Modern
Programming

Made Easy

Using Java, Scala, Groovy,
and JavaScript

Second Edition
Adam L. Davis

ApPress’

http://www.allitebooks.org

Modern Programming
Made Easy

Using Java, Scala, Groovy,
and JavaScript

Second Edition

Adam L. Davis

Apress’

vww . allitebooks.con

http://www.allitebooks.org

Modern Programming Made Easy: Using Java, Scala, Groovy, and
JavaScript

Adam L. Davis
Oviedo, FL, USA

ISBN-13 (pbk): 978-1-4842-5568-1 ISBN-13 (electronic): 978-1-4842-5569-8
https://doi.org/10.1007/978-1-4842-5569-8

Copyright © 2020 by Adam L. Davis

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image, we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the author nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Steve Anglin

Development Editor: Matthew Moodie

Coordinating Editor: Mark Powers

Cover designed by eStudioCalamar
Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media, 1 New York Plaza,
New York, NY 10004, U.S.A.. Phone 1-800-SPRINGER, fax (201) 348-4505, e-mail orders-ny@
springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a California LLC and
the sole member (owner) is Springer Science + Business Media Finance Inc (SSBM Finance Inc).
SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail editorial@apress.com; for reprint, paperback, or
audio rights, please email bookpermissions@springernature.com.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484255681. For
more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

vww . allitebooks.con

https://doi.org/10.1007/978-1-4842-5569-8
http://www.allitebooks.org

Dedicated to all teachers.
Thank you for teaching!

vww . allitebooks.con

http://www.allitebooks.org

Table of Contents

About the AUhOFccccmmimmmsssmsmsnn s Xv
About the Technical ReVIEWETccussusssasssssssssnsssasssssssssnsssassssasssansas xvii
Chapter 1: Introduction..........cccevvnnemnnnnssennmnnmsssnnmmsssssmesss———————- 1
Problem=S0oIViNgcoeerrermrererrsererese e 1
ADOUL THIS BOOKecvreeerreerrnesesesesse e sesse e s e sesss e s sessssessssessssssensssessssensnns 2
Chapter 2: Software to Install...........ccccusrmminnnennmnnnsennse———— 3
JAVA/GIOOVYovieerierissese e e se e ne e nr s 3
LT L0 R 4
010 £ 5
Code 0N GIHUD ... 5
Chapter 3: The BasSiCS........cousmmmmmssmsmmsammsssmssssssssssssssssssssssssssasssnsssnsnas 7
L0 g0 T 0 SR 7
Primitives and REfEreNCe..........ccvvverrrermrenernsesesese s s se s sesenns 8
StringS/DECIArationsccovveerreneresernsesrse s 9
STALBMENTS.....ce i ——————————— 10
ASSIGNMENT ... e e n 10
Class and ODJECEcccvicrrcrr e —————— 11
Fields, Properties, and Methods...........ccccceverirvrienerccrcer e 12
GrOOVY ClASSES ...ucuevenereruesesseserrenesesesessese e sesse e e sss e sss e s sesssssssssessnnes 13
JavaScript Prototypes......cociniinin e 14
SCaIA CIASSESecucrciririsssisi s s 14

v

vww . allitebooks.con

http://www.allitebooks.org

TABLE OF CONTENTS

Creating @ NeW ODJECL........ccccvrerererrerierere s s s s se s e ssesresessesaesne s 14
(001111107 1 TR 15
SUMMANY..c..ctiiir e e e e s s b e s b e e e aennn 15

Chapter 4: Math..........coovcmmmmmmmninnnnnssssssssnns s sssssssssenns 17
Adding, Subtracting, 1C.ccvvrrrrrrrerrrs e ———————— 17
More ComplexX Math........c.ccoiiienn e 19
Random NUMDEIS ... s 20
1] 14 7 22

Chapter 5: Arrays, Lists, Sets, and Maps.........ccccenrnssnnnnmsssssnnssssssnnnns 23
L 1 OSSOSO 23
I £ S 25

GIOOVY LiSTS ...ueerecerreerrnesessese s s e s se s ses s nsnnes 26

SCAIA LISES ..vveuerrrsererrenerrnessssesess s srsse e s ss s e s s sr s s sn e nsans 26

B LT R] A =) RS 27
SIS e —————————————————————— 28
1 0L 29

GrOOVY MIAPS.....civiriirerer et s e s p s e e 30

SCAIA MAPS ..o e 30

JavaSCript MapRS.....cccciirr e 30
SUMMANY....ceitieereestee e e e e R p e 31

Chapter 6: Conditionals and LOOPScceeeerrrrmsmssssssssssssssssssssssssssssssssnnas 33
I T TR = 33
SWitCh StatemMENts........cveecerrr s 34
L2 TuT0] o I 0o S 36
(0070] 3o SRS 37
SUMMANY....ceiieeerrcsere s n e ee e nr e e 39

TABLE OF CONTENTS

Chapter 7: Methodscccvvisemmnrnssssnnnmsssssnsnmsssssssssssssssssessssnsnssssssnnnnes 41
L0 1N P 41
TR - T 42
Break It DOWNcoooeeceerecr s 43
Return t0 SENUEN........ccccvicerrcrrrese s 43
SHALC. .. ————————— 44
VaATAIQS .cieiiere s re e e s s e s a e e e e a e a e n 45
Main MEthod ... s 45
EXBICISES...cveereeererueeere e ree s e s e s nr e 46
SUMMANY.....eiiiereere s e r e e s e re e e e e 46
Chapter 8: INheritance.........ccoussemmmssanmmsssnsmsssnsssssnsssssnsssssnsssssnnssssnnsssnns 47
ODJECHITY ..cvrveerreerrresi e ————— 48
B LT 5T |] SRS 49
Parenting 107 ..o s 49
JAVASCHIPL.....ccerr s ———————— 51
PACKAGES......eiuereerere sttt e e e e nn 52
0o T o U (S 53
JAVASCHIPL....cc e ————————— 53
INEEITACEScvccc st ————— 54
ADSTFACE ClASS ...c.vvivescccrisisissse e 55
ENUMS ..t 56
ANNOTALIONS ... e 57
L LE (0] 00)1 T 58
AULODOXING...ceueerreerrneresesese s s sas e e sse e nss e sensssnnsnnens 58
UNDOXING. .ttt sr e e 58
1] 4= O 58

vii

TABLE OF CONTENTS

Chapter 9: Design Patterns.........ccuemmmmnssnnnmmssssssnsssssssssessssssssssssssnnns 59
(002 T R 59
MVG.. .t p e e e 61
01 OSSR 63

