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Pref ace 

Programming languages are arguably the most important artifacts in all of Com
puter Science. For programming languages provide the basic means for defining 
abstractions, and ensuring that those abstractions are correctly and efficiently real
ized on a computer system (consisting of the hardware as abstracted by the oper
ating system or other layers of infrastructure like a virtual machine) . Just as all the 
riches of world literature depend on the expressive power of natural language, 
so too all the glories of modern software systems depend on the programming 
languages used to create them. The remarkable expansion of computing into all 
aspects of modern society- in healthcare, finance, defense, energy, business oper
ations, news and media, entertainment, and social interactions - would be impos
sible without programming languages. 

Indeed, if machine language were the only language for programming, the 
incredible power of modern microprocessors (CPUs) could not be effectively har
nessed in well-organized and abstracted programs. In a world with only machine
language programming (or even assembly-language), the rate of progress for com
puting, and even for society more generally, would have been greatly slowed . In 
fact, the pressures to organize code into more reusable and comprehensible units 
than is possible in machine language are so great, and the operations we are im
plementing in software are so complex, that I cannot really imagine an alterna
tive history of computing that lacks programming languages (except possibly a 
failed history where computing did not develop). Indeed, part of what makes the 
study of programming languages so interesting and important is that those same 
pressures continue to drive the creation and evolution of programming languages 
to this day. Far from leading to consolidation around one or two well-designed 
and well-implemented languages, the continuing development of computing has 
driven the invention of many new programming languages, in both academia and 
industry. 

With programming languages playing such a critical role in Computer Sci
ence, it is of great importance that serious students of computing understand them 
deeply. The deepest understanding we know how to achieve in this area comes 
through the mathematical study of programming language semantics. We wish to 
define mathematically what programs mean. It turns out that there are several 
different ways to do this, which we will consider in this book. A mathematical 
definition of the semantics of programs is a powerful theoretical tool. Probably 
the most important use of this tool is to justify various schemes of program verifica-
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tion. Program verification is concerned with proving that programs satisfy some 
desired properties. Sometimes these properties are implicit, such as the property 
that all attempts to access an array do so using an index within the bounds of the 
array. In other cases, the properties are explicitly formulated in a specification lan
guage; for example, one might write a specification stating that the list returned 
by a call to a function merge sort is, in fact, sorted. In either case, the field of 
program verification seeks to ascertain whether or not a given piece of code meets 
its specification. To give a precise definition of what it means for code to satisfy 
a specified property requires a precise definition of the semantics of the program. 
T he central concern of this book is to study such semantics, using several different 
mathematical tools developed in the past century or so. 

T he centrality of theoretical study of programming languages to Computer 
Science as a discipline is further demonstrated by the number of Turing award 
winners whose work is in this area.1 Of the 58 winners as of 2012, we will have
occasion in this book to touch on ideas due to 6: Cook, Dijkstra, Floy d, Hoare, Mil
ner, and Scott. Certainly a number of other Turing award winners have worked 
on problems closely related to the topics in this book as well (Backus, Liskov, and 
Clarke, Emerson, and Sifakis, for example). 

So to summarize: the primary reason to study programming language founda
tions is to gain a deeper understanding for programming languages themselves, 
and through them, of computing in general. There are several secondary benefits. 
Since the modern study of programming languages is quite mathematical, and de
pends on a firm grasp of numerous careful distinctions, it provides excellent train
ing in rigor and precision- certainly valuable qualities for any computer scientist. 
Also, while the majority of students taking a graduate course in programming lan
guage foundations will not invent their own full-fledged programming languages, 
some certainly will. Furthermore, many will have occasion to implement domain
specific languages of various kinds, such as for configuration files for complex 
applications, or in defining interfaces to tools or libraries (where the interface can 
easily become a kind of restricted language). Familiarity with the foundations of 
programming languages can help provide guidance for such endeavors. Finally, 
study of the material in this book will help strengthen programmers' intuitions for 
reasoning about their programs, through a sharper view of program semantics. 

Courses which could use this book 

This book could be used in several different kinds of courses on programming 
languages: 

Graduate-level programming language foundations. A graduate-level class on 
programming language semantics could cover Chapters 1through5, to get a broad 
overview of topics in different areas of programming languages theory. Chap
ters 2 through 4 provide examples of all three forms of semantics traditionally 

1The Turing award is Computer Science's highest honor, like a Nobel prize.
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considered - denotational, operational, and axiomatic - for a single language in 
the familiar paradigm of imperative programming. This gives a nice overview of 
different semantic methods. 

Graduate-level theory of functional programming. For a graduate-level class 
that is focused more exclusively on theory of functional programming languages, 
the course outline will be quite different from the previous one. The course can 
begin with Chapters 5 and 6 on untyped lambda calculus, thus skipping all the 
material on the WHILE imperative programming language. Such a course could 
then proceed with Chapters 7 and 10 on simple and polymorphic types, respec
tively, and Chapter 11 on functional programming. 

Graduate-level survey of programming language semantics. Some graduate
level courses may prefer to provide a somewhat less technical survey of program
ming language semantics. For such a course, start with 2.1 for the syntax and 
informal semantics of WHILE, and then proceed to Chapter 4 on WHILE's opera
tional semantics, Sections 4. 1and4.2. Cover Section 8.3 on operational semantics 
of a concurrent version of WHILE, and then Chapter 5 on untyped lambda cal
culus, Chapter 7 on simply typed lambda calculus, and then Chapter 11 on prac
tical functional programming based on lambda calculus. This will give a more 
programming-oriented course, with less emphasis on mathematical semantics. 

Advanced undergraduate-level programming languages concepts While this 
book is primarily aimed for graduate-level courses, it could be used in an ad
vanced undergraduate course on programming languages concepts, as a supple
ment to books more focused on issues like parsing, names and scoping, data and 
control abstractions, resource management, and further practical matters. Such a 
course could start similarly to the graduate-level survey course, with 2.1 for the 
syntax and informal semantics of WHILE, and then Chapter 4 for WHILE's op
erational semantics. It may then be interesting to cover Chapters 5 and 6, on pro
gramming in untyped lambda calculus. Section 9.2 on combinators may also be an 
interesting source of material for such a class, as students may find it stimulating 
to try programming in the very low-level functional language of combinators. 

Other resources 

This book is not intended as a research reference, but as a textbook. As such, I 
have not sought to provide a comprehensive bibliography of original or secondary 
sources for most of the concepts introduced. The following textbooks, as well as 
quite a few others, also cover semantics of programming languages, and I heartily 
recommend them to the readers of this book. I have learned much of what I know 
about this topic from them: 

• "The Formal Semantics of Programming Languages", Glynn Winskel, MIT
Press, 19 93.
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• "Types and Programming Languages", Benjamin C. Pierce, MIT Press, 2002.

• "Foundations for Programming Languages", John C. Mitchell, MIT Press,
1996. 

• "Theories of Programming Languages", John C. Reynolds, Cambridge Uni
versity Press, 1998.

"Practical Foundations for Programming Languages", Robert Harper, Cambridge 
University Press, 2012 appeared while I was completing this book, and is another 
excellent source. 

My goal in writing this book is to provide coverage, in a single volume, of the 
topics considered in many contemporary courses on semantics of programming 
languages, and which I believe are foundational for deep knowledge of program
ming languages. I have also sought to provide as accessible and lightweight a 
treatment of that material as I can. In addition to those books covering semantics 
of programming languages, there are several other sources I highly recommend 
for students of the theory of programming languages: 

• "Term Rewriting and All T hat", Franz Baader and Tobias Nipkow, Cam
bridge University Press, 1999.

• "Proofs and Types", Jean-Yves Girard, Yves Lafont, and Paul Taylor, Cam
bridge University Press, 1989; also available for free online.

• "Lambda Calculi with Types", Henk Barendregt, in T he Handbook of Logic
in Computer Science, 1993; also available for free online.

This list by no means exhausts the important and rewarding sources on seman
tics, lambda calculus, type theory, and related topics available, but is intended just 
as a selection of next sources for further study, closely related to this book. Back
ground in term rewriting is important for anyone studying operational semantics 
and advanced type systems for programming languages, and "Term Rewriting 
and All That" is a great introduction to the topic. It provides a thorough intro
duction to term-rewriting systems, particularly first-order term rewriting systems, 
and presents material on abstract reduction systems, positions and syntactic op
erations on terms, and confluence, which is very relevant for studying reduction 
relations for programming-language semantics, as done in Chapter 5 of this book. 
For more advanced topics, readers can also consult [38]. 

"Proofs and Types" provides deep coverage of important type systems like the 
simply typed lambda calculus, System F, and System T, with good discussions also 
of the Curry-Howard isomorphism. The material there is relevant for Chapters 7

and 10. Furthermore, the book, while dense, is very clearly written, with as light a 
notation as one can really imagine for these complex topics. 

Finally, a goldmine of knowledge on lambda calculus and type systems is to 
be found in "Lambda Calculi with Types", a beloved reference for many aspiring 
type theorists. This covers more advanced type systems, and emphasizes the dif
ferences when one studies type assignment systems for pure lambda calculus (as 
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we will do in Section 7.3 of this book) as opposed to syntax-directed type systems 
for lambda calculus with annotated terms (see Section 7.8 of this book). While 
I have consulted it less than the above books, another very important reference 
on lambda calculus is Barendregt's great work "The Lambda Calculus, Its Syntax 
and Semantics" [5], which covers many topics related to untyped lambda calculus,
including its denotational semantics. 

From mathematics to practice 

Giving formal mathematical definitions for the semantics of programming lan
guages requires quite a bit of technical machinery. I have chosen to introduce the 
necessary formal concepts and notations as needed, in "Interludes" throughout 
the text. A few other basics from discrete mathematics are in the "Mathematical 
Background" section at the end of the book. 

Technical material of the kind covered in this book is very concise, and can be 
rather abstract. You may find you have to read through definitions or statements 
of theorems several times and think about them, in order to get a firm grasp of 
what is being said. Of course, I am trying to provide as much support for you as 
I can, by including examples and trying to provide informal motivations for the 
technical definitions. But even so, the material is dense and needs serious focused 
attention to comprehend. 

To try to keep the book from remaining solely at the most airy and abstract lev
els, I have included several sections on "connections to practice", which touch on 
ways in which the ideas we are studying in the main sections of the book connect 
to more applied or practical topics in Computer Science. W hile it is not feasible 
to be comprehensive in describing all the different ways programming-language 
semantics and related ideas impact the more practical aspects of programming 
language design and implementation, or other application areas, I hope these sec
tions will help ground some of this material for readers. 
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Chapter 1 

Semantics of First-Order Arithmetic 

In this chapter, we will begin our study of semantics by considering a denotational 
semantics for a logical language called FO(Z) ("First-Order Arithmetic"). You can 
pronounce FO(Z) as "foz". A denotational semantics is a way of explaining the 
meaning of a formal language by describing what objects are denoted by the ex
pressions of the language. Since those descriptions are given by means of (a dif
ferent) language, denotational semantics can be seen as defining the meaning of 
one language by translation into another. So a denotational approach to French 
would explain the meaning of French expressions by stating in another language 
(English, say) which things are meant or which objects denoted by various French 
phrases. This could just as well be viewed as showing how to translate those 
French phrases into English. The difference between saying that chat denotes a cat 
and saying that chat is translated "cat" may be one for philosophers to analyze, 
but for us is rather slim. 

This way of explaining the meaning of a language seems so natural that one 
might doubt there could be any other. But there are alternatives. For example, 
another form of semantics we will see in later chapters explains the meaning of a 
language by explaining how the language's expressions are used. If I wish to let 
someone walk ahead of me, I might say "after you". If you are not a native English 
speaker and do not know this usage of that phrase, you could very well pick it 
up just by seeing what happens when I say it as another person and I approach a 
doorway at the same time. Or if you do not speak Bulgarian, you could just as well 
learn that BHMMaBaii ("vneemavai") means "watch out" by seeing one Bulgarian 
speaker warn another of an impending accident with that phrase. 

The FO(Z) language we will use for our first foray into denotational semantics 
is a logical language for making statements about the mathematical integers. Some 
examples of natural-language statements that we can express in FO(Z) are: 

• "For any number n, there is a prime number greater than n."

• "The sum of two odd numbers is even."

• "If xis greater than y, and y is greater than z, then xis greater than z
" (tran

sitivity of the arithmetic greater-than relation).

In addition to serving as a warm-up for defining the syntax and semantics of the 
WHILE imperative programming language in Chapter 2, FO(Z) will also be valu
able later in the book (in particular, for the axiomatic semantics in Chapter 3). 
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1.1 Syntax of FO(Z) terms 

The syntax of FO(Z) is defined in two parts. First, we define terms, which are
expressions intended to denote an integer. Then we define formulas, which are 
intended to denote either truth or falsity. We start with the syntax of terms. The 
definition is made using some basic conventions which we will use throughout 
this book (see also the Mathematical Background section): 

variables x 

numerals n .. _ 011121 ... .. 
operators op ··- +I* I -.. 
terms t ·

·
-

x I n I t op t' I -t .. 

Here, we are defining the syntax of kinds of expressions using a formalism based 
on context free grammars. In this book, we will refer to all different syntactic 
entities as expressions. Each kind of expression is defined by a phrase of the form: 

name v ::= · · · 

The name (like terms in this grammar for FO(Z)) will be used for the set of all
expressions accepted by this phrase of the grammar. Next, we list a particular 
meta-variable (in the case of terms, the meta-variable is t) which we will use to
refer to elements of that set. Then we list the different productions that generate 
the elements of the set (for example, we list out the different ways we can form an 
element of the set of terms, for example by having two terms with an op between
them). We use different meta-variables for possibly different expressions of the 
same kind; for example, we are writing t op t' in the definition of terms t to mean
that the two terms given as arguments to op may be different terms. If we omit
productions, as for variables above, then there is some countably infinite but other
wise unspecified set of expressions, distinct from all others, which constitute that 
kind of expression. Note that we will sometimes use the terminology syntactic 
category for a kind of expression like terms. 

Everywhere we use a meta-variable (like t), the value of that meta-variable is
an element of the corresponding set (here, terms). So if in a proof we say "consider
an arbitrary t and F," then we are performing some generic reasoning that is true
for any element t of terms and any element F of formulas. An element of terms we
will call a term, and similarly for other kinds of expressions. We generally work
with ambiguous grammars in this book, leaving the important details of crafting 
deterministically parseable syntax to the domain of compilers. We will consider 
all our grammars to allow the implicit use of parentheses for disambiguation. 

1.2 Informal semantics of FO(Z) terms 

A term like 3 + 4 + 5 is intended to denote the number 12. Here we already see
some of the potential for confusion when describing a denotational semantics. We 
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are trying to explain (informally) the meaning of a particular expression in the 
syntactic category of terms. The meaning we have in mind is a number. How 
do we indicate which number is meant? If I were trying to explain the meaning 
of the French phrase "la Tour Eiffel", I could translate that into English as "the 
Eiffel Tower". Even better, if we were in Paris, I could just point to the famous 
monument, thus explaining the meaning by ostension. With an abstract object like 
a number, it's much less clear whether or not that is possible (though one could 
certainly imagine pointing to twelve chess pieces to give the idea). So we have to 
use our meta-language of English to state the meaning of the phrase 3 + 4 + 5 in
this particular object language of terms. This can be confusing, if we forget that 
the phrase "3 + 4 + 5" is in a formal language we are studying, while the phrase
"12" is in our informal meta-language of English. 

To continue: in order to assign a meaning to a term with variables in it, like 
the term 3 + (x * 5), we will assume we have some mapping() from variables to
integers. We will write L. for the set of all such mappings. For example, if()( x) = 4, 
then the term 3 + (x * 5) has the same meaning (with respect to that mapping())
as 3 + (4 * 5), namely 23. If we use a different mapping ()1, with ()1(x) = 2, say,
then of course we will get a different meaning (13 in this case). 

1.3 Syntax of FO(Z) formulas 

For formulas of FO(Z), the syntax is: 

built-in predicate symbols pred 
user-specified predicate symbols P
connectives conn 
formulas F 

=l:Fl<l>I< > 

AIVl=*l-R 
True I False I t pred t' I P ti · · · tn I F conn F'
1--.F I Vx.F I :::Jx.F 

We are including some familiar built-in predicate symbols pred for making ba
sic statements about the integers, as well as allowing for the possibility of user
specified predicate symbols P. We could just as well do something similar for 
terms: allow user-defined as well as built-in operators on terms. It will be suffi
cient for our purposes just to take built-in operators on terms for our language. 

We will adopt some standard conventions for parsing FO(Z) formulas, to al
low us to drop some parentheses. Predicates P and pred bind more tightly than 
connectives (like /\). Also, conjunction(/\) and disjunction (V) bind more tightly
than implication(:::;.), which in turn binds more tightly than -R. Finally, the quan
tifiers (V and :::J) bind least tightly of all. We will demonstrate these conventions in
Section 1.5 below. 

It is generally assumed for first-order logic that predicate symbols have a fixed 
arity, which is the number of arguments they must be given. For example, all our
built-in predicate symbols have arity 2, and must be used with exactly two argu
ments in a formula. As a terminological aside: arity-2 predicates are called binary 
predicates, while arity-1 predicates are called unary (sometimes also monadic). 
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Also, note that it is standard terminology in logic to call formulas which are not 
built from other formulas atomic. In FO(Z), the atomic formulas are the ones of 
the form P t1 · · · tn or t pred t'. Most presentations of first-order logic use the syntax
P(t1, ... , tn), where we are using P t1 · · · tn. The latter is notationally a little lighter, 
and will help get us ready for the applicative notation we will use for functional 
programming and lambda calculus in later chapters. One more aside: when we 
say "of the form", then there exists values for the new meta-variables which ap
pear in the meta-expression. So if we say that formula F is of the form P ti · · · tn, 
we are saying that there exist terms ti through tn such that F P ti · · · tn, where

means syntactic identity of the given two expressions. 

1.4 Some alternative logical languages for arithmetic 

The language FO(Z) formalizes first-order arithmetic using standard ideas from
logic. It has the pragmatic limitation, however, that all quantifiers (implicitly) 
range over the integers. If we wished to express also propositions about the ratio
nals or reals, FO(Z) would not be very convenient for doing so. It is possible to
encode rationals, or even a countable subset of the reals, as integers. For example, 
one could encode a rational as an ordered pair of the numerator and denomina
tor (perhaps as relative primes), and then use a standard pairing function to map 
such pairs to integers. A simple pairing function maps ( x, y) to 2x3y, for example.
Other such functions exist with some nicer properties, like surjectivity. With such 
an encoding, we could use FO(Z) for expressing statements about the rationals or
a countable subset of the reals. A more convenient approach, however, would use 
a different logic, one which includes different sorts (types) for variables natively. 
So we would be able to write \Jx : Q. · · · , for example, to quantify over the ra
tionals. A logic that supports this kind of sorted (typed) quantification is called a 
multi-sorted logic. 

In FO(Z), we also cannot quantify directly over functions or predicates on the
integers. Again, since we can give an integer encoding of a subset of the set of all 
functions operating on the integers (think of writing out the code for a computable 
function in binary, and then take the integer representation of that binary number 
as the code for the function), we could use FO(Z) to quantify over functions, but it
is again more convenient to use a logic that builds in quantification over functions 
and predicates. 

A logical language that allows quantifications over functions and predicates is 
called a higher-order logic. All such logics I know (at least the consistent ones!) are 
also multi-sorted logics, as the sort system is used to express what sort of function 
some entity is. For example, we might write int ----+ int as the sort for some quanti
fied variable, to indicate that it is a unary operations on integers. A logic that only 
allows quantification over entities which are not directly recognized as functions 
by the logic itself is called first-order. Notice that we could have a first-order multi
sorted logic where one of the sorts is intended to name a set of functions. So we 
might have a sort int ----+ int, and quantify over that sort. The difference between
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this situation and a true higher-order logic is that with the first-order multi-sorted 
logic, the logic itself will not recognize x of sort int ----+ int as a function. We would
not be able to use it in the syntax of terms directly as if it were another built-in 
operator op. In contrast, with a higher-order logic, we are able to do this. 

1.5 Informal semantics of FO(Z) formulas 

Informally, the meanings of the logical symbols in the grammar for FO(Z) are:

/\ And (conjunction). 

V Or (disjunction). 

=? Implies (implication, "if-then"). 

{:::} Iff (equivalence, "if-and-only-if"). 

\/ For all (universal quantification). 

3 There is (existential quantification).

We can translate the English sentences from the start of this chapter into FO(Z) 
formulas as follows: 

• "For any number n, there is a prime number greater than n." To translate this

sentence, we will use the universal quantifier \/ for "for any number n". We
will also need to use the existential quantifier 3 for "there is a prime num
ber". The existential quantifier requires us to give a name to the entity we
are stating exists, so we will call that prime number y. Finally, we are going
to use a user-specified predicate symbol Prime (not built-in) for the property
of being prime. The formula is then:

\/n.3y.( (Prime y) /\ (y > n)) 

Here, the formula is written with enough parentheses to allow unambigu
ous parsing without the conventions mentioned in the previous section. As 
stated there, those conventions allow us to drop some parentheses from for
mulas like this one. Since predicates (like Prime and >) bind more tightly
than connectives (like/\), we can drop the two innermost pairs of parenthe
ses. Also, since connectives bind more tightly than quantifiers(\/ and 3), we
can drop the outer pair of parentheses. So the formula can be unambigu
ously written as just 

\/n.3y.Prime y /\ y > n 

Note that if we wanted to define Prime, we could do so with the following
formula: 

\Ix. ((Prime x) {:::} Vy.\/z.((y * z = x) =? ((y = 1) V (z = 1)))) 
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This formula is equivalent to the usual definition, where x is prime iff its 
only divisors are 1 and x. The definition here has the advantage that it does 
not require a definition of the "divides" relation. Here, the formula includes 
sufficient parentheses for unambiguous parsing without our FO(Z) parsing 
conventions. Using those conventions, we can actually drop all the paren
theses: 

Vx. Prime x {::} Vy.Vz.y * z = x ::::} y = 1 V z = 1 

Arguably it might be preferable to include some extra parentheses which are 
not strictly required, just to aid readability: 

\:/x. Prime x {::} (Vy.Vz.y * z = x ::::} (y = 1 V z = 1)) 

• "The sum of two odd numbers is even."

(Odd x /\ Odd y) ::::} Even (x + y) 

Our parsing conventions would allow us to drop the parentheses around 
the conjunction, but they are retained here for readability. As usual when 
translating from a natural language, there is some flexibility in interpreta
tion. Here, we are using variables x and y without a universal quantification 
('\/). These variables occur free in the formula: there is no quantification to in
troduce them. We could reasonably have used such quantification, however, 
which would give the formula: 

\:/x.Vy. (Odd x /\ Odd y) ::::} Even (x + y) 

In this latter translation, all occurrences of x and y are bound in the formula: 
wherever an x is used, for example (and the place where it is used is called an 
occurrence), there is an enclosing quantification of x (in this case, the outer 
Vx). W hichever translation we use, of course, we are availing ourselves of 
user-specified predicate symbols for "odd" and "even", each of arity 1 (so 
the symbols are unary). 

• "If x is greater than y, and y is greater than z, then x is greater than z" (tran
sitivity of the arithmetic greater-than relation).

(x > y /\ y > z) ::::} x > z 

As in the previous case, we could also translate this formula using quanti
fiers: 

\:/x.Vy.Vz.(x > y /\ y > z) ::::} x > z 

1.6 Formal semantics of FO(Z) terms 

As mentioned in Section 1.2, we will give the formal semantics of FO(Z) terms 
using functions <T which assign integer values to the variables which appear (free) 
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in the term. In this book, we will make use of some standard notation for finite 
functions (which are functions that have a finite domain; that is, they accept just 
a finite number of inputs). A function that maps input ii to output 01 (whatever 
kinds of things the inputs and outputs are) and so on up to mapping in to On will 
be written as 

If we have a function er, it is often useful to have notation for overriding: we 
construct another function er

' which behaves just the way er does, except that given 
input i, it returns output o. Standard notation for this is: 

cr[iHo] 

So for example, the function described as follows maps x1to5 and x2 to 4, since it 
overrides the finite function { x1 H 3, x2 H 4} to map x1to5 instead of 3: 

Multiple uses of overriding can be collapsed, as long as we know the variables 
involved are distinct: 

cr[x H 2] [y H 3] = cr[x H 2, y H 3] 

Using this notation for finite functions and overriding, we can define the semantics 
of FO(Z) terms formally as follows. Suppose er is any function from (at least) the 
set of all variables in the term to the set of integers. We will call such functions 
assignments, as they assign a value to variables in the term. The meaning of a 
term t with respect to assignment er is an integer term[t]cr. This function term[·l is 
defined as follows: 

term [x]cr 
term[n]cr 
term[t + t']cr 
term[t * t']cr 
term[t - t']cr 
term[-t]cr 

cr(x) 
n 
the sum of term [t] er, term [t'] er 

the product of term [t] er, term [t'] er 

the difference of term[t]cr, term[t']cr 
the arithmetic negation of term[t]cr 

This is a well-founded recursive definition: the right hand sides of the equations 
make use of the function being defined, but they do so only in such a way that the 
recursion eventually must stop. In this case, the recursive calls on the right hand 
side are all made on strict (or proper) subexpressions of the term appearing on the 
left hand side. A strict subexpression of an expression e is one that appears inside e 
but is note itself, since unless otherwise specified, every expression is considered 
a trivial subexpression of itself. Our terms are finite expressions, and hence we 
cannot make recursive calls forever on smaller and smaller strict subexpressions. 

In each case of the above definition, we are defining the meaning of a FO(Z) 
operator by the standard mathematical function we associate with that symbol. 
With the operator /1 + ", for example, we associate the actual mathematical function 
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which adds integers. I have deliberately avoided partial function like �, as these 
require more machinery in the semantics for terms. If when we write a symbol like 

"+" in our meta-linguistic discussion of the WHILE language, we keep straight 
whether we mean the symbol + or the mathematical function +, we can write the 
above definition more concisely (if a bit cryptically) as: 

term[x]cr 
term[n]cr 
term[t + t']cr 
term[t * t']cr 
term[t - t']cr 
term[-t]cr 

cr(x) 
n 
term[t]cr + term[t']cr 
term[t]cr * term[t']cr 
term[t]cr - term[t']cr 
-term[t]cr 

So we are giving the meaning of arithmetic symbols in terms of arithmetic func
tions which we denote (at the meta-level) with the exact same symbols. A def
inition like this is absurd from a foundational point of view: if the reader does 
not know what the + function is, then s/he will get almost no information out of 
the defining equation for the semantics of t + t' (by defining equation, I mean the 
single equation which states what the value of the interpretation term[·]cr is for 
expressions of that form). 

Our definition of the semantics of FO(Z) terms is an instance of the general 
approach to denotational semantics described at the start of this chapter. We are 
trying to state that the symbol "+" denotes addition, but we are using the meta
language symbol + to refer to the mathematical operation of addition. This would 
be like saying that the meaning of "le tour Eiffel" is le tour Eiffel. This is hardly 
very informative, unless we already know what our meta-language phrase "le 
tour Eiffel" means. In the case of the semantics of FO(Z), since we do know what 
those meta-language expressions involving"+","*", and the rest mean, the above 
definition makes clear that the semantics we have in mind for our object language 
of FO(Z) terms is the one suggested by the symbols we are using in the object 
language. We could just as well have had some less standard interpretation of 
these symbols in mind. For example, perhaps we intend "+" to denote addition 
modulo 37. In that case, we would have a defining equation for the semantics of 

"+" like the following one, which would precisely express what we intend: 

term[t + t']cr = (term[t]cr + term[t']cr) mod 37

Or we might have wished to define the semantics of a new operator EB in terms 
of operations we already understand; for example, writing gcd for the function 
returning the greatest common divisor of two integers, we might define: 

term[t EB t']cr = gcd(term[t]cr, term[t']cr) 

In such situations, we go beyond just saying that + in the object language means + 
in the meta-language, and are thus arguably more informative. Nevertheless, say
ing that object-language + means meta-language + carries important non-trivial 
information, since after all, the interpretation of object-language + could easily 
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have been some other operation. We will see below, especially in the next chapter, 
a number of important examples where we give more illuminating semantics for 
an operator than just that it means what it usually means in the meta-language. 

Finally, note that the defining equation for the semantics of variables x is the 
one place in the definition where the assignment CT is used. The defining equation 
tells us that the meaning of x with respect to CT is just CT( x). So if CT tells us that x is 
mapped to 5, then term[x]CT is 5. If it weren't for this clause, we could define the 
semantics of a term without reference to this CT. This would greatly simplify the 
other clauses of the definition. We would be able to write, for example, just the 
following for the defining equation for the semantics of +-terms: 

term[t - t'] = term[t] - term[t'] 

The interpretation of a term t would be just term[t], with no dependence on an 
assignment CT. Unfortunately, since one defining equation of our above defini
tion requires this assignment (namely, the defining equation for the semantics of 
variables), the interpretation must take this assignment as an extra argument, and 
must propagate it through the other defining equations. We will find in many 
other situations in this book that the need for a parameter like CT in one part of 
the formal definition of some concept leads to the propagation of that parameter 
throughout other parts of the definition. 

1.6.1 Examples 

Here is an example of computing the interpretation of a term step by step, using 
the above definition. Here, and elsewhere, we will often write interpretations like 
term [t] CT as just [t] CT. 

[ ( X * y) + 1 ]{ X H 4, y H 5} [ X * y ]{ X H 4, y H 5} + [1] { X H 4, y H 5} 
[ X * y] { X H 4, y H 5} + 1 
( [ X] { X H 4, y H 5} * [y] { X H 4, y H 5}) + 1 
( 4 * [y] { X H 4, y H 5}) + 1 
( 4 * 5) + 1 
21 

Here is another example, showing that it is fine for the assignment's domain to 
include more variables than just the ones in the term: 

[3 + (x * 5)]{x H 4, y H 5} [3]{ X H 4, y H 5} + [x * 5]{ X H 4, y H 5} 
3 + [ X * 5] { X H 4, y H 5} 
3+ ([x]{x H 4, y H 5} * [5]{x H 4, y H 5}) 
3 + ( 4 * [5]{ X H 4, y H 5}) 
3 + (4 * 5) 
23 

Finally, consider the term x + (y * z) and the assignment { w H 2, x H 3}. As 
this assignment does not map all the variables in the term, the interpretation of 
the term with respect to this assignment is undefined. 
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1.7 Formal semantics of FO(Z) formulas 

The formal semantics of FO(Z) formulas is defined as follows. We interpret for
mulas as boolean values (which we define to be either True or False). Also, we will 
suppose that some interpretation has been specified for the predicate symbols P 
that occur in the formula, as relations on integers (since otherwise, their meaning 
is not specified by the semantics). With each boolean connective conn, we asso
ciate the usual boolean operation: for example, with /\, we associate the boolean 
operation which takes two arguments, and returns True iff both arguments are 
True. We abbreviate our official notationformula[F]CT as just [F]CT, in the following 
definition: 

[True]CT 
[False]CT 
[ t pred t'] CT 
[P t1 · · · tn]CT 
[ F conn F'] CT 
[•F]CT 
[Vx. F]CT 
[::Jx. F]CT 

True 
False 
The relation for pred holds for term[t]CT, term[t']CT 
The relation for P holds for term[ti]CT, · · · , term[tn]CT 
The boolean function for conn returns True for [F]CT, [F']CT 
Boolean negation returns False for [F]CT 
For all integers v, [F]CT[x H v] is True 
For some integer v, [F]CT[x H v] is True 

In the last two defining clauses, for V and ::J, we override the assignment CT to map 
variable x to integer v. If the body F of a universally quantified formula is true 
with respect to all such overridings of CT, then the universal formula is true with 
respect to CT: F truly holds for all values that the quantified variable x can assume. 
Similarly, for existential quantification, the definition just requires that the body F 
is true with respect to an overriding with some assignment of value v to variable 
x. When [F]CT = True, we say that CT satisfies F, and sometimes write CT I= F. 

The interpretation of predicate symbols P could be given by means of formu
las which do not contain P. For example, using the formula we mentioned in 
Section 1.5 above, we could write 

[Prime t]CT = [(Vy.Vz.y * z = t * (y = 1 V z = l)) ]CT 

One could also specify recursive predicates, although a proper consideration of 
recursion must wait until Chapter 2. 

1.7.1 Examples 

Here are the step-by-step interpretations of several example formulas. First, sup
pose we have some state CT where CT(x) = 2 and CT(y) = 3: 

[x + y > y] [x + y]CT > [y]CT 
([x]CT + [y]CT) > [y]CT 
(2 + 3) > 3 
5>3 
True 
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If we interpret the same formula in a state er' where er' ( x) = -2 and er' (y) = 
-3, 

then we get a different value for the meaning of the formula: 

[x + y > y] [x + y]er > [y]er 
[x]er + [y]er > [y]er 
-2 + - 3 > -3 

-5 > -3 

False 

For a somewhat more complicated example, let er be some arbitrary state: 

[V' x. V' y. x < y =* x < 2 * y] er 
V'v1 E Z. [Vy. x < y =* x < 2 * y]er[x H v1] is True 
V'v1 E Z. (V'v2 E Z. [x < y =* x < 2 * y]er[x H v1, y H v2] is True) is True 
V'v1 E Z. (V'v2 E Z. [x < y]er[x H v1, y H v2] is True implies 

[x < 2 * y]er[x H v1, y H v2] is True) is True 
V'v1 E Z. (V'v2 E Z. v1 < v2 implies v1 < 2 * v2) is True 
False 

To justify the last step, we must show that the stated property fails to hold for some 
integers v1 and v2. An example pair of such integers is -3 for v1 and -2 for v2. 
We do have -3 < -2, but not -3 < 2 * -2, since this is equivalent to -3 < -4. 

1.8 Compositionality 

A hallmark of denotational semantics is that it is compositional: the meaning of a 
bigger expression is defined in terms of the meanings of its strict subexpressions. 
We can see this clearly in a case like the defining clause for t + t': 

term[t + t']er = term[t]er + term[t']er 

Let us write this in a crudely simplified form: 

Meaning of t + t' = Something computed from meaning of t and meaning of t' 

T his crude form helps emphasize that the meaning of the compound expression 
(i.e., the expression built from strictly smaller subexpressions) is computed, in 
some way, from the meanings of the strict subexpressions (that is, from the mean
ings oft and t'). We will see later that for some other kinds of semantics, par
ticularly operational semantics (Chapter 4), the meaning of an expression is not 
defined in a compositional way. 

1.9 Validity and satisfiability 

Two important basic definitions from logic are the following. Recall that we are 
writing L. for the set of functions mapping some set of variables to the integers, 
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and we are implicitly assuming that any time we write [cp]cr, we are considering 
only assignments £T which give a value to all the free variables of cp. 

Definition 1.9.1 (Validity of a Formula). A formula cp is valid if! for all assignments
£T E L, [ cp] £T = True. The notation I= cp is often used to express that cp is valid. 

Definition 1.9.2 (Satisfiability of a Formula). A formula cp is satisfiable if! for some
assignment £T E L, [cp]cr = True. 

For our purposes, we will assume that the interpretations of the user-specified 
predicate symbols P are given in advance, and we will consider a formula valid or 
satisfiable relative to given such interpretations. The alternative is not to consider 
these symbols as coming with a single fixed interpretation. Rather, the notion of 
validity is defined so that it requires the interpretation of cp to be true for all possi
ble interpretations of the user-specified predicate symbols, as well as all possible 
assignments. Similarly, the notion of satisfiability requires the interpretation of cp 
to be true for some possible interpretation of the user-specified predicate symbols, 
and some possible assignment. This alternative is standard in logic and universal 
algebra, but the one we pursue here will be sufficient for our purposes. 

Theorem 1.9.3. A formula cp is valid if! ----,cp is not satisfiable. 

Proof Suppose cp is valid. From the definition of validity above, this is equivalent 
to stating that for all assignments £T E L, we have [cp]cr = True. By the seman
tics of negation, this is equivalent to [----icp]cr = False. Since this is true for every 
assignment cr, that is equivalent to stating that there is no assignment £T where 
[----icp]cr = True. So, by the definition of satisfiability above, this is equivalent to 
stating that ----,cp is not satisfiable. D 

For example, the formula x = y is satisfiable, since its interpretation with re
spect to the assignment { x H 1, y H 1} is True. That same formula is not valid, 
since there exists an assignment which makes its interpretation false; an example 
is { x H 1, y H 2}. For an example of a valid formula, we can take x * y = y * x. 
No matter what integer values we assign to the variables x and y, the two sides of 
this equation will have the same interpretation, since multiplication is commuta
tive. So the interpretation of the equation will always be True, no matter what the 
assignment, and the formula is valid. 

1.10 Interlude: proof by natural-number induction 

So far, we have relied on basic properties of arithmetic, like commutativity at the 
end of the previous section, when considering the interpretations of terms and 
formulas. But how does one prove properties of arithmetic operators in the first 
place? The answer is that we must begin with some assumed properties, or some 
definitions, of the arithmetic operators, and then prove based on those that the 
operators have certain properties, like commutativity. Or for another example, 
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suppose we wish to prove a formula like the following, where we take the vari
ables x and y to be quantify ing over the set of natural numbers: 

'\lx.'\ly.2x+y = 2x * 2Y 

How is this done? Suppose we know some basic facts about exponentiation, ad
dition, and multiplication. We will consider in later chapters how to define arith
metic operations in such a way that basic facts about them can be easily proved, 
but for now, let us assume we know some basic properties, but not other slightly 
more complex properties, such as the one above. Then we can use proof by 
natural-number induction, together with basic rules of logic, to prove these prop
erties. With natural-number induction, we have some property of a single natural 
number which we must prove. Let us write P ( n) for this property, to show that 
we are focusing on the number referred to by the variable n. Our goal is to prove 
'\ln.P(n). If there are multiple universally quantified variables, we would have to 
pick just one (or possibly introduce a new variable), to focus on. For the above 
formula, the property might be 

There are other possibilities, of course. We have chosen here to focus on x, and we 
could just have well focused on y. In general, identify ing which variable to focus 
on, or more generally, what property P to try to prove, can require significant 
ingenuity. 

We are required first to prove P(O); that is, the property except with 0 instead 
of n. P(O) is called the base case of the induction proof. Then we are required 
to prove P(n + 1), assuming P(n). This assumption that the property holds for 
n while we are try ing to prove it for the successor of n is called the induction 
hypothesis, or IH. This case, where we must prove P(n + 1) assuming P(n), is 
called the inductive case (or alternatively, the step case) of the induction proof. 

For our example concerning exponentiation, we must prove the following for 
our base case: 

'\ly.20+y = 20 * 2Y 

To prove a universally quantified formula Vy. F, it suffices to consider some arbi
trary y, about which we make no assumptions, and then prove F. So let y be an 
arbitrary natural number (since we are taking all our quantifiers in this example 
as ranging over natural numbers), and prove 

20+y = 20 * 2Y 

Now we will make use of a couple very basic facts about these arithmetic opera
tions: 

o+y Y 

2° 1 
l*X X 

So we prove the desired conclusion using this chain of equations: 

20+y = 2Y = 1 * 2Y = 2o * 2Y 
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Now we turn to the inductive case of this natural-number induction. We are re
quired to prove this formula, which is just P(n + 1) for the property P we have 
chosen to prove holds of all natural numbers: 

To do this, we are allowed to make use of this induction hypothesis, which is just 
P(n): 

'Vy.2n+y = 2n * 2Y 

To begin, assume an arbitrary natural number y, and prove 

We will now make use of these very basic facts about our operators: 

(n + l)+y 
2x+l 

We can now reason as follows: 

2(n+l)+y = 2(n+y)+l = 2 * 2n+y 

At this point, there are no obvious basic facts that apply to help us transform the 
rightmost term in this chain of equalities into the desired 2n+ 1 * 2Y. So we appear 
to be stuck. But we have not yet used our induction hypothesis (IH), and it does 
apply at this point. We can instantiate the quantified y in the induction hypothesis 
with this arbitrary y we are currently considering. T hat will give us this equation: 

2n+y = 2n * 2Y 

Observe carefully that the IH tells us 

\:/y.2n+y = 2n * 2Y 

Only y is quantified here, not n. So we can instantiate the quantified y with some
thing else (they we are currently considering), but we cannot instantiate n: it has 
to remain fixed. 

Now we can extend our chain of equational reasoning: 

We are almost done. We just have to use the basic fact 2 * 2n 
= 2n+ 1: 

This shows exactly what we were supposed to prove, and so the inductive step 
of this proof is complete now. That also completes the proof by natural-number 
induction of our original formula. 
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1.10.1 Choosing the induction hypothesis 

23 

The proof in the previous section demonstrates several phenomena which appear 
commonly in proofs by induction. First, we have a choice of which variable to 
use for the induction. In the case of the above example, our goal formula has 
both x and y universally quantified, and it would be legal to attempt a proof by 
induction on either of them. A common heuristic to choose which variable to use 
for induction is to pick a variable that is used in a position in the statement of 
the theorem, where partial knowledge of the value of that variable will enable the 
application of some algebraic fact to simplify the formula to be proved. We used 
basic facts like 2x+ 1 

= 2 * 2x in our proof, and these were enabled by knowing
that the argument to the exponentiation function was a successor number (and 
similarly in the base case, we used 2° = 1). Since we allowed ourselves to use basic 
facts about arithmetic, we could just as well have done induction on either x or y 
to enable these simplifications of the goal formula. If we were working directly 
from recursive definitions of the arithmetic operators, then one choice will usually 
be preferable. For example, suppose we give this recursive definition of addition 
(which is commonly used), based on a view of natural numbers as generated by 0 

and a successor operation S (where 5(2) = 3, for example): 

o+y 
(S(x))+y 

= y 
S(x + y) 

In this case, the first argument to plus is the one which will enable algebraic sim
plifications, if we know it is 0 or else know that it is a successor number. So in that 
case, it would be more convenient in our example to do induction on x than on y, 
since x is used as the first argument to plus in the statement of the theorem: 

\:/x.Vy.2x+y = 2x * 2Y 

A second phenomenon we can observe here is that once one chooses which vari
able to use for induction, the other quantified variables (in this case just y) must 
be taken into account. In general, suppose we are trying to prove a formula of this 
form: 

\:/x1. · · · \:/xn. F

Suppose we decide to do induction on Xi. Then we will first have to assume arbi
trary x1 through Xi-1 

· 
This is because the proper form for standard mathematical 

induction is to prove a formula of the form \:Ix. P(x), by proving P(O) and then 
P(n) ::::} P(n + 1). So if we want to do induction on a variable in the middle of a 
list of universally quantified variables, like this xi, we must first get the variables 
to the left of xi in the quantifier prefix out of the way. We have to assume arbi
trary x1 through xi-l before we begin the induction on xi. Once we do begin our 
induction, we will be proving \:/xi .P (xi), where P is the formula: 

\:/xi+l· · · · \:/xn. F

So we have retained Xi+ 1 through Xn as quantified variables in our goal, and more 
importantly in our induction hypothesis. Having these variables quantified in the 
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induction hypothesis gives us more power when we are trying to complete the 
inductive case of the proof by induction, because we can instantiate them with 
arbitrary other terms. In our example proof above, this power was actually not 
used: in the inductive case we just instantiated the quantified y with the arbitrary 
y we were considering in that case. So the extra flexibility was not needed, and 
in fact was just distracting, as we technically had to instantiate the quantified y 
before we could make use of our induction hypothesis as we wished. In this case, 
it would have been simpler to reorder the quantified variables in our goal formula 
like this: 

Vy.Vx.2x+y = 2x * 2Y 

Then our proof could first consider an arbitrary y, and then do induction on x. The 
step case would then just be to prove 

assuming (as IH) 

Notice that now we do not have any quantification of y in the formulas involved 
(either the goal formula or the induction hypothesis). For this particular proof, 
that would be a little simpler than what we considered above. In some proofs, 
of course, we need the extra flexibility of keeping variables universally quantified 
in the induction hypothesis. One quickly finds out which variables require more 
flexibility and which do not, so making the wrong choice about which variables to 
retain quantified in the IH and which to dispatch before beginning the induction 
is easily corrected. 

1.10.2 Strong natural-number induction 

Natural-number induction as just considered is sometimes called weak induction. 
This is to contrast it with strong induction, sometimes also called complete induc
tion or course-of-values induction. For strong induction, we are again trying to 
prove Vn.P(n). But now we are just required to prove P(n), for an arbitrary natu
ral number n, under the following strong induction hypothesis: 

Vx. x < n::::;. P(x) 

That is, we are allowed to assume that the property P holds for every natural num
ber x which is strictly smaller than n. This is useful when some function mentioned 
in the theorem we are trying to prove makes recursive calls on a number smaller 
than the predecessor of n. For example, suppose we define the natural-number 
logarithm function as follows, where we leave log(O) undefined, and where we 
write /2 for natural-number division by 2: 

log(l) 
log( s ( s ( x))) 

0 

S(log(S(S(x))/2)) 
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Suppose we want to prove 

\/n.n > 0 ::::} 2log(n) � n 

We proceed by strong induction on n. We must prove 

n > 0 ::::} 2log(n) � n 

under the strong induction hypothesis 

\/x. x < n =? x > 0 =? 2log(x) � x 

25 

Let us first case split on whether n = 1 or n > 1. In the first case, we prove the 
goal formula as follows: 

iog(n) = 
iog(l) = 

20 = 1 < 1 = n 

In the second case, n must be equal to 5 ( 5 ( n')) for some n'. So we have 

2log(n) 
= 

2log(S(S(n'))) 
= 

2S(log(S(S(n1))!2)) 
= 

2 * iog(S(S(n'))/2) 

Now we know that 5(5(n'))/2 < n, using the following reasoning, where we use 
without proof the basic property on natural-number division that n' /2 � n': 

5(5(n'))/2 = 5(n' /2) � 5(n') < 5(5(n')) = n 

Since 5(5(n')) /2 < n, we may instantiate our strong induction hypothesis with 
5 ( 5 ( n')) to extend the chain of reasoning we started just above: 

2log(n) = 
2log(S(S(n1))) = 

2S(log(S(S(n'))l2)) 
= 

2 * iog(S(S(n'))/2) � 2 * (5(n' /2)) 

Now we will use the further basic property of natural-number division that 2 * 
( n I 2) � n, to finish the chain of reasoning: 

2log(n) 
21og(S(S(n'))) 
2S(log(S(S(n')) /2)) 
2 * 2log(S(S(n'))/2) 

< 2*(5(n'/2)) 
5(5(2 * (n' /2))) 

< 5(5(n')) 
n 

This completes the proof by strong induction. We made use of our induction hy
pothesis not for the predecessor 5( n') of n, but for 5( n' /2). Proof by weak natural
number induction would not have allowed us to do this. 
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1.10.3 Aside: deriving strong induction from weak induction 

The principle of strong natural-number induction can be derived using weak natural
number induction. Assume that we have some property P(n). Then we can for
mulate strong induction like this: 

('Vn.('Vn'.n' < n ==? P(n')) ==? P(n)) ==? 'Vn.P(n) 

We wish to use weak induction to prove this formula. First, let us assume the 
antecedent of this implication: 

'Vn.('Vn'.n' < n ==? P(n')) ==? P(n) (1.1) 

Now the crucial insight is in crafting a suitable induction hypothesis. Let P' ( n) be 
the property 

'Vn'.n':::; n ==? P(n') 

We will prove \;/n.P' ( n) by weak induction on n. Notice that 'Vn.P' ( n) is just 

\;/n.'Vn'.n' :::; n ==? P(n') 

This implies \;/n.P(n ), since if we assume an arbitrary n, we can instantiate the two 
universal quantifiers just above with n, to obtain: 

And of course, the antecedent n :::; n of this implication is valid, so we can indeed 
conclude P( n). This argument shows that in order to prove 'Vn.P( n) as we wish to 
do, it is sufficient to prove \;/n.P' ( n), for the property P' we identified above. 

So now we will prove 'Vn.P' ( n) by weak induction on n. For the base case, we 
must prove 

'Vn'.n' :::; 0 ==? P(n') 

This is equivalent to having to prove just P(O), since if n' :::; 0, then we have (for 
natural number n') n' = 0. By Hypothesis 1.1 above, we can obtain a proof of P(O)
if we can prove 

'Vn'.n' < 0 ==? P(n') 

But this formula is easily proved, since if we assume an arbitrary n' strictly less 
than 0, we can derive a contradiction: no natural number is strictly smaller than 0. 

So let us consider now the step case of our proof by weak natural-number 
induction. We must show 

'Vn'.n':::; S(n) ==? P(n') 

under the induction hypothesis 

'Vn1.n1:::; n ==? P(n') 
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So assume an arbitrary n' ::; S ( n). Let us case split on whether we have n' = S ( n) 
or else n' < S(n). Suppose the former. So we must prove P(S(n). Hypothesis 1.1 

above would let us conclude this if we could only prove 

Vn'.n' < S(n)::::} P(n') 

But this formula is equivalent to 

Vn'.n' ::; n ::::} P(n') 

and that formula is exactly our induction hypothesis. So this first case of our case 
split on whether n' = S ( n) or else n' < S ( n), is proved, and we consider now the 
second. So assume n' < S(n). This is equivalent to n' ::; n. We must show P(n'). 
This follows directly from our induction hypothesis, since n' ::; n. That completes 
the step case of our proof by weak natural-number induction that the principle of 
strong induction is valid. 

1.11 Proof by structural induction 

In the section we have an example of an important variation on proof by induction, 
which we just considered in the last section. This is proof by structural induction. 
The theorem we are proving, while technically useful, is not profoundly important 
in its own right. But structural induction is used often in the study of program
ming language semantics, and will appear frequently later in this book. 

Theorem 1.11.1. Suppose [t]O' is defined, and suppose that £T � £T1• Then [t]£T1 is also 
defined, and equals [t]O'. 

Proof We first need to make sure the meaning of the assumption £T � 0'1 is clear. 
Since assignments £Tare just functions from a finite set of variables to integers, and 
since functions are relations, which in turn are just sets, it makes sense to state that 
two assignments £T and 0'1 are in the subset relationship(�). See the Mathematical 
Background for a review of these ideas. 

Now our proof proceeds by induction on the structure oft. We must consider 
all the possible cases for the form of t. In each case, we are allowed to use as 
an assumption the formula which we are trying to prove, but we can only do so 
with an immediate subterm oft in place oft. That assumption is our induction 
hypothesis, and is similar to the induction hypothesis in proof by natural-number 
induction. In both forms of proof, we are allowed to use what we are trying to 
prove, but only on smaller data: either the predecessor number or the immediate 
subterms of a term. 

Using the IH only for immediate terms oft ensures that we cannot appeal to 
our induction hypothesis forever: one cannot find smaller and smaller subterms of 
finite terms t forever, just as in natural-number induction, one cannot find forever 
smaller and smaller natural-number predecessors of a number. At some point 
these decreasing sequences must stop. Those stopping points are the base cases of 
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the induction, and the other cases are the inductive cases. For natural numbers, 
the sole base case is for when the number n in question equals 0, and the step case 
is for when n = n' + 1 for some n' E N. For FO (Z ) terms, there is one base case
for when the term tin question is equal to some variable x, and another for when
it is equal to some n E N. There is one step case for when t = ti op t2 for some
operator op, and some terms ti, t2; there is another step case for when t = -ti, for
some term ti. Let us now consider these cases for t. 

Case: t = x, for some variable x. In this case, [t]<7 = £T(x), by the defining equation
for the interpretation of variables. Since [t]<7 is defined, we know that £T(x) is
defined. We are assuming that £T � £T1, so we know that £T1 ( x) = <7( x). And since

[t]£T' = £T1(x), again by the defining equation for the interpretation of variables,
we can conlude with the desired result: [t]£T' is defined and equal to [t]£T'. To 
summarize: 

[t]<7 = [x]<7 = £T(x) = £T1(x) = [x]£T' = [t]£T1 

Case: t = n, for some n E N. In this case, [t]<7 = n = [t]£T', which is certainly
defined. 

Case: t = ti opt2, for some terms ti and t2 and some operator op. The induction
hypothesis can be applied to conclude what we are trying to prove for the imme
diate subterms ti and t2 of t. So by the induction hypothesis, we have that £Tti £T1 
and £Tt2£T' are both defined and equal to £Tti £T1 and £Tt2£T', respectively. So we have:

Case: t = -ti, for some term ti. The reasoning is similar to that of the previous
case, using the induction hypothesis for ti: 

[t]<7 = -[ti]<7 = -[ti]£T' = [t]£T1 

D 

1.12 Conclusion 

We have seen the syntax, informal semantics, and formal semantics of the FO (Z ) 
language for first-order arithmetic. The semantics considered is denotational. The 
formal semantics of a FO (Z ) term like x + (3 * y) is defined with respect to an
assigment £T mapping FO (Z ) variables like x and y to integer values. The for
mal semantics of a FO (Z ) formula Fis defined similarly. The definitions of both
semantics are given as well-founded recursive equations. As such, they are com
positional semantics: the meaning of a compound expression is given in terms 
of the meanings of its immediate subexpressions. We considered the basic logical 
concepts of validity and satisfiability. We will use FO (Z ) again, when we con
sider Hoare Logic in Chapter 3 below. We also reviewed proof by natural-number
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induction, and saw an example of how to prove a property of our semantics (The
orem 1.11.1) by induction on the structure of terms t. In the next chapter, we will 
devise a similar semantics for a simple imperative programming language called 
WHILE. There, we have some new challenges to overcome, in order to give a com
positional semantics for while-loops. 

1.13 Basic exercises 

1.13.1 For Sections 1.1and1.3 on FO(Z) syntax 

1. For each of the following expressions, state the syntactic category to which
the expression belongs, or state that the expression does not belong to any of
the syntactic categories defined in the sections listed above:

(a) 3 

(b) 1 - 2 

(c) * 

(d) /\ 

(e) x + y::::;, z 

(f) x + y = z ::::;, False 

(g) P x l, assuming that P is a user-specified binary predicate symbol . 

2. Add parentheses according to the parsing conventions of Section 1.3, to make
explicit the structure of the following formulas (assume that P, Q, and Rare
user-specified predicate symbols of arity 0):

(a) P /\ Q ::::;. R {::} P V R 

(b) x + y > z::::;, ::Jw. x > w /\ w > y

(c) \:Ix. ('lly.y > x)::::;, x < O/\x > 0 

3. Which of the following formulas accurately translates the (invalid) statement
"if x plus y is greater than 0 then xis greater than O":

(a) x + y > 0 {::} x > 0 

(b) x + y > 0 ::::;, x > 0 

(c) \:Ix. Vy. x > 0 ::::;, y > 0 

1.13.2 For Sections 1.6 and 1.7 on FO(Z) semantics 

1. Write out, step by step (as done in Section 1.6.1 above), the computation of
the (integer) value of [3 * x * y]{ x r--t 3, y r--t 4 }.
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2. What is the value of [ x + (x * x)]{x c--+ 3, y c--+ 4} (you do not need to write
out the computation step by step)?

3. What is the interpretation (usingformula[·]) of the following FO(Z) formu
las, with respect to assignment 0 (that is, the assignment that does not asso
ciate a value with any variable):

(a) Vx.x -1- x. 
(b) Vx.Vy.x + y > y::::;:. x > 0.

(c) 2 > 3 ::::;:. 0 = 1.

1.14 Intermediate exercises 

1.14.1 For Sections 1.1through1.5 on FO(Z) syntax and informal semantics 

1. Translate the statement "Every two numbers have a common divisor" into
a FO(Z) formula, using the divides predicate symbol I (for expressing the
concept of one number's dividing another without remainder).

2. Translate the statement "Every two numbers have a least common multiple"
into a FO(Z) formula.

3. Translate the statement "For every prime number, there exists a greater prime
number", using a unary (1-argument) predicate symbol Prime.

4. Translate the statement "There are infinitely many twin primes", using a
unary (1-argument) predicate symbol Prime. Two numbers are twin primes
if they are both prime and their difference is 2. Hint: the previous problem
can help express the idea that there are infinitely many of something.

1.14.2 For Sections 1.6 and 1.7 on FO(Z) semantics 

1. For each of the following meta-language statements about the semantics of
FO(Z) terms and formulas: either prove the statement using the formal def
inition of the semantics; or else give a counterexample, in the form of specific
values for the meta-language variables like cp and er used in the statement.

(a) [cp /\ cp]cr = [cp]cr 

(b) [ x + O]cr = [x]cr 

(c) [ x + y]cr > [y]cr 

2. Let us temporarily define er ::::; er' for assignments er and er' to mean that for
all variables x, if er( x) is defined then so is er' (x) and we have er( x) ::::; er' ( x).
Suppose that t is a term which does not contain the negation or subtraction
symbols. Prove by induction on the structure oft that if er::::; er', then [t]cr::::; 
[ t] er'. (You can use the proof of Theorem 1.11.1 as a guide.)
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1.14.3 For Sections 1.8 and 1.9 on compositionality, validity and satisfiability 

1. Which of the following defining equations could we add to the semantics of
FO(Z) formulas (Section 1.7) and still have a compositional semantics?

term [ t] £Tterm [t']cr (a) term[tEBt']cr 

(b) term[t EB t']cr 

(c) term[t EB t']cr 

term[t] (cr[x f---+ term[t']cr]) 

42 

2. Argue informally, using basic properties of the standard arithmetic operators
and built-in predicates, that the following formula is valid. The basic prop
erties you need are transitivity of the greater-than predicate (>) and left- and
right-monotonicity of addition.

'Vw.'t/x.'t/y.'t/z.w > x /\ y > z ::::} w + y > x + z 

3. Give an example of a formula which is invalid but not unsatisfiable.

4. Write the shortest valid FO(Z) formula you can, counting the number of
characters needed to write out any symbols (like variables, operators, and
predicate symbols), and counting one space between symbols. Do not use
user-specified predicate symbols.

5. Using the same counting rules as in the previous problem, write the shortest
invalid FO(Z) formula you can. Again, do not use user-specified predicate
symbols.

1.14.4 For Section 1.10 on proof by induction 

1. Let us write [ t Ix] t' to be the term obtained by substituting term t for variable
x in another term t'. We can define this function by terminating recursion as
follows:

[tlx]x 
[ti x]x' 
[tlx](t1 op t2) 
[tlx](-t') 

t 
x', where x' -1- x 
( [t Ix] ti) op ( [t Ix] t2) 
-([ti x]t') 

The first defining equation says that substituting t for x in x gives you t. The 
second says that if you are substituting into a term which is some variable x' 
that happens to be different from x, then the substitution has no effect: you 
just get the variable x' again. The next two equations state that to substitute 
into a bigger term, we just have to substitute into the immediate subterms, 
and then apply the appropriate operator to the result(s). So for example, 
[ 3 Ix] ( 2 * x) equals ( 2 * 3). Note that it does not equal 6, because substitution 
as defined is just a syntactic operation. It does nothing more than textually 
replace the variable in question with another term. 
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Given this definition, prove the following theorem (hint: use structural in
duction). Be as explicit as possible about your reasoning: you should clearly 
state what you must prove and what you can assume, throughout your proof 
but especially when setting up the base case and step case of your induction. 

Vt. Vt'. [[t/x]t']£T = [t']£T[x H [t]<7] 

2. For this problem, we will use the following definition of addition:

o+y 
S(x) + y 

y 
S(x+y) 

Using that definition, and no other properties of addition (especially not 
commutativity, since we are proving that here), prove the following theo
rems (hint: you need the first two properties to prove the third). 

(a) Vx.x + 0 = x 

(b) Vx.Vy.x + S(y) = S(x + y) 

(c) Vx.Vy.x + y = y + x 



Chapter 2 

Denotational Semantics of WHILE 

In this chapter, we will begin our study of semantics by considering a denotational 
semantics (as explained in the preceding chapter) for a simple programming lan
guage called WHILE. This is an imperative language: which value a variable holds
can be changed by assignment. If the value of x is currently 3, then the assign
ment x := 4 will change the state of the program so that the value of x becomes 4. 
WHILE is intended to represent a familiar core part of many modern programming 
languages, including Java and C/C++. It certainly omits many features of such 
languages, notably procedures (and a fortiori object-orientation, etc.). The point of
studying the semantics of a language with a minimal set of features is that it will 
make it feasible to consider denotational, operational (Chapter 4), and axiomatic
(Chapter 3) semantics for a single, familiar language. Indeed, this is a standard
approach to the study of programming languages: consider just a single minimal
istic set of features, and analyze them in depth. The WHILE language is Turing
complete: in principle, any Turing machine can be simulated by a WHILE program.
Since Turing machines are one of a group of equivalently powerful formalizations 
of the notion of computation, Turing-completeness shows that WHILE, though un
workably impractical for programming in practice, is an adequate representative 
of a computational language. So certain fundamental issues arising generally for 
computational languages will have to be considered in studying WHILE. 

2.1 Syntax and informal semantics of WHILE 

The syntax of the WHILE language is as follows: 

commands c · · - skip Ix := t I c1; c2 I if t pred t' then c1 else c2 I 
while t pred t' do c 

The syntax of commands relies on the syntax of terms t (given in Section 1.1). 
There are five different forms of command in WHILE, corresponding to familiar 
programming-language statements. Here is an informal explanation of the seman
tics of commands, phrased in terms of how to execute the given command with 
respect to a given state. States will be taken just to be assignments er, in the sense 
of the preceding chapter. 

• skip. Executing this command does nothing to the state.

• x := t. Executing this assignment command changes the state so that it
now assigns the value of term t to variable x.
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• c1; c2. Executing this sequencing command first executes command c1 and 
then, if that first execution halts, executes the command c2. 

• if t pred t' then c1 else c2. Executing this conditional command first tests 
whether the values of t and t' in the current state are in the relation cor
responding to pred. If they are, then command c1 is executed. Otherwise, 
command c2 is executed. 

• while t pred t' do c. Executing this command first tests whether the val
ues oft and t' in the current state are in the relation corresponding to pred. 
If they are not, then execution of this command does nothing. Otherwise, 
command c is executed, and if that execution halts, we return to execute the 
entire while-command again. 

The main task of this chapter is to give a formal, denotational semantics for WHILE 
commands, which we begin next. 

2.2 Beginning of the formal semantics for WHILE 

It is not difficult to set up the denotational semantics for WHILE, making use also 
of the semantics given in Section 1.6. We must interpret commands with respect 
to an assignment o- of integers to the variables x that appear in the program. We 
will allow o- to map other variables as well, but it must at least supply values for 
the variables used in the program. In this context, we will call such assignments o

states. W hat kind of thing should the interpretation command[c]o- of a command 
with respect to state o-be? It turns out that it works well to define the interpretation 
for commands which halt to be the state o-' which results from performing the 
command. For example, the meaning of the command x := 3 with respect to some 
state o- will be the overridden state o-[x i-----t 3]. For commands which do not halt, 
we define the interpretation to be _l (pronounced "bottom", for reasons we will 
see below), which is just some mathematical object different from any state. So 
however we define our semantics, we expect equations like the following to be 
true, for all starting states o-: 

[while 0 = 0 do skip]o- = _l 

Commands that (intuitively) do not halt are called diverging. Ones that do are 
called converging. 

Based on this idea that the meaning of a command with respect to a starting 
state is either the ending state to which it converges or else _l if it diverges, we can 
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easily define the sy ntax for all commands except while-commands: 

er 
er[x c--+ term[t]er] 

[ skip]er 
[x : = t]er 
[c1; c2]er 
[if t pred t' then c1 else c2]er 

if [ci]er = -1 then -1; otherwise,[c2] ([ci]er) 
if the relation for pred holds of 

term[t]er, term[t']er, 
then [ci]er; 

otherwise [ c2] er 

2.3 Problem with the semantics of while-commands 

Giving a semantics for while-commands turns out to raise problems we have not 
encountered up to now. A natural defining clause we might want to write is the 
following, which will turn out not to be allowable as part of the definition of the 
semantics: 

[while t pred t' do c]er = if the relation for pred does not hold of 
term[t]er, term[t']er, 

then er; (2.1) 
otherwise, if [c]er = -1 then _l ; 

otherwise [while t pred t' doc] ([c]er) 

Let us make sure, first, that it is clear what this equation say s, and why that is 
intuitively plausible, even though it won't work as a defining clause. First, if the 
interpretation of the guard t pred t' is false, then the meaning is just er. That is, 
the command does not change the state in that situation, since the meaning of the 
command is the final state resulting from execution, and in this case, execution has 
not altered the state in any way. Next, the equation say s that if the interpretation 
of the guard is true but the interpretation of the body c is -1, meaning that the 
body has diverged; then in that case, the meaning of the whole while-command 
is -1. Intuitively, this corresponds to the idea that if the first iteration of the body 
of the while-command diverges, and we actually do execute that iteration, then 
the while-command itself diverges. Finally, the equation say s that if the inter
pretation of the guard is true, and if the first iteration of the body does terminate, 
then the meaning of the while-command is just the meaning of that same com
mand, but with respect to state [ c] er. This state is the one resulting from execution 
of the first iteration of the body. So intuitively, this last part of the equation corre
sponds to continuing the execution of the while-command recursively, following 
the converging execution of the first iteration of its body. 

The problem with this equation is that adding it as a defining clause in the 
definition of the semantics of WHILE-commands will result in a definition which is 
not well-founded. This is because the right hand side appeals to the interpretation 
[while t pred t' do c], which is the same interpretation the equation is try ing to 
define. Schematically, the equation looks like: 

[W]er = · · · [W]er' · · · 
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That is, the interpretation of the while-command (schematically, W) is defined in 
terms of itself. If our definition of the semantics of WHILE included this equation, 
it would no longer be well-founded, because the argument to the interpretation 
function has not decreased where we recursively invoke that function on the right 
hand side. 

This way of describing the problem may seem rather abstract, so let us consider 
a concrete manifestation of it by try ing to compute the meaning of the diverging 
command while 0 = 0 do skip in state CT, using the above equation. First, the 
interpretation of the guard 0 = 0 is true. T his is because the interpretation [O]CT 
of the first term 0 is equal to the interpretation of the second, which is also [O]CT. 
Next, the interpretation [skip]CT of the body is not -1. So we are in the third case 
of the above equation for while, which simplifies to: 

[while 0 = 0 do skip]CT = [while 0 = 0 do skip]([skip]CT) 

But [skip]CT = CT by the definition of the semantics for skip, so this equation in 
turn can be simplified to: 

[while 0 = 0 do skip]CT = [while 0 = 0 do skip]CT 

Now this might seem innocuous, since this equation is merely stating a valid fact, 
of the form W = W. But we must be careful: the equation we have derived is 
equivalent to Equation 2.1 which we were considering as a natural candidate for 
the definition of the semantics of while-commands. In other words, that definition 
does not constrain the semantics of the while-command at all. To anthropomor
phize, it is as if the definition is an oracle, whom we ask to tell us the meaning 
of while 0 = 0 do skip. In reply, the oracle simply answers, in effect, "True". 
To tell someone "True" is to tell her nothing at all that she did not already rea
sonably know. T hat statement does not provide any non-trivial information about 
the way the world is. Hence, it is useless as a definition for the semantics of this 
while-command. Looking at the problem another way, we see that any value 
whatsoever for [while 0 = 0 do skip]CT will satisfy the trivial equation we have 
derived. So the equation states that the meaning is -1, as we would like. But it also 
states that the meaning is {x c--+ 3}, and {y c--+ 4,z c--+ 5}. T his implies that the in
terpretation is not a function. We could accept that by defining the interpretation 
as a relation between input states and possibly multiple output results. But this 
is incorrect in general: we expect execution to be deterministic for this particular 
language. And it is incorrect in particular, as stating that there is an output state 
CT1 for while 0 = 0 do skip violates the intuitive idea that this command is di
verging. So in the end, even if we were somehow to justify using Equation 2.1 for 
the meaning of while, the resulting semantics would be wrong. 

To repair this problem, we need a way to define the semantics of while
commands using a defining equation for the interpretation of while that does 
not violate well-foundedness of the recursive definition. To be able to state such 
an equation, we will take a brief (and standard) digression into the theory of a 
class of mathematical structures called domains. Domain theory will provide us 
with the technical tools we need to give a proper defining equation for the inter
pretation of while. 
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2.4 Domains 

One part of the problem we encountered just above with trying to use Equation 2.1 

to define the semantics of while-commands is that the equation leaves the seman
tics underconstrained: many different values for the interpretation of a diverging 
command like while 0 = 0 do skip are allowed by Equation 2.1. We will spec
ify a single value out of these possibilities by thinking of _l as smaller than any 
state CT, and requiring our semantics to give us the smallest value. This idea of 
ordering (making _l smaller than states CT) will also play a central role in obtaining 
a well-founded defining equation for the interpretation of while. 

Domains are certain kinds of mathematical structures with an ordering rela
tion. As a short preview: in this section we build up to the definition of domain in 
three steps. First, we need to recall the basic definition, from discrete mathematics, 
of a partially ordered set. Then we define what an w-chain is in such a set. Finally, 
using the concept of w-chain, we can define what a predomain is (pronounced 
"pre-domain", as in something you get before you get a domain), and then what a 
domain is. 

2.4.1 Partially ordered sets 

Definition 2.4.1 (Partially ordered set). A partially ordered set is a set X together with 
a binary relation � on X satisfying the following three conditions: 

1. reflexivity: \Ix E X.x � x. 

2. transitivity: \Ix, y, z E X.(x Cy A y � z) ::::;, x � z. 

3. antisymmetry: \/x,y E X.(x � y A y C x) ::::;, x = y. 

This definition is specifying what must be true in order for a set X with binary 
relation C to be a partially ordered set. The phrase "partially ordered set" is often 
abbreviated poset (pronounced like "Poe set"). It is standard to write the set X and 
the ordering � together in an ordered pair, like ( X, �). There are many concrete 
examples of posets. We give some examples below. It will be helpful to visualize 
these posets as graphs. In general, if we have a binary relation C holding between 
elements of some set X, then whenever we have x C y, for elements x, y E X, we 
will have nodes x and y in the graph, and an edge from x to y: 

� 
x y 

W henever an edge is required to exist by transitivity or reflexivity, we will omit it 
from the graphs below. This is just to avoid cluttering graphs with edges which 
can be inferred to exist. 
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{1,2,3} 

{1,2} {1,3} {2,3} 

{1} {2} {3} 

0 

Figure 2.1: Graphical view of the poset (P( {1,2,3} ), �) 

Example: the integers with the usual ordering (Z, :::;:) 

The structure (Z, :::;:) consisting of the integers with the standard ordering relation 
:::;: is a poset, since :::;: satisfies the three required properties: every integer is less 
than or equal to itself; if x :::;: y and y :::;: z, then x :::;: z; and the only way we can 
have x :::;: y and also y :::;: x is if x = y.

. . . ------+ -2 ------+ -1 ------+ 0 ------+ 1 ------+ 2 ------+ . 
.

. 

Example: the discrete poset ( X, = ) 

The discrete partially ordered set ( X, = ) consists of some set X, together with 
the equality relation on X. That is, the only relations we have are between an 
element x E X and itself. This relation is reflexive, since for all x E X, we have 
x = x. It is transitive, because if X1 = X2 and X2 = X3, then X1 = X3. Finally, it is
antisymmetric, because (just expanding the definition of antisymmetry) whenever 
we have x = y and y = x, we certainly have x = y. Writing x1, x2 and so forth for 
elements of X, we can visualize this as the following graph with an empty set of 
edges: 

Example: subsets ordered by inclusion (P(X), �) 

Recall from basic set theory that the powerset P ( X) of a set X is the set of all 
subsets of X. If we order these subsets by the subset relation �'then this forms 
a partially ordered set. You can easily confirm that � is reflexive, transitive, and 
antisymmetric. As an example, Figure 2.1 shows the graphical representation of 
the poset (P( {1,2,3} ), �). 
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Example: natural numbers ordered by the divides relation (IN, I) 

The set of natural numbers ordered by the divisibility relation I is a poset, which 
we call the divisibility poset. The definition of divisibility is that x I y iff there 
exists some k E IN such that y = x · k. That is, x evenly divides y. This relation 
is reflexive (as every natural number divides itself), transitive (since if x divides 
y and y divides z, this implies that x divides z), and antisymmetric (as no two 
distinct natural numbers can divide each other). 

2.4.2 Omega-chains 

Definition 2.4.2 (Omega-chains). An w-chain in a partially ordered set (X, C) is a 
function f from IN to X such that f(n) C f  (n + l),for all n E IN. 

We think of w-chains as sequences of elements of X, ordered by C; that is, elements 
later in the sequence are greater than or equal to elements earlier in the sequence. 
It is common to write f n instead off ( n), for the n'th element of the sequence. 

Example: the identity function as a chain in (Z, :::;) 

The identity function is an w-chain in the poset (Z, :::;) (the integers with the stan
dard :::; ordering; see Section 2.4.1). The n'th element of this chain is just n, since 
the identity function returns n as output when given n as input. We can write the 
chain as a sequence like this: 

0,1,2,3,··· 

If we wish to emphasize the ordering, we can use this notation: 

Example: constant chains 

The constant function which always returns 3 is an w-chain in (Z, :::;) (see Sec
tion 2.4.1). The n'th element of this chain is 3: 

Indeed, the constant function which returns the same fixed element x E X for 
every input n E IN is always an w-chain in (X, C), for every such partially ordered 
set (assuming X is non-empty, and so has some element x E X for the function to 
return). 

2.4.3 Upper bounds 

Definition 2.4.3 (Upper bound of a set). Suppose we have some set S S: X, where 
(X, C) is a poset. An upper bound of S is any element u E X such that for all elements 
s E S, we have s c u. 
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Definition 2.4.4 (Least upper bound of a set). A least upper bound of S is an upper 
bound u E X such that for any other upper bound u' E X, we have u c u'. 

Definition 2.4.5 (Upper and least upper bounds of a chain). An upper bound of a 
chain fin poset (X, C) is an upper bound of the range ran(!) off (that is, the set of 
outputs off). Similarly, a least upper bound of chain f is a least upper bound of ran(!). 

Example: upper bound of a constant chain 

In ( Z, :::::; ) , the chain 3 :::::; 3 :::::; 3 · · · has least upper bound 3. 

