
Good Habits for
Great Coding

Improving Programming Skills
with Examples in Python
—
Michael Stueben

www.allitebooks.com

http://www.allitebooks.org

Good Habits for Great
Coding

Improving Programming Skills
with Examples in Python

Michael Stueben

www.allitebooks.com

http://www.allitebooks.org

Good Habits for Great Coding

ISBN-13 (pbk): 978-1-4842-3458-7 		 ISBN-13 (electronic): 978-1-4842-3459-4
https://doi.org/10.1007/978-1-4842-3459-4

Library of Congress Control Number: 2018934317

Copyright © 2018 by Michael Stueben

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or
part of the material is concerned, specifically the rights of translation, reprinting, reuse of
illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way,
and transmission or information storage and retrieval, electronic adaptation, computer software,
or by similar or dissimilar methodology now known or hereafter developed.

Trademarked names, logos, and images may appear in this book. Rather than use a trademark
symbol with every occurrence of a trademarked name, logo, or image we use the names, logos,
and images only in an editorial fashion and to the benefit of the trademark owner, with no
intention of infringement of the trademark.

The use in this publication of trade names, trademarks, service marks, and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

While the advice and information in this book are believed to be true and accurate at the date of
publication, neither the authors nor the editors nor the publisher can accept any legal
responsibility for any errors or omissions that may be made. The publisher makes no warranty,
express or implied, with respect to the material contained herein.

Managing Director, Apress Media LLC: Welmoed Spahr
Acquisitions Editor: Todd Green
Development Editor: James Markham
Coordinating Editor: Jill Balzano

Cover designed by eStudioCalamar

Cover image designed by Freepik (www.freepik.com)

Distributed to the book trade worldwide by Springer Science+Business Media New York,
233 Spring Street, 6th Floor, New York, NY 10013. Phone 1-800-SPRINGER, fax (201) 348-4505,
e-mail orders-ny@springer-sbm.com, or visit www.springeronline.com. Apress Media, LLC is a
California LLC and the sole member (owner) is Springer Science + Business Media Finance Inc
(SSBM Finance Inc). SSBM Finance Inc is a Delaware corporation.

For information on translations, please e-mail rights@apress.com, or visit http://www.apress.
com/rights-permissions.

Apress titles may be purchased in bulk for academic, corporate, or promotional use. eBook
versions and licenses are also available for most titles. For more information, reference our Print
and eBook Bulk Sales web page at http://www.apress.com/bulk-sales.

Any source code or other supplementary material referenced by the author in this book is available
to readers on GitHub via the book’s product page, located at www.apress.com/9781484234587.
For more detailed information, please visit http://www.apress.com/source-code.

Printed on acid-free paper

Michael Stueben
Falls Church, Virginia, USA

www.allitebooks.com

https://doi.org/10.1007/978-1-4842-3459-4
http://www.allitebooks.org

This book is dedicated to the isolated C.S. teacher
and student.

www.allitebooks.com

http://www.allitebooks.org

v

About the Author���vii

About the Technical Reviewer��ix

Acknowledgments��xi

Introduction��xiii

Table of Contents

Part I: Not Learned in School��1

Chapter 1: �A Coding Fantasy���3

Advice for Developing Programmers (pain management)�������������������������������������6

Chapter 2: �Coding Tricks���15

Chapter 3: �Style���27

Chapter 4: �More Coding Tricks��35

Part II: Coding Advice���53

Chapter 5: �Function Design���55

Chapter 6: �Self-Documenting Code��67

Chapter 7: �Step-Wise Refinement��91

Chapter 8: �Comments��95

Chapter 9: �Stop Coding��105

Chapter 10: �Testing��111

www.allitebooks.com

http://www.allitebooks.org

vi

Chapter 11: �Defensive Programming���123

Chapter 12: �Refactoring���127

Chapter 13: �Write the Tests First (Sometimes)����������������������������������145

Chapter 14: �Expert Advice���153

Part III: Perspective��179

Chapter 15: �A Lesson in Design���181

How to Approach a Major Computer Science Project��193

Chapter 16: �Beware of OOP���197

Chapter 17: �The Evolution of a Function��203

Chapter 18: �Do Not Snub Inefficient Algorithms��������������������������������209

Part IV: Walk the Walk��219

Chapter 19: �Problems Worth Solving���221

Chapter 20: �Problem Solving���241

The Evolution of a Programmer���252

Chapter 21: �Dynamic Programming��253

The Most Profound Academic Joke Ever Told��253

A Memoir by Richard Hamming���254

The Wayfarer��255

�Index��307

Table of ContentsTable of Contents

www.allitebooks.com

http://www.allitebooks.org

vii

About the Author

Michael Stueben started teaching Fortran at Fairfax High School in

Virginia in 1977. Eventually the high school computer science curriculum

changed from Fortran to BASIC, Pascal, C, C++, Java, and finally to Python.

In the last five years, Stueben taught artificial intelligence at Thomas

Jefferson High School for Science and Technology in Alexandria, VA.

Along the way, he wrote a regular puzzle column for Discover Magazine,

published articles in Mathematics Teacher and Mathematics Magazine,

published a book on teaching high school mathematics: Twenty Years

Before the Blackboard (Mathematical Association of America, 1998).

In 2006 he received a Distinguished High School Mathematics

Teaching / Edyth May Sliffe Award from the Mathematical Association

of America.

www.allitebooks.com

http://www.allitebooks.org

ix

About the Technical Reviewer

Michael Thomas has worked in software

development for over 20 years as an individual

contributor, team lead, program manager, and

Vice President of Engineering. Michael has

over 10 years experience working with mobile

devices. His current focus is in the medical

sector using mobile devices to accelerate

information transfer between patients and

health care providers.  

www.allitebooks.com

http://www.allitebooks.org

xi

Acknowledgments

Sincere thanks go to the following people: programmer Stephen Drodge

for reviewing an earlier draft of this book and for making many useful

suggestions; programmer Michael Ames for reviewing an earlier draft of

this book; Dr. Stuart Dreyfus (University of California, Berkeley) for his

personal thoughts on dynamic programming; Dr. Dana Richards (George

Mason University) for mathematical advice on algorithms and puzzles;

Dr. James Stanlaw of Illinois State University for discussions of signs,

symbols, and semiotics; neurobiologist Paul Cammer (the best teacher I

ever met) for years of discussions of effective teaching; hundreds of bright

students who accepted my sarcasm and returned it right back to me; my

wonderful wife of 40 years, Diane Sandford, for editing several versions

of this book; Apress technical reviewer Michael Thomas; Apress editors

James Markham, Jill Balzano, and Todd Green for their help in bringing

this book into print; and the web site Stack Overflow. Finally, I must thank

my two colleagues and master teachers: Dr. Peter Gabor (who reviewed

this manuscript and made many suggestions) and Dr. Shane Torbert (who

created the A.I. course I taught), both for five years of intense discussions

about algorithms. Any mistakes in this book are due to the author, not

those who gave me good advice.

www.allitebooks.com

http://www.allitebooks.org

xiii

Introduction

For the player who wants to get ahead, he has only

one piece of advice: get to work. Not with generalities

taken from books, but in the struggle with concrete

[chess] positions.—Willy Hendriks, Move First, Think

Later (New in Chess, 2012), page 20.

This book is about improving coding skills and learning how to write

readable code. It is written both for teachers and developing programmers.

But I must immediately tell you that we learn how to write computer

code only by trying to code many challenging problems, reflecting on the

experience, and remembering the lessons we learned. Hence, you will find

here more than twenty quizzes and problems. Chess coach Willy Hendriks

is right: There is no other way.

www.allitebooks.com

http://www.allitebooks.org

xiv

I have spent more than 38 years both writing computer code and

thinking about how to write code effectively.1 I can’t remember the last

time I had a serious bug that I couldn’t defeat—eventually. So what is the

difference between myself and a novice? Part of it is that I notice details

well, and I can stay focused for long periods of time. I can’t pass that on

to anyone, but I can show you some tricks gleaned from reading experts,

talking to fellow programmers, and from analyzing my own mistakes.

These tricks are guaranteed to reduce frustrations and failures. 2

1�I left Northern Illinois University in 1974 as a math major with just two C.S.
courses behind me (COBOL and Fortran). Both classes employed optical card
readers used with the University’s IBM 360/370 computer. It often took 15
minutes of standing in line for the card-punch machine in order to change a
single comma. At times there were no seats left in the computer room. I got tired
of coding at midnight. The experience was so unpleasant that I vowed never to
take another C.S. course. What got me interested in programming—actually the
first time—was a TI programmable calculator with magnetic strips for memory.
My first program would factor large integers, which I used for recreational
mathematics. I started teaching Fortran at Fairfax High School (Virginia) in 1977.
The school had three terminals (remotely connected) for the entire class. I tried
to give each student about 10 minutes a week on a keyboard. Surprisingly, even
under those conditions, some students became addicted to coding. Occasionally
I found a student hiding under the tables after school so that he could program
for hours after I locked up the room.

Later the H.S. curriculum changed from Fortran to BASIC, Pascal, C, C++, Java,
and finally to Python. I discovered that I could not work in two languages at the
same time. After six months with Python, I had forgotten my five years of Java.
Python is definitely the most fun, with C/C++ second. COBOL was the worst, with
Java the second worst. In fact, I think the Java language has discouraged many high
school teachers from teaching C.S.
2�“Essentially every approach works for a small project. Worse, it seems that
essentially every approach—however ill-conceived and however cruel to the
individuals involved—also works for a large project, provided you are willing to
throw indecent amounts of time and money at the problem.”—Bjarne Stroustrup,
The C++ Programming Language, 2nd Ed., (Addison Wesley, 1991), page 385.

IntroductionIntroduction

xv

The computer code in this book is written in the Python language,

which is almost executable pseudo-code. It comes with batteries, as they

say. For example, consider the Python min function:

print(min(3,5)) # output: 3

Most languages have a min function. But look what Python’s min can do:

paths = [[7,1,1], [5,1,3]]

print(min(paths)) # output: [5,1,3], because 5 < 7

print(min(paths, key = sum)) # output: [7,1,1], �because 7+1+1 <

5+1+3

Note to reader:  The code examples appearing in this book
(62 characters per line) were taken from programs with 80
characters per line. Consequently, some of the longer lines were
broken into two (usually indented) lines. This affects their readability
in a few cases, but has kept the type larger and easier to scan.

In Python, you can pass a function as a parameter to another function.

Why would anyone want to do that? Imagine that you wrote several different

functions, each using a different algorithm, to solve the same problem. Then

you wrote a test function to test each algorithm. You could change the name

of each of your functions, one at a time, to the name the test function expects

to call. Or you could just pass the function name as a parameter and not

have to change any code, which is much easier. Below is an example.3

def fn1():

 print('Hello: ', end ='')

 return (1)

3�Alas, if the different algorithms have different function signatures then this
method fails—e.g., the bubble sort, the selection sort, and the insertion sort all
pass just the array. But the recursive quick sort passes the array and the position
of the first and last elements.

IntroductionIntroduction

xvi

def fn2():

 print('Goodbye: ', end ='')

 return(2)

def test(func):

 print('testing', func.__name__, 'Output =', func())

def main():

 print('In program',__file__) # output: In program C:\test.py

 �test(fn1) # output: Hello: �testing fn1

Output = 1

 �test(fn2) # output: Goodbye: �testing fn2

Output = 2

In Python, you can make multiple assignments in one line and can do

a swap in one line.

a, b, c = 1, 2, 3 # multiple assignment

a, b = b, a # swap

A list (array) in Python can simultaneously hold different data types. A

function can return more than one parameter. The last element in a list has

index -1. The second-to-last element has index -2, etc. How convenient is

that?4 The extremely useful associative-array concept exists in Python as a

built-in data structure called a “dictionary.” The quick sort as shown

below can be written in two logical lines. OK, five printed lines, but they

are easy-to-understand lines.

def quickSort(array):

 if len(array) <= 1: return array

 return quickSort([x for x in array[1:] if x < array[0]]) \

 + [array[0]] \

 + quickSort([x for x in array[1:] if x >= array[0]])

4�This attribute can be a problem. I once ran a loop that moved backwards through
a list. When it went past 0, the out-of-range error was not caught, because it just
started at over at the end.

IntroductionIntroduction

xvii

My point is that the language of Python is nearly ideal for developing

algorithms. The main drawback is speed. The language is interpreted, not

compiled. But only with graphics have I encountered a speed problem

with Python.

You may not understand Python. I have looked at books written in

languages that I didn’t understand, and (if the code was not too long or

too complex) I still understood the main ideas for algorithms. So I’m

hoping you can do the same. Let’s find out. Consider a function to raise

a positive integer to a power. For example, power(5, 23) = 5**23 =

11920928955078125. Of course, there is a built-in function (pow) and a

built-in operator (**) in Python to do this for us. But those won’t help us in

the application I have in mind. Can you understand the following code? I

wrote it in two versions.

def power(base, exponent):

 product = 1

 for n in range(exponent):

 product *= base

 return product

def powr(b, exp):

 x = 1

 for n in range(exp):

 x *= b

 return x

If you can understand this code, then you can follow much of the code

in this book. By the way, there are already a few lessons to be learned here.

	 1.	 In my opinion, the second version is easier to

understand than the first version. Short identifiers—with

obvious meaning—for short scope are more readable

than longer identifiers, which are better for function

names, class names, and variables in complex code.

IntroductionIntroduction

xviii

	 2.	 The reason pow would be a poor function

name is because the function would overwrite the

built-in pow function of the same name, for the

entire program. The reason exp is acceptable is

because it overwrites the built-in exp function only

for the short scope of the function. Good names

are sometimes hard to find. Believe it or not, I have

had students name their programs random and one

student named his program print. Then they were

confused when, under Linux, their random and

print functions failed to work.

For almost any application, this four-line power function

would be ideal. But it could be much more efficient. Again, consider

5**23 = 11920928955078125. We don’t need 22 multiplications to do the

arithmetic. Notice that we can break up 5**23 like this:

5 * (5*5) * (5*5*5*5) * (5*5*5*5*5*5*5*5*5*5*5*5*5*5*5*5) = 5**23,

and like this:

5 * 5**2 * 5**4 * 5**16 = 5**23,

where the exponents (1, 2, 4, and 16) add up to 23. (Recall x x xa b a b´ = + .)

Once we calculate a = 5*5, it takes only one more multiplication to

produce b = a*a. Then only one more multiplication to produce c = b*b.

And only one more multiplication to produce d = c*c. Altogether we can

produce 5**23 in only 7 multiplications: (5*a*b*d). The trick is to write the

exponent 23 as a binary number: 23 (base 10) = 11101 (base 2). Then multiply

each digit (in reverse order) by the base (5 here) raised to a power of 2:

1*(5) * 1*(5**2) * 1*(5**4) * 1*(5**16) = 5**23.

IntroductionIntroduction

xix

You might try to write this function now, in your own preferred

language. The hills make us strong, as they say in cycling. But you may be

too busy, and the exercise probably seems both complex and pointless.

Who would want such a function anyway? But in a situation we will see

later, this binary-jumping type of multiplication will significantly speed up

a function. So for the time being I will give you a pass in writing

this algorithm. My eight-line solution follows. Python, of course, has

built-in features to change an integer into a binary string and to reverse the

characters in a string. No wonder people like to code in Python.

def powr(b, exp):

 �binStng = str(bin(exp))[2:] # Change integer exp to a

binary string.

 �revStng = reversed(binStng) # Reverse the digits (alt. =

binStng[::-1]).

 product = 1

 for ch in revStng:

 if ch == '1':

 product *= b

 b *= b

 return product

If you don’t know Python, the first two lines will be a mystery, hence

the comments. If you do know Python, you still may learn something new

and useful in those two lines. The loop should be clear to anyone who has

worked with for loops.

I’ve been programming for nearly four decades, and had written a

variation of this function about a month previously. Nevertheless, it took

me nine runs to get this function working. (I had placed b *= b above

the if statement, and it took me a while to realize the order mattered.)

I mention this to make the point that most programmers, certainly the

author, fail to write correct code in the first few attempts.

IntroductionIntroduction

xx

Before we leave this introduction, I want to give you three quizzes that

will tell you what this book is all about.

QUIZ 1.

If we optimize the one-line BODY of this for-loop, then

what is the MINIMUM number of multiplications necessary?

Do NOT use an exponential operator (**). Do NOT use a built-

in power function. You MUST use the symbol * to indicate

multiplication.

#

 total = 0

 for n in range(1, 3000000):

 total += (2*n*n*n + 3*n*n + 4*n) # <--Improve this line.

 print('total =', total)

#--

The answer is at the end of this chapter, but try to solve it now. Passive

reading will not take you far. One of my colleagues (the amazing Ria

Galanos) was asked the following question in a Google summer interview:

QUIZ 2. Given x, an unsorted list of the first 100 positive integers,

one of the integers is replaced by 0: x[randint(1,100)] = 0. Write the

code—any way you want—to print the missing (replaced) integer. A

solution is in the footnote.5

5�QUIZ 2 ANSWER: print(5050-sum(x)). Where did the 5050 come from? That
is the sum of the first 100 positive integers. We can compute this number in
our heads. 1+100 = 101, 2+99 = 101, 3+98 = 101, … 50+51 = 101 (a trick worth
remembering). Then, 50* 101 = 5050. I later found this problem in Peter Winkler’s
Mathematical Puzzles—A Connoisseur’s Collection (A.K. Peters, 2004), page 102.
P.S. She got the job.

IntroductionIntroduction

xxi

There are three main cultures of coding.6 The people in these cultures

all use computers, yet they rarely interact with each other. Perhaps you can

tell now which one most interests you.

	 1.	 The software developer (industry), who works

with libraries of previously developed code to

produce new software tools, who devises schemes

to manage complexity in software programs, who

determines what features make programming tools

more useful, or more fun (games), etc.

	 2.	 The computer scientist (theory), who develops

and analyzes algorithms, who studies the syntax

and semantics of computer languages, who designs

efficient storage and retrieval strategies, who

determines what can be computed efficiently, etc.

	 3.	 The computational scientist (problem solving in
other fields), who uses the computer as a scientific

tool in modeling and simulations, as a way to

visualize spatial and temporal patterns, as way to

solve equations, as a way to efficiently organize,

search, and find patterns in data, etc.

In this book there are references to all three cultures. Most beginners

focus on just learning a language, learning data structures, and building

coding-specific problem-solving skills. What is missing is learning to write

readable code. In my experience, readability is difficult to teach well in

both high school and college courses. There are reasons for this, which

I will give you later. But I would like you to compare your ability to write

6�Brian Hayes, “Cultures of Code”, American Scientist, Vol. 103, No. 1,
January–February, 2015, pages 10–13. This article is also on the Internet.

IntroductionIntroduction

xxii

readable code with mine. Imagine we are the last two candidates for a

summer coding job. The interviewer gives us the following assignment:

QUIZ 3. If I take a 52-card deck and I shuffle it well, then what is the

probability that at least one card remains in place?7 Solve this problem by

computer simulation8 (here, sampling) in your favorite language. That is,

shuffle 1,000,000 sorted arrays and determine what percentage of them

have at least one element remaining in place. Express this number as a

probability. Be sure to make your code as readable as possible. Bring me

your code tomorrow morning. I’ll have one of our programmers look at

your two programs and tell me whose code he prefers.

Quiz 3 is the most important quiz in this book. If you attempt no other

problem in this book, try to write this short program—and a complete

program is expected, not just a function. My code follows, with notes as

to why I made some design decisions. Before you compare your code to

mine, what can you tell me about the programmer who will judge our

code? My answer is in the footnote.9

How would you answer this interview question: “So, what will you do

this summer if you don’t get this job?” My suggested answer-to-impress is

in the footnote.10

7�This is known as Montmort’s Matching Problem. See Isaac Todhunter, Theory of
Probability (London: Macmillan, 1865), (Chelsea Reprint, 1965), page 91 (online).
Curiously, for a deck of any number of cards greater than 5 the answer is almost
the same.

8�Tech. Note. Wikipedia states that a computer model is the set of algorithms
capturing the essence of a process or system, and that a computer simulation is
the running of those algorithms. That being said, the terms simulation and model
are often interchanged in both writing and speaking. Random sampling to obtain
numerical approximations by ratios is called the Monte Carlo Method.

9�He wants someone who pays attention to detail, who has some maturity in
his/her coding skills, and who wants this job so much that the candidate will try
to impress the code reviewer. Will your code show this?

10�“I’ll have to go back to reading computer books and working problems on my
own. I would much rather gain some experience this summer by working in
industry.”

IntroductionIntroduction

xxiii

QUIZ 3 ANSWER.

"""+==========+========-========*========-========+===========+

 ||   A SHUFFLING PROBLEM    ||

 ||   by M. Stueben (October 8, 2017)    ||

 || �Interview Question, Mr. Jones, XYZ Corporation ||

 || ||

 || Description: By computer stimulation this program ||

 || determines the probability of a deck of ||

 || 52 cards having at least one unmoved card ||

 || element after shuffling. (Answer: 0.63, ||

 || rounded.) ||

 || ||

 || Language: Python Ver. 3.4 ||

 || Graphics: None ||

 || Downloads: None ||

 || Run time: Approx. 43 seconds for 1,000,000 runs of a ||

 || 52-element array. ||

 +==+

"""

########################<START OF PROGRAM>#####################

def printHeading():

 print(' A SHUFFLING PROBLEM')

 print(' (currently calculating)')

#--

def shuffleArrays():

 �totalArrays = 0 # Arrays with at least one unmoved element

after shuffling.

 for trial in range(TRIAL_RUNS):

 array = list(range(LIST_SIZE))

 shuffle(array)

IntroductionIntroduction

www.allitebooks.com

http://www.allitebooks.org

xxiv

 for num in range(LIST_SIZE):

 if array[num] == num:

 totalArrays += 1

 break

 probability = round(totalArrays/TRIAL_RUNS, 2)

 return probability

#--

def printResult(probability):

 �print(' Result:', probability ,'is the probability of an

array having at')

 �print(' least one unmoved element after shuffling. This

is based')

 �print(' on a computer simulation with an array size =',

LIST_SIZE, 'and')

 print(' ', TRIAL_RUNS, 'trial runs.')

#============<GLOBAL CONSTANTS and GLOBAL IMPORTS>=============

from random import shuffle

TRIAL_RUNS = 1000000

LIST_SIZE = 52

assert LIST_SIZE > 1, 'LIST_SIZE must be greater than 1.'

#==

def main():

 printHeading()

 probability = shuffleArrays()

 printResult(probability)

#--

IntroductionIntroduction

xxv

if __name__ == '__main__':

 �from time import clock; START_TIME = clock();main();

print('\n '+'- '*12);

 �print(' PROGRAM RUN TIME:%6.2f'%(clock()-START_TIME),

'seconds.');

##################<END OF PROGRAM>#############################

Output:

 A SHUFFLING PROBLEM

 (currently calculating)

 Result: 0.63 is the probability of an array having at

 least one unmoved element after shuffling. This is based

 on a computer simulation with an array size = 52 and

 1000000 trial runs.

 - - - - - - - - - - - -

 PROGRAM RUN TIME: 43 seconds.

What was I thinking when I wrote this code?

	 1.	 The pretty box, the centering, the vertical alignment

are all just window dressing. Is this fancy stuff

necessary? Like it or not, looks matter.

	 2.	 The minimum information is a title, your name,

the date, and a program description. The other

information in the box is optional, but shows

attention to detail. I want to look like I am trying to

impress the interviewer.

	 3.	 There are no spelling, punctuation, or grammatical

errors (important). I used complete sentences in

both the description and the program output.

IntroductionIntroduction

xxvi

	 4.	 This program is so simple, why not place all of the

code in the main function? Two reasons: 1) major

code chunks need descriptive, self-documenting

names, and 2) the main function is expected to be

mostly a list of calls to other functions (stepwise

refinement).

	 5.	 Comments are almost unnecessary, because the code

is self-documented and well organized. Docstrings

in a program this short are unnecessary. Still, some

interviewers may expect them in an interview program.

	 6.	 The variable names are descriptive. Over-abbreviation,

to save a few keystrokes, was avoided. In particular

array was used, not a or arr.

	 7.	 The output is well-labeled.

	 8.	 The two constants are in all caps.

	 9.	 The import and global constants are placed above

the main function. It is usual to place them at the

top of the program in large commercial programs.

In extremely small programs I think they are better

placed above the main function.

	 10.	 An assert is used to catch ridiculous cases. Error

traps should be common in student code.

	 11.	 The indenting is everywhere consistent: 4 spaces.

	 12.	 Some output is printed immediately. I do not want

the user to stare at an empty screen for 43 seconds

and wonder if the program is running.

IntroductionIntroduction

xxvii

	 13.	 The following two lines could have been combined

into one line, but then the descriptive variable

probability would not be part of the code.

 probability = round(totalArrays/TRIAL_RUNS, 2)

 return probability

	 14.	 The run-time is printed. (Every program I write

prints its run time.) Some text editors and IDEs

automatically print the runtime. That is how

important this statistic is.

	 15.	 The answer is correct.

Did you learn anything? Readability is a hot topic with conflicting

opinions. What you are used to seeing will look more readable than what

I am used to seeing. But it is always good to know how other people think,

even if we disagree. I hope that I have interested you in reading the rest of

the book. If not, at least start the next chapter. Much of this book is text, not

code. Good luck.

Documentation and readability are as important to

software quality in the long run as speed of creation,

correct functioning, and performance are in the

short run.—L. Peter Deutsch, (ACM Fellow), Found

on the Internet (ACM SigSoft, Software Engineering

Notes, Vol. 24, Issue 1, January, 1999).

* * *

QUIZ 1 ANSWER: total += ((n+n + 3)*n + 4)*n. (Only two

multiplications are necessary.) Here are some running times (of repeated

calls) for six different versions:

	 1.	 2*n*n*n + 3*n*n + 4*n -->.1.09

seconds (original)

IntroductionIntroduction

xxviii

	 2.	 ((n+n + 3)*n + 4)*n -->.0.76

seconds (fastest)

	 3.	 n*((n + n + 1) * (n + 1) + 3)-->....0.86

seconds. (2nd fastest)

	 4.	 ((n+n)*n + (n+n+n))*n + n+n+n+n --> 1.39

seconds. (also two stars)

	 5.	 2*n**3 + 3*n**2 + 4*n -->.2.85

seconds. (poor)

	 6.	 2*pow(n,3) + 3*pow(n,2) + 4*n --> . 3.23

seconds. (worst)

For non-Python people, please excuse this digression into the Python

language. When I showed my powr function to my colleague Peter Gabor,

he suggested the following improvements:

def powr1(b, exp):

 myPowr = 1

 while exp > 0:

 myPowr *= ((~exp)&1) or b

 b *= b

 exp >>= 1 # Shift one bit right.

 return myPowr

Explanation: The Python tilde (pronounced TIL-da) operator (~) is a bit-

wise operator. The expression ~x is the same as –(x+1). It is only employed

here because it will flip the right-most bit. The expression (~exp)&1 is

equivalent to the rightmost bit of ~exp. The expression ((~exp)&1) or b

IntroductionIntroduction

xxix

will be either 1 or b. In Python the or operator returns the value of the last

expression evaluated, not True or False. His powr1 function can also be

written like this:

def powr2(b, exp):

 myPowr = 1

 while exp > 0:

 if exp%2 == 1: # An odd exp means right-most bit is 1.

 myPowr *= b

 b *= b

 exp //= 2

 return myPowr

Or even like this (a form I would not want to debug):

def powr3(b, exp):

 �return (not exp) or ((powr3(b, exp >> 1)**2) * (((~exp)&1)

or b))

IntroductionIntroduction

Not Learned in School

PART I

3© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_1

CHAPTER 1

A Coding Fantasy
Once upon a time, a talented young programmer was in a situation where

he did not have the resources to seek more education. He had a dead-end

job that would never allow any promotion. Further, his family could not help

him, and he lived in a decaying and unsafe part of town. Our programmer

had four friends who had developed similar programming skills and who

also felt limited by their opportunities. They were all slightly depressed and

worried about their futures.

Suddenly, the five programmers discovered an amazing opportunity. If

they could team up and write a particular computer application, then the

attention they would receive would immediately open doors for better jobs.

Of course, anyone in this situation would want to attempt to write the

application. But it was not so simple. Previously, the most challenging

program each of them had written took three weeks of time at 1-2 hours a

day. Most of the time was spent in debugging. Some of those bugs were so

difficult to track down that they had twice given up on their programs, only

to come back to them out of curiosity. In fact, those three weeks of time

were actually spread over six weeks. They all had the same experience.

Upon reviewing the work for this new project, it appeared that the

job naturally could be divided into five equal parts. The problem was

that each part was five times longer than anything any one of them had

worked on before. They had 40 weeks to finish the project. In theory, if

all could stay focused, that was more than enough time to finish. But in

practice, the complexity was beyond what anyone thought he or she could

4

do. The tantalizing prize was also an invitation to failure. Briefly each

thought that the quiet go-nowhere life they were currently living might be

preferable to 40 weeks of misery that almost certainly would lead to failure.

Who needed that? Maybe something else would come along. Eventually

in conversation, the five friends realized that this defeatist thinking is a

common reason why people do not climb out of their poor situations in

life. Yet, as each one currently understood the project, it was too difficult

for them to complete. If they could increase the likelihood of success, then

it might be worth a try. So, what to do?

First, the five programmers had to accept the fact that they would have

to turn themselves into programming robots. Many of the pleasures that

were part of their everyday lives would have to be replaced with hours of

coding. This would require a change of both habits and perspective on

life. Could they do this? The prize dangling in front of them just might be

enough.

The real problem was debugging. Although all parts of the code

seemed reasonable enough, there were so many parts that debugging

problems would arise en masse. They didn’t see how any one of them

could be successful. Then someone suggested a solution: For almost every

key function written, a companion function could be written to test that

function. After each session of coding, the testing functions would be

run. Another program would import most of the important functions and

run several sets of data through each function. The data would test, for

example, almost every if statement in a function.

This meant that if a redesign occurred, the functions adversely affected

would be flagged immediately. Writing two functions for every one

function needed in the application would be extra work, but the testing

functions would be simple to write, and mostly similar to each other. This

scheme, called unit testing, seemed to offer hope.