ClOSUIES....ceiveeresseerre s r e s e nn e nr s 63
Overriding OPEratorsc.ocvvvierernsensese s s sa s e 65
T N 66
Chain of ReSPONSIDIlIY.....ccccvivverrriererr e eees 67
T2 Lo S 68
SUMMANY.....eiieeresere e s e e e ne s 69

Chapter 10: Functional Programmingccceusssssssssssssssssssssssssssssssssnas 71
FUNCLiONS @nd ClOSUIES.......ccoviierrinerrierisessse s ss e e senns 72
1T oI 1T = (RS 74
IMMUEADITITY ... ——————— 78
N - TSR 80
(001 OSSO 81
LT | - S 82
SUMMANY....ceiiieirisere s e e p e e 84

Chapter 11: Refactoring..........ccousssmmsemmnsmmmsssmmsssmmsssmssssssssssssssssssssssnsnss 85
Object-Oriented Refactoringcccvcevvvrvriernnnsnie s s e enes 85
Functional Refactoring........ccccveririninnnininsin s s 86
Refactoring EXamPpIEScccoviniriniennsnsre s ssesnens 86

Renaming a Method ... 87
Moving a Method from One Class to Another (Delegation).........c.ccccovererenne. 87

Replacing a Bunch of Literals (Strings or Numbers)
with a Constant (Static Final)ccccvrriinnininin e 88

viii

TABLE OF CONTENTS

Renaming @ FUNCLION.........cccvvvinneni e 88
Wrapping a Function in Another Function and Calling Itcccccccovvevnenen, 88
Inline a Function Wherever It IS Calledcovoorenrnccrniererere e 89
Extract Common Code into a Function (the Opposite of the Previous).......... 89
Chapter 12: Utilitiescccusmsmsssssmsmsmsmsmsnsssssmsmsssmssssssssssssssssssssssssssnans 91
Dates and TIMEScccvvceriierresrr e 91
Java Date-TiMe ... s 92
01011 D 92
JavaSCrpt DAL ... ——————— 94
Java DateFormat ... 94
[T TS 96
TIMEZONE ..vveerreerrsese e e n s e e nrnne e 96
SCANNET ... 97

ANL...cce R 99
MIAVEIN ... e e 100
USING MAVEN.....couiirecer e s 101
Starting @ NEW Projectcoocovveernenmnesesssesessese s s sessenenns 101
L) o 03 SO SSRT 102
EXECULING COUB.....evteerererirrirrere e ser s ses e s sre e sae e sae e e e saesnens 103
(€T To | 105
Getting Started With Gradleccceeveerieverrierrere e enes 105
Projects and TasKS........cccurnrneninnnsine s ssssessesnens 105
PIUGINS.....cviiriecereser e 106
DEPENUENCIES.....ccveieirere e e ne 107
DO First @and Lastccovermminennnennesensse s sssse e s ssssenens 108

ix

TABLE OF CONTENTS

Chapter 14: TeStiNg....cuuvccemrrmssnnnmmsssssnnsmssssssssssssssnnsssssssnssssssssnnssssssnns 111
TYPES OF TESIS ..ot 111
JUNIE e 112

HAMCIEST ... 113
ASSUMPLIONS ..o e nne 114
SPOCK .. ettt e nne s 115
SPOCK BASICSveveuereerrerreserersesessssessessesessesessessessssessessesssssssessessessssessessees 115
F 11110 (= =T 116
MOCKING ...cvi i s s r e s sr e e nne 117
Lists or Tables 0f Dataccoveermrerernsesensesenenerssesese s sennes 118
Expecting EXCEPLIONS ..o e sesesnens 119
Other Test FrameWOrKS..........cuvcrnernesenese s s ssanes 120
SUMMAIY.c.veiteirerere e s e s s se s e e s e s s sae e e e s aesaesee e e e saesae s e e naennees 120

Chapter 15: Input/OQutput.........ccoccmicmmismmmsanmmsnmmsnmssssmsassssnsssssssanns 121
FIIBS wovvitetririreresesese et e 121
Reading Filesccccveiiiirirrc s s 122
WIIING FIlBS ..ot 123
Downloading FileS........cucvrererinernserssesensse s s s sessssessens 125
SUMMAIY . viiteitriere st sa e e s e s b sa e e s e R sae e e e e aenne s 126

Chapter 16: Version Control...........cccousmmmsanmssnsssnsssassssnssssnsssassssasssns 127
SUDVEISIONc.cvieiriccisisis s 128
€1 TR 128
L] (o g | 130

Chapter 17: The Interwebcccvccmnismmmssmsmmsmsmmsesmmesssassnas 131
WED 10T ...t 132
My FirStWED APD .ceeieiiirere et 133

TABLE OF CONTENTS

THE HOIY GrailScueevererererrrsersereressssese s e sssessessessssessessesaessssessesaesssssssensesnes 135
QUICK OVEIVIBW.....cueueueresesssssessssssssssssssssssssssesssesesesssssssssssssssssssssssssssssssssssanas 135
PIUG-INS .ttt s e e 139

