any	two	processes	need	to
communicate	on	the	same	machine,	you	can	do	it	directly	using	the	!	and	receive
expression	in	order	to	exchange	messages,	as	demonstrated	in	the	following	example:

sample_sender(Pid,	Message)	->	

				Pid	!	Message.

sample_receiver()	->	

				receive

								Message	->	io:format(Message,	[])

				end.

start()	->	

				Preceiver	=	spawn(?MODULE,	sample_receiver,	[]),

				spawn(?MODULE,	sample_sender,	[Preceiver,	"Test	message."]).

We	create	a	sender	and	receiver	as	separate	processes	in	the	start()	method	using	the
spawn	function	that	creates	a	process	based	on	a	module	function,	along	with	the
parameter	passed	to	that	function	upon	process	creation.	The	?MODULE	macros	refer	to	the
current	module,	you	can	think	of	the	Erlang	macros	as	C++	preprocessor	directives.	The
sample_sender()	function	sends	a	message	using	the	!	operator	to	the	process	identified
by	a	particular	pid	(proportional–integral–derivative).	The	sample_receiver()	method
uses	the	receive	expression	to	wait	for	a	message	and	is	blocked	until	a	message	is
received.	The	message	is	printed	on	the	standard	output	using	the	built-in	io:format
Erlang	function.	You	need	to	export	all	the	three	functions	from	the	sample	module	and
run	the	demo	using	the	following	line	of	code	from	the	Erlang	REPL:

sample:start().

In	this	particular	example,	the	processes	run	in	the	same	Erlang	VM.	However,	if	the
processes	are	started	on	a	remote	machine,	then	several	concerns	are	further	raised.	The
most	important	issues	to	solve	are	as	follows:

How	do	we	exchange	the	process	identifiers	among	the	processes?	How	are	the
processes	aware	of	each	other?
How	can	you	prevent	tampering	of	communication	from	a	third	party	among	the
processes?

The	answer	to	the	first	question	is	the	register()	built-in	function	that	allows	you	to	map
a	symbolic	name	to	a	process	identifier.	This	mapping	information	is	stored	in	an	Erlang
register,	and	when	a	process	needs	to	communicate	with	another	remote	process,	it	must
know	the	address	of	the	machine	where	the	other	process	resides	along	with	the	symbolic
name	of	the	remote	process.	The	rest	is	handled	by	Erlang	behind	the	scenes.

The	answer	to	the	second	question	is	the	Erlang	cookies	that	we	mentioned	in	the	earlier
chapters	when	we	talked	about	RabbitMQ	clustering.	Erlang	cookies	are	stored	in	an
.erlang.cookie	file	and	are	used	by	the	Erlang	processes	as	a	shared	secret.	A	node	is	not
obliged	to	use	the	same	cookie	for	all	other	remote	nodes—a	different	cookie	can	be
specified	for	communication	with	a	remote	node.	This	can	be	accomplished	using	the
erlang:set_cookie()	method	that	uses	the	remote	node	identifier	and	Erlang	cookie

instance	as	arguments.	To	retrieve	the	current	cookie	used	by	the	node,	you	can	use	the
erlang:get_cookie()	method.	In	case	no	cookie	is	in	use,	the	method	will	return
nocookie.

Our	brief	primer	of	the	Erlang	language	should	be	sufficient	in	order	to	make	use	of	the
utilities	provided	by	the	language	for	further	troubleshooting	of	your	RabbitMQ	instances.
You	can	retrieve	the	name	of	the	current	node	with	the	following	command:

node().

You	can	also	retrieve	the	names	and	the	ports	of	the	processes	that	are	registered	by	the
EPMD	(Erlang	Port	Mapper	Daemon)	process	running	on	the	same	Erlang	VM:

net_adm:names().

Assuming	that	we	have	started	our	three-node	cluster	on	the	same	machine,	we	should
observe	the	following	output:

{ok,[{"rabbit",25672},

					{"instance1",25701},

					{"instance2",25702}]}

The	ports	that	you	see	for	each	node	are	the	ports	assigned	to	the	Erlang	processes	for
each	RabbitMQ	instance	(in	the	previous	case,	20000	+	the	name	of	the	RabbiqMQ
instance	port).

We	can	also	use	the	rpc:call	function	in	order	to	execute	a	function	in	a	particular
local/remote	Erlang	process	(and	this	could	be	the	process	of	a	RabbitMQ	instance).	You
can	also	use	the	different	Erlang	utilities,	such	as	the	rpc:call()	function,	to	execute	the
commands	on	remote	processes	or	retrieve	the	information	about	these	processes.

The	Erlang	crash	dump
The	Erlang	crash	dump	file	is	created	in	the	current	working	directory	of	a	Rabbit	instance
when	it	crashes.	The	crash	dump	file	contains	useful	statistics	that	are	collected	at	the	time
of	the	crash	along	with	the	information	about	the	processes	that	are	affected	as	part	of	the
crash.	The	reason	for	the	node	failure	is	indicated	by	the	line	starting	with	the	word
slogan.	For	example,	the	following	command	indicates	that	there	is	a	problem	with
starting	up	of	a	node	(without	providing	more	details	as	a	part	of	the	reason):

Slogan:	init	terminating	in	do_boot	()

You	can	use	the	knowledge	gained	from	the	previous	section	to	inspect	the	information
that	is	collected	in	the	crash	dump	or	better,	use	the	Crashdump	Viewer	GUI	utility	to
inspect	the	crash	dump.	To	start	the	utility,	invoke	the	following	commnad	from	the	Erlang
REPL:

crashdump_viewer:start().

After	the	tool	is	started,	you	will	be	prompted	to	select	the	crash	dump	file.	After	the	file
is	selected,	the	tool	will	divide	the	information	from	the	file	into	proper	sections	and	tables
for	easier	inspection,	as	follows:

We	will	expand	further	on	the	concept	of	troubleshooting	when	we	discuss	the	internal
architecture	of	the	message	broker.	If	you	get	an	error	that	contains:	init	terminating
in	do_boot(),	then	there	are	several	things	that	might	be	the	root	cause	of	the	problem
(make	sure	that	you	analyze	the	crash	dump	for	more	information	on	the	problem):

Insufficient	permissions	on	some	of	the	RabbitMQ	folders	and	files.
Corrupt	RabbitMQ	database.	In	this	case,	delete	the	contents	of	the
%APPDATA%\RabbitMQ	folder	(in	Windows)	and	restore	it	using	a	recent	backup,	if	this
is	at	all	possible.
Check	the	version	of	your	Erlang	installation	and	if	it	does	not	match	your	OS
architecture	(32/64-bit),	reinstall	it.

Problems	with	starting/stopping
RabbitMQ	nodes
Consider	that	you	have	configured	a	running	cluster	with	three	nodes	and	one	of	your
nodes	suddenly	fails.	When	you	try	to	bring	up	that	node	using	the	following:

rabbitmq-server.bat

You	get	the	dreadful	BOOT	FAILED	message	along	with	an	error	description	message	of
timeout_waiting_for_tables	and	an	Erlang	stacktrace,	as	follows:

##########

														Starting	broker…

BOOT	FAILED

===========

Error	description:

			{boot_step,database,

							{error,

											{timeout_waiting_for_tables,

															[rabbit_user,rabbit_user_permission,rabbit_vhost,

																rabbit_durable_route,rabbit_durable_exchange,

																rabbit_runtime_parameters,rabbit_durable_queue]}}}

Log	files	(may	contain	more	information):

			D:/software/RabbitMQ/rabbitmq_server-3.4.4/log/rabbit@MARTIN.log

			D:/software/RabbitMQ/rabbitmq_server-3.4.4/log/rabbit@MARTIN-sasl.log

Stack	trace:

			[{rabbit_table,wait,1,[]},

				{rabbit_table,check_schema_integrity,0,[]},

				{rabbit_mnesia,ensure_schema_integrity,0,[]},

				{rabbit_mnesia,init_db,3,[]},

				{rabbit_mnesia,init_db_and_upgrade,3,[]},

				{rabbit_mnesia,init,0,[]},

				{rabbit,'-run_step/3-lc$^1/1-1-',2,[]},

				{rabbit,run_step,3,[]}]

The	error	message	tells	you	that	there	is	something	wrong	while	loading	the	data	from	the
Mnesia	database;	however,	it	doesn’t	give	you	enough	information	on	the	exact	cause	of
the	problem.	One	thing	you	can	do	is	that	you	can	simply	remove	the	node	database	files
from	the	rabbit@DOMAIN-mnesia	and	rabbit@DOMAIN-plugins-expand	folders	that
provide	the	storage	of	the	Mnesia	tables	and	the	expanded	plugins	that	are	used	by	the
RabbitMQ	node.	If	you	have	a	recent	backup	of	your	Mnesia	database,	you	can	try	to	use
it	to	restore	your	database	data.	However,	if	using	a	backup	is	not	an	option,	you	need	to
perform	some	more	troubleshooting	in	order	to	find	and	fix	the	problem.	The	first	obvious
thing	to	do	is	to	inspect	the	RabbitMQ	logs,	as	suggested	earlier.	However,	doing	so	may
not	always	give	you	more	information	than	the	error	log	that	is	displayed	in	the	console.
Moreover,	there	is	a	chance	that	your	Mnesia	database	is	not	corrupt.	You	can	try	the

following	options:

If	you	are	running	a	single	(non-clustered)	RabbitMQ	node,	you	may	try	to	specify
the	full	RabbitMQ	node	name,	along	with	the	hostname	(if	you	have	changed	the
hostname	of	the	machine	on	which	you	startup	your	nodes,	you	may	get
timeout_waiting_for_tables	when	Mnesia	tries	to	fire	up),	as	follows:

set	RABBITMQ_NODENAME=rabbit@<DOMAIN>

If	you	are	running	the	node	in	a	clustered	environment	and	the	other	nodes	have	not
started,	the	RabbitMQ	node	may	wait	for	the	other	nodes	to	start	by	default	within	30
seconds	before	throwing	a	timeout_waiting_for_tables	error	message.	In	that
case,	you	can	try	to	startup	the	other	nodes	in	the	cluster	in	30	seconds	from	starting
the	current	node	and	see	if	this	resolves	the	problem.

Another	common	issue	that	may	prevent	the	startup	of	clustered	nodes	is	network
partitioning.	Consider	that	you	can	have	a	two-	or	three-node	cluster	and	the
communication	links	between	the	nodes	fail.	Each	node	becomes	isolated	from	the	other
and	thinks	that	the	other	nodes	have	failed	and	hence,	becomes	a	master	node.	If	you	fix
the	communication	links	between	the	nodes	and	try	to	restart	them,	RabbitMQ	will	detect
that	there	is	more	than	one	master	node	and	startup	of	nodes	may	fail	with	an
incosistent	database,	running_partitioned_network	error	message	on	subsequent
master	nodes	that	try	to	startup	and	join	the	cluster.	You	can	detect	this	condition	by
running	the	following	command:

rabbitmqctl.bat	cluster_status

If	you	see	a	non–empty	partition	in	the	partitions	attribute	from	the	log,	then	a	network
partitioning	was	detected	by	RabbitMQ.	In	normal	circumstances,	this	list	is	empty:

Cluster	status	of	node	rabbit@DOMAIN…

[{nodes,[{disc,[instance1@Domain,instance2@Domain,rabbit@DOMAIN]}]},

	{running_nodes,[instance2@Domain,instance1@Martin,rabbit@DOMAIN]},

	{cluster_name,<<"rabbit@Domain">>},

	{partitions,[]}]

While	each	node	can	act	as	a	standalone	master,	this	means	that	it	may	define	new
exchanges,	queues,	and	bindings	without	the	knowledge	of	other	nodes.	However,	if	you
want	to	restore	the	cluster,	you	need	to	select	one	node	as	the	master	and	rejoin	the	others
to	the	cluster	using	this	node.	Before	rejoining	a	node	to	the	cluster,	you	may	also	want	to
reset	its	state.	Assuming	that	the	rabbit@DOMAIN	node	is	your	preferred	master	node,	you
can	issue	the	following	commands	to	rejoin	the	instance1	node	to	the	cluster:

rabbitmqctl	–n	instance1	stop_app

rabbitmqctl	–n	instance1	reset

rabbitmqctl	–n	instance1	join_cluster	rabbit@DOMAIN

rabbitmqctl	–n	instance1	start_app

For	more	information	on	network	partitioning,	you	can	refer	to	the	Network	Partitions
entry	in	the	RabbitMQ	server	documentation.

Another	reason	that	your	node	may	fail	to	startup	is	due	to	a	resource	that	is	already	used

by	another	RabbitMQ	instance	running	on	the	same	machine.	If	this	is	a	network	port	that
is	already	taken	by	the	first	instance,	then	the	second	instance	will	fail	to	start.	If	the	first
instance	is	running,	for	example,	the	management	plugin	on	a	default	port	and	you	try	to
start	the	second	instance	with	the	management	plugin	enabled,	you	will	get	an	error
message	similar	to	the	following:

		##########

Starting	broker…

BOOT	FAILED

===========

Error	description:

			{could_not_start,rabbitmq_management,

			{could_not_start_listener,[{port,15672}],eaddrinuse}}

Log	files	(may	contain	more	information):

			D:/software/RabbitMQ/rabbitmq_server-3.4.4/log/instance1	.log

			D:/software/RabbitMQ/rabbitmq_server-3.4.4/log/instance1	-sasl.log

{"init	terminating	in	do_boot",{rabbit,failure_during_boot,

{could_not_start,rabb

itmq_management,{could_not_start_listener,[{port,15672}],eaddrinuse}}}}

Crash	dump	was	written	to:	erl_crash.dump

init	terminating	in	do_boot	()

This	is	easily	solved	by	disabling	the	management	plugin	for	that	instance.	Assuming	that
this	is	the	instance1	instance,	you	can	execute	the	following	before	starting	the	node:

rabbitmq-plugins.bat	-n	instance1	disable	rabbitmq_management

As	discussed	in	the	earlier	chapters,	the	management	plugin	is	aware	of	clustering.

Problems	with	message	delivery
In	certain	broker	configurations,	it	may	happen	that	the	messages	are	not	delivered	as
expected.	This	could	either	be	due	to	a	misconfigured	queue	TTL,	or	a	poor	network
combined	with	the	lack	of	publisher	confirms,	or	AMQP	transactions	to	support	reliable
delivery.	To	inspect	what	is	going	on	with	messages	in	the	broker,	you	can	install	the
Firehose	plugin	that	allows	you	to	inspect	the	traffic	flowing	through	the	message	broker.
You	should	be	careful	when	enabling	the	plugin	in	a	production	environment	as	it	may
slow	down	the	performance	due	to	the	additional	messages	that	it	sends	to	the
amq.rabbitmq.trace	exchange	for	each	message	entering	the	broker	and	each	message
exiting	it.	The	plugin	is	enabled	for	a	particular	node	and	vhost.	The	RabbitMQ	Tracer
plugin	builds	on	top	of	the	Firehose	plugin	and	provides	a	user	interface	to	capture	and
trace	messages.	You	can	review	the	additional	configuration	options	for	both	the	plugins
in	the	RabbitMQ	documentation.