Example: upper bound of the identity chain 

In (Z, :::::;), the chain 0 :::::; 1 :::::; 2 · · · does not have an upper bound (and hence, it 
cannot have a least upper bound): there is no non-negative integer greater than or 
equal to all the non-negative integers. 

Theorem 2.4.6 (Uniqueness of least upper bounds). If u and u' are both least upper 
bounds of S in a partially ordered set ( X, �), then u = u'. 

Proof Since u is a least upper bound of S, it is less than or equal to any other upper 
bound of u'. Since u' is such an upper bound of S by assumption, we have u � u'. 
Similarly, we also have u' � u. Then by antisy mmetry of C, we get the desired 
conclusion: u = u'. D 

Definition 2.4.7 (LJ). If a set S has a least upper bound, we will denote its unique (by 
Theorem 2.4.6) least upper bound as LJS, and similarly for an w-chain. 

As an aside, it is worth giving the following definition, even though we will not 
need it directly for the semantics of while-commands. 

Definition 2.4.8 (Complete partial order). A complete partial order (or "cpo") is a 
partially ordered set ( X, �) where every S � X has a least upper bound. 

Example: the powerset poset as a complete partial order 

The powerset poset (P(X), �) is a complete partial order. The least upper bound 
of a set S of subsets of X is just the union US of S, which is the set containing all 
and only the elements of some element of S. This US clearly is an upper bound of 
S, since every set in Sis included (i.e., is a subset of) US. Also, there is no smaller 
upper bound than US, since any smaller set A must exclude some element from 
one of the sets in S, and hence that set would not be a subset of A. 

2.4.4 Predomains and domains 

Definition 2.4.9 (Predomain). A predomain is a partially ordered set (X, C) such that 
every w-chain in ( X, �) has a least upper bound. Predomains are also sometimes called 
w-complete partial orders (or w-cpos ). 
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Example: integers with w element 

Consider the structure (Z U {w} , ::;w), where ::;w is just like the ordering:::; on 
integers, except that it makes w greater than or equal to itself and to all integers. 
This structure is a poset. Furthermore, any w-chain has a least upper bound. If 
the chain has some maximal element, then that is the upper bound. For example, 
consider an eventually constant chain f ,  where at some point n E IN, we have 
fn' = fn'+l for all n' 2: n. Such a chain has maximal element fn, and this is the 
least upper bound of the chain. Notice that fn could be in Z, or it could be w. On 
the other hand, if the chain increases without a maximal element in the chain, then 
w is the least upper bound (and hence must not occur in the chain itself). 

Observation 2.4.10 (Cpos are predomains). Every complete partial order is a predo
mam. 

Proof Every chain c has a least upper bound, since every set has a least upper 
bound, by the definition of complete partial order (Definition 2.4.8). D 

Observation 2.4.11 (Least upper bounds of constant chains). For every partially 
ordered set ( X, C), every constant chain c, c, c, · · · in ( X, C) has a least upper bound, 
namely c E X. 

Proof We have c greater than or equal to every element in the chain, because it 
is equal to every element in the chain. There is no strictly smaller element that is 
equal to c, so this is indeed the least upper bound. D 

Example: the discrete partially ordered set 

The partially ordered set ( S, = ) is a predomain, because all chains are constant 
chains. 

Definition 2.4.12 (Eventually constant chains). Let c be an w-chain in poset (X, C). 
Then c is called eventually constant (as we used this term just above) if! there is some 
value v and some i, such that for every j greater than or equal to i, c(j) = v. That is, there 
is a point at which the chain just repeats the value v forever. 

Observation 2.4.13 (Least upper bounds of eventually constant chains). Every 
eventually constant chain c has a least upper bound, namely the value v that is repeated 
infinitely. 

Proof As for the preceding observation, the value v is greater than or equal to 
every element in the chain. Since it actually occurs in the chain, no lesser upper 
bound is possible. So v is the least upper bound. D 

Definition 2.4.14 (Strictly increasing chains). Let c an w-chain in poset (X, C). Then 
c is called strictly increasing if! for all i E IN, there exists a j > i such that have 
c(i) -1- c(j). This definition leaves open the possibility of finite repetitions of elements in 
the chain, but not infinite repetition of elements (as in eventually constant chains). 
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Definition 2.4.15 (Least element). A least element of a poset (X, �) is an element 
-1 E X such that for all elements x E X, we have -1 c x.

Theorem 2.4.16 (Uniqueness of least element). If poset ( X, �) has a least element _l,
then _l is its only least element. 

Proof We prove that all least elements -1' are equal to -1. By the definition of least 
element, we have _lC_l' and also _l'C:::-1, since both _l and -1' are least elements 
(so they must both be less than or equal to each other). But then by antisy mmetry, 
-1=-1' (since we have that each is less than or equal to the other). D

Example: integers and naturals 

The poset of integers ordered by :S does not have a least element. But if we con
sider the poset of natural numbers N ordered by :S then 0 is the least element. 

Definition 2.4.17 (Domain). A domain is a predomain (X, �) with a least element. We 
may write ( X, �' -1) to indicate the least element, which is unique by Theorem 2.4.16.

Example: (NU { w }, :S w ) 

The structure (N U { w}, :S w ) , which is like one considered in an example in Sec
tion 2.4.2 except that it does not include negative integers, is a domain. The least 
element is 0. We have already argued that w-chains have least upper bounds in 
this structure. 

Example: the divisibility poset 

The divisibility poset is a domain. This is rather surprising, so let us look closely. 
First, we can consider what the least element of this poset is. It should be some nat
ural number x which divides every other natural number. There is such a number, 
of course, namely 1. To show that the divisibility poset is a predomain, we must 
argue that every w-chain c has a least upper bound. The central observation here 
is that since every number divides 0 (since for any number x, there exists a number 
y - namely 0 - such that 0 = x · y). So every chain has an upper bound. We know
from Observation 2.4.13 that eventually constant chains have least upper bounds. 
So if we consider chains that increase forever, we can see there is no upper bound 
for the chain other than 0. So 0 is the least upper bound. 

2.5 Continuous functions 

We are very close to being able to prove the main theorem of this chapter, The
orem 2.6.6 (proved in the next section), which will enable us to solve the puzzle 
of how to give a well-founded recursive equation defining the interpretation of 
while-commands. The last technical concept we need for Theorem 2.6.6 is that of 



2.5 Continuous functions 43 

a continuous function, which is a special kind of monotonic function. The defini
tions follow. 

Definition 2.5.1 (Monotonic function). Suppose (X1, �1) and (X2, �2) are partially 
ordered sets. Then a function f from X 1 to X2 is monotonic with respect to those partially 
ordered sets if! for elements x1, x� E X1 (that is, for every two elements x1 and x� of X1), 

if x1 C:::1 x�, then also f (x1) C:::2 f (x�). In this case, we also speak of f being a monotonic 
function from the first partially ordered set (that is, the entire structure (X1, �1)) to the 
second. 

This is a special case of the general algebraic idea of a structure-preserving func
tion. The structure is preserved in the sense that elements related in a certain way 
in the first structure are mapped by the function to elements related in a corre
sponding way in the second structure. Here, the two structures are the partially 
ordered sets (X1, �1) and (X2, C:::2), and the structure which is being preserved is 
the ordering. 

Example: finite cardinality function 

The cardinality function for finite sets is a monotonic function from the partially 
ordered set (P(X), �) (see Section 2.4.1) to (IN,:::;). This cardinality function, de
noted I · I, maps finite sets to their sizes (i.e., the number of elements in the set). 
For example, 1{9, 16,25}1 = 3, and 101 = 0. To see that this function is mono
tonic for the given partially ordered sets, we must confirm that whenever we have 
subsets 51 and 52 of X, with 51 � 52, then we also have I 51 I :::; I 52 I. But this is 
certainly true: since 52 has all the elements which 51 has, and possibly some more, 
its cardinality must be at least as big as IS1 I· 

Example: successor function 

The function Sue which maps n to n + 1 for every n E IN is a monotonic function
from (IN,:::;) to (IN,:::;). This is because of the elementary arithmetic fact that n1 :::;
n2 implies nl + 1 :::; n2 + 1. 

For the statement of the next theorem to make sense, we need the following 
observation. Let (X1, C:::1) and (X2, C:::2) be predomains. Since a predomain is, by 
definition, also a partially ordered set, it makes sense to consider a monotonic 
function f from (X1, �1) to (X2, �2) (since those predomains are also partially or
dered sets). Similarly, it also makes sense to speak of a monotonic function f from 
domain (X1, C:::1, -11) to a domain (X2, C:::2, -12), since domains are also partially 
ordered sets. 

Theorem 2.5.2 (Preservation of chains). If f is a monotonic function from predomain 
(X1, Ci) to predomain (X2, �2), and if c is an w-chain in (X1, �1), then f o c (the
composition of functions f and c) is an w-chain in (X2, �2). 

Proof First, we need to understand why it makes sense to write f o c here. Re
call from basic discrete mathematics the definition of function composition: the 
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function f o c returns f(c(x)) when called with input x. In our case, since c is an 
w-chain in (X1, �1) by assumption, it is a function from N to X1. Now function 
f maps X1 to X2. So given n EN, f o c will return f(c(n)). This is well-defined, 
since c(n) E X1, and f accepts inputs in X1. Thus, f o c is a function mapping N 
to X2. 

We need to see now that this function is really an w-chain in (X2, C:::2). From 
Definition 2.4.2, we just have to show that the elements in the sequence f o c are 
ordered by �2· That is, we must show that for any n E N, we have f(c(n)) �2 
f ( c ( n + 1)). Because c is an w-chain in ( X 1, C::: i ) , we have c ( n) C::: 1 c ( n + 1) by the 
definition of w-chain. Then because f is monotonic, f(c(n)) �2 f(c(n + 1)). That 
is, f respects the structure of (X1, �1), so if we have elements x and y of X1 - and 
here, those elements are c ( n) and c ( n + 1) - such that x � 1 y, then we also have 
f(x) C:::2 f (y). So we have confirmed that f o c is an w-chain in (X2, �2)· D 

Definition 2.5.3 (Continuous function). Let f be a monotonic function from predomain 
(X1, �1) to predomain (X2, �2)· Then f is continuous iff for every w-chain c in (X1, �1 
), we have 

f(LJc) = LJ(f o c) 

This latter condition is called the continuity condition. 

Let us translate this latter equation into English. The left hand side of the equa
tion is f (Uc). If we think of this operationally, it says to apply f to the least upper 
bound of chain c. Since c is an w-chain in predomain (X1, �1), it does have a 
least upper bound (again, by definition of predomain). The right hand side of 
the equation refers to the least upper bound of the chain f o c. Recall from Theo
rem 2.5.2 just above that this composition of functions f and c is indeed an w-chain 
in ( X2, �2). Since ( X2, �2) is a predomain, by definition we know that any w-chain 
in ( X2, �2) has a least upper bound. So LJ (f o c) is indeed defined. 

To summarize: monotonic function f is continuous iff for every chain c, the 
value returned by f for the least upper bound of c is equal to the least upper bound 
of the chain obtained by applying f to each element of c. There is a common less 
precise but more memorable way to put this. We can refer more briefly to the least 
upper bound of a chain as the limit of the chain. Then continuity says: ''f of the 
limit equals the limit of the f's." 

A positive example 

This example concerns the domain (N U { w}, s w). Consider the function f de
fined on N U { w} by 

f(x) = { x + 1 rx EN 
w if x = w 

This function is continuous from (N U { w}, Sw) to (N U { w}, Sw). We must show 
that for any chain c, f(LJc) = LJ(f o c). Suppose the chain is eventually constant, 
with least upper bound n E N. The chain f o c is then also eventually constant, 
with least upper bound n + 1. Then we have: 

f(LJc) = f(n) = n + 1 = LJ(f o c) 
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If c is eventually constant with least upper bound w, then the chain f o c also is 
eventually constant with least upper bound w, and we have 

f(Uc) = f (w) = w = u(f o c) 

Finally, if c is strictly increasing (Definition 2.4.14), then it must consist solely of 
elements of N. In that case, the least upper bound off is w. The chain f o c is also 
strictly increasing, and so for the same reason also has least upper bound w. So 
we have 

f(Uc) = f(w) = w = U(f o c) 

A negative example 

We again consider the domain (NU { w}, :;w), and now look at a function f which 
is not continuous: 

f (x) = { 0 if x EN 
1 ifx=w 

Notice that this function is monotonic from (NU { w}, :;w) to (NU { w}, :;w): we 
have only to check that when f (x) :;w f (y) and f (x) -1- f (y) then we must have 
had x :;w y. We only have f(x) :;w f (y) and f(x) -1- f(y) when x EN and y = w, 
in which case we indeed have x :;w y. To prove that f is not continuous, it suf
fices by the definition of continuity to exhibit a single chain c where the continuity 
condition is violated. Consider the identity function id as a chain in this poset (i.e., 
0, 1, 2, ... ). The least upper bound is w. On the other hand, the chain f o id is just a 
constant chain, where all values are 0. We have: 

f(Uid) = f (w) = 1 -1- 0 = U(f o id) 

So this function f is not continuous. 

Theorem 2.5.4 (Continuity bound). Suppose f is a monoton ic fun c tion from predomain 
(X1, C:::1) to predomain (X2, �2)· Then for every w-chain c in (X1, �1), we have 

u(f o c) � f(Uc) 

Proof To prove that f (Uc) is greater than or equal to the least upper bound U (f o c) 
of chain f o c, it suffices to prove that it is an upper bound of that chain. So prove, 
for an arbitrary n E N: 

f(c(n)) c::: f(Uc) 

But this follows easily, since c(n) C::: Uc by definition of Uc, and f is monotonic. D

Corollary 2.5.5 (Sufficient condition for continuity ). Let f be a mon oton ic fun c tion 
from predomain (X1, �i) to predomain (X2, �2)· Then f is continuous if! for every 
w-chain c in ( X 1, c::: 1), we have 

f(Uc) c::: u(f o c) 

Proof This follows from Theorem 2.5.4 and the definition of continuity. D 
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2.6 The least fixed-point theorem 

Definition 2.6.1 (Fixed point). A fixed point of a function f is just some input x such 
that f (x) = x. 

Definition 2.6.2 (Least fixed point). Suppose that (X, C) is a partially ordered set. A 

least fixed point in (X, �) of a function f is a fixed point x E X off which is less than 
or equal to any other fixed point in X. That is, for any fixed point x' E X off, we have 
x � x'. 

Theorem 2.6.3 (Uniqueness of least fixed point). If function f has least fixed points x 
and x' in (X, �),then x = x'. 

Proof The proof is similar to that of Theorem 2.4.6 above: since x and x' are least 
fixed points by assumptions, we must have x C x' and x' C x, and hence x = x' 
by antisymmetry of �. D 

Definition 2.6.4 (lfp). We will denote the unique least fixed point off, if that exists, by 
lfp(f). 

Definition 2.6.5 (fn(x)). Suppose function f maps X to X. Then for x EX and n EN, 
we define the n-fold iteration of f on x, with notation fn(x), by recursion on n: 

x 

Theorem 2.6.6 (Least Fixed Point). Suppose f is a continuous function from a domain 
( X, C, l_) to itself Let c be the function which returns output Jn ( l_) for input n E N. 
Then c is an w-chain in (X, �),and lfp(f) = Uc. 

Proof We divide the proof into three parts. First, we show that the chain c is indeed 
an w-chain in (X, �). Then we will prove that Uc is a fixed point of f. Finally, we 
will show that it is the least fixed point. 

The chain c is an w-chain in (X, �) 

First, let us confirm that c maps n E N to an element of X. This is proved by 
induction on n: 

Base case. If n is 0, then c ( n) = 
j0 ( l_) = l_, and l_ E X by the definition of domain. 

Step case. Assume Jn (1-) E X (this is the induction hypothesis), and show jn+l(l_ 
) E x. By definition, we have f n + 1 ( J_) = fun ( J_)) . By the induction hypothesis I 

Jn ( l_) E X, so then the output f returns for that value is also in X (since f maps X 
to X). 
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Next, we must show that c is ordered by C: for all n EN, c(n) C c(n + 1). This is 
also proved by induction on n. 

Base case. If n is 0, then c( n) =1-, and c(n + 1) = f ( l_ ). Since l_ is the least element 
of X by the definition of domain, we have l_ C f ( l_), and so c ( n) C c ( n + 1) in this 
case. 

Step case. Assume that fn(1-) C jn+1(1-) (this is the induction hypothesis), and 

show that Jn+ 1 ( l_) C jn+2 ( l_). By definition, this latter fact which we are sup
posed to prove can be written: 

Since f is monotonic (because it is assumed to be continuous, which implies mono
tonicity), this fact follows from the induction hypothesis: we have two elements, 
fn(l_) and jn+1(1-), which are ordered by C, so monotonicity tells us that the 
results of applying f to each of those elements will also be ordered by C.

The value Uc is a fixed point off 

We have just completed the proof that the function c defined in the statement of the 
theorem is indeed an w-chain of (X, C). So certainly Uc is defined, since (X, C, 1-) 
is a domain (and hence all w-chains have least upper bounds in X). Now let us 
argue that Uc is a least fixed point off. First we will prove it is a fixed point: 

f (Uc) = Uc 

By continuity off, we know that 

f(Uc) = U(f oc) 

So we only need to show the following fact to conclude f (Uc) = Uc: 

U(foc)=Uc 

This is sufficient, because we could then combine the two most recently displayed 
equations using transitivity of equality: f(Uc) = U(f o c) = Uc. To prove this last 
equation (U (f o c) = Uc), it suffices to show (in other words, if we can prove what 
comes next, that will be enough, even if there are other ways to do the proof) that 
Uc is the least upper bound off o c. Let us temporarily use the name c' for the 
chain f o c. 

We'll first prove that Uc is an upper bound of c' (i.e., f o c), and then that it is 
the least such. For any n E N, we know 

So the n'th element of c' is the ( n + 1 )'th element of c. To prove that Uc is an upper 
bound of c', we just have to show that c' ( n) C Uc. Since Uc is an upper bound of 
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c, we have for all n' E N that c(n') C Uc. This is true if we instantiate n' with the 
n + 1 we are currently considering: 

c' ( n) = c( n + 1) c Uc 

This shows that Uc is an upper bound of c'. To show it is the least such, suppose 
there is some u E X such that u is an upper bound of c' which is strictly smaller 
than Uc. That is, suppose u f= Uc but u C Uc. Since u is an upper bound of c', it is 
greater than c' ( n ), for every n E N. But this implies that it is greater than Jn+l ( 1-) 
for every such n. So we have Jn' ( l_) C u for every n' E N which equals n + 1 
for some n E N. That leaves only the case of J0 ( l_) to consider. But by definition, 
this is equal to 1-, and since l_ is the least element (since (X, C, 1-) is a domain 
by assumption), we also have J0 ( l_) C u. So u is actually an upper bound of the 
original chain c, not just c'. But then it cannot be strictly smaller than Uc, since Uc 
is the least upper bound of c. 

The value Uc is the least fixed point of J 

Suppose there is another fixed point a off. We will show Uc C a by showing that 
Jn ( l_) C a, for all n E N. This is sufficient, by the definition of c. We will prove 
the claim by induction on n. 

Base case. If n is 0, then Jn(1-) =1-, and we have l_ C a because l_ is the least 
element of domain (X, c, 1-). 

Step case. Assume that Jn ( l_) C a (this is the induction hypothesis), and show 

Jn+l(l_) C a . By the induction hypothesis, we have Jn(l_) C a . Since J is contin
uous by assumption, and hence monotonic, this latter equation implies: 

But since we are assuming (for purposes of this part of the proof) that a is a fixed 
point of J, we have J(a) =a, and the displayed equation just above is then equiv
alent to: 

Jun ( J_)) c a 
By definition of n-fold iteration (Definition 2.6.5), we have Jn+l(l_) = J(fn(1-)), 
and so this latter displayed equation is equivalent to Jn+l C a, as required for this 
step case. 

This concludes the proof of Theorem 2.6.6. D 

2.7 Completing the formal semantics of commands 

Armed now with the Least Fixed Point Theorem, we can complete the definition 
we began in Section 2.2 of the denotational semantics for WHILE commands. For 
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this, it is helpful to recast the definition of the semantics we have so far, which is: 

[skip]o
[x := t]o
[c1; c2]0-
[i f t pred t' then c1 else c2]0-

(T 

o-[x H term[t]o-] 
if [ci]o- =_l then _l; otherwise,[c2]([ci]o- ) 
if the relation for pred holds of 

term[t]o-, term[t']o-, 
then [c1]0-; 
otherwise [c2]0-

As we will see next, it is more convenient to define [c] as a function that takes 
in the input state and produces the output state, rather than define [c]o- to be the 
output state, when er is the input state. So the revised definition is the following, 
where I am writing er H e to indicate the mathematical function which maps any 
input state er to the output state o-1 described by meta-level expression e. 

[skip] 
[x := t] 
[c1; c2] 
[i f t pred t' then c1 else c2] 

lT H lT 

er H o-[x H term[t]o-] 
er H if [c1]0- =_l then _l; otherwise,[c2]([c1]0-) 
er H if the relation for pred holds of 

term[t]o-, term[t']o-, 
then [c1]0-; 
otherwise [ c2] er 

Now to describe the semantics of while-commands, we are going to use the 
Least Fixed Point Theorem to construct another mathematical function, like those 
described by the expressions er H e just above. These are functions from L. to 
L. U { l_}. This mathematical function is going to be the least fixed point of a con
tinuous function F, operating on elements of the set L. ----+ L. U { l_} of functions 
from L. to L. U { l_}. Before we have a hope of defining a continuous function, we 
need to know that the set of functions L. ----+ L. U { l_} can be given the structure of 
a domain. 

2.7.1 The domain of functions (L.---+ L.l_, cf, l_f) 
To give the set of functions L. ----+ L. U { l_} a domain structure, we start by defining 
the lifted domain L. J_. Then we will show that the set of functions from L. to L. J_ is a 
domain. In general, a lifted domain is formed by adding a new least element to an 
existing predomain. In our case, we need only do this for the discrete predomain 
(L., =). So the following less general definition is sufficient. 

Definition 2.7.1 (The lifted domain (SJ_,= j_,_l)). Let S be a set not containing the 
special object l_. The lifted domain (SJ_, = J_, l_) consists of the set SJ_, which is defined 
to be S U { l_}; the ordering = J_ which makes l_ less than or equal to every element of 
SU { l_}, and all elements ofL. less or equal to themselves; and has (therefore) least element 
l_. This is easily confirmed to be a poset. It is also a predomain, because all chains contain 
a maximal element (either l_ or else some element of S). And it has least element l_ by 
construction. 
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Now that we know that the range L.J_ of the functions we are interested in forms a 
domain, we must show that L. ----+ L.J_ also forms a domain. We do this by consid
ering a general construction for imposing a domain structure on a set of functions. 

Theorem 2.7.2 (Domain of functions). Suppose A is a set and (X, c:::, -1) is a domain. 
Then so is (A ----+ X, � f, _l f ) , where the "f " subscript is for ''function", and the defini
tions of the components are: 

• A ----+ Xis the set of all total functions from A to X. 

• For all total functions fi and h in A ----+ X, we define the pointwise ordering C::: f 
by: 

fi �f h {::} Va EA. fi(a) � h(a) 

• _l f is the function defined by: 

Va EA. _if (a) = -1 

Proof Reflexivity, transitivity, and antisymmetry all follow easily from those prop
erties for �. We do one proof here as an example. To prove transitivity, suppose 
we have functions fi, f2, and h with: 

Ii c::: f h c::: f h 

This implies that 
Va EA. fi(a) c::: h(a) C::: f3(a) 

By transitivity of �'we have: 

Va E A. fi (a) � h (a) 

So we indeed have fi C::: f h. 
Next, we must show that every w-chain c has a least upper bound in (A ----+ 

X, � f, _l f). Let us draw this chain of functions this way : 

a' f-----t c0 (a') 
a f-----t co(a) 
a" f-----t c0 (a") 

a' f-----t c1 (a') 
a f-----t c1 (a) 
a" f-----t c1(a") 

a' f-----t c2 (a') 
a f-----t c2(a) C::: 

a" f-----t c2 (a") 

Each function is depicted by a column showing a few of the mappings that func
tion contains (the function might not contain any mappings, if A is empty, but let 
us not try to depict this case). 

Now we want to construct the limit of this chain of functions. To do this, we 
need to observe that for any a E A, the values of the functions co, c1, ... form an w
chain in (X, �, -1). In more detail: for any element a E A, the function qa defined 
as follows is an w-chain in ( X, �, _l): 

\In E IN".qa(n) = Cn(a) 
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This qa maps each n E N to the value given by the n'th function in the chain c. 
We can see that qa is a chain in ( X, C:::, l_ ) , because Cn (a) C::: Cn+ 1 (a) follows from 
Cn C::: f Cn+ 11 by definition of the ordering C::: f. Graphically, we can depict the chain 
qa by highlighting it in the previous diagram: 

a' H c0 a' 
aHco(a) 
a H co a 

Now the function which we will show is the least upper bound of c is the one 
which given any element a E A, will return the least upper bound of the chain qa 
(highlighted above). To define this formally, let c be the function defined by : 

'Ila E A. c(a) = Uqa 

Since qa is a chain in domain (X, C:::, 1-), we know that it has a least upper bound 
Uqa. So the above definition for c is meaningful. It is this c which is the least upper 
bound of the original chain c in (A ---+ X, C::: f, l_ f). This follows, by the definition 
of C::: f, from the fact that for all n E N: 

\:la EA. cn(a) C::: c(a) 

That is, for each input a E A to the functions in questions, Cn (a) c::: c( a) . This 
fact holds because c(a) = Uqa, where Uqa is the least upper bound of the chain 
containing q a ( n), which is defined to be Cn (a) . 

Finally, we must prove that l_ f is the least element. But this follows easily, 
because for all a E A, and any element f of the set A ---+ X, we have: 

l_f (a)= l_ C::: J(a) 

D 

One helpful way to think about the pointwise ordering is graphically. Imagine 
we have two functions f and g with a common poset as their range. Then f is less 
than or equal tog iff the graph off is every where at or below the graph of g. An 
example is given in Figure 2.2. 

2.7.2 The semantics of while-commands 

We can now define: 

[while t pred t' doc] 

where F 

lfp(F) 

w H (<TH if [t]<T is not related according to pred 
with [t']<T 

then <T 
else if [c]<T =1- then l_ 

else w ( [ c] <T) ) 
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g 

f 

Figure 2.2: Function f is pointwise less than or equal to function g 

Note that here, the function F takes in a function w E (L.----+ L._i), and then returns
a new function which takes in (T E :r. and returns an element of :r. J_. So F is a 
function operating on a set of functions: it takes a function as input and returns a 
function as output. Such a function is sometimes called a functional, or a higher
order function. 

For our definition of the semantics of while-commands to be meaningful, we 
must prove that this functional F is continuous in the domain (L. ----+ L. J_, Cf, -1 f). 
If it is, then the Least Fixed Point Theorem tells us it indeed has a least fixed point 
in that domain, and so lfp(F) is defined. 

2.7.3 Continuity of F 

Let us confirm that F is continuous. We must first show that it is monotonic. If 
we have inputs w and w' with w �f w', then we must show that F(w) Cf F(w').
By the definition of the ordering Cf, it is sufficient to assume some arbitrary state

(T E :r., and prove that 
F(w)((/) = J_ F(w')((/) (2.2) 

If [t](T is not related according to pred with [t'](T, then both F(w)((T) and F(w')((T) 
are equal to (/. So in that case, we have Equation 2.2 by reflexivity of = J_. Similarly,
if [t](T is related according to pred with [t'](/ but [c](T =-1, then we again have

F ( w) ( (T) = F ( w') ( (T), and hence Equation 2.2 by reflexivity of = J_. Finally, suppose
that we are in the third case of the definition of[-] on the while-command. In this 
case: 

F(w)((/) 

F( w') ( (/) 

= w([c](T) 

= w' ([c](T) 

(2.3) 
(2.4) 

But since w Cf w', we have w(x) = J_ w'(x), for any state x E :r.. So we do have 
w ( [ c] (T) = J_ w' ( [ c] (T), and thus we get Equation 2.2 using Equations 2.3 and 2.4. 
This concludes the proof that F is monotonic. 

Now let us confirm that F satisfies the continuity condition. Assume an arbi
trary w-chain d in domain (L. ----+ L. J_, � f, _l f). (Just for clarity : since d is a chain in
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a domain of functions, each element dn of dis a function from :E to :El_.) We must 
show that 

F(Ud) = LJ(Fod) 

The left and right hand sides of this equation both denote functions from :E to :El_. 
It suffices to prove the following, for an arbitrary () E :E: 

F(LJd)((/) = (LJ(F o d))((/) (2.5) 

From the proof of Theorem 2.7.2, we know that the least upper bound of a chain d 
of functions in this domain is a function d defined by : 

d((/) = LJd(T 

where d(T is the chain defined by 

\:In E IN. d£T(n) = dn(()) 

So if we temporarily define d to be LJ ( F o d), from the right hand side of For
mula 2.5, we know that: 

\:/() E :E. e(()) = LJd� 

where the function d� is defined by 

\:In E IN. d�(n) = F(dn)(()) 

So to show Equation 2.5, we just need to show 

F(LJd)((/) = LJd� (2.6) 

We can complete the proof by considering which case of the definition of F we are 
in, for this(/. Recall the definition from Section 2.7.2 above: 

F = w H ((/ H if [f]() is not related according to pred with [t'](/ then() 
else if [c]() = 1- then l_ 

else w ( [ c] ()) ) 

If we are in the first case, then the left hand side of Equation 2.6, namely F ( LJd) ( ()), 
is equal to(). Also, for every n E IN, we have 

d�(n) = F(dn)(()) = () 

So LJd� = () in this case, and the two sides of Equation 2.6 are both equal to (). 
Similarly, in the second case of the definition for F, both sides of Equation 2.6 are 
equal to l_. Finally, in the third case, we have these equations starting from the left 
hand side of Equation 2.6: 

F(LJd)(()) = (LJd)([c]()) = LJd[c]£T 

The final crucial fact is that the chains d[c]£T and d� are equal, since for all n E IN, 

we have 
d�(n) = F(dn)(()) = dn([c]()) = d[c]u(n) 

So, the left and right hand sides of Equation 2.6 both equal LJd[c]£T in this case. 
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2.7.4 Examples 

Let us consider how the meaning of the trivial looping command while 0 
0 do skip is computed using the above semantics. We have the following equa
tion (for F specialized to this particular while-command): 

[while 0 = 0 do skip] = lfp(F) 

To compute the least fixed point of F, we should consider the chain of elements 
which the Least Fixed Point Theorem (Theorem 2.6.6) tells us has the least fixed 
point of F as its least upper bound: 

Let us consider these functions more closely. The function l_ f just returns l_ for 
any input state er. This is, in fact, what we expect the final semantics of while 0 = 

0 do skip to be. Now consider F(l_f ) : 

This is true because we are always going to fall into the third case of F, where the 
guard is true in state er and execution of the body has not diverged. Indeed, we can 
easily prove that for all n E N, Fn(l_f )(er) = 1- , by induction on n (a very similar 
case is considered in Exercise 2 of Section 2.11.3 below). 

2.8 Connection to practice: static analysis using abstract interpre
tation 

Denotational semantics provides an important theoretical tool for defining the 
meaning of languages, including logics and programming languages, as we have 
seen in this chapter. Denotational semantics is also used in practice as the basis 
for static analysis of programs. Static analysis aims to discover properties of all 
possible dynamic executions of a program, just by inspecting code statically (i.e., 
at compile-time, before actually executing the program on any inputs) . Static anal
ysis is, at the time of this writing, a very active area of research, with many papers 
written on advanced analyses for automatic bug-finding, verification, compiler 
optimizations, and other applications. See proceedings of conferences like Prin
ciples of Programming Languages (POPL), Computer-Aided Verification (CAV ), 
Programming Language Design and Implementation (PLDI), to name just three 
prominent venues, for many examples of such work. Furthermore, static analysis 
is being applied in industry to improve code quality. For just one example, Mi
crosoft has developed and applied static analysis tools internally for finding bugs 
in the Windows operating system [29]. 

The form of static analysis known as abstract interpretation can be developed 
as an alternative denotational semantics for programs, based on taking some do
main other than L. 1- as the basis for the domain of functions (L. ----+ L. 1-1 Cf, 1-f) 
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which we saw above (Section 2.7.1). This perspective is developed in the sem
inal paper "Abstract interpretation: a unified lattice model for static analysis of 
programs by construction or approximation of fixpoints", by P. Cousot and R. 

Cousot [10], upon which the large literature on abstract interpretation is based. 
An up-to-date tutorial treatment of abstract interpretation is difficult to find, but 
for more information, see Chapter 4 of the book by Nielson et al. [31]. 

Instead of basing our denotational semantics on the domain :E J_ of (concrete) 
states, an abstract interpretation will instead use some other domain, of approxi
mate states, based on some choice of abstract values for variables. Here, we will 
consider just one basic example, where abstract states tell us, for each variable, 
whether the value for that variable is positive or nonpositive (i.e., its polarity). In 
some cases we may lose information about the polarity. For example, subtracting 
two positive numbers can result in a positive or nonpositive number. To handle 
such situations, the set of abstract values is usually itself required to be an upper 
semi-lattice. This is a partially ordered set S where every two elements x and y 
in S have a least upper bound x LJ yin S. In this case, we must just add a greatest 
element, which we will write±, and make the abstract values for "positive" and 
"nonpositive" less than ±. We will then use ± as the value for cases like subtract
ing two positive numbers. The ± value represents the set of all possible concrete 
values (so Z) for the variables. We still need the set of values to form a domain, 
so we also include a least element 1-. Based on this set of abstract values A, we 
then define the set of states A for interpretating WHILE programs to be the set of 
functions from the set of variables to A. 

There is much more to be said about abstract interpretations. One important 
issue is how to state and prove that an abstract interpretation is sound with respect 
to the concrete denotational semantics (or for that matter, with respect to another 
abstract interpretation). Here, the theory of Galois connections is the primary tech
nical tool. Intuitively, the idea is to define an abstraction function a which maps 
values from the concrete domain to the abstract domain, and a concretion func
tion 'Y that maps from the abstract domain to the concrete domain. In practice, the 
concrete domain is often taken to be the powerset of a set of values. So for the 
signs example we will present in more detail below, an abstraction function can be 
used to map a set of numbers to either pos, nonpos, or±. In order for a and 'Y 

to form a Galois connection between two partially ordered sets -the set C of con
crete values and the set A of abstract values-the requirement is that for all x E C, 
whenever a(x) (which is an element of A) is less than some other element y of A, 
then 1(y) should be greater than x in the ordering for C. This situation is shown 
in Figure 2.3, where dotted arrows in A and C indicate the ordering relation each 
of those ordered sets, and solid arrows indicate the action of a and 'Y· We can un
derstand this intuitively as saying that if we abstract (with a), then move up in the 
ordering (on A), and then concretize (with 1), we should be higher in the ordering 
(on C) than where we started. 

Another important point is algorithms for efficiently computing the least fixed
points in the semantics of while-commands. W hen the set of abstract values is 
finite, a least fixed-point can always be computed in finite time. W hen it is infi
nite, a technique called widening is used to guarantee that an approximation to the 
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Figure 2.3: Graphical depiction of the essential property of a Galois connection 

fixed point can be computed in finite time. And there are many very interesting 
abstract interpretations one can find in the literature. To take just one example, 
the paper "Smooth interpretation" by S. Chaudhuri and A. Solar-Lezama shows 
how to give an abstract interpretation of WHILE programs as smoothed mappings 
from states consisting of probability distributions for variables to other such states, 
with application to parameter synthesis for control problems [8]. But developing 
the current presentation to address these points is beyond the scope of this book. 

2.8.1 Abstract states based on polarity of values 

Let A = {po s, non po s, ±, _l A} be the set of abstract values, and define an order
ing CA by starting with the relation indicated by the following clauses, and then
taking its reflexive transitive closure: 

pos �A ±

neg �A ±

_lA �A pos

_lA �A neg

So ± is the greatest element, and _l A the least. T his follows the ideas sketched
just above. The domain of all possible abstract states A is then the domain of 
functions from the set of variables to A, with the same ordering and least element 
as presented in Section 2.7.1 above (that is, we have the pointwise extension of �A 
as our ordering on functions, and the least function is _l defined by _l (x) =-1A).
We will write £TA as a meta-variable for an abstract state.

2.8.2 Abstract interpretation of terms 

To give our abstract interpretation of WHILE programs, we must first define the 
abstract meaning of terms. In one clause below, I am writing distinct(x1, ... , xn ) 
to mean that x1, ... , Xn are pairwise different. This can be expressed precisely by 
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simply say ing that the cardinality of the set of x1, ... , Xn is equal ton: 

The abstract interpretation for terms is then: 

[t + t']o-A 

[t - t']o-A 
[t--;-- t']o-A 

lTA(x) { + �:.> 0

{ [t]o-A if[t]o-A = [t']o-A 
l_A if [t]o-A =1-A or [t']o-A =1-A 

± o.w. 

+ if [t]o-A = [t']o-A = + 
+ if [t]o-A = [t']o-A = -

if distinct( [t]o-A1 [t']o-A1 ±, 1-A)
l_A if [t]o-A =1-A or [t']o-A =1-A 

± o.w. 

[ t + ( -t')] CT A 
[t * t']o-A 
l + if[t]o-A=-

- if[t]o-A=+ 
l_

±
A if [t]o-A =1-A 

o.w. 

As an example, we have the following meanings, where lTA (x) = +: 

[4 + (5 * 3)]o-A + 
[-4 + (x * -3)]o-A 
[4 + (3 * -3)]o-A ± 
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The first equation holds because we have a positive (5) times a positive (3), added 
to a positive (4). The concrete result (19) is positive, and our abstract interpretation 
is able to figure that fact out. In the second example, we have a positive (x) times 
a negative, which is a negative. This is added to a negative, so the final result is 
negative. Finally, in the third example, even though we can see that the concrete 
result -5 is negative, our abstract interpretation cannot. All it sees is a positive 
added to a negative, and so is forced to conclude with ± as the value for the whole 
term. 
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2.8.3 Abstract interpretation of commands 

Finally, we can give the semantics of commands: 

[skip]CTA 
[x : = t]CT A 
[c1; c2]CTA 

[if t pred t' then c1 else c2]CTA 
[while t pred t' doc] 
where F 

(TA 
CTA[X f-+ [t]CTA] 
if [ci]CT A = -1 
then -1; 
otherwise,[c2] ( [ci]CT A) 
[ci]CT A LJ [c2]CT A 
lfp(F) 
W f-+ (CTA f-+ if [c]CTA = -1 

then -1 
else w([c]CT A)) 

The defining equations for the semantics of skip-commands and assignments 
look exactly as for the concrete denotational semantics (Section 2.2). The clause 
for conditionals looks very strange, as it ignores the meaning of the guard en
tirely! It would be sound to take the guard into account in a conservative way, for 
example, by taking the meaning of the conditional to be [ci]CT when the guard is 
something like t < t' and the interpretation of t is - and the interpretation of t' 
is +. But it is also sound just to ignore the guard, as we will any way have to do 
in some cases (for example, if the meaning of one of the terms is±, of if the pred
icate in question is equality ). So when we do not know which branch a concrete 
execution summarized by our abstract execution would have taken, then we just 
have to join the results of the two branches. Here, we are writing CT� LJ CT� for the 
least upper bound of the functions, which is defined as the pointwise extension of 
the function computing the least upper bound of two abstract values. The least 
upper bound of x and y in A is the smallest element of A which is greater than or 
equal to both x and y in the ordering C::: A. For example, the least upper bound of 
+ and - is±. If variable x is positive in each or negative in each, then certainly it 
will have that same polarity after completing the conditional, whichever branch is 
taken. If the two branches assign different polarity to x, then the whole conditional 
has to assign polarity± to x. This is an example of the way abstract interpretation 
conservatively approximates the behavior of a set of possible concrete executions. 
Similarly, we ignore the guard in defining the semantics of the while-command. 

2.8.4 Computability of abstract interpretations 

The domain we use for the application of the least fixed-point theorem in the case 
of while-commands is (A ----+ A, C::: f, _l f). This is the domain of functions from A 
to A, as defined above (Section 2.7.1). Since any given program has just a finite set 
X of variables, we can in fact consider just a subset Ax of the set A of all abstract 
states, namely, the subset consisting of states CTA with dom(CTA) = X (that is, states 
CT A giving values just to the variables in X). This subset of abstract states is finite, 
as each state can map each variable to just four possible values ( +, -, _lA, and±). 
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So instead of working with the infinite domain (A ----+ A, �I, _l I), we can in

stead just use the finite domain (Ax ----+ Ax,�1,-11)1 for any command c with
variables in X. Since this domain is finite, every w-chain is eventually constant 
(Definition 2.4.12). So we can compute the least upper bound of the w-chain
n i------t Fn (-11 ), as required for the semantics of while-commands (Section 2.7.2) 
in a finite number of steps, just by iterating F on _l I until we reach the fixed point.
This implies that we can compute the abstract interpretation of any command c in 
some finite number of steps (of applying the equations defining the semantics). 

This is different from the situation with the concrete semantics, where the do
main (:E ----+ :E J_, �I, _l I) is infinite, and hence interpretations of commands might
not be computable in finite time by applying the semantic equations. It is typical 
for abstract interpretations to be designed so that they can always be effectively 
computed by applying the semantic equations. The chief benefit is that for any 
command c, some information about it, namely what is given by the abstract in
terpretation, is guaranteed to be computable. This information may be useful for 
understanding the behavior of the concrete executions of the command, assuming 
that our interpretation is indeed sound. 

For example, with the abstract interpretation we have been considering, sup
pose that £TA (x) = ±for all variables x in a given command c. Let CT� = [c]£TA.
If CT� ( x) = +, for example, we can conclude that the final value of x, if concrete
execution of the command indeed terminates, is guaranteed to be positive. This is 
useful information we have gleaned about any possible concrete execution of the 
program. 

2.9 Conclusion 

We have seen how to define denotational semantics for the WHILE programming 
language, which is a simple imperative programming language, without proce
dural abstraction. Commands are either assignments, sequences of commands, 
conditional commands, the trivial skip command, or while-commands. We saw 
how to define the meaning of a command in a starting state £T (assigning integer 
values to the variables in the command) as either the final state £T1 that is reached
following execution of the command; or, if the command is not terminating, the 
special value -1. Defining a compositional semantics for while-commands in par
ticular turned out to be technically challenging. We took a significant detour into 
the theory of partially ordered sets (posets), predomains, and domains, in order 
to be able to state and prove the Least Fixed Point Theorem (Theorem 2.6.6). This
theorem states the existence of a least fixed point for any continuous operation 
on a domain. Using that result, we were able to define the semantics of while
commands as the least fixed point of a functional F. We can see F as the functional 
which takes an approximation of the semantics of the while-command, and ex
tends that approximation one step. The starting approximation is _l 1, the function
that returns _l for all input states. This is the trivial approximation that cannot 
compute anything at all: it always diverges. The next approximation will return 
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(input state) CT if the guard is false, and otherwise -1. The next approximation after 
that will return the expected final state, if that final state can be computed using at 
most one iteration of the loop. Subsequent approximations allow more and more 
iterations of the loop. The least upper bound of this sequence - and that is the least 
fixed point of F - allows any finite number of iterations of the loop to reach a final 
state. If no finite number of iterations is sufficient, then that least upper bound 
returns -1, as expected. Finally, we have seen how to use denotational semantics 
to define abstract interpretations of programs, which can be used to derive static 
information about all the concrete executions of a program. 

2.10 Basic exercises 

2.10.1 For Section 2.1, on WHILE

1. Write a WHILE command that sets variable z to the maximum of x and y.

2. Write a WHILE command that sets variable z to xY (x to the power y), assum
ing y is non-negative.

3. What is the meaning of command x := y;y := z;z := x in the state {x i-----t 

O,y i-----t 10,z i-----t 20}?

4. What is the meaning of if x > 0 then z := y - x else z := y + x in the 
state { x i-----t 3, y i-----t 2, z i-----t 1}?

5. Write down the meaning of x := y; y := x in an arbitrary state CT. So the
state y ou end up with will be described by some meta-language expression
involving CT and the function overriding notation introduced in Section 1.6.

2.10.2 For Section 2.4, on domains 

1. Write out the definitions of partially ordered set, predomain, and domain
from memory.

2. Exactly one of the following structures is not a partially ordered set. Which
one?

(a) ( 0, 0) (that is, the set X is the empty set, and the binary relation C is 
also the empty set). 

(b) (N, = mod2), where x = mod2 y means that x and y have the same 
remainder when divided by 2. 

(c) (N, R), where xis related by R toy iffy= 0 or y = x. 

3. Which of the following chains is an w-chain (according to Definition 2.4.2) in
the partially ordered set (.Z, :S):
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(a) 0, 0, 0, · · · 

(b) -10, 0, 10, 20, 30, ...

(c) 0, 1,0, 1, · · · 
(d) 10,9,8,7,· .. 

2.10.3 For Section 2.5, on continuous functions 
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1. For this problem, we will work with functions mapping from the domain
(N U { w} , :;w) (see Section 2.4.4) to that same domain. For each function f
defined below, state whether it is non-monotonic, monotonic but not contin
uous, or continuous, and argue briefly and informally why (you do not need
to give a formal proof).

if n E N is even,
if n E N is odd,
if n = w 

(a) f(n) � { � 
(b) f(n) = 

{ �* n

(c) f(n) = w 

if n EN 
if n = w 

2. For this problem, we will work with functions mapping from the domain
(N, I, 1), for natural numbers ordered by divisibility (this example is dis
cussed more in Section 2.4.4) to itself. For each function f defined below,
state whether it is non-monotonic, monotonic but not continuous, or contin
uous, and argue informally why (again, you do not need to give a formal
proof).

(a) f(n) = n+l 
{ n/2 if n is even

(b) f ( n) = n * 2 if n is odd

(c) f(n) = 
{ 0 if n is even

1 if n is odd 

2.10.4 For Section 2.7, on semantics of while-commands 

Consider the command while x -1- y do x := x + 1. Write out the first three
approximations to the meaning of this command; namely 1-f, F ( 1-f), F ( F ( 1-f)), 
where the functional Fis the one used in the semantics of while-commands (Sec
tion 2.7.2), specialized to this command.

2.10.5 For Section 2.8, on abstract interpretation 

1. Compute the abstract interpretations, using the semantics defined in Sec
tion 2.8, for the following terms, with respect to an abstract state £TA mapping
x to + and y to -.
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(a) x + (3 * y)

(b) (2*X)-y 
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2. Compute the abstract interpretation of the following commands, using the
semantics of Section 2.8, with respect to an abstract state (!A mapping x to +
and y to±.

(a) x := -x; y := x * x 

(b) if x > 0 then x := 3 else x := 4

2.11 Intermediate exercises 

2.11.1 For Section 2.1, on syntax and informal semantics of WHILE

1. In this problem, we will consider how to add support to WHILE for terms
which change the state. The example we will use is the postfix ++ operator.
Informally, evaluating the term x++ is supposed to return the current value
z E Z of variable x, but also change the state so that x is now associated with
z + 1.

(a) Write out the complete definition of the syntax of terms, with the new 
postfix-increment operation. 

(b) One way to define the formal semantics of terms with the new defini
tion is to define two interpretation functions: one function which re
turns the integer value of the term, and one which returns the new state 
(taking into account any changes induced by evaluating ++-terms). So 
first define [t]value(T to return just the integer value oft, and then define
[t]state(T to return the updated state. Each definition should be given as
a set of recursive equations, as was done for the original kind of terms 
in Section 1.6.

2.11.2 For Section 2.4, on domains 

1. Either prove the following or give a counterexample: if ( X, C) is any par
tially ordered set, and if X is finite, then (X, C) is a pre-domain.

2. Prove that if (X, C) is a complete partial order (see Definition 2.4.8), then it
must have a least element (hint: how can you define that element as the least
upper bound of some subset of X?). Conclude that every cpo (i.e., complete
partial order) is a domain.

2.11.3 For Section 2.7, on semantics of while-commands 

1. Let (A, CA, 1-A) be the domain where:
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• A = { 0, 1, 2}

• \/a E A. 0 CA a

• 1 CA 2

• \/a E A. a CA a

• l_A = 0

Also, let (B, CB, l_B) be the domain where: 

• B = { 0, 1 }

• \lb E B. 0 CB b

• \lb E B. b CB b

• l_B= 0

Consider the domain of functions from B to A, with the pointwise ordering 
and least element defined in Section 2.7.1. 

(a) List the elements of B ----+ A. Each element should be described just in 
the format (a1,a2)1 which we temporarily define to mean the function 

(b) State which elements of B ----+ A are related to which other ones by the 
pointwise ordering (Section 2.7.1). You do not need to include state
ments which are derivable by reflexivity or transitivity. 

( c) State which elements are monotonic functions from ( B, CB) to (A, CA), 
and which are not. 

(d) Describe a monotonic function from B ----+ A to B ----+ A. So this is a 
higher-order function that takes in a function from B to A as input and 
returns such a function as output. 

(e) Compute the least fixed point of the function y ou wrote for the previous 
question. 

2. Consider the functional Fused in the semantics of while-commands (Sec
tion 2.7.2), specialized to the trivial looping command while 0 = 0 do x := 

x + 1. Prove by induction on n E N that for all such n, and all CT E L., we
have Fn (l_f ) (cr) =l_.

2.11.4 For Section 2.8, on abstract interpretation 

Let CT A be the abstract state mapping every variable to ±, and suppose c is some 
command. Let CT� be [ c] CT A. State conditions on the values of CT� ( x ) and CT� (y) that 
would be sufficient to guarantee that the following statements are true about the 
final state cr' of every concrete execution of c (starting from some arbitrary state cr);
or else state that no conditions expressible in terms just of CT� ( x ) and CT� (y) would 
be sufficient. 
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1. cr' ( x) > 0 and cr' (y) :::;; 0

2. cr' ( x) = cr' (y)

3. cr' ( x) > cr' (y)



Chapter 3 

Axiomatic Semantics of WHILE 

Based on the denotational semantics we have considered in Chapter 2, we can now 
consider several axiomatic semantics for WHILE commands. The term "axiomatic 
semantics" appears to have arisen from famous papers of Floyd and Hoare [13, 
19]. As the title of his paper" Assigning Meanings to Programs" suggests, Floyd 
proposes to define the meanings of programs in such a way as to facilitate proofs 
of their properties. He writes (italics his): 

"A semantic definition of a particular set of command types, then, 
is a rule for constructing, for any command c of one of these types, a 
verification condition Ve (P, Q) on the antecedents and consequents of 
c." 

By "antecedents" (the vector of formulas P), he means conditions that are assumed 
to hold before execution of the command c; by "consequents" (the vector Q), he 
means conditions that will then be implied to hold, if the command c terminates 
normally. His paper also considers how to prove that commands terminate. 

Where Floyd explicitly proposes his ideas as a way of defining the meaning 
of programs, Hoare's main goal is to propose methods for reasoning about the 
behavior of programs. He also formulates Floyd's verification condition Vc(P, Q) 
in a notationally more convenient form, which we will use below: { P} c { Q}, 
where Pis the single antecedent, also called (by Hoare) the precondition; and Q is 
the single consequent, also called the postcondition. 

Both Floyd and Hoare are concerned to give precise logical rules describing 
when verification conditions are true. The definition of their semantics (as Floyd 
views it) or verification rules (as Hoare views it) can be viewed as a set of axioms, 
and hence one can view the semantics determined by these rules as axiomatic. 
Hoare makes the interesting point that these axioms need not be complete, and 
hence can describe a partial semantics of programs, with certain aspects of pro
gram behavior left unspecified. Thus, we can see an axiomatic semantics more 
generally as constraining the meaning of expressions by stating properties that are 
true for those expressions. A property of the meaning of an expression, where that 
property is described precisely using a logical formula (or perhaps a set of logical 
formulas), serves to constrain that expression's meaning. If constraining enough, 
it can define that meaning. So we may take axiomatic semantics to be concerned 
with imposing constraints on the meaning of expressions in order to define, per
haps partially (as Hoare suggests) that meaning. 

Hoare' s set of axioms for proving Floyd's verification conditions for programs 
is known now as Hoare Logic. This logic and related ideas are used heavily in 
many contemporary approaches to program verification. We start with a simpler 
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axiomatic semantics, however, which is based on the denotational semantics of 
the previous chapter. This semantics will further demonstrate the point that an 
axiomatic semantics - that is, a set of formulas constraining the meaning of pro
grams - may be incomplete, even necessarily so. That is, fundamental limitations 
may prevent us from having a sound set of axioms which completely captures a 
certain aspect of the behavior of programs. This is true also for Hoare Logic, al
though we will note an important result of Cook's (Section 3.6.1) that mitigates 
this incompleteness. 

As a historical note: Floyd won the Turing award in 1978, Hoare in 1980, and 
Cook in 1982. 

3.1 Denotational equivalence 

Let us define two commands to be denotationally equivalent iff they have the 
same interpretation, using the denotation semantics of Section 2.7, for any starting 
state. Since we are pursuing an axiomatic semantics, we will consider expressions 
of the form c1 =aen c2, with semantics defined as follows: 

That is, the meaning of c1 =aen c2 is boolean value True if the meanings of com
mands c1 and c2 are the same in all states(), and False otherwise. We can easily 
prove that denotational equivalence is indeed an equivalence relation (i.e., reflex
ive, symmetric, and transitive), since the equality (used in the definition) on ele
ments of L. J_ returned by the interpretation function is an equivalence relation. 

Denotational equivalence as defined here is based solely on the input-output 
behavior of commands. Two commands whose denotations map input states to 
output states in the same way are considered denotationally equivalent. This 
makes denotational equivalence rather coarse as an equivalence relation: it equates 
rather more commands than you might expect. For example, we have the follow
ing denotational equivalences: 

while 0 = 0 do skip =aen while 0 = 0 do x := x + 1 

x := 0 =aen x := 3;x := 2;x := l;x := 0 

The two while-commands in the first line are denotationally equivalent, because 
no matter what the starting state, each has interpretation -1, since each diverges. 
W hat is perhaps slightly surprising is that they do rather different things along 
the way to divergence: the first does nothing at all, while the second increments x 
forever. Depending on the situation, we might very well like to distinguish these 
two programs. If we were in a situation where looping programs can communi
cate with other programs by changing the value of a variable, then we might care 
about the difference in execution behavior of these two programs. Similarly, the 
programs in the second line both end up setting x to 0, but one does so in four 
(mostly useless) steps while the other does so in one step. 
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If we want an equivalence relation that can distinguish commands based on 
properties of their executions, rather than just their input-output behavior, we 
will either need a significantly more complex denotational semantics, or more 
likely, we will need to base our notion of equivalence on an operational seman
tics instead. Operational semantics, presented in Chapter 4, gives the meaning of 
programs by explaining how they evaluate step by step. It is natural to consider 
properties of that evaluation such as the number of steps taken, the set of variables 
written or read, and others. These could then be taken into account by an equiva
lence relation on commands. Pursuing this approach further is bey ond the scope 
of this book, but for one pointer into the literature on resource-aware semantics of 
programming languages, see, for example, work by Jost et al. [23]. 

Once we have defined this notion of denotational equivalence, we can study 
the first-order logical theory which has denotational equivalence as its sole prim
itive non-logical concept. The language is similar to FO(Z) (Chapter 1), except 
that it is based on =aen-formulas between commands, instead of arithmetic rela
tional formulas between arithmetic terms. To study the theory of =aeni we can 
consider which formulas are sound with respect to the semantics of =aen deno
tational equivalence. That is, formulas whose meanings (based on the meaning 
of =aen) are true. For example, formulas expressing that =aen is an equivalence 
relation will certainly be sound: 

\/c.c =aen c 
\/c1.\/c2. (c1 =aen c2) ::::} (c2 =aen ci) 
\/c1.\/c2.\/c3.(c1 =aen c2) ::::} (c2 =aen c3) ::::} (c1 =aen c3) 

But of course, there will be many more sound formulas we could consider about 

=aen· So it would be very desirable to be able to write down a sound set of axioms 
about =aen that is also complete, in the sense that every true formula of our =aen 
theory can be derived from those axioms. The following theorem tells us that this 
desire cannot be fulfilled: 

Theorem 3.1.1 (Incompleteness). There is no finite sound and complete axiomatization 
for the set of true first-order formulas about =aen·

Proof sketch. The proof makes use of Rice's Theorem, from computability theory.
Rice's Theorem states that every nontrivial property of partial functions is unde
cidable. To understand this statement, we need to understand what a nontrivial 
property is, and what it means for a property to be decidable. A property of par
tial functions can just be identified with the set of partial functions that satisfy that 
property. So the property of returning the same natural-number output for every 
natural-number input would be identified with the set of partial functions that 
behave this way (like the function mapping every input to 6). Given this defini
tion, a property is called trivial iff it is either the empty set or the set of all partial 
functions. Now for "undecidable": deciding a property S means apply ing some 
fixed program which, when presented with another program P as input, can re
port whether the partial function computed by Pis in S (satisfies the property ) or 
not. So a property S is undecidable iff no such fixed program exists for deciding S. 
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To prove Theorem 3.1.1, we first apply Rice's Theorem to the following prop
erty. Let us say that a partial function f is a constant _l-function iff it is total 
and returns _l for all inputs. This property is nontrivial, since some functions are 
constant -1-functions, while others are not. It follows by Rice's Theorem that the 
property of being a constant -1-function is undecidable: there does not exist a pro
gram which can take an arbitrary program P as input and tell whether or not the 
partial function computed by P is uniformly undefined. 

Now to prove our incompleteness theorem: suppose we had a finite sound 
and complete axiomatization for the first-order theory of denotational equiva
lence. That would mean that using just those finite axioms and the basic rules 
of logic, we could deduce any true fact about =aen- Now here is the crucial obser
vation: a command c is a constant -1-function iff it is denotationally equivalent to 
the trivial looping command while 0 = 0 do skip. Let us call this trivial looping 
command loop. 

If we had a sound and complete finite axiomatization, we could iterate through 
the set of all proofs, looking for either a proof of c =aen loop or a proof of •(c =aen 

loop). One of these two facts is indeed a true fact about command c and =aen· 

Since our axiomatization is sound and complete by assumption, we must even
tually find a proof of either the one fact or the other. But this would mean that 
given any command c we can algorithmically determine whether or not it is a con
stant _l-function: our process of enumerating proofs looking for a proof of either 
c =aen loop or ---, ( c =aen loop) is guaranteed to succeed after a finite number of 
steps. Certainly, the number of steps might be huge, but we are concerned here 
just about the theoretical possibility of finding a proof of one or the other for
mula, not how one might actually try to search efficiently for proofs in practice. 
This proof-enumerating algorithm is sufficient to decide the property of being a 
constant -1-function, and so its existence contradicts the undecidability of being a 
constant -1-function. Since that property really is undecidable by Rice's Theorem, 
there can be no such proof-enumerating algorithm, and hence no sound and com
plete finite axiomatization for the set of true first-order formulas about =aen (or 
even for the set of true equations and disequations using =aen) . D 

As a small note: this proof works as long as we have any way to enumerate the ax
ioms (in a computable way). So not only can there be no sound and complete finite 
axiomatization, even an infinite axiomatization is impossible if it is recursively 
enumerable (that is, if there is a program which can enumerate all the axioms by 
returning the n'th distinct axiom given any natural number n). 

3.2 Partial correctness assertions 

Hoare Logic is a sy stem of rules for proving certain kinds of assertions about the 
behavior of programs. Many systems for program verification, for a variety of 
different programming languages and even paradigms, are based on Hoare Logic. 
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We will focus just on partial correctness assertions (pea), written as 

{F} c{F'} 

Partial correctness assertions like this are meant to assert that from any starting 
state satisfying F, execution of command c will either diverge or result in an end
ing state satisfying F'. We will not study total correctness assertions, often written 
[F]c[F'], which have a similar intended semantics except that divergence of c is 
not allowed: [ F] c [ F'] asserts that from any input state satisfying F, execution of 
c will terminate in an ending state satisfying F'. We will return to the question 
of program termination in Section 7.5, where we will see how types can be used 
to enforce program termination for lambda calculus. So for this chapter, we are 
considering partial correctness assertions with the following formal semantics: 

Definition 3.2.1 (Semantics of a Pea). T he meaning [ { F} c { F'}] of a pea { F} c { F'} 
is defined by the following meta-language formula: 

\/ () E L [ F] () = True ::::} ( ( [ c] () = _l) V ( [ F'] ( [ c] ()) = True)) 

Let us read this definition in English. Recall from Section 1.7 that we say that() 
satisfies F whenever [f](J = True. Then the formula says that for every state() E L.

satisfying formula F, either the command c diverges from starting state(), or else 
the resulting final state satisfies F'. The formula F is called the pre-condition of 
the pea, and formula F' is called the post-condition. So the idea is that starting 
the command in a state satisfying the pre-condition will either diverge or result 
in a state satisfying the post-condition. We will call a pea { F} c { F'} valid iff this 
property of the meanings of F, c, and F' indeed holds. We can depict this situation 
as follows, where I am writing a dashed line to mean that either [c] diverges on 
a given input state satisfying the precondition, or else takes that input state to an 
output state satisfying the postcondition: 

3.2.1 Examples of valid pea's 

[F] 

[c] 

[F']

Here are some examples of valid pea's. I will write the pea first, and then explain 
why it is valid. 

{ x > O} y := x {y > O} 
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To show that this is a valid pea, we must show that for any state er satisfying the 
pre-condition x > 0, then either the command y := x either diverges (it does not, 
in fact), or else ends in a state satisfying the post-condition y > 0. And we can see 
that this is true: if er( x) > 0, then assigning y to have the value of x will mean that 
the state er' resulting from executing the command has er' (y) > 0. This is just what 
is required by the post-condition, so this pea is valid. 

{x > y} if y > 0 then z := x else z := 3 {z > O} 

This pea says that from any starting state er where er( x) > er(y), executing a certain 
command either diverges (it does not), or else results in a state er' where er' (z) > 0. 
The command in question checks if the value of y is greater than 0. If so, exe
cution enters the then-branch of this conditional command, and the value of x 
is assigned to z; otherwise, execution proceeds to the else-branch, and 3 is as
signed to z. Notice that in the situation where execution enters the then-branch, 
we know that er(y) > 0. We are also assuming er( x) > er(y). We can put these two 
facts together (by transitivity of > ), to conclude that er( x) > 0. When we assign 
the value of x to z, we are thus assigning a positive number (er(x)) to z, and so the 
post-condition z > 0 is satisfied in the resulting state. And of course, it is obvi
ously satisfied in the state resulting from executing the else-branch, since there z 

is assigned to the positive value 3. 

{True} w hi le x -I- 0 do x : = x - 2 { x = 0} 

This pea is also valid. Let us consider an arbitrary state er satisfying the precondi
tion. The precondition True is the weakest possible condition one can impose on a 
state. Imagine you are signing a contract with a software developer. You will pay 
them $10,000 to produce software which satisfies the condition True. Well, that is 
not a good deal for you, because they can give you any software they want, and 
the contractual condition will be satisfied. No matter what value er(x) we have in 
starting state er, if the loop ever exits, the value of x will be 0. If er(x) > 0 and er(x) 
is even, then the loop will eventually exit, since we will eventually count down 
(by 2s) to 0 from er(x). The pea is also valid by definition if the loop does not exit, 
since the semantics of pea's (Definition 3.2.1) says they are valid if the command 
diverges from the starting state. The loop diverges in the states where er( x) :::; 0 or 
both er( x) > 0 and er( x) is odd. 

3.2.2 General examples of valid pea's 

Here are some general examples of valid pea's, described by giving a pattern con
taining some meta-variables like F and c, for pea's. All pea's which match this 
pattern are valid. 
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{ F} c {True} 

As noted, this is not a pea itself, but rather a pattern describing an infinite set 
of pea's: the ones which have any formula F for the pre-condition, any com
mand c, and then True for the post-condition. An example of such a pea is { x >

O} skip {True}. All pea's matching the pattern are valid, because no matter what 
the starting state () is from which we begin execution of command c, either that 
command will diverge or else it will terminate in some final state ()1 which satis
fies the post-condition. The post-condition is just True, which is satisfied by any 
state. So it does not matter what conditions have been imposed (by F) on the start
ing state, nor does it matter what the effect of the command c is. The final state, if 
any is reached, will always satisfy the post-condition, because the post-condition 
imposes only a trivial condition (True) which is always satisfied. 

{False} c {Fi} 

All pca's matching this pattern-an example is {False} x := 1 {x > O}-are 
valid, because the pre-condition can never be satisfied. These pea's say that for 
any starting state () where False is true, then executing c either diverges or results 
in a state ()1 satisfying Fi. But there are no starting states() which satisfy False, since 
no states can satisfy False. In this sense, False is the strongest possible condition one 
can require of a state. It is so strong no state can possibly satisfy it. 

{ F} while 1 > 0 do skip {False} 

All pea's matching this pattern are valid, because the command in question di
verges no matter what the starting state is. Since the semantics of a pea requires 
that the post-condition should be satisfied in the final state unless the command 
diverges, any pea with a command which diverges in any input state (or any input 
state satisfying the pre-condition), like this one, is valid. 

3.3 Interlude: rules and derivations 

In the next section, we will present a set of proof rules for Hoare Logic. Much of 
the Programming Languages literature is developed around sets of rules defining 
various aspects of the semantics of programming languages. The Hoare Logic 
rules are the first of many sets of rules we will encounter, just in this book. So we 
will digress briefly to consider some general concepts about sets of rules. Many of 
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these come from proof theory; a starting reference is [39]. Rules are of the form: 

P1 Pn 
c 

The P1 through Pn are the premises of the rule, and C is the conclusion. The 
meaning of a single rule is 

( P1 /\ · · · /\ P n) =? C 

That is, if the premises are true, then the conclusion is, too. For example, we might 
have formulas of the form A, B, C, D, E, F, and G, and rules like the following, 
which are not intended to have any interesting meaning, but to serve as a simple 
small example. 

B E 
A 

C D 
B 

D F 
A 

c 
E 

G 
F C D 

A rule is called an axiom if it has no premises. So the two rightmost rules just 
shown are axioms. Sometimes rules have names, which are written on one side 
(or the other) of the horizontal bar separating premises and conclusion. These 
example rules do not have names. 

3.3.1 Building proofs using rules 

To build a proof using a set of rules, we connect instances of the rules by using an 
instance of one rule to derive the premise of another rule. For example, using the 
above example rules, we can build this proof: 

C D 
B E 

A 

This schematic example shows us applying one rule to premises C and D to con
clude B, which then becomes the first premise of an another rule-instance, deriving 
A with second premise E. Instances of rules are sometimes called inferences. So 
our example proof here contains two inferences: one using the first of our rules 
listed above, and one using the second. If proof rules are named, one sometimes 
sees inferences written with the name, and sometimes without. A set of proof rules 
is often referred to as a proof system. 

Proofs are almost always understood to be finite objects built in this way by ap
plying rules. Rarely one will see proofs understood to be possibly infinite objects 
- but not in this book. The finiteness of proofs has the important consequence that 
we can reason by induction on their structure, as we will consider in Section 3.6 
below. 

Proofs viewed as formal objects like this one are sometimes also referred to 
as derivations. This terminology can be useful when one does a proof about the 
kinds of proofs that can be derived using a proof system. Then the proofs derived 
by the rules can be referred to as "derivations", and one can refer to the proof about 
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the possible derivations as just a "proof". Derivations can be viewed as trees, 
where the root of the tree is the conclusion (at the very bottom of the derivation), 
and the leaves are the formulas at the end of the paths emanating from the root. 

If a derivation contains some unproved premises, then it is sometimes called 
an open derivation. So the example schematic derivation given above is open. In 
contrast, the following one is closed: 

C D C 
B E 

A 

It is closed because there are no unproven assumptions: all the formulas at the 
leaves of the derivation are proved by axioms. 

3.3.2 The judgments of a proof system 

Rather than speaking of formulas, it is customary to speak of rules as deriving 
judgments. Judgments are just expressions intended to denote certain relations 
on various kinds of expressions. For example, the rules for Hoare Logic in the 
next section derive pea's, which express a certain relation on formulas and com
mands. So the judgments derived by the rules are those pea's. We will work just 
with rules which use judgments, in the premises and conclusions, matching one or 
more of a finite number of meta-expressions, called the forms of judgment of the 
proof system. We assume that no two of these meta-expressions have a common 
instance. In our example proof system, we could view it as having seven forms 
of judgment, namely A,··· , G; or else a single form of judgment X, if we have 
defined syntactic category X to contain A,··· , G. For most sets of rules, it will be 
quite clear what the forms of judgment are. For example, the form of judgment for 
the Hoare Logic rules in the next section is just the meta-expression { F} c { F'}. 

3.3.3 Syntax-directed rules 

It is sometimes the case that at most one inference that could possibly prove a 
given judgment. For example, the judgment C can only be derived in our sample 
proof system using the lone inference allowed by the sixth rule. For another exam
ple: if we were faced with the task of trying to prove F, there is only one inference 
that could possibly conclude F, namely an inference using the fifth rule. If there is 
always at most one inference which could apply to prove a given judgment, then 
the proof system is sometimes called syntax-directed. Similarly, for a particular 
rule if there is always at most once inference which could apply to prove a given 
judgment, then that rule is syntax-directed. 

For syntax-directed proof systems, there is a simple approach for trying to 
prove a goal judgment G. If no inference could possibly prove G, then we report 
failure. Otherwise, apply the sole possible inference, and recursively try to prove 
the premises of that inference. This approach is not guaranteed to terminate. For 
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a simple example, consider a proof system consisting of the rule 

Q 

Q 

The algorithm just described will loop trying to prove Q by applying this rule's 
sole inference repeatedly. But the algorithm is deterministic. If instead of just one 
possible inference, every judgment has at most a finite number of inferences, then 
we could generalize the above search procedure to try the different possible rules 
in parallel, for example. Unfortunately, it often happens for proof systems of in
terest in programming languages (and logic) that an infinite number of inferences 
could apply to prove a given judgment. This is true even if there is only a finite 
number of rules, because a single rule can have an infinite number of instances. 

3.3.4 Invertibility of rules and inversion on derivations 

There are a few other pieces of terminology that we can consider now, even though 
they are not needed in this chapter. A rule is called invertible in a given system 
of rules if whenever the conclusion is derivable, so are the premises. For example, 
almost all our example rules are invertible: 

B E 
A 

C D 
B 

C G 
E F c D 

In each case, if we can derive the conclusion, we must have been able to derive the 
premises. Consider the third rule for a simple example. If we can derive E then we 
must be able to derive C, because there is no other rule that could possibly derive 
E except this one: it is the only one where E is the conclusion. The fourth rule is 
a somewhat subtle example. To be invertible, it must be the case that if we can 
derive the conclusion, then we can also derive the premises. Here, the conclusion 
is F, and the sole premise is G. But in this system of rules, it is impossible to derive 
F. And the definition of invertibility only requires us to be able to derive the 
premises when the conclusion is derivable. Since the conclusion is underivable, 
this rule is trivially invertible. The rule 

D F 
--

A 

is not invertible, because it is possible to derive the conclusion (as we did with our 
example closed derivation above), without deriving the premises. In particular, F 
is not derivable in this system of rules. 

Sometimes, when reasoning about judgments derived using a particular proof 
system, it will happen that some judgment of interest could only possibly have 
been derived using some strict subset of all the rules, possibly just a single rule. 
For example, suppose we are assuming (for sake of argument) that A has been 
derived. The only rule which could possibly have been used to conclude A is 
our first example rule; all the other rules conclude with different judgments. In 
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this case, the common terminology is to say that by inversion on the assumed 
derivation of A, we know that the premises of the rule (in this case, B and E) must 
also hold. If we had had another rule with A for the conclusion, then our reasoning 
by inversion would only be able to conclude that one or the other of the rules must 
have been applied, and hence one or the other set of premises must be true. 

3.3.5 Admissibility and derivability 

An additional piece of terminology (again, not needed in this chapter but often 
used) is "admissible". A rule is admissible in a system of rules if whenever the 
premises of that rule are derivable, so is the conclusion. Each rule r of a given sys
tem is trivially admissible in that system, since the rule itself can be used to derive 
the conclusion from the premises. So usually people are interested in whether a 
rule r which is not part of a given system of rules is admissible in that system. The 
following rule is one example of a rule which is admissible in our system: 

B C 
A 

This rule is admissible since if it should happen that B and C are derivable, then 
A is also derivable. In fact, Band Care actually derivable in this system, and thus 
the conclusion is, too. So the following rule is also admissible in our system (since 
the conclusion is derivable, as shown above): 

A 

The following rule is admissible in our system for the trivial reason that the premise 
is underivable (thus making the requirement that the conclusion be derivable if the 
premises are, to be vacuously true): 

F 

G 

And finally, the following rule is not admissible in our system, since we can derive 
the premise but not the conclusion, using our example system of rules: 

A 
F 

Finally, we will call a rule derivable in a given system iff one can construct an open 
derivation which has the premises of the rule as the only unproved assumptions 
(one need not use them all in the open derivation), and the conclusion of the rule 
as the conclusion of the open derivation. So in our system, this rule is derivable: 

B C 
A 

That is because we can give this open derivation for it: 

c 
B E 

A 
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----- Skip 
{F} skip {F} 

Axiomatic Semantics of WHILE 

F F{ =* F1 {Fi} c { F2} I= F2 =* F� 
-------------- Consequence 

{F{} c {Fn 

-------- Assign 
{[t/x]F} x := t {F} 

{ F /\ ( t pred t')} c { F} 
---------------- While 
{F} while t pred t' doc {F /\ ----,(t pred t')} 

{F} C1 {F'} {F'} C2 {F"} 
---------- Sequence 

{F} c1;c2 {F"} 

{F /\ (t pred t')} c1 {F'} {F /\ ----,(t pred t')} c2 {F'} 
-------------------- Conditional 

{F} if t pred t' then c1 else c2 {F'} 

Figure 3.1: Hoare Logic Rules 

In contrast, some of our admissible rules above are not derivable. For example, 
there is no open derivation of the conclusion from the premises for this rule: 

F 
G 

3.4 Hoare Logic rules 

Hoare Logic consists of a set of rules for proving pea's. These rules are given in 
Figure 3.1. One of the rules uses the notation I= F to mean that formula Fis valid, 
as defined in Chapter 1 (see Definition 1.9.1). The rules also use the notation [t/ x]F 
for capture-avoiding substitution: 

Definition 3.4.1 (Capture-Avoiding Substitution). For any expressions e1 and e2, we 
write [ e1 Ix] e2 for the result of substituting e1 for x in e2. The substitution performed 
is capture-avoiding, in the sense that bound variables (see the informal explanation in 
Section 1.5 for bound variables) in e2 are renamed away from the set of free variables in e1. 

