

How	to	Be	a	Programmer
Programming	Basics
Mohan	Palleti
Copyright	©	2012	Author	Name
All	rights	reserved.

ISBN-10:	1490915753	ISBN-13:	978-1490915753	FOREWORD

The	goal	of	this	book	is	to	be	a	resource	for	instructors	educating	students	or	individuals
that	want	to	learn	computer	programming.	Computer	programming	is	a	fun	and	rewarding
skill	that	teaches	critical	and	logical	thinking.	Programming	can	be	taught	to	any	person
with	basic	arithmetic	and	logical	skills.	With	the	basic	programming	skills	learned	from
this	book,	students	will	be	able	to	advance	to	a	higher	level	of	programming	on	their	own.
.
CONTENTS

Acknowledgments	i
1	Introduction	1
2	Basic	Housekeeping	rules	Pg	4	a.	Understanding	Data	Types	b.	Addition
c.	Subtraction
d.	Multiplication
e.	Division
3	MS	Excel	Pg	17	a.	Exercise
b.	Arithmetic	in	computers
c.	Simple	tools	in	MS	Excel
4	Programming	using	MS	Excel	Pg	34	a.	Initializing
b.	Creating	your	first	GUI
How	to	Be	a	Programmer-Programming	Basics

5	Logical	Programming	Pg	60	a.	Do	loop
b.	If	then	statement

6	Manipulating	data	using	Pg	67
VBA(Visual	Basic	for	Applications)
7	More	reading	Pg	92
v

ACKNOWLEDGMENTS

I	dedicate	this	book	to	my	endearing	wife,	Rajani	and	family	for	their	constant	support.
And	also!	Can’t	forget	my	dog,	Bud.
.
i

1	INTRODUCTION

Are	you	among	one	of	those	who	do	not	know	the	ABC’s	of	programming,	and	yet	at	one
point	in	your	life,	you	felt	a	great	desire	to	learn	software	programming,	but	did	not	know
where	to	begin?

Do	not	get	disheartened!	You	are	not	alone!	Most	people	think	you	need	to	get	a	degree	in

Computer	science	engineering	to	be	a	programmer,	and	that	programming	requires	an
extensive	mathematics	background.

The	truth,	however,	is	very	different.	Any	type	of	formal	education	would	be	helpful,	but
as	a	newbie,	you	do	not	have	to	know	computer	programming	or	advanced	mathematics.
You	can	learn	the	basics	from	this	book	and	then	migrate	to	other	programming	languages
by	whichever	avenue	you	choose.

John	Holt	is	a	friend	of	mine	who	I	met	on	the	subway	in	
Mohan	Palleti

New	York	City	many	years	ago	when	I	used	to	live	there.	The	morning	we	met,	I	was	in
the	subway	going	to	work	carrying	a	heavy	programming	language	manual	under	my
arms.

This	is	the	hallmark	of	a	programmer.	He/she	doesn’t	read	best	sellers	or	magazines	in
his/her	free	time.	Instead	a	programmer	reads	programming	language	books	during	his/her
free	time.	His	mind	is	always	in	a	loop.	He	can	never	leave	his	script	behind	at	the	office;
always	thinking	through	endless	mazes;	how	can	I	make	the	application	work?	Am	I
missing	something?

I	am	warning	you	this	is	how	you	might	end	up	in	life.	But	most	of	all	I	am	warning	you
to	keep	an	eye	on	these	people.	They	could	bump	into	you	if	you	are	not	watching.

Coming	back	to	John,	“h	e	was	looking	at	me	and	my	book	and	was	hoping	to	catch	my
attention	to	start	a	conversation.	He	finally	managed	to	get	my	attention	when	he	said
“man,	that	is	a	big	fatbook	you	got	there”	he	said.	I	smiled	and	said,	“yes	I	use	it	to	do	my
arm-presses.”	We	shared	a	laugh.

John	continued	to	say,	“You	know,	if	I	could	do	something	like	that	in	my	office,	it	would
make	me	a	hero	at	my	work	place.	As	a	matter	of	fact,	there	is	this	guy	in	my	office	who
knows	so	much	about	these	computer	things	that	everyone	knows	him	at	work.	He	is	cool
and	handsome	too.”

That	made	me	think-	if	I	can	write	a	simple	book	that	would	help	everyone	new	to
programming,	be	able	to	program	without	having	to	download	hundreds	of	different
software	plug-ins	and	upgrades,	I	would	be	able	to	help	many	a	John	Holt	become
workplace	heroes	and	come	into	the	mainstream	of	programming.

What	do	you	need	to	learn	this	course?	A	desktop	or	a	laptop	computer,	a	copy	of
Microsoft	Excel,	one	good	finger	to	poke	at	the	keyboard,	and	time	on	your	hands!

Do	you	need	to	know	advanced	mathematics?	No	you	do	not!	You	just	need	the	basics!
The	most	important	skill	necessary	to	be	a	programmer	is	to	understand	logic.	If	you	know
that,	then	you	are	good	to	go!
2	BASIC	HOUSEKEEPING	RULES

Understanding	Data	Types

Integer	numbers
Any	number	that	is	a	whole	number	(means	a	number	without	a	decimal	part	to	it)	is
called	an	integer.	For	example	9,23,	54,	328	etc..	These	are	all	integers.

Real	or	floating	point	numbers

Any	number	that	has	a	decimal	part	to	it	is	called	a	‘Real’	or	‘floating	point’	number.	For
example:	2.34,	42.389,	197823.34578,	etc.	are	all	real	or	floating	point	numbers.

Variables
A	variable	is	a	string	of	characters	you	choose	to	store	a	value	(a	numerical	number	or
characters).

Let	us	say	you	name	a	variable	called	‘myFirstNumber	,’	you	can	then	assign	a	number	to
it,	for	example	300.7567.	Let	us	say	you	create	a	second	variable	called
‘mySecondNumber’	and	you	assign	the	value	200	to	it.

We	now	want	to	add	the	two	variables	and	store	the	result	to	anothervariable	called	‘my
Result’	in	the	next	step.

Addition:
How	does	the	programmer	write	this	in	code?	Here	are	4	lines	of	code	that	should	do	it.

1.	myFirstNumber	=	300.7567
2.	mySecondNumber	=	200
3.	myResult	=	myFirstNumber	+	mySecondNumber
4.	Print	myResult

Happening	at	the	computer	level?

1.	The	program	looks	at	the	first	line.	Then	looks	at	the	left	of	the	‘=’	sign	and	creates	a
blackbox	with	the	label	‘myFirstNumber’.	Then	it	looks	at	the	right	of	the	‘=’	sign;	picks
the	numerical	value	of	300.767;	stores	it	inside	the	box	with	the	label	‘myFirstNumber’.	In
technical	terms	we	say	that	a	value	of	300.767	is	assigned	to	the	variable	on	the	left	side.
In	our	case	we	named	it	as	‘myFirstNumber’

2.	The	program	now	looks	at	the	second	line	and	similarly	creates	a	variable
‘mySecondNumber’	and	assigns	a	value	of	200	to	it.

3.	The	program	now	reads	the	third	line	of	code	and	creates	a	variable	called	‘myResult’
adds	the	values	stored	in	the	variables	‘myFirstNumber’	and	‘mySecondNumber’	and
stores	the	result	in	the	variable	‘myResult’

4.	Line	3	of	code	prints	the	value	of	‘myResult’	which	is	500.767
That	was	easy,wasn’t	it?

Before	you	create	a	variable,	you	should	define	its	properties.	How	large	are	your
numbers	in	the	data	set?	Accordingly	we	will	allocate	memory	size	for	the	variables.

Numbers	with	decimal	fractional	parts	are	called	Floating	points	and	should	be	stored	as
either	Single	or	Double.

The	Single	data	type	requires	4	bytes	of	memory	and	can	store	negative	values	between
-3.402823	x	1038	and	1.401298	x	10-45	and	positive	values	between	1.401298	x	10-45
and	3.402823	x	1038.

The	Double	data	type	requires	8	bytes	of	memory	and	can	store	negative	values	between
-1.79769313486232	x	10308	and	-4.94065645841247	x	10-324	and	positive	values
between	4.94065645841247	x	10-324	and	
1.79769313486232	x	10308.

In	our	example	we	have	2	numbers.	The	highest	number	is	300.767,	which	is	a	real
number	and	can	be	stored	as	type	‘Single’.	The	second	number	is	200.	We	can	either	save
it	as	a	Byte	or	as	an	integer.

As	for	the	variable	’myresult,’	it	is	up	to	us	to	decide	how	the	results	are	going	to	be
stored.	If	you	only	want	the	integer	part	and	get	rid	of	the	decimal	fractions,	then	create
the	variable	‘myresult,	’	as	an	Integer.	If	you	want	the	result	to	store	the	complete	number
with	the	decimals,	then	you	should	store	the	variable	as	‘Single.’	Now	we	will	rewrite	the
program	with	some	very	slight	changes.

