
www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

LLVM Cookbook

Over 80 engaging recipes that will help you build
a compiler frontend, optimizer, and code generator
using LLVM

Mayur Pandey

Suyog Sarda

BIRMINGHAM - MUMBAI

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

LLVM Cookbook

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: May 2015

Production reference: 1270515

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78528-598-1

www.packtpub.com

www.allitebooks.comwww.allitebooks.com

www.packtpub.com
http://www.allitebooks.org
http://www.allitebooks.org

Credits
Authors

Mayur Pandey

Suyog Sarda

Reviewers
Logan Chien

Michael Haidl

Dave (Jing) Tian

Commissioning Editor
Nadeem N. Bagban

Acquisition Editor
Vivek Anantharaman

Content Development Editor
Shweta Pant

Technical Editors
Prajakta Mhatre

Rohith Rajan

Rupali Shrawane

Copy Editors
Vikrant Phadke

Sameen Siddiqui

Project Coordinator
Shipra Chawhan

Proofreader
Stephen Copestake

Safis Editing

Indexer
Tejal Soni

Graphics
Disha Haria

Production Coordinator
Melwyn D'sa

Cover Work
Melwyn D'sa

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

About the Authors

Mayur Pandey is a professional software engineer and an open source enthusiast. He
focuses on compiler development and compiler tools. He is an active contributor to the LLVM
open source community. He has been part of the compiler team for the Tizen project, and has
hands-on experience with other proprietary compilers.

Mayur earned a bachelor's degree in information technology from Motilal Nehru National
Institute of Technology Allahabad, India. Currently, he lives in Bengaluru, India.

I would like to thank my family and friends. They made it possible for me
to complete the book by taking care of my other commitments and always
encouraging me.

Suyog Sarda is a professional software engineer and an open source enthusiast. He
focuses on compiler development and compiler tools. He is an active contributor to the LLVM
open source community. He has been part of the compiler team for the Tizen project. Suyog
was also involved in code performance improvements for the ARM and the x86 architecture.
He has hands-on experience in other proprietary compilers. His interest in compiler
development lies more in code optimization and vectorization.

Apart from compilers, Suyog is also interested in Linux kernel development. He has published
a technical paper titled Secure Co-resident Virtualization in Multicore Systems by VM Pinning
and Page Coloring at the IEEE Proceedings of the 2012 International Conference on Cloud
Computing, Technologies, Applications, and Management at Birla Institute of Technology,
Dubai. He earned a bachelor's degree in computer technology from College of Engineering,
Pune, India. Currently, he lives in Bengaluru, India.

I would like to thank my family and friends. I would also like to thank the
LLVM open-source community for always being helpful.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

About the Reviewers

Logan Chien received his master's degree in computer science from National Taiwan
University. His research interests include compiler design, compiler optimization, and virtual
machines. He is a full-time software engineer. In his free time, he works on several open
source projects, such as LLVM and Android. Logan has participated in the LLVM project
since 2012.

Michael Haidl is a high performance computing engineer with focus on many core
architectures that consist of Graphics Processing Units (GPUs) and Intel Xeon Phi accelerators.
He has been a C++ developer for more than 14 years, and has gained many skills in parallel
programming, exploiting various programming models (CUDA) over the years. He has a
diploma in computer science and physics. Currently, Michael is employed as a research
associate at the University of Münster, Germany, and is writing his PhD thesis with focus
on compilation techniques for GPUs utilizing the LLVM infrastructure.

I would like to thank my wife for supporting me every day with her smiles
and love. I would also like to thank the entire LLVM community for all the
hard work they have put into LLVM/Clang and other LLVM projects. It is
amazing to see how fast LLVM evolves.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Dave (Jing) Tian is a graduate research fellow and PhD student in the Department of
Computer & Information Science & Engineering (CISE) at the University of Florida. He is a
founding member of the SENSEI center. His research direction involves system security,
embedded system security, trusted computing, static code analysis for security, and
virtualization. He is interested in Linux kernel hacking and compiler hacking.

Dave spent a year on AI and machine learning, and taught Python and operating systems
at the University of Oregon. Before that, he worked as a software developer in the LCP
(Linux control platform) group in research and development at Alcatel-Lucent (formerly
Lucent Technologies), for approximately 4 years. He holds a bachelor's degree in science
and a master's degree in electronics engineering in China. You can reach him at root@
davejingtian.org and visit his website http://davejingtian.org.

I would like to thank the author of this book, who has done a good job.
Thanks to the editors of the book at Packt Publishing, who made this book
perfect and offered me the opportunity to review such a nice book.

www.allitebooks.comwww.allitebooks.com

http://davejingtian.org
http://www.allitebooks.org
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can search, access, and read Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt

 f Copy and paste, print, and bookmark content

 f On demand and accessible via a web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.comwww.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org
http://www.allitebooks.org

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

i

Table of Contents
Preface v
Chapter 1: LLVM Design and Use 1

Introduction 1
Understanding modular design 2
Cross-compiling Clang/LLVM 5
 Converting a C source code to LLVM assembly 7
Converting IR to LLVM bitcode 9
Converting LLVM bitcode to target machine assembly 11
Converting LLVM bitcode back to LLVM assembly 13
Transforming LLVM IR 14
Linking LLVM bitcode 17
Executing LLVM bitcode 18
Using the C frontend Clang 19
Using the GO frontend 23
Using DragonEgg 24

Chapter 2: Steps in Writing a Frontend 27
Introduction 27
Defining a TOY language 28
Implementing a lexer 29
Defining Abstract Syntax Tree 32
Implementing a parser 35
Parsing simple expressions 36
Parsing binary expressions 38
Invoking a driver for parsing 41
Running lexer and parser on our TOY language 42
Defining IR code generation methods for each AST class 43
Generating IR code for expressions 45

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

ii

Table of Contents

Generating IR code for functions 46
Adding IR optimization support 49

Chapter 3: Extending the Frontend and Adding JIT Support 51
Introduction 51
Handling decision making paradigms – if/then/else constructs 52
Generating code for loops 58
Handling user-defined operators – binary operators 63
Handling user-defined operators – unary operators 68
Adding JIT support 73

Chapter 4: Preparing Optimizations 77
Introduction 77
Various levels of optimization 78
Writing your own LLVM pass 79
Running your own pass with the opt tool 82
Using another pass in a new pass 83
Registering a pass with pass manager 85
Writing an analysis pass 87
Writing an alias analysis pass 90
Using other analysis passes 93

Chapter 5: Implementing Optimizations 97
Introduction 97
Writing a dead code elimination pass 98
Writing an inlining transformation pass 102
Writing a pass for memory optimization 106
Combining LLVM IR 108
Transforming and optimizing loops 110
Reassociating expressions 112
Vectorizing IR 114
Other optimization passes 121

Chapter 6: Target-independent Code Generator 125
Introduction 125
The life of an LLVM IR instruction 126
Visualizing LLVM IR CFG using GraphViz 129
Describing targets using TableGen 136
Defining an instruction set 137
Adding a machine code descriptor 138
Implementing the MachineInstrBuilder class 142
Implementing the MachineBasicBlock class 142
Implementing the MachineFunction class 144

iii

Table of Contents

Writing an instruction selector 145
Legalizing SelectionDAG 151
Optimizing SelectionDAG 158
Selecting instruction from the DAG 163
Scheduling instructions in SelectionDAG 170

Chapter 7: Optimizing the Machine Code 173
Introduction 173
Eliminating common subexpression from machine code 174
Analyzing live intervals 184
Allocating registers 190
Inserting the prologue-epilogue code 196
Code emission 200
Tail call optimization 202
Sibling call optimisation 205

Chapter 8: Writing an LLVM Backend 207
Introduction 207
Defining registers and registers sets 208
Defining the calling convention 210
Defining the instruction set 211
Implementing frame lowering 212
Printing an instruction 215
Selecting an instruction 219
Adding instruction encoding 222
Supporting a subtarget 224
Lowering to multiple instructions 226
Registering a target 228

Chapter 9: Using LLVM for Various Useful Projects 241
Introduction 241
Exception handling in LLVM 242
Using sanitizers 247
Writing the garbage collector with LLVM 249
Converting LLVM IR to JavaScript 256
Using the Clang Static Analyzer 257
Using bugpoint 259
Using LLDB 262
Using LLVM utility passes 267

Index 271

v

Preface
A programmer might have come across compilers at some or the other point when
programming. Simply speaking, a compiler converts a human-readable, high-level language
into machine-executable code. But have you ever wondered what goes on under the hood?
A compiler does lot of processing before emitting optimized machine code. Lots of complex
algorithms are involved in writing a good compiler.

This book travels through all the phases of compilation: frontend processing, code
optimization, code emission, and so on. And to make this journey easy, LLVM is the simplest
compiler infrastructure to study. It's a modular, layered compiler infrastructure where
every phase is dished out as a separate recipe. Written in object-oriented C++, LLVM
gives programmers a simple interface and lots of APIs to write their own compiler.

As authors, we maintain that simple solutions frequently work better than complex solutions;
throughout this book, we'll look at a variety of recipes that will help develop your skills, make
you consider all the compiling options, and understand that there is more to simply compiling
code than meets the eye.

We also believe that programmers who are not involved in compiler development will benefit
from this book, as knowledge of compiler implementation will help them code optimally next
time they write code.

We hope you will find the recipes in this book delicious, and after tasting all the recipes, you
will be able to prepare your own dish of compilers. Feeling hungry? Let's jump into the recipes!

What this book covers
Chapter 1, LLVM Design and Use, introduces the modular world of LLVM infrastructure, where
you learn how to download and install LLVM and Clang. In this chapter, we play with some
examples to get accustomed to the workings of LLVM. We also see some examples of various
frontends.

Preface

vi

Chapter 2, Steps in Writing a Frontend, explains the steps to write a frontend for a language.
We will write a bare-metal toy compiler frontend for a basic toy language. We will also see
how a frontend language can be converted into the LLVM intermediate representation (IR).

Chapter 3, Extending the Frontend and Adding JIT Support, explores the more advanced
features of the toy language and the addition of JIT support to the frontend. We implement
some powerful features of a language that are found in most modern programming
languages.

Chapter 4, Preparing Optimizations, takes a look at the pass infrastructure of the LLVM IR. We
explore various optimization levels, and the optimization techniques kicking at each level. We
also see a step-by-step approach to writing our own LLVM pass.

Chapter 5, Implementing Optimizations, demonstrates how we can implement various
common optimization passes on LLVM IR. We also explore some vectorization techniques that
are not yet present in the LLVM open source code.

Chapter 6, Target-independent Code Generator, takes us on a journey through the abstract
infrastructure of a target-independent code generator. We explore how LLVM IR is converted to
Selection DAGs, which are further processed to emit target machine code.

Chapter 7, Optimizing the Machine Code, examines how Selection DAGs are optimized
and how target registers are allocated to variables. This chapter also describes various
optimization techniques on Selection DAGs as well as various register allocation techniques.

Chapter 8, Writing an LLVM Backend, takes us on a journey of describing a target architecture.
This chapter covers how to describe registers, instruction sets, calling conventions, encoding,
subtarget features, and so on.

Chapter 9, Using LLVM for Various Useful Projects, explores various other projects where LLVM
IR infrastructure can be used. Remember that LLVM is not just a compiler; it is a compiler
infrastructure. This chapter explores various projects that can be applied to a code snippet to
get useful information from it.

What you need for this book
All you need to work through most of the examples covered in this book is a Linux machine,
preferably Ubuntu. You will also need a simple text or code editor, Internet access, and a
browser. We recommend installing the meld tool for comparison of two files; it works well on
the Linux platform.

Preface

vii

Who this book is for
The book is for compiler programmers who are familiar with concepts of compilers and want
to indulge in understanding, exploring, and using LLVM infrastructure in a meaningful way in
their work.

This book is also for programmers who are not directly involved in compiler projects but are
often involved in development phases where they write thousands of lines of code. With
knowledge of how compilers work, they will be able to code in an optimal way and improve
performance with clean code.

Sections
In this book, you will find several headings that appear frequently (Getting ready, How to do it,
How it works, There's more, and See also).

To give clear instructions on how to complete a recipe, we use these sections.

Getting ready
This section tells you what to expect in the recipe, and describes how to set up any software or
any preliminary settings required for the recipe.

How to do it…
This section contains the steps required to follow the recipe.

How it works…
This section usually consists of a detailed explanation of what happened in the previous
section.

There's more…
This section consists of additional information about the recipe in order to make you more
knowledgeable about the recipe.

See also
This section provides helpful links to other useful information for the recipe.

Preface

viii

Conventions
In this book, you will find a number of text styles that distinguish between different kinds of
information. Here are some examples of these styles and an explanation of their meaning.

Code words in text, database table names, folder names, filenames, file extensions,
pathnames, dummy URLs, user input, and Twitter handles are shown as follows: "We can
include other contexts through the use of the include directive."

A block of code is set as follows:

primary := identifier_expr
:=numeric_expr
:=paran_expr

 When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

primary := identifier_expr
:=numeric_expr
:=paran_expr

Any command-line input or output is written as follows:

$ cat testfile.ll

New terms and important words are shown in bold. Words that you see on the screen, for
example, in menus or dialog boxes, appear in the text like this: "Clicking on the Next button
moves you to the next screen."

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about this
book—what you liked or disliked. Reader feedback is important for us as it helps us develop
titles that you will really get the most out of.

Preface

ix

To send us general feedback, simply e-mail feedback@packtpub.com, and mention the
book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you
to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.packtpub.com
for all the Packt Publishing books you have purchased. If you purchased this book elsewhere,
you can visit http://www.packtpub.com/support and register to have the files e-mailed
directly to you.

Downloading the color images of this book
We also provide you with a PDF file that has color images of the screenshots/diagrams used
in this book. The color images will help you better understand the changes in the output. You
can download this file from: https://www.packtpub.com/sites/default/files/
downloads/5981OS_ColorImages.pdf.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes do happen.
If you find a mistake in one of our books—maybe a mistake in the text or the code—we would be
grateful if you could report this to us. By doing so, you can save other readers from frustration
and help us improve subsequent versions of this book. If you find any errata, please report them
by visiting http://www.packtpub.com/submit-errata, selecting your book, clicking on
the Errata Submission Form link, and entering the details of your errata. Once your errata are
verified, your submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com/support
https://www.packtpub.com/sites/default/files/downloads/5981OS_ColorImages.pdf
https://www.packtpub.com/sites/default/files/downloads/5981OS_ColorImages.pdf
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

Preface

x

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across all media. At
Packt, we take the protection of our copyright and licenses very seriously. If you come across
any illegal copies of our works in any form on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors and our ability to bring you valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

1

LLVM Design and Use

In this chapter, we will cover the following topics:

 f Understanding modular design

 f Cross-compiling Clang/LLVM

 f Converting a C source code to LLVM assembly

 f Converting IR to LLVM bitcode

 f Converting LLVM bitcode to target machine assembly

 f Converting LLVM bitcode back to LLVM assembly

 f Transforming LLVM IR

 f Linking LLVM bitcode

 f Executing LLVM bitcode

 f Using C frontend Clang

 f Using the GO frontend

 f Using DragonEgg

Introduction
In this recipe, you get to know about LLVM, its design, and how we can make multiple uses
out of the various tools it provides. You will also look into how you can transform a simple
C code to the LLVM intermediate representation and how you can transform it into various
forms. You will also learn how the code is organized within the LLVM source tree and how
can you use it to write a compiler on your own later.

1

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

LLVM Design and Use

2

Understanding modular design
LLVM is designed as a set of libraries unlike other compilers such as GNU Compiler
Collection (GCC). In this recipe, LLVM optimizer will be used to understand this design. As
LLVM optimizer's design is library-based, it allows you to order the passes to be run in a
specified order. Also, this design allows you to choose which optimization passes you can
run—that is, there might be a few optimizations that might not be useful to the type of system
you are designing, and only a few optimizations will be specific to the system. When looking at
traditional compiler optimizers, they are built as a tightly interconnected mass of code, that is
difficult to break down into small parts that you can understand and use easily. In LLVM, you
need not know about how the whole system works to know about a specific optimizer. You can
just pick one optimizer and use it without having to worry about other components attached to
it.

Before we go ahead and look into this recipe, we must also know a little about LLVM assembly
language. The LLVM code is represented in three forms: in memory compiler Intermediate
Representation (IR), on disk bitcode representation, and as human readable assembly. LLVM
is a Static Single Assignment (SSA)-based representation that provides type safety, low level
operations, flexibility, and the capability to represent all the high-level languages cleanly. This
representation is used throughout all the phases of LLVM compilation strategy. The LLVM
representation aims to be a universal IR by being at a low enough level that high-level ideas
may be cleanly mapped to it. Also, LLVM assembly language is well formed. If you have any
doubts about understanding the LLVM assembly mentioned in this recipe, refer to the link
provided in the See also section at the end of this recipe.

Getting ready
We must have installed the LLVM toolchain on our host machine. Specifically, we need the
opt tool.

How to do it...
We will run two different optimizations on the same code, one-by-one, and see how it modifies
the code according to the optimization we choose.

1. First of all, let us write a code we can input for these optimizations. Here we will write
it into a file named testfile.ll:
$ cat testfile.ll

define i32 @test1(i32 %A) {

 %B = add i32 %A, 0

 ret i32 %B

}

Chapter 1

3

define internal i32 @test(i32 %X, i32 %dead) {

 ret i32 %X

}

define i32 @caller() {

 %A = call i32 @test(i32 123, i32 456)

 ret i32 %A

}

2. Now, run the opt tool for one of the optimizations—that is, for combining the
instruction:
$ opt –S –instcombine testfile.ll –o output1.ll

3. View the output to see how instcombine has worked:
$ cat output1.ll

; ModuleID = 'testfile.ll'

define i32 @test1(i32 %A) {

 ret i32 %A

}

define internal i32 @test(i32 %X, i32 %dead) {

 ret i32 %X

}

define i32 @caller() {

 %A = call i32 @test(i32 123, i32 456)

 ret i32 %A

}

4. Run the opt command for dead argument elimination optimization:
$ opt –S –deadargelim testfile.ll –o output2.ll

LLVM Design and Use

4

5. View the output, to see how deadargelim has worked:
$ cat output2.ll

; ModuleID = testfile.ll'

define i32 @test1(i32 %A) {

 %B = add i32 %A, 0

 ret i32 %B

}

define internal i32 @test(i32 %X) {

 ret i32 %X

}

define i32 @caller() {

 %A = call i32 @test(i32 123)

 ret i32 %A

}

How it works...
In the preceding example, we can see that, for the first command, the instcombine pass
is run, which combines the instructions and hence optimizes %B = add i32 %A, 0; ret
i32 %B to ret i32 %A without affecting the code.

In the second case, when the deadargelim pass is run, we can see that there is no
modification in the first function, but the part of code that was not modified last time gets
modified with the function arguments that are not used getting eliminated.

LLVM optimizer is the tool that provided the user with all the different passes in LLVM. These
passes are all written in a similar style. For each of these passes, there is a compiled object
file. Object files of different passes are archived into a library. The passes within the library
are not strongly connected, and it is the LLVM PassManager that has the information about
dependencies among the passes, which it resolves when a pass is executed. The following
image shows how each pass can be linked to a specific object file within a specific library. In
the following figure, the PassA references LLVMPasses.a for PassA.o, whereas the custom
pass refers to a different library MyPasses.a for the MyPass.o object file.

Downloading the example code

You can download the example code files for all Packt
books you have purchased from your account at
http://www.packtpub.com. If you purchased
this book elsewhere, you can visit http://www.
packtpub.com/support and register to have the
files e-mailed directly to you.

http://www.packtpub.com
http://www.packtpub.com/support
http://www.packtpub.com/support

Chapter 1

5

MyOptimizer.cpp

PassManager PM;
PM.add(createPassA());
PM.add(createPassB());
PM.add(createMYPass());
...

LLVMPasses.a

MyPasses.a

MyPass.o

PassA.o

PassB.o

PassC.o

PassD.o

There's more...
Similar to the optimizer, the LLVM code generator also makes use of its modular design,
splitting the code generation problem into individual passes: instruction selection, register
allocation, scheduling, code layout optimization, and assembly emission. Also, there are many
built-in passes that are run by default. It is up to the user to choose which passes to run.

See also
 f In the upcoming chapters, we will see how to write our own custom pass, where we

can choose which of the optimization passes we want to run and in which order. Also,
for a more detailed understanding, refer to http://www.aosabook.org/en/
llvm.html.

 f To understand more about LLVM assembly language, refer to http://llvm.org/
docs/LangRef.html.

Cross-compiling Clang/LLVM
By cross-compiling we mean building a binary on one platform (for example, x86) that will
be run on another platform (for example, ARM). The machine on which we build the binary is
called the host, and the machine on which the generated binary will run is called the target.
The compiler that builds code for the same platform on which it is running (the host and target
platforms are the same) is called a native assembler, whereas the compiler that builds code
for a target platform different from the host platform is called a cross-compiler.

http://www.aosabook.org/en/llvm.html
http://www.aosabook.org/en/llvm.html
http://llvm.org/docs/LangRef.html
http://llvm.org/docs/LangRef.html

LLVM Design and Use

6

In this recipe, cross-compilation of LLVM for a platform different than the host platform will
be shown, so that you can use the built binaries for the required target platform. Here, cross-
compiling will be shown using an example where cross-compilation from host platform x86_64
for target platform ARM will be done. The binaries thus generated can be used on a platform
with ARM architecture.

Getting ready
The following packages need to be installed on your system (host platform):

 f cmake

 f ninja-build (from backports in Ubuntu)
 f gcc-4.x-arm-linux-gnueabihf

 f gcc-4.x-multilib-arm-linux-gnueabihf

 f binutils-arm-linux-gnueabihf

 f libgcc1-armhf-cross

 f libsfgcc1-armhf-cross

 f libstdc++6-armhf-cross

 f libstdc++6-4.x-dev-armhf-cross

 f install llvm on your host platform

How to do it...
To compile for the ARM target from the host architecture, that is X86_64 here, you need to
perform the following steps:

1. Add the following cmake flags to the normal cmake build for LLVM:
-DCMAKE_CROSSCOMPILING=True

-DCMAKE_INSTALL_PREFIX= path-where-you-want-the-
toolchain(optional)

-DLLVM_TABLEGEN=<path-to-host-installed-llvm-toolchain-bin>/llvm-
tblgen

-DCLANG_TABLEGEN=< path-to-host-installed-llvm-toolchain-bin >/
clang-tblgen

-DLLVM_DEFAULT_TARGET_TRIPLE=arm-linux-gnueabihf

-DLLVM_TARGET_ARCH=ARM

-DLLVM_TARGETS_TO_BUILD=ARM

-DCMAKE_CXX_FLAGS='-target armv7a-linux-
gnueabihf -mcpu=cortex-a9 -I/usr/arm-linux-gnueabihf/include/
c++/4.x.x/arm-linux-gnueabihf/ -I/usr/arm-linux-gnueabihf/
include/ -mfloat-abi=hard -ccc-gcc-name arm-linux-gnueabihf-gcc'

Chapter 1

7

2. If using your platform compiler, run:
$ cmake -G Ninja <llvm-source-dir> <options above>

If using Clang as the cross-compiler, run:

$ CC='clang' CXX='clang++' cmake -G Ninja <source-dir> <options
above>

If you have clang/Clang++ on the path, it should work fine.

3. To build LLVM, simply type:
$ ninja

4. After the LLVM/Clang has built successfully, install it with the following command:

$ ninja install

This will create a sysroot on the install-dir location if you have specified the DCMAKE_
INSTALL_PREFIX options

How it works...
The cmake package builds the toolchain for the required platform by making the use of option
flags passed to cmake, and the tblgen tools are used to translate the target description files
into C++ code. Thus, by using it, the information about targets is obtained, for example—what
instructions are available on the target, the number of registers, and so on.

If Clang is used as the cross-compiler, there is a problem in the LLVM ARM
backend that produces absolute relocations on position-independent code
(PIC), so as a workaround, disable PIC at the moment.
The ARM libraries will not be available on the host system. So, either
download a copy of them or build them on your system.

 Converting a C source code to LLVM
assembly

Here we will convert a C code to intermediate representation in LLVM using the C
frontend Clang.

LLVM Design and Use

8

Getting ready
Clang must be installed in the PATH.

How to do it...
1. Lets create a C code in the multiply.c file, which will look something like the

following:
$ cat multiply.c

int mult() {

int a =5;

int b = 3;

int c = a * b;

return c;

}

2. Use the following command to generate LLVM IR from the C code:
$ clang -emit-llvm -S multiply.c -o multiply.ll

3. Have a look at the generated IR:

$ cat multiply.ll

; ModuleID = 'multiply.c'

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: nounwind uwtable

define i32 @mult() #0 {

 %a = alloca i32, align 4

 %b = alloca i32, align 4

 %c = alloca i32, align 4

 store i32 5, i32* %a, align 4

 store i32 3, i32* %b, align 4

 %1 = load i32* %a, align 4

 %2 = load i32* %b, align 4

 %3 = mul nsw i32 %1, %2

 store i32 %3, i32* %c, align 4

 %4 = load i32* %c, align 4

 ret i32 %4

}

Chapter 1

9

We can also use the cc1 for generating IR:
$ clang -cc1 -emit-llvm testfile.c -o testfile.ll

How it works...
The process of C code getting converted to IR starts with the process of lexing, wherein the
C code is broken into a token stream, with each token representing an Identifier, Literal,
Operator, and so on. This stream of tokens is fed to the parser, which builds up an abstract
syntax tree with the help of Context free grammar (CFG) for the language. Semantic analysis
is done afterwards to check whether the code is semantically correct, and then we generate
code to IR.

Here we use the Clang frontend to generate the IR file from C code.

See also
 f In the next chapter, we will see how the lexer and parser work and how code

generation is done. To understand the basics of LLVM IR, you can refer to
http://llvm.org/docs/LangRef.html.

Converting IR to LLVM bitcode
In this recipe, you will learn to generate LLVM bit code from IR. The LLVM bit code file format
(also known as bytecode) is actually two things: a bitstream container format and an encoding
of LLVM IR into the container format.

Getting Ready
The llvm-as tool must be installed in the PATH.

How to do it...
Do the following steps:

1. First create an IR code that will be used as input to llvm-as:
$ cat test.ll

define i32 @mult(i32 %a, i32 %b) #0 {

 %1 = mul nsw i32 %a, %b

 ret i32 %1

}

http://llvm.org/docs/LangRef.html

LLVM Design and Use

10

2. To convert LLVM IR in test.ll to bitcode format, you need to use the following
command:
llvm-as test.ll –o test.bc

3. The output is generated in the test.bc file, which is in bit stream format; so, when
we want to have a look at output in text format, we get it as shown in the following
screenshot:

Since this is a bitcode file, the best way to view its content would be by using the
hexdump tool. The following screenshot shows the output of hexdump:

Chapter 1

11

How it works...
The llvm-as is the LLVM assembler. It converts the LLVM assembly file that is the LLVM IR
into LLVM bitcode. In the preceding command, it takes the test.ll file as the input and
outputs, and test.bc as the bitcode file.

There's more...
To encode LLVM IR into bitcode, the concept of blocks and records is used. Blocks represent
regions of bitstream, for example—a function body, symbol table, and so on. Each block has
an ID specific to its content (for example, function bodies in LLVM IR are represented by ID
12). Records consist of a record code and an integer value, and they describe the entities
within the file such as instructions, global variable descriptors, type descriptions, and so on.

Bitcode files for LLVM IR might be wrapped in a simple wrapper structure. This structure
contains a simple header that indicates the offset and size of the embedded BC file.

See also
 f To get a detailed understanding of the LLVM the bitstream file format, refer to

http://llvm.org/docs/BitCodeFormat.html#abstract

Converting LLVM bitcode to target machine
assembly

In this recipe, you will learn how to convert the LLVM bitcode file to target specific assembly
code.

Getting ready
The LLVM static compiler llc should be in installed from the LLVM toolchain.

How to do it...
Do the following steps:

1. The bitcode file created in the previous recipe, test.bc, can be used as input to
llc here. Using the following command, we can convert LLVM bitcode to assembly
code:
$ llc test.bc –o test.s

www.allitebooks.comwww.allitebooks.com

http://llvm.org/docs/BitCodeFormat.html#abstract
http://www.allitebooks.org
http://www.allitebooks.org

LLVM Design and Use

12

2. The output is generated in the test.s file, which is the assembly code. To have a
look at that, use the following command lines:
$ cat test.s

.text

.file "test.bc"

.globl mult

.align 16, 0x90

.type mult,@function

mult: # @mult

.cfi_startproc

BB#0:

Pushq %rbp

.Ltmp0:

.cfi_def_cfa_offset 16

.Ltmp1:

.cfi_offset %rbp, -16

movq %rsp, %rbp

.Ltmp2:

.cfi_def_cfa_register %rbp

imull %esi, %edi

movl %edi, %eax

popq %rbp

retq

.Ltmp3:

.size mult, .Ltmp3-mult

.cfi_endproc

3. You can also use Clang to dump assembly code from the bitcode file format. By
passing the –S option to Clang, we get test.s in assembly format when the test.
bc file is in bitstream file format:

$ clang -S test.bc -o test.s –fomit-frame-pointer # using the
clang front end

The test.s file output is the same as that of the preceding example. We use the
additional option fomit-frame-pointer, as Clang by default does not eliminate
the frame pointer whereas llc eliminates it by default.

Chapter 1

13

How it works...
The llc command compiles LLVM input into assembly language for a specified architecture.
If we do not mention any architecture as in the preceding command, the assembly will
be generated for the host machine where the llc command is being used. To generate
executable from this assembly file, you can use assembler and linker.

There's more...
By specifying -march=architecture flag in the preceding command, you can specify
the target architecture for which the assembly needs to be generated. Using the -mcpu=cpu
flag setting, you can specify a CPU within the architecture to generate code. Also by
specifying -regalloc=basic/greedy/fast/pbqp, you can specify the type of register
allocation to be used.

Converting LLVM bitcode back to LLVM
assembly

In this recipe, you will convert LLVM bitcode back to LLVM IR. Well, this is actually possible
using the LLVM disassembler tool called llvm-dis.

Getting ready
To do this, you need the llvm-dis tool installed.

How to do it...
To see how the bitcode file is getting converted to IR, use the test.bc file generated in
the recipe Converting IR to LLVM Bitcode. The test.bc file is provided as the input to the
llvm-dis tool. Now proceed with the following steps:

1. Using the following command shows how to convert a bitcode file to an the one we
had created in the IR file:
$ llvm-dis test.bc –o test.ll

2. Have a look at the generated LLVM IR by the following:

| $ cat test.ll

; ModuleID = 'test.bc'

define i32 @mult(i32 %a, i32 %b) #0 {

 %1 = mul nsw i32 %a, %b

LLVM Design and Use

14

 ret i32 %1

}

The output test.ll file is the same as the one we created in the recipe Converting
IR to LLVM Bitcode.

How it works...
The llvm-dis command is the LLVM disassembler. It takes an LLVM bitcode file
and converts it into LLVM assembly language.

Here, the input file is test.bc, which is transformed to test.ll by llvm-dis.
If the filename is omitted, llvm-dis reads its input from standard input.

Transforming LLVM IR
In this recipe, we will see how we can transform the IR from one form to another using the opt
tool. We will see different optimizations being applied to IR code.

Getting ready
You need to have the opt tool installed.

How to do it...
The opt tool runs the transformation pass as in the following command:

$opt –passname input.ll –o output.ll

1. Let's take an actual example now. We create the LLVM IR equivalent to the C code
used in the recipe Converting a C source code to LLVM assembly:
$ cat multiply.c

int mult() {

int a =5;

int b = 3;

int c = a * b;

return c;

}

Chapter 1

15

2. Converting and outputting it, we get the unoptimized output:
$ clang -emit-llvm -S multiply.c -o multiply.ll

$ cat multiply.ll

; ModuleID = 'multiply.c'

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: nounwind uwtable

define i32 @mult() #0 {

 %a = alloca i32, align 4

 %b = alloca i32, align 4

 %c = alloca i32, align 4

 store i32 5, i32* %a, align 4

 store i32 3, i32* %b, align 4

 %1 = load i32* %a, align 4

 %2 = load i32* %b, align 4

 %3 = mul nsw i32 %1, %2

 store i32 %3, i32* %c, align 4

 %4 = load i32* %c, align 4

 ret i32 %4

}

3. Now use the opt tool to transform it to a form where memory is promoted to register:

$ opt -mem2reg -S multiply.ll -o multiply1.ll

$ cat multiply1.ll

; ModuleID = 'multiply.ll'

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: nounwind uwtable

define i32 @mult(i32 %a, i32 %b) #0 {

 %1 = mul nsw i32 %a, %b

 ret i32 %1

}

LLVM Design and Use

16

How it works...
The opt, LLVM optimizer, and analyzer tools take the input.ll file as the input and run the
pass passname on it. The output after running the pass is obtained in the output.ll file
that contains the IR code after the transformation. There can be more than one pass passed
to the opt tool.

There's more...
When the –analyze option is passed to opt, it performs various analyses of the input source
and prints results usually on the standard output or standard error. Also, the output can be
redirected to a file when it is meant to be fed to another program.

When the –analyze option is not passed to opt, it runs the transformation passes meant to
optimize the input file.

Some of the important transformations are listed as follows, which can be passed as a flag to
the opt tool:

 f adce: Aggressive Dead Code Elimination
 f bb-vectorize: Basic-Block Vectorization
 f constprop: Simple constant propagation
 f dce: Dead Code Elimination
 f deadargelim: Dead Argument Elimination
 f globaldce: Dead Global Elimination
 f globalopt: Global Variable Optimizer
 f gvn: Global Value Numbering
 f inline: Function Integration/Inlining
 f instcombine: Combine redundant instructions
 f licm: Loop Invariant Code Motion
 f loop: unswitch: Unswitch loops
 f loweratomic: Lower atomic intrinsics to non-atomic form
 f lowerinvoke: Lower invokes to calls, for unwindless code generators
 f lowerswitch: Lower SwitchInsts to branches
 f mem2reg: Promote Memory to Register
 f memcpyopt: MemCpy Optimization
 f simplifycfg: Simplify the CFG
 f sink: Code sinking
 f tailcallelim: Tail Call Elimination

Chapter 1

17

Run at least some of the preceding passes to get an understanding of how they work. To get
to the appropriate source code on which these passes might be applicable, go to the llvm/
test/Transforms directory. For each of the above mentioned passes, you can see the test
codes. Apply the relevant pass and see how the test code is getting modified.

To see the mapping of how C code is converted to IR, after converting
the C code to IR, as discussed in an earlier recipe Converting a C source
code to LLVM assembly, run the mem2reg pass. It will then help you
understand how a C instruction is getting mapped into IR instructions.

Linking LLVM bitcode
In this section, you will link previously generated .bc files to get one single bitcode file
containing all the needed references.

Getting ready
To link the .bc files, you need the llvm-link tool.

How to do it...
Do the following steps:

1. To show the working of llvm-link, first write two codes in different files, where one
makes a reference to the other:
$ cat test1.c

int func(int a) {

a = a*2;

return a;

}

$ cat test2.c

#include<stdio.h>

extern int func(int a);

int main() {

int num = 5;

num = func(num);

printf("number is %d\n", num);

return num;

}

LLVM Design and Use

18

2. Using the following formats to convert this C code to bitstream file format, first
convert to .ll files, then from .ll files to .bc files:
$ clang -emit-llvm -S test1.c -o test1.ll

$ clang -emit-llvm -S test2.c -o test2.ll

$ llvm-as test1.ll -o test1.bc

$ llvm-as test2.ll -o test2.bc

We get test1.bc and test2.bc with test2.bc making a reference to
func syntax in the test1.bc file.

3. Invoke the llvm-link command in the following way to link the two LLVM
bitcode files:
$ llvm-link test1.bc test2.bc –o output.bc

We provide multiple bitcode files to the llvm-link tool, which links them together to
generate a single bitcode file. Here, output.bc is the generated output file. We will execute
this bitcode file in the next recipe Executing LLVM bitcode.

How it works...
The llvm-link works using the basic functionality of a linker—that is, if a function or
variable referenced in one file is defined in the other file, it is the job of linker to resolve all the
references made in a file and defined in the other file. But note that this is not the traditional
linker that links various object files to generate a binary. The llvm-link tool links bitcode
files only.

In the preceding scenario, it is linking test1.bc and test2.bc files to generate the
output.bc file, which has references resolved.

After linking the bitcode files, we can generate the output as an IR file by
giving –S option to the llvm-link tool.

Executing LLVM bitcode
In this recipe, you will execute the LLVM bitcode that was generated in previous recipes.

Getting ready
To execute the LLVM bitcode, you need the lli tool.

Chapter 1

19

How to do it...
We saw in the previous recipe how to create a single bitstream file after linking the two .bc
files with one referencing the other to define func. By invoking the lli command in the
following way, we can execute the output.bc file generated. It will display the output on
the standard output:

| $ lli output.bc

 number is 10

The output.bc file is the input to lli, which will execute the bitcode file and display the
output, if any, on the standard output. Here the output is generated as number is 10, which
is a result of the execution of the output.bc file formed by linking test1.c and test2.c
in the previous recipe. The main function in the test2.c file calls the function func in the
test1.c file with integer 5 as the argument to the function. The func function doubles the
input argument and returns the result to main the function that outputs it on the standard
output.

How it works...
The lli tool command executes the program present in LLVM bitcode format. It takes the
input in LLVM bitcode format and executes it using a just-in-time compiler, if there is one
available for the architecture, or an interpreter.

If lli is making use of a just-in-time compiler, then it effectively takes all the code generator
options as that of llc.

See also
 f The Adding JIT support for a language recipe in Chapter 3, Extending the Frontend

and Adding JIT support.

Using the C frontend Clang
In this recipe, you will get to know how the Clang frontend can be used for different purposes.

Getting ready
You will need Clang tool.

LLVM Design and Use

20

How to do it…
Clang can be used as the high-level compiler driver. Let us show it using an example:

1. Create a hello world C code, test.c:
$ cat test.c

#include<stdio.h>

int main() {

printf("hello world\n");

return 0; }

2. Use Clang as a compiler driver to generate the executable a.out file, which on
execution gives the output as expected:
$ clang test.c

$./a.out

hello world

Here the test.c file containing C code is created. Using Clang we compile it and
produce an executable that on execution gives the desired result.

3. Clang can be used in preprocessor only mode by providing the –E flag. In the following
example, create a C code having a #define directive defining the value of MAX and
use this MAX as the size of the array you are going to create:
$ cat test.c

#define MAX 100

void func() {

int a[MAX];

}

4. Run the preprocessor using the following command, which gives the output on
standard output:
$ clang test.c -E

1 "test.c"

1 "<built-in>" 1

1 "<built-in>" 3

308 "<built-in>" 3

1 "<command line>" 1

1 "<built-in>" 2

1 "test.c" 2

Chapter 1

21

void func() {

int a[100];

}

In the test.c file, which will be used in all the subsequent sections of this recipe,
MAX is defined to be 100, which on preprocessing is substituted to MAX in a[MAX],
which becomes a[100].

5. You can print the AST for the test.c file from the preceding example using the
following command, which displays the output on standard output:
| $ clang -cc1 test.c -ast-dump

TranslationUnitDecl 0x3f72c50 <<invalid sloc>> <invalid sloc>
|-TypedefDecl 0x3f73148 <<invalid sloc>> <invalid sloc> implicit
__int128_t '__int128'
|-TypedefDecl 0x3f731a8 <<invalid sloc>> <invalid sloc> implicit
__uint128_t 'unsigned __int128'
|-TypedefDecl 0x3f73518 <<invalid sloc>> <invalid sloc> implicit
__builtin_va_list '__va_list_tag [1]'
`-FunctionDecl 0x3f735b8 <test.c:3:1, line:5:1> line:3:6 func
'void ()'
 `-CompoundStmt 0x3f73790 <col:13, line:5:1>
 `-DeclStmt 0x3f73778 <line:4:1, col:11>
 `-VarDecl 0x3f73718 <col:1, col:10> col:5 a 'int [100]'

Here, the –cc1 option ensures that only the compiler front-end should be run, not the
driver, and it prints the AST corresponding to the test.c file code.

6. You can generate the LLVM assembly for the test.c file in previous examples, using
the following command:
|$ clang test.c -S -emit-llvm -o -

|; ModuleID = 'test.c'

|target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

|target triple = "x86_64-unknown-linux-gnu"

|

|; Function Attrs: nounwind uwtable

|define void @func() #0 {

|%a = alloca [100 x i32], align 16

|ret void

|}

The –S and –emit-llvm flag ensure the LLVM assembly is generated for the
test.c code.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

LLVM Design and Use

22

7. To get machine code use for the same test.c testcode, pass the –S flag to Clang. It
generates the output on standard output because of the option –o –:

|$ clang -S test.c -o -

| .text

| .file "test.c"

| .globl func

| .align 16, 0x90

| .type func,@function

|func: # @func

| .cfi_startproc

|# BB#0:

| pushq %rbp

|.Ltmp0:

| .cfi_def_cfa_offset 16

|.Ltmp1:

| .cfi_offset %rbp, -16

| movq %rsp, %rbp

|.Ltmp2:

| .cfi_def_cfa_register %rbp

| popq %rbp

| retq

|.Ltmp3:

| .size func, .Ltmp3-func

| .cfi_endproc

When the –S flag is used alone, machine code is generated by the code generation process of
the compiler. Here, on running the command, machine code is output on the standard output
as we use –o – options.

How it works...
Clang works as a preprocessor, compiler driver, frontend, and code generator in the preceding
examples, thus giving the desired output as per the input flag given to it.

See also
 f This was a basic introduction to how Clang can be used. There are also many other

flags that can be passed to Clang, which makes it perform different operation. To see
the list, use Clang –help.

Chapter 1

23

Using the GO frontend
The llgo compiler is the LLVM-based frontend for Go written in Go language only. Using this
frontend, we can generate the LLVM assembly code from a program written in Go.

Getting ready
You need to download the llgo binaries or build llgo from the source code and add the
binaries in the PATH file location as configured.

How to do it…
Do the following steps:

1. Create a Go source file, for example, that will be used for generating the LLVM
assembly using llgo. Create test.go:
|$ cat test.go

|package main

|import "fmt"

|func main() {

| fmt.Println("Test Message")

|}

2. Now, use llgo to get the LLVM assembly:
$llgo -dump test.go

; ModuleID = 'main'

target datalayout = "e-p:64:64:64..."

target triple = "x86_64-unknown-linux"

%0 = type { i8*, i8* }

....

How it works…
The llgo compiler is the frontend for the Go language; it takes the test.go program as its
input and emits the LLVM IR.

See also
 f For information about how to get and install llgo, refer to https://github.com/

go-llvm/llgo

https://github.com/go-llvm/llgo
https://github.com/go-llvm/llgo

LLVM Design and Use

24

Using DragonEgg
Dragonegg is a gcc plugin that allows gcc to make use of the LLVM optimizer and code
generator instead of gcc's own optimizer and code generator.

Getting ready
You need to have gcc 4.5 or above, with the target machine being x86-32/x86-64 and
an ARM processor. Also, you need to download the dragonegg source code and build the
dragonegg.so file.

How to do It…
Do the following steps:

1. Create a simple hello world program:
$ cat testprog.c

#include<stdio.h>

int main() {

printf("hello world");

}

2. Compile this program with your gcc; here we use gcc-4.5:
$ gcc testprog.c -S -O1 -o -

 .file " testprog.c"

 .section .rodata.str1.1,"aMS",@progbits,1

.LC0:

 .string "Hello world!"

 .text

.globl main

 .type main, @function

main:

 subq $8, %rsp

 movl $.LC0, %edi

 call puts

 movl $0, %eax

 addq $8, %rsp

 ret

 .size main, .-main

Chapter 1

25

3. Using the -fplugin=path/dragonegg.so flag in the command line of gcc makes
gcc use LLVM's optimizer and LLVM codegen:

$ gcc testprog.c -S -O1 -o - -fplugin=./dragonegg.so

 .file " testprog.c"

Start of file scope inline assembly

 .ident "GCC: (GNU) 4.5.0 20090928 (experimental) LLVM:
82450:82981"

End of file scope inline assembly

 .text

 .align 16

 .globl main

 .type main,@function

main:

 subq $8, %rsp

 movl $.L.str, %edi

 call puts

 xorl %eax, %eax

 addq $8, %rsp

 ret

 .size main, .-main

 .type .L.str,@object

 .section .rodata.str1.1,"aMS",@progbits,1

.L.str:

 .asciz "Hello world!"

 .size .L.str, 13

 .section .note.GNU-stack,"",@progbits

See also
 f To know about how to get the source code and installation procedure, refer to

http://dragonegg.llvm.org/

http://dragonegg.llvm.org/

27

Steps in Writing
a Frontend

In this chapter, we will cover the following recipes:

 f Defining a TOY language

 f Implementing a lexer

 f Defining Abstract Syntax Tree

 f Implementing a parser

 f Parsing simple expressions

 f Parsing binary expressions

 f Invoking a driver for parsing

 f Running lexer and parser on our TOY language

 f Defining IR code generation methods for each AST class

 f Generating IR code for expressions

 f Generating IR code for functions

 f Adding IR optimization support

Introduction
In this chapter, you will get to know about how to write a frontend for a language. By making
use of a custom-defined TOY language, you will have recipes on how to write a lexer and a
parser, and how to generate IR code from the Abstract Syntax Tree (AST) generated by
the frontend.

2

Steps in Writing a Frontend

28

Defining a TOY language
Before implementing a lexer and parser, the syntax and grammar of the language need to be
determined first. In this chapter, a TOY language is used to demonstrate how a lexer and a
parser can be implemented. The purpose of this recipe is to show how a language is skimmed
through. For this purpose, the TOY language to be used is simple but meaningful.

A language typically has some variables, some function calls, some constants, and so on. To
keep things simple, our TOY language in consideration has only numeric constants of 32-bit
Integer type A, a variable that need not declare its type (like Python, in contrast to C/C++/
Java, which require a type declaration) in the TOY language.