For a basic example, [3/ x](x = y) is the formula 3 = y. For an example of capture 
avoidance: [x!y](\ix.y :::; x) is the formula \iz.x :::; z. Notice that we renamed the 
x which was bound by \ix in the first formula to z. This ensured that we did not 
change the scope of the x which we were substituting for y. It was a global variable 
when we substituted it, and it still is after the substitution is finished. If we did not 
rename the bound x, we would have gotten the formula \ix.x :::; x. In this formula, 
all the occurrences of x are for the local variable x introduced by \ix. There are no 
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The skip rule 

global occurrences of x. So the formulas have quite different meanings. We will 
give a more formal definition of capture-avoiding substitution in Chapter 5 below. 

To return to the Hoare Logic rules of Figure 3.1: there are several subtleties 
expressed in these rules, so we will consider them all now in turn. Our explanation 
will take the form of a proof that the rules are sound with respect to the semantics 
given in Definition 3.2.1. That is, if we consider the rule as a formula (as done 
in Section 3.3 just above), then that formula is valid, where we interpret each pea 
occurring in it according to Definition 3.2.1. We argue this informally here. We 
will a formal proof of a stronger result in Section 3.6 below. 

----- Skip 
{F} skip {F} 

This rule is sound, because if [F](/ = True, for an arbitrary(! E :E, then we also 
have [F]([skip](T) =True. This is because [skip](! =(/. 

The assignment rule 

-------- Assign 
{[t/x]F} x : =  t {F} 

This rule is formulated to achieve two goals: 

• dropping old facts about the variable x from the pre-condition. 

• porting facts about t to become facts about x in the post-condition. 

To see why we have to drop old facts about x, consider the command x := 0. 

Suppose we start this command in a state (! satisfying the precondition x > 1. For 
example, such a state could be (! with (/( x) = 2. Executing this assignment will 
take us to a new state, namely (T[x f-----7 O], which does not satisfy x > 1. So we must 
somehow drop that fact, namely x > 1, from our precondition to compute the 
postcondition. Similarly, while we have to drop this fact, we should be allowed 
to add any fact we like about x that is true in states where (/( x) = 0, since we are 
guaranteed to be in such a state after executing this command. 

The assignment rule drops old facts about x and ports facts about t to become 
facts about x in an elegant though somewhat tricky way. Suppose we have a post
condition F, which might (or might not) mention x. In order to reach a state sat
isfying F, we can start in any state we want which satisfies [ t Ix] F. This formula 
says the same things F does, but it says them about t instead of about x. 

More formally, to see that this rule is sound, consider an arbitrary (! E :E where 
[[t/ x]F](T = True. Here we will make use of the following fact (proof omitted): 

[[t/x]F](/ = [f](T[X f-----7 [f](T] (3.1) 

This is quite similar to what we proved in Exercise 1 in Section 1.14.4 above sub
stitution into terms. Let us make sure the meaning of this is clear. The expression 
on the left-hand side denotes the value of the substituted formula [ t Ix] F in state 
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er. The expression on the right-hand side denotes the value of the formula F in the 
state which is the same as er except that it maps x to [t]cr. Informally, these values 
are the same because the right-hand side requires us to use [t]cr for the value of x 
when interpreting F, while the formula in the left hand side has at at exactly those 
same locations where F has x. We will interpret those occurrences oft as [t]cr, of 
course. So the two interpretations will be equal. 

To show soundness of the rule, we just need to show that [ F ]([ x := t]cr) = 

True. But [ x := t]cr = cr[x H [t]cr], so we have the desired conclusion using the 
assumption that [[t/x]F]cr =True and Equation 3.1. 

It is instructive to see why alternative formulations of this rule fall short. Sup
pose we took instead this rule: 

{F} x := t {[x/t]F} 

Let us assume we have defined [x/t]F to mean the result of replacing the term t 
by x everywhere in F. With this version of the rule, we cannot prove the following 
obviously valid pea 

{3 = 3} x := 3 {x = 3} 

This is because the rule requires replacing every occurrence of the term t in the 
precondition with x in the postcondition. So all we can prove with that rule is the 
uninformative pea 

{3=3}x:=3{x=x} 

With this rule, there will be pea's that we should be able to prove but cannot. But 
even worse, we can use this alternative rule to prove invalid pea's (so the rule is 
unsound). Consider this invalid pea: 

{ x > O} x := x - 1 { x > O} 

This is invalid because if we start in a state cr[x H 1], then executing the assign
ment will take us to the state cr[x H OJ. The first state satisfies the precondition, 
but the second violates the postcondition. This shows the pea is invalid. But the 
alternative formulation of the assignment rule we are considering just says we 
need to replace any occurrences of the term tin the precondition. In this case, t 
is x - 1, and there are no occurrences of that term in the precondition. So replac
ing x - 1 with x when moving from the precondition to the postcondition does 
nothing, and we get x > 0 for the postcondition, too. The problem here is that the 
alternative rule failed to drop old facts about x. The actual assignment rule does 
this by substituting t for x in the precondition, so any facts that the precondition 
is expressing which involve x must actually be facts about t (which can contain x). 
This ensures soundness. 

{F /\ (t pred t')} c {F} 
While 

{F} while t pred t' doc {F /\ ----,(t pred t')} 
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The rule for while-commands is based on a simple idea. We do not attempt to rea
son about the number of times the loop will execute as a function of the starting 
state. Instead, we reason about the behavior of an unknown number of iterations 
of the while-loop by showing that no matter how many times it repeats, the state 
we are in when we reach the top of the loop (either initially or after iterating the 
body of the loop) satisfies the invariant formula F. Suppose we are really inter
ested in the behavior of the while loop beginning from set of states S0: 

[c] [c] [c] 

So

The while rule says instead to find a formula F such that Sk � [F] for all k: 

[c] 
F 

[c] 
F 

[c] 

So

This formula F is called a loop invariant. It is something which is true after each it
eration of the loop, and true initially. So however many times the loop is executed, 
the loop invariant will remain true. It truly does not vary, but remains invariant 
after all these executions. This idea is incorporated in the rule's premise, which 
says that if F is true before one execution of the body begins, then it will still be 
true after one execution of the body ends. Of course, the rule allows us to assume 
that the guard of the while-loop is true before the execution of the body begins. 
Similarly, in the conclusion, the rule allows us to conclude that the guard is false 
after execution of the whole while-loop completes. 

Many trivial formulas are loop invariants, including True for example (which 
is always true), and also formulas that do not refer to variables used in the while
loop. It is not challenging to find a loop invariant. But it is often quite challenging, 
for both a human or a static-analysis program, to find a useful loop invariant that 
will allow a proof of some pea of interest to go through. We will work through this 
case in more detail when we prove a related theorem in Section 3.6 below. 
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The sequencing rule 

{F} C1 {F'} {F'} C2 {F"} 
---------- Sequence 

{F} c1;c2 {F"} 

This rule reflects a kind of transitivity of pea's: if { F} c1 { F'} and { F'} c2 { F"}, 
then also { F} c1; c2 { F"}. The transitivity arises from the semantics of these pea's. 
Suppose execution of c1 is guaranteed either to diverge or to take you from any 
state satisfying F to a state satisfying F'. Suppose similarly that execution of c2 
must also either diverge or take you from any state satisfying F' to a state satisfying 
F". In that case, the rule says you can conclude that the command c1; c2 will either 
diverge or take you all the way from any state satisfying F to one satisfying F", 
without any need to mention the intermediate state satisfying F' (or that formula 
F' itself). Graphically, the situation looks like this: 

The conditional rule 

[ci] 
----- -- ----

[F] [F'] [F"] 

{ F /\ (t pred t')} C1 { F'} { F /\ ----i(t pred t')} C2 { F'} .. 
-------------------- Cond1twnal 

{F} if t pred t' then c1 else c2 {F'} 

Since we do not know in general whether the guard of the conditional is true 
or false, given an arbitrary state er, this rule requires us to consider two cases, if 
we wish to prove the pea in the conclusion (about the conditional). We have to 
consider the case where the guard is true in the starting state, and separately, we 
have to consider the case where the guard is false. In each of these two cases, we 
must prove that the command we execute (in either the then- or the else-branch 
of the loop) will either diverge or take us from a state satisfying the pre-condition 
to a state satisfying the post-condition. Of course, the rule also allows us to add to 
the pre-condition the fact that the guard is true (in the first case), or else false (in 
the second). 

The consequence rule 

I= F{ * F1 {Fi} c {F2} I= F2 * F� 
--------------� Consequence 

{F{} c {Fn 

To show that this rule is sound, suppose we have: 

1. I= F' * F 
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2. {F}c{Fi}

3. I= F1 � F{

We must prove { F'} c { F{}. To prove that pea, it is sufficient (by our semantics 
of pea's) to assume an arbitrary CT E L. with [F']c:r = True, and prove that either 
[c]c:r = _l_ or else [F']([c]c:r) = True. By assumption (i), we know that in any state 
where F' is true, Fis also true. This is by the semantics of FO(Z) formulas (see 
Section 1.7). So we know: 

[F]c:r = True

But now using assumption (2), we know that in any state satisfy ing F - such as 
this state CT we have just shown to satisfy F - either c diverges or else F1 is true in 
the resulting state. In the first situation, we can complete our proof, since then we 
can show [c]c:r = _l_ (and we had to prove either this or another fact). In the second 
situation, we have 

[F1]c:r = True

Now we can use assumption (3) to conclude that [F{]c:r = True, which is suffi
cient to conclude the proof in this case (since we had to prove either that fact of 
[c]c:r = _l_) . Graphically, the assumption of { F} c {Fi} corresponds to this situation, 
where I am using different sizes just in anticipation of subsequent diagrams: 

[c] 
-----

[F] 

The entailment I= F' � F corresponds to a subset relationship (and similarly for 
the other entailment): 

I 

I 

I 

/ 

/ 

/ [F] 

[F'] 

' 

' 

' / 

\ 

\ 

\ 

I 



82 Axiomatic Semantics of WHILE 

Putting these graphs together, we get the following graphical justification for the 
validity of the conclusion { F'} c { F{}, where the dashed nodes are for that pea, 
and the solid ones are for the assumed { F} c {Fi}: 

[F] 
- ' / ' I \ I 

I I 
I 

: [F'] I 
I I 

I 

' 

[c] -----

/ ' 

[F{] / ' 
I \ 

I \ 
I 

'--! I 
1' I 
I 
I [F1] 

/ 

The consequence rule and the sequencing rule are not syntax-directed in the sense 
of Section 3.3.3. This is because there are meta-variables in the premises of those 
rules which do not appear in the conclusions. So to apply the sequencing rule to 
try to prove a pea, we have to guess nondeterministically the intermediate formula 
F' in the premise. We also have nondeterminism about whether to try to apply 
the consequence rule to prove a { F} c { F'}, or apply the the rule specific to the 
command c (e.g., the sequencing rule if c is c1; c2). When performing a Hoare 
Logic proof by hand, we often have to decide whether to apply the rule specific to 
the command c in the pea we are trying to prove, or else use the consequence rule 
to change the pre- and post-conditions of the pea. This makes it more difficult, 
unfortunately, to know how to proceed at any given point, when searching for 
such a proof. 

3.5 Example derivations in Hoare Logic 

To build a derivation of a pea using the proof rules of Hoare Logic, one has to apply 
the rules very carefully and precisely. Substitute values for the meta-variables (like 
For c) in the rule, and make sure that you have proofs for exactly the premises 
that the rule requires. We are not allowed to fudge at all here: every inference 
must truly be an exact instance of a rule, with no modifications whatsoever, even 
if those modifications seem justified. For example, suppose we want to prove this 
pea: 

{z > O} y := z + 0 {y > O} 
This is certainly valid according to the semantics for pea's (Definition 3.2.1), since 
for any starting state O" where O"( x) > 0, executing the command will indeed reach 
a final state 0"1 where 
sigma' (y) > 0. But to prove this pea using the Hoare Logic rules, we must be 
careful. We cannot just apply the Assign rule: 

-------- Assign 
{[t/x]F} x := t {F} 
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The closest we could come with this rule is this inference: 

------------ Assign 
{ z + 0 > O} y := z + 0 {y > O} 
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To construct this inference, we have instantiated the meta-variables of the Assign 
rule as follows: 

t f----1- z + 0

x f----1- y 
F f----1- y>O 

Here we see one subtle point: the Assign rule is written with a meta-variable x 

for whichever actual WHILE variable we are assigning to. To help see that our 
inference is really an instance of the rule, here is that inference written with the 
substitution in the pre-condition: 

-------------� Assign 
{[z + O/y]y > O} y := z + 0 {y > O} 

The pea we have derived with this inference is not exactly the same as what we 
are trying to prove, because the pre-condition is z + 0 > 0, rather than z > 0. Now, 
you could be forgiven for thinking this is exceptionally picky: isn't z + 0 equal to 
0 after all? W hy can't we just use that fact in the proof? The answer is that we 
can, but we must do so explicitly. After all, proofs are intended as incontrovertible 
evidence, and so all details must be carefully accounted for in the proof itself. In 
our case, changing parts of a pre-condition or post-condition in a logically allowed 
way must be done using the Consequence rule. The derivation we need in this case 
is the following (omitting the "Consequence" label from the long horizontal bar, for 
typographic reasons): 

------------ Assign 
{z + 0 > O} y := z + 0 {y > O} 

{ z > O} y := z + 0 {y > O} 

l=y>O::::}y>O 

We are using the Consequence rule to change the pre-condition from the one which 
is permitted directly by the Assign to a logically equivalent pre-condition (though 
the Consequence rule only requires us to change to a logically stronger pre-condition, 
which implies the pre-condition in the premise). For the derivations we will write 
in Hoare Logic, we will just leave premises which are supposed to be FO(Z) va
lidities (the first and third premises of the Consequence rule) unproved. Of course, 
when you are writing out derivations, you should make sure that you only include 
valid formulas of FO(Z) in such positions. But since we will not develop a proof 
system for FO(Z) in this book, we will not require derivations of those formulas 
in our Hoare Logic derivations. So technically, we are writing open derivations (see 
the terminology in Section 3.3). 

As a final note: we were forced to write the rather trivial premise I= y > 0 ::::} 
y > 0 here, because the Consequence rule requires a FO(Z) validity to change the 
post-condition, as well as one for the pre-condition. We are not allowed to omit 
one of those premises simply because we do not need to change that part of the 
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pea. The solution is just to write a trivial implication of the form F =? Fin such 
cases. Of course, we could always extend our Hoare Logic with new forms of the 
Consequence rule, like these: 

I= F' =? F {F} c {F1} 
--------- Consequence-Pre 

{F'} c {Fi} 

{ F} c {Fi} I= Fi ::::} F{ 
{ F} c { F{} 

Consequence-Post 

Such rules are derivable in our system (see the terminology in Section 3.3). But 
for purposes of practicing writing formal derivations exactly correctly, we will not 
add these rules to our system. 

3.5.1 An example with assignment, sequencing, and consequence 

Consider the following pea: 

{2lx}y:=x*x;z:=y -l{z2 -1} 

This formula says that starting in any state where 2 divides the value (in that state) 
of x, executing the assignments y := x * x and then z := y - 1 will either diverge 
or else reach a state where the value of z is greater than or equal to -1. Doing a 
sequence of assignments can never diverge (as the only possibility for divergence 
in the WHILE language is with WHILE-loops). Informally, we can argue for the 
truth of this pea by noting that if we square the value of x we get a non-negative 
number, and hence if we subtract one from that value, we get a result (stored in 
variable z) that is at least -1. 

Formally, we can derive this pea using the rules of Hoare Logic. The deriva
tion is in Figure 3.2. For typographical reasons the names of the rules used have 
been omitted from the inferences in the derivation. The derivation Puses the con
sequence rule, and the part of the proof appearing in the top of the figure is an 
inference using the sequencing rule. The proof also makes use of the assignment 
rule, for the two inferences shown that do not have premises. The proof uses two 
validities from FO(Z), in the inference using the consequence rule. The rightmost 
validity is trivially true, while the leftmost one follows directly from the obvious 
fact that x * x 2 0: subtracting one from both sides of this inequality gives us the 
desired conclusion for that leftmost validity. This mirrors the informal argument 
for this pea just given. 

3.5.2 An example with a while-command 

We can give a proof of the following pea, which we argued in Section 3.2.2 above 
is valid based on its semantics: 

{ F} while 1 > 0 do skip {False} 
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p 
{ 21 x} y : = x * x { (y - 1) � -1} { (y - 1) � -1} z := y - 1 { z � -1} 

{21x}y:=x*x;z:=y- l{z � -1} 

where the proof P is 

f=2lx � ((x*x)- 1) � -1 {((x*x)- 1) � -l}y:=x*x{(y- 1) � -1} F 

{ 21 x} y : = x * x { (y - 1) � -1} 

and F is f= (y - 1) � -1 � (y - 1) � -1 

Figure 3.2: The Hoare Logic derivation for Section 3.5.1 
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A derivation of this pea is given in Figure 3.3, again with rule names omitted from 
inferences for typographical reasons. Notice how we have to adjust the pre- and 
post-conditions at various points throughout the derivation, so that we can meet 
certain restrictions imposed by some of the rules. For example, we cannot use the 
Skip rule to derive the following pea which arises in the derivation: 

{True;\ 1 > O} skip {True} 

This is because here the pre- and post-conditions of the pea are slightly different, 
but the Skip rule requires that they be exactly the same. This is why in the deriva
tion of Figure 3.3 we use the Skip rule to derive 

{True} skip {True} 

and then use Consequence to adjust the pre-condition to match what we need at 
that point in the derivation. 

Stepping back a bit from these details, we see that here we are using True as 
the loop invariant when we apply the While rule. This is a rare situation: usually 
we must carefully determine a nontrivial loop invariant to apply the While rule. 
In this case, however, the negation of the loop's guard (1 > 0) is enough to prove 
the post-condition (False) of the loop. This reflects the fact that this loop will never 
terminate, since its guard is satisfied in all states. And the semantics of pea's tells 
us that a pea is valid if the command in question diverges. 

3.5.3 An example of crafting a loop invariant 

Let us now consider an example where some ingenuity is required to craft a loop 
invariant, for use with the While rule. As we have seen in the previous example, it 
is trivial to come up with some loop invariant: True is guaranteed to be preserved 
by the body of any while-loop, because True is trivially true in any state. So why 
can't we just always use True as the loop invariant for a while-loop? The answer 
is that we actually need a loop invariant to satisfy two conditions: it is preserved 
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f= F =?True 

I= (True/\ 1 > 0) =? True {True} skip {True} I= True =? True 

{True/\ 1 > O} skip {True} 

{True} while 1 > 0 do skip {True/\ -il > O} 

{ F} while 1 > 0 do skip {False} 

where F' is I= (True/\ -,l > 0) =?False 

Figure 3.3: The Hoare Logic derivation for Section 3.5.2 

F' 

by the body of the while-loop, and it is strong enough (together with the negation 
of the loop's guard) to prove the post-condition of the while-loop. 

For example, consider this pea: 

{x = xo /\ y = O} while x -1- 0 do (y := y + 1; x := x - 1) {y = xo} 

We are using the extra variable x0 (sometimes called a history variable) so that our 
post-condition can refer to the value that x had at the beginning of the loop. There 
is nothing special about this variable itself. It is just another variable which we 
state in the precondition is equal to x. So for a state CT to satisfy the pre-condition, 
we must have cr(x) = cr(xo). 

Suppose we were to try to prove this pea using True as the invariant for the 
while-loop. Our proof could start out like this: 

{True /\ x :f- 0} y : = y + 1; x : = x - 1 {True} 

h {True} while x :f- 0 do (y := y + 1; x := x -1) {True/\ -,x :f- O} h 

{x = Xo /\ y = O} while x :f- 0 do (y := y + 1; x := x -1) {y = xo} 

where: 

h 
h 

I= x = xo /\ y = 0 =? True 
I= (True/\ -,x :f- 0) =? y = x0 

Of the unproved premises in this open derivation (see Section 3.3 above for the 
terminology), we will be able to prove the pea 

{True/\ x -1- O} y := y + 1; x := x - 1 {True} 

This is because as we have seen in the example in Section 3.5.2, True is trivially 
preserved across commands. But we will have problems with the premise h of 
the application of the Consequence rule: 

True /\ --.x -1- 0 ::::} y = xo 

This premise is not provable: from the fact that cr( x) = 0 for an arbitrary state 
cr, we can conclude nothing about the relationship between cr(y) and cr(x0). The 
problem is that our loop invariant True is too weak: it does not tell us enough about 
the relationships between the variables affected by the body of the while-loop. 
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To come up with a loop invariant which is strong enough to prove the post
condition, we have to understand the relationships between the variables at the 
beginning of every iteration of the while-loop. Listing out the variables' values 
for the first few iterations can help, since we are looking for a pattern to describe 
the relationship across all iterations, and we may be able to generalize from the 
first few iterations. Our pre-condition for the entire pea states that before the first 
iteration through the loop, x = xo and y = 0. For concreteness, just for purposes
of trying to devise the loop invariant, let us pick some concrete value for xo, like 4. 
Then at the start of each iteration through the loop, the variables x and y will have
these values: 

x y
4 0 
3 1 
2 2 
1 3 
0 4 

This pattern suggests an obvious relationship between x and y: x + y = 4. Now,
we chose 4 just for purposes of exploration. More generally, we should have here
xo instead of 4. So let us try out the formula x + y = xo as a loop invariant.

Before we go to the trouble of trying to prove that this formula is preserved by 
the body of the while-loop, it is advisable to confirm that it is true before the first 
iteration of the loop, and also that it is strong enough to prove the post-condition. 
This amounts to confirming that the following two formulas are FO('Z) validities:

( x = xo /\ y = 0) ::::} x + y = xo 
x + y = Xo /\ •X -1- 0 ::::} y = Xo 

These formulas are both valid. For the second formula, the subformula •X -1- 0 is
equivalent, of course, just to x = O; and if x = 0, then x + y = xo is equivalent
toy = xo. It is now not difficult to prove that x + y = xo is indeed an invariant
of the while-loop. The derivation is given in Figure 3.4, where some temporary
abbreviations (of Jo, etc.) have been used for typographic reasons.

3.6 Soundness of Hoare Logic and induction on the structure of 

derivations 

In Section 3.4 above, we informally argued that every rule of Hoare Logic (from
Figure 3.1) is sound with respect to the semantics of pea's we gave in Defini
tion 3.2.1: if we interpret each rule as a formula and interpret each pea according
to Definition 3.2.1, then we obtain only valid formulas. But we would like to go
one step further, and formally prove: 

Theorem 3.6.1 (Soundness of Hoare Logic). Whenever { F} c { F1} is derivable using 
the rules for Hoare Logic (in Figure 3.1), then [ { F} c { F1}] is valid. 
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h fa 
h {(x-l)+(y+l)=xo}y:=y+l;x:=x-l{x+y=xo} 14 

{x + y = xo /\ x =!= O} y := y + l; x := x -1 {x + y = xo} 

lo {x + y = xo} while x =/= 0 do y := y + 1; x := x -1 {x + y = Xo /\ ---,x =/= O} ls 
{ x = Xo /\ y = O} while x =/= 0 do y := y + 1; x := x -1 {y = xo} 

where: 

lo I= (x = xo /\ y = 0) ::::} x + y = xo 
h I= (x + y = xo /\ x =!= 0) ::::} (x -1) + (y + 1) = xo 
h { (x -1) + (y + 1) = xo} y := y + 1 { (x -1) + y = xo} 
h {(x-l)+y=xo}x:=x-l{x+y=xo} 
14 I= x + y = xo ::::} x + y = xo 
ls I= (x + y = xo /\ ---,x =!= 0)::::} y = xo 

Figure 3. 4: The Hoare Logic derivation for Section 3.5.3 

How do we go from soundness of the rules interpreted as formulas to soundness of 
all the judgments provable using the rules? The answer is that we use induction 
on the structure of derivations built using the rules. Every derivation is a finite 
object, in particular a finite tree of a certain kind (as described above in Section 3.3). 
So just as we saw with induction on the structure of FO(Z) terms (Section 1.11), 
we may do induction on the structure of derivations. We must consider each of 
the inferences which could possibly have proved a given pea, and prove that the 
semantics of the pea is valid in that case. In each case, we are allowed to use the 
property we are proving (soundness of derivable pea's), as long as we do so only 
for subderivations of the derivation we are considering in that case. 

Proof of Theorem 3.6.1. The proof is by induction on the structure of the derivation, 
considering all cases. 

Case: 
----- Skip 
{F} skip {F} 

This rule is sound, because if [F]cr = True, for an arbitrary £T E L., then we also 
have [F]([skip]cr) =True, since [skip]cr = cr. 

Case: 
-------- Assign 
{[t/x]F} x := t {F} 

Consider an arbitrarycr EL. where [[t/x]F]cr =True. ByEquation3.1 of Section3.4 
(proved in an exercise below), it suffices to show [F]([x := t]cr) = True. But 
[x := t]cr = cr[x f-----7 [t]cr], so we have the desired conclusion using the assumption 
that [[t/x]F]cr =True and the fact that [[t/x]F]cr = [F]cr[x f-----7 [t]cr]. 
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Case: 
{F /\ (t pred t')} c {F} 

--------------- While 
{F} while t pred t' doc {F /\ ----,(t pred t')} 
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Consider an arbitrary CT E :E where [F]CT = True. We know from our denotational 
semantics (Section 2.7.2) and from Theorem 2.6.6 (the Least Fixed Point Theorem) 
that the meaning of the while-loop in state CT is equal to LJ (n H Qn(-lf )(CT)), 
where Q is the function from :E ----+ :E_i to :E ----+ :E_i determined by the while-loop 
(we used F as a meta-variable for this function in Section 2.7.2). Since all chains in 
the domain :E _i are finite, there must be some n where the chain ( n H Qn ( _l f) (CT)) 
becomes constant. We will now proceed by an inner induction on this n. (The 
induction is called inner to contrast it with the outer induction we are doing, on 
the structure of the derivation of the pea.) 

We first case split on whether or not the meaning of the while-loop starting 
in state CT is -1. If it is -1, then the pea is valid, since the semantics of pea's (Def
inition 3.2.1 makes the pea valid if the command diverges. This handles already 
the base case, where n = 0. So suppose it is not -1, and n = n' + 1. Suppose [t]CT 
is not related according to the relation associated with pred with [t']CT. Then the 
command ends in state CT, which satisfies the post-condition, since it satisfies F by 
assumption. The state CT also obviously satisfies ----,f pred t'. 

Now suppose [t]CT is indeed related to [t']CT according to the relation associated 
with pred. Our outer induction hypothesis says that the interpretation of the pea 
{ F /\ t pred t'} c { F} is valid. So from this particular state CT, which satisfies the 
pre-condition of that pea, we know that this next execution of the loop body c 
will result in a state [c]CT satisfying F. We can now apply our inner induction 

hypothesis to conclude that Qn' ( [ c] CT) satisfies F. Since Qn' + 
1 (CT) = Qn' ( [ c] CT) in 

this case, this is sufficient. 

Case: 
{F} C1 {F'} {F'} C2 {F"} 

{ } { ,, } 
Sequence 

F c1;c2 F 

Consider an arbitrary CT E :E satisfying F. We must show that starting in state CT, 
execution of c1; c2 either diverges or terminates in a state satisfying F". We may 
apply the induction hypothesis to the derivations of { F} c1 { F'} and { F'} c2 { F"}, 
which we have as subderivations of this inference. So we know [ { F} c1 { F'}] 
holds, and also [ { F'} c2 { F"}]. From the first of these facts, and the fact that [ F] CT, 
we know that starting from state CT, execution of c1 either diverges or else termi
nates in a state satisfying F'. For the first case: if c1 diverges when executed from 
CT, then so does c1; c2, by the definition of the denotational semantics for sequenc
ing commands, which is sufficient for what we have to prove in this case. So we 
can consider now the second case, and suppose that [ ci] CT = CT1 for some CT1 E :E, 

for which [F']CT' = True. Now we use the fact that [ { F'} c2 { F"}] holds, since this 
tells us that from state CT1 (which satisfies F'), execution of c2 either diverges or 
else terminates in a state CT11 satisfying F". In the former case, just as we reasoned 
above, execution of c1; c2 will diverge, which suffices to prove our goal. So we can 
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consider the second case, and then we have established that execution of c1; c2 
starting from state er will terminate in state er" satisfying F", as required. 

Case: 

{F /\ (t pred t')} c1 {F'} {F /\ ----,(t pred t')} c2 {F'} .. 
--------------------- Condztwnal 

{F} if t pred t' then C1 else c2 {F'} 

As for the previous cases, assume an arbitrary er E L. which satisfies F. By applying 
the induction hypothesis to the subderivations of this inference, we know: 

1. [{F /\ (t pred t')} c1 {F'}] 
2. [ { F /\ ----, ( t pred t')} c2 { F'}] 

We now case split on whether or not [t pred t']er and is True or False. If True, then 
we can use fact (1), since this says that starting from any state satisfying F and 
also interpreting t and t' in such a way that the relation associated with pred does 
not hold for them; in such a state, executing c1 either diverges or reaches a state 
satisfying F'. If [t pred t']er is False, then we use fact (2) in a similar way. 

Case: 
I= F{ � Fi {Fi} c { F2} F F2 � F� 
--------------- Consequence 

{F{} c {Fn 

Assume an arbitrary er E L. which satisfies F'. By the first premise of the inference, 
F' � F. So any state satisfying F' must also satisfy F. Now by the induction 
hypothesis, we know that [ { F} c {Fi}] is valid. So from any state satisfying F, 
execution of c either diverges or terminates in a state satisfying F1. Since er is such 
a state, we can now case split on whether execution of c diverges or terminates 
in a state satisfying F1. If execution of c diverges, then [ { F'} c { F{}] is valid by 
definition of the semantics of pea's. So suppose execution of c terminates in a state 
er' satisfying F1. By the third premise of the inference, any state satisfying F1 also 
satisfies F{, since F1 implies F{. So execution of c from er terminates in er

' satisfying 
F{. This is sufficient for validity of [ { F'} c { F{}]. D 

3.6.1 Incompleteness 

We have just proved that Hoare Logic is sound: whenever a partial correctness as
sertion { F'} c { F} is provable using the rules of Hoare Logic, then it is true, in the 
sense that the meta-language formula [{F'} c {F}] we defined in Definition 3.2.1 
as its meaning is indeed true. It is natural to ask whether Hoare Logic is also com
plete, in the same sense we considered in Section 3.1 on denotational equivalence: 
any true formula is provable. Perhaps not surprisingly, the answer is no. 

Theorem 3.6.2. No sound, complete, and recursively enumerable proof system (set of 
rules) deriving partial correctness assertions exists. 
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Proof This again follows from a recursion-theoretic limitation: if such a proof sys
tem existed, we could use it to solve the (unsolvable) halting problem, as follows. 
Let us assume, for the sake of contradiction, that we have a sound, complete, and 
recursively enumerable proof system for pea's. Suppose we wish to tell whether 
or not WHILE command c terminates or not when run in starting state er. Suppose 
that er = { x1 i-----+ ni , · · · , xk i-----+ nk}, and consider the pea { x1 = er( xi) A · · · A xk = 

er(xk)} c {False} .  The precondition of this pea exactly describes the values which 
the starting state er gives to the variables x1, ... , xk. And the pea is true iff c di
verges, because if c terminates in some final state er

'
, that final state cannot pos

sibly satisfy the postcondition False (since False is never true, no matter what the 
state is). Now to decide whether or not c halts, all we have to do is perform two 
actions in parallel: 

• run c from starting state er, to see if it terminates in some final state er'
; 

• enumerate all possible proofs in the proof system, searching for a proof of 
{x1 = er(x1) A··· A xk = er(xk)}  c {False} .  

The next chapter will give a formal definition for running the program; here, we 
can just imagine executing it like a program in any imperative programming lan
guages like C or Java. Since c either terminates or diverges when started from 
state er, one or the other of these parallel actions must succeed in finite time. That 
is, either the first action succeeds, and we will find that c terminates in a final state; 
or else the second will succeed, and we will find a proof of the stated pea, show
ing that c diverges. This is where our assumption of completeness comes in: we 
are assuming, for the sake of deriving a contradiction, that we have a complete 
proof system for pea's. So if a pea is true (in this case, implying that c diverges), 
then we will eventually find a proof of that by enumerating all possible proofs. 
But parallel execution of these two actions would then constitute an algorithm for 
testing whether or not c halts in finite time, which we know from recursion theory 
is impossible. So our original assumption that we have a sound, complete, and 
recursively enumerable proof system for pea's is false. D 

The first incompleteness theorem of the famous logician Kurt Godel shows 
that there can be no sound, complete, and recursively enumerable proof system 
for semantic validity for FO(Z). So in our consequence rule, where we appeal to 
semantic validity for FO(Z), we are really appealing to a notion for which we lack 
a complete proof system. Cook's theorem shows that this is the only source of 
incompleteness in Hoare Logic: 

Theorem 3.6.3 (Relative completeness). Hoare Logic formulated (as we have done) 
with semantic validity for FO(Z) in the Consequence rule is sound and complete. 

The theorem is called a relative completeness result because it shows that Hoare 
Logic is complete relative to the relation of semantic validity of arithmetic (which 
has no sound, complete, and recursively enumerable proof system by Godel' s 
theorem). For a detailed proof of Cooke's relative completeness theorem for the 
WHILE programming language, see [42]. In practice, we make do with sound but 
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incomplete proof systems for FO(Z), in order to have a (sound) recursively enu
merable proof system for Hoare Logic. 

3.7 Conclusion 

In this chapter, we have seen two examples of axiomatic semantics: denotational 
equivalence of WHILE commands, and Hoare Logic for proving partial correctness 
assertions { F} c { F'} about WHILE commands c. For the latter, the main challenge 
is identifying a loop invariant: a formula F which is satisfied by the program state, 
no matter how many times the body of the while-loop is executed. To be invariant 
under execution in this way, loop invariants have to be weak enough so that if they 
hold before the body of the loop is executed, they will hold again after the body 
is executed. They might fail to hold during execution, but they will hold once the 
beginning of the loop is reached again. And to be useful, loop invariants must 
imply whatever postcondition we wish to prove is satisfied after execution of the 
loop. So a trivial formula like True, while certainly a loop invariant (since it is true 
in every state), is not useful, since it cannot imply any nontrivial postcondition. 
We also proved that Hoare Logic is sound, but not complete. 

3.8 Exercises 

For several problems below, the following standard definition is used. Define F1 
to be stronger than F2, which is then weaker than Fi, if the formula Fi ::::} F2 is 
valid. T his means that the weakest formula is False and the strongest is True. 

3.8.1 Basic exercises for Section 3.2 on partial correctness assertions 

1. W hich of the following pea's are valid?

• {x = O} x := x + x {x > y}

• {x>y}x:=x*x{x>y}

• {False} x : = z - 1; x : = y + 1 { z > y}

• {y < z} x := y+z;x := y {False}

• {y<z}x:=y-z;z:=x+z{z=y}

2. For each of the following pea's, find the weakest precondition cp you can
which makes the pea valid. By asking for the weakest precondition you can
find, this problem is trying to rule out trivial answers like False for cp, unless
there is no other formula cp' not equivalent to false which makes the pea
valid.

• {cp}x:=x-l{x>y}

• { <P} if x > 0 then z : = x * y else z : = x - 1 { z < 0}
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• { <P} if x = y then z := 0 else z := 1 { x = z}

• {cp}x:=y;y:=z{x=z}

3.8.2 Basic exercises for Section 3.3 on rules and derivations 

Consider the following inference rules for reasoning with conjunction and True. 
These rules are formulated using an approach to proof systems for logical valid
ity known as natural deduction (see the book by Troelstra and Schwichtenberg for 
much more on this topic [39]). 

I 
rr; true-intro 

I= Fi I= F2 
------ and-intro 

I= Fi /\ F2 = lrUe 

I= Fi /\ F2 
I= Fi 

and-eliml 
I= Fi /\ F2 

---- and-elim2 
I= F2 

1. Some very basic questions:

• What is the form of judgment for these rules?

• What are the premises of the and-intro rule?

• What is the conclusion of the and-intro rule?

• Which rule is an axiom?

2. Give a derivation of I= True/\ (True/\ True).

3. Show that the following inference rule is derivable:

4. Which of the following rules is admissible in this proof system (more than
one might be)?

I= False 

I= False /\ False 

3.8.3 Basic exercises for Section 3.4 on Hoare Logic 

I= True 
I= True /\ F 

Write out a proof in Hoare Logic for the following pea's. Be very careful to apply 
the rules exactly as they are defined, without taking any short cuts. T his will 
generally require you to use the consequence rule. 

1. {x>y /\ y>O}z:=x+y{z*Z>Y*Y}

2. { x > O} y := x * x; z := y - 1 { z ;:::: O} 
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3. {x > y} if z < 0 then z := x -y else z := z + 1 {z > O}

4. {x > y} if x -y < 0 then z := -1 else z := 1 {z > O}

5. {True} if x = y then z : = x * y; x : = 1 else z : = 1 { z > 0}

3.8.4 Intermediate exercises for Section 3.4 on Hoare Logic 

1. Write out a proof in Hoare Logic of the following pea:

{yo= y /\ y 2 O} z := 1; while y > 0 do (y := y- l; z := z * x) {z = xY0}

The critical challenge for this problem is to identify the correct loop invariant
for this while-loop. What do you know must always be true about z every
time this loop executes?

2. Find the weakest precondition <P you can which makes the following pea
valid:

{ <P} while x -y 2 0 do y := y + z; x := x -z; { x = y} 

3. Prove Equation 3.1 from Section 3.4. Hint: the proof is by induction on the
structure of the formula F mentioned in the equation. You can rename vari
ables bound in F as needed, to avoid capturing variables in the term t which
is being substituted for the variable x.



Chapter 4 

Operational Semantics of WHILE 

In this chapter, we will see another form of semantics, called operational seman
tics, where the meanings of programs are given by showing how to evaluate them 
in a step-by-step fashion. We have already seen how denotational semantics ex
plains the meaning of WHILE programs by translating them into mathematical 
functions (Chapter 2). And axiomatic semantics gives a meaning for programs by
writing down axioms describing some properties of their execution (Chapter 3). 
As powerful as those previous semantics are, operational semantics has certain 
advantages. The semantics seeks to give a direct mathematical description of how 
programs are executed, rather than of which mathematical functions they can be 
understood as denoting, or on how they lead from a set of states satisfying one 
property to one satisfying another. So it is more natural to use such a semantics 
as the basis for actually executing programs. Furthermore, the semantics does 
not require (relatively) complex mathematics to define (as did the denotational se
mantics), nor does it require justification in terms of another semantics, as did our 
Hoare Logic rules. 

At the same time, the analysis of operational semantics can still be involved. 
For example, in this chapter we will define two different operational semantics. 
Big-step semantics shows how to evaluate a command from a starting state to 
reach a final state all at once, in one "big step" (for commands which terminate 
from that starting state). Small-step semantics will show how commands execute 
one small step at a time. We will prove a theorem (in Section 4.3) relating modi
fied versions of these semantics, which use counters to keep track of the number 
of steps that have been executed. This proof is quite lengthy, due to the rather 
large number of cases that must be considered. Lengthy detailed proofs are very 
much the norm for programming languages theory, however, so in addition to 
presenting the operational semantics of WHILE, this chapter will serve as a good 
introduction to the practical work of detailed proofs of theorems about program
ming languages. 

4.1 Big-step semantics of WHILE 

We define when command c in starting state CT evaluates to final state CT
1

, with 
notation c, CT .1).. CT

1
, by the rules in Figure 4.1. An operational semantics like this

one, where the derivable judgments show directly how to perform a complete 
evaluation of a command (or some other kind of expression) is called a big-step 
semantics, or sometimes a natural semantics. In the next section, we will see the 
alternative, which is small-step semantics. Note that the second rule for while-
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commands is non-compositional, as it defines the meaning of thew hi le-command 
(in the conclusion) in terms again of the meaning of the while-command (in the 
third premise). 

The rules in Figure 4.1 are syntax-directed, in the sense of Section 3.3.3: there 
is at most one inference which could possibly apply to prove any judgment. For 
example, if c is skip, there is only one rule that could apply. If c is a conditional 
or a while-command, then there are two rules which could apply, depending on 
whether the guard evaluates to True or False. But if the one rule applies, the other 
does not, as these conditions on the value of the guard are mutually exclusive. So 
there is at most one inference that could be used (and so the proof system is indeed 
syntax-directed). So we may apply the algorithm described in Section 3.3.1 to try 
to prove any evaluation judgment. 

Going further: instead of trying to prove a judgment c, CT -lJ- CT
1 

where all three
components (c, CT, and CT) are given, we can start with just c and CT, and look for 
a rule which could possibly prove c, CT -l)- CT

1 
for some CT

1
• It can be confirmed that

with c and CT given, there is still only one rule (but possibly many instances of that 
rule) that could apply to prove c, CT -l)- CT

1 
for some CT

1
• So we apply this rule. We

will then need to prove the premises. If we do so in left-to-right order, we will 
always fill in the starting state of a premise further to the right using the ending 
state of the premise to its immediate left. Thus, the command and starting state 
will always be known, and we will just be using the rules to compute the ending 
state. This process can be seen as mimicking execution of c from starting state CT to 
ending state CT

1
• Of course, not every command terminates, and so sometimes this

process will diverge. 
Here is an example of using the rules in the way just described, to evaluate the 

command x := x + 1; skip; y := x + x from starting state { x H 1, y H 2}. The only 
rule which could apply, with some final state CT

1
, is the rule for sequencing. So we

know the derivation (if there is one, as in this case) must end in an inference of this 
form, for some CT

11
: 

x := x + 1, {x H 1,y H 2} -l)- CT
11 

skip;y := x + x,CT
11 

-l)- CT
1 

X := X + 1; skip; y := X + X, { X H 1, y H 2} -l)- CT
1 

So we recursively try to prove the first premise. Again, there is only one option: 

X := X + 1, { X H 1, y H 2} -l)- { X H 2, y H 2} 

Notice that this inference has determined what CT
11 

has to be, since the inference
can only be applied if CT

11 
= { x H 2, y H 2}. Since CT

11 
is known now, we can

recursively try to prove the second premise of the first inference we found. There 
is again only one rule that could apply, namely the sequencing rule again, for some 
CT

"'
: 

skip, {x H 2,y H 2} -l)- CT
111 

y := x + x,CT
111 

-l)- CT
1 

skip;y := x + x, {x H 2,y H 2} -l)- CT
1 

We can prove the first premise using the axiom (from Figure 4.1) for skip: 

skip,{x H 2,y H 2}-IJ- {x H 2,y H 2} 
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skip, er -l)- er 

[t pred t']er = True c1, er -l)- er' 

if t pred t' then c1 else c2, er-!J- er' 

c1, er -l)- er' c2, er' -l)- er" 

C1; C21 er -l)- er" 

x := t, er -l)- er[x H [t]er] 

if t pred t' then c1 else c2, er -!J- er' 

[t pred t']er = False 

while t pred t' do c, er -lJ- er 

[t pred t']er = True c, er -lJ- er' while t pred t' do c, er' -lJ- er" 

while t pred t' do c, er -l)- er" 

Figure 4.1: Big-step rules for WHILE 
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Again, we have gained some information at this point, since the skip-rule can 
only be applied if the starting and ending states are the same. So we have learned 
that er"' must equal { x H 2, y H 2}. We can now complete the derivation by prov-
ing 

y := X + X, { X H 2, y H 2} -l)- er' 

This can be done using the axiom for assignments, as follows: 

y := x + x, {x H 2,y H 2} -lJ- {x H 2,y H 2}[y H [x + x]{x H 2,y H 2}] 

We have again deduced something further about an unknown state. We learned 
that er' must equal 

{x H 2,y H 2}[y H [x + x]{x H 2,y H 2}] 

We can simplify that expression, of course, as follows: 

{x H 2,y H 2}[y H [x + x]{x H 2,y H 2}] 
{ X H 2, y H 2 }[y H 4] 
{x H 2,y H 4} 

Since er' was the state meta-variable we introduced for the final state of the whole 
evaluation, we have now proved 

x := x + 1; skip; y := x + x, { x H 1, y H 2} -lJ- {x H 2, y H 4} 

4.2 Small-step semantics of WHILE 

The goal of small-step semantics is to give a compositional definition of an opera
tional semantics. The idea for doing this is due to Plotkin, who called the approach 
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skip, CT '"'-+ cr 

x := t, cr '"'-+ cr [x f-+ [t]cr] 

[ t pred t'] cr = True 

[t pred t']cr = False 

[t pred t']cr = False 

while t pred t' do c, CT '"'-+ CT 

[t pred t']cr = True 

while t pred t' do c, CT '"'-+ c;while t pred t' do c,cr 

Figure 4.2: Small-step rules for WHILE

structural operational semantics [34]. Instead of directly defining the relation for 
evaluating a command from a starting state to a final state, we instead define a re
lation saying how to evaluate the command one small step further. To show how 
a program evaluates to a final state, we just chain together a sequence of small 
steps. Sometimes small-step semantics are called reduction relations; big-step se
mantics also get reduction relations, though some prefer to call them evaluation 
relations, since they show how a program is evaluated to a final value. 

There are two forms of judgment for the rules of Figure 4.2. The first is 

' ' 
C,<T '"'-+ C ,CT 

This is intended to mean that command c will evaluate in one small step to in
termediate command c', and the state will change from cr to intermediate cr'. The 
second form of judgment is 

CI (T '"'-+ (T
f 

This is for the special case when evaluating the command cone small step further 
actually leads to final state cr

'
. 
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4.2.1 Determinism 

Both big- and small-step semantics are deterministic: starting from the same ini
tial configuration (starting state and command to execute), there is only one way 
which computation can proceed. This is intuitively obvious, since the language 
does not have any constructs for nondeterministic computation (we will consider 
some nondeterministic constructs in Chapter 8). But how do we state and prove 
this fact? We can formulate determinism for small-step reduction as follows. We 
will see how this is extended to big-step semantics below (Section 4.3.7). 

Theorem 4.2.1 (Determinism of small-step reduction). The following are all true: 

1. If c, er� er' and c, er� er", then er' = er". 

2. If c,er� c',er' and c,er� c",er", then c' = c" and er'= er". 

3. If c, er� er', then we cannot have c, er� c', er' for any c' and any er'. 

This is saying that if computation leads to two resulting configurations, then those 
configurations must be, in fact, identical. So computation cannot yield two distinct 
results. Our results below relating big-step and small-step reduction (Section 4.3) 
will show how to extend this result to big-step semantics. 

Proof of Theorem 4.2.1. The proof is by mutual induction on the structure of the first 
assumed derivation (cf. the proof of Theorem 3.6.1). We will just consider two 
representative cases: one for an axiom, and one for an inference rule with a small
step reduction for a premise. The others all follow the patterns of these two cases. 

Case: 
skip, er � er 

For part (1): the command c in question is skip, and the resulting configuration is 
just er. Now we will use inversion on the form of the second assumed derivation; 
that is, we will consider cases for the derivation of the judgment c, er � er", given 
that c is skip (see Section 3.3.4 for more on inversion). There is, in fact, only one 
possibility: 

skip, er � er 

Clearly the resulting configurations are equal in this case. This also shows part (3) 
of the lemma. 

Case: 

We apply inversion to the second assumed derivation. There are two possibilities, 
which we consider in the following subcases: 
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Subcase: 

In this case, we can apply the induction hypothesis, part (1), to the deriva
tion of c1, er 'Vt er' which we have for the premise in the inference con
sidered in this case, together with the one for the premise of the inference 
in the subcase: 

c1, er 'Vt er' c1, er 'Vt er" 

er' = er" 
IH 

This gives us the desired conclusion. 

Sub case: 

c1; c2, er 'Vt c�; c2, er" 

We can apply our induction hypothesis, part (3) to the derivations in the 
premises of the inferences for the case and subcase, respectively. This 
induction hypothesis tells us that it is impossible to have both c1, er 'Vt 
er' and c1, er 'Vt c�,er". So this subcase simply cannot arise, and there 
is thus nothing further to prove. This concludes our consideration of 
representative cases for this theorem. 

D 

4.2.2 Multi-step reduction 

With the small-step rules of Figure 4.2, we can prove individual statements of the 
form c, er 'Vt er'. For example, we could prove statements like these two: 

1. x := l;y := 2, er 'Vt y := 2,er[x f---7 1] 

2. y:=2,er[xf--1-1] 'Vt er[xf----1-1,yf-72] 

But the rules of Figure 4.2 do not give us any way to connect these two proofs, of 
the two separate small steps, into a complete proof showing how x : = 1; y : = 2 
in the given starting step transitions, in two steps, to the final state. To do this, 
we need to use rules for multi-step reduction, given in Figure 4.3. These rules 
derive judgments of the form c, er 'Vt* c'

, er' and c, er 'Vt* er', which are similar to 
the judgments defined in the previous section, except allowing multiple steps of 
computation, instead of just a single step. We can connect the example small steps 
above as follows, using those rules, to derive a multi-step reduction: 

x := l,er'Vt er[x f----1-1] 

x := l;y := 2,er'Vt y := 2,er[x f---7 1] y := 2,er[x f----1-1] "0 er[x f---71,y f---7 2] 

x := l,er'Vt* er[x f---7 1] y := 2,er[x f----1-1] "0* er[x f---71,y f---7 2] 

x := l;y := 2,er'Vt* er[x f---7 l,y f---7 2] 
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c, er � er' 

c, er �* er' 

c, er � * c', er' c', er' � * er" 

c, er � * er" 

c,er�* c,er 

c er � c' er' 
I I 

c,er �* c',er' 

c, er � * c' er' c' er' � * c" er" 
I I I 

c er � * c" er" 
I I 

Figure 4.3: Rules for multi-step reduction 

a Ra' 

a R* a' 
a1 R* a2 a2 R* a3 

a1 R* a3 a R* a 

Figure 4.4: Rule for the reflexive-transitive closure of binary relation R 

4.2.3 Reflexive-transitive closure 
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Multi-step reduction is similar to the reflexive transitive closure of R * of a binary 
relation R. Semantically, this is the least relation containing R which is also reflex
ive and transitive. Here when we speak of "the least relation", the ordering we 
have in mind is the subset ordering�' operating on relations viewed as sets (i.e., 
sets of ordered pairs). And where this definition say s "the least relation containing 
R", it means the smallest (in the subset ordering) relation which has R as a subset. 
So if X is any other reflexive and transitive relation containing R (i.e., for which 
R � X), then we have the following fact about R*, since it is the least such set by 
definition: 

R c R* c X 
- -

The rules of Figure 4.4 define the reflexive transitive closure R* of R, writing both 
relations in infix notation (so a Ra' means that a is related to a' by R). We will make 
use of this notion in subsequent operational semantics, particularly for lambda 
calculus (Chapter 5). 

4.3 Relating the two operational semantics 

The two operational semantics we have defined above are both supposed to de
scribe the execution of WHILE programs. In this section, we will prove a theorem 
relating them. W hile we could prove such a theorem directly, with the relations as 
we have defined them above, we will actually digress slightly to refine our defi
nitions to keep track of exactly how many steps of computation have taken place. 
We will then be able to get a tighter connection between the two semantics. 

If we sought to relate the two semantics as defined above, we would run into 
one incompatibility right away : the small-step semantics is more expressive when 
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it comes to describing the execution of diverging commands. Suppose we want 
to describe the execution of the trivial looping command while 0 = 0 do skip 

(let us call this command loop for the moment) . With the big-step semantics, we 
cannot derive any judgment of the form loop, CT -lJ- cr'. This is because the big
step semantics can only be used to prove such judgments when the command in 
question terminates. On the other hand, we can prove that loop, cr 'Vt* loop, cr, 
using the small-step semantics. The reduction steps involved are: 

loop, CT 'Vt skip; loop, CT 'Vt loop, CT 

So there is a mismatch between big-step and small-step semantics in the case of 
diverging commands. This mismatch is not terribly fundamental, however. If 
we want a big-step semantics which we can use to describe diverging computa
tions, we can simply limit the number of steps the big-step semantics is allowed 
to take. This can be done by changing the form of big-step judgments to c, cr -IJ-n cr' 
and adding a new judgment form c, cr -IJ-n c

'
, cr'. The subscript n is just a natural

number, which we will use as a counter which keeps track of the number of steps 
of computation. If evaluation would run for more than n steps in the big-step 
rules without counters, the rules with counters will cut it off before it reaches a 
final state. We will refine our multi-step reduction judgments to c, CT 'Vtn cr' and
c, CT 'Vtn c

'
, cr'. The latter form is for evaluations that were cut off early: there

is still a residual command c
' that has not completed. The theorem we prove in 

this section is then that n-step big-step reduction is exactly equivalent to n-step 
small-step reduction. 

4.3.1 Extending the relations with counters 

Figures 4.5, 4.6, and 4.7 give the new rules for our judgments with counters n. The 
multi-step rules are straightforward to adapt with counters, but the big-step rules 
require more work, to handle the situations where the counter reaches 0 before we 
have reached a final state. The new rules for this situation are in Figure 4.7. 

Let us consider an example of a big-step derivation with counters, for the fol
lowing command (which we will temporarily abbreviate c below): 

while 0 = 0 do x := x + 1; y := x 

This command would diverge, from any starting state, using the big-step rules 
without counters (Figure 4.1). Using counters, its evaluation will be cut off early, 
without reaching a final state. For example, if we use a counter value of 2 and start 
the command from state cr = {x f-----7 O,y f-----7 O}, we have this derivation, where we 
write cr' for cr[x f-----7 1]: 

[O = O]cr = True x := x + l;y := x,cr -!J-1 y := x,cr' 

while 0 = 0 do x := x + l;y := x,cr -l)-2 y := x;c,cr' 
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C, CT � CT
1 

C CT �l
CT

1 
' 

C, CT � n C1, CT1 c' er' � m er"' 
C CT �n+m er"' 

0 c,cr � c,cr 

c er � c' er' ' ' 
c er �1 c' er' ' ' 

c, er �n c', er' c', er' �m c", er"

C CT �n+m c" CT
11 

' ' 
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Figure 4.5: Rules for multi-step reduction, keeping track of reduction length 

skip, CT -IJ.1 CT 

x := t, er -IJ.1 cr[x H [t]cr] 

c1, er -IJ.n er' c2, er' -IJ.m er" 

C1; C21 CT -IJ.n+m CT
11 

[t pred t']cr = True c1, er -IJ.n er' 

if t pred t' then c1 else c2,cr-IJ.n+l er' 

if t pred t' then c1 else c2, er -IJ.n+l er' 

[t pred t']cr = False 

while t pred t' do c,cr -IJ.1 er 

[t pred t']cr = True c, er -IJ.n er' while t pred t' do c, er' -IJ.m er" 

while t pred t' doc, er -IJ.n+m+l er" 

Figure 4.6: Big-step rules with counters for WHILE. These are the rules where 
computation reaches a final state. See Figure 4.7 for rules for when computation 
does not reach a final state. 
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c,er -IJ.o c, er 

[t pred t']er = True c1, er -IJ.n c', er' 

if t pred t' then c1 else c2, er -ll-n+l c', er' 

II f f II f ff c1, er -v-n er c2, er -v-m c2, er 

c1; c2, er -IJ.n+m c�, er" 

[ t pred t'] er = False c21 er -IJ.n c', er' 

if t pred t' then c1 else c2, er -ll-n+l c', er' 

[t pred t']er = True c, er -IJ.n c', er' 

while t pred t' do c,er -ll-n+l c';while t pred t' do c,er' 

[t pred t']er = True c, er -IJ.n er' 

while t pred t' do c,er -ll-n+l while t pred t' do c,er' 

[t pred t']er =True c,er -ll-n er' while t pred t' do c,er' -IJ.m c",er" 

while t pred t' do c, er -IJ.n+m+l c", er" 

Figure 4.7: Big-step rules with counters for WHILE. These are the rules where 
computation does not reach a final state (because the counter reaches 0 before 
that). 
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4.3.2 Proving equivalence of the counter-based systems 

In this section, we will prove the following theorem: 

Theorem 4.3.1. The following both hold, for all natural numbers k: 

1. c, (/ -1),k o-1 if! c, (/ rvtk o-1•

2 11 I I if! k I I . c,o- -V-k c ,o- l c, (/rvt c ,o- . 
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The proof relies on the following three lemmas, which we prove in Sections 4.3.3, 4.3.4, 

and 4.3.5 below. T hese lemmas reveal some of the central technical ideas needed 
in the proof of Theorem 4.3.1. 

Lemma 4.3.2 (Compatibility of multi-step reduction with sequencing). The follow
ing both hold: 

Lemma 4.3.3 (Transitivity of big-step evaluation with counters). Suppose c, o- -IJ,n 
c', o-'. Then the following both hold: 

1 I I 11 II · l" 11 II . c , o- -v-m o- imp zes c, o- -v-n+m o- . 

2. c', o-' -IJ,m c11, o-11 implies c, o- -IJ,n+m c11, 0-11•

Lemma 4.3.4 (Relating small-step reduction and big-step reduction with counters). 
The following both hold: 

1. If c, o- rvt o-1 then c, o- -1),1 o-1•

2. If c,o-rvt c',o-' then c,o- -1),1 c',o-'.

About detailed proofs. Like many proofs in Programming Languages the
ory, the proofs below are not difficult, but there are a lot of detailed cases to work 
through. In the course of writing this proof down, I found and corrected numerous 
small bugs in the exact formulations of the rules with counters. It is a common ob
servation in Programming Languages that writing detailed proofs helps improve 
the quality of the languages about which one is reasoning. At the same time, such 
proofs have sometimes been called "write-only": they usually make for rather dry 
reading. You may find that it is more profitable to try to prove some parts of this 
theorem, or of the lemmas, yourself, and then compare your proofs with what is 
written below. Even the effort to understand the statements of the theorems and 
lemmas will yield significant insight into how the multi-step and big-step relations 
with counters work. 

Note on meta-variables. Before we begin the proof, it is worth discussing a 
somewhat annoying issue: the choice of meta-variables when considering cases 
on the form of a derivation. Below, we will often be considering all possible forms 
a derivation could have. In particular, we will consider what the last inference 
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of the derivation is. The proof rule in question is defined using its own meta
variables. For example, a rule like the following (from Figure 4.7) uses 10 different 
meta-variables: 

[t pred t']er =True c,er JJ-n er' while t pred t' do c,er' JJ-m c",er" 

while t pred t' do c,er JJ-n+m+l c",er" 

Sometimes some of these meta-variables are already being used in the surround
ing con text of one's proof. In the case of this rule for w hi 1 e-commands, the left-to
righ t direction of part (2) of Theorem 4.3.1 already uses 4 of those meta-variables 
(c, er, c', and er'). Sometimes those uses are the same as in the rule. For example, in 
this case er is used in the same way in the rule as in the left-to-right direction of the 
theorem: the theorem uses er as the starting state for the assumed big-step evalua
tion, and the rule happens to use er for that starting state, too. But sometimes the 
uses are different. Here, the left-to-right direction of part (2) the theorem uses er' 
for the ending state of the assumed big-step evaluation, but the rule uses er" for the 
ending state. Also, the statement of the theorem uses c for the name of the whole 
command, while the while-rule uses it for the body of the while-command. In 
such cases, one can always change the meta-variables in the rule so that they use 
different meta-variables from those used in the statement of the theorem or the 
surrounding context of the proof, to help avoid confusion. For example, we could 
use this renamed rule: 

[t pred t']er =True c1, er JJ-n eri while t pred t' do c1, eri JJ-m c', er' 

while t pred t' do c1, er JJ-n+m+l c', er' 

This rule is the same as the one shown above, except that we have renamed meta
variables so that the rule's usage and the theorem's are consistent. This can help 
reduce confusion in proofs, at the cost of using a renamed rule. Using a renamed 
rule can make it a little harder on the reader to follow the proof, since s/he must 
match up the renamed rule with the original one to confirm they are equivalent. 
Furthermore, for the person writing the proof, it is easy to make a mistake in carry
ing out the renaming (if this is done by hand, as it most often is). An alternative to 
renaming is simply to understand the meta-variables used in the rule as shadow
ing those in the surrounding context. That is, we understand that the new meta
variables have been introduced by our case-analysis on the form of the derivation, 
and we take subsequent uses of those meta-variables (in that case) to be the ones 
introduced in the rule. This may induce some refinements of meta-variables in the 
surrounding proof context using those in the rule. For example, if we used the 
original (unrenamed) rule, we would know that the c in the statement of the theo
rem has been refined to while t pred t doc. Sometimes there is too much danger 
of confusion with this approach, and then using a renamed rule is the clearest way 
to go. We will see both approaches in the following proof. A final alternative is to 
choose meta-variables in the statement of the theorem which do not conflict with 
the meta-variables in the rules (though this may make the theorem harder to read, 
since it will be using different meta-variables than used elsewhere). 
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Proof of Theorem 4.3.1. We will prove the forward directions of the equivalences 
stated in Theorem 4.3.1 by mutual induction, and then the reverse directions. Each 
direction will be proved by induction on the structure of the assumed derivation. 
Each direction of the proof is constructive: it can be thought of as showing, for 
example, how to transform a proof of c, CT .1J-k CT1 into a proof of c, CT rvrk CT1• So in
each of the cases below, we will show how to build a proof of the desired result 
judgment from a proof of the assumed judgment. 

Proof of left-to-right direction of part (1) of Theorem 4.3.1. Assume c, CT .1J-k CT1, and
prove c, CT rvrk CT1• The proof now proceeds by considering all the different cases
for deriving the assumed big-step judgment. 

Case: 
skip, CT .JJ-1 CT 

The following derivation proves the desired judgment: 

skip, CT rvr CT 

skip, CT rvr1 CT

That is, we have skip, CT rvr CT using the rule for skip-commands in Figure 4.2, 

and hence we can use the appropriate rule of Figure 4.5 to conclude skip, CT rvr1 CT.

Case: 

X := t, CT .JJ-1 CT[X f---7 [t]CT] 

The following derivation suffices: 

Case: 

X := t, CT rvr CT[X f---7 [t]CT] 

X := t, CT rvr1 CT[X f---7 [t]CT]

C1, CT .JJ-n CT1 C2, CT1 .JJ-m CT11

C1; C2, CT .1J-n+m CT11

The following derives the required c1; c2, CT rvrn+m+ 1 CT11, appealing to the lemma
stated at the start of this section (and proved below, Section 4.3.3), as well as the 
induction hypothesis (IH), which we apply as part of the derivation: 

Case: 

C21 CT1 .JJ-m CT11 
---- IH 
C21 CT1 rvr m CT11

[t pred t']CT = True C11 CT .JJ-n CT1 

if t pred t' then C1 else c2,CT .JJ-n+l CT1 
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We use the following derivation of the desired judgment: 

[t pred t']cr = True 

Case: 

if t pred t' then C1 else C21CT"-+ C1,CT 

if t pred t' then c1 else c21CT"-+1 c1,CT

C1,CT JJ-n er' 
---- IH 
C1 I (T "'-+ n er'

if tpred t' then c1 else c2,CT"-+n+l er'

[t pred t']cr = False c2, er JJ-n er' 

if t pred t' then C1 else C2,CT JJ-n+l er' 

The derivation in this case is just like the one for the previous case, except choosing 
c2, since the guard of the i £-command has value False in state er: 

Case: 

[t pred t']cr = False 

if t pred t' then C1 else C21CT"-+ c2,CT 

if t pred t' then c1 else c21CT"-+1 c2,CT

[t pred t']cr = False 

C2, CT JJ-n er' 
---- IH 
C2, (T "'-+ n er'

while t pred t' do c,cr JJ-1 CT 

The following derivation suffices: 

Case: 

[t pred t']cr = False 

while t pred t' do c, CT"'-+ CT 

while t pred t' do c, er "-+1 er

[t pred t']cr =True c, er JJ-n er' while t pred t' doc, er' JJ-m er" 

while t pred t' do c,cr JJ-n+m+l er" 

We use the following derivation, where we are abbreviating while t pred t' do c 
as c, for typographic reasons: 

[t pred t']cr = True 

c, er "'-+ c; c, er 
A 1 A c,CT"-+ c;c,cr 

c, CT JJ-n er' 
--- IH 
c (T "'-+ n er'
A' n A , Lemma 4.3.2

c;C,CT"-+ C,CT 

End proof of left-to-right direction of part (1) of Theorem 4.3.1. 

c, er' JJ-m er" 
----- IH 
c er' "'-+ m er"I 

Proof of left-to-right direction of part (2) of Theorem 4.3.1. Assume c, er JJ-k c', er', and
prove c, er "-+k c', er' by considering all the different cases for deriving the assumed
big-step judgment. 
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Case: 
c,cr .JJ-o c, er 

The last rule of Figure 4.5 gives us c, er 'Vto c, er, as required.

Case: 

The following derives the desired judgment: 

Case: 

11 f f c11 er -v-n c1, er 

n , , IH 
C11CT'Vt c1,cr 

n , , Lemma 4.3.2 
c1;c2,CT'Vt c1;c2,cr 

II f f II f ff C11 CT -v-n CT C21 CT -v-m c2, CT 

C1; C21 CT .1J-n+m C�, er" 

We use this derivation: 

Case: 

C1, er .JJ-n er
' 

---- IH 
C 11 CT 'Vt n CT1

n , Lemma 4.3.2 
C1; C21 CT 'Vt C21 CT 

[t pred t']cr = True c1, er .JJ-n c', er' 

if t pred t' then c1 else c2,cr .JJ-n+l c',cr' 
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IH 

The derivation of the required judgment is similar to the one we had for this big
step rule, in the proof of part (1) of the theorem: 

Case: 

[t pred t']cr = True 

if t pred t' then c1 e 1 se c2, er 'Vt c1, er 

if t pred t' then c1 else c21CT'Vt
1 c11cr

c11 er .JJ-n c', er' 

---- IH 
c1, er 'Vtn c', er' 

if t pred t' then C1 e 1 se C2, er 'Vtn+ 1 c', er' 

[t pred t']cr =False c21 er .JJ-n c', er' 

if t pred t' then c1 else c2,cr .JJ-n+l c',cr' 

The following derivation is similar to the one for the previous case: 

[t pred t']cr = False 

if t pred t' then c1 e 1 se c2, er 'Vt c2, er 

if t pred t' then c1 else c21CT'Vt1 c2,cr

if t pred t' then C1 e 1 se c2, er 'Vtn+l c', er' 
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Case: 
[t pred t']er =True c, er .JJ-n c', er' 

while t pred t' do c,er .JJ-n+l c';while t pred t' do c,er' 

Abbreviating while t pred t' doc as c for typographic reasons, we have this deriva
tion: 

Case: 

[t pred t']er = True 

c, er"'"" c; c, er 
A 

1 
A c,er"-" c;c,er 

c, er .JJ-n er' 
--- IH 
c er 'Vtn er' ' 

Lemma 4.3.2
c c er "'""

n 
c er' 

I I I 

[t pred t']er = True c, er .JJ-n er' 

while t pred t' do c,er .JJ-n+l while t pred t' do c,er' 

Again abbreviating while t pred t' doc as c, we have: 

Case: 

[t pred t']er = True 11 
I I c

I 
er ')'n c 

I 
er 

---- IH 
c, er"-" c; c, er c er "'""

n c' er' ' ' 
Lemma 4.3.2

c er "'""
1 cc er cc er "'""

n c' · c er' 
I I I  I I  I I  

[t pred t']er =True c,er .JJ-n er' while t pred t' do c,er' .JJ-m c",er" 

while t pred t' do c,er .JJ-n+m+l c",er" 

Again abbreviating while t pred t' doc as c, we have: 

[t pred t']er = True 

c, er"'"" c; c, er 
A 

1 
A c,er"-" c;c,er 

c, er .JJ-n er' 
--- IH 
C er 'Vtn er' c, er' .JJ-m c" fer" 
A' n A / 

Lemma 4.3.2 A / m /1 /1 c;c,er"'"" c,er c,er "'"" c ,er 

cc er 'Vtn+m c" er"
I I I 

c,er"-"n+m+l
c",er" 

End proof of left-to-right direction of part (2) of Theorem 4.3.1. 

IH 

Proof of right-to-left direction of part (1) of Theorem 4.3.1. Assume c, er "'""k er', and
prove c, er .1J-k er'. There are only two possibilities for the form of the derivation
in this case, since the multi-step reduction ends with a final state only (and not a 
command and a final state): 

Case: 
c, er "'"" er' 

c er "'""
1 er'I 

The result follows from Lemma 4.3.4, proved in Section 4.3.5 below. 
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Case: 
c er �n c' er' c' er' �m er" 

I I I 

c (T �n+m er" 
I 
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We can use the following derivation (the lemma is proved in Section 4.3.4 below): 

c er �n c' er' c' er' �m er" 
I I 

IH 
I 

IH 
c er 11 c' er' c' er' 11 er" 

I "'V'n I I "'V'm 

11 ,, Lemma 4.3.3 
C, CT "'V'n+m CT 

End proof of right-to-left direction of part (1) of Theorem 4.3.1. 

Proof of right-to-left direction of part (2) of Theorem 4.3.1. Assume c, er �k c', er', and 
prove c, er � k c', er'. There are several cases to consider for the derivation of the 
assumed multi-step reduction: 

Case: 
c er � c' er' 

I I 

c er �
1 c' er' 

I I 

The result follows from Lemma 4.3.4, proved in Section 4.3.5 below. 

Case: 
c, er � n c', er' c', er' � m c", er" 

c (T �n+m c" er" 
I I 

We have the following derivation: 

Case: 

This suffices: 

c er �n c' er' c' er' �m c" er" 
I I 

IH 
I I 

IH 
c, er �n c', er' c', er' �m c", er" 

------ -1 1 --,,--,,---- Lemma 4.3.3 
C,<T "'V'n+m C ,CT 

0 C,<T � C,<T 

c, er �o c, er 

End proof of right-to-left direction of part (2) of Theorem 4.3.1. 

This concludes the proof of Theorem 4.3.1. 

4.3.3 Proof of Lemma 4.3.2 (used in the proof of Theorem 4.3.1) 

D 

Proof The proof is by mutual induction on the structure of the assumed multi-step 
reduction derivations. For part (1) of the lemma: assume c1, er �n c�, er', and prove 
c1; c2, er �n c�; c2, er'. There are three possibilities, given that the derived judgment 
ends in a paired command and final state (as opposed to just a final state): 
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Case: 
C1,0- rvt C�0-1 

C1, 0- rvtl C�, 0-'

The following derives the desired judgment in this case: 

Case: 

C1,0- rvt C�,0-1 

c1; c2, o- 'Vt c�; c2, o-1 

C . C rT" 'Vt 
l C1 • C rT"

I 
11 2,v l' 2,v 

c1,o- rvtj c�,o-1 c�,o-1 rvtk c�,o-1 

C1, 0- rvtj+k C�, 0-1 

We can use this derivation, where we are applying the IH to the derivations we 
have from the premises of the derivation in this case: 

C1, 0- rvtj 

c1; C2, 0- rvtj 

Case: 

This derivation suffices: 

II cl, o-1 

C�; C2, 0-1 
IH 

C1; C2, 0- rvtj+k 

II cl' o-1 

C�; C2, 0-1 

C�; C2, 0-1 

c1;c2,0-rvto c1;c2,o-

rvtk c' o-' l' 

rvtk c�; C2, 0-1 
IH 

For part (2) of the lemma: assume c1, o-rvtn o-1 and prove c1; c2, o-rvtn c2, o-1• There
are two possible cases for the assumed derivation: 
Case: 

We can derive the desired judgment this way: 

Case: 

I C1; C2, 0- rvt C2, 0-

c . C rT" rvtl C rT"
I 

11 21V 21V 

c1, o- rvtj c�, o-1 c�, o-1 rvtk o-' 

C1, 0- rvtj+k 0-' 

As in the proof of the first part of the lemma, we apply the IH to the derivations of 
the premises: 

C1, 0- rvtj 

c1;c2,o- rvtj 

I C1,0-1 

C�; C2, 0-1 
IH 

c1; C2, 0- rvtj+k 

I rvtk o-'cl, 0-1 

C�; C2, 0-1 rvtk I 
IH 

C2, 0-

C2, 0-I

D 
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4.3.4 Proof of Lemma 4.3.3 (used in the proof of Theorem 4.3.1) 

Proof The proof is by induction on the structure of the first assumed big-step 
reduction derivation. We must consider the following cases (for the rules from 
Figure 4.7). In each case, we must show that a big-step evaluation which has 
been prematurely cut off can be extended. The first assumed derivation is for 
the prematurely ended evaluation, and the second assumed derivation is for an 
evaluation which picks up where the prematurely halted evaluation left off. We 
will refer to these two evaluations as the prematurely ended evaluation and the 

resuming evaluation, respectively. We will call the evaluation which extends the 

prematurely ended one using the resuming one the extended evaluation. 

Case: 
c, (/ -1)..0 c, (/ 

Here, what we have to prove for each part is trivial: we must show that if c, () -!J..m 
()11 (this is the resuming evaluation), then c, () -!J..m ()11 (this is the extended evalu
ation); and similarly, if c, () -!J..m c", ()11, then c, () -!J..m c", ()11• But these implications 
are trivially true: what we must prove for each implication is exactly what we are 
allowed to assume. 