Another member suggested that the group get together every

week to read each other’s code, to discuss problems, and to suggest

solutions coming from fresh eyes. In these code reviews they would

Chapter 1 A Coding Fantasy

5

share both problems and hard-learned solutions. Another suggestion

was to document almost every key function with an English description

(docstrings), so that any of the other members could more easily follow the

code. Another suggestion was that they should occasionally try to work in

pairs (pair programming): one typing and the other thinking about what is

being typed.

The group felt that their only chance at success was to adopt these

conventions. One of the members later described working with these

conventions as writing code in a straightjacket.

Soon after the coding began, the members noticed that progress was

slow but steady. The inevitable redesigns, usually based on overlooked

special cases and poorly chosen data structures, almost always caused a

domino effect of other changes. These changes were all quickly noticed

and located by unit testing.

The members also began discussing small differences in coding

styles—e.g., should one write

if (x and y) == True: print(x)

or

if x and y: print(x)?

Because of differing opinions, they decided to vote on a group style

and stick to the group’s decision. Eventually, their conventions, which were

often arbitrary, began to look correct and any different convention looked

wrong. Because the same style was used by everyone, they all became

efficient at reading code written in their shop style.

To make a long story short, their combination of sacrifices,

commitment, and good decisions about writing code enabled them to

complete the project and win a better life. Eventually, they were hired by

employers seeking expert programmers.

Their new employers appreciated the members of this group for several

reasons. First, the programmers had put so much of their lives into writing

Chapter 1 A Coding Fantasy

6

code that their skills were excellent. They wrote code quickly and with few

bugs. They understood their language, and used its constructs efficiently.

Second, and just as important, their code was easily readable by anyone

else. Third, they were flexible. They adopted the current house style in

coding, even when they personally preferred to write code differently.

In some of the companies where these coders worked, there were

layoffs. Our five original coders were never let go. As one employer said,

“They always give more than is expected. Who would let an employee like

that go?”

Years passed and they all retired from the business of writing code.

One of the younger programmers was a little bored. He missed the coding

experience, but was too old to return to full-time work. His spouse noticed

that the neighboring high school needed a part-time teacher for a single

one-semester class of advanced programming. He took the job.

The previous teacher expected the students to understand different

algorithms and build their programming skills by correctly implementing

the algorithms in computer code. The old programmer-turned-

replacement teacher agreed, and realized that many of the conventions

that were necessary for success in business would not apply to students

writing small programs. Still, he thought, writing code that was readable

was something that should be taught along with algorithms, language

instructions, and data structures. Halfway through the course, he had

lectured on and had posted the following guidelines.

�Advice for Developing Programmers
(pain management)

	 1.	 Limit functions to a single task, or to simple and

highly related tasks (cohesion vs. coupling).

	 2.	 Label and align your output.

Chapter 1 A Coding Fantasy

7

	 3.	 Document your programs at the top: name, date,

class period (maybe course and instructor), title,

and program description. Watch your spelling,

grammar, and punctuation.

	 4.	 Code with line numbers and never indent less than

three spaces.

	 5.	 Use vertical alignment in your code if it will

emphasize significant relationships.

	 6.	 Do not use Python language names (reserved words

and built-in names) for identifiers or file names—

e.g., random, max, print, factorial, etc.

	 7.	 Refactor (= redesign) your programs after they work

to be more readable. This is when and how program

design is learned.

	 8.	 Use step-wise refinement: function calls that outline

your program’s work. Limit the main() function to

calls to other functions. In short programs you may

add initialization and maybe some output lines to

the main function.

	 9.	 Write self-documenting code (descriptive

identifiers, usually verb-object function names)

and thereby minimize comments. Avoid over-

abbreviating identifiers to save typing a few letters.

	 10.	 Always print the runtime, and perhaps some other

statistics, for every program.

	 11.	 Avoid magic numbers, unless they make the code

significantly simpler to work with.

	 12.	 Avoid global variables, but global constants are acceptable.

Chapter 1 A Coding Fantasy

8

	 13.	 Do not write clever code (code that doesn’t

immediately look like what it does), when simpler

code will do.

	 14.	 Choose readability over both optimization for speed

and optimization for memory use.

	 15.	 Anticipate bugs by using defensive measures

(asserts, error traps, try/except blocks, and

intermediate prints). Just don’t overdo it.

	 16.	 Test every key function upon completion. Consider

untested code to be broken code.

	 17.	 For a complicated algorithm, consider writing some

simple tests before you write the code, not after you

write the code.

* * *

	 18.	 Do not start on the next assignment or function until

you have finished the previous one.

	 19.	 When coding, you need total focus. Avoid the chatty

classmate. (The purpose of sometimes isolating

yourself is to force you to solve problems on your own.

Do not become dependent upon your classmates.)

	 20.	 Save every assignment on at least two different

physical devices.

* * *

	 21.	 Write some code every week. Do not regress. You

may have to push yourself.

	 22.	 Spend time with smart people and try to get them to

talk shop.

Chapter 1 A Coding Fantasy

9

	 23.	 Read the code of other programmers.

	 24.	 Learn programming tools on your own: a

sophisticated editor, language idioms and tricks,

built-in functions, and data structures.

	 25.	 Come to your problems with a history of attempting

challenging problems.

	 26.	 Try hard to avoid cheating.

	 27.	 Do not let grades and outside activities sabotage

your education. You, not the school, are responsible

for your learning.

Unfortunately, the list was not only ignored, it was disputed by the

students. He overheard many disparaging comments:

“I don’t see why my code must be readable to others

when is it readable to me and nobody else will

ever read it. Getting the program to work was hard

enough. I need time for other classes.”

“I can’t believe he asked us not to write clever code.

Is he trying to stifle us?”

“I think my code is descriptive enough. He is being

too picky asking for better descriptors.”

“The other C.S. teacher is not so picky. I wish I were

in her class.”

“My code is exactly like Paul’s because we worked

together. He is always saying we need to help each

other. He better not say I cheated.”

“He tells us to help each other, but not to get help.

That makes no sense.”

Chapter 1 A Coding Fantasy

10

“There are no errors in my program, so why did he

want me to have error traps in my code?”

“My code works for my input. It doesn’t work for

his input, because he tests with weird data, like the

empty set.”

“I still don’t understand how focusing on grades

could adversely affect my education.”

“Why should we learn the tools on our own time?

Shouldn’t he teach them to us?”

“There are lots of programs on the Internet that

don’t follow his rules. So, who does he think he is?”

The old programmer was sensitive enough to eventually realize

that the classroom atmosphere had gone from enthusiasm to dislike.

Consequently, he changed his priorities. Only a few short programs

would be checked for style. The others were accepted if they worked. The

assignments became shorter and easier. He praised the students for simple

successes. He started most classes with an interesting YouTube video,

and allowed lively discussions to go on, even when they robbed the class

of practice time. In the end the students were amazed at how much the

teacher had improved. Several students gave the teacher parting notes and

small gifts.

Just before the end of the school year, he reflected over what had

happened. The ideas, habits, and perspectives that he was trying to pass

on to the students were just beyond them. They were quick in picking

up details, but did not have the maturity or motivation to appreciate any

sort of big picture. Years ago, he and his friends were forced to change

themselves by desperation. Teaching their kind of meta-thinking could

not be done by talking. It had to be experienced in some manner to be

believed. He did, however, leave them with a warning. He told them the

following story.

Chapter 1 A Coding Fantasy

11

THE OLD PROGRAMMER’S STORY

Students, something amazing happened to me last night, and I want to share

it with you. I talked with God. Yes, that’s right God visited me. Admittedly, He

came to me in a dream, but I know it was God. And we talked about your

futures. Not for all of you, but for many of you. And I want to tell you what the

future holds for you. Your futures are going to be wonderful. You are going

to go to college, graduate, and find a nice job. You will have a number of

interesting vacations and adventures before you meet your significant other.

You’ll get a nice house, enjoy your job, have some great kids, and enjoy good

health. You are going to have the kinds of futures that everyone wants to have.

And I thought I should tell you now, while you’re young, just how great your

futures will be—at least until about the age of 45.

At that time you will be fired from your job. Not for anything you did wrong. It is

just that businesses change and merge. The employment sector is in constant

flux. Since you did not stand out in your profession, you were let go.

Naturally you tried to find another job. After all, you had years of experience.

Unfortunately, the coding shops preferred to hire young programmers whom

they did not have to pay as much. The different managements felt that after a

few years the younger programmers would have almost as much experience

as the older programmers anyway. The younger programmers might become

great programmers, whereas you had only been an average programmer.

So you went on many interviews and never got a job offer. That meant your

spouse was supporting the family. You stayed home most days and did the

chores. The vacations were cut, summer camps for the kids were canceled,

electronic devices could not be upgraded, and when the main TV broke,

your family moved the little TV in from the den to the living room. Any money

that you spent on yourself was immediately noticed and harshly criticized.

Your spouse did not expect this austere lifestyle when he or she married

you. Resentment led to arguments. Your spouse criticized you in front of the

Chapter 1 A Coding Fantasy

12

children, who also began to lose respect for you. Your family relationships

were becoming toxic. Finally, your spouse filed for divorce and asked you to

move out.

In the divorce, you got some money for the house and from your joint savings,

but your spouse got the kids—you couldn’t support them. Eventually your

money ran out and you ended up taking a cleaning job just to pay for your

rent and food. You began to get depressed and started to take comfort in the

cheap euphoria of drink. You didn’t become an alcoholic, but you drank every

day. Several years later you happened to look into a mirror and noticed that

you looked older than you should. You had a tooth missing and couldn’t afford

to replace it. You looked up towards the ceiling and said, “Why did this happen

to me? What did I do to end up like this?” Suddenly, you heard a sound behind

you and noticed some movement in the mirror. You turned around and, guess

what, you happened to see me, your old computer science teacher.

“Mr. S., I thought you died years ago. What are you doing here?”

“I did die years ago. But now I have become an instrument of the cosmic

forces. And I am here to help you out of your predicament.”

“I can’t believe my luck,” you say. “Are you going to find me a good job so that

I can support a family and get my self-respect back?”

“No, the cosmic forces don’t work that way.”

“Then are you going to give me money?”

“No, the cosmic forces don’t work that way either.”

“Well then what? How are you going to help me?”

“First of all, I want to tell you how you got yourself in this predicament. You

sinned by being average. You never stood out. You didn’t study any more than

you needed to get by. You did just the minimum of what was asked. You didn’t

try to learn new skills. You didn’t try to improve your current skills, because

you didn’t have to. When potential employers called your old employer, all

Chapter 1 A Coding Fantasy

13

the management could do was to verify your previous employment. They had

nothing really good to say about you. No wonder you were the first to be fired

and are the last to be re-hired. Once you understand that, then there is hope

for success”

“Ok,” you say. “That seems true enough. In my defense, I never thought my

future would come to this. I thought average was good enough. And I had other

interests outside of work. I didn’t want to become a workaholic. But OK, I’ve

learned my lesson. Just get me out of this life.”

“Have you learned your lesson? Well, we’ll find out. I’m going to rewind time

and send you back to when you were in my class. You will forget about your

future, except for this short story of your life, which I am telling you now. I am

like the ghost of Christmas future. The future is not fixed, or else I would not be

telling you this. Your warning is to be better than average. Always continue to

learn more and improve your skills. Always give more than is expected, in your

job, and in your personal relationships. Yet, know this: You will not get another

chance. Good luck.”

The students thought the story was cute, and they appreciated a

teacher who could entertain them. Most of them soon forgot the story.

Only a few were bothered by it. For them, the story supported what they

had already come to believe: That terrible traps lay in their futures—traps

in jobs, traps in marriages, and even traps for the children that eventually

they would try to protect. He never knew it, but the old programmer had

done all that was possible for his students.

Chapter 1 A Coding Fantasy

15© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_2

CHAPTER 2

Coding Tricks
Mastering the skill of analyzing [chess positions]

requires a massive amount of practice and hard

work. But once you get it down, you will not regret

the investment.—Joel Johnson (U.S. chess master)

Formation Attacks (privately published, 2010), page 15.

This chapter will take a simple—almost trivial—function and write it in

12 different ways. Most of these tricks are not taught in school. You need to

learn them on your own.

DEFINITION: The Fibonacci1 numbers are numbers in a sequence that

begins 1, 1, … and thereafter each new number is the sum of the previous

two numbers. Following are the first 17 Fibonacci numbers:

+--+

| Fibonacci numbers: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610, 987, 1597 |

| The nth position 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 |

+--+

Here, the 1000th Fibonacci number is 4346655…228875 (209 digits).

Sometimes this sequence is initially indexed at zero, and sometimes it

1�I believe the preferred pronunciation is FEE buh naht chee, but this has been
Anglicized to an acceptable FIB uh naht chee. My source is the useful Webster’s
New Biographical Dictionary (Merriam-Webster).

16

begins with the initial value of zero. If you asked a beginning programmer

to write a function to print the nth Fibonacci number, he\she would

probably write a simple iteration function like this:

def fibA(num): # �This function took 7.45 seconds to find

the 1000th

 # �Fibonacci number 100,000 times in Python

Ver. 3.4.

 if num < 3:

 return 1

 a = b = 1

 for i in range(2, num):

 a, b = b, a+b

 return b

If you asked the same programmer to solve the problem recursively,

the result would be something like the function fibB below.

def fibB(num): # Too slow.

 if num < 3:

 return 1

 return fibB(num-1) + fibB(num-2)

This is the only function in this collection of Fibonacci functions that

is too slow for practical work. It may appear that the only justification for

fibB is to introduce recursion to beginners. Not so. It can also serve as an

example of a poor way to do recursion. If the recursion were done better

(fibH shown later or maybe by using a memorizing decorator, also shown

later), it would be much faster.

You might say fibB is the worst function in this collection. It is also

the simplest function. So we have learned two ways to evaluate functions:

by speed and by simplicity. How many other ways are there? At least four

more ways. We will return to this question later.

Chapter 2 Coding Tricks

17

The fibB function took 313.48 seconds (5 minutes, 13 seconds)

just to calculate the 45th Fibonacci number one time. I am interested in

calculating the 1000th Fibonacci number one-hundred thousand times. Of

course, to make fibB faster, we could provide more base cases. Introducing

a look-up table is a standard trick in programming. In Python sometimes it

can be done with the clever indexing method shown below.

def fibBB(num): # Still too slow to compare.

 if num < 18:

 return [�0,1,1,2,3,5,8,13,21,34,55,89,144,233,377,610,

987,1597,][num]#17 base cases

 return fibBB(num-1) + fibBB(num-2)

The 313.45 seconds are reduced to about a half second in fibBB.

Unfortunately, the fibBB function took 51.08 seconds just to calculate

the 55th Fibonacci number: still too slow. Read and check all technical

material closely. Did you notice the 17 base cases required 18 numbers?

We can improve the twins fibB and fibBB by introducing a dynamic

(changing) look-up table. This is called memoization. Although

memoization can speed up the recursion of overlapping subcases, this

improved function (fibC) is still more than seven times slower than fibA

(iteration). When the 17-base-case look-up table was appended, the time

INCREASED (how strange) by almost 24% (from 57.11 seconds to 70.69

seconds). Coding ideas that sound good sometimes do not turn out that way.

def fibC(num, dict): # 57.11 seconds to find the 1000th

Fibonacci number

 # 100,000 times.

 if num in dict:

 return dict[num]

 dict[num] = fibC(num-1, dict) + fibC(num-2, dict)

 return dict[num]

The call to fibC looks like this: print(' C.', fibC(n,

{1:1, 2:1}))

Chapter 2 Coding Tricks

18

The functions fibA and fibC are both examples of “dynamic

programming,” a difficult topic, which we will consider in the final chapter.

Making the dictionary global in fibC saves us from passing the dictionary.

Nevertheless, using a global dictionary does NOT decrease the speed, and

global variables are to be avoided where possible. So, can we avoid passing

the dictionary without a global variable? Yes. Python functions are classes;

they have class variables.

def fibD(num): # 73.96 seconds.

 if num in fibD.dict:

 return fibD.dict[num]

 fibD.dict[num] = fibD(num-1) + fibD(num-2)

 return fibD.dict[num]

fibD.dict = {1:1, 2:1}

A Python function's class variable must be declared BELOW the

function.

Unfortunately, fibD is significantly slower than fibC, even though the

fibD code is identical to the fibC code, except for fibC doing the extra work

in passing an address. How is such a speed change, especially a time increase,

possible? Evidently, accessing a class variable (fibD.dict) takes significantly

more time than accessing either a global variable or a parameter (dict).

The design of fibD makes me uncomfortable, because we have a look-up

table floating around in the code. Suppose they get separated? And looking

at one function while trying to find one of its references reduces readability.

My suggestion is to embed them together in another function. But the time

is still slow. In fact, a nested function is always slower to execute than a

non-nested function.

def fibE(num): # 76.35 seconds.

 def fib(num):

 if num in fib.dict:

 return fib.dict[num]

Chapter 2 Coding Tricks

19

 fib.dict[num] = fib(num-1) + fib(num-2)

 return fib.dict[num]

 fib.dict = {1:1, 2:1}

 return (fib(num))

Can we do better? Yes by using a default value for the initial dictionary.

This is a standard trick in programming. Remember it.

def fibF(num, dict = {1:1, 2:1}): # 59.99 seconds.

 if num in dict:

 return dict[num]

 dict[num] = fibF(num-1, dict) + fibF(num-2, dict)

 return dict[num]

Shouldn’t there be an assert statement, something like this:

assert type(num) == int and num > 1, 'Bad data: num = ' + str(num)

Yes, but for these examples I have simplified the code.

Now I want to introduce a tricky concept: decorators. Recall the

slow fibB.

def fibB(num): # Simple code, but too slow, or is it?.

 if num < 3: return 1

 return fibB(num-1) + fibB(num-2)

If only fibB had a memoization dictionary it would run dramatically

faster, but that would complicate the code. So can we have it both ways?

Well, almost. The designers of Python have introduced a way to do this

without most of the disadvantages. Alas, the code will reside in two places.

Here is how you do it.

def memoize(function): # function = fibB.

 dict = {} # �This line is executed only

once.

Chapter 2 Coding Tricks

20

 def wrapper(num): # num came from fibB(num).

 if num not in dict:

 dict[num] = function(num)# �The return of fibB is

always to dict[num].

 return dict[num] # �The return is to function,

except for final.

 return wrapper # �This line is executed

only once.

@memoize

def fibB(num):

 if num < 3: return 1

 return fibB(num-1) + fibB(num-2)

This process is called “decorating a function.” It not only saves us from

introducing a new dictionary in every one-parameter function that needs

memoization, but a decorator also simplifies the decorated function by

extracting the memoization code. Unfortunately, the designers could not

find a simple design for decorating a function. Programmers have to study

and write many decorators to get a feel for what is going on.

Occasionally you may want to time a function. Why not just put @timer

above the function’s definition and pull this decorator up from your

personal library?

def timer(function):

 from time import clock

 from sys import setrecursionlimit; setrecursionlimit(100)

default = 1000

 startTime = clock()

 def wrapper(*args, **kwargs):

 result = function(*args, **kwargs)

 return result

Chapter 2 Coding Tricks

21

 elapsedTime = round(clock()-startTime, 2)

 �print('-->', function.__name__ +"'s time =", elapsedTime,

'seconds.')

 return wrapper

The clock could be imported elsewhere. The optional

setrecursionlimit is sometimes useful for recursive functions. The

(*args, **kwargs) means that any set of normal arguments and keyword

arguments will be accepted. The function.__name__ just pulls up the

name of the function. So you see decorators can sometimes simplify code.

Note well: 1) Recursive decorated functions seem to require much more

recursion than if not decorated. 2) Decorators will not be used much in

this book.

Having looked at several Fibonacci functions, we ask again if there is

yet another way? What do you think of using formulas: No loops and no

recursion? How did we overlook this? Formulas are both simple and fast.

def fibG(num):

 from math import sqrt

 phi1 = (1 + sqrt(5))/2

 phi2 = (1 - sqrt(5))/2

 return round((phi1**num - phi2**num) / sqrt(5))

fibG(70) = 190392490709135

Hist. Note: These equations are called Binet’s formulas, named after

the French scholar who published them in 1843.2 As an exercise, improve

the speed of fibG. My version is in the footnote.3

2�See Ross Honsberger’s Mathematical Gems II (MAA, 1985), page 108.
3�def fibG(num): # Faster version

from math import sqrt
sqrt5 = sqrt(5) # Do not compute this number more than once.
phi = (1 + sqrt5)/2
return round((phi**num)/sqrt5)

Chapter 2 Coding Tricks

22

However, using formulas with floats to produce large numbers is

a terrible idea, because floats are limited in precision, and therefore

eventually will output INCORRECT values. Integers in Python are limited

only by the available memory of the computer. Staying with integers,

we can accurately generate the ten-millionth Fibonacci number, which

has 2,089,877 digits. Computer arithmetic is not always the same as

mathematical arithmetic for at least four reasons.

	 1.	 Computers—due to binary representation—only

approximate floating point numbers:

print((1/3) == 0.3333333333333333) # = True

print(1.0e+309) # = 'inf'

�print(1.4/10) # = 0.1399

9999999999999

	 2.	 Past the limits of significant digits (16 digits (53 bits)

in Python), computations can’t be trusted:

print('2.0**53-1 =', 2.0**53-1) # = 2.0**53-1 =

9007199254740991.0

print('2.0**53-0 =', 2.0**53-0) # = 2.0**53-0 =

9007199254740992.0 (limit)

print('2.0**53+1 =', 2.0**53+1) # = 2.0**53+1 =

9007199254740992.0

	 3.	 Round-off errors accumulate:

print(0.1 + 0.1 + 0.1 == 0.3) # = False

�print(0.1 + 0.1 + 0.1) # = 0.3000000

0000000004

Chapter 2 Coding Tricks

23

	 4.	 Rollover. In many languages, if you add 1 to the

largest integer, it becomes a negative number

with almost the same absolute value. This does

not occur with Python integers. But this and other

conveniences (mixed data types in lists) make

Python slower than other languages.

Python does have a decimal format for large floats. Unfortunately, it is

slow.

def fibGG(num): # 1153 seconds = 19 minutes and 13 seconds.

 from decimal import Decimal, getcontext

 from math import sqrt

 if num > 70:

 getcontext().prec = 2*num

 phi1 = (Decimal(1) + Decimal(5).sqrt())/Decimal(2)

 phi2 = (Decimal(1) - Decimal(5).sqrt())/Decimal(2)

 return round((phi1**Decimal(num) - phi2**Decimal(num)) /

 Decimal(5).sqrt())

At this point most people would probably choose fibA over the other

functions, because it is easy to understand and faster than the other

functions we have seen. The function fibA can find the 10-millionth

Fibonacci number in just under 16 minutes.

Perhaps an even better solution is to just save the first gazillion

Fibonacci numbers on a disk, and then read off the one we want. The code

below will create a file holding the first max = 78125 Fibonacci numbers in

933 seconds (= 15 minutes and 33 seconds).

#---Create file containing the first max Fibonacci numbers.

 from time import clock

 max = 78125

 print('max =', max)

 print('start')

Chapter 2 Coding Tricks

24

 start = clock()

 file1 = open('g:\\junk.txt', 'w')

 file1.write('1\n')

 a = b = 1

 for i in range(1, max):

 file1.write(str(a)+'\n')

 a, b = b, a+b

 file1.close()

 stop = clock()

 print('stop')

 print('time =', round(stop-start, 2), 'seconds.')

Doubling the range of numbers seems to slightly more than

quadruple the time. This may be because the Fibonacci numbers grow

in size. If doubling the range multiplies the time by four (probably an

underestimate), then we roughly estimate the time needed to create a file

of the first ten-million Fibonacci numbers by timing 10,000,000/(2**7) =

78125 numbers and multiplying the time by 4**7 = 16384. Consequently,

the time to create a file for the first ten-million Fibonacci numbers is

estimated to be at least 933*16384 seconds = 15286272 seconds, which is

almost 177 days. Note: You should not read technical material passively.

You need to check the logic and math behind these calculations.4

Once the file is built, extracting a small number is fast, but a large

number takes time.

#---Extract a number from of a file of numbers.

 file1 = open('g:\\junk.txt', 'r')

 print('start')

4�If we double the number 78125 seven times then we obtain 10,000,000.
Consequently, if it takes t seconds to generate the first 78125 Fibonacci numbers,
then it will take (4**7) t seconds = 16384 t seconds to generate the first 10,000,000
Fibonacci numbers.

Chapter 2 Coding Tricks

25

 start = clock()

 for n in range(78124):

 file1.readline()

 num = (file1.readline())

 file1.close()

 stop = clock()

 print('stop')

 �print('time =', round(stop-start, 2), 'seconds.')

8.94 seconds.

Now comes a surprise. The code above takes 9 seconds to extract the

78124th Fibonacci number. The function fibA will generate the 78124th

Fibonacci number in just 0.3 seconds. The idea of a look-up table (here

stored on a disk) is a useful idea. We have already seen it dramatically

increase the speed in fibBB over fibB. However, accessing a large Python

file can be slower than direct calculation.

So maybe you have learned a few programming tricks (memoization,

class variables, embedded functions, default values, preferring integers to

floats for accuracy with large numbers, and the value of look-up tables).

Remembering tricks will help you mature as a programmer. Forgetting

tricks is almost like never learning them. So how do we remember them?

We write code that uses what we have recently learned.

These examples, as simple as they are, give us a natural opportunity to

look at the coding style of most beginners. We will return to coding tricks in

Chapter 4.

Chapter 2 Coding Tricks

27© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_3

CHAPTER 3

Style
The hard-science people rarely know how to write,

and most of them don’t know how to program

either; they’re taught how to code up an algorithm,

not how to write a maintainable computer

program.—Allen I. Holub, Enough Rope to Shoot

Yourself in the Foot (McGraw-Hill, 1995), page 18.

* * *

Readability, I have been told, is not everything.

Neither is breathing, but it does come before

whatever comes next.—William Sloane, The Craft of

Writing, (W.W. Norton, 1979), page 11.

Style is anticipating the difficulty others will have understanding,

debugging, modifying, and using your code in their programs, and then

addressing these difficulties in your constructions. It is a form of good

manners.1 I gave the previous chapter to all of the students in several of my

programming classes, and we discussed it in detail. Then I collected the

handout, and gave the following assignment.

1�Best definition: Good manners is making the people around you feel comfortable.
Here is the same thought again: “Good writers have developed an abiding
empathy for their readers, while bad ones haven’t.”—Bryan Garner, Legal Writing
in Plain English (University of Chicago, 2001), page 145.

www.allitebooks.com

http://www.allitebooks.org

28

ASSIGNMENT: Write the following seven Fibonacci functions:

	 1.	 fibA simple iterative.

	 2.	 fibB simple recursive.

	 3.	 fibBD simple recursive with a decorator.

	 4.	 fibC recursion and memoization, with a dictionary

passed as a parameter.

	 5.	 fibD recursion and memoization, with a dictionary as

a class variable.

	 6.	 fibE recursion and memoization, with an embedded

function.

	 7.	 fibF recursion and memoization, with a default

dictionary parameter.

	 8.	 fibG formulas you must find on the Internet.

The range of ability in any computer science class is enormous. Some

students finished this assignment in 30-45 minutes. Others took another

30 minutes and needed much help from their classmates. Some could not

finish and had to work on the assignment at home.

I began looking at the working functions that were offered as copies of

my functions. I was in for a surprise. Special purpose syntactic constructs

in programming languages are known as “idioms”. In Python, the preferred

way (idiom) to assign one value to two variables is like this: a = b = 1.

The preferred way to swap two variables is like this: a, b = b, a.

Here is the Fibonacci function that I had shown my students 15

minutes earlier. It uses the two idioms described above.

def fibA(num):

 if num < 3: return 1

 a = b = 1

Chapter 3 Style

29

 for i in range(2, num):

 a, b = b, a+b

 return b

One of my students wrote the iterative Fibonacci function using

Java/C/C++ idioms.

def fibA(n):

 if n <= 2: return n

 a = 1

 b = 1

 tmp = 0

 for i in range(n-2):

 tmp = b

 b += a

 a = tmp

 return b

There is a natural tendency not to learn a new idiom. If an old way

works, then why not continue to use it? These Python idioms are so

simple, common, and useful, and had been demonstrated in my own

public code for months that I was surprised that this student had not

adopted them.

When I looked at his fourth function, I could not easily understand his

code until I indented it. The student was trying to reproduce this code:

def fibC(num, Dict):

if num in Dict:

 return Dict[num]

Dict[num] = fibC(num-1, Dict) + fibC(num-2, Dict)

return Dict[num]

Chapter 3 Style

30

Here is what he came up with, and it does work:

def fibC(n, d:dict):

 if n <= 2: return 1

 if n-1 in d: a=d[n-1]

 else: a = fibC(n-1,d)

 if n-2 in d: b = d[n-2]

 else: b = fibC(n-2,d)

 d[n] = a+b

 return a+b

Here is the same function indented:

def fibC(n, d:dict):

 if n <= 2:

 return 1

 if n-1 in d:

 a=d[n-1]

 else:

 a = fibC(n-1,d)

 if n-2 in d:

 b = d[n-2]

 else:

 b = fibC(n-2,d)

 d[n] = a+b

 return a+b

This particular student was one of my brighter students and often was

one of the first students to finish a quiz. Nevertheless, this student and

some of his classmates made no attempt to adopt a readable style. Getting

the code to work was their only goal. This was at the end of the year in at

least their third programming course.

Chapter 3 Style

31

Students do not understand style due to their inexperience in coding.

They do not write long complicated programs. They do not modify and

debug legacy code written by others. Consequently, their natural style for

writing a program never evolves beyond that of writing short programs.

The teacher insists on a style which is beneficial for long programs to be

read by others, which is to be applied to short programs to be read only

by the student and maybe the teacher. Trying to teach style can easily put

the student, who thinks the teacher is being too pedantic, in conflict with a

teacher.