1.	Dim	myFirstNumber	as	single
2.	Dim	mySecondNumber	as	int
3.	Dim	myResult	as	int
4.	myFirstNumber	=	300.7567
5.	mySecondNumber	=	200
6.	myResult	=	myFirstNumber	+	mySecondNumber
7.	Print	myResult

The	word	Dim	before	a	variable	name	indicates	that	you	are	declaring	the	dimension	type
of	the	variable.

Line	1	indicates	that	you	have	created	a	variable	called	‘myFirstNumber’	and	you	have
declared	it	as	type	’Single.’

Remember	the	Single	data	type	requires	4	bytes	of	memory	and	can	store	negative	values
between	-3.402823	x	1038	and	-1.401298	x	10-45	and	positive	values	between	1.401298	x
10-45	and	3.402823	x	1038.

For	now	we	will	store	the	value	300.7567	in	this	variable	(as	per	code	in	line	4)
The	second	line	of	code	states	that	you	have	created	a	variable	called	‘mySecondNumber’
as	int.

‘	int’	is	short	for	integer	and	that	is	how	the	VBA	compiler	understands	it.	Integer	Data
Type	can	hold	values	between	
-2147483648	through	2147483647.	A	Byte	can	store	values	between	0	and	255.

Now	you	can	store	values	in	the	range	-32,768	and	32,767	in	this	variable	.	We	will	store
the	value	200	in	it	(as	per	code	in	line	5)

Because	myResult	has	dimension	type	‘int,’	the	result	will	print	only	the	integer	value.	In
our	case	‘500’
Question:If	myResult	was	declared	as	type	‘Single’	then	what	would	have	been	my
result?
Answer:	500.7567
Subtraction

The	symbol	for	Subtraction	is	‘	-’.	This	is	the	same	as	the	symbol	we	learned	in	school.
Look	at	the	Example	code	below:

1.	Dim	myFirstNumber	as	single
2.	Dim	mySecondNumber	as	int
3.	Dim	myResult	as	int

4.	myFirstNumber	=	300
5.	mySecondNumber	=	200
6.	myResult	=	myFirstNumber	-	mySecondNumber
7.	Print	myResult

Question:	What	is	the	value	stored	in	myResult?	Answer:	100
Multiplication:

The	symbol	for	multiplication	in	programming	is	‘*’.	Instead	of	the	multiplication	symbol
‘X’	that	we	learned	in	school,	we	should	use	‘*’	between	the	two	operands.
1.	Dim	myFirstNumber	as	single
2.	Dim	mySecondNumber	as	int
3.	Dim	myResult	as	int
4.	myFirstNumber	=	300
5.	mySecondNumber	=	200
6.	myResult	=	myFirstNumber	*	mySecondNumber	7.	Print	myResult

Question:	What	is	the	value	stored	in	myResult?
Answer:	60000
Division:

The	symbol	for	division	is	‘	/’.	Instead	of	the	division	symbol	‘÷’	that	we	learnedin	school,
we	should	use	‘/’	between	the	two	operands	or	variables.

The	‘/’	is	called	the	operator	and	the	numbers	on	either	side	of	it	are	called	the	operands.
In	our	code	example	below,	we	do	not	use	the	numbers	(300	and	20)	directly	for	the
division.	Instead	we	will	store	them	in	two	different	variables	(myFirstNumber	and
mySecondNumber).

1.	Dim	myFirstNumber	as	single
2.	Dim	mySecondNumber	as	int
3.	Dim	myResult	as	int
4.	myFirstNumber	=	300
5.	mySecondNumber	=	20
6.	myResult	=	myFirstNumber	/	mySecondNumber	7.	Print	myResult

Question:	What	is	the	value	stored	in	myResult?	Answer:	15
So	far	we	have	learned	how	to	play	with	numbers,	to	store	and	manipulate	them.
What	if	we	wanted	to	store	some	texts	in	the	variables	instead	of	numbers?

For	example	we	want	to	design	a	Graphical	User	Interface	(GUI),	where	a	user	enters	his
first	name	and	last	name	in	two	different	text	boxes.	You	want	to	grab	them	and	construct
a	personalized	greeting.	That	is	easy!

First	let	us	learn	how	to	store	texts	in	VBA.	A	text	is	stored	in	a	variable	as	a	‘string.’

1.	Dim	Fname,	Lname,	myGreeting	as	string
2.Fname	=	‘John’
3.Lname	=	‘Holt’
4.	myGreeting=	“	Hello	Friendly	Neighbor	”	&	Fname	&	“	“	&	Lname	
Question:	What	is	stored	in	the	variable	‘myGreeting?’

Answer:	Hello	Friendly	Neighbor	John	Holt
I	went	ahead	and	wrote	the	code.	Don’t	panic	-	I	am	going	to	explain	every	line.

The	first	line	created	three	variables	Fname,	Lname	and	myGreeting	all	followed	by‘	,‘
(we	can	choose	any	name	for	our	variables).	They	are	all	of	string	type.	A	string	type
variable	can	store	about	65535	or	so	characters.	Most	people	never	use	it	to	store	more
than	100	characters.

The	second	line	of	code	put	a	string	of	characters	that	read	‘John’	in	the	variable	Fname.	
Line	3	assigns	the	character	string‘Holt’	to	the	variable	Lname
Line	4	takes	a	bunch	ofstring’s	and	joins	them	using	an	‘&’	operator.

Let	us	see	what	strings	we	are	joining.	Some	of	the	strings	in	line	4	have	to	be	retrieved
from	the	variables	where	they	are	stored,	while	others	like	“Hello	Friendly	Neighbor”
and	“	”	are	not	stored	in	any	variables.

As	a	result	myGreeting	now	stores	the	joined	strings“Hello	Friendly	Neighbor	John
Holt”

Concatenate
Joining	multiple	strings	into	one	string.

For	example	“Mr.”	&	“	John”	&	“	Holt”	when	joined	together	become“Mr.	John	Holt.”
Notice	that	I	had	deliberately	provided	a	single	space	before	and	after	John	in	the	quotes
to	make	it	readable.	If	the	space	was	not	provided	it	would	have	read	“MrJohnHolt.”

String	manipulation

There	are	several	functions	available	in	VBA	to	manipulate	strings.	We	will	pick	a	few	of
them	and	describe	the	formats	of	how	they	are	to	be	used	and	then	we	will	use	them	in	an
example.

Mid	function
(Carves	out	a	new	subset	of	string	from	a	bigger	string)	Usage:	MID(text,	start_position,
number_of_characters)

1.	Dim	Aword,	NewWord	as	string
2.Aword	=	“The	night	wolf	is	on	the	prowl”
3.	NewWord	=	Mid	(Aword,11,4)

Question:	What	does	the	variable	NewWord	contain?	Answer:	‘wolf’
In	line	1we	created	two	variables	‘Aword’	and	‘NewWord’	as	type	strings.

In	line	2	we	stored	a	line	of	character	strings,	“The	night	wolf	is	on	the	prowl”	in	the
variable	‘Aword’	Aword	now	has	30	characters	stored	in	it.	Character	#1	is	‘T’	Character
#2	is	‘h’	and	so	on.

In	line3	a	new	set	of	string	is	carved	out	from	the	contents	stored	in	the	variable	‘Aword’
The	new	string	reads	4	characters	starting	from	the	11th	character	or	position	as	shown
above	in	highlights.	A	blank	space	is	also	counted	as	a	character.

The	four	charactershere	represent	the	word	‘wolf’.

LEN	Function

(Counts	the	total	number	of	characters	in	a	string)	Usage:	LEN	(Text)

4.	Dim	vlength	as	int
5.	vlength	=	Len	(Aword)
Question:	What	does	wlength	contain?	Answer:	30

6.	The	function	picks	up	the	string	from	the	variable	inside	the	parenthesis;	calculates	the
length	of	the	entire	string;	transfers	the	value	to	the	variable	on	the	left	side	of	the	‘=’	sign.
In	our	case	Aword	has	the	string	“The	night	wolf	is	on	the	prowl”	stored	or	assigned	to	it.
The	entire	length	of	this	string	is	30	(including	the	spaces	between	the	quotes).

Right	Function
(Carves	out	the	last	few	characters	of	a	given	string	the	length	of	which	is	defined	by	the
user)
Last	3	characters
Usage:	RIGHT	(Text,	[number	of	characters])	7.	Dim	word1	as	string
8.	word1	=	Right	(Aword,3)
Question:	What	does	the	variable	word1	contain?	Answer:‘owl’
The	function	picks	up	the	last	3	characters	of	the	string	
“The	night	wolf	is	on	the	prowl”	and	assigns	it	to	the	variable‘word1’.

Left	function
Usage:	Left	(Text,	[number	of	characters])

(Carves	out	the	first	few	characters	of	a	given	string	the	length	of	which	is	defined	by	the
user)
9.	Dim	word2	as	string
10.	Word2	=	left(Aword,9)

Question	:	What	does	the	variable	Word2	contain?	Answer:	‘The	night’

The	function	picks	up	the	first	9	characters	of	the	string	“	The	night	wolf	is	on	the	prowl”
and	assigns	it	to	the	variable	‘word2’.
3	MS	EXCEL

Let	us	do	an	exercise	to	make	my	points	clear.	String	manipulations	using	Excel:

1.	Open	up	an	Excel	page.	You	see	an	empty	table	with	columns	denoted	by	A,	B,	C	….
and	row	numbers	on	the	left	starting	with	1.