Summary
In	this	chapter,	we	covered	the	essential	mechanisms	to	troubleshoot	the	problems	that
may	occur	as	part	of	a	RabbitMQ	instance.	We	discussed	a	general	approach	towards
troubleshooting,	along	with	an	overview	of	some	common	problems	that	may	occur
during	startup	or	shutdown	of	the	message	broker.	For	more	detailed	troublshooting,	we
introduced	the	fundamentals	of	the	Erlang	programming	language	and	we	will	reuse	that
knowledge	when	we	discuss	how	to	extend	RabbitMQ.	In	the	next	chapter,	we	will	further
expand	on	the	concepts	that	are	covered	in	this	chapter	by	discussing	how	to	troubleshoot
security-related	issues.

Exercises
1.	 How	does	the	concept	of	troubleshooting	apply	in	terms	of	RabbitMQ?
2.	 What	problems	may	occur	during	the	startup/shutdown	of	the	message	broker?
3.	 What	are	the	funs	in	Erlang?
4.	 How	is	Erlang	handling	the	process	creation?
5.	 What	type	of	runtime	exceptions	do	we	have	in	Erlang?
6.	 How	is	an	Erlang	module	created	and	compiled?
7.	 What	information	does	the	Erlang	crash	dump	contain?
8.	 What	is	the	Firehose	plugin	used	for?

Chapter	9.	Security
A	system	is	as	secure	as	its	weakest	component	taking	the	message	broker	into	account.
As	RabbitMQ	instances	can	be	used	to	carry	sensitive	application	data	or	affect	the
stability	of	an	entire	system,	we	need	to	make	sure	that	our	RabbitMQ	deployments	are
secured	properly.

The	topics	covered	in	this	chapter	are	as	follows:

Types	of	threats
Authentication
Authorization
Secure	communication
Penetration	testing

Types	of	threats
There	are	several	aspects	in	which	the	security	of	the	message	broker	is	affected.
RabbitMQ	hasn’t	been	planned	to	be	exposed	on	the	Internet	initially;	however,	a	number
of	security	concerns	exist	even	with	in-house	deployments	of	the	message	broker.	We	will
stay	away	from	this	fact	and	not	make	assumptions	on	whether	the	broker	instances	under
consideration	are	accessible	via	the	Internet	or	not.

Let’s	consider	again	the	standard	three-cluster	diagram	(along	with	an	additional	remote
broker	instance)	that	we	have	been	using	so	that	we	can	see	what	security	issues	may	arise
in	practice:

We	can	apply	the	following	mechanisms	in	order	to	mitigate	the	identified	threats:

Authentication:	This	allows	you	to	identify	who	connects	to	the	message	broker.
Authorization:	This	allows	you	to	determine	the	set	of	privileges	and	permissions
for	the	authenticated	user.

Secure	communication	between	the	clients	and	the	broker:	By	default,	messages
are	exchanged	by	the	senders/receivers	and	broker	instances	in	an	unsecure	manner;
however,	RabbitMQ	provides	you	with	a	mechanism	to	establish	secure	SSL
communication.
Secure	communication	between	cluster	nodes:	Communication	between	the	cluster
nodes	in	the	form	of	Erlang	messages	is	also	unsecure,	and	SSL	communication	can
be	established	between	instance	nodes	in	a	RabbitMQ	cluster.
Secure	communication	between	remote	nodes:	As	federation	links	and	shovels
provide	a	mechanism	to	mirror	messages	across	instances	over	the	WAN	in	a	client-
server	fashion	in	an	unsecure	manner,	you	can	establish	SSL	communication	between
them	as	well.
Message	encryption:	If,	by	some	chance,	you	cannot	reliably	secure	all	the	message
broker	communication	channels	using	SSL,	you	can	encrypt	the	messages	that	are
sent	between	the	sender	and	consumer	using	a	proper	encryption	mechanism	(for
example,	asymmetric	encryption	with	the	RSA	algorithm	using	a	key	of	proper
length,	2048,	4096,	or	others).	Depending	on	the	mechanism	used	and	performance
requirements	of	the	application,	there	could	be	a	trade-off	between	security	and
performance.	This	applies	to	the	previous	cases	when	SSL	communication	takes
place	as	well.
Proper	client	settings:	When	we	discussed	performance	tuning,	we	discussed	a
number	of	settings	for	resource	utilization	of	the	broker.	Many	of	them	can	be	applied
in	order	to	mitigate	DoS	or	DDoS	attacks	that	target	resource	exhaustion	on	the
message	broker	by	means	of	sending	excessive	number	of	messages,	creating	a	huge
number	of	connections	(thus	preventing	other	clients	from	connecting),	or	sending	an
excessive	number	of	AMQP	messages.
Physical	security:	Physical	access	to	the	workstations	where	the	message	broker	is
deployed	should	be	properly	restricted,	and	the	disks	where	Mnesia	tables	reside
should	be	properly	encrypted	in	order	to	mitigate	the	risk	of	data	leakage	in	case	of
theft	(typically,	in	cases	where	the	message	broker	stores	sensitive	data	passed
through	messages).
Plugin	security:	Plugins	can	also	expose	vulnerabilities,	so	it	is	important	to	use
plugins	from	trusted	sources	that	are	updated	on	a	regular	basis	or	at	least	do	proper
verification	that	the	plugin	isn’t	doing	something	malicious.

Vulnerability	databases	such	as	CVE	(Common	Vulnerabilities	and	Exposures)	along	with
other	resources	on	the	Internet	could	prove	to	be	good	sources	of	information	regarding
known	issues	against	which	you	can	check	production	deployments	of	the	broker	for
possible	security	issues.

In	the	next	sections,	we	will	demonstrate	other	basic	types	of	attacks	and	how	to	get
protection	against	them.	Apart	from	the	techniques,	we	will	demonstrate	that	you	need	to
make	sure	that	you	have	a	message	broker	upgrade	plan	set	in	place.	The	RabbitMQ	team
provides	security	fixes	with	upcoming	releases	of	the	message	broker.

Authentication
Let’s	consider	the	default	setup	of	a	RabbitMQ	instance.	It	comes	with	a	default	guest
user	(with	a	guest	password)	known	by	anyone	with	basic	knowledge	about	the	broker.
Moreover,	this	user	has	an	administrator	tag	giving	them	full	access	to	administer	the
broker,	and,	even	worse,	if	the	RabbitMQ	instance	port	is	visible	to	the	outside	world,
remote	commands	can	be	executed	using	the	rabbitmqctl	utility	on	that	workstation
using	the	eval	command.	For	this	reason,	it	is	advisable	(not	to	say	mandatory)	to	remove
the	guest	user	in	production	deployments.	Although	the	latest	versions	of	RabbitMQ
allow	only	localhost	access	for	the	guest	user,	this	still	imposes	a	high	risk	for	insider
attacks.	RabbitMQ	stores	information	about	users	in	an	internal	database	(in	the	same
location	where	Mnesia	stores	information	about	transient	and	persistent	messages	by
default).	RabbitMQ	authentication	is	provided	by	means	of	the	SASL	(Simple
Authentication	and	Security	Layer)	framework	that	allows	the	communicating
endpoints	to	negotiate	authentication	data	before	authentication	actually	takes	place.	It	is
defined	in	the	Internet	standard	RFC	4422.	The	following	diagram	provides	a	high-level
overview	of	how	SASL	works	in	terms	of	a	sender	and	the	RabbitMQ	message	broker
(note	that	the	diagram	is	similar	for	the	message	broker	and	consumer):

When	the	client	initiates	a	connection	to	a	RabbitMQ	instance,	the	following	things	occur:

1.	 The	message	broker	suggests	one	or	more	authentication	method	to	the	client.	By
default,	the	authentication	method	suggested	by	the	server	and	supported	by	all	the
clients	is	PLAIN,	which	is	the	most	basic	type	of	authentication	(equivalent	to	HTTP
basic	authentication).	RabbitMQ	client	libraries	also	provide	a	mechanism	to	specify
the	SASL	configuration	for	the	client	before	trying	to	establish	a	connection	with	the

message	broker.
2.	 The	client	selects	one	of	the	methods	and	sends	this	information	back	to	the	message

broker.
3.	 The	client	and	server	start	exchanging	security	information	by	means	of	proper

handlers	depending	on	the	authentication	mechanism	that	is	selected.	As	the	SASL
framework	provides	a	mechanism	for	pluggable	authentication,	each	particular
authentication	mechanism	provides	a	set	of	server/client	handlers	to	establish	and
exchange	security	data.	The	number	of	steps	in	this	phase	depends	on	the
authentication	method.

4.	 After	the	authentication	mechanism	is	negotiated	and	the	client	is	authenticated
successfully,	the	exchange	of	messages	starts	taking	place.	SASL	provides	a
mechanism	to	establish	the	confidentiality	and	integrity	of	the	messages	exchanged
between	the	client	and	server	if	this	is	negotiated	by	them	in	the	previous	steps.

When	a	user	is	created	from	the	management	console,	REST	API,	or	the	rabbitadmin
script	by	default,	it	is	stored	as	part	of	the	RabbitMQ	instance	and	the	information	about
the	user	is	propagated	among	the	cluster	nodes.	In	practice,	however,	the	instance	can	be
configured	to	negotiate	other	types	of	authentication.	If	the	instance	is	deployed	in	an
environment	where	many	applications	share	the	same	credentials	(such	as	a	large
enterprise	or	even	a	system	with	multiple	components),	then	the	instance	may	need	to	use
an	external	service	such	as	an	LDAP	(Lightweight	Directory	Access	Protocol)	server	or
RDBMS	for	authentication.	In	this	case,	you	need	to	make	sure	that	the	same	SASL
configuration	is	applied	among	the	cluster	nodes	so	that	clients	that	need	to	reconnect	to
another	cluster	node	are	able	to	negotiate	and	authenticate	with	the	same	authentication
mechanism	as	the	one	used	when	connecting	to	the	original	RabbitMQ	instance.

In	practice,	SASL	can	be	implemented	in	a	more	general	way	that	allows	the	client	to
authenticate	the	server	(in	this	case,	RabbitMQ)	but	this	is	not	provided	out	of	the	box	by
RabbitMQ	(although	a	plugin	with	proper	support	by	RabbitMQ	clients	can	provide	this
support).	Currently,	the	following	SASL	methods	are	supported	directly	(more	information
is	present	in	the	RabbitMQ	documentation):

PLAIN:	This	is	the	default	one
AMQPLAIN:	This	is	the	custom	version	of	PLAIN	as	defined	by	the	AMQP	0-8
standard
RABBIT-CR-DEMO:	This	is	the	custom	challenge	response	authentication
EXTERNAL:	This	is	currently	supported	by	means	of
rabbitmq_auth_mechanism_ssl	that	provides	the	ability	to	authenticate	a	client
using	the	client’s	public	certificate

Configuring	the	LDAP	backend
Let’s	see,	for	example,	how	to	move	from	the	default	storage	of	RabbitMQ	users	to	an
LDAP	server	using	the	OpenLDAP	server	distribution.	First,	download	OpenLDAP	for	the
operating	system	of	your	choice	(for	Unix-based	distribution,	you	either	use	the	package
manager	or	go	to	http://www.openldap.org/,	and	for	a	Windows	port,	you	can	go	to
http://sourceforge.net/projects/openldapwindows/).	For	a	Ubuntu-based	installation,	you
need	to	install	the	slapd	and	ldap-utils	packages	in	order	to	install	OpenLDAP	using
the	following	command:

sudo	apt-get	install	slapd	ldap-utils

The	Windows	installation	comes	with	a	convenient	installer.	After	the	LDAP	server	is
installed	in	Windows,	you	can	start	the	server	by	running	the
<OpenLDAP_install_dir>\libexec\StartLDAP.cmd	script.	After	the	OpenLDAP	server	is
started,	navigate	to	the	<OpenLDAP_install_dir>\sbin	directory	and	run	the	following
utility	in	order	to	set	a	new	root	password	for	the	LDAP	server	(the	same	configuration
applies	to	the	other	operating	systems):

slappasswd.exe

You	will	be	prompted	to	supply	a	proper	root	password.	After	you	supply	the	password
twice,	you	will	see	it	in	an	encrypted	form.	Assuming	that	we	have	set	an	example	as	the
root	password,	you	can	see	the	following:

{SSHA}VUCblOSqFJn/L9O2bMTrP/YpGDJyAYYx

Copy	the	encrypted	password	and	apply	it	(the	rootpw	parameter)	along	with	the	name	of
your	organization	(the	suffix	parameter)	and	directory	root	(the	rootdn	parameter)	to	the
<OpenLDAP_install_dir>\etc\openldap\slapd.conf	OpenLDAP	configuration	file	as
follows	(modify	the	already	existing	parameters):

suffix:	dc=example,dc=com
rootdn:	cn=organization,dc=example,dc=com
rootpw:	{SSHA}VUCblOSqFJn/L9O2bMTrP/YpGDJyAYYx

After	the	preceding	configuration	changes	have	been	made,	you	need	to	restart	the
OpenLDAP	server.	Note	that	the	restart	may	fail	in	case	there	is	an
<OpenLDAP_install_dir>\etc\openldap\alock	lock	file	existing.	If	this	is	the	case,
delete	the	file	and	try	to	start	the	OpenLDAP	server	again.	Entries	in	a	directory	server	are
organized	hierarchically	and	the	mechanisms	to	add	/	edit	/	delete	or	retrieve	them	is
provided	by	the	LDAP	protocol.	LDAP	and	OpenLDAP	are	huge	topics	that	we	will	not
cover	in	detail.	For	now,	you	can	assume	that	the	preceding	configuration	specifies	the
root	directory	for	your	entries	along	with	the	root	password	used	to	access	this	directory.
Definitions	of	the	LDAP	entries	are	stored	in	an	ldiff	file.	Using	the	configured	root	and
password,	we	will	create	the	following	directory	structure	that	has	the	organization	at	the
root	along	with	a	subentry	that	represents	the	group	of	users	in	the	organization	and	a
single	user	(Martin):

http://www.openldap.org/
http://sourceforge.net/projects/openldapwindows/

The	structure	is	represented	by	the	following	ldiff	file	(sample.ldiff):

#	This	distinguished	name	(DN)	determines	the	organization

dn:	dc=example,dc=com

objectClass:	top

objectClass:	dcObject

objectClass:	organization

dc:	example												

o:	example

description:	Sample	description

##	Example.com	users

dn:	ou=users,dc=example,dc=com

ou:	users

description:	Users	in	the	organization

objectClass:	organizationalUnit

##	Sample	user

dn:	cn=Martin,ou=users,dc=example,dc=com

objectclass:	inetOrgPerson

cn:	Martin

sn:	Toshev

uid:	mtoshev

mail:	martin@example.com

Now,	you	need	to	import	the	element	definitions	from	the	ldiff	file	using	the
<OpenLDAP_install_dir>\bin\ldapadd	utility	as	follows:

ldapadd	-x	-D	"cn=organization,dc=example,dc=com"	-W	–f	sample.ldiff

Note	that	to	delete	entries,	you	can	use	the	ldapdelete	utility	as	follows	(for	example,	if
you	want	to	remove	the	last	entry	that	we	added):

ldapdelete		-D	"cn=organization,dc=example,dc=com"	"cn=	

Martin,ou=users,dc=example,dc=com"	-W

RabbitMQ	provides	you	with	an	LDAP	backend	by	means	of	the	rabbitmq-auth-
backend-ldap	plugin.	As	the	LDAP	plugin	is	already	included	in	the	RabbitMQ
distribution,	you	can	simply	enable	it	on	a	node:

rabbitmq-plugins	enable	rabbitmq_auth_backend_ldap

After	the	plugin	is	enabled,	you	need	to	provide	proper	configuration	for	the	LDAP
backend	as	part	of	the	RabbitMQ	configuration.	Uncomment	the	following	line	in	order	to
enable	the	backend	for	a	node	(remember	to	apply	the	same	configuration	over	all	the
nodes	in	a	cluster):