Case: 

Here we need to consider subcases for the form of the derivation of the resuming 
evaluation. Since we are resuming the evaluation of a sequencing command, the 
form of the command limits the possibilities to the following (we consider the 
subcases for both parts of the lemma): 

Sub case: 
I 11 11 ff 

Cl, ()  �j (JI C2, ()1 �k () 
I • I 11 ff Cl, C2, () �j+k () 

We can construct the following derivation. Note that the derivations 
given as premises to the induction hy pothesis (IH) are the premise c1, () -!J..n 
c� , ()1 of the inference for the case we are currently in, together with the 
premise c�, ()1 -lJ..j (/1 for the subcase: 

Subcase: 

Cf • C fr! 11 c". C ,,-ff 
1' 2, v �m 1 ' 2, v 
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In this case, we can use this derivation, where as for the previous subcase, 
we are using the IH to combine the derivation of the premise of the infer
ence for this case, with the derivation for the first premise of the inference 
for the subcase: 

Subcase: 

I. I 11 I II Cl, C2, er -V-j+k C2, er 

This derivation suffices, again using the derivations of premises of the 
inference for the case and the subcase, as in the proofs in the previous 
subcases: 

This completes the subcases of this case, and we can return to consider 
other cases for the derivation of the prematurely ended evaluation. 

11 11 I I C1, er 'V'j erl C2, erl 'V'k C2, er 

c1; c2, er -lJ-j+k c;, er' 

In this case, for part (1) of the lemma the resuming evaluation is c;, er' -lJ-m er", and 
for part (2) it is c;, er' -lJ-m c", er". For the former case, we have the following, where 
the derivations given to the IH are, respectively, from the second premise of the 
inference for this case, and the derivation of the resuming evaluation: 

c2, eri -lJ-k c;, er' c;, er' -lJ-m er" 
�����������- IH 

C2, eri -lJ-k+m er" 

In the latter case, the derivation is similar: 

Case: 
[t pred t']er = True c1, er -lJ-j c', er' 

if t pred t' then c1 else c2,er -lJ-j+l c',er' 
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In this case, we use this derivation for part (1) of the lemma: 

c1, CT -IJ.j c', CT1 c', CT1 -IJ.m CT11 

[t pred t1]CT = True c11 CT -IJ.j+m CT11 

if t pred t' then C1 else C2, CT -IJ.j+m+l CT11 

For part (2) of the lemma, we use this very similar derivation: 

IH 

11 I I c' CT1 11 c" CT11 
I "'V'm I C1, CT "'V'j c I CT 

������������ IH 
[t pred t1]CT = True c11 CT -IJ.j+m c", CT11 

Case: 

if t pred t' then c1 else c2,CT -IJ.j+m+l c11,CT11 

if t pred t' then c1 else c2,CT -IJ.j+l c1,CT1 
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The derivations for parts (1) and (2) of the lemma are almost exactly the same as 
in the previous case, just with False and c2 in place of True and c1. For part (1): 

c2, CT -IJ.j c', CT1 c', CT1 -IJ.m CT11 

[t pred t']CT =False c2, CT -IJ.j+m CT11 

if t pred t' then c1 else c2, CT -IJ.j+m+l CT11 

IH 

For part (2): 

Case: 

c' CT1 11 c" CT11 
I "'V'm I 

while t pred t' do c11CT -IJ.j+l c�;while t pred t' do c,CT1 

Let us abbreviate while t pred t' do c1 as c. In this case, the resuming evaluations 
are for command c�; c. We must now consider subcases for the derivation of the re
suming evaluation. This is similar to what we did in the case above for sequencing 
commands. 

Sub case: 

We use this derivation, where as in the subcases above for the sequencing 
case, we take derivations from the prematurely ended evaluation and 
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from the resuming evaluation, to which we apply the IH. 

[t pred t']er = True 

while t pred t' do c1, er .1J-j+k+£+l er" 

Subcase: 

We use this derivation: 

c' er' 11 c" er" 11 "tm 11 
c' · c er' 11 c" · c er" 11 I "J'm 1 I I 

c1,er .JJ-j c�,er' c�,er' -D-m c�,er" 
IH 

[t pred t']er =True c1,er -D-j+m c�,er" 

Subcase: 

h . l t d t1 d I I 11 11 w i e pre o c1, er 'V'j+m+l c1, er 

c er 11 c" er" 
I 1 "J'£ I 

c' · c er' 11 c" er" 11 I "J'k+£ I 

We use this derivation, which is similar to the one for the first subcase: 

[t pred t']er = True 

[t pred t']er = True c, er -D-n er' 

c er 11 c" er" 
I 1 "J'£ I 

while t pred t' do c, er -D-n+l while t pred t' do c, er' 

In this case, the derivation of the extended evaluation just places the resuming 
evaluation in the premise of an inference of one of the rules for while-commands, 
and no appeal to the induction hypothesis is needed. For part (1) of the lemma, 
we use this derivation: 

[t pred t']er =True c,er .JJ-n er' while t pred t' do c,er' -D-m er" 
while t pred t' do c,er -D-n+m+l er" 

For part (2), the derivation is similar: 

Case: 

[t pred t']er =True c,er .JJ-n er' while t pred t' do c,er' .JJ-m c",er" 
while t pred t' do c, er -D-n+m+l c", er" 

[t pred t']er = True c, er .JJ-j er' while t pred t' do c, er' -D-k c11 erl 

while t pred t' do c, er -D-j+k+l c1, erl 
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We again abbreviate while t pred t' doc by c. For part (1), we use this derivation: 

[t pred t']er = True 
c, er' -IJ-k C1, erl C1, erl -IJ-m er" 
------------ IH 

A 
II " C, er -V-j+k+m+l er 

A ' II " C, er -V-k+m er 

For part (2), the derivation is similar: 

[t pred t']er = True 
c, er' -IJ-k c1, erl c1, erl -IJ-m c", er" ��

�������� JH 
c, er' -IJ-k+m c", er" 

A II " " C, er -V-j+k+m+ 1 C 'er 

4.3.5 Proof of Lemma 4.3.4 (used in the proof of Theorem 4.3.1) 

D 

Proof We must prove that c, er �er' implies c, er -IJ-1 er' and c, er � c', er' implies 
c, er -IJ-1 c', er'. The proof is by induction on the structure of the assumed derivation, 
either of c, er� er' or c, er� c', er'. We consider both cases simultaneously, showing 
how to translate derivations for the small-step reductions into big-step derivations 
with counters, where the counter value is just 1. 

Case: 
skip, er � er 

In this case, we can just use this inference: 

skip, er -IJ-1 er 

Case: 
x := t, er � er[x H [t]er] 

This suffices: 

x := t, er -IJ,1 er[x H [t]er] 

Case: 

We can use this derivation, where we are using a big-step derivation with counter 
value 0 in order to have a legal application of the appropriate rule for sequencing. 
This and the next case are the only ones which need to use the induction hy pothe
sis (since the small-step rules in question are the only ones which have small-step 
reductions in their premises). 
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Case: 

We can use this derivation: 

Case: 

[t pred t']cr = True 

if t pred t' then c1 else c2, er "-" c1,cr 

This suffices: 
[t pred t']cr = True c1, er JJ-o c1, er 

if t pred t' then C1 else C2,lT JJ-1 C1,lT 

Case: 

[t pred t']cr = False 

The proof is just like in the previous case, except with False and c2 in place of True 
and c1: 

[t pred t']cr = False c2, er JJ-o c2, er 

if t pred t' then c1 else c2,cr JJ-1 c2,lT 

Case: 

[t pred t']cr = False 

while t pred t' doc, er """ er 

This suffices: 
[t pred t']cr = False 

while t pred t' do c,cr JJ-1 er 

Case: 

[t pred t']cr = True 

while t pred t' do c, er """ c; while t pred t' do c, er 

This derivation suffices: 

[t pred t']cr = True c, er JJ-o c, er 

while t pred t' do c, er JJ-1 c; while t pred t' do c, er 

D 
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4.3.6 Relating the original small-step and big-step semantics 

119 

Using Theorem 4.3.1, whose proof we just completed, we can relate our original 
big- and small-step semantics, without counters. We could have done this without 
considering the counter-based sy stems, but now that we have - in order to be 
able to relate small-step reductions c, er rv+n c', er' resulting in an intermediate state
with a prematurely ending big-step reduction c, er -lJ..n c', er' - we can relate the
original sy stems just by relating them to the counter-based ones. This is done by 
the following lemmas, whose proofs are left as exercises: 

Lemma 4.3.5. c, er -lJ,. er
' holds if! c, er -lJ..k er

' holds. 

Lemma 4.3.6. The following are both true: 

1. c, er rv+* er
' holds if! there exists a k such that c, er rv+k er

' holds.

2. c, er rv+ * c', er' holds iff there exists a k such that c, er rv+k c', er' holds.

Using these two facts and Theorem 4.3.1, it is easy to prove the following: 

Theorem 4.3. 7. c, er -lJ,. er
' holds if! c, er rv+ * er

' holds. 

4.3.7 Determinism for multi-step and big-step semantics 

Theorem 4.2.1 shows that small-step reduction is deterministic. We can extend this 
multi-step reduction with counters in the following lemma, whose proof we leave 
as an exercise. 

Lemma 4.3.8. The following are all true: 

1. If c, er rv+j er
' and c, er rv+k er

"
, then j = k and er

' 
= er

"
. 

2. If c, er rv+j c',er' and c, er rv+j c",er", then c' = c" and er
'

= er
"

. 

3. If c, er rv+j er
'

, then we cannot have c, er rv+k c', er' for any k 2:: j, any c', and any er
'
. 

The following states determinism for big-step reduction (the proof is also left as 
an exercise): 

Theorem 4.3.9. If c, er -lJ,. er
' and c, er -lJ,. er

"
, then er

' 
= er

"
. 

This could be proved using the connections we have established in the theorems of 
this chapter between multi-step reduction with counters and big-step reduction. 
Alternatively, we could prove this directly, by induction on the structure of the 
first assumed derivation. 
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4.4 Con cl us ion 

In this chapter, we have considered two forms of operational semantics for WHILE 
commands: big-step and small-step semantics. With big-step semantics, the rules 
describe, in a recursive fashion, when a command and a starting state evaluate 
to a final state: c, er -!).. er'. The small-step rules, in contrast, specify how a com
mand and a state transition to either a final state or a new command and a new 
(intermediate) state: c, er"-+ er' or c, er"-+ c

'
, er'. We need additional rules, related to 

those for the reflexive-transitive closure of a relation, to connect many individual 
small steps into a multi-step reduction: c, er "-+ * er' or c, er "-+ * c

'
, er'. In order to 

relate these two semantics, we extended both with natural-number counters, and 
added a judgment form c, er -!J..n c

'
, er', representing a big-step evaluation that has 

been cut off after n steps of computation, with resulting intermediate command 
c

' and state er'. We were then able to work through a rather lengthy proof that 
the big-step semantics with counters and the small-step one are equivalent. The 
result is not too surprising, but carefully working through all the details of such 
a proof almost alway s reveals bugs (hopefully, and often enough, easily fixed) in 
one's semantics. This is standard practice in Programming Languages theory, and 
so it is worthwhile to gain experience reading and writing such proofs. 

4.5 Basic exercises 

4.5.1 For Section 4.1, big-step semantics of WHILE 

1. Write a derivation using the rules of Figure 4.1 proving the following judg
ment, where er= { x H 10, y H 20 }: 

(if x = y then z := 1 else z := -l);x := x * z,er-!J.. er[z H -1] 

2. Write a derivation using the rules of Figure 4.1 proving the following judg
ment, for some output state er' (which y our derivation should identify ): 

while x > 0 do (x := x - l;y := y * 2), { x H 2, y H 1 }-!).. er' 

4.5.2 For Section 4.2, small-step semantics of WHILE 

1. Write a derivation using the rules of Figure 4.2 proving the following judg
ment: 

if x < 100 then x := x * 10 else skip, { x H 9 }  "-+ {x H 90} 

2. Write a derivation using the rules of Figure 4.2 proving the following judg
ment: 

X : = X * 2; y : = y - 2, { X H 7 y H 3} "-+ y : = y - 2, { X H 14 y H 1} 
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3. Write a derivation using the rules of Figure 4.2 proving the following judg
ment, for some c' and some rr', where()= { x i------t 10, y i------t 1 }:

(if x > 0 then ( x : = x - 1; y : = y + 1) e 1 s e skip) ; skip, () rv> c', ()1

4. Write a derivation using the rules of Figure 4.2 proving the following judg
ment, for some c' and some ()1:

while x > 0 do (y := x * y; x := x - 2), { x 1------t 3 y 1------t 5} ' 
'Vt c, () 

5. Write a derivation using the rules of Figures 4.2 and 4.3 for the following
judgment (note that this is a multi-step reduction), where()= { x i------t 9, y i------t 

1 }  and ()1 = { x i------t 27, y i------t O}:

if y > 0 then (x := x * 3;y := y - 1) else skip, () rv>* ()1 

6. Write a derivation using the rules of Figures 4.2 and 4.3 for the following
judgment, for some output state ()1 (note that this is a multi-step reduction): 

while x > 0 do (x := x - l;y := y * 2), { x i------t 2, y i------t 1 }  rv>* ()1

4.5.3 For Section 4.3, relating big- and small-step semantics 

1. Write out a derivation of the following judgements, where ()1 = { x i------t 3, y i------t 

O} and ()2 = {x i------t 10,y i------t l,z i------t O}:

(a) (if x > 0 then y := -x else y := x);x := 01()1 rv>3 {x i------t O,y i------t -3} 

(b) (if x = 0 then y := 1 else y := 2),()1 -IJ-1 y := 2, {x 1------t 3,y 1------t O} 

(c) x := 2;y := x;z := 3,()2 -U-2 z := 3,{x i------t 2,y i------t 2,z i------t O} 

2. For each value of k from 0 to 5 inclusive, show a derivation of one or the
other of the following two judgments, for some ()1 and c':

while x < 8 do (x := x *3),{x i------t 1} -IJ-k c',(J'

while x < 8 do (x := x * 3), { x 1------t 1} -ll-k ()1

3. Determine a value fork and ()1 such that the following judgment is derivable,
where () is { x i------t 2, y i------t 3}:

(if x = y then skip else (z := x * y;y := x));x := l,(Jrv>k ()1

4. Write out a detailed proof of Theorem 4.3.7. Hint: this should not require
you to carry out any inductions, since this just follows from Theorem 4.3.1
and the lemmas stated just before the lemma in Section 4.3.
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4.6 Intermediate exercises 

4.6.1 For Section 4.1, big-step semantics of WHILE 

1. For purposes of this problem, let us temporarily define the notation skipn

as follows:
skip 

skip; skipn 

(a) Write out the value of skip
2 

by applying the above defining equations. 

(b) Prove by induction on n that for any er E Li, and for all n E N, skipn, er JJ, 
er is derivable using the rules of Figure 4.1. Your proof is essentially go
ing to show how to construct a derivation of that judgment, for any 
n EN. 

4.6.2 For Section 4.2, small-step semantics of WHILE 

1. Find a command c such that for all starting states er, we have c, er "-7 * er',
where:

er'= {x c--+ er(y), y c--+ er(x)}
Note that since the final state has values only for variables x and y, your
command c can only assign to those variables. 

2. An alternative way to define the reflexive transitive closure of binary relation
R is with the following rules:

a1 R a2 a2 R* a3 

a R* a 

If we compare this to the rules of Figure 4.4, we can see that here we only
have 2 rules, compared with 3 in Figure 4.4. So let us temporarily call the
alternative set of rules the 2-rule system for reflexive transitive closure, and 
the system in Figure 4.4 the 2-rule system. One important detail to note: the
first rule in the 2-rule system has R in the first premise. The similar (two
premise) rule in the 3-rule system (Figure 4.4) has R* in that first premise.

(a) Prove that every rule of the 2-rule system is derivable in the 3-rule sys
tem. 

(b) Show that the first rule of the 3-rule system is derivable in the 2-rule 
system. 

(c) Prove that if we can derive a1 R* a2 and a2 R* a3 in the 2-rule system, 
then we can also derive a1 R* a3 in the 2-rule system. Hint: prove this 
by induction on the structure of the first assumed derivation. 

(d) Using these results (from the previous parts of this problem), argue that 
the two systems are equivalent (that is, a R* b can be derived in the 2-
rule system iff it can be derived in the 3-rule system). 
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4.6.3 For Section 4.3, relating big- and small-step semantics 
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1. Write out detailed proofs (both directions) of the equivalence in Lemma 4.3.5
(Section 4.3). Hint: use induction on the structure of the assumed derivation
in each case.

2. Write out a detailed proof of Theorem 4.3.9 in Section 4.3.7, using induction
on the structure of the assumed derivation (but see the next problem).

3. Write out a detailed proof of Theorem 4.3.9 in Section 4.3.7, but this time,
do not use induction on the structure of the assumed derivation. Rather,
use the other lemmas and theorems established in this chapter, to make the
connection between determinism of multi-step reduction with counters and
big-step reduction.

4. Write out a detailed proof of Lemma 4.3.8 in Section 4.3.7.

5. Write out detailed proofs of both directions of Lemma 4.3.6 in Section 4.3.6,
again using induction on the structure of the assumed derivation in each
case.





Chapter 5 

Untyped Lambda Calculus 

The lambda calculus is a very small but very expressive programming language. It 
is based on the idea of defining the behavior of functions by textually substituting 
arguments for input variables. It is also Turing complete: any function that can 
be computed with a Turing machine can be computed with a lambda calculus 
program. 

The lambda calculus is due to Alonzo Church (see [9]). Its ideas are incorpo
rated in modern functional programming languages like OCAML and HASKELL, 
and also used crucially in many branches of logic, particularly constructive logic, 
as well as in theorem provers and computer-checked proofs. 

In this chapter, we study the syntax and various operational semantics of un
typed lambda calculus. Later chapters will consider programming in untyped 
lambda calculus (Chapter 6) and type systems for lambda calculus (Chapters 7

and 10). 

5.1 Abstract syntax of untyped lambda calculus 

Lambda calculus expressions are called terms. The syntax for terms t is: 

terms t : : = x I t t' I Ax. t 

Here, x is for variables, t t' is for applications oft as a function tot' as an argument, 
and Ax.t is a lambda-abstraction, an anonymous function which takes input x and 
returns output t. The A in Ax.t is said to bind x in t. It introduces local variable 
x within t. We will use x, y, z, and other names as both variables (within the 
language of lambda calculus) and meta-variables ranging over variables. When 
they are used in concrete example terms, they will serve as variables; when they 
are used in general definitions, they should be understood to be meta-variables. 
The difference is only important because as meta-variables, x and y might refer to 
the same variable, and hence cannot be assumed to have distinct values. But as 
variables, x and y will be considered distinct. Syntactically, it is not a bad idea to 
write parentheses around applications and lambda-abstractions as one is getting 
used to the language. We will see several conventions in the next subsection which 
will allow us to drop some parentheses. 

5.1.1 Examples 

• Assuming we have defined mult somehow (we'll see how in Chapter 6) to
multiply numbers encoded as lambda terms, then the following term defines
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/\ 
mult x 
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x 

Figure 5.1: A lambda-calculus term shown in tree format 

the squaring function: 
Ax. ((mult x) x) 

Note that applications of a function like mult to two arguments must be writ
ten in left-nested form: we apply mult to the first argument x, and then apply 
the application (mult x) to the second argument x. Because it is a bit cum
bersome to write all these parentheses, by convention parentheses associate 
to the left, so we can write ( mult x x) or just mult x x instead of ( ( mult x) x). 
The sample lambda term above can be rendered as a tree using A and @ for 
the tree labels corresponding to lambda-abstractions and applications, as in 
Figure 5.1. 

• The following term applies argument x as a function to itself: 

Ax.(x x) 

So x is both the function and the argument in the application. We may use 
a second parsing convention here, that the scope of Ax. extends as far to 
the right as possible. With this convention, we can write the above term as 
Ax.xx. Because the scope of Ax. extends as far to the right as possible, we 
know that this term may be fully parenthesized as (Ax. ( x x)), as opposed to 
((Ax.x) x). 

• The following term takes a function f and argument x as inputs, and returns 
(f(fx)): 

Af. Ax. (f (f x)) 

Using this second parsing convention, we can write this as Af.Ax.f (f x). 
But note that the remaining parentheses are required. If we dropped them, 
we would have Af.Ax.f f x, and because application is left-associative (as 
mentioned above), this would be fully parenthesized as (A f. (Ax. ( (f f) x))), 
which is a different term. (In it, f is applied first to f and then to x, while in 
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(Ax. t) t' � [ t' Ix] t 
f3

ti � 
(t1 t2) � 

t' 1 appl 
(t� t2) 

t� t' lam Ax.t � Ax. t' 

t2 � t'2 app2 
(t1 t2) � (t1 t;) 

Figure 5.2: Rules defining full f3-reduction 
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our term, f is applied to (f x).) We see in this example how lambda calculus
supports the idea of higher-order functions, where functions can be inputs 
or outputs for other functions. This lambda term is higher-order because it 
takes in a function f as input, and then returns the function Ax. f (f x) as
output. 

• The following term can be thought of as defining the composition of func
tions f and g:

Af.Ag.Ax. (f (gx)) 
Let us call that term compose. Then the following term behaves just the way 
the composition of functions f and g should:

(compose f g) 

This term, if given now any argument a, will return: 

(f (g a)) 

The application (compose f g) can itself be used as a function, which is just
waiting for the argument a in order to return (f (g a)) . So compose is another
example of a higher-order function: the functions f and g are inputs, and the
function Ax. (f (g x)) is then an output.

5.2 Operational semantics: full /3-reduction 

We begin our study of the semantics of lambda-calculus using a small-step reduc
tion relation. We will relate this to a big-step evaluation relation in Section 5.5 be
low. We will actually consider several different small-step semantics for lambda
calculus. The first of these is a non-deterministic reduction semantics called full 
f3-reduction ("beta-reduction"), defined by the rules of Figure 5.2.

The first rule in Figure 5.2 is called the f3-reduction rule, and passing from 
(Ax. t) t' to [t' /x]t is called f3-reduction. We will define the notation [t' /x]t for
capture-avoiding substitution formally just below: roughly speaking, it just re
places variable x by term t' in term t, avoiding violations of scoping that might
arise if two differently scoped variables have the same name. The other rules 
specify that reduction is compatible with the other term-forming operations. As 
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a bit of further terminology: any term of the form ((Ax.t) t') is called a f3-redex 
("reducible expression"), and one sometimes speaks of contracting the redex to its 
contractum [ t' Ix] t. 

5.2.1 Capture-avoiding substitution 

The notation [t' Ix] t is standard for capture-avoiding substitution of t' for x in 
t. This means to replace all free occurrences of x in t with t', renaming bound 
variables if necessary to avoid capturing free variables of t'. An occurrence of x 
in t is free iff it is not beneath a lambda-abstraction introducing x. So the leftmost 
occurrence of x is free in the following term, while the rightmost is not: 

(Ay.x) Ax.x 

Substitution is capture-avoiding in the sense that we do not allow it to change 
the scoping of variables (that is, whether they are global or local, and if local, 
which lambda-abstraction introduced them). For example, below we rename the 
lambda-bound x to z, in order to avoid having that lambda capture the underlined 
x: 

[�/y]Ax. (x y) = Az. (z �) 

This result preserves the scoping of variables, since � is still globally scoped in 
the contractum. In contrast, if substitution were not capture-avoiding, we would 
get the term Ax.(x �), where the underlined x has been captured: its scope has 
changed from global to local. 

Formally, we can define capture-avoiding substitution as follows: 

[t/x]x 

[t/x]y 

[t!x](t1 t2) 

[t/x]Ax.t1 

[t!x]Ay.t1 

t 

y,if x-f-y 

([t/x]t1) ([t/x]t2) 

Ax.ti 

Ay.[t/x]t1, if x -1- y and y tJ_ FV(t) 

This definition relies on a function FV( ·),for computing the set of free variables of 
a term: 

FV(x) 

FV(t1 t2) 

FV(Ax.t) 

{x} 

FV(t1) U FV(t2) 

FV(t) \ {x} 

The definition of FV( ·)just removes the bound variable x when passing from the 
body of the A-abstraction to the A-abstraction itself. (Recall that 51 \ 52, also writ
ten 51 - 52, denotes the difference of two sets; see the review of sets and operations 
on sets in the "Mathematical Background" section.) The definition of capture
avoiding substitution omits a third case for substituting into a A-abstraction, namely 
the case where we are substituting t for x in Ay.t1, and y E FV(t1). We explain next 
why this is justified. 



5.2 Operational semantics: full ,6-reduction 129 

£\'.-equivalence. When we wish to apply capture-avoiding substitution, we can 
always ensure that we have renamed bound variables in such a way that we are 
never blocked from applying the last defining equation above for substitution. 
One way to justify this practice is to stipulate that we are not actually going to 
work with terms, but rather with equivalence classes of terms with respect to so
called £\'.-equivalence. This is the equivalence relation determined by equating any 
two terms which are the same except that one term has.Ax.t at a position where the 
other term has .Ay.[y I x]t, where the result [y I x]t of capture-avoiding substitution 
is indeed defined. So we are allowed to rename .A -bound variables, as long as we 
do so in a scope-preserving way. We write t =a t' in this case. For example, we 
have these positive instances of £\'.-equivalence: 

• .Ax.xx =a .Ay.y y

• (.Ax.x) x =a (.Ay.y) x

• (.Ax.x .Ay.y) =a (.Ax.x .Ax.x) 

And here are some negative instances: 

• .Ax.x y -I-a .Ay.y y, because they in the first term has been captured moving
to the second term. 

• (.Ax.x) y =a (.Ax.x) z, because we are only allowed to rename bound vari
ables, and here we renamed the free occurrence of variable y to z.

In some situations, for example when doing computer-checked proofs, it is nec
essary to work out even more formal details of these definitions, but this level of 
formalization will suffice for our purposes in this book. 

Here are some further examples of capture-avoiding substitution: 

[x x/y].Ax.y x 
[.Ax.x x/y].Ax.y x 
[x .Ax.x/y].Ax.y x 

= .Az.x x z 
= .Ax.(.Ax. xx) x 
= .Az. ( x .Ax. x) z 

In the first example, we must rename the bound x to z, to avoid capturing the free 
x in xx, which is being substituted for y. In the second example, there is no need 
for such renaming, since the term being substituted for y does not contain x free 
(though it does contain x bound). In the final example, the term being substituted 
for y contains x free and x bound. In this case, we must rename the bound x in 
the term into which we are doing the substitution (namely, .Ax.y x), but we do not 
need to rename the bound x in the term which we are substituting for y. 
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5.2.2 Example reductions 

Here is an example derivation using the rules above to show that Ax .x ( ( Az.z z) x) 
reduces to Ax.x (xx). 

(Az.z z) x "-+xx f3 
--------- app2 x ( ( Az .z z) x) "-+ x ( x x) 
------------ lam Ax.x ((Az.z z) x) "-+ Ax.x (xx) 

As an alternative to writing out such derivations for reductions, we can simply 
underline the redex that is being reduced: 

Ax.x ((Az.z z) x) "-+ Ax.x (xx) 

Underlining notation is convenient when we chain reduction steps. The under
lined redex is always the one being reduced by the next reduction. So for a simple 
example, consider the term ((Aw.w) x) ((Aw.w) y) ((Aw.w) z). There are three re
dexes here. If we reduce first the left one, then the middle one, and then the right 
one, we get this sequence of reductions: 

((Aw.w) x) ((Aw.w) y) ((Aw.w) z) "-+ 
x ((Aw.w) y) ((Aw.w) z) "-+ 
x y ((Aw.w) z) "-+ 

xyz 

We will use the term reduction sequence to refer to a sequence of steps like this 
one just shown (whether or not we choose to underline the redexes). A maximal 
reduction sequence is one which is either infinite or ends in a normal form. 

5.2.3 Non termination 
For another example, the following reduction sequence shows that the term in
volved has no normal form . A normal form is a term t which cannot reduce; that 
is, for which t "-+ t' is not derivable for any t'. Terms without a normal form are 
also said to diverge . 

(Ax.xx) (Ax.xx) "-+ 
(Ax.xx) (Ax.xx) "-+ 

(Ax.xx) (Ax.xx) "-+ 

This infinite maximal reduction sequence shows that"-+ is a nonterminating re
lation: not every reduction sequence is finite. This example is an example of a 
looping term, which is one that can reduce to a term containing (possibly a sub
stitution instance of) itself. An example of a nonlooping nonterminating term is 
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(Ax.xx) (Ax.xx x), with the following reduction sequence: 

(Ax.xx) (Ax.xxx) rv> 

(Ax.xxx) (Ax.xxx) rv> 

(Ax.xx x) (Ax.xx x) (Ax.xx x) rv> 

(Ax.xx x) (Ax.xx x) (Ax.xx x) (Ax.xx x) rv> 

131 

Every term in this sequence after the first one, though, is a looping term, since 
each such term appears in all the following terms in the sequence. Let us call 
a term persistently nonlooping nonterminating if both it and all terms to which 
it reduces using the reflexive transitive closure rv> * of rv> (see Section 4.2.2) are 
also nonlooping nonterminating. For an example of a persistently nonlooping 
nonterminating term, first define: 

F = Ay.Ax. x (Az. y) x 

Now the term F (Az.z) Fis persistently nonlooping nonterminating: 

F (Az.z) F rvt * F (Az.Az.z) F rvt * F (Az.Az.Az.z) F rvt *  

It is a basic fact of recursion theory that if a programming language i s  recursive 
and every program written in it is guaranteed to terminate, then there are termi
nating functions which cannot be written in that language. So to get a Turing
complete language, it is necessary to accept the possibility of divergence of pro
grams. 

5.2.4 Nondeterminism 

The reduction relation defined by the rules above is non-deterministic, in the sense 
that there are terms t, ti, and t2, with ti and t2 distinct, such that t rv> ti and t rv> t2. 
The example just above hints at this: there are three redexes, and we can reduce 
them in any order. Here is another example: 

((Ax.xx) ((Ay.y) z)) rv> 

((Ax.xx) ((Ay.y) z)) rv> 

((Ay.y) z) ((Ay.y) z) 
((Ax.xx) z) 

This means that a single term may have multiple maximal reduction sequences 
that begin with that term. Now it happens that even though full f3-reduction is 
non-deterministic, it is still confluent: whenever we have t rv> * ti and t rv> * t2, then 
there exists a f such that ti rv> * f and t2 rv> * f. This means that however differently 
we reduce t (to get ti and t2), we can always get back to a common term f. In the 
above example, f is (z z). Section 9.1 discusses confluence and related concepts in 
more detail, and gives a proof that lambda calculus is confluent. 

5.2.5 Some congruence properties of multi-step reduction 

We can easily prove the following lemmas about multi-step reduction. We just 
prove one of them, as the proofs of the others are completely similar. 
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Lemma 5.2.1 (Congruence of multi-step reduction, body of A-abstractions). If t' � * 
t', then Ax.t �* Ax.t'. 

Lemma 5.2.2 (Congruence of multi-step reduction, functional part of applications). 
If ti �* t�, then ti t2 �* t� t2. 

Lemma 5.2.3 (Congruence of multi-step reduction, argument part of applications). 
If t2 �* t;, then ti t2 �*tit;. 

Proof The proof is by induction on the structure of the derivation of t2 � * t;. 

Case: 

We can construct this derivation: 

Case: 

t2 � t; 
---- appl 
ti t2 � ti t; 
ti t2 �* ti t; 

t2 � * t� t� � * t; 
t2 �* t; 

By the induction hypothesis applied separately to each of the premises of this 
derivation, we have ti t2 �* ti t� and also ti t� �* ti t;. So we can construct
this derivation: 

Case: 

ti t2 � * ti t� ti t� � * ti t; 
ti t2 �* ti t; 

We can construct this derivation: 

D 

5.3 Defining full /3-reduction with contexts 

Since any given lambda-term can contain many different (3-redexes (giving rise 
to different reductions of the term, as explained in the previous section), we may 
define different operational semantics by specifying different orders for reduction 
of the (3-redexes in a term. One technical device for doing this is using contexts. 

A context is a term containing a single occurrence of a special variable denoted 
*, and called the hole of the context. Often people use C as a meta-variable for 
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contexts. If C is a context, then C [t] is the term obtained by inserting the term t into 
the context's hole. More formally, C[t] is obtained by grafting the term tin for*· 
Grafting is simply a form of substitution which allows variables in t to be captured 
by lambda-abstractions in C. For example, if C is Ax.*, then C[x] is actually Ax.x. 
In contrast, using capture-avoiding substitution, we would have 

To define reduction using a particular order, we use a set of contexts to specify 
where reductions may take place. For example, for full f3-reduction, the contexts 
are all possible ones: 

contexts C ::= * I ( C t) I (t C) I Ax.C 

Wherever the* is, a reduction is allowed. So as an alternative to the definition in 
Section 5.2, we can define the operational semantics of full f3-reduction using just 
the single following rule: 

--------- ctxt-/3 
C[(Ax.t) t'] � C[[t' /x]t] 

This rule decomposes a reduced term into context C and redex (Ax.t) t'. 

5.3.1 Examples 

Consider the following reduction, written with underlining notation: 

Ax.(Ay.x y) ((Az.z) x) � 

Ax.(Ay.x y) x � 

Ax.x x 

Here are the contexts used for the two reductions (Co for the first reduction, C1 for 
the second): 

Co Ax.(Ay.x y) * 
C1 Ax.* 

These are obtained just by replacing the underlined redex with a *, as y ou can 
confirm. For a second example, consider this different reduction sequence from 
the same starting term: 

Ax.(Ay.x y) ((Az.z) x) � 

Ax.x ((Az.z) x) � 

Ax.x x 

The contexts used for these reductions are: 

Co Ax.* 
C1 Ax.x * 
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5.4 Specifying other reduction orders with contexts 

Different operational semantics can now be defined by specifying different sets of 
contexts. These semantics are also called reduction strategies or reduction orders. 
They are all restrictions of full ,8-reduction: every reduction step allowed by one 
of the operational semantics below is also allowed by full ,8-reduction. 

5.4.1 Left-to-right call-by-value 

contexts C *I (C t) I (v C) 

values v Ax.t 

We are also specifying here a set of values v, which will turn out to be normal 
forms with respect to left-to-right, call-by-value operational semantics. For un
typed lambda calculus, the values are just the A-abstractions, but for extensions of 
lambda calculus, the set of values will be extended to include other normal forms, 
which are intended to be the final results of reduction. 

The central idea in call-by-value operational semantics is that we will only al
low ,8-reductions where the argument is a value. This is expressed using a re
stricted form of the ctxt-,8 rule (,Bv is for" ,B value"): 

--------- ctxt-,Bv 
C[(Ax.t) v] � C[[v/x]t] 

The "left-to-right" part of the name for this reduction order comes from the fact 
that we will first reduce the function-part t of an application t t' to a value, before 
we attempt to reduce the argument-part. This restriction is expressed by writing 
( v C) in the grammar for contexts. The semantics does not allow reduction in
side a lambda-abstraction. Left-to-right call-by-value is a deterministic reduction 
strategy: for each term t, there is at most one t' such that t � t'. 

Usually we consider call-by-value strategies only for terms t which are closed; 
that is, when FV(t) = 0 (see the definition of FV in Section 5.2.1). For closed 
terms, the set of values is the same as the set of normal forms. For open terms (i.e., 
ones which may contain free variables), we can have normal forms like just x or 
(x Ay.y), which are not values. 

As an example, here is a left-to-right call-by-value reduction sequence, with 
redexes underlined: 

(Ax.x) (Ay.y) ((Aw.w) (Az.(Aa.a) z)) � 

(Ay.y) ((Aw.w) (Az.(Aa.a) z)) � 

(Ay.y) (Az.(Aa.a) z) � 

Az.(Aa.a) z 

Notice that we cannot reduce this final term Az.(Aa.a) z. That is because the context 
we would need to reduce the redex is Az.*. But that context is disallowed by the 
grammar for contexts C, given at the start of this section. So we see here that 
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this operational semantics gives us different normal forms from those of full (3-
reduction. In full (3-reduction, we would extend the above reduction sequence 
one more step to get Az.z as our normal form. But in call-by-value, Az.(Aa.a) z is
the (unique) normal form for the starting term. 

5.4.2 Right-to-left call-by-value 

contexts C *I (t C) I (Cv)

values v Ax. t 

We again use the ctxt-/3v rule. This is just like the previous operational seman
tics, except now we evaluate applications (t t') by first evaluating t' and then t. 
So if we use the same example term as in the previous section, we will get this 
different reduction sequence: 

(Ax.x) (Ay.y) ((Aw.w) (Az.(Aa.a) z)) � 

(Ax.x) (Ay.y) (Az.(Aa.a) z) � 

(Ay.y) (Az.(Aa.a) z) � 

Az.(Aa.a) z 

5.4.3 Normal order (leftmost-outermost) 

This semantics is not as conveniently describable with contexts. Suppose S is a set 
of redexes, all of which occur in term t. We define the leftmost of these redexes in 
t to be the one which occurs furthest left int. So for example, (Ax.x) (Ay.y) is the
leftmost redex in the following term. The underlining makes this clear, as the line 
beneath the leftmost redex starts furthest to the left of any such lines. 

(Ax.x) (Ay.y) ((Aw.w) (Aw.w)) 

In the following term, the leftmost redex contains a smaller redex, which is to the 
right of it (since the line beneath the smaller redex starts to the right of the starting 
point of the bigger redex's line): 

(Ax.(Ay.y) x) (Ay.y) 

A redex of t is outermost if it is not contained in another redex. For example, if we 
abbreviate (Ax.x) (Ay. (Az.z) y) as X, then XX has two outermost redexes.

The usual definition of normal-order reduction states that we always reduce 
the leftmost of the outermost redexes. In fact, it is equivalent just to say the left
most of all the redexes in the term (more briefly, "the leftmost redex"), since the 
leftmost of the outermost redexes must be the leftmost redex. Normal-order re-
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duction is a deterministic strategy. It gives us this reduction sequence for XX: 

(Ax.x) (Ay.(Az.z) y) ((Ax.x) (Ay.(Az.z) y)) � 

(Ay.(Az.z) y) ((Ax.x) (Ay.(Az.z) y)) � 

(Az.z) ((Ax.x) (Ay.(Az.z) y)) � 

(Ax.x) (Ay.(Az.z) y) � 

Ay.(Az.z) y � 

Ay.y 

It is instructive to compare this sequence with the one we would get in left-to-right 
call-by-value reduction: 

(Ax.x) (Ay.(Az.z) y) ((Ax.x) (Ay.(Az.z) y)) � 

(Ay.(Az.z) y) ((Ax.x) (Ay.(Az.z) y)) � 

(Ay.(Az.z) y) (Ay.(Az.z) y) � 

(Az.z) (Ay.(Az.z) y) � 

Ay.(Az.z) y 

Note that the call-by-value reduction ends in a term which is not a normal form 
with respect to normal-order reduction, because it contains a redex beneath a 
lambda-abstraction. 

The normal-order reduction strategy gets its name from the fact that for any 
term t, if t reduces to a normal form n using full /3-reduction, then it also does so 
using normal-order reduction. This is a consequence of a result called the Stan
dardization Theorem, which is not covered in this book (see Section 11.4 of [5]). A 
definition of contexts for this reduction strategy is possible, but a bit complicated 
(and not standard, to my knowledge): 

contexts C .. _ DI Ax.C .. 

application contexts D .. _ 
* I (D t) I (n C) .. 

head-normal terms n . .  _ x I n N  .. 

normal terms N .. _ Ax.NI n .. 

5.4.4 Call-by-name 

contexts C ::= * I (C t) 

This strategy does not reduce inside lambda-abstractions (so it differs in that re
spect from normal order), and unlike call-by-value strategies, it does not require 
arguments to be evaluated before doing /3-reductions with them. Call-by-name is 
related to lazy evaluation, which we will explore in more detail in Section 11.3. An 
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Ax. t -l}. Ax. t 

Figure 5.3: Big-step call-by-value operational semantics 

example reduction sequence is: 

(Ax.Ay.Az.x) ((Ax.xx) (Ax.xx)) ((Az.z) Az.z) 'Vf 

(Ay.Az.((Ax.x x) (Ax.xx))) ((Az.z) Az.z) 'Vf 

Az.((Ax.x x) (Ax.xx)) 
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The starting term of this reduction diverges with all the other reduction orders 
above, while here it converges (although the term to which it converges is not a 
normal form with respect to full {3-reduction). 

5.5 Big-step call-by-value operational semantics 

In this section and the next, we study a big-step operational semantics correspond
ing to the call-by-value small-step relations above. Figure 5.3 defines this big-step, 
call-by-value evaluation relation for closed terms. The reason this is just intended 
for closed terms is that the relation is undefined when the first term is a vari
able. This also makes the relation undefined on applications whose functional 
parts evaluate to variables, for example. Note that the first rule, for applications, 
takes three premises: one for evaluating the functional part t1 of the application 
to a value A .  t�; one for evaluating the argument part t2 to a value t;; and one 
more for evaluating the contractum [t;!x]t� to a final value t. Here is an example 
derivation using these rules: 

(Ax.Ay.x) -l}. (Ax.Ay. x) Az. z -l}. Az.z Ay.Az. z -l}. Ay.Az. z 
(Ax.Ay. x) (Az.z) -l}. Ay.Az.z D1 D2 

(Ax.Ay. x) (Az. z) (Aw.w w) -l}. Az. z 
where: 

D1 Aw. ww -l}. Aw.ww 

D2 Az. z -l}. Az. z 

A first observation we can make about this relation is that if t -l}. t', then t' is a 
value, in the sense of Section 5.4.1 above (i.e., it is a A-abstraction). 

Theorem 5.5.1 (Results of evaluation are values). If t -l}. t', then t' = Ax.t", for some 
x and t". 

Proof The proof is by induction on the structure of the derivation of t -l}. t'. 
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Case: 

ti t2 � t 

By the induction hypothesis for the derivation given for the third premise, t 
Ax'. t', for some x' and t'. This is sufficient to conclude that the final result, in the 
conclusion of this inference, has that same required form. 

Case: 

Ax. t � Ax. t 

The result of the evaluation has the required form. 
D 

5.6 Relating big-step and small-step operational semantics 

We can now relate our big-step semantics with the left-to-right call-by-value small
step semantics we defined above (Section 5.4.1). This section provides a good
example of a nontrivial proof about operational semantics. The proof is rather 
involved, and not every reader will wish to wade through all the details. The main 
theorem, though, is an important one. As a small note: we could easily modify the 
proof below to relate the big-step semantics with right-to-left call-by-value small
step semantics. As a corollary, this would serve to relate the left-to-right and right
to-left small-step relations to each other. 

Theorem 5.6.1 (Equivalence of big-step and small-step CBV semantics). We have 
t � v iff t rw

* v (using the small-step semantics of Section 5.4.1). 

Proof (::::} ). We will first prove the left-to-right implication. So suppose t � v. We 
will now prove t rw

* v by induction on the structure of the derivation oft � v. 
Since we know that results of big-step evaluation are values by Theorem 5.5.1, we
will use meta-variables for values below, for the results of evaluation. 

Case: 

ti t2 � v 

By the induction hypotheses for the derivations given for the three premises of 
this rule, we have: 

ti rw
* Ax. t� 

t2 rw
* V2 

[ V2 / X] t� rw 
* V 

Our goal is now to use these facts to construct the reduction sequence indicated 
by: 
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Notice that the step (Ax. t�) v2 � [ v2 Ix] t� is a legal CBV step, since the argument 
v2 is a value. To construct the sequence, we just use the following two lemmas 
(and transitivity of�*), which we will prove after we complete the current proof 
of Theorem 5.6.1. 

Lemma 5.6.2 (Congruence of multi-step reduction, functional part of applications). 
If t �* v, then t t' �* v t'. 

Lemma 5.6.3 (Congruence of multi-step reduction, argument part of applications). 
If t' � * v', then v t' � * v v'. 

Case: 

Ax. t -lJ, Ax. t 

We haveAx.t �* Ax.t. 

End proof ( � ). 

Proof(-¢:=). We will now assume t �* v, and prove t -lJ, v. From the derivation of 
t � * v, we can extract the ordered list of single steps taken to get from t to v: 

This extraction can be easily defined by recursion on the structure of the deriva
tion, based on the rules for reflexive transitive closure in Section 4.2.2. The defini
tion is in Figure 5.4. We proceed now by induction on the number n of single steps 
in this extracted list ti � · · · � tn. For the base case, if there are no single steps,
this implies that t = v. In that case, we obtain v -lJ, v using the big-step rule for 
evaluating A-abstractions (since values v are just A-abstractions). 

For the step case, we have at least one single step between t and v. We will 
now argue that there must be some step of the form (Ax. t') v' � [v' /x]t' in our 
sequence ti � · · · � tn. That is, there is some reduction in the sequence which 
uses context*· If not, then all steps must take place inside some context Cother 
than*· This would imply that the final result v is of the form C[t'], for some such 
C and t. This in turn would imply, by the definition of left-to-right call-by-value 
contexts C (Section 5.4.1), that v is an application, which is impossible, since values 
are just A-abstractions. 

So consider the first such top-level (i.e., with just* for the context C) ,6-reduction 
step in our sequence. Our sequence must look like: 

t �* (Ax. t') v' � [v' /x]t' �* v 

Since all reduction steps between t and the displayed ,6-redex occur with context 
Cother than*, we know that t must be some application ta tb, and what we know 
about our reduction sequence can be further refined to: 

ta tb �* (Ax. t') tb �* (Ax. t') v' � [v' /x]t' �* v 

This is justified by the following lemma, proved in Section 5.6.2 below. 
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a '"'-+ a' 
a '"'-+ * a' yields a '"'-+ a' 

ai '"'-+ * a2 a2 '"'-+ * a3 L1 concatenated with L2 
* ai '"'-+ a3 yields where Li is extracted from first subproof 

and L2 is extracted from second subproof 

a '"'-+* a yields empty list 

Figure 5.4: Translating multi-step derivations to multiple single-steps 

Lemma 5.6.4. If ta tb '"'-+ * t� t� using only single steps where the context C is not *, 

then we have ta '"'-+ * t� and tb '"'-+ * t�. 

Consider now these three multi-step reductions: 

ta '"'-+* Ax.t' 
tb '"'-+ * v' 
[ v' Ix] t' '"'-+ * v 

In each case, we know that the length of the reduction sequence is less than the 
length of our original reduction sequence, because that sequence contains one ad
ditional step, namely (Ax. t') v' '"'-+ [ v' Ix] t', that is omitted from all of these se
quences. So we may apply our induction hypothesis to the sequences of steps 
corresponding to each of these three displayed facts, to obtain: 

ta 
tb 
[v' Ix] t' 

-lJ, Ax. t' 
-lJ, v' 
-lJ- v 

We can now assemble these pieces as follows to complete the proof: 

ta -lJ, Ax. t' tb -lJ, v' [v' /x]t' -lJ, v 
ta tb -lJ, V 

End proof 

5.6.1 Proofs of Lemmas 5.6.2 and 5.6.3 above 

Proof of Lemma 5.6.2. First, assume t '"'-+ * v. We must prove that t t' '"'-+ * v t'. T he 
proof is by induction on the structure of the derivation oft '"'-+* v. 
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Case: 
t � v 

t �
* 

v 
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Suppose that the context used for t � v is C, the red ex R, and the contractum C. 
Then we have this derivation for the required reduction: 

t t' � v t' 
t t' �

* 
v t' 

The premise is justified using context C t', which is a legal left-to-right CBV con
text, and again redex R and contractum C. 

Case: 
t �

* t t �
* 

v 

t �
* 

v 

We use the induction hypothesis for the two subproofs to obtain the two premises 
in the derivation below, which is sufficient for this case: 

t t' � 
* t t' t t' � 

* 
v t' 

t t' �
* 

v t' 

Case: 

v �
* 

v 

The required derivation is just: 

v t' �
* 

v t' 

D 

Proof of Lemma 5.6.3. The last two cases of this proof are very similar to those for 
Lemma 5.6.2, so we just consider the first case: 

Case: 
t' � v

' 

t' �
* 

v
' 

Suppose that the context used for t � v is C, the redex R, and the contractum C. 
Then we have this derivation for the required reduction: 

v t' � v v
' 

v t' �
* 

v v
' 

The premise is justified using context v C, which is a legal left-to-right CBV context, 
and again redex R and contractum C. 

D 
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5.6.2 Proof of Lemma 5.6.4 

Proof Assume that ta tb 'Vt* t� tb using only single steps where the context C is 
not*· We must show that ta 'Vt* t� and tb 'Vt* tb. The proof is by induction on 
the structure of the derivation of ta tb 'Vt* t� tb. 

Case: 
ta tb 'Vt t� tb 

ta tb 'Vt* t� tb 

By assumption, the single step in the premise has some context Cother than*· It 
must either be of the form C' tb or else ta C'. In the latter case, ta must be a value, 
or else the context is not a legal left-to-right CBV context. In the former, we have 
ta 'Vt t� and tb = tb; while in the latter case we have tb 'Vt tb and t� = ta. Either 
way, we then obtain ta 'Vt* t� and tb 'Vt* tb using the same inference rule for 
reflexive transitive closure as for this case (for whichever of ta and tb takes a step 
here), and also the reflexivity rule for reflexive transitive closure (for whichever of 
ta and tb does not take a step here). 

Case: 
ta tb 'Vt* t" t" t" t" 'Vt* t' t' a b a b a b 

ta tb 'Vt* t� tb 

By the induction hypothesis for the two subproofs, we have these facts: 

ta 'Vt* t� 

t" 'Vt* t' a a 

tb 'Vt* t� 

t" 'Vt* t' b b 

Using the transitivity rule for the reflexive transitive closure, we can glue together 
the proofs corresponding to the top two and the bottom two facts, respectively, to 
obtain the desired facts: 

Case: 

ta tb 'Vt* ta tb 

In this case, ta = t� and tb = tb. We just use reflexivity again to get ta 'Vt* ta and 
tb 'Vt* tb. 

5. 7 Con cl us ion

D 

In this chapter, we have seen the abstract syntax and operational semantics of un
typed lambda calculus. We obtain different reduction relations (i.e., small-step 
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evaluation relations) by restricting where the f3-reduction steps - which substitute 
arguments for input variables when functions are applied - can occur. We saw 
also how to relate one small-step semantics (namely, left-to-right call-by-value se
mantics) with a big-step semantics. 

Unlike the WHILE language studied previously, lambda calculus is not based 
on an idea of implicit state. Rather, it provides a model of computable mathe
matical functions without implicit state. In the next chapter, we will see how to 
program in untyped lambda calculus, and then consider how to add a type system 
and support for other features of practical programming. 

See [12] for further development of the idea of reduction using contexts, in par
ticular to so-called abstract machines, which are reduction semantics optimized 
for practical efficiency. 

5.8 Basic Exercises 

5.8.1 For Section 5.1, syntax of lambda terms 

1. Draw the syntax trees for the following terms of lambda calculus. You need 
to follow the parsing conventions described in Section 5.1, for example to 
understand that x y x is just less parenthesized notation for ( ( x y) x) [3 points 
each]: 

(a) Ax.Ay.(x y) 

(b) Ax.x (Ay.y y) 

(c) x Ax.x y x 

2. Find the most specific pattern you can which matches the following lambda 
terms [3 points]. That is, you are looking for the most informative expres
sion you can find in our meta-language, where that expression consists of 
lambda-calculus operators and meta-variables t, t', etc., and where both terms 
below are instances of that meta-language expression: 

• Ax.(Ay.y) (xx) 

• Ax.x (x Ay.y) 

3. Write a closed lambda term (that is, one with no free variables) with at least 
three lambda-binders in it and where every bound variable is used at least 
once in the body of its lambda abstraction [2 points]. 

4. Fully parenthesize the following terms: 

(a) Ax.Ay.x 

(b) xx x 

(c) x Ax.xx 
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5. Drop as many parentheses as possible from the following fully parenthe
sized terms, according to the conventions in Section 5.1.1. The resulting term
should have the same structure as the original one, but with as few paren
theses as possible.

(a) ((Ax.(x x)) x) 

(b) ((Ay.y) (Ax.(x (xx)))) 

( c) ( (Ax. ( Ay. ( ( x y) x))) z) 

6. Rename variables in the following terms so that global variables (i.e., ones
free in the term) have different names from local ones (i.e., ones introduced
by A), and so that different uses of A introduce variables with different names.
This should be done without changing the names of global variables. For ex
ample x Ax.x could be renamed to x Ay.y, but not y Ax.x (because we are not
allowing global variables to be renamed).

(a) x y Ax.Ay.z 

(b) (Ax.xx) (Ax.xx) 

(c) (Ax.x) y (Ax.x y) 

5.8.2 For Section 5.2.1, capture-avoiding substitution 

1. Using the definition in Section 5.2.1, compute the set of free variables of the
following terms [2 points each]:

(a) x y Ax.x y 

(b) Ax.y xx 

(c) Ax.(Ay.y) y Ax.x 

2. Compute the result of the following substitutions, renaming bound variables
as necessary so that the substitution is defined:

(a) [x/y](Az.z y) 

(b) [(x x)!x](Az.x y z) 

( c) [ ( z x) Ix]( Az. x z) 

5.8.3 For Section 5.2, full f3-reduction 

1. Using the proof rules given at the start of Section 5.2 for full f3-reduction,
write out derivation trees for each of the following facts (similar to the one
shown at the start of Section 5.2.2):

(a) y ((Ax.xx) Az.z) � y ((Az.z) Az.z) 

(b) Ax.Ay.(Ax.x) y � Ax.Ay.y 

(c) (Ax.x) ((Ay.x y) Az.z) � (Ax.x) (x (Az.z)) 



5.8 Basic Exercises 145 

2. Which of the following terms are in normal form (see Section 5.2.3 for the 
definition)? 

• Ax.x Ay.y x 

• x (Ay.y) Az.z 

• x((Ay.x)y) 

• Ax.Ay.y Az.z 

• Ax.Ay.(Az.z) y 

3. For each of the following terms, write out a single maximal reduction se
quence, with redexes underlined (similar to the one shown at the end of 
Section 5.2.2), that begins with that term. Some of these terms may have 
more than one sequence possible. You just need to pick a single reduction 
sequence and write it out (which one you choose does not matter). All of the 
terms reach a normal form no matter which sequence you use. You do not 
need to give derivations, as in the previous problem, to justify the steps of 
the reduction sequence. 

(a) (Ax.(Ay.y) x) (Az.z) 

(b) Ax.(Ay.y y) ((Az.z) x) 

( c) z ( ( Ay. y x) ( Az. y z)) 

4. List all the �-redexes (i.e., terms of the form (Ax.t) t') in each of the following 
terms: 

(a) (Ax.(Ax.x) x) Ay.y 

(b) (Ax.(Ay.y) Az.z) (Ax.x) (Ay.y) 

(c) (Ax.Ay.y) ((Ax.x) (Ay.y)) 

5. List all the full �-reduction sequences possible (by reducing redexes in all the 
different possible orders) for each of the following terms, using underlining 
notation: 

(a) (Aw.w) (Ax.x) ((Ay.y) (Az.z)) 

(b) (Ax.Ay.x) (Ax.x) ((Ax.x) (Ay.y)) 

5.8.4 For Section 5.3, full /3-reduction and contexts 

1. Compute the result of the following graftings, for the given context C: 

(a) C[(x y)], where C = Ax.x *· 

(b) C[Ax.x], where C = x *· 

(c) C[(Ax.x) Ay.y], where C = *· 

2. For each of the reduction steps shown (with redexes underlined), write down 
the corresponding context: 
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(a) Ax.(Ay.y y) ((Az.z z) x) rv> Ax.(Ay.y y) (xx) 

(b) (Ax.x) ((Ay.y y) Az.(Aw.w) z) rv> (Ax.x) ((Ay.y y) Az.z) 

(c) (Ax.x) (Ay.y) Az.z z rv> (Ay.y) Az.z z 

3. Write down all the full {3-reduction contexts for which the following terms 
can be decomposed into context and redex: 

(a) (Ax.(Ay.x) x) (Az.(Ay.y) z) 

(b) (Ax.xx) ((Ay.Az.y) Ay.Az.z) 

(c) (As.Az.(Ax.x) (s z)) (Ax.Ay.((Az.y) x)) 

5.8.5 For Section 5.4, other reduction orders 

1. For each of the following expressions, list all the reduction orders (including 
full {3-reduction) for which they are legal contexts. 

(a) Ax. * x 

(b) * (Ax.x) Ay.y 

(c) (Ax.x) * (Ay.y) 

(d) (Ax.x) (Ay.y) * 

(e) (Ax.x) Ay.* 

2. Consider the following term: 

(Ax.Ay.x) (Az.z) ((Ax.x) (Ay.y)) 

(a) For this term, show both the left-to-right and the right-to-left call-by
value reduction sequences which end in values, using underlining no
tation. 

(b) Write down the contexts used for each step in those reduction sequences, 
and confirm that all the contexts are accepted by the appropriate gram
mar in the chapter. 

3. Consider the following term: 

(Ax.Ay.Az.y) ((Ax.xx) (Ax.xx)) ((Ax.x) (Ax.x)) 

(a) For this term, show the normal-order reduction sequence ending in a 
normal form, using underlining notation. 

(b) Write down the contexts used for each step in that reduction sequence, 
and confirm that they are accepted by the appropriate grammar in the 
chapter. 
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5.9 Intermediate Exercises 

1. Find a lambda-calculus term t and an infinite reduction sequence t1 ""'* 

t2 "-"* · · · where again ti+l is on the order of twice the size of ti, for all
i E IN.

2. For purposes of this problem, define t + t' to mean 3t" .t ""'* t" /\ t' ""'* 

t", where ""' is normal-order reduction (where the outermost ,8-redex is re
duced, and reduction proceeds under ,.\-binders). As usual, variables can be
safely renamed, so that we consider ,.\x.x equivalent to ,.\y.y, for example.

For which of the following terms do we have t + ,.\x.,.\y.y? Please indicate all 
terms which satisfy this property. 

(a) ,.\x.Ay.y 

(b) (,.\x.x) ,.\y.y 

(c) (,.\x.x x) (,.\y.y) ,.\x.Ay.y 

(d) ,.\x.(,.\x.Ay.y y) (,.\x.x) 

(e) ,.\x.,.\x.(,.\y.y) x 

5.10 More Challenging Exercises 

1. Prove that if n is the normal form of t using left-to-right call-by-value re
duction, then it is also the normal form of t using right-to-left call-by-value
reduction.

2. Prove for all terms t, that if each local variable x is used at most once after
being introduced by its lambda-abstraction in t, then t has a normal form
using full ,8-reduction.

3. Complete developments. This problem is based on material in Section 11.2

of Barendregt's book [5]. We will work with a modified syntax for terms:

terms t ::= x I ,.\x.t I x t I (t t') t" I (,.\x.t) t' I (,.\x.t)1 t' 

We have variables and lambda-abstractions as usual. For applications, we 
have three different main cases, depending on the form of the function-part 
of the application. And if the function part is a lambda-abstraction, it is 
either labeled with Z, drawn from some countably infinite set of labels; or 
else unlabeled. 

Using the contexts for full ,B-reduction in the chapter, we give this modified 
definition for reduction: 

--------- ctxt-,81 
C[(,.\x.t)1 t'] ""' C[[t' /x]t] 
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That is, we only allow reduction of labeled redexes, and hence we call this 
labeled reduction. 

We can erase all the labels in any term t to obtain a term It I in our original
(unlabeled) syntax. Furthermore, suppose we have a labeled-reduction se
quence p, beginning with a term t. We can erase all the labels from the terms
in p, and we will obtain a reduction sequence IPI using full ,B-reduction (with
unlabeled terms). Such a reduction sequence is called a development of ltl. 
If p ends in a normal form (with respect to ctxt-,61), then IPI is called a
complete development. 

(a) Give a labeled term t where all ,6-redexes are labeled, and where ltl = 

(A.x.x ((A.y.y) x)) (A.x.x ((A.y.y) x)). 
(b) Show a complete development of the term It I of the previous problem .

(c) Prove that every labeled term t has a normal form with respect to la
beled reduction. Hint: this is not hard to prove if you pick the right 
reduction strategy. 



Chapter 6 

Programming in Untyped Lambda Calculus 

The previous chapter introduced the lambda calculus, and demonstrated some of 
its power. In this chapter, we will go further, and see how to implement familiar 
data structures and algorithms using lambda calculus. The basic idea is to encode 
data as terms in the lambda calculus. In particular, data will be encoded as cer
tain lambda-abstractions. So every piece of data, including numbers and lists, for 
example, will be encoded as a function. There really is no alternative, unless we 
wish to extend the language with new primitive constructs (as we will do in Sec
tion 11.1). Since the only closed normal forms in lambda calculus are lambda ab
stractions, every piece of data will have to be encoded as one of these. We will con
sider two different lambda encodings in this chapter: one due to Alonzo Church, 
and the other to Dana Scott. The different encodings have different advantages 
and disadvantages, which we will discuss. 

6.1 The Church encoding for datatypes 

For any encoding of data like natural numbers, lists, or booleans as pure lambda 
terms (and we say pure here to emphasize that we have not added any additional 
constructs to the lambda calculus; it is exactly as presented in the previous chap
ter), the central issue is how to view the data as a function. W hat is the central 
functional abstraction that we use when programming with data? The Church en
coding takes iteration through the data as the central operation we will perform 
with data. Note that in this section, we will need to assume we are using either 
full f3-reduction or else normal order reduction. This is because we will need to 
reduce under A-bindings, in order to get the expected results of basic arithmetic 
operations on Church-encoded numbers. 

6.1.1 Unary natural numbers 

For what is hopefully an intuitive starting example, let us consider the natural 
numbers in unary notation, also known as Peano numbers: 

0 1 2 3 4 

11 111 1111 

Z (5 Z) (5 (5 Z)) (5 (5 (5 Z))) (5 (5 (5 (5 Z)))) 
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Here, I am listing the usual decimal numbers in the first line, the number in unary 
(where we have just one digit, written I) on the second line, and then the number 
using constructor notation (explained next). The sole piece of subdata for a num
ber is the predecessor of that number. If the number is 0, there are no subdata (and 
nothing to write in unary notation on the second line). 

In constructor notation, we generate the natural numbers from Z (a construc
tor with no arguments, also called a 0-ary constructor) by applying S, a unary 
constructor. Constructors build bigger data elements from smaller ones: given 
subdata, they create data. They are also injective functions: given different sub
data as inputs, they will produce different data as outputs. Each element of the 
datatype is generated by a finite number of applications of the constructors. 

An often used operation we can perform with a natural number is iteration. For 
a mathematical function f and starting value a, let us define then-fold iteration of 
f on a by: 

For example, let double be the function which doubles its natural-number input. 
Then we can define the function pow2 which takes natural number x and returns 
2x by: 

pow2(x) = doublex(l) 

For example, expanding the definition of n-fold iteration, we have 

pow2(3) 
double3(1) 
double( double2 (1)) 
double( double( double1 (1))) 
double( double( double( double0 ( 1)))) 
double( double( double(l))) 
double(double(2)) 
double(4) 
8 

We will overload our iteration notation to apply also to terms, and not just math
ematical functions. If f and a are lambda terms, we recursively define another 
lambda term fn a by: 

For example, x3 y equals x ( x ( x y)). The concept of iteration is central to the 
Church encoding for unary natural numbers, as we will now see. 

6.1.2 Church encoding for unary natural numbers 

Any lambda encoding is charged with representing data, like unary natural num
bers, as pure lambda terms. Assuming those lambda terms are to be closed and 
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have a normal form (reasonable assumptions, one would think, for an encoding), 
then this means that encoded data will always be a A -abstraction of some form. So 
all lambda-encoded data become (lambda calculus) functions. The only question 
is, which functions? 

The Church encoding answers this question in an intuitive and compelling 
way: iteration functions. The number n is going to be encoded as a function which 
iterates another function f a  total of n times on a starting value a. So we want the 
following statement to be true for a Church-encoded number n: 

So we will have: 

3 x y 'Vt* x3 y = x ( x ( x y)) 

Based on this idea, we have the following encoding for unary natural numbers: 

0 ·- Af.Aa.a 
1 ·- Af.Aa.f a 
2 ·- A f.Aa.f (fa) 

n ·- Af.Aa.fn a 

Another way to view this definition is that each number is a function giving an 
interpretation to the constructors Sand Z, based on an interpretation of Sand an 
interpretation of Z. As a constructor term, 2 is S (S Z). If one applies 2 to f and 

a, one gets f (fa). This expression has the same structure as the constructor term 
S (S Z), but with S replaced by f and Z by a. Perhaps for this reason, one often 
sees variables s and z used in place off and a: 

0 ·- As.Az.z 
1 ·- As.Az.s z 
2 ·- As.Az.s (sz) 

n ·- As.Az.sn z 

Given that these are the encodings of the numbers, we can define the constructors 
as follows: 

z 

s 

As.Az.z 
An.As.Az.s ( n s z) 

The term s ( n s z) in the definition of S can be thought of as iterating s one more 
time after iterating s a total of n times starting from z - exactly what ( n s z) com-
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putes. Here is an example to see the definitions of the constructors in action: 

5 (5 Z) 
5 ((An.As.Az.s (n s z)) Z) 

� 5 ((An.As.Az.s (n s z)) Z) 
� 5 As.Az.s (Zs z) 

5 As.Az.s ( ( As.Az.z) s z) 
� 5 As.Az.s ((Az.z) z) 
� 5 As.Az.s z 

5 1 
(An.As.Az.s (n s z)) 1 

� As.Az.s (1 s z) 
As.Az.s ( ( As.Az.s z) s z) 

� As.Az.s ((Az.s z) z) 
� As.Az.s (s z) 

2 

6.1.3 Encoding basic arithmetic functions 

Basic arithmetic functions are easy and elegant to define on Church-encoded nat
ural numbers. One must only be able to view the function as an iteration, in order 
to define it in a direct way on Church-encoded numbers. For example, we can 
think of addition as iterated successor: 

3+4=5(5(54)) 

In other words (and switching to prefix notation), we could view addition this 
way: 

plus nm= 5n m 

In other words, just iterate the 5 function n times starting from m. That is easy to 
do with Church encodings: 

plus:= An.Am.n 5 m 

Multiplication can also be viewed as an iteration: 

3*4 = 4+ (4+ (4+0)) 

We are iterating the "plus 4" function 3 times, starting with 0. So we can view 
multiplication (again, switching to prefix notation) this way: 

mult nm= (plus n)m 0 

This leads to the following definition in lambda calculus on Church-encoded nat
ural numbers: 

mult := An.Am.m (plus n) Z 
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Exponentiation can also be defined as iterated multiplication (this is left as an ex
ercise below). 

Encoding functions as iterations is working so beautifully, you might wonder if it 
ever runs aground. The answer, sadly, is yes, for a very trivial function, which we 
consider next. 

6.1.4 Encoding the predecessor function 

The predecessor operation, which given 4 will return 3, is quite unnatural to define 
as iteration, though it is a basic and useful function. It takes quite some creativity 
to find a way to view the predecessor as an iteration. The standard solution is to 
base predecessor on the following transformation on pairs of natural numbers: 

(n,m) =* (m,m+l) 

For look what happens when we iterate this transformation three times, for exam
ple, starting from (0,0): 

(0,0) =* (0, 1) =* (1,2) =* (2, 3) 

We end up with the pair (2, 3), which amazingly has the predecessor 2 of 3 (the 
number of times we iterated the transformation) as its first component. 

To implement this on Church-encoded natural numbers, we first need a Church 
encoding of pairs. 

6.1.5 Church encoding of pairs 

We can Church-encode pairs of elements ( x, y) using this definition: 

(x,y) = Af.f x y 

This has exactly the desired effect: when a pair is applied to a function f, that 
function will be called with the two components x and y of the pair. There is no 
iteration here, because the datatype of pairs is not recursive: in general, pairs just 
contain elements of other datatypes. A function to construct the pair from the 
components is then: 

mkpair = Ax. Ay. Af. f x y 

So for example, if we wish to make a pair of the two (Church-encoded) numbers 
1 and2, we just apply mkpair, which will then compute the pair. Here I am under
lining the current left-to-right call-by-value redex: 

mkpair 12 
(Ax. Ay. A f. f x y) 1 2 

"vt (Ay.Af.fly)2 
"vt Af.f 12 
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The final result is the pair, which is itself a function (as all data are with the Church 
encoding), that is waiting for a function f to call with the two elements of the pair, 
1 and2. 

To select the first element of a pair, we just apply the pair to the function 
Ax.Ay.x. For example: 

(Af. f 12) Ax.Ay.x 
� (Ax.Ay.x) 12 
� (Ay.1) 2 
� 1 

So we have extracted the first component of the pair. To extract the second, apply 
the pair to Ax.Ay.y: 

(Af. f 12) Ax.Ay.y 
� (Ax.Ay.y) 1 2 
� (Ay.y) 2 
� 2 

6.1.6 Completing the encoding of predecessor 

Armed with the Church encoding of pairs, we can now define the predecessor 
function on Church-encoded natural numbers, which we began above (Section 6.1.4). 
First, let us implement the transformation we considered above: 

(n,m) ::::;. (m,m+l) 

We will implement this by a function called pairshift, as follows: 

pairshift = Ap.mkpair (p Ax.Ay.y) (S (p Ax.Ay.y)) 

This function takes in a pair p, and returns a new pair (constructed by mkpair), 
whose first element is the second element of p (computed by the term (p Ax.Ay.y)), 
and whose second element is the successor of the second element of p. 

Now the idea is to define the predecessor of n by iterating pairshift n times starting 
from (Z, Z), and then extracting the first component of the resulting pair: 

pred = An.(n pairshift (mkpair Z Z)) Ax.Ay.x 

The n-fold iteration of pairshift is performed by the term ( n pairshift ( mkpair Z Z)). 
Applying this term to Ax.Ay.x then extracts the first component of the resulting 
pair, which we have seen will be the predecessor of n. If n happens to be zero, 
then no iteration will take place, and we will extract the first component of the 
starting pair ( Z, Z). This is acceptable, because the natural-number predecessor of 
zero is often (when dealing with total functions) simply defined to be zero again. 

Of course, in addition to being complicated, this definition has the unattrac
tive feature that to compute the predecessor of n requires the n-fold iteration of 
a function. So it will take O(n) /3-reduction steps to compute. This is generally 
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true for Church-encoded datatypes: extracting the immediate subdata of some 
Church-encoded pieced of data will take time proportional to the size of d. This is 
unfortunate, as we might reasonably expect this operation to take constant time. 

6.1.7 Booleans 

Before we turn to the Scott encoding, let us see one more example of the Church en
coding. Many other datatypes can be Church-encoded. Let us look at the Church 
encoding for booleans. Like pairs, booleans are non-recursive datatypes, so there 
is no real iteration to perform. The degenerate form of iteration for booleans is to 
give the boolean b a value to return in case b is false, and another in case b is true. 
So each boolean b must accept two arguments: the value to return in the false case, 
and the one to return in the true case. So the Church-encoded boolean values are: 

true At. Af. t 
false At.Af.f 

The order in which each boolean accept its two arguments is not important, as 
long, of course, as a single order is used consistently. We could just as well have 
defined true and false to take inf first and then t. The same is true for all data types 
encoded with the Church encoding. 

6.1.8 Boolean operations: conjunction, disjunction, negation 

To implement conjunction on Church-encoded booleans, we will write a function 
that takes in two such boolean values bi and b2, and first checks whether bi is true 
or false. If it is false, then the entire conjunction should be false. If it is true, then we 
can just return b2, as the truth or falsity of b2 will now determine the truth-value 
of the conjunction. The definition is: 

In the body of this A-abstraction, we performing degenerate iteration over bi by 
applying it as a function to two arguments, corresponding to the two cases. If bi 
is false, the first argument (false) is returned, and if bi is true, we return the second 
(b2). This matches the informal description given above. 

Similarly, if to implement disjunction, our function should again take in bi and 
b2, but now return true if bi is true, and b2 otherwise. The definition is: 

This is quite similar to the definition of conjunction, just with arguments reversed 
and false replaced by true. Finally, for negation, we write a function taking in a 
single boolean b, and just need to return true if b is false, and false if b is true: 

not = Ab. b false true 
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Here is an example reduction using these definitions: 

not (and true false) = 
not ( ( Ab1. Ab2. b1 b2 false) true false) "'7 

not ( ( Ab2. true b2 false) false) "'7 

not (true false false) = 

not ( (At. A f. t) false false) "'7 

not ( (A f. false) false) "'7 

not false= 
(Ab. b false true) false "'7 

false false true = 
(At. A f. f) false true "'7 

(A f. f) true "'7 

true 

6.2 The Scott encoding for datatypes 

Let us turn now to another lambda encoding, attributed to Dana Scott. The Scott 
encoding is developed from the perspective that the central functional abstraction 
we use for programming with data is case-analysis. The basic functional operation 
is to determine which kind of data we have, and simultaneously access its subdata. 
In effect, this is pattern matching on the data. The Scott encoding will encode each 
piece of data as a function that lets a user of that data do pattern matching on the 
data. This sounds a bit abstract and cryptic. We will see how it works now through 
several examples. Before we go further: for this section, we will use left-to-right 
call-by-value reduction (see Section 5.4.1 above). This will be important when it 
comes to defining recursive functions using.fix in Section 6.5 below. 

6.2.1 Another view of unary natural numbers 

Let us again consider the Peano numbers generated with constructors Z and S. 

To do pattern matching on an arbitrary Peano number, we need to handle two 
cases: one where the constructor is Z, and the other where it is S. In the former 
case there are no subdata. In the latter, the sole piece of subdata is the predecessor 
of the number. In functional languages like OCAML and HASKELL, such pattern 
matching is provided directly by the language. In OCAML, for example, we could 
write the following: 

match n with 

S p -> easel 

I Z -> case2 

Operationally, this expression is evaluated by evaluating easel if the constructor 
of n is s, and case2 if it is z. In the former case, the variable p will be set to the 
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predecessor of n (so 4 if n is 5). The term upon which we are pattern matching 
(here n) is sometimes called the scrutinee of the match-term. Note that the order 
of cases does not matter in a language like OCAML, as long as the patterns cover 
disjoint sets of values for the scrutinee (as they do here, since every number n is 
constructed either with s or with z, but not both). So we could just as well have 
written: 

match n with 
Z -> case2 

I S p -> easel 

6.2.2 Scott encoding for unary natural numbers 

As mentioned, the Scott encoding encodes every piece of data as a lambda-abstraction 
that implements pattern matching for that data. With the Scott encoding, a pattern
matching construct like the one we just saw from OCAML, 

match n with 
S p -> easel 

I Z -> case2 

can be implemented by simply dropping everything except the scrutinee and the 
two cases (shown in boxes): 

match DD with 

S p -> easel 

I Z -> case2 

That is, we will have just the following for pattern matching on n: an application 
of n as a function to easel and case2 as arguments. 

n easel case2 

So every natural number n is going to be encoded as a function that takes in a 
function to use in each of the two cases: one function (let us call its) for if n is Sp 
for some predecessor number p, and another (z) for if it is Z. In the former case, 
the number n will call the functions on p. In the latter case, the number n will just 
return z; so in practice, for the zero case we don't supply a function to call in that 
case, but rather a value to return. We could indeed supply a function to call, but 
traditionally the Scott encoding just returns a value in the Z case. 