2.	Write	the	text	“The	night	wolf	is	on	the	prowl”	in	the	cell	A1	without	the	quotes.	A	cell
is	always	identified	by	its	Column	ID	and	Row	number.	Cell	A1	Means	the	cell	at	Column
A	and	Row	1.

3.	Expand	the	cell	so	that	we	can	see	the	entire	text	.	This	is	done	by	putting	the	cursor
between	the	Header	cells	A	&	B	and	double	clicking	it	as	in	Fig	1.

4.	Click	on	cell	D1	and	enter	this	formula	on	the	function	bar	=	mid(A1,10,5)	as	in	Fig	1.
5.See	how	it	extracts	the	word	‘wolf’	from	the	text	stored	in	the	A1	cell	and	puts	it	into	the

cell	D1	as	in	(Fig	1).	

6.	Click	on	cell	E1	and	enter	this	formula	on	the	function	bar	=	len(A1)
7.	See	how	the	total	length	of	the	string	in	Cell	A1	is	calculated	and	provided	at	cell	E1	as
in	Fig2.

8.	Click	on	cell	F1	and	enter	this	formula	on	the	function	bar	=	Right(A1,3)
9.	Click	on	cell	F1	and	enter	this	formula	on	the	function	bar	=	Right(A1,3)
10.	See	how	it	picked	up	the	last	three	characters	on	the	extreme	right	and	wrote	it	in	Cell
F1	as	in	Fig	3.

11.	Click	on	cell	G1	and	enter	this	formula	on	the	function	bar“	=	Left(A1,9)”
12.	See	how	it	picked	up	the	first	9	characters	from	the	extreme	left	and	wrote	it	in	Cell
G1	as	in	Fig	3a.

Numerical	manipulations	using	Excel:
Problem	1

D’Macy	and	D’JCP	are	two	large	chains	that	sell	the	same	perfume	Este-La-Noir	in	two
different	size	perfume	bottles.	Our	goal	is	to	see	who	has	a	better	price.

D’Macy	sells	the	perfume	in	an	8oz	bot	tle	for	$115	D’JCP	sells	the	same	perfume	in	a
5oz	bottle	for	$70	Create	the	Excel	file	to	fit	the	above	data.

We	need	to	find	the	cost	per	oz	at	each	of	these	chains.

Let	us	create	a	heading	also	called	a	field	name	in	Cell	D1;	we	will	call	it	Cost	per	oz.	See
Fig	3.2

	The	cost	per	oz	at	DMacy’s	can	be	found	by	dividing	the	cost	of	the	bottle	by	its
containing	bottle	size,	which	is	140	divided	by	8.	This	is	stored	in	Cells	C2	and	B2
respectively.

	Click	on	Cell	D2	and	write	the	equation	‘=C2/B2’as	shown	in	Fig	3.2	and	press	enter	on

the	keyboard.	

	Similarly	write	the	equation	(without	the	quotes	of	course)	‘=	c3/b3’	in	cell	D3	and	press
enter	on	the	keyboard.	See	Fig	3.3

	The	other	option	is	to	copy	the	equation	in	Cell	D2	and	paste	in	Cell	D3.	This	can	be	done
by	clicking	the	right	button	on	your	mouse	and	selecting	the	options	to	copy	or	paste.	You
may	also	click	the	bottom	right	corner	of	Cell	D2	and	drag	it	below	to	cell	D3.	The	cell
intelligently	copies	the	equation	but	replaces	with	the	respective	cell	ID’s.	See	Fig	3.4

Question:	By	what	percentage	is	D’JCP	less	expensive	than	D’Macy?

Answer:	20%.	See	Fig	3.5	for	explanation.

Explanation:	Notice	the	formula	
in	cell	E3	‘=(100*(D2-D3))/D2’

	First	find	how	cheap	is	D’JCP?	By	subtracting	the	price	per	oz	at	D’Macy	and	D’JCP
(D2-D3).	The	parenthesis	ensures	that	you	subtract	them	first.

	

D3))
	Now	you	divide	the	result	by	the	cost	at	D’Macy	(D2)	
and	store	the	result	at	cell	E3

Problem	2

Below	are	the	first	week	’s	average	day	temperature	readings	at	Ockracoke	Island	in	North
Carolina	for	the	month	of	May.	We	have	Professor	Duncan	McDonald	visiting	the	Island
from	Scotland.	He	wants	to	know	the	temperature	in	degrees	Centigrade	so	that	he	can
decide	if	he	needs	to	pack	any	warm	clothing.	In	his	country	they	measure	temperature	in
Centigrade.

The	temperature	readings	we	have	for	the	days	May	1-7	(shown	below)	are	in	degrees
Fahrenheit.

62
74
72
68
71
70
82

The	equation	for	conversion	between	Fahrenheit	(F)	and	Centigrade	(C)	is	given	by	C	=
(F-32)	x	(5÷9)
	First	we	copy	the	data	to	an	Excel	spreadsheet		Convert	the	above	formula	for
computing.	The	formula

now	is	C=	(F-32)*(5/9)
	Write	the	above	equation	in	Cell	C3.	
	The	equation	is	tobe	written	as	‘=	(B3-32)	*	(5/9)’

because	Cell	B3	contains	the	Fahrenheit	(F)	temperature	for	the	1st	of	May.	See	Fig	4.1

	Now	copy	the	equation	in	Cell	C3	to	the
rest	of	the	cells	below	(to	Cell	C9)	as	shown	in	Fig	4.2	

	Click	on	the	cells	C3	thru	C9	and	format	to	show	the	results	in	2	decimal	places	by
clicking	the	right	buttonand	selecting	‘Format	Cells’	as	shown	in	Fig	4.3

	Next	select	the	‘Number’	option	and	select	the	decimal	places	to	‘2’	as	shown	in	Fig	4.4
and	click	‘OK’	button.

	The	results	are	now	shown
in	two	decimal	places	(see	Fig	4.5).

4	PROGRAMMING	USING	EXCEL

Initializing

With	the	knowledge	that	you	have	amassed	in	the	previous	chapters,	it	should	be	fairly
easy	for	you	to	follow	the	rest	of	the	chapters	on	how	to	be	a	programmer	without	having
any	programming	software	with	you.

You	have	been	using	MS	Excel	spreadsheets,	so	you	do	have	something	that	we	can	use.

MS	Excel	has	a	limited	version	of	Visual	Basic	called	VBA	that	is	available	but	hiding	in
the	background	for	us	to	use.	We	are	going	to	leverage	that	to	learn	how	to	make	our
GUI’s	and	applications.

There	are	a	lot	of	things	you	can	do	with	Visual	Basic	if	you	have	a	copy	of	the	software
with	you.	You	can	design	your	application	and	then	make	it	into	an	executable	file	and
share	it	around.	On	the	other	hand	with	VBA	you	can	still	do	some	rudimentary
programming,	but	will	not	be	able	to	share	it	as	an	executable	file.	Instead	you	will	send	a
copy	of	your	Excel	file	that	contains	your	program.

Developer	Tool
Open	up	an	Excel	spreadsheet	and	see	if	you	can	spot	the	Developer	tool	on	the	Top-Bar.	
If	you	do	not	see	this	bar	then	we	will	have	to	switch	it	on.		Click	the	Office	Button	on
the	top	left	corner	of

Microsoft	Excel	and	select	Excel	Options	(Fig	5.1).		Under	Popular	tab,	check	the
“Show	developer	tab	in	
the	Ribbon”and	select	the	Developer	check	box	
(Fig	5.2).

1.	Now	you	will	see	the	Developer	Tab	on	the	Top-bar	
as	in	Fig	5.3

2.	Click	on	the	Developer	Tab;	click	on	the	Visual	Basic
Tab	as	in	Fig	5.4

3.	Now	you	get	a	Blank	page	(refer	to	Fig	5.5).

Congratulations!
Now	you	are	ready	to	go	into	a	new	world	of	programming.	Creating	your	First
Graphical	User	Interface	Form	Let	us	take	up	a	problem	and	try	to	code	a	solution!

In	the	earlier	chapter	we	opened	up	a	MS	Excel	spreadsheet	and	converted	a	set	of
numbers	in	Fahrenheit	to	degrees	Centigrade.

In	this	exercise	we	will	create	a	GUI	(Graphical	User	Interface)	where	a	user	can	enter	a
random	two	digit	number	and	convert	it	into	centigrade	as	shown	in	Fig	6.1

a.	When	the	user	initiates	the	application,	an	input	box	should	ask	the	user	to	enter	their
name.
b.	Next	the	application	should	prompt	the	user	to	enter	a	number	(temperature)	in
Fahrenheit.
c.	The	application	should	calculate	the	equivalent	Fahrenheit	value	and	show	it	in	the

second	box;	this	should	repeat	as	many	times	as	the	user	inputs	new	numbers	in	the	first
Box.
d.	If	the	user	clicks	on	the	‘Exit’	button	then	the	application	should	say	thank	you	to	the
user	and	exit	the	program.