{auth_backends,	[rabbit_auth_backend_ldap]}

In	case	you	want	to	fall	back	to	using	the	standard	authentication	backend	provided	by

RabbitMQ,	you	can	also	add	the	rabbit_auth_backend_internal	entry	to	the	list.	Add
the	following	under	the	rabbitmq_auth_backend_ldap	section	to	the	configuration	file:

{servers,	["localhost"]},{user_dn_pattern,	

"cn=${username},ou=users,dc=example,dc=com"}{tag_queries,	[{administrator,	

{constant,	false}},{management,				{constant,	true}}]}

This	specifies	the	hostname	(localhost)	and	user	DN	(Distinguished	Name)	pattern;	in
this	case,	this	is	the	path	of	the	LDAP	entry	containing	${username},	which	is	replaced	by
RabbitMQ	with	the	supplied	username.	Note	that	there	is	an	alternative	mechanism	that
can	bind	the	username	to	an	arbitrary	attribute	of	the	user.	Refer	to	the	RabbitMQ	LDAP
plugin	for	more	details	on	the	alternative	configuration.	The	last	section	specifies	that	our
users	are	able	to	access	the	management	console	but	they	don’t	have	administrative
privileges.	By	default,	all	LDAP	users	are	non-administrative	and	are	allowed	access	to
the	entire	broker	(all	the	objects	in	all	vhosts).	In	the	next	section,	we	will	see	how	to
configure	additional	permissions	for	LDAP	users	when	using	the	plugin	(the	authorization
part	of	the	plugin).	Before	being	able	to	log	in	using	the	preceding	user	DN	pattern,	we
must	set	a	password	for	our	users.	To	set	a	password	for	the	user	with	the	name	Martin
that	we	created	earlier,	you	can	use	the	ldappasswd	utility	as	follows	(specify	the
encrypted	form	of	the	example	that	we	used	earlier	to	configure	our	root	LDAP
password):

ldappasswd	-D	"cn=organization,dc=example,dc=com"	

"cn=Martin,ou=users,dc=example,dc=com"	–W	-S

Now,	in	order	to	check	whether	a	user	can	successfully	authenticate,	you	can	take	the	DN
from	the	RabbitMQ	configuration,	replace	${username}	with	the	name	of	the	user	(in	this
case,	Martin)	that	you	want	to	check,	and	use	the	ldapwhoampi	utility	as	follows:

ldapwhoami	-vvv	-D	"cn=Martin,ou=users,dc=example,dc=com"	-x	-w	example

You	should	see	the	following	if	the	test	succeeds:

dn:cn=Martin,ou=users,dc=example,dc=com

Result:	Success	(0)

You	should	now	be	able	to	log	in	from	the	management	console	with	the	Martin	user	and
example	password.	If	you	omit	the	tag_queries	entry	from	the	preceding	configuration,
you	will	see	a	warning	similar	to	the	following	in	the	log	file	when	you	attempt	a	login
(indicating	that	the	LDAP	user	is	not	allowed	to	access	the	management	console):

HTTP	access	denied:	user	'Martin'	-	Not	management	user

The	LDAP	plugin	provides	additional	configurations	such	as	SSL	support	for	the	LDAP
communication;	you	can	refer	to	the	plugin	documentation.	The	authentication	backend
can	be	used	with	other	types	of	SASL	authentication	such	as	EXTERNAL,	as	we	will	see
later	in	this	chapter.

Security	considerations
Having	configured	the	proper	authentication	mechanisms	and	removing	the	default	user	is
merely	not	enough.	Simple	passwords	are	easily	guessable	and	a	very	basic	tool	can	be
created	based	on	a	RabbitMQ	client	library	that	tries	to	connect	to	the	broker	using	a	list
of	pregenerated	passwords	from	a	proper	source	that	can	be	used	to	execute	a	brute	force
attack	on	a	RabbitMQ	message	broker.	For	this	reason,	you	need	to	consider	the
following:

Setting	strong	passwords	for	RabbitMQ	users	whether	they	are	stored	internally	in
the	broker	or	in	an	LDAP	server.
Setting	a	broker	threshold	on	the	number	of	failed	login	attempts	for	a	RabbitMQ
user,	which,	at	the	time	of	writing	this,	is	not	supported	directly	by	the	message
broker	unfortunately.	However,	with	some	more	effort,	a	good	plugin	can	be
contributed	that	implements	a	way	to	configure	and	enforce	password	policies.
Setting	SSL	communication	in	order	to	prevent	password	sniffing,	as	we	will	cover
later	in	this	chapter.
Deploying	a	proper	monitoring	solution	on	the	broker	workstation	that	takes	into
consideration	the	resource	utilization	factors	that	can	indicate	a	security	breach,	such
as	increased	memory	or	CPU	time	consumption.
Configuring	a	log	auditing	tool	and	storing	audit	logs	for	the	auditing	access.	You	can
further	combine	the	audit	logs	with	a	log	analyzer	that	can	scan	them	for	possible
security	breaches.	Unfortunately,	RabbitMQ	does	not	have	such	built-in	capabilities
or	plugins;	you	can	either	decide	to	implement	a	plugin	for	the	purpose	or	use	the
utilities	provided	by	the	OS	(such	as	tcpdump	or	iptables	logging	rules	for	Unix-
based	operating	systems)	with	proper	log	auditing	tools	in	order	to	be	able	to	analyze
incoming	traffic	for	the	message	broker.

Authorization
After	a	client	is	successfully	authenticated	by	the	message	broker,	it	needs	to	perform
some	activities	in	some	virtual	hosts.	In	the	earlier	chapters,	we	saw	that	permissions	are
defined	per	vhost	and	live	either	internally	in	the	message	broker	or	externally.	The
RabbitMQ	LDAP	backend	plugin	that	we	saw	earlier	provides	you	with	an	ability	to	store
permissions	in	an	LDAP	server.	The	following	types	of	permissions	are	configured	in	the
message	broker:

configure:	This	allows	a	resource	to	be	created,	modified,	or	deleted
write:	This	allows	a	resource	to	be	written	to
read:	This	allows	a	resource	to	be	read	from

We	already	discussed	how	to	manage	permissions	using	the	rabbitmqctl	utility	and	the
HTTP	API.	The	following	commands	can	be	used	from	the	utility	to	manage	permissions:

set_permissions:	This	sets	permissions	per	user	per	vhost
clear_permissions:	This	clears	permissions	per	user	per	vhost
list_permissions:	This	lists	the	users	that	are	granted	access	to	a	particular	vhost
along	with	their	permissions
list_user_permissions:	This	lists	the	permissions	of	a	particular	user

LDAP	authentication
The	LDAP	user	that	we	created	earlier	by	default	has	all	the	permissions	to	the	broker
(except	for	being	an	administrator).	Let’s	suppose	that	we	want	to	disable	the	configure
permissions,	allow	more	fine-grained	write	permissions	only	to	certain	queues	(in	certain
vhosts),	or	make	it	an	administrator.	The	RabbitMQ	LDAP	provides	a	query	mechanism	to
check	permissions	as	configured	in	the	LDAP	server.	There	are	three	types	of	queries	that
can	be	specified	in	the	RabbitMQ	configuration	and	further	contain	different	types	of
subqueries	that	are	executed	against	the	LDAP	server:

vhost_access_query:	As	users	and	permissions	must	be	checked	against	vhosts	that
must	be	created	in	RabbitMQ,	we	can	define	vhost	entries	in	the	LDAP	server	against
which	to	check	for	available	permissions	and	tags.	In	fact,	these	entries	represent	a
subset	of	the	existing	vhosts	in	the	RabbitMQ	server	against	which	we	check	whether
users	have	further	access	permissions	or	not.	The	default	query	is	{constant,	true},
which	specifies	that	access	to	all	vhosts	is	given	to	all	the	users	(the	constant	queries
are	aliases	for	all,	which	return	true	or	false	for	any	value	checked	by
vhost_access_query).
resource_access_query:	These	are	the	types	of	queries	that	allow	you	to	check
whether	a	user	has	specific	permissions	(read,	write,	or	configure)	for	a	particular
vhost	to	which	the	user	has	access	(as	checked	by	vhost_access_query).	The	default
is	{constant,	true}.
tag_queries:	These	are	the	types	of	queries	that	allow	you	to	specify	the	tags	that
are	given	to	particular	users	(such	as	management	or	administrator).	The	default	is
{administrator,	{constant,	false}}.

The	types	of	subqueries	that	can	be	specified	for	each	type	of	these	queries	use	a	simple
DSL;	you	can	review	the	LDAP	RabbitMQ	plugin	documentation	for	an	extensive	list	of
all	types	of	subqueries.	We	will	specify	the	following	access	domains	for	our	message
broker:

The	test	user	is	the	vhost
The	guest	user	is	an	administrator	and	has	access	to	the	management	console
The	Martin	user	has	access	only	to	the	test	vhost	and	can	publish	to	exchanges
starting	with	the	test_	prefix
The	Subscriber	user	has	access	to	the	test	vhost	only	and	can	read	messages	from
queues	starting	with	the	test_	prefix

The	following	diagram	specifies	the	LDAP	structure	of	the	organization:

Before	we	can	implement	this	setup,	we	need	to	create	the	test	vhost	in	RabbitMQ.	The
following	example	creates	the	test	vhost	using	the	rabbitmqctl	utility:

rabbitmqctl	add_vhost	test

You	also	need	to	create	LDAP	entries	for	the	guest	and	Subsciber	users	in	the	same
manner	that	we	created	the	entry	for	the	user	with	the	name	Martin	earlier.	Here	is	a
sample	ldiff	file	(users.ldiff)	for	the	two	users:

##	guest	user

dn:	cn=guest,ou=users,dc=example,dc=com

objectclass:	inetOrgPerson

cn:	guest

sn:	guest

uid:	guest

mail:	guest@example.com

##	Subscriber	user

dn:	cn=Subscriber,ou=users,dc=example,dc=com

objectclass:	inetOrgPerson

cn:	Subscriber

sn:	Subscriber

uid:	Subscriber

mail:	subscriber@example.com

To	import	the	preceding	ldiff	file	and	set	a	password	for	the	users,	you	can	execute	the
following	set	of	commands:

ldapadd	-x	-D	"cn=organization,dc=example,dc=com"	-W	–f	users.ldiff

ldappasswd	-D	"cn=organization,dc=example,dc=com"	

"cn=guest,ou=users,dc=example,dc=com"	–W	–S

ldappasswd	-D	"cn=organization,dc=example,dc=com"	

"cn=Subscriber,ou=users,dc=example,dc=com"	–W	–S

Finally,	we	need	to	create	the	vhosts	group	along	with	an	entry	for	the	test	vhost
(vhosts.ldiff):

##	Example.com	vhosts

dn:	ou=vhosts,dc=example,dc=com

ou:	vhosts

description:	Vhosts	in	the	organization

objectClass:	organizationalUnit

##	test	vhost

dn:	cn=test,ou=vhosts,dc=example,dc=com

objectclass:	organizationalRole

description:	test	vhost

Execute	the	following	in	order	to	import	the	preceding	entries:

ldapadd	-x	-D	"cn=organization,dc=example,dc=com"	-W	–f	vhosts.ldiff

Note	that	we	are	using	a	predefined	object	class	(organizationalRole)	for	the	vhost	entry
in	LDAP.	You	can	prefer	to	create	your	own	object	class	for	the	purpose	of	describing	a
vhost	along	with	its	attributes	in	your	organization.	Finally,	we	need	to	specify	the	proper

queries	for	permission	checking	in	the	LDAP	configuration	(as	part	of	the
rabbitmq_auth_backend_ldap	section	in	your	RabbitMQ	configuration	file):

{vhost_access_query,				{exists,	

"cn=${vhost},ou=vhosts,dc=example,dc=com"}},

{resource_access_query,

			{for,	[

				{permission,	configure,	{match,	

{string,	"${username}"},{string,	"guest"}}},

				{permission,	write,	{'and',	[

	 {match,	{string,	"${username}"},{string,	"(Martin|guest"}},

	 {match,	{string,	"${name}"},{string,	"test_*"}}]}	},

				{permission,	read,	{'and',	[

	 {match,	{string,	"${username}"},{string,	"(Subscriber|guest)"}},

	 {match,	{string,	"${name}"},{string,	"test_*"}}]}	}

]	}},

{tag_queries,	[{administrator,	{match,	{string,	"${username}"},{string,	

"guest"}}},

															{management,				{constant,	true}}]}

The	preceding	configuration	is	easy	to	understand,	but	it	might	turn	out	to	be	clumsy	to
write	and	test.	After	it	is	added	to	the	configuration	file,	you	can	try	to	log	in	with	the
guest/guest	user	and	check	whether	it	has	administrative	access.	You	can	try	to	create	an
object	using	the	Subscriber	user	or	send/receive	messages	using	the	Martin/Subscriber
user.	In	practice,	the	preceding	configuration	should	be	designed	carefully	based	on	the
organizational	LDAP	schema	in	order	to	prevent	security	holes.

Secure	communication
Let’s	turn	our	attention	to	how	the	AMQP	messages	can	be	transferred	securely	on	the
wire	and	how	to	ensure	secure	communication	between	the	publishers/subscribers	and	our
message	broker.	Even	if	the	message	broker	is	not	visible	to	the	outside	world,	there	is	still
the	risk	of	an	insider	attack	taking	place.	This	could	be	either	a	network	tap	or	hub	that	is
added	with	malicious	intent	to	the	communication	link	between	the	message	broker	and
publishing/subscribing	applications	or	a	form	of	ARP	(address	resolution	protocol)
poisoning.	In	both	cases,	traffic	can	be	forwarded	to	a	listening	port	on	a	machine	that
aims	to	sniff	communication.	The	next	step	is	to	capture	and	analyze	the	incoming	traffic.
To	simulate	the	capturing	and	analysis	phase,	we	will	use	Wireshark	(version.1.12.8)
along	with	the	AMQP	dissector	module	that	comes	with	the	tool	in	order	to	listen	on	the
network	interface	of	a	local	workstation	that	has	a	RabbitMQ	instance	running.	First,
download	and	install	Wireshark	from	https://www.wireshark.org/.	As	we	will	be	listening
for	traffic	on	the	loopback	interface,	you	need	to	make	sure	that	you	have	proper	support
to	listen	on	the	loopback	interface	in	your	OS.	For	Windows,	WireShark	uses	the	WinPcap
utility	that,	at	the	time	of	writing	this,	does	not	support	listening	on	the	loopback	interface.
The	Npcap	tool	is	an	update	of	WinPcap	that	provides	a	generic	loopback	interface	for
Windows	(check	https://wiki.wireshark.org/CaptureSetup/Loopback	in	the	Wireshark,
Wikipedia).	Download	and	install	Npcap	if	you	are	using	Wireshark	and	RabbitMQ	under
Windows.