Years ago, I asked my students to solve a problem with the most

readable code possible, code that they would be proud to show during an

interview. To my surprise, even strong students produced ugly and over-

commented code. They simply had no idea what readable code was. After

that I began showing examples of both easy-to-read code and hard-to-read

code.

Now, about five or six times a year I insist that my students write short

programs in readable style. When they print out their little programs

and give them to me, I point out the first style error that I see and make

them print it again. Some students need to print out their programs six or

more times. I always see a few students conferring with each other trying

to anticipate what my next criticism will be so that they will not have to

print their programs again. At least they get some experience with writing

readable code. But unless they know that I will inspect their code, most

students will not take the time to write readable code.

The problem in getting students in the habit of refactoring (cleaning

up their code to make it more readable) is the same as getting students

to write competent essays. Attention to grammar, punctuation, rhetoric

(effective use of sentences), diction (word choice), substance, and even

proofreading will mostly be ignored unless the teacher demands them.

Demanding quality requires close inspection of each student’s work.

I asked a highly respected member of the English department if she

repeatedly read and returned the same essay until it was acceptable.

Chapter 3 Style

32

She said that she did this as a beginning teacher, but discontinued the

practice, because it took too much personal time. It is the same with most

teachers in most subjects. We do not have the time to regularly inspect our

students’ work to ensure quality. Ultimately, each student must be his or

her own teacher.

Where do scientists learn how to develop software

and use computers in their research? Almost all

[of nearly 2000 academic respondents of a Web-

based survey in 2008] said that informal self-study

had been most important. Peer mentoring came

second, with formal instruction at school or on the

job trailing well behind.—Greg Wilson, American

Scientist, Vol. 97 (September-October 2009),

pages 361-362.

Here is a check list I used to automate the refactoring process a little:

IS YOUR PROGRAM FINISHED BEFORE THE DEADLINE? IF YES,

	a.	 Did you use step-wise refinement? [If no, then go back and fix.]

	b.	 Did you refactor when you finished? [If no, then go back and fix.]

	c.	 Did you write self-documenting code? [If no, then go back and fix.]

	d.	 Did you limit functions to single tasks? [If no, then go back and fix.]

	e.	 Did you use the idioms of your language? [If no, then go back

and fix.]

	f.	 Did you use asserts and other error traps? [If no, then go back

and fix.]

	g.	 Did you use vertical alignment where useful? [If no, then go

back and fix.]

Chapter 3 Style

33

	h.	 Did you create labeled and attractive output? [If no, then go

back and fix.]

	i.	 Did you print the time your program took to run? [If no, then go

back and fix.]

	j.	 Did you test the final product well, especially special cases and

borderline cases? [If no, then go back and fix.]

	k.	 Did you test each major function immediately after you wrote

it? [If no, don’t do this again. Adopt the habits of professionals.]

	l.	 Did you avoid writing clever code, doing needless optimizing,

and coding for unimportant cases? [If no, don’t do this again.

Adopt the habits of professionals.]

Now back to more coding tricks.

Chapter 3 Style

35© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_4

CHAPTER 4

More Coding Tricks
It has often been said that a person does not

really understand something until he teaches it to

someone else. Actually, a person does not really

understand something until he can teach it to

a computer, i.e., express it as an algorithm. The

attempt to formalize things as algorithms leads to

much deeper understanding than if we simply try to

comprehend things in the traditional way.—Donald

E. Knuth (1974 Turing Award1 winner) “Computer

1�In case the reader is unaware, the highest award given in the field of computer
science is the Turing Award. It is given annually by the ACM (Association for
Computing Machinery) for lasting and important contributions of a technical
nature to the computer field. The Turing Award was named for the early
computer pioneer Alan Turing (1912–1954). Today Turing is considered to be
the father of both computer science and artificial intelligence. In 1945 Turing
was awarded the OBE (Order of the British Empire) for his code-breaking efforts
during WWII. In 1952 Alan Turing was arrested for a homosexual encounter with
a 19-year-old male. To stay out of prison, he submitted to a hormone “treatment”
that had a detrimental effect on his body and mind. Two years later, at age 41, he
was found dead by cyanide poisoning. The post-mortem ruled it a suicide, but his
mother and many of his close friends believed it was an accident. See Wikipedia.
In 1966 the Turing Award was established. In 1999, Time magazine declared Alan
Turing one of the 100 most important people to live in the twentieth century.
On December 24, 2013, Turing was granted a posthumous pardon by the Queen
of England (only the fourth since WWII). In 2014, the Hollywood movie The
Imitation Game was released. It chronicled Turing’s life as code breaker and his
difficulties at the end of his life.

36

Science and Its Relation to Mathematics,” American

Mathematical Monthly, Vol. 81, April, 1974,

page 327.

Below, the recursive function (fibH) is an improvement over fibB.

def fibH(num, a = 0, b = 1): # 31.91 seconds.

 if num == 1:

 return b

 return fibH(num - 1, b, a+b)

We could write fibH in one line as shown below (no speed increase).

def fibHH(n, a = 0, b = 1): # 31.91 seconds.

 return fibHH(n-1, b, a+b) if n > 1 else b

Since Python allows anonymous functions to be written on the fly, we

can use lambda, but the result is slower.

f = lambda n, a=1, b=1: int(n<3) or a+f(n-1,b,a+b)

56.08 seconds.

The question is always this: Which of the three versions is easiest to debug.

Digression. Any recursive function can be written iteratively. In fact.

recursion itself is not recursive. Recursion is implemented as a stack of calls

with their parameters, local variables, and address back to the calling routine.

All of this information for each item on the call stack is a stack frame.

Notice that in fibH the recursive call stands alone, unlike return

fib(x-1) + x, where an addition is appended after the recursion call. This

standing alone or making the recursion the last action before the return

(e.g., return x + fib(x-1)) is called “tail recursion.” The advantage is

that a smart compiler—i.e., an optimized compiler—will recognize tail

recursion and change it to a goto, so that the enormous stack memory

demands of recursion are reduced. Curiously, Python compilers do not

optimize for tail recursion.

Chapter 4 More Coding Tricks

37

Even without optimization by a compiler, tail recursion may vastly

improve the speed of a function by eliminating recursive calls, as fibH

does here.

Instead of a Fibonacci function, consider a factorial function. Here

there is no sum of previously solved cases to reach a final number. Below

we compare five different forms of the factorial function. We see tail

recursion is no faster than non-tail recursion, because tail recursion does

not eliminate a recursive call in the factorial function. Even a look-up table

does not help.

def factorial1(n): # Tail recursion 1 = 12.25 seconds

 if n == 1: return 1

 return n*factorial1(n-1)

def factorial2(n, x = 1): # Tail recursion 2 = 13.72 seconds

 if n == 1: return x

 return factorial2(n-1, n*x)

def factorial3(n): # non-Tail recursion = 11.88 seconds

 if n == 1: return 1

 return factorial3(n-1)*n

def factorial4(n): # Iteration = 5.51 seconds

 t = 1

 for n in range(1,n+1):

 t = t*n

 return t

def factorial5(n): �# Tail recursion with look-up

table = 12.36 seconds

 if n <=11:

 �return [0,1,2,3,24, 120, 720, 5040, 40320,362880,

3628800, 39916800][n]

 return n*factorial5(n-1)

Chapter 4 More Coding Tricks

38

Unrelated to this discussion is the following curiosity: The two single-

line functions below will both compute n factorial using the Python “and/

or trick” which probably should never be used. (For this trick to work, the

middle expression must always evaluate to True.)

def factorialA(n):

 return (n>1) and (n*factorialA(n-1)) or 1

#--

def factorialB(n, x = 1):

 return (n>1) and factorialB(n-1, n*x) or x

End of digression.

Can we do this better, or faster, or at least differently with building

a Fibonacci function? Searching the Internet, I discovered the curious

“Fibonacci matrix” (aka the Q matrix), where

An

n
n n

n n
=
æ

è
ç

ö

ø
÷ =

+() ()
() -()

æ

è
ç

ö

ø
÷

1 1

1 0

1

1

fib fib

fib fib

Or in code:

A**n = [[1,1], [1,0]]**n = [[fib(n+1),fib(n)],

[fib(n),fib(n-1)]],

At this point you should do what I did when I first encountered this

equation. Work out a few examples by hand to convince yourself that the

matrix equation is true. For example:

1 1

1 0

1 1

0

1 1

1 0

2 1

1

1 1

1 0

1 2 3
æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷
æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷
æ

è
ç

ö

ø
÷ =

1 1
, ,

33 2

1

1 1

1 0

5 3

2

1 1

1 0

233 144

4

12

2 3
æ

è
ç

ö

ø
÷
æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷ ¼

æ

è
ç

ö

ø
÷ =

, , ,

1444 89

1 1

1 0

46368 28657

17711

23
æ

è
ç

ö

ø
÷ ¼

æ

è
ç

ö

ø
÷ =

æ

è
ç

ö

ø
÷, ,

28657

Chapter 4 More Coding Tricks

39

This is not a proof, but will give you a feeling for why Fibonacci

numbers are popping out of these matrices.

Matrix multiplication may seem to be a slow way to generate Fibonacci

numbers, and it is if we need to multiply A by itself 22 times to produce the

23rd Fibonacci number (28657). [Note: 23 = 10111 in base 2.] But suppose

after generating the second Fibonacci number, A**2 = [[2,1],[1,1]], we

multiply A**2 by itself to get A**4 = [[5,3],[3,2]]. Then we multiply A**4

by itself and generate A**8 = [[34,21],[21,13]]. Then we multiply A**8

by itself and generate A**16 =[[1597,987],[987,610]]. It turns out that

X = A**23 = (A**16) * (A**4) * (A**2) * (A**1) =

[[46368,28657],[28657, 17711]].

Our answer is X[0][1] = 28657 = the 23rd Fibonacci number, with

only 7 (= 4 + 3) matrix multiplications instead of 22 matrix multiplications.

You still may not be impressed at the speed of this scheme. But imagine

trying to calculate the ten-millionth Fibonacci number.

Instead of calculating ten-million Fibonacci numbers (requiring almost

10,000,000 additions), we need only to calculate 23 (= 24-1) Fibonacci

numbers (requiring only 30 = 23+7 matrix multiplications). Where did the

24 come from? The number 10,000,000 expressed in base 2 has 24 digits.

print(bin(10000000)) # = 100,110,001,001,011,010,000,000 in

base 2.

Also, 24 is log-base-two of ten-million, rounded up, using the change-

of-base formula. Calculate this number now to check my work. Look up

the change-of-base formula for logarithms if you cannot remember it. Still

can’t do it? Then find someone who can show you how. Logarithms are

useful. You need some skill with them. The computation is in the footnote.2

2�Answer: ceil , , ceil
, ,

log
log

log2
10

10

10 000 000
10 000 000

2
()() = ()

()
æ

è
çç

ö

ø
÷÷÷ = 24.

Chapter 4 More Coding Tricks

40

We first need a utility function mul(A,B) that will multiply two 2x2

matrices. Then to find fib(23), we set A =[1,1,1,0] (not [[1,1],[1,0]],

because we wish to reduce the use of square brackets). Next, using mul()

we produce A**1, A**2, A**4, A**8, and A**16. We let X = A**23 =

A**16 * A**4 * A**2 * A**1. How do we do this? In other words, how

did we decide to ignore A**8 in the calculation of X? And how do we find a

sum of powers of 2 equal to an arbitrary positive integer? And are we sure

that it we can always find such a sum?

Here is a question I like to ask students before introducing the binary

system: An eccentric rich man liked to go shopping, but always wanted to

pay the exact amount (up to $100 with checks and 99 pennies) so that he

received no change back. Question: What is the fewest number of checks he

needed to write out before he went shopping? The answer is in the footnote.3

Since 23 in binary is 10111, reversing the digits and changing its

type to a string, we get ‘11101’. If we let X = the product of the (A**p)

expressions, for all positions p (the initial position is 1, not 0) where there

is a 1 in the reversed string, then the 23rd Fibonacci number is the answer.

This scheme always works, partly because any positive integer can be

represented as a binary number.

I have deeply regretted that I did not proceed far

enough at least to understand something of the great

leading principles of mathematics, for men thus

endowed seem to have an extra sense.—Charles

Darwin, Autobiography (recollections from

Cambridge 1828-1831).

3�Answer: 7 checks. The eccentric shopper must have a $1 check. Then if the next
check is for $2, he can buy anything up to $3. So his third check should be for $4.
Then he can buy anything up to $7. So his fourth check should be for $8. You see
the pattern: $1, $2, $4, $8, $16, $32, $64. By this argument any positive integer
can be expressed as the sum of distinct powers of two. So 23 is expressed as the
sum 1 + 2 + 4 + 16.

Chapter 4 More Coding Tricks

41

def fibIII(n): # 1.61 seconds. (Remember, fibA took 7.45 seconds.)

 def mul(A, B): # multiply two 2x2 matrices

 a, b, c, d = A

 e, f, g, h = B

 return a*e+b*g, a*f+b*h, c*e+d*g, c*f+d*h

 �A = [1,1,1,0] # = �Fibonacci matrix. We will

generate A, A**2, A**4, A**8,

A**16,

 # �etc., some of which can be

combined to produce matrix X.

 X = [1,0,0,1] # = �identity matrix, which will

later contains the answer:

 s = str(bin(n))[2:] # �x[1] = fibIII(n). The str(bin(n))

[2:] will change fibIII

 s = s[::-1] # �number to a binary string--e.g.,

n = 12 --> '1100'.

 �for n in range(len(s)): # �The s[::-1]will reverse digits in

a binary string.

 if s[n] == '1':

 �X = mul(X, A) # �Matrix X accumulates some of the

powers of matrix A--

 A = mul(A, A) # e.g., X = A**12 = A**4 + A**8.

 return X[1]

This is an impressive decrease in time. It does not use recursion and

simply strides toward the target number by making each step twice as big

as the previous step. But why not re-write fibIII and remove the call to

the embedded function? Surely that would make the function faster.

def fibII(n): # 2.10 seconds

 A = [1,1,1,0] # = Fibonacci matrix.

 X = [1,0,0,1] # = identity matrix.

Chapter 4 More Coding Tricks

42

 �s = str(bin(n))[2:] # Change fibII number to a binary

string--e.g., n = 12 --> 1100.

 �s = s[::-1] # Reverse digits in binary

string--e.g., 1100 --> 0011.

 for n in range(len(s)):

 if s[n] == '1':

 �X = X[0]*A[0] + X[1]*A[2], X[0]*A[1] + X[1]*A[3],

X[2]*A[0] + X[3]*A[2], X[2]*A[1] + X[3]*A[3]

 �A = A[0]*A[0] + A[1]*A[2], A[0]*A[1] + A[1]*A[3],

A[2]*A[0] + A[3]*A[2], A[2]*A[1] + A[3]*A[3]

 return X[1]

To my surprise, the fibII function is a little slower than fibIII. Can

you determine the cause by inspection? The mystery is explained in the

next function.

def fibI(n): # 1.37 seconds.

 a,b,c,d = 1,1,1,0 # = Fibonacci matrix.

 e,f,g,h = 1,0,0,1 # = identity matrix.

 �s = str(bin(n))[2:] # = base 2 representation of n--e.g.,

if n = 12, then s= "1100".

 �r = s[::-1] # �= reversed version of s--e.g.,

if s = "1100", then r= "0011".

 for n in range(len(r)):

 if r[n] == '1':

 �e,f,g,h = a*e+b*g, a*f+b*h, c*e+d*g, c*f+d*h

= X*Y (2x2 matrix mult).

 �a,b,c,d = a*a + b*c, a*b + b*d, c*a + d*c, c*b + d*d

= Y*Y (2x2 matrix mult).

 return f

Chapter 4 More Coding Tricks

43

The function fibI is exactly the same as fibII, except that fewer

list indices (with square brackets) were needed. Recall that a primitive

identifier (like a or x) is just a memory address. But each element in a list

(not an array of consecutive places in memory) is both a value and the

address of the following element. Thus to find x[3], the computer goes

to address x. Then it reads and moves to the next address: x[1]. Then it

reads and moves to the next address: x[2]. Finally, it reads and moves to

the next address: x[3]. The code in fibII required 12 of these read-and-

move operations. It is more efficient to look them up once, and then assign

the values to non-subscripted identifiers, than to keep looking up chained

addresses. Anyway, the speed improvement is small. Perhaps fibIII is to

be preferred, because it is simpler to understand.

The following formulas can be derived from the Fibonacci matrix. Can

you derive them?

fib(2*k) = fib(k)*(2*fib(k+1)-fib(k)) [= fib(k)*(fib(k+1)+

fib(k-1))],

fib(2*k+1) = fib(k+1)**2 + fib(k)**2.

Initially, I could not derive these formulas, but I used them anyway.

Then it annoyed me—really annoyed me—that I could not derive these

linear algebra formulas. What kind of precalculus teacher was I? So I went

back and fiddled with A**n * A**n = A**(2n). Twenty minutes later, out

popped the answer. (Actually I worked backwards from the answer to find

the derivation.)

Many mathematicians use classical theorems that they themselves

cannot prove. There is no problem in using mathematics that has been

verified by experts, even if we can’t follow their proofs. However, you

need to be aware of constraints/restrictions/limits/riders/provisions/

boundaries/special cases, etc.

Chapter 4 More Coding Tricks

44

Both computer scientists and physicists often do what is called non-

rigorous mathematics—i.e., mathematical thinking based on analogies

and apparent patterns, reasoning that would not be acceptable to a

mathematician. This works in computer science because the computer

scientist then writes a program that works, based on the math, and thereby

confirms (to a degree accepted by some) the mathematics. In a similar

way, the physicist builds stuff that works, thereby confirming (to a degree

accepted by some) the mathematics. Of course, it would be better to prove

the mathematics rigorously, but that often requires symbol-manipulation

skills a researcher does not have. And to develop those skills (if even

possible) would take time away from research. Most modern research is

done with teams, partly because ambitious projects take too much time for

one person, but also because too few people have all the skills needed for a

big project. By the way, what is the definition of “proof”?4

Notice below that 1) no else or elif is necessary in fibJJ. Some

people like to put them in anyway, and 2) we prefer fibJ(k)**2 to

fibJ(k)*fibJ(k) to cut the recursive calls in half.

def fibJJ(n): # 3158.00 seconds

 if n < 3:

 return 1

 if (n%2) == 0:

 k = n//2

 return fibJJ(k)*(2*fibJJ(k+1)-fibJJ(k))

 k = (n-1)//2

 return fibJJ(k+1)*fibJJ(k+1) + fibJJ(k)*fibJJ(k)

4�My definition: A proof is a convincing argument. Consequently, a proof can be
wrong. There are several famous cases of this in the history of mathematics.
Kempe’s published proof and Tait’s published proof of the four-color theorem
come to mind. Each went unchallenged for 11 years. Also, what is accepted as
a proof for one generation is sometimes not sufficient for a later generation.
“Sufficient unto the day is the rigor thereof.”—E.H. Moore (1903).

Chapter 4 More Coding Tricks

45

I was surprised at how slowly the fibJJ code executed, but I had been

concentrating on just getting the function to return correct values. A few

days later, I came back to it with fresh eyes, and immediately realized how

inefficiently I had written this code. I rewrote the code and reduced the

time from 3158 seconds to 38 seconds. Then I replaced the 2-value base

case with a 17-value base case look-up table and reduced the time down to

5 seconds (fibJ) . Never fail to consider the power of a look-up table.

def fibJ(n): # 5.00 seconds

 if n < 18:

 return [0,1,1,2,3,5,8,13,21,34,55,89,

 144,233,377,610,987,1597,][n]

 if (n%2) == 0:

 k = n//2

 f = fibJ(k)

 g = fibJ(k+1)

 return f*(2*g-f) # = fibJ(k)*(2*fibJ(k+1)-fibJ(k))

 k = (n-1)//2

 f = fibJ(k)

 g = fibJ(k+1)

 return g*g + f*f # = fibJ(k+1)*fibJ(k+1) + fibJ(k)*fibJ(k)

And now maybe you see why I chose not to use the formula

fib(2*k) = fib(k)*(fib(k+1)+fib(k-1))]. That formula would require

the code to make three recursive calls, not two calls.

The fibJ() function still recalculates a few of the same Fibonacci

numbers. So, we introduce memoization to avoid recalculating the same

numbers. But the code now becomes more complicated. Do we ever want

to write code like this? Only when we MUST have speed, and this function

is indeed fast.

Chapter 4 More Coding Tricks

46

def fibK(n, dict = {}): # 1.19 seconds

 if n < 18:

 return [0,1,1,2,3,5,8,13,21,34,55,89,

 144,233,377,610,987,1597,][n]

 if (n%2) == 0:

 k = n//2

 if k not in dict:

 dict[k] = fibK(k, dict)

 A = dict[k]

 if (k+1) not in dict:

 dict[k+1] = fibK(k+1, dict)

 B = dict[k+1]

 return 2*A*B-A*A

 else:

 k = (n-1)//2

 if (k+1) not in dict:

 dict[k+1] = fibK(k+1, dict)

 A = dict[k+1]

 if k not in dict:

 dict[k] = fibK(k, dict)

 B = dict[k]

 return A*A + B*B

Digression: Please note that in Python a default parameter usually

should not be set to the empty set (or empty list) as I did above: dict = {}.

Even though the code works fine, a second run of fibK, without the program

ending will not reset dict = {}. Consequently the dictionary will not need

to be re-built on the second call, which will make the function appear faster

Chapter 4 More Coding Tricks

47

than it is in repeating tests. I have been caught by this Python peculiarity

more than once. Look at this code:

def doIt(dict ={}):

 print(dict)

 dict['A'] = 1

def main():

 doIt() # output: {}

 doIt() # output: {'A': 1}

Here are two ways to fix the problem.

def doIt(Lst = None):

 if Lst == None: Lst = []

 Lst.append('x')

 return Lst

def main():

 print(doIt()) # output: main ['x']

 print(doIt()) # output: main ['x']

def doIt(Lst = None):

 Lst = Lst or []

 return Lst

def main():

 print(doIt()) # output: main ['x']

 print(doIt()) # output: main ['x']

Recall that Python or and and both return the last value examined.

Thus, if Lst = None (= False), then the computer is forced to examine []

and return []. To keep fibK simple, I left it the way I initially wrote it. End

of digression.

Chapter 4 More Coding Tricks

48

Function fibK is one of the most complicated functions in this list.

Can we clean it up? Yes, by returning two values. Unfortunately, this

makes the function more difficult to use. On two occasions I took the

answer to be the second value, not the first. The function fibL is both

simpler to look at than fibK, and faster. Appending the 17-value look-up

table only increases the speed by about 25%. Maybe I should have tried a

100-value look-up table.

def fibL(n): # 0.63 seconds [0.46 seconds with the look-up

table.]

 if n == 0:

 return (0, 1)

if n < 18: # Optional base case look-up table.

�return [(0,1),(1,1),(1,2),(2,3),(3,5),(5,8),(8,13),

(13,21),(21,34),(34,55),

�(55,89),(89,144),(144,233),(233,377),

(377,610),(610,987),(987,1597),

(1597,2584),][n]

 else:

 �a, b = fibL(n // 2) # a = fibL(2*k); b = fibL(2*k+1).

 �c = a*(2*b - a) # �fibL(2*k) =

fibL(k)*(2*fibL(k+1) - fibL(k))

 �d = a*a + b*b # �fibL(2*k+1) = fibL(k+1)**2 +

fibL(k)**2

 if (n%2) == 0:

 return (c, d) # return fibL(k), fibL(k+1)

 else:

 return (d, c + d) # return fibL(k), fibL(k+1)

Chapter 4 More Coding Tricks

49

We have not yet discussed memory usage. So we ask each function to

calculate the ten-millionth Fibonacci number, which ends in 380546875

and has 2089877 digits. We are in for a surprise. The function fibK is now

slightly faster than fibL.

	 1.	 fibA = 949.76 seconds (almost 16 minutes).

	 2.	 fibB = impossible

	 3.	 fibC = maximum recursion depth exceeded.

	 4.	 fibD = maximum recursion depth exceeded.

	 5.	 fibE = maximum recursion depth exceeded.

	 6.	 fibF = maximum recursion depth exceeded.

	 7.	 fibG = overflow, result too large.

	 8.	 fibH = maximum recursion depth exceeded.

	 9.	 fibI = 24.09 seconds

	 10.	 fibJ = 3.23 seconds

	 11.	 fibK = 2.32 seconds

	 12.	 fibL = 2.55 seconds

Overall, which function is the best?

fibA is easy to understand, but too slow for big

numbers.

fibI is slow compared to others, but easier to

understand.

fibJ is 5 times faster than fibI, but uses formulas

some programmers can’t derive.

fibK is fastest, but it is complicated.

Chapter 4 More Coding Tricks

50

fibL is shorter than fibK, almost as fast as fibK, but

returns two values, which have tripped me up twice

in testing the code.

The question of which is best, like many questions in life, turns out to

be senseless, because we do not have a single standard for “best.”

Recall that algorithms, along with their instantiation as functions, are

evaluated traditionally by THREE criteria:

	 1.	 speed (“Better” is the enemy of “good enough.” You

might not need super speed.) To confuse matters,

functions that are second best on one set of data

sometimes turn out to be best on a different set of

data.

	 2.	 readability (ease in debugging, modifying, and

understanding). Of course, some functions are

difficult to understand no matter how they are

written.

	 3.	 memory (memory hogs are impractical).

Years ago, as a student, I wrote the quick sort. My code sorted almost

all the numbers, but a few were left unsorted. I had used a “<” when I

should have used a “<=”. Lucky for me that I tested the code with a large

number of integers (not floats), in a small range (two-digits), and with a

checking routine so that I did not have to visually inspect the output for

correctness. If I had not done all of this, then it is unlikely that any of the

test cases would have failed. My code only failed when I had duplicate

numbers, and sometimes not even then. So imagine that my flawed

quick sort was a small part of a large student program. I would have been

convinced that my sort was correct. And because of limited time and

energy, I might never have re-tested the sort.

Chapter 4 More Coding Tricks

51

My point is this: There is more to evaluating an algorithm than the

three criteria stated previously. The ease of understanding an algorithm,

its level of difficulty in translating into computer code, and the difficulty

of using that code in other programs also are significant properties of an

algorithm.

My definition of technology: hardware, software, and algorithms.

Chapter 4 More Coding Tricks

Coding Advice

PART II

55© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_5

CHAPTER 5

Function Design
I claim that using functions effectively is tricky, and will try to convince

you of this claim with the following examples.

Most of the time you want to create functions that do only one task.

No multi-purpose functions—most of the time. I once wrote a graphics

program to read in an image file and print it in color (one function) or print

it in gray-scale (another function). Much of the code in two functions was

the same, or almost the same. Using a Boolean parameter (colorFlag),

both the gray and color functions could be combined into one function.

Thus, I had one less function for the price of four extra lines. See below.

AN EXAMPLE OF MULTI-PURPOSE CODE

WIDTH = 512

HEIGHT = 512

class ImageFrame:

 �def __init__(self, colors, wd = WIDTH, ht = HEIGHT,

colorFlag= False):

 self.img = PhotoImage(width = wd, height = ht)

 for row in range(ht):

 for col in range(wd):

 num = colors[row*wd + col]

 if colorFlag == True:

 �kolor ='#%02x%02x%02x' % (num[0], num[1],

num[2]) # = color

56

 else:

 �kolor ='#%02x%02x%02x' % (num, num, num)

= gray-scale

 self.img.put(kolor, (col,row))

 c = Canvas(root, width = wd, height = ht); c.pack()

 c.create_image(0,0, image = self.img, anchor = NW)

 printElapsedTime ('displayed image')

When I reviewed my work a year later, I had to read the code—not

just the name of the function—before I could understand what colorFlag

did. If the code had been kept as two functions with descriptive names

ImageFrameForColorList and ImageFrameForGrayScaleList, then

there would be no colorFlag to understand. The common code in both

functions could be extracted into a third function, which could be called

by both the gray-scale function and the color function. The justification for

this third function is that any change in the common code would need to

be done only once (DRY: don’t repeat yourself). The danger with repeated

code is that you may change it in one place without realizing that it needs

to be changed in another place.

This example is a nice illustration of cohesion vs. coupling. Placing

all the code to solve these two related tasks in one function increases

the cohesion (usually good). Spreading it out to two or three functions

increases the coupling of the functions (usually bad). So which scheme

is better—the single function, the two functions, or the three functions?

My feeling is that because of the simplicity of the code (at least to me)

keeping it all in one function makes the code easier to understand and

to debug. Often when we follow one guideline (maximize cohesion and

thereby minimize coupling) we violate another principle (limit functions

to single tasks). Whatever your decision, be aware of the issues involved.

Programming expert Ward Cunningham stated this perfectly: “If you don’t

Chapter 5 Function Design

57

think carefully, you might think that programming is just typing statements

in a programming language.”1

How long should a function be? Programmers Brian Kernigham and

P.J. Plauger once mentioned that the median size of their functions was 15

lines, and the mean was 19 lines.2 It seems that rarely should a function

contain more lines than will fit on a screen. My text-editing screen holds

38 lines with the type size I like. But, of course, we never seek small; we

seek readability. Here are my 34 lines of code to determine if an n×n

Sudoku board is a solution.

def solutionIsCorrect(matrix):

#---Build lists of rows and columns.

 rows = [[]] * MAX

 cols = [[]] * MAX

 for r in range(MAX):

 for c in range(MAX):

 rows[r].append(matrix[r][c].value)

 cols[c].append(matrix[r][c].value)

#---Build list of blocks.

 block = []

 for n in range(MAX):

 block.append([])

 for n in range(MAX):

 for r in range(blockHeight):

 for c in range(blockWidth):

 row = (n//blockWidth)*blockHeight+r

 col = (n%blockHeight*blockWidth) +c

 block[n].append(matrix[row][col].value)

1�Found in Andrew Hunt and David Thomas, The Pragmatic Programmer (Addison
Wesley, 2000), page xiii.

2�Software Tools in Pascal (Addison-Wesley, 1981), page 189.