1.	Click	on	Tab	‘Insert’	and	select	‘UserForm.’	This	will	insert	a	User-Form	as	shown	in
Fig	6.2

2.	You	can	add	any	of	the	objects	from	the	toolbox	to	the	form	and	change	its	properties	to
change	its	look	and	feel	using	the	Properties	windows	like	Name,	Caption,	Font,	Color
etc.	as	in	Fig	6.3.	At	this	time,	we	will	leave	the	properties	as	it	is.	In	case	the	Toolbox	is
not	visible,	you	may	click	on	View	and	then	select	Toolbox	option.

3.	Click	on	the	TextBox	button	in	the	Excel	Controls	Toolbox	as	in	Fig	6.2	and	click
anywhere	on	the	form	to	place	a	copy	of	the	TextBox	button	on	the	Form.

4.	Let	us	name	it	TxtBox1	in	the	properties	box	by	changing	the	Name	property	to
TxtBox1	as	shown	in	Fig	6.3.	You	could	have	given	any	name	to	it.	For	now	we	named	it
as	TxtBox1.	This	will	be	the	box	where	a	user	will	input	a	2	digit	number.

5.	Similarly	draw	another	Textbox	below	it	and	name	it	TxtBox2	in	the	Name	property.
This	box	should	display	the	calculated	equivalent	Centigrade	value	of	the	user	entered
value	in	TxtBox1.

	Put	3	Label	boxes	on	the	Form	and	change	their	texts	to	read	 ‘Enter	a	Temperature	in
Fahrenheit,’	‘The	Temperature	in	Centigrade	is:’	and	‘Temperature

Converter	’	and	place	it	around	on	the	forms	in	the	right	locations	as	in	Fig	6.4.	Label
boxes	help	describe	functionalities	to	the	user.	By	default	the	first	label	reads	as	LabeI1
You	must	change	the	texts	by	changing	the	text	in	the	Captions	property.

	As	in	Fig	6.4	add	two	command	buttons	on	the	form

and	name	it	cmdStart	and	cmdExit	respectively	by	changing	the	default	names	in	the
Name	Property	tags.	See	Fig	6.5.

	The	button	named	cmdStart	should	read	the	word	Start.	This	can	be	done	by	typing	the
text	Start	in	the	Caption	Property.	Similarly	change	the	second	button	named	cmdExit	to
read	the	text	Exit	on	the	button.

	When	the	application	is	initiated,	the	application	should	ask	the	user	to	enter	his/her	name
and	store	the	name	in	a	variable	for	later	use.

	Every	time	the	user	clicks	on	the	button	cmdStart,	the	application	should	read	the	data
entered	in	txtBox1	and	output	the	converted	result	to	TxtBox2.

	When	user	clicks	on	the	button	cmdExit	we	want	it	to	give	a	message	thanking	the	user
for	using	the	application	and	then	allowing	the	user	to	exit.

Before	continuing,	this	file	should	be	saved	as	a	MacroEnabled	workbook.	It	is	up	to
you	where	you	choose	to	save	this	file	at.

Once	I	save	the	file,	I	would	like	to	see	the	location	where	my	file	is	stored	.	When	we
open	up	Explorer,	we	see	only	the	file	name	but	for	the	program	to	access	it,	we	have	to
know	the	complete	file	name	which	includes	the	folder	location	as	well.

Right	click	on	the	file	name	and	choose	properties	as	in	Fig	7.0,	and	construct	the
complete	file	address.

In	my	case	the	file	name	is	myFirstScript.xlsm	and	it	is	located	at	C:\MyFirstProject.
The	complete	file	name	is	therefore	C:\MyFirstProject\MyFirstScript.xlsm.

Note:	Your	complete	file	name	is	the	File	location	followed	by	a	\	and	then	your	file
name.
Write	down	your	complete	file	name	if	it	is	different

If	you	click	on	the	run	button	as	in	Fig	7.1	the	application	is	initiated	and	the	User-Form	is
ready	to	go	as	in	Fig	7.2.	But	the	application	does	nothing	because	the	controls	are	yet	to
be	programmed.	Click	on	the	X	to	exit	the	program	(Fig	7.2).

Let	us	begin	programming	the	controls	now.

Initialize	the	Form	Double	click	anywhere	on	the	form.	You	will	see	the	code	below:
Private	Sub	UserForm_Initialize()
End	Sub
What	it	means:	It	creates	an	empty	Sub	Procedure	between	the	two	key	words	Private	Sub
and	End	Sub.	
A	Sub	Procedure	is	a	task	that	will	be	activated	every	time	an	event	occurs.
This	Sub	Procedure	belongs	to	the	‘UserForm’,	i.e.	the	form	you	just	created.

When	the	application	is	initialized	the	form	will	be	triggered	(event).	You	choose	when	the
code	needs	to	be	executed.	This	can	be	chosen	by	selecting	any	one	of	the	options	on	the
top	right	of	the	page	(see	Fig	7.3).

Let	us	say,	you	want	to	change	this	to	a	different	event.	You	want	to	fire	a	routine	task
when	user	clicks	on	the	form.	Then	from	the	dropdown	event	selection	list,	you	should
select	Click.	This	will	give	you	a	new	empty	subroutine	called	Sub	UserForm_Click()

and	end	with	End	Sub.

For	now	we	will	continue	with	the	default	sub	procedure.

The	word	Private	at	the	beginning	of	the	Sub	indicates	that	any	variable	you	declare	here
is	visible	only	to	this	sub	procedure.

Click	on	Userform1	under	the	Folder	Forms	in	Project	Explorer	as	shown	in	Fig	7.4	to	go
back	to	your	form.

Test:	Double	click	on	the	first	text	box	called	TxtBox1.	You	will	notice	that	it	will	take
you	to	an	empty	subroutine	for	TxtBox1_Change	()	where	the	default	event	intelligently
picked	by	the	application	is	Change.	This	means,	the	routine	task	you	want	the
application	to	do	when	a	user	inputs	a	new	number,	thus	implying	a	change	event.

I	would	like	the	program	to	pick	the	user	input	number	from	txtbox1	and	feed	it	to	a
temperature	conversion	equation	and	throw	the	result	to	the	second	text	box	called
txtBox2

Begin	Scripting	to	make	it	happen	Initialize	the	form

When	the	application	starts	for	the	first	time,	the	UserForm	gets	initialized.	We	double
click	on	the	form	to	go	to	the	code	page.

You	will	see	an	empty	sub	procedure	called	Private	Sub	UserForm_Click()	that	ends	with
an	End	Sub.

You	got	this	because	you	double	clicked	on	the	form	and	therefore	it	created	a
UserForm_Click	event.	Leave	this	section	alone.

On	the	top	of	the	of	the	form	click	the	dropdown	list	window	and	select	UserForm.	This
dropdown	list	contains	a	list	of	all	the	objects	on	the	form	and	the	form	itself.

On	the	right	hand	top	corner	of	the	code	window	contains	a	dropdown	list	of	all	the	events
that	can	possibly	take	place.	Select	Initialize.

Now	you	get	a	empty	wrapper	code	UserForm_Initialize	()	that	ends	with	an	End	Sub.

Fill	in	the	missing	code	from	below	Code	sample	1

Private	Sub	UserForm_Initialize()
‘Dim	strName	As	String
strname	=	InputBox(Prompt=“You	name	please.”,	_

Title:=“Name	Form	“,	Default:=“Your	Name	here”)	End	Sub
Code	sample	1

1.	This	pops	out	an	InputBox	and	prompts	the	user	to	enter	his/her	name	as	shown	in	Fig
8.1	when	the	program	runs.	Close	this	by	clicking	on	the	X	on	the	top	right	of	the	form.

2.	When	the	user	enters	his/her	name	on	the	form	above	it	is	stored	in	a	variable	called
strname	I	gave	it	variable	type	string.	I	then	realized	that	if	this	variable	is	declared	in
this	private	subroutine	then	other	buttons	outside	will	not	be	able	to	pick	up	the	stored
value	in	this	variable.	In	our	case	we	want	the	application	to	remember	the	user’s	name	in
a	variable	and	hand	it	over	to	the	exit	button	when	clicked.	Then	the	Exit	button	was
supposed	to	say	Thank	you	to	the	user.

3.	On	second	thoughts	I	commented	the	dim	statement	by	adding	a’	to	the	beginning	of	the
statement.	The	statement	looks	green	now.	The	application	process	ignores	all	comments.
I	have	copied	the	statement	to	the	top	of	the	page	in	the	general	section.	Any	variable
declared	here	can	be	called	by	any	sub	routine.