Once	WireShark	is	installed,	navigate	to	Capture	->	Interfaces…,	and	select	the	network
interface	on	which	you	will	listen	for	the	incoming	traffic,	as	shown	in	the	following
screenshot:

Then,	click	on	Close	in	the	Filter	field,	specify	amqp	as	a	display	filter,	and	select
Capture	>-	Start	in	order	to	start	the	capturing	of	packets	on	the	loopback	interface.	Send
a	test	message	to	the	RabbitMQ	broker	(you	can	use	a	modified	version	of	the
RequestSenderDemo	Java	class	introduced	in	Chapter	3,	Administration,	configuration	and
management	for	this	purpose)	using	test_exchange	with	the	test_queue	key	on	the	test

https://www.wireshark.org/
https://wiki.wireshark.org/CaptureSetup/Loopback

vhost	(precreate	the	test_exchange	exchange	and	the	test_queue	queue).	The	result	from
the	capture	is	visible	on	the	following	screen:

You	can	see	the	entire	sequence	of	AMQP	messages	that	are	exchanged	when	the	message
was	sent.	If	you	double-click	on	the	Basic	Publish	package	(in	the	rectangle)	and	scroll
down	a	little,	you	will	see	the	message	payload:

As	you	can	see,	it	was	pretty	straightforward	to	inspect	the	unsecured	RabbitMQ	traffic
once	you	are	able	to	receive	the	network	traffic	to/from	the	message	broker.	In	order	to
deal	with	the	problem,	we	need	to	enable	SSL	in	the	RabbitMQ	configuration.	In	order	to
listen	for	the	SSL	connection,	the	RabbitMQ	message	broker	needs	to	specify	a	port	for
the	SSL	connection	along	with	the	additional	SSL	options	such	as	CA	certificate	file,
server	certificate,	and	private	key,	and	also	needs	to	specify	whether	to	verify	the	client

certificate	(if	any)	and	not	and	how	to	behave	if	verification	fails	(accept	or	reject	the
client	connection).	The	following	sample	configuration	enables	SSL	support	on	a
RabbitMQ	instance	on	port	5671:

[

		{rabbit,	[

					{ssl_listeners,	[5671]},

					{ssl_options,	[{cacertfile,"cacert.pem"},

																				{certfile,"cert.pem"},

																				{keyfile,"key.pem"},

																				{verify,	verify_peer},

																				{fail_if_no_peer_cert,true}]}

]}

].

The	preceding	configuration	further	specifies	that	the	client	must	also	send	its	certificate
and	that	it	must	be	verified	by	the	message	broker.	Apart	from	setting	the	port	to	5671	in
the	client	connection	factory,	you	must	also	tell	the	client	to	use	SSL	when	connecting	to
the	broker.	The	following	example	prepares	the	connecting	factory	in	the	Java	client
before	creating	SSL	connections	to	the	message	broker:

ConnectionFactory	factory	=	new	ConnectionFactory();

factory.setHost("localhost");

factory.setPort(5671);

factory.useSslProtocol();

In	this	case,	the	client	does	not	present	a	certificate	to	the	broker	and	does	not	validate	the
broker’s	certificate.	To	do	so,	you	can	supply	a	javax.net.sslSSLContext	instance	that
contains	a	key	store	with	the	client	certificate	and	trust	store	with	the	server	certificate	to
the	useSslProtocl()	method.	The	RabbitMQ	documentation	provides	a	detailed	example
on	how	to	create	your	own	certificate	authority,	generate	keys	and	server	certificates,	and
sign	the	server	certificate	by	the	CA—the	OpenSSL	tool	is	used	to	perform	these
activities.	Check	the	RabbitMQ	SSL	guide	for	https://www.rabbitmq.com/ssl.html

https://www.rabbitmq.com/ssl.html

Secure	communication	with	the	management
interface
If	the	management	interface	port	(15672	by	default)	is	not	restricted	by	a	firewall	rule,
then	SSL	must	be	enabled	for	the	management	plugin	as	well.	Let’s	use	Wireshark	again
to	demonstrate	what	can	happen	if	the	administrator	forgets	to	restrict	access	to	the
management	interface	or	does	not	enable	SSL.	Start	capturing	packets	from	Wireshark,
and	in	the	Filter	field,	specify	a	display	filter	that	permits	only	packets	to/from	the	TCP
port	15672	using	the	following	expression:

tcp.port	eq	15672

Now,	send	a	test	message	to	the	management	interface	REST	API	using	the
rabbitmqadmin	utility:

rabbitmqadmin.py	-V	test	publish	routing_key=test_queue	

exchange=test_exchange	payload=test	

The	following	diagram	observes	the	captured	traffic	flowing	to/from	the	management
interface:

In	the	red	rectangle,	you	can	see	the	HTTP	packet	that	sends	a	POST	request	with	the
message	to	the	management	interface.	If	you	click	on	the	packet	and	scroll	down	a	little,
you	will	see	the	information	about	the	AMQP	message	along	with	the	payload:

In	order	to	enable	SSL	for	the	management	interface,	you	must	change	its	configuration.
The	following	example	provides	a	sample	configuration	that	enables	SSL	on	port	15671:

[{rabbitmq_management,

		[{listener,	[{port,					15671},

															{ssl,						true},

															{ssl_opts,	[{cacertfile,	"cacert.pem"},

																											{certfile,			"cert.pem"},

																											{keyfile,				"key.pem"}]}

]}

]}

].

As	you	can	see,	the	configuration	is	very	similar	to	the	one	that	we	specified	for	the
enabling	of	an	SSL	for	a	connection	to	the	message	broker.

Secure	cluster	communication
Although	an	Erlang	cookie	is	used	to	allow	communication	between	nodes	in	a	cluster,	it
still	doesn’t	enable	secure	communication	between	these	nodes.	To	do	so,	you	need	to
enable	SSL	in	the	Erlang	application	that	runs	the	RabbitMQ	instance.	For	further	details
on	how	to	enable	SSL	communication	between	nodes,	you	can	check	the	clustering	SSL
guide	from	the	RabbitMQ	documentation:

http://www.erlang.org/doc/apps/ssl/ssl_distribution.html

Apart	from	setting	secure	clustering,	you	must	also	ensure	that	filesystem	access	to	the
Erlang	cookie	is	given	only	to	users	who	are	allowed	to	run	and	manage	the	RabbitMQ
instance	on	that	system.

http://www.erlang.org/doc/apps/ssl/ssl_distribution.html

EXTERNAL	SSL	authentication
The	rabbitmq-auth-mechanism-ssl	context	provides	an	SASL	EXTERNAL	type	of
authentication	that	uses	a	client	certificate	to	authenticate	a	user.	The	plugin	requires	SSL
communication	to	be	enabled	between	the	client	and	RabbitMQ	server.	For	more	details
about	the	configuration	of	the	plugin,	you	can	check	the	plugin	repository	at
https://github.com/rabbitmq/rabbitmq-auth-mechanism-ssl.

https://github.com/rabbitmq/rabbitmq-auth-mechanism-ssl

Penetration	testing
Now	that	we	have	seen	how	to	secure	our	message	broker,	we	also	need	to	test	that	our
setup	is	indeed	in	place	and	really	prevents	attackers	from	bringing	down	the	message
broker	or	stealing	messages.	For	this	reason,	you	can	build	your	own	custom	tool	for
penetration	testing	of	the	message	broker,	which	performs	the	following	functions:

It	checks	whether	the	guest/guest	user	is	present	and	it	can	perform	administrative
activities.
It	tries	to	brute-force	passwords	for	an	existing	set	of	users,	either	based	on	a
password	generation	policy	or	using	a	predefined	password	database.
It	tries	to	access	prohibited	vhosts	from	a	particular	set	of	users.
It	uses	nmap	to	check	whether	the	management	console	and	RabbitMQ
communication	ports	are	visible;	this	step	may	include	checks	on	ports	that	are
exposed	by	RabbitMQ	plugins.
It	checks	the	RabbitMQ	configuration	settings,	authentication	mechanism,	and
currently-set	limits	such	as	minimum	free	disk	space,	memory	limits,	or	maximum
number	of	channels.	(Most	of	these	options	were	covered	when	we	discussed	the
performance	tuning	of	the	message	broker.)
It	checks	the	maximum	limit	per	user	as	specified	by	the	operating	system,	for
example,	this	could	be	the	maximum	number	of	processes	or	file	descriptors	that	can
be	used	for	the	user	that	runs	the	RabbitMQ	instance.	In	Linux,	this	could	be	checked
against	the	etc/security/limits.conf	file.

More	features	can	be	derived	from	the	following	article	that	covers	several	security
considerations	and	resource	utilization	settings	for	production	deployments	of	RabbitMQ:
https://www.rabbitmq.com/production-checklist.html

https://www.rabbitmq.com/production-checklist.html

Case	study	–	securing	CSN
Once	the	CSN	was	in	alpha	testing	and	the	good	performance	of	the	system	was	reached,
the	CSN	team	was	required	to	take	two	important	steps	in	order	to	meet	the	company’s
security	policy:

Enable	SSL	over	all	the	communication	links	between	all	the	components	in	the
system	(including	the	RabbitMQ	cluster	links,	federation	link	with	the	remote
RabbitMQ	instance,	and	communication	links	between	the	broker	and	its	clients)
Enable	the	central	management	of	CSN	users	and	their	associated	permissions	by
means	of	the	corporate	LDAP	server

Further	security	testing	was	made	by	the	team	in	order	to	ensure	that	no	major
vulnerabilities	were	found	in	the	setup	of	the	system:

Summary
In	this	chapter,	we	discussed	the	various	aspects	of	security	related	to	RabbitMQ	and	the
types	of	vulnerabilities	that	can	come	up	in	practice	and	how	to	mitigate	them.	We	covered
the	SASL	mechanism	provided	by	RabbitMQ	for	the	purpose	of	authentication	and
extended	further	on	this	concept	by	providing	an	integration	of	the	authentication	backend
with	the	OpenLDAP	server.	Additionally,	we	discussed	how	to	store	and	manage
permissions	in	LDAP	and	provide	secure	communication	with	the	message	broker,
management	console,	and	cluster	nodes.	In	the	end,	we	covered	several	guidelines	in
establishing	a	successful	penetration	testing	strategy	to	verify	that	the	message	broker
meets	the	minimum	level	of	security	as	required	by	the	policy	of	your	organization.

Exercises
1.	 What	types	of	security	threats	are	imposed	on	the	message	broker?
2.	 What	is	SASL,	and	what	types	of	SASL	authentication	are	supported	in	RabbitMQ?
3.	 How	does	RabbitMQ	enable	authentication	and	authorization	against	an	LDAP

server?
4.	 How	does	RabbitMQ	provide	SSL	support?
5.	 How	can	you	test	whether	your	RabbitMQ	setup	provides	a	good	degree	of	security?

Chapter	10.	Internals
To	get	a	better	understanding	of	how	a	system	works,	on	various	occasions,	developers
need	to	dig	under	the	hood	in	the	implementation	of	that	system	or	at	least	get	a	basic
overview	of	its	high-level	architecture	and	its	most	critical	components.	In	this	chapter,	we
will	discuss	how	RabbitMQ	is	designed	and	implemented	and	how	to	write	plugins	for
RabbitMQ.

The	topics	that	will	be	covered	in	the	chapter	are	as	follows:

High-level	architecture	for	RabbitMQ
Overview	of	RabbitMQ	components
Developing	plugins	for	RabbitMQ

High	level	architecture	of	RabbitMQ
We	already	discussed	a	lot	of	details	about	how	the	message	broker	works.	We	discussed
that	RabbitMQ	instances	are	Erlang	applications	that	communicate	with	each	other	by
means	of	Erlang	message	passing	with	the	help	of	a	shared	Erlang	cookie	that	is	used	to
allow	communication	between	endpoints.	As	every	system	that	provides	a	server	and	one
or	more	clients	for	different	platforms,	we	could	easily	guess	that	before	an	AMQP
message	is	sent	to	the	broker,	an	AMQP	client	opens	a	TCP	socket	using	the	utilities	that
are	provided	by	the	particular	programming	language	in	which	it	writes	the	AMQP	data.
The	most	interesting	part	is	what	happens	when	the	message	arrives	at	the	message	broker.
Once	the	message	broker	receives	the	AMQP	message,	it	needs	to	parse	and	process	it,
accordingly.	If	we	take	a	closer	look	at	what	the	rabbitmq-server	script	executes,	we	will
notice	that	several	actions	take	place,	as	follows:

The	start	method	from	the	rabbit_prelaunch	module	is	executed	and	it	performs
the	basic	validation	(such	as,	whether	a	node	with	the	same	name	exists	and	whether
the	node	distribution	port	is	valid)	before	actually	starting	the	server.

If	the	checks	from	the	previous	step	are	successful,	then	the	server	starts	from	the	rabbit
module	that	implements	the	application	behavior	(meaning	that	the	module	has	certain
callback	methods	that	must	be	implemented	by	the	module).

Before	we	are	to	understand	how	RabbitMQ	works,	we	need	to	clarify	a	few	important
features	provided	by	Erlang	and	their	uses	in	the	implementation	of	the	message	broker.	A
behaviour,	in	terms	of	the	Erlang	programming	language,	specifies	that	a	module	must
implement	certain	methods	that	give	it	a	certain	meaning	(behavior).	We	can	compare	this
with	the	way	in	which	inheritance	works—we	can	have	an	abstract	class	that	extracts
certain	logic	and	can	be	extended	by	different	implementations,	which	on	the	other	hand,
can	be	further	extended.	In	that	sense,	an	Erlang	module	can	either	define	that	it	has	a
certain	behavior	(and	it	needs	to	implement	a	particular	set	of	callback	methods	that	are
defined	by	that	behavior)	or	the	module	itself	is	a	behavior	that	defines	a	set	of	methods
that	must	be	implemented	by	other	modules	that	use	the	behavior.	In	the	following
example,	we	have	a	sample	module	that	uses	the	built-in	application	behavior	and	defines
the	sample	behavior	with	two	functions:	start_sender	and	start_receiver,	as	follows:

-module(sample).

-export([behaviour_info/1]).