How to do it…
The grammar can be defined as follows (the production rules are defined below, with
non-terminals on Left Hand Side (LHS) and a combination of terminals and non-terminals on
Right Hand Side (RHS); when LHS is encountered, it yields appropriate RHS defined in the
production rule):

1. A numeric expression will give a constant number:
numeric_expr := number

2. A parenthesis expression will have an expression in between an opening and a
closing bracket:
paran_expr := '(' expression ')'

3. An identifier expression will either yield an identifier or a function call:
identifier_expr
:= identifier
:= identifier '('expr_list ')'

4. If identifier _expr is a function call, it will either have no arguments or list of
arguments separated by a comma:
expr_list
:= (empty)
:= expression (',' expression)*

5. There will be some primary expression, the starting point of the grammar, which may
yield an identifier expression, a numeric expression, or a parenthesis expression:
primary := identifier_expr
:=numeric_expr
:=paran_expr

Chapter 2

29

6. An expression can lead to a binary expression:
expression := primary binoprhs

7. A binary operation with RHS can yield combinations of binary operators and
expressions:
binoprhs := (binoperator primary)*
binoperators := '+'/'-'/'*'/'/'

8. A function declaration can have grammar as follows:
func_decl := identifier '(' identifier_list ')'
identifier_list := (empty)
 := (identifier)*

9. A function definition is distinguished by a def keyword followed by a function
declaration and an expression that defines its body:
function_defn := 'def' func_decl expression

10. Finally, there will be a top level expression that will yield an expression:
toplevel_expr := expression

An example of the TOY language based on the previously defined grammar can be written
as follows:

def foo (x , y)
x +y * 16

Since we have defined the grammar, the next step is to write a lexer and parser for it.

Implementing a lexer
Lexer is a part of the first phase in compiling a program. Lexer tokenizes a stream of input in a
program. Then parser consumes these tokens to construct an AST. The language to tokenize
is generally a context-free language. A token is a string of one or more characters that are
significant as a group. The process of forming tokens from an input stream of characters is
called tokenization. Certain delimiters are used to identify groups of words as tokens. There
are lexer tools to automate lexical analysis, such as LEX. In the TOY lexer demonstrated in
the following procedure is a handwritten lexer using C++.

Getting ready
We must have a basic understanding of the TOY language defined in the recipe. Create a file
named toy.cpp as follows:

$ vim toy.cpp

All the code that follows will contain all the lexer, parser, and code generation logic.

Steps in Writing a Frontend

30

How to do it…
While implementing a lexer, types of tokens are defined to categorize streams of input strings
(similar to states of an automata). This can be done using the enumeration (enum) type:

1. Open the toy.cpp file as follows:
$ vim toy.cpp

2. Write the enum in the toy.cpp file as follows:
enum Token_Type {
EOF_TOKEN = 0,
NUMERIC_TOKEN,
IDENTIFIER_TOKEN,
PARAN_TOKEN,
DEF_TOKEN
};

Following is the term list for the preceding example:

 � EOF_TOKEN: It states the end of file

 � NUMERIC_TOKEN: The current token is of numeric type

 � IDENTIFIER_TOKEN: The current token is identifier

 � PARAN_TOKEN: The current token is parenthesis

 � DEF_TOKEN: The current token def states that whatever follows is a function
definition

3. To hold numeric values, a static variable is defined in the toy.cpp file as follows:
static int Numeric_Val;

4. To hold the Identifier string name, a static variable can be defined in the
toy.cpp file as follows:
 static std::string Identifier_string;

5. Now the lexer function can be defined by using library functions such as isspace(),
isalpha(), and fgetc() in the toy.cpp file, as shown in the following:

static int get_token() {
 static int LastChar = ' ';

 while(isspace(LastChar))
 LastChar = fgetc(file);

 if(isalpha(LastChar)) {
 Identifier_string = LastChar;

Chapter 2

31

 while(isalnum((LastChar = fgetc(file))))
 Identifier_string += LastChar;

 if(Identifier_string == "def")
 return DEF_TOKEN;
 return IDENTIFIER_TOKEN;
 }

 if(isdigit(LastChar)) {
 std::string NumStr;
 do {
 NumStr += LastChar;
 LastChar = fgetc(file);
 } while(isdigit(LastChar));

 Numeric_Val = strtod(NumStr.c_str(), 0);
 return NUMERIC_TOKEN;
 }

 if(LastChar == '#') {
 do LastChar = fgetc(file);
 while(LastChar != EOF && LastChar != '\n'
 && LastChar != '\r');

 if(LastChar != EOF) return get_token();
 }

 if(LastChar == EOF) return EOF_TOKEN;

 int ThisChar = LastChar;
 LastChar = fgetc(file);
 return ThisChar;
}

How it works…
The example TOY language defined earlier was as follows:

def foo (x , y)
x + y * 16

The lexer will get the preceding program as input. It will come across the def keyword and
determine that whatever follows is a definition token, and hence returns the enum value
DEF_TOKEN. After this, it will come across the function definition and its arguments. Then,
there is an expression that involves two binary operators, two variables, and a numeric
constant. How these are stored in data structures is demonstrated in the following recipes.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Steps in Writing a Frontend

32

See also
 f See more sophisticated and detailed handwritten lexer for the C++ language is

written in Clang, at http://clang.llvm.org/doxygen/Lexer_8cpp_source.
html

Defining Abstract Syntax Tree
AST is a tree representation of the abstract syntactic structure of the source code of a
programming language. The ASTs of programming constructs, such as expressions, flow
control statements, and so on, are grouped into operators and operands. ASTs represent
relationships between programming constructs, and not the ways they are generated by
grammar. ASTs ignore unimportant programming elements such as punctuations and
delimiters. ASTs generally contain additional properties of every element in it, which are useful
in further compilation phases. Location of source code is one such property, which can be
used to throw an error line number if an error is encountered in determining the correctness
of the source code in accordance with the grammar (location, line number, column number,
and so on, and other related properties are stored in an object of the SourceManager class
in Clang frontend for C++).

The AST is used intensively during semantic analysis, where the compiler checks for correct
usage of the elements of the program and the language. The compiler also generates symbol
tables based on the AST during semantic analysis. A complete traversal of the tree allows
verification of the correctness of the program. After verifying correctness, the AST serves as
the base for code generation.

Getting ready
We must have run the lexer by now to obtain the tokens that will be used in generating
the AST. The languages we intend to parse consist of expressions, function definitions,
and function declarations. Again we have various types of expressions—variables, binary
operators, numeric expressions, and so on.

How to do it…
To define AST structure, proceed with the following steps:

1. Open the toy.cpp file as follows:
$ vi toy.cpp

Below the lexer code, define ASTs.

http://clang.llvm.org/doxygen/Lexer_8cpp_source.html
http://clang.llvm.org/doxygen/Lexer_8cpp_source.html

Chapter 2

33

2. A base class is defined for parsing an expression as follows:
class BaseAST {
 public :
 virtual ~BaseAST();
};

Then, several derived classes are defined for every type of expression to be parsed.

3. An AST class for variable expressions is defined as follows:
class VariableAST : public BaseAST{
 std::string Var_Name;
// string object to store name of
// the variable.
 public:
 VariableAST (std::string &name) : Var_Name(name) {} // ..//
parameterized constructor of variable AST class to be initialized
with the string passed to the constructor.
};

4. The language has some numeric expressions. The AST class for such numeric
expressions can be defined as follows:
class NumericAST : public BaseAST {
 int numeric_val;
 public :
 NumericAST (intval) :numeric_val(val) {}
};

5. For expressions involving binary operation, the AST class can be defined as follows:
Class BinaryAST : public BaseAST {
 std::string Bin_Operator; // string object to store
 // binary operator
 BaseAST *LHS, *RHS; // Objects used to store LHS and
// RHS of a binary Expression. The LHS and RHS binary
// operation can be of any type, hence a BaseAST object
// is used to store them.
 public:
 BinaryAST (std::string op, BaseAST *lhs, BaseAST *rhs) :
 Bin_Operator(op), LHS(lhs), RHS(rhs) {} // Constructor
 //to initialize binary operator, lhs and rhs of the binary
 //expression.
};

Steps in Writing a Frontend

34

6. The AST class for function declaration can be defined as follows:
class FunctionDeclAST {
 std::string Func_Name;
 std::vector<std::string> Arguments;
 public:
 FunctionDeclAST(const std::string &name, const
std::vector<std::string> &args) :
 Func_Name(name), Arguments(args) {};
};

7. The AST class for function definition can be defined as follows:
class FunctionDefnAST {
 FunctionDeclAST *Func_Decl;
 BaseAST* Body;
 public:
 FunctionDefnAST(FunctionDeclAST *proto, BaseAST *body) :
 Func_Decl(proto), Body(body) {}
};

8. The AST class for function call can be defined as follows:

class FunctionCallAST : public BaseAST {
 std::string Function_Callee;
 std::vector<BaseAST*> Function_Arguments;
 public:
 FunctionCallAST(const std::string &callee, std::vector<BaseAST*>
&args) :
 Function_Callee(callee), Function_Arguments(args) {}
};

The basic skeleton of the AST is now ready to use.

How it works…
The AST acts as a data structure for storing various information about the tokens given by the
lexer. This information is generated in the parser logic and ASTs are filled up according to the
type of token being parsed.

See also
 f Having generated the AST, we will implement the parser, and only after that will we

see an example where both lexer and parser will be invoked. For a more detailed
AST structure of C++ in Clang, refer to: http://clang.llvm.org/docs/
IntroductionToTheClangAST.html.

http://clang.llvm.org/docs/IntroductionToTheClangAST.html
http://clang.llvm.org/docs/IntroductionToTheClangAST.html

Chapter 2

35

Implementing a parser
Parser analyzes a code syntactically according to the rules of the language's grammar. The
parsing phase determines if the input code can be used to form a string of tokens according
to the defined grammar. A parse tree is constructed in this phase. Parser defines functions
to organize language into a data structure called AST. The parser defined in this recipe uses
a recursive decent parser technique which is a top-down parser, and uses mutually recursive
functions to build the AST.

Getting ready
We must have the custom-defined language, that is the TOY language in this case, and also a
stream of tokens generated by the lexer.

How to do it…
Define some basic value holders in our TOY parser as shown in the following:

1. Open the toy.cpp file as follows:
$ vi toy.cpp

2. Define a global static variable to hold the current token from the lexer as follows:
static int Current_token;

3. Define a function to get the next token from the input stream from the lexer
as follows:
static void next_token() {
 Current_token = get_token();
}

4. The next step is to define functions for expression parsing by using the AST data
structure defined in the previous section.

5. Define a generic function to call specific parsing functions according to the types
of tokens determined by the lexer, as shown in the following:

static BaseAST* Base_Parser() {
 switch (Current_token) {
 default: return 0;
 case IDENTIFIER_TOKEN : return identifier_parser();
 case NUMERIC_TOKEN : return numeric_parser();
 case '(' : return paran_parser();
 }
}

Steps in Writing a Frontend

36

How it works…
The stream of input is tokenized and fed to the parser. Current_token holds the token to be
processed. The type of token is known at this stage and the corresponding parser functions
are called to initialize ASTs.

See also
 f In next few recipes, you will learn how to parse different expressions. For more

detailed parsing of the C++ language implemented in Clang, refer to it works:
http://clang.llvm.org/doxygen/classclang_1_1Parser.html.

Parsing simple expressions
In this recipe, you will learn how to parse a simple expression. A simple expression may
consist of numeric values, identifiers, function calls, a function declaration, and function
definitions. For each type of expression, individual parser logic needs to be defined.

Getting ready
We must have the custom-defined language—that is, the TOY language in this case—and also
stream of tokens generated by lexer. We already defined ASTs above. Further, we are going to
parse the expression and invoke AST constructors for every type of expression.

How to do it…
To parse simple expressions, proceed with the following code flow:

1. Open the toy.cpp file as follows:
$ vi toy.cpp

We already have lexer logic present in the toy.cpp file. Whatever code follows needs
to be appended after the lexer code in the toy.cpp file.

2. Define the parser function for numeric expression as follows:
static BaseAST *numeric_parser() {
 BaseAST *Result = new NumericAST(Numeric_Val);
 next_token();
 return Result;
}

http://clang.llvm.org/doxygen/classclang_1_1Parser.html

Chapter 2

37

3. Define the parser function for an identifier expression. Note that identifier can be
a variable reference or a function call. They are distinguished by checking if the next
token is (. This is implemented as follows:
static BaseAST* identifier_parser() {
 std::string IdName = Identifier_string;

 next_token();

 if(Current_token != '(')
 return new VariableAST(IdName);

 next_token();

 std::vector<BaseAST*> Args;
 if(Current_token != ')') {
 while(1) {
 BaseAST* Arg = expression_parser();
 if(!Arg) return 0;
 Args.push_back(Arg);

 if(Current_token == ')') break;

 if(Current_token != ',')
 return 0;
 next_token();
 }
 }
 next_token();

 return new FunctionCallAST(IdName, Args);
}

4. Define the parser function for the function declaration as follows:
static FunctionDeclAST *func_decl_parser() {
 if(Current_token != IDENTIFIER_TOKEN)
 return 0;

 std::string FnName = Identifier_string;
 next_token();

 if(Current_token != '(')
 return 0;

 std::vector<std::string> Function_Argument_Names;

Steps in Writing a Frontend

38

 while(next_token() == IDENTIFIER_TOKEN)
 Function_Argument_Names.push_back(Identifier_string);
 if(Current_token != ')')
 return 0;

 next_token();

 return new FunctionDeclAST(FnName, Function_Argument_Names);
}

5. Define the parser function for the function definition as follows:
static FunctionDefnAST *func_defn_parser() {
 next_token();
 FunctionDeclAST *Decl = func_decl_parser();
 if(Decl == 0) return 0;

 if(BaseAST* Body = expression_parser())
 return new FunctionDefnAST(Decl, Body);
 return 0;
}

Note that the function called expression_parser used in the preceding code,
parses the expression. The function can be defined as follows:

static BaseAST* expression_parser() {
 BaseAST *LHS = Base_Parser();
 if(!LHS) return 0;
 return binary_op_parser(0, LHS);
}

How it works…
If a numeric token is encountered, the constructor for the numeric expression is invoked and
the AST object for the numeric value is returned by the parser, filling up the AST for numeric
values with the numeric data.

Similarly, for identifier expressions, the parsed data will either be a variable or a function call.
For function declaration and definitions, the name of the function and function arguments is
parsed and the corresponding AST class constructors are invoked.

Parsing binary expressions
In this recipe, you will learn how to parse a binary expression.

Chapter 2

39

Getting ready
We must have the custom-defined language—that is, the toy language in this case—and also
stream of tokens generated by lexer. The binary expression parser requires precedence of
binary operators for determining LHS and RHS in order. An STL map can be used to define
precedence of binary operators.

How to do it…
To parse a binary expression, proceed with the following code flow:

1. Open the toy.cpp file as follows:
$ vi toy.cpp

2. Declare a map for operator precedence to store the precedence at global scope in the
toy.cpp file as follows:
static std::map<char, int>Operator_Precedence;

The TOY language for demonstration has 4 operators where precedence of operators
is defined as -< + < / < *.

3. A function to initialize precedence—that is, to store precedence value in map—can be
defined in global scope in the toy.cpp file as follows:
static void init_precedence() {
 Operator_Precedence['-'] = 1;
 Operator_Precedence['+'] = 2;
 Operator_Precedence['/'] = 3;
 Operator_Precedence['*'] = 4;
}

4. A helper function to return precedence of binary operator can be defined as follows:
static int getBinOpPrecedence() {
 if(!isascii(Current_token))
return -1;

 int TokPrec = Operator_Precedence[Current_token];
 if(TokPrec <= 0) return -1;
 return TokPrec;
}

5. Now, the binary operator parser can be defined as follows:
static BaseAST* binary_op_parser(int Old_Prec, BaseAST *LHS) {
 while(1) {
 int Operator_Prec = getBinOpPrecedence();

Steps in Writing a Frontend

40

 if(Operator_Prec < Old_Prec)
 return LHS;

 int BinOp = Current_token;
 next_token();

 BaseAST* RHS = Base_Parser();
 if(!RHS) return 0;

 int Next_Prec = getBinOpPrecedence();
 if(Operator_Prec < Next_Prec) {

RHS = binary_op_parser(Operator_Prec+1, RHS);
if(RHS == 0) return 0;

 }

 LHS = new BinaryAST(std::to_string(BinOp), LHS, RHS);
 }
}

Here, precedence of current operator is checked with the precedence of old
operator, and the outcome is decided according to LHS and RHS of binary operators.
Note that the binary operator parser is recursively called since the RHS can be an
expression and not just a single identifier.

6. A parser function for parenthesis can be defined as follows:
static BaseAST* paran_parser() {
 next_token();
 BaseAST* V = expression_parser();
 if (!V) return 0;

 if(Current_token != ')')
 return 0;
 return V;
}

7. Some top-level functions acting as wrappers around these parser functions can be
defined as follows:

static void HandleDefn() {
 if (FunctionDefnAST *F = func_defn_parser()) {
 if(Function* LF = F->Codegen()) {
 }
 }
 else {
 next_token();

Chapter 2

41

 }
}

static void HandleTopExpression() {
 if(FunctionDefnAST *F = top_level_parser()) {
 if(Function *LF = F->Codegen()) {
 }
 }
 else {
 next_token();
 }
}

See also
 f All of the remaining recipes in this chapter pertain to user objects. For detailed

parsing of expressions, and for C++ parsing, please refer to: http://clang.llvm.
org/doxygen/classclang_1_1Parser.html.

Invoking a driver for parsing
In this recipe, you will learn how to call the parser function from the main function of our TOY
parser.

How to do it…
To invoke a driver program to start parsing, define the driver function as shown in the following:

1. Open the toy.cpp file:
$ vi toy.cpp

2. A Driver function called from the main function, and a parser can now be defined
as follows:
static void Driver() {
 while(1) {
 switch(Current_token) {
 case EOF_TOKEN : return;
 case ';' : next_token(); break;
 case DEF_TOKEN : HandleDefn(); break;
 default : HandleTopExpression(); break;
 }
 }
}

www.allitebooks.comwww.allitebooks.com

http://clang.llvm.org/doxygen/classclang_1_1Parser.html
http://clang.llvm.org/doxygen/classclang_1_1Parser.html
http://www.allitebooks.org
http://www.allitebooks.org

Steps in Writing a Frontend

42

3. The main() function to run the whole program can be defined as follows:
int main(int argc, char* argv[]) {
 LLVMContext &Context = getGlobalContext();
 init_precedence();
 file = fopen(argv[1], "r");
 if(file == 0) {
 printf("Could not open file\n");
 }
 next_token();
 Module_Ob = new Module("my compiler", Context);
 Driver();
 Module_Ob->dump();
 return 0;
}

How it works…
The main function is responsible for calling the lexer and parser so that both can act over
a piece of code that is being input to the compiler frontend. From the main function, driver
function is invoked to start the process of parsing.

See also
 f For details on how the main function and driver function work for c++ parsing in

Clang, refer to http://llvm.org/viewvc/llvm-project/cfe/trunk/tools/
driver/cc1_main.cpp

Running lexer and parser on our TOY
language

Now that a full-fledged lexer and parser for our TOY language grammar are defined, it's time to
run it on example TOY language.

Getting ready
To do this, you should have understanding of TOY language grammar and all the previous
recipes of this chapter.

http://llvm.org/viewvc/llvm-project/cfe/trunk/tools/driver/cc1_main.cpp
http://llvm.org/viewvc/llvm-project/cfe/trunk/tools/driver/cc1_main.cpp

Chapter 2

43

How to do it…
Run and test the Lexer and Parser on TOY Language, as shown in the following:

1. First step is to compile the toy.cpp program into an executable:
$ clang++ toy.cpp -O3 -o toy

2. The toy executable is our TOY compiler frontend. The toy language to be parsed is
in a file called example:
$ cat example
def foo(x , y)
x + y * 16

3. This file is passed as argument to be processed by the toy compiler:
$./toy example

How it works…
The TOY compiler will open the example file in read mode. Then, it will tokenize the stream of
words. It will come across the def keyword and return DEF_TOKEN. Then, the HandleDefn()
function will be called, which will store the function name and the argument. It will recursively
check for the type of token and then call the specific token handler functions to store them
into respective ASTs.

See also
 f The aforementioned lexer and parser do not handle errors in syntax except a few

trivial ones. To implement Error handling, refer to http://llvm.org/docs/
tutorial/LangImpl2.html#parser-basics.

Defining IR code generation methods for
each AST class

Now, since the AST is ready with all the necessary information in its data structure, the next
phase is to generate LLVM IR. LLVM APIs are used in this code generation. LLVM IR has a
predefined format that is generated by the inbuilt APIs of LLVM.

Getting ready
You must have created the AST from any input code of the TOY language.

http://llvm.org/docs/tutorial/LangImpl2.html#parser-basics
http://llvm.org/docs/tutorial/LangImpl2.html#parser-basics

Steps in Writing a Frontend

44

How to do it…
In order to generate LLVM IR, a virtual CodeGen function is defined in each AST class (the
AST classes were defined earlier in the AST section; these functions are additional to those
classes) as follows:

1. Open the toy.cpp file as follows:
$ vi toy.cpp

2. In the BaseAST class defined earlier, append the Codegen() functions as follows:
class BaseAST {
 …
 …
 virtual Value* Codegen() = 0;
};
class NumericAST : public BaseAST {
 …
 …
 virtual Value* Codegen();
};
class VariableAST : public BaseAST {
 …
 …
 virtual Value* Codegen();
};

This virtual Codegen() function is included in every AST class we defined.

This function returns an LLVM Value object, which represents Static Single
Assignment (SSA) value in LLVM. A few more static variables are defined that
will be used during Codegen.

3. Declare the following static variables in global scope as follows:
static Module *Module_Ob;
static IRBuilder<> Builder(getGlobalContext());
static std::map<std::string, Value*>Named_Values;

How it works…
The Module_Ob module contains all the functions and variables in the code.

The Builder object helps to generate LLVM IR and keeps track of the current point in
the program to insert LLVM instructions. The Builder object has functions to create
new instructions.

The Named_Values map keeps track of all the values defined in the current scope like a
symbol table. For our language, this map will contain function parameters.

Chapter 2

45

Generating IR code for expressions
In this recipe, you will see how IR code gets generated for an expression using the compiler
frontend.

How to do it…
To implement LLVM IR code generation for our TOY language, proceed with the following
code flow:

1. Open the toy.cpp file as follows:
$ vi toy.cpp

2. The function to generate code for numeric values can be defined as follows:
Value *NumericAST::Codegen() {
 return ConstantInt::get(Type::getInt32Ty(getGlobalContext()),
numeric_val);
}

In LLVM IR, integer constants are represented by the ConstantInt class whose
numeric value is held by the APInt class.

3. The function for generating code for variable expressions can be defined as follows:
Value *VariableAST::Codegen() {
 Value *V = Named_Values[Var_Name];
 return V ? V : 0;
}

4. The Codegen() function for binary expression can be defined as follows:
Value *BinaryAST::Codegen() {
 Value *L = LHS->Codegen();
 Value *R = RHS->Codegen();
 if(L == 0 || R == 0) return 0;

 switch(atoi(Bin_Operator.c_str())) {
 case '+' : return Builder.CreateAdd(L, R, "addtmp");
 case '-' : return Builder.CreateSub(L, R, "subtmp");
 case '*' : return Builder.CreateMul(L, R, "multmp");
 case '/' : return Builder.CreateUDiv(L, R, "divtmp");
 default : return 0;
 }
}

If the code above emits multiple addtmp variables, LLVM will automatically provide
each one with an increasing, unique numeric suffix.

Steps in Writing a Frontend

46

See also
 f The next recipe shows how to generate IR code for function; we will learn how the

code generation actually works.

Generating IR code for functions
In this recipe you, will learn how to generate IR code for a function.

How to do it…
Do the following steps:

1. The Codegen() function for the function call can be defined as follows:
Value *FunctionCallAST::Codegen() {
 Function *CalleeF =
 Module_Ob->getFunction(Function_Callee);
 std::vector<Value*>ArgsV;
 for(unsigned i = 0, e = Function_Arguments.size();
 i != e; ++i) {
 ArgsV.push_back(Function_Arguments[i]->Codegen());
 if(ArgsV.back() == 0) return 0;
 }
 return Builder.CreateCall(CalleeF, ArgsV, "calltmp");
}

Once we have the function to call, we recursively call the Codegen() function for
each argument that is to be passed in and create an LLVM call instruction.

2. Now that the Codegen() function for a function call has been defined, it's time to
define the Codegen() functions for declarations and function definitions.

The Codegen() function for function declarations can be defined as follows:

Function *FunctionDeclAST::Codegen() {
 std::vector<Type*>Integers(Arguments.size(), Type::getInt32Ty(ge
tGlobalContext()));
 FunctionType *FT = FunctionType::get(Type::getInt32Ty(getGlobalC
ontext()), Integers, false);
 Function *F = Function::Create(FT, Function::ExternalLinkage,
Func_Name, Module_Ob);

 if(F->getName() != Func_Name) {
 F->eraseFromParent();
 F = Module_Ob->getFunction(Func_Name);

 if(!F->empty()) return 0;

Chapter 2

47

 if(F->arg_size() != Arguments.size()) return 0;

 }

 unsigned Idx = 0;
 for(Function::arg_iterator Arg_It = F->arg_begin(); Idx !=
Arguments.size(); ++Arg_It, ++Idx) {
 Arg_It->setName(Arguments[Idx]);
 Named_Values[Arguments[Idx]] = Arg_It;
 }

 return F;
}

The Codegen() function for function definition can be defined as follows:

Function *FunctionDefnAST::Codegen() {
 Named_Values.clear();

 Function *TheFunction = Func_Decl->Codegen();
 if(TheFunction == 0) return 0;

 BasicBlock *BB = BasicBlock::Create(getGlobalContext(),"entry",
TheFunction);
 Builder.SetInsertPoint(BB);

 if(Value *RetVal = Body->Codegen()) {
 Builder.CreateRet(RetVal);
 verifyFunction(*TheFunction);
 return TheFunction;
 }

 TheFunction->eraseFromParent();
 return 0;
}

3. That's it! LLVMIR is now ready. These Codegen() functions can be called in the
wrappers written to parse top-level expressions as follows:

static void HandleDefn() {
 if (FunctionDefnAST *F = func_defn_parser()) {
 if(Function* LF = F->Codegen()) {
 }
 }
 else {

Steps in Writing a Frontend

48

 next_token();
 }
}
static void HandleTopExpression() {
 if(FunctionDefnAST *F = top_level_parser()) {
 if(Function *LF = F->Codegen()) {
 }
 }
 else {
 next_token();
 }
}

So, after parsing successfully, the respective Codegen() functions are called to
generate the LLVM IR. The dump() function is called to print the generated IR.

How it works…
The Codegen() functions use LLVM inbuilt function calls to generate IR. The header files to
include for this purpose are llvm/IR/Verifier.h, llvm/IR/DerivedTypes.h, llvm/
IR/IRBuilder.h, and llvm/IR/LLVMContext.h, llvm/IR/Module.h.

1. While compiling, this code needs to be linked with LLVM libraries. For this purpose,
the llvm-config tool can be used as follows:
llvm-config --cxxflags --ldflags --system-libs --libs core.

2. For this purpose, the toy program is recompiled with additional flags as follows:
$ clang++ -O3 toy.cpp `llvm-config --cxxflags --ldflags --
system-libs --libs core` -o toy

3. When the toy compiler is now run on example code, it will generate LLVM IR as
follows:
$./toy example

define i32 @foo (i32 %x, i32 %y) {
 entry:
 %multmp = muli32 %y, 16
 %addtmp = add i32 %x, %multmp
 reti32 %addtmp
}

Another example2 file has a function call.$ cat example2:
foo(5, 6);

Chapter 2

49

Its LLVM IR will be dumped as follows:

$./toy example2
define i32 @1 () {
 entry:
 %calltmp = call i32@foo(i32 5, i32 6)
 reti32 %calltmp
}

See also
 f For details on how Codegen() functions for C++ in Clang, refer to http://llvm.

org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/

Adding IR optimization support
LLVM provides a wide variety of optimization passes. LLVM allows a compiler implementation
to decide which optimizations to use, their order, and so on. In this recipe, you will learn how
to add IR optimization support.

How to do it…
Do the following steps:

1. To start with the addition of IR optimization support, first of all a static variable for
function manager has to be defined as follows:
static FunctionPassManager *Global_FP;

2. Then, a function pass manager needs to be defined for the Module object used
previously. This can be done in the main() function as follows:
FunctionPassManager My_FP(TheModule);

3. Now a pipeline of various optimizer passes can be added in the main() function as
follows:
My_FP.add(createBasicAliasAnalysisPass());
My_FP.add(createInstructionCombiningPass());
My_FP.add(createReassociatePass());
My_FP.add(createGVNPass());
My_FP.doInitialization();

http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/
http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/CodeGen/

Steps in Writing a Frontend

50

4. Now the static global function Pass Manager is assigned to this pipeline as follows:
Global_FP = &My_FP;
Driver();

This PassManager has a run method, which we can run on the function IR generated
before returning from Codegen() of the function definition. This is demonstrated as
follows:

Function* FunctionDefnAST::Codegen() {
 Named_Values.clear();
 Function *TheFunction = Func_Decl->Codegen();
 if (!TheFunction) return 0;
 BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry",
TheFunction);
 Builder.SetInsertPoint(BB);
 if (Value* Return_Value = Body->Codegen()) {
 Builder.CreateRet(Return_Value);
 verifyFunction(*TheFunction);
 Global_FP->run(*TheFunction);
 returnTheFunction;
 }
 TheFunction->eraseFromParent();
 return 0;
}

This is a lot more beneficial as it optimizes the function in place, improving the code
generated for the function body.

See also
 f How to add our own optimization pass and its run method will be demonstrated in the

later chapters

51

Extending the Frontend
and Adding JIT Support

In this chapter, we will cover the following recipes:

 f Handling decision making paradigms – if/then/else constructs

 f Generating code for loops

 f Handling user-defined operators – binary operators

 f Handling user-defined operators – unary operators

 f Adding JIT support

Introduction
In the last chapter, the basics of the frontend component for a language were defined. This
included defining tokens for different types of expressions, writing a lexer to tokenize a stream
of input, chalking out a skeleton for the abstract syntax tree of various expressions, writing a
parser, and generating code for the language. Also, how various optimizations can be hooked
to the frontend was explained.

A language is more powerful and expressive when it has control flow and loops to decide
the flow of a program. JIT support explores the possibility of compiling code on-the-fly. In
this chapter, implementation of these more sophisticated programming paradigms will be
discussed. This chapter deals with enhancements of a programming language that make it
more meaningful and powerful to use. The recipes in this chapter demonstrate how to include
those enhancements for a given language.

3

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Extending the Frontend and Adding JIT Support

52

Handling decision making paradigms –
if/then/else constructs

In any programming language, executing a statement based on certain conditions gives a very
powerful advantage to the language. The if/then/else constructs provide the capability to
alter the control flow of a program, based on certain conditions. The condition is present in an
if construct. If the condition is true, the expression following the then construct is executed. If
it is false, the expression following the else construct is executed. This recipe demonstrates a
basic infrastructure to parse and generate code for the if/then/else construct.

Getting ready
The TOY language for if/then/else can be defined as:

if x < 2 then
x + y
else
x - y

For checking a condition, a comparison operator is required. A simple less than operator,
<, will serve the purpose. To handle <, precedence needs to be defined in the init_
precedence() function, as shown here:

static void init_precedence() {
 Operator_Precedence['<'] = 0;
 …
 …
}

Also, the codegen() function for binary expressions needs to be included for <:

Value* BinaryAST::Codegen() {
…
…
…
case '<' :
L = Builder.CreateICmpULT(L, R, "cmptmp");
return Builder.CreateZExt(L, Type::getInt32Ty(getGlobalContext()),
 "booltmp");…
…
}

Now, the LLVM IR will generate a comparison instruction and a Boolean instruction as a result
of the comparison, which will be used to determine where the control of the program will flow.
It's time to handle the if/then/else paradigm now.

Chapter 3

53

How to do it...
Do the following steps:

1. The lexer in the toy.cpp file has to be extended to handle the if/then/else
constructs. This can be done by appending a token for this in the enum of tokens:
enum Token_Type{
…
…
IF_TOKEN,
THEN_TOKEN,
ELSE_TOKEN
}

2. The next step is to append the entries for these tokens in the get_token() function,
where we match strings and return the appropriate tokens:
static int get_token() {
…
…
…
if (Identifier_string == "def") return DEF_TOKEN;
if(Identifier_string == "if") return IF_TOKEN;
if(Identifier_string == "then") return THEN_TOKEN;
if(Identifier_string == "else") return ELSE_TOKEN;
…
…
}

3. Then we define an AST node in the toy.cpp file:
class ExprIfAST : public BaseAST {
 BaseAST *Cond, *Then, *Else;

public:
 ExprIfAST(BaseAST *cond, BaseAST *then, BaseAST * else_st)
 : Cond(cond), Then(then), Else(else_st) {}
 Value *Codegen() override;
};

4. The next step is to define the parsing logic for the if/then/else constructs:
static BaseAST *If_parser() {
 next_token();

 BaseAST *Cond = expression_parser();
 if (!Cond)

Extending the Frontend and Adding JIT Support

54

 return 0;

 if (Current_token != THEN_TOKEN)
 return 0;
 next_token();

 BaseAST *Then = expression_parser();
 if (Then == 0)
 return 0;

 if (Current_token != ELSE_TOKEN)
 return 0;

 next_token();

 BaseAST *Else = expression_parser();
 if (!Else)
 return 0;

 return new ExprIfAST(Cond, Then, Else);
}

The parser logic is simple: first, the if token is searched for and the expression
following it is parsed for the condition. After that, the then token is identified and
the true condition expression is parsed. Then the else token is searched for and
the false condition expression is parsed.

5. Next we hook up the previously defined function with Base_Parser():
static BaseAST* Base_Parser() {
switch(Current_token) {
…
…
…
case IF_TOKEN : return If_parser();
…
}

6. Now that the AST of if/then/else is filled with the expression by the parser,
it's time to generate the LLVM IR for the conditional paradigm. Let's define the
Codegen() function:
Value *ExprIfAST::Codegen() {
 Value *Condtn = Cond->Codegen();
 if (Condtn == 0)
 return 0;

Chapter 3

55

 Condtn = Builder.CreateICmpNE(
 Condtn, Builder.getInt32(0), "ifcond");

 Function *TheFunc = Builder.GetInsertBlock()->getParent();

 BasicBlock *ThenBB =
 BasicBlock::Create(getGlobalContext(), "then", TheFunc);
 BasicBlock *ElseBB = BasicBlock::Create(getGlobalContext(),
"else");
 BasicBlock *MergeBB = BasicBlock::Create(getGlobalContext(),
"ifcont");

 Builder.CreateCondBr(Condtn, ThenBB, ElseBB);

 Builder.SetInsertPoint(ThenBB);

 Value *ThenVal = Then->Codegen();
 if (ThenVal == 0)
 return 0;

 Builder.CreateBr(MergeBB);
 ThenBB = Builder.GetInsertBlock();

 TheFunc->getBasicBlockList().push_back(ElseBB);
 Builder.SetInsertPoint(ElseBB);

 Value *ElseVal = Else->Codegen();
 if (ElseVal == 0)
 return 0;

 Builder.CreateBr(MergeBB);
 ElseBB = Builder.GetInsertBlock();

 TheFunc->getBasicBlockList().push_back(MergeBB);
 Builder.SetInsertPoint(MergeBB);
 PHINode *Phi = Builder.CreatePHI(Type::getInt32Ty(getGlobalConte
xt()), 2, "iftmp");

 Phi->addIncoming(ThenVal, ThenBB);
 Phi->addIncoming(ElseVal, ElseBB);
 return Phi;
}

Now that we are ready with the code, let's compile and run it on a sample program containing
the if/then/else constructs.

Extending the Frontend and Adding JIT Support

56

How it works…
Do the following steps:

1. Compile the toy.cpp file:
$ g++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-
libs --libs core ` -O3 -o toy

2. Open an example file:
$ vi example

3. Write the following if/then/else code in the example file:
def fib(x)
 if x < 3 then
 1
 Else
 fib(x-1)+fib(x-2);

4. Compile the example file with the TOY compiler:
$./toy example

The LLVM IR generated for the if/then/else code will look like this:

; ModuleID = 'my compiler'
target datalayout = "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128"

define i32 @fib(i32 %x) {
entry:
 %cmptmp = icmp ult i32 %x, 3
 br i1 %cmptmp, label %ifcont, label %else

else: ; preds = %entry
 %subtmp = add i32 %x, -1
 %calltmp = call i32 @fib(i32 %subtmp)
 %subtmp1 = add i32 %x, -2
 %calltmp2 = call i32 @fib(i32 %subtmp1)
 %addtmp = add i32 %calltmp2, %calltmp
 br label %ifcont

ifcont: ; preds = %entry,
%else
 %iftmp = phi i32 [%addtmp, %else], [1, %entry]
 ret i32 %iftmp
}

Chapter 3

57

Here's what the output looks like:

The parser identifies the if/then/else constructs and the statements that are to be
executed in true and false conditions, and stores them in the AST. The code generator then
converts the AST into LLVM IR, where the condition statement is generated. IR is generated
for true as well as false conditions. Depending on the state of the condition variable, the
appropriate statement is executed at runtime.

See also
 f For a detailed example on how an if else statement is handled in C++ by Clang,

refer to http://clang.llvm.org/doxygen/classclang_1_1IfStmt.html.

http://clang.llvm.org/doxygen/classclang_1_1IfStmt.html

Extending the Frontend and Adding JIT Support

58

Generating code for loops
Loops make a language powerful enough to perform the same operation several times, with
limited lines of code. Loops are present in almost every language. This recipe demonstrates
how loops are handled in the TOY language.

Getting ready
A loop typically has a start that initializes the induction variable, a step that indicates an
increment or decrement in the induction variable, and an end condition for termination of the
loop. The loop in our TOY language can be defined as follows:

for i = 1, i < n, 1 in
 x + y;

The start expression is the initialization of i = 1. The end condition for the loop is i<n. The
first line of the code indicates i be incremented by 1.

As long as the end condition is true, the loop iterates and, after each iteration, the induction
variable, i, is incremented by 1. An interesting thing called PHI node comes into the picture to
decide which value the induction variable, i, will take. Remember that our IR is in the single
static assignment (SSA) form. In a control flow graph, for a given variable, the values can
come from two different blocks. To represent SSA in LLVM IR, the phi instruction is defined.
Here is an example of phi:

%i = phi i32 [1, %entry], [%nextvar, %loop]

The preceding IR indicates that the value for i can come from two basic blocks: %entry and
%loop. The value from the %entry block will be 1, while the %nextvar variable will be from
%loop. We will see the details after implementing the loop for our toy compiler.

How to do it...
Like any other expression, loops are also handled by including states in lexer, defining the AST
data structure to hold loop values, and defining the parser and the Codegen() function to
generate the LLVM IR:

1. The first step is to define tokens in the lexer in toy.cpp file:
enum Token_Type {
 …
 …
 FOR_TOKEN,
 IN_TOKEN
 …
 …
};

Chapter 3

59

2. Then we include the logic in the lexer:
static int get_token() {
 …
 …
if (Identifier_string == "else")
 return ELSE_TOKEN;
 if (Identifier_string == "for")
 return FOR_TOKEN;
 if (Identifier_string == "in")
 return IN_TOKEN;
 …
 …
}

3. The next step is to define the AST for the for loop:
class ExprForAST : public BaseAST {
 std::string Var_Name;
 BaseAST *Start, *End, *Step, *Body;

public:
 ExprForAST (const std::string &varname, BaseAST *start, BaseAST
*end,
 BaseAST *step, BaseAST *body)
 : Var_Name(varname), Start(start), End(end), Step(step),
Body(body) {}
 Value *Codegen() override;
};

4. Then we define the parser logic for the loop:
static BaseAST *For_parser() {
 next_token();

 if (Current_token != IDENTIFIER_TOKEN)
 return 0;

 std::string IdName = Identifier_string;
 next_token();

 if (Current_token != '=')
 return 0;
 next_token();

 BaseAST *Start = expression_parser();
 if (Start == 0)

Extending the Frontend and Adding JIT Support

60

 return 0;
 if (Current_token != ',')
 return 0;
 next_token();

 BaseAST *End = expression_parser();
 if (End == 0)
 return 0;

 BaseAST *Step = 0;
 if (Current_token == ',') {
 next_token();
 Step = expression_parser();
 if (Step == 0)
 return 0;
 }

 if (Current_token != IN_TOKEN)
 return 0;
 next_token();

 BaseAST *Body = expression_parser();
 if (Body == 0)
 return 0;

 return new ExprForAST (IdName, Start, End, Step, Body);
}

5. Next we define the Codegen() function to generate the LLVM IR:
Value *ExprForAST::Codegen() {

 Value *StartVal = Start->Codegen();
 if (StartVal == 0)
 return 0;

 Function *TheFunction = Builder.GetInsertBlock()->getParent();
 BasicBlock *PreheaderBB = Builder.GetInsertBlock();
 BasicBlock *LoopBB =
 BasicBlock::Create(getGlobalContext(), "loop", TheFunction);

 Builder.CreateBr(LoopBB);

 Builder.SetInsertPoint(LoopBB);

Chapter 3

61

 PHINode *Variable = Builder.CreatePHI(Type::getInt32Ty(getGlobal
Context()), 2, Var_Name.c_str());
 Variable->addIncoming(StartVal, PreheaderBB);

 Value *OldVal = Named_Values[Var_Name];
 Named_Values[Var_Name] = Variable;

 if (Body->Codegen() == 0)
 return 0;

 Value *StepVal;
 if (Step) {
 StepVal = Step->Codegen();
 if (StepVal == 0)
 return 0;
 } else {
 StepVal = ConstantInt::get(Type::getInt32Ty(getGlobalConte
xt()), 1);
 }

 Value *NextVar = Builder.CreateAdd(Variable, StepVal,
"nextvar");

 Value *EndCond = End->Codegen();
 if (EndCond == 0)
 return EndCond;

 EndCond = Builder.CreateICmpNE(
 EndCond, ConstantInt::get(Type::getInt32Ty(getGlobalConte
xt()), 0), "loopcond");

 BasicBlock *LoopEndBB = Builder.GetInsertBlock();
 BasicBlock *AfterBB =
 BasicBlock::Create(getGlobalContext(), "afterloop",
TheFunction);

 Builder.CreateCondBr(EndCond, LoopBB, AfterBB);

 Builder.SetInsertPoint(AfterBB);

 Variable->addIncoming(NextVar, LoopEndBB);

 if (OldVal)
 Named_Values[Var_Name] = OldVal;

Extending the Frontend and Adding JIT Support

62

 else
 Named_Values.erase(Var_Name);

 return Constant::getNullValue(Type::getInt32Ty(getGlobalConte
xt()));
}

How it works...
Do the following steps:

1. Compile the toy.cpp file:
$ g++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-
libs --libs core ` -O3 -o toy

2. Open an example file:
$ vi example

3. Write the following code for a for loop in the example file:
def printstar(n x)
 for i = 1, i < n, 1.0 in
 x + 1

4. Compile the example file with the TOY compiler:
$./toy example

5. The LLVM IR for the preceding for loop code will be generated, as follows:

; ModuleID = 'my compiler'
target datalayout = "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128"

define i32 @printstar(i32 %n, i32 %x) {
entry:
 br label %loop

loop: ; preds = %loop,
%entry
 %i = phi i32 [1, %entry], [%nextvar, %loop]
 %nextvar = add i32 %i, 1
 %cmptmp = icmp ult i32 %i, %n
 br i1 %cmptmp, label %loop, label %afterloop

afterloop: ; preds = %loop
 ret i32 0
}

Chapter 3

63

The parser you just saw identifies the loop, initialization of the induction variable, the
termination condition, the step value for the induction variable, and the body of the loop. It
then converts each of the blocks in LLVM IR, as seen previously.

As seen previously, a phi instruction gets two values for the variable i from two basic blocks:
%entry and %loop. In the preceding case, the %entry block represents the value assigned
to the induction variable at the start of the loop (this is 1). The next updated value of i comes
from the %loop block, which completes one iteration of the loop.

See also
 f To get a detailed overview of how loops are handled for C++ in Clang, visit

http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Parse/
ParseExprCXX.cpp

Handling user-defined operators – binary
operators

User-defined operators are similar to the C++ concept of operator overloading, where a
default definition of an operator is altered to operate on a wide variety of objects. Typically,
operators are unary or binary operators. Implementing binary operator overloading is easier
with the existing infrastructure. Unary operators need some additional code to handle. First,
binary operator overloading will be defined, and then unary operator overloading will be
looked into.