Coding	the	General	section
Add	the	Dim	strName	As	String	at	the	top	of	the	page	in	the	general	section	as	in	Fig
8.1.1

Coding
cmdStart	button
Double	click	on	the	cmdStart	button	to	go	to	the	empty	subroutine.	Write	the	codes	lines
2	thru	6	in	Code	sample	2

Private	Sub	cmdStart_Click()
Dim	fNumber	As	Integer
txtBox2.Text	=	”	“
fNumber	=	Val(TxtBox1.Text)
txtBox2.Text	=	Str(fNumber	-	32)	*	(5	/	9)	TxtBox1.Text	=	”	“
End	Sub

Code	sample	2

1.	First	we	declared	a	variable	fNumber	as	an	integer	using	the	Dim	statement	(Dim
stands	for	Dimension)
2.	A	string	is	any	number	of	characters	between	quotes.	If	you	put	a	blank	space	between
the	quotes	then	your	string	contains	just	an	empty	space.	
3.	We	want	to	clear	txtBox2	by	writing	a	blank	space	in	the	box.	You	can	either	go	to	the
text	properties	and	set	it	manually	by	entering	a	blank	space	as	in	Fig	8.2

Or	set	the	textBox2	text	parameter	automatically	by	code	as	in	line	2	txtBox2.Text	=	”	“

4.	When	a	user	enters	a	temperature	value	in	txtBox1,	the	value	is	stored	as	a	string	value
by	default	in	a	variable	called	TxtBox1.text.

5.	The	Val	function	usage	is	given	by	Val(ByVal	Expression	As	String)
Any	number	previously	stored	as	a	string	in	a	variable	can	be	converted	to	its	real
numerical	value	by	putting	the	variable	in	parenthesis	with	the	Val	function	on	the	left	of
the	parenthesis.	When	a	user	inputs	a	number	via	the	input	box	the	value	is	stored	as	a
word	or	a	string.	You	cannot	do	anything	with	a	number	that	is	still	in	a	word	form.	You
have	to	use	special	functions	like	the	Val	function	to	convert	it	into	a	numerical	value.	To
make	it	simple	if	you	type	2+3=	in	Microsoft	word	it	won’t	give	you	a	value	because	the
numbers	are	read	as	words.	Whereas	if	you	type	2+3=	on	a	calculator	it	gives	you	the
value	5	because	it	takes	the	numbers	that	you	type	and	reads	them	as	a	numerical	value.

6.	fNumber	=	Val(TxtBox1.Text).	In	this	line	of	code	the	user	input	number	stored	as	a
string	by	default	in	the	variable	txtBox1.Text	is	converted	to	a	numerical	integer	value
and	stored	in	the	variable	fNumber.	Remember	that	we	have	declared	fNumber	as

Integer.	It	can	only	store	an	Integer	value.

7.	txtBox2.Text	=	Str((fNumber	-	32)	*	(5	/	9))
In	this	code,	All	operations	within	parenthesis	are	performed	first.	So	the	integer	number
stored	in	the	variable	fNumber	is	subtracted	by	32;	multiplying	the	result	with	the	result
from	dividing	5	by	9;	the	result	which	is	obviously	another	integer	number	is	now
converted	to	a	string	value	using	the	Str	function;	This	string	value	now	sets	the	text
parameter	of	txtBox2	and	displays	the	value	in	the	text-box.	Text	boxes	can	only	display
strings.	Therefore	if	you	have	a	numerical	number	which	you	want	to	display	in	a	text	box
you	will	need	to	convert	it	to	a	string	type.

The	Str	function	usage	is	given	by	Str(ByVal	Number	As	Object)

Any	variable	that	has	a	number	integer	or	real	stored	inside	it	can	be	converted	to	a	string
if	you	put	it	within	a	parenthesis	with	the	Str	function	to	the	left	side	of	the	parenthesis.

Confusion	about	a	number	as	a	String	or	Integer?	If	two	numbers	4	&	5	are	stored	in
variables	Var1	and	Var2	as	integers	then	Var1	+	Var2	will	add	4	+	5	and	give	you	a	value	9

If	on	the	other	hand	the	same	two	numbers	4	&	5	are	stored	in	variables	Var1	and	Var2	as
strings	then	both	these	variables	cannot	be	added	or	multiplied	because	it	is	a	text.

Coding	the	cmdExit	button	Double	click	on	the	cmdExit	button	Fill	the	missing	code
from	below

Private	Sub	cmdExit_Click()
MsgBox	strname	&	”	,Thank	you	for	using	my	application!”	End
End	Sub

Code	Sample	3

1.	The	first	line	tells	that	if	a	user	clicks	on	the	cmdExit	button,	then	execute	the	rest	of
the	code.
2.	Line2	uses	the	message-box	function	to	pop	out	a	message.	The	message	will	write	the
value	stored	in	the	variable	strname	and	joins	the	string	Thank	you	for	using	my
application.

For	example	if	the	user	had	signed	in	as	Mr.	Duncan	McDonald	then	at	the	end	of	the
application	the	system	will	flash	a	message	stating	Mr.	Duncan	McDonald,	Thank	you
for	using	my	application!

3.	Line	3	signifies	that	the	application	needs	to	be	terminated.

Now	run	the	program	and	test	the	results!
In	case	you	have	a	problem,	look	to	see	that	the	following	codes	are	correctly	entered	Dim
strname	As	String

Private	Sub	cmdExit_Click()
MsgBox	strname	&	“,	Thank	you	for	using	my	application!”	End
End	Sub

Private	Sub	cmdStart_Click()
Dim	fNumber	As	Integer
txtBox2.Text	=	”	“

fNumber	=	Val(TxtBox1.Text)
txtBox2.Text	=	Str(fNumber	-	32)	*	(5	/	9)	TxtBox1.Text	=	”	“
End	Sub

Private	Sub	UserForm_Initialize()
‘Dim	strName	As	String
strname	=	InputBox(Prompt:=”Your	name	please.”,	_	Title:=“Name	Form	“,	Default:=“Your
Name	here”)	End	Sub

Code	Sample	4
Now	is	a	good	time	to	run	this	application	to	see	what	it	looks	like	in	practice.
Congratulations!
You	have	made	your	first	GUI.

But	you	are	not	finished	yet.	I	have	to	teach	a	few	more	things	that	will	strengthen	your
arsenal	and	make	you	a	real	programmer.	But	from	here	I	am	going	to	be	briefer	in	my
descriptions.	Straight	to	the	point,	if	I	may!
5	LOGICAL	PROGRAMMING

Do	loop
As	the	name	suggest,	it	is	a	loop	and	you	are	asking	the	application	to	repeat	doing
something	till	something	happens.	We	will	deal	with	this	when	we	do	the	next	project.

If	Statement

In	Code	Sample	5	given	below	you	can	insert	a	Conditional	if	to	allow	a	user	to	enter
data	no	more	than	5	times.	After	the	5th	time	a	message	should	pop	up	to	say	Thank	you
for	using	my	application!	You	may	restart	again!	See	Code	sample	5.	This	was	done
using	an‘If’	to	continue	repeat	something	until	a	specific	criterion	is	met.	Click	anywhere
on	the	form	and	delete	all	the	previous	code.	Copy	the	code	(lines	1-27)	from	below	and
paste	it	where	the	previous	code	was	located
1	Dim	strname	As	String
2	Dim	recordNo	As	Integer

3	Private	Sub	cmdExit_Click()
4	MsgBox	strname	&	“,	Thank	you	for	using	my	application!”
5	End
6	End	Sub
7	Private	Sub	cmdStart_Click()
8	Dim	fNumber	As	Integer
9	recordNo	=	recordNo	+	1
10	txtBox2.Text	=	”	“
11	fNumber	=	Val(TxtBox1.Text)
12	If	recordNo	<	5	Then
13	txtBox2.Text	=	Str(fNumber	-	32)	*	(5	/	9)	14	TxtBox1.Text	=	”	“
15	Else
16	MsgBox	_
17	“Thank	you	for	using	my	application”
18	MsgBox	”	You	may	restart	again!”

19	End	If
20	End	Sub
21	Private	Sub	UserForm_Initialize()
22	recordNo	=	0
23	strname	=	InputBox(Prompt:=“Enter	Your	name.”	_	24	,	Title:=“Name	Form	“,
Default:=“Your	Name	here”)

25	End	Sub	
Code	Sample	5
Codes	explained

1.	Understand	that	line	numbers	have	been	added	for	readability.	
2.	If	you	copy	the	above	code	to	use	in	Visual	Basic,	make	sure	you	do	not	add	the	line
numbers.
3.	In	Line	number	2,	we	have	introduced	a	Variable	recordNo	of	type	Integer	
4.	In	line	12,	we	used	an	If	Statement	that	ends	its	utility	in	line	19.	
5.	Let	us	Google	the	usage	of	an	If	statement	(the	correct	format	for	using	an	If
statement).