Chapter 5 Function Design

58

#---Check all rows for all n digits.

 for r in rows:

 for n in range(1, MAX+1):

 �if {n,} not in r: # <--The type must be set({n}),

not int (n).

 return False

#---Check all columns for all n digits.

 for c in cols:

 for n in range(1, MAX+1):

 if {n,} not in c:

 return False

#---Check all blocks for all n digits.

 for b in block:

 for n in range(1, MAX+1):

 if {n,} not in b:

 return False

 return True # True means NO errors in the matrix.

Why not push the little parts into their own functions and call them

from this function? The answer is that the parts are pretty simple to

debug. There is not much complexity to reduce, so I chose cohesion over

coupling. Notice that comments are used as function headers. This works

well when the multi-tasked function can be broken into a set of related and

simple single-tasked parts.

Why would anyone bother to create a one-line function, instead

of using the one line of code itself? The answer is that the name of the

function is easier to understand than the single line of code. But doesn’t

the single line of code eventually have to be understood? Not unless we are

debugging or modifying that particular line of code. Wouldn’t you rather

encounter the Boolean expression (in the Nelder-Mead algorithm)

Chapter 5 Function Design

59

if triangleHasNotConverged(count, A, B, C):

 return

which references this function

def triangleHasNotConverged(count, A, B, C): # Boolean result

 return (count < MAX_TRIANGLE_COUNT and

 �SMALLEST_TRIANGLE_SIZE < max(B.dist(C), A.dist(B),

A.dist(C)))

rather than this ugly line:

If (count < MAX_TRIANGLE_COUNT and

 SMALLEST_TRIANGLE_SIZE < max(B.dist(C), A.dist(B), A.dist(C))):

 return

I once wrote the function makeComputerReply() to make a game

move (in Othello) on the screen. That was a short function that performed

just one task, or so I thought. But what the function actually did was 1)

calculate where the move should be, 2) call another function to make the

move in an internal matrix, and then 3) display the move on the screen.

Since 2) and 3) always occur together, maybe they can be considered to be

one task. Still, that is two tasks, not three. If someone had pointed this out

to me, I would have said that breaking up the function would have added

complexity to the program, not reduced it: cohesion over coupling. The

function call would need to be changed from the simple

makeComputerReply()

to the more complicated

bestCol, bestRow, finalPieces = makeComputerReply()

makeMoveInMatrixAndOnScreen (bestCol, bestRow, finalPieces,

COMPUTER)

Chapter 5 Function Design

60

I later returned to my program and realized that the code that

calculated the computer’s best one-ply move, with a small modification,

could also calculate the human’s best one-ply counter-reply. Thus,

the computer could think ahead two-ply instead of one-ply. And if

it could do two-ply then it could do four-ply and make some deeply

thought-out moves. All this could be accomplished by redesigning the

makeComputerReply() function.

But as I said, the function I was trying to modify also inserted each

move in a matrix and printed the move on the screen. So I had to remove

the insert-and-print code from the function, and place it underneath the

call to the now-renamed bestResponse(player). The original design

decreased complexity for understanding the code, but increased the

complexity for modifying the code. Previously, I didn’t know that such a

situation was possible. What a surprise.

Now assume you are writing a program which needs both a 2D- and

a 3D-distance function. Which of the three methods below would you

choose?

METHOD 1 (two functions)

def distance2D(x,y):

 assert len(x) == len(y) == 2

 return sqrt((x[0]-y[0])**2 + (x[1]-y[1])**2)

def distance3D(x,y):

 assert len(x) == len(y) == 3

 �return sqrt((x[0]-y[0])**2 + (x[1]-y[1])**2 +

(x[2]-y[2])**2)

#---

METHOD 2 (one function with a for loop)

def distance(x,y):

 assert len(x) == len(y) and len(x) in {2,3}

 total = 0

Chapter 5 Function Design

www.allitebooks.com

http://www.allitebooks.org

61

 for n in range(len(x)):

 total += (x[n]-y[n])**2

 return sqrt(total)

#---

METHOD 3 (one function with a loop comprehension)

def distance(x,y):

 assert len(x) == len(y) and len(x) in {2,3}

 return sqrt(sum([(x[n]-y[n])**2 for n in range(len(x))]))

Why would you write two functions when one function would work? A

reasonable reply is that the two function names are more descriptive than

the single-function names. And the two functions are easier to debug than

the more powerful single functions. Nevertheless, because calculation of a

distance is simple, and because I am used to list comps, I prefer Method 3.

BTW, unless you know that you are likely to extend a function, do not

make it general. Even if you know, you may still prefer to get your program

working with simpler functions.

That being said, I actually think Method 3 can be improved by

unrolling the for loop, which I show below. This brings us to another

question. Which of the four error messages shown below do you prefer to

finish Method 4?

METHOD 4 (one function with no loops)

def distance(x,y):

 if len(x) == len(y) == 2:

 return sqrt((x[0]-y[0])**2 + (x[1]-y[1])**2)

 if len(x) == len(y) == 3:

 �return sqrt((x[0]-y[0])**2 + (x[1]-y[1])**2 +

(x[2]-y[2])**2)

Chapter 5 Function Design

62

Finish this function by choosing an error trap below.

#---Exit message A

 exit('Error in distance function.')

#---Exit message B

 assert(False), 'Error in distance function.'

#---Exit message C

 �msg = 'len(x) = '+ str(len(x)) + ' and len(y) = '+

str(len(y))

 assert False, 'Error in distance function: ' + msg

#---Exit message D

 �msg = 'len(x) = '+ str(len(x)) + ' and len(y) = '+

str(len(y))

 exit('Error in distance function: ' + msg)

My answer is in the footnote. 3

Recall the old alphametic puzzle SEND + MORE = MONEY,4

where each letter represents a different digit. The unique solution is

9567 + 1085 = 10652. I once assigned a class to write a program that would

find all solutions of any alphametic—e.g., DOG * CAT = FIGHT has 16

solutions. I did this because I wanted the students to become familiar

with the powerful Python commands eval, maketrans, and translate

commands. The code I produced (shown below) surprised me.

3�My choice is B. Exit messages C and D take too much time and code for an error
that I expect rarely will be made. Message A simply exits the program with an
error message. Message B does the same as A, but also causes the cursor to be
placed on the assert line in the function.

4�The alphametic was invented by Henry Dudeney, and first published in the July
1924 issue of the British Strand magazine.

Chapter 5 Function Design

63

Teacher's solution

########################<BEGIN PROGRAM>########################

def createAlphametic():

 from itertools import permutations

 �from re �import findall # re stands for regular

expressions.

 puzzle = 'SEND + MORE == MONEY' # Notice we use '==', not '='.

 puzzle = 'OOOH + FOOD == FIGHT' # 8886 + 1883 == 10769

 �print(' NOW ATTEMPTING TO FIND ALL\n SOLUTIONS FOR THIS

ALPHAMETIC\n PUZZLE:', puzzle)

 solutionFound = False

 count = 0

 �words = findall�('[A-Z]+', puzzle.upper())

 # words = ['SEND', 'MORE', 'MONEY']

 �keys = set(''.join(words))

 # keys = {'Y', 'S', 'R', 'M', 'O', 'N', 'E', 'D'}

 if len(keys) > 10:

 �print('--- ERROR: The puzzle has MORE than ten letters.')

 exit()

 �initialLetters = �{word[0] for word in words}

 # Example: initialLetters = {'M', 'S'}

 numberOfInitials = len(initialLetters)

 �keys = ''.join(initialLetters) + ''.join(keys -

initialLetters) # Example: keys = 'MSEDONRY'

 for values in permutations('1234567890', len(keys)):

 �values = ''.join(values) # Example: ('1', '2',

'3', '4', '5', '6', '7', '8') becomes '12345678'

 �if '0' in values[0:numberOfInitials]:

 # No zeros are allowed in initial letters.

Chapter 5 Function Design

64

 �continue # If eval() finds a number

beginning with zero, it will throw an exception.

 �# 'M': 3, 'S': 8, 'E':

5, ...}

 �table = �str.maketrans(keys, values)

table = {77: 51, 83: 56, 69: 53, ...}

 �equation = �puzzle.translate(table)

Example: equation = 8514 + 3275 == 32156

 if eval(equation):

 solutionFound = True

 if count == 0:

 print('------------------------------------')

 print('All solutions are listed below:')

 count += 1

 print(count,'. ', equation, sep = '')

 if not solutionFound:

 print('No solutions exist.')

#-------------------------ALPHAMETICS-------------------------

def main():

 createAlphametic()

#-------------------------ALPHAMETICS-------------------------

if __name__ == '__main__':

 �from time import clock; START_TIME = clock(); main();

print('\n+===<RUN TIME>===+');

 �print('| %5.2f'%(clock()-START_TIME), 'seconds |');

print('+================+')

#######################<END OF PROGRAM>#######################

Chapter 5 Function Design

65

Why did I not use stepwise refinement, and break the code into single-

task functions? For example, why not break it up like this:

 def main():

 puzzle = createAlphametic()

 solutionSet = solveAlphametic(puzzle)

 printResults(solutionSet)

This, in fact, is how I started to code the assignment. However, the

program generally took 30 seconds or longer to run, and I wanted to see

the results as they were discovered, and not printed out all at once at the

end. This meant I would have only two calls in the main function. But

the createAlphametic() function was so simple that it didn't add much

clarity by being separated from the other function. The result is that this

complicated code does not become more readable by being broken up

into several small functions. Then why not stuff all the code into the main

function? My policy is to call any key block of code with a descriptive

name. The main function should call at least one other function. My only

exception to this policy is teaching-code that is designed to illustrate

syntax.

Here is another exception. When I designed a toy neural network,

I wrote a function that created both training data and random weight

values. (See below.) This is two tasks. The tasks were so short, simple, and

related that it only made sense to stuff them into the same function: again,

cohesion over coupling.

def createNetwork(iMax = 8, jMax = 3, kMax = 8):

#---Create the training data.

 inputs = �[[1,0,0,0,0,0,0,0,-1], [0,1,0,0,0,0,0,0,-1],

[0,0,1,0,0,0,0,0,-1],

 �[0,0,0,1,0,0,0,0,-1], [0,0,0,0,1,0,0,0,-1],

[0,0,0,0,0,1,0,0,-1],

 [0,0,0,0,0,0,1,0,-1], [0,0,0,0,0,0,0,1,-1],]

Chapter 5 Function Design

66

#---Create the w and v weights.

 �w = [[uniform(-2,2) for col in range(jMax)] for row in

range(iMax+1)] # = 9 rows & 3 cols

 �v = [[uniform(-2,2) for col in range(iMax)] for row in

range(jMax+1)] # = 4 rows & 8 cols

 return inputs, w, v, h

Here is my point: The rules of limiting a function to a single task and

breaking up its parts by using stepwise refinement are important and

need to be followed—usually. Rules are human constructions and are not

perfect. They are just guides. One oft-quoted expert rule about coding is

“special cases aren’t special enough to break the rules.” I disagree; different

environments and different situations require different policies.

I first encountered the warning to be wary of rules in a philosophy

book: “Morality is valuable so long as it is recognized as a means to an

end; it is a good servant, but a terrible master.”5 Are there no absolute

rules in life or programming? After a lifetime of thinking, I’m still not sure.

Consider this: In writing code, readability comes first, if optimization is

not necessary, and if the time cannot be better spent elsewhere. Is that an

absolute rule?

5�Alan W. Watts, The Spirit of Zen (Grove Press, 1958), page 61.

Chapter 5 Function Design

67© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_6

CHAPTER 6

Self-Documenting
Code

I feel disloyal but dauntlessly truthful in saying that

most scientists do not know how to write, insofar as

style does betray l’homme même [the man himself],

they write as if they hated writing and wanted above

all else to have done with it.—Sir Peter B. Medwar

(Nobel Laureate), Advice to a Young Scientist

(Harper & Row, 1979), page 63.

It is remarkable that nearly all scientists, at the point

where they turn from mathematical or chemical

language to English, seem to feel relieved of any

further obligation to precise terminology.—Robert

Graves and Alan Hodge, The Use and Abuse of the

English Language (Paragon, 1970), page 227.

Few people realize how badly they write.—William

Zinsser, On Writing Well, 5th ed. (Harper, 1994),

page 19.

68

All good writing is self-taught. The truth remains

that the would-be writer, using a book or critic, must

teach himself.—Jacques Barzun, Simple & Direct

(Harper & Row, 1975), page 3. [In 2003, Professor

Jacques Barzun (Columbia University) received the

Presidential Medal of Freedom for his influential

writings.]

The point of the above quotations is that clear communication is difficult.

If we change the language from English to a computer language, does the

difficulty reduce to the point that anyone who tries will do well? I don’t

believe so, and my proof is the poorly named, over-abbreviated, awkwardly

structured code we can find on the Internet and in some computer books.

The key to readability in computer code is self-documenting code,

code that reveals its intent by careful structuring (cohesion with related

tasks, coupling of single tasks) and choice of identifiers (descriptive names

for both functions and data).

As a general convention, class and variable names should be nouns or

noun phrases, and function names should be action verbs or verb-object

phrases. I sometimes name a function as a noun describing the returned

item—e.g., result (for a tic-tac-toe win, lose, or draw), symbol (for a

character that is returned). Someone suggested that all Boolean functions

should begin with is. Thus, allVowels should be isAllVowels. Initially,

I didn’t think much of this advice, but then I noticed that it actually

made some of my code read like English sentences. So now I follow this

suggestion. My advice is to avoid using joke names, cute words, and

offensive words. I have always found the names foo, bar, baz, and spam

Chapter 6 Self-Documenting Code

69

to make examples less clear. Their use seems to be showing off with an

insider’s joke.1 I prefer the generic function name doIt (verb-object).

Of course, creating descriptive names is difficult at the beginning

when you are more focused on just getting the code to work and function

tasks are still being modified. Perhaps a good example to look at is a set of

identifiers that tell us nothing:

def process(argument, parameter, data, whatIsIt):

 ...

 something = action(value)

 entity = call(variable)

 stuff = phunction(identifier)

 ...

How about the easy-to-write variables bug, cat, cow, dog, fly, fox, hen,

hog, pig, and rat, or even it? (I’ve seen thingy, stringy, and obscene

terms in student code.) Can you think of worse names? Yes, that’s easy:

identifiers that can’t be pronounced, like l01O, oO0Oo, and a bunch of

underscores: ____.That being said, the single underscore (_) actually has

at least two uses as a variable. Consider the goal of printing the sum of the

numbers in this list:

Lst = [('A', 1), ('B',2), ('C', 3), ('D',4),]

1�These place-holders are technically known as “metasyntactic variables.” See
Wikipedia. The foo and bar terms have unknown origin, but may be related to
the military slang Fubar, “fouled (sic) up beyond all recognition.” The spam term
(possibly “spiced ham” introduced in 1937) is in reference to a Monty Python
comedy skit, which is available on YouTube (“Monty Python Spam”). As the
reader may already know, the name “Python” was chosen in reference to the
six-member British comedy group known as Monty Python’s Flying Circus (45
TV episodes from 1969 to 1974, and five movies, the last in 1983). The humor of
this group strikes different people in different ways. When I showed the YouTube
“Monty Python Argument Clinic” to my students, some thought it was hilarious,
while others were clearly bored.

Chapter 6 Self-Documenting Code

70

Following are two methods to do this. Which is better?

#---Method 1

 total = 0

 for (ch,num) in Lst:

 total += num

 print('total =', total) # output: total = 10

#---Method 2

 print('total =', sum([num for (_,num) in Lst]))

 # output: total = 10

Notice that the underscore is used as a throwaway variable in the

second method. If this is the first time you have seen it, this will seem a

poor choice for an identifier, but I have seen it used in commercial code on

several occasions. It says to the reader that this is a place-holder variable—

i.e., we have to have it, but we never use it.

I find Method 1 more readable, yet I recommend Method 2. Why?

Because Method 2 is more Pythonic, more professional. We need to get

comfortable reading code the way professionals prefer to write it, as in this

case with a list comprehension and with the underscore used as a dummy

variable.

Here is another use for an underscore:

_ = 0 # <-- The underscore is the constant 0.

Easy to read

M = [[3, _, 4, _, _, 6,],

 [_, 7, _, _, _, _,],

 [_, _, _, 9, _, _,],

 [_, _, 5, _, _, _,],

 [2, _, _, _, 1, _,],]

Chapter 6 Self-Documenting Code

71

Less easy to read.

M = [[3, 0, 4, 0, 0, 6,],

 [0, 7, 0, 0, 0, 0,],

 [0, 0, 0, 9, 0, 0,],

 [0, 0, 5, 0, 0, 0,],

 [2, 0, 0, 0, 1, 0,],]

Somewhere I read we should avoid similar names like str1 and str2,

because it is too easy to type one for the other, and the difference between

the names is not meaningful. It seems to me that this idea is not true in a

small scope.

Now for a little experiment. I wrote some code where I needed two

random numbers chosen between 0 and 1, with the first number less than

or equal to the second number. I thought of four choices for their names:

(randomNum1, randomNum2), (r1, r2), (x, y), and (a, b). Which code segment

below would you prefer to debug?

Version 1

 for n in range(totalRuns):

 randomNum1, randomNum2 = random(), random()

 if randomNum1 > randomNum2:

 randomNum1, randomNum2 = randomNum2, randomNum1

 if (randomNum1 > 0.5 or randomNum2-randomNum1 > 0.5

 or randomNum2 < 0.5):

 noTriangleCount += 1

 else:

 triangleCount += 1

Version 2

 for n in range(totalRuns):

 r1, r2 = random(), random()

 if r1 > r2:

 r1, r2 = r2, r1

Chapter 6 Self-Documenting Code

72

 if (r1 > 0.5 or r2-r1 > 0.5 or r2 < 0.5):

 noTriangleCount += 1

 else:

 triangleCount += 1

Version 3.

 for n in range(totalRuns):

 x, y = random(), random()

 if x > y:

 x, y = y, x

 if (x > 0.5 or y-x > 0.5 or y < 0.5):

 noTriangleCount += 1

 else:

 triangleCount += 1

Version 4.

 for n in range(totalRuns):

 a, b = random(), random()

 if a > b:

 a, b = b, a

 if (a > 0.5 or b-a > 0.5 or b < 0.5):

 noTriangleCount += 1

 else:

 triangleCount += 1

I chose Version 4 (a and b), because single-letter identifiers are the

easiest to read, and a and b have a psychological order (a < b). So do x and

y, but they also come with a history of y being a function of x (not here).

The only other common pair I know is p and q, which are used for pointers

or positions in a list. The following two functions do the same task: They

flatten a list—e.g., they both will turn

[0, [1, [2, 3, [4, 5]], 6, [7]], [8, 9]]

Chapter 6 Self-Documenting Code

73

into

[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]

So, which function below is more readable: the first using the

descriptive newLst, or the second using the ambiguous y?

def flatten(Lst): # Recursive

 newLst = []

 for x in Lst:

 if type(x) == list:

 newLst.extend(flatten(x))

 else:

 newLst.append(x)

 return newLst

def flatten(Lst): # Recursive

 y = []

 for x in Lst:

 if type(x) == list:

 y.extend(flatten(x))

 else:

 y.append(x)

 return y

Again, I think y.append(x) is easier to understand than the newLst.

append(x), even though newLst is more descriptive than y. How can a

variable that is more readable in isolation be less readable in code? Well,

usually it can’t, but this code is simple enough that the information in

the name newLst is not needed. What is helpful is that we expect y to be

a function of x, and that is exactly the case here. When we have small

fragments of simple code, one-letter variables can be more readable than

multi-word descriptive variables. The general rule is the greater the scope

the longer the identifier. That is a general rule, not an absolute, dogmatic law.

Chapter 6 Self-Documenting Code

74

The biggest trap in naming variables is not making them descriptive

enough. The second biggest trap is to over-abbreviate their names. That

being said, short and single-letter identifiers are acceptable for loop

indices and temporary variables of short scope. Even these tiny tots can be

descriptive. Of course, never use o2 or O (they both look like zero: 0), and

avoid the letter l (it looks like one: 1). Here are some descriptive single-

letter identifiers.

b for Boolean (bool is built-in)

c and maybe k for constant (maybe const1 and

const2 are better)

f for function, not for flag (use flag for flag)

g for function (after using f)

h for heuristic function

i and j and maybe k for loop indices3 (and maybe

sometimes n, num or indx)

p for position or pointer

Q for queue (but why not use queue, or even que?)

r for random (maybe rand is better), but not the

module name random.

t for total (or tot, or even total, but not the built-in

function sum). Perhaps use t for time, or tictoc for

time, but not the module name time.

2�I have a C++ textbook in which the author uses o for output. Wouldn’t output be
better?

3�Both indexes and indices are equally acceptable plurals, but indices is preferred
for mathematical and technical use. The for loop i probably stands for index, not
integer.

Chapter 6 Self-Documenting Code

75

M for matrix (maybe matrix is better)

(r,c) for row and column (maybe row and col are

better)

(x,y, and maybe z) for coordinates

(a,b) for first and second values

x[n], y[n], and z[n] for arrays, but arrayX, arrayY,

and arrayZ may be better

ch and kh for characters, etc.

I try to avoid the following:

d for distance (dist is better)

m for maximum (big or maximum is better, but not the

built-in max)

p for probability (prob is better)

s or s1 for string (stng and str1 are better)

Even neutral identifiers like args, other, data, info, collection and

result are acceptable for a short scope where their meaning is either

obvious or explained in an inline comment. For example,

data = ['-',0,0,0,0,0,0,0,0,0,] # �Distances to goal node from

nodes 1-9.

In the following code, I shortened an identifier and made the code

more readable.

Original version:

def fb(node):

 if node == 9: return 0

 shortestDistanceFromNodeToGoal =

Chapter 6 Self-Documenting Code

76

 �min([dist + fb(neighbor) for (dist, neighbor) in

graph[node]])

 return shortestDistanceFromNodeToGoal

Improved version:

def fb(node):

 if node == 9: return 0

 shortest = �min([dist + fb(neighbor) for (dist, neighbor) in

graph[node]])

 return shortest #� = shortest distance from current node to

goal node

Follow mathematical notation where possible. In math books, we write

linear vector equations like this:
� � �
y mx b= + or like this Y = mX + b,4 not like

this (unless we have no choice):

outputVector = matrix*inputVector + auxiliaryVector.

We do this because the first two expressions are more readable than

the third expression. The rules for naming mathematical constants/

variables/parameters are different from naming program variables/

functions/modules/libraries/files/directories. Try to go with the math

conventions when programing mathematical expressions.

I saw one program author use the identifiers start and end for two

positions in a list. That is clear enough, but I would have preferred English

idioms—e.g., begin and end, or start and stop, or first and last, or even

left and right. He also used piv for pivot. Why not spell it out?

Suppose we have a list of men’s heights. A reasonable identifier for

the list is mensHeights. But when we choose just one element we must

use mensHeights[n] for a single man’s height. The identifier is fine for the

4�In the linear equation y = mx + b, the m can be thought of standing for “matrix.” A
scalar can be thought of a 1×1 matrix.

Chapter 6 Self-Documenting Code

77

list, but less so for an element in the list. No language is perfect. So, which

identifier should we choose? I prefer mensHeights over mansHeight.

The following line of Python code, where A is a Vector object, caused

an error (aka raising, throwing, and generating an exception):

print(A*2)

The error resided in this Python method found in a student’s Vector

class:

def __rmu1__(self, entity):

return self*entity

I could not find the error, because the code is actually correct. So what

was causing the error? Here is the corrected code:

def __rmul__(self, entity):

return self*entity

Does the corrected code look exactly like the bad code? That is because

the error is almost impossible to see. The rmu1 looks almost like rmu1. The

student had typed the number ‘1’ for the lower-case letter ‘l’. So, what does

a programmer’s typeface look like? It is monospaced (useful for vertical

alignment) and makes different letters look different—e.g., the number 105

does not look like the letters lOS.5 By the way, this example remains in my

mind cemented by the pain it took me to find it.

5�A great programming type is Vera Sans Mono. Look it up on the Internet.

Chapter 6 Self-Documenting Code

78

Which is the best function name:

createMatrix(),6

createPopulation(),

createPopulationMatrix(),

popMat(), or

coffee()?

Rarely are we interested in the data type of a variable.

So I prefer createPopulation() to createMatrix().7 The

createPopulationMatrix() seems needlessly long. The shorter popMat()

is too abbreviated for my taste. Why would someone name a function

coffee? Thinking of descriptive names is difficult for some people. The

isolated programmer knows what his own variables mean, so why not

pick any name, or at least a quickly chosen reasonable name? The main

practical reason for me is that I have too often lost my grasp on large

complicated programs. The program intricacies were so many and so

complicated that I began to forget both what and how I did something last

week. I have been forced to re-write programs in a more readable style just

to understand my own work. And as a C.S. teacher, I want my code to be

understood by others, not intimidated by it.

People sometimes ask me what length I look for in

a method. To me length is not the issue. The key is

the semantic distance between the method name

and the method body.—Martin Fowler, Refactoring

(Addison Wesley, 1999), page 77.

6�CamelCase (aka CapWords aka studlyCaps) notation is slightly easier to write
than under_score (aka snake case) notation, which is slightly easier to read—e.g.,

def extractXandYCoordinatesFromChromosome(row):
def extract_X_and_Y_Coordinates_From_Chromosome(row):
Both styles are acceptable for coding.

7�The study of names, especially in technical fields, is called onomastics.

Chapter 6 Self-Documenting Code

79

Prefixing the data type as a tag to the name of a variable or constant is

called Hungarian notation. Occasionally there is some justification for it,

but not often in school problems.

Certainly functions should be separated by at least a blank line. Should

you place a line of dashes or stars between functions? I don’t know anyone

who does this but me. On the screen most coders don’t think it is worth

the trouble, but on paper (no color), separating lines helps in reading

handouts of code.

Which example below is preferable (aligned or irregularly spaced

equal signs)?

version 1:

 bestX = x

 bestY = y

 bestDirection = f(x,y)

 step = 2*pi/64 # = 64 directions

 radius = 0.01 # = the distance of the step.

--

version 2:

 bestX = x

 bestY = y

 bestDirection = f(x,y)

 step = 2*pi/64 # = 64 directions

 radius = 0.01 # = the distance of the step.

Answer: Either is acceptable, because they are both readable. [Note:

The Python PEP 0008 style guide discourages version 1.] Some people

don’t see much benefit from attempting to make code visually attractive

(version 1). In fact, they are bothered by the fussiness of others in this

matter. Vertical alignment does take more time to set up and more effort

to maintain. Yet, others are bothered by a lack of visual organization.

Chapter 6 Self-Documenting Code

80

So, again, I think it is a personal style. Incidentally, I recall two great

math department heads whose offices were always a mess (lack of visual

organization). It didn’t matter, because they were effective in their jobs.

In some languages the programmer has the option of using named

arguments received as named parameters (aka keyword arguments

received as keyword parameters). And in Python, if the receiving set of

parameters begins with a star, then keywords arguments are required.8

Below are two examples. [Note: You pass arguments (aka actual

parameters) and receive parameters (aka formal parameters).]

def fn(*,a,b,c,d):

 print(a,b,c,d)

#---------------------

fn(a=1, b=2, d=3, c=4) # output:1 2 4 3

fn(a=1, b=2, d=3, 4) # output:ERROR (missing keyword)

Is this a good idea? The extra effort makes good sense with a long list of

parameters, or where the reader needs the extra help. Also using a named

argument can save space. Instead of this:

def createArray(arraySize):

 array = []

 ...

def main():

 arraySize = 100

 array = createArray(arraySize)

8�Reserved words aka keywords (one word) cannot be used as identifiers—e.g.,
for = 3 causes a compiler error, because the compiler thinks for is the start of a
loop. However keyword arguments and keyword parameters are simply named
identifiers in function calls.

Chapter 6 Self-Documenting Code

81

Rewrite it with one less line:

def createArray(arraySize):

 array = []

 ...

def main():

 array = createArray(arraySize = 100)

If we pass just the 100, we lose the descriptor.

If you have many parameters, use named arguments and vertical

alignment. Here is a line of code from the fourth edition of an O’Reilly

Python programming book:

 threadtools.startThread(

 action = self.cache.deleteMessages,

 args = (msgnumlist,),

 context = (popup,),

 onExit = self.onDeleteExit,

 onFail = self.onDeleteFail,

 onProgress = self.onDeleteProgress)

Notice the use of named arguments, vertical alignment and the

stacking of parameters. I have never stacked parameters in a function

header, because I have never had a function this verbose. Nevertheless,

stacking seems to be a good idea for lengthy parameter sets.

Which of the following three examples is the most readable?

Method 1.

netSalary = (jobIncome + hobbyIncome + stockDividends + \

 (rents - utilities) - personalLivingExpenses - \

 mortgagePayments - medicalExpenses)

print(netSalary)

Chapter 6 Self-Documenting Code

82

Method 2.

netSalary = (jobIncome +

 hobbyIncome +

 stockDividends +

 (rents - utilities) -

 personalLivingExpenses -

 mortgagePayments -

 medicalExpenses)

print(netSalary)

Method 3.

netSalary = (jobIncome

 + hobbyIncome

 + stockDividends

 + (rents - utilities)

 - personalLivingExpenses

 - mortgagePayments

 - medicalExpenses)

print(netSalary)

My preference is for Method 3. In text, most math books break after an

operator. In code, it is sometimes better to break before an operator.

Use external documentation. By this I mean at the top of your

program, in a neat box, place some of the following information:

	 1.	 *a title for your program

	 2.	 *a program description and maybe some program

requirements

	 3.	 *your name

	 4.	 *the date (including the year) the document is

turned in

	 5.	 *the course name, class period/section

Chapter 6 Self-Documenting Code

83

	 6.	 the programming language

	 7.	 imported packages, modules, and libraries,

especially graphics

	 8.	 key algorithms used

	 9.	 strategy or design implemented in the program

	 10.	 external files

Here is an example from my own code:

"""+===============+=====-========*========-======+===========+

 || CIRCLE DETECTION ||

 || by M. Stueben (October 8, 2017) ||

 || Artificial Intelligence; Mr. Stueben, ||

 || Periods 1, 2, and 7 ||

 || ||

 || Description: This program detects a circle (radius ||

 || and center) in a 512x512 gray-scale ||

 || image of a circle and 500 random points ||

 || (aka snow, noise). ||

 || It then draws a new circle in red over the ||

 || initial circle. The circles almost match. ||

 || Algorithms: Gaussian smoothing, Sobel operator/filter, ||

 || Canny edge detection, and a vote accumulator- ||

 || matrix equal to the size of the image. ||

 || Downloads: None ||

 || Language: Python Ver. 3.3 ||

 || Graphics: Tkinter Graphics ||

 +==+

"""

Chapter 6 Self-Documenting Code

84

Next is a topic that drives some people crazy: small coding

conventions. Which expression below is the most readable?