Getting ready
The first part is to define a binary operator for overloading. The logical OR operator (|) is a
good example to start with. The | operator in our TOY language can be used as follows:

def binary | (LHS RHS)
if LHS then
1
else if RHS then
1
else
0;

As seen in the preceding code, if any of the values of the LHS or RHS are not equal to 0, then
we return 1. If both the LHS and RHS are null, then we return 0.

http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Parse/ParseExprCXX.cpp
http://llvm.org/viewvc/llvm-project/cfe/trunk/lib/Parse/ParseExprCXX.cpp

Extending the Frontend and Adding JIT Support

64

How to do it...
Do the following steps:

1. The first step, as usual, is to append the enum states for the binary operator and
return the enum states on encountering the binary keyword:
 enum Token_Type {
…
…
BINARY_TOKEN
}
static int get_token() {
…
…
if (Identifier_string == "in") return IN_TOKEN;
if (Identifier_string == "binary") return BINARY_TOKEN;
…
…
}

2. The next step is to add an AST for the same. Note that it doesn't need a new AST to be
defined. It can be handled with the function declaration AST. We just need to modify it
by adding a flag to represent whether it's a binary operator. If it is, then determine its
precedence:
class FunctionDeclAST {
 std::string Func_Name;
 std::vector<std::string> Arguments;
 bool isOperator;
 unsigned Precedence;
public:
 FunctionDeclAST(const std::string &name, const
std::vector<std::string> &args,
 bool isoperator = false, unsigned prec = 0)
 : Func_Name(name), Arguments(args), isOperator(isoperator),
Precedence(prec) {}

 bool isUnaryOp() const { return isOperator && Arguments.size()
== 1; }
 bool isBinaryOp() const { return isOperator && Arguments.size()
== 2; }

 char getOperatorName() const {
 assert(isUnaryOp() || isBinaryOp());
 return Func_Name[Func_Name.size() - 1];
 }

Chapter 3

65

 unsigned getBinaryPrecedence() const { return Precedence;
}

 Function *Codegen();
};

3. Once the modified AST is ready, the next step is to modify the parser of the function
declaration:
static FunctionDeclAST *func_decl_parser() {
 std::string FnName;

 unsigned Kind = 0;
 unsigned BinaryPrecedence = 30;

 switch (Current_token) {
 default:
 return 0;
 case IDENTIFIER_TOKEN:
 FnName = Identifier_string;
 Kind = 0;
 next_token();
 break;
 case UNARY_TOKEN:
 next_token();
 if (!isascii(Current_token))
 return 0;
 FnName = "unary";
 FnName += (char)Current_token;
 Kind = 1;
 next_token();
 break;
 case BINARY_TOKEN:
 next_token();
 if (!isascii(Current_token))
 return 0;
 FnName = "binary";
 FnName += (char)Current_token;
 Kind = 2;
 next_token();

 if (Current_token == NUMERIC_TOKEN) {
 if (Numeric_Val < 1 || Numeric_Val > 100)
 return 0;
 BinaryPrecedence = (unsigned)Numeric_Val;

Extending the Frontend and Adding JIT Support

66

 next_token();
 }
 break;
 }

 if (Current_token != '(')
 return 0;

 std::vector<std::string> Function_Argument_Names;
 while (next_token() == IDENTIFIER_TOKEN)
 Function_Argument_Names.push_back(Identifier_string);
 if (Current_token != ')')
 return 0;

 next_token();

 if (Kind && Function_Argument_Names.size() != Kind)
 return 0;

 return new FunctionDeclAST(FnName,
Function_Argument_Names, Kind != 0, BinaryPrecedence);
}

4. Then we modify the Codegen() function for the binary AST:
Value* BinaryAST::Codegen() {
 Value* L = LHS->Codegen();
Value* R = RHS->Codegen();
switch(Bin_Operator) {
case '+' : return Builder.CreateAdd(L, R, "addtmp");
case '-' : return Builder.CreateSub(L, R, "subtmp");
case '*': return Builder.CreateMul(L, R, "multmp");
case '/': return Builder.CreateUDiv(L, R, "divtmp");
case '<' :
L = Builder.CreateICmpULT(L, R, "cmptmp");
return Builder.CreateUIToFP(L, Type::getIntTy(getGlobalContext()),
"booltmp");
default :
break;
}
Function *F = TheModule->getFunction(std::string("binary")+Op);
 Value *Ops[2] = { L, R };
 return Builder.CreateCall(F, Ops, "binop");
}

Chapter 3

67

5. Next we modify the function definition; it can be defined as:
Function* FunctionDefnAST::Codegen() {
Named_Values.clear();
Function *TheFunction = Func_Decl->Codegen();
if (!TheFunction) return 0;
if (Func_Decl->isBinaryOp())
 Operator_Precedence [Func_Decl->getOperatorName()] = Func_
Decl->getBinaryPrecedence();
BasicBlock *BB = BasicBlock::Create(getGlobalContext(), "entry",
TheFunction);
Builder.SetInsertPoint(BB);
if (Value* Return_Value = Body->Codegen()) {
 Builder.CreateRet(Return_Value);
…
…

How it works...
Do the following steps:

1. Compile the toy.cpp file:
$ g++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-
libs --libs core ` -O3 -o toy

2. Open an example file:
$ vi example

3. Write the following binary operator overloading code in the example file:
def binary| 5 (LHS RHS)
 if LHS then
 1
 else if RHS then
 1
 else
 0;

4. Compile the example file with the TOY compiler:

$./toy example

output :

; ModuleID = 'my compiler'

target datalayout = "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128"

Extending the Frontend and Adding JIT Support

68

define i32 @"binary|"(i32 %LHS, i32 %RHS) {

entry:

 %ifcond = icmp eq i32 %LHS, 0

 %ifcond1 = icmp eq i32 %RHS, 0

 %. = select i1 %ifcond1, i32 0, i32 1

 %iftmp5 = select i1 %ifcond, i32 %., i32 1

 ret i32 %iftmp5

}

The binary operator we just defined will be parsed. Its definition is also parsed. Whenever the
| binary operator is encountered, the LHS and RHS are initialized and the definition body is
executed, giving the appropriate result as per the definition. In the preceding example, if either
the LHS or RHS is nonzero, then the result is 1. If both the LHS and RHS are zero, then the
result is 0.

See also
 f For detailed examples on handling other binary operators, refer to http://llvm.

org/docs/tutorial/LangImpl6.html

Handling user-defined operators – unary
operators

We saw in the previous recipe how binary operators can be handled. A language may also
have some unary operator, operating on 1 operand. In this recipe, we will see how to handle
unary operators.

Getting ready
The first step is to define a unary operator in the TOY language. A simple unary NOT operator
(!) can serve as a good example; let's see one definition:

def unary!(v)
 if v then
 0
 else
 1;

If the value v is equal to 1, then 0 is returned. If the value is 0, 1 is returned as the output.

http://llvm.org/docs/tutorial/LangImpl6.html
http://llvm.org/docs/tutorial/LangImpl6.html

Chapter 3

69

How to do it...
Do the following steps:

1. The first step is to define the enum token for the unary operator in the toy.cpp file:
enum Token_Type {
…
…
BINARY_TOKEN,
UNARY_TOKEN
}

2. Then we identify the unary string and return a unary token:
static int get_token() {
…
…
if (Identifier_string == "in") return IN_TOKEN;
if (Identifier_string == "binary") return BINARY_TOKEN;
if (Identifier_string == "unary") return UNARY_TOKEN;

…
…
}

3. Next, we define an AST for the unary operator:
class ExprUnaryAST : public BaseAST {
 char Opcode;
 BaseAST *Operand;
public:
 ExprUnaryAST(char opcode, BaseAST *operand)
 : Opcode(opcode), Operand(operand) {}
 virtual Value *Codegen();
};

4. The AST is now ready. Let's define a parser for the unary operator:
static BaseAST *unary_parser() {

 if (!isascii(Current_token) || Current_token == '(' || Current_
token == ',')
 return Base_Parser();

 int Op = Current_token;

 next_token();

 if (ExprAST *Operand = unary_parser())

Extending the Frontend and Adding JIT Support

70

 return new ExprUnaryAST(Opc, Operand);

return 0;
}

5. The next step is to call the unary_parser() function from the binary operator
parser:
static BaseAST *binary_op_parser(int Old_Prec, BaseAST *LHS) {

 while (1) {
 int Operator_Prec = getBinOpPrecedence();

 if (Operator_Prec < Old_Prec)
 return LHS;

 int BinOp = Current_token;
 next_token();

 BaseAST *RHS = unary_parser();
 if (!RHS)
 return 0;

 int Next_Prec = getBinOpPrecedence();
 if (Operator_Prec < Next_Prec) {
 RHS = binary_op_parser(Operator_Prec + 1, RHS);
 if (RHS == 0)
 return 0;
 }

 LHS = new BinaryAST(std::to_string(BinOp), LHS, RHS);
 }
}

6. Now let's call the unary_parser() function from the expression parser:
static BaseAST *expression_parser() {
 BaseAST *LHS = unary_parser();
 if (!LHS)
 return 0;

 return binary_op_parser(0, LHS);
}

Chapter 3

71

7. Then we modify the function declaration parser:
static FunctionDeclAST* func_decl_parser() {
std::string Function_Name = Identifier_string;
unsigned Kind = 0;
unsigned BinaryPrecedence = 30;
switch (Current_token) {
 default:
 return 0;
 case IDENTIFIER_TOKEN:
 Function_Name = Identifier_string;
 Kind = 0;
 next_token();
 break;
 case UNARY_TOKEN:
 next_token();
if (!isascii(Current_token))
 return0;
 Function_Name = "unary";
 Function_Name += (char)Current_token;
 Kind = 1;
 next_token();
 break;
 case BINARY_TOKEN:
 next_token();
 if (!isascii(Current_token))
 return 0;
 Function_Name = "binary";
 Function_Name += (char)Current_token;
 Kind = 2;
 next_token();
 if (Current_token == NUMERIC_TOKEN) {
 if (Numeric_Val < 1 || Numeric_Val > 100)
 return 0;
 BinaryPrecedence = (unsigned)Numeric_Val;
 next_token();
 }
 break;
 }
if (Current_token ! = '(') {
printf("error in function declaration");
return 0;
}
std::vector<std::string> Function_Argument_Names;

Extending the Frontend and Adding JIT Support

72

while(next_token() == IDENTIFIER_TOKEN)
Function_Argument_Names.push_back(Identifier_string);
if(Current_token != ')') { printf("Expected
')' "); return 0;
}
next_token();
if (Kind && Function_Argument_Names.size() != Kind)
 return 0;
return new FunctionDeclAST(Function_Name, Function_Arguments_
Names, Kind !=0, BinaryPrecedence);
}

8. The final step is to define the Codegen() function for the unary operator:
Value *ExprUnaryAST::Codegen() {

 Value *OperandV = Operand->Codegen();

 if (OperandV == 0) return 0;

 Function *F = TheModule->getFunction(std::string("unary")+Opco
de);

 if (F == 0)
 return 0;

 return Builder.CreateCall(F, OperandV, "unop");
}

How it works...
Do the following steps:

1. Compile the toy.cpp file:
$ g++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-
libs --libs core ` -O3 -o toy

2. Open an example file:
$ vi example

3. Write the following unary operator overloading code in the example file:
def unary!(v)
 if v then
 0
 else
 1;

Chapter 3

73

4. Compile the example file with the TOY compiler:
$./toy example

The output should be as shown:

; ModuleID = 'my compiler'

target datalayout = "e-m:e-p:32:32-f64:32:64-f80:32-n8:16:32-S128"

define i32 @"unary!"(i32 %v) {

entry:

 %ifcond = icmp eq i32 %v, 0

 %. = select i1 %ifcond, i32 1, i32 0

 ret i32 %.

}

The unary operator defined by the user will be parsed, and IR will be generated for it. In the
case you just saw, if the unary operand is not zero then the result is 0. If the operand is zero,
then the result is 1.

See also
 f To learn more detailed implementations of unary operators, visit http://llvm.

org/docs/tutorial/LangImpl6.html

Adding JIT support
A wide variety of tools can be applied to LLVM IR. For example, as demonstrated in Chapter 1,
LLVM Design and Use, the IR can be dumped into bitcode or into an assembly. An optimization
tool called opt can be run on IR. IR acts as the common platform—an abstract layer for all of
these tools.

JIT support can also be added. It immediately evaluates the top-level expressions typed in. For
example, 1 + 2;, as soon as it is typed in, evaluates the code and prints the value as 3.

http://llvm.org/docs/tutorial/LangImpl6.html
http://llvm.org/docs/tutorial/LangImpl6.html

Extending the Frontend and Adding JIT Support

74

How to do it...
Do the following steps:

1. Define a static global variable for the execution engine in the toy.cpp file:
static ExecutionEngine *TheExecutionEngine;

2. In the toy.cpp file's main() function, write the code for JIT:
int main() {
…
…
init_precedence();
TheExecutionEngine = EngineBuilder(TheModule).create();
…
…
}

3. Modify the top-level expression parser in the toy.cpp file:
static void HandleTopExpression() {

if (FunctionDefAST *F = expression_parser())
 if (Function *LF = F->Codegen()) {
 LF -> dump();
 void *FPtr = TheExecutionEngine-
>getPointerToFunction(LF);
 int (*Int)() = (int (*)())(intptr_t)FPtr;

 printf("Evaluated to %d\n", Int());
}
 else
next_token();
}

How it works…
Do the following steps:

1. Compile the toy.cpp program:
$ g++ -g toy.cpp `llvm-config --cxxflags --ldflags --system-
libs --libs core mcjit native` -O3 -o toy

2. Open an example file:
$ vi example

3. Write the following TOY code in the example file:
…
4+5;

Chapter 3

75

4. Finally, run the TOY compiler on the example file:
$./toy example

The output will be

define i32 @0() {

entry:

 ret i32 9

}

The LLVM JIT compiler matches the native platform ABI, casts the result pointer into a function
pointer of that type, and calls it directly. There is no difference between JIT-compiled code and
native machine code that is statically linked to the application.

77

Preparing Optimizations

In this chapter, we will cover the following recipes:

 f Various levels of optimization

 f Writing your own LLVM pass

 f Running your own pass with the opt tool

 f Using another pass in a new pass

 f Registering a pass with pass manager

 f Writing an analysis pass

 f Writing an alias analysis pass

 f Using other analysis passes

Introduction
Once the source code transformation completes, the output is in the LLVM IR form. This IR
serves as a common platform for converting into assembly code, depending on the backend.
However, before converting into an assembly code, the IR can be optimized to produce more
effective code. The IR is in the SSA form, where every new assignment to a variable is a new
variable itself—a classic case of an SSA representation.

In the LLVM infrastructure, a pass serves the purpose of optimizing LLVM IR. A pass runs
over the LLVM IR, processes the IR, analyzes it, identifies the optimization opportunities, and
modifies the IR to produce optimized code. The command-line interface opt is used to run
optimization passes on LLVM IR.

In the upcoming chapters, various optimization techniques will be discussed. Also, how to
write and register a new optimization pass will be explored.

4

Preparing Optimization

78

Various levels of optimization
There are various levels of optimization, starting at 0 and going up to 3 (there is also s
for space optimization). The code gets more and more optimized as the optimization level
increases. Let's try to explore the various optimization levels.

Getting ready...
Various optimization levels can be understood by running the opt command-line interface on
LLVM IR. For this, an example C program can first be converted to IR using the Clang frontend.

1. Open an example.c file and write the following code in it:
$ vi example.c
int main(int argc, char **argv) {
 int i, j, k, t = 0;
 for(i = 0; i < 10; i++) {
 for(j = 0; j < 10; j++) {
 for(k = 0; k < 10; k++) {
 t++;
 }
 }
 for(j = 0; j < 10; j++) {
 t++;
 }
 }
 for(i = 0; i < 20; i++) {
 for(j = 0; j < 20; j++) {
 t++;
 }
 for(j = 0; j < 20; j++) {
 t++;
 }
 }
 return t;
}

2. Now convert this into LLVM IR using the clang command, as shown here:

$ clang –S –O0 –emit-llvm example.c

A new file, example.ll, will be generated, containing LLVM IR. This file will be used
to demonstrate the various optimization levels available.

Chapter 4

79

How to do it…
Do the following steps:

1. The opt command-line tool can be run on the IR-generated example.ll file:
$ opt –O0 –S example.ll

The –O0 syntax specifies the least optimization level.

2. Similarly, you can run other optimization levels:
$ opt –O1 –S example.ll

$ opt –O2 –S example.ll

$ opt –O3 –S example.ll

How it works…
The opt command-line interface takes the example.ll file as the input and runs the
series of passes specified in each optimization level. It can repeat some passes in the same
optimization level. To see which passes are being used in each optimization level, you have to
add the --debug-pass=Structure command-line option with the previous opt commands.

See Also
 f To know more on various other options that can be used with the opt tool, refer to

http://llvm.org/docs/CommandGuide/opt.html

Writing your own LLVM pass
All LLVM passes are subclasses of the pass class, and they implement functionality by
overriding the virtual methods inherited from pass. LLVM applies a chain of analyses and
transformations on the target program. A pass is an instance of the Pass LLVM class.

Getting ready
Let's see how to write a pass. Let's name the pass function block counter; once done,
it will simply display the name of the function and count the basic blocks in that function
when run. First, a Makefile needs to be written for the pass. Follow the given steps
to write a Makefile:

1. Open a Makefile in the llvm lib/Transform folder:
$ vi Makefile

http://llvm.org/docs/CommandGuide/opt.html
http://llvm.org/docs/CommandGuide/opt.html

Preparing Optimization

80

2. Specify the path to the LLVM root folder and the library name, and make this pass a
loadable module by specifying it in Makefile, as follows:
LEVEL = ../../..
LIBRARYNAME = FuncBlockCount
LOADABLE_MODULE = 1
include $(LEVEL)/Makefile.common

This Makefile specifies that all the .cpp files in the current directory are to be compiled and
linked together in a shared object.

How to do it…
Do the following steps:

1. Create a new .cpp file called FuncBlockCount.cpp:
$ vi FuncBlockCount.cpp

2. In this file, include some header files from LLVM:
#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"

3. Include the llvm namespace to enable access to LLVM functions:
using namespace llvm;

4. Then start with an anonymous namespace:
namespace {

5. Next declare the pass:
struct FuncBlockCount : public FunctionPass {

6. Then declare the pass identifier, which will be used by LLVM to identify the pass:
static char ID;
FuncBlockCount() : FunctionPass(ID) {}

7. This step is one of the most important steps in writing a pass—writing a run function.
Since this pass inherits FunctionPass and runs on a function, a runOnFunction
is defined to be run on a function:
bool runOnFunction(Function &F) override {
 errs() << "Function " << F.getName() << '\n';
 return false;
 }
 };
}

This function prints the name of the function that is being processed.

Chapter 4

81

8. The next step is to initialize the pass ID:
char FuncBlockCount::ID = 0;

9. Finally, the pass needs to be registered, with a command-line argument and a name:
static RegisterPass<FuncBlockCount> X("funcblockcount", "Function
Block Count", false, false);

Putting everything together, the entire code looks like this:

#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
namespace {
struct FuncBlockCount : public FunctionPass {
 static char ID;
 FuncBlockCount() : FunctionPass(ID) {}
 bool runOnFunction(Function &F) override {
 errs() << "Function " << F.getName() << '\n';
 return false;
 }
 };
 }
 char FuncBlockCount::ID = 0;
 static RegisterPass<FuncBlockCount> X("funcblockcount",
"Function Block Count", false, false);

How it works
A simple gmake command compiles the file, so a new file FuncBlockCount.so is generated
at the LLVM root directory. This shared object file can be dynamically loaded to the opt tool
to run it on a piece of LLVM IR code. How to load and run it will be demonstrated in the next
section.

See also
 f To know more on how a pass can be built from scratch, visit http://llvm.org/

docs/WritingAnLLVMPass.html

http://llvm.org/docs/WritingAnLLVMPass.html
http://llvm.org/docs/WritingAnLLVMPass.html

Preparing Optimization

82

Running your own pass with the opt tool
The pass written in the previous recipe, Writing your own LLVM pass, is ready to be run on the
LLVM IR. This pass needs to be loaded dynamically for the opt tool to recognize and execute it.

How to do it…
Do the following steps:

1. Write the C test code in the sample.c file, which we will convert into an .ll file in
the next step:
$ vi sample.c

int foo(int n, int m) {
 int sum = 0;
 int c0;
 for (c0 = n; c0 > 0; c0--) {
 int c1 = m;
 for (; c1 > 0; c1--) {
 sum += c0 > c1 ? 1 : 0;
 }
 }
 return sum;
}

2. Convert the C test code into LLVM IR using the following command:
$ clang –O0 –S –emit-llvm sample.c –o sample.ll

This will generate a sample.ll file.

3. Run the new pass with the opt tool, as follows:
$ opt -load (path_to_.so_file)/FuncBlockCount.so
-funcblockcount sample.ll

The output will look something like this:
Function foo

How it works…
As seen in the preceding code, the shared object loads dynamically into the opt command-line
tool and runs the pass. It goes over the function and displays its name. It does not modify the
IR. Further enhancement in the new pass is demonstrated in the next recipe.

Chapter 4

83

See also
 f To know more about the various types of the Pass class, visit http://llvm.org/

docs/WritingAnLLVMPass.html#pass-classes-and-requirements

Using another pass in a new pass
A pass may require another pass to get some analysis data, heuristics, or any such
information to decide on a further course of action. The pass may just require some analysis
such as memory dependencies, or it may require the altered IR as well. The new pass that you
just saw simply prints the name of the function. Let's see how to enhance it to count the basic
blocks in a loop, which also demonstrates how to use other pass results.

Getting ready
The code used in the previous recipe remains the same. Some modifications are required,
however, to enhance it—as demonstrated in next section—so that it counts the number of
basic blocks in the IR.

How to do it…
The getAnalysis function is used to specify which other pass will be used:

1. Since the new pass will be counting the number of basic blocks, it requires loop
information. This is specified using the getAnalysis loop function:
 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();

2. This will call the LoopInfo pass to get information on the loop. Iterating through this
object gives the basic block information:
unsigned num_Blocks = 0;
 Loop::block_iterator bb;
 for(bb = L->block_begin(); bb != L->block_end();++bb)
 num_Blocks++;
 errs() << "Loop level " << nest << " has " << num_Blocks
<< " blocks\n";

http://llvm.org/docs/WritingAnLLVMPass.html#pass-classes-and-requirements
http://llvm.org/docs/WritingAnLLVMPass.html#pass-classes-and-requirements

Preparing Optimization

84

3. This will go over the loop to count the basic blocks inside it. However, it counts
only the basic blocks in the outermost loop. To get information on the innermost
loop, recursive calling of the getSubLoops function will help. Putting the logic
in a separate function and calling it recursively makes more sense:

void countBlocksInLoop(Loop *L, unsigned nest) {
 unsigned num_Blocks = 0;
 Loop::block_iterator bb;
 for(bb = L->block_begin(); bb != L->block_end();++bb)
 num_Blocks++;
 errs() << "Loop level " << nest << " has " << num_Blocks
<< " blocks\n";
 std::vector<Loop*> subLoops = L->getSubLoops();
 Loop::iterator j, f;
 for (j = subLoops.begin(), f = subLoops.end(); j != f;
++j)
 countBlocksInLoop(*j, nest + 1);
}

virtual bool runOnFunction(Function &F) {
 LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().
getLoopInfo();
 errs() << "Function " << F.getName() + "\n";
 for (Loop *L : *LI)
 countBlocksInLoop(L, 0);
 return false;
}

How it works…
The newly modified pass now needs to run on a sample program. Follow the given steps to
modify and run the sample program:

1. Open the sample.c file and replace its content with the following program:
int main(int argc, char **argv) {
 int i, j, k, t = 0;
 for(i = 0; i < 10; i++) {
 for(j = 0; j < 10; j++) {
 for(k = 0; k < 10; k++) {
 t++;
 }
 }
 for(j = 0; j < 10; j++) {
 t++;
 }

Chapter 4

85

 }
 for(i = 0; i < 20; i++) {
 for(j = 0; j < 20; j++) {
 t++;
 }
 for(j = 0; j < 20; j++) {
 t++;
 }
 }
 return t;
}

2. Convert it into a .ll file using Clang:
$ clang –O0 –S –emit-llvm sample.c –o sample.ll

3. Run the new pass on the previous sample program:
$ opt -load (path_to_.so_file)/FuncBlockCount.so -
funcblockcount sample.ll

The output will look something like this:
Function main

Loop level 0 has 11 blocks

Loop level 1 has 3 blocks

Loop level 1 has 3 blocks

Loop level 0 has 15 blocks

Loop level 1 has 7 blocks

Loop level 2 has 3 blocks

Loop level 1 has 3 blocks

There's more…
The LLVM's pass manager provides a debug pass option that gives us the chance to see which
passes interact with our analyses and optimizations, as follows:

$ opt -load (path_to_.so_file)/FuncBlockCount.so -
funcblockcount sample.ll –disable-output –debug-pass=Structure

Registering a pass with pass manager
Until now, a new pass was a dynamic object that was run independently. The opt tool consists
of a pipeline of such passes that are registered with the pass manager, and a part of LLVM.
Let's see how to register our pass with the Pass Manager.

Preparing Optimization

86

Getting ready
The PassManager class takes a list of passes, ensures that their prerequisites are set up
correctly, and then schedules the passes to run efficiently. The Pass Manager does two main
tasks to try to reduce the execution time of a series of passes:

 f Shares the analysis results to avoid recomputing analysis results as much as possible

 f Pipelines the execution of passes to the program to get better cache and memory
usage behavior out of a series of passes by pipelining the passes together

How to do it…
Follow the given steps to register a pass with Pass Manager:

1. Define a DEBUG_TYPE macro, specifying the debugging name in the
FuncBlockCount.cpp file:
#define DEBUG_TYPE "func-block-count"

2. In the FuncBlockCount struct, specify the getAnalysisUsage syntax as follows:
void getAnalysisUsage(AnalysisUsage &AU) const override {
 AU.addRequired<LoopInfoWrapperPass>();
 }

3. Now initialize the macros for initialization of the new pass:
INITIALIZE_PASS_BEGIN(FuncBlockCount, " funcblockcount ",
 "Function Block Count", false, false)
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)

INITIALIZE_PASS_END(FuncBlockCount, "funcblockcount",
 "Function Block Count", false, false)

Pass *llvm::createFuncBlockCountPass() { return new
FuncBlockCount(); }

4. Add the createFuncBlockCount Pass function in the LinkAllPasses.h file,
located at include/llvm/:
(void) llvm:: createFuncBlockCountPass ();

5. Add the declaration to the Scalar.h file, located at include/llvm/Transforms:
Pass * createFuncBlockCountPass ();

6. Also modify the constructor of the pass:
FuncBlockCount() : FunctionPass(ID) {initializeFuncBlockCount Pass
(*PassRegistry::getPassRegistry());}

Chapter 4

87

7. In the Scalar.cpp file, located at lib/Transforms/Scalar/, add the
initialization pass entry:
initializeFuncBlockCountPass (Registry);

8. Add this initialization declaration to the InitializePasses.h file, which is located
at include/llvm/:
void initializeFuncBlockCountPass (Registry);

9. Finally, add the FuncBlockCount.cpp filename to the CMakeLists.txt file,
located at lib/Transforms/Scalar/:
FuncBlockCount.cpp

How it works…
Compile the LLVM with the cmake command as specified in Chapter 1, LLVM Design and Use.
The Pass Manager will include this pass in the pass pipeline of the opt command-line tool.
Also, this pass can be run in isolation from the command line:

$ opt –funcblockcount sample.ll

See Also
 f To know more about adding a pass in Pass Manager in simple steps, study the

LoopInstSimplify pass at http://llvm.org/viewvc/llvm-project/llvm/
trunk/lib/Transforms/Scalar/LoopInstSimplify.cpp

Writing an analysis pass
The analysis pass provides higher-level information about IR without actually changing the IR.
The results that the analysis pass provides can be used by another analysis pass to compute
its result. Also, once an analysis pass calculates the result, its result can be used several
times by different passes until the IR on which this pass was run is changed. In this recipe, we
will write an analysis pass that counts and outputs the number of opcodes used in a function.

Getting ready
First of all, we write the test code on which we will be running our pass:

$ cat testcode.c
int func(int a, int b){
 int sum = 0;
 int iter;
 for (iter = 0; iter < a; iter++) {

http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/LoopInstSimplify.cpp
http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/LoopInstSimplify.cpp
http://llvm.org/viewvc/llvm-project/llvm/trunk/lib/Transforms/Scalar/LoopInstSimplify.cpp

Preparing Optimization

88

 int iter1;
 for (iter1 = 0; iter1 < b; iter1++) {
 sum += iter > iter1 ? 1 : 0;
 }
 }
 return sum;
}

Transform this into a .bc file, which we will use as the input to the analysis pass:

$ clang -c -emit-llvm testcode.c -o testcode.bc

Now create the file containing the pass source code in llvm_root_dir/lib/Transforms/
opcodeCounter. Here, opcodeCounter is the directory we have created, and it is where
our pass's source code will reside.

Make the necessary Makefile changes so that this pass can be compiled.

How to do it…
Now let's start writing the source code for our analysis pass:

1. Include the necessary header files and use the llvm namespace:
#define DEBUG_TYPE "opcodeCounter"
#include "llvm/Pass.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/raw_ostream.h"
#include <map>
using namespace llvm;

2. Create the structure defining the pass:
namespace {
struct CountOpcode: public FunctionPass {

3. Within the structure, create the necessary data structures to count the number of
opcodes and to denote the pass ID of the pass:
std::map< std::string, int> opcodeCounter;
static char ID;
CountOpcode () : FunctionPass(ID) {}

4. Within the preceding structure, write the code for the actual implementation of the
pass, overloading the runOnFunction function:
virtual bool runOnFunction (Function &F) {
 llvm::outs() << "Function " << F.getName () << '\n';
for (Function::iterator bb = F.begin(), e = F.end(); bb !=
e; ++bb) {

Chapter 4

89

 for (BasicBlock::iterator i = bb->begin(), e = bb->end();
 i!= e; ++i) {
 if(opcodeCounter.find(i->getOpcodeName()) ==
opcodeCounter.end()) {
 opcodeCounter[i->getOpcodeName()] = 1;
 } else {
 opcodeCounter[i->getOpcodeName()] += 1;
 }
 }
}

std::map< std::string, int>::iterator i =
opcodeCounter.begin();
std::map< std::string, int>::iterator e =
opcodeCounter.end();
while (i != e) {
 llvm::outs() << i->first << ": " << i->second << "\n";
 i++;
}
llvm::outs() << "\n";
opcodeCounter.clear();
return false;
}
};
}

5. Write the code for registering the pass:
char CountOpcode::ID = 0;

static RegisterPass<CountOpcode> X("opcodeCounter", "Count
number of opcode in a functions");

6. Compile the pass using the make or cmake command.

7. Run the pass on the test code using the opt tool to get the information on the number
of opcodes present in the function:
$ opt -load path-to-build-folder/lib/LLVMCountopcodes.so
-opcodeCounter -disable-output testcode.bc

Function func

add: 3

alloca: 5

br: 8

icmp: 3

load: 10

ret: 1

select: 1

store: 8

Preparing Optimization

90

How it works…
This analysis pass works on a function level, running once for each function in the program.
Hence, we have inherited the FunctionPass function when declaring the CountOpcodes :
public FunctionPass struct.

The opcodeCounter function keeps a count of every opcode that has been used in the
function. In the following for loops, we collect the opcodes from all the functions:

for (Function::iterator bb = F.begin(), e = F.end(); bb != e;
++bb) {
for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e;
++i) {

The first for loop iterates over all the basic blocks present in the function, and the second for
loop iterates over all the instructions present in the basic block.

The code in the first for loop is the actual code that collects the opcodes and their numbers.
The code below the for loops is meant for printing the results. As we have used a map to
store the result, we iterate over it to print the pair of the opcode name and its number in the
function.

We return false because we are not modifying anything in the test code. The last two lines of
the code are meant for registering this pass with the given name so that the opt tool can use
this pass.

Finally, on execution of the test code, we get the output as different opcodes used in the
function and their numbers.

Writing an alias analysis pass
Alias analysis is a technique by which we get to know whether two pointers point to the
same location—that is, whether the same location can be accessed in more ways than one.
By getting the results of this analysis, you can decide about further optimizations, such as
common subexpression elimination. There are different ways and algorithms to perform
alias analysis. In this recipe, we will not deal with these algorithms, but we will see how LLVM
provides the infrastructure to write your own alias analysis pass. In this recipe, we will write an
alias analysis pass to see how to get started with writing such a pass. We will not make use of
any specific algorithm, but will return the MustAlias response in every case of the analysis.

Getting ready
Write the test code that will be the input for alias analysis. Here, we will take the testcode.c
file used in the previous recipe as the test code.

Chapter 4

91

Make the necessary Makefile changes, make changes to register the pass by adding
entries for the pass in llvm/lib/Analysis/Analysis.cpp llvm/include/llvm/
InitializePasses.h, llvm/include/llvm/LinkAllPasses.h, llvm/include/
llvm/Analysis/Passes.h and create a file in llvm_source_dir/lib/Analysis/
named EverythingMustAlias.cpp that will contain the source code for our pass.

How to do it...
Do the following steps:

1. Include the necessary header files and use the llvm namespace:
#include "llvm/Pass.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
using namespace llvm;

2. Create a structure for our pass by inheriting the ImmutablePass and
AliasAnalysis classes:
namespace {
struct EverythingMustAlias : public ImmutablePass, public
AliasAnalysis {

3. Declare the data structures and constructor:
static char ID;
EverythingMustAlias() : ImmutablePass(ID) {}
initializeEverythingMustAliasPass(*PassRegistry::getPassRegist
ry());}

4. Implement the getAdjustedAnalysisPointer function:
 void *getAdjustedAnalysisPointer(const void *ID) override {
 if (ID == &AliasAnalysis::ID)
 return (AliasAnalysis*)this;
 return this;
 }

5. Implement the initializePass function to initialize the pass:
bool doInitialization(Module &M) override {
 DL = &M.getDataLayout();
 return true;
 }

Preparing Optimization

92

6. Implement the alias function:
void *getAdjustedAnalysisPointer(const void *ID) override {
 if (ID == &AliasAnalysis::ID)
 return (AliasAnalysis*)this;
 return this;
 }
};
}

7. Register the pass:
char EverythingMustAlias::ID = 0;
INITIALIZE_AG_PASS(EverythingMustAlias, AliasAnalysis, "must-aa",
"Everything Alias (always returns 'must' alias)", true, true,
 true)

ImmutablePass *llvm::createEverythingMustAliasPass() { return new
EverythingMustAlias(); }

8. Compile the pass using the cmake or make command.

9. Execute the test code using the .so file that is formed after compiling the pass:
$ opt -must-aa -aa-eval -disable-output testcode.bc

===== Alias Analysis Evaluator Report =====

 10 Total Alias Queries Performed

 0 no alias responses (0.0%)

 0 may alias responses (0.0%)

 0 partial alias responses (0.0%)

 10 must alias responses (100.0%)

 Alias Analysis Evaluator Pointer Alias Summary:
0%/0%/0%/100%

 Alias Analysis Mod/Ref Evaluator Summary: no mod/ref!

How it works…
The AliasAnalysis class gives the interface that the various alias analysis
implementations should support. It exports the AliasResult and ModRefResult
enums, representing the results of the alias and modref query respectively.

The alias method is used to check whether two memory objects are pointing to the
same location or not. It takes two memory objects as the input and returns MustAlias,
PartialAlias, MayAlias, or NoAlias as appropriate.

Chapter 4

93

The getModRefInfo method returns the information on whether the execution of an
instruction can read or modify a memory location. The pass in the preceding example works
by returning the value MustAlias for every set of two pointers, as we have implemented it
that way. Here, we have inherited the ImmutablePasses class, which suits our pass, as it is
a very basic pass. We have inherited the AliasAnalysis pass, which provides the interface
for our implementation.

The getAdjustedAnalysisPointer function is used when a pass implements an analysis
interface through multiple inheritance. If needed, it should override this to adjust the pointer
as required for the specified pass information.

The initializePass function is used to initialize the pass that contains the
InitializeAliasAnalysis method, which should contain the actual implementation
of the alias analysis.

The getAnalysisUsage method is used to declare any dependency on other passes by
explicitly calling the AliasAnalysis::getAnalysisUsage method.

The alias method is used to determine whether two memory objects alias each other or
not. It takes two memory objects as the input and returns the MustAlias, PartialAlias,
MayAlias, or NoAlias responses as appropriate.

The code following the alias method is meant for registering the pass. Finally, when we use
this pass over the test code, we get 10 MustAlias responses (100.0%) as the result, as
implemented in our pass.

See also
For a more detailed insight into LLVM alias analysis, refer to http://llvm.org/docs/
AliasAnalysis.html.

Using other analysis passes
In this recipe, we will take a brief look into the other analysis passes that are provided by
LLVM and can be used to get analysis information about a basic block, function, module, and
so on. We will look into passes that have already been implemented in LLVM, and how we can
use them for our purpose. We will not go through all the passes but take a look at only some
of them.

http://llvm.org/docs/AliasAnalysis.html
http://llvm.org/docs/AliasAnalysis.html

Preparing Optimization

94

Getting ready…
Write the test code in the testcode1.c file, which will be used for analysis purposes:

$ cat testcode1.c
void func() {
int i;
char C[2];
char A[10];
for(i = 0; i != 10; ++i) {
 ((short*)C)[0] = A[i];
 C[1] = A[9-i];
}
}

Convert the C code to bitcode format, using the following command line:

$ clang -c -emit-llvm testcode1.c -o testcode1.bc

How to do it…
Follow the steps given to use other analysis passes:

1. Use the alias analysis evaluator pass by passing –aa-eval as a command-line
option to the opt tool:
$ opt -aa-eval -disable-output testcode1.bc

===== Alias Analysis Evaluator Report =====

36 Total Alias Queries Performed

0 no alias responses (0.0%)

36 may alias responses (100.0%)

0 partial alias responses (0.0%)

0 must alias responses (0.0%)

Alias Analysis Evaluator Pointer Alias Summary: 0%/100%/0%/0%

Alias Analysis Mod/Ref Evaluator Summary: no mod/ref!

2. Print the dominator tree information using the –print-dom-info command-line
option along with opt:
$ opt -print-dom-info -disable-output testcode1.bc

=============================--------------------------------

Inorder Dominator Tree:

 [1] %0 {0,9}

 [2] %1 {1,8}

 [3] %4 {2,5}

 [4] %19 {3,4}

 [3] %22 {6,7}

Chapter 4

95

3. Count the number of queries made by one pass to another using the –count-aa
command-line option along with opt:
$ opt -count-aa -basicaa -licm -disable-output testcode1.bc

No alias: [4B] i32* %i, [1B] i8* %7

No alias: [4B] i32* %i, [2B] i16* %12

No alias: [1B] i8* %7, [2B] i16* %12

No alias: [4B] i32* %i, [1B] i8* %16

Partial alias: [1B] i8* %7, [1B] i8* %16

No alias: [2B] i16* %12, [1B] i8* %16

Partial alias: [1B] i8* %7, [1B] i8* %16

No alias: [4B] i32* %i, [1B] i8* %18

No alias: [1B] i8* %18, [1B] i8* %7

No alias: [1B] i8* %18, [1B] i8* %16

Partial alias: [2B] i16* %12, [1B] i8* %18

Partial alias: [2B] i16* %12, [1B] i8* %18

===== Alias Analysis Counter Report =====

 Analysis counted:

 12 Total Alias Queries Performed

 8 no alias responses (66%)

 0 may alias responses (0%)

 4 partial alias responses (33%)

 0 must alias responses (0%)

 Alias Analysis Counter Summary: 66%/0%/33%/0%

 0 Total Mod/Ref Queries Performed

4. Print the alias sets in a program using the -print-alias-sets command-line
option with opt:

$ opt -basicaa -print-alias-sets -disable-output testcode1.bc

Alias Set Tracker: 3 alias sets for 5 pointer values.

 AliasSet[0x336b120, 1] must alias, Mod/Ref Pointers: (i32*
%i, 4)

 AliasSet[0x336b1c0, 2] may alias, Ref Pointers: (i8*
%7, 1), (i8* %16, 1)

 AliasSet[0x338b670, 2] may alias, Mod Pointers: (i16*
%12, 2), (i8* %18, 1)

Preparing Optimization

96

How it works…
In the first case, where we use the -aa-eval option, the opt tool runs the alias analysis
evaluator pass, which outputs the analysis on the screen. It iterates through all pairs of
pointers in the function and queries whether the two are aliases of each other or not.

Using the -print-dom-info option, the pass for printing the dominator tree is run, through
which information about the dominator tree can be obtained.

In the third case, we execute the opt -count-aa -basicaa –licm command. The
count-aa command option counts the number of queries made by the licm pass to the
basicaa pass. This information is obtained by the count alias analysis pass using the opt tool.

To print all the alias sets within a program, we use the - print-alias-sets command-line
option. In this case, it prints the alias sets obtained after analyzing with the basicaa pass.

See also
Refer to http://llvm.org/docs/Passes.html#analysis-passes to know about more
passes not mentioned here.

http://llvm.org/docs/Passes.html#analysis-passes

97

Implementing
Optimizations

In this chapter, we will cover the following recipes:

 f Writing a dead code elimination pass

 f Writing an inlining transformation pass

 f Writing a pass for memory optimization

 f Combining LLVM IR

 f Transforming and optimizing loops

 f Reassociating expressions

 f Vectorizing IR

 f Other optimization passes

Introduction
In the previous chapter, we saw how to write a pass in LLVM. We also demonstrated writing a
few analysis passes with an example of alias analysis. Those passes just read the source code
and gave us information about it. In this chapter, we will go further and write transformation
passes that will actually change the source code, trying to optimize it for the faster execution
of code. In the first two recipes, we will show you how a transformation pass is written and
how it changes the code. After that, we will see how we can make changes in the code of
passes to tinker with the behavior of the passes.

5

Implementing Optimizations

98

Writing a dead code elimination pass
In this recipe, you will learn how to eliminate dead code from the program. By dead code
elimination, we mean removing the code that has no effect whatsoever on the results that the
source program outputs on executing. The main reasons to do so are reduction of the program
size, which makes the code quality good and makes it easier to debug the code later on; and
improving the run time of the program, as the unnecessary code is prevented from being
executed. In this recipe, we will show you a variant of dead code elimination, called aggressive
dead code elimination, that assumes every piece of code to be dead until proven otherwise.
We will see how to implement this pass ourselves, and what modifications we need to make
so that the pass can run just like other passes in the lib/Transforms/Scalar folder of
the LLVM trunk.

Getting ready
To show the implementation of dead code elimination, we will need a piece of test code, on
which we will run the aggressive dead code elimination pass:

$ cat testcode.ll

declare i32 @strlen(i8*) readonly nounwind

define void @test() {

 call i32 @strlen(i8* null)

 ret void

}

In this test code, we can see that a call to the strlen function is made in the test function,
but the return value is not used. So, this should be treated as dead code by our pass.

In the file, include the InitializePasses.h file, located at /llvm/; and in the llvm
namespace, add an entry for the pass that we are going to write:

namespace llvm {
…
…
void initializeMYADCEPass(PassRegistry&); // Add this line

In the scalar.h file, located at include/llvm-c/scalar.h/Transform/, add the entry
for the pass:

void LLVMAddMYAggressiveDCEPass(LLVMPassManagerRef PM);

In the include/llvm/Transform/scalar.h file, add the entry for the pass in the llvm
namespace:

FunctionPass *createMYAggressiveDCEPass();

Chapter 5

99

In the lib/Transforms/Scalar/scalar.cpp file, add the entry for the pass in two
places. In the void llvm::initializeScalarOpts(PassRegistry &Registry)
function, add the following code:

initializeMergedLoadStoreMotionPass(Registry); // already present
in the file
initializeMYADCEPass(Registry); // add this line
initializeNaryReassociatePass(Registry); // already present in
the file
…
…
void LLVMAddMemCpyOptPass(LLVMPassManagerRef PM) {
 unwrap(PM)->add(createMemCpyOptPass());
}

// add the following three lines
void LLVMAddMYAggressiveDCEPass(LLVMPassManagerRef PM) {
 unwrap(PM)->add(createMYAggressiveDCEPass());
}

void LLVMAddPartiallyInlineLibCallsPass(LLVMPassManagerRef PM) {
 unwrap(PM)->add(createPartiallyInlineLibCallsPass());
}
…

How to do it…
We will now write the code for the pass:

1. Include the necessary header files:
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CFG.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/Pass.h"
using namespace llvm;

Implementing Optimizations

100

2. Declare the structure of our pass:
namespace {
struct MYADCE : public FunctionPass {
 static char ID; // Pass identification, replacement for
typeid
 MYADCE() : FunctionPass(ID) {
 initializeMYADCEPass(*PassRegistry::getPassRegistry());
 }

 bool runOnFunction(Function& F) override;

 void getAnalysisUsage(AnalysisUsage& AU) const override {
 AU.setPreservesCFG();
 }
};
}

3. Initialize the pass and its ID:
char MYADCE::ID = 0;
INITIALIZE_PASS(MYADCE, "myadce", "My Aggressive Dead Code
Elimination", false, false)

4. Implement the actual pass in the runOnFunction function:
bool MYADCE::runOnFunction(Function& F) {
 if (skipOptnoneFunction(F))
 return false;

 SmallPtrSet<Instruction*, 128> Alive;
 SmallVector<Instruction*, 128> Worklist;

 // Collect the set of "root" instructions that are known
live.
 for (Instruction &I : inst_range(F)) {
 if (isa<TerminatorInst>(I) || isa<DbgInfoIntrinsic>(I)
 || isa<LandingPadInst>(I) || I.mayHaveSideEffects()) {
 Alive.insert(&I);
 Worklist.push_back(&I);
 }
 }

 // Propagate liveness backwards to operands.
 while (!Worklist.empty()) {
 Instruction *Curr = Worklist.pop_back_val();
 for (Use &OI : Curr->operands()) {

Chapter 5

101

 if (Instruction *Inst = dyn_cast<Instruction>(OI))
 if (Alive.insert(Inst).second)
 Worklist.push_back(Inst);
 }
 }

// the instructions which are not in live set are
considered dead in this pass. The instructions which do not
effect the control flow, return value and do not have any
side effects are hence deleted.
 for (Instruction &I : inst_range(F)) {
 if (!Alive.count(&I)) {
 Worklist.push_back(&I);
 I.dropAllReferences();
 }
 }

 for (Instruction *&I : Worklist) {
 I->eraseFromParent();
 }

 return !Worklist.empty();
}
}

FunctionPass *llvm::createMYAggressiveDCEPass() {
 return new MYADCE();
}

5. Run the preceding pass after compiling the testcode.ll file, which can be found in
the Getting ready section of this recipe:
$ opt -myadce -S testcode.ll

; ModuleID = 'testcode.ll'

; Function Attrs: nounwind readonly

declare i32 @strlen(i8*) #0

define void @test() {

 ret void

}

Implementing Optimizations

102

How it works…
The pass works by first collecting a list of all the root instructions that are live in the first for
loop of the runOnFunction function.

Using this information, we move backwards, propagating liveness to the operands in the
while (!Worklist.empty()) loop.

In the next for loop, we remove the instructions that are not live, that is, dead. Also, we check
whether any reference was made to these values. If so, we drop all such references, which are
also dead.

On running the the pass on the test code, we see the dead code; the call to the strlen
function is removed.

Note that the code has been added to the LLVM trunk revision number 234045. So, when you
are actually trying to implement it, some definitions might be updated. In this case, modify the
code accordingly.

See also
For various other kinds of dead code elimination method, you can refer to the
llvm/lib/Transfroms/Scalar folder, where the code for other kinds of DCEs is present.

Writing an inlining transformation pass
As we know, by inlining we mean expanding the function body of the function called at the call
site, as it may prove useful through faster execution of code. The compiler takes the decision
whether to inline a function or not. In this recipe, you will learn to how to write a simple
function-inlining pass that makes use of the implementation in LLVM for inlining. We will write
a pass that will handle the functions marked with the alwaysinline attribute.