-behaviour(application).

start(normal,	[])	->	true.

behaviour_info(callbacks)	->

				[{start_sender,2},

					{start_receiver,	0}

];

The	sample	module	uses	the	application	behavior	and	needs	to	provide	the
implementation	of	the	start(normal,	[])	method	that	is	executed	before	the	application
(this	module)	is	started	successfully.	On	the	other	hand,	the	module	creates	a	behavior
with	the	same	name	as	that	of	the	module	using	the	behaviour_info	method	that	specifies

the	callback	functions	along	with	their	arity	(number	of	arguments)	that	must	be
implemented	by	the	users	of	the	sample	behavior.	This	seemingly	simple	mechanism	lays
the	basis	for	creating	more	complex	interactions	among	the	components	of	an	Erlang
application.	Two	of	these	mechanisms	are	built	in	Erlang	and	used	by	RabbitMQ,	as
shown	in	the	following:

The	supervisor	behavior	allows	the	creation	of	a	process	tree.	The	main	purpose	of
this	behavior	is	to	allow	a	parent	process	to	monitor	the	child	processes	for	failure
and	restart	them,	based	on	a	predefined	policy	in	that	parent	(supervisor)	process.
This	allows	a	fault-tolerant	handling	of	the	failures	in	the	application,	which	is
necessary	in	the	case	of	RabbitMQ	in	order	to	ensure	a	decent	degree	of	reliability
that	prevents	the	broker	from	failing	upon	process	failure.
The	gen_event	behavior	allows	the	exchange	of	messages	between	processes.

The	supervisor	behavior	is	essential	for	Erlang	and	for	the	RabbitMQ	message	broker,	in
particular.	A	good	understanding	of	how	and	why	RabbitMQ	relies	on	a	supervision	tree
of	processes	is	necessary	in	order	to	understand	how	the	message	broker	works	at	the
runtime.	Consider	the	following	diagram	that	provides	an	overview	of	a	sample	process
tree	in	terms	of	Erlang	and	the	supervisor	behavior:

We	have	a	root	process	that	supervises	other	processes;	if	any	of	them	fail,	the	supervisor
is	responsible	to	restart	it.	The	leaves	of	the	tree	are	the	actual	processes	that	are	running
in	the	application.

The	following	diagram	provides	a	high-level	overview	of	the	RabbitMQ	components	and
their	initialization	during	the	server	startup:

The	rabbit	module	uses	the	rabbit.hrl	Erlang	header	file	that	provides	the	definitions	of
all	types	(such	as,	queue,	exchange,	binding,	vhost,	and	so	on)	that	are	used	in	the	server
and	for	this	reason,	the	header	is	included	in	most	of	the	Erlang	sources	of	the	message
broker.	The	start(normal,	[])	method	of	the	rabbit	module	triggers	the	start	up	of	the
server.	First,	the	root	process	supervisor	that	is	provided	by	the	rabbit_sup	module	is
started	by	invoking	the	rabbit_sup:start_link()	method.	Then,	a	number	of	boot	steps
are	executed	(we	will	refer	to	this	process	as	the	boot	component	of	the	message	broker).
Many	of	the	boot	steps	start	a	child	process,	which	is	added	to	the	supervisor	tree	that	has
a	certain	role.	The	following	diagram	describes	the	process	tree,	one	level	under	the
rabbit_sup	supervisor:

In	the	next	section,	we	will	briefly	discuss	most	of	the	processes	that	are	mentioned	in	the
preceding	diagram,	along	with	the	structure	of	the	process	subtrees	that	are	provided	by
the	most	essential	child	supervisors,	such	as	rabbit_tcp_client_sup,
rabbit_direct_client_sup,	and	rabbit_amqqueue_sup_sup,	and	their	corresponding
Erlang	modules.	Apart	from	when	networking	is	started	as	a	part	of	the	boot	process	on	or
more	tcp_listener_sup	supervisor	processes	are	started	for	each	TCP/SSL	interface
configured	for	the	message	broker.

After	the	boot	steps	are	finished,	the	RabbitMQ	plugins	are	loaded.	At	this	point,	the
message	broker	is	ready	to	accept	the	connections.	Logging	in	the	RabbitMQ	components
is	done	by	means	of	the	utilities	provided	by	the	rabbit_log	module.

Overview	of	RabbitMQ	components
Before	we	dive	into	more	details	on	the	separate	components	of	the	message	broker	and
their	implementation,	you	can	refer	to	Appendix	A,	Contributing	to	RabbitMQ	on	how	to
get	the	RabbitMQ	source	code	so	that	you	can	review	it	as	we	move	through	the
components	and	also	how	to	install	useful	tools	that	will	aid	in	Erlang	development	and
RabbitMQ	plugin	development,	in	particular.

Boot	component
The	RabbitMQ	boot	component	provides	one	of	the	key	mechanisms	in	the	message
broker	that	allows	the	plugins	to	require	certain	steps	from	the	RabbitMQ	server	in	order
to	ensure	that	the	components	that	they	depend	on	are	already	loaded	and	it	also	allows	the
plugins	to	be	installed	and	enabled	in	the	RabbitMQ	message	broker.	For	this	reason,	it	is
advisable	to	write	plugins	with	caution	as	they	can	crash	the	message	broker	if	they	are
not	implemented	properly.	Before	the	RabbitMQ	boot	mechanism	is	triggered,	the
common	rabbit_sup	process	supervisor	(the	root	of	the	RabbitMQ	process	tree)	is	started
by	calling	the	rabbit_sup:start_link()	method	from	the	start/2	method	in	the	rabbit
module.	After	the	process	supervisor	starts,	a	series	of	boot	steps	are	executed	by	calling
the	rabbit_boot_steps:run_boot_steps()	method.	The	boot	steps	are	divided	into
groups,	as	follows:

external_infrastructure:	This	prepares	the	infrastructure	for	the	RabbitMQ	server
(such	as,	worker	pool,	file	handle	cache,	and	Mnesia	database)
kernel_ready:	This	initializes	the	core	functionality	of	the	message	broker	(such	as
plug-in	registry,	message	logging,	and	statistics	collection)
core_intialized:	This	initializes	the	additional	functions	of	the	message	broker
(such	as	memory	alarms,	distribution	of	messages	among	queues,	cluster	node
notifications,	and	memory	monitoring)
routing_ready:	This	initializes	more	startup	activities	(such	as	recovery	of	queues,
exchanges	and	bindings,	and	initialization	of	queue	mirrors)
final	steps:	This	performs	the	final	startup	activities	(such	as	error	log
initialization,	initialization	of	TCP	listeners	for	configured	interfaces,	initialization	of
processes	that	are	used	to	handle	client	connection,	and	sending	of	notifications	to
join	the	current	RabbitMQ	cluster)

The	steps	are	organized	in	a	directed	acyclic	graph	and	each	step	may	specify	predecessor
steps	that	may	be	executed	first	and	successor	steps	that	might	be	execute	after	the	current
step.	For	example,	the	following	boot	step	is	used	to	add	mirrors	to	the	queues	based	on
the	mirroring	policies	that	are	defined	in	the	message	broker:

-rabbit_boot_step({mirrored_queues,

																			[{description,	"adding	mirrors	to	queues"},

																				{mfa,	{rabbit_mirror_queue_misc,	on_node_up,	[]}},

																				{requires,	recovery},

																				{enables,	routing_ready}]}).

It	requires	the	recovery	step	to	be	executed	beforehand	and	enables	the	execution	of	the
routing_ready	step.	The	routing_ready	step	represents	a	group	(and	all	other	groups
that	are	mentioned	earlier	are	represented	as	steps):

-rabbit_boot_step({routing_ready,

																			[{description,	"message	delivery	logic	ready"},

																				{requires,	core_initialized}]}).

Each	group	step	represents	a	barrier	for	the	execution	of	steps	from	the	next	group.	In	the
preceding	example,	the	routing_ready	group	requires	the	core_initialized	step	to	have

been	completed	(and	the	core_initialized	step	will	finish	after	all	the	steps	that	enable
the	core_initialized	have	finished	executing).

The	sequence	of	steps	that	are	executed	during	the	boot	process	is	as	follows:

The	external_infrastructure	group	steps	are	as	follow:

codec_correctness_check:	This	checks	whether	the	AMQP	binary	generator	is
working	correctly	and	is	able	to	generate	the	correct	AMQP	frames.
rabbit_alarm:	This	enables	the	RabbitMQ	alarm	handlers	(disk	and	memory);
when	the	memory	grows	beyond	a	threshold	or	disk	space	drops	below	a	limit,
alarms	are	triggered	in	order	to	notify	the	broker	that	it	must	block	subsequent
connections	to	the	broker.
database:	This	prepares	the	Mnesia	database.
database_sync:	This	starts	the	mnesia_sync	process.
file_handle_cache:	This	handles	file	read/write	synchronization.
worker_pool:	This	provides	a	mechanism	to	limit	the	maximum	parallelism	for
a	job	(jobs	can	be	executed	synchronously	or	asynchronously).	It	is	used	for
some	operations	in	the	message	broker,	such	as	executing	transactions	in	the
Mnesia	database.

The	kernel_ready	group	steps	are	shown	in	the	following:

rabbit_registry:	This	starts	a	registry	that	stores	the	plugin	information	along
with	the	corresponding	Erlang	modules	for	the	registered	plugins.
rabbit_event:	This	starts	the	event	notifications	process	that	is	used	for	the
statistics	collection.

The	following	are	the	core_initialized	group	steps:

rabbit_memory_monitor:	This	starts	the	rabbit_memory_monitor	process.
guid_generator:	This	starts	the	rabbit_guid	process	that	provides	a	service	for
the	generation	of	unique	random	numbers	across	the	RabbitMQ	service	instance
that	is	used	for	various	purposes	(such	as	use	in	autogenerated	queue	names).
delegate_sup:	This	starts	a	process	manager	that	is	used	to	spread	the	tasks
among	child	processes	(for	example,	to	send	a	message	from	an	exchange	to	one
or	more	queues).
rabbit_node_monitor:	This	starts	the	rabbit_node_monitor	process.
rabbit_epmd_monitor:	This	starts	the	rabbit_epmd_monitor	process.

The	routing_ready	group	steps	are	as	follows:

empty_db_check:	This	verifies	that	the	Mnesia	database	runs	fine	and	if
necessary,	inserts	the	default	database	data	(such	as	guest/guest	user	and	default
vhost).
recovery:	This	recovers	the	bindings	between	exchanges	and	queues	and	starts
the	queues.
mirrored_queues:	This	adds	mirrors	to	queues,	as	defined	by	the	mirroring
policies.

The	following	are	the	final	boot	steps:

log_relay	step:	This	starts	the	rabbit_error_logger	process.
direct_client:	This	starts	the	supervisor	tree	that	takes	care	of	accepting	direct
client	connections.
networking:	This	starts	up	the	tcp_listener_sup	handlers	for	each
combination	of	TCP	interface/port	that	will	accept	incoming	connections	for	the
message	broker.
notify_cluster:	This	notifies	the	current	cluster	that	a	node	is	started.
background_gc:	This	starts	the	background_gc	process	that	provides	a	service	to
force	garbage	collection	on	demand.

As	additional	reading	on	the	boot	process	of	RabbitMQ,	the	entries	from	the	following
GitHub	repository	at	https://github.com/videlalvaro/rabbit-internals	can	be	reviewed.

https://github.com/videlalvaro/rabbit-internals

Plug-in	loader	component
Plugin’s	loading	is	triggered	by	the	broker_start()	method	in	the	rabbit	module	once
the	boot	steps	of	the	message	broker	has	finished	executing.	To	recall	briefly,	the
following	table	lists	the	configuration	properties	that	are	related	to	RabbitMQ	plugins:

RABBITMQ_PLUGINS_DIR The	directory	where	RabbitMQ	plugins	are	found

RABBITMQ_PLUGINS_EXPAND_DIR The	directory	where	the	enabled	RabbitMQ	plugins	are	expanded
before	starting	the	messaging	server

RABBITMQ_ENABLED_PLUGINS_FILE The	location	of	the	file	that	specifies	which	plugins	are	enabled

The	start()	method	of	the	rabbit_plugins	module	is	called	and	it	clears	the	plugins
expand	directory,	reads	a	list	of	the	enabled	plugins	from	the	enabled	plugins	file,	reads
the	location	of	the	RabbitMQ	plugin	directory,	builds	a	dependency	graph	from	the	list	of
all	the	plugins	in	that	directory	from	where	the	enabled	plugins	and	their	dependencies	are
retrieved,	and	finally,	they	are	unzipped	to	the	plugins	expand	directory.	The
start_apps()	method	that	uses	the	app_utils	module	is	then	called	in	order	to	load	the
plugins;	the	application	module	(module	that	implements	the	application	behavior)	of
each	plugin	is	loaded	and	the	start()	method	of	the	plugins	application	is	called.

Recovery	component
For	the	recovery	component,	we	will	understand	two	particular	steps	from	the	boot
process,	as	follows:

1.	 queue,	exchange	and	binding	recovery:	This	is	provided	by	the	retrieves
information	about	the	items	from	Mnesia	such	as	durable	queues	and	exchanges
along	with	the	bindings	between	them	and	starts	the	queues.	For	this	purpose,	the
recover()	method	from	the	rabbit_policy,	rabbit_amqqueue,	rabbit_binding,
and	rabbit_exchange	modules	are	used.	The	rabbit_amqqueue	module	recovers
queues	by	first	retrieving	durable	queues	from	the	Mnesia	database.	Then,	two
processes	for	transient	and	persistent	message	storing	(represented	by	the
rabbit_msg_store	module)	are	started	and	bound	to	the	rabbit_sup	supervisor
process	(this	is	done	by	calling	the	start()	method	from	the
rabbit_variable_queue	default	backing	module).	After	this,	a	queue	supervisor	of
all	the	queue-related	supervisors	from	the	rabbit_amqqueue_sup_sup	module	is
started.	Finally,	the	durable	queues	are	recovered	by	starting	a	rabbit_amqqueue_sup
queue	supervisor	process	for	each	queue	(from	the	rabbit_amqqueue_sup_sup
supervisor,	which	specifies	the	child	specification	for	the	child	processes	in	its
init()	method).	Each	queue	supervisor	process	starts	one	queue	process
(represented	by	the	rabbit_amqqueue_process	module)	and	one	queue	slave	process
for	queue	mirroring	(represented	by	the	rabbit_mirror_queue_slave	module).	Once
the	recovery	is	completed,	the	start()	method	from	the	rabbit_amqqueue	module	is
invoked,	which	triggers	the	go()	method	in	rabbit_mirror_queue_slave	that	further
invokes	(via	the	gen_server2	module	RPC)	the	handle_go()	method.	This	joins	the
queue	slave	process	for	the	particular	queue	to	a	group	of	processes	in	order	to
distribute	information	in	a	broadcast	manner	among	these	processes.	This	broadcast
mechanism	is	implemented	by	the	gm	module	(which	stands	for	guaranteed
broadcast)	that	provides	the	necessary	utilities	to	add/remove	a	process	from	a
broadcast	group	and	send	a	broadcast	message	among	nodes	in	a	group	in	a	reliable
manner.

2.	 Start	up	of	queue	mirroring	based	on	the	mirroring	policies	defined	for	the	recovered
queues.	For	this	purpose,	the	on_node_up()	method	from	the
rabbit_mirror_queue_misc	module	is	executed.	It	retrieves	the	cluster	nodes	on
which	to	mirror	queue	messages	for	each	queue	based	on	the	defined	mirroring
policies.	The	rabbit_mirror_*	modules	implement	the	logic	for	queue	mirroring
using	master-slave	semantics.