If	condition	[Then]
[statements]
[ElseIf	elseifcondition	[Then]
[elseifstatements]]
[Else
[elsestatements]]
End	If
-or
If	condition	Then	[statements]	[Else	[elsestatements]]

Source:	http://msdn.microsoft.com/en
us/library/752y8abs(v=vs.80).aspx

6.	From	the	list	of	options	available,	we	choose	the	If	Then	condition	followed	by	an	Else
and	an	End	If	statement.

Follow	the	code:

When	the	user	starts	the	application,	by	default	whatever	you	have	scripted	in	Sub
UserForm_Initialize()	and	the	dimensions	of	variable	types	in	the	General	section	gets
initialized.	In	our	case,	two	string	variables	declared	in	the	general	section	strname	of
type	String	and	recordNo	of	type	integer	are	created.	At	this	time	the	variables	do	not
contain	any	values.

7.	UserForm	initialize()	subroutine	stores	a	value	‘0’	in	the	variable	recordNo.	And	the
variable	strname	stores	whatever	name	the	user	types	when	prompted	to	enter	his	name	in
line	23	and	24.	Note	Line	23	and	24	are	actually	one	single	line	of	code.	The	continuation
symbol‘_’	at	the	end	of	line	23	informs	the	computer	program	that	the	next	line	is	a
continuation	*	of	this	line.

8.	Next	the	form	gets	initialized	and	prompts	the	user	to	enter	a	value	in	the	first	box	and
waits	till	the	user	clicks	the	start	button.

 	Line	23	and	24	can	be	written	in	one	single	line	without	the	continuation	symbol	if
space	permit	as
strname	=	InputBox(Prompt:=“Enter	Your	name.”	,	Title:=“Name	Form	“,	Default:=“Your	Name	here”)

9.	When	the	start	button	is	clicked,	it	kick-starts	the	cmdStart_Click()	sub	procedure
(lines	7	–	20)

10.	Note	that	line	11	has	a	variable	recordNo	which	was	‘0’	when	we	first	started	the
program.	After	every	click	event,	recordNo	will	be	incremented	by	1	.

11.	Line	10	blanks	the	text	in	txtbox2	with	a	space	(the	character	between	the	quote	is	a
single	space).	This	action	clears	the	text	box.

12.	txtBox2.Text	refers	to	the	text	stored	in	the	text	box	called	txtBox2.	By	default
anything	typed	here	is	stored	as	a	text	(also	called	a	string	in	computer	language).

13.	In	line	11	the	text	stored	in	txtbox1	is	converted	to	a	numerical	value	using	the	Val
function.	Note	that	if	the	user	had	entered	‘fifty’	you	will	get	an	error.	You	have	to	type
thenumber	‘50’	in	its	numeric	form	instead.

14.	Line	12	checks	for	a	condition.	If	the	variable	recordNo	has	a	value	less	the	5,	than	do
the	next	statement,	i.e.	convert	the	value	in	fNumber	to	a	Centigrade	temperature	value
and	display	it	in	the	second	text	box	(line	13);	next	blank	out	the	first	textbox	by	a	space
so	that	the	user	can	enter	a	new	value	(line	14).

15.	Each	time	the	user	enters	a	new	number,	variable	recordNo	gets	incremented	by	one
number	and	then	as	long	as	it	satisfies	the	if	condition,	it	calculates	the	equivalent
Centigrade	values	using	the	equation	on	the	right	side	of	the	“=”	sign	and	assigns	it	to	the
variable	on	the	left	side.	This	refers	to	the	text	to	be	displayed	in	txtBox2	on	the	form.

16.	The	user	is	able	to	enter	new	values	four	times	(less	than	5).	On	the	5th	time	variable
recordNo	becomes	5	and	therefore	no	longer	satisfies	the	condition	in	line	12.	Now	the
program	jumps	to	line	15	which	is	the	else	statement.

17.	Lines	16-17	pops	out	a	message	box	stating	Thank	you	for	using	my	application!
After	you	click	okay	you	get	another	message	box	from	line	18	that	says	You	may	restart
again!

18.	This	whole	sequence	will	repeat	again	unless	you	click	on	the	Exit	button	to	kick	start
the	codes	in	lines	3-6.

19.	Line	4	pops	out	a	one	line	message	stating	the	user’s	name	(the	value	stored	in	the
variable	strname)	followed	by	a	‘,’	and	the	message	Thank	you	for	using	my
application!
Congratulations	you	have	learned	how	to	use	a	logical	‘If’	statement!

6	MANIPULATING	DATA	USING	VBA	(VISUAL	BASIC	FOR	APPLICATION)
Let	us	do	a	final	project	that	will	give	you	more	insight	on	the	benefits	of	programming.

Project:
Bob	Fenton	works	at	the	front	desk	of	a	Chiropractor.	The	office	has	a	text	file	in	their
desktop	computer	that	contains	information	about	the	company’s	clients.

When	a	customer	calls	in	,	b	ased	on	a	customer’s	caller	ID,	Bob	wants	to	be	able	to	know
who	is	calling	and	find	their	corresponding	File	ID	using	a	GUI.

The	best	way	to	do	that	would	be	to	take	the	telephone	number	from	the	caller	ID	and
search	the	database	in	their	desktop	for	a	match.	If	a	match	is	found,	he	could	pull	up	the
rest	of	the	client	information	like	the	File	ID,	First	Name	and	Last	Name	and	show	it	in
the	form,	as	shown	in	Fig	9.0.

Can	he	do	this?	Yes	he	can!	And	let	us	help	him	achieve	it!	Let	us	take	a	small	chunk	of
his	database	file	and	see	what	it	looks	like	(the	numbers	have	been	changed	for	security)
His	database	seems	to	have	a	fixed	format.	There	are	4	items	per	line	and	each	item	is
separated	by	a	comma.	The	values	are	
File-ID,	First	Name,	Last	Name	and	Telephone	Number	215,	Mary,	Barber,	(919)	382-
4156	216,	Kimberly,	Davis,	(910)	563-7181	217,	Jessica,	Lowry,	(919)	342-7181	218,
Kristi,	Goodwin,	(919)	782-3146	219,	Tavia,	Bullock,	(917)	781-9132	220,	Tanneisha,
Bryant,	(212)	879-2135	221,	Nakai,	Abercrombie,	(910)	782-8193	222,	Chesare,	Boeger,
(919)	782-6172	223,	Michelle,	Bullock,	(616)	987-2137	224,	Beatrice,	Davis,	(732)	231-
8193	225,	Cerese,	Barlow,	(917)	781-5162	226,	Candace,	Jackson,	(919)	675-2118	227,
Geneva,	Tally,	(919)	235-8193	228,	Paige,	Cooper,	(245)	781-9117	229,	Staci,	Newsome,
(919)	765-2136	230,	Maria,	Black,	(910)	326-8179

Let	us	copy	&	paste	this	in	notepad	and	save	it	as	a	text	file*	to	my	C	drive	at:
C:\MyFirstProject\ClientData	and	call	it	cClient.txt	as	in	Fig	9.1	(create	a	similar
location	on	your	hard	disk).
	You	may	download	a	copy	of	all	the	codes	and	data	from	www.	how-tobeaprogrammer.com

When	you	right-click	on	the	file	name	in	Explorer	and	select	properties,	it	gives	you	the
location	of	the	file	in	your	computer	as	in	Fig	9.2.

Your	complete	file	name	is	the	location	address	followed	by	the	file	name.	Location
address	is	also	called	the	Path

cClient.txt	is	your	customer
database	file	in	a	text	format.

Let	us	create	a	form	with	a	text	box	where	you	can	type	in	a	client’s	telephone	number;
open	up	the	customer	database	file;	search	line	by	line	for	a	matching	telephone	number
and	display	the	corresponding	First	name,	Last	name	and	Client	file	number.	Also	store
the	same	information	in	the	excel	file	to	list	out	the	people	who	called.	If	a	match	is	not

found	just	give	a	message	saying	New	Customer!

1.	If	Excel	is	open,	close	it.
2.	Open	a	new	Excel	file;	save	the	file	as
C:\MyFirstProject	\	clientListReader.xlsm	as	in	fig	9.3a.	
a.	Click	on	the	Microsoft	Office	Button	and	select	the	file	Save	as	option.	
b.	Browse	to	your	C:\MyFirstProject	folder.	c.	Type	your	file	name	clientListReader	in
the	File	name	box.
d.	In	the	Save	as	Type	box	choose	Excel	Macro	Enabled	Workbook	(*.xlsm)	from	the
drop	down	list.