0 0 ST 140

THE REST ..ottt 1M
Using Maven ArChetypescoccvevevrienienenensessesessses e ssssessessessssessessesas 142
USing Grails JSON VIBWScccverererrerrereressessessessessssessessesssssssessesssssssessesaes 142

SUMMAIY.c.veitetrerereseesere s e sesersesressesessessessesessesaesaess e e ssesaesasssesessesasssssensessens 143

Chapter 18: Swinging GraphicCsccccuressssssssrsssssnnsssssssnssssssssnsssssssnns 145

HEHO WINUOW ... 145

PUSH MY BULLONScerveerercerree s se s s s snnnes 148

FAKE BIOWSETcvueeeeieiressesie e s e se s s e s sss e s sss s e nne s 149

(€110 152

AdVANCEA GrAPNICS ..evveveerererrererere s s s e s s sse e saessesse e s e saesasssssenaesaes 153

GraphiCS GIOSSArYc.cccvuicirinerire e e e 154

SUMMANY....citiciiirec e s s e e s e r e e R r e e e nne s 155

Chapter 19: Creating a Magical User EXPeriencecccrussssnnsssssnnns 157

Application HIierarchy ..o sessesnes 157

Consider YOUr AUJIENCEcuccvrrenerinerissesrsesessse s sssse e sss e ssssssessssesessesenns 158

Choice IS an HIUSIONcvcvicccririrc s 159

DIrECHON......eccccerr e ————————————— 159

SKEUOMOIPRISI.....cviuiirieer et e e e e 160

Context Is IMportant.........cccovinnrr e —————— 160

KISS.....oececestre sttt s 160

YOU Arg NOt the USEI ..o s 161

L1114 RS 161

TABLE OF CONTENTS

Chapter 20: Databasescccuseerrrssssnnnnmsssssnnsssssssnnsesssssnnsssssssnnnssssnnns 163
SQL (Relational) DAtabases........ccccvueerirvererererreserrnesesesesesesessesessesessesesessesenns 164
SOL e —————————————— 165
FOr@IgN KBYS.....ueoereeeriecrireerie s sesse e s snnsens 167
CONNECTHIONS......civierrrreserrese s r e sn e nra s 168
NoSQL (Non-relational) Databases...........ceerrernrenseriernnensensesessssesesessssessessenes 169
REAIS... e s 169
11370]] 170
CaSSANAIA......ccereircirere e e e 170
VORDB ..ottt st 170
SUMMANY....ceiviereeerrrese e r e nr e e 171
Appendix A: JAVA/GrOOVY.....uucusssssnsssssssnnsssssssnnsssssssnnnssssssnnnssssssnnssssss 173
NO JAVA ANAIOQ ...couerieieiirer e e 174
Appendix B: Java/Scala.......uccemmmnnniinmmnssssnsnsnnnnssssmsnnssssssnnnsssnnnnnnnnns 175
N (OB AT Y - 1o o S 176
NUIL Nil, 8EC. ..cucerrreccrreresesssre s 176
Appendix C: Java/JavaScript.......ccccusmmmmssmmmsssnnssssnsssssssssssssssssnsssssanss 177
NO JAVva ANAIOQ ... s 178
Appendix D: ReSOUICES ..cuuuummrrsssssnssssssssnnsssssssnnnssssssnnnssssssnnnsssssnnnnsssss 179
Appendix E: Free Online Learning........uusseeeesssssessssssssssssssssssssssssssnnns 181
The Death of COlIEGR?vvcereeerrrerereser s 181
SUSTAINADINITYcoveeeeeee e ——————— 182
More Onling RESOUICES........cvuiuemrirerirrsssise s s 182

xii

TABLE OF CONTENTS

Appendix F: JAVAccccviimnnmmssssmmmmmmmmsssssssssnmmmssssssssssnnnsnssssssnnns 185
AT EIWOR (... . ciiiirrrremnnmnnsssssssnssnsnnnnssssssssssssnnnnnssssssssssssnnnnnnssssssssnnnnnnnnn 187
INOEX cureeersrnnnsnnnsssnnnsssnnssssnnsssnnssnnnsssnnnsssnnsssnnnssnnnsssnnnssnnnsssnnnssnnnnsnnnnnns 189

xiii

About the Author

Adam L. Davis makes software. He’s spent
many years developing in Java (since Java 1.2)
and has enjoyed using Spring and Hibernate
for more than a decade. Since 2006 he’s

been using Groovy, Grails, HTML, CSS, and
JavaScript, in addition to Java, to create SaaS
web applications that help track finances for
large institutions (among other things).

Adam has a master’s and a bachelor’s
degree in Computer Science from Georgia
Tech. He is also the author of Reactive Streams in Java (Apress, 2019) and
Learning Groovy 3, Second Edition (Apress, 2019). You can check out his
web site at https://github.adamldavis.com/.

https://github.adamldavis.com/

About the Technical Reviewer

Manuel Jordan Elera is an autodidactic
developer and researcher who enjoys learning
new technologies for his own experiments and
creating new integrations. Manuel won the
Springy Award—Community Champion and
Spring Champion 2013. In his little free time,
he reads the Bible and composes music on his
guitar. Manuel is known as dr_pompeii. He
has tech-reviewed numerous books for Apress,
including Pro Spring Boot 2 (2019), Rapid

Java Persistence and Microservices (2019), Java Language Features (2018),

Spring Boot 2 Recipes (2018), and Java APIs, Extensions and Libraries
(2018). Read his 13 detailed tutorials about many Spring technologies,
contact him through his blog at www.manueljordanelera.blogspot.com,
and follow him on his Twitter account, @dr_pompeii.

xvii

http://www.manueljordanelera.blogspot.com/

CHAPTER 1

Introduction

In my experience, learning how to program (in typical computer science
classes) can be very difficult. The curriculum tends to be boring, abstract,
and unattached to “real-world” coding. Owing to how fast technology
progresses, computer science classes tend to teach material that is very
quickly out of date and out of touch. I believe that teaching programming
could be much simpler, and I hope this book achieves that goal.