So here are the first few Scott-encoded numerals: 

0 AS. AZ. z 
1 AS. AZ. ( s 0) 
2 AS. AZ. ( s 1) 
3 AS. AZ. ( s 2) 
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The lambda-term we use for 0 just takes ins and z and returns z, as explained 
above. The lambda-term for 1 takes ins and z and calls s on the predecessor of
1 (namely, 0). In general, the number p + 1 takes ins and z and returns s p. This
gives us the ability to do pattern matching on a number n by calling n as a function
with the functions to use in the S and Z case. 

6.3 Other datatypes: lists 

Other datatypes can be Scott-encoded in the same way. The Scott encoding of 
booleans and pairs is exactly the same as the Church encoding. Indeed, the Church 
and Scott encodings agree on non-recursive datatypes. So here is another example 
of a recursive datatype, in the Scott encoding. 

Lists l are encoded as either the empty list with no elements, or else a list con
taining some element a, followed by the rest of the elements of the list. In construc
tor notation, the empty list is traditionally called nil, and the operation of building
a bigger list by putting an element a on the front of a smaller list l' is called cons. 
These names go back to Lisp. So the list "l,2,3" is written in constructor notation 
as: 

cons 1 (cons 2 (cons 3 nil)) 

Given this representation of lists, pattern matching must deal with two cases: one 
where the list is nil, and another where it is a cons-list with data a and sublist l'. So
we implement the list constructors using the Scott encoding like this: 

nil Ac. An. n 
cons Aa. Al'. Ac. An.cal' 

The cons constructor takes in the data a to put at the head of the list, and the sublist
l' to use for the tail, and returns a new list. That new list is Ac. An.ca l'. This is
indeed a list, since our encoding has all lists begin by taking in two arguments. In 
this case, the list will call the first argument with the head and tail of the list. 

6.4 Non-recursive operations on Scott-encoded data 

It will take a bit more work to be able to write recursive operations like addition 
and multiplication on Scott-encoded natural numbers. But with what we currently 
have, we can implement non-recursive operations on unary natural numbers, as 
well as boolean operations. 

6.4.1 Arithmetic operations: predecessor and is-zero 

To compute the predecessor of a number n, we will return 0 if n is 0, and p if n is
S p. This means we can define the predecessor function to take in the number n, 
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and then apply it to the appropriate values for the two cases: 

pred = An. n (A p. p) 0 

Since we want pred (S p) to return p, we call n with Ap. p as the function to call 
when n is S p. Son will call that function with argument p. Since the function is 
just the identity function, p will be returned as desired. 

We can implement a function to test whether or not a natural number is zero 
by returningfalse in the S-case and true in the Z-case: 

is-zero = An. n (Ap.false) true 

The S-case is still going to be given the predecessor number p when it is called, but 
for this function, we just ignore that value, since it is not needed once we know 
the number is a successor number. 

6.4.2 List operations: is-nil, head, and tail 

Let us define several non-recursive operations on lists. First, a function that tests 
whether or not a list is nil: 

is-nil = Al. l ( Aa. Al'. false) true 

This function takes in an input list l, and applies it to two arguments. If the list l is 
a cons-list, l will call the first argument with its head and tail. That is why our first 
argument is a A-abstraction which first takes in arguments a (for the head) and l' 
(for the tail), and then returns false, as l is not nil in this case. The second argument 
given to l will simply be returned by l, if l is, in fact, nil. 

For head and tail, we will write similar functions, except that for head, the first 
argument to l we want to give a function which, when called with head a and tail 
l', returns a. Similarly, for tail, the first argument to l should be a function which, 
when called with head a and tail l', returns l'. We do not expect these functions 
to be called with a list which is nil, so we will return something arbitrary (false) in 
that case. Here are the definitions: 

head Al. l ( Aa. Al'. a) false 
tail Al. l ( Aa. Al'. l') false 

Now, since we are working in a completely untyped language, it is worth pointing 
out that some of the definitions we have available for other datatypes can some
what abusively (but totally legally) be used for lists, too. For example, we already 
have defined functions that have the behavior of the first arguments we have given 
above for head and tail. The functions are: 

Aa. Al'. a 
Aa. Al'. l' 

But if we just rename the bound variables (as of course, we can always do), we can 
see these functions a little differently: 

At. Af . t 
At. Af .f 
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These are none other than the terms we have defined to equal true and false, re
spectively. So while it would certainly make for some confusing code, we can just 
as well use these definitions for head and tail: 

head Al. l true false 
tail Al. l false false 

This somewhat startling use of functions across datatypes is often possible, if not 
advisable, in untyped languages . 

6.5 Recursive equations and the fix operator 

To define recursive functions, we start with recursive equations. For example, here 
is a definition of addition on unary natural numbers using recursive equations: 

add Zm 
add (Sp) m 

m 
add p (Sm) 

If we rewrite these equations with standard infix notation (also writing S m as 
m + 1), we will see they are valid for our usual notion of addition: 

o+m 
(p+l)+m 

m 
p+(m+l) 

But we can use these equations as the actual definition of add, since we can argue 
they define a total function. Every case for the first argument is covered by one 
of the equations, since every natural number is either Z or ( S p) for some natural 
number p. Also, the recursive call to add on the right-hand side of the second 
equation has a strictly smaller value for the first argument: the left-hand side has 

(S p), while the right-hand side has just p. So the equations use well-founded 
recursion. 

Using our Scott encoding of natural numbers, we can almost turn these equa
tions into a lambda-term: 

add= An.Am.n(Ap.add p(Sm)) m 

The pattern matching on n has been implemented by just applying n, as we already 
have seen, to the S-case, which is (Ap.add p (Sm)); and the Z-case, which is just 
m. The only hitch here is that the above equation is circular: we are defining add
to be some lambda-term that contains add. So this is not yet a legal definition, and 
we seem to be stuck. 

6.5.1 Definition of fix 

Fortunately, at this point we can use the same technique that we did when we 
encountered a circular equation back in Chapter 2 on the denotational semantics of 
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WHILE. We can solve the circular equation using least fixed points. For WHILE, we 
had to use domain theory to define the operator lfp for computing the least fixed 
point of a continuous function on a domain. Here, amazingly, we can actually 
define that operator as a A-term, which is traditionally called fix in this setting 
(rather than lfp). Here it is: 

fix = Af. (Ax. f (Ay. xx y)) (Ax. f (Ay. xx y)) 

Now this is a rather formidable term, so we have to look at it carefully to under
stand what it is doing. First, if we define 

F = 
(Ax. f ( Ay. x x y)) 

then we can recast the above definition in this simpler form: 

fix = Aj. FF 

We see self-application here, and in the x x subterm of the term we have defined 
F to be above. And as we saw in Section 5.2.3 in the preceding chapter, self
application gives us computational rocket-fuel, so to speak: we get divergence 
from the self-applicative term (Ax.xx) (Ax.xx), and without the power to di
verge, we cannot have a Turing-complete language. 

Let us try to understand now why we have Ay. xx y. This term is what is called 
the (one-step) 17-expansion ("eta expansion" -17 is lowercase long "e" in Greek) of 
x x. The 17-expansion of a term behaves just like that term when applied to an 
argument. For example, if we apply xx to a term like 3 (just for example), then we 
will get xx 3. Similarly, if we apply the 17-expansion of that term to 3, we will end 
up with the same result: 

(Ay.xxy) 3 rv,l3v xx 3 

But in a call-by-value (or call-by-name) language, the effect of eta-expanding a 
term t is to prevent it from evaluating until it is called. For example, if we eta
expand (Ax.x) (Ay.y), we will get the following lambda-abstraction, which is a 
value and hence in normal form with call-by-value reduction: 

Az. (Ax.x) (Ay.y) z 

To see that fix computes a fixed point of a function f, let us see how fix f computes 
(where F is as defined above): 

So we can see that F F reduces to f applied to the eta-expansion of F F. That 
eta-expansion is used to prevent F F from reducing again at this point, until f 
decides to make a recursive call by applying it to an argument. Leaving aside this 
eta-expansion, we essentially have: 

FF rvt f (FF) 



162 Programming in Untyped Lambda Calculus 

If we define an equivalence relation � f3 by the reflexive, transitive and symmet
ric closure of "-7 (which is similar to the reflexive, transitive closure of "-7 as in 
Section 4.2.2, except also symmetric, as the name says), then we would have that 

FF �(3 f (FF) 

or more suggestively 
f (FF) �(3 FF 

This is the sense in which fix has computed a fixed point of f: it has given us a
term, FF, such that f applied to that term is equivalent again to that term.

6.6 Another recursive example: multiplication 

We can define multiplication by iterated addition as follows: 

mult = fixAmult. An. Am. n (Ap. add m (mult pm)) Z

This definition is based on the following recursive equations: 

mult Z m 
mult (Sp) m 

z 

add m (mult pm) 

We can see the idea behind this definition in a small example, by applying these 
equations enough times to eliminate the mult symbol, without applying the equa
tions for add: 

mult 310 add 10 (mult 2 10) 
add 10(add10(mult110)) 
add 10(add10(add10(mult 010))) 
add 10 (add 10 (add 10 0)) 

We can see here that multiplying 3 and 10 has the effect of adding 10 three times
to 0. Similarly, multiplying n and m adds the number m n times to 0. So multipli
cation is defined by iterated addition. 

6. 7 Con cl us ion

In this chapter we have seen how to program with lambda-encoded data. With the 
Church encoding, each piece of data is encoded as its own iteration function, or 
equivalently, as its own interpretation function. For the Scott encoding, data are 
implemented as functions which implement a basic pattern-matching operation 
on that data. We worked through several examples of these encodings: unary 
natural numbers, booleans, tuples, and lists. For Scott-encoded data, we also saw 
how to define recursive functions using a fixed-point operator, implemented by a 
somewhat large A-term, and we got some insight into how that A-term uses self
application to support recursion. 



6.8 Basic exercises 163 

6.8 Basic exercises 

6.8.1 For Section 6.1, Church encoding 

1. For each of the following terms, write out a small-step reduction sequence
leading from that term to a normal form, using the definitions given in Sec
tion 6.1 (so, for Church-encoded natural numbers and the operations defined
on them). You should confirm, of course, that you get the expected answer.

•SZ

• plus 1 2

• mult 2 2

2. Write a function add-components that takes in a pair ( x, y) and returns the pair
x+y.

3. Write a function swap-pair that takes in a pair ( x, y) and returns the pair (y, x).

4. Give a definition of the exclusive-or function on Scott-encoded booleans,
which takes in booleans b1 and b2, and returns true iff exactly one of those
booleans is true.

6.8.2 For Section 6.2, Scott encoding 

1. Write down the lambda terms, in normal form, which encode the following
data in the Scott encoding. Do not use any of the abbreviations we defined
above, but just write a pure lambda term.

(a) 2 

(b) cons true (cons false nil) 

(c) (nil, (false, 0)) 

(d) cons (0,1) (cons true nil) 

2. Suppose we wish to encode a datatype consisting of basic colors red and
blue, with possibly repeated modifier light. So example data elements are:
red, blue, light blue, light (light red), etc.

Give definitions for the three constructors, red, blue, and light, using the Scott
encoding.

3. Give definitions using the Scott encoding for constructors node and leaf for a
data type of binary trees, with data stored at the nodes but not the leaves. So
a tree like this,
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1 

/\ 
2 

/\ 
will be built by this constructor term: (node 1 leaf (node 2 leaf leaf)). 

6.9 Intermediate exercises 

6.9.1 For Section 6.1, Church encoding 

1. Define a function exp on Church-encoded numbers, such that exp n m reduces
to the (Church-encoded) value of n raised to the power m. So exp 2 2 should
reduce to Church-encoded 4. Your definition may use previous definitions,
like the definition for mult, from Section 6.1.

2. Give a Church encoding of lists defined by the following grammar, where d
is an element of some other datatype D (for example, D might be nat):

lists L ::= nil I cons d L

To define the encoding, it is enough to define the constructors nil and cons 
so that they will return lists that are their own interpretation functions. For 
example, if L is the list cons 1 (cons 2 nil), then applying L to f and a should
compute 

f 1 (f2 a) 
Notice that this expression has the same structure as the data cons 1 (cons 2 nil), 
except that cons has been replaced by f ,  and nil has been replaced by a. 

6.9.2 For Section 6.2, Scott encoding 

1. One way to write a function eqnat to test whether two Peano numbers are
equal is to remove a successor from each of them, until either both numbers
are zero, in which case we return true; or else one is zero and the other is not,
in which case we return false.

(a) Based on this idea, define eqnat using recursive equations.

(b) Translate your encoding into a lambda term using the Scott encoding. 

2. Write a function lt which tests whether one number is strictly smaller than
another. First do this with recursive equations, and then as a lambda term
using the Scott encoding.
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3. Write a function append operating on Scott-encoded lists, which takes as in
put two lists, and returns their concatenation.

4. Write a function reverse operating on Scott-encoded lists, which takes as in
put one list, and returns the reversed version of the list. This can be rather
easily done in quadratic time by repeatedly appending the head of the list to 
the result of recursively reversing the tail:

reverse nil 

reverse (cons a l) 

nil 

append (reverse l) (cons a nil) 

It is much better, of course, to write a reverse function that takes only linear 
time in the length of the input list. Doing this is somewhat tricky. Hint: use 
an extra argument to reverse (or a helper function reverse-h) to hold the part 
of the list which has been reversed so far. 





Chapter 7 

Simple Type Theory 

In this chapter, we begin our study of typed lambda calculi. Types play a central 
organizing role for many applications of lambda calculus. Within Computer Sci
ence, checking types at compile time is one of the most effective methods known 
for guaranteeing the absence of certain kinds of bugs in programs. Types are just 
abstractions of data values. For example, the type int is an abstraction of the in
teger value 3. Similarly, function types like int ----+ int are abstractions of func
tions that map integer inputs to integer outputs. We will also see an important 
application of types to logic in this chapter, in the form of the Curry-Howard iso
morphism (Section 7.7). Within Linguistics, categorial grammars are based on ideas
close to those of simply typed lambda calculus [25]. 

In this chapter, we study a basic system of types for lambda calculus, called 
simple types. We will define the syntax of simple types, and then define a set 
of rules which assign a simple type to a term of untyped lambda calculus (Chap
ter 5). This gives us the simply typed lambda calculus (STLC). Our set of typing
rules will turn out not to determine a deterministic algorithm either for comput
ing a type for a term ("type computation"), or checking that a term has a given 
type ("type checking"). We will then see several different approaches for achiev
ing deterministic algorithms for both these operations. One basic approach is to 
annotate the terms so that at points where the typing rules would face a nonde
terministic choice, the nondeterminism is resolved by an annotation of the term. 
The second basic approach is to compute a set of constraints on the typing of the 
(unannotated) untyped lambda-calculus term, and then solve those constraints to 
determine a most general type for the term. The constraints are solved using an 
algorithm known as unification. 

7.1 Abstract syntax of simple type theory 

Syntax. The syntax of simple types T is given by 

base types b 
simple types T 

The intuition is that T1 ----+ T2 is supposed to be the type for functions with domain
T1 and range T2. The base types bare some otherwise unspecified types, which
might be things like int or char. By convention, the ----+ construct associates to 
the right. So T1 ----+ T2 ----+ T3 is fully parenthesized as (T1 ----+ (T2 ----+ T3) ). Note that
this means that we cannot drop the parentheses from a type like (b1 ----+ b2) ----+ b3, 
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because if we do, the parsing convention will place the parentheses on the right, 
giving us a syntactically different expression. 

7.2 Semantics of types 

We can make the above informal intuitions about the meaning of simple types 
precise by defining a mathematical semantics for them. The basic idea is that the 
interpretation of a type will be a set of terms of (untyped) lambda calculus, namely 
the terms which have the behavior specified by the type. We will not choose any 
particular semantics for base types, since we have left open which base types we 
actually have, and do not wish to commit to a particular collection of them. So 
we will define the interpretation of types relative to an assignment I of semantics 
to base types. So let I be any function from base types to sets of terms. Then we 
define the semantics of types this way, by recursion on the structure of the type: 

I(b) 
{t E terms I Vt' E [Ti] I. (t t') E [T2] I} 

The definition says first that the interpretation [b] I of a base type b is whatever 
the assignment I says it should be (I maps base types b to sets of terms, so we are 
indeed specifying a set of terms as the value of [b] I). The second defining equation 
says that the interpretation [T1 ----+ T2] I of a function type Ti ----+ T2 is a set of terms 
t with the following property. For any input term t' in the interpretation [Ti] I 
of T1, the application oft tot' is in the interpretation [T2] I of T2. This definition 
formalizes the above informal intuition for the semantics of function types. 

We should prove one important lemma about this interpretation of types before 
we proceed. Let us call a set S of terms inverse-reduction closed if whenever we 
have t � t' and t' E S, we have also t E S. 

Lemma 7.2.1 (Inverse-reduction closed). Suppose I ( b) is inverse-reduction closed for 
all base-types b. Then so is [T] I for all types T. 

Proof The proof is by induction on the structure of T. For the base case, suppose 
T is a base type b. Then [T] I equals I(b), which is inverse-reduction closed by 
assumption. For the step case, suppose T is a function type of the form T1 ----+ T2. 
We must prove that [T1 ----+ T2] I is inverse-reduction closed. To do that, let us 
assume we have arbitrary terms t and t' where t � t' and t' E [T1 ----+ T2] I. It 
suffices, by the definition of inverse-reduction closed, to prove t E [T1 ----+ T2] I. To 
prove that statement, we use the definition of the interpretation of function types. 
The definition says that t E [T1 ----+ T2] I holds iff for all t" E [T1] I, the term (t t") 
is in [T2] I. So consider an arbitrary t" E [Ti] I. By assumption, we know t � t', 
and so by the definition of full f3-reduction, we have t t" � t' t". Now since we 
are also assuming t' E [T1 ----+ T2] I, we know that t' t" is in [T2] I. We can now 
apply our induction hypothesis: we know t t" � t' t" E [T2] I. This is an instance 
of our induction hypothesis, with a smaller type T2 than we started this case with. 
So we can conclude t t" E [T2] I, which is what we had to prove at this point. D 
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f(x)=T f,x:Tif---t:T2 
r f---x : T r f---Ax.t : Ti ----+ T2 

r f---ti : T2 ----+ Ti r f---t2 : T2 
f f---ti t2 : Ti 

Figure 7.1: Type-assignment rules for simply typed lambda calculus 
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We would like to come up with a sound set of rules for proving that a term has a 
simple type. For example, Ax.x can be assigned any simple type of the form T ----+ 

T, since the identity function can be considered to have domain T and range T 
for any simple type T. Figure 7.1 inductively defines the simple type-assignment 
relation. In the notation r f---t: T, t is a lambda term to be assigned simple type T, 
and r is a context assigning simple types to the free variables oft: 

typing contexts r ::= . I r, x : T 

The context · is the empty context. It is common to view contexts as functions 
from variables to simple types. So in the first rule below, the notation r ( x) = T is 
used to mean that the result of looking up the type for variable x in context r is T 
(i.e., the function r returns type T for x). We write dom(f) for the set of variables 
x where x : T is in f. 

Example. The following derivation shows that Ax.Ay.(x y) can be assigned the 
type (Ti ----+ T2) ----+ (Ti ----+ T2)1 for any types Ti and T2: 

x : Ti ----+ T2, y : Ti f---x : Ti ----+ T2 x : Ti ----+ T2, y : Ti f---y : Ti 

x : Ti ----+ T2, y : Ti f---( x y) : T2 

x : Ti ----+ T2 f---Ay.(x y) : Ti ----+ T2 

7.4 Semantic soundness for type-assignment rules 

We can prove that the type-assignment rules of the previous section are indeed 
sound for the semantics for types we defined in Section 7.2 above. We need one 
further piece of notation. Suppose r is a typing context, and CT is a substitution 
mapping dom(f) to terms in such a way that CT(x) E [f(x)] I, for all x E dom(f). 
Then we will write CT E [f] I, and say that CT satisfies r. Also, we will write CT t 
to denote the result of applying the substitution CT to t, to replace all variables 
x E dam (f) with CT( x). This is a simple extension of our notion of capture-avoiding 
substitution from Chapter 5. 

Theorem 7.4.1 (Semantic Soundness). Suppose I (b) is inverse-reduction c losed for al l 
base types b, and suppose r f--- t : T. Suppose further that CT E [f] I. Then we have 
CT t E [T] I. 
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Proof The proof is by induction on the structure of the derivation of r f- t :  T. 
Case: 

r(x) = T 

f f- x: T 

In this case, we must prove o-(x) E [T] I. But this holds because r(x) = T, and we 
are assuming that o-(x) E [f(x)] I for all x E dom(r). 

Case: 

r f- f 1 : T2 ----+ Ti r f- t2 : T2 

r f- t1 t2 : Ti 

By our induction hypothesis, we know: 

• o- t1 E [T2 ----+ Ti] I

• o- t2 E [T2] I

The first of these facts implies that for any input t' E [T2] I, ( o- ti) t' is in [T1] I.

We can instantiate this universal statement with o- t2 for t', since we indeed have 
o- t2 E [T2] I, by the second of these facts. So we can deduce ( o- t1) ( o- t2) E [Ti] I.

By the definition of applying a substitution to an application, this is equivalent to 
o- (t1 t2) E [T1] I, which is what we had to prove in this case. 

Case: 

f, x : Ti f- t : T2 
r f- ?i..x.t : Ti ----+ T2 

We assume here that variables have been renamed appropriately so that x tj_ 
dom(r). We must prove that o- /i..x.t is in [T1 ----+ T2] I. We also assume that xis 
not free in o-(y) for any y E dam (r). By the definition of the interpretation of func
tion types, it suffices to prove that for any input t' E [Ti] I, the term (o-?i..x.t) t' is 
in [T2] I. So consider an arbitrary such t', and let o-1 be the substitution o-[x H t'].
By the induction hypothesis, we know: 

This is because o-1 is a substitution satisfying the requirements of the theorem, for
the extended context r, x : Ti. We have 

( O" AX. t) t' � [ t' Ix]( o-t) = o-1 t

By Lemma 7.2.1 (Section 7.2 above), the fact that o-' tis in [T2] I then implies that 
(o- /i..x.t) t' is in [T2] I, since the latter term reduces in one step to the former. D
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The Semantic Soundness Theorem is a powerful tool for studying typed lambda 
calculus. We can also use it to obtain an important result for our current type
assignment system (with no extensions). This result is called Normalization. It 
says that every lambda term t is guaranteed to reduce to some normal form, if 
r f--- t : T holds for some rand some T. We will prove this result in this section. 

7.5.1 Normalization and termination 

A normal form is a term t which cannot be reduced further. This definition applies 
to any notion of reduction, although we will work here with full �-reduction. A 
normalizing term is one which reduces to a normal form using some reduction 
sequence. A terminating term is one which reduces to a normal form no matter 
which reduction sequence is used. Termination certainly implies normalization, 
but not vice versa. An example of a normalizing term which is not terminating is: 

(Ax.Ay.y) ((Ax.xx) (Ax.xx)) 

We can reduce the outermost redex to obtain just Ay.y, which is a normal form.
So the term is normalizing. But it is not terminating, because it has an infinite 
reduction sequence, namely the one that reduces ( (Ax .x x) (Ax .x x)) forever.

Note that the terminology normalizing and terminating is used in the term rewrit
ing literature (see Section 9.1.1 for more on concepts from rewriting). In the type
theory literature, one often finds the terms weakly normalizing and strong nor
malizing, respectively, for normalizing and terminating. 

In what follows, we will write Norm for the set of all normalizing terms (with 
full �-reduction). In the type theory literature, one sees the notation WN for this 
set, and SN for the set of strongly normalizing terms. 

7.5.2 Deriving Normalization from Semantic Soundness 

To prove Normalization using Semantic Soundness (Theorem 7.4.1), we first define
an appropriate assignment I, by making I (b) = Norm for all base types b. To apply 
Semantic Soundness, we must just observe that I(b) is inverse-reduction closed, 
which it is: if a term t' is normalizing (so a member of Norm, which we have 
defined I(b) to equal), and if t � t', then tis also normalizing. It has a reduction 
sequence to a normal form, by first stepping to t' and then following the reduction 
sequence which t' has, by assumption, to a normal form. 

With this choice of assignment I, we immediately obtain the result that if <T E

[f] and r f--- t : b, then <Tt E [b] I. Since [b] I = I = Norm, this says that <Tt is 
normalizing. As a special case, · f--- t : b implies tis normalizing. So any closed
term (i.e., with no free variables, so requiring only an empty typing context for f) 
which is typable at base type is normalizing. This is quite remarkable, except that 
you may have noticed that we actually do not have any way to assign a base type 
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to a term in the empty context, as we prove in Section 7.7.4 below. So this direct 
consequence of Semantic Soundness is not as interesting as we might like. 

But an interesting result is right around the corner. We can actually prove that 
with I (b) � Norm, we have [T] I � Norm. This implies that if (} E [r] and 
r f--- t : T, then (Jt is normalizing. In particular, it tells us that every typable closed 
term is normalizing. This is a remarkable result. Any typable term is guaranteed 
to normalize! This is certainly not true for general programming languages, but it 
is for the (unextended) simply typed lambda calculus. To prove this, all we need 
to prove is: 

Lemma 7.5.1. If I(b) =Norm for all base types b, then [T] I� Norm. 

Now it turns out that to prove this by induction on the structure of the type T, we 
need to strengthen our induction hypothesis a bit. Let us define a subset of the 
normalizing terms as follows. First, let us use w as a meta-variable to range over 
Norm (so w always denotes a normalizing term). Then define: 

var-headed-normalizing n ::= x I n w 

A var-headed normalizing term is one which is headed by a variable, and is nor
malizing. Being headed by a variable means that the syntax tree for the term 
is either a variable itself or an application where a variable is the leftmost non
application node of the syntax tree. We will write vhNorm for the set of var-headed 
normalizing terms. The lemma we need to prove is: 

Lemma 7.5.2 (Interpretations are normalizing). If I (b) = Norm for all base types b, 
then: 

vhNorm � [T] I � Norm 

Proof The proof is by induction on the structure of T. For the base case, we have T 
equal to some base type b. Then [T] I= I(b), and I(b) �Norm by assumption. So 
we get [T] I � Norm in this case as required. It is also clear that vhNorm � [T] I, 

because, all var-headed normalizing terms are normalizing. 
For the step case, we have T = T1 ----+ T2. To prove that [T1 ----+ T2] I � Norm, 

assume an arbitrary t E [T1 ----+ T2] I and prove that t is normalizing. By the induc
tion hypothesis, we know that any var-headed normalizing term is in [T1] I (note 
that the type involved has decreased from T1 ----+ T2 to just T1). So we know, for ex
ample, that x E [T1] I, where x is a variable. By the definition of the interpretation 
of function types, we know that t x E [T2] I (because x E [T1] I). We can now ap
ply the induction hypothesis to deduce that t x E Norm. Now if t x is normalizing, 
t must also be normalizing, which we can argue as follows. Choose a normaliz
ing reduction sequence fort x. Either this sequence does not involve a top-level 
{3-reduction, or else it does. If it does not, then t x reduces to a normal form t' x, 
where t' is a normal form oft, as required. If the normalizing reduction sequence 
fort x does involve a top-level {3-reduction, that means we must have reduces t to 
a A-abstraction, say A-x.t'. It is convenient and legal to assume that the bound vari
able is x. For this means that the top-level {3-reduction step is (A-x.t') x � t'. Now 
t' reduces to a normal form, t" say, since the reduction sequence is normalizing. 
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This means that we have t "-7* Ax.t' "-7 Ax.t", where the latter term is a normal 
form. 

To complete the step case, we still have to prove that when T is Tl --+ T2 and
n is var-headed and normalizing, then n E [T] I. To prove this, it suffices, by the
definition of the interpretation of function types, to assume an arbitrary t' E [Ti] I, 
and prove n t' E [T2] I. By the induction hypothesis, t' is normalizing, so n t' 
is again var-headed and normalizing. This means that we can again apply our 
induction hypothesis to conclude n t' E [T2] I, as required. D 

Corollary 7.5.3 (Closed Typable Terms Normalizing). If· f- t : T, then t is normal
izing. 

Proof T his follows from Semantic Soundness (Theorem 7.4.1) and Lemma 7.5.2. 
D 

7.6 Type preservation 

An important property of a type system is described in this theorem: 

Theorem 7.6.1 (Type Preservation). If r f- t : T and t "-7 � t' (full (3-reduction) I then 
f f- t' : T. 

T he proof makes use of this lemma, proved in Section 7.6.1 below:

Lemma 7.6.2 (Substitution). If f 11 y : Tb, f 2 f- ta : Ta and f 1 f- tb : Tb, then f 11 f 2 f
[tb /y] ta : Ta. 

Proof of Theorem 7.6.1. To begin our proof of Type Preservation, recall the definition
of t "-7 � t' from Figure 5.2 of Chapter 5: 

tl "-7 t� 
-----,-- appl 
(t1 t2) "-7 (tl t2) 

t "-7 t' 
------ lam Ax. t "-7 Ax. t' (Ax. t) t' "-7 [ t' Ix] t 

(3 

We proceed by induction on the structure of the derivation of t "-7 � t'. 

Case: 
tl "-7 t� 

-----,-- appl 
(t1 t2) "-7 (tl t2) 

By inversion on the typing derivation (that is, the only possibility for proving the 
derivation gives us the following; see Section 3.3.4 for more on proof by inversion),
we have: 

r f- tl : T2 --+ Tl r f- t2 : T2 
f f- tl t2 : Tl 
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We may apply our induction hypothesis to the proof of t1 rvt t� and the proof in 
the first premise of this inference, to get: 

Putting this together with our proof of r f-- t2 : T2 (from the second premise of the 
typing proof above), we have 

r f-- t� : T2 ---+ T1 r f-- t2 : T2 

f f-- t� t2 : T1 

The case for the other application rule is similar, so we omit the details. 

Case: 
t 'Vt t' 
------ lam 
AX. t 'Vt AX. t' 

By inversion on the typing derivation, we also have: 

f, x : T1 f-- t : T2 
f f-- Ax.t : T1 ---+ T2 

Then by our induction hypothesis applied to the derivation in the premise of the 
reduction inference and the derivation in the premise of the typing inference, we 
obtain: 

f, x : T1 f-- t' : T2 

Now we may apply t-lam to that to get: 

Case: 

f, x : T1 f-- t' : T2 

f f-- Ax.t' : T1 ---+ T2 

(AX. t) t' 'Vt [ t' Ix l t f3 

By inversion on the typing derivation, we also have: 

f, x : T2 f-- t : T1 
r f-- (Ax.t) : T2 ---+ T1 r f-- t' : T2 

r f-- (Ax.t) t' : T1 

To complete this case, it suffices to apply Lemma 7.6.2 to the premises of the above 
derivation: 

r, x : T2 f-- t : T1 r f-- t' : T2 
----------- Lemma 7.6.2 

f, f-- [t' /x]t: T1 

D 
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The proof of Lemma 7.6.2 (Substitution) relies on the following lemma, which we 
prove first. 

Lemma 7.6.3 (Weakening). If f1,f3 f---ta: Ta then f1,f2,f3 f---ta: Ta, assuming that 
the variables declared in r 2 are disjoint from those declared in r 1 and r 3· 

Proof The proof is by induction on the structure of the assumed derivation. 

Case: 

We can use this inference: 

Case: 

(f1,f3)(x) = T 
f1,f3f---x:T 

(f1,f2f3)(x) = T 
f1,f2,f3f---x:T 

f1,f3,X: Tl f---t: T2 
f1,f3 f---Ax.t: Tl----+ T2 

We can use this derivation, where we are writing (as in Chapter 4) applications of 
the induction hypothesis IH as inferences in a derivation: 

Case: 

f1,f3,X: Tl f---t: T2 
------- IH f1,f2,f3,x: Tl f---t: T2 

f1,f2,f3 f---Ax.t: Tl----+ T2 

f 1,f3 f---tl: T2----+ Tl f1,f3 f---t2: T2 
f1,f3 f---t1 t2: Tl 

We can use this derivation: 

r 1, r 3 f---tl : T2 ----+ Tl r 1, r 3 f---t2 : T2 
-------- IH IH 
f1,f2,f3 f---tl: T2----+ Tl f1,f2,f3 f---t2: T2 

r 1, r 3 f---tl t2 : Tl 

Now we can prove the Substitution Lemma: 

D 

Proof of Lemma 7.6.2 (Substitution). The proof is by induction on the structure of the 
first assumed derivation. 

Case: 
f(x) = Ta 
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Here, ta = x. We must case split on whether or not x = y. If so, then [tbly]ta = 
[tb/y]y = tb, and Ta = Tb. We construct this derivation, where we are applying
Lemma 7.6.3 (Weakening) as part of the derivation:

r i f--- tb : Tb 
r r f--- t . T Lemma 7.6.3 i, 2 b 

• 
b 

If x -=!- y, then we use the following derivation, where we know x is declared in
f i, f 2 since it is declared inf = f i, y : T2, f 2 and x -=f- y: 

Case: 

(fi,f2)(x) =Ta 
f i, f 2 f--- x : Ta 

r i, y : Tb, r 21 x : Ti f--- t : T2 
fi,y: Tb,[2 f--- AX.t :  Ti----+ T2 

We construct this derivation, where we may assume x -=I- y, and so the term in the
conclusion, AX. [ t b I y] t ,  equals the desired term [ t b I y] Ax. t: 

Case: 

r i, y : Tb, r 21 x : Ti f--- t : T2 
---------- IH 
fi,f2,x: Ti f--- [tb/y]t : T2 

fi,f2 f--- Ax.[tb/y]t : Ti----+ T2 

r i, y : Tb, r 2 f--- ti : T2 ----+ Ti r i, y : Tb, r 2 f--- t2 : T2 
r i, y : Tb, r 2 f--- ti t2 : Ti 

We construct this derivation, where the term in the conclusion equals the desired 

[tb/y] (ti t2): 

r i, y : Tb, r 2 f--- ti : T2 ----+ Ti r i, y : Tb, r 2 f--- t2 : T2 
fi,f2 f--- [tb/y]ti: T2----+ Ti fi,f2 f--- [tb/y]t2: T2 

fi,f2 f--- [tb/y]ti [tb!y]t2: Ti 

D 

7.7 The Curry-Howard isomorphism 

The fact that simply typed terms are normalizing has important applications in 
logic, thanks to a surprising connection between typed lambda calculus and logic 
known as the Curry-Howard isomorphism. Volumes (literally) have been written 
about this connection [36], but the central insight is easy to grasp: terms of typed
lambda calculus can be seen as being in 1-1 correspondence with logical proofs. A 
proof that A implies Bis seen as a lambda-calculus term of type A ----+ B. Also, the
logical inference which concludes B from A ----+ Band A is seen as an application
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� � � Assump 
f, T1 f-- T2 ----- Impintro 

r f-- T1 ---+ T2 

Figure 7.2: Proof rules for minimal implicational logic 
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of a function of type A ---+ B to an argument of type A. So typed lambda calculus 
terms can be viewed as notations for logical proofs. 

This correspondence between logical proofs and terms of typed lambda calcu
lus can be developed for many different logics based on corresponding different 
lambda calculi, sometimes requiring significant technical sophistication. In this 
section, we will consider the basic example of this: simply typed lambda calculus 
and what is called minimal implicational logic. Since we understand reasonably 
well our simply typed lambda calculus, the first thing to consider here is the defi
nition of minimal implicational logic. 

7.7.1 Minimal implicational logic 

The formulas of minimal implicational logic are defined this way: 

atomic formulas b 

formulas T 

We assume there is some set of atomic formulas, and then build formulas from 
these using the implication operator ---+. We associate ---+ to the right, just as we did 
for simple types (see Section 7.1). An example formula is the following, assuming 
we have atomic formulas is_raining, no_umbrella, and geLwet: 

is_raining ---+ ( no_umbrella ---+ geLwet) 

This formula might be interpreted as saying that if it is raining, and if you have no 
umbrella, then you will get wet. Of course, whether or not such a formula is true 
depends entirely on the interpretation of the atomic formulas is_raining and the 
other two (and even then the formula might not be considered true: imagine you 
are not outside, or are under a thickly leaved tree). Minimal implicational logic 
is not the most elegant for expressing facts like this, as atomic formulas are com
pletely unstructured. First-order logic, as studied in Chapter 1, is more expressive. 
Nevertheless, this example suggests that interesting problems can be formulated 
in propositional logic, a fact born out by the NP-completeness of the (classical) 
propositional satisfiability problem, and success encoding many important exam
ples in practice. 

Minimal implicational logic is concerned with validity of implicational formu
las without any specific interpretation of the atomic formulas. It is a fragment 
of minimal propositional logic, which is similar but includes the other standard 
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propositional connectives /\ (conjunction) and V (disjunction). Negation --.T is 
usually defined to be just T ----+ -1, where _l is for falsity. Minimal logic does not 
give any special meaning to _l (though see Section 7.7.2 below). 

The logic is formulated using judgments of the form r f--- T, where r is a list 
of atomic formulas. The interpretation we have in mind is that if all the atomic 
formulas in rare provable, then so is T. The proof rules for this logic are given 
in Figure 7.2. This is not the only way to define this logic. In fact, there are many 
different proof systems even for this very simple system. The one in Figure 7.2 
is in the style known as natural deduction (mentioned also in Section 3.8.2). For 
each logical connective, the proof system has rules for introducing the connective, 
and also for eliminating it. A connective is introduced by a rule when it appears 
below the line in the rule (but not above), and eliminated when it appears above 
the line (but not below). Here, the logical connective is ----+, and the introduction 
and elimination rules are the second and third from the left in the figure. 

For an example derivation, here is a proof of (a ----+ b) ----+ (a ----+ b), in the empty 
context r. This proof just uses the Assump and Implntro rules. 

·,a ----+ b f--- a ----+ b

· f--- (a----+ b) ----+ (a----+ b)

Proving that a ----+ b implies a ----+ b is not terribly illuminating, since we well believe 
that T implies T for any formula T. As trivial as this fact is, it has (infinitely) many 
other derivations in minimal implicational logic. Here is one more: 

·,a----+ b, a f--- a----+ b ·,a----+ b, a f--- a
·,a----+ b, a f--- b

·,a ----+ bf--- a ----+ b

· f--- (a----+ b) ----+ (a----+ b)

7.7.2 A note on other propositional logics 

Intuitionistic propositional logic is an extension of minimal propositional logic 
with a special atomic formula _l for falsity, and a new inference rule: 

� � � FalseElim

This rule says that if we can prove false from a list of assumed atomic formulas r, 
then we are allowed to conclude any formula T we want. This embodies the idea 
that from a contradiction, anything follows. 

Classical propositional logic is an extension of intuitionistic propositional logic 
with the following axiom: 
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The name Dne is for "double negation elimination". It can be read as saying that if 
you can derive a contradiction by assuming T implies false, then you can conclude 
T must be true. One can show that using this rule, even some formulas without 
_l can be derived that could not be derived in minimal propositional logic. An 
example is what is called Peirce's law: ( (a ----+ b) ----+ a) ----+ a. Interestingly, it is
possible to formulate a minimal classical logic which lacks false elimination but 
satisfies Peirce's law [2]. 

7.7.3 The Curry-Howard correspondence for minimal implicational logic 

Formulas of minimal implicational logic and types of simply typed lambda cal
culus, as we presented them above, have exactly the same syntax. Let us now 
compare the proof rules in Figure 7.2 with the type-assignment rules for simple
types, which we saw in Section 7.3. Figure 7.3 compares the two systems of rules.
In the first row we have the rules of minimal implicational logic, and in the second, 
the type-assignment rules for simply typed lambda calculus. The striking thing is 
that if we just erase all the term parts of the type-assignment rules, we have ex
actly the proof rules of minimal implicational logic. For example, the premises of 
the type-assignment rule for applications are: 

• f f- t1 : T2 ----+ T1 

• f f- t2 : T2 

Suppose we erase the variables from the context r, leaving only the types. This
can be done with a function I · I defined by:

I· I 
1r,x: T l = lfl, T

Then we can erase the term parts of those premises to get 

• I fl f- T2 ----+ T1

• lfl f- T2 

These exactly match the premises of the corresponding rule of minimal implica
tional logic. The conclusions also match up if we erase the application term t1 t2 

from the conclusion of the type-assignment rule (and erase the variables from the 
context). The same is true for the type-assignment rules for variables and for;\
abstractions. 

This correspondence is quite informative if we use it to pass from minimal 
implicational logic to lambda calculus. Take the sample derivation from the end 
of Section 7.7.1: 

·,a ----+ b, a f- a ----+ b ·,a----+ b, a f- a
·,a----+ b, a f- b

· , a ----+ b f- a ----+ b
· f- (a----+ b) ----+ (a----+ b)
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TEf f, T1 f- T2 f f- T1 ---+ T2 ff- T1 
ff-T f f-T1 ---+ T2 ff-T2 

r(x) = T r, x : T1 f-t : T2 f f-ti : T2 ---+ T1 f f-t2 : T2 
ff-x:T f f-Ax.t : T1 ---+ T2 f f-ti t2 : T1 

Figure 7.3: Comparison of implicational logic rules and simple typing rules 

Here is the corresponding type-assignment derivation: 

· , f : a ---+ b, x : a f-f : a ---+ b · , f : a ---+ b, x : a f-x : a 

·,f :a---+b, x:af-f x:b

· , f : a ---+ b f- (Ax. f x) : a ---+ b 

· f-(Af .Ax.f x): (a---+ b)---+ (a---+ b)

Erasing the term parts of this type-assignment derivation gives back the derivation 
in minimal implicational logic. The lambda term that is being typed is Af .Ax.f x. 
This term exactly captures the structure of the logical proof. In the logical proof 
we assume a ---+ b, then assume a, and apply the first assumption to the second to 
obtain b. The lambda term captures this structure by introducing the name f for 
the assumption of a---+ b, and the name x for the assumption of a. The application 
of the first assumption to the second is written with an application term of lambda 
calculus: f x. The Curry-Howard correspondence can be summarized in this way: 

Theorem 7.7.1 (Curry-Howard Isomorphism). Let f be a context of simply typed 
lambda calculus where no variable is declared twice (so r can be viewed as a function from 
variables to their types). Then the following are equivalent: 

1. lfl f- T in minimal implicational logic.

2. there exists t such that f f- t : T

Proof The proof, which is quite straightforward, is by induction on the structure of 
the assumed derivation, for each direction of the stated equivalence. As an aside, 
we can observe that the proof is constructive in each case: given a derivation in 
one system, the proof shows how to construct a derivation in the other. The proof 
for the implication from (1) to (2) is as follows. 

Case: 
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We can apply the type-assignment rule for variables to obtain r f- x T, where 
f(x) = T. We can prove that there must be such an x in r, by induction on r. 
The case where r is empty cannot arise, since we are assuming lfl contains T. So 
suppose r is f', y : T' for some r', y, and T'. If T' = T, then take y for x and we are 
done. Otherwise, we may apply the inner induction hypothesis. 

Case: 

lf'l,Ti f-T2 

Ir' I f- Ti ---+ T2 

Here, we must haver = r',x : Ti, for some x. By the IH, we then have a term 
t such that r', x : Ti f- t : T2• We may apply the type-assignment rule for A
abstractions to concluder' f- Ax.t : Ti ---+ T2, which suffices for what we needed 
to prove. 

Case: 

lfl f- Ti ---+ T2 lfl f- Ti 
lfl f- T2 

By the IH, there are terms ti and t2 such that r f- ti : Ti and r f- t2 : T2. We may 
apply the type-assignment rule for applications to concluder f-ti t2 : T2. 

The proof for the implication from (2) to (1) is then the following. 

Case: 

r(x) = T 
ff-x:T 

We can easily prove by induction on r that we have TE lfl, so we can apply the 
Assump rule to get lfl f- T. 

Case: 

r, x : Ti f- t : T2 
r f- Ax.t : Ti ---+ T2 

By the IH, Ifl, Ti f- T2, and we may apply the Implntro rule to obtain I fl f- Ti ---+ T2. 

Case: 

r f-ti : T2 ---+ Ti r f-t2 : T2 
f f-ti t2 : Ti 

By the IH, we have lfl f- T2 ---+ Ti and lfl f- T2. We may apply the ImpElim rule to 
obtain I fl f-Ti. D
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7.7.4 Using normalization to prove logical consistency 

Proof theorists of the 20th century developed a method for establishing the logical 
consistency of various formal logical theories, based on transformations of proofs. 
To understand this, we first need to define logical consistency. 

Definition 7.7.2 (Logical Consistency). If£ is a logic of some kind, then it is consistent 
iff there is at least one formula which it does not accept as a theorem. 

A more familiar definition is that a logic is consistent if it does not derive a contra
diction (like 0 = 1 or False). The definition above is more broadly applicable, since
some logics do not have a single formula like False representing a contradiction. 
Our minimal implicational logic is a good example: the only formulas are atomic 
formulas b and implications T1 ----+ T2. It would not be useful to define consistency 
as unprovability of False in this case, since False is not a formula. For this system, 
it is more informative to know that not all formulas are provable. In particular, we 
will show that atomic formulas b are not provable in the empty context. The basic 
proof-theoretic strategy for proving consistency of a logical theory is the following: 

1. Prove (in the meta-language) that for every proof p of formula F, there exists
a proof p' in a certain restricted form of the same formula F.

2. Prove that there is some formula that no proof p' in that restricted form could
possibly prove.

The approach used for showing (1) is to rewrite proofs to remove certain patterns 
of inference that make (2) difficult to prove. The technically challenging part of 
this approach is then to show that the rewriting of proofs is indeed guaranteed to 
terminate. 

For logics like minimal implicational logic for which we have a Curry-Howard 
correspondence betweens proofs and typed lambda-calculus terms, the rewriting 
of proofs turns out to correspond to small-step reduction of terms. Using this idea, 
we can prove: 

Theorem 7.7.3. Minimal implicational logic is consistent: that is, there is a formula 
which is not provable (in the empty context). 

Proof We will show that b is not provable, for an atomic formula b, by assuming 
that it is provable and deriving a contradiction. So assume · f- b. By the Curry
Howard isomorphism (Theorem 7.7.1), there must then be some lambda-calculus 
term t such that · f- t : b. By Normalization for closed simply typable terms 
(Theorem 7.5.3), t has some normal form n. By iterating Type Preservation (Theo
rem 7.6.1), we can conclude that· f- n : b. At this point we have achieved step (1) 
in the general proof-theoretic strategy for proving consistency: we have identified 
a restricted class of proofs (ones corresponding to normal forms of lambda calcu
lus), and shown that for every unrestricted proof p of a formula F (here, the proof 
corresponds to t and the formula is b), there exists a proof in restricted form of F 
(namely, the one corresponding to n). 
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Now we follow step (2) in the general strategy for proving consistency: show
that proofs in restricted form cannot possibly prove the formula we claim is un
provable. So here, we are going to prove that if n is in normal form, then we cannot 
possibly have · f- n : b. More specifically, we will prove that whenever we have 
· f- n : T with n in normal form, then n must be a A-abstraction. The proof is by
induction on the derivation (which we are assuming exists) of· f- n : T. 

·(x) = T

· f- x :  T

This case is impossible since · ( x) cannot possibly equal T (since · is the empty 
context). 

Case: 
• I x : T1 f-t : T2 

· f- Ax.t : T1 ----+ T2

The term in the conclusion is a A-abstraction, so the claim holds in this case. 

Case: 
· f- f 1 : T2 ----+ T1 · f-t2 : T2

· f-t1 t2 : T1

By the IH, t1 must be a A-abstraction. But then t1 t2 is not in normal form as 
assumed. So we derive a contradiction and the claim holds in this case, too. D

Semantic Soundness (Theorem 7.4.1) actually gives us a more direct way to
derive a contradiction, as done in the proof just above, from the assumption that 
we have a term t with · f- t : b. Let us define an assignment I of sets of terms 
to base types by I(b) = 0, for all base types b. To apply Semantic Soundness, 
we must confirm that I(b) is inverse-reduction closed for all base types b, but this 
holds vacuously: we must show that if t � t' and t' E I(b) then t E I(b), but since 
I(b) = 0 by definition, there are no terms t' in I(b). Now Semantic Soundness 
tells us that· f- t : b implies t E [b] I. But [b] I = I(b) = 0 by definition of the 
semantics of base types and the definition of I. Sot tj. [b] I, and hence we cannot 
have· f-t : b. So although the proof of consistency above used Type Preservation 
and then an induction on the structure of derivations of · f- n : T for normal n, 

this was not actually needed, since Semantic Soundness already gives us enough 
information to conclude that no term can have type b in the empty context. 

7.8 Algorithmic typing 

We can try to use the type-assignment rules algorithmically by starting with some 
goal type assignment to prove, and matching the conclusion of a rule to that goal. 
The appropriately instantiated premises then become the new goals, and we pro
ceed recursively. If you are familiar with logic programming as in Prolog, this is a 
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similar idea. There are two ways we might try to use these rules in this way, de
pending on which of r, t, and T we consider to be inputs, and which outputs. Un
fortunately, both of which end up being infinitarily non-deterministic (and hence 
unusable). So we will have to refine the rules in some way to get a deterministic 
algorithm. 

1. Type checking. On this approach, we taker, t, and T as inputs (and there 
are no outputs). So the judgment expresses that we check whether t can be 
assigned simple type Tin context r. The problem with this reading is that 
when we apply the application rule, we must non-deterministically guess 
type T2 as we pass from its conclusion to its premises. There are an infi
nite number of choices, since there are infinitely many simple types. Note, 
however, that the other rules can both be executed deterministically. 

2. Type computation. We can also take r and t as inputs, and T as output. In 
this case, the judgment expresses the idea that simple type T can be com
puted fort in context r. The application rule is completely deterministic on 
this reading: if we have computed type T2 ----+ T1 for t1 and type T2 for t2, then 
we compute type T1 for the application of t1 to t2. The problem with the type 
computation reading shows up in the rule for typing A-abstractions. There, 
we must non-deterministically guess the type T1 to give to x in the extended 
context in the premise of the rule. So once again, the rules are infinitarily 
non-deterministic. 

We now consider different ways to obtain a deterministic algorithm for typing: 

1. Annotated applications for type checking. If we wish to use the typing 
rules for type checking, then we can annotate applications to remove the 
non-determinism in the application rule (described above). We may add 
annotations to applications by the syntax of A-terms t: 

t x I (t1 t2) [T ] I Ax.t 

The typing rules above are then modified as follows (note that only the ap
plication rule has changed): 

r( x) = T r f--- t1 : T2 ----+ T1 r f--- t2 : T2 

r f--- x : T r f--- t1 t2 [T2] : T1 
f, x : T1 f--- t : T2 

ff--- Ax.t : T1 ----+ T2 

This approach is admittedly not commonly used in practice, though it is 
theoretically sufficient. 

2. Annotated abstractions for type computation. More commonly, if we wish 
to use the typing rules for type computation, then we can annotate A-abstractions 
to remove the non-determinism in the abstraction rule: 

t x I (t1 t2) I Ax : T.t 
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The typing rules above are then modified as follows (only the A-abstraction 
rule has changed): 

r ( x) = T r f--- ti : T2 ---+ Ti r f--- t2 : T2 
r f--- x : T r f--- ti t2 : Ti 

In both cases, since the subject t of the typing judgment r f--- t : T is structurally 
decreased from conclusion to premises of every rule, the rules are not only al
gorithmic but also terminating. We can therefore use them as effective tests for 
typability. 

7.8.1 Examples 

Let us consider how our three different systems for algorithmic typing (type check
ing, type computation,, and constraint generation) handle the example type as
signment· f--- Ax.Ay.(x y) : (Ti ---+ T2) ---+ (Ti ---+ T2). 

Type checking. For type checking, we must annotate applications with the type 
of the argument. So our term Ax.Ay.(x y) becomes Ax.Ay.(x y) [Ti]. We then have 
this derivation using our type-checking rules: 

x : Ti ---+ T2, y : Ti f--- x : Ti ---+ T2 x : Ti ---+ T2, y : Ti f--- y : Ti 

x: Ti---+ T2,y: Ti f--- (xy)[Ti]: T2 

x: Ti---+ T2 f--- Ay.(x y)[Ti] : Ti---+ T2 

• f--- Ax.Ay.(x y) [Ti] : (Ti ---+ T2) ---+ (Ti ---+ T2)

Notice that every expression written directly above a line is determined by ex
pressions written directly below that line. So we do not need to choose (non
deterministically) any expression as we use the type-checking rules algorithmi
cally. In particular, we do not need to guess the domain type for the function x 
(and the type for the argument y) when checking the application (x y). 

Type computation. For type computation, we need to annotate A-abstractions 
with the type of the input. So our example term becomes Ax : Ti ---+ T2.Ay : 
Ti. ( x y), and we have this derivation: 

x : Ti ---+ T2, y : Ti f--- x : T 1 ---+ T 2 x : Ti ---+ T2, y : Ti f--- y : T 1 

x : Ti ---+ T2, y : Ti f--- ( x y) : T 2 

• f--- Ax: Ti---+ T2.Ay: Ti.(x y): (T1---+ T2)---+ (T1---+ T 2 )

Here I have written the inputs to type computation in the regular font, and outputs 
in bold. Notice that all inputs directly above a line are determined by inputs below 
that line, and similarly, all outputs directly below a line are determined by outputs 
above that line. This tells us that inputs to recursive calls are determined by inputs 
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to surrounding calls, and outputs from surrounding calls are determined by out
puts from recursive calls. So information is flowing properly for this to compute 
the type T as an output from the term t and the context r as inputs.

7.9 Algorithmic typing via constraint generation 

We saw that the above typing rules are not algorithmic. Whether one is computing 
a type or checking a type, one must make a non-deterministic choice of a type in 
the premise of one rule. One solution is to add annotations to the program that 
specify this type, thus removing the need for the non-deterministic choice. 

Another way to get a typing algorithm without adding any annotations is to 
modify our type-assignment rules so they generate constraints. This idea can be 
implemented based on an interpretation of the typing judgment as expressing type 
checking, as well as on an interpretation as type computation. Here, we pursue 
the latter. The rules now operate on judgments of the form r f---t : T > C, where
r and t are inputs, and T and C are outputs. C is a set of constraints which must
be satisfied in order for the type assignment to hold. A constraint is an equation 
between simple types with meta-variables X, which we call here type schemes, 
defined by the following syntax: 

type schemes T ::= b I X I Ti ---+ T2 

The constraint generation rules are the following (where· denotes the empty set of 
constraints, and comma is used for unioning sets of constraints). In the rule for,\
abstractions and the rule for applications, X is a new meta-variable (not occurring 
in any other term, type, or context listed). 

f(x) = T 
ff---x: T > ·

r f---ti : Ti > Ci r f---t2 : T2 > C2 
f f---ti t2 : X > Ci, C2, Ti = T2 ---+ X

f,x:Xf---t:T>C 
f f---Ax.t : X ---+ T > C 

So to compute a type for a term, one applies these rules bottom-up (from conclu
sion to premises). This will generate a set of constraints. If these have a common 
solution, then the original term is typable. We will see how to solve these con
straints using unification in Section 7.9.2 below. First, though, let us consider an 
example of constraint generation. 

7.9.1 Example 

For constraint-based typing, we do not need to annotate our term at all. Instead, 
we are computing a type possibly containing some meta-variables, and a set of 
constraints on meta-variables. If the constraints are solvable, they determine a 
substitution that we can apply to the computed type, to get a final type for the 
term. This type can still have meta-variables in it, so it will actually be a type 
scheme, describing an infinite set of types that can be assigned to the term. Here 
is the constraint-based typing derivation for the example term we considered in 
Section 7.8.1.
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x: X, y: Y f- x : X > · x : X, y: Y f- y: Y > · 

x : x, y : y f- ( x y) : z > x = y ---+ z 

x: X f- Ay.(x y) : Y---+ Z > X = Y---+ Z 

· f- Ax.Ay.(x y) : X---+ (Y---+ Z) > X = Y---+ Z 
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We have not yet studied how to solve sets of constraints, but in this case, the set 
is already in solved form: each equation is of the form X = T, where X occurs 
nowhere else in the set of constraints. This constitutes an explicit definition for X. 
Applying this definition as a substitution means replacing X by what it is defined 
to equal, in this case Y ---+ Z. So the final type (scheme) we get is ( Y ---+ Z) ---+ ( Y ---+ 
Z), which matches what we derived above with other approaches. 

7.9.2 Solving constraints using unification 

Now let us see an algorithm for solving constraints. The syntactic unification prob
lem is the following: given two expressions e1 and e2, which may use unification 
variables X (in our case, meta-variables), find a substitution CT for those variables 
such that CTe1 and CTe2 are exactly the same expression. This substitution is a uni
fier of the two expressions. More generally, we are looking for a substitution which 
simultaneously unifies a set of pairs of expressions ( ei, e2). 

It is helpful to be a bit more detailed about what a substitution is. In general, 
in a setting where we have some set of expressions containing variables drawn 
from some other set, a substitution is a total function CT from the set of variables 
to expressions, where CT(X) = X for all but a finite number of variables X. The 
idea is that the substitution should only replace a finite number of variables with 
some other expression; all other variables X are left unmodified by the substitu
tion, which is captured by having CT(X) = X. Such a substitution can be denoted 
as a finite function {X1 i-----t ei, · · · ,Xn i-----t en}, where we need only show the map
pings for variables X where CT(X) =I- X. In our setting of constraint solving for 
simple types, the set of variables in question is the set of type meta-variables, and 
the expressions to which these variables are being mapped are type schemes. Ap
plying a substitution like { X i-----t Y ---+ Y} to a type scheme like X ---+ Z results in 
(Y ---+ Y) ---+ Z, since the substitution does not modify Z. 

An algorithm for solving constraints by unification is given by the rules of 
Figure 7.4. The rules are to be applied top-down (from premises to conclusion) to 
transform a set of constraints C, where each constraint is an equation ei = e2. In 
the figure, we write ei = e2, C to mean { ei = e2} UC, where the equation ei = e2 
is not already a member of the set C. For constraint-based simple typing, we have 
just one function symbol f that could appear in the decompose rule: this is the ---+
construct, for forming function types. This is because our constraint-based typing 
rules will generate equations between type expressions. It is these equations that 
will be solved by the above unification algorithm. 

A variable is called solved in C if it occurs exactly once in C, on the left hand 
side of an equation. If all constraints are of the form X = t, where X is a solved 
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t = t c

C' delete

t = X, C X rj:_ Vars(t) t is not a variable 
orient X = t,C 

X = t, C X rj:_ Vars(t) XE Vars(C) 

X = t, [t/X]C 
solve 

Simple Type Theory 

Figure 7.4: A simple non-deterministic unification algorithm 

variable, then C is said to be in solved form. Such a C determines a substitution, 
namely, the one which maps X to t for each such constraint. 

A number of important properties of this algorithm can be shown. One prop
erty is that it terminates with a solved form, no matter what order the rules are 
applied in, iff the original unification problem is solvable. Another important 
property is that it computes a most general unifier. We take a brief digression 
to discuss this property, after seeing first an example. 

7.9.3 Example 

Suppose C is { (Y ---+ Z) ---+ W = (X ---+ X), W = A ---+ A}. Then the following 
derivation represents a run of the unification algorithm: 

{ (Y---+ Z) ---+ W = (X---+ X), W = (A ---+ A)} 
----------------- decompose 

{ (Y---+ Z) = X, W = X, W = (A ---+ A)} . 

{ X = ( Y ---+ Z), W = X, W = (A ---+ A)}
orzen t 

------------------ solve 
{X = (Y---+ Z), W = (Y---+ Z), W =(A---+ A)} 

-------------------- solve 
{X = (Y---+ Z), W = (Y---+ Z), (Y---+ Z) =(A---+ A)} 

d 
{ X = (Y---+ Z), W = (Y---+ Z), Y = A, Z = A} 

ecompose 

------------------ solve 
{X =(A---+ Z), W =(A---+ Z), Y =A, Z =A} 
------------------ solve
{X =(A---+ A), W =(A---+ A), Y =A, Z =A} 

Notice that the variables W, X, Y, and Z are all solved in the final (i.e., lowest 
printed) constraint set. The variable A is not solved in that constraint set. This 
does not prevent the final constraint set from being in solved form, because each 
constraint in that set is of the form X = t, where X is solved. 
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7.9.4 Generality of substitutions 

In general, for substitutions mapping from variables to some class of expressions, 
we can define a notion of generality as follows. Substitution CT is more general than 
c:r' if there exists a substitution c:r" such that c:r' = c:r" o c:r (the composition of c:r" and 
c:r, where c:r is applied first, and then c:r"). Intuitively, this means that c:r

' acts like c:r, 

followed by some additional instantiating of variables (by c:r
") . So CT instantiates

variables less than c:r
' does. For example, the following c:r is more general than the

following c:r': 

CT {X H f(Y), Z Ha} 
c:r' {X H f(g(Y))), z Ha, w Ha} 

We have c:r(X) = f(Y), but c:r'(X) = f(g(Y)). Also, c:r(W) = W, but c:r'(W) = a. 
The substitution c:r" showing that c:r is more general than c:r' as defined above is: 

c:r
" 

= {Y H g(Y), W H a} 

Substitutions are equivalently general iff each is more general than the other ac
cording to the above definition. An example of a pair of equivalently general sub
stitutions is 

c:T1 { X H f (Y)} 
c:T2 {XHf(Z)),ZHY,YHZ} 

In each case, we can compose the substitution with the renaming (which is a finite 
permutation of variables) { Z H Y, Y HZ} to get the other. The composition 

{ZHY, YHZ}o{XHf(Y)} 

maps X first to f (Y), and then to f (Z); and it maps Y to Z and Z to Y. The 
composition 

{Z HY, Y HZ} o {X H f(Z), Z HY, Y HZ} 

maps X first to f (Z) and then to f (Y); and it maps Z first to Y and then back to Z, 
and similarly Y to Zand then back to Y. So the composition is really 

{ Z H Z, Y H Y, X H f (Y)} 

which is equivalent to just { X H f (Y)} (since our notation for substitutions al
lows us to hide mapping of variables to themselves). Finally, substitutions may 
be incomparable in this generality ordering. That is, it can happen that neither is 
more general than the other. An example is {X Hf (X)} and {X H g(X) }. 

7.9.5 Termination 

We show here that the algorithm terminates, by reducing a certain measure:(# un
solved variables, size of constraint set,# unoriented equations), where (recall that) 
a variable is solved iff it occurs exactly once, on the left-hand side of an equation; 
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the size of the constraint set is the sum of the number of symbols except equality 
in its members; and an equation is unoriented if orient could be applied to it. We 
compare elements of this measure using the threefold lexicographic combination 
of the usual natural-number ordering with itself. If we have two strict orders < 1 
on set A and <2 on set B, then the lexicographic combination <zex(l,2 ) of the orders

is a strict ordering where (a,b) <zex(l,2 ) (a',b') iff

a < 1 a' V (a = a' /\ b < 2 b')

So we decrease in <zex(l,2 ) iff either the first element of the pair decreases (and
the second element can change arbitrarily, including increasing), or else the first 
element is unchanged and the second decreases. It is not hard to prove that if <1 
and <2 are terminating, then so is <zex(l,2 ).

In the table below, a dash indicates a value that could possibly increase, but 
since it is to the right of a value that decreases, the measure is still decreased in the 
lexicographic combination of orderings. You can confirm that the rules in question 
decrease these quantities as stated, thus showing that each rule decreases the mea
sure. Since the ordering is terminating, the measure cannot be decreased forever, 
and hence the algorithm terminates. 

Rule # unsolved variables size of constraint set # unoriented 
delete < < -

decompose < < -
-

orient < - <-

-

solve < - -

7.10 Subtyping 

In some situations it is desirable to allow a term of type T1 where a term of type 
T2 is required, when T1 and T2 are related in a certain way. For example, we might 
want to allow every boolean to be used as an integer, by identifying true and false 
with 1 and 0, respectively. To do this, we will allow a term of type bool (playing 
the role of T1) to be used wherever a term of type int (T2) is required. The standard 
terminology is that we are treating bool as a subtype of int. For more on subtyping 
for other type systems, including polymorphic ones, see [33]. 

The way that subtyping enters into the type-assignment system for STLC (Sec
tion 7.3) is through the addition of a so-called subsumption rule, where T1 <: T2
means that T1 is a subtype of T2 (the formal definition is given below): 

f f--- t : T1 T1 <: T2 

ff--- t: T2 

T his rule says that if in context r we have t of type T1, then we can just as well 
assign the type T2 to t, if we know that T1 is a subtype of T2 . Intuitively, this is 
justified by a semantics for T1 <: T2 which says that every value of type T1 is also 
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b <: b 

Figure 7.5: Rules for subtyping 

a value of type T2. Let us define this semantics. Recall the interpretation [T] I of a 
type T with respect to an assignment I, defined in Section 7.2, where I maps base 
types to sets of terms. We define the semantics for subtyping judgments T1 <: T2 
with respect to I as follows: 

We will see below that with this interpretation, we can easily extend our proof of 
Theorem 7.4.1 (Semantic Soundness) to handle the subsumption rule. But first we 
need to give rules for the subtyping judgment. 

7.10.1 Subtyping rules 

Figure 7.5 gives rules for the subtyping judgment T1 <: T2. The first rule ex
presses reflexivity of subtyping for base types: we are surely allowed to use a b 
wherever a b is required. The second rule presupposes a primitive subtyping re
lation SubBase on base types. For the example mentioned above, we would make 
SubBase(bool, nat) true, and all other subtypings of base types false. This enforces 
an asymmetric relationship between the two types T1 and T2: we want to use bools 
as ints, but let us say we will not allow using ints as bools (although that can cer
tainly also be sensible). Other situations could use a different primitive subtyping 
relation on base types. 

The third rule of Figure 7.5 expresses subtyping for function types. Note that 
the first premise is really T{ <: T1, with the T{ first and the T1 second (this is not 
a typo). This is the phenomenon known as contravariance of subtyping for the 
domain part of function types. In contrast, we do have the T2 <: T�, with the T2 
first and T� second, for the range parts, and subtyping is said to exhibit covariance 
in this case. We will give a formal proof below that this is sound with respect to 
our semantics, but let us consider the situation informally. Suppose we want to use 
a term t of type T1 ----+ T2 where a term t' of type T{ ----+ T� is required. When is this 
sound? Well, we know that t' might be applied to an argument of type T{. So to use 
t in place of t', we need to be sure that every argument of type T{ is also acceptable 
as an argument of type T1. For after all, we know only that t accepts arguments of 
T1. This is why the subtyping rule for function types requires T{ <: T1. Now after 
applying t to such an argument, we know we will get back a result of type T2. But 
in the place where t' of type T{ ----+ T� is used, all results obtained by applying t' 
are required to be of type T�. We can satisfy that requirement if we know T2 <: T�, 
as required by the second premise of the subtyping rule for function types. 
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7.10.2 Examples 

Here are some example derivable subtypings, where we assume SubBase(bool, nat). 

1. nat --+ bool <: bool --+ nat 

2. nat --+ bool <: bool --+ bool 

3. bool --+ bool <: bool --+ bool 

4. (bool --+ nat) --+ b <: (bool --+ bool) --+ b

(1) is derivable using the function-subtyping rule, since we have bool <: nat, which 
is needed for both the first and second premise of that rule in this case. (2) is 
derivable using bool <: nat for the first premise of the function-subtyping rule, 
and bool <: bool for the second. (3) is derivable using bool <: bool, which holds 
by the second rule of Figure 7.5, for both premises of the function-subtyping rule. 
(4) is derivable since we have the following subtyping for the first premise of the 
function-subtyping rule, and b <: b for the second: 

bool --+ bool <: bool --+ nat 

7.10.3 Extending semantic soundness to subtyping 

Recall from Section 7.4 that <TE [f] I means that o-(x) E [f(x)] I, for every x in the 
domain of substitution <T, where that domain is assumed to be equal to the domain 
off. Our goal now is to extend Theorem 7.4.1 (Semantic Soundness) to include 
the subsumption rule and subtyping rules introduced just above. The first step for 
this is to prove that the subtyping rules are semantically sound, as expressed in 
this lemma: 

Lemma 7.10.1 (Soundness of subtyping rules). Suppose that whenever Sub Base( bi, b2) 
holds (using the rules of Figure 7.5), we have I(b1) � I(b2). IfT1 <: T2 is derivable (Fig
ure 7.5), then [T1 <: T2] I holds. 

Proof The proof is by induction on the structure of the assumed subtyping deriva
tion: 

Case: 
SubBase(b1, b2) 

b1 <: b2 

We have I(b1) � I(b2) from our assumption relating SubBase and I. 

Case: 

b <: b 

The interpretation of the conclusion is I(b) C I(b), but this holds by basic set 
theory. 
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Case: 
T{ <: T1 T2 <: T� 

T1 ---+ T2 <: T{ ---+ T� 

The interpretation of the conclusion is I(T1 ---+ T2) � I(T{ ---+ Tn. To prove this, 
it suffices to assume an arbitrary term t E I(T1 ---+ T2), and show t E I(T{ ---+ T�). 
For the latter, it suffices to assume an arbitrary t' E I(T{), and show t t' E I(T�). 
By the IH applied to the first premise, we know that I(T{) � I(T1), so t' E I(T1). 
Since we are assuming t E I(T1 ---+ T2), we may now deduce that t t' E I(T2). By 
the IH applied to the second premise, we know I(T2) � I(Tn, so we can conclude 
that t t' E I (T�). But this was what we were trying to prove. D 

Now we can prove the following theorem about STLC extended with subtyping. 

Theorem 7.10.2 (Semantic soundness with subtyping). Suppose I(b) is inverse
reduction closed for all base types b, and whenever SubBase(b1, b2), we have I(b1) � 

I(b2). Suppose further that er E [f] I. If r f--- t : T in STLC with subtyping (the rules of 
Figure 7.1 plus subsumption), then we have er t E [T] I. 

Proof The proof is by induction on the structure of the assumed typing derivation. 
All cases go through exactly as for Theorem 7.4.1, except for the new case of the 
subsumption rule: 

Case: 
f f--- t : T1 T1 <: T2 

ff--- t: T2 

By the induction hypothesis, we have er t E [Ti] I. By Lemma 7.10.1, we have 
I (T1) � I (T2). This is sufficient to deduce er t E [T2] I, as needed for the conclusion 
of the rule. D 

Corollary 7.10.3 (Normalization with subtyping). If· f--- t : T is derivable in STLC 
with subtyping, then t is normalizing. 

Proof Let I be the assignment mapping every base type to Norm. I clearly satisfy
ing the requirements on the assignment induced by SubBase. Theorem 7.10.2 then 
gives us t E [T] I. Our interpretation of types is unchanged from Section 7.5, so 
we may apply Lemma 7.5.2 to conclude that [T] I � Norm. D 

Corollary 7.10.3 may not seem terribly surprising, since the proof is entirely 
straightforward. But the result is more remarkable than it might first appear, for 
small changes to the system lead to the loss of normalization. For example, sup
pose we were to give a bit more freedom in our rule using SubBase (from Fig
ure 7.5), so that the system could be parametrized by a primitive subtyping rela
tion on any types, not just base types. The resulting subtyping rule would be: 

SubBase(T1, T2) 
T1 <: T2 
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Suppose we have SubBase(b ,b---+ b) and SubBase(b---+ b, b). This may seem a bit 
suspicious, since it looks like we are saying that b is equivalent to b ---+ b. Indeed, 
that is the effect of these primitive subtypings, and they are sufficient to type the 
(non-normalizing) term ( i\x .x x) ( i\x .x x). Here is a derivation, written in linear 
form (where we list out judgments and state which follow from which using the 
rules): 

1. ·,x:bf---x:b axiom 
2. b<:b---tb axiom 
3. · , X :  bf- X :  b---+ b from 1,2 

4. · , x : b f- xx : b from 3, 1 

5. · f- i\x .x x : b ---+ b from4 
6. b---tb<:b axiom 
7. · f- i\x.x x : b from5, 6 
8. · f- (i\x.x x) (i\x.x x) : b from 5, 7 

Indeed, we see that semantically, [b] I is not a subset, in general, of [b ---+ b] I. 

For example, if I maps every base type to Norm, then i\x.x xis in [b] I, but not in 
[b ---+ b] I. This is because applying it to itself -an argument which we have just 
noted is in [b] I -is diverging, and hence not in [b] I= Norm. 

7.10.4 Reflexivity and transitivity of subtyping 

Since we have just seen that adding a more flexible version of the axiom for prim
itive subtypings would destroy normalization for the typable terms, we have rea
son to be nervous about making other changes to the subtyping rules. For exam
ple, would it be sound to add a general reflexivity rule? 

T <: T 

Or what about a transitivity rule? 

T1 <: T2 T2 <: T3 

T1 <: T3 

The following theorems clarify the situation for these rules (recall from Section 3.3.5 
that a rule is admissible iff whenever the premises are derivable, so is the conclu
sion): 

Theorem 7.10.4 (Admissibility of reflexivity). The general reflexiv ity rule above is 
admiss ible. 

Proof The proof is by induction on the type T mentioned in the conclusion of the 
rule. 