ANN = inputs,w,h,v

ANN = inputs, w, h, v

I slightly prefer the second, unless there is a shop style with which

everyone needs to conform. Should you write

y = 2 * (x + y)

or

y=2*(x+y)?

What someone suggested is

y = 2*(x + y).

Why? Maybe because multiplication in textbooks is often implied: 2a,

not 2×a.9 Consequently, we place spaces around ‘+’ and ‘─‘, but not around

‘*’. Write what you think is most clear.

9�Recall that multiplication and division are of equal precedence in interpreting
arithmetical mathematical expressions—i.e., you perform those two operations
in the order that they appear: 8/2×4 = 16. Now, move to algebra and let a =
4. Modern algebra books have 8/2a = 1. So we see that in algebra implicit
multiplication (implied grouping) has a different precedence than explicit
multiplication. In coding, implicit multiplication is (usually) not possible. But,
it is possible on my programmable TI-84 calculator, which interprets both
expressions as 16.

Chapter 6 Self-Documenting Code

85

Below is a function to determine the area of a triangle given its

vertices.10 I placed spaces around only one operator and not the seven

others. Also the parameter pairs are separated by three spaces.

def triangleArea (x1,y1, x2,y2, x3,y3): # vertices

 return abs((x1-x3)*(y2-y3) - (x2-x3)*(y1-y3))/2

The Python PEP 0008 style guide suggests usually surrounding

assignments and relations with white space : x = 5, not x=5. But allow

no spaces for named argument/parameter assignments—e.g., doIt

(a=1, b=2). It also recommends no spaces following function names:

print(x), not print (x). I try to follow these rules, but occasionally slip

up. The wonderful VIM code editor will flag code not following PEP 0008

guidelines.

Should we place each statement on its own line or is that is being too

dogmatic? From an old 1981 book on computer science11: “Successive

commands can be written on the same line provided that, logically, they

belong together.” The question, as always, is readability. All methods below

are fine, because they are all readable.

10�Why does this work? The determinant
x y

x y
1 1

2 2

 is the area (possibly negative)

of the parallelogram with adjacent sides made up of position vectors 〈x1,  y1〉 and
〈x2,  y2〉. This is easy to prove with a geometric diagram. Do it now. (A position vector
has its initial point at the origin.) The vector from point (x3, y3) to point (x1, y1) is posi-
tion vector x x y y1 3 1 3- -, . The vector from point (x3, y3) to point (x2, y2) is position
vector x x y y2 3 2 3- -, . So the area of the triangle with these two vectors as sides

must be
1

2

1 3 1 3

2 3 2 3
1 3 2 3 2 3 3 2

x x y y

x x y y
x x y y x x y y

- -
- -

= -() -() - -() -()()/ .

I found this computation in an article by Brian Hayes in Andy Oram and Greg
Wilson’s Beautiful Code (O’Reilly, 2007). The author was trying to determine if three
points were collinear (if area of the triangle they formed as vertices is zero).
11�David Gries, The Science of Programming (Springer-Verlag, 1981), page 276.

Chapter 6 Self-Documenting Code

86

#--Method 1 (acceptable, but discouraged in Python)

a = 1; b = 2; c = 3; d = 4

#--Method 2 (common in Python)

a, b, c, d = 1, 2, 3, 4

#--Method 3 (bulky, but this is the most readable)

a = 1

b = 2

c = 3

d = 4

According to PEP 0008, nothing should follow a colon. In other words,

this is what most code readers should expect:

 if a == b:

 doIt(c)

#----------------------

 if a == b:

 doIt(c)

 else:

 runIt(c)

#----------------------

 for i in range(5):

 print(i)

But if you look at code on the Internet, you will find the following.

 if a == b: doIt(c)

 else: runIt(c)

 for n in range(5): doIt(n)

 while type(x) == int: (p, x) = (x, array[x])

Chapter 6 Self-Documenting Code

87

From a beginner’s Python textbook:

def fib(num):

 return 1 if num < 3 else fib(num-1) + fib(num-2)

Yes, the previous items are all readable. It is just that they are

unexpected, and strike some coders as ugly. That being said, list

comprehensions, which we are all expected to use in Python, are written

exactly in this so-called ugly way.

print([x*x for x in range(5)]) # = [0, 1, 4, 9, 16]

print([x*x for x in range(5) if x%2 == 0]) # = [0, 4, 16]

print([x*x if x%2 == 0 else -1 for x in rang�e(5)])

= [0, -1, 4, -1, 16]

Generally a list comprehension is faster than a for loop. Yet,

exchanging a for loop (with an if-else-if-else) for a list comprehension

(with an if-else-if-else) actually makes the code slower. That was a

surprise to me.

The following is extremely readable code that breaks the colon rule

and even places multiple statements on the same line:

 for x in dataSet:

 if -10 <= x < 0: print('Case I'); continue

 if 0 <= x < 10: print('Case II'); continue

 if 10 <= x < 20: print('Case III'); continue

 print(x)

Because it uses vertical alignment to such good effect, I don’t think this

code block can be made more readable.

Chapter 6 Self-Documenting Code

88

Confession: I sometimes use the one-line form (if a == b: doIt

(c)), but never with an else. One respected Python author suggested

that functions, loops, and if statements, all with single-line bodies, are

acceptable in being written on one line. I don‘t like to see code like this,

but it is readable.

The following is a controversial example. Both versions use the genetic

crossover method to generate two genetically new children from the

chromosomes (strings, here) of two parents. Which is more readable?

Version 1:

def produceTwoChildren(parent1, parent2):

 r = randint (0, MAX)

 child1 = parent1[0:r] + parent2[r:MAX]

 child2 = parent2[0:r] + parent1[r:MAX]

 return (child1, child2)

Version 2:

def produceTwoChildren(parent1, parent2):

 r = randint (0, MAX)

 �return (parent1[0:r] + parent2[r:MAX], parent2[0:r] +

parent1[r:MAX])

Version 1 is more readable because it uses vertical alignment for the

computations, contains the descriptive identifiers child1 and child2, and

places the two computations on separate lines, which makes them easier

to understand.

Version 2 is more readable because it is shorter and the code is so

simple we don’t need it broken up, we don’t need it vertically aligned, and

we don’t need descriptive names.

Chapter 6 Self-Documenting Code

89

I prefer Version 1, but cannot argue against the reasons for preferring

Version 2. That being said, let’s look at the same problem again. A straight

stick is one unit in length. Two marks are randomly made on the stick.

What is the probability that that these marks are within a tenth of a unit of

each other? Solve by simulation with max = 10000000 runs.

 from random import random

 max = 10000000

#---Method 1 (one line, broken into two lines)

 print ('Answer1 =', round(sum([abs(random()-random()) <= 0.1

 for n in range (max)])/max, 2))

#---Method 2 (five lines)

 total = 0

 for n in range (max):

 total += abs(random()-random()) <= 0.1

 answer = round(total/max, 2)

 print ('Answer2 =', answer)

I can understand the code in Method 1 almost as easily as the code

in Method 2. Method 1 also has the advantage of being only one logical

line long. Nevertheless Method 2 is preferred because it is easier to

debug. In writing Method 1 I had accidentally placed the 2 next to the

final parenthesis. No compiler error was generated, and the code looked

correct. The output was 0 2, instead of the correct 0.19.

Chapter 6 Self-Documenting Code

90

So what can we say about all of these examples? First, never break with

shop style. If there is no shop style, and if you break with PEP 0008 or some

other coding convention, at least have some justification for doing so. If

someone else does not follow your small coding conventions, don’t start a

religious argument.

Chapter 6 Self-Documenting Code

91© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_7

CHAPTER 7

Step-Wise
Refinement

Only stories are really readable.—Rudolf Flesch, The

Art of Readable Writing (Collier MacMillan, 1949),

page 74.

One way to self-document your code is to use top-down design, a form

of structured programming also called step-wise refinement.1 In this

style,2 the main function contains function calls with descriptive English

names—e.g., enterData(), computeData(), and printData(). The

function calls will form an outline of what the code does. They tell a story.

When you follow one of these calls, you again may get mostly an

outline of sub-calls that describe what the child function does. For

example, computeData() may lead us to calculateDistances() and

FindSmallestDistance(). Of course, this cannot go on forever, and

eventually the reader must encounter actual computer instructions.

The goal is to choose function names so descriptive that a reader can easily

1�I equate structured programming with procedural programming (programming
with functions, procedures, subroutines, and methods), with step-wise
refinement as its goal. The opposite of structured code is spaghetti code.

2�“Style is the art of choosing.”—Winston Weathers, “The Rhetoric of the Series,”
Found in Contemporary Essays on Style by Glen A. Love and Michael Payne (Scott
Foresman, 1969), page 21.

92

understand the design of a program without reading much computer code

or comments. Here is another example:

def main():

 matrix = createSudoku()

 matrix = solveTheSudoku(matrix)

 printVerification(matrix)

 root.mainloop() # Required for Tk graphics.

In contrast, the bottom-up design is a stream-of-consciousness

coding, aka cowboy coding, aka coding by the seat of your pants—i.e., we

code the next part of the program that occurs to us, while the big picture is

vaguely kept in our heads. This style works well with small programs.

It doesn't matter if a program is written bottom-up, top-down, or is a

mixture of both. The goal is that the program reads top-down. This allows

for program verification on different levels (forest level and tree level),

and makes reading the program easier for the reviewer, which could be its

author in three months.

Below is one of my top-down (step-wise refined) main functions in

Python:

If you look closely, you will notice that most lines accept the output

from the previous line.

def main():

 image = list(readPixelColorsFromImageFile\

 (IMAGE_FILE_NAME = 'e:\\lena_rgb_p3.ppm'))

 displayImageInWindow(image, False)

 saveTheImageGrayScaleNumbersToFile\

 �(image, GRAY_SCALE_NUMBERS_FILE_NAME =

'e:\\grayScale.ppm')

 image = extractTheImageGrayScaleNumbersFromFile\

 (GRAY_SCALE_NUMBERS_FILE_NAME = 'e:\\grayScale.ppm')

 displayImageInWindow(image, False)

Chapter 7 Step-Wise Refinement

93

 image = smoothTheImage\

 (image, NUMBER_OF_TIMES_TO_SMOOTH_IMAGE = 4)

 saveTheImageGrayScaleNumbersToFile\

 �(image, GRAY_SCALE_NUMBERS_FILE_NAME =

'e:\\smoothed.ppm')

 image = extractTheImageGrayScaleNumbersFromFile\

 (GRAY_SCALE_NUMBERS_FILE_NAME = 'e:\\smoothed.ppm')

 displayImageInWindow(image, False)

 �image = sobelTransformation(image) # image = [...(mag,

angle)...]

 sobelMagnitudes = normalize([x[0] for x in image])

 displayImageInWindow(sobelMagnitudes, False)

 imageWithGrayValuesTransformedToLists = cannyTransform(image)

 image = doubleThresholdImageListsInToGrayScaleValues\

 (imageWithGrayValuesTransformedToLists)

 displayImageInWindow(image, True)

 root.mainloop()

Only some weeks later, after I pulled up the program to check some

detail, did I suspect that the main function was too big. Here is my rewrite:

def main():

 imageFileName = 'g:\\lena_rgb_p3.ppm'

 �grayScaleNumbersFileName = �convertColorFileToGrayScaleFile

(imageFileName)

 �smoothedFileName = �extractSmoothAndSaveImage(grayScale

NumbersFileName)

Chapter 7 Step-Wise Refinement

94

 �imageLists = �sobelTransformSmoothedImage(smoothedFile

Name)

 printNormalizedImageLists(imageLists)

 imageLists = cannyTransform(imageLists)

 �image = �doubleThresholdImageListsInToGrayScale

Values(imageLists)

 displayImageInWindow(image)

 root.mainloop()

This version is more readable because it is shorter. Can it be written

more clearly? Maybe, but this is my best effort after two tries.

An important style of programming is called incremental (aka

iterative, aka evolutionary) development. In this style, the programmer

first writes the program with only a small subset of the requirements

(a “walking skeleton”). Once that is working, a new set of requirements

is added. Then, when the improved program is working, another set of

requirements is added, etc. Reorganization of design will probably need to

be implemented multiple times during the development. Sometimes the

evolutionary approach is called the MoSCoW method: Must have, Should

have, Could have and Won’t have, but would like to have. Sometimes it is

referred to as time boxing.

There are advantages to this approach. A working—admittedly

incomplete—program is always finished. This gives a psychological boost

to the programmer(s). There is much less stress and uncertainty at the end

of the project than is typically the case with large projects. The graphical

layout, the interface, and user directions tend to become better due to

early user feedback. The early versions of the program become prototypes

that guide the final design. Is this the best way to program? Possibly for

programs with many features, but most school programs just develop

algorithms.

Chapter 7 Step-Wise Refinement

95© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_8

CHAPTER 8

Comments
Use comments with care. The 5-line Boolean function below is my

revision of 13 lines of code with nine more comment lines. The longer

version was an Internet instructor’s example, with the direction to

comment nearly every line of code (terrible idea, even for beginners).

Self-documentation is better.

def isAllVowels(stng):

 for ch in stng.lower():

 if ch not in ['a', 'e', 'i', 'o', 'u']:

 return False

 return True

Self-documenting code eliminates the need for many comments. But

we still need comments for the following reasons:

	 a.	 to show organization (break the code into cases),

	 b.	 to give the insights—i.e., to make subtle observations

explicit,

	 c.	 to state some assumptions, especially pre-

conditions, post-conditions, invariants, and

boundary limits, or

	 d.	 to give examples (useful when writing classes).

96

The code below prints out a chess board with eight queens. The first

line shows the benefit of an example comment.

def printBoard(board): �# Example: board = [3,5,7,2,0,6,4,1]

 print("###################")

 for col in board:

 �s = ['- '] * len(board) # �build a list of

strings with no 'Q '

 �s[col] = 'Q ' # �insert 'Q 's in the

correct places

 �print('# ' + ''.join(s) + "#") # �make the list into one

string.

 print("###################")

Should comments be written in complete sentences as suggested

by PEP 0008? Yes, if you can, but a comment is readable either way.

Should comments be written in-line as in the printBoard() example?

Some experts say no. But I prefer to do this for short comments. This is

the advantage of 110-character line lengths, not for long code lines, but

for the occasional in-line comments following the code. Also, lining up

comments, as shown above, makes the code more inviting to read.

Comments should tell you why (if the code isn’t clear), not how. You

don’t need to explain how or even what, because that is done in the code.

And if you write a comment about how, and the how is changed, then

the comment needs to be changed. But what often can’t be understood

through the code alone is the why-are-we-doing-this?

What do you think about these two comments concerning a method in

a vector class?

def dist(self, other): # Return the distance between two points

(position vectors).

 �return (self-other).mag() # �Vector.dist(A,B) and A.dist(B)

both work

Chapter 8 Comments

97

Is the "Return the distance ..." comment necessary? I think so.

Classes, especially complicated classes, should be documented like a

manual, and should contain redundancy. As a Python beginner, I did

not realize that a Python class automatically allowed both notations. So,

I now try to make optional notations explicit. Notice that the minus sign

in "self-other" looks like a hyphen. Maybe it should have been written

"self - other."

I suspect that exceptionally talented programmers rarely feel

commenting and reorganizing code are necessary for their high school

programs. They almost never get lost in their own code, and badly written

code is still easy for them to understand. That is one reason average

workers have difficulty following the talented. They don’t make much

effort to be clear, just concise. And that is why talented students are

sometimes contemptuous of readability requirements. They honestly don’t

understand our difficulties.

Do comments indicate bad code? While this can be true, a statement

like that can cause beginning coders to shun comments. The goal is to

write readable code. If comments help, then they should be used. Consider

the comments in this depth-first search function.

def DFS_FewestNodesPath(node, goalNode, path=[]):

Notes: 1. We avoid loops by reference to the path itself.

2. �The recursion will be unwound just below the

recursive call at (*).

#---Append current node.

 path = path + [node]

#---base case

 if node == goalNode:

 return path

Chapter 8 Comments

98

#---recursive case

 bestPathSoFar = []

 �for (child, dist) in graph[node]: # dist is a dummy

variable that is never used.

 if child not in path:

 newPath = DFS_FewestNodesPath(child, goalNode, path)

 # <-- (*)

 �if newPath and (len(newPath) < len(bestPathSoFar) or

bestPathSoFar == []):

 bestPathSoFar = newPath

#---Return best path, which could be [].

 return bestPathSoFar

I think the eight comments are needed in this ten-line body, because

the function is recursive and for me the algorithm is complicated. Industry

tries to avoid recursion unless it is absolutely necessary, because it is too

hard to maintain.

Here is advice from a programming contest training manual: “Write

comments first. If you can’t easily write these comments, you probably

don’t really understand what the program does. We find it much easier to

debug our comments than our programs.”1 (I think by “comments” they

include an outline of the program by function calls.) Unfortunately, we

cannot write comments correctly until we understand the solution. We

begin to understand the solution when we discover that our program fails,

and we trace through the code. Let me give you an example. I was writing

the code to implement the minimax decision-rule for a game of Othello.

Here is my original comment:

#---Return best board score for white

1�Steven S. Skiena (Stony Brook) and Miguel A. Revilla (Valladolis, Spain),
Programming Challenges (Springer, 2003), page 9. Today this is called CDD
(comment driven development).

Chapter 8 Comments

99

Days later I changed the code and revised the comment to this:

#---Three cases: 1. �Return (usually) the move with the minimum

boardScore value (COMPUTER’s choice), or

2. �if there is no legal move AND depth is

zero, then return

boardScore(), or

3. �if there is no legal move AND depth != 0,

then return maxValue(depth-1, alpha, beta)

Until I traced through my failing program and discovered my

simple-minded code failed in some circumstances, I never thought

about the positions where one side has no legal move. So the comment

was as wrong as the code. Still, writing comments first may be a

good idea. I just have never tried it. The authors made the insightful

observation that “bugs tend to infest code that is too ugly to read or too

clever to understand.”2 Amen.

Below are two versions of a function that receives a list and a number r,

and then returns the rth permutation of the list.

VERSION 1.

def permute(Lst, r):

 #--initialize

 Lst = Lst[:]

 L = len(Lst)

 #--check data

 assert L>=1 and r>=0 and r<factorial(L) and \

 type(Lst) == list and type(r)==int

2�Steven S. Skiena and Miguel A. Revilla, Programming Challenges (Springer, 2003),
page 40.

Chapter 8 Comments

100

 #--base case

 if L == 1: return Lst

 #--recursive case

 d = factorial(L-1)

 digit = Lst[r//d]

 Lst.remove(digit)

 return [digit] + permute(Lst, r%d)

VERSION 2.

def permute(Lst, r):

 Lst = Lst[:]

 L = len(Lst)

 assert L>=1 and r>=0 and r<factorial(L) and \

 type(Lst) == list and type(r)==int

 if L == 1: return Lst

 d = factorial(L-1)

 digit = Lst[r//d]

 Lst.remove(digit)

return [digit] + permute(Lst, r%d)

I originally wrote version 1. But later I came to see that the comments

were not only unnecessary, but that they made the code harder to read.

So why the change in my perspective? Answer: I got more comfortable

with reading Python code. The comments necessary for a beginner are not

necessary for the more experienced programmer.

The first comment below was helpful a year later when I needed to

print a matrix in the Cell class. At that time I worked with classes so rarely

that I could not immediately remember the call format.

Chapter 8 Comments

101

#---The call looks like this: Cell.print(matrix)

def print(matrix): # �DEBUGGING UTILITY: Print the matrix/

board to the console.

 . . .

#--------------------------Cell Class--------------------------

I consider coding the algorithm to change a repeating decimal into a

fraction to be difficult. Curiously, the examples are easy to understand.

To make this clear to a student programmer, the code below has the

same example worked out twice: algebraically and in computer code. If

I introduced a small error, you could probably find it in a minute or two.

This is well-documented code, but who has the time to write comments

like this? My answer is that in special circumstances, this kind of detail is

necessary.

EXAMPLE:

Let x = 12.345676767...

Then 100000x = 1234567.676767676...

And 1000x = 12345.676767676...

�So 100000x - 1000x = 1234567 - 12345 = 1222222.

<-- Notice that we can ignore the decimal parts.

Thus, x = 1222222/99000

def repeatingDecimalToFraction(number, repLength):

#---Preconditions: number is float type, repLength is integer and 0 <

repLength <= length of decimal portion.

 numberCastToString = str(number)

 decimalPointPosition = numberCastToString.find('.')

 �lengthOfDecimalPortion = �len(numberCastToString) -

decimalPointPosition - 1

Chapter 8 Comments

102

 �# == AN EXAMPLE IS GIVEN TO MAKE THIS

ALGORITHM CLEAR. ==

 # number �= 12.34567 <-- Here,

the 67 repeats.

 # repLength = 2, the length of 67

� �numberlength = len(numberCastToString) �# numberlength = 8, the

total length

 �lengthOfIntegerPart = len(str(int(number))) �# lengthOfIntegerPart =

2, the length of 12�

 �shiftLength = numberlength - (lengthOfIntegerPart + 1 + repLength)

1 is for the decimal point.

 # shiftLength �= 8 - (2 + 1 + 2) = 3,

the distance

 �# from the decimal point in 12.34567 to

the repeating part (67)

 �factor1 = int (10**(shiftLength+repLength))  �# factor1 = 100000

 �factor2 = int (10**shiftLength)   �# factor2 = 1000

 �numberTimesFactor1 = int(number * factor1)   �# = 1234567.676767

 �numberTimesFactor2 = int(number * factor2)   �# = 12345.676767

 �numerator = numberTimesFactor1 - numberTimesFactor2

 # = 1234567.676767 - 12345.676767= 1222222

 �denominator = factor1 - factor2 # = 99000 (= 100000x -

 1000x = (100000 - 1000)x

 �return numerator, denominator # postcondition: integer types

 are returned.

Some programmers will see this as too much detail, but too much

for them is not too much for others. If you look closely you will notice the

variables factor1 and factor2. Generally, we prefer more descriptive

and less similar variable names. I know this, but I couldn’t think of better

names.

Chapter 8 Comments

103

According to PEP 0008, “You should use two spaces after a sentence-

ending period.” I remember being given the same advice in a 1961 high

school typing class. When word processors arrived, the general advice was

changed to one space between sentences. I don’t think the two-space rule

matters much.

Industry expects a comment to begin each Python function

(docstrings). This makes sense for legacy code. And since it is the world

standard, you might consider getting into the habit of doing this for

complex functions. I have seen many functions on the Internet that were

so poorly named and used such abbreviated cryptic parameters that I

wished the authors had used docstrings.

Chapter 8 Comments

105© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_9

CHAPTER 9

Stop Coding
When I code, I sometimes write lines hoping they

will work without really understanding what they

are doing.—A high school senior taking his fourth

programming class (December 2011).

The moment you start to feel confused, stop coding. When I first assigned

the Traveling Salesman Problem to my students, I appended the following

advice:

The data in your program will be a list of

xy-coordinates. Make it a list of lists, not tuples.

And append an id in the zeroth position—e.g.,

city = [[id, x-value, y-value], [id, x-value, y-value], ...,

[id, x-value, y-value]]

Why make a list of lists instead of a list of tuples?

Because you don’t know if you will later need to

modify the components, and tuples are immutable.

Why append an id? Because you don’t know if

you will later need to give your xy-coordinates an

attribute—e.g., visited and not-visited—or a tuple of

attributes.

106

When I first came to write the Traveling Salesman Problem, I worked

in tuples with no id. Eventually I began to lose control of the program. The

functions were becoming so complicated (triply subscripted brackets) that

modifications were painful. It was time to start over. Based on my failures,

I knew that mutable lists and attributes would simplify the program.

Why didn’t I realize this at the beginning? Because I was so focused on

conceptual details, I could not think well about implementation. Only

when my coding became difficult did I realize my design mistakes.

If your program starts to get so complicated that you can’t understand

it, then you must refactor or start over completely. When you have to

start over, the good news is that you are smarter, and some of your code is

salvageable.

Do you need to outline an entire program or an algorithm before

you start? If the program/algorithm is exceptionally complicated, then

you need at least some outlining.1 You will know this because you will

immediately feel uncomfortable with the assignment. Let me make this

explicit: You must spend time thinking-before-coding about a project that

you find complicated. For most school problems, I usually design and type

code at the same time. Anybody can do this with simple programs, but

there is a level of difficulty beyond which coding-on-the-fly does not work

well. You need to find your own level, and know when you can and cannot

get away with the quick-and-dirty style.2 This is not easy, because habits

1�In 2003, at ARML, the premier H.S. mathematics competition, the captain of our
school’s math team gave his teammates a pep talk before the final round. He said
that he had noticed in practice many of his teammates missed problems that
they were capable of solving. Why? They had failed to read the problems carefully
enough to detect subtle relationships in the given information. His advice was to
“read each problem closely before starting to solve it.” Our school won ARML that
year.

2�Search the Internet for BDUF (big design up front), RDUF (rough design up front),
and “emergent design.” There are significant problems with designing a complex
program, without the experience of having written a prototype (scaled-down
version) of the same program.

Chapter 9 Stop Coding

107

are hard to break, our egos get involved, and we want to keep up with

our classmates. Typing lines of code that do not work well together is not

coding, except in name. Perhaps we have learned a lesson. Pay attention to

the psychology of coding.

One way to outline on a keyboard is to just write the function names

(stubs with no code inside, or mocks, which return bogus data).3

def doIt(x): # <--STUB

 pass

def doIt(x): # <--MOCK

 return 0

There are two competing design philosophies in computer

programming: Do the right thing and worse is better. The do the right thing

philosophy is equally concerned with the completeness, consistency,

correctness, ease-of-use, and simplicity of software design. It is an attempt

to build perfect programs. And why shouldn’t we make this attempt? This

is the philosophy of professional software designers. Why would anyone

claim that worse is better? Here is why:

	 a.	 Completeness refers to special cases not being

ignored in the program. If those special cases are

of little interest to the user, why pay a heavy cost to

code them up? Sometimes completeness is a waste

of time.

	 b.	 Consistency is useful and necessary for teams,

but for the lone programmer, semi-consistency is

good enough. Our limited time can be better spent

elsewhere.

3�The definitions of stubs and mocks vary. Safer is to use the term “fakes.”

Chapter 9 Stop Coding

108

	 c.	 Ease-of-use is important if other people will use the

program you wrote. But school programs are usually

executed only by the designer. Unless ease-of-use

is the goal of an assignment, it may get in the way of

other goals.

	 d.	 Even the desire of having a program be correct

may be sacrificed for good reason. I once saw

some code where the distance formula x y2 2+

was replaced by x y+ to speed up the program.4

If my approximation program runs in 10 seconds,

and your accurate program runs in 3 minutes, is

your accurate program the one people will want

to use? Sometimes we can pay too high a price for

correctness.

At this point the do the right thing people will want to interrupt. They will

point out that I have only reasoned from exceptions. Since every philosophy

has exceptions, my objections are worthless. Worse, these exceptions

are trying to tear down a positive philosophy. Where is the replacement

philosophy? Fair enough. The worse is better school does have a replacement

philosophy. Here it is: The worse is better philosophy advocates simplicity

of design as primary. It suggests that consistency, completeness, ease of

use, and correctness, and other positive attributes are more likely to evolve

from a simple design kept simple than from a first attempt at perfection. If

these characteristics do not occur by themselves, then we can insert them

by modifying a simple-and-working program. The do-the-right-thing

philosophy may work for teams that can spend months designing a program,

but it is not the way a lone coder should write a program.

4�How bad could the error be? Let z x y= + , where x and y are both non-negative, and

w x y= +2 2
. Then what is the largest z

w
will ever become? The answer is 2 .

Chapter 9 Stop Coding

109

My take on this tiny debate is that the goal of perfection in school

programs can be pedantic. The standards for excellence in programming

also must be measured in terms of resources (time mainly), and the

motivation behind the assignment. Now for an example.

Students who program long enough will notice that they have

repeatedly written debugging code to print a matrix, as well as other data

structures. So why not write a universal matrix printer and keep it in a

personal library? My version is below. Give it a matrix with integers, floats,

strings, Booleans, and None all mixed together (this is Python, remember),

and the code will neatly print all the data with vertical alignment.

def printMatrix(Lst, decimalAccuracy = 2):

 print('---MATRIX:')

 if type (Lst) != list or type (Lst[0]) != list:

 print('*' * 45)

 print(' WARNING: The received parameter is NOT a \n',

 'matrix type. No printing was done. ')

 print('*' * 45)

 return

 maxLength = 0

 for row in Lst:

 for x in row:

 if type(x) == float: x = round(x, decimalAccuracy)

 maxLength = max(len(str(x)), maxLength)

 if type(x) == float:

 print('%11.2f'%x, end='')

 elif type(x) == int:

 print('%8d '%x, end='')

 elif type(x) == str:

 print('%8s '%x, end='')

 elif type(x) == bool:

 print('%8s '%str(x), end='')

Chapter 9 Stop Coding

110

 elif x == None:

 print('%8s '%str(x), end='')

 else:

 print(x, ' ')

 print()

 print('==============================')

 print('cell maxlength =', maxLength, '(8 is limit)')

Big question: Is a universal printer (this code) ever needed? The only

matrices I have ever printed contained floats and integers. It now seems to

me that I got carried away by the coolness of this tiny project: a universal

matrix printer. It is over-engineered. I violated the YAGNI principle (don’t

write code if you aren’t going to need it). Here, worse is definitely better.

By the way, here is a Python trick to pretty print a list:

 Lst = ['A', 2, [1,2,3], 4000, 0.123]

 print('', *Lst, sep='\n....')