Note There’s going to be a lot of tongue-in-cheek humor
throughout this book, but this first part is serious. Don’t worry, it gets
better.

Problem-Solving

Before you learn to program, the task can seem rather daunting, much like
looking at a mountain before you climb it. However, over time, you will
realize that programming is really about problem-solving.

On your journey toward learning to code, as with so much in life, you
will encounter many obstacles. You may have heard it before, but it really is
true: the path to success is to try, try, and try again. People who persevere
the most tend to be the most successful people.

© Adam L. Davis 2020 1
A. L. Davis, Modern Programming Made Easy,
https://doi.org/10.1007/978-1-4842-5569-8_1

CHAPTER 1 INTRODUCTION

Programming is fraught with trial and error. Although things will get
easier over time, you'll never be right all the time. So, much as with most
things in life, you must be patient, diligent, and curious to be successful.

About This Book

This book is organized into several chapters, beginning with the most basic
concepts. If you already understand a concept, you can safely move ahead
to the next chapter. Although this book concentrates on Java, it also refers
to other languages, such as Groovy, Scala, and JavaScript, so you will gain a
deeper understanding of concepts common to all programming languages.

R Tips Text styled like this provides additional information that
you may find helpful.

O info Text styled this way usually refers the curious reader to
additional information.

A Warnings Text such as this cautions the wary reader. Many
have fallen along the path of computer programming.

& Exercises This is an exercise. We learn best by doing, so it’s
important that you try these out.

CHAPTER 2

Software to Install

Before you begin to program, you must install some basic tools.

Java/Groovy

For Java and Groovy, you will have to install the following:

e JDK (Java Development Kit), such as OpenJDK 11. You
can install OpenJDK by following the instructions at

adoptopenjdk.net.!

o IDE (Integrated Development Environment), such as
NetBeans 11.

e Groovy: A dynamic language similar to Java that runs
on the JVM (Java Virtual Machine).

'https://adoptopenjdk.net/installation.html

© Adam L. Davis 2020
A. L. Davis, Modern Programming Made Easy,
https://doi.org/10.1007/978-1-4842-5569-8_2

https://adoptopenjdk.net/installation.html

CHAPTER 2 SOFTWARE TO INSTALL

#" Install Java and NetBeans 11 or higher. Download and install the
Java JDK and NetBeans.? Open NetBeans and select File » New
Project... » Java with Gradle, Java Application. When asked, provide
the group “test,” version “0.1,” and package such as “com.
gradleproject1”. Click “Finish,” then “OK.”

Install Groovy: Go to the Groovy web site and install Groovy.

Trying It Out

After installing Groovy, you should use it to try coding. Open a command
prompt (or terminal), type groovyConsole, and hit Enter to begin.

& In groovyConsole, type the following and then hit Ctrl+r to run
the code.

1 print “hello”

Because most Java code is valid Groovy code, you should keep the
Groovy console open and use it to try out all of the examples from this
book.

You can also easily try out JavaScript in the following way:

o Just open your web browser and go to jsfiddle.net.

*https://netbeans.apache.org/download/index.html
Shttps://groovy.apache.org/download.html

https://netbeans.apache.org/download/index.html
https://groovy.apache.org/download.html

CHAPTER2 SOFTWARE TO INSTALL

Others

Once you have the preceding installed, you should eventually install the
following:

o Scala*: An object-oriented language built on the JVM
e Gif’: Aversion control program
e Maven®: A modular build tool

Go ahead and install these, if you're in the mood. I'll wait.
To try out Scala, type scala in your command prompt or terminal once

you have installed it.

Code on GitHub

Alot of the code from this book is available on github.com/modernprog.’
You can go there at any time to follow along with the book.

‘www.scala-lang.org/
*https://git-scm.com/
https://maven.apache.org/
"https://github.com/modernprog

http://www.scala-lang.org/
https://git-scm.com/
https://maven.apache.org/
https://github.com/modernprog

CHAPTER 3

The Basics

In this chapter, we’'ll cover the basic syntax of Java and similar languages.

Coding Terms

Source file refers to human-readable code. Binary file refers to computer-
readable code (the compiled code). In Java, this binary code is called
bytecode which is read by the Java Virtual Machine (JVM).

In Java, the source files end with . java, and binary files end with
.class (also called class files). You compile source files using a compiler,
which gives you binary files or bytecode.

In Java, the compiler is called javac; in Groovy it is groovyc; and it is
scalac in Scala (see a trend here?). All three of these languages can be
compiled to bytecode and run on the JVM. The bytecode is a common
format regardless of which programming language it was generated from.

However, some languages, such as JavaScript, don’t have to be
compiled. These are called interpreted languages. JavaScript can run in
your browser (such as Firefox or Google Chrome), or it can run on a server
using Node.js, a JavaScript runtime built on Chrome’s V8 JavaScript engine.

© Adam L. Davis 2020 7
A. L. Davis, Modern Programming Made Easy,
https://doi.org/10.1007/978-1-4842-5569-8_3

CHAPTER 3 THE BASICS

Primitives and Reference

Primitive types in Java refer to different ways to store numbers and have
practical significance. The following primitives exist in Java:

o char: A single character, such as A (the letter A).

e byte: Anumber from -128 to 127 (8 bits'). Typically, a
way to store or transmit raw data.

o short: A 16 bits signed integer. It has a maximum of
about 32,000.

o int: A 32 bits signed integer. Its maximum is about 2 to
the 31st power.

o long: A 64 bits signed integer. Maximum of 2 to the 63rd
power.

o float: A 32 bits floating-point number. This format
stores fractions in base two and does not translate
directly to base ten numbers (how numbers are usually
written). It can be used for things such as simulations.

o double: Like float but with 64 bits.

e boolean: Has only two possible values: true and false
(much like 1 bit).

O See Java Tutoria—Data Types? for more information.