Getting ready
Let's write a test code that we will run our pass on. Make the necessary changes in the lib/
Transforms/IPO/IPO.cpp and include/llvm/InitializePasses.h files, the
include/llvm/Transforms/IPO.h file, and the /include/llvm-c/Transforms/IPO.h
file to include the following pass. Also make the necessary makefile changes to include
his pass:

$ cat testcode.c

define i32 @inner1() alwaysinline {

 ret i32 1

}

Chapter 5

103

define i32 @outer1() {

 %r = call i32 @inner1()

 ret i32 %r

}

How to do it…
We will now write the code for the pass:

1. Include the necessary header files:
#include "llvm/Transforms/IPO.h"

#include "llvm/ADT/SmallPtrSet.h"

#include "llvm/Analysis/AliasAnalysis.h"

#include "llvm/Analysis/AssumptionCache.h"

#include "llvm/Analysis/CallGraph.h"

#include "llvm/Analysis/InlineCost.h"

#include "llvm/IR/CallSite.h"

#include "llvm/IR/CallingConv.h"

#include "llvm/IR/DataLayout.h"

#include "llvm/IR/Instructions.h"

#include "llvm/IR/IntrinsicInst.h"

#include "llvm/IR/Module.h"

#include "llvm/IR/Type.h"

#include "llvm/Transforms/IPO/InlinerPass.h"

using namespace llvm;

2. Describe the class for our pass:
namespace {

class MyInliner : public Inliner {

 InlineCostAnalysis *ICA;

public:

 MyInliner() : Inliner(ID, -2000000000,

/*InsertLifetime*/ true),

 ICA(nullptr) {

 initializeMyInlinerPass(*PassRegistry::getPassRegistry());

Implementing Optimizations

104

 }

 MyInliner(bool InsertLifetime)

 : Inliner(ID, -2000000000, InsertLifetime), ICA(nullptr) {

 initializeMyInlinerPass(*PassRegistry::getPassRegistry());

 }

 static char ID;

 InlineCost getInlineCost(CallSite CS) override;

 void getAnalysisUsage(AnalysisUsage &AU) const override;

 bool runOnSCC(CallGraphSCC &SCC) override;

 using llvm::Pass::doFinalization;

 bool doFinalization(CallGraph &CG) override {

 return removeDeadFunctions(CG, /*AlwaysInlineOnly=*/
true);

 }

};

}

3. Initialize the pass and add the dependencies:
char MyInliner::ID = 0;

INITIALIZE_PASS_BEGIN(MyInliner, "my-inline",

 "Inliner for always_inline functions", false,
false)

INITIALIZE_AG_DEPENDENCY(AliasAnalysis)

INITIALIZE_PASS_DEPENDENCY(AssumptionTracker)

INITIALIZE_PASS_DEPENDENCY(CallGraphWrapperPass)

INITIALIZE_PASS_DEPENDENCY(InlineCostAnalysis)

INITIALIZE_PASS_END(MyInliner, "my-inline",

 "Inliner for always_inline functions", false,
false)

Pass *llvm::createMyInlinerPass() { return new
MyInliner(); }

Chapter 5

105

Pass *llvm::createMynlinerPass(bool InsertLifetime) {

 return new MyInliner(InsertLifetime);

}

4. Implement the function to get the inlining cost:
InlineCost MyInliner::getInlineCost(CallSite CS) {

 Function *Callee = CS.getCalledFunction();

if (Callee && !Callee->isDeclaration() &&

 CS.hasFnAttr(Attribute::AlwaysInline) &&

 ICA->isInlineViable(*Callee))

 return InlineCost::getAlways();

 return InlineCost::getNever();

}

5. Write the other helper methods:
bool MyInliner::runOnSCC(CallGraphSCC &SCC) {

 ICA = &getAnalysis<InlineCostAnalysis>();

 return Inliner::runOnSCC(SCC);

}

void MyInliner::getAnalysisUsage(AnalysisUsage &AU) const {

 AU.addRequired<InlineCostAnalysis>();

 Inliner::getAnalysisUsage(AU);

}

6. Compile the pass. After compiling, run it on the preceding test case:
$ opt -inline-threshold=0 -always-inline -S test.ll

; ModuleID = 'test.ll'

; Function Attrs: alwaysinline

define i32 @inner1() #0 {

 ret i32 1

}

define i32 @outer1() {

 ret i32 1

}

Implementing Optimizations

106

How it works...
This pass that we have written will work for the functions with the alwaysinline attribute.
The pass will always inline such functions.

The main function at work here is InlineCost getInlineCost(CallSite CS). This is
a function in the inliner.cpp file, which needs to be overridden here. So, on the basis of
the inlining cost calculated here, we decide whether or not to inline a function. The actual
implementation, on how the inlining process works, is in the inliner.cpp file.

In this case, we return InlineCost::getAlways(); for the functions marked with the
alwaysinline attribute. For the others, we return InlineCost::getNever(). In this
way, we can implement inlining for this simple case. If you want to dig deeper and try other
variations of inlining—and learn how to make decisions about inlining—you can check out the
inlining.cpp file.

When this pass is run over the test code, we see that the call of the inner1 function is
replaced by its actual function body.

Writing a pass for memory optimization
In this recipe, we will briefly discuss a transformation pass that deals with memory
optimization.

Getting ready
For this recipe, you will need the opt tool installed.

How to do it…
1. Write the test code on which we will run the memcpy optimization pass:

$ cat memcopytest.ll

@cst = internal constant [3 x i32] [i32 -1, i32 -1, i32 -1],
align 4

declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8*
nocapture, i64, i32, i1) nounwind

declare void @foo(i32*) nounwind

define void @test1() nounwind {

 %arr = alloca [3 x i32], align 4

 %arr_i8 = bitcast [3 x i32]* %arr to i8*

Chapter 5

107

 call void @llvm.memcpy.p0i8.p0i8.i64(i8* %arr_i8, i8* bitcast
([3 x i32]* @cst to i8*), i64 12, i32 4, i1 false)

 %arraydecay = getelementptr inbounds [3 x i32], [3 x i32]*
%arr, i64 0, i64 0

 call void @foo(i32* %arraydecay) nounwind

 ret void

}

2. Run the memcpyopt pass on the preceding test case:
$ opt -memcpyopt -S memcopytest.ll

; ModuleID = ' memcopytest.ll'

@cst = internal constant [3 x i32] [i32 -1, i32 -1, i32 -1],
align 4

; Function Attrs: nounwind

declare void @llvm.memcpy.p0i8.p0i8.i64(i8* nocapture, i8*
nocapture readonly, i64, i32, i1) #0

; Function Attrs: nounwind

declare void @foo(i32*) #0

; Function Attrs: nounwind

define void @test1() #0 {

 %arr = alloca [3 x i32], align 4

 %arr_i8 = bitcast [3 x i32]* %arr to i8*

 call void @llvm.memset.p0i8.i64(i8* %arr_i8, i8 -1, i64 12,
i32 4, i1 false)

 %arraydecay = getelementptr inbounds [3 x i32]* %arr, i64 0,
i64 0

 call void @foo(i32* %arraydecay) #0

 ret void

}

; Function Attrs: nounwind

declare void @llvm.memset.p0i8.i64(i8* nocapture, i8, i64,
i32, i1) #0

attributes #0 = { nounwind }

Implementing Optimizations

108

How it works…
The Memcpyopt pass deals with eliminating the memcpy calls wherever possible, or
transforms them into other calls.

Consider this memcpy call:

call void @llvm.memcpy.p0i8.p0i8.i64(i8* %arr_i8, i8* bitcast ([3 x
i32]* @cst to i8*), i64 12, i32 4, i1 false).

In the preceding test case, this pass converts it into a memset call:

call void @llvm.memset.p0i8.i64(i8* %arr_i8, i8 -1, i64 12, i32 4, i1
false)

If we look into the source code of the pass, we realize that this transformation is brought
about by the tryMergingIntoMemset function in the MemCpyOptimizer.cpp file in
llvm/lib/Transforms/Scalar.

The tryMergingIntoMemset function looks for some other pattern to fold away when
scanning forward over instructions. It looks for stores in the neighboring memory and, on
seeing consecutive ones, it attempts to merge them together into memset.

The processMemSet function looks out for any other neighboring memset to this memset,
which helps us widen out the memset call to create a single larger store.

See also
To see the details of the various types of memory optimization passes, go to
http://llvm.org/docs/Passes.html#memcpyopt-memcpy-optimization.

Combining LLVM IR
In this recipe, you will learn about instruction combining in LLVM. By instruction combining,
we mean replacing a sequence of instructions with more efficient instructions that produce
the same result in fewer machine cycles. In this recipe, we will see how we can make
modifications in the LLVM code to combine certain instructions.

Getting started
To test our implementation, we will write test code that we will use to verify that our
implementation is working properly to combine instructions:

define i32 @test19(i32 %x, i32 %y, i32 %z) {
 %xor1 = xor i32 %y, %z

http://llvm.org/docs/Passes.html#memcpyopt-memcpy-optimization

Chapter 5

109

 %or = or i32 %x, %xor1
 %xor2 = xor i32 %x, %z
 %xor3 = xor i32 %xor2, %y
 %res = xor i32 %or, %xor3
 ret i32 %res
}

How to do it…
1. Open the lib/Transforms/InstCombine/InstCombineAndOrXor.cpp file.

2. In the InstCombiner::visitXor(BinaryOperator &I) function, go to the if
condition—if (Op0I && Op1I)—and add this:
if (match(Op0I, m_Or(m_Xor(m_Value(B), m_Value(C)), m_Value(A)))
&& match(Op1I, m_Xor(m_Xor(m_Specific(A), m_Specific(C)),
m_Specific(B)))) {

return BinaryOperator::CreateAnd(A, Builder-
>CreateXor(B,C)); }

3. Now build LLVM again so that the Opt tool can use the new functionality and run the
test case in this way:

Opt –instcombine –S testcode.ll

define i32 @test19(i32 %x, i32 %y, i32 %z) {

%1 = xor i32 %y, %z

 %res = and i32 %1, %x

 ret i32 %res

}

How it works…
In this recipe, we added code to the instruction combining file, which handles transformations
involving the AND, OR, and XOR operators.

We added code for matching the pattern of the (A | (B ^ C)) ^ ((A ^ C) ^ B) form,
and reduced it to A & (B ^ C). The if (match(Op0I, m_Or(m_Xor(m_Value(B),
m_Value(C)), m_Value(A))) && match(Op1I, m_Xor(m_Xor(m_
Specific(A), m_Specific(C)), m_Specific(B)))) line looks out for the pattern
similar to the one shown at the start of this paragraph.

The return BinaryOperator::CreateAnd(A, Builder->CreateXor(B,C)); line
returns the reduced value after building a new instruction, replacing the previous matched code.

Implementing Optimizations

110

When we run the instcombine pass over the test code, we get the reduced result. You can
see the number of operations is reduced from five to two.

See also
 f The topic of instruction combining is very wide, and there are loads and loads of

possibilities. Similar to the instruction combining function is the instruction simplify
function, where we simplify complicated instructions but don't necessarily reduce
the number of instructions, as is the case with instruction combining. To look more
deeply into this, go through the code in the lib/Transforms/InstCombine folder

Transforming and optimizing loops
In this recipe, we will see how we can transform and optimize loops to get shorter execution
times. We will mainly be looking into the Loop-Invariant Code Motion (LICM) optimization
technique, and see how it works and how it transforms the code. We will also look at a
relatively simpler technique called loop deletion, where we eliminate loops with non-infinite,
computable trip counts that have no side effects on a function's return value.

Getting ready
You must have the opt tool built for this recipe.

How to do it…
1. Write the test cases for the LICM pass:

$ cat testlicm.ll

define void @testfunc(i32 %i) {

; <label>:0

 br label %Loop

Loop: ; preds = %Loop, %0

 %j = phi i32 [0, %0], [%Next, %Loop] ; <i32>
[#uses=1]

 %i2 = mul i32 %i, 17 ; <i32> [#uses=1]

 %Next = add i32 %j, %i2 ; <i32> [#uses=2]

 %cond = icmp eq i32 %Next, 0 ; <i1> [#uses=1]

 br i1 %cond, label %Out, label %Loop

Out: ; preds = %Loop

 ret void

}

Chapter 5

111

2. Execute the LICM pass on this test code:
$ opt licmtest.ll -licm -S

; ModuleID = 'licmtest.ll'

define void @testfunc(i32 %i) {

 %i2 = mul i32 %i, 17

 br label %Loop

Loop: ; preds =
%Loop, %0

 %j = phi i32 [0, %0], [%Next, %Loop]

 %Next = add i32 %j, %i2

 %cond = icmp eq i32 %Next, 0

 br i1 %cond, label %Out, label %Loop

Out: ; preds =
%Loop

 ret void

}

3. Write the test code for the loop deletion pass:
$ cat deletetest.ll

define void @foo(i64 %n, i64 %m) nounwind {

entry:

 br label %bb

bb:

 %x.0 = phi i64 [0, %entry], [%t0, %bb2]

 %t0 = add i64 %x.0, 1

 %t1 = icmp slt i64 %x.0, %n

 br i1 %t1, label %bb2, label %return

bb2:

 %t2 = icmp slt i64 %x.0, %m

 br i1 %t1, label %bb, label %return

return:

 ret void

}

Implementing Optimizations

112

4. Finally, run the loop deletion pass over the test code:
$ opt deletetest.ll -loop-deletion -S

; ModuleID = "deletetest.ll'

; Function Attrs: nounwind

define void @foo(i64 %n, i64 %m) #0 {

entry:

 br label %return

return: ; preds =
%entry

 ret void

}

attributes #0 = { nounwind }

How it works…
The LICM pass performs loop-invariant code motion; it tries to move the code that is not
modified in the loop out of the loop. It can go either above the loop in the pre-header block, or
after the loop exits from the exit block.

In the example shown earlier, we saw the %i2 = mul i32 %i, 17 part of the code being
moved above the loop, as it is not getting modified within the loop block shown in that
example.

The loop deletion pass looks out for loops with non-infinite trip counts that have no effect on
the return value of the function.

In the test code, we saw how both the basic blocks bb: and bb2:, which have the loop part,
get deleted. We also saw how the foo function directly branches to the return statement.

There are many other techniques for optimizing loops, such as loop-rotate, loop-
unswitch, and loop-unroll, which you can try yourself. You will then see how they affect
the code.

Reassociating expressions
In this recipe, you will learn about reassociating expressions and how it helps in optimization.

Chapter 5

113

Getting Ready
The opt tool should be installed for this recipe to work.

How to do it…
1. Write the test case for a simple reassociate transformation:

$ cat testreassociate.ll

define i32 @test(i32 %b, i32 %a) {

 %tmp.1 = add i32 %a, 1234

 %tmp.2 = add i32 %b, %tmp.1

 %tmp.4 = xor i32 %a, -1

 ; (b+(a+1234))+~a -> b+1233

 %tmp.5 = add i32 %tmp.2, %tmp.4

 ret i32 %tmp.5

}

2. Run the reassociate pass on this test case to see how the code is modified:
$ opt testreassociate.ll –reassociate –die –S

define i32 @test(i32 %b, i32 %a) {

%tmp.5 = add i32 %b, 1233

ret i32 %tmp.5

}

How it works …
By reassociation, we mean applying algebraic properties such as associativity, commutativity,
and distributivity to rearrange an expression to enable other optimizations, such as constant
folding, LICM, and so on.

In the preceding example, we used the inverse property to eliminate patterns such as
"X + ~X" -> "-1" using reassociation.

The first three lines of the test case give us the expression of the form (b+(a+1234))+~a. In
this expression, using the reassociate pass, we transform a+~a to -1. Hence, in the result,
we get the final return value as b+1234-1 = b+1233.

The code that handles this transformation is in the Reassociate.cpp file, located under
lib/Transforms/Scalar.

Implementing Optimizations

114

If you look into this file, specifically the code segment, you can see that it checks whether
there are a and ~a in the operand list:

if (!BinaryOperator::isNeg(TheOp) && !BinaryOperator::isNot(TheOp))
 continue;

 Value *X = nullptr;
 …
 …
 else if (BinaryOperator::isNot(TheOp))
 X = BinaryOperator::getNotArgument(TheOp);

unsigned FoundX = FindInOperandList(Ops, i, X);

The following code is responsible for handling and inserting the -1 value when it gets such
values in the expression:

if (BinaryOperator::isNot(TheOp)) {
 Value *V = Constant::getAllOnesValue(X->getType());
 Ops.insert(Ops.end(), ValueEntry(getRank(V), V));
 e += 1;
 }

Vectorizing IR
Vectorization is an important optimization for compilers where we can vectorize code to
execute an instruction on multiple datasets in one go. If the backend architecture supports
vector registers, a broad range of data can be loaded into those vector registers, and special
vector instructions can be executed on the registers.

There are two types of vectorization in LLVM—Superword-Level Parallelism (SLP) and loop
vectorization. Loop vectorization deals with vectorization opportunities in a loop, while SLP
vectorization deals with vectorizing straight-line code in a basic block. In this recipe, we will
see how straight-line code is vectorized.

Getting ready
SLP vectorization constructs a bottom-up tree of the IR expression, and broadly compares the
nodes of the tree to see whether they are similar and hence can be combined to form vectors.
The file to be modified is lib/Transform/Vectorize/SLPVectorizer.cpp.

We will try to vectorize a piece of straight-line code, such as return a[0] + a[1] + a[2] +
a[3].

Chapter 5

115

The expression tree for the preceding type of code will be a somewhat one-sided tree. We will
run a DFS to store the operands and the operators.

The IR for the preceding kind of expression will look like this:

define i32 @hadd(i32* %a) {
entry:
 %0 = load i32* %a, align 4
 %arrayidx1 = getelementptr inbounds i32* %a, i32 1
 %1 = load i32* %arrayidx1, align 4
 %add = add nsw i32 %0, %1
 %arrayidx2 = getelementptr inbounds i32* %a, i32 2
 %2 = load i32* %arrayidx2, align 4
 %add3 = add nsw i32 %add, %2
 %arrayidx4 = getelementptr inbounds i32* %a, i32 3
 %3 = load i32* %arrayidx4, align 4
 %add5 = add nsw i32 %add3, %3
 ret i32 %add5
}

The vectorization model follows three steps:

1. Checking whether it's legal to vectorize.

2. Calculating the profitability of the vectorized code over the scalarized code.

3. Vectorizing the code if these two conditions are satisfied.

How to do it...
1. Open the SLPVectorizer.cpp file. A new function needs to be implemented for

DFS traversal of the expression tree for the IR shown in the Getting ready section:
bool matchFlatReduction(PHINode *Phi, BinaryOperator *B,
const DataLayout *DL) {

 if (!B)
 return false;

 if (B->getType()->isVectorTy() ||
 !B->getType()->isIntegerTy())
 return false;

ReductionOpcode = B->getOpcode();
ReducedValueOpcode = 0;
ReduxWidth = MinVecRegSize / DL->getTypeAllocSizeInBits(B-
 >getType());

Implementing Optimizations

116

ReductionRoot = B;
ReductionPHI = Phi;

if (ReduxWidth < 4)
 return false;
if (ReductionOpcode != Instruction::Add)
 return false;

SmallVector<BinaryOperator *, 32> Stack;
ReductionOps.push_back(B);
ReductionOpcode = B->getOpcode();
Stack.push_back(B);

// Traversal of the tree.
while (!Stack.empty()) {
 BinaryOperator *Bin = Stack.back();
 if (Bin->getParent() != B->getParent())
 return false;
 Value *Op0 = Bin->getOperand(0);

 Value *Op1 = Bin->getOperand(1);
 if (!Op0->hasOneUse() || !Op1->hasOneUse())
 return false;
 BinaryOperator *Op0Bin = dyn_cast<BinaryOperator>(Op0);
 BinaryOperator *Op1Bin = dyn_cast<BinaryOperator>(Op1);
 Stack.pop_back();

 // Do not handle case where both the operands are binary
//operators
 if (Op0Bin && Op1Bin)
 return false;
 // Both the operands are not binary operator.
 if (!Op0Bin && !Op1Bin) {
 ReducedVals.push_back(Op1);
 ReducedVals.push_back(Op0);

 ReductionOps.push_back(Bin);
 continue;
}

// One of the Operand is binary operand, push that into stack

// for further processing. Push the other non-binary operand //
into ReducedVals.
 if (Op0Bin) {

Chapter 5

117

 if (Op0Bin->getOpcode() != ReductionOpcode)
 return false;
 Stack.push_back(Op0Bin);
 ReducedVals.push_back(Op1);

 ReductionOps.push_back(Op0Bin);
 }

 if (Op1Bin) {

 if (Op1Bin->getOpcode() != ReductionOpcode)
 return false;
 Stack.push_back(Op1Bin);
 ReducedVals.push_back(Op0);
 ReductionOps.push_back(Op1Bin);
 }
}
SmallVector<Value *, 16> Temp;
// Reverse the loads from a[3], a[2], a[1], a[0]

// to a[0], a[1], a[2], a[3] for checking incremental
// consecutiveness further ahead.
while (!ReducedVals.empty())
 Temp.push_back(ReducedVals.pop_back_val());
ReducedVals.clear();
for (unsigned i = 0, e = Temp.size(); i < e; ++i)
 ReducedVals.push_back(Temp[i]);
 return true;
}

2. Calculate the cost of the resultant vectorized IR and conclude whether it is profitable
to vectorize. In the SLPVectorizer.cpp file, add the following lines to the
getReductionCost() function:
int HAddCost = INT_MAX;
// If horizontal addition pattern is identified, calculate
cost.

// Such horizontal additions can be modeled into
combination of

// shuffle sub-vectors and vector adds and one single
extract element

// from last resultant vector.

Implementing Optimizations

118

// e.g. a[0]+a[1]+a[2]+a[3] can be modeled as // %1 = load
<4 x> %0
// %2 = shuffle %1 <2, 3, undef, undef>
// %3 = add <4 x> %1, %2

// %4 = shuffle %3 <1, undef, undef, undef>

// %5 = add <4 x> %3, %4

// %6 = extractelement %5 <0>
if (IsHAdd) {
 unsigned VecElem = VecTy->getVectorNumElements();
 unsigned NumRedxLevel = Log2_32(VecElem);
 HAddCost = NumRedxLevel *
 (TTI->getArithmeticInstrCost(ReductionOpcode, VecTy) +
 TTI->getShuffleCost(TargetTransformInfo::
 SK_ExtractSubvector, VecTy, VecElem / 2, VecTy)) +
 TTI->getVectorInstrCost(Instruction::ExtractElement,
 VecTy, 0);
 }

3. In the same function, after calculating PairwiseRdxCost and
SplittingRdxCost, compare them with HAddCost:
VecReduxCost = HAddCost < VecReduxCost ? HAddCost :
VecReduxCost;

4. In the vectorizeChainsInBlock() function, call the matchFlatReduction()
function you just defined:
// Try to vectorize horizontal reductions feeding into a
return.
if (ReturnInst *RI = dyn_cast<ReturnInst>(it))

if (RI->getNumOperands() != 0)
if (BinaryOperator *BinOp =
 dyn_cast<BinaryOperator>(RI->getOperand(0))) {

 DEBUG(dbgs() << "SLP: Found a return to vectorize.\n");

 HorizontalReduction HorRdx;
 IsReturn = true;

 if ((HorRdx.matchFlatReduction(nullptr, BinOp, DL) &&
HorRdx.tryToReduce(R, TTI)) || tryToVectorizePair(BinOp-
>getOperand(0), BinOp->getOperand(1), R)) {
 Changed = true;

Chapter 5

119

 it = BB->begin();
 e = BB->end();
 continue;

}
}

5. Define two global flags to keep a track of horizontal reduction, which feeds into a
return:
static bool IsReturn = false;
static bool IsHAdd = false;

6. Allow the vectorization of small trees if they feed into a return. Add the following line
to the isFullyVectorizableTinyTree() function:

if (VectorizableTree.size() == 1 && IsReturn && IsHAdd)
return true;

How it works…
Compile the LLVM project after saving the file containing the preceding code, and run the opt
tool on the example IR, as follows:

1. Open the example.ll file and paste the following IR in it:
define i32 @hadd(i32* %a) {

entry:

 %0 = load i32* %a, align 4

 %arrayidx1 = getelementptr inbounds i32* %a, i32 1

 %1 = load i32* %arrayidx1, align 4

 %add = add nsw i32 %0, %1

 %arrayidx2 = getelementptr inbounds i32* %a, i32 2

 %2 = load i32* %arrayidx2, align 4

 %add3 = add nsw i32 %add, %2

 %arrayidx4 = getelementptr inbounds i32* %a, i32 3

 %3 = load i32* %arrayidx4, align 4

 %add5 = add nsw i32 %add3, %3

 ret i32 %add5

}

Implementing Optimizations

120

2. Run the opt tool on example.ll:
$ opt -basicaa -slp-vectorizer -mtriple=aarch64-unknown-linux-
gnu -mcpu=cortex-a57

The output will be vectorized code, like the following:
define i32 @hadd(i32* %a) {

entry:

%0 = bitcast i32* %a to <4 x i32>*

%1 = load <4 x i32>* %0, align 4 %rdx.shuf = shufflevector <4
x i32> %1, <4 x i32> undef, <4 x i32> <i32 2, i32 3, i32
undef, i32 undef>

%bin.rdx = add <4 x i32> %1,

%rdx.shuf %rdx.shuf1 = shufflevector <4 x i32>

%bin.rdx, <4 x i32> undef, <4 x i32> <i32 1, i32 undef, i32
undef, i32 undef> %bin.rdx2 = add <4 x i32> %bin.rdx,
%rdx.shuf1

%2 = extractelement <4 x i32> %bin.rdx2, i32 0

ret i32 %2

}

As observed, the code gets vectorized. The matchFlatReduction() function performs
a DFS traversal of the expression and stores all the loads in ReducedVals, while adds
are stored in ReductionOps. After this, the cost of horizontal vectorization is calculated
in HAddCost and compared with scalar cost. It turns out to be profitable. Hence, it
vectorizes the expression. This is handled in the tryToReduce() function, which is already
implemented.

See also…
 f For detailed vectorization concepts, refer to the paper Loop-Aware SLP in GCC by Ira

Rosen, Dorit Nuzman, and Ayal Zaks

Chapter 5

121

Other optimization passes
In this recipe, we will look at some more transformational passes, which are more like of utility
passes. We will look at the strip-debug-symbols pass and the prune-eh pass.

Getting ready…
The opt tool must be installed.

How to do it…
1. Write a test case for checking the strip-debug pass, which strips off the debug

symbols from the test code:
$ cat teststripdebug.ll

@x = common global i32 0 ; <i32*>
[#uses=0]

define void @foo() nounwind readnone optsize ssp {

entry:

 tail call void @llvm.dbg.value(metadata i32 0, i64 0,
metadata !5, metadata !{}), !dbg !10

 ret void, !dbg !11

}

declare void @llvm.dbg.value(metadata, i64, metadata,
metadata) nounwind readnone

!llvm.dbg.cu = !{!2}

!llvm.module.flags = !{!13}

!llvm.dbg.sp = !{!0}

!llvm.dbg.lv.foo = !{!5}

!llvm.dbg.gv = !{!8}

!0 = !MDSubprogram(name: "foo", linkageName: "foo", line: 2,
isLocal: false, isDefinition: true, virtualIndex: 6,
isOptimized: true, file: !12, scope: !1, type: !3, function:
void ()* @foo)

!1 = !MDFile(filename: "b.c", directory: "/tmp")

Implementing Optimizations

122

!2 = !MDCompileUnit(language: DW_LANG_C89, producer: "4.2.1
(Based on Apple Inc. build 5658) (LLVM build)", isOptimized:
true, emissionKind: 0, file: !12, enums: !4, retainedTypes:
!4)

!3 = !MDSubroutineType(types: !4)

!4 = !{null}

!5 = !MDLocalVariable(tag: DW_TAG_auto_variable, name: "y",
line: 3, scope: !6, file: !1, type: !7)

!6 = distinct !MDLexicalBlock(line: 2, column: 0, file: !12,
scope: !0)

!7 = !MDBasicType(tag: DW_TAG_base_type, name: "int", size:
32, align: 32, encoding: DW_ATE_signed)

!8 = !MDGlobalVariable(name: "x", line: 1, isLocal: false,
isDefinition: true, scope: !1, file: !1, type: !7, variable:
i32* @x)

!9 = !{i32 0}

!10 = !MDLocation(line: 3, scope: !6)

!11 = !MDLocation(line: 4, scope: !6)

!12 = !MDFile(filename: "b.c", directory: "/tmp")

!13 = !{i32 1, !"Debug Info Version", i32 3}

2. Run the strip-debug-symbols pass by passing the –strip-debug command-
line option to the opt tool:
$ opt -strip-debug teststripdebug.ll -S

; ModuleID = ' teststripdebug.ll'

@x = common global i32 0

; Function Attrs: nounwind optsize readnone ssp

define void @foo() #0 {

entry:

 ret void

}

attributes #0 = { nounwind optsize readnone ssp }

!llvm.module.flags = !{!0}

!0 = metadata !{i32 1, metadata !"Debug Info Version", i32 2}

Chapter 5

123

3. Write a test case for checking the prune-eh pass:
$ cat simpletest.ll

declare void @nounwind() nounwind

define internal void @foo() {

 call void @nounwind()

 ret void

}

define i32 @caller() {

 invoke void @foo()

 to label %Normal unwind label %Except

Normal: ; preds = %0

 ret i32 0

Except: ; preds = %0

 landingpad { i8*, i32 } personality i32 (...)*
@__gxx_personality_v0

 catch i8* null

 ret i32 1

}

declare i32 @__gxx_personality_v0(...)

4. Run the pass to remove unused exception information by passing the –prune-eh
command-line option to the opt tool:

$ opt -prune-eh -S simpletest.ll

; ModuleID = 'simpletest.ll'

; Function Attrs: nounwind

declare void @nounwind() #0

; Function Attrs: nounwind

define internal void @foo() #0 {

 call void @nounwind()

 ret void

}

Implementing Optimizations

124

; Function Attrs: nounwind

define i32 @caller() #0 {

 call void @foo()

 br label %Normal

Normal: ; preds = %0

 ret i32 0

}

declare i32 @__gxx_personality_v0(...)

attributes #0 = { nounwind }

How it works…
In the first case, where we are running the strip-debug pass, it removes the debug
information from the code, and we can get compact code. This pass must be used only
when we are looking for compact code, as it can delete the names of virtual registers and
the symbols for internal global variables and functions, thus making the source code less
readable and making it difficult to reverse engineer the code.

The part of code that handles this transformation is located in the
llvm/lib/Transforms/IPO/StripSymbols.cpp file, where the
StripDeadDebugInfo::runOnModule function is responsible for stripping
the debug information.

The second test is for removing unused exception information using the prune-eh pass,
which implements an interprocedural pass. This walks the call-graph, turning invoke
instructions into call instructions only if the callee cannot throw an exception, and marking
functions as nounwind if they cannot throw the exceptions.

See also
 f Refer to http://llvm.org/docs/Passes.html#transform-passes for other

transformation passes

http://llvm.org/docs/Passes.html#transform-passes

125

Target-independent
Code Generator

In this chapter, we will cover the following recipes:

 f The life of an LLVM IR instruction
 f Visualizing the LLVM IR CFG using GraphViz
 f Describing the target using TableGen
 f Defining an instruction set
 f Adding a machine code descriptor
 f Implementing the MachineInstrBuilder class
 f Implementing the MachineBasicBlock class
 f Implementing the MachineFunction class
 f Writing an instruction selector
 f Legalizing SelectionDAG
 f Optimizing SelectionDAG
 f Selecting instructions from the DAG
 f Scheduling instructions in SelectionDAG

Introduction
After optimizing the LLVM IR, it needs to be converted into machine instructions for execution.
The machine-independent code generator interface gives an abstract layer that helps convert
IR into machine instructions. In this phase, the IR is converted into SelectionDAG (DAG stands
for Directed Acyclic Graph). Various phases work on the nodes of SelectionDAG. This chapter
describes the important phases in target-independent code generation.

6

Target-independent Code Generator

126

The life of an LLVM IR instruction
In previous chapters, we saw how high-level language instructions, statements, logical blocks,
function calls, loops, and so on get transformed into the LLVM IR. Various optimization passes
then process the IR to make it more optimal. The IR generated is in the SSA form and, in
abstract format, almost independent of any high- or low-level language constraints, which
facilitates optimization passes running on it. There might be some optimizations that are
target-specific and take place later, when the IR gets converted into machine instructions.

After we get an optimal LLVM IR, the next phase is to convert it into target-machine-
specific instructions. LLVM uses the SelectionDAG approach to convert the IR into machine
instructions. The Linear IR is converted into SelectionDAG, a DAG that represents instructions
as nodes. The SDAG then goes through various phases:

 f The SelectionDAG is created out of LLVM IR

 f Legalizing SDAG nodes

 f DAG combine optimization

 f Instruction selection from the target instruction

 f Scheduling and emitting a machine instruction

 f Register allocation—SSA destruction, register assignment, and register spilling

 f Emitting code

All the preceding stages are modularized in LLVM.

C Code to LLVM IR
The first step is to convert the front end language example to LLVM IR. Let's take an example:

 int test (int a, int b, int c) {
 return c/(a+b);
 }

Its LLVM IR will be as follows:

define i32 @test(i32 %a, i32 %b, i32 %c) {
 %add = add nsw i32 %a, %b
 %div = sdiv i32 %add, %c
 return i32 %div
 }

Chapter 6

127

IR optimization
The IR then goes through various optimization passes, as described in previous chapters. The
IR, in the transformation phase, goes through the InstCombiner::visitSDiv() function
in the InstCombine pass. In that function, it also goes through the SimplifySDivInst()
function and tries to check whether an opportunity exists to further simplify the instruction.

LLVM IR to SelectionDAG
After the IR transformations and optimizations are over, the LLVM IR instruction passes
through a Selection DAG node incarnation. Selection DAG nodes are created by the
SelectionDAGBuilder class. The SelectionDAGBuilder::visit() function call from
the SelectionDAGISel class visits each IR instruction for creating an SDAGNode node.
The method that handles an SDiv instruction is SelectionDAGBuilder::visitSDiv. It
requests a new SDNode node from the DAG with theISD::SDIV opcode, which then becomes
a node in the DAG.

SelectionDAG legalization
The SelectionDAG node created may not be supported by the target architecture. In
the initial phase of Selection DAG, these unsupported nodes are called illegal. Before the
SelectionDAG machinery actually emits machine instructions from the DAG nodes, these
undergo a few other transformations, legalization being one of the important phases.

The legalization of SDNode involves type and operation legalization. The target-specific
information is conveyed to the target-independent algorithms via an interface called
TargetLowering. This interface is implemented by the target and, describes how LLVM IR
instructions should be lowered to legal SelectionDAG operations. For instance, x86 lowering is
implemented in the X86TargetLowering interface. The setOperationAction() function
specifies whether the ISD node needs to be expanded or customized by operation legalization.
When SelectionDAGLegalize::LegalizeOp sees the expand flag, it replaces the SDNode
node with the parameter specified in the setOperationAction() call.

Conversion from target-independent DAG to
machine DAG

Now that we have legalized the instruction, SDNode should be converted to MachineSDNode.
The machine instructions are described in a generic table-based fashion in the target
description .td files. Using tablegen, these files are then converted into .inc files that
have registers/instructions as enums to refer to in the C++ code. Instructions can be selected
by an automated selector, SelectCode, or they can be handled specifically by writing a
customized Select function in the SelectionDAGISel class. The DAG node created at this
step is a MachineSDNode node, a subclass of SDNode that holds the information required to
construct an actual machine instruction but is still in the DAG node form.

Target-independent Code Generator

128

Scheduling instructions
A machine executes a linear set of instructions. So far, we have had machine instructions that
are still in the DAG form. To convert a DAG into a linear set of instructions, a topological sort
of the DAG can yield the instructions in linear order. However, the linear set of instructions
generated might not result in the most optimized code, and may cause execution delays due
to dependencies among instructions, register pressure, and pipeline stalling issues. Therein
comes the concept of scheduling instructions. Since each target has its own set of registers
and customized pipelining of the instructions, each target has its own hook for scheduling and
calculating heuristics to produce optimized, faster code. After calculating the best possible
way to arrange instructions, the scheduler emits the machine instructions in the machine
basic block, and finally destroys the DAG.

Register allocation
The registers allocated are virtual registers after the machine instructions are emitted.
Practically, an infinite number of virtual registers can be allocated, but the actual target
has a limited number of registers. These limited registers need to be allocated efficiently. If
this is not done, some registers have to be spilled onto the memory, and this may result in
redundant load/store operations. This will also result in wastage of CPU cycles, slowing down
the execution as well as increasing the memory footprint.

There are various register allocation algorithms. An important analysis is done when allocating
registers—liveness of variables and live interval analysis. If two variables live in the same
interval (that is, if there exists an interval interference), then they cannot be allocated the
same register. An interference graph is created by analyzing liveness, and a graph coloring
algorithm can be used to allocate the registers. This algorithm, however, takes quadratic time
to run. Hence, it may result in longer compilation time.

LLVM employs a greedy approach for register allocation, where variables that have large
live ranges are allocated registers first. Small ranges fit into the gaps of registers available,
resulting in less spill weight. Spilling is a load-store operation that occurs because no registers
are available to be allocated. Spill weight is the cost of operations involved in the spilling.
Sometimes, live range splitting also takes place to accommodate variables into the registers.

Note that the instructions are in the SSA form before register allocation. Now, the SSA form
cannot exist in the real world because of the limited number of registers available. In some
types of architecture, some instructions require fixed registers.

Chapter 6

129

Code emission
Now that the original high-level code has been translated into machine instructions, the next
step is to emit the code. LLVM does this in two ways; the first is JIT, which directly emits the
code to the memory. The second way is by using the MC framework to emit assembly and
object files for all backend targets.The LLVMTargetMachine::addPassesToEmitFile
function is responsible for defining the sequence of actions required to emit an object file. The
actual MI-to-MCInst translation is done in the EmitInstruction function of the AsmPrinter
interface. The static compiler tool, llc, generates assembly instructions for a target. Object file
(or assembly code) emission is done by implementing the MCStreamer interface.

Visualizing LLVM IR CFG using GraphViz
The LLVM IR control flow graph can be visualized using the GraphViz tool. It gives a visual
depiction of the nodes formed and how the code flow follows in the IR generated. Since the
important data structures in LLVM are graphs, this can be a very useful way to understand the
IR flow when writing a custom pass or studying the behavior of the IR pattern.

Getting ready
1. To install graphviz on Ubuntu, first add its ppa repository:

$ sudo apt-add-repository ppa:dperry/ppa-graphviz-test

2. Update the package repository:
$ sudo apt-get update

3. Install graphviz:
$ sudo apt-get install graphviz

If you get the graphviz : Depends: libgraphviz4 (>= 2.18)
but it is not going to be installed error, run the following
commands:
$ sudo apt-get remove libcdt4

$ sudo apt-get remove libpathplan4

Then install graphviz again with the following command:
$ sudo apt-get install graphviz

Target-independent Code Generator

130

How to do it…
1. Once the IR has been converted to DAG, it can be viewed in different phases. Create

a test.ll file with the following code:
$ cat test.ll

define i32 @test(i32 %a, i32 %b, i32 %c) {

 %add = add nsw i32 %a, %b

 %div = sdiv i32 %add, %c

 ret i32 %div

}

2. To display the DAG after it is built, before the first optimization pass, enter the
following command:
$ llc -view-dag-combine1-dags test.ll

The following diagram shows the DAG before the first optimization pass:

dag-combine1 input for test:

Chapter 6

131

3. To display the DAG before legalization, run this command:
$ llc -view-legalize-dags test.ll

Here is a diagram that shows the DAG before the legalization phase:

legalize input for test:

Target-independent Code Generator

132

4. To display the DAG before the second optimization pass, run the following command:
$ llc -view-dag-combine2-dags test.ll

The following diagram shows the DAG before the second optimization pass:

dag-combine2 input for test:

Chapter 6

133

5. To display the DAG before the selection phase, enter this command:
$ llc -view-isel-dags test.ll

Here is a diagram that shows the DAG before the selection phase:

isel input for test:

Target-independent Code Generator

134

6. To display the DAG before scheduling, run the following command:
$ llc -view-sched-dags test.ll

The following diagram shows the DAG before the scheduling phase:

scheduler input for test:

Chapter 6

135

7. To display the scheduler's dependency graph, run this command:
$ llc -view-sunit-dags test.ll

This diagram shows the scheduler's dependency graph:

Scheduling-Units Graph for sunit-drag.test:

Notice the difference in the DAG before and after the legalize phase. The sdiv node has been
converted into an sdivrem node. The x86 target doesn't support the sdiv node but supports
the sdivrem instruction. In a way, the sdiv instruction is illegal for the x86 target. The
legalize phase converted it into an sdivrem instruction, which is supported by the x86 target.

Also note the difference in the DAG before and after the instruction selection (ISel) phase.
Target-machine-independent instructions such as Load are converted into the MOV32rm
machine code (which means, move 32-bit data from the memory to the register). The ISel
phase is an important phase that will be described in later recipes.

Observe the scheduling units for the DAG. Each unit is linked to other units, which shows
the dependency between them. This dependency information is very important for deciding
scheduling algorithms. In the preceding case, scheduling unit 0 (SU0) is dependent on
scheduling unit 1 (SU1). So, the instructions in SU0 cannot be scheduled before the
instructions in SU1. SU1 is dependent on SU2, and so is SU2 on SU3.

See also
 f For more details on how to view graphs in debug mode, go to http://llvm.org/

docs/ProgrammersManual.html#viewing-graphs-while-debugging-code

http://llvm.org/docs/ProgrammersManual.html#viewing-graphs-while-debugging-code
http://llvm.org/docs/ProgrammersManual.html#viewing-graphs-while-debugging-code

Target-independent Code Generator

136

Describing targets using TableGen
The target architecture can be described in terms of the registers present, the instruction
set, and so on. Describing each of them manually is a tedious task. TableGen is a tool for
backend developers that describes their target machine with a declarative language—*.
td. The *.td files will be converted to enums, DAG-pattern matching functions, instruction
encoding/decoding functions, and so on, which can then be used in other C++ files for coding.

To define registers and the register set in the target description's .td files, tablegen will
convert the intended .td file into .inc files, which will be #include syntax in our .cpp files
referring to the registers.

Getting ready
Let's assume that the sample target machine has four registers, r0-r3; a stack register,
sp; and a link register, lr. These can be specified in the SAMPLERegisterInfo.td file.
TableGen provides the Register class, which can be extended to specify registers.

How to do it
1. Create a new folder in lib/Target named SAMPLE:

$ mkdir llvm_root_directory/lib/Target/SAMPLE

2. Create a new file called SAMPLERegisterInfo.td in the new SAMPLE folder:
$ cd llvm_root_directory/lib/Target/SAMPLE

$ vi SAMPLERegisterInfo.td

3. Define the hardware encoding, namespace, registers, and register class:

class SAMPLEReg<bits<16> Enc, string n> : Register<n> {
 let HWEncoding = Enc;
 let Namespace = "SAMPLE";
}

foreach i = 0-3 in {
 def R#i : R<i, "r"#i >;
}

def SP : SAMPLEReg<13, "sp">;
def LR : SAMPLEReg<14, "lr">;

def GRRegs : RegisterClass<"SAMPLE", [i32], 32,
 (add R0, R1, R2, R3, SP)>;

Chapter 6

137

How it works
TableGen processes this .td file to generate the .inc files, which have registers
represented in the form of enums that can be used in the .cpp files. These .inc files
will be generated when we build the LLVM project.

See also
 f To get more details on how registers are defined for more advanced architecture,

such as the x86, refer to the X86RegisterInfo.td file located at llvm_source_
code/lib/Target/X86/

Defining an instruction set
The instruction set of an architecture varies according to various features present in the
architecture. This recipe demonstrates how instruction sets are defined for the target
architecture.

Getting ready
Three things are defined in the instruction target description file: operands, an assembly
string, and an instruction pattern. The specification contains a list of definitions or outputs
and a list of uses or inputs. There can be different operand classes such as the register class,
and immediate or more complex register + imm operands.

Here, a simple add instruction definition is demonstrated. It takes two registers for the input
and one register for the output.

How to do it…
1. Create a new file called SAMPLEInstrInfo.td in the lib/Target/SAMPLE folder:

$ vi SAMPLEInstrInfo.td

2. Specify the operands, assembly string, and instruction pattern for the add instruction
between two register operands:

def ADDrr : InstSAMPLE<(outs GRRegs:$dst),
 (ins GRRegs:$src1, GRRegs:$src2),
 "add $dst, $src1, $src2",
 [(set i32:$dst, (add i32:$src1, i32:$src2))]>;

Target-independent Code Generator

138

How it works…
The add register instruction specifies $dst as the resultant operand, which belongs to the
general register type class; the $src1 and $src2 inputs as two input operands, which also
belong to the general register class; and the instruction assembly string as add $dst,
$src1, $src2, which is of the 32-bit integer type.

So, an assembly will be generated for add between two registers, like this:

add r0, r0, r1

This tells us to add the r0 and r1 registers' content and store the result in the r0 register.

See also
 f For more detailed information on various types of instruction sets for advanced

architecture, such as the x86, refer to the X86InstrInfo.td file located at
lib/Target/X86/

 f Detailed information of how target-specific things are defined will be covered in
Chapter 8, Writing an LLVM Backend. Some concepts might get repetitive, as the
preceding recipes were described in brief to get a glimpse of the target architecture
description and get a foretaste of the upcoming recipes

Adding a machine code descriptor
The LLVM IR has functions, which have basic blocks. Basic blocks in turn have instructions.
The next logical step is to convert those IR abstract blocks into machine-specific blocks. LLVM
code is translated into a machine-specific representation formed from the MachineFunction,
MachineBasicBlock, and MachineInstr instances. This representation contains
instructions in their most abstract form—that is, having an opcode and a series of operands.

How it's done…
Now the LLVM IR instruction has to be represented in the machine instruction. Machine
instructions are instances of the MachineInstr class. This class is an extremely abstract
way of representing machine instructions. In particular, it only keeps track of an opcode
number and a set of operands. The opcode number is a simple unsigned integer that has
a meaning only for a specific backend.