"""

Output:

....A

....2

....[1, 2, 3]

....4000

....0.123

"""

The following advice actually contains some wisdom: Failing to plan

is planning to fail. Think twice, code once. Code in haste and debug

forever.5 Remember that one week of debugging can save an entire hour of

planning.

5�Robert L. Kruse, Data Structures & Program Design, 2nd Ed. (Prentice-Hall, 1987),
page 55.

Chapter 9 Stop Coding

111© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_10

CHAPTER 10

Testing
It is said that “eternal vigilance is the price of liberty.”1 Yes, because

eternal vigilance is the price of all quality. When writing code this means

test as you go, test each key function immediately after it is written, not

waiting until the entire program is written. CABTAB: code a bit; test a bit.

Early testing is probably the best idea ever for reducing coding errors. If we

don’t catch the bugs in each code chunk as we write it, then later we will be

less familiar with the code when we try to debug it.

We test for the expected output of known input. We test for out-of-

range values, off-by-one values, nonsense/interchanged data, empty

sets, zero-length steps, bad game moves (illegal move or no legal move),

division by zero, pre-conditions, post-conditions, invariants, proper

relationships, and especially boundary conditions. Testing as you go is

called systematic testing and incremental prototyping.

Recall that the 2-D video screen is internally represented by a 1-D list.

Consequently, if we wish to draw a circle on a rectangular (WIDTH × HEIGTH)

screen by pixel poking, then a 2-D image must be translated into a 1-D

representation. I tried to do this directly. Look at the code below. The 1-D

list is called image. Only one of the three lines (A, B, and C) is correct, yet

they all look correct. Which one is correct?

1�Paraphrased from a speech in 1790 by the Irish orator and politician John Philpot
Curran. See Wikipedia.

112

def frange(start, stop, step = 1):

 i = start

 while i < stop:

 yield i # <-- not return i

 i += step

def drawCircle(cx, cy, radius, image):

 from math import cos, sin

 �for t in frange(0, 6.28, 0.01): # range will not allow

float steps.

 x = cx + radius*cos(t)

 y = cy + radius*sin(t)

 image[int(y)*WIDTH + int(x)] = 255 # <--A

 image[int(y *WIDTH) + int(x)] = 255 # <--B

 image[int(y *WIDTH + x)] = 255 # <--C

 return image

The only correct line is B. I spent several minutes looking at this code

(with line A) trying to discover why the circle was spread out into waves.

The expression y*WIDTH first must be rounded down. The point of this

example is that errors are impossible to avoid without testing the code.

The following trap caught one of my brighter students:

 v = [0]*2

 print('v =', v) # v = [0, 0]

 m = [v]*2 #

 print('m =', m) # m = [[0, 0], [0, 0]]

 m[0][0] = 8

 print('m =',m) # m = [[8, 0], [8, 0]]

#--Surprise: m[0][0] and m[1][0] share the same memory address.

Years ago I devised with a single question to determine which of my

high school juniors and seniors were mathematically weak. Try it with any

high school student.

Chapter 10 Testing

113

Solve for y in terms of the other letters: x a
by c

d y
- =

-
-

. [3 minutes]

Later I realized that coding up the solution to this problem gave an

instructive example about how difficult it is to remove logical errors.

QUIZ 4. In your favorite language, write the following short function,

and then compare your code with mine.

def solveEquation(a,b,c,d,x):

+---+

| Given: (x-a) = (b*y-c)/(d-y) |

| Return the unique value for y, if it exists. |

| if no value for y exists, then print an |

| error message and exit the program. |

| if multiple values for y exist, then print |

| a warning and return a valid value for y. |

+---+

#... Finish writing this function.

Good luck.

QUIZ 4 (My Solution)

def solveEquation(a,b,c,d,x):

+---+

| Given: (x-a) = (by-c)/(d-y) |

| Return the unique value for y, if it exists. |

| [y = (x*d - a*d + c)/(x-a+b).] |

| If no value for y exists, then print an |

| error message and exit the program. |

| If multiple values for y exist, then print |

| a warning and return a valid value for y. |

+---+

Chapter 10 Testing

114

 if (x == (a-b) and (c != b*d)):

 �exit('ERROR: No solution. The expression reduces to c =

b*d.')

 if (x == (a-b) and (c == b*d)):

 �print('WARNING: y is NOT unique: y may take ANY value,

except d.')

 return int(not d) # y = 0 or 1

 if (x != (a-b) and (c == b*d)):

 �exit('ERROR: No solution. The expression reduces to

y = d.')

#---Note: x != (a-b) and c != b*d).

 �y = (x*d - a*d + c)/(x-a+b) # <-- No division by zero and

no y = d.

 return y

Unfortunately, this problem is so difficult that it is limited in its

educational use. Still, this is the kind of exercise that builds

problem-solving skills.

You would think that A += B is only a shorthand notation for A = A + B.

This is not true in Python and perhaps some other languages.

def append1(A): #

 A += [3] #

#------------------------

def append2(A):

 A = A + [3] # The two As are different objects.

#------------------------

def main():

 A = [1,2]

 append1(A)

 print(A) # output: [1, 2, 3]

Chapter 10 Testing

115

 A = [1,2]

 append2(A)

 print(A) # output: [1, 2] ß Surprise!

So how can we protect ourselves from such syntactic poison?2 The

answer is to keep our code simple, and test as we go.

To fix an error, the first tool everyone tries is the guess, because that

takes no effort, and many times that is successful. It is only when we can’t

fix a bug by guessing that we have to stop and think. But sometimes we

don’t stop—we just keep changing stuff in the hope that our problem will

go away. At this point, our efficiency may actually drop below zero. We may

start changing code that should not be changed.

The main way to discover errors in school programs is to run test data

through the programs and check the results (tracing). Sometimes, for

tricky algorithms, it is helpful to write a testing program that runs random

data through a function and checks the answers.

Another way to find errors is to place error traps that will print only

if an error is discovered. This gives us a self-debugging program to some

extent. One reason to do this is that a bug correction in one part of a

program may cause a failure in a different part.

Misko Hevery in a YouTube video asked an interesting question:

Could you reconstruct source code from its tests? My initial reaction was

“of course not.” Then he suggested that a set of tests should tell a story.

Suppose the tests looked like this:

Test1_ItShouldDoThis()

Test2_ItShouldDoThat()

Test3_ItShouldDoSomethingElse()

Test4_ItShouldDoThisToo()

Test5_ItShouldExitLikeThis()

2�If a language provides convenient, compact shortcuts, then those shortcuts may
be described as syntactical sugar, a term coined in 1964. The built-in dictionary
data structure in Python is syntactic sugar for an associative matrix/list. I suspect
that Python has more syntactic sugar than any other language.

Chapter 10 Testing

116

So maybe he is right, and maybe our tests should be laid out to tell

a story.

QUIZ 5. (IMPORTANT) Recall that the dot product of two vectors is

the sum of their pair-wise products. For example, the dot product of

x = [1,2,3,4] and y = [2, -3, 0, 5] is

1×2 + 2×(-3) + 3×0 + 4×5 = 16.

The four functions below all correctly calculate and return the dot

product of two vectors (aka lists, aka arrays) x and y. The only difference is

the error traps. Which is the preferred error trap: A, B, C, or D?

#---Method A.

def dotProd(x,y):

 return sum(x[n]*y[n] for n in range(len(x)))

#---Method B.

def dotprod(x,y):

 assert type(x) == type(y) == list

 return sum(x[n]*y[n] for n in range(len(x)))

#---Method C.

def dotprod(x,y):

 assert len(x) == len(y)

 return sum(x[n]*y[n] for n in range(len(x)))

#---Method D.

def dotprod(x,y):

 assert type(x) == type(y) == list

 assert len(x) == len(y)

 return sum(x[n]*y[n] for n in range(len(x)))

Chapter 10 Testing

117

My answer is in the footnote.3

When you write a function, consider testing for any pre-condition and

boundary condition that will not generate a compile or run-time error.

Making this a habit will save you hours of debugging time. The following

is a fancy assert, which is probably not worth the time to code when a

simpler form will do. Still, you should know such forms are possible.

 import sys

 assert x>0, 'in function ' + sys._getframe().f_code.co_name + \

 ' x = ' + str(x)

Output: AssertionError: in function doIt x = -1

Also, do not put parentheses or brackets around a Python assert.

A non-empty tuple or list is always evaluated as true (syntactical poison).

A programmer-built error trap can print much more information than

an assert, can close files, and can save information in an error file. So why

would anyone prefer to use the built-in assert statement instead of writing

an error trap? Answer:

	 1.	 The assert is immediately seen as an error trap, not

part of the function’s task.

	 2.	 The assert is faster and easier to write than a user-built

error trap.

3�QUIZ 5 ANSWER: I choose C because without len(x) == len(y), an error can
pass undetected into the rest of the program. I consider the function not properly
written without this error trap. However, we do NOT need to check the data types
of x and y, because the compiler will do this for us. The compiler checks to be
sure both x and y are subscriptable, and that they are collections of numbers,
not strings or objects. Keep in mind that the times operator (*) is overloaded
in Python—e.g., 'cat'*3 = 'catcatcat'. Occasionally strange errors will slip
through. Would a world-class programmer test for this possibility? My opinion: It
is not cost-effective to protect our code from every extremely rare possibility.

Chapter 10 Testing

118

	 3.	 The IDE will place the cursor on the assert line in

your program; an error trap will usually just print an

error message and exit the program.

QUIZ 6. Write a function that expects to receive two strings of the same

size and returns the number of letters that are different but in the same

relative places—e.g., the function receiving “abcdef” and “axcxfe” would

return 4. My answer is at the end of this chapter. There is a clever way to do

this, at least in Python.

Consider printing some statistics (fancy term: dynamic performance
analysis) while your program is running, or after it finishes. Certainly,

always print the run time for every program—no exceptions. This can help

you determine the big O of your program. You may also want to print

	 1.	 the number of recursive calls made and the

recursive depth reached,

	 2.	 the number of nodes accessed in a tree (I did this to

measure the performance of alpha-beta pruning. My

program looked at 2/3 fewer nodes with pruning.),

	 3.	 the maximum tree-level depth reached,

	 4.	 the maximum size of a queue or of some other

dynamic data structure,

	 5.	 the number of items written into or read out of a file,

	 6.	 or the time taken per move and maybe the average

time-per-move during a game.

There are several advantages to writing tests and debugging utilities

before you write your code.

	 1.	 When you finish writing your code, you can

immediately test it while it is fresh in your mind,

instead of taking some minutes to create a test.

Chapter 10 Testing

119

	 2.	 You actually write the tests rather than moving on to

another function.

	 3.	 Writing the tests first helps outline the function

before you write it.

Some reasons NOT to test your code are 1) it's boring/stressful/tiring, 2)

it apparently slows our progress, 3) we are not used to testing, and 4) we

are afraid we might actually find a bug. All of these excuses are forms of

self-delusion. To put it bluntly, not testing as you go signals sloppiness,

laziness, and incompetence.

Student programmer: “Is there any way out of this

misery?”

C.S. teacher: “Yes. Don’t get into it in the first place:

Test as you go, and write code defensively.”

#--

QUIZ 6 ANSWER:

different sameLettersInSamePlaceCount(stng1, stng2):

 return sum(ch1 != ch2 for (ch1, ch2) in zip(stng1, stng2))

OK, if you didn’t know about the zip function then you couldn’t have

used it. The instruction

print(list(zip(stng1, stng2)))

produces

[('a', 'a'), ('b', 'x'), ('c', 'c'), ('d', 'x'), ('e', 'f'),

('f', 'e')]

The zip function is worth remembering. In fact, this example is

worth remembering. Notice that this comprehension is a generator

comprehension, not a list comprehension (no square brackets).

Notice how long the function name is. A glance at this simple code will tell

Chapter 10 Testing

120

the reader what it does. So why not use the name lettersCount or something

simpler? Answer: Because we want the reader to know exactly what the

function calculates and returns without having to inspect function code.

* * *

A lifetime of looking at high school math/c.s. problems has motivated

me to offer three more math problems for computer science students:

	 1.	 Given g (x) in terms of f (x), can we write f (x) in

terms of g(x)? Sometimes, if you see the trick.

Given g x af bx c d() = +()+ , with a ¹ 0 and b ¹ 0 ,

write f (x) as a function of g (x) and the parameters

a,  b,  c,and d.

	 2.	 Given a x b£ £ , with a b< , find f (x) such that
c f x d£ () £ , and f(x) increases uniformly as x

increases uniformly—e.g., if x is 34 of the way

between a and b, then f (x) is 34 of the way between

c and d. The need for this formula is common in

graphics. For example, you need this formula to

draw the fancy web shape on the right. As x ranges

from G to C, y must uniformly range from H to D.

Chapter 10 Testing

121

	 3.	 An automobile radiator holds quartCap quarts. It

is filled with a pct1 percent solution of anti-freeze.

Write a function antifreeze to return the correct

number of quarts (rounded to at most 2 decimal

places) of the solution that should be drained and

refilled with pure antifreeze to bring the strength up

to pct2 percent. Exit your program in an impossible

situation—e.g., we assume that pct1 and pct2 are

numbers between 0 and 1 inclusive.

* * *

ANSWER 1. f x
g

x c
b

d

a
() =

-æ
è
ç

ö
ø
÷ -

, where x is in the domain of f. Since

the x on both sides of the original equation represents the same value,

replace it on both sides with x c

b

- , then simplify.

ANSWER 2. f x
x a d c

b a
c() =

-() -()
-

+ .

Algebra: The simplest derivation I know is shown below.

a x b

x a b a

x a

b a
x a d c

b a
d c

c
x a d c

b

£ £
£ - £ -

£
-
-

£

£
-() -()

-
£ -()

£
-() -()

0

0 1

0

--
+ £

a
c d

Chapter 10 Testing

122

Analytic Geometry: The problem naturally reduces to finding the line

y mx b= + ¢ passing through the points (a, c) and (b, d). The slope for such

a line is m
d c

b a
=

-
-

, and b′ is found by substitution of (a, c) into y mx b= + ¢ ,

which gives us ¢ = -
-
-

b c
d c

b a
a . Thus, y

d c

b a
x

d c

b a
a c=

-
-

-
-
-

+ . This

expression simplifies to y
x a d c

b a
c=

-() -()
-

+ .

ANSWER 3.

def antifreeze (quartCap, pct1, pct2):

 �assert 0�<= pct1 <=1 and 0<= pct2 <=1 and pct1 <= pct2 and

quartCap > 0, \

 �["ERROR (bad input):", quartCap, pct1, pct2] # Note

the FOUR cases.

 return round(quartCap*(pct2-pct1)/(1-pct1), 2)

Chapter 10 Testing

123© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_11

CHAPTER 11

Defensive
Programming

By June 1949 people had begun to realize that it was

not so easy to get a program right as had one time

appeared. I well remember when I was trying to get

working my first non-trivial program [in assembler

code or perhaps machine language]. The realization

came over me with full force that a good part of the

remainder of my life was going to be spent in finding

errors in my own programs. Turing had evidently

realized this too, for he spoke at the conference on

“checking a large routine.”—Maurice Wilkes (Turing

Award winner, 1967), Memoirs of a Computer

Pioneer (MIT, 1985), page 145.

Use defensive programming. Since we know in advance that there will

be bugs, we can become proactive in several ways. We can write functions

that

	 a.	 print passed parameters after they arrive in

functions (tracing),

	 b.	 print intermediate computation values, and

124

	 c.	 print error messages to catch bad data (wrong type,

wrong size, wrong order, division by zero, and out-

of-bounds errors). This is called error handling

and crash reporting. The try/except construct is

sometimes useful here.

All of this is known as defensive programming or scaffolding because

most of it will be removed eventually.

Here is a trick from Industry: Have a global constant called, say,

errorCheck or debug. Preceding every block of error code (asserts, traces,

printouts, try/excepts, type checks, etc.) is

if errorCheck:...

Then we don’t erase the error code; we just turn it off with

errorCheck = False. In industry, they sometimes set errorCheck to 0

(turn off all checking), 1 = turn on some checking, 2 = turn on more

checking, etc.

I recently wrote a few lines of code to catch a variable that got out of

bounds. I was proceeding by habit and even said to myself, “Well, this is a

waste of time. This variable will never be out of bounds,” only to discover

on the next run that the variable was out of bounds. Repeated experiences

like this have made me a believer in cautious coding.1

There is one danger to defensive coding: It can bury errors. Consider

the following code:

def drawLine(m, b, image, start = 0, stop = WIDTH):

 step = 1

 start = int(start)

 stop = int(stop)

1�Placing too many error traps in a function can obscure what the function is
supposed to do. In that case, sometimes, the traps should be moved into their
own function.

Chapter 11 Defensive Programming

125

 if stop-start < 0:

 step = -1

 print('WARNING: drawLine parameters were reversed.')

 for x in range(start, stop, step):

 index = int(m*x + b) * WIDTH + x

 if 0 <= index < len(image):

 image[index] = 255 # Poke in a white (= 255) pixel.

This function runs from start to stop. If stop is less than start, it just

steps backward and no error is reported. Maybe we want this kind of error

to be “fixed” during the run—buried—but I think we should at least print a

warning that the range is coming in backwards. Maybe we should abort the

program.

Given matrix A, we refer to the individual elements (aij) by the (i = row,

j = col) convention. Similarly, when we read a page of text, we first fix on

a row, and then read along a column. Unfortunately, there is competing

convention: In the xy-plane we plot points by (x =col, y = row), and we also

plot points on the computer screen using (col, row), but starting our “first

quadrant” from the upper left, not the bottom left. Consequently, we have

a tendency sometimes to use the matrix (row, col) scheme, and sometimes

the point-plotting (col, row) scheme. Here is an example of a crossover.

I start with (r = row, c = col) for the matrix, and then switch to (x = col,

y = row) for plotting.

for r in range(8):

 for c in range(8):

 if M[r][c] == 1:

 x = c*70 + 85

 y = r*70 + 105

 �canvas.create_oval(x-25,y-25, x+25, y+25,

fill = 'BLACK')

Chapter 11 Defensive Programming

126

There is no problem, because the code is clear. I only show this to

illustrate that competing conventions sometimes occur in the same

code chunks.

In the next example, I switched x and y, in two different calls to

the same function, but the Python code still returns the same correct

answer. How is this possible? Answer: I named the indices (keywords)

before I passed them. Moral: Know your language.

def sub(x, y):

 return x-y

#-----------------------------

def main():

 print(add(x = 2, y = 1)) # Output: 1

 print(add(y = 1, x = 2)) # Output: 1

One YouTube commentator suggested never using

x and y for matrix coordinates, but rather use row

and col. Why? Because it is too easy to write (x,y)

for what should be (y,x), whereas (row, col) are

unlikely to be interchanged.

Chapter 11 Defensive Programming

127© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_12

CHAPTER 12

Refactoring
When your program is finished, don’t walk away. Consider redesigning

it—as long as a deadline is not looming. Redesigning, not to optimize, but

to make working code easier to understand, to debug, to modify, and to

integrate with other code is common enough to have a name: refactoring.1

Refactoring is reconsidering both variable and function names, breaking

multi-tasking functions into single-task functions, applying stepwise

refinement, reconsidering the choice of data structures, considering

cohesion versus coupling, and rewriting code to make it clearer and more

efficient.

I once wrote a simple function that received a string and a Boolean

variable. An alarm immediately sounded in my head. Is this function doing

two different tasks? Not really. The Boolean just told the function to print

the string characters either alphabetically or ordered by frequency. I later

discovered that I needed the function to also print the characters as they

appeared in the string. It occurred to me that I could pass the Booleans

True, False, or let the receiving parameter default to None.

1�Breaking complex code into parts that are easier to understand is called
“factoring,” (aka decomposition) a term invented by programmers in the 1980s.
The first known use of the term “refactoring” was in 1990. See Wikipedia, s.v.
Code refactoring.

128

However, this is a terrible way to code. Have you ever seen a Boolean

variable that results in three values? Coders need to assume that some

situations will never occur, even if they are possible. My eventual solution

was to pass an integer to the function, which expected only the values 0,

1, and 2. Other values would cause a warning message to appear, would

default to 0, but not throw an exception—no aborting of the program.

Why have a default value? Because the user of the function may not

care how the output is ordered, may not want to be bothered to pass a

parameter, or may not know the options available. Thus, the function

becomes more robust.

Assignment: Write a function to return the first index of a target

element in an array, else return -1. The code that follows shows three

different ways to do this:

Method 1 (ugh!)

def indx(array, target): # 11 lines

 if array == []:

 return -1

 n = 0

 found = -1

 length = len(array)

 while n != length:

 if array[n] == target:

 found = n

 break

 n += 1

 return found

This first method was as inefficient as I could make it using standard

ideas. It is the code produced by an imaginary student who never asks if

the code can be written in a cleaner form (refactored).

Chapter 12 Refactoring

129

Method 2 Refactored

def indx(array, target): # 3 lines

 for n in range(len(array)):

 if array[n] == target: return n

 return -1

This second method is my best attempt. I assumed the built-in index

function would make the code even shorter. (I was wrong.)

Method 3 built-in (Easiest to understand)

def indx(array, target): # 4 lines

 try:

 return array.index(target)

 except:

 return -1

These examples show why students need to look at other students’

code, or at least the teacher’s code. The lessons that are learned this way

stick with the student.

Refactoring offers you experience in design that helps on the next

project. Never redesigning keeps you at the novice level. Sometimes

function A calls function B. Later we have function A call function C and use

the stuff from function B. Well, then function C should be calling function B,

not function A. But if we do this redesign, then we may later drop function

C, and have to backtrack. So for a while we live with inefficient design.

Only when the program is finished, or is getting out of control, do we think

about a redesign.

I don’t think it is possible—or at least efficient—to finish a program

with a well-crafted design. Too much will change along the way. Some

problems are so difficult that until you see your program crash and burn,

you are unlikely to have understood the difficulties of the assignment, or

Chapter 12 Refactoring

130

thought about all of the special cases, or realized you are better off with

strings of digits, rather than lists of digits.2

The picture of the software designer deriving his

design in a rational, error-free way from a statement

of requirements is quite unrealistic. No system has

ever been developed in that way, and probably none

ever will. Even the small program developments

shown in textbooks and papers are unreal. They

have been revised and polished until the author

has shown us what he wishes he had done, not

what actually did happen.—David Parnas and

Paul Clements, Found in Steve McConnell, Code

Complete, 2nd Ed. (Microsoft Press, 2004), page 74.

If we have learned anything over the last couple of

decades, it is that programming is a craft more than

it is a science. To write clean code, you must first

write dirty code and then clean it. Most freshmen

programmers don’t follow this advice particularly

well. They believe that the primary goal is to get the

program working. Once it’s “working,” they move on

to the next task. Most seasoned programmers know

that this is professional suicide.—Robert C. Martin,

Clean Code (Prentice Hall, 2009), page 30.

2�My earliest reference to this observation is 1965: “It is a truism in computing that
only when a routine is debugged and tested, and some production has been run,
does the programmer really know how he should have attacked the problem
in the first place.”—Fred Greunberger (RAND) and George Jaffray (Los Angeles
Valley College), Problems for Computer Solution (John Wiley, 1965), page xvi.
This is still an excellent book for C.S. teachers. These authors used the DEC
Corporation’s 12-bit PDP-8 minicomputer, the most commercially successful
computer up to that date. It used variously a paper tape reader and a punched-
cards reader. The earliest personal computers (microcomputers) were not
introduced until 1975, and then only in crude form.

Chapter 12 Refactoring

131

We are unlikely to get the design of a library

or interface right on the first attempt. As Fred

Brooks once wrote, “plan to throw one away; you

will, anyhow.” Brooks was writing about large

systems but the idea is relevant for any substantial

piece of software. It’s not usually until you’ve

built and used a version of the program that you

understand the issues well enough to get the

design right.—Brian W. Kernighan and Rob Pike,

The Practice of Programming (Addison-Wesley,

1999), page 87.

To put it crassly, top-down design is a great way

to redesign a program you already know how to

write.—P.J. Plauger, Programming on Purpose

(Prentice Hall, 1993), page 2.

There is a doctrine in the hard sciences that says if you can’t measure

something by a number, then it doesn’t exist.3 Some people believe

this idea is false. You can’t measure love by a number, and love exists.

Personally, I’m not so sure that someday love won’t be measured by a set

of numbers. But it doesn’t matter if this doctrine is false, because belief

3�I often say that when you can measure what you are speaking about and express
it in numbers you know something about it; but when you cannot measure
it, when you cannot express it in numbers, your knowledge is of a meager
and unsatisfactory kind: it may be the beginning of knowledge, but you have
scarcely, in your thoughts, advanced to the stage of science, whatever the matter
may be.—Lord Kelvin (William Thompson (1824–1907). From an 1883 lecture.
Found in Popular Lectures and Addresses Vol. I (London: Macmillan and Co.,
1894), page 73.

Chapter 12 Refactoring

132

in the doctrine fosters productive thinking.4 So we ask: In what units can

readability be measured? Decide before checking the footnote.5

Refactoring is hard work. Some programs are so exhausting to write

that I just want to be done with them when they finally work, and don’t

redesign them. Of course, when I return to them the following year, I have

difficulty understanding my own code.

Doing a refactoring based on a couple of early

uses, then having to undo it soon after is fairly

common.—Kent Beck, Test-Driven Development

(Addison-Wesley, 2003), page 102.

Before we leave this topic, an if-else should never be used in a case

like this:

if x > 0:

 return True

else:

 return False

This construction is sometimes called an anti-idiom (poor design).

Instead, we should write this:

return x > 0

4�We hold mere falsity no ground for rejecting a judgment. The issue is: To what
extent has the conception preserved and furthered the life of the race? The
falsest conceptions—and to these belong our synthetic judgments a priori—
are also those which are the most indispensable. Without his logical fictions,
without measuring reality in a fictitious absolute and immutable world,
without the perpetual counterfeiting of the universe by number, man could
not continue to live. The renunciation of all false judgment would mean a
renunciation, a negation of life.—Friedrich Nietzsche, Beyond Good and Evil
(originally published in Germany in 1866), part I, §4; this translation is found
in Tobias Danzig, Number the Language of Science, 4th ed. (Doubleday Anchor,
1956), page 249.

5�The answer is time. We try to refactor our code to minimize the time necessary for
someone else to understand it.

Chapter 12 Refactoring

133

QUIZ 7. Refactor the following code. The answer is in the footnote.6

if x > 0:

 if ch in {'A','B','C'}:

 return True

 else:

 return False

else:

 return False

The following code is a shell program that I occasionally use.

"""+===========+=======-=======*========-========+============+

 || TITLE ||

 || by M. Stueben (DATE) ||

 || ||

 || Description: ||

 || Language: Python Ver. 3.4. ||

 || Graphics: None ||

 || References: None ||

 +===========+=======-=======*========-========+============+

"""

######################<START OF PROGRAM>#######################

def fn():

 pass

#==========+====<GLOBAL IMPORTS AND CONSTANTS>=================

None

#===========================<MAIN>=============================

6�QUIZ 7 ANSWER: return (x > 0) and (ch in {'A','B','C'}).

Chapter 12 Refactoring

134

def main():

 pass

#--

if __name__ == '__main__':

 �from math import sqrt; from random import random, randint,

uniform, shuffle

 from sys import setrecursionlimit; setrecursionlimit(100)

 �from time import clock; START_TIME = clock(); main();

print('~-'*16)

 �print('PROGRAM RUN TIME:%6.2f'%(clock()-START_TIME),

'seconds.')

�import winsound; winsound.Beep(1500,500) # Frequency,

milliseconds

#########################<END OF PROGRAM>######################

Notice the five lines at the bottom. The first line imports the math

functions often needed in school algorithms. The second line sets the

possible recursive depth to 100 instead of the default 1000. Rarely is a

greater depth needed. And infinite recursion, which is a common bug in

my code, takes too long to fail with 1000 recursive calls. The next two lines

calculate and print the program run time. The final line makes a beep (if

desired) to announce the program is finished.

Suppose you need to have the user enter one of four choices. Here is

one way to do it:

input('Enter PUsh, pOp, View, or Quit. Choice (U,O,V,Q):')

Here is another way to do it:

def userChoice():

 msg = ''

 pr = """

Enter u for push.

Enter o for pop.

Chapter 12 Refactoring

135

Enter v for view.

Enter q for quit (or push the enter key).

Enter choice: """

 while True:

 try:

 choice = input(msg+pr).strip()[0].lower()

 except:

 return 'q'

 if choice not in 'uovq':

 �msg = 'ERROR: "' + choice +'" is an invalid choice.

Try again.\n'

 else:

 return choice

The second method takes more space and is harder to debug,

but gives the program a prettier interface and is more robust code. Is it

worth the extra effort? If you have the time and if others will be using

your program, then maybe it is. For the first draft, the single line of code is

better.

With simple if statements, avoid negative if-tests where you can,

because negations are harder to parse than positive statements. I hope you

have memorized DeMorgan’s laws:

not (A and B) → (notA) or (not B).

not (A or B) → (not A) and (not B).

QUIZ 8. Apply DeMorgan’s laws and refactor the following loop body.

My solution follows.

for n in range(5):

 if not A or x >= 10:

 doSomething

Chapter 12 Refactoring

136

QUIZ 8 ANSWER:

for n in range(5):

 if A and (x < 10):continue

 doSomething

The second version eliminated a not and reduced the indenting.

Some experts prefer to use “<” over “ > ” in if tests, because this is

consistent with the number line, which keeps the smaller numbers to the

left. This seems reasonable, unless, for psychological reasons, “>” does fit

in better with an expression—e.g., if x > 0.001: doSomething(). Recall

that in English classes you are advised to avoid passive writing (“The ball

was hit by the boy.”), and prefer active writing (“The boy hit the ball.”). Yes,

of course. But if the ball is more important in the story than who hit it, then

don’t we prefer the so-called passive version? Anyway, in the if test, it is x

that is probably significant, not so much the 0.001, which perhaps is just

an arbitrary small number.