'A bit is the smallest possible amount of information. It corresponds to a 1 or 0.

*https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.
html

https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html
https://docs.oracle.com/javase/tutorial/java/nutsandbolts/datatypes.html

CHAPTER 3 THE BASICS

GROOVY, SCALA, AND JAVASCRIPT

Groovy types are much the same as Java’s. In Scala, everything is an object,
so primitives don’t exist. However, they are replaced with corresponding value
types (Int, Long, etc.). JavaScript has only one type of number, Number,
which is similar to Java’s float.

A variable is a value in memory referred to by a name. In Java you can
declare a variable as a primitive by writing the type then any valid name.
For example, to create an integer named price with an initial value of 100,
write the following:

1 int price = 100;

Every other type of variable in Java is a reference. It points to some
object in memory. This will be covered later on.

In Java, each primitive type also has a corresponding class type: Byte
for byte, Integer for int, Long for long, and so on. Using the class type
allows the variable to be null (meaning no value). However, using the
primitive type can have better performance when handling a lot of values.
Java can automatically wrap and unwrap primitives in their corresponding
classes (this is called boxing and unboxing).

Strings/Declarations

A String is a list of characters (text). It is a very useful built-in class in Java
(and most languages). To define a string, you simply surround some text in
quotes. For example:

1 String hello = "Hello World!";

Here the variable hello is assigned the string "Hello World!".

CHAPTER 3 THE BASICS

In Java, you must put the type of the variable in the declaration. That'’s
why the first word here is String.

In Groovy and JavaScript, strings can also be surrounded by single
quotes ('hello"). Also, declaring variables is different in each language.
Groovy allows you to use the keyword def, while JavaScript and Scala use
var. Java 10 also introduced using var to define local variables. For example:

1 def hello
2 var hello

"Hello Groovy!" //groovy
"Hello Scala/JS!" //Scala or IS

Statements

Almost every statement in Java must end in a semicolon (;). In many
other languages, such as Scala, Groovy, and JavaScript, the semicolon is
optional, but in Java, it is necessary. Much as how periods at the end of
each sentence help you to understand the written word, the semicolon
helps the compiler understand the code.

By convention, we usually put each statement on its own line, but this
is not required, as long as semicolons are used to separate each statement.

Assignment

Assignment is an extremely important concept to understand, but it can
be difficult for beginners. However, once you understand it, you will forget
how hard it was to learn.

Let’s start with a metaphor. Imagine you want to hide something
valuable, such as a gold coin. You put it in a safe place and write the
address on a piece of paper. This paper is like a reference to the gold. You
can pass it around and even make copies of it, but the gold remains in the
same place and does not get copied. On the other hand, anyone with the
reference to the gold can get to it. This is how a reference variable works.

10

CHAPTER 3 THE BASICS

Let’s look at an example:

1 String gold = "Au";
2 String a = gold;

3 String b = a;

4 b= "Br";

After running the preceding code, gold and a refer to the string "Au",
while b refers to "Br".

Class and Object

A class is the basic building block of code in object-oriented languages.
A class typically defines state and behavior. The following class is named
SmallClass:

1 package com.example.mpme;
2 public class SmallClass {

3}

Class names always begin with an uppercase letter in Java. It’s
common practice to use CamelCase to construct the names. This means
that instead of using spaces (or anything else) to separate words, we
uppercase the first letter of each word.

The first line is the package of the class. A package is like a directory on
the file system. In fact, in Java, the package must actually match the path
to the Java source file. So, the preceding class would be located in the path
com/example/mpme/ in the source file system. Packages help to organize
code and allow multiple classes to have the same name as long as they are
in different packages.

An object is an instance of a class in memory. Because a class can have
multiple values within it, an instance of a class will store those values.

11

CHAPTER 3 THE BASICS

& Create a Class

e Open your IDE (NetBeans).

¢ Note the common organizational structure of a typical
Java project in the file system:

® src/main/java: Java classes

e src/main/resources: Non-Java resources

* src/test/java: Java test classes

e src/test/resources: Non-Java test resources

¢ Right-click your Java project and choose New »
Java Class. Under “Class-Name” put “SmallClass”.
Put “com.example.mpme” for the package name.

Fields, Properties, and Methods

Next you might want to add some properties and methods to your class.

A field is a value associated with a particular value or object. A property is
essentially a field which has a “getter” or “setter” or both (a getter gets the
value and a setter sets the value of a property). A method is a block of code
on a class which can be called later on (it doesn’t do anything until called).

1 package com.example.mpme;

2 public class SmallClass {

3 String name; //field

4 String getName() {return name;} //getter

5 void print() {System.out.println(name);} //method
6

12

CHAPTER 3 THE BASICS

In the preceding code, name is a property, getName is a special method
called a getter, and print is a method which does not return anything (this
is what void means). Here, name is defined to be a String. System.out is
built into the JDK and links to “standard out” which we discuss later, and
println prints text and appends a newline to the output.

Methods can have parameters (values passed into the method), modify
fields of the class, and can have return values (a value returned by the
method) using the return statement. For example, modify the preceding
method, print, to the following:

public String print(String value) {

name = "you gave me " + value;

1
2
3 System.out.println(name);
4 return name;

5

}

This method changes the name field, prints out the new value, and
then returns that value. Try this new method out in the groovyConsole by
defining the class and then executing the following:

1 new SmallClass().print("you gave me dragons")

Groovy Classes

Groovy is extremely similar to Java but always defaults to public (we will
cover what public means in a later chapter).

1 package com.example.mpme;

2 class SmallClass {

3 String name //property

4 def print() { println(name) } //method
5

13

CHAPTER 3 THE BASICS

Groovy also automatically gives you “getter” and “setter” methods for
properties, so writing the getName method would have been redundant.