The	following	diagram	depicts	the	process	subtree	for	the	queue-related	processes	and
their	supervisors:

Persistence	component
We	will	divide	the	persistence	component	into	metadata	persistence	and	message
persistence	subcomponents.

Metadata	persistence
In	the	boot	process,	we	have	a	chain	for	the	initialization	of	the	Mnesia	databases	along
with	the	relevant	RabbitMQ	tables.	In	earlier	chapters,	we	discussed	that	the	transient	and
persistent	message	stores	are	separated	from	the	Mnesia	tables,	which	store	the
information	about	object	definitions	(such	as	exchanges,	queues,	and	bindings).	The
rabbit_mnesia	module	is	initialized	during	the	boot	process	and	provides	utilities	to	start
and	stop	the	Mnesia	database,	check	whether	the	database	is	running,	and	transfer
metadata	among	cluster	nodes.	It	also	handles	the	creation	of	the	Mnesia	schema	along
with	the	RabbitMQ	tables	by	means	of	the	rabbit_table	module.	The	rabbit_table
module	provides	definitions	of	the	RabbitMQ	tables.	The	following	is	a	list	of	the
RabbitMQ	Mnesia	tables:

rabbit_user

rabbit_user_permission

rabbit_vhost

rabbit_listener

rabbit_durable_route

rabbit_semi_durable_route

rabbit_route,

rabbit_reverse_route

rabbit_topic_trie_node

rabbit_topic_trie_edge

rabbit_topic_trie_binding

rabbit_durable_exchange

rabbit_exchange

rabbit_exchange_serial

exchange_name_match

rabbit_runtime_parameters

rabbit_durable_queue

rabbit_queue

The	preceding	tables	are	manipulated	by	means	of	the	mnesia	built	in	the	module
throughout	the	RabbitMQ	server	sources.	The	rabbit_mnesia	module	uses	the	file
utilities	that	are	provided	by	the	rabbit_file	module.

Message	persistence	component
First	of	all,	the	file	handle	cache	is	initialized	by	the	start_fhc()	method	in	the	rabbit
module.	The	file	handle	cache	provides	a	buffer	for	read/write	operations	on	the	disk	that
manages	the	available	file	descriptors	among	processes	that	use	the	file	handle	cache
(readers/writers).	You	can	think	of	the	file	handle	cache	as	a	service	that	accepts	jobs	for

read/write	operations	by	means	of	the	with_handle()	methods,	which	accept	a	function
closure	providing	the	execution	logic	for	a	file	operation	and	serves	as	a	guard	to
acquire/release	the	file	handles	in	order	to	accomplish	that	operation.	The	rabbit_file
module	uses	file_handle_cache	to	perform	disk	operations.	In	the	RabbitMQ
configuration	file,	we	can	specify	a	backing_queue_module	setting,	which	specifies	an
Erlang	module	that	provides	the	queue	operations,	such	as	initialization	and	management
of	the	message	store,	message	processing	in	the	queue	(in-memory	or	on	disk),	queue
purging,	and	so	on.	The	default	implementation	is	provided	by	the
rabbit_variable_queue	module	that	uses	rabbit_msg_store	to	store	transient	and
persistent	messages	on	the	disk.	To	do	so,	rabbit_msg_store	uses	the	utilities	that	are
provided	by	the	rabbit_file	and	file_handle_cache	modules.

Networking	component
The	networking	component	is	initialized	during	the	boot	process	by	calling	the	boot()
method	from	the	rabbit_direct	and	rabbit_networking	modules.	The	first	module
starts	the	rabbit_direct_client_sup	supervisor	process	to	handle	direct	connections	to
the	broker,	while	the	second	module	starts	rabbit_tcp_client_sup	to	handle	the	TCP
client	connections.	The	rabbit_tcp_client_sup	also	creates	a	rabbit_connection_sup
supervisor	that,	on	the	other	hand,	creates	a	rabbit_reader	process	to	process	the
connections	and	a	helper_sup	process	(represented	by	the
rabbit_connection_helper_sup	module)	to	create	channel	supervisors.	After	that,	a	TCP
listener	supervisor	is	started	for	each	TCP/SSL	listener	interface.	For	each	TCP/SSL
listener	supervisor,	two	child	processes	are	created	(their	specifications	are	provided	in	the
init()	method	of	the	rabbit_listener_sup	method),	as	follows:

A	tcp_listener	process	that	accepts	connections	on	a	specified	port
A	tcp_acceptor_sup	process	that	creates	a	number	of	child	acceptor	processing	to
handle	incoming	socket	connections	from	the	tcp_listener	process

The	following	diagram	provides	an	overview	of	the	interaction	between	the	processes	that
are	involved	in	accepting	and	processing	a	TCP	connection	in	the	message	broker	over	a
single	interface:

Once	an	acceptor	receives	a	client	connections,	it	calls	the	start_client()	method	for
TCP	connections	or	the	start_ssl_client()	method	for	SSL	connections	from	the
rabbit_networking	module	to	process	the	incoming	connection.	The	new	connection	is
sent	to	the	rabbit_reader	process	that	starts	reading	the	AMQP	messages	from	the
connection.	It	also	provides	the	semantics	to	parse	the	messages	and	create	channel-level
processes	by	means	of	the	helper_sup	process.	The	following	diagram	provides	an
overview	of	the	process	subtree,	originating	from	the	rabbit_tcp_client_sup	supervisor:

Other	components
There	are	other	components	provided	by	the	message	broker;	we	briefly	covered	most	of
them	when	we	were	discussing	the	boot	process	of	the	message	broker.	In	short,	these
components	include	the	following:

Alarm	handler	module	that	triggers	memory	alarms	in	case	of	excessive	memory
consumption;	its	implementation	is	provided	by	the	rabbit_alarm	module.
RabbitMQ	plugin	registry	that	provides	a	service	to	register	plugin	modules	to	the
message	broker	and	retrieve	information	about	the	plugin	modules	from	the	various
components	of	the	broker;	its	implementation	is	provided	by	the	rabbit_registry
module.
Statistics	event	manager	that	enables	gathering	of	statistics	from	the	message	broker;
its	implementation	is	provided	by	the	rabbit_event	module.
Node	monitoring	provides	a	mechanism	to	monitor	addition	and	removal	of	nodes
from	a	cluster	and	also	track	the	current	cluster	status;	its	implementation	is	provided
by	the	rabbit_node_monitor	module.
Memory	monitoring	provides	a	mechanism	for	central	collection	of	statistics	that	are
related	to	memory	consumption	in	the	broker;	each	queue	sends	information	to	the
memory	monitor	upon	changes	in	the	queue	contents.	This	allows	the	memory
monitor	to	track	the	statistics	about	the	overall	memory	consumption;	its
implementation	is	provided	by	the	rabbit_memory_monitor	module.
Custom	garbage	collection	process	allows	components	to	force	Erlang	garbage
collection	for	processes	that	are	running	in	the	message	broker.	garbage	collection,	in
particular,	is	forced	when	a	memory	alarm	is	triggered;	its	implementation	is
provided	by	the	background_gc	module.

Developing	plug-ins	for	RabbitMQ
Having	seen	how	the	message	broker	works,	it	is	time	to	see	how	to	write	a	plugin	for
RabbitMQ.	It	should	be	stressed	again	that	a	poorly	written	plugin	can	result	in	the
crashing	of	the	entire	broker,	therefore,	you	should	be	careful	when	implementing	a	plugin
for	the	message	broker	that	is	intended	to	be	used	in	production.

There	is	a	public	umbrella	project	that	can	be	used	as	a	starting	point	in	writing	a	new
RabbitMQ	plugin.	The	umbrella	project	groups	a	number	of	sample	child	projects,	which
implement	different	types	of	plugins	that	you	can	use	as	an	example.	Refer	to	Appendix,
Contributing	to	RabbitMQ	on	tools	for	Erlang	development.	In	order	to	get	the	project
from	the	RabbitMQ	repository	and	check	the	child	projects,	execute	the	following	set	of
commands:

git	clone	https://github.com/rabbitmq/rabbitmq-public-umbrella.git

cd	rabbitmq-public-umbrella

make	co

The	rabbitmq_metronome	can	be	used	as	a	starting	point	as	it	provides	a	very	basic
functionality	to	send	a	message	to	the	metronome	topic	exchange	every	second.	It	consists
of	an	application	class,	a	single	process	supervisor,	and	the	actual	process	that	performs
the	logic	of	the	plugin.	For	development	purpose,	you	can	create	a	link	from	the	plugins
directory	of	your	message	broker	to	the	root	location	of	the	plugin.	Then,	you	can	build
the	plugin	with	the	following	command:

make

In	order	to	test	the	plugin,	you	can	start	the	message	broker	as	shown	in	the	following:

make	run-broker

Case	Study:	Developing	a	RabbitMQ
plugin	for	CSN
Now	that	the	CSN	team	had	a	robust	production	system	with	a	RabbitMQ	cluster	in	place,
it	decided	to	introduce	an	experimental	plugin	for	message	backup.	The	team	considered
two	options,	as	follows:

Using	a	Redis	database	as	a	secondary	message	store
Using	a	different	disk	storage	location	as	a	secondary	message	store

The	team	also	decided	to	write	a	plugin	to	collect	additional	statistics	from	the	message
broker,	such	as	queue	creation/deletion	rates,	message	delivery	times	for	subscribers,	and
so	on,	that	could	be	contributed	to	the	RabbitMQ	community.

Summary
At	the	end	of	our	journey	in	the	world	of	RabbitMQ,	we	took	a	deep	dive	into	the
RabbitMQ	components	and	discussed	several	key	features	such	as	Erlang	behaviors	and
process	supervisors	that	lay	the	basis	of	the	message	broker.	We	discussed	what	happens
during	the	boot	process	of	the	message	broker	and	how	RabbitMQ	interacts	with	the
outside	world	with	the	Mnesia	database.	Alongside,	we	briefly	covered	the	additional
features	that	are	provided	by	the	RabbitMQ	server.	At	the	end	of	chapter,	we	also
discussed	how	to	write	plugins	for	RabbitMQ.

Exercises
1.	 What	is	a	process	supervisor	in	terms	of	Erlang?
2.	 What	is	an	Erlang	behavior?	Name	a	few	built-in	behaviors.
3.	 What	are	the	most	essential	components	of	the	message	broker?
4.	 How	are	AMQP	connections	handled	internally	in	the	message	broker?
5.	 How	does	RabbitMQ	store	the	messages	and	metadata?
6.	 Where	are	the	RabbitMQ	table	definitions	provided	in	the	RabbitMQ	code	base?
7.	 Where	are	the	RabbitMQ	type	definitions	provided	in	the	RabbitMQ	code	base?
8.	 How	are	the	RabbitMQ	plugins	loaded?
9.	 Describe	the	plugin	development	process	for	RabbitMQ.

Appendix	A.	Contributing	to	RabbitMQ
An	open-source	project	such	as	RabbitMQ	has	a	large	community	that	contributes	to	the
RabbitMQ	system	in	different	ways.	In	order	to	start	contributing,	one	needs	to	know	what
the	community	is	like,	the	communication	channels	it	has,	and	the	type	of	contribution
that	may	lead	to	the	advancement	of	the	technology.

The	topics	that	we	will	cover	here	are	as	follows:

RabbitMQ	community
RabbitMQ	repositories
Points	for	contribution

RabbitMQ	community
The	RabbitMQ	community	is	quite	diverse—from	developers	using	RabbitMQ	in	their
project	on	a	daily	basis,	to	contributors	and	enthusiasts	creating	plugins	for	RabbitMQ	and
various	types	of	integrations	with	message	broker	from	external	systems.	In	order	to	be
able	to	submit	a	code	to	be	reviewed	and	make	pull	requests	for	a	project	from	the
RabbitMQ	ecosystem,	you	need	to	sign	a	contributor	agreement.	The	document	is
presented	in	the	following	URL:	https://github.com/rabbitmq/ca.	An	e-mail	address	is
provided	where	you	can	send	the	signed	contributor	agreement.

https://github.com/rabbitmq/ca

RabbitMQ	repositories
The	RabbitMQ	repositories	are	located	in	GitHub—the	message	server,	the	plugins	that
come	with	the	RabbitMQ	installation,	and	the	additional	tools—all	of	them	in	one	place.

Getting	the	sources
The	RabbitMQ	repositories	are	located	in	GitHub	at	https://github.com/rabbitmq.	You
have	to	first	install	Git	in	order	to	be	able	to	check	the	RabbitMQ	sources	and	build	the
various	components	of	the	broker.	In	order	to	clone	the	RabbitMQ	server	repository,	you
can	navigate	to	a	proper	directory	and	execute	it	from	your	Git	command	client:

git	clone	https://github.com/rabbitmq/rabbitmq-server	rabbitmq-server

https://github.com/rabbitmq

Building	the	RabbitMQ	server
After	you	have	cloned	the	RabbitMQ	server	repository,	you	can	build	the	message	broker
using	the	GNU	Make	utility	from	the	root	source	directory	(depending	on	the	operating
system	of	your	choice,	you	may	have	to	download	and	install	either	GNU	make	or	a	port
of	the	utility	for	the	particular	operating	system).	It	is	easier	if	you	build	RabbitMQ	under
a	Linux	distribution	such	as	Ubuntu	(we	are	using	Ubuntu	12.04	for	the	sample	build).
However,	before	you	are	able	to	build	the	message	server,	you	need	to	install	the	libxslt
and	xsltproc	libraries	that	provide	utilities	for	XSLT	(Extensible	Stylesheet	Language
Transformations)	processing	that	is	used	by	the	RabbitMQ	server	and	the	erlang-nox	and
erlang-dev	packages	that	provide	additional	Erlang	tools	used	by	RabbitMQ:

sudo	apt-get	install	libxml2-dev	libxslt1-dev	xsltproc	erlang-nox	erlang-

dev

You	also	need	to	install	OpenSSL	on	your	distribution,	in	case	it	isn’t	already	installed.
Make	sure	that	you	are	also	using	a	proper	version	of	Erlang,	Git,	and	Python	for	your
operating	system—otherwise	your	build	may	fail	at	some	point—for	this	particular
example,	we	are	using	Erlang/OTP	18	[erts-7.1],	Git	version	2.6.3,	and	Python	2.7.1.	In
order	to	build	the	message	server,	go	to	the	local	RabbitMQ	server	repository	and	use	the
make	utility,	as	follows:

cd	rabbitmq-server	make

The	above	command	calls	the	default	target	as	defined	in	Makefile	that	supplies	the	build
targets	for	RabbitMQ,	it	uses	the	erlang.mk	utility	that	provides	utilities	to	build	Erlang
applications	using	make.	However,	the	erlang.mk	utility	has	limited	support	for	Windows
(at	the	time	of	writing,	MSYS2	support	was	just	introduced	and	there	is	still	no	support	for
Cygwin).	You	can	download	MSYS2	from	https://msys2.github.io/.	Then,	install	the	make
and	diffutils	packages	as	follows:

pacman	-S	make

pacman	-S	diffutils

You	also	need	to	download	xsltproc	(32	bit	or	64	bit)	—	you	can	use	the	following	link:

http://www.zlatkovic.com/pub/libxml/

Copy	the	contents	of	the	bin	directory	from	the	ZIP	file	to	the	usr\bin	directory	of
MSYS2	(you	may	need	to	download	and	extract	additional	libraries;	try	to	run	the
xsltproc	tool	from	the	command	line	in	order	to	make	sure	it	runs	fine.	During	the	build
of	the	server,	you	may	receive	the	following	error:

error:	rabbitmq-components.mk	must	be	updated!