Beware of multiple ifs, especially with a final else. Consider replacing

nested else if statements with a set of if statements, perhaps by turning

the structure up-side down or by ending each if with a return, break, or a

continue. Why? Simple ifs are easier to debug than else ifs.

LOGIC error (beginner's error 1, bleeding ifs)

 x = 1

 if x == 1: x = 2

 if x == 2: x = 3

 if x == 3: x = 4

 print(x) # output: 4 (but the programmer expected 2)

LOGIC error (beginner's error 2, back-stabbing else)

 x = 1

 if x == 1: x = 2

 if x == 3: x = 4

 else: x = 5

 print(x) # output: 5 (but the programmer expected 2)

Chapter 12 Refactoring

137

Using returns, breaks, and continues can make code easier to

debug.

def doIt(x):

 if x == 1:

 return 2

 if x == 2:

 return 3

 if x == 3:

 return 4

Here is the useful subscripted list trick:

def doIt(x):

 return['-',2,3,4][x]

During our many years of analyzing programming

problems in industry, we found complications

resulting from multiple nested if statements were

the single most common cause of logic bugs.—Tom

Rugg and Phil Feldman, Turbo Pascal Tips, Tricks,

and Traps (Que, 1986), page 132.

Tangled code: if, elif, and else statements, indented to several

levels, sometimes can be refactored in dramatic ways. It takes some

practice to skillfully apply the tricks, so maybe you should cover up the

solution following each quiz until you can think of a refactor.

QUIZ 9. Refactor the body of this function to make it more readable:

def doIt(a,b,c):

 if a == 1:

 if b == 1:

 if c == 1:

 print ('abc')

Chapter 12 Refactoring

138

 else:

 print('ab')

 else:

 print('a')

 else:

 print('-')

QUIZ 9 ANSWER:

def doIt(a,b,c):

 if a != 1:

 print('- '); return

 if b != 1:

 print('a '); return

 if c != 1:

 print('ab'); return

 print('abc')

Here, the refactor made the tests negative, which violates the advice

given earlier. General rules have exceptions.

QUIZ 10. Refactor this code. Two solutions follow.

#---BLOCK 1 (22 lines).

 if a == 1:

 if b == 1:

 if c == 1:

 print ('abc')

 else:

 print ('ab-')

 else:

 if c == 1:

 print('a-c')

 else:

 print('a--')

Chapter 12 Refactoring

139

 else:

 if b == 1:

 if c == 1:

 print ('-bc')

 else:

 print('-b-')

 else:

 if c == 1:

 print('--c')

 else:

 print ('---')

Tangled code (multiple if else statements) can often be improved by

repeated and statements with vertical alignment.

QUIZ 10 ANSWERS:

#---BLOCK 2 (8 lines).

 if a == 1 and b == 1 and c == 1: print('abc')

 if a == 1 and b == 1 and c == 0: print('ab-')

 if a == 1 and b == 0 and c == 1: print('a-c')

 if a == 0 and b == 1 and c == 1: print('-bc')

 if a == 0 and b == 0 and c == 1: print('--c')

 if a == 0 and b == 1 and c == 0: print('-b-')

 if a == 1 and b == 0 and c == 0: print('a--')

 if a == 0 and b == 0 and c == 0: print('---')

#---Block 3 (8 simpler lines)

 if (a,b,c) == (1,1,1): print('abc')

 if (a,b,c) == (1,1,0): print('ab-')

 if (a,b,c) == (1,0,1): print('a-c')

 if (a,b,c) == (1,0,0): print('a--')

 if (a,b,c) == (0,1,1): print('-bc')

 if (a,b,c) == (0,1,0): print('-b-')

 if (a,b,c) == (0,0,1): print('--c')

 if (a,b,c) == (0,0,0): print('---')

Chapter 12 Refactoring

140

The previous two solutions are a bit contrived. If the identifiers were

function calls, the code wouldn’t look so impressive. Here is the same quiz

again with the same answer.

#---BLOCK 1 (again).

 if inStock(item):

 if name in customerList:

 if price-1 < payment <= price:

 print ('abc')

 else:

 print ('ab-')

 else:

 if price-1 < payment <= price:

 print('a-c')

 else:

 print('a--')

 else:

 if name in customerList:

 if price-1 < payment <= price:

 print ('-bc')

 else:

 print('-b-')

 else:

 if price-1 < payment <= price:

 print('--c')

 else:

 print ('---')

#---BLOCK 2 (again).

 if (inStock(item) and

 name in customerList and

 price-1 < payment <= price): print('abc')

 if (inStock(item) and

Chapter 12 Refactoring

141

 name in customerList and

 not(price-1 < payment <= price)): print('ab-')

 if (inStock(item) and

 not name in customerList and

 price-1 < payment <= price): print('a-c')

 if (inStock(item) and

 not name in customerList and

 not(price-1 < payment <= price)): print('a--')

 if (not inStock(item) and

 name in customerList and

 price-1 < payment <= price): print('-bc')

 if (not inStock(item) and

 name in customerList and

 not(price-1 < payment <= price)): print('-b-')

 if (not inStock(item) and

 not name in customerList and

 price-1 < payment <= price): print('--c')

 if (not inStock(item) and

 not name in customerList and

 not(price-1 < payment <= price)): print('---')

QUIZ 11. Here the unimproved Block 1 seems easier to debug than

the refactored Block 2. Is there no way to improve Block 1? Yes, the

improvement (Block 3) is at the end of this chapter.

QUIZ 12. Refactor this code, significantly reducing the number of lines:

#---BLOCK 1 (13 lines).

 if a == 1:

 if b == 1:

 if c == 1:

 print(doIt())

 else:

 print ('error 3')

Chapter 12 Refactoring

142

 return

 else:

 print('error 2')

 return

 else:

 print('error 1')

 return

My solution (Block 2) is at the end of this chapter.

QUIZ 13. Simplify/improve the code below:

def selectCourse(name):

 if name != '':

 courseName = name

 else:

 courseName = 'Computer Science 101'

 return courseName

QUIZ 13 ANSWER:

def selectCourse(name):

 assert type(name) == str

 return name or 'Computer Science 101'

The assert is necessary to guarantee that name is not None, (), [], 0, or

False. Is the “or trick” justified, or have I fallen into the “clever code” trap?

One of the summer instructors at Colgate University in 2002 discouraged

me from using tricks that take advantage of a language’s eccentricities. He

may not have approved of this code.

QUIZ 11 ANSWER:

#---Block 3 (6 lines)

 (item, payment, name) = (0,0,0)

 msg = ['-', '-', '-']

Chapter 12 Refactoring

143

 if inStock(item): msg[0] = 'a'

 if name in customerList: msg[1] = 'b'

 if price-1 < payment <= price: msg[2] = 'c'

 print (''.join(msg))

QUIZ 12 ANSWER:

#---BLOCK 2 (4 lines).

 if a != 1: print ('error 1'); return

 if a == 1 and b !=1: print ('error 2'); return

 if a == 1 and b ==1 and c != 1: print ('error 3'); return

 print (doIt())

Advice to remember: If your code has several returns, consider re-

writing it to have early returns rather than later returns, even if you need

to make your if tests negative.

Chapter 12 Refactoring

145© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_13

CHAPTER 13

Write the Tests
First (Sometimes)

We’ve interviewed and hired a lot of testers. We have

yet to meet a computer science graduate who learned

anything useful about testing at a university.—

Cem Kaner, Jack Falk, Hung, Quoc Nguyen, Testing

Computer Software 2nd Ed. (Wiley, 1999), page ix.

In industry, the first step in testing is called domain testing: testing of

variables, constraints, and correct types. Next is unit testing (aka functional

testing aka white-box testing): the testing of individual functions. Finally

there is black-box testing: the testing of the entire program. Industry also

uses programs to test programs. In school, we generally test as we go by

tracing data and checking for the expected answers. We don’t usually write

other functions to test our functions. This is fine, with one exception. For

a complicated algorithm, a test function should be written first—before

writing the algorithm, and then another test function should be written

after the writing the algorithm. That is two different test functions. You must

see an example to appreciate this advice. The following code is the first test

function, a smoke test,1 that I wrote prior to writing the binary search.

1�A smoke test is a simple test for a common situation. The term “smoke test”
evidently comes from hardware testing. Turn it on. If the device starts smoking,
then turn it off. The test is finished.

146

THE NOTORIOUS BINARY SEARCH

In case you have forgotten, the binary search is an algorithm to search for

the index of a target number t in a sorted list of numbers. If t is not in the list,

then the algorithm returns -1. If t occurs more than once, the search returns

any one of its indices. Because the algorithm can eliminate half of the indices

with each probe, the binary search over a list of length L will take at most

ceil(log2(L)) probes. For a billion indices, this is 30 probes for the worst case.

The algorithm sounds easy to write. It isn’t.

def binarySearchTest():

 array = [0,1,2,3,4,6,7,8,9] # <--5 is missing

 print('array =', array)

 print('Test -9 =', binarySearch(array,-9) == -1)

 print('Test 0 =', binarySearch(array, 0) == 0)

 print('Test 4 =', binarySearch(array, 4) == 4)

 print('Test 5 =', binarySearch(array, 5) == -1)

 print('Test 9 =', binarySearch(array, 9) == 9)

 print('Test 10 =', binarySearch(array,10) == -1)

This test code is good enough to catch obvious errors, and that is all

smoke tests should do. When I finally came to write the binarySearch,

almost every logic error was immediately exposed by this test code. Of

course, fixing one error would introduce another error, but the smoke test

usually caught that error too.

The binarySearch function took me 70 minutes to write (passing the

smoke tests) and to refactor. How confident was I about my binarySearch?

Not very, because smoke tests are crude. The final step was to create and

test 1000 random-sized sorted arrays of random integers. Then every

Chapter 13 Write the Tests First (Sometimes)

147

possible number in each array, and some not in each array, were searched

for. The following code does this.

def binarySearchTest():

 runs = 1000 # The number of random arrays to be tested.

#---A function to verify the binarySearch for a single element.

 def check(array, value):

 valueIndex = binarySearch(array, value)

 if ((valueIndex == -1) and (value in array)) or \

 �((valueIndex != -1) and (array[valueIndex] !=

value)):

 print('\nFALSE: array =', array)

 �print('The position of', value, 'is returned as',

valueIndex)

 exit()

#---Check all numbers in all random arrays created below.

 for i in range(runs):

#-------Create a random sized array each with different random

values.

 arrayLength = randint(0, 30)

 �sm = randint(-5, 20) �# sm = smallest

possible value in array.

 �lg = randint(20, 40) �# lg = largest possible

value in array.

 �array = sorted([randint(sm,lg) for j in

range(0,arrayLength)])

#-------Test every value possible in the array and many not in

the array.

 for value in range(sm-2, lg+2):

 check(array, value)

 �print('True: The binarySearch function passed', runs,

'tests.')

Chapter 13 Write the Tests First (Sometimes)

148

The only test my binary search failed was with the empty set. That was

a quick fix, and now I was confident about my code.

My Binary Search

def binarySearch(array, target):

 # �UNCHECKED preconditions: array is a list of sorted

integers.

 left = 0

 right = len(array)-1

 while left < right:

 mid = (left + right)//2 # rounds down.

 if array[mid] == target:

 return mid

 if array[mid] < target:

 if left == mid:

 left = left+1

 else:

 left = mid

 else:

 right = mid

#---Check for empty array or possible solution where left = right.

 if (array != []) and (array[left] == target):

 return left # left = right = index of target.

 return -1 # Either array = [], or target not in array.

When I compared this version to a published version of binarySearch,

I realized that I made a poor design decision. My code used while left

< right, when while left <= right would have produced a simpler

design. It is difficult to identify every key relationship when you begin

designing a complex function.

Chapter 13 Write the Tests First (Sometimes)

149

Digression. Below is a binary search that I found on the Internet.

Notice the elif and else. I call this tangled code. There is a simple trick to

untangle code: Just repeat the if tests.

def binarySearch(array, target): # A �better design. 29.51

seconds

 left = 0

 right = len(array)-1

 while left <= right:

 mid = (left+right)//2 # rounds down.

 if array[mid] < target:

 left = mid+1

 elif array[mid] > target:

 right = mid-1

 else:

 return mid

 return -1

Here is the untangled code:

def binarySearchUT(array, target): # �Untangled code. 39.33

seconds

 left = 0

 right = len(array)-1

 while left <= right:

 mid = (left+right)//2 # rounds down.

 if array[mid] < target: left = mid+1

 if array[mid] > target: right = mid-1

 if array[mid] == target: return mid

 return -1

This is simpler and has three fewer lines. In a test of ten million runs,

the tangled binarySearch finished in 29.51 seconds. The untangled

binarySearchUT finished in 39.33 seconds. Is the refactored improvement

Chapter 13 Write the Tests First (Sometimes)

150

worth the loss of speed? The untangled binary search is still lightning fast

on almost any array. End of Digression.

A natural question is how do we test the tests? The answer is two-fold.

First, we purposely pass bad data (aka fault injection) to our test code

to verify that it can detect errors. Second, with simple code, the program

verifies the tests at the same time that the tests verify the program.

Should all test results be reported or only the first case to fail? My

preference is to report only the first case to fail, because the test code

should be as simple and quick to write as possible. Consequently, when

an error is discovered, the function prints information and then returns or

exits on the spot. We do not want to climb out of nested for loops, unwind

recursion, or carry error flags that tell us to ignore a default True.

Although the binary search is an instructive example, only a few school

problems will benefit from writing the tests first—e.g., the quick sort. In

writing the Traveling Salesman Problem, the A* searching algorithm, and

the difficult back-propagation algorithm for a neural network, the student

never gets beyond manually testing the program with fixed data—perhaps

data required by the instructor. Consequently, when an assignment

appears that can benefit from writing tests first, a student may not think

about writing them.

Professor Donald Knuth claims that the first binary search was

published in 1946, but the first bug-free binary search was not published

until 1962.2 In his courses at Bell Labs and IBM, Jon Bentley reported

asking over a hundred professional programmers to write a correct binary

search within two hours. Only 10 percent produced correct algorithms.3

Incredibly, even Bentley’s published binary search contained a tiny

2�Donald Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching,
2nd Ed. (Addison-Wesley, 1998), Section 6.2.1.

3�Jon Bentley, Programming Pearls (Addison-Wesley,1986), page 36. The most
common error was an infinite loop. Bentley’s students were probably hand-
writing their code on paper and could not test their code on a computer.

Chapter 13 Write the Tests First (Sometimes)

151

error.4 That being the case, how is it possible that I wrote a correct binary

search in 70 minutes? First, I wrote smoke tests before I wrote the code,

which exposed hard-to-find errors on every practice run. Second, I ran a

thousand random tests on my finished code.

However, the 70 minutes did not include the time to write the testing

code. That took another hour. And, of course, this extra time is one reason

people do not want to write the tests first—or at all.

By the way, there are several attributes of the binary search that I

missed. The first is the number of mid values (probes) calculated. With an

array length of 2n, there should be n+1 or fewer probes. I never checked

this. The second is choosing an array so large that mid = (left+right)//2

leads to overflow. This can’t happen in Python, but it can in Java, C++, and

other languages. The solution is mid = left + (right-left)//2. (This

was Bentley’s tiny error.) Third, I never explicitly tested an array with all

equal values, except for the array of one element. Fourth, does it matter if

the target element is at an even position versus an odd position? I never

thought about this in my testing, but even and odd positions must have

occurred multiple times in the thousand runs. Did I miss something else? I

will never be sure.

4�Andy Oram and Greg Wilson, Eds., Beautiful Code (O’Reilly, 2007), page 88. Here
an entire chapter is devoted to the binary search.

Chapter 13 Write the Tests First (Sometimes)

153© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_14

CHAPTER 14

Expert Advice
Of course, a chap can’t expect to become a thorough

backwoodsman all at once without learning

some of the difficult arts and practices that the

backwoodsman uses. If you study this book you will

find tips in it showing you how to do them—and in

this way you can learn for yourself instead of having

a teacher to show you how.—Lord Baden-Powell,

the Foreword in Scouting for Boys (1908), found on

the Internet.

T his chapter is a list of programming tips I have collected over the years.

The most important tip is to read other people’s code, especially well-

written code.

	 1.	 Fail fast. For example, hard code your input data,

because having to type in the same input on

every run is needlessly time-consuming. I once

assigned my students to write a program that ran

a loop 100,000 times. This took about 20 seconds.

Incredibly, some of the students were trying to

debug their program with the 100,000 number.

They should have reduced that number to 10 for

debugging purposes, and later, when the program

seemed to work, changed it to 100,000.

154

	 2.	 Use vertical alignment to emphasize relationships,

to make errors visually stand out, and to make look-

up easier. This requires a mono-spaced font,1 like

Courier.

VERTICAL ALIGNMENT

 M = [[0, 0, 0, 0, 0, 0, 0, 0,],

 [0, 0, 0, 0, 0, 0, 0, 0,],

 [0, 0, 0, 0, 0, 0, 0, 0,],

 [0, 0, 0,-1, 1, 0, 0, 0,],

 [0, 0, 0, 1,-1, 0, 0, 0,],

 [0, 0, 0, 0, 0, 0, 0, 0,],

 [0, 0, 0, 0, 0, 0, 0, 0,],

 [0, 0, 0, 0, 0, 0, 0, 0,],]

MORE VERTICAL ALIGNMENT

for c in range(1,length-1):

 ch = chr(32) # = blank space = �background

color

 if L[c]== 1: ch = chr(9607) # = solid square = �foreground

color

 if maxx == max1:

 �canvas.create_text(c*12 + 640-12*r, (r-1)*10,

text = ch, \

 fill = 'red', font = ('Helvetica', 8, 'bold'))

1�The words font and type or typeface are often used interchangeably. A font is
associated with an attribute of a typeface—e.g., Calibri italic, Calibri bold, or
Calibri mono-spaced are all different fonts of the Calibri typeface. A typeface
refers to the core shapes of the characters. Robert Harris in The Elements of
Visual Style (Houghton Mifflin, 2007) claims that typefaces fall into four broad
categories: serif (with extenders like Times Roman), sans serif (without
extenders like the Calibri type face you are reading), script (cursive handwriting
like Lucinda Handwriting), and novelty (like Juice ITC).

Chapter 14 Expert Advice

155

 if maxx == max2:

 �canvas.create_text(c*6 + 640- 6*r, (r-1)*4,

text = ch, \

 �fill = 'red', font = ('Helvetica', 4,

'bold'))

 if maxx == max3:

 �canvas.create_text(c*4 + 640- 4*r, (r-1)*3,

text = ch, \

 �fill = 'red', font = ('Helvetica', 2,

'bold'))

 if maxx == max4:

 �canvas.create_text(c*2 + 640- 2*r, (r-1)*2,

text = ch, \

 �fill = 'red', font = ('Helvetica', 1,

'bold'))

	 3.	 Try to write robust code. Robust is the opposite of

brittle and fragile. Robust code is code that either

heals itself, allows the user to help it recover, or if it

must, crashes gracefully.

	 4.	 Avoid global variables. Why? Variables with

large scope are difficult to track down to detect

unexpected changes. On the other hand, global

constants are acceptable. One reason we write

constant names in all capitals is so the programmer

knows not to change their constant values.

That being said, there are situations where global

variables make sense—e.g., where the globals

are not part of your code. Imagine you decide

to introduce a temporary variable to count how

many times a recursive function backtracks. You

Chapter 14 Expert Advice

156

don’t want to pass this variable to the function and

increase an already long parameter list. The variable

is needed only for debugging, and it doesn’t affect

how the program works. Make it global.

A global that holds the time for the start of

the program and that can be used to print out

incremental time steps in various functions is

another acceptable global. This is a global that

is never modified by other code and shares the

attribute of a global constant. My rule is never use

global variables without a compelling reason.

	 5.	 The acronym SESE refers to a function having a

single entry point (don’t drop in with a goto), and

a single exit point. The single entry point makes

sense. The single exit point is too restrictive.

Rather than unwind multiple levels of loops, it is

sometimes convenient to return or break on the

spot. In Python, a function using yield will begin on

the last iteration of the loop, so in a sense you can

enter the function at two different points. I suspect

the original motivation for the SESE rule was that it

made proving program correctness easier.

	 6.	 Avoid writing a function that returns a single

variable of two different data types. (Usually the

second data type is the indication of an error.) Why?

Because every time the function is called, it must be

called with an if statement. This makes the function

harder to use. Nevertheless sometimes you are

required to return multiple datatypes. Consider the

humble quadratic formula. Most students would

write a fine 9-line version like this:

Chapter 14 Expert Advice

157

def quad(a, b, c):

 from math import sqrt

 disc = b*b-4*a*c

 if disc < 0:

 return 'There are no real roots.'

 x1 = (-b+sqrt(disc))/(2*a)

 x2 = (-b-sqrt(disc))/(2*a)

 if disc == 0:

 return x1

 return x1, x2

This code returns either a string, a tuple of two numbers, or a single

number. Note that this version does not take care of the three cases that

can arise if a = 0: all real numbers, no roots real or otherwise, and

-c/b. Nor does it always get the correct answer for extreme numbers. If a

= 6, b = 1073741900, and c = 7, then the computer has sqrt(b*b-4*a*c)

= sqrt(b*b) =|b|. The two roots will be (0.0, -178956983.33333334).

But zero cannot be an answer. By inspection all roots must be negative. The

version that follows will print the correct answers:

(-178956983.33333334, -6.519257560871937e-09).

def quad(a, b, c):

#---Rescale all three coefficients to prevent overflow of b*b

and 4*a*c. (Python

has 16-17 digits of accuracy.) Underflow is still possible.

Mathematically

the roots are not changed by this process.

 m = max(abs(a),abs(b),abs(c))

 if m != 0:

 a1 = a/m

 b1 = b/m

 c1 = c/m # Now the largest parameter (a, b, c) is 1.

Chapter 14 Expert Advice

158

#---Special case 1: a = 0, b = 0, and c = 0.

 if a == 0 and b == 0 and c == 0:

 return 'All real numbers are roots.'

#---Special case 2: a = 0, b = 0, and c != 0.

 if a == 0 and b == 0 and c != 0:

 return 'There are no roots (real or otherwise).'

#---Special case 3: a = 0 and b != 0.

 if a == 0 and b != 0:

 x1 = -c/b # = the only root.

 #-Cast as int type if possible (optional).

 if x1 == int(x1): x1 = int(x1) # This turns -0.0 into 0.

 return x1

#---Bookkeeping.

 from math import sqrt

 disc = b*b-4*a*c

#---Special case 4: sqrt of negative number.

 if disc < 0:

 return 'There are no real roots.'

#---Special case 5: a != 0, b = 0, c = 0 (Needed for case 6.)

 if a != 0 and b == 0 and c == 0:

 return 0

#---Special case 6: Rationalize the numerator in one of the

roots. Why? If b*b

is much much larger than 4*a*c, then sqrt(disc) = |b|.

Consequently,

-b + sqrt(b*b) will be zero for b > 0, and -b - sqrt(b*b)

will be zero

for b < 0. We need the "+" and "-" signs reversed in these

two situations.

Chapter 14 Expert Advice

159

 if b > 0:

 x1 = (-b-sqrt(disc))/(2*a)

 x2 = (-2*c)/(b+sqrt(disc)) # = (-b+sqrt(disc))/(2*a)

 else:

 x1 = (-b+sqrt(disc))/(2*a)

 x2 = (-2*c)/(b-sqrt(disc)) # = (-b-sqrt(disc))/(2*a)

#---Cast as int types if possible (optional). This turns -0.0

int 0.

 if x1 == int(x1): x1 = int(x1)

 if x2 == int(x2): x2 = int(x2)

#---Special case 7. Only one root.

 if disc == 0: return x1

 return x1, x2

And this is the problem with writing code to

	 1.	 take in all cases—e.g., a = 0,

	 2.	 to prettyprint the output—e.g., "–0.0" should

print as "0", and

	 3.	 to maximize the limits of computing—e.g.,

scaling and rationalizing.

The code went from 9 lines to 56 lines, needing

19 lines of comments, and requiring rationalizing

numerators to understand. Is it worth the effort?

Maybe worse is better.

	 7.	 Know your order of operations (aka operator

hierarchy, aka operator precedence) and your

Boolean properties. Whoever wrote this:

a and b == True,

Chapter 14 Expert Advice

160

probably meant this:

(a and b) == True

There are multiple comments on the Internet to never write “== True”.

One reason is to avoid problems like the above. I take exception. The two

expressions if x and if x == True are NOT always equivalent in Python

(e.g., x = 'a'). And the two expressions if not x and if x == False are

NOT always equivalent in Python (e.g., x = [], None, 'a').

In Python, empty strings and lists have a Boolean value of False.

Naturally, this makes a programmer want to write

if stng: doSomething

instead of either

if len(stng) > 0: doSomething()

or

if stng != '': doSomething()

The longer versions are not only more readable, but protect the code

from stng being None or a number.

Recall that the bit shift >>2 is equivalent to dividing an integer by 4.

Since shifting is faster than division (unless the compiler is optimized), you

might consider replacing

a + b/4

with

a + b >> 2.

But these two expressions are not equivalent. Parentheses are required.

a = 6

b = 4

print(a + b/4) # output: 7.0

Chapter 14 Expert Advice

161

print(a + b >> 2) # output: 3

print(a + (b >> 2)) # output: 7

Give the output: print(2**3**2). The answer is in the footnote.2

If you have to look up an order of operations, then use parentheses to

make it clear to the reader.

	 8.	 Be aware that general code is easier to re-use, but

specific code is easier to write. Unless you suspect

that you will expand a function, it might not be

worth your time to make it general. The following is

my Python function to input an integer, which uses a

try/except construct. That way I can catch any kind

of run-time error.

def dataInput():

 s = 'Enter an integer:'

 posLimit = float('inf')

 negLimit = -float('inf')

 while True:

 try:

 data = input(s)

 num = int(data) # a non-int will raise exception.

 �if not (negLimit < num < posLimit): raise Error

#out-of-bounds?

 except:

 s = '"' + str(data) + '" is NOT an integer! \

 Try again. \nEnter an integer:'

 else:

 print('input = ', num)

 return num

2�2**3**2 = 2**(3**2) = 512. Stacked exponents are the only algebraic expressions I
know of that are evaluated from right to left.

Chapter 14 Expert Advice

162

I decided to rewrite the above function to print two kinds of error

messages, and to accept parameters for input bounds—instead of hard-

coding them. The result was a more complicated function. This is a

common predicament in coding. Do we accept the more powerful, and/

or the more general3 (extensibility, where future growth is taken into

consideration in the initial design) at the cost of increased time to write,

increased size, and increased complexity? The answer is often personal.

In this case, I went back to the simple version, above. (For me, worse is

sometimes better.)

I once wrote a Sudoku solver for a 9×9 grid. Then I re-wrote part of it

for an n×n grid. The general case was much shorter than the specific case.

Unfortunately, it was also much harder to debug. Below is the 9x9 code

followed by the n×n code. Which would you rather debug?

#---Build list of 9x9 blocks.

 block = [[],[],[], [],[],[], [],[],[],]

 �block[0] = �[matrix[0][0].value, matrix[0][1].value,

matrix[0][2].value,

 �matrix[1][0].value, matrix[1][1].value,

matrix[1][2].value,

3�Sometimes you want to design code so that it is general, and can easily be
extended to work with bigger data sets. This makes sense only if the code is
also scalable. If a program or algorithm works well with a small data set, but
is significantly inefficient with a larger data set, then the program/algorithm
is not scalable. For example, the insertion sort O(n2) is more scalable than the
bubble sort O(n2), but less scalable than an O(nlog(n)) sort when the data size
in increased. The binary search O(log(n)) is extremely scalable and the hash
table O(1) is perfectly scalable for any sized data set. (Unfortunately, the memory
required to hold the searchable data in a hash table must be 50% to 100% more
than the space actually needed to hold the data. As the data set is increased, the
hash keys must be changed.) Python is great for small programs (under 1000
lines), but not large programs—i.e., the language is not scalable—this is mainly
due to lack of type checking, and being an interpreted language. See Wikipedia,
s.v., scalability.

Chapter 14 Expert Advice

163

 �matrix[2][0].value, matrix[2][1].value,

matrix[2][2].value,]

 �block[1] = �[matrix[0][3].value, matrix[0][4].value,

matrix[0][5].value,

 �matrix[1][3].value, matrix[1][4].value,

matrix[1][5].value,

 �matrix[2][3].value, matrix[2][4].value,

matrix[2][5].value,]

 �block[2] = �[matrix[0][6].value, matrix[0][7].value,

matrix[0][8].value,

 �matrix[1][6].value, matrix[1][7].value,

matrix[1][8].value,

 �matrix[2][6].value, matrix[2][7].value,

matrix[2][8].value,]

 �block[3] = �[matrix[3][0].value, matrix[3][1].value,

matrix[3][2].value,

 �matrix[4][0].value, matrix[4][1].value,

matrix[4][2].value,

 �matrix[5][0].value, matrix[5][1].value,

matrix[5][2].value,]

 �block[4] = �[matrix[3][3].value, matrix[3][4].value,

matrix[3][5].value,

 �matrix[4][3].value, matrix[4][4].value,

matrix[4][5].value,

 �matrix[5][3].value, matrix[5][4].value,

matrix[5][5].value,]

 �block[5] = �[matrix[3][6].value, matrix[3][7].value,

matrix[3][8].value,

 �matrix[4][6].value, matrix[4][7].value,

matrix[4][8].value,

Chapter 14 Expert Advice

164

 �matrix[5][6].value, matrix[5][7].value,

matrix[5][8].value,]

 �block[6] = �[matrix[6][0].value, matrix[6][1].value,

matrix[6][2].value,

 �matrix[7][0].value, matrix[7][1].value,

matrix[7][2].value,

 �matrix[8][0].value, matrix[8][1].value,

matrix[8][2].value,]

 �block[7] = �[matrix[6][3].value, matrix[6][4].value,

matrix[6][5].value,

 �matrix[7][3].value, matrix[7][4].value,

matrix[7][5].value,

 �matrix[8][3].value, matrix[8][4].value,

matrix[8][5].value,]

 �block[8] = �[matrix[6][6].value, matrix[6][7].value,

matrix[6][8].value,

 �matrix[7][6].value, matrix[7][7].value,

matrix[7][8].value,

 �matrix[8][6].value, matrix[8][7].value,

matrix[8][8].value,]

#---Build list of nxn of blocks.

 block = []

 for n in range(MAX):

 block.append([])

 for n in range(MAX):

 for r in range(blockHeight):

 for c in range(blockWidth):

 row = (n//blockWidth)*blockHeight+r

 col = (n%blockHeight*blockWidth) +c

 block[n].append(matrix[row][col].value)

Chapter 14 Expert Advice

165

	 9.	 Avoid so-called magic numbers. Magic

numbers are numbers that are represented by

constants. If you use 10 as the length of an array

throughout a program, you may later find yourself

hunting through your program changing every

10-associated-with-an-array-length to 100. Better is

to set all arrays to the length of MAX, which is set to

10. There are some minor exceptions. We don’t need

TWO = 2 in area = PI * radius ** TWO. We don’t

need FEET_PER_MILE = 5280, but maybe we do

need the comment # 5280 = feet-per-mile. If we

need a pause of 10 seconds, and the 10 appears only

once in the program, then perhaps 10 is better than

pause = 10.

secondsInAnHour = 3600

time = round(clock() - START, 2) # START is global time in secs.

hours = int(time/secondsInAnHour)

time -= hours * secondsInAnHour

Another exception is using a fudge factor. The word “fudge” here

means “cheat.” If a program’s results are always off by 2, then add 2 to all

of the results, and document this in the code. Perhaps this is acceptable

if a deadline has arrived. (Use the right tool for the right job.4) But this is

attending to symptoms, not causes.