Let's look at some important functions defined in the MachineInstr.cpp file:

Chapter 6

139

The MachineInstr constructor:

MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc
&tid, const DebugLoc dl, bool NoImp)
 : MCID(&tid), Parent(nullptr), Operands(nullptr),
 NumOperands(0),
 Flags(0), AsmPrinterFlags(0),
 NumMemRefs(0), MemRefs(nullptr), debugLoc(dl) {
 // Reserve space for the expected number of operands.
 if (unsigned NumOps = MCID->getNumOperands() +
 MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
 CapOperands = OperandCapacity::get(NumOps);
 Operands = MF.allocateOperandArray(CapOperands);
 }

 if (!NoImp)
 addImplicitDefUseOperands(MF);
}

This constructor creates an object of MachineInstr class and adds the implicit operands. It
reserves space for the number of operands specified by the MCInstrDesc class.

One of the important functions is addOperand. It adds the specified operand to the
instruction. If it is an implicit operand, it is added at the end of the operand list. If it is an
explicit operand, it is added at the end of the explicit operand list, as shown here:

void MachineInstr::addOperand(MachineFunction &MF, const
MachineOperand &Op) {
 assert(MCID && "Cannot add operands before providing an instr
descriptor");
 if (&Op >= Operands && &Op < Operands + NumOperands) {
 MachineOperand CopyOp(Op);
 return addOperand(MF, CopyOp);
 }
 unsigned OpNo = getNumOperands();
 bool isImpReg = Op.isReg() && Op.isImplicit();
 if (!isImpReg && !isInlineAsm()) {
 while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-
1].isImplicit()) {
 --OpNo;
 assert(!Operands[OpNo].isTied() && "Cannot move tied
operands");
 }
 }

Target-independent Code Generator

140

#ifndef NDEBUG
 bool isMetaDataOp = Op.getType() == MachineOperand::MO_Metadata;
 assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
 OpNo < MCID->getNumOperands() || isMetaDataOp) &&
 "Trying to add an operand to a machine instr that is
already done!");
#endif

 MachineRegisterInfo *MRI = getRegInfo();
 OperandCapacity OldCap = CapOperands;
 MachineOperand *OldOperands = Operands;
 if (!OldOperands || OldCap.getSize() == getNumOperands()) {
 CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
 Operands = MF.allocateOperandArray(CapOperands);
 if (OpNo)
 moveOperands(Operands, OldOperands, OpNo, MRI);
 }
 if (OpNo != NumOperands)
 moveOperands(Operands + OpNo + 1, OldOperands + OpNo,
NumOperands - OpNo,
 MRI);
 ++NumOperands;
 if (OldOperands != Operands && OldOperands)
 MF.deallocateOperandArray(OldCap, OldOperands);
 MachineOperand *NewMO = new (Operands + OpNo)
MachineOperand(Op);
 NewMO->ParentMI = this;
 if (NewMO->isReg()) {
 NewMO->Contents.Reg.Prev = nullptr;
 NewMO->TiedTo = 0;
 if (MRI)
 MRI->addRegOperandToUseList(NewMO);
 if (!isImpReg) {
 if (NewMO->isUse()) {
 int DefIdx = MCID->getOperandConstraint(OpNo,
MCOI::TIED_TO);
 if (DefIdx != -1)
 tieOperands(DefIdx, OpNo);
 }
 if (MCID->getOperandConstraint(OpNo,
MCOI::EARLY_CLOBBER) != -1)
 NewMO->setIsEarlyClobber(true);
 }
 }
}

Chapter 6

141

The target architecture has some memory operands as well. To add those memory operands,
a function called addMemOperands() is defined:

void MachineInstr::addMemOperand(MachineFunction &MF,
 MachineMemOperand *MO) {
 mmo_iterator OldMemRefs = MemRefs;
 unsigned OldNumMemRefs = NumMemRefs;
 unsigned NewNum = NumMemRefs + 1;
 mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
 std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
 NewMemRefs[NewNum - 1] = MO;
 setMemRefs(NewMemRefs, NewMemRefs + NewNum);
}

The setMemRefs() function is the primary method for setting up a MachineInstr
MemRefs list.

How it works…
The MachineInstr class has an MCID member, with the MCInstrDesc type for describing
the instruction, a uint8_t flags member, a memory reference member (mmo_iterator
MemRefs), and a vector member of the std::vector<MachineOperand> operands. In
terms of methods, the MachineInstr class provides the following:

 f A basic set of get** and set** functions for information queries, for example,
getOpcode(), getNumOperands(), and so on

 f Bundle-related operations, for example, isInsideBundle()

 f Checking whether the instruction has certain properties, for example,
isVariadic(), isReturn(), isCall(), and so on

 f Machine instruction manipulation, for example, eraseFromParent()

 f Register-related operations, such as ubstituteRegister(),
addRegisterKilled(), and so on

 f Machine-instruction-creating methods, for example, addOperand(), setDesc(),
and so on

Note that, although the MachineInstr class provides machine-instruction-creating methods,
a dedicated function called BuildMI(), based on the MachineInstrBuilder class, is
more convenient.

Target-independent Code Generator

142

Implementing the MachineInstrBuilder class
The MachineInstrBuilder class exposes a function called BuildMI(). This function is
used to build machine instructions.

How to do it…
Machine instructions are created by using the BuildMI functions, located in the include/
llvm/CodeGen/MachineInstrBuilder.h file. The BuildMI functions make it easy to
build arbitrary machine instructions.

For example, you can use BuildMI in code snippets for the following purposes:

1. To create a DestReg = mov 42 (rendered in the x86 assembly as mov DestReg,
42) instruction:
MachineInstr *MI = BuildMI(X86::MOV32ri, 1, DestReg).addImm(42);

2. To create the same instruction, but insert it at the end of a basic block:
MachineBasicBlock &MBB =
BuildMI(MBB, X86::MOV32ri, 1, DestReg).addImm(42);

3. To create the same instruction, but insert it before a specified iterator point:
MachineBasicBlock::iterator MBBI =
BuildMI(MBB, MBBI, X86::MOV32ri, 1, DestReg).addImm(42)

4. To create a self-looping branch instruction:
BuildMI(MBB, X86::JNE, 1).addMBB(&MBB);

How it works…
The BuildMI() function is required for specifying the number of operands that the machine
instruction will take, which facilitates efficient memory allocation. It is also required to specify
whether operands use values or definitions.

Implementing the MachineBasicBlock class
Similar to basic blocks in the LLVM IR, a MachineBasicBlock class has a set of machine
instructions in sequential order. Mostly, a MachineBasicBlock class maps to a single LLVM
IR basic block. However, there can be cases where multiple MachineBasicBlocks classes
map to a single LLVM IR basic block. The MachineBasicBlock class has a method, called
getBasicBlock(), that returns the IR basic block to which it is mapping.

Chapter 6

143

How to do it…
The following steps show how machine basic blocks are added:

1. The getBasicBlock method will return only the current basic block:
const BasicBlock *getBasicBlock() const { return BB; }

2. The basic blocks have successor as well as predecessor basic blocks. To keep track
of those, vectors are defined as follows:
std::vector<MachineBasicBlock *> Predecessors;
std::vector<MachineBasicBlock *> Successors;

3. An insert function should be added to insert a machine instruction into the basic
block:
 MachineBasicBlock::insert(instr_iterator I, MachineInstr
*MI) {
assert(!MI->isBundledWithPred() && !MI->isBundledWithSucc()
&& "Cannot insert instruction with bundle flags");

if (I != instr_end() && I->isBundledWithPred()) {
 MI->setFlag(MachineInstr::BundledPred);
 MI->setFlag(MachineInstr::BundledSucc);
}
 return Insts.insert(I, MI);
}

4. A function called SplitCriticalEdge() splits the critical edges from this
block to the given successor block, and returns the newly created block, or
null if splitting is not possible. This function updates the LiveVariables,
MachineDominatorTree, and MachineLoopInfo classes:
MachineBasicBlock *
MachineBasicBlock::SplitCriticalEdge(MachineBasicBlock
*Succ, Pass *P) {
…
…
…
}

The full implementation of the preceding code is shown in the
MachineBasicBlock.cpp file located at lib/CodeGen/.

Target-independent Code Generator

144

How it works…
As listed previously, several representative functions of different categories form the interface
definition of the MachineBasicBlock class. The MachineBasicBlock class keeps a list of
machine instructions such as typedef ilist<MachineInstr> instructions, instructions
Insts, and the original LLVM BB (basic block). It also provides methods for purposes such
as these:

 f BB information querying (for example, getBasicBlock() and
setHasAddressTaken())

 f BB-level manipulation (for example, moveBefore(), moveAfter(), and
addSuccessor())

 f Instruction-level manipulation (for example, push_back(), insertAfter(),
and so on)

See also
 f To see a detailed implementation of the MachineBasicBlock class, go through

the MachineBasicBlock.cpp file located at lib/CodeGen/

Implementing the MachineFunction class
Similar to the LLVM IR FunctionBlock class, a MachineFunction class contains a series
of MachineBasicBlocks classes. These MachineFunction classes map to LLVM IR
functions that are given as input to the instruction selector. In addition to a list of basic blocks,
the MachineFunction class contains the MachineConstantPool, MachineFrameInfo,
MachineFunctionInfo, and MachineRegisterInfo classes.

How to do it…
Many functions are defined in the MachineFunction class, which does specific tasks. There
are also many class member objects that keep information, such as the following:

 f RegInfo keeps information about each register that is in use in the function:
MachineRegisterInfo *RegInfo;

 f MachineFrameInfo keeps track of objects allocated on the stack:
MachineFrameInfo *FrameInfo;

 f ConstantPool keeps track of constants that have been spilled to the memory:
MachineConstantPool *ConstantPool;

Chapter 6

145

 f JumpTableInfo keeps track of jump tables for switch instructions:
MachineJumpTableInfo *JumpTableInfo;

 f The list of machine basic blocks in the function:
typedef ilist<MachineBasicBlock> BasicBlockListType;
BasicBlockListType BasicBlocks;

 f The getFunction function returns the LLVM function that the current machine code
represents:
const Function *getFunction() const { return Fn; }

 f CreateMachineInstr allocates a new MachineInstr class:

MachineInstr *CreateMachineInstr(const MCInstrDesc &MCID,
DebugLoc DL,
bool NoImp = false);

How it works…
The MachineFunction class primarily contains a list of MachineBasicBlock
objects (typedef ilist<MachineBasicBlock> BasicBlockListType;
BasicBlockListType BasicBlocks;), and defines various methods for retrieving
information about the machine function and manipulating the objects in the basic blocks
member. A very important point to note is that the MachineFunction class maintains
the control flow graph (CFG) of all basic blocks in a function. Control flow information in
CFG is crucial for many optimizations and analyses. So, it is important to know how the
MachineFunction objects and the corresponding CFGs are constructed.

See also
 f A detailed implementation of the MachineFunction class can be found in the

MachineFunction.cpp file located at lib/Codegen/

Writing an instruction selector
LLVM uses the SelectionDAG representation to represent the LLVM IR in a low-level
data-dependence DAG for instruction selection. Various simplifications and target-specific
optimizations can be applied to the SelectionDAG representation. This representation is
target-independent. It is a significant, simple, and powerful representation used to implement
IR lowering to target instructions.

Target-independent Code Generator

146

How to do it…
The following code shows a brief skeleton of the SelectionDAG class, its data members, and
various methods used to set/retrieve useful information from this class. The SelectionDAG
class is defined as follows:

class SelectionDAG {
const TargetMachine &TM;
const TargetLowering &TLI;
const TargetSelectionDAGInfo &TSI;
MachineFunction *MF;
LLVMContext *Context;
CodeGenOpt::Level OptLevel;

SDNode EntryNode;
// Root - The root of the entire DAG.
SDValue Root;

// AllNodes - A linked list of nodes in the current DAG.
ilist<SDNode> AllNodes;

// NodeAllocatorType - The AllocatorType for allocating SDNodes.
We use

typedef RecyclingAllocator<BumpPtrAllocator, SDNode,
sizeof(LargestSDNode),
AlignOf<MostAlignedSDNode>::Alignment>
NodeAllocatorType;

BumpPtrAllocator OperandAllocator;

BumpPtrAllocator Allocator;

SDNodeOrdering *Ordering;

public:

struct DAGUpdateListener {

DAGUpdateListener *const Next;

SelectionDAG &DAG;

explicit DAGUpdateListener(SelectionDAG &D)

Chapter 6

147

: Next(D.UpdateListeners), DAG(D) {
DAG.UpdateListeners = this;
}

private:

friend struct DAGUpdateListener;

DAGUpdateListener *UpdateListeners;

void init(MachineFunction &mf);

// Function to set root node of SelectionDAG
const SDValue &setRoot(SDValue N) {
 assert((!N.getNode() || N.getValueType() == MVT::Other) &&
 "DAG root value is not a chain!");
 if (N.getNode())
 checkForCycles(N.getNode());
 Root = N;
 if (N.getNode())
 checkForCycles(this);
 return Root;
}

void Combine(CombineLevel Level, AliasAnalysis &AA,
CodeGenOpt::Level OptLevel);

SDValue getConstant(uint64_t Val, EVT VT, bool isTarget = false);

SDValue getConstantFP(double Val, EVT VT, bool isTarget = false);

SDValue getGlobalAddress(const GlobalValue *GV, DebugLoc DL, EVT
VT, int64_t offset = 0, bool isTargetGA = false,
unsigned char TargetFlags = 0);

SDValue getFrameIndex(int FI, EVT VT, bool isTarget = false);

SDValue getTargetIndex(int Index, EVT VT, int64_t Offset = 0,
unsigned char TargetFlags = 0);

// Function to return Basic Block corresponding to this
MachineBasicBlock

Target-independent Code Generator

148

SDValue getBasicBlock(MachineBasicBlock *MBB);

SDValue getBasicBlock(MachineBasicBlock *MBB, DebugLoc dl);

SDValue getExternalSymbol(const char *Sym, EVT VT);

SDValue getExternalSymbol(const char *Sym, DebugLoc dl, EVT VT);

SDValue getTargetExternalSymbol(const char *Sym, EVT VT,
unsigned char TargetFlags = 0);

// Return the type of the value this SelectionDAG node corresponds
// to
SDValue getValueType(EVT);

SDValue getRegister(unsigned Reg, EVT VT);

SDValue getRegisterMask(const uint32_t *RegMask);

SDValue getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label);

SDValue getBlockAddress(const BlockAddress *BA, EVT VT,
int64_t Offset = 0, bool isTarget = false,
unsigned char TargetFlags = 0);

SDValue getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT);

SDValue getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT);

SDValue getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT SrcTy);

SDValue getNOT(DebugLoc DL, SDValue Val, EVT VT);

// Function to get SelectionDAG node.
SDValue getNode(unsigned Opcode, DebugLoc DL, EVT VT);

SDValue getNode(unsigned Opcode, DebugLoc DL, EVT VT, SDValue N);

SDValue getNode(unsigned Opcode, DebugLoc DL, EVT VT, SDValue N1,
SDValue N2);

SDValue getNode(unsigned Opcode, DebugLoc DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3);

Chapter 6

149

SDValue getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst, SDValue
Src,SDValue Size, unsigned Align, bool isVol, bool AlwaysInline,
MachinePointerInfo DstPtrInfo,MachinePointerInfo SrcPtrInfo);

SDValue getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT, SDValue
Chain,
SDValue Ptr, SDValue Cmp, SDValue Swp,
MachinePointerInfo PtrInfo, unsigned Alignment,
AtomicOrdering Ordering,
SynchronizationScope SynchScope);

SDNode *UpdateNodeOperands(SDNode *N, SDValue Op);

SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2);

SDNode *UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3);

SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT);

SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
SDValue Op1);

SDNode *SelectNodeTo(SDNode *N, unsigned TargetOpc, EVT VT,
SDValue Op1, SDValue Op2);

MachineSDNode *getMachineNode(unsigned Opcode, DebugLoc dl, EVT
VT);
MachineSDNode *getMachineNode(unsigned Opcode, DebugLoc dl, EVT
VT,
SDValue Op1);

MachineSDNode *getMachineNode(unsigned Opcode, DebugLoc dl, EVT
VT,
SDValue Op1, SDValue Op2);

void ReplaceAllUsesWith(SDValue From, SDValue Op);

void ReplaceAllUsesWith(SDNode *From, SDNode *To);

void ReplaceAllUsesWith(SDNode *From, const SDValue *To);

bool isBaseWithConstantOffset(SDValue Op) const;

Target-independent Code Generator

150

bool isKnownNeverNaN(SDValue Op) const;

bool isKnownNeverZero(SDValue Op) const;

bool isEqualTo(SDValue A, SDValue B) const;

SDValue UnrollVectorOp(SDNode *N, unsigned ResNE = 0);

bool isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,

unsigned Bytes, int Dist) const;

unsigned InferPtrAlignment(SDValue Ptr) const;

private:

bool RemoveNodeFromCSEMaps(SDNode *N);

void AddModifiedNodeToCSEMaps(SDNode *N);

SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op, void
*&InsertPos);

SDNode *FindModifiedNodeSlot(SDNode *N, SDValue Op1, SDValue Op2,
void *&InsertPos);

SDNode *FindModifiedNodeSlot(SDNode *N, const SDValue *Ops,
unsigned NumOps,void *&InsertPos);

SDNode *UpdadeDebugLocOnMergedSDNode(SDNode *N, DebugLoc loc);

void DeleteNodeNotInCSEMaps(SDNode *N);

void DeallocateNode(SDNode *N);

unsigned getEVTAlignment(EVT MemoryVT) const;

void allnodes_clear();

std::vector<SDVTList> VTList;

std::vector<CondCodeSDNode*> CondCodeNodes;

Chapter 6

151

std::vector<SDNode*> ValueTypeNodes;

std::map<EVT, SDNode*, EVT::compareRawBits>
ExtendedValueTypeNodes;

StringMap<SDNode*> ExternalSymbols;

std::map<std::pair<std::string, unsigned char>,SDNode*>
TargetExternalSymbols;
};

How it works…
From the preceding code, it can be seen that the SelectionDAG class provides lots of target-
independent methods to create SDNode of various kinds, and retrieves/computes useful
information from the nodes in the SelectionDAG graph. There are also update and replace
methods provided in the SelectionDAG class. Most of these methods are defined in the
SelectionDAG.cpp file. Note that the SelectionDAG graph and its node type, SDNode,
are designed in a way that is capable of storing both target-independent and target-specific
information. For example, the isTargetOpcode() and isMachineOpcode() methods
in the SDNode class can be used to determine whether an opcode is a target opcode or a
machine opcode (target-independent). This is because the same class type, NodeType, is
used to represent both the opcode of a real target and the opcode of a machine instruction,
but with separate ranges.

Legalizing SelectionDAG
A SelectionDAG representation is a target-independent representation of instructions and
operands. However, a target may not always support the instruction or data type represented
by SelectionDAG. In that sense, the initial SelectionDAG graph constructed can be called
illegal. The DAG legalize phase converts the illegal DAG into a legal DAG supported by the
target architecture.

A DAG legalize phase can follow two ways to convert unsupported data types into supported
data types—by promoting smaller data types to larger data types, or by truncating larger data
types into smaller ones. For example, suppose that a type of target architecture supports only
i32 data types. In that case, smaller data types such as i8 and i16 need to be promoted to
the i32 type. A larger data type, such as i64, can be expanded to give two i32 data types. The
Sign and Zero extensions can be added so that the result remains consistent in the process
of promoting or expanding data types.

Target-independent Code Generator

152

Similarly, vector types can be legalized to supported vector types by either splitting the vector
into smaller sized vectors (by extracting the elements from the vector), or by widening smaller
vector types to larger, supported vector types. If vectors are not supported in the target
architecture, then every element of the vector in the IR needs to be extracted in the scalar form.

The legalize phase can also instruct the kind of classes of registers supported for
given data.

How to do it…
The SelectionDAGLegalize class consists of various data members, tracking data
structures to keep a track of legalized nodes, and various methods that are used to operate
on nodes to legalize them. A sample snapshot of the legalize phase code from the LLVM trunk
shows the basic skeleton of implementation of the legalize phase, as follows:

namespace {
class SelectionDAGLegalize : public
SelectionDAG::DAGUpdateListener {

const TargetMachine &TM;

const TargetLowering &TLI;

SelectionDAG &DAG;

SelectionDAG::allnodes_iterator LegalizePosition;

// LegalizedNodes - The set of nodes which have already been
legalized.
SmallPtrSet<SDNode *, 16> LegalizedNodes;

public:
explicit SelectionDAGLegalize(SelectionDAG &DAG);
void LegalizeDAG();

private:

void LegalizeOp(SDNode *Node);

SDValue OptimizeFloatStore(StoreSDNode *ST);

// Legalize Load operations
void LegalizeLoadOps(SDNode *Node);

// Legalize Store operations

Chapter 6

153

void LegalizeStoreOps(SDNode *Node);

// Main legalize function which operates on Selection DAG node
void SelectionDAGLegalize::LegalizeOp(SDNode *Node) {
// A target node which is constant need not be legalized further
 if (Node->getOpcode() == ISD::TargetConstant)
 return;

 for (unsigned i = 0, e = Node->getNumValues(); i != e; ++i)
 assert(TLI.getTypeAction(*DAG.getContext(), Node->getValueType(i))
== TargetLowering::TypeLegal && "Unexpected illegal type!");

 for (unsigned i = 0, e = Node->getNumOperands(); i != e; ++i)
 assert((TLI.getTypeAction(*DAG.getContext(),
 Node->getOperand(i).getValueType()) ==
TargetLowering::TypeLegal ||
 Node->getOperand(i).getOpcode() == ISD::TargetConstant) &&
 "Unexpected illegal type!");

 TargetLowering::LegalizeAction Action = TargetLowering::Legal;
 bool SimpleFinishLegalizing = true;

// Legalize based on instruction opcode
 switch (Node->getOpcode()) {
 case ISD::INTRINSIC_W_CHAIN:
 case ISD::INTRINSIC_WO_CHAIN:
 case ISD::INTRINSIC_VOID:
 case ISD::STACKSAVE:
 Action = TLI.getOperationAction(Node->getOpcode(),
MVT::Other);
 break;
…
…
}

Target-independent Code Generator

154

How it works…
Many function members of the SelectionDAGLegalize class, such as LegalizeOp, rely on
target-specific information provided by the const TargetLowering &TLI member (other
function members may also depend on the const TargetMachine &TM member) in the
SelectionDAGLegalize class. Let's take an example to demonstrate how legalization works.

There are two types of legalization: type legalization and instruction legalization. Let's first see
how type legalization works. Create a test.ll file using the following commands:

$ cat test.ll

define i64 @test(i64 %a, i64 %b, i64 %c) {

 %add = add nsw i64 %a, %b

 %div = sdiv i64 %add, %c

 ret i64 %div

}

The data type in this case is i64. For the x86 target, which supports only the 32-bit data
type, the data type you just saw is illegal. To run the preceding code, the data type has to be
converted to i32. This is done by the DAG Legalization phase.

To view the DAG before type legalization, run the following command line:

$ llc -view-dag-combine1-dags test.ll

The following figure shows the DAG before type legalization:

Chapter 6

155

dag-combine1 input for test:

To see DAG after type legalization, enter the following command line:

$ llc -view-dag-combine2-dags test.ll

Target-independent Code Generator

156

The following figure shows the DAG after type legalization:

dag-combine2 input for test:

On observing the DAG nodes carefully, you can see that every operation before legalization
had the i64 type. This was because the IR had the data type i64—one-to-one mapping from
the IR instruction to the DAG nodes. However, the target x86 machine supports only the
i32 type (32-bit integer type). The DAG legalize phase converts unsupported i64 types to
supported i32 types. This operation is called expanding—splitting larger types into smaller
types. For example, in a target accepting only i32 values, all i64 values are broken down to
pairs of i32 values. So, after legalization, you can see that all the operations now have i32 as
the data type.

Let's see how instructions are legalized; create a test.ll file using the following commands:

$ cat test.ll

define i32 @test(i32 %a, i32 %b, i32 %c) {

 %add = add nsw i32 %a, %b

 %div = sdiv i32 %add, %c

 ret i32 %div

}

Chapter 6

157

To view the DAG before legalization, enter the following command:

$ llc –view-dag-combine1-dags test.ll

The following figure shows the DAG before legalization:

dag-combine1 input for test:

To view the DAG after legalization, enter the following command:

$ llc -view-dag-combine2-dags test.ll

Target-independent Code Generator

158

The following figure shows the DAG after the legalization phase:

dag-combine2 input for test:

The DAG, before instruction legalization, consists of sdiv instructions. Now, the x86 target
does not support the sdiv instruction, hence it is illegal for the target. It does, however,
support the sdivrem instruction. So, the legalization phase involves conversion of the sdiv
instruction to the sdivrem instruction, as visible in the preceding two DAGs.

Optimizing SelectionDAG
A SelectionDAG representation shows data and instructions in the form of nodes. Similar to
the InstCombine pass in the LLVM IR, these nodes can be combined and optimized to form
a minimized SelectionDAG. But, it's not just a DAGCombine operation that optimizes the
SelectionDAG. A DAGLegalize phase may generate some unnecessary DAG nodes, which
are cleaned up by subsequent runs of the DAG optimization pass. This finally represents the
SelectionDAG in a more simple and elegant way.

How to do it…
There are lots and lots of function members (most of them are named like this: visit**())
provided in the DAGCombiner class to perform optimizations by folding, reordering,
combining, and modifying SDNode nodes. Note that, from the DAGCombiner constructor,
we can guess that some optimizations require alias analysis information:

Chapter 6

159

class DAGCombiner {
SelectionDAG &DAG;
const TargetLowering &TLI;
CombineLevel Level;
CodeGenOpt::Level OptLevel;
bool LegalOperations;
bool LegalTypes;

SmallPtrSet<SDNode*, 64> WorkListContents;
SmallVector<SDNode*, 64> WorkListOrder;

AliasAnalysis &AA;

// Add SDnodes users to worklist
void AddUsersToWorkList(SDNode *N) {
 for (SDNode::use_iterator UI = N->use_begin(),
 UE = N->use_end(); UI != UE; ++UI)
 AddToWorkList(*UI);
}
SDValue visit(SDNode *N);

public:

void AddToWorkList(SDNode *N) {
 WorkListContents.insert(N);
 WorkListOrder.push_back(N);
}

void removeFromWorkList(SDNode *N) {
 WorkListContents.erase(N);
}

// SDnode combine operations.
SDValue CombineTo(SDNode *N, const SDValue *To, unsigned NumTo,
bool AddTo = true);

SDValue CombineTo(SDNode *N, SDValue Res, bool AddTo = true) {
 return CombineTo(N, &Res, 1, AddTo);
}

SDValue CombineTo(SDNode *N, SDValue Res0, SDValue Res1,
bool AddTo = true) {
 SDValue To[] = { Res0, Res1 };
 return CombineTo(N, To, 2, AddTo);

Target-independent Code Generator

160

}
void CommitTargetLoweringOpt(const TargetLowering::TargetLoweringOpt
&TLO);

private:

bool SimplifyDemandedBits(SDValue Op) {
 unsigned BitWidth =
Op.getValueType().getScalarType().getSizeInBits();
 APInt Demanded = APInt::getAllOnesValue(BitWidth);
 return SimplifyDemandedBits(Op, Demanded);
}
bool SimplifyDemandedBits(SDValue Op, const APInt &Demanded);

bool CombineToPreIndexedLoadStore(SDNode *N);

bool CombineToPostIndexedLoadStore(SDNode *N);

void ReplaceLoadWithPromotedLoad(SDNode *Load, SDNode *ExtLoad);

SDValue PromoteOperand(SDValue Op, EVT PVT, bool &Replace);

SDValue SExtPromoteOperand(SDValue Op, EVT PVT);

SDValue ZExtPromoteOperand(SDValue Op, EVT PVT);

SDValue PromoteIntBinOp(SDValue Op);

SDValue PromoteIntShiftOp(SDValue Op);

SDValue PromoteExtend(SDValue Op);

bool PromoteLoad(SDValue Op);

void ExtendSetCCUses(SmallVector<SDNode*, 4> SetCCs,
SDValue Trunc, SDValue ExtLoad, DebugLoc DL,
ISD::NodeType ExtType);

SDValue combine(SDNode *N);

// Various visit functions operating on instructions represented
// by SD node. Similar to instruction combining at IR level.
SDValue visitTokenFactor(SDNode *N);

Chapter 6

161

SDValue visitMERGE_VALUES(SDNode *N);

SDValue visitADD(SDNode *N);
SDValue visitSUB(SDNode *N);
SDValue visitADDC(SDNode *N);
SDValue visitSUBC(SDNode *N);
SDValue visitADDE(SDNode *N);
SDValue visitSUBE(SDNode *N);
SDValue visitMUL(SDNode *N);

public:

DAGCombiner(SelectionDAG &D, AliasAnalysis &A, CodeGenOpt::Level
OL)
: DAG(D), TLI(D.getTargetLoweringInfo()),
Level(BeforeLegalizeTypes),
 OptLevel(OL), LegalOperations(false), LegalTypes(false), AA(A)
{}

// Selection DAG transformation for following ops
SDValue DAGCombiner::visitMUL(SDNode *N) {
 SDValue N0 = N->getOperand(0);
 SDValue N1 = N->getOperand(1);
 ConstantSDNode *N0C = dyn_cast<ConstantSDNode>(N0);
 ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1);
 EVT VT = N0.getValueType();
 if (VT.isVector()) {
 SDValue FoldedVOp = SimplifyVBinOp(N);
 if (FoldedVOp.getNode()) return FoldedVOp;
 }
 if (N0.getOpcode() == ISD::UNDEF || N1.getOpcode() ==
ISD::UNDEF)
 return DAG.getConstant(0, VT);

 if (N0C && N1C)
 return DAG.FoldConstantArithmetic(ISD::MUL, VT, N0C, N1C);

 if (N0C && !N1C)
 return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT, N1, N0);

 if (N1C && N1C->isNullValue())
 return N1;

 if (N1C && N1C->isAllOnesValue())
 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,

Target-independent Code Generator

162

DAG.getConstant(0, VT), N0);
 if (N1C && N1C->getAPIntValue().isPowerOf2())
 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
 DAG.getConstant(N1C->getAPIntValue().logBase2(),
 getShiftAmountTy(N0.getValueType())));

 if (N1C && (-N1C->getAPIntValue()).isPowerOf2()) {
 unsigned Log2Val = (-N1C->getAPIntValue()).logBase2();
 return DAG.getNode(ISD::SUB, N->getDebugLoc(), VT,
DAG.getConstant(0, VT),
 DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N0,
 DAG.getConstant(Log2Val,
getShiftAmountTy(N0.getValueType()))));
 }

 if (N1C && N0.getOpcode() == ISD::SHL &&
 isa<ConstantSDNode>(N0.getOperand(1))) {
 SDValue C3 = DAG.getNode(ISD::SHL, N->getDebugLoc(), VT, N1,
N0.getOperand(1));
 AddToWorkList(C3.getNode());
 return DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
 N0.getOperand(0), C3);
 }

 if (N0.getOpcode() == ISD::SHL &&
isa<ConstantSDNode>(N0.getOperand(1)) &&
 N0.getNode()->hasOneUse()) {
 Sh = N0; Y = N1;
 } else if (N1.getOpcode() == ISD::SHL &&
isa<ConstantSDNode>(N1.getOperand(1)) &&
 N1.getNode()->hasOneUse()) {
 Sh = N1; Y = N0;
 }
 if (Sh.getNode()) {
 SDValue Mul = DAG.getNode(ISD::MUL, N->getDebugLoc(), VT,
Sh.getOperand(0), Y);
 return DAG.getNode(ISD::SHL, N->getDebugLoc(), VT,
 Mul, Sh.getOperand(1));
 }
 }
 if (N1C && N0.getOpcode() == ISD::ADD && N0.getNode()-
>hasOneUse() &&
 isa<ConstantSDNode>(N0.getOperand(1)))
 return DAG.getNode(ISD::ADD, N->getDebugLoc(), VT,
DAG.getNode(ISD::MUL, N0.getDebugLoc(),

Chapter 6

163

 VT, N0.getOperand(0), N1), DAG.getNode(ISD::MUL,
N1.getDebugLoc(), VT, N0.getOperand(1), N1));

 SDValue RMUL = ReassociateOps(ISD::MUL, N->getDebugLoc(), N0,
N1);

 if (RMUL.getNode() != 0) return RMUL;
 return SDValue();
}

How it works…
As seen in the preceding code, some DAGCombine passes search for a pattern and then fold
the patterns into a single DAG. This basically reduces the number of DAGs, while lowering
DAGs. The result is an optimized SelectionDAG class.

See also
 f For a more detailed implementation of the optimized SelectionDAG class, see the

DAGCombiner.cpp file located at lib/CodeGen/SelectionDAG/

Selecting instruction from the DAG
After legalization and DAG combination, the SelectionDAG representation is in the
optimized phase. However, the instructions represented are still target-independent and need
to be mapped on target-specific instructions. The instruction selection phase takes the target-
independent DAG nodes as the input, matches patterns in them, and gives the output DAG
nodes, which are target-specific.

The TableGen DAG instruction selector generator reads the instruction patterns from the .td
file, and automatically builds parts of the pattern matching code.

How to do it…
SelectionDAGISel is the common base class used for pattern-matching instruction
selectors that are based on SelectionDAG. It inherits the MachineFunctionPass class.
It has various functions used to determine the legality and profitability of operations such as
folding. The basic skeleton of this class is as follows:

class SelectionDAGISel : public MachineFunctionPass {
public:
const TargetMachine &TM;
const TargetLowering &TLI;
const TargetLibraryInfo *LibInfo;

Target-independent Code Generator

164

FunctionLoweringInfo *FuncInfo;
MachineFunction *MF;
MachineRegisterInfo *RegInfo;
SelectionDAG *CurDAG;
SelectionDAGBuilder *SDB;
AliasAnalysis *AA;
GCFunctionInfo *GFI;
CodeGenOpt::Level OptLevel;
static char ID;

explicit SelectionDAGISel(const TargetMachine &tm,
CodeGenOpt::Level OL = CodeGenOpt::Default);

virtual ~SelectionDAGISel();

const TargetLowering &getTargetLowering() { return TLI; }

virtual void getAnalysisUsage(AnalysisUsage &AU) const;

virtual bool runOnMachineFunction(MachineFunction &MF);

virtual void EmitFunctionEntryCode() {}

virtual void PreprocessISelDAG() {}

virtual void PostprocessISelDAG() {}

virtual SDNode *Select(SDNode *N) = 0;

virtual bool SelectInlineAsmMemoryOperand(const SDValue &Op,
char ConstraintCode,
std::vector<SDValue> &OutOps) {
 return true;
}

virtual bool IsProfitableToFold(SDValue N, SDNode *U, SDNode
*Root) const;

static bool IsLegalToFold(SDValue N, SDNode *U, SDNode *Root,
CodeGenOpt::Level OptLevel,
bool IgnoreChains = false);

enum BuiltinOpcodes {
OPC_Scope,

Chapter 6

165

OPC_RecordNode,
OPC_CheckOpcode,
OPC_SwitchOpcode,
OPC_CheckFoldableChainNode,
OPC_EmitInteger,
OPC_EmitRegister,
OPC_EmitRegister2,
OPC_EmitConvertToTarget,
OPC_EmitMergeInputChains,
};

static inline int getNumFixedFromVariadicInfo(unsigned Flags) {
 return ((Flags&OPFL_VariadicInfo) >> 4)-1;
}

protected:
// DAGSize - Size of DAG being instruction selected.
unsigned DAGSize;

void ReplaceUses(SDValue F, SDValue T) {
 CurDAG->ReplaceAllUsesOfValueWith(F, T);
}

void ReplaceUses(const SDValue *F, const SDValue *T, unsigned Num)
{
 CurDAG->ReplaceAllUsesOfValuesWith(F, T, Num);
}

void ReplaceUses(SDNode *F, SDNode *T) {
 CurDAG->ReplaceAllUsesWith(F, T);
}

void SelectInlineAsmMemoryOperands(std::vector<SDValue> &Ops);

public:
bool CheckAndMask(SDValue LHS, ConstantSDNode *RHS,
int64_t DesiredMaskS) const;

bool CheckOrMask(SDValue LHS, ConstantSDNode *RHS,
int64_t DesiredMaskS) const;

virtual bool CheckPatternPredicate(unsigned PredNo) const {
 llvm_unreachable("Tblgen should generate the implementation of
this!");

Target-independent Code Generator

166

}

virtual bool CheckNodePredicate(SDNode *N, unsigned PredNo) const
{
 llvm_unreachable("Tblgen should generate the implementation of
this!");
}

private:

SDNode *Select_INLINEASM(SDNode *N);

SDNode *Select_UNDEF(SDNode *N);

void CannotYetSelect(SDNode *N);

void DoInstructionSelection();

SDNode *MorphNode(SDNode *Node, unsigned TargetOpc, SDVTList VTs,
const SDValue *Ops, unsigned NumOps, unsigned EmitNodeInfo);

void PrepareEHLandingPad();

void SelectAllBasicBlocks(const Function &Fn);

bool TryToFoldFastISelLoad(const LoadInst *LI, const Instruction
*FoldInst, FastISel *FastIS);

void FinishBasicBlock();

void SelectBasicBlock(BasicBlock::const_iterator Begin,
BasicBlock::const_iterator End,
bool &HadTailCall);

void CodeGenAndEmitDAG();

void LowerArguments(const BasicBlock *BB);

void ComputeLiveOutVRegInfo();
 ScheduleDAGSDNodes *CreateScheduler();
};

Chapter 6

167

How it works…
The instruction selection phase involves converting target-independent instructions to target-
specific instructions. The TableGen class helps select target-specific instructions. This phase
basically matches target-independent input nodes, which gives an output consisting of target-
supported nodes.

The CodeGenAndEmitDAG() function calls the DoInstructionSelection() function,
which visits each DAG node and calls the Select() function for each node, like this:

SDNode *ResNode = Select(Node);

The Select() function is an abstract method implemented by the targets.
The x86 target implements it in the X86DAGToDAGISel::Select() function. The
X86DAGToDAGISel::Select() function intercepts some nodes for manual matching,
but delegates the bulk of the work to the X86DAGToDAGISel::SelectCode() function.

The X86DAGToDAGISel::SelectCode function is autogenerated by TableGen. It contains
the matcher table, followed by a call to the generic SelectionDAGISel::SelectCodeCom
mon() function, passing it the table.

For example:

$ cat test.ll
define i32 @test(i32 %a, i32 %b, i32 %c) {
 %add = add nsw i32 %a, %b
 %div = sdiv i32 %add, %c
 ret i32 %div
}

To see the DAG before instruction selection, enter the following command line:

$ llc –view-isel-dags test.ll

Target-independent Code Generator

168

The following figure shows the DAG before the instruction selection:

isel input for test:

To see how DAG looks like after the instruction selection, enter the following command:

$ llc –view-sched-dags test.ll

Chapter 6

169

The following figure shows the DAG after the instruction selection:

scheduler input for test:

As seen, the Load operation is converted into the MOV32rm machine code by the instruction
selection phase.

See also
 f To see the detailed implementation of the instruction selection, take a look at the

SelectionDAGISel.cpp file located at lib/CodeGen/SelectionDAG/

Target-independent Code Generator

170

Scheduling instructions in SelectionDAG
So far, we have had SelectionDAG nodes consisting of target-supported instructions and
operands. However, the code is still in DAG representation. The target architecture executes
instructions in sequential form. So, the next logical step is to schedule the SelectionDAG
nodes.

A scheduler assigns the order of execution of instructions from the DAG. In this process, it
takes into account various heuristics, such as register pressure, to optimize the execution
order of instructions and to minimize latencies in instruction execution. After assigning the
order of execution to the DAG nodes, the nodes are converted into a list of MachineInstrs
and the SelectionDAG nodes are destroyed.

How to do it…
There are several basic structures that are defined in the ScheduleDAG.h file and
implemented in the ScheduleDAG.cpp file. The ScheduleDAG class is a base class for
other schedulers to inherit, and it provides only graph-related manipulation operations such
as an iterator, DFS, topological sorting, functions for moving nodes around, and so on:

class ScheduleDAG {
public:
 const TargetMachine &TM; // Target processor
 const TargetInstrInfo *TII; // Target instruction
 const TargetRegisterInfo *TRI; // Target processor
register info
 MachineFunction &MF; // Machine function
 MachineRegisterInfo &MRI; // Virtual/real
register map
 std::vector<SUnit> SUnits; // The scheduling
units.
 SUnit EntrySU; // Special node for
the region entry.
 SUnit ExitSU; // Special node for
the region exit.

 explicit ScheduleDAG(MachineFunction &mf);

 virtual ~ScheduleDAG();

 void clearDAG();

const MCInstrDesc *getInstrDesc(const SUnit *SU) const {
 if (SU->isInstr()) return &SU->getInstr()->getDesc();

Chapter 6

171

 return getNodeDesc(SU->getNode());
}

virtual void dumpNode(const SUnit *SU) const = 0;

private:

const MCInstrDesc *getNodeDesc(const SDNode *Node) const;
};

class SUnitIterator : public
std::iterator<std::forward_iterator_tag,
SUnit, ptrdiff_t> {
};

template <> struct GraphTraits<SUnit*> {
 typedef SUnit NodeType;
 typedef SUnitIterator ChildIteratorType;
 static inline NodeType *getEntryNode(SUnit *N) {
 return N;
 }
 static inline ChildIteratorType child_begin(NodeType *N) {
 return SUnitIterator::begin(N);
 }

static inline ChildIteratorType child_end(NodeType *N) {
 return SUnitIterator::end(N);
 }
};

template <> struct GraphTraits<ScheduleDAG*> : public
GraphTraits<SUnit*> {
…};

// Topological sorting of DAG to linear set of instructions
class ScheduleDAGTopologicalSort {
 std::vector<SUnit> &SUnits;
 SUnit *ExitSU;
 std::vector<int> Index2Node;
 std::vector<int> Node2Index;
 BitVector Visited;
// DFS to be run on DAG to sort topologically
 void DFS(const SUnit *SU, int UpperBound, bool& HasLoop);

Target-independent Code Generator

172

 void Shift(BitVector& Visited, int LowerBound, int UpperBound);

 void Allocate(int n, int index);

public:

 ScheduleDAGTopologicalSort(std::vector<SUnit> &SUnits, SUnit
*ExitSU);

 void InitDAGTopologicalSorting();

 bool IsReachable(const SUnit *SU, const SUnit *TargetSU);

 bool WillCreateCycle(SUnit *SU, SUnit *TargetSU);

 void AddPred(SUnit *Y, SUnit *X);

 void RemovePred(SUnit *M, SUnit *N);

 typedef std::vector<int>::iterator iterator;

 typedef std::vector<int>::const_iterator const_iterator;

 iterator begin() { return Index2Node.begin(); }

 const_iterator begin() const { return Index2Node.begin(); }

 iterator end() { return Index2Node.end();}}

How it works…
The scheduling algorithm implements the scheduling of instructions in the SelectionDAG
class, which involves a variety of algorithms such as topological sorting, depth-first searching,
manipulating functions, moving nodes, and iterating over a list of instructions. It takes into
account various heuristics, such as register pressure, spilling cost, live interval analysis, and
so on to determine the best possible scheduling of instructions.

See also
 f For a detailed implementation of scheduling instructions, see the

ScheduleDAGSDNodes.cpp, ScheduleDAGSDNodes.h, ScheduleDAGRRList.
cpp, ScheduleDAGFast.cpp, and ScheduleDAGVLIW.cpp files located in the
lib/CodeGen/SelectionDAG folder

Chapter 7

173

Optimizing the
Machine Code

In this chapter, we will cover the following recipes:

 f Eliminating common subexpressions from machine code

 f Analyzing live intervals

 f Allocating registers

 f Inserting the prologue-epilogue code

 f Code emission

 f Tail call optimization

 f Sibling call optimization

Introduction
The machine code generated so far is yet to be assigned real target architecture registers. The
registers seen so far have been virtual registers, which are infinite in number. The machine
code generated is in the SSA form. However, the target registers are limited in number. Hence,
register allocation algorithms require a lot of heuristic calculations to allocate registers in an
optimal way.

But, before register allocation, there exists opportunities for code optimization. The machine
code being in the SSA form also makes it easy to apply optimizing algorithms. The algorithms
for some optimizing techniques, such as machine dead code elimination and machine
common subexpression elimination, are almost the same as in the LLVM IR. The difference
lies in the constraints to be checked.

7

Optimizing the Machine Code

174

Here, one of the machine code optimization techniques implemented in the LLVM trunk code
repository—machine CSE— will be discussed so that you can understand how algorithms are
implemented for machine code.

Eliminating common subexpression from
machine code

The aim of the CSE algorithm is to eliminate common subexpressions to make
machine code compact and remove unnecessary, duplicate code. Let's look at
the code in the LLVM trunk to understand how it is implemented. The detailed
code is in the lib/CodeGen/MachineCSE.cpp file.