3.	Click	on	the	Developer	tab;	click	on	Visual	Basic;	now	you	are	in	Microsoft	Visual
Basic	page.	As	in	Fig	9.3b

4.	Click	Insert/UserForm	as	in	Fig	9.4a.	This	will	insert	a	new	form.	Resize	it	by	selecting
the	handlebars	on	the	edge	of	the	form	and	dragging	it	to	an	appropriate	size	as	in	Fig	9.4b

5.	We	need	4	Textboxes.	We	will	call	them	txtPhoneN,	txtFileN,	txtFname,	txtLname;
we	also	need	4	label	boxes	with	appropriate	texts	to	describe	the	Textboxes.	Let	us	name
them	lblPhoneN,	lblFileID,	lblFname,	lblLastN,	(note:	Text	box,	Label	names,
command	button	names	etc.	do	not	have	spaces	in	their	names)	with	Captions	set	to	Caller
ID,	File	Number,	First	Name	and	Last	Name	respectively;	we	need	2	Command	Buttons.
One	to	start	the	search	and	match	processes	and	the	other	to	exit	the	program.	Let	us	call
them	cmdStart	and	cmdExit.	Now	set	their	captions	to	Start	and	Exit	respectively.	See
Fig	9.5

6.	Double	click	on	the	form	to	create	an	empty	subroutine	for	the	Userform_Click()	;	go
back	to	the	form	by	clicking	on	Userform1	under	Forms	in	Project	Explorer.	See	Fig	9.6

7.	Similarly	when	you	double	click	in	each	of	the	text	boxes	or	command	buttons,	empty
subroutines	with	their	respective	event	actions	are	created.	8.	But	we	will	delete	them	all
and	copy	and	paste	Code	Sample	6.
9.	Select	all	the	code	as	in	Fig	9.7	and	delete	it.

10.	Copy	and	paste	Code	sample	6	from	below	on	the	form	Code	window.
1	Dim	callerID	As	String
2	Dim	myLastRow	As	Long
3	Dim	recno	As	Integer
4	Dim	myLastColumn	As	Long

5

6	Private	Sub	cmdExit_Click()
7	End
8	End	Sub
9

10	Private	Sub	cmdStart_Click()
11	callerID	=	“(”	&	Mid(txtPhoneN.Text,	1,	3)	&	“)	”	_
12	&	Mid(txtPhoneN.Text,	4,	3)	&	“-”	&	Mid(txtPhoneN.Text,	7,	4)

13

14	Call	TextMatchSearch
15	End	Sub
16

17	Sub	TextMatchSearch()
18	Dim	FileID,	FirstName,	LastName,	_
19	PhoneNumber	As	String
20	Dim	matchFound,	lastrow	As	Integer
21	‘Variable	matchFound	is	created	to	track	the	status
22	‘	of	a	telephone	number.search
23	‘If	a	match	is	found	we	will	set	matchFound	to	1
24	‘else	we	set	it	to	‘0’
25	matchFound	=	0
26	‘	Open	the	database	file	as	an	input	to	read	it.
27	‘	Call	this	connection	as	‘#1’

28	Open	“C:\MyFirstProject\ClientData\cclient.txt”	_	29	For	Input	As	#1

30

31	‘Read	the	above	file	line	by	line	till	the	end	of	the	‘file	is
32	reached
33	While	Not	EOF(1)
34	‘	Each	line	has	a	fixed	format	of	4	items	all
35	‘separated	by	a	comma.
36	‘	Feed	the	4	items	to	the	4	variables.
37	Input	#1,	FileID,	FirstName,	LastName,	_
38	PhoneNumber
39	‘	If	a	match	has	been	found	enter	this	section
40	‘Lines	41	to	62
41	If	callerID	=	PhoneNumber	Then
42	matchFound	=	1
43	txtFileN.Text	=	FileID
44	txtFname.Text	=	FirstName
45	txtLname.Text	=	LastName
46	‘Call	the	“myLastCell”	function.
47	‘This	function	tells	the	record	number
48	‘of	the	last	filled	cell	in	the	current	Excel	file
49	‘after	which	you	can	add	new	customer	data.
50	Call	myLastCell
51	‘The	application	returns	back	with	current	values	52	‘for	”	myLastRow”

53

54	‘	Variable	recno	contains	the	next	empty	row
55	‘number	where	you	can	add	new	data.
56	recno	=	myLastRow	+	1
57	Cells(recno,	1).Value	=	recno
58	Cells(recno,	2).Value	=	FileID
59	Cells(recno,	3).Value	=	FirstName
60	Cells(recno,	4).Value	=	LastName
61	txtPhoneN.Text	=	””
62	End	If
63	‘Go	back	to	line#	40	and	repeat	the	above	steps
64	‘till	you	complete	reading	the	end	of	the	file
65	Wend
66	‘	If	a	match	has	not	been	found	in	our	records	then	
67	‘do	this
68	If	matchFound	=	0	Then
69	‘	clear	out	the	four	textboxes
70	txtFileN.Text	=	””
71	txtFname.Text	=	””

72	txtLname.Text	=	””
73	txtPhoneN.Text	=	””
74	MsgBox	“New	Customer!”
75	‘Call	the	“myLastCell”	function	to	find	the	last
76	‘	filled	row	number	in	your	Excel	file
77

78	Call	myLastCell
79	‘recno	consists	the	value	of	the	next	empty	row
80	‘in	the	Excel	file.
81	‘	write	the	string	“New”	“customer”	in	cells	C	&	D	
82	‘respectively.
83	recno	=	myLastRow	+	1
84	Cells(recno,	1).Value	=	recno
85	Cells(recno,	2).Value	=	””
86	Cells(recno,	3).Value	=	“New”
87	Cells(recno,	4).Value	=	“Customer”
88	End	If
89	Close	(1)
90	End	Sub
91	Sub	myLastCell()
92	‘	This	is	a	function	that	is	tasked	to	open	the	current	Excel
93	‘sheet	and	find	out	the	last	filled	row	and	column.
94	‘When	you	call	this	function,	it	will	update	‘myLastRow’	and	
95	‘myLastColumn	with	the	last	filled	row	and	column	numbers	
96	‘of	‘your	excel	‘sheet.
97
98

99	Range(“A1”).Select
100	On	Error	Resume	Next
101	myLastRow	=	Cells.Find(“*”,	Range(“A1”)	_
102	,	xlFormulas,	,	xlByRows,	xlPrevious)	_
103	.Row
104	myLastColumn	=	Cells.Find(“*”,	Range(“A1”)	_	105	,	xlFormulas,	,	xlByColumns,
xlPrevious).Column	106	Cells(myLastRow,	myLastColumn).Select
107	End	Sub

108	Code	Sample	6109
110	If	you	manually	type	in	the	code,	remember	that	111	all	statements	that	begin	with	’	and	is	green	in	112	color	are
comment	statements	therefore	need	not	113	be	copied.114
Codes	Explained
1.	When	you	later	run	the	application,	our	form	would	look	like	Fig	10.1	below.

The	user	types	in	a	telephone	number	and	clicks	on	the	start	button.	The	application	fires
the	Private	Sub	cmdStart_Click()	sub	procedure	(lines	10-15.)

2.	The	user	entered	number	(e.g.:	9193427181)	is	taken	and	reconstructed	to	a	telephone
number	taken	and	reconstructed	to	a	telephone	number	7181)	and	stores	it	in	variable
callerID.	The	10	digit	numbers	are	split	into	three	parts;	parenthesis	are	inserted	to	hold
the	first	three	digits;	a	space	followed	by	the	next	three	digits;	and	a	hyphen	followed	by
the	next	4	digits.

3.	Next	it	sees	the	word	call	TextmatchSearch.	(see	line	14).	It	looks	in	the	entire
program	to	see	if	there	is	a	function	or	procedure	by	that	name.	It	does	find	the	function
between	lines	17	and	90.

4.	A	Function/Procedure	is	like	a	helper	whose	job	is	to	do	a	routine	job.	For	example
you	are	in	an	icecream	shop.	Each	time	the	front	desk	takes	a	specific	order.	He	calls	out
to	the	helper	who	fetches	the	made-to-order	ice-cream	and	disappears	till	he	is	called
again.

5.	The	function	TextmatchSearch	is	designed	to	pick	a	re-constructed	telephone	number
and	compare	it	with	each	record	in	the	database	to	see	if	it	can	find	a	match	in	the	database
reading	it	line	by	line	till	the	end	of	the	file.	If	it	finds	a	matching	number	then	it	will	pick
the	rest	of	the	client	information	from	the	database	and	populate	the	GUI,	else	it	will	give
a	message	saying	New	Customer.	In	both	cases	it	will	write	some	client	information	on
the	excel	file.

6.	At	lines	18	and	20	it	has	created	a	bunch	of	string	and	integer	variables.

Remember	that	our	database	format	has	4	items	per	line	and	each	item	is	separated	by	a
comma.	The	values	are	
File-ID,	First	Name,	Last	Name	and	Telephone	Number.	We	are	going	to	read	the	database
line	by	line	to	compare	with	the	values	stored	in	the	variable	callerID	so	we	will	need	4
temporary	variables.	Let	us	call	them	FileID	,	FirstName,	LastName	and	PhoneNumber
to	hold	them	as	we	read	each	line.	matchFound	is	a	variable	that	will	have	a	value	1	if	a
match	is	found	and	a	0	if	no	match	is	found,	you	will	see	as	we	go	further	why	we	need	to
keep	changing	this	value.

7.	At	line	28	the	program	opens	our	database	text	file
C:\MyFirstProject\ClientData\cclient.txt	as	an	input	for	reading	and	calls	this	connection
Channel	#1.