Case: T = b for some base type b. Then we can use the first rule of Figure 7.5 to 
derive b <: b. 
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Case: T = Ti ----+ T2 for some types Ti and T2. We can use this derivation: 

Ti <: Ti IH T2 <: T2 IH 

Ti ----+ T2 <: Ti ----+ T2 
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Theorem 7.10.5 (Admissibility of transitivity). Suppose that SubBase is transitive. 
Then the rule of transitivity shown above is admissible. 

Proof The proof is by induction on the assumed derivation of Ti <: T2. 

Case: 

b <: b 

So Ti = T2 = b. Then the second assumed derivation, of T2 <: T3, is already a 
derivation of Ti <: T3. 

Case: 
SubBase(b1, b2) 

bi <: b2 

So Ti = bi and T2 = b2. Let us now case split on the form of the second assumed 
derivation, of T2 <: T3. It cannot end in an inference using the function-subtyping 
rule, since that rule would require T2 to be a function type, but T2 = b2. If it ends 
in an inference using the reflexivity rule for base types, then T3 = b2, and the first 
assumed derivation is already a derivation of T1 <: T3. If it ends in an inference 
using the primitive-subtyping rule, then T3 = b3 for some b3 with Sub Base ( b2, b3). 
Since SubBase is transitive by assumption, we have SubBase(b1, b3), and we can 
apply the primitive-subtyping rule to get bi <: b3. 

Case: 
T� <: Ta Tb <: T� 

Ta ----+ Tb <: T� ----+ T� 

So Ti = Ta ----+ Tb and T2 = T� ----+ T�. Let us case split now on the form of the 
second assumed derivation, of T2 <: T3. Since T2 = T� ----+ T�, the only possibility 
is that this derivation also ends in an inference by the function-subtyping rule: 

T�' <: T� T� <: T�' 

T� ----+ T� <: T�' ----+ T�' 

We may use the following derivation: 

T�' <: T� T� <:Ta Tb <: T� T� <: T�' 

Tl' . T 
IH ,, IH 

a <. a Tb<: Tb 
Ta ----+ Tb <: T�' ----+ T�' 

D 
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7.10.5 Algorithmic typing with subtyping 

The subtyping relation itself is algorithmic because the rules given in Figure 7.5 are 
syntax directed. If we are asked to test T1 ----+ T2 <: T3, the only possible inference 
that could be used to derive that judgment is with the function-subtyping rule, 
where T3 must be T{ ----+ T� for some T{ and T�. If we have b <: T, then either 
T = band the reflexivity rule for base type applies, or else T = b' and we have 
SubBase(b, b'). Furthermore, the rules structurally decrease the types in question 
as we pass from conclusion to premises. So the rules are both algorithmic and 
terminating, and we can effectively test (for this particular type system) whether 
or not T1 <: T2. 

The type-assignment rules for STLC with subtyping are certainly not algorith
mic, since just for pure STLC we already observed type assignment is not algo
rithmic. But there is a new source of nondeterminism we must account for some
how: the subsumption rule can be applied at any point in searching for a type
assignment derivation. This is because the conclusion of the subsumption rule 
matches every typing judgment. So unlike the other typing rules, it is not subject 
directed: the form of the term we are trying to type does not limit the application 
of this rule at all. In contrast, the other typing rules are all limited by the form of 
the term in their conclusions. We now consider several options that can be used to 
obtain an algorithmic version of STLC with subtyping: 

Annotating with cast terms 

We can extend one of the annotation schemes for STLC (see Section 7.8) with a 
new annotation for uses of subsumption. The programmer will have to insert 
these annotations to tell the type checker when to try to change the type of a term. 
For algorithmic type computation with annotations on the A-bound variables, we 
can add a new term construct cast t to T, with the following typing rule: 

f f- t : T1 T1 <: T2 
f f- cast t to T2 : T2 

This rule can be used algorithmically for type computation, since assuming we 
have computed T1 from the first premise, we have all the data we need to check 
T1 <: T2 (since T2 is given in the term). Many practical programming languages 
include explicit typecast or coercion constructs like this, so this option is not so 
strange in practice. 

If we want to extend algorithmic type checking with annotations on applica
tions, we add a new term construct cast t from T and this typing rule: 

f f- t : T1 T1 <: T2 
f f- cast t from T1 : T2 

Assuming that the context, term, and type in the conclusion are all inputs to the 
algorithm, all the meta-variables in the premises will have values when applying 
the rule algorithmically. 
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f(x) = T r, x : Ti f- t : T2 
r f- x :: T r f- Ax.t :: Ti ----+ T2 

f f- t :: Ti Ti <: T2 
f f- t : T2 

r f- ti : T2 ----+ Ti r f- t2 : T� 

f f- ti t2 :: Ti 
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Figure 7.6: Type-assignment rules alternating STLC rules with subsumption 

Working subtyping into the other rules 

There is a different way to approach the problem of supporting a rule like sub
sumption which is not subject directed. The basic idea is to capture the effect that 
cumulative applications of this new rule could have, and incorporate those effects 
directly into all the other typing rules. In the case of subtyping, this is actually 
rather easy to do because there is nothing that multiple applications of subtyping 
can do that a single application could not. This is because, as we saw in Sec
tion 7.10.4), subtyping is both reflexive and transitive. Reflexivity means that 0 
applications of subsumption can be imitated by one application of subsumption, 
and transitivity that many applications of subsumption can be imitated by just 
one. For other type systems, the issue of summarizing the effect of multiple appli
cations of rules which fail to be subject directed can be significantly trickier: see the 
treatment of Curry-style System F in Section 4.2 of Barendregt' s "Lambda Calculi 
with Types", for an important example [6]. 

So the first step to handling rules which are not subject directed, on this ap
proach, is to define a new judgment which captures the effect of multiple applica
tions of those rules. For subtyping, this is easy as we noted: Ti <: T2 is already 
such a judgment. The next step is to define a set of rules which strictly interleave 
applications of the rules which are subject directed with those which are not. For 
subtyping, such a system is shown in Figure 7.6. Notice that we use two different 
typing judgments: derivations off f- t : T must end in a subsumption inference, 
while derivations off f- t :: T must end in an inference with one of the three rules 
for STLC. The premises of the STLC rules (the first line of rules in the figure) use 
:, while the conclusions use ::. For the subsumption rule (on the second line of the 
figure), the situation is reversed: the (typing) premise uses :: and the conclusion 
uses :. This enforces a strict interleaving of the rules, where along any path in a 
typing derivation, we are alternating between subsumption and STLC rules. 

What is the benefit of this approach? We can now rework the system one last 
time to combine the two layers into one. Since we know that every premise of 
an STLC rule (in Figure 7.6) must be derived using subsumption, we can think 
about what role subsumption plays in allowing the STLC inference, which derives 
a judgment of the form r f- t : : T, to proceed. Let us consider the three STLC 
typing rules in turn: 

Variable rule. Any derivation of r f- x :: T must end in the STLC variable rule. 
There is no application of subsumption. 
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Lambda rule. Any derivation of r f--- Ax.t :: T1 ----+ T2 must end this way: 

f, x : Ti f--- t :: T� T� <: T2 

f, x : Ti f--- t : T2 
f f--- Ax.t :: Ti ----+ T2 

We see that subsumption is not essential to allowing this inference to take place. If 
we applied a trivial subsumption instead, where we use reflexivity to change the 
type of t from T� to T�, the inference could still proceed, though the type assigned 
would be different: 

f, x : Ti f--- t :: T� T� <: T� 

f, x : Ti f--- t : T2 
f f--- Ax.t :: Ti ----t T� 

More specifically, the type we have derived is a subtype of the one we would have 
derived using subsumption. 

Application rule. Any derivation of r f--- t1 t2 :: Tb must end this way: 

f f--- t : : T' T' <: Ta ----+ Tb 
f f--- t : Ta ----+ Tb 

f f--- t : : T" T" <: Ta 
f f--- t' : Ta 

f f--- t t' :: Tb 

We know by inversion on the subtyping relation that T' <: Ta ----+ Tb can only hold 
if T' = T� ----t T� for some T� and T�, with Ta <: T� and T� <: Tb. So the derivation 
must actually look like this: 

Ta <: T� T� <: Tb 

f f--- t :: T� ----t T� T� ----t T� <: Ta ----t Tb 

f f--- t : Ta ----t Tb 

f f--- t t' :: Tb 

f f--- t :: T" T" <: Ta 
f f--- t' : Ta 

By transitivity of subtyping (Theorem 7.10.5), we have T" <: T�. This is the only 
constraint essentially needed here to allow an inference with the application typ
ing rule. Except for this, we could just as well use trivial subsumptions, at the cost 
of assigning a different type tot t' (namely, a subtype of Tb): 

T� <: T� T� <: T� 

f f--- t :: T� ----t T� T� ----t T� <: T� ----t T� 

f f--- t : T� ----t T� 

T" < ·. Ta T < T' a : a 
-------- 7.10.5 

f f--- t :: T" T" <: T� 

f f--- t' : T� 

f f--- t t' :: T� 

Based on these considerations, we can drop the subsumption rule completely 
from the system, with the one drawback that the final type we assign might be a 
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f(x)=T f,x:T1f-t:T2 
r f-x : T r f-Ax.t : T1 ----+ T2 
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Figure 7.7: Type-assignment rules for STLC directly incorporating subtyping 

subtype of the type we would have assigned previously. This results in the system 
shown in Figure 7.7. The preceding discussion is the essence of a proof of the 
following theorem (further details omitted): 

Theorem 7.10.6. Suppose that f f-t : T is derivable using the rules of Figure 7.6. Then 
for some T' with T' <: T, the rules of Figure 7.7 allow us to derive r f-t : T'. 

What is the import of all this for algorithmic typing? If we consider the (subject
directed) rules of Figure 7.7, we see that the same annotation scheme we used 
for STLC without subtyping is sufficient here. We annotate A-bound variables 
with their types in order to resolve the non-determinism in the typing rule for Ji.
abstractions. The only change we have to make is then to check that for the types 
T� and T2 ----+ T1 which we compute in the rule for applications, the subtyping 
judgment T� <: T2 holds. As we have already observed, the subtyping rules are 
algorithmic and terminating, so this leads to an effective test for typability in STLC 
with subtyping. 

Yet another alternative would be to develop constraint-generating versions of 
the type-assignment rules of Figure 7.7, as we did for the STLC type-assignment 
rules in Section 7.9. The only difference is that we need to add a subtyping con
straint in the constraint-generating rule for typing applications. We would then 
need to extend our unification algorithm of Section 7.9.2 to decompose subtyping 
constraints between function types: if we have a constraint of the form T1 ----+ T2 <: 

T{ ----+ T�, we can rewrite this to a pair of constraints T{ <: T1 and T2 <: T�, taking 
into account the contravariance and covariance of the domain and range parts, re
spectively, of the function types. Further exploration of this approach is left as an 
exercise. 

7.11 Conclusion 

We considered several different type systems for lambda calculus, based on simple 
types consisting of base types and function types. Type-assignment rules are not 
algorithmic, but provide a solid foundation for theoretical study, including proofs 
of two important theorems: Semantic Soundness and Type Preservation. We also 
saw the Curry-Howard correspondence between proofs in minimal implicational 
logic and terms typable in simply typed lambda calculus. For algorithmic typing, 
we can add type annotations to certain subterms (either arguments in applications 
or A-bound variables), or we can use constraint-generating rules to produce a set 
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of constraints which, if solvable by unification, determine a substitution that can 
be applied to determine the most general type for the term. While we have studied 
these techniques in the setting of the simply typed lambda calculus (STLC), they
are also very useful for extensions of STLC, some of which we will consider in
subsequent chapters. We concluded with a look at how to extend these ideas to 
accommodate subtyping for simple types. 

7.12 Basic Exercises 

7.12.1 For Section 7.1, syntax of simple types 

1. Fully parenthesize the following types:

• b1 ----+ b2 ----+ b1
• b1 ----+ (b1 ----+ b2 ----+ b3) ----+ b4

2. Drop as many parentheses as possible from these types:

• (b1 ----+ b2) ----+ (b1 ----+ b2)
• (b1----+ ((b1----+ b2)----+ b3))

7.12.2 For Section 7.3, type-assignment rules 

1. For each of the following terms, write out a typing derivation showing that
the term can be assigned some particular type in the empty context, using
the type-assignment rules of Figure 7.1:

• Ax.Ay.y
• AX.X Ay.y
• Ax.Ay.x(xy)

2. For each of the following, fill in the ? with a typing context which makes the
typing judgment derivable (you do not need to write out the derivation):

• ? f- x Ay.z : A
• ? f-y (z x): A----+ A
• ? f-AZ.X y y : A ----+ B

7.12.3 For Section 7.7, the Curry-Howard isomorphism 

1. Write derivations using the rules of Figure 7.2 for minimal implicational
logic, for the following formulas (recall that ----+ associates to the right, just
as for simple types):

• b1 ----+ b2 ----+ b1
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• (b1 ----+ b2 ----+ b3) ----+ (b1 ----+ b2) ----+ b1 ----+ b3

• b1 ----+ ( b1 ----+ b2) ----+ b2

2. Write down typing derivations for A-terms which correspond, under the
Curry-Howard isomorphism, to the derivations you wrote in the previous
problem.

3. Write two more derivations of b1 ----+ (b1 ----+ b2) ----+ b2 (using the rules of
Figure 7.2), and then show the corresponding A-terms. You do not need to
write out the typing derivations for those A-terms.

7.12.4 For Section 7.8, algorithmic typing 

1. Write a typing derivation in the empty context for an annotated version of
each term below (same as one of the problems above), using the algorithmic
type-checking rules with annotated applications:

• Ax.Ay.y

• Ax.x Ay.y

• Ax.Ay.x(xy)

2. Repeat the previous exercise except with annotated A-abstractions, using the
algorithmic type computation rules.

7.12.5 For Section 7.9, algorithmic typing via constraint generation 

1. Write a typing derivation in the empty context using the constraint-generating
rules for the following (unannotated) terms (same as several problems above):

• Ax.Ay.y

• Ax.x Ay.y

• Ax.Ay.x(xy)

2. For each of the following pairs of substitutions, state which of the following
mutually exclusive possibilities holds: the first is strictly more general than
the second, the second is strictly more general than the first, the two are
equivalently general, or the two are incomparable.

• { X H Y ----t Z} and { X H Y ----t ( b ----t b) }

• { X H Y ----t Z} and { X H Z ----t Y}

7.12.6 For Section 7.10, subtyping 

1. Draw a graph where the nodes are the following types, and there is an edge
from T1 to T2 iff T1 <: T21 assuming SubBase(bool,nat) (do not forget to in
clude edges from every type to itself).
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nat ----+ bool nat ----+ char 

(bool ----+ bool) ----+ bool bool ----+ nat 

bool ----+ nat ----+ bool bool ----+ char 

nat nat ----+ nat ----+ bool 

2. Some of the following terms are typable using the type-assignment rules for
STLC plus subsumption in the context · , x : (bool ----+ nat) ----+ bool, y : nat. For
those terms which are typable, write out a typing derivation: 

(a) x y 

(b) x Az.y 

(c) x (Ay.x Ay.y) 

(d) Af.Ag.g (x f) (f y) 

7.13 Intermediate Exercises 

7.13.1 For Section 7.3, type assignment 

1. Prove by induction on the structure of the derivation that if· f--- t: T with the
type-assignment system, then t must contain at least one A-abstraction (this
statement includes the case where tis itself a A-abstraction).

7.13.2 For Section 7.4, semantic soundness 

1. For this problem, let assignment I be defined as follows:

I(b1) 
Vb f- b1. I (b) 

{ t I =it'. t � * t' � t' } 

Norm, the set of normalizing terms. 

Also, define the term t as follows: 

t = (Ax.Ay.y) ( (Ax.xx) (Ax.xx) )  

(a) Is tin [b1] I? 

(b) Is tin [b2] I, where b1 f- b2? 

(c) Give an example of a term which is in [b1 ----+ b2] I, where b1 f- b21 and 
argue using the definition above that this term is in that interpretation. 
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7.13.3 For Section 7.10, subtyping 
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1. The goal of this problem is to develop constraint-based typing for STLC with
subtyping. This is done in several steps:

(a) Write out constraint-generating versions of the type-assignment rules 
in Figure 7.7. 

(b) Extend the unification algorithm with new rules for subtyping con
straints. How can you extend the termination metric of Section 7.9.5 

to show termination of the processing of subtyping constraints? 

(c) Suppose that a set of constraints is in normal form with respect to your 
unification rules. Characterize when those constraints can be consid
ered solved, and when they should be viewed as unsolvable. For one 
example, if we have a subtype constraint of the form b <: T1 ----+ T2 or 
T1 ----+ T2 <: b, we should consider the constraint set as unsolvable, since 
our subtyping rules do not permit such constraints. 

( d) Test your algorithm by generating and solving constraints with typing 
context · , y : nat ----+ bool and term 

Ax.(Az.(y (y z))) x 

This term is indeed typable in that context using the rules of Figure 7.7. 

What is the final set of solved constraints you compute? How should 
this be interpreted as describing the set of concrete types which can be 
assigned to the term in the given context? 
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Chapter 8 

Nondeterminism and Concurrency 

Execution of WHILE programs is deterministic, as we proved in Chapter 4 (Theo
rem 4.2.1): there is exactly one possible final state that can result from any given
starting state when running a particular command. That is, we cannot have c, CT .JJ
CT1 and c, CT .1J, CT2, unless we have CT1 = CT2. In this chapter, we will consider
three languages for which reduction is not deterministic. The first is a language 
of so-called guarded commands, due to Edsger Dijkstra [11]. In this language, pro
grams contain groups of commands, each of which is guarded by some condition 
t pred t'. Execution proceeds by selecting a command from that group, when the 
command's guard is true (in the current state cr). Execution is nondeterministic
because multiple guards may be enabled in the same state, and the operational se
mantics will then allow any one of the corresponding commands to be executed. 

We will then consider an extension of WHILE with support for concurrent com
putation, where multiple commands may execute in an arbitrary interleaved fash
ion. Execution of such commands exhibits nondeterminism in the choice of inter
leaving. Concurrently executing commands may exchange information simply by 
assigning to variables, which are shared across commands; or else by waiting for 
a condition to become true, and then executing a command atomically. 

Our final example of nondeterministic computation will be a language of con
current interacting processes called simple CCS (Calculus of Communicating Sys
tems), due to Robin Milner, and adapted from Chapter 4 of his book on the TI
calculus [28]. That book is concerned with the operational semantics of a formal
ism called the TI-calculus, in which concurrent processes can communicate with 
each other over named channels. A particular innovation in the TI-calculus is the 
ability of processes to transmit not just regular data over channels, but also the 
names of channels themselves, thus providing a model of a dynamically chang
ing interconnection network between processes. A formalism very similar to CCS 
was independently developed by C. A. R. Hoare at around the time of Milner 's 
original work on CCS [20]. 

More historical notes: Dijkstra won the Turing Award in 1972, Hoare (as we
had occasion to note already in Chapter 3) in 1980, and Milner in 1991. 

8.1 Guarded commands 

The language of guarded commands has the following syntax, slightly adapted 
from [11]. 
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guarded commands g 
statement lists S 
statements s 
guarded command sets G 

Non determinism and Concurrency 

t pred t' ----+ S 
s I s; S' 
if G f i I do God I x := t I skip 
g I GD G' 

We will sometimes use E as a meta-variable ranging over any of the above expres
sions (that is, from any of our four syntactic categories s, S, g, or G). We will take 
the operators for forming statement lists (the comma operator) and guarded com
mand sets (the box operator) as associating to the right. Let us say that the BNF 
definition of a syntactic category C1 depends on the BNF definition of another cat
egory C2 if the definition of C1 mentions C2. We can see that the definition of g 
above depends on the definition of S. In fact, we have a cyclic dependency chain: 

g depends on S depends on s depends on G depends on g 

This explains why the syntax is somewhat more difficult to grasp than the syntax 
of WHILE. 

8.2 Operational semantics of guarded commands 

To explain what the unfamiliar constructs of Dijkstra's guarded command lan
guage mean, we will use a small-step operational semantics, defined by the rules 
of Figure 8.2. The rules use the forms of judgments listed in Figure 8.1. First, let us 
consider the forms of judgments, and then the rules. The first four forms listed in 
Figure 8.1 are for evaluating statements sand statement lists S. For each of those 
two syntactic categories (s and S), small-step execution can either produce an S 
and a possibly new state (T

1
, or else finish with a possibly new state (T

1
• T he sec

ond four forms are for evaluating guarded commands g and guarded command 
sets G. For these syntactic categories, small-step execution either produces a new 
statement list S to execute, or else there is no execution possible (so execution of 
the guarded command or guarded command set is "done"). But in either case, the 
state does not change, and so we have the same (T on the right of the 'Vt-sign as on 
the left. 

Now let us consider the rules themselves. The first three rules of Figure 8.2 

are very similar to the small-step rules for assignment and sequencing from Chap
ter 4, Figure 4.2. T he next three rules are for evaluating statements built with the 
if- and do-constructs. To understand what they are saying, it is helpful to know 
that the intended meaning of G 'Vt S is that the guarded command set G can non
deterministically execute in one small step to S, without changing the state. Also, 
"G done" means that G cannot take a small step (for reasons we will consider 
shortly). So the if-statement will nondeterministically evaluate to S if G can take 
a step to S. There is no rule for evaluating an if-statement where G is done. This 
means that the i £-statement does not execute at all in that case. This is an instance 
of finite failure: the statement cannot take a small step, and so does not converge 
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S, CT "-+ 5, er' 

S, CT "-+ er
' 

g,cr "-+ S,cr 
g,cr done 

5, CT "-+ 5, er' 

5, CT "-+ er
' 

G,cr "-+ S,cr 
G,cr done 
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Figure 8.1: The forms of judgments used in the small-step rules of Figure 8.2 

x := t, er "-+ cr[x H [t]cr] 

G,cr "-+ S,cr 
if G fi,cr "-+ S,cr 

G,cr "-+ S,cr 

GD G',cr "-+ S,cr 

[t pred t']cr = True 

t pred t' ----+ S, er "-+ S, er 

G,cr "-+ S,cr 
do G od, er "-+ S; do G od, er 

G',cr "-+ 5,cr 

GD G',cr "-+ S,cr 

[t pred t']cr = False 

t pred t' ----+ S, er done 

G, er done 

do G od, er "-+ er 

G, er done G', er done 

GD G', er done 

Figure 8.2: Small-step rules for guarded commands 

to a final state. In this sense, finite failure resembles divergence: neither result in 
convergence to a final state. 

Finally, we have the guarded command sets G and the guarded commands 
t pred t' ----+ S. A guarded command transitions to S if the guard t pred t' is true 
in the current state, and is done otherwise. A guarded command set transitions 
to S iff one of its guarded commands can transition to S, and is done otherwise. 
The nondeterminism of the language arises because more than one guard can be 
true in the same state, thus allowing transitions from one guarded command set 
to distinct statement lists S and S'. 

8.2.1 A simple example 

Let us first make the following abbreviating definitions: 

(x > 0 ----+ x := 1) 

(x = 0 ----+ x := 2) 

(x ::; 0 ----+ x := 3) 

So gi abbreviates the guarded command x > 0 ----+ x := 1. Then using the rules 
of Figure 8.2, we have the following derivation of a small-step reduction for the 
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x = 0 ---+ x := 2, { x H 0} � x := 2, { x H 0} 

g2 D g3, { X H 0} � X : = 2, { X H 0} 

But in the starting state { x H 0} which we are using here, command g3 is also en
abled. So we have an alternative reduction from this same starting configuration, 
as shown by the following derivation: 

x ::; 0 ---+ x := 3, { x H 0} � x := 3, { x H 0} 

g2 D g3, {x HO}� x := 3, {x HO} 

Of course, from each of the configurations we have reached in these two deriva
tions, we can take an additional small step. In the first case, we have: 

x := 2, {x HO}� {x H 2} 

In the second, we have 

x := 3, {x HO}� {x H 3} 

So we have sequences of steps from gi Dg2Dg3, { x H O} which result in different 
final states. This demonstrates that reduction of guarded commands can nonde
terministically lead to different final results. 

8.2.2 Multi-step reduction 

We saw in Section 4.2.2 how to define multi-step reduction for WHILE from single
step reduction. As we have defined it so far, the semantics for the language of 
guarded has a rather large number of judgments: the eight of Figure 8.1. We would 
need quite a few rules if we wanted to describe multi-step reduction as we did in 
Figure 4.3, by showing how two judgments with matching ending and starting 
configurations can be concatenated. A more concise approach is to change our 
view of what the small-step judgments are for guarded commands. Rather than 
viewing the semantics as based on eight forms of judgment, let us instead view it 
as based on two judgments, /1 C � C'" and /1 C done" about configurations: 

configurations C ::= s, <T I S, <T I g, <T I G, <T I <T 

That is, we think of the semantics as showing how to transition from one config
uration C to another C', or else as showing that a configuration C is done. The 
rules of Figure 8.2 do not need to be changed with this change of perspective on 
the forms of judgment of the system. They are simply reinterpreted as deriving 
instances of one of the two forms of judgment about configurations, rather than 
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as deriving instances of the eight forms of judgment of Figure 8.1. (Note that we 
include er as a form of configuration so that small steps ending in a final state are in
cluded as transitions from configuration to configuration.) This change of perspec
tive allows us to describe multi-step reduction as simply the reflexive-transitive 
closure, defined using the rules of Figure 4.4 in Section 4.2.3, of small-step reduc
tion on configurations. 

8.2.3 Determinism 

The example in Section 8.2.1 showed that different reduction sequences can lead to 
different final results. Not all commands exhibit this behavior. Some commands 
will execute deterministically, even though reduction in the language is in gen
eral nondeterministic. W henever the guards of all the guarded commands in a 
guarded command set Gare mutually exclusive for a particular state, then G will 
execute deterministically from that state. For example, suppose n -=I- 0 and sup
pose we use { x 1------1 n} as the starting state for the command gi Dg2Dg3 considered 
in Section 8.2.1. In this case, exactly one of the three guards will be enabled: 

• x > 0 if n > 0. 

• x ::; 0 if n < 0. 

So there will be only one small-step reduction possible from that guarded com
mand set in state { x 1------1 n} with n -=I- 0. Thus, this command executes deterministi
cally. If an expression executes deterministically from starting state er, we call that 
expression deterministic from that starting state. 

8.2.4 Reduction graphs 

Sometimes it is helpful to depict the possible reductions from a configuration 
graphically. A reduction graph does this, using the small-step operational seman
tics. The nodes of the graph are configurations, and there is an edge between one 
configuration and another if the corresponding "-'+-judgment is provable using the 
rules of Figure 8.2. The nodes are usually specified by giving a starting configura
tion. The rest of the nodes are the ones reachable in one or more small steps from 
that starting configuration. An example is in Figure 8.3, for starting state { x 1------1 1} 
and the statements defined as 

do 0 = 0 ----+ x := -x od 

We can see from the graph that this statement is deterministic from starting state 
{ x 1------1 1}. Determinism shows up very clearly in a reduction graph, since it is 
equivalent to the property that each configuration has at most one outgoing edge. 
In this example, because the reduction graph is cyclic, we have exactly one outgo
ing edge for each node. 
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x := -x;s, {x H 1} 

s, { X H 1} s, { X H -1} 

x := -x;s, {x H -1} 

Figure 8.3: An example reduction graph 

8.2.5 Confluence 

We have just seen that guarded commands can execute nondeterministically lead
ing to different final results, and they can also execute deterministically, if their 
guards are always mutually exclusive in the states encountered during execution. 
Let us consider one further possibility (not the only one left). An expression E 

(from any of our four syntactic categories) is called confluent from state () iff when
ever E, ()'Vt

* C1 and E, ()'Vt
* C2 for any configurations C1 and C2, then there exists 

some third configuration C3 such that C1 'Vt
* C3 and C2 'Vt* C3. A graphical depic

tion of this situation is shown in Figure 8.4. Notice that the property just requires 
that there is some configuration C3 where the diverging reduction sequences that 
lead to C1 and C2 can be joined back up. Not every configuration reachable from 
C1 or C2 will play that role in general, nor is it the case that the reduction sequences 
leading to C3 are the only ones possible from C1 and C2. Those commands might 
themselves have different reductions paths leading from them, which we might 
wish to join up at yet some other configurations. 

Confluent reduction, which we will consider again in Chapter 9, is a well
behaved form of nondeterminism. A configuration may have multiple distinct 
reduction sequences leading from it, but such sequences always can be extended 
to join at a common configuration (C3 in Figure 8.4). This implies in particular 
that a command which is confluent from state () cannot reach distinct final states. 
For suppose we have E, ()'Vt

* ()1 and E, ()'Vt
* ()2. Then by confluence, there must 

be some configuration C3 such that (Jl 'Vt
* C3 and ()2 'Vt

* C3. But there are no
single-step reductions possible from a configuration consisting of just a state, like 
configurations ()1 and ()2 in this case. So if we have ()1 'Vt* C3, this can only be by a 
0-step reduction sequence. So ()1 = C3. Similar reasoning applies to ()2 'Vt* C3. So 
we have (Jl = C3 = ()21 and we find that our final results (Jl and ()2 are not distinct. 

If an expression is deterministic from starting state (), it is also confluent from 
that starting state. Intuitively, the reason is that for deterministic expressions E, 

whenever we have E 'Vt
* C1 and E 'Vt

* C2, we must have either C1 'Vt
* C2 or 

C2 'Vt
* C1. This is because a deterministic expression only has a single reduction 

sequence, and so if we can reach configurations C1 and C2 from the starting con
figuration, that can only be because C1 occurs earlier or at the same point in this 
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Figure 8.4: Graphical depiction of the property that expression E of the guarded 
command language is confluent from state er. W henever the multi-step reductions 
shown with solid lines are possible, there must exists a configuration C3 such that 
the multi-step reductions shown with dashed lines are possible. 

sequence as C2, or vice versa. One of the exercises in Section 8.9.1 below asks you 
to make this argument more detailed. 

As an example of confluence, consider the following statement, which we will 
abbreviate s below: 

do (0 = 0 ---+ x := x + 1) D (0 = 0 ---+ x := x - 1) od

T his command is confluent from any state er, which we can prove as follows. First, 
we can prove that any configuration C reachable from starting configurations, er 
must be of one of the following three forms, for some state er' with the same do
main as er: 

• x := x + l;s,er'

• x := x - l;s,er' 

• s er'I 

To prove this, we prove by induction on the structure of the derivation of C1 ""'* C2 
that if C1 is of one of those 3 forms shown (for some er'), then so is C2 (for a possibly 
different er'). One base case is for when we have a 0-step reduction, using the third 
rule of Figure 4.4 (for the reflexive-transitive closure). In this case, C1 = C2, so 
C2 is certainly of one of the three required forms if C1 is. Another base case is for 
a one-step reduction, using the first rule of Figure 4.4. We just have to confirm 
that a single step from a configuration of one of the above forms leads to another 
configuration of such a form. If C1 = s, er', then the reduction to C2 could be either 
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the one derived this way: 

[O = 0]<7' = True 

0 = 0----+ x := x + l,£T1 'Vt x := x + l,£T1 

( 0 = 0 ----+ x : = x + 1) D ( 0 = 0 ----+ x : = x - 1) I £T1 'Vt x : = x + 1, £T1 

s,£T1 rvt x := x + l;s,£T1 

Or else the one derived this way: 

[O = 0]<71 = True 

0 = 0----+ x := x - l,£T1 'Vt x := x - l,£T1 

( 0 = 0 ----+ x : = x + 1) D ( 0 = 0 ----+ x : = x - 1) I £T1 'Vt x : = x - 1, £T1 

s,£T1 rvt x := x - l;s,£T1 

These are the only two possibilities, and they both result in a configuration C2 of 
the appropriate form. If C1 = x := x + 1; s, £T1, then the only possible reduction is 
x := x + l;s,£T1 rv> s,£T'[x H £T1(x) + 1]. Similarly, if C1 = x := x - l;s,£T1, then the 
only reduction is x := x - l;s,£T1 rv> s,£T'[x H £T1(x) - 1]. 

That concludes our consideration of one-step reductions. The only step case of 
our inductive proof is for when we have an inference of this form: 

C1 rvt* C' C' rvt* C2 
C1 rvt* C2 

But here, by applying our induction hypothesis to the first premise, we know that 
C' is of one of the three required forms. We can then apply the induction hypoth
esis to the second premise to conclude that C2 is, too, as required. 

Now that we have established that reduction from s, £T can only lead to config
urations of one of the three forms above, we can show confluence. Suppose we 
have s, £T rv> * C1 and s, £T rv> * C2. We will show that C1 rv> * s, fr and C2 rv> * s, fr, 
where fr= {x HO}. For this, however, we would like to assume that C1 and C2 
are both of the form s, £T1 for some £T1• That is, we want to rule out the first two 
forms of our three listed above. That is easily done because if a configuration C 
is of one of those two first forms, it reduces (deterministically, though that is not 
essential to the argument) in one step to a configuration of the third form. So let 
us assume C1 = s, <71 and C2 = s, <72. We can now prove that for any £T1, we have 
s,£T1 rv>* s,fr. The proof is by induction on n, which we define to be 1£T'(x)I, the 
absolute value of the integer value of x in state £T1• If £T1 ( x) = 0, then we already 
have £T1 = fr and we are done. So suppose £T1 ( x) -f. 0. We now consider cases 
based on whether or not £T1 ( x) is negative. If £T1 ( x) is negative, then we have the 
following reduction steps: 

s,£T1 'Vt x := x + l;s,£T1'Vts,£T'[xHn+1] 

The induction hypothesis applies since if n < 0, we know In+ ll < lnl. So using 
the induction hypothesis, we get a derivation of s,£T1[x H n + l] rvt* s,fr, which 
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we can connect using the appropriate rule of Figure 4.4 (for reflexive-transitive 
closure) with the steps displayed above. This gives us the desired reduction se
quence. If er' ( x) is positive, then we start with the following steps instead: 

s,er' 'Vt x := x - l;s,er' 'Vt ser'[x 1------t n - 1] 

We again apply the induction hypothesis to conclude ser' [ x i------t n - 1] 'Vt* s, 0-, 

which we can connect with the displayed steps to get the desired reduction se
quence. 

We have now proved that whenever s, er 'Vt* C1 ands, er 'Vt* C2, then C1 'Vt* s, iT 

and C2 'Vt* s, 0-. This shows that s is confluent from any starting state er, as we set 
out to prove. 

8.3 Concurrent WHILE 

In this section, we consider an extension of the WHILE language with support 
for running commands concurrently. Communication between concurrently ex
ecuting commands c1 11 c2 is supported using variables shared between the two 
commands, and by a form of guarded atomic action await t pred t' then c. This 
command will execute c atomically - that is, without allowing any interleaving 
of execution of any other commands - when the guard becomes true. We call 
this language concurrent WHILE, and distinguish it from the WHILE language of 
previous chapters by referring here to that language as sequential WHILE. The lan
guage we use is essentially the same as the one studied by Owicki and Gries [32]. 
They present their language via an axiomatic semantics for deriving partial cor
rectness assertions (see Section 3.2), while here we use an operational semantics 
adapted from [7]. The two works just cited impose different restrictions on the 
form of command which may be used in the body of an await-command. Here, 
we restrict such commands so that they cannot use concurrent constructs or loops; 
only conditionals, assignments, and skip are allowed. 

The abstract syntax of concurrent WHILE is: 

simple commands d 
commands c 

skip I x := t I di; d2 I if t pred t' then di else d2 
skip I x := t I c1; c2 I if t pred t' then c1 else c2 I 
while t pred t' do c I c1 11 c2 I await t pred t' then d 

The new constructs here are the concurrent command c1 11 c2 and the guarded 
atomic command await t pred t' then d, where d does not contain concurrent 
executions, guarded atomic commands, or while loops. These restrictions are im
posed on simple commands d to make them more appropriate for executing in an 
exclusive manner, where no other command can be executing concurrently. If such 
a command d could run for a long time or even diverge, it would not be suitable 
for atomic execution, as it would block all other concurrent commands for that 
whole time. 
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' ' 'C2,() 'Vt() C1,() 'Vt Cl,() 
c1 11 c2, (/ 'Vt c1, ()1 c1 11 c2, (/ 'Vt c� 11 c2, ()1 

[t pred t']() = True d (/'Vt* (/' 
I 

await t pred t' then d, ()'Vt ()1 

Figure 8.5: Small-step rules for the concurrent command c1 11 c2 and the guarded
atomic command await t pred t' then d. 

8.4 Operational semantics of concurrent WHILE 

The small-step operational semantics for concurrent WHILE is the same as for se
quential WHILE (see Figure 4.2), except for the addition of the nondeterministic
rules of Figure 8.5. Since every simple command dis also a command c, we do not
give separate rules for execution of simple commands. Reduction of each form of 
simple command d should be understood to be defined by the rules for the corre
sponding form of command (so a sequencing simple command d1; d2 is reduced
according to the rule for sequencing commands c1; c2). 

The small-step formalism makes it easy to express atomic execution. The rule 
for await-commands makes use of the multi-step reduction for concurrent WHILE, 
to state that a single small step of an await-command is determined by a comple
tion evaluation of the body d of the command, to a final state. Multi-step reduction
is defined exactly as it was for sequential WHILE, using the rules of Figure 4.3 (in
Chapter 4). 

The model of concurrent execution we are using here is significantly simpler 
than what one finds in practice, because our rules treat evaluation of assignments 
and evaluation of guards as atomic actions. In real systems, however, they will 
not usually be atomic: other commands could be concurrently executed in the 
middle of evaluation of a guard, for example. We are using the simpler model 
here so that we can avoid having to define an operational semantics for terms and 
guards. It would not be difficult to do so, but the central issues with semantics of 
concurrent execution are already demonstrated without this feature, and adding 
it would clutter the presentation. We will get a better feel for how the semantics 
works as we turn now to some examples of concurrent WHILE commands. 

8.4.1 Example: interleaved execution of assignments 

Many different reduction sequences are possible for concurrently executing com
mands, due to the large number of interleavings between them. For example, 
suppose we have the following two commands: 

C1 (x := -l;y := -1) 
C2 (x:=l;y:=l) 
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Let us think about the execution of the concurrent command c1 11 c2 from starting 
state {x H O,y HO}. One reduction sequence is the following, where we execute 
the first command until it is complete, and then the second one: 

(x := -l;y := -1) 
"0 y := -1 

11 
11 

(x := l;y := 1), 
(x := l;y := 1), 
(x := l;y := 1), 
y := 1, 

{xHO,yHO} 
{xH-1,yHO} 
{x H -1,y H -1} 
{x H l,y H -1} 
{x H l,y H 1} 

But there are several other sequences possible. For example, we could have the 
sequence which executes c1 for one step, then c2 for two, and then c1 again for its 
last step: 

(x := -l;y := -1) 
"0 y:=-1 
"0 y := -1 
"0 y := -1 

11 (x:=l;y:=l), 
JI (x:=l;y:=l), 
II Y := 1, 

{xHO,yHO} 
{xH-1,yHO} 
{xHl,yHO} 
{x H 1,y H 1} 
{x H 1,y H -1} 

We can interleave the execution of these assignments in order to get any final state 
er' mapping x to either 1 or -1 and similarly for y. 

The number of possible interleavings of two sequences of N assignments can 
be determined combinatorically as follows. An interleaving of two such com
mands can be thought of as a sequence of length 2 * N of the assignments from the 
two commands, in the order they are executed in that interleaving. For example, 
the interleavings corresponding to the two reduction sequences for our example 
are: 

x := -1; 
y := -1; 
x := 1; 
y := 1; 

and 

x := -1; 
x := 1; 
y := 1; 
y := -1; 

Since the order of commands within each sequence is fixed (in the above example, 
we cannot execute y := 1 before executing x := 1, since they are in sequence 
within the same command), it suffices to count how many different ways we can 
select N of the total 2 * N positions in the interleaving, for the assignments from 
the first command. The assignments from the second command will then go in 
the remaining N positions, but there is no choice there: they must be placed in 
the positions that are left. For the left interleaving displayed above, once we have 
chosen positions (1) and (2) for the assignments from c1, then the assignments 
from c2 are going to have to go in positions (3) and (4). 

There are (
2
�N) choices of N positions out of the total 2 * N, so this gives us the 

number of interleavings: 

N! * (2 * N - N)! 
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This quantity is exponential in N. For the case of our simple example above, N = 2 
and (2�N) = 6. Since there are only four possible final states for execution of c1 11 c2
in this case, we can conclude that some of the interleavings result in the same final 
state. A priori, it is not obvious whether we have two pairs of two interleavings 
each that yield the same final state, or three interleavings with the same final state. 
It turns out that in this case, it is the former situation. The first two interleavings 
are: 

x := 1;

y := 1;

x := -1;

y := -1;

and 

x := 1;

x := -1;

y := 1; 

y := -1; 

These both result in the state { x H -1, y H -1 }. The second two interleavings 
are then similar, but resulting in state { x H 1, y H 1 }: 

x := -1;

y := -1;

x := 1;

y := 1; 

and 

x := -1;

x := 1;

y := -1; 

y := 1;

8.4.2 Example using await

Here is an example of using await and concurrent commands to implement what 
is sometimes known as the fork/join concurrent-programming design pattern: a 
problem is divided into subproblems (the "fork" part of fork/join); these subprob
lems are given to multiple concurrent commands to solve; and when those com
mands have all completed their work, the results are recombined (the "join" part). 
For a simple example, let us consider the problem of computing 2x + 3x for non
negative integer x by computing each of the quantities 2x and 3x concurrently, and 
then summing the results. Let us use the abbreviation expz,y,n for the sequential
WHILE command which computes nY and stores that result in variable z, modify
ing variable y as it computes: 

expz,y,n = (z := l;while y > 0 do y := y- l; z := z * n) 

Now the command to compute 2x + 3x and store the result in variable z can be 
written as follows: 

y := x; y' := x; ( expz,y,2 11 expz',y',3 11 await y * y' = 0 then z := z + z
') 

The command first initializes the temporary variables y and y' to x, and then initi
ates a concurrent computation. This computation uses expz,y,2 to compute 2Y and 

store the result in z, and expz',y',3 to compute 3Y1 and store the result in z
'

. The
third concurrently executing command is waiting for bothy and y' to become 0,

signaling that both loops have finished. When this occurs, that third command 
sets z to the sum of the two computed quantities. 
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A note on concurrency and parallelism. Our operational semantics for a com
mand of the form c1 11 c2 says that it executes by some arbitrary interleaving of the 
executions of c1 and c2. This does not appear to be quite the same as a parallel exe
cution of c1 and c2, where certain events might truly happen at the same time, or at 
least at times which we do not distinguish. Indeed, there is a substantial literature 
in the theory of concurrency concerned with what is sometimes called true con
currency, where certain actions taken by concurrently executing commands are 
judged to have occurred simultaneously, or at least without any ordering between 
their times of occurrence. Here, we have adopted the simpler route of modeling 
parallel execution by interleaving, an approach to which a substantial literature is 
also devoted. 

8.5 Milner's Calculus of Communicating Systems 

In this section, we consider a fragment of Milner's Calculus of Communicating 
Systems (CCS), as presented in the first part of [28] (and adapting or building on 
a number of his definitions and examples). This is a language for concurrently 
executing processes, which can explicitly synchronize via named synchronization 
points. I am leaving out one feature from the languaged as defined in [28], just for 
a slightly simpler presentation: parametrized process names A(a1, ... ,an), which 
allow a recursively defined process A to be parametrized by values ai, ... , an. We 
will also make some other minor modifications to Milner's formalization, for more 
explicit notation at a few points (in particular, for summations). 

Figure 8.6 presents the syntax for unparametrized CCS, adapted from Chap
ter 4 of [28], omitting parametrized processes, as already mentioned. Note that 
in the syntax for actions, Tis a special constant (not a meta-variable), represent
ing synchronization between two processes. Synchronization happens when one 
execution of one process produces label£, and execution of another produces the 
complementary label£. We will see precisely how this is defined when we con
sider the operational semantics below. We implicitly identify£ with just£. For 
parsing, the"." operation in tX.P binds more tightly than the other operators, and 
we will treat+ and I as right-associative constructs of equal precedence. 

For an informal introduction to the syntax for processes: A is the name for a 
recursively defined process; summations tX1.P1 + · · · + tXn.Pn are processes which
can perform one of the actions tXi and then continue with process Pi (discarding 
the other possible actions and processes in the summation); PIP' is the concur
rent process executing P and P' concurrently; new a P introduces a new name a 
with local scope P; and 0 is an empty process which does nothing. Milner uses 
notation LiEilXi.Pi with finite index set I to subsume 0 (empty summation) and the
summations S as we have defined them. Here we define a syntactic category of 
summations separately, rather than have the syntax for expressions use finite sets 
of subexpressions for the summands in L.-expressions. 
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process identifiers A 
names a 
labels£ 
actions a 
summations S 
processes P 

Nondeterminism and Concurrency 

alf 
£IT 
a.P I a.P+S 
A f S f PIP' f new a P f 0

Figure 8.6: Syntax of CCS (with unparametrized process identifiers only)

8.6 Operational semantics of CCS 

The operational semantics for CCS is defined as follows. Execution is stateless, 
but we need to keep track of actions a performed by processes. Furthermore, un
like the presentation in Chapter 5 of [28], we will be explicit about the recursive
equations A = P (where A is a process identifier and P is the process it is recur
sively defined to equal). For this, we use a function /j, from process identifiers to 
processes. This is a convenient way of modeling of a set of recursive equations: to 
model A 1 = P11 • • •  , An = Pn, we will use the function /j, with domain {A 11 • • •  , An} 
which maps Ai to Pi for all i E {l, ... , n }. We have no need to consider infinite sets
of such equations, so we will restrict our attention to functions with finite domain. 

Based on these ideas, our judgments for small-step reduction take the form 

P � t... P'. Intuitively, this means that process P transitions (in one small step)
to process P', executing action a, and possibly making use of recursive equations
defined by /j,. The rules defining this small-step operational semantics are given 
in Figure 8.7. The first row of the figure gives rules for summations, which allow
us to transition £Y1.P1 + · · · + l\'.n . Pn to Pi with action £Yi, for any i E {l, ... , n }. 
The second row gives rules for concurrent commands PIQ. The first two rules
allow a concurrent command to step by allowing one of the concurrently executing 
commands to step. The third rule allows PI Q to step with action T if P and Q step
with complementary labels £ and R. This represents a synchronization of the two 
processes P and Q on label£. Other processes executing concurrently with P and
Q (in some larger process expression) can then no longer observe that an£ and a f 
action have been performed. They can only observe a T transition, representing a 
synchronization action, which is internal to the concurrent process PI Q. The third
row of Figure 8.7 gives the rule for transitioning from a process identifier A to the
process it is defined by /j, to equal; and for process new a P. The latter transition
on any action a as long as that action is not a or a. The "new a" prefix is retained
by the transition, since the resulting process may still make use of a. 

8.6.1 Examples 

A very simple example of a process is a message buffer. The buffer can receive 
a signal from its environment (whatever other processes there are with which it 
is executing concurrently), and then relay that message on. It receives the signal 
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t\'. 
a.P ----+ t-. P

t\'. 
a.P + S ----+ t-. P

p �t-. P' Q �l'. Q' 
p I Q  �l'. P' IQ P I Q �t-. P I Q' 

/j, (A) = P P � t-. P' P � t-. P' a -::J a a -::J a 

A �t-. P' new a P � t-. new a P'

I 

S �t-. P'

tY' 
a.P + S ----+ t-. P'

p !:+ t-. P' Q J.+ t-. Q' 
p I Q 2t l'. P' I Q'

Figure 8.7: Small-step reduction rules for CCS 

p �t-. P'

p �� p p �� P'

I 

P 4 t-. P" P" 2+ t-. P'
I 

p '24 t-. P'

Figure 8.8: Rules for multi-step reduction for CCS 
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by synchronizing on one label, and then relays the messages by synchronizing on 
another. If we adopt the convention that senders use names a while receivers use 
complementary names a, then the message buffer can be defined recursively this
way, using a process identifier B: 

B = a.b.B 

To see how this works, suppose we have processes P and Q that are waiting to
send and receive using labels a and b, respectively, and then to continue as P' and 

Q'. Now consider the concurrent command PI B I Q. It can reduce as follows:

T he derivation for the first of these transitions is the following: 

;'j,(B) = a.b.B a.b.B -3.+t-. b.B 
i'i B ----+ t-. b.B

p !!+ l'. P' BI Q -3.+t-. b.BIQ 
p I ( B I Q) 2t l'. P' I ( b. B I Q) 

If we wanted to buffer more than one a-signal, either because process P has tem
porarily gotten ahead of process Q or because we have other processes wanting to
communicate by sending a-signals, then we could put use additional copies of B. 
For example, to allow buffering of two a-signals from P, we could use the process 
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PI BIB IQ, with two buffers B. Note that the order of the processes in the concurrent 
command does not matter. In fact, we have the following (whose proof is left as 
an exercise): 

Lemma 8.6.1. Whenever PI Q � !'. P' IQ', then we also have QI P � !'. Q' IP'. 

For another example, suppose we have a process P which can receive an a
signal and then continue as P'. Suppose further that we want to be able to enable 
or disable that behavior using a signal b as a toggle. Then we can use a recursively 
defined process A (represented by a function t.,. as above): 

A = b.(b.A + P) 

The idea here is that when A receives ab-signal, then it proceeds as b.A + P. This 
process can respond to either ab-signal, in which case it will proceed as A (thus 
waiting for another b-signal before it will allow communication with P), or else to 
an a-signal, which will be handled by P. So we have reduction sequences like: 

b - a , A ----+ !'. (b.A + P) ----+ !'. P 

But we also have sequences like this: 

b - b A ----+ !'. (b.A + P) ----+ !'. A 

So when A interacts with the environment, it may allow an a-signal to reach P or 
else, if its b-signal is toggled first, it may not. 

For an example using new, consider this process: 

new a (b.a.Plc.a.Q) 

This process uses a new name "a" as an internal synchronization point: the pro
cess does not allow P and Q to continue until both the signals b and c have been 
received. But unlike the process b.c.(PIQ), this process allows b and c to be re
ceived in either order. One of its possible reduction sequences is this: 

new a (b.a.Plc.a.Q) _!,!'.new a (a.Plc.a.Q) �!'.new a (a.Pla.Q) 3-+I'. new a (PIQ) 

8.6.2 Multi-step reduction for CCS 

To define a suitable notion of multi-step reduction, we first define what it means 
for one process to transition to another generating a sequence of actions l\'.1 • • •  l\'.n. 

We will use {' as a meta-variable for sequences of actions, and write · for the empty 
such sequence, and 1'1'

' for concatenation of sequences. The rules of Figure 8.8 de-

rive judgments of the form P -2t: P', with the intended meaning that P transitions 
in 0 or more small steps to P', generating the sequence of actions {'. For exam
ple, recall the following sequence of reductions from our example in Section 8.6.1 
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above (where we have B recursively defined by t.,. to be a.b.B, and we assume 
-

b 
P !!.+I'. P' and Q ---+I'. Q'): 

PIBIQ 2,1'. P'lb.BIQ 2,1'. P'IBIQ' 

Connecting these two steps using the rules of Figure 8.8, we get the following 
multi-step reduction: 

PIBIQ �/'. P'IBIQ' 
Because r actions are not observable by concurrently executing processes, we may 
wish to define a version of multi-step reduction which abstracts those steps away 
(cf. Chapter 6 of [28]). Let us first define the erasure h'I of 1, so that it drops T 

actions: 
I· I 
1£11 £111 
lr1I 111 

I 

Now we define P J.I'. P' iff there exists 1' such that 11'1 1 and P 2+1'. P'. 
We will call this observational reduction. From the example multi-step reduction 
above, we get the following observational reduction, because erasure drops both 
r actions: 

PIBIQ =*/'. P'IBIQ' 
On the other hand, consider this reduction sequence, for a slightly different start
ing process (using the same facts about P, B, Q, and t.,. as above): 

PIPIBIQ 2,1'. PIP'lb.BIQ �/'. PIP'IBIQ 2,1'. P'IP'lb.BIQ 

From this, we can obtain the following multi-step reduction: 

PIPIBIQ 1!J I'. P'IP'lb.BIQ 

And from that multi-step reduction, we get this observational reduction: 

PIPIBIQ J,/'. P'IP'lb.BIQ 

8.6.3 Process algebra based on bisimulation 

The small-step operational semantics of CCS provides us with a calculus for rea
soning about the execution of processes written in the CCS language. The simplest 
form of reasoning about execution is simply to prove judgments about processes: 
single-step, multi-step, or observational reductions. We can also prove lemmas 
like Lemma 8.6.1 above, that express patterns of reduction. 

Going further, the inventors of process calculi like CCS and CSP were inter
ested in deriving algebraic laws equating different processes. It seems reasonable 
that there should be some notion of equality � such that PI Q � QI P, for exam
ple; or that PIO � P (since 0 cannot perform any actions, running it concurrently 
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with P is the same as just running P). A process algebra is an algebraic theory of 
processes, concerned mostly with notions of equality justifying intuitive equiva
lences between processes like those just mentioned. The notion of bisimulation is 
central to process algebras like that for CCS. To define this concept, we first need 
the notion of a simulation. 

Definition 8.6.2 (Simulation). A simulation of process P by process Q with respect to /J. 
is a binary relation C on processes such that whenever P � b. P' and P C Q, then there 
exists a process Q' such that Q � b. Q' and P' C Q'. 

Process Q simulates P with respect to /J. if there exists a simulation of P by Q with respect 
to !J.. 

If C is a simulation of P by Q, then intuitively Q can match all the transitions 
of P (but may have more transitions it can perform). For a well-known simple 
example, let P be the process a.b.O + a.c.O, and let Q be a.(b.O + c.O). Since we are 
not using any recursive equations, the simulation results we are about to discuss 
hold for any /J.. Given these definitions of P and Q, Q simulates P (with respect to 
any /J.) but not vice versa. A simulation C of P by Q can be defined as follows: 

a.b.O + a.c.O 
b.O 
c.O 
0 

C a.(b.O + c.O) 
c b.O + c.O 
c b.O + c.O 
c 0 

Let us confirm that this is indeed a simulation of P by Q. For each relational fact 
X C Y included in the definition above of C, we must confirm that whenever we 
have X � b. X', then there is some Y' with Y � b. Y' and X' C Y'. 

• For a.b.O + a.c.O C a.(b.O + c.O): the only transition of the left-hand side (lhs) 
process is a, but it can lead to two resulting processes, either b.O or c.O. The 
rhs process can only transition via a to one process, namely b.O + c.O. Con-

sidering the first transition of the lhs: if we have a.b.O + a.c.O !!.+ b. b.O, then 

we indeed have a.(b.O + c.O) !!+b. (b.O + c.O) with b.O C b.O + c.O. Con

sidering the second: if we have a.b.O + a.c.O !!.+ b. c.O, then we indeed have 

a.(b.O + c.O) !!+b. (b.O + c.O) with c.O c b.O + c.O. 

• For b.O C b.O + c.O: the lhs process transitions on b to 0. The rhs can also 
transition to 0 on b, and we have 0 C 0. Note that the rhs can also transition 
to 0 on c, but that is not relevant for showing that the rhs process can match 
the behavior of the lhs process. 

• For c.O C b.O + c.O: this case is just like the previous one. 

• For 0 C 0: the lhs does not transition at all, so the required property is vacu
ously true. 
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Let us now show that there does not exist any simulation of Q (that is, a.(b.O + 

c.O)) by P (that is, a.b.O + a.c.O). It suffices to consider all the possible binary re
lations holding between processes reachable from Q and those reachable from P, 
and show that all these relations fail to be simulations. For any such relation C, 

we must have the following relationship, or else we already can conclude that C 

is not a simulation of Q by P: 

a.(b.O + c.O) C a.b.O + a.c.O 

Now there is only one transition from the lhs process, namely a.(b.O + c.O) !!+ t:-. 
b.O + c.O. There are two transitions from the rhs process on a, either to b.O or to c.O. 
So for C to be a simulation, we must have either 

b.O + c.O c b.O 

or else 
b.O + c.O c c.O 

But in either case, C fails to be a simulation, since in either case, the lhs process 
has a transition that the rhs process cannot match. In the first case, we have b.O + 

c.O !:.+ t:-. 0, but the rhs process has no c transition; and in the second, we have 

b.O + c.O J?.+ t:-. 0, but the rhs process has nob transition. So no C can be a simulation 
of Q by P, and hence by definition, P does not simulate Q. 

Recall from basic set theory that if R is a binary relation on a set A, then its 
inverse R-1 is the relation defined by: 

{ (y' x) E A x A I ( x' y) E R} 

Definition 8.6.3. A bisimulation between processes P and Q with respect to 11 is a binary 
relation C on processes such that C is a simulation of P by Q and c::::-1 is a simulation of 
Q by P. 

Process P and Q are bisimilar with respect to 11 if there exists a bisimulation between P 
and Q with respect to 11. 

If the relation in question is an equivalence relation -;:::::, , then -;:::::,-l =-;:::::, (since the 

relation is symmetric), and we must just check that whenever P -;:::::, Q and P � t:-. P', 
there exists Q' -;:::::, P' such that Q � t:-. Q'. 

Let us consider an example of bisimilar processes, where we use abbreviations 
X and Y: 

X new a (b.a.Plc.a.Q) 
Y b.c.T.(PIQ) + c.b.T.(PIQ) 

Let -;:::::, be the symmetric closure of the relation defined by the following facts: 

x -;:::::, y 

new a (a.Plc.a.Q) ,....., C.T.(PIQ) ,....., 

new a (b.a.Pla.Q) ,....., b.T.(PIQ) ,....., 

new a (a.Pla.Q) -;:::::, T.(PIQ) 
new a (PIQ) -;:::::, (PIQ) 
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Confirming that this is indeed a bisimulation is left as an exercise. 

There is much more one can study about process algebra. I recommend Mil
ner' s book [28] as a starting point for further topics, including notions of bisimula
tion based on observational reduction (where different numbers of r-actions need 
not prevent processes from being bisimilar), and communication of data rather 
than just synchronization. 

8. 7 Conclusion 

In this chapter, we have explored operational semantics for three different lan
guages featuring nondeterministic computation. The language of guarded com
mands has a nondeterministic operational semantics, because multiple guards can 
be enabled in the same state, resulting in a nondeterministic choice of which of the 
commands which are being guarded should be executed. The concurrent WHILE 

language allows multiple WHILE commands to be executed concurrently, and also 
has a language feature await for guarded atomic commands: when the guard of 
the await-command is true, the body of the command is executed in a single 
atomic step. Finally, Milner's Calculus of Communicating Systems (CCS) is based 
on a stateless model of concurrent computation, where processes synchronize via 
named signals. All three of these languages have been important historically in 
the theoretical study of concurrency, and considering them all from the standpoint 
of operational semantics provides a common foundation for comparison. For ex
ample, of these languages, only concurrent WHILE explicitly includes a notion of 
atomic action. Efficient implementation of atomic regions using a method called 
software transactional memory (STM) has been, at the time of writing, a subject 
of significant recent research interest [35]. Another notable difference is CCS's fo
cus on synchronization between concurrently executing processes, which is not 
explicitly supported in the other two languages. There is certainly much more to 
the theory and practice of concurrent computation than we have surveyed in this 
chapter, but the formalisms we have considered are foundational for much of the 
research literature on this topic. Furthermore, studying them has provided a good 
testbed for operational semantics, which has given us a clear and notationally light 
way to define their semantics. 

8.8 Basic exercises 

8.8.1 For Section 8.1, syntax of guarded commands 

1. Identify the syntactic category or categories to which the following expres
sions, which are all syntactically well-formed, belong. Note that certain ex
pressions are both statements s and statement lists S, for example, so there 
might be two categories for some expressions (you should indicate both in 
such cases). 
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(a) x > 0 ---+ x := x - 1 

(b) if x > 0 ---+ do 0 = 0---+ skip od fi 
(c) x := 1; skip 
(d) (x>O---+ x:=x-l)D(y >O---+ y :=y- 1) 
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8.8.2 For Section 8.2, operational semantics of guarded commands 

1. Write down a derivation using the rules of Figure 8.1 for each of the follow
ing small-step reductions, wheres is the statement if x 2: y---+ z := x D x::::; 
y---+ z := y fi, £T1 is {x H 4,y H 3,z HO}, and £T2 is {x H 3, y H 3,z HO}: 

(a) s, <71 � z := x, <71

(b) s, <72 � z := x, <72 

(c) s, <72 � z := y ,  <72 

2. For each of the expressions E in Problem 1 of Section 8.8.1, write down a
reduction sequence from E, { x H 1, y H -1} to some final state <7. You do
not need to write down derivations for the steps in this sequence.

3. Draw the reduction graph for the expression below, from starting state { x H 

6}:
do X > 0 ---+ X := X - 3 D X > 0 ---+ X := X - 5

8.8.3 For Section 8.4, operational semantics of concurrent WHILE

1. Write down a derivation of the following judgment:

x : = 2 11 y : = x, { x H 0, y H 1} � { x H 2, y H 2 } 

2. Are any other final states reachable by executing x := 2 11 y := x from start
ing state { x H 0, y H 1} (besides the one in the previous problem)?

8.8.4 For Section 8.6, operational semantics of CCS 

1. Write down derivations, using the rules of Figure 8.7, for the following judg
ments:

(a) (a.0 + b.O) lb.O !!+t-. Olb.O 

(b) (a.O + b.O) lb.O �t-. OIO 

(c) Olr.a.O �f.. Ola.O 

2. Write down one reduction sequence starting with the given process and end
ing in a process for which no further reduction is possible. There may be
more than one reduction sequence possible, in which case you should just
pick one and show that. If /J. is specified, then use it for your sequence.n
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(a) b.(a.O+a.O) 

(b) new a (a.b.Ola.c.O) 

(c) new a (a.a.Ala.b.a.B), where �(A)= b.A and �(B) = b.B. 

(d) (a.b.O + a.b.O) la.Olb.O 

(e) A+ B, where �(A) =new c a.c.A and �(B) = b.A 

8.9 Intermediate exercises 

8.9.1 For Section 8.2, operational semantics of guarded commands 

1. For each of the following configurations, draw the reduction graph starting
at the configuration, and state whether the given expression is determinis
tic, confluent but not deterministic, or nonconfluent from the given starting
state.

(a) do x :::; 1 ---+ x := x + 1 D x 2:: -1 ---+ x := x - 1 od, { x H O} 

(b) if x = y---+ x := x+l D x:::; y---+ x := x-l;y := y+l fi, {x H 

0,y H l} 

2. Give an example of an expression E which is deterministic for a state <71,

confluent but not deterministic for a state <72, and not confluent for a state <73.

Show the expression, the three states, and the reduction graphs demonstrat
ing the relevant properties (deterministic, confluent but not deterministic,
and non-confluent) for each state.

3. Give a detailed proof of the fact that if expression E is deterministic from
state £T, then whenever we have E, £T "-+* C1 and E, £T "-+* C2, we must have
C1 "-+* C2 or C2 "-+* C1. Hint: reason by induction on the derivation of
E, £T "-+* C1, with a case analysis of the derivation of E, <7 "-+* C2 . Your proof
will essentially construct a derivation of C1 "-+* C2 or else C2 "-+* C1, by
taking apart the derivations of E, £T "-+* C1 and E, £T "-+* C2.

8.9.2 For Section 8.4, operational semantics of concurrent WHILE

1. Show all possible reduction sequences of the concurrent command x ·-

1 11 y := x 11 x := 2 from starting state {x H 5, y H 10}. You do not
need to write out formal derivations for the reductions in the sequence.

2. Give an example of a concurrent command which has both a terminating
and a diverging reduction sequence.

8.9.3 For Section 8.6, operational semantics of simple CCS 

1. Find a process P with the following characteristics:
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• it does not explicitly use T (in any summation), and

• it has exactly one reduction sequence, which is infinite and produces
only T actions.

2. Give a detailed proof of Lemma 8.6.1. Hint: proceed by induction on the

structure of the assumed derivation of PI Q � t... P' IQ'.

3. Prove that the following relation (from Section 8.6.3) is indeed a bisimulation
between the first two processes listed:

new a (b.a.Plc.a.Q) ,...._, b.c.T.(PIQ) + c.b.T.(PIQ),...._, 

new a (a.Plc.a.Q) ,...._, C.T.(PIQ),...._, 

new a (b.a.Pla.Q) ::::::: b.T.(PIQ) 
new a (a.Pla.Q) ,...._, T.(PIQ),...._, 

new a (PIQ) ,...._, (PIQ),...._, 

4. For each of the following pairs of processes, state whether or not the first sim
ulates the second. Justify your answers by exhibiting the simulation relation
in question and arguing that it is indeed a simulation, or else by arguing that
no simulation is possible (as we did in Section 8.6.3).

(a) (new a (a.Ola.O)) and T.T.0. 

(b) a.(b.Olc.O) and a.(b.O + c.O). 

(c) T.T.0 and a.b.Ola.Olb.O. 





Chapter 9 

More on Untyped Lambda Calculus 

In this chapter, we consider several results and ideas related to untyped lambda 
calculus, as presented in Chapter 5. The first is confluence of full /3-reduction (see
Section 5.2) for untyped lambda calculus. Confluence says that if we can reduce
a starting term t to terms s1 and s2 in multiple steps, then there must exist some 
term§ to which we can reduce both s1 and s2 (again, in multiple steps). We con
sidered confluence already in this book, when we were studying nondeterministic 
reduction of guarded commands (Section 8.2.5). Our study here will begin with an
abstract consideration of confluence, not tied to a particular reduction relation. We 
will then present a proof of confluence due to Tait and Martin-Lo£, and simplified 
by Takahashi [37].1 The proof is short and elegant, and will give us an occasion to
see a number of useful generic concepts about reduction relations. 

Second, we will consider an even more minimalistic programming language 
than lambda calculus, known as a combinator language. The language uses two 
primitive constants S and K, which manipulate their arguments in certain ways 
when applied. It has no notion of variable at all, making it more primitive, in 
that sense, than lambda calculus. We will define a small-step operational seman
tics for these combinators, and show the remarkable result that terms of lambda 
calculus can be faithfully translated into combinators, at least under call-by-value 
semantics. 

Finally, we will study an alternative syntax for untyped lambda calculus, based 
on so-called de Bruijn indices. In this notation, A-abstraction has the syntax A.t. 
The A-abstractor does not actually introduce a named variable. Rather, whenever 
one wishes to refer in t to the variable introduced by that abstractor, one uses a 
number n equal to the number of other A-abstractors which intervene between the 
use of the variable and the abstractor which introduced it. This notation avoids 
many of the difficulties of working with named variables and a-equivalence, at 
the cost of a more complex notion of substitution. 

9.1 Confluence of untyped lambda calculus 

We will work in this section with full /3-reduction for untyped lambda calculus. 
As we noted in Section 5.2.4, lambda calculus is nondeterministic. We can have
terms which reduce in multiple different ways, depending on the order in which 
we contract their /3-redexes. For example, consider this term, where I abbreviates 

1 According to Takahashi, neither of the original proofs by Tait and Martin-Lo£ were ever published 
by them [37]. Section 3.2 of Barendregt's contains a version of their proof [5]. 
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Ay.y: 
(Ax. x x) Ax .I ( x x) 

If we reduce the outermost redex consisting of the whole term, we will get: 

(Ax .I ( x x) ) Ax .I ( x x) 

If we again reduce the outermost redex, we have: 

I ((Ax.I (xx)) Ax.I (xx)) 

We can continue this reduction sequence to get this: 

I (I ( (Ax .I ( x x)) Ax .I ( x x))) 

We can get any number of applications of the identity function I at the beginning 
of this term: 

I · · · (I ((Ax.I (xx)) Ax.I (xx))) 

But remarkably, all of these terms can be reduced to a common term. For we 
could reduce the innermost f3-redex of the original term (Ax.xx) Ax.I (xx), namely 
I ( x x), to obtain the familiar looping term: 

(Ax.xx) Ax.xx 

And all the above terms can be reduced to this. For example, we have: 

I (I ((Ax.I (xx)) Ax.I (xx))) 
� (I ((Ax.I (xx)) Ax.I (xx))) 
� (Ax.I (xx)) Ax.I (xx) 
� (Ax.xx) Ax.I (xx) 
� (Ax.xx) Ax.xx 

W hile it may have seemed intuitive that this would work out, since we alway s 
have I t � t, it is not obvious that all reductions from a starting term can alway s 
be extended to some common term, or how to prove this. The fact that we do have 
this property - that lambda calculus is confluent - will be proved in the rest of 
this section. The proof itself is remarkably short, though somewhat tricky. First, 
though, we will consider a generic notion of confluence, and study some of its 
properties. Confluence is important in programming languages theory generally, 
and so it is worthwhile to stop and look into it more deeply. 

9.1.1 Abstract reduction systems and their properties 

A generic notion of confluence can be elegantly developed in the context of ab
stract reduction systems (ARSs) (cf. Chapter 1 of [38], or Chapter 2 of [3]). See 
the "Mathematical Background" section at the end of this book for a refresher on 
some of the concepts we will now use to define ARSs and related notions. This 
section builds up enough of this theory to prove the correctness of one particular 
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Composition 

approach, embodied in Theorem 9.1.8 below, to showing confluence. There are 
many more important results in the theory of confluence than we will be able to 
cover here. The interested reader can consult the two books cited above for much 
more on this topic. 

An abstract reduction system (A, ----+) consists of a set A of some objects, and a 
binary relation----+ on A (so----+ � A x A). We will write a1 ----+ a2 to mean (a1, a2 ) E 

----+(that is, a1 and a2 are related by relation----+). Any directed graph can be viewed 
as an abstract reduction system, since a graph consists of a set V of vertices and a 
set E of directed edges. This exactly matches the form of an ARS: Vis the set of 
objects, and E is the relation on it. We will now define several important concepts 
related to ARSs. 

If we have ARSs (A, ----+1) and (A, ----+2), then we can compose their relations to get 
an ARS (A, ----+1 · ----+2), where ----+1 · ----+2 denotes the composition of the relations: 

----+1 · ----+2= {(x,z) EA x A I :3y. x ----+1 y /\ y----+2 z} 

Composition of a relation with itself can be iterated, using this recursive defini
tion, which implicity depends on A (that is, the relation ----+o will be different if the 
underlying set A of the ARS is different, even if the relational part of the ARS is 
the same): 

{(a,a) I a EA} 
----+ . ----+ n 

The relation ----+0 (with A implicitly specified) is also called the identity relation on 
A, and sometimes denoted Id A. 

For an example, suppose that ARS (A, ----+) is presented graphically as: 

Then the ARS (A, ----+0) (the identity relation on A) can be depicted as: 

0 0 0 0 
1 2 3 4 

The ARS (A, ----+ 1 ) is just the original relation, since composing ----+ with the identity 
relation on A just results in ----+. The relation (A, ----+2) is the following. For every 2 

edges consecutive edges in the original graph, we get a single edge here for ----+2: 
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1 2 3 4 

The ARS (A, ---+3) is: 

And the ARS (A, ---+4) is again just the identity relation: 

0 0 0 0 
1 2 3 4 

Iterating ---+ further times will repeat the above graphs. 

For the following definitions, we are considering an ARS (A, ---+). 

• ---+ * denotes the reflexive transitive closure of ---+. It can be defined using the
rules of Figure 4.4 presented in Chapter 4. Equivalently, we can define it as 
follows (the proof of equivalence is left as an exercise below): 

So x ---+ * y iff there exists n E N such that x ---+ n y. 

• The transitive closure of ---+ is denoted ---+ +, and can be defined this way:

u 
nE(N-{O}) 

So it is just like the reflexive transitive closure, except that we do not include 
-+a (the identity relation on A). 

• +----denotes the inverse of---+:

+---- { (y Ix ) I x ---+ y} 
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• B denotes the symmetric closure of ----+: 

B = (+--- U ----+) 

• The reflexive closure is denoted -=+: 

Some important properties of the reflexive-transitive closure, which we will 
use below, are proved next: 

Lemma 9.1.1 (Monotonicity of reflexive-transitive closure). Suppose R1 and R2 are 
binary relations on a set A. Then if R 1 � R2, we have Ri � R7_. 

Proof Assume an arbitrary pair ( x, y) E Ri. It suffices to prove ( x, y) E R7_. By 
the definition of reflexive-transitive closure, from our assumption ( x, y) E Ri we 
know that there must exist n E IN such that ( x, y) E R1. We will proceed by 
induction on this n. If n = 0, then x = y by the definition of iterated composition, 
and we therefore also have ( x, y) E R� � R7_. So suppose n = n' + 1 for some 
n' E IN. Then by the definition of iterated composition, (x,y) E R1 is equivalent 
to 

(x,y) E (R1 · Rq') 

By the definition of composition, this implies that there exists q such that: 

• (x, q) E Ri, and 

• (q,y) ER( 

Now we can apply our assumption that R1 � R2, to deduce (x, q) E R2 from the 
first of the above displayed facts. The induction hypothesis applies to the second 
of those facts, to give us ( q, y) E R7_. From these deduced facts we can easily obtain 
the required (x,y) E R7_, using the definitions of reflexive transitive closure and 
iterated composition. D 

Lemma 9.1.2 (Idempotence of reflexive-transitive closure). If R is a binary relation 
on A, then (R*)* = R*. 

Proof We always have R � R *, for any relation R, since R * is defined to be the 
union, for all n E IN, of Rn. This union therefore includes R1 

= R · R0, which 
is easily seen to equal just R. So if we take R to be R*, this reasoning shows that 
R * � ( R *) *. So the interesting direction is to show ( R *) * � R * (and showing these 
two inclusions is sufficient, by basic set theory). 

So assume an arbitrary (x, y) E (R*)*. We must prove that (x, y) E R*. By the 
definition of reflexive-transitive closure, there exists n E IN with (x,y) E (R*)n. 
Let us proceed by induction on this n. If n = 0, then x = y, and (x,y) E R0 � R*. 
So assume n = n' + 1 for some n' E IN. Then from our assumption that (x,y) E 
(R*)n', we deduce (as in the proof of Lemma 9.1.1) that there exists some q such 

that (x,q) E R* and (q,y) E (R*)n'. By the induction hypothesis applied to this 
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latter fact, we have (q,y) E R*. Since R* is indeed transitive (since it can be for
mulated equivalently using the rules of Figure 4.4, see the exercise in Section 9.5.1 
below), we obtain the required (x,y) ER* from (x,q) ER* and (q,y) ER*. 