How to do it…
1. The MachineCSE class runs on a machine function, and hence it should

inherit the MachineFunctionPass class. It has various members, such as
TargetInstructionInfo, which is used to get information about the target
instruction (used in performing CSE); TargetRegisterInfo, which is used to get
information about the target register (whether it belongs to a reserved register class,
or to more such similar classes; and MachineDominatorTree, which is used to get
information about the dominator tree for the machine block:
class MachineCSE : public MachineFunctionPass {
 const TargetInstrInfo *TII;
 const TargetRegisterInfo *TRI;
 AliasAnalysis *AA;
 MachineDominatorTree *DT;
 MachineRegisterInfo *MRI;

2. The constructor for this class is defined as follows, which initializes the pass:
public:
 static char ID; // Pass identification
 MachineCSE() : MachineFunctionPass(ID),
LookAheadLimit(5), CurrVN(0) {
 initializeMachineCSEPass(*PassRegistry::getPassRegistry());

 }

3. The getAnalysisUsage() function determines which passes will run before this
pass to get statistics that can be used in this pass:
 void getAnalysisUsage(AnalysisUsage &AU) const override {
 AU.setPreservesCFG();
 MachineFunctionPass::getAnalysisUsage(AU);
 AU.addRequired<AliasAnalysis>();

Chapter 7

175

 AU.addPreservedID(MachineLoopInfoID);
 AU.addRequired<MachineDominatorTree>();
 AU.addPreserved<MachineDominatorTree>();
 }

4. Declare some helper functions in this pass to check for simple copy propagation
and trivially dead definitions, check for the liveness of physical registers and their
definition uses, and so on:
 private:
…..
…..

bool PerformTrivialCopyPropagation(MachineInstr *MI,
 MachineBasicBlock *MBB);

bool isPhysDefTriviallyDead(unsigned Reg,
 MachineBasicBlock::const_iterator I,
 MachineBasicBlock::const_iterator E) const;

bool hasLivePhysRegDefUses(const MachineInstr *MI,
 const MachineBasicBlock *MBB,
 SmallSet<unsigned,8> &PhysRefs,
 SmallVectorImpl<unsigned> &PhysDefs,
 bool &PhysUseDef) const;

bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
 SmallSet<unsigned,8> &PhysRefs,
 SmallVectorImpl<unsigned> &PhysDefs,
 bool &NonLocal) const;

5. Some more helper functions help to determine the legality and profitability of the
expression being a CSE candidate:

 bool isCSECandidate(MachineInstr *MI);
 bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
 MachineInstr *CSMI, MachineInstr *MI);

Actual CSE performing function
 bool PerformCSE(MachineDomTreeNode *Node);

Optimizing the Machine Code

176

Let's look at the actual implementation of a CSE function:

1. The runOnMachineFunction() function is called first as the pass runs:
bool MachineCSE::runOnMachineFunction(MachineFunction &MF){
 if (skipOptnoneFunction(*MF.getFunction()))
 return false;

 TII = MF.getSubtarget().getInstrInfo();
 TRI = MF.getSubtarget().getRegisterInfo();
 MRI = &MF.getRegInfo();
 AA = &getAnalysis<AliasAnalysis>();
 DT = &getAnalysis<MachineDominatorTree>();
 return PerformCSE(DT->getRootNode());
}

2. The PerformCSE() function is called next. It takes the root node of the DomTree,
performs a DFS walk on the DomTree (starting from the root node), and populates a
work list consisting of the nodes of the DomTree. After the DFS traverses through the
DomTree, it processes the MachineBasicBlock class corresponding to each node
in the work list:
bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
 SmallVector<MachineDomTreeNode*, 32> Scopes;
 SmallVector<MachineDomTreeNode*, 8> WorkList;
 DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;

 CurrVN = 0;
// DFS to populate worklist
 WorkList.push_back(Node);
 do {
 Node = WorkList.pop_back_val();
 Scopes.push_back(Node);
 const std::vector<MachineDomTreeNode*> &Children =
Node->getChildren();
 unsigned NumChildren = Children.size();
 OpenChildren[Node] = NumChildren;
 for (unsigned i = 0; i != NumChildren; ++i) {
 MachineDomTreeNode *Child = Children[i];
 WorkList.push_back(Child);
 }
 } while (!WorkList.empty());

 // perform CSE.
 bool Changed = false;
 for (unsigned i = 0, e = Scopes.size(); i != e; ++i) {
 MachineDomTreeNode *Node = Scopes[i];

Chapter 7

177

 MachineBasicBlock *MBB = Node->getBlock();
 EnterScope(MBB);
 Changed |= ProcessBlock(MBB);
 ExitScopeIfDone(Node, OpenChildren);
 }

 return Changed;
}

3. The next important function is the ProcessBlock() function, which acts on
the machine basic block. The instructions in the MachineBasicBlock class are
iterated and checked for legality and profitability if they can be a CSE candidate:
bool MachineCSE::ProcessBlock(MachineBasicBlock *MBB) {
 bool Changed = false;

 SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
 SmallVector<unsigned, 2> ImplicitDefsToUpdate;

// Iterate over each Machine instructions in the MachineBasicBlock
 for (MachineBasicBlock::iterator I = MBB->begin(), E =
MBB->end(); I != E;) {
 MachineInstr *MI = &*I;
 ++I;

// Check if this can be a CSE candidate.
 if (!isCSECandidate(MI))
 continue;

 bool FoundCSE = VNT.count(MI);
 if (!FoundCSE) {
 // Using trivial copy propagation to find more CSE
opportunities.
 if (PerformTrivialCopyPropagation(MI, MBB)) {
 Changed = true;

 // After coalescing MI itself may become a copy.
 if (MI->isCopyLike())
 continue;

 // Try again to see if CSE is possible.
 FoundCSE = VNT.count(MI);
 }
 }

Optimizing the Machine Code

178

 bool Commuted = false;
 if (!FoundCSE && MI->isCommutable()) {
 MachineInstr *NewMI = TII->commuteInstruction(MI);
 if (NewMI) {
 Commuted = true;
 FoundCSE = VNT.count(NewMI);
 if (NewMI != MI) {
 // New instruction. It doesn't need to be kept.
 NewMI->eraseFromParent();
 Changed = true;
 } else if (!FoundCSE)
 // MI was changed but it didn't help, commute it
back!
 (void)TII->commuteInstruction(MI);
 }
 }

 // If the instruction defines physical registers and
the values *may* be
 // used, then it's not safe to replace it with a common
subexpression.
 // It's also not safe if the instruction uses physical
registers.
 bool CrossMBBPhysDef = false;
 SmallSet<unsigned, 8> PhysRefs;
 SmallVector<unsigned, 2> PhysDefs;
 bool PhysUseDef = false;

// Check if this instruction has been marked for CSE. Check
if it is using physical register, if yes then mark as non-
CSE candidate
 if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
 PhysDefs,
PhysUseDef)) {
 FoundCSE = false;
…
…
 }

 if (!FoundCSE) {
 VNT.insert(MI, CurrVN++);
 Exps.push_back(MI);
 continue;
 }

Chapter 7

179

 // Finished job of determining if there exists a common
subexpression.
 // Found a common subexpression, eliminate it.
 unsigned CSVN = VNT.lookup(MI);
 MachineInstr *CSMI = Exps[CSVN];
 DEBUG(dbgs() << "Examining: " << *MI);
 DEBUG(dbgs() << "*** Found a common subexpression: " <<
*CSMI);

 // Check if it's profitable to perform this CSE.
 bool DoCSE = true;
 unsigned NumDefs = MI->getDesc().getNumDefs() +
 MI->getDesc().getNumImplicitDefs();

 for (unsigned i = 0, e = MI->getNumOperands(); NumDefs
&& i != e; ++i) {
 MachineOperand &MO = MI->getOperand(i);
 if (!MO.isReg() || !MO.isDef())
 continue;
 unsigned OldReg = MO.getReg();
 unsigned NewReg = CSMI->getOperand(i).getReg();

 // Go through implicit defs of CSMI and MI, if a def
is not dead at MI,
 // we should make sure it is not dead at CSMI.
 if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).
isDead())
 ImplicitDefsToUpdate.push_back(i);
 if (OldReg == NewReg) {
 --NumDefs;
 continue;
 }

 assert(TargetRegisterInfo::isVirtualRegister(OldReg)
&&
 TargetRegisterInfo::isVirtualRegister(NewReg)
&&
 "Do not CSE physical register defs!");

 if (!isProfitableToCSE(NewReg, OldReg, CSMI, MI)) {
 DEBUG(dbgs() << "*** Not profitable, avoid
CSE!\n");
 DoCSE = false;
 break;

Optimizing the Machine Code

180

 }

 // Don't perform CSE if the result of the old
instruction cannot exist
 // within the register class of the new instruction.
 const TargetRegisterClass *OldRC = MRI->getRegClass(OldReg);
 if (!MRI->constrainRegClass(NewReg, OldRC)) {
 DEBUG(dbgs() << "*** Not the same register class,
avoid CSE!\n");
 DoCSE = false;
 break;
 }

 CSEPairs.push_back(std::make_pair(OldReg, NewReg));
 --NumDefs;
 }

 // Actually perform the elimination.
 if (DoCSE) {
 for (unsigned i = 0, e = CSEPairs.size(); i != e;
++i) {
 MRI->replaceRegWith(CSEPairs[i].first, CSEPairs[i].
second);
 MRI->clearKillFlags(CSEPairs[i].second);
 }

 // Go through implicit defs of CSMI and MI, if a def
is not dead at MI,
 // we should make sure it is not dead at CSMI.
 for (unsigned i = 0, e = ImplicitDefsToUpdate.size();
i != e; ++i)
 CSMI->getOperand(ImplicitDefsToUpdate[i]).
setIsDead(false);

 if (CrossMBBPhysDef) {
 // Add physical register defs now coming in from a
predecessor to MBB
 // livein list.
 while (!PhysDefs.empty()) {
 unsigned LiveIn = PhysDefs.pop_back_val();
 if (!MBB->isLiveIn(LiveIn))
 MBB->addLiveIn(LiveIn);
 }
 ++NumCrossBBCSEs;
 }

Chapter 7

181

 MI->eraseFromParent();
 ++NumCSEs;
 if (!PhysRefs.empty())
 ++NumPhysCSEs;
 if (Commuted)
 ++NumCommutes;
 Changed = true;
 } else {
 VNT.insert(MI, CurrVN++);
 Exps.push_back(MI);
 }
 CSEPairs.clear();
 ImplicitDefsToUpdate.clear();
 }

 return Changed;
}

4. Let's also look into the legality and profitability functions to determine the CSE
candidates:
bool MachineCSE::isCSECandidate(MachineInstr *MI) {
// If Machine Instruction is PHI, or inline ASM or implicit
defs, it is not a candidate for CSE.

 if (MI->isPosition() || MI->isPHI() || MI-
>isImplicitDef() || MI->isKill() ||
 MI->isInlineAsm() || MI->isDebugValue())
 return false;

 // Ignore copies.
 if (MI->isCopyLike())
 return false;

 // Ignore instructions that we obviously can't move.
 if (MI->mayStore() || MI->isCall() || MI->isTerminator()
|| MI->hasUnmodeledSideEffects())
 return false;

 if (MI->mayLoad()) {
 // Okay, this instruction does a load. As a refinement,
we allow the target
 // to decide whether the loaded value is actually a
constant. If so, we can
 // actually use it as a load.

Optimizing the Machine Code

182

 if (!MI->isInvariantLoad(AA))
 return false;
 }
 return true;
}

5. The profitability function is written as follows:
bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned
Reg,
 MachineInstr *CSMI, MachineInstr *MI) {

 // If CSReg is used at all uses of Reg, CSE should not
increase register
 // pressure of CSReg.
 bool MayIncreasePressure = true;
 if (TargetRegisterInfo::isVirtualRegister(CSReg) &&
 TargetRegisterInfo::isVirtualRegister(Reg)) {
 MayIncreasePressure = false;
 SmallPtrSet<MachineInstr*, 8> CSUses;
 for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
 CSUses.insert(&MI);
 }
 for (MachineInstr &MI : MRI-
>use_nodbg_instructions(Reg))
{
 if (!CSUses.count(&MI)) {
 MayIncreasePressure = true;
 break;
 }
 }
 }
 if (!MayIncreasePressure) return true;

 // Heuristics #1: Don't CSE "cheap" computation if the
def is not local or in
 // an immediate predecessor. We don't want to increase
register pressure and
 // end up causing other computation to be spilled.
 if (TII->isAsCheapAsAMove(MI)) {
 MachineBasicBlock *CSBB = CSMI->getParent();
 MachineBasicBlock *BB = MI->getParent();
 if (CSBB != BB && !CSBB->isSuccessor(BB))
 return false;
 }

Chapter 7

183

 // Heuristics #2: If the expression doesn't not use a vr
and the only use
 // of the redundant computation are copies, do not cse.
 bool HasVRegUse = false;
 for (unsigned i = 0, e = MI->getNumOperands(); i != e;
++i) {
 const MachineOperand &MO = MI->getOperand(i);
 if (MO.isReg() && MO.isUse() &&
 TargetRegisterInfo::isVirtualRegister(MO.getReg()))
{
 HasVRegUse = true;
 break;
 }
 }
 if (!HasVRegUse) {
 bool HasNonCopyUse = false;
 for (MachineInstr &MI : MRI-
>use_nodbg_instructions(Reg)) {
 // Ignore copies.
 if (!MI.isCopyLike()) {
 HasNonCopyUse = true;
 break;
 }
 }
 if (!HasNonCopyUse)
 return false;
 }

 // Heuristics #3: If the common subexpression is used by
PHIs, do not reuse
 // it unless the defined value is already used in the BB
of the new use.
 bool HasPHI = false;
 SmallPtrSet<MachineBasicBlock*, 4> CSBBs;
 for (MachineInstr &MI : MRI-
>use_nodbg_instructions(CSReg)) {
 HasPHI |= MI.isPHI();
 CSBBs.insert(MI.getParent());
 }

 if (!HasPHI)
 return true;
 return CSBBs.count(MI->getParent());
}

Optimizing the Machine Code

184

How it works…
The MachineCSE pass runs on a machine function. It gets the DomTree information and
then traverses the DomTree in the DFS way, creating a work list of nodes that are essentially
MachineBasicBlocks. It then processes each block for CSE. In each block, it iterates
through all the instructions and checks whether any instruction is a candidate for CSE. Then
it checks whether it is profitable to eliminate the identified expression. Once it has found that
the identified CSE is profitable to eliminate, it eliminates the MachineInstruction class
from the MachineBasicBlock class. It also performs a simple copy propagation of the
machine instruction. In some cases, the MachineInstruction may not be a candidate for
CSE in its initial run, but may become one after copy propagation.

See more
To see more machine code optimization in the SSA form, look into the
implementation of the machine dead code elimination pass in the
lib/CodeGen/DeadMachineInstructionElim.cpp file.

Analyzing live intervals
Further on in this chapter, we will be looking into register allocation. Before we head to that,
however, you must understand the concepts of live variable and live interval. By live intervals,
we mean the range in which a variable is live, that is, from the point where a variable is
defined to its last use. For this, we need to calculate the set of registers that are immediately
dead after the instruction (the last use of a variable), and the set of registers that are used
by the instruction but not after the instruction. We calculate live variable information for
each virtual register and physical register in the function. Using SSA to sparsely compute the
lifetime information for the virtual registers enables us to only track the physical registers
within a block. Before register allocation, LLVM assumes that physical registers are live
only within a single basic block. This enables it to perform a single, local analysis to resolve
physical register lifetimes within each basic block. After performing the live variable analysis,
we have the information required for performing live interval analysis and building live
intervals. For this, we start numbering the basic block and machine instructions. After that
live-in values, typically arguments in registers are handled. Live intervals for virtual registers
are computed for some ordering of the machine instructions (1, N). A live interval is an interval
(i, j) for which a variable is live, where 1 >= i >= j > N.

In this recipe, we will take a sample program and see how we can list down the live intervals
for that program. We will look at how LLVM works to calculate these intervals.

Chapter 7

185

Getting ready
To get started, we need a piece of test code on which we will be performing live interval
analysis. For simplicity, we will use C code and then convert it into LLVM IR:

1. Write a test program with an if - else block:
$ cat interval.c

void donothing(int a) {

 return;

}

int func(int i) {

 int a = 5;

 donothing(a);

 int m = a;

 donothing(m);

 a = 9;

 if (i < 5) {

 int b = 3;

 donothing(b);

 int z = b;

 donothing(z);

 }

 else {

 int k = a;

 donothing(k);

 }

 return m;

}

2. Use Clang to convert the C code into IR, and then view the generated IR using the
cat command:

$ clang -cc1 -emit-llvm interval.c

$ cat interval.ll

; ModuleID = 'interval.c'

Optimizing the Machine Code

186

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

target triple = "x86_64-unknown-linux-gnu"

; Function Attrs: nounwind

define void @donothing(i32 %a) #0 {

 %1 = alloca i32, align 4

 store i32 %a, i32* %1, align 4

 ret void

}

; Function Attrs: nounwind

define i32 @func(i32 %i) #0 {

 %1 = alloca i32, align 4

 %a = alloca i32, align 4

 %m = alloca i32, align 4

 %b = alloca i32, align 4

 %z = alloca i32, align 4

 %k = alloca i32, align 4

 store i32 %i, i32* %1, align 4

 store i32 5, i32* %a, align 4

 %2 = load i32, i32* %a, align 4

 call void @donothing(i32 %2)

 %3 = load i32, i32* %a, align 4

 store i32 %3, i32* %m, align 4

 %4 = load i32, i32* %m, align 4

 call void @donothing(i32 %4)

 store i32 9, i32* %a, align 4

 %5 = load i32, i32* %1, align 4

 %6 = icmp slt i32 %5, 5

 br i1 %6, label %7, label %11

; <label>:7 ; preds = %0

 store i32 3, i32* %b, align 4

 %8 = load i32, i32* %b, align 4

 call void @donothing(i32 %8)

 %9 = load i32, i32* %b, align 4

Chapter 7

187

 store i32 %9, i32* %z, align 4

 %10 = load i32, i32* %z, align 4

 call void @donothing(i32 %10)

 br label %14

; <label>:11 ; preds = %0

 %12 = load i32, i32* %a, align 4

 store i32 %12, i32* %k, align 4

 %13 = load i32, i32* %k, align 4

 call void @donothing(i32 %13)

 br label %14

; <label>:14 ; preds = %11, %7

 %15 = load i32, i32* %m, align 4

 ret i32 %15

}

attributes #0 = { nounwind "less-precise-fpmad"="false"
"no-frame-pointer-elim"="false" "no-infs-fp-math"="false"
"no-nans-fp-math"="false" "no-realign-stack" "stack-
protector-buffer-size"="8" "unsafe-fp-math"="false" "use-
soft-float"="false" }

!llvm.ident = !{!0}

!0 = !{!"clang version 3.7.0 (trunk 234045)"}

How to do it…
1. To list the live intervals, we will need to modify the code of the

LiveIntervalAnalysis.cpp file by adding code to print the live intervals. We will
add the following lines (marked with a + symbol before each added line):
void LiveIntervals::computeVirtRegInterval(LiveInterval
&LI) {
 assert(LRCalc && "LRCalc not initialized.");
 assert(LI.empty() && "Should only compute empty
intervals.");
 LRCalc->reset(MF, getSlotIndexes(), DomTree,
&getVNInfoAllocator());

Optimizing the Machine Code

188

 LRCalc->calculate(LI, MRI->shouldTrackSubRegLiveness(LI.reg));
 computeDeadValues(LI, nullptr);

/**** add the following code ****/
+ llvm::outs() << "********** INTERVALS **********\n";

 // Dump the regunits.
 + for (unsigned i = 0, e = RegUnitRanges.size(); i != e;
++i)
 + if (LiveRange *LR = RegUnitRanges[i])
 + llvm::outs() << PrintRegUnit(i, TRI) << ' ' << *LR
<< '\n';

 // Dump the virtregs.
 + llvm::outs() << "virtregs:";
 + for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e;
++i) {
 + unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
 + if (hasInterval(Reg))
 + llvm::outs() << getInterval(Reg) << '\n';
 + }

2. Build LLVM after modifying the preceding source file, and install it on the path.

3. Now compile the test code in the IR form using the llc command. You will get the
live intervals:

$ llc interval.ll

********** INTERVALS **********

virtregs:%vreg0 [16r,32r:0) 0@16r

********** INTERVALS **********

virtregs:%vreg0 [16r,32r:0) 0@16r

********** INTERVALS **********

virtregs:%vreg0 [16r,32r:0) 0@16r

%vreg1 [80r,96r:0) 0@80r

********** INTERVALS **********

virtregs:%vreg0 [16r,32r:0) 0@16r

%vreg1 [80r,96r:0) 0@80r

%vreg2 [144r,192r:0) 0@144r

********** INTERVALS **********

virtregs:%vreg0 [16r,32r:0) 0@16r

%vreg1 [80r,96r:0) 0@80r

Chapter 7

189

%vreg2 [144r,192r:0) 0@144r

%vreg5 [544r,592r:0) 0@544r

********** INTERVALS **********

virtregs:%vreg0 [16r,32r:0) 0@16r

%vreg1 [80r,96r:0) 0@80r

%vreg2 [144r,192r:0) 0@144r

%vreg5 [544r,592r:0) 0@544r

%vreg6 [352r,368r:0) 0@352r

********** INTERVALS **********

virtregs:%vreg0 [16r,32r:0) 0@16r

%vreg1 [80r,96r:0) 0@80r

%vreg2 [144r,192r:0) 0@144r

%vreg5 [544r,592r:0) 0@544r

%vreg6 [352r,368r:0) 0@352r

%vreg7 [416r,464r:0) 0@416r

********** INTERVALS **********

virtregs:%vreg0 [16r,32r:0) 0@16r

%vreg1 [80r,96r:0) 0@80r

%vreg2 [144r,192r:0) 0@144r

%vreg5 [544r,592r:0) 0@544r

%vreg6 [352r,368r:0) 0@352r

%vreg7 [416r,464r:0) 0@416r

%vreg8 [656r,672r:0) 0@656r

How it works…
In the preceding example, we saw how live intervals are associated with each virtual
register. The program points at the beginning and the end of live intervals are marked
in square brackets. The process of generating these live intervals starts from the
LiveVariables::runOnMachineFunction(MachineFunction &mf) function in the
lib/CodeGen/LiveVariables.cpp file, where it assigns the definition and usage of
the registers using the HandleVirtRegUse and HandleVirtRegDef functions. It gets the
VarInfo object for the given virtual register using the getVarInfo function.

The LiveInterval and LiveRange classes are defined in LiveInterval.cpp. The
functions in this file takes the information on the liveliness of each variable and then checks
whether they overlap or not.

Optimizing the Machine Code

190

In the LiveIntervalAnalysis.cpp file, we have the implementation of the live interval
analysis pass, which scans the basic blocks (ordered in a linear fashion) in depth-first order,
and creates a live interval for each virtual and physical register. This analysis is used by the
register allocators, which will be discussed in next recipe.

See also
 f If you want to see in detail how the virtual registers for different basic blocks

get generated, and see the lifetime of these virtual registers, use the –debug-
only=regalloc command-line option with the llc tool when compiling the test
case. You need a debug build of the LLVM for this.

 f To get more detail on live intervals, go through these code files:
 � Lib/CodeGen/ LiveInterval.cpp

 � Lib/CodeGen/ LiveIntervalAnalysis.cpp

 � Lib/CodeGen/ LiveVariables.cpp

Allocating registers
Register allocation is the task of assigning physical registers to virtual registers. Virtual
registers can be infinite, but the physical registers for a machine are limited. So, register
allocation is aimed at maximizing the number of physical registers getting assigned to virtual
registers. In this recipe, we will see how registers are represented in LLVM, how can we tinker
with the register information, the steps taking place, and built-in register allocators.

Getting ready
You need to build and install LLVM.

How to do it…
1. To see how registers are represented in LLVM, open the build-folder/lib/

Target/X86/X86GenRegisterInfo.inc file and check out the first few lines,
which show that registers are represented as integers:
namespace X86 {
enum {
 NoRegister,
 AH = 1,
 AL = 2,
 AX = 3,
 BH = 4,
 BL = 5,

Chapter 7

191

 BP = 6,
 BPL = 7,
 BX = 8,
 CH = 9,
…

2. For architectures that have registers that share the same physical location, check out
the RegisterInfo.td file of that architecture for alias information. Let's check out
the lib/Target/X86/X86RegisterInfo.td file. By looking at the following code
snippet, we see how the EAX, AX, and AL registers are aliased (we only specify the
smallest register alias):
def AL : X86Reg<"al", 0>;
def DL : X86Reg<"dl", 2>;
def CL : X86Reg<"cl", 1>;
def BL : X86Reg<"bl", 3>;

def AH : X86Reg<"ah", 4>;
def DH : X86Reg<"dh", 6>;
def CH : X86Reg<"ch", 5>;
def BH : X86Reg<"bh", 7>;

def AX : X86Reg<"ax", 0, [AL,AH]>;
def DX : X86Reg<"dx", 2, [DL,DH]>;
def CX : X86Reg<"cx", 1, [CL,CH]>;
def BX : X86Reg<"bx", 3, [BL,BH]>;

// 32-bit registers
let SubRegIndices = [sub_16bit] in {
def EAX : X86Reg<"eax", 0, [AX]>, DwarfRegNum<[-2, 0, 0]>;
def EDX : X86Reg<"edx", 2, [DX]>, DwarfRegNum<[-2, 2, 2]>;
def ECX : X86Reg<"ecx", 1, [CX]>, DwarfRegNum<[-2, 1, 1]>;
def EBX : X86Reg<"ebx", 3, [BX]>, DwarfRegNum<[-2, 3, 3]>;
def ESI : X86Reg<"esi", 6, [SI]>, DwarfRegNum<[-2, 6, 6]>;
def EDI : X86Reg<"edi", 7, [DI]>, DwarfRegNum<[-2, 7, 7]>;
def EBP : X86Reg<"ebp", 5, [BP]>, DwarfRegNum<[-2, 4, 5]>;
def ESP : X86Reg<"esp", 4, [SP]>, DwarfRegNum<[-2, 5, 4]>;
def EIP : X86Reg<"eip", 0, [IP]>, DwarfRegNum<[-2, 8, 8]>;
…

Optimizing the Machine Code

192

3. To change the number of physical registers available, go to the
TargetRegisterInfo.td file and manually comment out some of the
registers, which are the last parameters of the RegisterClass. Open the
X86RegisterInfo.cpp file and remove the registers AH, CH, and DH:
def GR8 : RegisterClass<"X86", [i8], 8,
 (add AL, CL, DL, AH, CH, DH, BL,
BH, SIL, DIL, BPL, SPL,
 R8B, R9B, R10B, R11B, R14B,
R15B, R12B, R13B)> {

4. When you build LLVM, the .inc file in the first step will have been changed and will
not contain the AH, CH, and DH registers.

5. Use the test case from the previous recipe, Analyzing live intervals, in which we
performed live interval analysis, and run the register allocation techniques provided
by LLVM, namely fast, basic, greedy, and pbqp. Let's run two of them here and
compare the results:
$ llc –regalloc=basic interval.ll –o intervalregbasic.s

Next, create the intervalregbasic.s file as shown:
$ cat intervalregbasic.s

 .text

 .file "interval.ll"

 .globl donothing

 .align 16, 0x90

 .type donothing,@function

donothing: # @donothing

BB#0:

 movl %edi, -4(%rsp)

 retq

.Lfunc_end0:

 .size donothing, .Lfunc_end0-donothing

 .globl func

 .align 16, 0x90

 .type func,@function

func: # @func

BB#0:

 subq $24, %rsp

 movl %edi, 20(%rsp)

Chapter 7

193

 movl $5, 16(%rsp)

 movl $5, %edi

 callq donothing

 movl 16(%rsp), %edi

 movl %edi, 12(%rsp)

 callq donothing

 movl $9, 16(%rsp)

 cmpl $4, 20(%rsp)

 jg .LBB1_2

BB#1:

 movl $3, 8(%rsp)

 movl $3, %edi

 callq donothing

 movl 8(%rsp), %edi

 movl %edi, 4(%rsp)

 jmp .LBB1_3

.LBB1_2:

 movl 16(%rsp), %edi

 movl %edi, (%rsp)

.LBB1_3:

 callq donothing

 movl 12(%rsp), %eax

 addq $24, %rsp

 retq

.Lfunc_end1:

 .size func, .Lfunc_end1-func

Next, run the following command to compare the two files:
$ llc –regalloc=pbqp interval.ll –o intervalregpbqp.s

Create the intervalregbqp.s file:
$cat intervalregpbqp.s

 .text

 .file "interval.ll"

 .globl donothing

 .align 16, 0x90

 .type donothing,@function

Optimizing the Machine Code

194

donothing: # @donothing

BB#0:

 movl %edi, %eax

 movl %eax, -4(%rsp)

 retq

.Lfunc_end0:

 .size donothing, .Lfunc_end0-donothing

 .globl func

 .align 16, 0x90

 .type func,@function

func: # @func

BB#0:

 subq $24, %rsp

 movl %edi, %eax

 movl %eax, 20(%rsp)

 movl $5, 16(%rsp)

 movl $5, %edi

 callq donothing

 movl 16(%rsp), %eax

 movl %eax, 12(%rsp)

 movl %eax, %edi

 callq donothing

 movl $9, 16(%rsp)

 cmpl $4, 20(%rsp)

 jg .LBB1_2

BB#1:

 movl $3, 8(%rsp)

 movl $3, %edi

 callq donothing

 movl 8(%rsp), %eax

 movl %eax, 4(%rsp)

 jmp .LBB1_3

.LBB1_2:

 movl 16(%rsp), %eax

 movl %eax, (%rsp)

Chapter 7

195

.LBB1_3:

 movl %eax, %edi

 callq donothing

 movl 12(%rsp), %eax

 addq $24, %rsp

 retq

.Lfunc_end1:

 .size func, .Lfunc_end1-func

6. Now, use a diff tool and compare the two assemblies side by side.

How it works…
The mapping of virtual registers on physical registers can be done in two ways:

 f Direct Mapping: By making use of the TargetRegisterInfo and
MachineOperand classes. This depends on the developer, who needs to provide
the location where load and store instructions should be inserted in order to get and
store values in the memory.

 f Indirect Mapping: This depends on the VirtRegMap class to insert
loads and stores, and to get and set values from the memory. Use the
VirtRegMap::assignVirt2Phys(vreg, preg) function to map a virtual
register on a physical one.

Another important role that the register allocator plays is in SSA form deconstruction. As
traditional instruction sets do not support the phi instruction, we must replace it with other
instructions to generate the machine code. The traditional way was to replace the phi
instruction with the copy instruction.

After this stage, we do the actual mapping on the physical registers. We have four
implementations of register allocation in LLVM, which have their algorithms for mapping the
virtual registers on the physical registers. It is not possible to cover in detail any of those
algorithms here. If you want to try and understand them, refer to the next section.

See also
 f To learn more about the algorithms used in LLVM, look through the source codes

located at lib/CodeGen/:
 � lib/CodeGen/RegAllocBasic.cpp

 � lib/CodeGen/ RegAllocFast.cpp

 � lib/CodeGen/ RegAllocGreedy.cpp

 � lib/CodeGen/ RegAllocPBQP.cpp

Optimizing the Machine Code

196

Inserting the prologue-epilogue code
Inserting the prologue-epilogue code involves stack unwinding, finalizing the function layout,
saving callee-saved registers and emitting the prologue and epilogue code. It also replaces
abstract frame indexes with appropriate references. This pass runs after the register
allocation phase.

How to do it…
The skeleton and the important functions defined in the PrologueEpilogueInserter
class are as follows:

 f The prologue epilogue inserter pass runs on a machine function, hence it inherits the
MachineFunctionPass class. Its constructor initializes the pass:
class PEI : public MachineFunctionPass {
 public:
 static char ID;
 PEI() : MachineFunctionPass(ID) {
 initializePEIPass(*PassRegistry::getPassRegistry());
 }

 f There are various helper functions defined in this class that help insert the prologue
and epilogue code:
 void calculateSets(MachineFunction &Fn);
 void calculateCallsInformation(MachineFunction &Fn);
 void calculateCalleeSavedRegisters(MachineFunction &Fn);
 void insertCSRSpillsAndRestores(MachineFunction &Fn);
 void calculateFrameObjectOffsets(MachineFunction &Fn);
 void replaceFrameIndices(MachineFunction &Fn);
 void replaceFrameIndices(MachineBasicBlock *BB,
MachineFunction &Fn,
 int &SPAdj);
 void scavengeFrameVirtualRegs(MachineFunction &Fn);

 f The main function, insertPrologEpilogCode(), does the task of inserting the
prologue and epilogue code:
 void insertPrologEpilogCode(MachineFunction &Fn);

 f The first function to execute in this pass is the runOnFunction() function. The
comments in the code show the various operations carried out, such as calculating
the call frame size, adjusting the stack variables, inserting the spill code for the
callee-saved register for modified registers, calculating the actual frame offset,
inserting the prologue and epilogue code for the function, replacing the abstract
frame index with the actual offsets, and so on:

Chapter 7

197

bool PEI::runOnMachineFunction(MachineFunction &Fn) {
 const Function* F = Fn.getFunction();
 const TargetRegisterInfo *TRI = Fn.getSubtarget().
getRegisterInfo();
 const TargetFrameLowering *TFI = Fn.getSubtarget().
getFrameLowering();

 assert(!Fn.getRegInfo().getNumVirtRegs() && "Regalloc
must assign all vregs");

 RS = TRI->requiresRegisterScavenging(Fn) ? new
RegScavenger() : nullptr;
 FrameIndexVirtualScavenging = TRI->requiresFrameIndexScavenging(
Fn);

 // Calculate the MaxCallFrameSize and AdjustsStack
variables for the
 // function's frame information. Also eliminates call
frame pseudo
 // instructions.
 calculateCallsInformation(Fn);

 // Allow the target machine to make some adjustments to
the function
 // e.g. UsedPhysRegs before
calculateCalleeSavedRegisters.
 TFI->processFunctionBeforeCalleeSavedScan(Fn, RS);

 // Scan the function for modified callee saved registers
and insert spill code
 // for any callee saved registers that are modified.
 calculateCalleeSavedRegisters(Fn);

 // Determine placement of CSR spill/restore code:
 // place all spills in the entry block, all restores in
return blocks.
 calculateSets(Fn);

 // Add the code to save and restore the callee saved
registers
 if (!F->hasFnAttribute(Attribute::Naked))
 insertCSRSpillsAndRestores(Fn);

 // Allow the target machine to make final modifications
to the function
 // before the frame layout is finalized.

Optimizing the Machine Code

198

 TFI->processFunctionBeforeFrameFinalized(Fn, RS);

 // Calculate actual frame offsets for all abstract stack
objects...
 calculateFrameObjectOffsets(Fn);

 // Add prolog and epilog code to the function. This
function is required
 // to align the stack frame as necessary for any stack
variables or
 // called functions. Because of this,
calculateCalleeSavedRegisters()
 // must be called before this function in order to set
the AdjustsStack
 // and MaxCallFrameSize variables.
 if (!F->hasFnAttribute(Attribute::Naked))
 insertPrologEpilogCode(Fn);

 // Replace all MO_FrameIndex operands with physical
register references
 // and actual offsets.
 replaceFrameIndices(Fn);

 // If register scavenging is needed, as we've enabled
doing it as a
 // post-pass, scavenge the virtual registers that frame
index elimination
 // inserted.
 if (TRI->requiresRegisterScavenging(Fn) &&
FrameIndexVirtualScavenging)
 scavengeFrameVirtualRegs(Fn);

 // Clear any vregs created by virtual scavenging.
 Fn.getRegInfo().clearVirtRegs();

 // Warn on stack size when we exceeds the given limit.
 MachineFrameInfo *MFI = Fn.getFrameInfo();
 uint64_t StackSize = MFI->getStackSize();
 if (WarnStackSize.getNumOccurrences() > 0 &&
WarnStackSize < StackSize) {
 DiagnosticInfoStackSize DiagStackSize(*F, StackSize);
 F->getContext().diagnose(DiagStackSize);
 }
 delete RS;
 ReturnBlocks.clear();
 return true;
}

Chapter 7

199

 f The main function that inserts prologue-epilogue code is the
insertPrologEpilogCode() function. This function first takes the
TargetFrameLowering object and then emits a prologue code for that function
corresponding to that target. After that, for each basic block in that function, it checks
whether there is a return statement. If there is a return statement, then it emits an
epilogue code for that function:

void PEI::insertPrologEpilogCode(MachineFunction &Fn) {
 const TargetFrameLowering &TFI = *Fn.getSubtarget().
getFrameLowering();

 // Add prologue to the function.
 TFI.emitPrologue(Fn);

 // Add epilogue to restore the callee-save registers in
each exiting block
 for (MachineFunction::iterator I = Fn.begin(), E =
Fn.end(); I != E; ++I) {
 // If last instruction is a return instruction, add an
epilogue
 if (!I->empty() && I->back().isReturn())
 TFI.emitEpilogue(Fn, *I);
 }

 // Emit additional code that is required to support
segmented stacks, if
 // we've been asked for it. This, when linked with a
runtime with support
 // for segmented stacks (libgcc is one), will result in
allocating stack
 // space in small chunks instead of one large contiguous
block.
 if (Fn.shouldSplitStack())
 TFI.adjustForSegmentedStacks(Fn);

 // Emit additional code that is required to explicitly
handle the stack in
 // HiPE native code (if needed) when loaded in the
Erlang/OTP runtime. The
 // approach is rather similar to that of Segmented
Stacks, but it uses a
 // different conditional check and another BIF for
allocating more stack
 // space.
 if (Fn.getFunction()->getCallingConv() ==
CallingConv::HiPE)
 TFI.adjustForHiPEPrologue(Fn);
}

Optimizing the Machine Code

200

How it works…
The preceding code invokes the emitEpilogue() and the emitPrologue() functions
in the TargetFrameLowering class, which will be discussed in the target-specific frame
lowering recipes in later chapters.

Code emission
The code emission phase lowers the code from code generator abstractions (such as
MachineFunction class, MachineInstr class, and so on) to machine code layer
abstractions (MCInst class, MCStreamer class, and so on). The important classes in
this phase are the target-independent AsmPrinter class, target-specific subclasses of
AsmPrinter, and the TargetLoweringObjectFile class.

The MC layer is responsible for emitting object files, which consist of labels, directives,
and instructions; while the CodeGen layer consists of MachineFunctions,
MachineBasicBlock and MachineInstructions. A key class used at this point in time
is the MCStreamer class, which consists of assembler APIs. The MCStreamer class has
functions such as EmitLabel, EmitSymbolAttribute, SwitchSection, and so on,
which directly correspond to the aforementioned assembly-level directives.

There are four important things that need to be implemented for the target in order to emit
code:

 f Define a subclass of the AsmPrinter class for the target. This class implements
the general lowering process, converting the MachineFunctions functions into MC
label constructs. The AsmPrinter base class methods and routines help implement
a target-specific AsmPrinter class. The TargetLoweringObjectFile class
implements much of the common logic for the ELF, COFF, or MachO targets.

 f Implement an instruction printer for the target. The instruction printer takes an
MCInst class and renders it into a raw_ostream class as text. Most of this is
automatically generated from the .td file (when you specify something like add
$dst, $src1, $src2 in the instructions), but you need to implement routines to print
operands.

 f Implement code that lowers a MachineInstr class to an MCInst class, usually
implemented in <target>MCInstLower.cpp. This lowering process is often target-
specific, and is responsible for turning jump table entries, constant pool indices,
global variable addresses, and so on into MCLabels, as appropriate. The instruction
printer or the encoder takes the MCInsts that are generated.

 f Implement a subclass of MCCodeEmitter that lowers MCInsts to machine code
bytes and relocations. This is important if you want to support direct .o file emission,
or want to implement an assembler for your target.

Chapter 7

201

How to do it…
Let's visit some important functions in the AsmPrinter base class in the
lib/CodeGen/AsmPrinter/AsmPrinter.cpp file:

 f EmitLinkage(): This emits the linkage of the given variables or functions:
void AsmPrinter::EmitLinkage(const GlobalValue *GV,
MCSymbol *GVSym) const ;

 f EmitGlobalVariable(): This emits the specified global variable to the .s file:
void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV);

 f EmitFunctionHeader(): This emits the header of the current function:
void AsmPrinter::EmitFunctionHeader();

 f EmitFunctionBody(): This method emits the body and trailer of a function:
void AsmPrinter::EmitFunctionBody();

 f EmitJumpTableInfo(): This prints assembly representations of the jump tables
used by the current function to the current output stream:
void AsmPrinter::EmitJumpTableInfo();

 f EmitJumpTableEntry(): This emits a jump table entry for the specified
MachineBasicBlock class to the current stream:
void AsmPrinter::EmitJumpTableEntry(const
MachineJumpTableInfo *MJTI, const MachineBasicBlock *MBB,
unsigned UID) const;

 f Emit integer types of 8, 16, or 32 bit size:

void AsmPrinter::EmitInt8(int Value) const {
 OutStreamer.EmitIntValue(Value, 1);
}

void AsmPrinter::EmitInt16(int Value) const {
 OutStreamer.EmitIntValue(Value, 2);
}

void AsmPrinter::EmitInt32(int Value) const {
OutStreamer.EmitIntValue(Value, 4);
}

For detailed implementation on code emission , see the lib/CodeGen/AsmPrinter/
AsmPrinter.cpp file. One important thing to note is that this class uses the OutStreamer
class object to output assembly instructions. The details of target-specific code emission will
be covered in later chapters.

Optimizing the Machine Code

202

Tail call optimization
In this recipe, we will see how tail call optimization is done in LLVM. Tail call optimization is a
technique where the callee reuses the stack of the caller instead of adding a new stack frame
to the call stack, hence saving stack space and the number of returns when dealing with
mutually recursive functions.

Getting ready
We need to make sure of the following:

 f The llc tool must be installed in $PATH

 f The tailcallopt option must be enabled

 f The test code must have a tail call

How to do it…
1. Write the test code for checking tail call optimization:

$ cat tailcall.ll

declare fastcc i32 @tailcallee(i32 inreg %a1, i32 inreg %a2,
i32 %a3, i32 %a4)

define fastcc i32 @tailcaller(i32 %in1, i32 %in2) {

 %l1 = add i32 %in1, %in2

 %tmp = tail call fastcc i32 @tailcallee(i32 inreg %in1, i32
inreg %in2, i32 %in1, i32 %l1)

 ret i32 %tmp

}

2. Run the llc tool with the –tailcallopt option on the test code to generate the
assembly file with the tailcall-optimized code:
$ llc -tailcallopt tailcall.ll

3. Display the output generated:
$ cat tailcall.s

 .text

 .file "tailcall.ll"

 .globl tailcaller

 .align 16, 0x90

 .type tailcaller,@function

Chapter 7

203

tailcaller: # @tailcaller

 .cfi_startproc

BB#0:

 pushq %rax

.Ltmp0:

 .cfi_def_cfa_offset 16

 # kill: ESI<def> ESI<kill> RSI<def>

 # kill: EDI<def> EDI<kill> RDI<def>

 leal (%rdi,%rsi), %ecx

 # kill: ESI<def> ESI<kill> RSI<kill>

 movl %edi, %edx

 popq %rax

 jmp tailcallee # TAILCALL

.Lfunc_end0:

 .size tailcaller, .Lfunc_end0-tailcaller

 .cfi_endproc

 .section ".note.GNU-stack","",@progbits

4. Using the llc tool, generate the assembly again but without using the
-tailcallopt option:
$ llc tailcall.ll -o tailcall1.s

5. Display the output using the cat command:

$ cat tailcall1.s

 .text

 .file "tailcall.ll"

 .globl tailcaller

 .align 16, 0x90

 .type tailcaller,@function

tailcaller: # @tailcaller

 .cfi_startproc

BB#0:

 # kill: ESI<def> ESI<kill> RSI<def>

 # kill: EDI<def> EDI<kill> RDI<def>

 leal (%rdi,%rsi), %ecx

 # kill: ESI<def> ESI<kill> RSI<kill>

Optimizing the Machine Code

204

 movl %edi, %edx

 jmp tailcallee # TAILCALL

.Lfunc_end0:

 .size tailcaller, .Lfunc_end0-tailcaller

 .cfi_endproc

 .section ".note.GNU-stack","",@progbits

Compare the two assemblies using a diff tool. We used the meld tool here:

How it works…
The tail call optimization is a compiler optimization technique, which a compiler can use to
make a call to a function and take up no additional stack space; we don't need to create
a new stack frame for this function call. This happens if the last instruction executed in a
function is a call to another function. A point to note is that the caller function now does
not need the stack space; it simply calls a function (another function or itself) and returns
whatever value the called function would have returned. This optimization can make recursive
calls take up constant and limited space. In this optimization, the code might not always be in
the form for which a tail call is possible. It tries and modifies the source to see whether a tail
call is possible or not.

Chapter 7

205

In the preceding test case, we see that a push-and-pop instruction is added due to tail
call optimization. In LLVM, the tail call optimization is handled by the architecture-specific
ISelLowering.cpp file; for x86, it is the X86ISelLowering.cpp file:

The code in function SDValue X86TargetLowering::LowerCall (…….)
bool IsMustTail = CLI.CS && CLI.CS->isMustTailCall();
 if (IsMustTail) {
 // Force this to be a tail call. The verifier rules are
enough to ensure
 // that we can lower this successfully without moving the
return address
 // around.
 isTailCall = true;
 } else if (isTailCall) {
 // Check if it's really possible to do a tail call.
 isTailCall = IsEligibleForTailCallOptimization(Callee,
CallConv,
 isVarArg, SR != NotStructReturn,
 MF.getFunction()->hasStructRetAttr(), CLI.
RetTy,
 Outs, OutVals, Ins, DAG);

The preceding code is used to call the IsEligibleForTailCallOptimization()
function when the tailcallopt flag is passed. The
IsEligibleForTailCallOptimization() function decides whether or not the piece
of code is eligible for tail call optimization. If it is, then the code generator will make the
necessary changes.

Sibling call optimisation
In this recipe, we will see how sibling call optimization works in LLVM. Sibling call
optimization can be looked at as an optimized tail call, the only constraint being that the
functions should share a similar function signature, that is, matching return types and
matching function arguments.

Getting ready
Write a test case for sibling call optimization, making sure that the caller and callee have the
same calling conventions (in either C or fastcc), and that the call in the tail position is a tail
call:

$ cat sibcall.ll

declare i32 @bar(i32, i32)

define i32 @foo(i32 %a, i32 %b, i32 %c) {

Optimizing the Machine Code

206

 entry:

 %0 = tail call i32 @bar(i32 %a, i32 %b)

 ret i32 %0

}

How to do it…
1. Run the llc tool to generate the assembly:

$ llc sibcall.ll

2. View the generated assembly using the cat command:

$ cat sibcall.s

 .text

 .file "sibcall.ll"

 .globl foo

 .align 16, 0x90

 .type foo,@function

foo: # @foo

 .cfi_startproc

BB#0: # %entry

 jmp bar # TAILCALL

.Lfunc_end0:

 .size foo, .Lfunc_end0-foo

 .cfi_endproc

 .section ".note.GNU-stack","",@progbits

How it works…
Sibling call optimization is a restricted version of tail call optimization that can be performed
on tail calls without passing the tailcallopt option. Sibling call optimization works in a
similar way to tail call optimization, except that the sibling calls are automatically detected
and do not need any ABI changes. The similarity needed in the function signatures is because
when the caller function (which calls a tail recursive function) tries to clean up the callee's
argument, after the callee has done its work, this may lead to memory leak if the callee
exceeds the argument space to perform a sibling call to a function requiring more stack space
for arguments.

Chapter 8

207

8
Writing an LLVM

Backend

In this chapter, we will cover the following recipes:

 f Defining registers and register sets

 f Defining the calling convention

 f Defining the instruction set

 f Implementing frame lowering

 f Printing an instruction

 f Selecting an instruction

 f Adding instruction encoding

 f Supporting a subtarget

 f Lowering to multiple instructions

 f Registering a target

Introduction
The ultimate goal of a compiler is to produce a target code, or an assembly code that can be
converted into object code and executed on the actual hardware. To generate the assembly
code, the compiler needs to know the various aspects of the architecture of the target
machine—the registers, instruction set, calling convention, pipeline, and so on. There are lots
of optimizations that can be done in this phase as well.