In	order	to	provide	a	workaround	for	it,	open	the	rabbitmq-components.mk	file	and	go	to
the	following	code	snippet:

$(verbose)	cmp	-s	rabbitmq-components.mk	\

$(UPSTREAM_RMQ_COMPONENTS_MK)	||	\

(echo	$(UPSTREAM_RMQ_COMPONENTS_MK))

https://msys2.github.io/
http://www.zlatkovic.com/pub/libxml/

(echo	"error:	rabbitmq-components.mk	must	be	updated!"	1>&2;	\

	false)

Change	it	to	the	following	(in	order	to	skip	the	validation	due	to	different	end-of-line
characters	on	Unix	and	Windows):

check-rabbitmq-components.mk:true

The	reason	for	doing	this	is	that	the	cmp	utility	by	RabbitMQ,	in	order	to	verify	the
contents	of	the	rabbitmq-components.mk	file,	does	not	respect	line	endings	and	the	check
fails	(since	the	already	existing	rabbitmq-components.mk	file	from	the	repository	has
Linux-style	line	endings,	while	the	generated	one	has	Windows-style	line	endings).

After	you	have	built	the	RabbitMQ	server,	you	will	notice	that	the	Erlang	source	files
from	the	src	directory	are	compiled	to	beam	files	in	the	ebin	directory.	You	can	now	run
an	instance	of	the	RabbitMQ	server	that	uses	a	temporary	Mnesia	database	using	the	run
target:

make	run-broker

This	is	particularly	useful	if	you	are	developing	plugins	for	RabbitMQ	and	want	to	test
them.	If	you	want	to	rebuild	the	server,	you	can	first	execute	the	clean	target	in	order	to
remove	the	artifacts	from	the	old	build:

make	clean

You	can	build	distributable	RabbitMQ	packages	for	all	the	supported	platforms	by	running
the	following:

make	packages

You	can	also	build	a	RabbitMQ	package	for	a	particular	platform	only.	In	order	to	build	a
Debian	package,	you	can	run:

make	package-deb

To	build	a	package	for	Windows,	run	the	following:

make	package-windows

You	may	need	to	install	additional	packages	along	the	process,	as	follows:

sudo	apt-get	install	tofrodos

sudo	apt-get	install	xmlto

sudo	apt-get	install	elinks

To	support	the	analysis	of	the	RabbitMQ	sources	and	development	of	RabbitMQ	plug-ins,
you	can	use	various	utilities.	The	Erlide	is	an	Eclipse	plugin	that	provides	Erlang
development	tools	in	the	IDE:	http://erlide.org/.	You	can	also	use	the	xref	utility	that	is
provided	as	part	of	the	OTP	toolset	in	order	to	analyze	module	dependencies.	For
example,	after	you	have	compiled	the	RabbitMQ	sources	with	the	make	utility,	you	can	use
xref	to	see	the	modules	in	which	a	specified	module	depends	(go	to	the	ebin	directory
with	the	compiled	beam	files	for	the	RabbitMQ	server).	For	example,	the	rabbitmq_sup
module,	which	creates	a	process	supervisor	for	other	processes	that	are	running	in	the

http://erlide.org/

broker,	does	not	have	any	dependencies	(the	undefined	array	from	the	result	is	empty	—
it	includes	information	about	the	used	modules),	as	shown	in	the	following:

xref:m(rabbit_sup).

The	output	from	the	preceding	invocation	is	as	follows:

[{deprecated,[]},{undefined,[]},{unused,[]}]

If	we	do	the	same	for	the	rabbit	module,	which	boots	the	RabbitMQ	server,	we	will	see	a
number	of	dependencies:

xref:m(rabbit).

The	output	from	the	previous	invocation	looks	like	the	following:

[{deprecated,[]},

	{undefined,[{{rabbit,alarms,0},{rabbit_misc,const,1}},

													{{rabbit,alarms,0},{rabbit_misc,with_exit_handler,2}},

													{{rabbit,boot_error,2},{rabbit_misc,format,2}},

													{{rabbit,boot_error,2},{rabbit_nodes,diagnostics,1}},

													{{rabbit,erts_version_check,0},

														{rabbit_misc,version_compare,3}},

													{{rabbit,force_event_refresh,1},

														{rabbit_amqqueue,force_event_refresh,1}},

															…

{unused,[]}]

Another	useful	utility	is	the	module_info	built-in	function	that	allows	you	to	retrieve
detailed	information	about	a	module.	The	following	example	retrieves	the	information
about	the	rabbitmq_sup	module:

rabbit_sup:module_info().

The	output	of	the	preceding	information	about	the	module	that	includes	the	information
about	exported	functions,	module	attributes,	and	other	information	for	the	module	is	as
follows:

[{module,rabbit_sup},

	{exports,[{start_child,1},

											{start_child,2},

											{start_child,3},

											{start_supervisor_child,1},

											{start_supervisor_child,3},

											{start_restartable_child,1},

											{start_delayed_restartable_child,1},

											{start_delayed_restartable_child,2},

											{stop_child,1},

											{init,1},

											{module_info,0},

											{module_info,1},

											{start_restartable_child,2},

											{start_supervisor_child,2},

											{start_link,0}]},

	{attributes,[{vsn,[57416127534960432714786320802993587506]},

														{behaviour,[supervisor]}]},

	{compile,[{options,[{d,use_specs},

																					{d,'INSTR_MOD',gm},

																					{outdir,"/home/openjdk/rabbitmq-server/ebin"},

																					{i,"/home/openjdk/rabbitmq-

server/deps/rabbit_common/include"},

																					{i,"/home/openjdk/rabbitmq-server/include"},

																					warn_obsolete_guard,warn_shadow_vars,

																					warn_export_vars,debug_info,

																					warnings_as_errors]},

											{version,"6.0.1"},

											{time,{2015,11,14,13,35,5}},

											{source,"/home/openjdk/rabbitmq-server/src/rabbit_sup.erl"}]},

	{native,false},

	{md5,<<"+1\361\245v\327TcBt\275\300\250\326\3052">>}]

For	detailed	information	on	the	output	of	module_info,	you	can	refer	to	Erlang	User’s
Guide.

Points	for	contribution
You	can	write	for	the	RabbitMQ	discussion	lists	if	you	are	willing	to	contribute	a	plug-in
for	RabbitMQ	(it	may	turn	out	that	someone	else	is	already	writing	or	has	already	written
about	a	similar	plug-in).	If	you	are	eager	to	contribute	to	the	RabbitMQ	code	base,	you
may	start	by	first	forking	the	particular	RabbitMQ	repository	and	writing	good	unit	tests
for	the	features	that	are	not	sufficiently	covered	by	tests.	After	that,	you	can	prepare	a	pull
request	for	the	particular	RabbitMQ	repository	and	incorporate	a	feedback	on	your
changes.	Another	thing	is	improvements	in	the	source	code—although	Erlang	sources	are
quite	concise,	it	isn’t	impossible	to	put	some	code	here	and	there—if	you	do	this	then	you
can	contribute	by	preparing	a	pull	request	with	improvements;	however,	first	you	need	to
make	sure	that	someone	else	is	not	working	on	the	same	issue	by	checking	the	issue	list
for	the	corresponding	RabbitMQ	project	in	GitHub.

Index
A

AMQP	0-9-1	protocol	(Advanced	Message	Queuing	Protocol)
about	/	Understanding	RabbitMQ

AMQP	transactions
about	/	AMQP	transactions

authentication
about	/	Authentication
LDAP	backend,	configuring	/	Configuring	the	LDAP	backend
security	considerations	/	Security	considerations

authorization
about	/	Authorization

Axis2	Transport	RabbitMQ	AMQP	feature
about	/	WSO2

B
.beam	extension	/	An	Erlang	Primer
boot	component

about	/	Boot	component
external_infrastructure	/	Boot	component
kernel_ready	/	Boot	component
core_intialized	/	Boot	component
routing_ready	/	Boot	component
final	steps	/	Boot	component

boot	process
external_infrastructure	group	/	Boot	component
kernel_ready	group	/	Boot	component
core_initialized	group	/	Boot	component
routing_ready	group	/	Boot	component
final	boot	steps	/	Boot	component

C
client	high	availability

about	/	Client	high	availability
client	reconnections	/	Client	reconnections
load	balancing	/	Load	balancing

clustering
benefits	/	Benefits	of	clustering

clustering	support,	RabbitMQ
simple	cluster,	creating	/	Creating	a	simple	cluster
nodes,	adding	to	cluster	/	Adding	nodes	to	the	cluster
RAM-only	nodes,	adding	to	cluster	/	Adding	RAM-only	nodes	to	the	cluster
nodes,	removing	from	cluster	/	Removing	nodes	from	a	cluster
connecting,	to	cluster	/	Connecting	to	the	cluster

core_initialized	group	steps,	boot	process
about	/	Boot	component
rabbit_memory_monitor	/	Boot	component
guid_generator	/	Boot	component
delegate_sup	/	Boot	component
rabbit_node_monitor	/	Boot	component
rabbit_epmd_monitor	/	Boot	component

Corporate	Social	Network	(CSN)
about	/	Case	study:	CSN	(Corporate	Social	Network)

CSN	(Corporate	Social	Network)
about	/	Summary

CSN	administration,	case	study	/	Case	study:	Administering	CSN,	Summary
CSN	high	availability	case	study	/	Case	study:	introducing	high	availability	in	CSN
CSN	initial	design,	case	study

about	/	Case	study:	Initial	design	of	the	CSN
CSN	integration,	case	study	/	Case	study:	Integrating	CSN	with	external	systems
CSN	scaling,	case	study	/	Case	study:	scaling	the	CSN

D
data	types,	Erlang

integers	/	An	Erlang	Primer
floats	/	An	Erlang	Primer
atoms	/	An	Erlang	Primer
booleans	/	An	Erlang	Primer
references	/	An	Erlang	Primer
bit	strings	/	An	Erlang	Primer
binaries	/	An	Erlang	Primer
pids	/	An	Erlang	Primer
ports	/	An	Erlang	Primer
funs	/	An	Erlang	Primer
tuples	/	An	Erlang	Primer
lists	/	An	Erlang	Primer
maps	/	An	Erlang	Primer
records	/	An	Erlang	Primer

default	exchange
about	/	Understanding	RabbitMQ

DN	(Distinguished	Name)	pattern	/	Configuring	the	LDAP	backend
Docker

about	/	Docker

E
Enterprise	Messaging

defining	/	Enterprise	messaging
factors	/	Enterprise	messaging,	Solutions
use	cases	/	Use	cases
solutions	/	Solutions
patterns	/	Patterns

Enterprise	Service	Bus	(ESB)
about	/	Enterprise	messaging

EPMD	(Erlang	Port	Mapper	Daemon)	/	An	Erlang	Primer
Erlang	REPL	(Read-Eval-Print-Loop)	shell	/	An	Erlang	Primer
Erlang	SASL	(System	Architecture	Support	Libraries)	/	Inspecting	the	RabbitMQ
logs
Erlang	troubleshooting

about	/	Erlang	troubleshooting
Erlang	Primer	/	An	Erlang	Primer
Erlang	crash	dump	/	The	Erlang	crash	dump

Erlide
reference	/	Building	the	RabbitMQ	server

event_queue	queue	/	Connecting	to	the	cluster
exchange	types,	RabbitMQ

direct	exchange	/	Understanding	RabbitMQ
fanout	exchange	/	Understanding	RabbitMQ
topic	exchange	/	Understanding	RabbitMQ
headers	exchange	/	Understanding	RabbitMQ

external_infrastructure	group	steps,	boot	process
codec_correctness_check	/	Boot	component
rabbit_alarm	/	Boot	component
database	/	Boot	component
database_sync	/	Boot	component
file_handle_cache	/	Boot	component
worker_pool	/	Boot	component

F
Federation	plugin

about	/	Federation	plugin
enabling	/	Federation	plugin

final	boot	steps,	boot	process
log_relay	step	/	Boot	component
direct_client	/	Boot	component
networking	/	Boot	component
notify_cluster	/	Boot	component
background_gc	/	Boot	component

G
generic	loopback	interface,	for	Windows

reference	/	Secure	communication

H
Hadoop

about	/	Hadoop
high	availability

about	/	Benefits	of	high	availability
benefits	/	Benefits	of	high	availability
considerations	/	Benefits	of	high	availability

high	availability	support,	in	RabbitMQ	/	High	availability	support	in	RabbitMQ
high	level	architecture,	RabbitMQ

about	/	High	level	architecture	of	RabbitMQ
HiPE	(High	Performance	Erlang)	/	Faster	runtime	execution
htmldir	attribute	/	Munin

I
integration	testing

RabbitMQ	applications	/	Integration	testing	of	RabbitMQ	applications

K
kernel_ready	group	steps,	boot	process

rabbit_registry	/	Boot	component
rabbit_event	/	Boot	component

L
LDAP	(Lightweight	Directory	Access	Protocol)	server	/	Authentication
LDAP	authentication

about	/	LDAP	authentication
Linux

installing	/	Linux

M
magic	cookie	/	RabbitMQ	clustering	support
message	delivery

issues	/	Problems	with	message	delivery
message	router

about	/	Message	router
messaging	patterns

about	/	Messaging	patterns	in	RabbitMQ
mirrored	queue

about	/	Mirrored	queues
MongoDB

about	/	MongoDB
monit

about	/	Monit
installing	/	Monit

monitoring,	RabbitMQ	instances
management	UI	/	The	management	UI
Nagios	/	Nagios
monit	/	Monit
Munin	/	Munin
case	study	/	Case	Study	:	Performance	tuning	and	monitoring	of	RabbitMQ
instances	in	CSN

MSYS2
reference	/	Building	the	RabbitMQ	server

Mule	ESB
about	/	Mule	ESB
project,	creating	/	Mule	ESB

Munin
about	/	Munin

N
Nagios	/	Nagios
nagios-plugins-rabbitmq	GitHub	repository	/	Nagios
networking	component

about	/	Networking	component

O
OASIS	(Organization	for	the	Advancement	of	Structured	Information	Standards)	/
Understanding	RabbitMQ
OpenLDAP