JavaScript Prototypes

Although JavaScript has objects, it doesn’t have a class keyword (prior to
ECMAScript 2015). Instead, it uses a concept called prototype. For example,
creating a class can look like the following:

1 function SmallClass() {}
SmallClass.prototype.name = "name"
SmallClass.prototype.print = function() { console.log(this.
name) }

Here name is a property and print is a method.

Scala Classes

Scala has a very concise syntax, which puts the properties of a class in
parentheses. Also, types come after the name and a colon. For example:

1 class SmallClass(var name:String) {
2 def print = println(name)

3}

Creating a New Object

In all four languages, creating a new object uses the new keyword. For
example:

1 sc = new SmallClass();

14

CHAPTER 3 THE BASICS

Comments

As a human, it is sometimes useful for you to leave notes in your source
code for other humans—and even for yourself, later. We call these notes
comments. You write comments thus:

/% b is now "Br".
this is still a comment x/

1 String gold = "Au"; // this is a comment
2 String a = gold; // a is now "Au”

3 String b = a; // b is now "Au"

4 b= "Br";

5

6

Those last two lines demonstrate multiline comments. So, in summary:

o Two forward slashes denote the start of a single-line
comment.

o Slash-asterisk marks the beginning of a multiline
comment.

o Asterisk-slash marks the end of a multiline comment.

Comments are the same in all languages covered in this book.

Summary

In this chapter, you learned the basic concepts of programming:
o Compiling source files into binary files
e How objects are instances of classes
» Primitive types, references, and strings
o Fields, methods, and properties
e Variable assignment

¢ How source code comments work

15

CHAPTER 4

Math

(Or Maths, if you prefer.)

Adding, Subtracting, etc.

Your friend Bob was just bitten by a zombie but escaped alive.
Unfortunately, there is now one more zombie to worry about.

1 zombies = zombies + 1;

There’s a shorter way to write the same thing (and we are pressed for
time here; the zombies are coming).

1 zombies += 1;

Actually, there’s an even shorter way to write this, and it’s called the
increment operator.

1 zombies++;

Luckily, there’s also a decrement operator (to use when we kill a

zombie).

1 zombie--;

© Adam L. Davis 2020 17
A. L. Davis, Modern Programming Made Easy,
https://doi.org/10.1007/978-1-4842-5569-8_4

CHAPTER4 MATH

Adding and subtracting are easy enough, but what about their cousins,
multiplying and dividing? Luckily these symbols are the same in virtually
every programming language: x and /.

1 int legs = zombies x 2;
2 int halfZombies = zombies / 2;

Numbers written in Java are of type int by default. But what if we want
to deal with fractions that are not whole numbers?

1 float oneThirdZombies = zombies / 3.0f;

No, 3.0f is not a typo. The f makes 3 a float. You can use lower- or
uppercase letters (D means double; F means float; and L means long).

This is where math starts to get tricky. To engage float division
(remember from Chapter 3, float is an imprecise number), we need 3 to
be a float. If we instead wrote zombies / 3, this would result in integer
division, and the remainder would be lost. For example, 32 / 3is 10.

MODULO

You don’t really need to understand Modulo, but if you want to, keep reading.
Imagine that you and three buddies want to attack a group of zombies. You
have to know how many each of you has to kill, so that each of you kills an
equal number of zombies. For this you do integer division.

1 int numberToKill = zombies / 4;

But you want to know how many will be left over. For this, you require
modulo (%):

1 int leftOverZombies = zombies % 4;

This gives you the remainder of dividing zombies by four.

18

CHAPTER4 MATH

More Complex Math

If you want to do anything other than add, subtract, multiply, divide, and
modulo, you will have to use the java.lang.Math class. The Math class is
part of the Java Development Kit (JDK) which is always available as part of
core Java. There are many such classes which we will encounter as we go.

Let’s say you want to raise a number to the power of 2. For example, if
you want to estimate the exponentially increasing number of zombies, as
follows:

1 double nextYearEstimate = Math.pow(numberOfZombies, 2.0d);

This type of method is called a static method since it does not require an
object instance. (Don’t worry, you'll learn more about this later.) Here’s a
summary of the most commonly used methods in java.lang.Math.

e abs: Returns the absolute value of a value
e min: The minimum of two numbers
e max: The maximum of two numbers

o pow: Returns the value of the first argument raised to
the power of the second argument

e sqrt: Returns the correctly rounded positive square
root of a double value

o cos: Returns the trigonometric cosine of an angle
o sin:Returns the trigonometric sine of an angle

o tan: Returns the trigonometric tangent of an angle

19

CHAPTER4 MATH

0 For a list of all the methods in Math, see the Java docs.’

Qe Sine If you’re unfamiliar with sine and cosine, they are very
useful whenever you want to draw a circle, for example. If you’re on
your computer right now and want to learn more about sine and
cosine, please look at this animation? referenced in the footnote at
the end of this page and keep watching it until you understand the
sine wave.

Random Numbers

The easiest way to create a random number is to use the Math.random()
method.

The random() method returns a double value greater than or equal to
zero and less than one.

For example, to simulate a roll of the dice (to determine who gets to
deal with the next wave of zombies), use the following:

1 dint roll = (int) (Math.random() x 6);

This would result in a random number from 0 to 5. We could then add
one to get the numbers 1 to 6. We need to have (int) here to convert the
double returned from random() to an int—this is called casting.