D 

Suppose (A, ----+) is an ARS. Then an element x E A is called normal (or a normal 
form) with respect to that ARS iff it is not the case that x ----+ y for any y. That is, 
there is no y such that ( x, y) E ----+. We write x -f+ to indicate that x is normal. 

An element x of ARS (A, ----+) is called normalizing iff there exists some y such that 

x ----+ * y -I+ 

That is, x can reach a normal form y in 0 or more steps using ----+. If every element 
of A is normalizing with respect to (A, ----+), then (A, ----+) is called normalizing. 

An element x of ARS (A, ----+) is called terminating with respect to that ARS iff 
intuitively, one cannot follow some path of----+ steps forever starting from x. One 
can define this more formally using the following rule, interpreted as giving an 
inductive definition of a Terminating relation: 

Vy. (x----+ y) ===} Terminatingy 

Terminating x 

This states that x is terminating iff every element reachable from y is terminating. 
The case where x is normal is covered, since in that situation there are no elements 
y such that x ----+ y, so the premise is vacuously true. Since this is an inductive def
inition, we cannot prove x terminating using it if there is an infinite path starting 
from x: the derivation we would try to write down in that case would be infinitely 
deep. 

If every element of A is terminating with respect to (A, ----+), then (A, ----+) is said to 
be terminating. A simple alternative characterization of this is that ----+ is terminat
ing iff there exists some n E N such that ----+n= 0.2 

2This characterization was suggested to me by Ryan McCleeary. Interestingly, one does not find it 
in standard sources on ARS theory, like [38] or [3]. One does see definitions stating that xis strongly 
normalizing iff the reduction tree rooted at x is bounded (e.g., Definition 2.8 of [4]). This is certainly 
the same idea, but it is very succinct to phrase strong normalization of ---+ as existence of n E JN with 
---+n= 0. 
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Uniqueness of normal forms 

An element x E A has the property of uniqueness of normal forms with respect 
to ARS (A, ----+) iff whenever x ----+ * y and x ----+ * z for normal elements y and z of 
A, then y = z (that is, y and z are the same element of A). Notice that according 
to this definition, an element which has no normal forms at all has the property 
of uniqueness of normal forms. The property just insists that if an element x does 
have a normal form, then it has only one normal form. An ARS has this property 
iff all its elements do. 

The diamond property 

An element x of ARS (A, ----+) is said to have the diamond property with respect to 
that ARS if for ally, z E A, whenever we have 

• x ----+ y, and 

• x ----+ z; 

then there exists some q E A such that 

• y ----+ q, and 

• z ----+ q. 

Graphically, this is often depicted as follows, where the custom is that whenever 
the solid lines and the elements they are connecting exist, then the dotted lines 
and elements they are connecting must also exist: 

x 

/ ~ 
y z 

' " 
' " 

' " 
' " 

' " 
' " 

' " 
' " 

' " 
"" >-" 

q 

If every element of A has the diamond property with respect to (A, ----+),then (A, ----+ 
) is said to have the diamond property. One can write a very compact set-theoretic 
statement expressing that (A, ----+) has the diamond property :  

(+---·----+) � (----+·+---) 

To see why this concise definition matches the graphical one, let us walk through 
the meanings of its various operators. We have a subset relationship(�), so we are 
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stating that any element of the first set is also an element of the second set. Since 
the sets in question are relations, their elements are pairs. So this is stating that 
any time we have 

(y,z) E ( +--- · ---t ) 

then we also have 
(y,z) E (---+ · +---) 

By the definition of composition ( · ), the first condition holds when there is some x 

such that (y, x) E +--- and (x, z) E ----t. But this is just the same as saying: 

• y +--- x, which is equivalent to x ---t y; and 

• x ---t z. 

Those are the antecedent conditions considered in the first definition given above 
for x to have the diamond property. And the consequent conditions can then also 
be derived from (y, z) E ( ---t · +---). For this holds if there is some q such that: 

• y ---t q, and 

• q +--- z, which is equivalent to z ---t q. 

Here is an example of an ARS, shown graphically, which has the diamond prop
erty: 

Every time we have x ---t y and x ---t z, even in the special case where y = z, we can 
find some node q with y ---t q and z ---t q. For a degenerate example (with y = z): 
suppose the x, y, and z in question are a, b, and b. Then we can take q to be c: 

a ---- b" 

For a nondegenerate example, if x, y, and z are b, c, and d, then we can take a to be 
q: 
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a 
� 

- - - --
- .... 

b/c 

� d
--

-----

The relaxed diamond property 

The diamond property has the somewhat irritating property that it only applies to 
ARS's (A,----+) where we never have x ----+ y fr for any x and y in A. The reason 
is that if we have x ----+ y, then we are required, by the definition of the diamond 
property, to have y ----+ q for some q E A. But since by assumption y is normal, 
there is no such q, and the relation lacks the diamond property. 

The way to work around this annoy ance in practice is to prove what I propose 
we call the relaxed diamond property. Terese, Chapter 1, uses the terminology 
"subcommutative" for this, and some rewriting literature calls this property itself 
the "diamond property ". I propose the terminology relaxed diamond property, as 
relating the property more closely with the diamond property, y et distinguishing 
the two concepts. 

For the definition: an element x of A has the relaxed diamond property with 
respect to (A, ----+) iff whenever x ----+ y and x ----+ z, there exists some q such that 

y --:+ q and z --:+ q. An ARS (A, ----+) has the relaxed diamond property iff every 
element of A does with respect to (A, ----+). Similarly to the case for the diamond 
property, we can also write a concise set-theoretic statement to express that (A, ----+) 
has the relaxed diamond property: 

(f---·----+) c (--:+·�) 

The definitions of the relaxed diamond property for elements and ARSs are very 
to the definitions for the diamond property, except that we are using reflexive 
closures (see above) on the right of the subset statement and the conditions on q. 

If we are try ing to show an element x satisfies the relaxed diamond property, 
we must show that whenever x ----+ y and x ----+ z, then there exists a q such that 

y --:+ q and z --:+ q. This allows any of the following possibilities: 

• y -I- q and z -I- q

• y = q and z -I- q 

• y -I- q and z = q

• y = q and z = q 

So to show the relaxed diamond property, we may show either the usual condition 
(that there exists q such that y ----+ q and z ----+ q, corresponding to the first possibility 
listed), or else y +-+ z (corresponding to the second and third possibilities), or 
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else just y = z (corresponding to the last possibility). These three relations, for 
example, lack the diamond property but do have the relaxed diamond property: 

3 

i 
4 

1 

/� 
9 

1 I\ 5 6 

�/ 8 10 
2 

6 

i 
7 

The connection between the relaxed diamond property and the diamond property 
is made by the following lemma: 

Lemma 9.1.3. If x has the relaxed diamond property with respect to (A,----+), then x has 
the diamond property with respect to (A, --:..+). 

Proof To show that x has the diamond property with respect to (A,--:..+), it suffices 
to assume we have arbitrary elements y and z of A satisfying: 

• x-.:::+ y, and

• x ----+ z;

And exhibit some q such that 

• y-.:::+ q, and

• z ----+ q.

Let us consider several cases related to our assumptions about x, y, and z. First 

suppose we have x -.:::+ y because in fact we have x = y. Then the assumption 
- -

x -.:::+ z is equivalent to y -.:::+ z. So take the required q to be z. We can observe that 
we have the two required facts about q:

- -

• y -.:::+ q holds, because this is equivalent toy -.:::+ z, to which we already ob-
served one of our assumptions is equivalent; and

- -

• z -.:::+ q holds, because this is equivalent to z -.:::+ z, which holds by the defini-

tion of-.:::+.

So now suppose that we have x --:..+ y because we in fact have x ----+ y. We will 

now case split on whether x -.:::+ z because x = z or because x ----+ z. In the first 
case (x = z), we can reason as just above to show that taking q to bey, we get the 
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required conditions on q. So suppose x ----+ z. Now we have x ----+ y and x ----+ z. We 
are assuming that (A, ----+) satisfies the relaxed diamond property, so this implies 

- -

that there is a q such that y -.::::+ q and z -.::::+ q. That is just what is needed to complete 
this case of the proof. 

D 

It is also easy to observe the following: 

Lemma 9.1.4. If x has the diamond property with respect to (A,----+), then it also has the 
relaxed diamond property with respect to (A, ----+). 

Proof To prove that x has the relaxed diamond property with respect to (A, ----+), 
it suffices to assume arbitrary y and z with x ----+ y and x ----+ z, and then exhibit an 

- -

element q E A with y -.::::+ q and z -.::::+ q. But since x has the diamond property, we 
know that there exists q E A satisfying y ----+ q and z ----+ q. Those latter two facts 

are sufficient to show that q satisfies y � q and z � q, by the definition of the 

reflexive closure -.::::+ of ----+. 
D 

Confluence and semi-confluence 

An element x of an ARS (A, ----+) is called confluent with respect to (A, ----+) iff it has 
the diamond property with respect to the ARS (A, ----+ *). If all elements of A are 
confluent with respect to (A, ----+), then (A, ----+) is said to be confluent. Graphically, 
confluence of x can be depicted as follows: 

y 

x 

./� 
' 

' 

' 

' 

' 

' 

' ; 

' ; 

' ; 

*'""" ,;,." q *

; 

; 

; 

; 

; 

; 

z 

T he relaxed diamond property implies confluence , but not the other way around. 
We will show both these facts. 

Lemma 9.1.5. An ARS can be confluent without satisfying the relaxed diamond property. 

Proof Here is an example: 
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1 

/� 
2 3 

! ! 
4 5 

�/ 
6 

This relation is confluent: whatever three points we choose for x, y, and z with 
x ----+ * y and x ----+ * z, there is indeed some point q with y ----+ * q and z ----+ * q. For 
example: 

But we do not have: 

\ 
\ I 

\ I 
\ I 

\ 
\ I 

\ I 
I 

* � ;! * 
6 

1 

/� 
2 3 

\ I 
\ I 

\ I 
\ I 

\ I 

I 
I 

= \ I= 
" � 

6 

I 

So the relation, which can be observed to be confluent, does not satisfy the relaxed 
diamond property (and hence also it does not satisfy the diamond property, by 
Lemma 9.1.4). 

D 

To show that the relaxed diamond property (and hence also the diamond prop
erty, again by Lemma 9.1.4) implies confluence, we make use of an intermediate 
concept called semi-confluence. An element x E A is semi-confluent with respect 
to ARS (A, ----+) iff whenever x ----+ y and x ----+ * z, then there exists a q E A such 
that y ----+ * q and z ----+ * q. As usual, an ARS is said to be semi-confluent iff all its 
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elements are. Graphically, the picture is similar to that for confluence, but one star 
in the upper part of the diagram is missing: 

x 

/ ~ 
y z 

' " 
' " 

' " 
' " 

' " 
' " 

' " 
' " 

' " 

*'--' >" 
q * 

It is straightforward to observe that confluence implies semi-confluence. We will 
now see that the relaxed diamond property implies semi-confluence, which in turn 
implies confluence. 

Lemma 9.1.6. If (A, ----+) has the relaxed diamond property, then it is also semi-confluent. 

Proof It suffices to show that an arbitrary x E A is semi-confluent with respect to 
(A, ----+) . So assume y, z E A with x ----+ y and x ----+ * z, and show there is some q E A 
with y ----+ * q and z ----+ * q. By the definition of ----+ *, our assumption x ----+ * z implies 
that there exists some n E N such that x ----+n z. Let us do induction on this natural 
number n. If n = 0 (the base case), then x = z. In this case, we can take q to bey. 
This satisfies the required properties: 

• y ----+ * q: since y = q, this is equivalent to y ----+ * y, which holds by the 
definition of ----+ *. 

• z ----+* q: since x = z and y = q, this is equivalent to x ----+* y, which follows 
from our assumption x ----+ y by the definition of ----+ *. 

For the step case of the induction on n, we assume n = n' + 1 for some n'. So we 

have x ----+n
'+l z. Because the relation ----+n

'+l is defined to equal---+· ----+n
'

, this state

ment is equivalent to x(----+ · ----+n
') z. By the definition of relational composition, 

this implies that there is some x' such that x ----+ x' ----+n
' 

z. Applying the assump
tion that ----+ has the relaxed diamond property to the facts x ----+ x' and x ----+ y, 

we deduce that there exists a q' such that x' � q' and y � q'. Graphically, the 
situation looks like this: 
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x 

/ 
� 

x
' 

; �n' ; 
; 

; 
y ; 

z ; 
' ; 

' ; 

= � 
; 

)I- = 

q' 

Now let us case split on whether or not q
' 

= x
'

. If it does , then we can take z for q. 
This satisfies the required conditions: 

• y ----+ * q: since q = z, this is equivalent to y ----+ * z, which holds because we 
have y ----+ q' 

= x
' 

----+ * z. 

• z ----+ * q: since q = z, this is equivalent to z ----+ * z. 

Graphically, this case looks like this: 

Now consider the case where q -f. x
'

. So we have this situation: 

x 

/ 
� 

x
' 

; �n' ; 
; 

; 
y ; 

z ; 
' ; 

' ; 

= � 
; 

)I-

q' 

We can now apply our induction hypothesis to the facts x
' 

----+ q' and x
' 

----+n
' 

z. This 
tells us that there exists some q

" 
with q

' 
----+ * q

" 
and z ----+ * q

"
. The picture looks 

like this: 
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x 

/ x' 

,,
,,"

" �n' 
y ,," z 

' ; ; 
' ; ; 

='"" )I-
; 

; 
; 

q' 
,,"

" 

' ; 
' ; 

" � 
* " * 

q 

Now it is clear that we can take q
" 

for q, and the desired properties hold. 

Lemma 9.1.7. If (A,----+) is semi-confluent, then it is also confluent. 

245 

D 

Proof This proof is similar to that for Lemma 9.1.6. Assume arbitrary x, y, z E A 
with x ----+ * y and x ----+ * z. We must exhibit q satisfying y ----+ * q and z ----+ * q. By 
the definition of ----+ *, there exists some n such that x ----+n z. We will proceed by 
induction on this number n. If n = 0 (the base case), then x = z, and we can take 
q to bey. This satisfies the requirements on q: 

• y ----+ * q: since q = y, this is equivalent to y ----+ * y. 

• z ----+* q: since x = z and q = y, this is equivalent to our assumption x ----+* y. 

For the step case, n = n' + 1 for some n', and we have x ----+ x' ----+n
' 

z for some 
x' E A. We can now apply our assumption that x is semi-confluent (with respect 
to (A, ----+)) to the facts x ----+ x' and x ----+ * y. So there exists some q' 

such that 
x' ----+ * q' and y ----+ * q'. The situation looks like this: 

x 

/ 
� 

x' 
; �n' ; 

; 
; 

y ; 
z ; 

' ; 
' ; 

* '"" 
; 

)I- * 

q' 

Now we can apply the induction hypothesis to the facts x' ----+* q' and x' ----+n
' 

z (because the induction hypothesis allows us to assume what we are trying to 
prove, when the number of steps along the right side of our diagram is n'). So 
there is some q" such that q' ----+ * q" and z ----+ * q". The picture looks like this: 
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x 

/ 
"'x 

x' 
/ 

"'xn' / 

/ 

/ 

y / z / 

' 
/ 

/ 

' 
/ / 

* "" 
/ / � * / 

q' / 

/ 

/ 

' / 

' / 

"" � * 
q" * 

Now it is clear that we can take q" for q, to conclude. 
D 

Theorem 9.1.8. If (A, ----+) has the (relaxed) diamond property, then it is also confluent. 

Proof This follows from Lemmas 9.1.6 and 9.1.7. 

D 

Local confluence 

For proving confluence of lambda calculus, we are going to use Theorem 9.1.8. 

But there is another result which is so elegant and useful that we cannot avoid 
mentioning it here. This is based around the concept of local confluence. 

An element x E A is locally confluent with respect to (A, ----+) iff for ally, z E A, 
if x ----+ y and x ----+ z, then there exists a q such that y ----+ * q and z ----+ * q. Graphically, 
this situation is depicted like this: 

y 
' 

' 

' 

' 

' 

' 

x 

' / 

' / 

' / 

"" � 
* q * 

/ 

/ 

/ 

/ 

/ 

/ 

z 

This diagram looks a lot like others we have seen above. The differences between 
them are all in which edges in the diagram have stars. Here, every time we can 
take exactly one step (with ----+) from x to y and from x to z, we must be able to take 
0 or more steps (with----+*) from y to some q, and also from z to that q. As usual, 
we call an ARS (A, ----+) locally confluent iff all elements of A are locally confluent 
with respect to (A,----+). 
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Local confluence is so similar to the properties above, one wonders how it is 
related, in particular to the most important property, confluence. Certainly conflu
ence implies local confluence, because confluence say s that no matter how many 
steps one takes from x to reach y and to reach z, then there is a common point 
reachable in 0 or more steps from y and similarly from z. So this covers the case 
where y and z are reachable in exactly one step from x. On the other hand, we 
have this result: 

Lemma 9.1.9. Local confluence does not imply confluence. 

Proof The following is a famous counterexample, attributed to Kleene:3

(\ 
a ---- b c----d 

� 
This ARS is clearly not confluent, because if we start from b, say, and go to a and 
d, we cannot find any common element at which to join up a and d (since they are 
normal). On the other hand, it is locally confluent. For example, from b we can 
reach a and c in exactly one step, and those can be joined up at a. Similarly, from c 
we can reach b and d in exactly one step, and they can be joined at d. 

D 

We can observe that the ARS for the Kleene counterexample, while normalizing 
(see definition earlier in this section) is not terminating: there is an infinite path 
which forever cy cles from b to c and back again. It turns out that this nontermi
nation is indeed the source of the failure for local confluence to imply confluence. 
The result is due to Newman and bears his name. The paper in which Newman 
proves this, however, is not formulated in terms of ARSs, and is difficult to fol
low [30]. Fortunately, Huet developed an amazingly clear and simple proof of the 
result, which is now the standard way of proving it [21]. 

Theorem 9.1.10 (Newman's Lemma). If (A,---+) is terminating and locally confluent, 
then it is confluent. 

Proof ( H uet). Since (A, ---+) is terminating we may proceed by induction on ---+: to 
prove some property P(x), we are allowed to assume P(y) for any y such that x---+ 
y. As ---+ is terminating, we will eventually reach a normal form x, for which we

3The attributional situation here is a little complicated. The example can be found in a paper of 
Hindley [18], but it is not attributed there to Kleene. It is commonly called Kleene's counterexample, 
however, and on page 14 of [38], it is described as "attributed by Hindley to Kleene" (though which 
work of Hindley's attributes it to Kleene is not specified). 
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will have no assumptions P(y) to help us. That is the base case for the induction. 
The property we wish to prove in this case is confluence (of an element x E A). 

To show that x E A is confluent, assume we have y and z in A with x ----+ * y 
and x ----+ * z. We now consider cases for x ----+ * y and x ----+ * z. From these two facts, 
based on the definition of ----+ *, we have either x = z or x ----+ + z, and either x = y 
or x ----+ + y. If x = z, then we can take y to be q, and satisfy the requirements on q: 

• z ----+ * q: since x = z and q = y, this is equivalent to x ----+ * y which we have. 

• y ----+* q: this is equivalent toy----+* y. 

The case where x = y is symmetric to the case we just considered, so we omit the 
details. So finally we are left with the situation where x ----+ + y and x ----+ + z. By the 
definition of ----+ +, we must have x' and x" with x ----+ x' ----+ * z and x ----+ x" ----+ * z. 
The diagram for the situation thus looks like this: 

x 

/ �  
x" x' 

*/ �* 
y z 

Now we can apply our assumption of local confluence to the facts x ----+ x' and 
x ----+ x", to obtain some q' with x' ----+ * q' and x" ----+ * q': 

x" 

*/ 
y 

x 

/ �  
' ; 

' ; 
*"""' )I'* q' 

x' 

�* 
z 

Now since x ----+ x", we are entitled to apply our induction hypothesis to it x" 

with the facts x" ----+* q' and x" ----+* y. This gives us some qi with q' ----+* qi and 
x" ----+ * qi: 

x 

x" x' 

�* 
z 

Now since x ----+ x', we can again apply our induction hypothesis, with the facts 
x' ----+*qi and x' ----+* z, to obtain some q2 satisfying qi----+* q2 and z ----+* q2: 



9.1 Confluence of untyped lambda calculus 

x 

' " 
' " 

� �q2 

x' 

" 
" 

" 

�* 

" 

" 
" 

" 

z 
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Now it is clear we can take q2 for our q, and satisfy the required properties that 
y ----+ * q and z ----+ * q. D 

9.1.2 Lambda calculus lacks the diamond property 

Having developed these tools from the theory of abstract reduction systems, we 
are going to apply Theorem 9.1.8 to prove confluence of full /3-reduction for un
typed lambda calculus. But first, we should observe that the theorem does not 
apply directly. Let us write terms for the set of untyped lambda-calculus terms, 
and � for the full /3-reduction relation, defined in Section 5.2.

Lemma 9.1.11. (terms,�) does not have the relaxed diamond property. 

Proof Here is a counterexample: 

(A-x.x x) ((A-y.y)z) 

/� 
((A-y.y)z) ((A-y.y)z) (A-x.x x) z 

There is no common term to which we can reduce both the left and the right terms 
in this peak in 0 or 1 steps. The terms we can obtain by one step of full /3-reduction 
from the left term are: 

• z ((A-y.y)z)

• ((A-y.y)z) z

And the only term we can obtain by one step of /3-reduction from the right term is 

• z z 

So the set consisting of the left term and those reachable in 1 step from it does not 
overlap with the set consisting of the right term and those reachable in 1 step from 
it. Hence, (A-x.x x) ((A-y.y)z) lacks the relaxed diamond property. 

D 
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x ::::} x 
t ::::} t' 

AX. t ::::} AX. t' 
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ti ::::} t� t2 ::::} t; 

ti t2 ::::} t� t; 

ti ::::} t� t2 ::::} t; 

(Ax.ti) t2::::} [t;/x]t� 

Figure 9.1: The definition of parallel reduction 

It is worth emphasizing that just because (terms,""') lacks the relaxed diamond 
property, this does not imply that (terms,"") is not confluent. For Theorem 9.1.8 
just gives a sufficient condition for an ARS to be confluent: if it has the relaxed 
diamond property, then it is confluent. But if the ARS lacks the relaxed diamond 
property, then Theorem 9.1.8 gives us no information about (terms,""). Indeed, 
we already observed in Lemma 9.1.5 that an ARS can be confluent and lack the 
relaxed diamond property. 

9.1.3 Parallel reduction 

So how can we make use of Theorem 9.1.8 to show that (terms,"") is confluent, 
given that (terms,"") lacks the (relaxed) diamond property? The ingenious solu
tion, proposed by Tait and Martin-Lo£ (see the note at the start of this chapter), is 
to define another relation::::}, where (terms,::::} ) does have the diamond property, 
and where ::::} * = ""'*. Since by definition, (A, ----+) is confluent iff (A, ----+ *) has the 
diamond property, showing confluence of (terms,::::} ) will be sufficient to show 
confluence of (terms,""), if indeed::::}* = ""'*· This relation::::}, called parallel 
reduction (or by some authors, simultaneous reduction), is defined in Figure 9.1. 

Parallel reduction allows several redexes in a term to be contracted in a single 
::::} step. For example, we have this derivation for a::::} reduction of (Ax.xx) ( (Ay.y y) z): 

y ::::} y y ::::} y 
yy=}yy 

x ::::} x x ::::} x 
xx ::::} xx Ay.y y::::} Ay.y y z ::::} z 

AX.Xx::::} AX.Xx (Ay.y y) z::::} z z 

(AX. x x) ( ( AY. y y) z) ::::} ( z z) ( z z) 

This example might suggest that parallel reduction can always reduce normalizing 
terms to their normal forms. Here is a simple example showing that this is not the 
case: 

x ::::} x y ::::} y 

AX.X ::::} AX.X Ay.y::::} Ay.y 

(Ax.x) (Ay.y) ::::} Ay.y z::::} z 

(Ax.x) (Ay.y) z::::} (Ay.y) z 

Redexes that are created during a single step of parallel reduction cannot be re
duced by that step of reduction. Only redexes which exist in the starting term for 
that step can get reduced. 
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9.1.4 Some properties of parallel reduction 
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Parallel reduction has several properties which play a role in showing confluence 
of full /3-reduction. The starting point for using parallel reduction for confluence 
is the property mentioned already in Section 9.1.3: =?* = rv>*. We prove this as 
Theorem 9.1.14 below . Before we can prove this, though, we must prove a number 
of subsidiary lemmas. 

Lemma 9.1.12 (Reflexivity of parallel reduction). For all terms t, we have t =? t. 

Proof The proof is by induction on the structure oft. If tis a variable x, then we 
use this derivation: 

x ::::} x 

If t = ti t2, then by the induction hypothesis we have ti =? ti and t2 =? t2, and so 
can use this derivation: 

ti t2 ::::} ti t2 

Finally, if t = Ax.ti, then by the induction hypothesis we have ti =? ti, and can 
use this derivation: 

D 

Lemma 9.1.13. rv> S: =? S: rv> *. 

Proof To prove rv> S: =?, we proceed by induction on the structure of a derivation 
(with the rules of Figure 5.2 from Chapter 5) of t rv> t'. 

Case: 

(Ax. t) t' rv> [t' /x]t 
/3 

We can use the following derivation: 

Case: 

1 t 1 t Lemma 9.1.12 
llX. ::::} llX. 

, , Lemma 9.1.12 
t ::::} t 

(Ax.t) t' =? [t' /x]t 

t 'Vt t' 
------ lam 
AX. t 'Vt AX. t' 

By the induction hypothesis (IH), we have t =? t', and we can apply the lambda 
rule for parallel reduction: 

t ::::} t' 
Ax.t =? Ax.t' 

Case: 
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By the IH, we have ti ::::} t�, and we can use this derivation:

Case: 

--- Lemma 9.1.12 ti ::::} t� t2 ::::} t2 

(ti t2) ::::} (t� t2) 

By the IH, we have t2 ::::} t;, and we can use this derivation:

ti ::::} ti Lemma 9.1.12 t2 ::::} t; 

(ti t2) ::::} (ti t;) 

Now we will prove ::::} C "-+ * by induction on the structure of a derivation of 
t ::::} t': 

Case: 
x ::::} x 

We have x "-+ * x by the definition of reflexive-transitive closure. 

Case: 
t ::::} t' 

Ax.t ::::} Ax.t' 

By the induction hypothesis, we have t "-+ * t'. Now we use Lemma 5.2.1 (from 
Chapter 5) to conclude Ax.t "-+* Ax.t'. 

Case: 
ti ::::} t� t2 ::::} t; 

ti t2 ::::} t� t; 

By the induction hypothesis applied separately to each of the premises, we have 
ti "-+* t� and t2 "-+* t;. Applying Lemma 5.2.2 to the first of these facts, and 
Lemma 5.2.3 to the second, we obtain: 

Transitivity of"-+* then gives us the desired ti t2 "-+* t� t;. 

Case: 
ti ::::} t� t2 ::::} t; 

(Ax.ti) t2::::} [t;/x]t� 

By the induction hypothesis applied to the premises, we have ti "-+ * t� and t2 "-+ * 
t;. We can apply Lemma 5.2.1 to the first of these facts to obtain Ax.ti "-+* Ax.t�. 
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Then, similarly to the previous case of this proof, we can use Lemmas 5.2.2 and 5.2.3 
to obtain: 

(Ax.ti) t2 "0* (Ax.t�) t2 "0* (Ax.t�) t; 
We can complete the reduction sequence by applying the f> rule (of Figure 5.2), 
and then injecting into the reflexive-transitive closure. This adds one more step, to 
complete the reduction sequence as follows: 

(Ax.ti) t2 "0* (Ax.t�) t2 "0* (Ax.t�) t; "0* [t;/x]t� 

So we have the desired result of (Ax.ti) t2 "0* [t;! x]t�. 

Theorem 9.1.14. ::::} * = "0 *. 

D 

Proof Since "0 � ::::} by Lemma 9.1.13, we have "0* � ::::}* by Lemma 9.1.1. Sim
ilarly, using the same lemmas: since ::::} � "0 *, we also have ::::} * � ( "0 *) *. So we
have: 

1. "0 * � ::::} * .

2. ::::}* � ("0*)*.

Now Lemma 9.1.2 tells us that ("0*)* = "0*, so these two facts are really equiva
lent to: 

2'. ::::} * � "0 *. 

And these together imply the desired result by basic set theory, since they are 
saying that the two relations we are trying to prove equal (namely "0* and ::::}*)
are subsets of each other. D

Lemma 9.1.15 (Substitution and parallel reduction). If ta ::::} t� and tb ::::} t�, then 
[tb/y]ta::::} [t�/y]t�. 

Proof The proof is by induction on the structure of the derivation of ta ::::} t�. 

Case: 
x ::::} x 

Here we must case split on whether or not x = y. If x = y, then what we need to
prove is equivalent to: 

[tb/x]x::::} [t�/x]x 
This, in turn, is equivalent to just tb ::::} t�, which we have by assumption. On the
other hand, if x f. y, then what we need to prove is equivalent to just y ::::} y, which
is derivable. 

Case: 
t ::::} t' 

Ax.t ::::} Ax.t' 
We will make the following assumptions about the bound variable x: 
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• xf-y

• x rf_ FV(tb)

• x rJ_ FV(t�)
These assumptions are justified, since we can always safely rename the variable 
bound by the A-abstraction to be something different from y, and all the free vari
ables in tb and t�. So what we must prove is equivalent to:

Ax.[tb/x]t::::} Ax.[t�/x]t' 

This can be derived by applying the induction hypothesis (IH) to t ::::} t' and tb ::::} 
t�, with this final derivation:

Case: 

t ::::} t' tb ::::} t' 
______ 

b_IH 
[tb/x]t::::} [t�/x]t' 

Ax.[tb/x]t::::} Ax.[t�/x]t' 

t1 ::::} t� t2 ::::} t; 
t1 t2 ::::} t� t; 

Applying the IH to the premises, we obtain this derivation: 

t1 ::::} t� t2 ::::} t; 
[tb/x]t1::::} [t�/x]t� IH

[tb/x]t2::::} [t�/xJt; 
IH

([tb/x]t1) ([tb/x]t2)::::} ([t�/x]t�) ([t�/xJt;) 

Since for any t1 and t2, the definition of substitution tells us that ([tb/ x]t1) ([tb Ix] t2) = 

[tb/x](t1 t2), what we have just derived is equivalent to the desired statement of
parallel reduction. 

Case: 
t1 ::::} t� t2 ::::} t; 

(Ay.t1) t2 ::::} [t;/y]t� 
Applying the IH to the premises, we obtain: 

t1 ::::} t� t2 ::::} t; 
[tb/x]t1::::} [t�/x]t� IH

[tb/x]t2::::} [t�/xJt; IH

(Ay.[tb/x]t1) [tb/x]t2::::} [[t�/xJt;/y]([t�/xJtD 
To complete this derivation, we need to show this equality: 

[[t� Ix] t;/y]( [t� Ix] tD = [t� Ix]( [t; /y] t�) 

The following lemma can be used to show this, since we may assume y rJ_ FV(t�) 
(because y is a A-bound variable, we can always choose it to lie outside the set
FV(t�)). The proof of this lemma is by induction on the structure oft"; we omit
the details. 
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Lemma 9.1.16. If y tf_ FV(t), then we have [t/x]([t' !y]t") = [[t/x]t' /y]([t/x]t"). 

9.1.5 The complete-development term of a term 
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D 

Recall from Section 9.1.3 that our plan (following Tait and Martin-Lof) is to prove 
confluence of 'Vt by proving that the parallel reduction relation =? has the diamond 
property. So we need to show that whenever we have terms t, t1, and t2 with t =? t1 
and t =? t2, then there exists a f such that ti =? f and t2 =? f. As a diagram, this 
condition can be depicted this way: 

t 

/"' 

The original method of Tait and Martin-Lof (as given in Section 3.2 of Barendregt's 
book [5]) gives a constructive proof that=? has the diamond property. The con
structive nature of the proof shows, in effect, how to compute t from t, t1, and 
t2. In Section 11.2 of his book, Barendregt proves that in fact, t can be computed 
directly from t, independently of ti and t2, using the idea of complete developments 
(see also the exercise on complete developments in Section 5.10, and Section 11.2 
of [5]). A complete development reduces all the redexes int, in some order. Baren
dregt proves that this process is guaranteed to result in a unique term, which turns 
out to be suitable for play ing the role of t above. I propose we call this term the 
complete-development term oft (or just the complete development of t). This ter
minology risks some ambiguity, since a reduction sequence from t to this unique 
term is standardly called a complete development oft. 

Instead of proving that the complete-development term of t always exists and 
is unique, Takahashi gives a direct recursive definition of the complete develop
ment t* of t [37]. This is a very simple and direct way to show that =? has the 
diamond property, so we will follow her approach here. The definition of the com
plete development t* oft is given in Figure 9.2 (note that Takahashi's formulation 
is equivalent but slightly different [37]). 

The essential idea of Takahashi's definition (Figure 9.2) is to recursively reduce 
all redexes occurring int. Of course, we could not reduce all redexes created by 
doing such reductions, or else we would not be able to compute a final result (since 
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x* 
(Ax.t)* 
( x t2) * 
((ta tb) t2)* 
( (Ax.t1)t2)* 
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x 
Ax.(t*) 
x ti 
(ta tb) * ti 
[ti!x]ti 

Figure 9.2: The definition of the complete development (term) oft 

we could reduce redexes forever). Here is an example of computing a complete
development term: 

((Ax.xx) ((Ay.y) Az.z))* [((Ay.y) Az.z)* /x](x x)* 
[((Ay.y) Az.z)* /x](x x*) 
[((Ay.y) Az.z)* /x](x x) 
[([(Az.z)* !y]y*)!x](x x) 
[([(Az.z)* !y]y)!x](x x) 

[([Az.z* !y]y)!x](x x) 
[([Az.z/y]y)/x](x x) 
[Az.z/x](x x) 
(Az.z) Az.z 

Here, we are just applying the equations from Figure 9.2 one at a time, any where 
inside a meta-expression for a term. The order of applying the equations is not 
important: since Figure 9.2 is a well-founded recursive definition with a single 
equation matching (on its left hand side) every possibility for the input term t, 
it is computing a unique result t*, no matter what order we apply its defining 
equations. Notice that in this case, we ended up with a term which is not normal. 
But that term does not contain any residual of a redex from the original. Intuitively, 
a residual redex would be one which is not created by substitution, but rather can 
be traced to a redex which is already present in the starting term t. More formally, 
a residual could be identified by inserting labels onto every subterm oft, and then 
seeing which labels were still left after computing t* (see the exercise on complete 
developments in Section 5.10, or Section 11.2 of [5]). 

To warrant calling t* the complete-development term of t, we should really 
prove that it indeed is the unique normal form for all complete-development re
duction sequences oft. We will not do exactly this here, but we will see in Lemma 9.1.17 
a related fact, which is sufficient for proving the diamond property of parallel re
duction==?. 

9.1.6 Parallel reduction has the diamond property 

In this section, we prove that parallel reduction indeed has the diamond property, 
using complete-development terms. We need the following critical lemma first. If 
we identify a parallel reduction t ==? t' with a development (that is, with reducing 
some subset of the redexes that occur int), then Lemma 9.1.17 shows one sense in 
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which "complete-development term" is an appropriate name for t*: 

Lemma 9.1.17 (The complete-development term does complete developments). If 
ta ::::} t�, then t� ::::} t�. 

Proof The proof is by induction on the structure of the derivation of ta ::::} t�. 

Case: 
x ::::} x 

In this case, we have 
t' = x ::::} x = x* = t* a a 

Case: 
t ::::} t' 

Ax.t ::::} Ax.t' 

We can apply the IH to get this derivation: 

t ::::} t' 
-- IH 
t' ::::} t * 

Ax.t' ::::} Ax.t* 

We just have to observe that Ax.t* = (Ax.t)* by the definition of complete-development 
term, to see that this derivation suffices. 

Case: 
t 1 ::::} t� tz ::::} t; 

ti tz ::::} t� t; 

Here we must consider two subcases, for whether t1 is a A-abstraction or not. If 
ti is not a A-abstraction, then it must be either a variable or an application. Either 
way, (t1 tz) * = ti t2_, and thus the following derivation is sufficient: 

t 1 ::::} t� 

t' ::::} t* 
IH 

1 1 

tz ::::} t; 
--IH 
t' ::::} t* 

2 2 

t' t' ::::} t* t* 1 2 1 2 

Now suppose that ti is a A-abstraction, say Ax.i. The assumed judgment ti ::::} t� 
is thus equivalent to AX .i ::::} t�. By inversion on the derivation of this judgment, 
we see that it must end in this inference, for some i': 

i ::::} t' 
AX .i ::::} AX .i' 

Now we can complete the derivation this way : 

i ::::} p tz ::::} t; 
-- IH IH 
i' ::::} f* t' ::::} t * 

2 2 

(Ax.i) t;::::} [t2_/x]f* 
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This derivation suffices, because the derivation we are considering (in this partic
ular case and subcase of our proof) proves: 

Hence, what we should derive is 

And by the definition of complete-development term, we have 

So the derivation we constructed above does prove the right judgment, since it 
proves: 

Case: 
ti ::::} t� t2 ::::} t; 

(Ax.ti) t2::::} [t;/x]t� 

We can construct this derivation: 

t 1 ::::} t� t2 ::::} t; 

t' ::::} t * 
IH 

t' ::::} t * 
IH 

1 1 2 2 
Lemma 9.1.15 

[t;/x]t�::::} [t2/x]ti 

Theorem 9.1.18. Parallel reduction has the diamond property. 

D 

Proof Suppose that t ::::} ti and t ::::} t2. By Lemma 9.1.17, we have ti ::::} t* and 
t2 ::::} t*. Take t* as the completing term q that is required by the diamond property, 
and we have the desired result. 

D 

9.1.7 Concluding confluence 

To conclude this section, we can derive our main result: 

Theorem 9.1.19 (Confluence of full {3-reduction). Full {3-reduction for untyped 
lambda calculus is confluent. 

Proof By Theorem 9.1.14, it suffices to prove confluence of ::::} , since ::::} * ="-7 *. By 
Theorem 9.1.8, to prove confluence of::::}, it suffices to prove the diamond property 
for ::::} . And Theorem 9 .1.18 proves this. 

D 
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Let us summarize the work we have done in this section: we developed con
cepts related to confluence in the general context of abstract reduction sy stems 
(ARSs) (A,----+), where A is a set of objects and ----+ is a binary relation on A. The
main result we take from ARS theory is that the diamond property implies con
fluence (Theorem 9.1.8). We applied this result in the form of the Tait/Martin-Lof
method for showing confluence of A-calculus. With this method, we must find an 
intermediate relation::::} which has the diamond property and which satisfies: 

We showed in Theorem 9.1.14 that this condition implies that::::}* = "0*, thus
reducing the problem of confluence of "0 to confluence of ::::}. The Tait/Martin
Lof method not only proposes this general approach to showing confluence; it 
proposes the relation of parallel reduction for ::::} , which turns out to satisfy the in
clusion constraints above and also have the diamond property. Barendregt shows 
how the diamond property of ::::} can be proved using complete developments, 
which are reduction sequences reducing all the redexes contained in a starting 
term t, in some order. Takahashi' s addition to this approach is to give an explicit 
recursive definition of the canonical (i.e., unique normal) term t*, which we can 
call the complete-development term, resulting from any complete development 
of t. This approach leads to a relatively succinct proof of confluence of full f3-
reduction for unty ped lambda calculus. 

These central ideas of parallel reduction, complete-development terms, and the 
diamond property for showing confluence can be adapted and applied to exten
sions of lambda calculus, or other reduction semantics of other languages. They 
are thus worth knowing for any aspiring programming-language designer or the
orist. 

9.2 Combinators 

The A-calculus as studied in Chapters 5 and 6 may already seem to represent a 
strange way to program: all data are encoded as functions, including numbers, 
and there is no notion of state. The value of a variable can hardly be said to be 
assigned by substituting a term for it during f3-reduction. The assignment is com
pletely transitory, and certainly cannot be changed the way we can change the 
value of a variable in WHILE by assignment. 

As strange as A-calculus might have seemed, we can go one step further in 
striving for a minimalistic programming language. W here A-calculus dispenses 
with mutable variables, combinators provide a way to program without any vari
ables at all. As shocking as this might sound, we will see in this chapter how 
to translate A-calculus into combinators in a way that is sound for call-by -value 
reduction. 
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9.2.1 Syntax and operational semantics of combinators 

combinators c ::= S I K I cc' 

We will write a, b, and c for combinators below. The small step operational seman
tics is defined by these rules: 

C[S ab c] "v+ C[(a c) (b c)] C[K ab] "v+ C[a] 

combinator con texts C ::= * I Cc I c C 

The rule for K makes K a a constant-valued function: it always returns a no matter 
what argument bit is applied to. The rule for S is more complex, but we can see 
something like self-application here, since we have a term containing c applied 
to another term containing c (hence, this suggests the potential for applying c to 
itself). We saw in Chapters 5 and 6 that self-application gives us computational 
power, and indeed, the language of combinators is Turing-complete, as we will 
show below by showing how to translate lambda-terms to combinators. 

9.2.2 Examples 

One straightforward example is the combinator SK K. This function behaves ex
actly like the identity function, and indeed is often called I. Given an argument a, 
the identity function is just supposed to return a, after some number of steps. So 
we are supposed to have: 

Ia "0* a 

Let's see how this works with I defined to be S K K. So we start with ( S K K) a. Are 
there any redexes here? Indeed, there is an S redex, because despite the possibly 
confusing parenthesization, S here is applied to three arguments. This is clearer if 
we write the term with the minimal parenthesization: SK Ka. Now we can do an 
S-reduction: 

SKKa "v+ (Ka)(Ka) 

Again, it takes some practice to be able to find the next redex (which must be 
a K-redex, since S is not present). And again, it is easier if we use the minimal 
parenthesization, which in this case is Ka (Ka). Now we can see the K-redex: 

Ka(Ka) "v+ a 

This is just what we were looking for to see that S K K behaves like the identity 
function. 

9.2.3 Translating lambda calculus to combinators 

In this section, we will see how to translate lambda-terms to combinators. To de
scribe this translation, we need a language for expressions which are like combi-
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Examples 

nators, but can contain free variables: 

variables x 
var-combinators d ::= x I S I K I d d' 

We define small-step reduction for var-combinators exactly as for combinators (we 
just use exactly the same rules and contexts, except that we have var-combinators 
everywhere those rules have combinators). The formal definition is omitted, since 
it is the same as for combinators, except with meta-variable root d everywhere 
instead of c. We now define an operation A*, which takes a variable x and a var
combinator d, and returns another var-combinator d', where d' contains exactly 
the same free variables as d, except not x. The intention is that A* x d should be a 
var-combinator which behaves just like the lambda-term Ax. d. The definition is by 
recursion on the structure of the var-combinator d. In the second clause we make 
use of a meta-level function Vars , for computing the set of variables occurring in a 
var-combinator d. 

A* xx 
A* x d 
A*x(d1d2) 

SKK 
K d, if x (j:_ Vars(d) 
S (A* x d1) (A* x d2), if x E Vars(d1 d2) 

We compute the value of A* x ( x x) as follows: 

A* x (xx)= S (A* xx) (A* xx)= SI I 

where I= SK K as in Section 9.2.2 above. Since (Ax.xx) (Ax.xx) evaluates to it
self, we might expect something similar for the combinator (A* x ( x x)) (A* x ( x x)). 
Indeed, we have: 

(A*x(xx))(A*x(xx)) (SII)(SII) 
SI I (SI I) 

� (I(SII))(I(SII)) 
�* (SII)(SII) 

(A* x (xx)) (A* x (xx)) 

In the second step, I am just dropping parentheses to emphasize that the whole 
expression is indeed an S-redex: the three arguments to S are I, I, and SI I. Notice 
that it takes several steps for (A* x ( x x)) (A* x ( x x)) to reduce to itself, while for 
(Ax.xx) (Ax.xx), it takes just one step. We will see in the next section that while 
the translations of A-terms to combinators evaluate just like those A-terms, they 
may require more steps to do so. 

Basic property of A* x d 

We can confirm that A* x d behaves just like Ax. d, with the following lemma. 

Lemma 9.2.1 (Basic property of A*). (A* x d) d' �* [d' /x]d 
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Proof The proof is by induction on the structure of d. 

Case: d = x. We must show:

We have: 

(A* x x) d' "'7 * [ d' Ix] x 

(A-* xx) d' =SK K d' "'7* d' = [d' /x]x 

The reduction here holds, as we already showed in Section 9.2.2. 

Case: x � Vars ( d). We have

(A* x d) d' = K d d' "'7 d = [ d' Ix] d 

The fact that d = [ d' Ix] d follows from the assumption that x � Vars ( d). 

Case: d = di d2. This is the most interesting case. By the definition of A*, we have:

(A-* x (di d2)) d' = S (A-* x di) (A-* x d2) d' 

We can now use the S rule: 

By the induction hypothesis, we know: 

1.((A-*xdi)d') "'7* 
2.((A-*xd2)d') "'7* 

[d' /x]di 
[d' /x]d2 

So we can reduce the term we got just above as follows: 

((A* x di) d') ((A-* x d2) d') "'7* ([d' /x]di) ([d' /x]d2) 

This latter term equals [d' Ix] (di d2) (by the definition of substitution), as required.
D 

It is worth mentioning that more space-efficient translations to combinators do 
exist, though they use additional primitive combinators beyond just Sand K [24]. 

9.2.4 The translation and its verification 

Now we can define the translation from lambda terms to combinators, using the 
function A* and var-combinators as intermediate results. The translation is de
fined as follows. Given a lambda-term t, possibly with some free variables, we 
define lam-to-comb[t] to be a var-combinator term: 

[x] 
[t t'] 
[Ax. t] 

x 
[t] [t'] 
A* x [t] 

The idea here is that we translate terms recursively, using A* to help translate A-
abstractions. 
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Theorem 9.2.2 (Soundness of translation for call-by-value). Whenever we have t � 

t' with left-to-right call-by-value reduction (see Section 5.4.1), we also have [t] � * [t']. 

To prove this theorem, we need some additional definitions and lemmas, given 
next. 

9.2.5 Lemmas for Theorem 9.2.2 

The main lemmas developed in this section are Lemmas 9 .2.4 and 9 .2.6. Building 
up to the proof of the latter in particular is unfortunately rather involved. 

Definition 9.2.3 (Context interpretation). For C a left-to-right call-by-value context 
(see Section 5.4.1), we define [C] as follows: 

[*] * 
[C t] [C] [t] 
[v C] [v] [C] 

Note that the resulting context is a combinator context (see Section 9.2). 

Lemma 9.2.4 (Context interpretation commutes with grafting). For C a left-to-right 
call-by-value context, we have the following: 

[C [t]] = [C] [[t]] 

This states that if we first graft term t into C and then interpret the resulting term, we get 
the same result as if we first interpreted C and t separately, and grafted the resulting term 
into the resulting combinator context. 

Proof The proof is by induction on C. If C = *, then we have 

[C [t]] = [ * [t]] = [t] = * [[t]] = [C] [[t]] 

If C equals C' t' or v C', then we have (for example): 

[C [t]] [( C' t') [t]] 
[C' [t] t'] 
[C' [t]] [t'] 
[C'] [[t]] [t'] 
[C' t'] [[t]] 
[C] [[t]] 

The fourth step uses the induction hypothesis, and the others use the definition of 
the interpretation of contexts (or the assumption that C = C' t). These are all the 
cases for left-to-right call-by-value contexts. 

D 

Lemma 9 .2.5. If y � Vars ( t') and x -I y, then 

[[t']/x](A* y d)= A* y [[t']!x]d 
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Proof The proof is by induction on d. If d = y, then we have: 

[[t']/x](A* yd) [[t']/x](A* y y) 
[[t']/x]S K K 
SKK 
(A*yy) 
A* y [[t']/x]y 
A* y [[t']/x]t 

These steps are justified by the definition of [t] and of substitution, and the as
sumption t = y. For the other base case, assume y tj:. Vars(d). Then we have:

[[t']/x](A* yd) [[t']/x](K d) 
= K [[t']!x]d 
= A* y [[t']/x]d 

For the third step, we are using the facts that y tj:. Vars(d) and y tj:. Vars([t']) to
conclude that y tj:. Vars([[t' I x]d]). Finally, for the inductive step, we have:

[[t']/x](A* y ([t1] [t2])) [[t']/x](S (A* y [ti]) (A* y [t2])) 
(S [[t']/x](A* y [ti]) [[t']/x](A* y [t2])) 
(S (A* y [[t']/x]t1) (A* y [[t']/x]t2)) 
A* y ([[t']/x]t1 [[t']/x]t2) 
A* y [[t']/x](t1 t2) 

We are using the induction hypothesis (twice) for the third step, and pushing sub
stitutions and [ ·] into and out of applications by the definition of those operations. 

D 

Lemma 9.2.6 (Interpretation commutes with substitution). 

[[t]/x][t'] = [[t/x]t'] 

Proof The proof is by induction on the structure of t'. If t' is a variable x' (possibly 
equal to x), then we have 

[[t]/x][t'] = [[t]/x][x'] = [[t/x]x'] = [[t/x]t'] 

If t' = t� t;, then we have 

[[t]/x][t'] 
[[t]/x][t� t;] 
[[t]/x][tD [[t]/x][t;] 
[[t/xJtD [[t/xJt;] 
[ [ t Ix] ( t� t;)] 

Here, we are using our induction hypothesis (twice) in the third step, and push
ing substitutions and [ ·] into and out of applications by the definition of those 
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operations. Finally, if t' = Ay. t�, then we have 

[[t]/x][t'] 
[[t]/x][Ay. tU 
[[t]/x]A* y [tU 
A* y [[t]/x][t�] 
A* y [[t/xJtU 
[Ay. [t/x]t�] 

265 

Here, we use Lemma 9.2.5 to push the substitution into the body of the A* meta-
expression. 

9.2.6 Proof of Theorem 9.2.2 

We can now return to give the proof of Theorem 9.2.2: 

D 

Whenever we have t � t' with left-to-right call-by-value reduction, we also have [t] � * 
[t']. 

Proof Suppose we have C[(Ax.t) v] � C[[v/x]t] with left-to-right call-by -value 
reduction, where C is as defined in Section 5.4.1. Then by Lemma 9.2.4 we have 

[C[(Ax.t) v]] = [C][[(Ax.t) v]] 

By the definition of [t], we then have 

[C][[(Ax.t) v]] = [C][(A* x [t]) [v]] 

Now by Lemma 9.2.1, we have 

(A* x [t]) [v] �* [[v]/x][t] 

It is easy to prove that d �* d' implies C'[d] �* C'[d'], for any combinator 
context C', by induction on the derivation of d �* d' (I omit that proof). So using 
also the fact that [C] is a combinator context, we can derive 

[C][(A* x [t]) [v]] �* [C][[[v]/x][t]] 

Finally, by Lemma 9.2.6, we have 

[C] [[[v] Ix] [t]] = [C] [[[v I x]t]] 

D 
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9.2.7 A note on other reduction orders 

Translation to combinators is best suited as a semantics for A-calculus when the re
duction order used for the operational semantics does not reduce inside A-abstractions. 
So call-by-name reduction, for example, can be handled this way, but normal
order reduction (Section 5.4.3 above) cannot. For an example of the difficulty, we
have the following reduction in normal order: 

AX.(Ay.y) x "0 AX.x 

Let us compute the interpretation of the first term: 

[Ax.(Ay.y) x] A*x((A*yy)x) 
A*x(Ix) 
S (A*xI)(A*xx) 
S (KI) I 

This combinator is in normal form. So it cannot match the reduction which the 
original A-term has in normal order. 

9.3 Conclusion 

We have proved confluence of untyped lambda calculus using Takahashi's vari
ant of the Tait-Martin-Lo£ proof. The essential idea of the Tait-Martin-Lo£ proof 
is to define a notion of parallel reduction which can be proven to have the di
amond property, from which confluence easily follows. Takahashi's variant of 
the proof is to show the diamond property by recursively defining the complete
development term t* of term t, and showing that whenever t parallel-reduces to
t', then t' parallel-reduces to t*. This yields the diamond property for parallel
reduction in a particularly succinct and elegant way. 

We also have seen how the language of SK combinators supports programming
without any variables. The language is Turing-complete, since we can translate 
(Turing-complete) A-calculus to combinators, in a way that preserves reduction 
(Theorem 9.2.2). 

9.4 Basic exercises 

9.4.1 For Section 9.1 on confluence of untyped lambda calculus 

1. This problem is about the material on abstract reduction systems (ARSs) in
Section 9 .1.1. Let A = { 1, 2, 3, 4, 5, 6} and let ----+ 1 and ----+ 2 be defined as fol
lows:

----+ 1 { ( 2, 1) I ( 2, 3) I ( 4, 3)} 
----+2 {(3, 2), (3, 4), (4, 5)} 
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(a) Draw (A, ----+1) and (A, ----+2) as graphs (you should include the node 6

in your graphs even though it is not connected to any other node). 

(b) Draw (A, ----+1 
· 
----+2) and (A, ----+2 

· 
----+1). 

(c) Draw (A, ----+1 U ----+2) and (A, (----+1 U ----+2)+) (the latter has quite a few 
edges). 

(d) Which elements of (A, ----+1 U ----+2) are normal? 

(e) Is (A, ----+1 U ----+2) normalizing? Is it terminating? 

(f) List all the elements of (A, ----+1 U ----+2) which lack the diamond property. 

(g) Define a relation ----+3 which includes ----+1 U ----+2 (that is, we should have 
(----+1 U ----+2) �----+3) and which is confluent. Try to add as few edges to 
----+1 U ----+2 as possible. To show your answer, just draw (A, ----+3). 

2. Which of the following terms have the relaxed diamond property with re
spect to the ARS (terms,rv'> ), where rv't is full ,6-reduction?

• Ax.xx

• (Ax.x) Ay.y
• (Ax.(Ay.y) x) Ax.x

• (Ax.Ay.y x) ((Ax.x) Az.z)

3. Write out a derivation for each of the following judgments of parallel reduc
tion, using the rules of Figure 9 .1:

(a) (Ax.x) ((Ay.y) Az.z)::::} Az.z 

(b) (Aw.w) (Ax.xx) ((Ay.y) z)::::} (Ax.xx) z 
(c) (Ax.(Ay.y) x) Az.z::::} (Ax.x) Az.z 

(d) (Ax.x ((Ax.x) x)) Ay.(Az.z) yyy::::} (Ay.(Az.z) yyy) ((Ax.x) Ay.(Az.z) yyy) 

9.4.2 For Section 9.2 on the syntax and semantics of combinators 

1. Reduce the following terms to normal form:

(a) KKK K K 

(b) s s s s s

(c) S (K (5 I)) (S (K K) I) ab, assuming a and b are some unknown com
binators in normal form. 

2. Compute the following applications of the A* function:

(a) A*x(xAy.y)

(b) A*x(A*yy)

(c) A* x (A* y (x y))
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9.5 Intermediate exercises 

9.5.1 For Section 9.1 on confluence of untyped lambda calculus 

1. In Section 9.1.1, an alternative characterization of the reflexive-transitive clo
sure of a binary relation R on a set A was stated:

R* = LJ Rn 

nEN

Prove that this way of defining R* is equivalent to defining it using rules as 
in Figure 4.4 of Chapter 4. Hint: prove that (x,y) E R* as defined by the
rules of Figure 4.4 implies that there exists n E N such that ( x, y) E Rn. This
can be done by induction on the structure of the derivation (with the rules of 
Figure 4.4). Then to prove the reverse implication, prove that if (x,y) E Rn, 
then (x,y) E R* (as defined by Figure 4.4). This latter proof can be done by 
induction on n. 

2. Argue that for any ARS (A, ----+), if x E A is normal, then x has the diamond
property.

3. This problem is related to Section 9.1.2.

(a) Give an example of a non-normal lambda term which has the diamond 
property. 

(b) Give an example of a non-normal lambda term which has the relaxed 
diamond property but not the diamond property. 

4. Prove, either directly or using lemmas and theorems from Section 9.1, that
for every term t, we have t ::::} t* (see Section 9.1.3 for the definition of::::},
and Section 9.1.5 fort*).

9.5.2 For Section 9.2 on the syntax and semantics of combinators 

1. Let us temporarily define Kn as follows:

(a) Compute the normal forms of K3, K4, and K5. 

(b) Characterize the normal form of Kn as Kf ( n), for some function f of n. 

You should give an exact definition of this function f. 

(c) Prove by induction on n that y our characterization is correct. 



Chapter 10 

Polymorphic Type Theory 

In this chapter, we consider extending simply typed (pure) lambda calculus with 
support for parametric polymorphism, which is the ability of a term to operate 
on data of different types. We begin with System F, a powerful polymorphic type 
theory based on universal types \/ X. T. System F can be viewed as an extension 
of Simply Typed Lambda Calculus (STLC, see Chapter 7), which assigns many
more lambda terms a type than STLC did. We will see how System F allows us 
to type Church-encoded data (discussed in Chapter 6) and operations on such
data. STLC is not powerful enough to allow much typing of lambda-encoded data 
and operations on them, so this is a significant advance. We first look at a type
assignment version of System F, and then consider a system with annotated terms. 

Next, we will consider System Fw, which extends System F with ,\-abstraction 
at the type level. That is, we obtain the ability to compute types from other types. 
F or example, we might want to compute the type X * X from X, for pairs of ele
ments where both elements have type X. In System Fw, we can do that with the 
type-level ,\-abstraction ,\X.X * X. The resulting system is quite expressive, but 
suffers from some duplications: ,\-abstraction and application exist at two differ
ent levels in the language, leading to duplication of typing rules. Such duplication 
can be eliminated using so-called Pure Type Systems; see Barendregt' s "Lambda 
Calculi with Types" [6]. 

10.1 Type-assignment version of System F 

F or the type-assignment formulation of System F, the terms are just the usual 
unannotated lambda terms from Chapter 5: 

terms t : : = x I t t' I ,\x. t

The notions of reduction we may consider are those of untyped lambda calculus. 
Let us suppose we are working here with full ,B-reduction (Section 5.2). The new
features of System F all are concerned with typing. The syntax of polymorphic 
types T is given by 

where X is from an infinite set of type variables. We could also include base 
types bas types, as we did for STLC, but this is not really needed, since we can 
simulate them with free type variables X. The type-form \/X.T is for universal 
types. We will use universal types to classify polymorphic functions. We have 
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two parsing conventions. First, we again treat ----+ as right associative, so that X ----+ 

Y ----+ Z is fully parenthesized as ( X ----+ (Y ----+ Z)). Second, the scope of the 
universal quantifier extends as far to the right as possible. So 't/X.X ----+ X is fully 
parenthesized as (\/ X. ( X ----+ X)). 

10.1.1 Type-assignment rules 

Our type-assignment system for System F extends that of STLC with new rules 
for universal types. Because universal types bind a type variable X, we need to 
extend our notion of typing contexts to include declarations for type variables. We 
do this by writing X : *· The use of* as the classifier for a type variable will be 
consistent with the notation we will introduce for System Fw below. 

typing contexts r ::= . I r, x : T I r, x : * 

The typing rules are given in Figure 10.1. As for simple typing, we are writing 
r ( x) = T to mean that the result of looking up the type for term variable x in 
context r is T (i.e., the function r returns type T for x). We will assume that,.\- and 
\/-bound variables are tacitly renamed to ensure that the typing context always has 
at most one declaration for any variable (either term variable x or type variable X), 
and that in r, X : *,the type variable X does not occur anywhere in r. This will 
ensure we do not confuse scopes of term or type variables with the same names. It 
also ensures that we are not able to universally quantify a type variable in such a 
way to separate it from its use in r(x). That is, we are not allowed to perform the 
last inference in this derivation: 

·, x : X, X :  * f- x : X 

·,x:Xf-x:'t/X.X 

This would certainly be unsounded with respect to our intended semantics: it 
would say that if you know x has some unknown type X, you can conclude that it 
has the universal type 't/X.X. In effect, an x that has some fixed but unknown type 
would become an x that can take on any type at all (through universal instantia
tion). This is not sound. 

In the elimination rule for universal types, we use substitution [TIX] T' to re
place all free occurrences of X in T' with T. Similarly to the case for term-level 
substitution [t/x]t', this substitution at the level of types must respect the bind
ing structure of the types involved. So we will tacitly rename variables which are 
bound in T', to avoid capturing variables free in T. 

The type-assignment formulation of System F is not algorithmic, and differ
ently from STLC, we cannot devise a constraint-based typing algorithm that works 
in general. The problem is that the constraints we generate end being second-order 
unification constraints, and that problem is provably unsolvable [16]. Indeed, it is 
in general undecidable whether or not an unannotated term can be assigned a type 
in System F. So we will turn to annotated terms for an algorithmic type system for 
System F. 



10.2 Annotated terms for System F 

r(x) = T 

ff-x :T 

f, X : * f-t : T 
ff-t : VX.T 

10.1.2 Metatheory 

r f- ti : T2 ----+ T1 r f-t2 : T2 
f f- ti t2 : T1 

ff- t :  VX.T ' 
r f- t : [TIX] T'  

f, x : T1 f-t : T2 
f f-Ax.t : T1 ----+ T2 

Figure 10.1: Type-assignment rules for System F 
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The following metatheoretic results can be proved for System F. The first is a 
straightforward extension of the proof of Type Preservation for STLC (see The
orem 7.6.1 of Chapter 7). We now need two substitution theorems: one for substi
tuting a term into a term, and another for substituting a type into a term. The proof 
of strong normalization is based on reducibility, as for simple types, but requires 
a major innovation, due to Jean-Yves Girard, to define reducibility for universal 
types VX.t. For this, see "Proofs and Types" [15]. 

Theorem 10.1.1 (Type Preservation). If f f- t T (in System F) and t rvt t', then 
f f-t' : T. 

Theorem 10.1.2 (Strong Normalization). !ff f-t : T (in System F), then t E SN. 

An important idea related to strong normalization is parametricity, which is based 
on a relational semantics for types, and intuitively shows that inhabitants of uni
versal types V X. T must work parametrically for any type that could be substituted 
for X. Parametricity is a deep concept which we will not be able to explore further 
here; see [41]. Parametricity has intriguing consequences for proving properties of 
programs [40]. 

10.2 Annotated terms for System F 

Just as we did for STLC, we can devise a language of annotated terms, to obtain an 
algorithmic type system for System F. The standard approach to annotating these 
terms uses the following syntax: 

t ::= x I (t1 t2) I Ax : T.t  I t[T] I AX.t 

The first three term constructs are as for simply typed or untyped lambda calcu
lus. The constructs t[T] and AX.t are annotations for type instantiation and type 
abstraction, respectively. 
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10.2.1 Examples 

Polymorphic identity 

Ax.(x x) 

We can compute a single type, rather than a type scheme, for a System F term 
implementing the polymorphic identity function. The typing is: 

AX.Ax : X.x : VX.X ---+ X 

The idea in System F is that our annotated terms can abstract over types (with 
AX.t) and then instantiate a type abstraction (with t[T]). The type for a type ab

straction AX.tis VX.T, where t has type T in a context where X is declared. 

The term Ax.(x x) is not simply typable, but we can give an annotated System F 
term corresponding to it which is typable. This example demonstrates also the use 
of instantiation. The typing is 

Ax : VX.X. (x[(VX.X) ---+ (VX.X)] x) : (VX.X) ---+ (VX.X) 

Let us consider this example in more detail. The term in question first takes in x 
of type VX.X. Such an x is a very powerful term, since for any type T, we have 
x[T] : T. So this term can, via its instantiations, take on any type T we wish. So the 
term in question instantiates x at the type (VX.X) ---+ (VX.X). The instantiated 
x now has the type of a function taking an input of type VX.X and returning an 

output of the same type. So we can apply the instantiated x to x itself. The type 
of the application is then VX.X, which completes the explanation of the typing of 
this term. Note that typing prevents us from applying the term 

Ax : VX.X. (x[(VX.X) ---+ (VX.X)] x) 

to itself. This is good, since we know that applying Ax. ( x x) to itself diverges. 

10.3 Semantics of annotated System F 

We can now define type computation for annotated System F. We can also define 
reduction directly on annotated terms, in case we wish to preserve annotations 
while reducing. 

10.3.1 Type-computation rules 

Figure 10.2 inductively defines a relation of type computation for System F. (Con
texts rare as defined above for the type-assignment system.) In the judgments 
r f- t : T, the context rand subject term tare inputs, and the type T is the output. 
In the typing rule for instantiation, we must substitute the type T into the body of 



10.3 Semantics of annotated System F 

r(x) = T 
ff--- x: T 

r,x: * f--- t: T 
r f--- AX.t: VX.T 

r f--- ti : T2 --+ Ti r f--- t2 : T2 
f f--- t i  t2 : Ti 

r f--- t: VX.T' 
ff--- t[T] : [T /X]T' 

Figure 10.2: Type computation rules for System F 
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the \:/-type. This is what allows us, for example, to give x[(VX.X) --+ (VX.X)] the 
type (VX.X) --+ (VX.X) if x has type VX.X. (The body T' in this case is just X.) 

Of course, we should prove the following theorem (details omitted): 

Theorem 10.3.1. If t is an annotated term and r f--- t : T (using the rules for annotated 
terms), then we also haver f--- ltl : T using the rules for unannotated terms, where ltl is 
the erasure of t, which drops all annotations. 

10.3.2 Reduction semantics 

Annotations are added to a language of terms in order to enable algorithmic typ
ing. The type-assignment rules are usually non-algorithmic, and the annotations 
provide just the right information to resolve the nondeterminism about which 
rules to apply, with which instantiations of meta-variable. From this point of view, 
there is no need to define a reduction relation directly on annotated terms. We 
can prove properties like Type Preservation on unannotated terms using our type
assignment rules (see Section 7.6). The annotations on terms do not contribute 
anything to this, since they have no computational relevance. 

In some situations, however, it is desirable to define reduction directly on an
notated terms. For example, we might like to be able to reduce a term t and still 
be able to type check it. This requires us to preserve annotations as we reduce, 
and hence using the reduction relation for untyped lambda terms on the erasure 
(dropping annotations) of t will not be sufficient. 

So let us define a reduction semantics for System F that works directly on our 
annotated terms: 

C[(Ax: T. t) t'] "" C[[t' /x]t] 

C [ (AX. t) [Tl] "" C [ [TIX] t] 

Here, the contexts C allow reduction anywhere: 

C ::= * I ( C t) I (t C) I Ax : T.C I AX.C I C [T] 

The theorem of interest is then (proof omitted): 

Theorem 10.3.2 (Preservation of annotated typing). If t is an annotated term with 
r f--- t : T and t"" t' with the reduction relation for annotated terms, then r f--- t' : T. 
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10.4 Programming with Church-encoded data 

One of the amazing things about System F is that we can express quite interesting 
algorithms (for example, sorting of lists) as typable System F terms. Since every 
typable term in System F is strongly normalizing, this means that we can prove 
totality of functions, for example, just by encoding them in System F. From recur
sion theory, we know that not all total functions can be encoded in System F, since 
there is no recursive language consisting of all and only the total functions. But 
still, System F is remarkably expressive, as we will now see. To emphasize: all the 
functions we write below are guaranteed to terminate on all inputs, just in virtue 
of the fact that they type check in System F. 

Recall from Chapter 6 that in the Scott encoding, data are encoded by their own
case-statements; while in the Church encoding, data are encoded by their own 
iterators. Operations on Scott-encoded data are not typable, in general, in System 
F. But operations on Church-encoded data are. So we will use Church encodings 
below. Also, for algorithmic typing, we will use annotated System F terms. 

10.4.1 Unary numbers 

The typed Church encodings for 0 and the successor function in System F, and the 
type of natural numbers, are definable like this: 

nat ·
- V'X.(X---+ X) ---+ X---+ X 

0 ·
- AX. As : X ---+ X. Az : X.z 

S ·- An: nat. AX. As: X---+ X. Az: X.(s (n[X] s z)) 

Recall from Chapter 6 that the idea is that a natural number n is something which
takes a function f of type X ---+ X, and a starting point a, and returns Jn (a) (in the
sense of Definition 2.6.5, from Chapter 2); and this works for any type X. In the
type for natural numbers, 

V'X. (X---+ X) ---+ X---+ X 

we are universally quantifying over the type X. The rest of the type expresses that
the number takes in a function of type X---+ X and a starting point of type X, and
returns something of type X. You can confirm that we then have these typings:

0 nat 
S nat ---+ nat 

Addition. The System F term for addition is: 

plus An: nat. Am: nat. (n[nat] Sm) 

This term will iterate the successor function n times, starting from m. This will
indeed produce ( S ( S · · · m)), with n calls to successor.
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Multiplication. We have already seen that multiplication can be viewed as iter
ated addition. T his can be expressed in System F as follows: 

mult := An: nat. Am: nat. (n[nat] (plus m) 0) 

The body here says to iterate the plus m function n times, starting from 0. This will 
indeed compute n * m, as desired. 

10.4.2 Booleans 

The System F terms for Church-encoded booleans are: 

bool 't/X.X ---+ X ---+ X 
true AX. At : X. A f : X. t 
false AX. At : X. A f : X. f 

The type 't/X.X ---+ X ---+ X, which bool is defined to be, says that for any type X, if 
you give a boolean two values of type X (one for if the boolean is true, and another 
for if it is false), it will return a value of type X. 

10.4.3 Polymorphic lists 

For container types like lists, the situation in System F is not quite as nice as for 
natural numbers and booleans. If A is some System F type, for the elements of the 
lists, then we can make the following definitions: 

(list A} ·- 't/X.(A ---+ X---+ X) ---+ X---+ X 

nil ·- AA. AX. Ac : A ---+ X ---+ X. An : X.n 

cons ·- AA. Aa : A. Al : (list A). 

AX. Ac : A ---+ X ---+ X. An : X. ( c a ( l [ X] c n)) 

You can confirm that we then have these typings: 

nil \;/A. (list A) 

cons \;/A. A ---+ (list A) ---+ (list A) 

W hat is somewhat unsatisfactory here is that we could only define the type (list A), 
not the type constructor list. Defining list itself requires the ability to define a func
tion at the type level which can take in the type A, and return the type 't/X.(A ---+ 
X ---+ X) ---+ X ---+ X which we defined to be (list A). Type-level functions are 
supported by System F w, which we consider next. 
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kinds K
types T
terms t 

Polymorphic Type Theory 

* I Ki ---+ K 2

x I T1 ---+ T2 I vx: K.T I (T1 T2) I AX: K.T

x I (t 1 t 2) I AX: T.t I t[T] I AX : K.t

Figure 10.3: Syntax for terms, types, and kinds of Fw 

10.5 Higher-kind polymorphism and System Fw 

We consider the annotated version of System Fw, as this is typically what is studied 
in the literature. The main innovation of Fw over System F is to add functions at 
the type level. Once we do this, we naturally require a type system for those type
level functions, to prevent writing diverging type-level expressions. Types which 
classify expressions at the type level are standardly called kinds. So the type of a 
type-level expression is a kind. Fw adopts the simplest (known) kind system for 
type-level functions, namely simple typing, with a single base kind, standardly 
denoted*· Universal types VX.T are extended so that they can quantify over types 
of any kind. In Fw, in summary, we have terms classified by polymorphic types, 
which in turn are classified by simple kinds. 

The syntax of Fw is given in Figure 10.3. We have three syntactic categories: 
kinds K, types T, and terms t. Types can have kinds inside them as subexpressions;
for example, VX : *·X is a type, and it contains the kind*· Terms can contain types 
and kinds; for example, AX : *.Ax : X.x is the polymorphic identity function, and 
it contains both a kind * and a type X. So we have a somewhat richer syntactic 
structure than we saw for STLC or System F.

10.5.1 Typing, kinding, and reduction 

As in previous systems, we will now give rules for deriving certain classification 
judgments, involving contexts r of the following variety: 

typing contexts r ::= . I r, x : T I r, x: K

We assume that the context does not declare the same variable twice, and we write 
f ( X) = K and f ( x) = T to indicate the unique classifier associated with the given
variable, if there is one. 

In Fw we have two classification judgments. The typing judgment f f- t : T
expresses that term t has type Tin typing context f, while the kinding judgment
f f- T : K expresses that type T has kind K in context f. The kinding rules for
Fw are given in Figure 10.4, and the typing rules in Figure 10.5. The typing rules 
include a rule (the last one in the figure) for changing the type T of a term to some
other type T', when T = T'. This typing rule is usually called a conversion rule. 
We need such a rule so that type-level computation can be incorporated into the 
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f(X) = K 
ff--X:K 

f, X : K f-- T : * 

f f-- \IX : K. T : * 

f, X : K f--T : K' 
ff-- AX: K.T: K----+ K' 

r f--T1 : * r f--T2 : * 

f f--T1 ----+ T2 : * 

r f-- T1 : K ----+ K' r f-- T2 : K 
f f-- T1 T2 : K' 

Figure 10.4: Kinding rules for Fw 

r(x) = T 
ff--x:T 

r f-- f 1 : T ----+ T' r f-- t2 : T 
f f--t1 t2 : T' 

r f--T : * r, x : T f--t : T' r f-- t : \IX : K. T' r f-- T : K 
r f-- Ax : T.t : T ----+ T' r f-- At[T] : [TIX] T' 

f, X : K f-- t : T 
ff--AX : K.t : \IX : K. T 

f f--t : T T = T' 
f f--t : T' 

Figure 10.5: Typing rules for Fw 
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system. If T can be simplified to T', for example, by type-level computation, the 
conversion rule allows us to change the type of a term t from T to T'. The rules 
defining the conversion relation on types are given in Figure 10.6; the type-level 
/3-reduction rule (first in the figure) is the central one. 