8.	Remember	you	need	to	change	this	line	of	code	to	your	complete	file	name	if	it	is
different
9.	Lines	33	to	65	creates	a	loop.	A	while	statement	always	ends	with	a	wend	statement.

10.	Line	33	says	that	while	the	file	opened	and	named	as	channel	#1	has	not	reached	the
End	of	the	File	(EOF)	condition	repeat	some	steps.

Line	37	states	that	in	the	connection	named	#1,	all	the	4	items	that	are	read	sequentially	in
each	line	is	temporarily	stored	in	the	4	variables,	FileID,	FirstName,	LastName	and
PhoneNumber.	These	variables	remain	unchanged	till	the	program	finishes	one	cycle	at
line	65	(the	wend	statement);	then	it	reads	the	next	line	of	our	data	file;	picks	up	the	next
set	of	4	values;	stores	them	in	the	above	variables	and	so	on…

Before	the	wend	statement	is	reached,	however	there	are	a	set	of	tasks	to	complete.	Let	us
look	at	them	sequentially…

11.	Remember	that	in	line	11	we	have	constructed	the	telephone	number	of	the	client	and
stored	them	in	variable	callerID

12.	In	line	41	we	are	checking	to	see	if	the	values	stored	in	the	variable	callerID	matches
with	the	values	in	variable	PhoneNumber	read	from	the	first	line	of	our	data	file.	The	‘If’
statement	starts	at	line	41	and	ends	at	line	62.
If	a	match	is	not	found	then	the	program	jumps	to	the	Wend	statement	at	line	65	and	loops
back	to	the	beginning	of	the	while	statement	at	line	33	and	reads	the	next	line	of	data.	This
process	repeats	till	all	the	lines	in	our	input	file	is	read	and	the	End	of	File	(EOF)	has
reached.

If	a	match	is	found	then	we	set	variable	matchFound	to	1.	This	is	only	for	our	reference.
We	could	have	given	it	any	value!	This	is	in	Line	42

Pick	up	the	values	in	variables	FileID,	FirstName,	LastName	and	display	them	on	the	GUI
form	in	textboxes	txtFileN,	txtFname	and	txtLname	respectively	(lines	43-45).

13.	At	line	50	the	program	sees	call	myLastCell	and	It	recognizes	that	there	is	a	function
by	that	name.
14.	Then	the	program	jumps	to	the	procedure	at	line	91	and	runs	the	procedure	till	it	ends
at	line	108;	this	procedure	finds	the	last	filled	row	in	sheet1	of	the	Excel	file.

15.	This	is	required	because	the	program	needs	to	know	where	the	program	should	write
the	next	line	of	information	in	the	Excel	file.

16.	Notice	that	two	variables	myLastRow	and	myLastColumn	were	set	to	contain	the	last
filled	row	and	the	last	filled	Column	numbers.	These	variables	were	declared	in	the
general	section	at	the	top	of	the	program	page.	This	variable	is	therefore	available	to	any
sub	procedures	or	functions	that	want	to	read	the	current	values	in	these	variables.	These
variables	are	called	Public	variables.

17.	Had	these	variables	been	declared	in	the	sub	procedure	myLastCell	then	it	would	have
been	called	a	Private	variable,	meaning	that	these	variables	will	not	be	accessible	to	other

sub	procedures.

18.	After	the	Procedure	is	completed,	the	program	automatically	returns	back	to	the	point
where	it	was	called	from.	In	our	case	it	goes	to	the	next	executable	line	after	the	call
myLastCell	statement	after	line	78

19.	At	line	83,	variable	recno	stores	the	value	stored	in	myLastRow	incremented	by	1;
This	is	the	next	empty	row	in	our	Excel	file	to	write	the	new	line	of	customer	information.

In	that	row	we	write	the	values	in	recno,	FileID,	FirstName,	and	LastName	in	Cells
1,2,3	and	4	respectively	(Lines	43-45)

20.	At	line	61	we	overwrite	the	textbox	containing	the	phone	number	with	nothing.	In
other	words	we	cleared	the	slate	prompting	the	user	to	type	in	a	new	phone	number.

21.	If	a	match	was	found	then	the	‘matchFound’	value	is	set	to	1	therefore	lines	68-88	is
not	executed.	The	‘If	’	statement	began	at	line	68	and	ended	at	line	88	with	the	End	if
statement.

22.	Line	89	closes	the	file	called	Channel	#1	
23.	Line	90	ends	the	sub	procedure.	
24.	The	entire	process	will	repeat	after	you	enter	a	new	number	and	click	on	the	Start
command	button.

25.	If	a	telephone	number	match	was	not	found	in	our	database	then	the	value
matchFound	is	still	0,	then	the	program	satisfies	the	condition	in	line	68	and	therefore
executes	statements	lines	68-88

It	then	blanks	out	all	our	textboxes	(Lines	70-73)	by	putting	nothing	between	the	quotes
“”	.
The	program	pops	out	a	message	box	stating	“New	Customer!”	in	line	74.

At	line	78	the	script	finds	the	last	filled	row	of	the	excel	file.
At	line	83	we	increment	the	value	in	myLastRow	by	1	and	store	it	in	variable	recno.	This
is	the	row	number	which	is	the	next	empty	row	in	our	excel	file.	Lines	84-87	updates	the
columns	1,2,3	and	4	with	the	value	in	recno,	a	nothing	(“”),	the	word	New	and	Customer
respectively.

At	line	89	the	script	closes	Channel	#1	which	was	opened	to	read	the	input	file	in	Line	28
If	a	file	that	has	been	opened	for	reading	has	not	been	closed	by	the	end	of	the	program,
then	that	file	is	said	to	be	locked	and	is	not	available	to	any	other	program	or	people	to
read	it.	This	is	done	by	the	Close	statement	followed	by	the	channel	number	within
parenthesis.	In	our	case	we	opened	the	file	as	#1	in	line	28,	so	we	had	to	close	the	file
when	we	completed	reading	it	by	the	Close	(1)	statement.

26.	If	you	click	on	the	Exit	button	on	the	form,	the	program	executes	the	procedure	called
Sub	cmdExit_Click()	in	lines	6-8.	The	program	sees	the	End	statement	in	line	7
signifying	the	end	of	the	application.	This	terminates	the	application.

Try	entering	some	existing	numbers	in	the	database	to	see	if	it	picks	up	the	respective
customer	information

For	e.g.	try	9177819132	or	2128792135.	The	application	should	pick	up	Tavia	Bullock	or

Tanneisha	Bryant’s	information.	Next	try	entering	your	telephone	number.	It	should	say
New	Customer!

Congratulations	once	again!	You	are	now	a	new	member	in	the	programming	world.

This	is	not	a	complete	book	that	teaches	you	visual	basic	in	its	entirety.	It	introduces	you
to	programming	basics	and	helps	you	dispel	the	fear	of	programming,	preparing	you	for
further	self	help	reading.
7	MORE	READING

If	you	have	followed	this	book	completely	then	you	will	have	sufficient	knowledge	and
background	to	pick-up	from	where	this	book	ends.

There	are	several	free	online	resources	and	books	in	the	market	which	you	can	use	for
advanced	reading	.	Most	important	of	all,	you	will	be	able	to	do	basic	manipulations	of
data	residing	either	in	an	external	text	file	or	in	an	Excel	file.

You	have	already	finished	taking	your	first	step	in	the	field	of	software	programming.
Suggestions	for	improving	this	book	is	welcome,	please	email	me	at
author.ProgrammingBasics@gmail.com	Thank	you	for	being	with	me	in	this	journey!
ABOUT	THE	AUTHOR
Mohan	Palleti	has	a	Post	Graduate	Degree	in	Computer	Science	Engineering	and	a	Graduate	Degree	in	Electronics	and
Communication	Engineering.	He	has	extensive	experience	in	the	field	of	Geospatial	Science	and	Research.

Mohan	is	a	coveted	motivational	speaker	for	international	conferences	concerning	the	advancement	of	youth	in	the
Informational	Technology	marketplace.

His	style	is	that	of	a	motivator.	He	encourages	our	youth	to	examine	the	world	of	programming	to	assist	them	in
launching	both	educational	as	well	as	career	goals.	He	also	prepares	instructors	to	be	able	to	start	an	introductory	course
in	software	programming.

He	is	gifted	in	making	complicated	subjects	like	Math,	Science	and	Software	Programming	look	easy	and	he	is	able	to
draw	the	audience	into	these	fields	and	dispel	their	fears.

Mohan	Palletti	is	available	for	speaking	engagements,	schedule	permitting.

	Copyright
	FOREWORD
	ACKNOWLEDGMENTS
	1 INTRODUCTION
	2 BASIC HOUSEKEEPING RULES
	3 MS EXCEL
	4 PROGRAMMING USING EXCEL
	5 LOGICAL PROGRAMMING
	6 MANIPULATING DATA USING VBA (VISUAL BASIC FOR APPLICATION)
	7 MORE READING
	ABOUT THE AUTHOR