'https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/
lang/Math.html

*https://upload.wikimedia.org/wikipedia/commons/0/08/Sine_curve
drawing_animation.gif

20

https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Math.html
https://docs.oracle.com/en/java/javase/11/docs/api/java.base/java/lang/Math.html
https://upload.wikimedia.org/wikipedia/commons/0/08/Sine_curve_drawing_animation.gif
https://upload.wikimedia.org/wikipedia/commons/0/08/Sine_curve_drawing_animation.gif

CHAPTER4 MATH

JavaScript also has a Math.random() method. For example, to get a
random integer between min (included) and max (excluded), you would do
the following (Math.floor returns the largest integer less than or equal to a
given number):

1 Math.floor(Math.random() * (max - min)) + min;

However, if you want to create lots of random numbers in Java, it’s
better to use the java.util.Random class instead. It has several different
methods for creating random numbers, including

o nextInt(int n): A random number from 0 to n (not
including n)

e nextInt(): Arandom number uniformly distributed
across all possible int values

o nextLong(): Same as nextInt() but for long

o nextFloat(): Same as nextInt() but for float

o nextDouble(): Same as nextInt() but for double
o nextBoolean(): True or false

o nextBytes(byte[] bytes): Fills the given byte array
with random bytes

You must first create a new Random object, then you can use it to create
random numbers, as follows:

1 Random randy = new Random();
2 int ro0ll6 = randy.nextInt(6) + 1; // 1 to 6
3 int roll12 = randy.nextInt(12) + 1; // 1 to 12

Now you can create random numbers and do math with them. Hurray!

21

CHAPTER4 MATH

Qs Seeds If you create a Random with a seed (e.g., new
Random(1234)), it will always generate the same sequence of
random numbers when given the same seed.

Summary

In this chapter, you learned how to program math, such as
e Howto add, subtract, multiply, divide, and modulo
o Using the Math library in Java

e Creating random numbers

22

CHAPTER 5

Arrays, Lists, Sets,
and Maps

So far, I've only talked about single values, but in programming, you often
have to work with large collections of values. For this, we have many data
structures that are built into the language. These are similar for Java,
Groovy, Scala, and even JavaScript.

Arrays

An array is a fixed size collection of data values.
You declare an array type in Java by appending [] to the type. For
example, an array of ints is defined as int[].

1 int[] vampireAges = new int[10]; // ten vampires

Setting and accessing the values in an array uses the same square
bracket syntax, such as the following:

1 vampireAges[0] = 1565; // set age of first vampire
2 int age = vampireAges[0] // get age of first vampire

As you can see, the first index of an array is zero. Things tend to start at
zero when programming; try to remember this.

© Adam L. Davis 2020 23
A. L. Davis, Modern Programming Made Easy,
https://doi.org/10.1007/978-1-4842-5569-8_5

CHAPTER 5 ARRAYS, LISTS, SETS, AND MAPS

Q; Patient0 Here’s a helpful metaphor: the first person to start an
outbreak (a zombie outbreak, for example) is known as patient zero,
not patient one. Patient one is the second person infected.

This also means that the last index of the array is always one less than
the size of the array. This is also true for lists.

1 vampireAges[9] = 442; // last vampire
You can reassign and access array values just like any other variable.

1 int year = 2020; // current year
2 int firstVampBornYear = year - vampireAges[0];

You can also declare arrays of objects as well. In this case, each
element of the array is a reference to an object in memory. For example,

the following would declare an array of Vampire objects:

1 Vampire[] vampires = new Vampire[10]; // Vampire array with
length 10

You can also populate your array directly, such as if you're creating an
array of strings, for example.

1 String[] names = {"Dracula", "Edward"};

The Array object in JavaScript is more like a Java List. Java arrays
are a somewhat low-level structure used only for performance reasons.
In Groovy 3, the Java-style declaration of arrays is supported. In previous
versions you would have to use the List style, which we cover next.

In Scala, you can define an Array like one of the following:

1 var names

new Array[String](2) // size of 2 without values

2 var names = Array("Dracula", "Edward") // size of 2 with values

24

CHAPTER 5 ARRAYS, LISTS, SETS, AND MAPS

Lists

Of course, we don’t always know how many elements we need to store in
an array. For this reason (and many others), programmers invented List, a
re-sizable collection of ordered elements.

In Java, you create List<E> in the following way:

1 List<Vampire> vampires = new ArraylList<>();

The class between the first angle brackets (<>) defines the generic type
of the list—what can go into the list (in this case it is Vampire). The second
set of angle brackets can be empty since Java can infer the generic type
from the left side of the expression. You can now add vampires to this list
all day, and it will expand, as necessary in the background.

You add to List like this:

1 vampires.add(new Vampire("Count Dracula", 1897));

List also contains tons of other useful methods, including
o size(): Getsthe size of List
o get(int index): Gets the value at that index
o remove(int index): Removes the value at that index
o remove(Object o): Removes the given object
o isEmpty():Returns true onlyif List is empty

o clear(): Removes all values from List

25

CHAPTER 5 ARRAYS, LISTS, SETS, AND MAPS

Q¢ In Java, List is an interface (we’ll cover interfaces in depth in
Chapter 8) and has many different implementations, but here are two:

e java.util.Arraylist
e java.util.LinkedlList

The only difference you should care about is that, in general,
LinkedList grows faster when inserting a value at an arbitrary
index, while ArrayList’s get () method is faster at an arbitrary
index.

You'll learn how to loop through lists, arrays, and sets (and what “loop”
means) in the next chapter. For now, just know that lists are a fundamental

concept in programming.

Groovy Lists

Groovy has a simpler syntax for creating lists, which is built into the

language.

1 def list = []

2 list.add(new Vampire("Count Dracula", 1897))
3 //or

4 list << new Vampire("Count Dracula", 1897)

Scala Lists

In Scala, you create a list and add to a list in a slightly different way:

1 wvar list = List[Vampire]();
2 list :+ new Vampire("Count Dracula", 1897)

26

CHAPTER 5 ARRAYS, LISTS, SETS, AND MAPS

Also, this actually creates a new list, instead of modifying the existing
list (it reuses the existing list in the background for performance reasons).
This is because the default List in Scala is immutable, meaning it cannot
be modified (the default implementation is immutable, but you can
use a mutable implementation from the scala.collection.mutable
package). Although this may seem strange, in conjunction with functional
programming, it makes parallel programming (programming for multiple
processors) easier as we'll see in Chapter 10.