It is desirable to ensure that all the types being used in the context r are actually 
kindable. This is expressed using the judgment r f-- I defined in Figure 10.7. In all 
the typing and kinding rules, it can be easily confirmed that if the typing context 
is well-formed (f f--) in the conclusion, it still will be in the premises. This requires 
one extra check, in the rule for typing A-abstractions whose bound variable ranges 
over terms: we enforce that the classifier of the variable is kindable. Alternatively, 
we could have included r f-- as an extra premise of the axioms of the rules, to 
make sure that r is well-formed. Subsequent to these definitions, we will require 
f f--whenever we form a judgment f f--t : T or f f--T : K. 

Figure 10.8 defines a reduction relation for Fw, similar to the definition for an
notated System F in Section 10.3.2. 

10.5.2 Typed Church-encoded containers 

Thanks to type-level computation, we can now return to the problem we encoun
tered in Section 10.4.3, and give an unparametrized definition of the type construc
tor for lists: 
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(AX: K.T') T = [T /X]T' 

T = T' 
AX: K.T =AX: K.T' 

Polymorphic Type Theory 

T = T' 
V X : K. T = V X : K. T' 

T1 = T2 T2 = T3 
T1 = T3 

Figure 10.6: Rules for type conversion in Fw 

. f---
ff--- T: * 

f,x: T f---
r f---

r,x: K f---

Figure 10.7: Rules ensuring that the context is well-formed for Fw 

(Ax : T. t') t "0 [ t Ix] t' (AX: K.t') [T] "0 [TI X]t' 

f 1 "0 t� t2 "0 t; 

f 1 t2 "0 t� t2 f 1 t2 "0 f 1 t; 

t1 "0 t� t2 "0 t; 

f 1 t2 "0 t� t2 f 1 t2 "0 t1 t; 

t "0 t' t "0 t' 
Ax : T.t "0 Ax : T.t' AX : K.t "0 AX : K.t' 

Figure 10.8: Reduction rules for Fw 
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list ·- AA : *.vx: *.(A ---+ x---+ X) ---+ x---+ x 
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We are using a type-level A-abstraction of A to allow us to express that list takes 
in a type (A) as input and produces a type (VX : *.(A ---+ X ---+ X) ---+ X ---+ X) as 
output. So list is defined to be a type-level function in Fw. With this definition, we 
can type the constructors for lists, as well as other operations. 

nil 

cons 

AA : *·AX : *·Ac : A ---+ X ---+ X. An : X.n 

AA : *· Aa : A. Al : list A. 

AX : *. Ac : A ---+ X ---+ X. An : X. ( c a ( l [ X] c n)) 

We then have these typings and kindings: 

list * ---+ * 

nil VA:*. list A 

cons VA : *. A ---+ list A ---+ list A 

10.5.3 Metatheory and algorithmic typing 

Type-level computation complicates several metatheoretic results. The proof of 
strong normalization is complicated by the need to interpret A-abstractions at the 
type level. Standard approaches solve this problem by interpreting type-level 
functions as meta-level functions; an example, for a system called the Calculus 
of Constructions which contains Fw as a subsystem, can be found in [14]. We will 
not consider normalization for Fw further here. Instead, let us focus our attention 
on issues raised by the need for an algorithmic version of typing in Fw. 

The typing rules of Figure 10.5 are not algorithmic, due to the presence of the 
conversion rule. First, it is not immediately obvious that the type conversion rela
tion (Figure 10.6) that is referenced in the premise of the conversion rule is decid
able. To prove that it is, the standard approach is to define a reduction relation""" 
on types as in Figure 10.9. We then show that""" on types is strongly normalizing 
and confluent (cf. Section 9.1), and that the conversion relation is the reflexive, 
symmetric, transitive closure of""". These results imply that every type expression 
has a unique computable normal form, and testing T1 = T2 reduces to computing 
the normal forms of T1 and T2, and comparing those for syntactic identity (modulo 
safe renaming of bound variables). We will not prove these results, but just record 
this summary: 

Theorem 10.5.1. T = T' if! there exists a normal form T" such that T """* T" and 
T' """* T". 

The other issue with the conversion rule is that it can be applied at any point 
in a typing derivation, thus rendering the search for a typing derivation nonde
terministic. It is curious that the usual way of defining the typing rules for Fw (as 
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(AX: K.T') T � [T /X]T' 

T� T' T� T' 
AX: K.T� AX: K.T' \::IX: K.T� \::IX: K.T' 

Figure 10.9: Rules for type-level reduction 

in [6]), which we followed above, is this mixture of algorithmic (all the rules ex
cept conversion) and non-algorithmic rules. It is not too common to see the details 
of a completely algorithmic version of Fw or similar systems worked out in the 
literature. Recall that we considered two approaches to handling typing rules like 
conversion which are not subject-directed, when we considered the subsumption 
rule for subtyping in Section 7.10.5. Here we will consider one of these approaches, 
applied to conversion: using a further annotation in the term syntax. 

To define an algorithmic type-computation relation, we include an explicit cast
term as part of the annotated syntax, and replace the conversion rule with this rule: 

ff- t: T T = T' 
f f- cast t to T' : T' 

Now all our rules are subject-directed, and we have an algorithmic type-computation 
system. One important difference between our situation here and the one we con
sidered for STLC with subtyping is that if we wish to define reduction on (an
notated) terms of Fw, as we are currently doing, we are going to need reduction 
rules to shift these casts off of A-abstractions that would otherwise take part in 
,6-reductions. For we could have a term like this: 

(cast Ax : T .t' to T1 ----+ T2) t 

which would reduce if the cast were not on the Ax : T.t' term which is being 
applied. To shift the cast in this case and in the case of instantiating a universal 
type, we can add these rules to our reduction relation: 

(cast (Ax: T.t') to T1----+ T2) t' � cast [(cast t' to T)!x]t' to T2 

(cast (AX: K.t') to \::IX: K.T)[T'] � cast [T' /X]t' to [T' /X]T 

T his is not quite enough, since we could have multiple casts on the term being 
applied. But only the outermost cast matters, so we can resolve the difficulty with 
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a cast-smashing reduction rule: 

cast (cast t to T') to T � cast t to T 

We also need a rule which allows reduction to take place beneath cast terms: 

t � t' 
cast t to T � cast t' to T 

With these modifications to the reduction relation, we can prove Type Preservation 
and Progress theorems, relying on a substitution lemma similar to Lemma 7.6.2 

for STLC, and a substitution lemma for substituting a type into a term (proofs 
omitted). Note that we have to substitute into the type part of the typing judgment 
in the second of these substitution lemmas: 

Lemma 10.5.2 (Substitution of a term). If f, x : T f--- t' : T' and f f--- t : T then 
ff--- [t/x]t': T'. 

Lemma 10.5.3 (Substitution of a type). If f, X : K f--- t' T' and f f--- T K then 
ff--- [T /X]t': [T /X]T'. 

Theorem 10.5.4 (Type Preservation). If f f--- t : T and t � t' then f f--- t' : T. 

Proof The proof is by induction on the structure of the second assumed derivation. 
Most cases proceed as for STLC. We just consider a couple of the cases with casts: 

Case: 
(cast (Ax: T.t') to T1---+ T2) t' � cast [(cast t' to T)/x]t'to T2 

By inversion, the assumed typing derivation must look like: 

r, x : T f--- t' : T' 

f f--- Ax : T.t' : T ---+ T' T ---+ T' = T1 ---+ T2 

f f--- cast (Ax : T.t') to T1 ---+ T2 : T1 ---+ T2 f f--- t' : T1 

ff--- (cast (Ax: T.t') to T1 ---+ T2) t' : T2 

By Theorem 10.5.1, we know that T ---+ T' and T1 ---+ T2 must be joinable using 
the reduction relation� defined on types (Figure 10.9). This implies that T and 
T1 are joinable, and T' and T2 are joinable, since only reductions inside the subex
pressions of an arrow type are possible (an arrow type itself cannot be a redex). By 
Theorem 10.5.1 again, this implies that T = T1 and T' = T2. So we can construct 
this typing derivation: 

f f--- t' : T1 T1 = T 

r I x : T f--- t' : T' r f--- cast t' to T : T 
------------- Subst 

r f--- [ (cast t' to T) Ix] t' : T' T' = T2 

r f--- cast [ (cast t' to T) Ix] t' to T2 : T2 
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Case: 
(cast (AX: K.t') to \:IX: K.T)[T'] � cast [T' /X]t'to [T' /X]T 

By inversion, the assumed typing derivation must look like: 

f, X : K f--- t' : T1 

ff--- AX: K.t': VX: K.T1 VX: K.T1 = VX: K.T 

ff--- cast (AX: K.t') to \:IX: K.T: VX: K.T ff--- T' : K 

ff--- (cast (AX: K.t') to \:IX: K.T)[T'] : [T' /X]T 

By applying Theorem 10.5.1 similarly to the previous case, we obtain T1 = T. It is 
easy to prove that type-level equality is closed under substitution, so this implies 
[T' IX] T1 = [T' IX] T. We can then construct this derivation: 

Case: 

r, x : K f--- t' : T1 r f--- T' : K 
----------- Subst 

ff--- [T' /X]t': [T' /X]T1 [T' /X]T1 = [T' /X]T 

ff--- cast [T' /X]t'to [T' /X]T: [T' /X]T 

cast (cast t to T') to T � cast t to T 

By inversion, the assumed typing derivation must look like: 

f f--- t : T" T" = T' 
f f--- cast t to T' : T' T' = T 
r f--- cast (cast t to T') to T : T 

We can construct this derivation: 

T" = T' T' = T 
f f--- t : T" T" = T 

f f--- cast t to T : T 

D 

We must also prove that the cast-shifting rules we have added are sufficient to 
prevent stuck redexes. For this, let us define the following notion of basic values 
and values: 

basic values w ::= Ax: T.t I AX: K.t 
values v ::= cast w to T I w 

Values are casts of basic values. We can now prove: 

Theorem 10.5.5 (Progress). If· f--- t : T then either t is a value, or t � t' for some t'. 

Proof The proof is by induction on the assumed typing derivation. The variable 
case cannot arise, since the context is empty. 
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Case: 
· f-- ti : T ----+ T' f f-- t2 : T

· f-- t 1 t2 : T'

T he IH applies to the premises. If either ti or t2 reduces, then ti t2 reduces. So 
suppose both are values. If ti is of the form Ax : T1 .t�, then the application reduces. 
We cannot have t1 of the form AX : K.t�, by inversion: no typing rule can derive 
r f-- AX : K.t� : T ----+ T'. Finally, t1 might be of the form cast (Ax : T1 .t�) to T ----+ T' , 
but then the application reduces. By inversion, t1 cannot be of the form cast (AX : 
K.t�) to T ----+ T'. 

Case: 
· f-- t : \:/X : K. T · f-- T' : K 

· f-- t[T']: [T'/X]T 

We proceed as in the previous case. The IH applies to the premise. If t steps, then 
so does t [T']. So suppose t is a value. Similar reasoning by inversion as in the 
above case shows that either we have t of the form AX : K.t, or else cast AX : 
K.t to \:IX: K.T. In either case, the term t[T'] reduces. 
Case: 

· f-- t : T T = T' 
· f-- cast t to T' : T' 

If t steps then so does the cast-term. If t is a basic value, then the cast term is a 
value. Finally, if t is a cast-term itself, then the term in the conclusion steps, using 
the cast-smashing rule. D 

10.6 Conclusion 

In this chapter, we have considered parametric polymorphism in System F, and its 
extension to higher kinds, Fw. We have seen how data which have been Church
encoded as pure lambda terms can be typed in System F. Container types like lists 
require the type-level computation available in Fw, in order to give definitions for 
type constructors. We also took a look at some of the technical issues which the 
addition of type-level computation in Fw raises. 

10. 7 Exercises

10.7.1 Basic exercises 

1. For each of the following terms of System F, indicate whether it is an encod
ing of a boolean value, a unary natural number, or a list. Then, write the
corresponding constructor term which would compute that value. To make
the problem somewhat more interesting, I am not using suggestive names
for the bound variables.
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(a) AX. Ax : X. Ay : X. x 

(b) AX. Ax : X---+ X. Ay: X. x y 

(c) AX. Ax: A ---+ X---+ X. Ay: X. x (AX. Ax: X. Ay: X. y) y 

2. Write out the typing derivation in System F to show that the Church-encoding
of the numeral 1 has type nat (see Section 10.4.1).

3. Write out the typing derivation in Fw that shows that nil has type

VA: *.list A 

Make sure to note where the conversion rule (of Figure 10.5) is used. 

10.7.2 Intermediate exercises 

1. Define (in System F) the type (pair AB) for pairs of elements, where the first
component of each pair has type A, and the second type B. Also, define a
constructor mkpair which takes two types, then two elements of those types,
respectively, and creates a pair out of them. Use this constructor to compute
the normal form of the expression mkpair[bool][nat] true 0. Write out the re
sulting term in full detail, without using any of the definitions above (so,
fully expand the definitions for true and 0).

2. Write out a term in Fw extended with explicit cast-term (Section 10.5.3) corre
sponding to cons from Section 10.5.2. Show the reduction sequence you get,
using the cast-shifting reduction rules of Section 10.5.3, when you reduce the
term

cons[nat] 1 nil 

3. This problem asks you to carry out the second approach in Section 7.10.5
to work conversion into the type-computation rules, thus obtaining a type
computation system for Fw without using cast-annotations. Define a set of
rules which strictly interleaves applications of the conversion rule with the
subject-directed rules (all the other rules of Figure 10.5). Then rework the
system to combine the two layers into one. Confirm that your set of rules
is algorithmic, and explain informally the relationship to the system of Fig
ure 10.5.



Chapter 11 

Functional Programming 

This chapter is about programming languages based on typed lambda calculus, 
extended with various primitives operations. Such languages are usually called 
functional programming (FP ) languages, since the central abstraction of the language 
is the possibly anonymous function, defined using lambda abstraction. We could 
call any language based on anonymous functions a functional language. Many 
languages include a feature like anonymous functions, but are not based on that 
abstraction as the central organizing idea. Such languages probably do not war
rant the name "functional". 

One can distinguish a stronger sense in which a language can be functional: all 
programs defined within the language behave like mathematical functions, which 
deterministically compute the same output whenever given the same inputs. Not 
many implemented programming languages are functional in this stronger sense. 
Of mainstream contemporary languages, Haskell is the only one I know which is 
strongly functional. For most mainstream languages have library functions like 
get timeofday () , which are intended to return different answers every time 
they are called. These functions consult some implicit state (like time informa
tion maintained by the hardware and operating system of the computer) in order 
to compute their answers. In Haskell, there is no implicit state: a function like 
gettimeofday () must, in effect, take an extra argument representing the state 
of the computer. Haskell uses an abstraction known as monads and an inference 
algorithm based on what are called type classes in order to thread such extra ar
guments through code, without requiring the programmer to keep track of them 
explicitly. 

There is a long and rich history of the use of lambda calculus in practical 
programming languages (ones which have been implemented and seen at least 
some widespread use). The first programming language, it seems, which made 
explicit use of ideas from the lambda calculus, including lambda abstractions, 
was LISP, developed by John McCarthy [27]. Many functional languages, or lan
guages borrowing ideas from lambda calculus, have followed. In this chapter, 
we consider functional programming with call-by-value semantics (Section 11.1), 
and then with call-by-name semantics (Section 11.3). As a representative of eager 
FP, we consider OCaml (Section 11.2), and of lazy FP, Haskell (Section 11.4). A 
full treatment of either language is beyond the scope of this book. The interested 
reader can find many more resources about these and other functional program
ming languages online. 
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11.1 Call-by-value functional programming 

In this section, we explore programming in extensions of the simply typed lambda 
calculus, with small-step left-to-right, call-by-value operational semantics. Call
by-value semantics is sometimes also called an eager semantics, in contrast to lazy 
semantics, which we will see in Section 11.3. We will add direct support for fa
miliar programming constructs and features, including arithmetic, booleans and 
if-then-else, tuples, lists, and recursion. We have already seen, of course, that these
features can be encoded directly in untyped lambda calculus, using the Scott en
coding (Chapter 6). For efficient code, however, direct implementations are prefer
able over encodings into pure lambda calculus, as they can employ optimizations 
or take advantage of the underlying hardware (for arithmetic, for example). Also, 
even if we were to use Scott encodings for these features, we still have to see how 
to design types for them, as our Scott encoding is untyped. One can devise typed 
Scott encodings, but they are more involved than the typed Church encodings we 
considered in Chapter 10. Finally, we connect up with programming practice with
a short introduction to functional programming in the OCaml functional program
ming language. 

11.1.1 Extending the language 

Arithmetic 

We begin by extending our simple types and simple type assignment rules to other 
constructs we added previously to lambda calculus. We design type computation 
rules for annotated lambda terms, though one could also design type assignment 
rules, or use one of the other approaches in Chapter 7.

We assume we have base types int for integers and bool for booleans. We extend
the syntax for terms from untyped lambda calculus as follows: 

integer literals n 
terms t . . . I + I * I - I n I true I false I < I = I >

And of course, we can include other operations as well. One simple convention 
used in both OCaml and Haskell is that arithmetic terms are parsed in infix no
tation using standard parsing conventions, but arithmetic operators may be used 
as any other functional term if written in parentheses. This approach allows us to 
write ( ( +) 3) for the function of type int ---+ bool that adds 3 to its argument.

The operational semantics of these operations is defined by first extending our 
notion of values from the left-to-right call-by-value semantics for untyped lambda 
calculus, which we saw in Section 5.4.1). All the new operations we have intro
duced are themselves values, so we are just duplicating our new syntax for terms 
here: 

values v 
· ·

- · · · I + I * I - In I true I false I < I I >
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If-Then-Else 

Tuples 

Now we can write special reduction rules for these operations. A representative 
example is the following, where the occurrence of " + " in the premise of the rule 
denotes the real mathematical (meta-level) addition function: 

Finally, we can add new base types int and bool, and special typing rules for all the 
new constructs. A representative such rule is: 

r f--- + : int ----+ int ----+ int 

We again extend our syntax for terms: 

terms t ::= · · · I if ti then t2 else t3 

We now need to extend our notion of evaluation contexts from the one we had for 
left-to-right CBV evaluation: 

contexts C : : = · · · I if C then t else t' 

Notice that we do not allow reduction in the then- or else-branch of an if-then-else 
term, since the desired semantics is that we only reduce one of these, depending 
on the value of the guard (i.e., the term right after the "if"). We have two new 
reduction rules: 

C [if true then t else t'] � C [t] 

C [if false then t else t'] � C [t'] 

Finally, we have a new typing rule: 

f f--- ti : bool f f--- t2 : T f f--- t3 : T 

f f--- if ti then t2 else t3 : T 

Notice that the rule requires the types of the two terms t2 and t3 to be the same 
(they are both T). This reflects the fact that statically, we do not know which of the 
two terms will be executed, and so we abstract their results to a single common 
type. An alternative could be to include an if-then-else operator at the type-level, 
but this is beyond what is done in practice in languages like OCaml and Haskell, 
and would require substantial complication of the type system. 

We can again extend our syntax of terms with notation for tuples, where i E 

{1, 2, . . .  } (the set of non-zero natural numbers): 

terms t ::= · · · I (t1, ... , tn) I t.i 
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Lists 

Functional Programming 

We need to extend our notation for values and evaluation contexts: 

values v · ·
-

evaluat ion context s C .. -
I (vi, ... ,vn) 

· · · I (vi, ... , vb C, ti, ... , t1) I C .i 

The first new clause for contexts here just says that reduction may take place at 
a component of a tuple as long as all components to the left of that component 
(i.e., vi, ... , vk) are values; all the components to the right (i.e., ti, ... , t1) may be 
arbitrary terms. We then add this reduction rule: 

i E {l, ... ,n} 

Note that we could just as well start our component indices at 0 instead of 1. 
We now need to extend the syntax of simple types with a type for tuples: 

types T ... I Ti* ... * Tn 

We then add these typing rules: 

r f- ti : Ti r f- tn : Tn r f- t : (ti, ... I tn) : Ti * ... * Tn i E {1, ... In} 
ff- (ti, ... ,tn): Ti*···* Tn ff- t.i: Ti 

Of course, these n-ary products (that is products that work for any arity, or any 
number n of subsidiary types) could be implemented using just binary products. 
So bool * bool * bool could be implemented by bool * (bool * bool). W hile this ap
proach may be adequate in many situations, n-ary products can be implemented 
somewhat more space-efficiently in a compiler for such a language. All the compo
nents of the tuple can be stored in the same record (contiguous region) in memory. 
In contrast, with binary products, a tuple of n components will generally need to 
be stored in a structure that ends up being a linked list. Each cell in that list holds 
two pointers, one to the first component of the pair, and the other to the second 
component. Tuples implemented as nested pairs will require individual records in 
memory for each pair, where for all but the last of these pairs, one of the pointers 
from the region will be to the next pair in the nested structure. This is less space
efficient (and also less time-efficient, as one must traverse the linked-list structure 
to reach more deeply nested elements) than contiguously storing all components 
of the tuple in one record. 

Languages like OCaml and Haskell allow programmers to declare their own in
ductive datatypes. Rather than describe general machinery for declaring new 
inductive datatypes, we will here just consider the example of the list datatype, 
which is a central data structure in all functional programming languages. We 
extend the syntax for terms as follows: 

term s t ::= · · · I nily I cons t t' I match t wit h nil ::::} ti , cons x x' ::::} t2 
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Recursion 

We are annotating nil with a type in order to have algorithmic type-computation 
rules below. Since OCaml and Haskell both implement type inference, such an
notations are not necessary in those languages. Next, we extend our syntax for 
values and evaluation contexts: 

values v · · · I nily I cons v v' 
evaluation contexts C · · · I cons C t I cons v C I

match C with ni ::::} ti , cons x x' ::::} t2 

Like an if-then-else term, match-terms do not evaluate in the case branches ti and 
t2, until we know whether the scrutinee t (the term immediately after "match") is a 
nil- or cons-term. This explains the form of the third new clause for contexts above. 
We have these new reduction rules: 

C[match (cons v v') with nil ::::} ti, cons x x' ::::} t2] rv> C[[v/x,v' /x']t2] 

Finally, we extend our typing relation. Each of our lists will hold data of a single 
type (they are homogeneous), but different lists can hold data of different types (so 
lists are polymorphic; cf. Chapter 10). We extend the syntax of types: 

types T 

And we add these new typing rules: 

r f- nily : list T 

r f- t : T r f- t' : list T 
r f- cons t t' : list T 

list T 

r f- t : list T r f- ti : T' r, x : T, x' : list T f- t2 : T' 

r f- match t with nil ::::} ti, cons x x' ::::} t2 : T' 

Since simply typed lambda calculus is normalizing (see Section 7.5), we need to 
add something to the language in order to have a Turing-complete programming 
language. It can be shown that just the additions we have made so far are not 
enough. So we will add a fixed-point construct, which is like the fix operator we 
defined in Section 6.5, except that here we take it as a primitive construct (and 
do not give a complicated definition for it, as we did there). We also add special 
reduction and typing rules for this new construct. T he syntax is 

terms t ::= · · · I rec f : T. t 

We do not need to modify our definitions of values or reduction contexts. The new 
operational rule is 

C[rec f: T. t] rv> C[[rec f: T. t/ f]t] 
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So we will substitute the whole term for fin t. This means that wherever tis using 
f to make a recursive call, it will actually have the whole term again. The typing 
rule is then: 

f,f :Tl---t:T 

r I- rec f : T. t : T 

This says that if t has type T, assuming that all uses (e.g., for recursive calls) off 
do, then so does the entire rec-term. 

11.1.2 Type safety 

Our type system, as defined by extension from the one for simply typed lambda 
calculus, prevents certain errors from happening, such as trying to call ( + true i\x .x). 
We can prove it is working correctly by proving two theorems. 

Theorem 11.1.1 (Type Preservation). If r I- t : T and t � t' I then r I- t' : T. 

Theorem 11.1.2 (Progress). If· I- t : T, then either t � t' or else t is a value. 

Together, these theorems imply that "well-typed programs don't go wrong" 
(this is a famous slogan due to Turing award winner Robin Milner). Let us define 
a program (i.e., a term) to be safe if it is either a value or reduces to a safe term. So 
safe programs can never reduce to stuck terms like ( + i\x.x). T hen all well-typed 
programs are safe. 

The proof of Type Preservation just extends the proof we saw in Section 7.6

of Type Preservation for simply typed lambda calculus (STLC). We will not go 
through the details here. We did not prove Progress for STLC, because it is trivially 
true in that case: no closed terms are stuck. Here, however, proof is required. 
We will consider just the cases for simply typed lambda calculus extended with 
booleans and if-then-else. 

Proof of Progress for STLC with booleans and if-then-else. The proof is by induction on 
the structure of the assumed typing derivation. 

Case: 
· I- x: T

This case cannot arise, since the context is empty. 

Case: 
· I- true : bool

The term is a value in this case, so the required result holds. The case for false is 
exactly similar. 

Case: 
· I- ti : bool · I- t2 : T · I- t3 : T 

· I- if ti then t2 else t3 : T
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By the induction hypothesis, ti either steps to some t�, in which case the whole 
if-then-else term steps to if t� then t2 else t3; or else ti is a value. If it is a value, then 
by inversion on the assumed derivation of · f- ti : bool, it must either be true or 
false. In either case, the whole if-then-else term steps. 

Case: 
• I x : T f- t : T' 

· f- Ax : T.t : T ----+ T' 

The term in question is already a value, as required. 

Case: 
· f- ti : T ----+ T' 

· f- ti t2 : T' 

By the induction hypothesis, either ti steps, in which case the whole application 
steps, also; or else ti is a value. By inversion on the assumed typing derivation 
for ti, this value must be a A-abstraction, in which case the whole application /3-
reduces, as required. D 

11.2 Connection to practice: eager FP in OCaml 

The OCaml programming language supports ideas similar to those discussed above 
in an eminently usable and performant implementation, with excellent documen
tation, freely available online. This section gives a quick tutorial to central features 
of OCaml. For more information, see various resources, including an excellent ref
erence manual with thorough documentation of standard library functions, linked 
from http : I I c aml . in r i a . fr (the OCaml compiler can also be downloaded 
from that site). 

11.2.1 Compiling and running OCaml programs 

File structure 

An OCaml file contains non-recursive definitions of the form 

let a xl ... xn = t ;; 

where xi through Xn are input variables to a (or omitted, if a is not a function or 
is just defined to be an explicit functional term), and tis the body of the function. 
There are also recursive definitions of the form 

let rec a xl ... xn = t ;; 

These are similar, but a may be used in t to make recursive calls. OCaml files can 
also just contain terms by themselves: 

t; ; 
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which will be evaluated when the program is executed (note that their values will 
not be printed from output compiled as described next) . For example, to write a 
hello-world program, it is sufficient to put the following in a file called test. ml 

and compile it as described below. 

print_string "Hello, world.\n";; 

T his calls the standard-library function print _string. OCaml files can also con
tain several other kinds of top-level commands, including type declarations, dis
cussed below. 

Compiling to bytecode 

Running online 

OCaml can be easily compiled to OCaml bytecode format, which is then efficiently 
executed by an OCaml virtual machine, on many platforms, including Linux, Win
dows, and Mac (I have personally tried the former two with OCaml version 3.11.1). 

Native-code compilation is also supported on some platforms, but in my experi
ence can be harder to get working on Windows (though it is easy on Linux). To 
compile a single OCaml source file to a bytecode executable, run 

ocamlc -o file file.ml 

To compile multiple sources files a. ml, b. ml, and c. ml, use the following com
mands: 

ocamlc -c a.ml 

ocamlc -c b.ml 

ocamlc -c c.ml 

T his will generate files ending in . cmo (also ones ending in . cmi). To link these 
together into an executable called test, use this command: 

ocamlc -o test a.cmo b.cmo c.cmo 

Note that the order of these . cmo files matters: if file b. ml depends on file a. ml, 

then one must list a. cmo earlier than b. cmo, as shown. 

At the time of this writing, you can also run OCaml programs at the http: I I 
codepad. org web site. You just enter your program text into a provided input 
pane, select "OCaml" from the list of supported programming languages, and 
submit the code for compilation and execution. 

Using the ocaml interpreter 

To evaluate expressions directly, just start the OCaml interpreter ocaml. On Linux, 
this can be done from the shell like this (on Windows, one can start OCaml from 
the cmd program, or by launching the OCaml interpreter that is included with the 
distribution): 
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ephesus:-/papers/plf-book$ ocaml 

Objective Caml version 3.11.2 

# 

Now one can enter expressions to evaluate, after the# sign: 

ephesus:-/papers/plf-book$ ocaml 

Objective Caml version 3.11.2 

# 3+4+5;; 

- : int = 12 

# 

293 

The interpreter prints out the type int and the value 12 to which this expression 
evaluates. 

11.2.2 Language basics 

Basic top-level functions 

We can define non-recursive top-level functions in OCaml like this: 

let square x = x * x;; 

This defines the function square to take in an input x. The value returned by the 
function is then x * x. The names of defined functions must begin with lower
case letters. So the following is not allowed and will trigger an error: 

let Square x = x * x;; 

In keeping with its connection to mathematics, functional languages do not 
explicitly use return to state that something is the ordinary return-value for a 
function (Haskell does use return, but only for a more advanced functional
programming design pattern called a monad). Notice that it is not necessary to 
state any type information for an OCaml program like this. Type information is 
inferred automatically by the OCaml type checker, and is thus purely optional. 
If we want to include type information, we can include it like this for function 
definitions: 

1 et square ( x : int ) : int = x * x ; ; 

This states that the type of the input x is int. Also, the second": int" indicates 
that the return type of the function is also int. Note that OCaml supports basic 
arithmetic operations like the multiplication used here. It has operations for 32-bit 
integers and also floating point numbers. The type int is for 32-bit integers. See 
the OCaml Reference Manual for complete details [26]. 
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Plus Num 

/\ 
Num Num 3 
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Figure 11.1: Example abstract syntax tree 

Inductive datatypes 

OCaml allows programmers to define their own datatypes, called inductive be
cause each piece of data is uniquely and incrementally built by applying construc
tors to other data - central characteristics of inductive definitions. Members of 
these datatypes can be thought of as trees, storing different kinds of data. For 
example, we might wish to define a datatype for abstract syntax trees for a lan
guage with addition and integers. An example of the kind of abstract syntax tree 
we want to support for this language is in Figure 11.1. The tree shown might be 
the one a parser generates for the string "1+2 + 3 ". To declare the type for abstract 
syntax trees like this one, we can use the following OCaml code: 

type expr = Plus of expr * expr I Num of int;; 

This declares a new OCaml type called expr, with constructors Plus and Num 

for building nodes of the abstract syntax tree. The code "of int" following Num 

expresses that the Num constructor holds an int. Similarly, the of expr * expr 

code expresses that Pl us holds a pair of two exp r's. 

Pattern matching 

OCaml supports pattern matching on members of datatypes like the ex pr data type 
shown above. For example, the following top-level non-recursive function uses 
pattern matching to check whether or not an expr has Pl us at its root (we call 
such an expr a Pl us-expr), or not: 

let isPlus e = 

match e with 

Plus(_,_) -> true 

I _ -> false;; 

This code defines a function called is Plus which accepts an input e. The func
tion pattern-matches one. If e matches the pattern Pl us(_,_), then the value 



11.2 Connection to practice: eager FP in OCaml 295 

returned by the function is true, which is declared in OCaml's standard library 
as a bool. The underscores tell OCaml that we do not care about the left and right 
parts of the tree while matching against this pattern. If the tree e does not have 
Plus at its root, then OCaml will consider the next case. Here, we have just an 
underscore, indicating that we do not care what the tree looks like in this case. 
The boolean value false is then the return value for this case. 

For another simple example, the following function returns the left subtree of a 
Pl us-expr. It uses pattern variables l and r to refer to the left and right subtrees, 
respectively, of any matching Pl us-expr. We could also have used an underscore 
instead of r, since the code for that case does not use r, but only l (for which we 
then could not have used an underscore, since we wish to refer to the matching 
value in that case). 

let getLeft e = 

match e with 

Plus (1, r) - > l;; 

Because the getLeft function does not have a case for Num-values, OCaml will is
sue a warning that not all cases are covered. And evaluating get Left (Num ( 3) ) 
will trigger an error. 

Pairs and tuples 

Lists 

To put two pieces of data x and y together into a pair, we just use the standard 
ordered pair notation ( x, y) . To take apart a pair p into its first and second com
ponents x and y, we can use pattern matching. For example, the following code 
defines a function addComponents which takes a pair of two int's and returns 
their sum: 

let addComponents (p 

match p with 

(x,y) -> x + y;; 

int * int) int 

Here we see that the type of the input (i.e., the ordered pair) is int * int, 

which demonstrates the OCaml syntax for types of pairs. Note that the type 
int * (int * int) is not considered the same, in OCaml, as the type of triples
int * int * int. We can write the same thing more concisely by using a pat
tern right in the argument list for addComponents, in place of the input p: 

let addComponents (x,y) : int = x + y;; 

Lists are used frequently in functional programming as a basic data structure, and 
both OCaml and Haskell (which we will discuss in Section 11.3) have special syn
tax for common operations on lists. OCaml provides some special syntax for lists. 
The empty list is denoted [ ] , and adding (or "consing") a new element a to the 
start of a list L is denoted a : : L. This notation can be used in pattern-matching 
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terms as well. For example, a recursive function to compute the length of a list can 
be written like this: 

let rec length l 

match l with 

[] -> 0 

x: : l' -> 1 + (length l') 

' ' 

Here, as noted above, "let rec" introduces a top-level recursive function. The 
name of the function is length, and the input argument is named l. The function 
does pattern matching on 1, with two cases. In the first case, l is [],the empty 
list. In that case, the returned value is 0. In the second case, the list l matches the 
pattern x : : l' . This means that its first element is x, and the rest of it is the list l' . 
We return one plus the result of recursively computing the length of the list l' . 

OCaml has some other notation related to lists. First, if we wish to write down 
the list of the first four numbers starting from 0, we could write O : : 1: : 2: : 3: : [] . 
That is the list we get by putting three onto the front of the empty list, then two 
onto the front of that, then 1, and finally 0. Alternative, slightly more readable no
tation in OCaml for this same list is [ 0 ; 1 ; 2 ; 3]. The general form of this 
alternative notation is to list elements in between square brackets, separated by 
semi-colons. The empty list [] can then be seen as a special case of that notation. 
Similarly, a singleton list containing exactly one element is also: we can write [ 2 ] 

for the list containing the single element 2. Finally, the operation which appends 
two lists can be written using infix @. So [ 1 ; 2 ] @ [ 3 ; 4 ; 5 ] is no
tation for calling the append function on the two given lists. This will result, of 
course, in the list [ 1 ; 2 ; 3 ; 4 ; 5] . 

OCaml supports a form of polymorphism (cf. Chapter 10) so lists are allowed 
with any (single) type of element. A list of integers has type int list in OCaml, 
and a list of booleans bool list. In general, a list of elements of type' a (OCaml 
uses names beginning with a single quotation mark for type variables) has type 
' a list. So list is a type constructor. OCaml generally writes type construc
tors in postfix notation. So we have the following typings: 

1: : 2: : 3: : 4: : [] : int list 

true: : true: : false: : [] bool list 

(fun x -> x): : (fun y -> y + y): : [] (int -> int) list 

True to its nature as a functional language, OCaml allows functions to be manipu
lated much like any other data, as demonstrated in the third example just above. 

Unit type and side effects 

The convention is that computations that are performed only for their side effects 
have type unit. The sole value of this type is denoted () in OCaml. This has the 
pleasant consequence that one can use the unit type when there is no other input 
to a function f, and then write f () to call that function. This results in syntax 
identical to what is used in other languages like C or Java for calling a function 
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Let-terms 

with no arguments. An example of code executed only for side effects is printing 
code, as in 

print_string "Hello, world.\n";; 

This has type unit, and returns () as its output, in addition to printing the given 
string on the standard output channel of the program. 

If expression e1 has type unit and e2 has any other type T, then one can write 
e1; e2 for the computation which first evaluates e1 (for its side effects), and then 
returns the value of e2. This whole expression has type T, since this is the type of 
the value returned (if any). 

To give a name for the value computed by some expression, OCaml provides let

notation. For example: 

let x = 10 * 10 in

x * x 

This makes x refer to the value of 1 O * 1 O in its body, which is the subexpression
following the in-keyword. So this whole expression has value 10, 000. The type of 
the let-term is the type of its body. Functions, both non-recursive and recursive, 
can be defined using let-terms. For example, here is some code which uses a 
let-term to abstract out some code for logging from a bigger function foo: 

let foo (log:out_channel) argl ... argn = 

let write_log (msg:string) 

' ' 

output_string log msg in 

write_log "some message"; 

write_log "another"; 

The let-term defining the function write_log uses a similar syntax as for top
level functions (see above). Notice how the definition of write_log refers to a 
variable in the surrounding context, namely log, without requiring it as an extra 
input. This helps keep calls to wr i te_log more concise. 

Mutually inductive datatypes, mutually recursive functions 

In addition to the inductive datatypes and recursive functions explained above, 
OCaml also supports the definition of mutually inductive data types, and mutually 
recursive functions. Two or more types (respectively, two or more functions) are 
defined, and the definition of each can refer to the other. The keyword and is used 
to separate the definitions, for both types and recursive functions. Here is a simple 
example: 
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let rec plusee (el:even) (e2:even) 

match el with 

z -> e2 

I Se(ol) -> Se(plusoe ol e2) 

and plusoe (o:odd) (e:even) odd 

match o with 

So(el) -> So(plusee el e) 

and pluseo (e:even) (o:odd) odd 

match e with 

z -> 0 

I Se ol - > So(plusoo ol o) 

and plusoo (ol:odd) (o2:odd) 

match ol with 

So e -> Se(pluseo e o2) 

' ' 

even 

Functional Programming 

even = 

Figure 11.2: Addition on the types for even and odd natural numbers, in OCaml 

type even = Z I Se of odd 

and odd = So of even;; 

This declares two mutually inductive types, of even and odd numbers in unary 
notation (see Section 6.2.1). OCaml reports the following typings for some exam
ple terms built using the constructors for these types: 

z . even. 

(So Z) odd 

(Se (So z) ) even 

(So (Se (So z) ) ) odd 

(Se (So (Se (So Z)))) even 

The odd numbers indeed have type odd, and the even numbers even. The def
initions in Figure 11.2 define addition functions for all possible combinations of 
even and odd inputs. Note how the return types correctly capture the behavior 
of the usual definition of unary addition: for example, adding two odd numbers 
produces an even number. 

11.2.3 Higher-Order Functions 

As essential aspect of functional programming, well supported by OCaml, is the 
use of higher-order functions. These are functions that accept other functions as 
inputs, or produce them as outputs. Anonymous functions are also commonly 
used, and can be nested inside other functions. The notation for an anonymous 
function in OCaml is 

fun x -> t 
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So the squaring function we defined in the previous section as a top-level function 
can be written as an anonymous function like this: 

fun x -> x * x 

Functions as inputs 

Here is a top-level function called applyTwice, which accepts a function f and 
argument x as inputs, and applies f twice: first to x, and then to the result of the 
first application: 

let applyTwice f x = f (f x) 

Note, in passing, the notation for a nested function call: parentheses are placed 
around the call off on x; f is then applied again to that parenthesized expression. 

We can call applyTwice with our anonymous squaring function and the ar
gument 3 to raise 3 to the fourth power: 

applyTwice (fun x -> x * x) 3 

If we were using our top-level definition of the squaring function, we could just as 
well write 

applyTwice square 3 

Partial applications 

In OCaml, functions defined with N input variables can be called with fewer than 
N arguments. An application of a function to fewer than the number of input 
variables stated in its definition is called a partial application. For example, the 
applyTwice function we just defined has two input variables, f and x. But we 
are allowed to call it with just the first one; for example, 

applyTwice (fun x -> x * x) 

W hat value is it that we get back from a partial application like this one? We get 
back a new function, which is waiting for the remaining arguments. In this case, 
we get back a function which, when given the remaining needed argument x, will 
return the square of the square of x. Suppose we write a top-level definition like 
this: 

let pow4 = applyTwice (fun x -> x * x);; 

If we can call pow4 on an argument like 3, we will get 81. If we call it on 4, we will 
likewise get the expected result (256). So by using a partial application, we have 
abstracted out an interesting piece of functionality, namely raising to the fourth 
power by applying squaring twice. This abstracted value, pow4, can now be used 
repeatedly with different arguments; for example: 

pow4 3;; 

pow4 4;; 
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This is more concise than writing the following, for example, to process several 
numbers: 

applyTwice (fun x -> x * x) 3;; 

applyTwice (fun x -> x * x) 4;; 

One quirk in OCaml is that constructors that take arguments, like the Se construc
tor for the even datatype above, must be fully applied. 

List combinators 

OCaml has a module List in its standard library for operations on lists. In ad
dition to first-order operations on lists that you might expect (such as the append 
operation mentioned in Section 11.2.2), the List module defines several higher
order functions on lists that are commonly used. Here are a few examples: 

• List. i ter f l applies function f to every element of list 1, where f re
turns unit. This is a type which has exactly one element, denoted ( ) , and 
is used when computations are not intended to return results, but solely to 
be executed for their side effects (such as printing out a string). 

• List . map f l applies function f to every element of list 1, collecting the 
results in a new list. 

• List . filter p l returns the list of those elements of list l which satisfy 
predicate p. This p must have type 'a -> bool, where 'a is the type for 
elements of 1. 

11.3 Lazy programming with call-by-name evaluation 

In this section, we consider how call-by-name evaluation (first considered in Sec
tion 5.4.4) can be used for practical programming. The main benefit of call-by
name evaluation is that terms do not have to be evaluated to be passed as ar
guments to functions. This opens up the possibility of lazy evaluation, where 
computation is deferred until it absolutely must be performed in order to satisfy 
an immediate need for a value, such as to print it or communicate it over a net
work channel. For better performance, implementations of lazy programming use 
an optimized form of call-by-name evaluation, known as call-by-need. The basic 
idea of this optimization is as follows. When doing call-by-name evaluation, un
evaluated terms can be duplicated by ,6-reduction. While lazy evaluation will try 
to avoid evaluating any of those copies of the term, it could happen that several 
of them do need to be evaluated. In that case, it is wasteful to evaluate each of the 
duplicate copies of the term separately, since the computation is exactly the same 
in each case. Call-by-need evaluation caches the result the first time that term is 
evaluated. If subsequent computation requires evaluating a copy of the term, call
by-need evaluation just uses the cached result, instead of re-evaluating the term. 
Languages like Haskell are typically implemented using call-by-need evaluation. 
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We will consider lazy programming using just call-by-name evaluation, since ex
cept for possibly (much) slower execution, this gives the same results as call-by
need. We will consider Haskell (Section 11.4) as an example lazy programming 
language. 

11.3.1 Syntax and typing for lazy programming 

Here, we develop a small lazy programming language based on call-by-name eval
uation. The language has basic arithmetic, A-abstractions, list constructs, and a re
cursion operator, and is thus quite similar to the eager (call-by-value) language we 
studied in Section 11.1. The typing rules for these constructs are just as they were 
for our eager language. The difference between the lazy and the eager languages 
will come with the operational semantics. We collect here the complete syntax we 
will use for terms and types: 

types T 
terms t 

int I bool I list T I Ti ---+ T2 
x I ti t2 I Ax : T. t I rec x : T. t I + I * I - f I n I < I 
true I false I if ti then t2 else t3 I nily I cons t t' I 
match t with nil ::::} ti , cons x x' ::::} t2 

I > I 

The typing rules are exactly the same as those from Section 11.1 for the correspond
ing constructs of the eager language. For example, we have this typing rule for the 
recursion operator: 

r,f:Tf----t:T 

r f----rec f : T. t : T 

Consult Section 11.1 for the rest of the rules. 

11.3.2 Operational semantics of call-by-name 

The operational semantics for our lazy language does differ from that of the eager 
language of Section 11.1, but not by as much as one might expect. The main differ
ences are that we do not require arguments to be evaluated to values before doing 
a ,B-reduction, and we consider list-terms to be values even if their subdata are not. 
To achieve this latter property, we use the following definitions for contexts and 
values: 

values v 

contexts C 

Ax : T. t I + I * I - I n I true I false I < I 
= 

I > I 
nily I cons t t' 

* I C t I if C then t else t' I C + t I v + C 
match C with nil ::::} ti , cons x x' ::::} t2 

Crucially, there is no clause allowing evaluation in the argument position of a 
term. Also, there is no clause for cons-contexts (unlike for the eager language), 
and a cons-term can be a value even if the subdata are just terms t and t'. The 
corresponding clause for values for the eager language has cons v v' instead. The 
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C[(A.x:T.t)t'] � C[[t'/x]t] 

C [if true then t else t'] � C [t] 

C[if false then t else t'] � C[t'] 

C[match nily with nil � ti, cons xx' � t2] � C[t1] 

C [match cons t t' with nil � ti, cons xx' � t2] � C [[t Ix, t' Ix'] t2] 

C[rec f: T. t] � C[[rec f: T. t/ f]t] 

Figure 11.3: Left-to-right call-by-name small-step operational semantics for our 
lazy language 

only point at which we have to choose between left-to-right and right-to-left eval
uation is in evaluating the arguments to binary arithmetic operators. We actually 
must give special clauses for contexts built with such operators. This was not nec
essary in the eager language, because there all arguments must be evaluated to 
values before an application (including an application of an arithmetic operator) 
can be reduced. But here, since arguments are not reduced by default, we must 
specify that they are explicitly. Since this is done in the same way for every binary 
operator, we just show one clause for the definition of contexts built with such. 

Figure 11.3 then gives the left-to-right call-by-name small-step operational se
mantics for the language. We just give one example of a rule for evaluating arith
metic terms. Notice that the {3-rule (the first one in the figure) hast' for the argu
ment. In the eager language, our call-by-value {3-rule has v for the argument. 

11.3.3 Programming with lazy infinite data structures 

Since cons-terms are values even if their subterms are not, our call-by-name lan
guage supports a style of programming based on lazy infinite data structures. 
Here is a simple example: 

threes = rec f : list int. cons 3 f 

This expression behaves just like an infinitely long list of 3' s, under our lazy se
mantics. First, let us see how this term evaluates. Here and below, I am under
lining redexes. Also, some steps are reduction steps(�), and some are equational 
steps, just to show in more detail how a substitution is computed or a definition 
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unfolded. 
threes 
rec f : list int. cons 3 f 

� cons 3 (rec f : list int. cons 3 f) 
cons 3 threes 
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This last cons-term is now a value, despite the fact that its tail (rec f : list int. cons 3 f) 
is not. If we want to see more of the list, we have to inspect it using our match
construct. For example, let us add the first two elements of the list: 

match threes with 
nil ::::} 0, cons x x' ::::} x + (match x' with nil ::::} 0, cons x x' ::::} x) 

match rec f : list int. cons 3 f with 
nil ::::} 0, cons x x' ::::} x + (match x' with nil ::::} 0, cons x x' ::::} x) 

match cons 3 rec f : list int. cons 3 f with 
nil ::::} 0, cons x x' ::::} x + (match x' with nil ::::} 0, cons x x' ::::} x) 

[3/x,rec f: list int. cons 3 f /x'](x +(match x' with nil ::::} 0, cons xx' ::::} x)) 

(3 + (match rec f : list int. cons 3 f with nil ::::} 0, cons xx' ::::} x)) 

� (3 + (match cons 3 rec f : list int. cons 3 f with nil ::::} 0, cons xx' ::::} x)) 

� (3 + [3/x,rec f: list int. cons 3 f /x']x) 

(3 + 3) 

� 6 

This example shows how lazy infinite data structures are computed only as much 
as needed to perform some desired computation. 

11.3.4 The lazy infinite list of all natural numbers 

One way to define the lazy infinite list of all natural numbers is to write a function 
nums which given starting value n ,  computes the lazy infinite list of all natural 
numbers greater than or equal ton. This setup makes it possible to compute the 
lazy infinite tail of the list by making a recursive call to nums: 

nums = rec nums : int----+ list nat. An: int. cons n (nums(n + 1)) 

Now we can define the lazy infinite list of all natural numbers as just 

nats = nums 0 
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Let us use observational equivalence to help see how nats behaves. We will show 
some lists which are observationally equivalent to nats, which help give insight 
into how nats will behave if inspected using match. Let us temporarily denote 
observational equivalence with �. For readability, I will expand and contract the 
definition of nums implicitly, in several places: 

nats = 

nums 0 
(rec nums: int----+ list nat. An: int. cons n (nums (n + 1))) 0 'Vt 

(An: int. cons n (nums (n + 1))) 0 'Vt 

cons 0 (nums (0+1)) � 

cons 0 (nums 1) � 

cons 0 ((An: int. cons n (nums (n + 1))) 1) � 

cons 0 (cons 1 (nums (1+1))) � 

cons 0 (cons 1 (nums2 )) · · · 

Using observational equivalence, we can unfold the lazy infinite list, without ac
tually computing it. The normal form of nats is just cons 0 (nums (0 + 1) ), so 
to see more of the structure of the list, we cannot write further terms to which 
cons 0 (nu ms ( 0 + 1)) reduces. Instead, we are writing further terms to which it is 
observationally equivalent. I am using the property that in our call-by-name lan
guage, two terms are equivalent if one reduces to the other using full ,8-reduction. 

11.4 Connection to practice: lazy FP in Haskell 

As remarked at the start of this chapter, Haskell is a functional programming lan
guage in the strong sense: every expression defined in Haskell computes the same 
result. Haskell is based on a call-by-need operation semantics, which as noted in 
Section 11.3, produces the same results as call-by-name, though possibly more 
quickly. As for OCaml, there are many excellent materials online for learning 
Haskell. A good place to start is http: I /www. haskell. org, where you can 
also download the GHC Haskell compiler for use on your computer. In this sec
tion, we will restrict our attention to lazy computation. There are many interest
ing other innovations in Haskell; for example, monads provide a pure functional 
implementation of impure operations like input/ output. Also, Haskell supports 
higher-kind polymorphism, as in Fw (Chapter 10). But these features are mostly 
beyond the scope of the present chapter, which is focused on how call-by-need 
operational semantics enables lazy programming. See [22] for an in-depth look 
at how Haskell uses monads for effectful computations. We will start with a few 
basic matters. 

11.4.1 Running Haskell 

There are several ways to run a Haskell program. One simple way is to invoke the 
GHC interpreter ghci with a Haskell source file (say main. hs): 
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ghci main.hs 

GHC will compile the given file, and then drop you into a command shell where 
you can interact with your compiled Haskell code: 

*Main>

Typing in a Haskell expression will evaluate it and print the result. The command 
: t takes an expression and tells you its type. So we have this interaction: 

*Main> : t "hi"

"hi" : : [Char] 

The Haskell Prelude elegantly defines String to be [Char] (lists of characters) 
- in contrast, OCaml does not define string to be char list - and so we see 
[Char] as the type for the string "hi". 

The command : k shows you the kind (see Section 10.5) for a type. For example: 

*Main> : k  Int
Int : : * 
*Main> : k ( [] )

( []) : : * -> * 

The type Int has kind *, while the type construct [ ] , for lists types, has kind 
* -> *,indicating that it takes a type (a type a of elements) and produces a type
(the type of lists with elements of type a). 

The : r command reloads the module you are currently processing (so you can 
edit a file like main. hs, and then just enter : r in ghci to reload it without quit
ting ghci). To quit, use : q. The : ? command will list other commands available 
from this ghci command shell. You can also just invoke ghci with no arguments, 
to enter expressions at the command prompt. 

Functions can be defined directly from the ghci prompt using some slightly 
different syntax, but the preferred method is to put function definitions and defi
nitions of datatypes in a source file, and then invoke ghci on that source file. So in 
the code examples below, unless you see the ghci prompt listed explicitly, please 
assume the code is in a source file (like main. hs). 

At the time of this writing, http : I I codepad. org also supports Haskell, but 
uses the compiler rather than the interpreter. This requires a little bit of additional 
code. Where you could have just typed an expression e into ghci to see its value 
(assuming the value can be converted to a String, as described below), with com
piled Haskell (as on codepad), you would write: 

main 

do putStrLn $ show e 

This defines a main result which just prints out (putStrLn) the string version 
(show) of the result of the expression e. The dollar sign is a low-precedence appli
cation operator. SoputStrLn $ show eis equivalent toputStrLn (show e). 
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11.4.2 Lists in Haskell 

Lists in Haskell are defined by [] (for nil) and : (for cons). So the list consisting 
of the first three natural numbers can be written 0: 1: 2: []. If you enter this at 
the ghci's command prompt, ghci will reply with the list in another notation: 
[ O , 1 , 2 ] . This is analogous to OCaml' s [ O ; 1 ; 2 ] notation. To append two lists, 

the infix operator is++ . The type for a list of elements of type a is [a]. For more 
operations on lists, see the Prelude module of Haskell's standard library. This 
module is already opened when ghci starts. 

11.4.3 Defining functions with equations 

Functions in Haskell are usually defined with equations. For example, suppose we 
want to define an append function on two lists. This can be done quite elegantly 
in Haskell using these equations: 

append [] ys = ys 

append (x:xs) ys = x:append xs ys 

The idea is to write equations whose right-hand sides define the behavior of the 
function when presented with data which matches the patterns in the left-hand 
sides. The notation is quite similar to the standard mathematical notation of re
cursive equations which we have used throughout this book (e.g., Section 1.6). 

11.4.4 Defining datatypes 

The basic syntax for defining a datatype in Haskell is similar to that of OCaml. 
For example, if we want to define the mutually recursive types of even and odd 
natural numbers as we did above for OCaml, we use this code in Haskell: 

data Even = Z I Se Odd 

data Odd = So Even 

Types and functions in a Haskell module are allowed to be mutually recursive, 
and the order in which they are given does not matter. So these two separate 
declarations of types Even and Odd are allowed to refer to each other, without any 
additional syntax. Recall from above that in the OCaml version of this example, 
special syntax is needed to define these as mutually recursive types. 

Note that similarly to OCaml, Haskell requires the names of data constructors like 
z, Se, and So to be capitalized. Opposite to OCaml, though, Haskell also requires 
the names of types (and type constructors) like Even and Odd to be capitalized. 

11.4.5 Type classes 

Suppose we have added the code in the previous subsection to main. hs to define 
the types Even and Odd. From ghci, we would expect we can then evaluate some 
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terms of those types, like (So z) , and see that they have the expected type. But 
when we try this in ghci, we get this error: 

*Main> (Se (So Z)) 

<interactive>:l:l: 

No instance for (Show Even) 

arising from a use of 'print' 

Possible fix: add an instance declaration for (Show Even) 

In a stmt of an interactive GHCi command: print it 

The issue here is that ghci will print out values of expressions only if they can be 
converted to type String, the type of strings. 

If we look more closely at the error message from ghci, we see it is telling us 
that there is "no instance for (Show Even)", and suggesting that we should "add 
an instance declaration for (Show Even)". What are instances and instance dec
larations? They are part of a subsystem of Haskell for operator overloading. The 
basic idea is to group together types which all support a common set of operations. 
The group of types is called a type class. For example, there is a type class called 
Show (defined in the Haskell Prelude) for types a which have a show operation of 
type a -> String. If our Even type were a member of this class, we would not 
get the error message we saw above when we evaluate (Se (So z) ) . 

Instance declarations 

To tell Haskell that our types Even and Odd are members of the type class Show, 

we first need to define functions which convert elements of these types to strings: 

pr_even Z = "Z" 
pr_even (Se o) = "(Se " ++ pr_odd o ++ ")" 

pr_odd (So e) = "(So " ++ pr_even e ++ ")" 

Then we can use these instance declarations to tell Haskell that the show function of 
the type class Show is instantiated by pr_even in the case of Even, and pr_odd 

in the case of Odd: 

instance Show Even where 

show = pr_even 

instance Show Odd where 

show = pr_ odd 

Now if we repeat our earlier attempt to have Haskell print back the value of the 
constructor term ( Se ( So z ) ) , we indeed get back the expected result: 

*Main> (Se (So Z)) 

(Se (So Z)) 
*Main> 
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Deriving clauses 

Making a datatype an instance of the Show type class is so common, and basic 
code for converting to strings is so similar, that Haskell provides a very easy way 
to do this, using deriving clauses. These instruct Haskell to derive a basic show 

function and add the data type to the type class, fully automatically. One just adds 
deriving Show to the datatype definition: 

data Even = Z I Se Odd deriving Show 

data Odd = So Even deriving Show 

Haskell declares Show Even and Show Odd, using a function for show in each 
case, which Haskell automatically generates to conform to a specification in the 
Haskell 98 Report (see Section 10 of http: I /www. haskell. org I onlinereport I 
index. html). The function behaves very similarly to the one we wrote above, al
though the specification requires it to omit parentheses where they are not needed. 
So we get: 

*Main> (Se (So Z))
Se (So Z) 
*Main> 

11.4.6 Another example of equational definitions 

Here is the definition of the addition functions on even and odd numbers in Haskell: 

plusee z e2 = e2 

plusee (Se ol) e2 Se(plusoe ol e2) 

plusoe (So el) e2 So(plusee el e2) 

pluseo z o2 = o2 

pluseo (Se ol) o2 = So(plusoo ol o2) 

plusoo (So e) 0 = Se(pluseo e o) 

While this is still a bit convoluted, the equational definitions seem easier to read 
than the version in OCaml (Figure 11.2 above) . 

11.4.7 Lazy infinite data structures in Haskell 

Although there are many important differences, what most centrally distinguishes 
Haskell from OCaml is Haskell's lazy (call-by-need) operational semantics. This 
enables elegant programming idioms based on lazy infinite data structures (as 
introduced in Section 11.3.3 above), which are evaluated only as much as needed 
to produce some observable result. A paradigmatic example is programming with 
lazy infinite lists. For example, here is Haskell code to define the lazy infinite list 
of all the natural numbers: 
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natsup n = n : (natsup (n+l)) 

nats = natsup 0 
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The idea in this short piece of code is to define a function called natsup which 
produces the lazy infinite list of all the natural numbers starting at a given number 
n, the input to natsup. Then nats is defined as the list of all natural numbers 
starting with 0. If you define nats as above (in main. hs, say), and then ask ghci 

to evaluate na ts, it will run forever printing out all the natural numbers. Printing 
a list is an example of an observation, and so it makes sense that ghci will be 
forced to evaluate the lazy data structure in this case. But there is a slightly subtle 
phenomenon going on even with this diverging behavior: ghci does not attempt 
to evaluate na ts first, and then print it. It begins printing it, and as it needs to 
observe more and more of it, additional parts of na ts are actually computed. So 
laziness is at work even in this case. To see just the first few elements of nats, use 
the take function from the Prelude: 

*Main> take 7 nats 

[0, 1, 2, 3, 4, 5, 6] 

Another classic example in Haskell is the Fibonacci sequence (which starts with 
0, 1 and continues by adding the two previous numbers): 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, ... 

The Fibonacci sequence can be defined as a lazy infinite list in many different ways 
in Haskell. The following is a particularly concise and cute way to do it: 

fibs = 0 : 1 : zipWith (+) fibs (tail fibs) 

Let us first confirm this works, and then try to understand what the code is saying. 
Requesting the first 10 elements of fibs using the take function produces: 

*Main> take 10 fibs 

[0, 1, 1, 2, 3, 5, 8, 13, 21, 3 4] 

The definition of fibs starts out in a way we can easily understand, with the first 
two values of the sequence, cons' ed together using the ( : ) operator: 

fibs = 0 : 1 : 

Now let us look at the next bit of code, which is defining fibs after the first two 
elements: 

zipWith (+) fibs (tail fibs) 

Here we have a call to the Prelude function zipWith. We can ask ghci what its 
type is: 

*Main> :t zipWith 

zipWith : : (a -> b -> c) -> [a] -> [b] -> [c] 
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So in a call zipWi th f x y, the argument f is a function of type a -> b -> c, 

the argument xis a list of elements of type a, and y is a list of elements of type b. 
Suppose x is [ x_ l, x_2 , . . . J and y is [ y _ 1 , y _2 , ... J . Then the result 
of such a call to zip with will be the list of the results of calling f on corresponding 
elements of x and y (if the lists are of different lengths, the results are computed 
only up to the shorter length): 

The zip with function is a generalization of the map function, which is present in 
the Haskell P relude and corresponds to the List . map function of OCaml. Here 
in the code for fibs, we are zipping together the list fibs itself, which we are in 
the middle of defining, and the tail of fibs. So to get the third element of fibs, 
we need to know what the head (first element) of fibs is, and also the head of 
tail fibs (the second element). But the definition of fibs has specified these 
values, so zipWith can compute the third element. And then to get the fourth 
element we must know the second and third, which we do; and so forth. 

11.5 Conclusion 

In this chapter, we have considered some of the theory and practice of strongly 
typed functional programming. On the theory side, we considered extensions to 
simply typed lambda calculus to support realistic programming, using either call
by-value or call-by-name semantics. We extended STLC with features like primi
tive arithmetic operations and structured data. We saw a little of how these ideas 
are worked out further in OCaml and Haskell. Books have been written on each of 
these languages, and indeed on other function programming languages like Stan
dard ML (a relative of OCaml), Scheme, and LISP. Other languages like Scala also 
incorporate functional programming features. This chapter has of necessity been a 
quick peek at the rich paradigm and practice of functional programming. Readers 
are encouraged to explore it further through other books and online resources -
and by writing some code in these languages yourself! 

11.6 Basic Exercises 

11.6.1 For Section 11.2, OCaml programming 

1. Using the OCaml interpreter (ocaml), determine the types of each of the 
following expressions: 

• (3,4+5) 

• ((3,4),5) 

• (3,4,5) 

• fun x -> [x] 
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• fun f x - > f x 

• fun f x - > f (f x) 

•[(fun x -> x); fun y -> y + 1] 

2. The goal of this problem is to implement a recursive function addlist to 
add up all the numbers in a list. If the list is empty, addlist should return 
0. 

(a) What type should addlist have? 

(b) Give your OCaml code for addlist. 

3. Implement a function nth of type 'a list -> int -> 'a in OCaml, 
which takes in a list land an integer n, and returns the n'th element in the 
list, where 0 is considered the first element. Your code can just assume the 
list has at least n + 1 elements. 

11.6.2 For Section 11.3, lazy programming 

Solve the following problems using the lazy language defined at the start of this 
chapter (not Haskell). 

1. Write a term to compute the lazy infinite list of odd numbers. 

2. Write a term (in the lazy language described in this chapter) representing the 
lazy infinite list of powers of two. 

3. Write a term to compute the Fibonacci sequence as a lazy infinite list. 

11.6.3 For Section 11.4, programming in Haskell 

1. Using the Haskell interpreter (ghci), determine the types of the following 
functions from the Prelude, and explain intuitively what the types express 
about those functions' behavior: 

•map 

• filter 

• concat 

2. Using recursive equations, define a function which takes in a base b, and 
computes the infinite sequence of powers of b: 

bo bl b2 ... ' ' ' 

3. The following Haskell code declares a polymorphic datatype of possibly in
finite binary trees with data at the nodes (deriving the Show type class, as 
described in Section 11.4.4): 
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data Tree a Leaf 

Node a (Tree a) (Tree a) deriving Show 

Define a function called ttake of type Int -> Tree a -> Tree a, where 
t take n twill return a Tree which is just like the Tree t, except that it stops 
after level n. This means that if n is greater than the depth of the tree, the 
whole tree is returned, and if n is less than the depth of the tree, we are going 
to discard the lower (further from the root) parts of the tree. As an example 
of the latter, you should see: 

*Main> t take 1 (Node 'a' (Node 'b' Leaf Leaf) Leaf) 

Node 'a' Leaf Leaf 

11.7 Intermediate exercises 

11.7.1 For Section 11.2, OCaml programming 

1. Implement a function mergesort of type int list - > int list, for
sorting a list of integers. One way to do this is to write the following three
functions:

• split, to split a list into two sublists of roughly equal length. The type
you might want to use for this function is int list -> int list

* int list. That is, your function will return a pair of lists, one for
each half of the input list. Note that you can inspect a pair using pattern 
matching: 

match p with 

(pl,p2) -> 

• merge, to combine two sorted lists into a new sorted list. What type
would you expect this to have?

• mergesort, which handles the trivial cases of an empty list or list of
length 1 specially, and otherwise splits the input list using split, then
recursively calls merge sort on each one, and finally combines the re
sults again with merge. 

11.7.2 For Section 11.3, lazy programming 

Solve the following problems using the lazy language defined at the start of this 
chapter (not Haskell). 

1. Write a function map (this is the traditional name for this function) that takes
in a list L and a function f, and returns a new list that is just like L except
that each element a of L is replaced by (f a). You should include a suitable
base case for when L is nil, thus handling both finite and infinite lists. Use
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your function to compute the list of even numbers from the list of natural 
numbers by multiplying every element of the list by 2.

2. Write a function that takes in a list L of natural numbers, and returns a list
of all the lists which are prefixes of L. Here, by a prefix of L I mean a list L' 
such that L equals L' appended with some other list L". Your code should
include a base case for when Lis nil, so that again, it works for both infinite
and finite lists.

11.7.3 For Section 11.4, programming in Haskell 

1. The following definition (used in a problem above) defines a polymorphic
datatype of possibly infinite binary trees with data at the nodes:

data Tree a Leaf 
Node a (Tree a) (Tree a) deriving Show 

Define a function bf s of type Tree a -> [a] that collects the values stored 
in the Nodes of the tree in breadth-first order. So calling bf son the following 
expression should return [ 1 , 2 , 3 , 4 ] : 

Node 1 (Node 2 (Node 4 Leaf Leaf) Leaf) (Node 3 Leaf Leaf) 





Formalism 

Mathematical Background 

Formalism is the practice of introducing and manipulating notation - linguistic 
abstractions - to describe objects or concepts, and their properties. The basic pro
cess of abstraction we use in formal development can be illustrated by an example. 
Suppose we have four circles: 

0 0 0 0 

Or four rectangles: 

D D D D 

Or else four triangles: 

6 6 6 6 

We seem to have some ability to abstract from all these examples to just some 
abstract, bare indication of four objects of some kind: 

This kind of abstraction gives rise to the simplest kind of numeric notation system, 
unary notation (discussed also in Chapter 6): 

I one 

II two 

111 three 

1111 four 

11111 five 
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Because this notation system requires very large expressions to denote large num
bers, people devised other notation systems - for example, decimal notation or 
scientific notation - in order to compress the size of the expression needed to de
note a large number. But the basic point is seen with unary numbers: we devise 
notations as abstractions. 

Trees instead of strings 

One of the advances in formalism which took place in the 20th century was to 
shift from strings of characters or symbols to trees as the basic linguistic basis for 
notation. To explain: one can think of an arithmetic expression like "(1 + 2) * 3" in 
two ways. It can be viewed as a sequence of characters and symbols: we have the 
character '(', then '1', then a space, then '+', etc. We could describe this sequence 
more explicitly like this (or horizontally, which is even less readable): 

'(' 
'1' 
I I 
I+'
I I 

'2' 
')' 
I I 
'*

' 

I I 

'3' 

This is rather unwieldy, and does not reflect at all the syntactic structure of the 
expression. That structure is best represented as a tree (where parentheses, which 
are simply used to show structure in linear text, have been dropped): 

* 

/\ 
+ 3 

/\ 
1 2 

Indeed, so natural and useful are trees for structuring expressions that most for
malists have dispensed with strings as the basis for their notations, and work di
rectly with trees (often called abstract syntax trees in the Computer Science lit
erature). Of course, in practice, one can, and sometimes must, parse strings of 
characters into such trees. But for theoretical works, this is unnecessary, and we 
can work with trees directly. In this book we will limit ourselves to finite trees 
unless stated otherwise. 
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Grammars to describe sets of trees 

W hen describing languages, we invariably wish to describe certain sets of finite 
trees that we will consider at least preliminarily syntactically well-formed. The 
custom is to do this with context-free grammars written in a compact style called 
Backus-Naur Form (BNF). We will use a common variant of BNF, in which meta
variables are used to range over syntactic categories, both in grammars and in 
subsequent expressions (in contrast, nonterminals in BNF grammars are supposed 
to be enclosed in angle brackets like \expr) ). For example, suppose we want to 
specify that the allowed trees in a syntactic category called expr are either numerals
N or else trees of the following form, where e1 and e2 are any trees in syntactic
category expr: 

* + 

/\ /\ 

Then we can do so with this grammar: 

numerals N 
exprs e 

0111 
NI + (e1,e2) I * (e1,e2) 

We call e1 and e2 meta-variables because they are variables in our meta-language in
which we are describing the language of expressions e. A tree like the example one
shown above can be written as "* ( + ( 1, 2), 3) ". This is prefix notation for the finite
trees in the syntactic category of expr. Often we will allow ourselves to introduce
more common mathematical notation in grammars, for better readability. So we 
could use this grammar instead, which uses infix notation for the operators: 

numerals N 
exprs e 

o 11 I ...
N I ei + e2 I ei * e2 

Once we start using infix notations like e1 + e2, however, we must be prepared
to allow parentheses in our textual representations of trees, in order to be able to 
disambiguate expressions like "l *2+3", which could be viewed as either" (1* 2) +

3" or "l * (2 + 3)". 
Introducing meta-variables in our grammars has the added benefit that it is 

now very convenient to describe sets of trees with a certain form. For example, 
suppose we want to describe the set of all exprs e where the root of e is labeled
with*, then the right child is 3 and the left child has root labeled with+. This set
can be described by the pattern ( e1 + e2) * 3. Some example trees in this set are:
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* * 

/\ /\ 
* + 3 + 3 

/\ /\ /\ 
+ 3 + 2 1 * 

/\ /\ /\ 
1 2 0 1 0 1 

Sets and related concepts 

We will often need to use basic concepts from set theory, such as found, for exam
ple, in Halmos's introductory book [17]. A set is just a collection of elements of
some kind. Two sets are considered equal if and only if they contain exactly the 
same elements. We can write finite sets explicitly using curly brackets this way : 

{0,1,2} 

Since the identity of sets is determined by which objects are their elements, the 
number of times an element is listed in an explicit description of a set, and the 
order of elements, is irrelevant. So we have equalities like this: 

{0,0, 1,2,2,2} 
{100, 10, 20} 
{0,0,0,0} 

{0,1,2} 
{10,20,100} 
{O} 

We often extend the notation of explicit description to infinite sets. This relies on 
our intuitive understanding of what the set is intended to be, and is thus not fully 
precise. For example, the set of natural numbers, denoted IN, can be indicated (but 
not formally defined) as follows: 

IN= {0,1,2, ... } 

This already relies on our idea of how that sequence "O, 1, 2, ... "continues. Giving
a fully precise definition of the set of natural numbers is rather involved, and we 
will take it for granted that we understand what the set IN is. 

Set comprehensions are descriptions of sets based on a property. This property 
can be expressed in our informal mathematical meta-language, or in a more pre
cise formal language. If A is a set and cp(x) is a formula (again, from some mathe
matical language) which might mention x, then the set of all elements x of A which
satisfy the property described by cp( x) is denoted this way :

{x EA I cp(x)} 
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For example, the set of even numbers can be defined like this: 

{x EN Ix is a multiple of 2} 

Or if we were using a language like FO(Z) (see Chapter 1) for the formula used in 
the set comprehension, we could express this more formally, by say ing that there 
exists a number y such that x equals 2 times y: 

{ x E N I :3y. x = 2 * y} 

The union 51 U 52 of two sets 51 and 52 is the set consisting of those objects which 
are elements of either 51 or 52. For example, the set of natural numbers can be 
viewed as the union of the set of all odd numbers with the set of all even numbers: 

{0,2,4,8, ... } u {l,3,5,7, ... } 

The intersection 51 n 52 of two sets 51 and 52 is the set consisting of all the el
ements of 51 which are also elements of 52. For example, let Pres be the set of 
current or past presidents of the United States, and let VP be the set of current or 
past vice presidents. Then the intersection of these two sets is the set of all people 
who have served as both president and vice president, and includes people like 
Lyndon Johnson and George H. W. Bush, for example. 

The difference 51 - 52 (also written 51 \ 52) of two sets 51 and 52 is the set con
sisting of those elements of 51 which are not elements of 52. For example, if we 
wanted the set of all presidents of the United States who were not members of the 
Democratic party, we could define that as Pres - Democrats (assuming Democrats

is the set of all Democratic-party politicians, for example). 

Ordered pairs (x,y) are mathematical structures containing x and y in order. The 
first component of the ordered pair is x, and y is the second component. Any 
mathematical objects x and y can be used in an ordered pair ( x, y). Sometimes 
we make use of ordered triples (x,y,z) or ordered tuples (x1 1 • • •  1xn) with more 
components. As long as there are only finitely many components, though, these 
tuples can be considered to be nested pairs. For example, (x,y,z) can be viewed 
as ( ( x, y), z) . 

The empty set 0 is the unique set which does not contain any elements at all. 

Subset property: A set 51 is a subset of a set 52 iff every element of 51 is an element 
of 52. This property is denoted 51 S: 52 (some authors also just write 51 c 52). 
For example, the set of even natural numbers is a subset of the set of all natural 
numbers. Also, 0 S: 5 for any set 5, because the requirement that all elements of 
the empty set 0 must be elements of 5 is vacuously true: there are no elements of 
0, and so the requirement to be in 5 is not imposed on any elements. 
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Relations and functions 

A relation is just a set of tuples. If we wish to emphasize that those are pairs, we 
call it a binary relation. Each ordered pair ( x, y) can be thought of as expressing
the idea that x is related toy. For example, if we wish to relate U.S. capitol cities to 
their states, we might have an ordered pair like (Des Moines, Iowa). The set of all 
such ordered pairs is then considered to be the relation: 

{(Des Moines, Iowa), (Albany, New York), (Sacramento, California), ... } 

Functions are binary relations which do not contain ( x, y) and ( x, z) with y =I- z. So
every time we have an ordered pair ( x, y) in the relation, y is the only element to 
which x is related (by the relation). In this case, the first component of each ordered 
pair in the relation is called an input to the function, and the second component is
the corresponding output. The state-capitol relation we were just considering is a
function, since no city is the capitol of two different states: if we have an ordered 
pair ( C, S) where C is a city and S is a state, then there cannot be any other pair 
(C,S') with S =I- S', expressing that C is also the capitol of S'. This relation is a 
function, because it associates a unique output state with each input capitol. 
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