Writing an LLVM Backend

208

LLVM has its own way of defining the target machine. It uses tablegen to specify the target
registers, instructions, calling convention, and so on. The tablegen function eases the way
we describe a large set of architecture properties in a programmatic way.

LLVM has a pipeline structure for the backend, where instructions travel through phases like
this; from the LLVM IR to SelectionDAG, then to MachineDAG, then to MachineInstr, and
finally to MCInst.

The IR is converted into SelectionDAG (DAG stands for Directed Acyclic Graph). Then
SelectionDAG legalization occurs where illegal instructions are mapped on the legal
operations permitted by the target machine. After this stage, SelectionDAG is converted to
MachineDAG, which is basically an instruction selection supported by the backend.

CPUs execute a linear sequence of instructions. The goal of the scheduling step is to linearize
the DAG by assigning an order to its operations. LLVM's code generator employs clever
heuristics (such as register pressure reduction) to try and produce a schedule that will result
in faster code. Register allocation policies also play an important role in producing better
LLVM code.

This chapter describes how to build an LLVM toy backend from scratch. By the end of this
chapter, we will be able to generate assembly code for a sample toy backend.

A sample backend
The sample backend considered in this chapter is a simple RISC-type architecture, with a few
registers (say r0-r3), a stack pointer (sp), and a link register (lr), for storing the return address.

The calling convention of this toy backend is similar to the ARM architecture—arguments
passed to the function will be stored in register sets r0-r1, and the return value will be stored
in r0.

Defining registers and registers sets
This recipe shows you how to define registers and register sets in .td files. The tablegen
function will convert this .td file into .inc files, which will be the #include declarative in
our .cpp files and refer to registers.

Getting ready
We have defined our toy target machine to have four registers (r0-r3), a stack register (sp), and
a link register (lr). These can be specified in the TOYRegisterInfo.td file. The tablegen
function provides the Register class, which can be extended to specify the registers.

Chapter 8

209

How to do it…
To define the backend architecture using target descriptor files, proceed with the following
steps.

1. Create a new folder in lib/Target named TOY:
$ mkdir llvm_root_directory/lib/Target/TOY

2. Create a new TOYRegisterInfo.td file in the new TOY folder:
$ cd llvm_root_directory/lib/Target/TOY

$ vi TOYRegisterInfo.td

3. Define the hardware encoding, namespace, registers, and the register class:
class TOYReg<bits<16> Enc, string n> : Register<n> {
 let HWEncoding = Enc;
 let Namespace = "TOY";
}

foreach i = 0-3 in {
 def R#i : R<i, "r"#i >;
}

def SP : TOYReg<13, "sp">;
def LR : TOYReg<14, "lr">;

def GRRegs : RegisterClass<"TOY", [i32], 32,
 (add R0, R1, R2, R3, SP)>;

How it works…
The tablegen function processes this .td file to generate the .inc file, which generally has
enums generated for these registers. These enums can be used in the.cpp files, in which the
registers can be referenced as TOY::R0. These .inc files will be generated when we build
the LLVM project.

See also
 f To get more details about how registers are defined for more advanced architecture,

such as ARM, refer to the lib/Target/ARM/ARMRegisterInfo.td file in the
source code of LLVM.

Writing an LLVM Backend

210

Defining the calling convention
The calling convention specifies how values are passed to and from a function call. Our TOY
architecture specifies that two arguments are passed in two registers, r0 and r1, while the
remaining ones are passed to the stack. This recipe shows you how to define the calling
convention, which will be used in ISelLowering (the instruction selection lowering phase
discussed in Chapter 6, Target Independent Code Generator) via function pointers.

The calling convention will be defined in the TOYCallingConv.td file, which will have
primarily two sections—one for defining the return value convention, and the other for defining
the argument passing convention. The return value convention specifies how the return
values will reside and in which registers. The argument passing convention will specify how
the arguments passed will reside and in which registers. The CallingConv class is inherited
while defining the calling convention of the toy architecture.

How to do it…
To implement the calling convention, proceed with the following steps:

1. Create a new TOYCallingConv.td file in the lib/Target/TOY folder:
$ vi TOYCallingConv.td

2. In that file, define the return value convention, as follows:
def RetCC_TOY : CallingConv<[

 CCIfType<[i32], CCAssignToReg<[R0]>>,

 CCIfType<[i32], CCAssignToStack<4, 4>>

]>;

3. Also, define the argument passing convention, like this:
def CC_TOY : CallingConv<[

 CCIfType<[i8, i16], CCPromoteToType<i32>>,

 CCIfType<[i32], CCAssignToReg<[R0, R1]>>,

 CCIfType<[i32], CCAssignToStack<4, 4>>

]>;

4. Define the callee saved register set:

def CC_Save : CalleeSavedRegs<(add R2, R3)>;

Chapter 8

211

How it works…
In the .td file you just read about, it has been specified that the return values of the integer
type of 32 bits are stored in the r0 register. Whenever arguments are passed to a function, the
first two arguments will be stored in the r0 and r1 registers. It is also specified that whenever
any data type, such as an integer of 8 bits or 16 bits, will be encountered, it will be promoted
to the 32-bit integer type.

The tablegen function generates a TOYCallingConv.inc file, which will be referred to
in the TOYISelLowering.cpp file. The two target hook functions used to define argument
handling are LowerFormalArguments() and LowerReturn().

See also
 f To see a detailed implementation of advanced architectures, such as ARM, look into

the lib/Target/ARM/ARMCallingConv.td file

Defining the instruction set
The instruction set of an architecture varies according to various features present in the
architecture. This recipe demonstrates how instruction sets are defined for target architecture.

Three things are defined in the instruction target description file: operands, the assembly
string and the instruction pattern. The specification contains a list of definitions or outputs,
and a list of uses or inputs. There can be different operand classes, such as the Register
class, and the immediate and more complex register + imm operands.

Here, a simple add instruction definition that takes two registers as operands is demonstrated.

How to do it…
To define an instruction set using target descriptor files, proceed with the following steps.

1. Create a new file called TOYInstrInfo.td in the lib/Target/TOY folder:
$ vi TOYInstrInfo.td

2. Specify the operands, assembly string, and instruction pattern for the add instruction
between two register operands:

def ADDrr : InstTOY<(outs GRRegs:$dst),
 (ins GRRegs:$src1, GRRegs:$src2),
 "add $dst, $src1,z$src2",
[(set i32:$dst, (add i32:$src1, i32:$src2))]>;

Writing an LLVM Backend

212

How it works…
The add register to the register instruction specifies $dst as the result operand, which
belongs to the General Register type class; inputs $src1 and $src2 as two input
operands, which also belong to the General Register type class; and the instruction
assembly string as "add $dst, $src1, $src2" of the 32-bit integer type.

So, an assembly will be generated for add between two registers, like this:

add r0, r0, r1

The preceding code indicates to add the r0 and r1 register contents and store the result in
the r0 register.

See also
 f Many instructions will have the same type of instruction pattern—ALU instructions

such as add, sub, and so on. In cases such as this multiclass can be used to define
the common properties. For more detailed information about the various types of
instruction sets for advanced architecture, such as ARM, refer to the lib/Target/
ARM/ARMInstrInfo.td file

Implementing frame lowering
This recipe talks about frame lowering for target architecture. Frame lowering involves
emitting the prologue and epilogue of the function call.

Getting ready

Two functions need to be defined for frame lowering, namely
TOYFrameLowering::emitPrologue() and TOYFrame
Lowering::emitEpilogue().

How to do it…
The following functions are defined in the TOYFrameLowering.cpp file in the lib/Target/
TOY folder:

1. The emitPrologue function can be defined as follows:
void TOYFrameLowering::emitPrologue(MachineFunction &MF)
const {
 const TargetInstrInfo &TII =
*MF.getSubtarget().getInstrInfo();
 MachineBasicBlock &MBB = MF.front();

Chapter 8

213

 MachineBasicBlock::iterator MBBI = MBB.begin();
 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() :
 DebugLoc();
 uint64_t StackSize = computeStackSize(MF);
 if (!StackSize) {
 return;
 }
 unsigned StackReg = TOY::SP;
 unsigned OffsetReg = materializeOffset(MF, MBB, MBBI,
 (unsigned)StackSize);
 if (OffsetReg) {
 BuildMI(MBB, MBBI, dl, TII.get(TOY::SUBrr), StackReg)
 .addReg(StackReg)
 .addReg(OffsetReg)
 .setMIFlag(MachineInstr::FrameSetup);
 } else {
 BuildMI(MBB, MBBI, dl, TII.get(TOY::SUBri), StackReg)
 .addReg(StackReg)
 .addImm(StackSize)
 .setMIFlag(MachineInstr::FrameSetup);
 }
}

2. The emitEpilogue function can be defined like this:
void TOYFrameLowering::emitEpilogue(MachineFunction &MF,
 MachineBasicBlock &MBB)
 const {

 const TargetInstrInfo &TII =
 *MF.getSubtarget().getInstrInfo();
MachineBasicBlock::iterator MBBI =
MBB.getLastNonDebugInstr();
 DebugLoc dl = MBBI->getDebugLoc();
 uint64_t StackSize = computeStackSize(MF);
 if (!StackSize) {
 return;
 }
 unsigned StackReg = TOY::SP;
 unsigned OffsetReg = materializeOffset(MF, MBB, MBBI,
 (unsigned)StackSize);
 if (OffsetReg) {
 BuildMI(MBB, MBBI, dl, TII.get(TOY::ADDrr), StackReg)
 .addReg(StackReg)
 .addReg(OffsetReg)
 .setMIFlag(MachineInstr::FrameSetup);

Writing an LLVM Backend

214

 } else {
 BuildMI(MBB, MBBI, dl, TII.get(TOY::ADDri), StackReg)
 .addReg(StackReg)
 .addImm(StackSize)
 .setMIFlag(MachineInstr::FrameSetup);
 }
}

3. Here are some helper functions used to determine the offset for the ADD stack
operation:
static unsigned materializeOffset(MachineFunction &MF,
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
unsigned Offset) {
 const TargetInstrInfo &TII =
 *MF.getSubtarget().getInstrInfo();
 DebugLoc dl = MBBI != MBB.end() ? MBBI->getDebugLoc() :
 DebugLoc();
 const uint64_t MaxSubImm = 0xfff;
 if (Offset <= MaxSubImm) {
 return 0;
 } else {
 unsigned OffsetReg = TOY::R2;
 unsigned OffsetLo = (unsigned)(Offset & 0xffff);
 unsigned OffsetHi = (unsigned)((Offset & 0xffff0000) >>
 16);
 BuildMI(MBB, MBBI, dl, TII.get(TOY::MOVLOi16),
 OffsetReg)
 .addImm(OffsetLo)
 .setMIFlag(MachineInstr::FrameSetup);
 if (OffsetHi) {
 BuildMI(MBB, MBBI, dl, TII.get(TOY::MOVHIi16),
 OffsetReg)
 .addReg(OffsetReg)
 .addImm(OffsetHi)
 .setMIFlag(MachineInstr::FrameSetup);
 }
 return OffsetReg;
 }
}

4. The following are some more helper functions used to compute the stack size:
uint64_t TOYFrameLowering::computeStackSize(MachineFunction
&MF) const {
 MachineFrameInfo *MFI = MF.getFrameInfo();
 uint64_t StackSize = MFI->getStackSize();

Chapter 8

215

 unsigned StackAlign = getStackAlignment();
 if (StackAlign > 0) {
 StackSize = RoundUpToAlignment(StackSize, StackAlign);
 }
 return StackSize;
}

How it works…
The emitPrologue function first computes the stack size to determine whether the prologue
is required at all. Then it adjusts the stack pointer by calculating the offset. For the epilogue, it
first checks whether the epilogue is required or not. Then it restores the stack pointer to what
it was at the beginning of the function.

 For example, consider this input IR:

%p = alloca i32, align 4
store i32 2, i32* %p
%b = load i32* %p, align 4
%c = add nsw i32 %a, %b

The TOY assembly generated will look like this:

sub sp, sp, #4 ; prologue
movw r1, #2
str r1, [sp]
add r0, r0, #2
add sp, sp, #4 ; epilogue

See also
 f For advanced architecture frame lowering, such as in ARM, refer to the lib/

Target/ARM/ARMFrameLowering.cpp file.

Printing an instruction
Printing an assembly instruction is an important step in generating target code. Various
classes are defined that work as a gateway to the streamers. The instruction string is provided
by the .td file defined earlier.

Getting ready
The first and foremost step for printing instructions is to define the instruction string in the
.td file, which was done in the Defining the instruction set recipe.

Writing an LLVM Backend

216

How to do it…
Perform the following steps:

1. Create a new folder called InstPrinter inside the TOY folder:
$ cd lib/Target/TOY

$ mkdir InstPrinter

2. In a new file, called TOYInstrFormats.td, define the AsmString variable:
class InstTOY<dag outs, dag ins, string asmstr, list<dag>
pattern>
 : Instruction {
 field bits<32> Inst;
 let Namespace = "TOY";
 dag OutOperandList = outs;
 dag InOperandList = ins;
 let AsmString = asmstr;
 let Pattern = pattern;
 let Size = 4;
}

3. Create a new file called TOYInstPrinter.cpp, and define the printOperand
function, as follows:
void TOYInstPrinter::printOperand(const MCInst *MI,
unsigned OpNo, raw_ostream &O) {
 const MCOperand &Op = MI->getOperand(OpNo);
 if (Op.isReg()) {
 printRegName(O, Op.getReg());
 return;
 }

 if (Op.isImm()) {
 O << "#" << Op.getImm();
 return;
 }
 assert(Op.isExpr() && "unknown operand kind in
 printOperand");
 printExpr(Op.getExpr(), O);
}

4. Also, define a function to print the register names:
void TOYInstPrinter::printRegName(raw_ostream &OS, unsigned
RegNo) const {
 OS << StringRef(getRegisterName(RegNo)).lower();
}

Chapter 8

217

5. Define a function to print the instruction:
void TOYInstPrinter::printInst(const MCInst *MI,
raw_ostream &O,StringRef Annot) {
 printInstruction(MI, O);
 printAnnotation(O, Annot);
}

6. It also requires MCASMinfo to be specified to print the instruction. This can be done
by defining the TOYMCAsmInfo.h and TOYMCAsmInfo.cpp files.

The TOYMCAsmInfo.h file can be defined as follows:
#ifndef TOYTARGETASMINFO_H
#define TOYTARGETASMINFO_H

#include "llvm/MC/MCAsmInfoELF.h"

namespace llvm {
class StringRef;
class Target;

class TOYMCAsmInfo : public MCAsmInfoELF {
 virtual void anchor();

public:
 explicit TOYMCAsmInfo(StringRef TT);
};

} // namespace llvm
#endif

The TOYMCAsmInfo.cpp file can be defined like this:

#include "TOYMCAsmInfo.h"
#include "llvm/ADT/StringRef.h"
using namespace llvm;

void TOYMCAsmInfo::anchor() {}

TOYMCAsmInfo::TOYMCAsmInfo(StringRef TT) {
 SupportsDebugInformation = true;
 Data16bitsDirective = "\t.short\t";
 Data32bitsDirective = "\t.long\t";
 Data64bitsDirective = 0;
 ZeroDirective = "\t.space\t";
 CommentString = "#";

Writing an LLVM Backend

218

 AscizDirective = ".asciiz";

 HiddenVisibilityAttr = MCSA_Invalid;
 HiddenDeclarationVisibilityAttr = MCSA_Invalid;
 ProtectedVisibilityAttr = MCSA_Invalid;
}

7. Define the LLVMBuild.txt file for the instruction printer:
[component_0]
type = Library
name = TOYAsmPrinter
parent = TOY
required_libraries = MC Support
add_to_library_groups = TOY

8. Define CMakeLists.txt:

add_llvm_library(LLVMTOYAsmPrinter
 TOYInstPrinter.cpp
)

How it works…
When the final compilation takes place, the llc tool—a static compiler—will generate the
assembly of the TOY architecture.

For example, the following IR, when given to the llc tool, will generate an assembly as shown:

target datalayout = "e-m:e-p:32:32-i1:8:32-i8:8:32-
i16:16:32-i64:32-f64:32-a:0:32-n32"
target triple = "toy"
define i32 @foo(i32 %a, i32 %b) {
 %c = add nsw i32 %a, %b
 ret i32 %c
}

$ llc foo.ll
.text
.file "foo.ll"
.globl foo
.type foo,@function
foo: # @foo
BB#0: # %entry
add r0, r0, r1

Chapter 8

219

b lr
.Ltmp0:
.size foo, .Ltmp0-foo

Selecting an instruction
An IR instruction in DAG needs to be lowered to a target-specific instruction. The SDAG node
contains IR, which needs to be mapped on machine-specific DAG nodes. The outcome of the
selection phase is ready for scheduling.

Getting ready
1. For selecting a machine-specific instruction, a separate class, TOYDAGToDAGISel,

needs to be defined. To compile the file containing this class definition, add the
filename to the CMakeLists.txt file in the TOY folder:
$ vi CMakeLists .txt
add_llvm_target(...
...
TOYISelDAGToDAG.cpp
...
)

2. A pass entry needs to be added in the TOYTargetMachine.h and
TOYTargetMachine.cpp files:
$ vi TOYTargetMachine.h
const TOYInstrInfo *getInstrInfo() const override {
return getSubtargetImpl()->getInstrInfo();
}

3. The following code in TOYTargetMachine.cpp will create a pass in the instruction
selection stage:

class TOYPassConfig : public TargetPassConfig {
public:
...
virtual bool addInstSelector();
};
...
bool TOYPassConfig::addInstSelector() {
addPass(createTOYISelDag(getTOYTargetMachine()));
return false;
}

Writing an LLVM Backend

220

How to do it…
To define an instruction selection function, proceed with the following steps:

1. Create a file called TOYISelDAGToDAG.cpp:
$ vi TOYISelDAGToDAG.cpp

2. Include the following files:
#include "TOY.h"

#include "TOYTargetMachine.h"

#include "llvm/CodeGen/SelectionDAGISel.h"

#include "llvm/Support/Compiler.h"

#include "llvm/Support/Debug.h"

#include "TOYInstrInfo.h"

3. Define a new class called TOYDAGToDAGISel as follows, which will inherit from the
SelectionDAGISel class:
class TOYDAGToDAGISel : public SelectionDAGISel {
 const TOYSubtarget &Subtarget;

public:
 explicit TOYDAGToDAGISel(TOYTargetMachine &TM,
 CodeGenOpt::Level OptLevel)
: SelectionDAGISel(TM, OptLevel), Subtarget(*TM.
getSubtargetImpl()) {}
};

4. The most important function to define in this class is Select(), which will return an
SDNode object specific to the machine instruction:

Declare it in the class:
SDNode *Select(SDNode *N);

Define it further as follows:

SDNode *TOYDAGToDAGISel::Select(SDNode *N) {

 return SelectCode(N);

}

5. Another important function is used to define the address selection function, which
will calculate the base and offset of the address for load and store operations.

Declare it as shown here:
 bool SelectAddr(SDValue Addr, SDValue &Base, SDValue
 &Offset);

Chapter 8

221

Define it further, like this:

bool TOYDAGToDAGISel::SelectAddr(SDValue Addr, SDValue
&Base, SDValue &Offset) {
 if (FrameIndexSDNode *FIN =
dyn_cast<FrameIndexSDNode>(Addr)) {
 Base = CurDAG->getTargetFrameIndex(FIN->getIndex(),
 getTargetLowering()-
 >getPointerTy());
 Offset = CurDAG->getTargetConstant(0, MVT::i32);
 return true;
 }
 if (Addr.getOpcode() == ISD::TargetExternalSymbol ||
 Addr.getOpcode() == ISD::TargetGlobalAddress ||
 Addr.getOpcode() == ISD::TargetGlobalTLSAddress) {
 return false; // direct calls.
 }

 Base = Addr;
 Offset = CurDAG->getTargetConstant(0, MVT::i32);
 return true;
}

6. The createTOYISelDag pass converts a legalized DAG into a toy-specific DAG,
ready for instruction scheduling in the same file:

FunctionPass *llvm::createTOYISelDag(TOYTargetMachine &TM,
CodeGenOpt::Level OptLevel) {
return new TOYDAGToDAGISel(TM, OptLevel);
}

How it works…
The TOYDAGToDAGISel::Select() function of TOYISelDAGToDAG.cpp is used for the
selection of the OP code DAG node, while TOYDAGToDAGISel::SelectAddr() is used for
the selection of the DATA DAG node with the addr type. Note that if the address is global or
external, we return false for the address, since its address is calculated in the global context.

See also
 f For details on the selection of DAG for machine instructions of complex architectures,

such as ARM, look into the lib/Target/ARM/ARMISelDAGToDAG.cpp file in the
LLVM source code.

Writing an LLVM Backend

222

Adding instruction encoding
If the instructions need to be specific for how they are encoded with respect to bit fields, this
can be done by specifying the bit field in the .td file when defining an instruction.

How to do it…
To include instruction encoding while defining instructions, proceed with the following steps:

1. A register operand that will be used to register the add instruction will have some
defined encoding for its instruction. The size of the instruction is 32 bits, and the
encoding for it is as follows:
bits 0 to 3 -> src2, second register operand
bits 4 to 11 -> all zeros
bits 12 to 15 -> dst, for destination register
bits 16 to 19 -> src1, first register operand
bit 20 -> zero
bit 21 to 24 -> for opcode
bit 25 to 27 -> all zeros
bit 28 to 31 -> 1110

This can be achieved by specifying the preceding bit pattern in the .td files

2. In the TOYInstrFormats.td file, define a new variable, called Inst:
class InstTOY<dag outs, dag ins, string asmstr, list<dag>
pattern>
 : Instruction {
 field bits<32> Inst;

 let Namespace = "TOY";
 …
 …
 let AsmString = asmstr;
 …
 …
 }

3. In the TOYInstrInfo.td file, define an instruction encoding:
def ADDrr : InstTOY<(outs GRRegs:$dst),(ins GRRegs:$src1,
GRRegs:$src2) ... > {
bits<4> src1;
bits<4> src2;
bits<4> dst;
let Inst{31-25} = 0b1100000;

Chapter 8

223

let Inst{24-21} = 0b1100; // Opcode
let Inst{20} = 0b0;
let Inst{19-16} = src1; // Operand 1
let Inst{15-12} = dst; // Destination
let Inst{11-4} = 0b00000000;
let Inst{3-0} = src2;
}

4. In the TOY/MCTargetDesc folder, in the TOYMCCodeEmitter.cpp file, the
encoding function will be called if the machine instruction operand is a register:
unsigned TOYMCCodeEmitter::getMachineOpValue(const MCInst
&MI,
 const
 MCOperand &MO,

SmallVectorImpl<MCFixup> &Fixups,
 const
 MCSubtargetInfo &STI) const {
 if (MO.isReg()) {
 return CTX.getRegisterInfo()-
 >getEncodingValue(MO.getReg());
 }

5. Also, in the same file, a function used to encode the instruction is specified:
void TOYMCCodeEmitter::EncodeInstruction(const MCInst &MI,
raw_ostream &OS, SmallVectorImpl<MCFixup> &Fixups, const
MCSubtargetInfo &STI) const {
 const MCInstrDesc &Desc = MCII.get(MI.getOpcode());
 if (Desc.getSize() != 4) {
 llvm_unreachable("Unexpected instruction size!");
 }

 const uint32_t Binary = getBinaryCodeForInstr(MI,
Fixups, STI);

 EmitConstant(Binary, Desc.getSize(), OS);
 ++MCNumEmitted;
}

How it works…
In the .td files, the encoding of an instruction has been specified—the bits for the operands,
the destination, flag conditions, and opcode of the instruction. The machine code emitter
gets these encodings from the .inc file generated by tablegen from the .td files through
function calls. It encodes these instructions and emits the same for instruction printing.

Writing an LLVM Backend

224

See also
 f For complex architecture such as ARM, see the ARMInstrInfo.td and

ARMInstrInfo.td files in the lib/Target/ARM directory of the LLVM trunk

Supporting a subtarget
A target may have a subtarget—typically, a variant with instructions—way of handling operands,
among others. This subtarget feature can be supported in the LLVM backend. A subtarget
may contain some additional instructions, registers, scheduling models, and so on. ARM
has subtargets such as NEON and THUMB, while x86 has subtarget features such as SSE,
AVX, and so on. The instruction set differs for the subtarget feature, for example, NEON for
ARM and SSE/AVX for subtarget features that support vector instructions. SSE and AVX also
support the vector instruction set, but their instructions differ from each other.

How to do it…
This recipe will demonstrate how to add a support subtarget feature in the backend. A new
class that will inherit the TargetSubtargetInfo class has to be defined:

1. Create a new file called TOYSubtarget.h:
$ vi TOYSubtarget.h

2. Include the following files:
#include "TOY.h"

#include "TOYFrameLowering.h"

#include "TOYISelLowering.h"

#include "TOYInstrInfo.h"

#include "TOYSelectionDAGInfo.h"

#include "TOYSubtarget.h"

#include "llvm/Target/TargetMachine.h"

#include "llvm/Target/TargetSubtargetInfo.h"

#include "TOYGenSubtargetInfo.inc"

3. Define a new class, called TOYSubtarget, with some private members that have
information on the data layout, target lowering, target selection DAG, target frame
lowering, and so on:
class TOYSubtarget : public TOYGenSubtargetInfo {
 virtual void anchor();

private:

Chapter 8

225

 const DataLayout DL; // Calculates type size & alignment.
 TOYInstrInfo InstrInfo;
 TOYTargetLowering TLInfo;
 TOYSelectionDAGInfo TSInfo;
 TOYFrameLowering FrameLowering;
 InstrItineraryData InstrItins;

4. Declare its constructor:
TOYSubtarget(const std::string &TT, const std::string &CPU,
const std::string &FS, TOYTargetMachine &TM);

This constructor initializes the data members to match that of the specified triplet.

5. Define some helper functions to return the class-specific data:
const InstrItineraryData *getInstrItineraryData() const override {
 return &InstrItins;
}

const TOYInstrInfo *getInstrInfo() const override { return
&InstrInfo; }

const TOYRegisterInfo *getRegisterInfo() const override {
 return &InstrInfo.getRegisterInfo();
}

const TOYTargetLowering *getTargetLowering() const override {
 return &TLInfo;
}

const TOYFrameLowering *getFrameLowering() const override {
 return &FrameLowering;
}

const TOYSelectionDAGInfo *getSelectionDAGInfo() const override {
 return &TSInfo;
}

const DataLayout *getDataLayout() const override { return &DL; }

void ParseSubtargetFeatures(StringRef CPU, StringRef FS);

TO LC,

Please maintain the representation of the above code EXACTLY as
seen above.

Writing an LLVM Backend

226

6. Create a new file called TOYSubtarget.cpp, and define the constructor as follows:

TOYSubtarget::TOYSubtarget(const std::string &TT, const
std::string &CPU, const std::string &FS, TOYTargetMachine &TM)
 DL("e-m:e-p:32:32-i1:8:32-i8:8:32-i16:16:32-i64:32-
 f64:32-a:0:32-n32"),
 InstrInfo(), TLInfo(TM), TSInfo(DL), FrameLowering()
 {}

The subtarget has its own data layout defined, with other information such as frame lowering,
instruction information, subtarget information, and so on.

See also
 f To dive into the details of subtarget implementation, refer to the lib/Target/ARM/

ARMSubtarget.cpp file in the LLVM source code

Lowering to multiple instructions
Let's take an example of implementing a 32-bit immediate load with high/low pairs, where
MOVW implies moving a 16-bit low immediate and a clear 16 high bit, and MOVT implies
moving a 16-bit high immediate.

How to do it…
There can be various ways to implement this multiple instruction lowering. We can do this by
using pseudo-instructions or in the selection DAG-to-DAG phase.

1. To do it without pseudo-instructions, define some constraints. The two instructions
must be ordered. MOVW clears the high 16 bits. Its output is read by MOVT to fill the
high 16 bits. This can be done by specifying the constraints in tablegen:
def MOVLOi16 : MOV<0b1000, "movw", (ins i32imm:$imm),
 [(set i32:$dst, i32imm_lo:$imm)]>;
def MOVHIi16 : MOV<0b1010, "movt", (ins GRRegs:$src1,
i32imm:$imm),
 [/* No Pattern */]>;

The second way is to define a pseudo-instruction in the .td file:

def MOVi32 : InstTOY<(outs GRRegs:$dst), (ins i32imm:$src), "",
[(set i32:$dst, (movei32 imm:$src))]> {
 let isPseudo = 1;
}

Chapter 8

227

2. The pseudo-instruction is then lowered by a target function in the TOYInstrInfo.
cpp file:
bool
TOYInstrInfo::expandPostRAPseudo(MachineBasicBlock::iterato
r MI) const {
 if (MI->getOpcode() == TOY::MOVi32){
 DebugLoc DL = MI->getDebugLoc();
 MachineBasicBlock &MBB = *MI->getParent();

 const unsigned DstReg = MI->getOperand(0).getReg();
 const bool DstIsDead = MI->getOperand(0).isDead();

 const MachineOperand &MO = MI->getOperand(1);

 auto LO16 = BuildMI(MBB, MI, DL, get(TOY::MOVLOi16),
 DstReg);
 auto HI16 = BuildMI(MBB, MI, DL, get(TOY::MOVHIi16))
 .addReg(DstReg, RegState::Define |
 getDeadRegState(DstIsDead))
 .addReg(DstReg);

 MBB.erase(MI);
 return true;
 }
}

3. Compile the entire LLVM project:

For example, an ex.ll file with IR will look like this:
define i32 @foo(i32 %a) #0 {
%b = add nsw i32 %a, 65537 ; 0x00010001
ret i32 %b
}

The assembly generated will look like this:
movw r1, #1
movt r1, #1
add r0, r0, r1
b lr

Writing an LLVM Backend

228

How it works…
The first instruction, movw, will move 1 in the lower 16 bits and clear the high 16 bits. So
in r1, 0x00000001 will be written by the first instruction. In the next instruction, movt, the
higher 16 bits will be written. So in r1, 0x0001XXXX will be written, without disturbing the
lower bits. Finally, the r1 register will have 0x00010001 in it. Whenever a pseudo-instruction
is encountered as specified in the .td file, its expand function is called to specify what the
pseudo-instruction will expand to.

In the preceding case, the mov32 immediate was to be implemented by two instructions:
movw (the lower 16 bits) and movt (the higher 16 bits). It was marked as a pseudo-instruction
in the .td file. When this pseudo-instruction needs to be emitted, its expand function is
called, which builds two machine instructions: MOVLOi16 and MOVHIi16. These map to the
movw and movt instructions of the target architecture.

See also
 f To dive deep into implementing such lowering of multiple instructions,

look at the ARM target implementation in the LLVM source code in the
lib/Target/ARM/ARMInstrInfo.td file.

Registering a target
For running the llc tool in the TOY target architecture, it has to be registered with the llc tool.
This recipe demonstrates which configuration files need to be modified to register a target.
The build files are modified in this recipe.

How to do it…
To register a target with a static compiler, follow these steps:

1. First, add the entry of the TOY backend to llvm_root_dir/CMakeLists.txt:
set(LLVM_ALL_TARGETS
 AArch64
 ARM
 …
 …
 TOY
)

2. Then add the toy entry to llvm_root_dir/include/llvm/ADT/Triple.h:
class Triple {
public:

Chapter 8

229

 enum ArchType {
 UnknownArch,

 arm, // ARM (little endian): arm, armv.*, xscale
 armeb, // ARM (big endian): armeb
 aarch64, // AArch64 (little endian): aarch64
 …
 …

toy // TOY: toy
};

3. Add the toy entry to llvm_root_dir/include/llvm/ MC/MCExpr.h:
class MCSymbolRefExpr : public MCExpr {
public:
enum VariantKind {
...
VK_TOY_LO,
VK_TOY_HI,
};

4. Add the toy entry to llvm_root_dir/include/llvm/ Support/ELF.h:
enum {
 EM_NONE = 0, // No machine
 EM_M32 = 1, // AT&T WE 32100
 …
 …
 EM_TOY = 220 // whatever is the next number
};

5. Then, add the toy entry to lib/MC/MCExpr.cpp:
StringRef MCSymbolRefExpr::getVariantKindName(VariantKind
Kind) {
switch (Kind) {

 …
 …
 case VK_TOY_LO: return "TOY_LO";
 case VK_TOY_HI: return "TOY_HI";
 }
…
}

Writing an LLVM Backend

230

6. Next, add the toy entry to lib/Support/Triple.cpp:
const char *Triple::getArchTypeName(ArchType Kind) {
 switch (Kind) {
 …
 …
 case toy: return "toy";

}

const char *Triple::getArchTypePrefix(ArchType Kind) {
 switch (Kind) {
 …
 …
case toy: return "toy";
 }
}

Triple::ArchType Triple::getArchTypeForLLVMName(StringRef
Name) {
…
…
 .Case("toy", toy)
…
}

static Triple::ArchType parseArch(StringRef ArchName) {
…
…
 .Case("toy", Triple::toy)
…
}

static unsigned
getArchPointerBitWidth(llvm::Triple::ArchType Arch) {
…
…
case llvm::Triple::toy:
 return 32;

…
…
}

Chapter 8

231

Triple Triple::get32BitArchVariant() const {
…
…
case Triple::toy:
 // Already 32-bit.
 break;
…
}

Triple Triple::get64BitArchVariant() const {
…
…
case Triple::toy:
 T.setArch(UnknownArch);
 break;

…
…
}

7. Add the toy directory entry to lib/Target/LLVMBuild.txt:
[common]
subdirectories = ARM AArch64 CppBackend Hexagon MSP430 … …
TOY

8. Create a new file called TOY.h in the lib/Target/TOY folder:
#ifndef TARGET_TOY_H
#define TARGET_TOY_H

#include "MCTargetDesc/TOYMCTargetDesc.h"
#include "llvm/Target/TargetMachine.h"

namespace llvm {
class TargetMachine;
class TOYTargetMachine;

FunctionPass *createTOYISelDag(TOYTargetMachine &TM,
 CodeGenOpt::Level OptLevel);
} // end namespace llvm;

#endif

Writing an LLVM Backend

232

9. Create a new folder called TargetInfo in the lib/Target/TOY folder. Inside that
folder, create a new file called TOYTargetInfo.cpp, as follows:
#include "TOY.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;

Target llvm::TheTOYTarget;

extern "C" void LLVMInitializeTOYTargetInfo() {
 RegisterTarget<Triple::toy> X(TheTOYTarget, "toy",
 "TOY");
}

10. In the same folder, create the CMakeLists.txt file:
add_llvm_library(LLVMTOYInfo
 TOYTargetInfo.cpp
)

11. Create an LLVMBuild.txt file:
[component_0]
type = Library
name = TOYInfo
parent = TOY
required_libraries = Support
add_to_library_groups = TOY

12. In the lib/Target/TOY folder, create a file called TOYTargetMachine.cpp:
#include "TOYTargetMachine.h"
#include "TOY.h"
#include "TOYFrameLowering.h"
#include "TOYInstrInfo.h"
#include TOYISelLowering.h"
#include "TOYSelectionDAGInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/IR/Module.h"
#include "llvm/PassManager.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;

TOYTargetMachine::TOYTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS, const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
 CodeGenOpt::Level OL)

Chapter 8

233

 : LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM,
 OL),
 Subtarget(TT, CPU, FS, *this) {
 initAsmInfo();
}

namespace {
class TOYPassConfig : public TargetPassConfig {
public:
 TOYPassConfig(TOYTargetMachine *TM, PassManagerBase &PM)
 : TargetPassConfig(TM, PM) {}

 TOYTargetMachine &getTOYTargetMachine() const {
 return getTM<TOYTargetMachine>();
 }

 virtual bool addPreISel();
 virtual bool addInstSelector();
 virtual bool addPreEmitPass();
};
} // namespace

TargetPassConfig
*TOYTargetMachine::createPassConfig(PassManagerBase &PM) {
 return new TOYPassConfig(this, PM);
}

bool TOYPassConfig::addPreISel() { return false; }

bool TOYPassConfig::addInstSelector() {
 addPass(createTOYISelDag(getTOYTargetMachine(),
 getOptLevel()));
 return false;
}

bool TOYPassConfig::addPreEmitPass() { return false; }

// Force static initialization.
extern "C" void LLVMInitializeTOYTarget() {
 RegisterTargetMachine<TOYTargetMachine> X(TheTOYTarget);
}

void TOYTargetMachine::addAnalysisPasses(PassManagerBase
&PM) {}

Writing an LLVM Backend

234

13. Create a new folder called MCTargetDesc and a new file called
TOYMCTargetDesc.h:
#ifndef TOYMCTARGETDESC_H
#define TOYMCTARGETDESC_H

#include "llvm/Support/DataTypes.h"

namespace llvm {
class Target;
class MCInstrInfo;
class MCRegisterInfo;
class MCSubtargetInfo;
class MCContext;
class MCCodeEmitter;
class MCAsmInfo;
class MCCodeGenInfo;
class MCInstPrinter;
class MCObjectWriter;
class MCAsmBackend;

class StringRef;
class raw_ostream;

extern Target TheTOYTarget;

MCCodeEmitter *createTOYMCCodeEmitter(const MCInstrInfo &MCII,
const MCRegisterInfo &MRI, const MCSubtargetInfo &STI, MCContext
&Ctx);

MCAsmBackend *createTOYAsmBackend(const Target &T, const
MCRegisterInfo &MRI, StringRef TT, StringRef CPU);

MCObjectWriter *createTOYELFObjectWriter(raw_ostream &OS,
uint8_t OSABI);

} // End llvm namespace

#define GET_REGINFO_ENUM

Chapter 8

235

#include "TOYGenRegisterInfo.inc"

#define GET_INSTRINFO_ENUM
#include "TOYGenInstrInfo.inc"

#define GET_SUBTARGETINFO_ENUM
#include "TOYGenSubtargetInfo.inc"

#endif

14. Create one more file, called TOYMCTargetDesc.cpp, in the same folder:
#include "TOYMCTargetDesc.h"
#include "InstPrinter/TOYInstPrinter.h"
#include "TOYMCAsmInfo.h"
#include "llvm/MC/MCCodeGenInfo.h"
#include "llvm/MC/MCInstrInfo.h"
#include "llvm/MC/MCRegisterInfo.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"

#define GET_INSTRINFO_MC_DESC
#include "TOYGenInstrInfo.inc"

#define GET_SUBTARGETINFO_MC_DESC
#include "TOYGenSubtargetInfo.inc"

#define GET_REGINFO_MC_DESC
#include "TOYGenRegisterInfo.inc"

using namespace llvm;

static MCInstrInfo *createTOYMCInstrInfo() {
 MCInstrInfo *X = new MCInstrInfo();
 InitTOYMCInstrInfo(X);
 return X;
}

static MCRegisterInfo *createTOYMCRegisterInfo(StringRef
TT) {
 MCRegisterInfo *X = new MCRegisterInfo();
 InitTOYMCRegisterInfo(X, TOY::LR);

Writing an LLVM Backend

236

 return X;
}

static MCSubtargetInfo *createTOYMCSubtargetInfo(StringRef
TT, StringRef CPU,
 StringRef
 FS) {
 MCSubtargetInfo *X = new MCSubtargetInfo();
 InitTOYMCSubtargetInfo(X, TT, CPU, FS);
 return X;
}

static MCAsmInfo *createTOYMCAsmInfo(const MCRegisterInfo
&MRI, StringRef TT) {
 MCAsmInfo *MAI = new TOYMCAsmInfo(TT);
 return MAI;
}

static MCCodeGenInfo *createTOYMCCodeGenInfo(StringRef TT,
Reloc::Model RM,
 CodeModel::Model CM,
 CodeGenOpt::Level OL)
{
 MCCodeGenInfo *X = new MCCodeGenInfo();
 if (RM == Reloc::Default) {
 RM = Reloc::Static;
 }
 if (CM == CodeModel::Default) {
 CM = CodeModel::Small;
 }
 if (CM != CodeModel::Small && CM != CodeModel::Large) {
 report_fatal_error("Target only supports CodeModel
 Small or Large");
 }

 X->InitMCCodeGenInfo(RM, CM, OL);
 return X;
}

static MCInstPrinter *
createTOYMCInstPrinter(const Target &T, unsigned
SyntaxVariant,
 const MCAsmInfo &MAI, const
 MCInstrInfo &MII,

Chapter 8

237

 const MCRegisterInfo &MRI, const
 MCSubtargetInfo &STI) {
 return new TOYInstPrinter(MAI, MII, MRI);
}

static MCStreamer *
createMCAsmStreamer(MCContext &Ctx, formatted_raw_ostream
&OS, bool isVerboseAsm, bool useDwarfDirectory,MCInstPrinter
*InstPrint, MCCodeEmitter *CE,MCAsmBackend *TAB, bool ShowInst) {
 return createAsmStreamer(Ctx, OS, isVerboseAsm,
useDwarfDirectory, InstPrint, CE, TAB, ShowInst);
}

static MCStreamer *createMCStreamer(const Target &T,
StringRef TT,
 MCContext &Ctx,
 MCAsmBackend &MAB,
 raw_ostream &OS,
 MCCodeEmitter *Emitter,
 const MCSubtargetInfo
 &STI,
 bool RelaxAll,
 bool NoExecStack) {
 return createELFStreamer(Ctx, MAB, OS, Emitter, false,
 NoExecStack);
}

// Force static initialization.
extern "C" void LLVMInitializeTOYTargetMC() {
 // Register the MC asm info.
 RegisterMCAsmInfoFn X(TheTOYTarget, createTOYMCAsmInfo);

 // Register the MC codegen info.
 TargetRegistry::RegisterMCCodeGenInfo(TheTOYTarget,
 createTOYMCCodeGenInfo);

 // Register the MC instruction info.

Writing an LLVM Backend

238

 TargetRegistry::RegisterMCInstrInfo(TheTOYTarget,
 createTOYMCInstrInfo);

 // Register the MC register info.
 TargetRegistry::RegisterMCRegInfo(TheTOYTarget,
 createTOYMCRegisterInfo);

 // Register the MC subtarget info.
 TargetRegistry::RegisterMCSubtargetInfo(TheTOYTarget,

createTOYMCSubtargetInfo);

 // Register the MCInstPrinter
 TargetRegistry::RegisterMCInstPrinter(TheTOYTarget,
 createTOYMCInstPrinter);

 // Register the ASM Backend.
 TargetRegistry::RegisterMCAsmBackend(TheTOYTarget,
 createTOYAsmBackend);

 // Register the assembly streamer.
 TargetRegistry::RegisterAsmStreamer(TheTOYTarget,
 createMCAsmStreamer);

 // Register the object streamer.
 TargetRegistry::RegisterMCObjectStreamer(TheTOYTarget,
 createMCStreamer);

 // Register the MCCodeEmitter
 TargetRegistry::RegisterMCCodeEmitter(TheTOYTarget,
 createTOYMCCodeEmitter);
}

15. In the same folder, create an LLVMBuild.txt file:
[component_0]
type = Library
name = TOYDesc
parent = TOY
required_libraries = MC Support TOYAsmPrinter TOYInfo
add_to_library_groups = TOY

16. Create a CMakeLists.txt file:
add_llvm_library(LLVMTOYDesc
 TOYMCTargetDesc.cpp)

Chapter 8

239

How it works…
Build the enitre LLVM project, as follows:

$ cmake llvm_src_dir –DCMAKE_BUILD_TYPE=Release –
DLLVM_TARGETS_TO_BUILD="TOY"

$ make

Here, we have specified that we are building the LLVM compiler for the toy target. After the
build completes, check whether the TOY target appears with the llc command:

$ llc –version

…

…

Registered Targets :

toy – TOY

See also
 f For a more detailed description about complex targets that involve pipelining and

scheduling, follow the chapters in Tutorial: Creating an LLVM Backend for the
Cpu0 Architecture by Chen Chung-Shu and Anoushe Jamshidi

Chapter 9

241

9
Using LLVM for Various

Useful Projects

In this chapter, we will cover the following recipes:

 f Exception handling in LLVM

 f Using sanitizers

 f Writing the garbage collector with LLVM

 f Converting LLVM IR to JavaScript

 f Using the Clang Static Analyzer

 f Using bugpoint

 f Using LLDB

 f Using LLVM utility passes

Introduction
Until now, you have learned how to write the frontend of a compiler, write optimizations and
create a backend. In this chapter, the last of this book, we will look into some other features
that the LLVM infrastructure provides and how we can use them in our projects. We won't be
diving very deep into the details of the topics in this chapter. The main point is to let you know
about these important tools and techniques, which are hot points in LLVM.

Using LLVM for Various Useful Projects

242

Exception handling in LLVM
In this recipe, we will look into the exception handling infrastructure of LLVM. We will discuss
how the exception handling information looks in the IR and the intrinsic functions provided by
LLVM for exception handling.

Getting ready...
You must understand how exception handling works normally and the concepts of try, catch
and throw and so on. You must also have Clang and LLVM installed in your path.