JavaScript Arrays

As mentioned earlier, JavaScript uses Array' instead of List. Also, since
JavaScript is not strictly typed, an Array can always hold objects of any
type.

Arrays can be created much like lists in Groovy. However, the methods
available are somewhat different. For example, push is used instead of add.

1 def array = []
2 array.push(new Vampire("Count Dracula", 1897))

You can also declare the initial values of Array. For example, the
following two lines are equivalent:

[1666, 1680, 1722]
new Array(1666, 1680, 1722)

1 def years
2 def years

To add to the confusion, arrays in JavaScript can be accessed much like
Java arrays. For example:

1 def firstYear = years[0]
2 def size = years.length

'https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Array

27

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array

CHAPTER 5 ARRAYS, LISTS, SETS, AND MAPS

Sets

Set<E> is much like List<E>, but each value or object can only have one
instance in the Set, whereas in previous collections, there can be repeats.

Set has many of the same methods as List. However, it is missing the
methods that use an index, because Set is not necessarily in any particular
order.

Set<String> dragons = new HashSet<>();
dragons.add("Lambton");
dragons.add("Deerhurst");
dragons.size(); // 2
dragons.remove("Lambton");
dragons.size(); // 1

S UV AW N

Note To preserve insertion order, you can use a
LinkedHashSet<E> which uses a doubly linked list to store
the order of the elements in addition to a hash table to preserve
uniqueness.

In Java, there is such a thing as SortedSet<E>, which is implemented
by TreeSet<E>. For example, let’s say you wanted a sorted list of names, as
follows:

SortedSet<String> dragons = new TreeSet<>();
dragons.add("Lambton");
dragons.add("Smaug");
dragons.add("Deerhurst");
dragons.add("Norbert");
System.out.println(dragons);

// [Deerhurst, Lambton, Norbert, Smaug]

~N o B W N R

28

CHAPTER 5 ARRAYS, LISTS, SETS, AND MAPS

TreeSet will magically always be sorted in the proper order.

R Okay, it’s not really magic. The object to be sorted must
implement the Comparable interface, but you haven’t learned about
interfaces yet (interfaces are covered in Chapter 8).

JavaScript does not yet have a built-in Set class. Groovy uses the same
classes for Set as Java. Scala has its own implementations of Set. For
example, you can define a normal Set or SortedSet in Scala as follows:

1 var nums = Set(1, 2, 3)
2 var sortedNums = SortedSet(1, 3, 2)

Maps

Map<K, V> is a collection of keys associated with values. The K specifies the
generic type for keys, and the V specifies the generic type for values. It may
be easier to understand with an example:

Map<String,String> map = new HashMap<>();
map.put("Smaug", "deadly");
map.put("Norbert", "cute");

map.size(); // 2

map.get("Smaug"); // deadly

Ui » W N R

Map also has the following methods:

o containsKey(Object key): Returns true, if this map
contains a mapping for the specified key

o containsValue(Object value): Returns true, if this
map maps one or more keys to the specified value

29

CHAPTER 5 ARRAYS, LISTS, SETS, AND MAPS

o keySet(): Returns a Set view of the keys contained in
this map

o putAll(Map m): Copies all of the mappings from the
specified map to this map

o remove(Object key): Removes the mapping for a key
from this map, if it is present

Groovy Maps
Just as for List, Groovy has a simpler syntax for creating and editing Map.

1 def map = ["Smaug": "deadly"]
2 map.Norbert = "cute"
3 println(map) // [Smaug:deadly, Norbert:cute]

Scala Maps

Scala’s Map syntax is also somewhat shorter.

1 var map = Map("Smaug" -> "deadly")
2 wvar map2 = map + ("Norbert" -> "cute")
3 println(map2) // Map(Smaug -> deadly, Norbert -> cute)

As with List and Set, Scala’s default Map is also immutable.

JavaScript Maps

JavaScript does not yet have a built-in Map class, but it can be approximated
by using the built-in Object? syntax. For example:

1 def map = {"Smaug": "deadly", "Norbert": "cute"}

*https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global Objects/Object

30

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Object

CHAPTER 5 ARRAYS, LISTS, SETS, AND MAPS

You could then use either of the following to access map values: map.
Smaug or map["Smaug"].

Summary

This chapter introduced you to the following concepts:

Arrays: Collections of data with a fixed size
Lists: An expandable collection of objects or values

Sets: An expandable collection of unique objects or
values

Maps: A dictionary-like collection

31

CHAPTER 6

Conditionals
and Loops

To rise above the label of calculator, a programming language must have
conditional statements and loops.

A conditional statement is a statement that may or may not execute,
depending on the circumstances.

A loop is a statement that gets repeated multiple times.

If, Then, Else

The most basic conditional statement is the if statement. It executes some
code only if a given condition is true. It is the same in all languages covered
in this book. For example:

1 if (vampire) { // vampire is a boolean
2 uselWoodenStake();

3}

Curly brackets ({}) define a block of code (in Java, Scala, Groovy, and

JavaScript). To define what should happen if your condition is false, you
use the else keyword.

1 if (vampire) {
uselWoodenStake();

© Adam L. Davis 2020 33
A. L. Davis, Modern Programming Made Easy,
https://doi.org/10.1007/978-1-4842-5569-8_6

CHAPTER 6 CONDITIONALS AND LOOPS

3 } else {
useAxe();

5)

Actually, this can be shortened, because in this case we only have one

statement per condition.

1 if (vampire) useWoodenStake();
2 else useAxe();

It’s generally better to use the curly bracket style in Java to avoid any
accidents later on when another programmer adds more code. If you have
multiple conditions you have to test, you can use the else if style, such as
the following:

1 if (vampire) useWoodenStake();
2 else if (zombie) useBat();
3 else useAxe();

Switch Statements

Sometimes you have so many conditions that your else if statements
span several pages. In this case, you might consider using the switch
keyword. It allows you to test for several different values of the s