URL	/	Configuring	the	LDAP	backend
Oracle	RDBMS

about	/	Oracle	RDBMS

P
patterns,	Enterprise	Messaging

point-to-point	/	Point-to-point
publish-subscribe	/	Publish-subscribe
request-response	/	Request-response

penetration	testing
about	/	Penetration	testing

performance	tuning,	RabbitMQ	instances
about	/	Performance	tuning	of	RabbitMQ	instances
memory	usage	/	Memory	usage
faster	runtime	execution	/	Faster	runtime	execution
message	size	/	Message	size
maximum	frame	size	of	messages	/	The	maximum	frame	size	of	messages
maximum	number	of	channels	/	The	maximum	number	of	channels
connection	heartbeats	/	Connection	heartbeats
clustering	/	Clustering	and	high	availability
high	availability	/	Clustering	and	high	availability
QoS	prefetching	/	QoS	prefetching
message	persistence	/	Message	persistence
Mnesia	transaction	logs	/	Mnesia	transaction	logs
acknowledgements	/	Acknowledgements,	transactions	and	publisher	confirms
transactions	/	Acknowledgements,	transactions	and	publisher	confirms
publisher	confirms	/	Acknowledgements,	transactions	and	publisher	confirms
message	routing	/	Message	routing
queue	creation	/	Queue	creation/deletion
queue	deletion	/	Queue	creation/deletion
queue	message	TTL	/	Queue	message	TTL
alarms	/	Alarms
network	tuning	/	Network	tuning
client	tuning	/	Client	tuning
performance	testing	/	Performance	testing
case	study	/	Case	Study	:	Performance	tuning	and	monitoring	of	RabbitMQ
instances	in	CSN

persistence	component
about	/	Persistence	component
metadata	persistence	/	Metadata	persistence
message	persistence	component	/	Message	persistence	component

pid	(proportional-integral-derivative)	/	An	Erlang	Primer
plug-in	loader	component

about	/	Plug-in	loader	component
plug-ins,	RabbitMQ

developing	/	Developing	plug-ins	for	RabbitMQ
point-to-point	communication

about	/	Point-to-point	communication
publish-subscribe	communication

about	/	Publish-subscribe	communication
publisher	confirms

about	/	Publisher	confirms
enabling	/	Publisher	confirms

pull-style	communication
about	/	Understanding	RabbitMQ

Puppet
about	/	Puppet

push-style	communication
about	/	Understanding	RabbitMQ

R
RabbitMQ

about	/	Understanding	RabbitMQ
exchanges	/	Understanding	RabbitMQ
queues	/	Understanding	RabbitMQ
bindings	/	Understanding	RabbitMQ
virtual	hosts	/	Understanding	RabbitMQ
features	/	Features
comparing,	with	other	technologies	/	Comparison	with	other	technologies
URL	/	Installation
installing	/	Installation
messaging	patterns	/	Messaging	patterns	in	RabbitMQ
upgrading	/	Upgrading	RabbitMQ
clustering	support	/	RabbitMQ	clustering	support
high	availability	support	/	High	availability	support	in	RabbitMQ
comparing,	with	message	brokers	/	Comparing	RabbitMQ	with	other	message
brokers
high	level	architecture	/	High	level	architecture	of	RabbitMQ
plug-ins,	developing	/	Developing	plug-ins	for	RabbitMQ

RabbitMQ	applications
testing	/	Testing	RabbitMQ	applications
unit	testing	/	Unit	testing	of	RabbitMQ	applications
integration	testing	/	Integration	testing	of	RabbitMQ	applications

RabbitMQ	community
about	/	RabbitMQ	community
URL	/	RabbitMQ	community

RabbitMQ	components
overview	/	Overview	of	RabbitMQ	components
boot	component	/	Boot	component
plug-in	loader	component	/	Plug-in	loader	component
recovery	component	/	Recovery	component
persistence	component	/	Persistence	component
networking	component	/	Networking	component
other	components	/	Other	components

RabbitMQ	deployment	options
about	/	RabbitMQ	deployment	options
Puppet	/	Puppet
Docker	/	Docker
Vagrant	/	Vagrant

RabbitMQ	installation	files
RABBITMQ_BASE	/	Administering	RabbitMQ	instances
RABBITMQ_CONFIG_FILE	/	Administering	RabbitMQ	instances
RABBITMQ_LOG_BASE	/	Administering	RabbitMQ	instances

RabbitMQ	instances
administering	/	Administering	RabbitMQ	instances
RabbitMQ	components,	administering	/	Administering	RabbitMQ	components
users,	administering	/	Administering	users
vhosts,	administering	/	Administering	vhosts
permissions,	administering	/	Administering	permissions
exchanges,	administering	/	Administering	exchanges
queues,	administering	/	Administering	queues
bindings,	administering	/	Administering	bindings
policies,	administering	/	Administering	policies
RabbitMQ	database,	administering	/	Administering	the	RabbitMQ	database
backup	/	Full	backup	and	restore
restore	/	Full	backup	and	restore
broker	metadata,	backing	up	/	Backing	up	and	restoring	the	broker	metadata
broker	metadata,	restoring	/	Backing	up	and	restoring	the	broker	metadata,
Installing	RabbitMQ	plugins
managing	/	Managing	RabbitMQ	instances
performance	tuning	/	Performance	tuning	of	RabbitMQ	instances
monitoring	/	Monitoring	of	RabbitMQ	instances

RabbitMQ	instances,	configuring
about	/	Configuring	RabbitMQ	instances
environment	variables,	setting	up	/	Setting	environment	variables
RabbitMQ	configuration	file,	modifying	/	Modifying	the	RabbitMQ
configuration	file

RabbitMQ	integrations
about	/	RabbitMQ	integrations

RabbitMQ	logs
inspecting	/	Inspecting	the	RabbitMQ	logs

RabbitMQ	nodes
starting/stopping	issues	/	Problems	with	starting/stopping	RabbitMQ	nodes

RabbitMQ	plugin	development,	for	CSN
case	study	/	Case	Study:	Developing	a	RabbitMQ	plugin	for	CSN

RabbitMQ	repositories
about	/	RabbitMQ	repositories
sources,	obtaining	/	Getting	the	sources
reference	/	Getting	the	sources
RabbitMQ	server,	building	/	Building	the	RabbitMQ	server

RabbitMQ	SSL
URL	/	Secure	communication

rabbitmq_management_agent	plug-in	/	Adding	nodes	to	the	cluster
RABBITMQ_NODENAME	/	Setting	environment	variables
RABBITMQ_NODE_IP_ADDRESS	/	Setting	environment	variables
RABBITMQ_NODE_PORT	/	Setting	environment	variables
RABBITMQ_SERVICENAME	/	Setting	environment	variables

rabbit	node	/	Connecting	to	the	cluster
recovery	component

about	/	Recovery	component
boot	process	/	Recovery	component

reliable	delivery
about	/	Reliable	delivery
AMQP	transactions	/	AMQP	transactions
publisher	confirms	/	Publisher	confirms

request-reply	communication
about	/	Request-reply	communication

routing_ready	group	steps,	boot	process
empty_db_check	/	Boot	component
recovery	/	Boot	component
mirrored_queues	/	Boot	component

runtime	errors,	Erlang
regular	errors	/	An	Erlang	Primer
throw	errors	/	An	Erlang	Primer
exit	errors	/	An	Erlang	Primer

S
sample	/	An	Erlang	Primer
sample-key	binding	key	/	Spring	AMQP
sample-queue	/	Spring	AMQP
sample-queue-spring	queue

about	/	Spring	AMQP
sample-queue-spring	routing	key	/	Spring	AMQP
sample-spring-exchange	/	Spring	AMQP
sample-topic-exchange	/	Spring	AMQP
sample_queue	/	Queue	message	TTL
SASL	(Simple	Authentication	and	Security	Layer)	/	Authentication
SASL	methods

PLAIN	/	Authentication
AMQPLAIN	/	Authentication
RABBIT-CR-DEMO	/	Authentication
EXTERNAL	/	Authentication

secure	communication
about	/	Secure	communication
with	management	interface	/	Secure	communication	with	the	management
interface
secure	cluster	communication	/	Secure	cluster	communication
EXTERNAL	SSL	authentication	/	EXTERNAL	SSL	authentication

security
threats,	types	/	Types	of	threats
authentication	/	Authentication
authorization	/	Authorization
secure	communication	/	Secure	communication
penetration	testing	/	Penetration	testing

security,	CSN
case	study	/	Case	study	–	securing	CSN

Shovel	plugin
about	/	Shovel	plugin

SLA	(Service	Level	Agreement)	/	Benefits	of	high	availability
slogan	/	The	Erlang	crash	dump
Spring	AMQP

about	/	Spring	framework,	Spring	AMQP
RabbitTemplate	class	/	Spring	AMQP
RabbitAdmin	class	/	Spring	AMQP

Spring	Framework	integration
about	/	Spring	framework
Spring	AMQP	/	Spring	framework
Spring	Integration	/	Spring	framework
Spring	XD	(extreme	data)	/	Spring	framework

Spring	integration
about	/	Spring	framework,	Spring	Integration

Spring	XD	(extreme	data)
about	/	Spring	framework

subqueries,	LDAP	authentication
vhost_access_query	/	LDAP	authentication
resource_access_query	/	LDAP	authentication
tag_queries	/	LDAP	authentication

T
test-destination-queue

about	/	Spring	Integration
test-queue

about	/	Spring	Integration
testing

about	/	Testing	RabbitMQ	applications
RabbitMQ	applications	/	Testing	RabbitMQ	applications

threats	types
about	/	Types	of	threats
authentication	/	Types	of	threats
authorization	/	Types	of	threats
secure	communication	between	clients	and	the	broker	/	Types	of	threats
secure	communication	between	cluster	nodes	/	Types	of	threats
secure	communication	between	remote	nodes	/	Types	of	threats
message	encryption	/	Types	of	threats
proper	client	settings	/	Types	of	threats
physical	security	/	Types	of	threats
plugin	security	/	Types	of	threats

troubleshooting
about	/	General	troubleshooting	approach
general	troubleshooting	approach	/	General	troubleshooting	approach

troubleshooting	approach
top-down	approach	/	General	troubleshooting	approach
status	of	particular	node,	checking	/	Checking	the	status	of	a	particular	node
RabbitMQ	logs,	inspecting	/	Inspecting	the	RabbitMQ	logs
RabbitMQ	mailing	list	/	The	RabbitMQ	mailing	list	and	IRC	channel
IRC	channel	/	The	RabbitMQ	mailing	list	and	IRC	channel
Erlang	troubleshooting	/	Erlang	troubleshooting

TTL	(Time-to-live)	/	Queue	creation/deletion
TTL	(time-to-live)	/	Administering	policies
types	of	integrations

about	/	Types	of	integrations
Spring	Framework	/	Spring	framework
integration	with	ESBs	/	Integration	with	ESBs
integration	with	databases	/	Integration	with	databases

U
unit	testing

RabbitMQ	applications	/	Unit	testing	of	RabbitMQ	applications

V
Vagrant

about	/	Vagrant

W
Wireshark

URL	/	Secure	communication
WSO2

about	/	WSO2

X
x-message-ttl	/	Queue	message	TTL
XMPP	(Extensible	Messaging	and	Presence	Protocol)	/	Understanding	RabbitMQ
xsltproc

reference	/	Building	the	RabbitMQ	server

	Learning RabbitMQ
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Support files, eBooks, discount offers, and more
	Why subscribe?
	Free access for Packt account holders
	Preface
	What this book covers
	What you need for this book
	Who this book is for
	Conventions
	Reader feedback
	Customer support
	Downloading the example code
	Errata
	Piracy
	Questions
	1. Introducing RabbitMQ
	Enterprise messaging
	Use cases
	Solutions
	Patterns
	Point-to-point
	Publish-subscribe
	Request-response
	Understanding RabbitMQ
	Features
	Comparison with other technologies
	Installation
	Linux
	Case study: CSN (Corporate Social Network)
	Summary
	Exercises
	2. Design Patterns with RabbitMQ
	Messaging patterns in RabbitMQ
	Point-to-point communication
	Publish-subscribe communication
	Request-reply communication
	Message router
	Case study: Initial design of the CSN
	Summary
	Exercises
	3. Administration, Configuration, and Management
	Administering RabbitMQ instances
	Administering RabbitMQ components
	Administering users
	Administering vhosts
	Administering permissions
	Administering exchanges
	Administering queues
	Administering bindings
	Administering policies
	Administering the RabbitMQ database
	Full backup and restore
	Backing up and restoring the broker metadata
	Installing RabbitMQ plugins
	Configuring RabbitMQ instances
	Setting environment variables
	Modifying the RabbitMQ configuration file
	Managing RabbitMQ instances
	Upgrading RabbitMQ
	Case study: Administering CSN
	Summary
	Exercises
	4. Clustering
	Benefits of clustering
	RabbitMQ clustering support
	Creating a simple cluster
	Adding nodes to the cluster
	Adding RAM-only nodes to the cluster
	Removing nodes from a cluster
	Connecting to the cluster
	Case study: scaling the CSN
	Summary
	Exercises
	5. High Availability
	Benefits of high availability
	High availability support in RabbitMQ
	Mirrored queues
	Federation plugin
	Shovel plugin
	Reliable delivery
	AMQP transactions
	Publisher confirms
	Client high availability
	Client reconnections
	Load balancing
	Case study: introducing high availability in CSN
	Summary
	Exercises
	6. Integrations
	Types of integrations
	Spring framework
	Spring AMQP
	Spring Integration
	Integration with ESBs
	Mule ESB
	WSO2
	Integration with databases
	Oracle RDBMS
	MongoDB
	Hadoop
	RabbitMQ integrations
	RabbitMQ deployment options
	Puppet
	Docker
	Vagrant
	Testing RabbitMQ applications
	Unit testing of RabbitMQ applications
	Integration testing of RabbitMQ applications
	Case study: Integrating CSN with external systems
	Summary
	Exercises
	7. Performance Tuning and Monitoring
	Performance tuning of RabbitMQ instances
	Memory usage
	Faster runtime execution
	Message size
	The maximum frame size of messages
	The maximum number of channels
	Connection heartbeats
	Clustering and high availability
	QoS prefetching
	Message persistence
	Mnesia transaction logs
	Acknowledgements, transactions and publisher confirms
	Message routing
	Queue creation/deletion
	Queue message TTL
	Alarms
	Network tuning
	Client tuning
	Performance testing
	Monitoring of RabbitMQ instances
	The management UI
	Nagios
	Monit
	Munin
	Comparing RabbitMQ with other message brokers
	Case Study : Performance tuning and monitoring of RabbitMQ instances in CSN
	Summary
	Exercises
	8. Troubleshooting
	General troubleshooting approach
	Checking the status of a particular node
	Inspecting the RabbitMQ logs
	The RabbitMQ mailing list and IRC channel
	Erlang troubleshooting
	An Erlang Primer
	The Erlang crash dump
	Problems with starting/stopping RabbitMQ nodes
	Problems with message delivery
	Summary
	Exercises
	9. Security
	Types of threats
	Authentication
	Configuring the LDAP backend
	Security considerations
	Authorization
	LDAP authentication
	Secure communication
	Secure communication with the management interface
	Secure cluster communication
	EXTERNAL SSL authentication
	Penetration testing
	Case study – securing CSN
	Summary
	Exercises
	10. Internals
	High level architecture of RabbitMQ
	Overview of RabbitMQ components
	Boot component
	Plug-in loader component
	Recovery component
	Persistence component
	Metadata persistence
	Message persistence component
	Networking component
	Other components
	Developing plug-ins for RabbitMQ
	Case Study: Developing a RabbitMQ plugin for CSN
	Summary
	Exercises
	A. Contributing to RabbitMQ
	RabbitMQ community
	RabbitMQ repositories
	Getting the sources
	Building the RabbitMQ server
	Points for contribution
	Index