How to do it…
We will take an example to describe how exception handling works in LLVM:

1. Open a file to write down the source code, and enter the source code to test
exception handling:
$ cat eh.cpp

class Ex1 {};

void throw_exception(int a, int b) {

 Ex1 ex1;

 if (a > b) {

 throw ex1;

 }

}

int test_try_catch() {

 try {

 throw_exception(2, 1);

 }

 catch(...) {

 return 1;

 }

 return 0;

}

2. Generate the bitcode file using the following command:
$ clang -c eh.cpp -emit-llvm -o eh.bc

Chapter 9

243

3. To view the IR on the screen, run the following command, which will give you the
output as shown:

$ llvm-dis eh.bc -o -

; ModuleID = 'eh.bc'

target datalayout = "e-m:e-i64:64-f80:128-n8:16:32:64-S128"

target triple = "x86_64-unknown-linux-gnu"

%class.Ex1 = type { i8 }

@_ZTVN10__cxxabiv117__class_type_infoE = external global i8*

@_ZTS3Ex1 = linkonce_odr constant [5 x i8] c"3Ex1\00"

@_ZTI3Ex1 = linkonce_odr constant { i8*, i8* } { i8* bitcast
(i8** getelementptr inbounds (i8** @_ZTVN10__cxxabiv117__class_
type_infoE, i64 2) to i8*), i8*
getelementptr inbounds ([5 x i8]* @_ZTS3Ex1, i32 0, i32 0) }

; Function Attrs: uwtable

define void @_Z15throw_exceptionii(i32 %a, i32 %b) #0 {

 %1 = alloca i32, align 4

 %2 = alloca i32, align 4

 %ex1 = alloca %class.Ex1, align 1

 store i32 %a, i32* %1, align 4

 store i32 %b, i32* %2, align 4

 %3 = load i32* %1, align 4

 %4 = load i32* %2, align 4

 %5 = icmp sgt i32 %3, %4

 br i1 %5, label %6, label %9

; <label>:6 ; preds = %0

 %7 = call i8* @__cxa_allocate_exception(i64 1) #1

 %8 = bitcast i8* %7 to %class.Ex1*

 call void @__cxa_throw(i8* %7, i8* bitcast ({ i8*, i8* }*
@_ZTI3Ex1 to i8*), i8* null) #2

 unreachable

; <label>:9 ; preds = %0

 ret void

Using LLVM for Various Useful Projects

244

}

declare i8* @__cxa_allocate_exception(i64)

declare void @__cxa_throw(i8*, i8*, i8*)

; Function Attrs: uwtable

define i32 @_Z14test_try_catchv() #0 {

 %1 = alloca i32, align 4

 %2 = alloca i8*

 %3 = alloca i32

 %4 = alloca i32

 invoke void @_Z15throw_exceptionii(i32 2, i32 1)

 to label %5 unwind label %6

; <label>:5 ; preds = %0

 br label %13

; <label>:6 ; preds = %0

 %7 = landingpad { i8*, i32 } personality i8* bitcast (i32
(...)* @__gxx_personality_v0 to i8*)

 catch i8* null

 %8 = extractvalue { i8*, i32 } %7, 0

 store i8* %8, i8** %2

 %9 = extractvalue { i8*, i32 } %7, 1

 store i32 %9, i32* %3

 br label %10

; <label>:10 ; preds = %6

 %11 = load i8** %2

 %12 = call i8* @__cxa_begin_catch(i8* %11) #1

 store i32 1, i32* %1

 store i32 1, i32* %4

 call void @__cxa_end_catch()

 br label %14

Chapter 9

245

; <label>:13 ; preds = %5

 store i32 0, i32* %1

 br label %14

; <label>:14 ; preds =
%13, %10

 %15 = load i32* %1

 ret i32 %15

}

declare i32 @__gxx_personality_v0(...)

declare i8* @__cxa_begin_catch(i8*)

declare void @__cxa_end_catch()

attributes #0 = { uwtable "less-precise-fpmad"="false" "no-
frame-pointer-elim"="true" "no-frame-pointer-elim-non-leaf"
"no-infs-fp-math"="false" "no-nans-fp-math"="false" "stack-
protector-buffer-size"="8" "unsafe-fp-math"="false" "use-soft-
float"="false" }

attributes #1 = { nounwind }

attributes #2 = { noreturn }

!llvm.ident = !{!0}

!0 = metadata !{metadata !"clang version 3.6.0 (220636)"}

How it works…
In LLVM, if an exception is thrown, the runtime tries its best to find a handler. It tries to find an
exception frame corresponding to the function where the exception was thrown. This exception
frame contains a reference to the exception table, which contains the implementation—how to
handle the exception when a programming language supports exception handling. When the
language does not support exception handling, the information on how to unwind the current
activation and restore the state of the prior activation is found in this exception frame.

Let's look at the preceding example to see how to generate exception handling code with LLVM.

Using LLVM for Various Useful Projects

246

The try block is translated to invoke instruction in LLVM:

invoke void @_Z15throw_exceptionii(i32 2, i32 1)
 to label %5 unwind label %6

The preceding line tells the compiler how it should handle an exception if the
throw_exception function throws it. If no exception is thrown, then normal execution will
take place through the %5 label. But if an exception is thrown, it will branch into the %6 label,
which is the landing pad. This corresponds roughly to the catch portion of a try/catch
sequence. When execution resumes at a landing pad, it receives an exception structure and
a selector value corresponding to the type of exception thrown. The selector is then used to
determine which catch function should actually process the exception. In this case, it looks
something like this:

%7 = landingpad { i8*, i32 } personality i8* bitcast (i32 (...)*
@__gxx_personality_v0 to i8*)
 catch i8* null

The %7 in the preceding code snippet represents the information describing the exception.
The { i8*, i32 } part of the code describes the type of information. The i8* part of the
code represents the exception pointer part, and i32 is the selector value. In this case, we
have only one selector value, as the catch function accepts all types of exception objects
thrown. The @__gxx_personality_v0 function is the personality function. It receives
the context of the exception, an exception structure containing the exception object type
and value, and a reference to the exception table for the current function. The personality
function for the current compile unit is specified in a common exception frame. In our case,
the @__gxx_personality_v0 function represents the fact that we are dealing with
C++ exceptions.

So, the %8 = extractvalue { i8*, i32 } %7, 0 will represent the exception object,
and %9 = extractvalue { i8*, i32 } %7, 1 represents the selector value.

The following are some noteworthy IR functions:

 f __cxa_throw: This is a function used to throw an exception

 f __cxa_begin_catch: This takes an exception structure reference as an argument
and returns the value of the exception object

 f __cxa_end_catch: This locates the most recently caught exception and
decrements its handler count, removing the exception from the caught state if this
counter goes down to zero

See also
 f To understand the exception format used by LLVM, go to http://llvm.org/docs/

ExceptionHandling.html#llvm-code-generation.

http://llvm.org/docs/ExceptionHandling.html#llvm-code-generation
http://llvm.org/docs/ExceptionHandling.html#llvm-code-generation

Chapter 9

247

Using sanitizers
You might have used tools such as Valgrind for memory debugging. LLVM also provides us
with tools for memory debugging, such as the address sanitizer, memory sanitizer, and so
on. These tools are very fast compared to Valgrind, even though they are not as mature as
Valgrind. Most of these tools are in their experimental stage, so if you want, you can contribute
to the open source development of these tools.

Getting ready
To make use of these sanitizers, we need to check out the code for compiler-rt from the
LLVM SVN:

cd llvm/projects
svn co http://llvm.org/svn/llvm-project/compiler-rt/trunk compiler-rt

Build LLVM as we did in Chapter 1, LLVM Design and Use. By doing so, we get the runtime
libraries required.

How to do it…
Now, we will test the address sanitizer on a test code.

1. Write a test case to check the address sanitizer:
$ cat asan.c

int main() {

int a[5];

int index = 6;

int retval = a[index];

return retval;

}

2. Compile the test code using the fsanitize=address command-line argument
for using the address sanitizer:
$ clang -fsanitize=address asan.c

3. Generate the output of running the address sanitizer using the following command:

$ ASAN_SYMBOLIZER_PATH=/usr/local/bin/llvm-symbolizer ./a.out

Using LLVM for Various Useful Projects

248

Here's the output:

How it works…
The LLVM address sanitizer works on the principle of code instrumentation. The tool
consists of a compiler instrumentation module and a runtime library. The code
instrumentation part is done by the pass of LLVM, which runs on passing the
fsanitize=address command-line argument, as is done in the preceding example. The
runtime library replaces the malloc and free functions in the code with custom-made code.
Before we go ahead and discuss the details of how code instrumentation is done, here we
must know that the virtual address space is divided into two disjointed classes: the main
application memory, which is used by the regular application code; and the shadow memory,
which contains the shadow values (or metadata).

The shadow memory and the main application memory are linked to each other. Poisoning
a byte in the main memory means writing a special value into the corresponding
shadow memory.

Let's come back to the address sanitizer; the memory around the regions allocated by the
malloc function is poisoned. The memory freed by the free function is placed in quarantine
and is also poisoned. Every memory access in the program is transformed by the compiler in
the following way.

At first, it is like this:

*address = ...;

Chapter 9

249

After transformation, it becomes the following:

if (IsPoisoned(address)) {
 ReportError(address, kAccessSize, kIsWrite);
}
*address = ...;

This means that if it finds any invalid access to this memory, it reports an error.

In the preceding example, we wrote a piece of code for a buffer overrun, accessing an array
that is out of bounds. Here, the instrumentation of code is done on the address just before
and after the array. So, when we access the array beyond its upper bound, we try accessing
the red zone. Hence, the address sanitizer gives us a stack buffer overflow report.

See also…
 f You can check out the documentation page at http://clang.llvm.org/docs/

AddressSanitizer.html for more information.

 f You can also check out the other sanitizers in LLVM using the following links:

http://clang.llvm.org/docs/MemorySanitizer.html

http://clang.llvm.org/docs/ThreadSanitizer.html

https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer

Writing the garbage collector with LLVM
Garbage collection is a technique of memory management where the collector tries to reclaim
the memory occupied by objects that are no longer in use. This frees the programmer from of
being required to keep track of the lifetimes of heap objects.

In this recipe, we will see how to integrate LLVM into a compiler for a language that supports
garbage collection. LLVM does not itself provide a garbage collector, but provides a framework
for describing the garbage collector's requirements to the compiler.

Getting ready
LLVM must be built and installed.

http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/docs/AddressSanitizer.html
http://clang.llvm.org/docs/MemorySanitizer.html
http://clang.llvm.org/docs/ThreadSanitizer.html
https://code.google.com/p/address-sanitizer/wiki/LeakSanitizer

Using LLVM for Various Useful Projects

250

How to do it…
We will see in the following recipe how the LLVM IR code, with garbage collection intrinsic
functions, is converted to the corresponding machine assembly code:

1. Write the test code:
$ cat testgc.ll

declare i8* @llvm_gc_allocate(i32)

declare void @llvm_gc_initialize(i32)

declare void @llvm.gcroot(i8**, i8*)

declare void @llvm.gcwrite(i8*, i8*, i8**)

define i32 @main() gc "shadow-stack" {

entry:

 %A = alloca i8*

 %B = alloca i8**

 call void @llvm_gc_initialize(i32 1048576) ; Start with 1MB
heap

 ;; void *A;

 call void @llvm.gcroot(i8** %A, i8* null)

 ;; A = gcalloc(10);

 %Aptr = call i8* @llvm_gc_allocate(i32 10)

 store i8* %Aptr, i8** %A

 ;; void **B;

 %tmp.1 = bitcast i8*** %B to i8**

 call void @llvm.gcroot(i8** %tmp.1, i8* null)

 ;; B = gcalloc(4);

 %B.upgrd.1 = call i8* @llvm_gc_allocate(i32 8)

 %tmp.2 = bitcast i8* %B.upgrd.1 to i8**

 store i8** %tmp.2, i8*** %B

Chapter 9

251

 ;; *B = A;

 %B.1 = load i8**, i8*** %B

 %A.1 = load i8*, i8** %A

 call void @llvm.gcwrite(i8* %A.1, i8* %B.upgrd.1, i8** %B.1)

 br label %AllocLoop

AllocLoop:

 %i = phi i32 [0, %entry], [%indvar.next, %AllocLoop]

 ;; Allocated mem: allocated memory is immediately
dead.

 call i8* @llvm_gc_allocate(i32 100)

 %indvar.next = add i32 %i, 1

 %exitcond = icmp eq i32 %indvar.next, 10000000

 br i1 %exitcond, label %Exit, label %AllocLoop

Exit:

 ret i32 0

}

declare void @__main()

2. Use the llc tool to generate the assembly code and view the assembly code using
the cat command:

$ llc testgc.ll

$ cat testgc.s

 .text

 .file "testgc.ll"

 .globl main

 .align 16, 0x90

 .type main,@function

main: # @main

.Lfunc_begin0:

Using LLVM for Various Useful Projects

252

 .cfi_startproc

 .cfi_personality 3, __gcc_personality_v0

 .cfi_lsda 3, .Lexception0

BB#0: # %entry

 pushq %rbx

.Ltmp9:

 .cfi_def_cfa_offset 16

 subq $32, %rsp

.Ltmp10:

 .cfi_def_cfa_offset 48

.Ltmp11:

 .cfi_offset %rbx, -16

 movq llvm_gc_root_chain(%rip), %rax

 movq $__gc_main, 8(%rsp)

 movq $0, 16(%rsp)

 movq %rax, (%rsp)

 leaq (%rsp), %rax

 movq %rax, llvm_gc_root_chain(%rip)

 movq $0, 24(%rsp)

.Ltmp0:

 movl $1048576, %edi # imm = 0x100000

 callq llvm_gc_initialize

.Ltmp1:

BB#1: # %entry.cont3

.Ltmp2:

 movl $10, %edi

 callq llvm_gc_allocate

.Ltmp3:

BB#2: # %entry.cont2

 movq %rax, 16(%rsp)

.Ltmp4:

 movl $8, %edi

 callq llvm_gc_allocate

.Ltmp5:

BB#3: # %entry.cont

Chapter 9

253

 movq %rax, 24(%rsp)

 movq 16(%rsp), %rcx

 movq %rcx, (%rax)

 movl $10000000, %ebx # imm = 0x989680

 .align 16, 0x90

.LBB0_4: # %AllocLoop

 # =>This Inner Loop
Header: Depth=1

.Ltmp6:

 movl $100, %edi

 callq llvm_gc_allocate

.Ltmp7:

BB#5: # %AllocLoop.cont

 # in Loop: Header=BB0_4
Depth=1

 decl %ebx

 jne .LBB0_4

BB#6: # %Exit

 movq (%rsp), %rax

 movq %rax, llvm_gc_root_chain(%rip)

 xorl %eax, %eax

 addq $32, %rsp

 popq %rbx

 retq

.LBB0_7: # %gc_cleanup

.Ltmp8:

 movq (%rsp), %rcx

 movq %rcx, llvm_gc_root_chain(%rip)

 movq %rax, %rdi

 callq _Unwind_Resume

.Lfunc_end0:

 .size main, .Lfunc_end0-main

 .cfi_endproc

 .section .gcc_except_table,"a",@progbits

 .align 4

Using LLVM for Various Useful Projects

254

GCC_except_table0:

.Lexception0:

 .byte 255 # @LPStart Encoding = omit

 .byte 3 # @TType Encoding = udata4

 .asciz "\234" # @TType base offset

 .byte 3 # Call site Encoding = udata4

 .byte 26 # Call site table length

 .long .Ltmp0-.Lfunc_begin0 # >> Call Site 1 <<

 .long .Ltmp7-.Ltmp0 # Call between .Ltmp0 and
.Ltmp7

 .long .Ltmp8-.Lfunc_begin0 # jumps to .Ltmp8

 .byte 0 # On action: cleanup

 .long .Ltmp7-.Lfunc_begin0 # >> Call Site 2 <<

 .long .Lfunc_end0-.Ltmp7 # Call between .Ltmp7 and
.Lfunc_end0

 .long 0 # has no landing pad

 .byte 0 # On action: cleanup

 .align 4

 .type llvm_gc_root_chain,@object # @llvm_gc_root_chain

 .bss

 .weak llvm_gc_root_chain

 .align 8

llvm_gc_root_chain:

 .quad 0

 .size llvm_gc_root_chain, 8

 .type __gc_main,@object # @__gc_main

 .section .rodata,"a",@progbits

 .align 8

__gc_main:

 .long 2 # 0x2

 .long 0 # 0x0

 .size __gc_main, 8

 .section ".note.GNU-stack","",@progbits

Chapter 9

255

How it works…
In the preceding code, in the main function, we are using the built-in GC collector strategy
called shadow-stack, which maintains a linked list of stack roots():

define i32 @main() gc "shadow-stack"

It mirrors the machine stack. We can provide any other technique, if we want to, by specifying
its name after the function name in this format, gc "strategy name". This strategy name
can either be the built-in strategy or our own custom strategy for garbage collection.

To identify the roots, that is, the references to the heap object, LLVM makes use of
the intrinsic function @llvm.gcroot or the .statepoint relocation sequence. The
llvm.gcroot intrinsic function informs LLVM that a stack variable references an object on
the heap and it needs to be tracked by the collector. In the preceding code, the following line
is the call to the llvm.gcroot function to mark the %tmp.1 stack variable:

call void @llvm.gcroot(i8** %tmp.1, i8* null)

The llvm.gcwrite function is a write barrier. This means that whenever a program on which
garbage collection is being done, it writes a pointer to a field of a heap object, the collector is
informed about that. The llvm.gcread intrinsic function is also present, which informs the
garbage collector when the program reads a pointer to a field of a heap object. The following
line of code writes the %A.1 value to the %B.upgrd heap object:

call void @llvm.gcwrite(i8* %A.1, i8* %B.upgrd.1, i8** %B.1)

Note that LLVM does not provide a garbage collector. It should be a
part of the runtime library of the language. The preceding explanation
deals with the infrastructure that LLVM provides for describing garbage
collector requirements to the compiler.

See also
 f See http://llvm.org/docs/GarbageCollection.html for the documentation

on garbage collection.

 f Also, check out http://llvm.org/docs/Statepoints.html for an alternative
method of garbage collection.

http://llvm.org/docs/GarbageCollection.html
http://llvm.org/docs/Statepoints.html

Using LLVM for Various Useful Projects

256

Converting LLVM IR to JavaScript
In this recipe, we will briefly discuss how we can convert LLVM IR to JavaScript.

Getting ready
To convert IR to JavaScript, perform the following steps:

1. We will make use of the emscripten LLVM to JavaScript compiler. You need to
download the SDK provided at https://kripken.github.io/emscripten-
site/docs/getting_started/downloads.html . You can also build it from the
source code, but just for experimenting, you can use the SDK that comes with the
toolchain.

2. After downloading the SDK, extract it to a location and go to the root folder of the
download.

3. Install the default-jre, nodejs, cmake, build-essential, and git
dependencies.

4. Execute the following commands to install the SDK:
./emsdk update

./emsdk install latest

./emsdk activate latest

5. See the ~/emscripten script to check whether it has the correct values, and if not,
update it accordingly.

How to do it…
Perform the following steps:

1. Write the test code for the conversion:
$ cat test.c

#include<stdio.h>

int main() {

 printf("hi, user!\n");

 return 0;

}

2. Convert the code to the LLVM IR:
$ clang –S –emit-llvm test.c

https://kripken.github.io/emscripten-site/docs/getting_started/downloads.html
https://kripken.github.io/emscripten-site/docs/getting_started/downloads.html

Chapter 9

257

3. Now use the emcc executable located in the
emsdk_portable/emscripten/master directory to take this
.ll file as the input and convert it into JavaScript:
$./emcc test.ll

4. The output file generated is the a.out.js file. We can execute this file using the
following command:

$ nodejs a.out.js

hi, user!

See more
 f To know more details, visit https://github.com/kripken/emscripten

Using the Clang Static Analyzer
In this recipe, you will learn about the static analysis of code, which is carried out by the
Clang Static Analyzer. It is built on top of Clang and LLVM. The static analysis engine used by
the Clang Static Analyzer is a Clang library, and it has the capability to be reused in different
contexts by different clients.

We will take the example of the divide-by-zero defect and show you how the Clang Static
Analyzer handles this defect.

Getting ready
You need to build and install LLVM along with Clang.

How to do it…
Perform the following steps:

1. Create a test file and write the test code in it:
$ cat sa.c

int func() {

int a = 0;

int b = 1/a;

return b;

}

https://github.com/kripken/emscripten

Using LLVM for Various Useful Projects

258

2. Run the Clang Static Analyzer by passing the command-line options shown in the
following command, and get the output on the screen:

$ clang -cc1 -analyze -analyzer-checker=core.DivideZero sa.c

sa.c:3:10: warning: Division by zero

int b = 1/a;

 ~^~

1 warning generated.

How it works…
The static analyzer core performs the symbolic execution of the program. The input values are
represented by symbolic values. The values of the expressions are calculated by the analyzer
using the input symbol and the path. The execution of the code is path-sensitive, and hence
every possible path is analyzed.

While executing, the execution traces are represented by an exploded graph. Each node of
this ExplodedGraph is called ExplodedNode. It consists of a ProgramState object, which
represents the abstract state of the program; and a ProgramPoint object, which represents
the corresponding location in the program.

For each type of bug, there is an associated checker. Each of these checkers is linked to the
core in a way by which they contribute to the ProgramState construction. Each time the
analyzer engine explores a new statement, it notifies each checker registered to listen for that
statement, giving it an opportunity to either report a bug or modify the state.

Each checker registers for some events and callbacks such as PreCall (prior to the call of
the function), DeadSymbols (when a symbol goes dead), and so on. They are notified in the
case of the requested events, and they implement the action to be taken for such events.

In this recipe, we looked at a divide-by-zero checker, which reports when a divide-by-zero
condition occurs. The checker, in this case, registers for the PreStmt callback, before a
statement gets executed. It then checks the operator of the next statement to be executed,
and if it finds a division operator, it looks for a zero value. If it finds such a possible value, it
reports a bug.

See also
 f For more detailed information about the static analyzer and checkers, visit

http://clang-analyzer.llvm.org/checker_dev_manual.html

http://clang-analyzer.llvm.org/checker_dev_manual.html

Chapter 9

259

Using bugpoint
In this recipe, you will learn about a useful tool provided by LLVM infrastructure, known as
bugpoint. Bugpoint allows us to narrow down the source of problems in the LLVM's tools and
passes. It is helpful in debugging optimizer crashes, miscompilations by optimizers, or bad
native code generation. Using this, we can get a small test case for our problem and work
on that.

Getting ready
You need to build and install LLVM.

How to do it…
Perform the following steps:

1. Write the test cases using the bugpoint tool:
$ cat crash-narrowfunctiontest.ll

define i32 @foo() { ret i32 1 }

define i32 @test() {

 call i32 @test()

 ret i32 %1

}

define i32 @bar() { ret i32 2 }

2. Use bugpoint in this test case to view the results :
$ bugpoint -load path-to-llvm/build/./lib/BugpointPasses.
so crash-narrowfunctiontest.ll -output-prefix crash-
narrowfunctiontest.ll.tmp -bugpoint-crashcalls -silence-passes

Read input file : 'crash-narrowfunctiontest.ll'

*** All input ok

Running selected passes on program to test for crash: Crashed:
Aborted (core dumped)

Dumped core

*** Debugging optimizer crash!

Checking to see if these passes crash: -bugpoint-crashcalls:
Crashed: Aborted (core dumped)

Using LLVM for Various Useful Projects

260

Dumped core

*** Found crashing pass: -bugpoint-crashcalls

Emitted bitcode to 'crash-narrowfunctiontest.ll.tmp-passes.bc'

*** You can reproduce the problem with: opt crash-
narrowfunctiontest.ll.tmp-passes.bc -load /home/mayur/LLVMSVN_REV/
llvm/llvm/rbuild/./lib/BugpointPasses.so -bugpoint-crashcalls

*** Attempting to reduce the number of functions in the testcase

Checking for crash with only these functions: foo test bar:
Crashed: Aborted (core dumped)

Dumped core

Checking for crash with only these functions: foo test: Crashed:
Aborted (core dumped)

Dumped core

Checking for crash with only these functions: test: Crashed:
Aborted (core dumped)

Dumped core

Emitted bitcode to 'crash-narrowfunctiontest.ll.tmp-reduced-
function.bc'

*** You can reproduce the problem with: opt crash-
narrowfunctiontest.ll.tmp-reduced-function.bc -load /home/mayur/
LLVMSVN_REV/llvm/llvm/rbuild/./lib/BugpointPasses.so -bugpoint-
crashcalls

Checking for crash with only these blocks: : Crashed: Aborted
(core dumped)

Dumped core

Emitted bitcode to 'crash-narrowfunctiontest.ll.tmp-reduced-
blocks.bc'

*** You can reproduce the problem with: opt crash-
narrowfunctiontest.ll.tmp-reduced-blocks.bc -load /home/mayur/
LLVMSVN_REV/llvm/llvm/rbuild/./lib/BugpointPasses.so -bugpoint-
crashcalls

Checking for crash with only 1 instruction: Crashed: Aborted (core
dumped)

Dumped core

Chapter 9

261

*** Attempting to reduce testcase by deleting instructions:
Simplification Level #1

Checking instruction: %1 = call i32 @test()Success!

*** Attempting to reduce testcase by deleting instructions:
Simplification Level #0

Checking instruction: %1 = call i32 @test()Success!

*** Attempting to perform final cleanups: Crashed: Aborted (core
dumped)

Dumped core

Emitted bitcode to 'crash-narrowfunctiontest.ll.tmp-reduced-
simplified.bc'

*** You can reproduce the problem with: opt crash-
narrowfunctiontest.ll.tmp-reduced-simplified.bc -load
/home/mayur/LLVMSVN_REV/llvm/llvm/rbuild/./lib/BugpointPasses.so
-bugpoint-crashcalls

3. Now, to see the reduced test case, use the llvm-dis command to convert the
crash-narrowfunctiontest.ll.tmp-reduced-simplified.bc file to the
.ll form. Then, view the reduced test case:

$ llvm-dis crash-narrowfunctiontest.ll.tmp-reduced-simplified.bc

$ cat $ cat crash-narrowfunctiontest.ll.tmp-reduced-simplified.ll

define void @test() {

 call void @test()

 ret void

}

How it works…
The bugpoint tool runs all the passes specified in the command line on the test program.
If any of these passes crash, bugpoint starts the crash debugger. The crash debugger tries
to reduce the list of passes that cause this crash. Then it tries to removes unnecessary
functions. Once able to reduce the test program to a single function, it tries to deletes the
edges of the control flow graph to reduce the size of the function. After this, it proceeds to
remove the individual LLVM instructions whose absence does not impact the failure. In the
end, bugpoint gives the output showing which pass is causing the crash and a simplified
reduced test case.

Using LLVM for Various Useful Projects

262

If the –output option wasn't specified, then bugpoint runs the program on a "safe"
backend and generated reference output. It then compares the output generated by the
selected code generator. If there is a crash, it runs the crash debugger as explained in the
previous paragraph. Other than this, if the output generated by the code generator differs
from the reference output, it starts the code generator debugger, which reduces the test case
through techniques similar to those of the crash debugger.

Finally, if the output generated by the code generator and the reference output are the same,
then bugpoint runs all the LLVM passes and checks the output against the reference output.
If there is any mismatch, then it runs the miscompilation debugger. The miscompilation
debugger works by splitting the test program into two pieces. It runs the optimizations as
specified on one piece, then links the two pieces back together, and finally executes the result.
It tries to narrow down to the pass that is causing miscompilation from the list of passes,
and then pinpoints the portion of the test program that is being miscompiled. It outputs the
reduced case that is causing the miscompilation.

In the preceding test case, bugpoint checks for the crash in all functions, and ends up
knowing that the problem lies in the test function. It also tries to reduce the instructions within
the function. The output for every stage is displayed on the terminal, which is self-explanatory.
In the end, it produces a simplified reduced test case in the bitcode format, which we can
convert to the LLVM IR and get the reduced test case.

See also
 f To read more on bugpoint, go to http://llvm.org/docs/Bugpoint.html

Using LLDB
In this recipe, you will learn how to use the debugger known as LLDB, provided by LLVM. LLDB
is a next-generation, high-performance debugger. It is essentially built as a set of reusable
components that have advantages over the existing libraries in the larger LLVM project. You
might find it quite similar to the gdb debugging tool.

Getting ready
We will need the following before working with LLDB:

1. To use LLDB, we need to check out the LLDB source code in the llvm/tools folder:
svn co http://llvm.org/svn/llvm-project/lldb/trunk lldb

2. Build and install LLVM, which will also build LLDB simultaneously.

http://llvm.org/docs/Bugpoint.html

Chapter 9

263

How to do it…
Perform the following steps:

1. Write a test case for a simple example using LLDB:
$ cat lldbexample.c

#include<stdio.h>

int globalvar = 0;

int func2(int a, int b) {

globalvar++;

return a*b;

}

int func1(int a, int b) {

globalvar++;

int d = a + b;

int e = a - b;

int f = func2(d, e);

return f;

}

int main() {

globalvar++;

int a = 5;

int b = 3;

int c = func1(a,b);

printf("%d", c);

return c;

}

2. Compile the code using Clang with the –g flag to generate the debug information:
$ clang -g lldbexample.c

Using LLVM for Various Useful Projects

264

3. Debug the output file generated in the previous file with LLDB. To load the output file,
we need to pass its name to LLDB:
$ lldb a.out

(lldb) target create "a.out"

Current executable set to 'a.out' (x86_64).

4. Set a breakpoint in the main function:
(lldb) breakpoint set --name main

Breakpoint 1: where = a.out'main + 15 at lldbexample.c:20,
address = 0x00000000004005bf

5. To look at the list of breakpoints set, use the following command:
(lldb) breakpoint list

Current breakpoints:

1: name = 'main', locations = 1

 1.1: where = a.out'main + 15 at lldbexample.c:20, address =
a.out[0x00000000004005bf], unresolved, hit count = 0

6. Add a command to be executed when a breakpoint is hit. Here, let's add the back
trace bt command when the breakpoint on the main function is hit:
(lldb) breakpoint command add 1.1

Enter your debugger command(s). Type 'DONE' to end.

> bt

> DONE

7. Run the executable using the following command. This will hit the breakpoint on the
main function and execute the back trace(bt) command, as set in the earlier step:
(lldb) process launch

Process 2999 launched: '/home/mayur/book/chap9/a.out' (x86_64)

Process 2999 stopped

* thread #1: tid = 2999, 0x00000000004005bf a.out'main + 15 at
lldbexample.c:20, name = 'a.out', stop reason = breakpoint 1.1

 frame #0: 0x00000000004005bf a.out'main + 15 at
lldbexample.c:20

 17

 18

 19 int main() {

-> 20 globalvar++;

 21 int a = 5;

 22 int b = 3;

Chapter 9

265

 23

(lldb) bt

* thread #1: tid = 2999, 0x00000000004005bf a.out'main + 15 at
lldbexample.c:20, name = 'a.out', stop reason = breakpoint 1.1

 * frame #0: 0x00000000004005bf a.out'main + 15 at
lldbexample.c:20

 frame #1: 0x00007ffff7a35ec5 libc.so.6'__libc_start_
main(main=0x00000000004005b0, argc=1,
argv=0x00007fffffffda18, init=<unavailable>, fini=<unavailable>,
rtld_fini=<unavailable>, stack_end=0x00007fffffffda08) + 245 at
libc-start.c:287

 frame #2: 0x0000000000400469 a.out

8. To set watchpoint on the global variable, use the following command:
(lldb) watch set var globalvar

Watchpoint created: Watchpoint 1: addr = 0x00601044 size = 4
state = enabled type = w

 declare @ '/home/mayur/book/chap9/lldbexample.c:2'

 watchpoint spec = 'globalvar'

 new value: 0

9. To stop the execution when the value of globalvar becomes 3, use the watch
command:
(lldb) watch modify -c '(globalvar==3)'

To view list of all watch points:

(lldb) watch list

Number of supported hardware watchpoints: 4

Current watchpoints:

Watchpoint 1: addr = 0x00601044 size = 4 state = enabled type
= w

 declare @ '/home/mayur/book/chap9/lldbexample.c:2'

 watchpoint spec = 'globalvar'

 new value: 0

 condition = '(globalvar==3)'

10. To continue execution after the main function, use the following command. The
executable will stop when the value of globalvar becomes 3, inside the func2
function:
(lldb) thread step-over

(lldb) Process 2999 stopped

Using LLVM for Various Useful Projects

266

* thread #1: tid = 2999, 0x000000000040054b a.out'func2(a=8,
b=2) + 27 at lldbexample.c:6, name = 'a.out', stop reason =
watchpoint 1

 frame #0: 0x000000000040054b a.out'func2(a=8, b=2) + 27 at
lldbexample.c:6

 3

 4 int func2(int a, int b) {

 5 globalvar++;

-> 6 return a*b;

 7 }

 8

 9

Watchpoint 1 hit:

old value: 0

new value: 3

(lldb) bt

* thread #1: tid = 2999, 0x000000000040054b a.out'func2(a=8,
b=2) + 27 at lldbexample.c:6, name = 'a.out', stop reason =
watchpoint 1

 * frame #0: 0x000000000040054b a.out'func2(a=8, b=2) + 27 at
lldbexample.c:6

 frame #1: 0x000000000040059c a.out'func1(a=5, b=3) + 60 at
lldbexample.c:14

 frame #2: 0x00000000004005e9 a.out'main + 57 at
lldbexample.c:24

 frame #3: 0x00007ffff7a35ec5 libc.so.6'__libc_start_
main(main=0x00000000004005b0, argc=1,
argv=0x00007fffffffda18, init=<unavailable>,
fini=<unavailable>, rtld_fini=<unavailable>,
stack_end=0x00007fffffffda08) + 245 at libc-start.c:287

 frame #4: 0x0000000000400469 a.out

11. To continue the execution of the executable use the thread continue command,
which will execute till the end as no other breakpoints are met:
(lldb) thread continue

Resuming thread 0x0bb7 in process 2999

Process 2999 resuming

Process 2999 exited with status = 16 (0x00000010)

Chapter 9

267

12. To exit LLDB, use the following command:
(lldb) exit

See also
 f Check out http://lldb.llvm.org/tutorial.html for an exhaustive list of

LLDB commands.

Using LLVM utility passes
In this recipe, you will learn about LLVM's utility passes. As the name signifies, they are of
much utility to users who want to understand certain things about LLVM that are not easy to
understand by going through code. We will look into two utility passes that represent the CFG
of a program.

Getting ready
You need to build and install LLVM, and install the graphviz tool. You can download
graphviz from http://www.graphviz.org/Download.php, or install it from your
machine's package manager, if it is in the list of available packages.

How to do it...
Perform the following steps:

1. Write the test code required for running the utility passes. This test code consists of
if blocks, it will create a new edge in the CFG:
$ cat utility.ll

declare double @foo()

declare double @bar()

define double @baz(double %x) {

entry:

 %ifcond = fcmp one double %x, 0.000000e+00

 br i1 %ifcond, label %then, label %else

then: ; preds = %entry

 %calltmp = call double @foo()

http://lldb.llvm.org/tutorial.html
http://www.graphviz.org/Download.php

Using LLVM for Various Useful Projects

268

 br label %ifcont

else: ; preds = %entry

 %calltmp1 = call double @bar()

 br label %ifcont

ifcont: ; preds = %else, %then

 %iftmp = phi double [%calltmp, %then], [%calltmp1, %else
]

 ret double %iftmp

}

2. Run the view-cfg-only pass to view the CFG of a function without the function
body:
$ opt –view-cfg-only utility.ll

3. Now, view the dot file formed using the graphviz tool:

Chapter 9

269

4. Run the view-dom pass to view the Dominator tree of a function:
$ opt –view-dom utility.ll

5. View the dot file formed using the graphviz tool:

See also
 f A list of the other utility passes is available at http://llvm.org/docs/Passes.

html#utility-passes

http://llvm.org/docs/Passes.html#utility-passes
http://llvm.org/docs/Passes.html#utility-passes

271

Index
A
Abstract Syntax Tree (AST)

about 27, 32
defining 32-34
URL 34

alias analysis pass
writing 90-93

analysis pass
reference link 96
using 93-96
writing 87-90

AST class
IR code generation methods, defining 43, 44

B
binary expression

parsing 38-41
binary operator

defining 63-66
reference link 68
working 67, 68

bugpoint
URL 262
using 259-261

C
calling convention

defining 210
C Code

converting, to LLVM IR 126
C frontend Clang

using 19-22
Clang frontend 78

Clang/LLVM
cross-compiling 5-9

Clang Static Analyzer
using 257, 258

C++ language
parsing, URL 36

code
generating, for loops 58-63

code emission phase 200, 201
common subexpression

eliminating, from machine code 174-184
Context free grammar (CFG) 9
control flow graph (CFG) 145
cross-compiler 5
C source code

converting, to LLVM assembly 7-9

D
dead code elimination pass

writing 98-102
decision making paradigms

handling 52-57
if/then/else 52-57

Directed Acyclic Graph (DAG)
about 125, 208
instruction, selecting from 163-169

DragonEgg
URL 25
using 24, 25

E
emscripten

references 256, 257
enumeration (enum) 30

272

exception format, LLVM
URL 246

exception handling, LLVM 242-246
expressions

reassociating 112-114

F
frame lowering

implementing 212-215

G
garbage collection

URLs 255
garbage collector

writing, with LLVM 249-255
GNU Compiler Collection (GCC) 2
GO frontend

using 23
graphs, in debug mode

reference link 135
GraphViz

used, for visualizing LLVM IR CFG 129-135

H
hexdump tool 10

I
if else statement, Clang

reference link 57
if/then/else construct 52
inlining transformation pass

writing 102-106
instruction

printing 215-218
scheduling 128
scheduling, in SelectionDAG 170-172
selecting 219-221
selecting, from DAG 163-169

instruction encoding
adding 222, 223

instruction selector
writing 145-151

instruction set
defining 137, 138, 211

Intermediate Representation (IR)
about 2
converting, to LLVM bitcode 9-11
vectorizing 114-120

IR code
generating, for expressions 45, 46
generating, for function 46-48

IR code generation methods
defining, for AST class 43, 44

IR functions
__cxa_begin_catch 246
__cxa_end_catch 246
__cxa_throw 246

IR optimization
about 127
support, adding 49, 50

J
JavaScript

LLVM IR, connecting to 256
JIT support

adding 73-75

L
Left Hand Side (LHS) 28
lexer

about 29
for C++ language, URL 32
implementing 29-31
running, on toy language 42, 43

live interval
about 184
analyzing 184-190

live variable 184
LLDB commands

URL 267
llgo compiler

URL 23
lli tool command 19
LLVM

exception handling 242-246
garbage collector, writing with 249-255

LLVM alias analysis
reference link 93

LLVM assembly
C source code, converting to 7-9

273

LLVM bitcode, converting back to 13
URL 5

LLVM bitcode
converting, back to LLVM assembly 13
converting, to target machine

assembly 11-13
executing 18, 19
IR, converting to 9-11
linking 17, 18

LLVM bitstream file format
URL 11

llvm-dis command 14
LLVM IR

C Code, converting to 126
combining 108-110
converting, to JavaScript 256
converting, to SelectionDAG 127
transforming 14-17
URL 9

LLVM IR CFG
visualizing, GraphViz used 129-135

LLVM IR form 77
LLVM IR instruction 126
LLVM pass

reference link 81
writing 79-81

LLVM PassManager 4
LLVM utility passes

using 262-267
loop deletion 110
Loop-Invariant Code Motion (LICM) 110
loops

code, generating for 59-63
optimizing 110-112
reference link 63
transforming 110-112

loop vectorization 114

M
MachineBasicBlock class

implementing 142-144
machine code

about 173
common subexpression, eliminating

 from 174-184

machine code descriptor
adding 138, 141

machine DAG
target-independent DAG, converting to 127

MachineFunction class
implementing 144, 145

MachineInstrBuilder class
implementing 142

mapping of virtual registers, on physical
registers

Direct Mapping 195
Indirect Mapping 195

memory optimization
pass, writing for 106-108

memory optimization passes
reference link 108

modular design
about 2
optimizations, running 2-5

multiple instructions
lowering to 226, 227

N
native assembler 5
new pass

pass, using into 83-85

O
optimization

levels 78, 79
optimization passes 121-124
opt tool

about 2, 3, 77
pass, running with 82
reference link 79

P
parser

about 35
implementing 35, 36
running, on toy language 42, 43

pass
registering, with pass manager 85-87
running, with opt tool 82

274

using, into new pass 83-85
writing, for memory optimization 106-108

Pass class
reference link 83

pass manager
pass, registering with 85-87
reference link 87

PHI node 58
prologue-epilogue code

inserting 196-200

R
register allocation 128
registers

allocating 190-195
defining 208, 209

registers sets
defining 208, 209

Right Hand Side (RHS) 28

S
sample backend 208
sanitizers

URLs 249
using 247, 248

SelectionDAG
instruction, scheduling in 170-172
legalizing 151-158
LLVM IR, converting to 127
optimizing 158, 163
phases 126

Selection DAG legalization 127
Selection DAG node 127
sibling call optimization

about 205
working 206

simple expression
parsing 36-38

single static assignment (SSA) 58
static analyzer and checkers

URL 258

Static Single Assignment (SSA) 2, 44, 77
subtarget

supporting 224, 225
Superword-Level Parallelism (SLP) 114

T
TableGen

used, for describing target 136, 137
tablegen function 208
tail call optimization

about 202
working 202-204

target
describing, TableGen used 136, 137
registering 228-239

target-independent DAG
converting, to machine DAG 127

target machine assembly
LLVM bitcode, converting to 11-13

toy language
defining 28, 29
lexer, running on 42, 43
parser, running on 43

transformation passes
reference link 124

U
unary operator

defining 68-72
reference link 73
working 72, 73

Utility passes
URL 269
using 267, 269

V
Valgrind 247
vectorization 114

Thank you for buying
LLVM Cookbook

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective MySQL
Management, in April 2004, and subsequently continued to specialize in publishing highly focused
books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting and
customizing today's systems, applications, and frameworks. Our solution-based books give you the
knowledge and power to customize the software and technologies you're using to get the job done.
Packt books are more specific and less general than the IT books you have seen in the past. Our
unique business model allows us to bring you more focused information, giving you more of what
you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality, cutting-edge
books for communities of developers, administrators, and newbies alike. For more information,
please visit our website at www.packtpub.com.

About Packt Open Source
In 2010, Packt launched two new brands, Packt Open Source and Packt Enterprise, in order to
continue its focus on specialization. This book is part of the Packt open source brand, home
to books published on software built around open source licenses, and offering information to
anybody from advanced developers to budding web designers. The Open Source brand also runs
Packt's open source Royalty Scheme, by which Packt gives a royalty to each open source project
about whose software a book is sold.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Getting Started with LLVM
Core Libraries
ISBN: 978-1-78216-692-4 Paperback: 314 pages

Get to grips with LLVM essentials and use the core
libraries to build advanced tools

1. Learn how to configure, build, and use LLVM and
Clang based tools.

2. Explore the depths of the LLVM front-end, IR, code
generator, and libraries, and learn how a modern
compiler is implemented in a practical way.

3. Customize your project to benefit from Just in Time
compilation (JIT), static analysis and source-to-
source transformations.

iOS Game Programming
Cookbook
ISBN: 978-1-78439-825-5 Paperback: 300 pages

Over 45 interesting game recipes that will help you
create your next enthralling game

1. Learn to create 2D graphics with Sprite Kit, game
physics, AI behaviours, 3D game programming,
and multiplayer gaming.

2. Use native iOS frameworks for OpenGL to
create 3D textures, allowing you to explore 3D
animations and game programming.

3. Explore powerful iOS game features through
detailed step-by-step recipes.

Please check www.PacktPub.com for information on our titles

Real-time Analytics with
Storm and Cassandra
ISBN: 978-1-78439-549-0 Paperback: 220 pages

Solve real-time analytics problems effectively using
Storm and Cassandra

1. Create your own data processing topology and
implement it in various real-time scenarios using
Storm and Cassandra.

2. Build highly available and linearly scalable
applications using Storm and Cassandra that will
process voluminous data at lightning speed.

3. A pragmatic and example-oriented guide to
implement various applications built with Storm
and Cassandra.

AngularJS Web Application
Development Blueprints
ISBN: 978-1-78328-561-7 Paperback: 300 pages

A practical guide to developing powerful web
applications with AngularJS

1. Get to grips with AngularJS and the development
of single-page web applications.

2. Develop rapid prototypes with ease using
Bootstraps Grid system.

3. Complete and in depth tutorials covering many
applications.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: LLVM Design and Use
	Introduction
	Understanding modular design
	Cross-compiling Clang/LLVM
	 Converting a C source code to LLVM assembly
	Converting IR to LLVM bitcode
	Converting LLVM bitcode to target machine assembly
	Converting LLVM bitcode back to LLVM assembly
	Transforming LLVM IR
	Linking LLVM bitcode
	Executing LLVM bitcode
	Using the C frontend clang
	Using the GO frontend
	Using DragonEgg

	Chapter 2: Steps in Writing
a Frontend
	Introduction
	Defining a TOY language
	Implementing a lexer
	Defining Abstract Syntax Tree
	Implementing a parser
	Parsing simple expressions
	Parsing binary expressions
	Invoking a driver for parsing
	Running lexer and parser on our TOY language
	Defining IR code generation methods for each AST class
	Generating IR code for expressions
	Generating IR code for functions
	Adding IR optimization support

	Chapter 3: Extending the Frontend and Adding JIT Support
	Introduction
	Handling decision making paradigms – if/then/else constructs
	Generating code for loops
	Handling user-defined operators – binary operators
	Handling user-defined operators – unary operators
	Adding JIT support

	Chapter 4: Preparing Optimizations
	Introduction
	Various levels of optimization
	Writing your own LLVM pass
	Running your own pass with the opt tool
	Using another pass in a new pass
	Registering a pass with pass manager
	Writing an analysis pass
	Writing an alias analysis pass
	Using other analysis passes

	Chapter 5: Implementing Optimizations
	Introduction
	Writing a dead code elimination pass
	Writing an inlining transformation pass
	Writing a pass for memory optimization
	Combining LLVM IR
	Transforming and optimizing loops
	Reassociating expressions
	Vectorizing IR
	Other optimization passes

	Chapter 6: Target-Independent Code Generator
	Introduction
	The life of an LLVM IR instruction
	Visualizing LLVM IR CFG using GraphViz
	Describing targets using TableGen
	Defining an instruction set
	Adding a machine code descriptor
	Implementing the MachineInstrBuilder class
	Implementing the MachineBasicBlock class
	Implementing the MachineFunction class
	Writing an instruction selector
	Legalizing SelectionDAG
	Optimizing SelectionDAG
	Selecting instruction from the DAG
	Scheduling instructions in SelectionDAG

	Chapter 7: Optimizing the
Machine Code
	Introduction
	Eliminating common subexpression from machine code
	Analyzing live intervals
	Allocating registers
	Inserting the prologue-epilogue code
	Code emission
	Tail call optimization
	Sibling call optimisation

	Chapter 8: Writing an LLVM Backend
	Introduction
	Defining registers and registers sets
	Defining the calling convention
	Defining the instruction set
	Implementing frame lowering
	Printing an instruction
	Selecting an instruction
	Adding instruction encoding
	Supporting a subtarget
	Lowering to multiple instructions
	Registering a target

	Chapter 9: Using LLVM for Various Useful Projects
	Introduction
	Exception handling in LLVM
	Using sanitizers
	Writing the garbage collector with LLVM
	Converting LLVM IR to JavaScript
	Using the Clang Static Analyzer
	Using bugpoint
	Using LLDB
	Using LLVM utility passes

	Index