That being said, there is one big exception—at least in my mind:

General can be significantly harder to understand than specific. When

writing my first artificial neural net program using back propagation,

I preferred magic numbers. That was the most difficult program I ever

wrote. I needed to make it as simple as possible (many fewer variables).

4�This was the advertising slogan for True Temper Tools since at least 1907.

Chapter 14 Expert Advice

166

	 10.	 Do not repeat code (DRY: Don’t repeat yourself).

This is one of the big rules for professional

programmers. Below is a function that tests for

a win in a tic-tac-toe game. I prefer the second

version. Why? A change to one part does not require

a change to the repeated part. If the change is a

bug fix, you might not think to make that bug fix in

another line that wasn’t executed.

FIRST VERSION

def result(board):

 score = 'XXX'

 B = board

 �if �B[0] + B[1] + B[2] == score or B[3] + B[4] + B[5] ==

score or \

 �B[6] + B[7] + B[8] == score or B[0] + B[3] + B[6] ==

score or \

 �B[1] + B[4] + B[7] == score or B[2] + B[5] + B[8] ==

score or \

 �B[0] + B[4] + B[8] == score or B[2] + B[4] + B[6] ==

score:

 return 'win'

 score = 'OOO'

 �if �B[0] + B[1] + B[2] == score or B[3] + B[4] + B[5] ==

score or \

 �B[6] + B[7] + B[8] == score or B[0] + B[3] + B[6] ==

score or \

 �B[1] + B[4] + B[7] == score or B[2] + B[5] + B[8] ==

score or \

 �B[0] + B[4] + B[8] == score or B[2] + B[4] + B[6] ==

score:

 return 'win'

 return 'unk'

Chapter 14 Expert Advice

167

SECOND (BETTER) VERSION

def result(board):

 B = board

 for score in ('XXX', 'OOO'):

 if �B[0] + B[1] + B[2] == score or B[3] + B[4] + B[5] ==

score or \

 �B[6] + B[7] + B[8] == score or B[0] + B[3] + B[6] ==

score or \

 �B[1] + B[4] + B[7] == score or B[2] + B[5] + B[8] ==

score or \

 �B[0] + B[4] + B[8] == score or B[2] + B[4] + B[6] ==

score:

 return 'win'

 return 'unk'

Not repeating yourself is factoring out commonality.

I once wrote a program to run four different depth-first searches to

a particular goal node: Find any path, find the fewest-nodes path, find

the path of least cost, and find all paths. The main function was a mess of

function calls and printing results. What gave me the simplicity I wanted

was a factoring out the common print code into a printResults function.

My code follows.

def printResults(root, goal, path1, path2, path3, distance,

pathsList):

 print(' == DFS SEARCHING ==')

 �print('1. Random path from', root, 'to', goal, 'is',

path1)

#--

 �print('2. Fewest-nodes path from', root, 'to', goal, 'is',

path2)

#--

Chapter 14 Expert Advice

168

 �print('3. Shortest-dist path from', root, 'to', goal, 'is',

path3,

 '(', distance,'Km.)')

#--

 if pathsList == []:

 print('4. There are no paths.')

 return

 �print('4. All paths from', root, 'to', goal, 'are listed

below.')

 count = 0

 pathsList.sort(key = len)

 for path in pathsList:

 count += 1

 print('--%2d'%count, '. ', path, sep = '')

 �print('\n---TOTAL search time =', round(clock() -

startTime, 2),

 'seconds.')

#=============================<MAIN>===========================

def main():

 root = 'A'; goal = 'B'

 path1 = DFS_AnyPath (root, goal)

 path2 = DFS_FewestNodes (root, goal)

 path3, distance = DFS_ShortestCostPath (root, goal)

 pathList = DFS_AllPaths (root, goal)

 �printResults(root, goal, path1, path2, path3, distance,

pathList)

The point is that the main function is now simple to understand,

because all of the printing has been pushed into the printResults

function.

Chapter 14 Expert Advice

169

	 11.	 Do not optimize for speed or memory use as you go.

This is one of the biggest mistakes a beginner can

make. Optimize only after a program is written, if

at all. If one is hill-climbing in 64 directions, maybe

we could optimize by pre-computing the 64 sines

and cosines and place them in a look-up table rather

than re-computing them for every step. Then again,

if your program is fast enough, why bother? On the

one occasion I tried this, the time was reduced by

only 23%.

Do we ever need the speed of binary representation in a file? In my

experience, the answer is no. Text files are better, because they are so much

easier to use and to visually inspect.

It is not always a good idea to play the best moves,

particularly when you have to use up a lot of time

finding them.—Simon Webb, Chess for Tigers 3rd Ed.

(Batsford, 2005), page 15.

If optimization (increasing speed, reducing memory needs, increasing

accuracy, decreasing lines of code) will make a block of code much harder

to understand, then you must do a cost/benefit analysis. Is the goal worth

the effort? Couldn’t your time be better spent doing something else? Better

is the enemy of good enough. Sometimes, less really is more.

What’s my approach to code optimization?

Ninety-nine percent of the time something simple

and brute-force will work fine.—Ken Thompson

(Bell Labs, creator of UNIX, designer of UTF-8),

found in Peter Seibel, Coders at Work (Apress,

2009), page 470.

* * *

Chapter 14 Expert Advice

170

I think performance is greatly overrated in the

computer science field, because what you need

in performance is good enough performance.

You don’t need the best performance.—Barbara

Liskov (2008 Turing Award winner), Found in Edgar

G. Daylight, The Dawn of Software Engineering

(Belgium: Lonely Scholar, 2012), page 155.

	 12.	 Do not write clever code.5 Clever code is a breeding

ground for bugs. In the equivalent examples below,

A is the best because it is the easiest to understand

and the easiest to debug.

5�The same advice is given for writing essays. When the writing becomes
noticeable, it distracts from the ideas it expresses. This is one difference between
prose and song lyrics.

1. �“Whenever you feel an impulse to perpetrate a piece of exceptionally fine
writing, obey it—whole-heartedly—and then delete it before sending your
manuscript to the press. Murder your darlings.”—Sir Arthur Quiller-Couch,
The Art of Writing (G.P. Putnam’s Sons, 1916), page 281.

2. �“Kill your darlings, kill your darlings, even when it breaks your egocentric little
scribbler’s heart, kill your darlings.”—Stephen King, On Writing, (Simon &
Schuster, 2000), page 224.

3. �“Look for all fancy wordings and get rid of them.”—Jacques Barzun, Simple &
Direct, A Rhetoric for Writers (Harper and Row, 1975), page 27. Read this book.
Barzun is an acknowledged genius.

4. �Read over your compositions, and wherever you meet with a passage which you
think is particularly fine, strike it out. [This is a statement of a college tutor, recalled
by Dr. Johnson in 1773. Source: James Boswell’s Life of Samuel Johnson (1791).]

5. �Every once in a while, you emit a phrase or a paragraph that seems to have a
life of its own. It has just that mix of aptness and cleverness you wish you could
pull off all the time. When you write stuff like that, swallow hard and throw it
away. Two months later, you will recognize it for the irrelevant purple prose it
really is.—P.J. Plauger, Computer Language (October 1991), “Technical
Writing,” page 32.

Chapter 14 Expert Advice

171

#---A.

 if random() < 0.8:

 theta += 0.3

 else:

 theta -= 0.1

#---B.

 theta = theta - 0.1 + (random()<0.8)*0.4

#---C.

 theta += [-0.1, 0.3][random() < 0.8]

#---D.

 theta += choice ([-0.1, 0.3, 0.3, 0.3, 0.3])

Simple code:

 if x > y: z = z + 3

 if x <= y: z = z - 5

Clever code (avoid):

 z = z + 3*(x > y) - 5*(x <= y)

There are several ways to simulate the non-existent “switch”

statement in Python. It is a good question to ask if these constructs are

clever code or not.

def fn0():

 print(0)

def fn1():

 print(1)

def fn2():

 print(2)

def fn3():

 print(3)

Chapter 14 Expert Advice

172

#=============================<MAIN>===========================

def main():

#---0. The standard if-elif-else construct:

 print('\nif-elif-else: ', end ='')

 x = 1

 if x == 0: fn0()

 elif x == 1: fn1()

 elif x == 2: fn2()

 else: fn3() # output: if-elif-else: 1

#--

#---1. The subscript trick to emulate a switch statement:

(Alas, it has NO default else.)

 doIt = [fn0, fn1, fn2]

 print('\nsubscript: ', end='')

 doIt[1]() # output: subscript: 1

#--

#---2. The dictionary trick to simulate a switch statement:

�It does have a default else, but it is complicated to call.

�dict.get(2, fn3)() refers to dict[2] = fn2. However, if

there is no key 2, then the default (explicitly given in

the call as fn3) is the value.

 print('\ndictionary: ', end ='')

 dict = {0: fn0, 1: fn1, 2: fn2, 3:fn3,}

 dict[1]() # output: dictionary: 1

 print('\ndefault else: ', end ='')

 dict.get(2, fn3)() # output: default else: 2

#--

Chapter 14 Expert Advice

173

Clever tricks that were necessary with older code may not be needed in

a modern language. For example:

	 1.	 How many digits comprise the integer num?

print('length =', 1 if num == 0 else

floor(log10(abs(num))+1))

print('length =', len(str(abs(num)))) # simpler

	 2.	 Determine the third digit from the RIGHT of

integer num.

print('third digit from right =', (abs(num)//100)%10)

print('third digit from right =', �int(str(num)[-3])

simpler

	 3.	 Determine the third digit from the LEFT of an integer num.

length = 1 if num == 0 else floor(log10(abs(num))+1)

print('third digit from left =', �abs(num)//pow

(10, length-3)%10)

print('third digit from left =', �int(str(abs(num))

[2])) # simpler

	 13.	 Beware the curse of Cambridge professor Charles

Babbage (1791–1871)—or rather the curse that befell

Professor Babbage. Charles Babbage was possibly

the first person to conceptualize the modern

computer. He solicited grants from the British

Government to build difference engine 1. Part way

through building the thing, he realized it could be

made better. He scrapped his initial design and

started over. Part way through difference engine 2,

he had more insights and began anew (the analytic

Chapter 14 Expert Advice

174

engine). When the grant money (£17,000 in 1842)

ran out, he still didn’t have a computer. In fact, he

never built a computer.6 The lesson for the amateur

programmer is to keep a log for improvements to

build into the next design. Do not incorporate them

into the current project (feature creep) or you may

never finish.

	 14.	 Consider pair programming, as opposed to the

usual solo programming. This means taking

on a partner. The driver types the code while

the navigator looks on and makes suggestions.

Eventually, they switch places. Many good

programmers would rather write their own

code and not be bothered with carrying along a

weaker classmate.7 And one source says industrial

programmers need about 8–12 hours to become

comfortable with this process. The disadvantage

is that two programmers take about 15% longer

to write one program than they each would

have done by working alone.8 The advantages

of pair programming are: The programs have

significantly fewer bugs and are more readable.

6�See Mathematics in the Modern World, readings from the Scientific American
(W.H. Freeman, 1968), pages 53–56. In 2002 the Babbage difference engine 2 was
finally built. It took 17 years to complete, contains about 8,000 parts, and weighs
nearly five tons.

7�My father was an excellent poker player. He once mentioned that in his youth he
had been an avid bridge player. When I asked him why he gave up the game, he
replied “because my partner was always an idiot.” (My father never worked well
with other people.) This is one reason talented programmers may not want to be
assigned partners. Also, the challenge and fun of doing it all by yourself is diluted.

8�Andy Oram and Greg Wilson, editors, Making Software (O’Reilly, 2011), page 314.

Chapter 14 Expert Advice

175

The programmers learn much from each other,

and student programmers gain some experience

working others. Pair programming is popular in

industry. Try it twice, with two different partners.

Brilliant programmers who can’t do teamwork

shouldn’t get themselves in the position of being

hired into a traditional programming position—it

will be a disaster for all involved, and their code

will be a nightmare for whoever inherits it. I

actually think it’s a lack of brilliance if you can’t

do teamwork.—Guido van Rossum (creator of the

Python language), Found in Frederico Biancuzzi

and Shane Warden, Masterminds of Programming

(O’Reilly, 2009), page 28.

For most of my career I have required my students to

write an essay based on reading Dale Carnegie’s How

to Win Friends and influence People (first published

in 1936, and currently with over 6000 customer

reviews on Amazon). My public justification was that

computer science requires people to work in teams.

But the real reason is that too many people have weak

people skills and actually need to read this book.

They need to be convinced to avoid arguments, to

rarely criticize, to offer sincere—and only sincere—

compliments, and to let other people do much of the

talking. How many people have you and I met who

needlessly cause friction and don’t bother to give

simple words of appreciation to those around them?

I have had students thank me twenty years later for

assigning this book.

Chapter 14 Expert Advice

176

	 15.	 Beware advice from experts.9 Having just given you

advice from experts, and much of it common sense,

why the warning? Because professional software

developers work in a significantly different world

from the C.S. student. The software professional

is part of an ever-changing team that works on

the evolution of huge projects of legacy code. The

software they write is often intended for end users

who need convenient interfaces. Team coordination

is vital. Consistency in coding style is necessary. The

following questions asked by a software designer,

are rarely asked by a student:

	 1.	 Is the program easy to install?

	 2.	 Does it adjust itself to the computer memory

available?

	 3.	 Is the interface intuitive?

	 4.	 Can the user modify the interface?

	 5.	 Is the learning curve steep?

	 6.	 Can the user get results quickly?

	 7.	 Does the software offer the user performance

warnings where needed?

	 8.	 Is bad input detected and the user notified?

	 9.	 Does the software depend on Internet sites,

which may change or go down?

	 10.	 Does it work with files built by other software?

9�If anyone ever creates a list of ten commandments for writing code, I have a
suggestion for an eleventh commandment: Beware of gurus, priests, interpreters,
and dogma. Thou shalt think for thyself.

Chapter 14 Expert Advice

177

	 11.	 Can updates be automatic?

	 12.	 Does it run on several operating systems?

	 13.	 Has it been well-tested by potential users?

	 14.	� Has it been designed to allow for future

enhancements?

	 15.	 Is customer support easy?

	 16.	 Is its data secure and protected?

In contrast, the student programmer, especially in high school, is

only trying to code up algorithms that will be run one time in front of the

teacher.

Chapter 14 Expert Advice

Perspective

PART III

181© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_15

CHAPTER 15

A Lesson in Design
Mr. Sokolsky rose from his desk and moved to the computer console in

the front of the classroom. This was his fourth day of teaching the Advanced

Computer Science class at Smallville High School. He had taken over for Pam

Jones, who was on medical leave. Mr. Sokolsky faced a sea of unsmiling faces.

“I assume everyone has finished the first assignment. I’ll come

around later and examine each of your programs. But I would like to have

one student demonstrate his or her program for the class. Can I have a

volunteer?”

No one raised a hand. Mr. Sokolsky picked up his gradebook and

scanned the student roster.

“Roger, pick a number between 1 and 26.”

“Ok, seven,” replied the student.

“Seven, that is, let’s see, that’s Anna. Anna, will you please come up

and demonstrate your program?”

Anna was a bright junior. She had done well under Miss Jones, whose

enthusiasm for teaching and love of programming was appreciated by all

of her students. Mr. Sokolsky was different. That he had never been a high

school teacher before was made apparent by his first assignment.

Anna came up to the console with her laptop. She attached the video

cable, and typed in her program’s name: mult. A question mark appeared

on the screen. She typed in 2. Another question mark appeared. She typed

in 3. The answer 6 appeared, followed by another question mark. Anna

walked back to her seat without saying a word. By her curt manner, she

obviously considered the assignment a waste of time.

182

“I’m sorry Anna, but I can’t give you any credit for this program. It’s

just lacking.”

Anna looked both confused and annoyed. “But it’s just what you asked

for. A program that multiplies two numbers.”

“Well, let’s see,” said Mr. Sokolsky. He pulled up a copy of the

assignment and read it. “Write a program that takes two numbers as

input and prints their product. Pretend this assignment is part of a larger

commercial program—i.e., it needs a user-friendly interface and must

contain significant functionality. And, of course, your program must be

refactored. Always try to give more than is expected.”

“I did it,” said Anna. “What more did you want?”

“Ok, a user should know what program he is running. You needed a

title and some user instructions. What do your question marks mean? Be

explicit to the user. And your program seems to run forever. How is the

user supposed to exit the program? Remove the battery from the laptop?

So let me ask you a question. After the program prints the answer, do

you think the user should see a message saying ‘Enter X to exit,’ or ‘C to

continue adding’? Would that be a good idea?”

“Well, yeah, I guess so. But it is such a simple program, who cares?”

said Anna.

“The guy who is giving you a grade cares, for whatever that is worth.

But anyway, my suggestion is actually a poor one. We don’t want the user

to have to enter more information than is necessary. When requesting the

first number, the user instruction might be, ‘Enter a number or “X” to exit.’

Thus the user enters only another number to continue, not a ‘C’ and then a

number.”

Anna looked exasperated, but said nothing.

“Ok, maybe I didn’t make the assignment clear enough. So I have an

idea. Work on this during the period, and we’ll meet back in the classroom

in 30 minutes to discuss this program again. And be sure to give more than

expected. If you finish early, then start on the second assignment.”

Chapter 15 A Lesson in Design

183

Thirty minutes later, Anna was again demonstrating her revised

program.

“Did you give me more than I asked for, Anna?”

“I gave you what you asked for,” said Anna.

“Well, maybe that is enough. Anna, may I suggest the two numbers you

enter?”

“Sure.”

“OK, I want the first number to be a 1.”

Anna entered the 1.

“And the second number is one-third, that is a 1 followed by a slash,

followed by a 3.”

“It won’t work for numbers like that, Mr. Sokolsky. I already tried. You

have to enter them like this.”

Anna typed in 0.333333333. Her program printed 0.333333333.

“Ok, but suppose I don’t want that many decimal places in the output.

Why not give me a choice, Anna?”

“You said the user should not be pestered with questions, so I followed

your advice.”

“Actually, I said the user should not be required to enter any more

information than is necessary. So why not make the default number of

decimal places two, unless the output is an integer. And allow the user

to enter either a number, an “X” to exit, or a “P” to change the default

precision from 2. That way the user could ignore the options.”

The class reaction was various forms of annoyance.

“OK, so fix this program, and I’ll look at everyone’s work on Monday.

Have a nice weekend and think often of me.”

Mr. Sokolsky’s sarcasm did not go down well, but he had entered into

one confrontation with a student on the first day and other students were

weary of his anger.

On Monday, Anna was again demonstrating her program with the

numbers Mr. Sokolsky had used before.

Chapter 15 A Lesson in Design

184

“So far so good, Anna. But did you give me more than I had

requested?”

“You tell me, Mr. Sokolsky.”

“Ok, enter 2 as your first number, then enter the string ‘happy.’ I want

to know what 2 times happy is. Yeah, I want to know what number that is.”

Anna entered the 2 followed by “happy.”

The program responded “Not a number. Please re-enter a number.”

“Ah, very good Anna. You anticipated my irrational and twisted

request. But how about if I just hit the enter key and don’t input anything

at all?”

“It works for that, too. I tested it,” said Anna.

“Ok, then this program is much improved. But an improvement would

be instead of just printing a single-number output, print the first input,

followed by a times sign, the second input, followed by an equal sign,

followed by the product. That is better, because it allows the user to check

for an input mistake. So that is now required.”

He turned to the class.

“The first version of this program that you all wrote last week was

probably a fine first draft. And I mean that. You can spend, no waste, a lot

of time coding for special cases when the program won’t correctly multiply

2 times 3. So first get a working basic version, and keep it working. Then

code for special cases, like the two I just gave Anna. Sometimes you need

to write the tests first, and sometimes automate them. But that’s another

lesson.”

“There are four kinds of computer bugs. Most students know only one.

Most students think that if their program does what it is supposed to do

every time in all reasonable situations, then the program is finished. But

that is so untrue. Programs like that have removed bugs only of the first

kind: compile errors and logic errors. Errors of the second kind are code-

readability or style errors. The worst thing you can say about someone’s

code is that to debug it, or modify it, you have to re-write it from scratch.

Errors of the third kind are functionality errors. Does the program have

Chapter 15 A Lesson in Design

185

all of the features a user desires? The fourth kind of error is the interface

error. Is the program intuitive to use? Does the program give the user the

information he or she needs at the right time? Since most of our school

assignments are implementing algorithms, functionality and interface

errors are rarely encountered.”

“So, let me ask you. Can you think of giving our ‘mult’ program any

more functionality? Why would a student fire up our program rather than

reach for a calculator? What might our program do in multiplying two

numbers that a calculator can’t easily do?”

The class was silent.

“Ok, we’ll just sit here until somebody thinks of something.”

After a moment one student raised his hand. “We could let the user

enter a big number with commas, because that makes the number more

readable, if it was a giant number.”

“Ok, we could do that, and it would make the program nicer. So that

is a good suggestion, but for our purposes, I’m going to pass on bothering

with commas. It would be a lot of work for a small feature. I think our time

can be better spent. So what else can we get our program to do by keeping

it limited to multiplying two numbers?”

Another student raised her hand. “You could put in ‘1/3’. I mean we

could code for that.”

“That is an excellent feature, but doesn’t it seem like a lot of work? I

mean you would have to scan the input for a slash and then try to read off

the two numbers on each side. But still, I like your idea. What else could we

add to this program?

Again the class was silent.

“So, I guess, we’ll think about this for tomorrow.”

Anna raised her hand. “I suppose we could allow the user to change

the base for each of the two input numbers.”

“Yes, exactly. Each input number may have its own base. Of course,

internally we work in base ten. We just have to translate an input in

base b to base ten. How do we do this? Well, the process is pretty easy

Chapter 15 A Lesson in Design

186

with int casting. Here is the code for 23 in base 6, which is 15 in base 10:

int('23',6). That is a little awkward, but it is only needed when not

working in base 10.

But the input of ‘1/3’ will not directly translate to a number. So does

anyone know how to do this without scanning, which would be too much

work?”

Again the class was silent.

“I’m going to suggest a trick that most of you don’t know about: the

wonderful Python eval instruction, which is an expression parser. Look it up

on the Internet, but here is an example that multiplies 23 in base 6 by ‘1/3’:

input(x) # x = "int('23',6)*1/3"

print(eval(x)) # Output: 5.0

“In fact, with eval you can evaluate any arithmetical expression. So,

pick up my How to Evaluate an Arithmetical Expression handout in the

corner, and then off to your computers.”

When Anna sat down, she went to the Internet to get some more

examples of the eval command. The problem was beginning to interest

her. The impracticality of anyone ever needing to multiply numbers in

different bases didn’t occur to her. Elizabeth, who always sat next to Anna,

leaned over. “Can you understand the assignment, Anna?”

“Yes, I think I will in a minute.”

“Ok. I think I’ll wait for you to finish, and then get your help.”

Elizabeth’s idea of help was to copy some of Anna’s code. Anna had

noticed that Mr. Sokolsky never seemed to observe any copying. He

occasionally warned the class to beware of getting too much help from

classmates, but encouraged students to help each other with code ideas.

Anna briefly wondered why Elizabeth couldn’t write much code on her

own. It just didn’t seem that hard. Anna stopped and looked around. Alice

was reading about the eval function too. Yuri, the math whiz, was already

coding. She heard Avi tell David, “You write the precision part, and I’ll

write the computation part.” The other students were chatting or playing

Chapter 15 A Lesson in Design

187

on the Internet. Too many of them were waiting on their classmates.

It suddenly occurred to Anna that the class was only for a few students.

The others just memorized and copied key parts of code, and seemed to

be content in doing so. It was just one more strange thing in the world that

didn’t make sense to Anna.

Anna returned to her reading.

Elizabeth placed a fresh stick of gum next to Anna’s keyboard.

The End

I ran across an interesting C.S. book titled Testing Computer Software,

2nd Ed. (Wiley, 1999) by Kaner, Falk, and Nguyen. The book contains

an appendix of more than 340 common software errors. Most of those

errors deal with interfaces and functionality, which are concerns more

of industry than of students in C.S. classes. On page 1 the authors had an

amazing example that intrigued me. They asked the reader to consider

writing a program that did no more than add two numbers. Then they used

this trivial example to show what Industry deems appropriate in design

and testing.

First they considered the interface. Does the user know what the

program is supposed to do? Do the users know where they are in the

program? Are there on-screen instructions? Are they clear? Is there an

obsession with security? How does a user stop the program? Are the inputs

displayed with the final answer? Are they lined up or displayed in a visually

attractive manner?

Next were questions about functionality. What happens with incorrect

input? Does it abort the entire program or does the user have a chance to

correct it? Can there be spaces before and after the numbers? Can the two

input bases be changed? Can the precision be changed?

Since my school assignments both as a teacher and as a student myself

rarely included questions about interfaces and functionality, I decided to

write this program, changing addition to multiplication.

Chapter 15 A Lesson in Design

188

My first step was to write code to change from base b to base 10.

I wrote the code to allow the user to enter a ‘B’ or a ‘b’ instead of a number

if he wished to change a base. But this made the interface inconvenient.

I scrapped the code and wrote new code to allow the user to enter either

a number or a number-with-its-base as a tuple—e.g., (12,8). But this was

too much typing for the user (parentheses and a comma). I again scrapped

my code and wrote new code to allow the user to enter either in a number,

or two numbers (a number with its base) or three numbers (a number with

its base, followed by the decimal precision required). This would require

me to separate the numbers either by spaces or commas. And if extra

spaces were entered, I would have to strip them off.

All of this redesign and coding was spread over several days. What took

the most time was thinking about how I was going to detect invalid user

input. The coding was becoming both frustrating and time-consuming.

Would I even dare to offer such a torturous assignment to students? The only

lesson I was learning was how difficult a consumer program was compared

to an academic program. In fact, two more days went by without any coding.

Eventually, I got the new idea of allowing both input numbers to be

entered on the same line with only an asterisk separating them. Then

suddenly I thought of the Python eval function. That function combined

with a try/except block and an int cast to a base would make all these

pesky problems go away. I wrote some test code and discovered that the

Python built-in functions such as sqrt, and log were perfectly evaluated

by eval. Even extra spaces were ignored by eval. My actual program

suddenly became easy to write.

All of this took five days of thinking and coding. Why didn’t I think of using

eval immediately? The answer is that I had to become dissatisfied with my

code before I went looking for a new idea. Only failure of some kind prompted

me to look for a new design. I think that is perhaps the only way I ever do

improve the designs of my code. There was much for me to learn personally

over these five days. Unfortunately, the limited time that students have for

each subject does not allow an assignment like this to be given to a class. Only

Chapter 15 A Lesson in Design

189

a few students could make progress, and most of those students probably

are making progress like this on their own. What can be given to students is

the kind of assignment that the imaginary Mr. Sokolsky gave. In almost all of

the first few C.S. classes, the essential ideas need to be given early, and the

students just build coding skills by putting the parts together, or by looking

up key topics. Mr. Sokolsky went a little further in allowing the assignment to

evolve after some simple versions were shown to be inadequate. Below is my

final program. Maybe you can see why this program took me five days.

"""+==========+========-========*========-========+===========+

 || The Multiplying Program ||

 || by M. Stueben (October 8, 2017) ||

 || ||

 || Description:See printDirections(). ||

 || Language: Python Ver. 3.4. ||

 || Graphics: None ||

 || References: Cem Kaner, Jack Falk, Hung Quoc Nguyen, Testing||

 || Computer Software, 2nd Ed. (John Wiley, 1999), ||

 || pages 1-7. ||

 +==========+========-========*========-========+===========+

"""

#####################<START OF PROGRAM>########################

def printDirections():

 print('+---+')

 print('| == THE MULTIPLICATION PROGRAM == |')

 print('| by M. Stueben (Ver. 1.0, August 2017) |')

 print('|DIRECTIONS: |')

 print('|1. Enter a first number, followed by an asterisk (*),|')

 print('| followed by a second number. Examples: |')

 print('| �5280 * 3.14, (-27 + 6) * (1/3), sqrt(100) *

log(10). |')

 print('|2. Push enter to see the output. |')

Chapter 15 A Lesson in Design

190

 print('|OPTIONS: |')

 print('|3. Enter X to exit the program. |')

 print('|4. �Enter P to change the precision (default = 2)

of any |')

 print('| float output. |')

 print("|5. �To enter, say 21 in base 19, type

int('21',19). |")

 print('| �Special case: 0X12 and 0x12 both are 18 in

base 10. |')

 print('|6. �The user will be requested to re-enter any bad

input. |')

 print('+--+')

 print('\n RESULTS:')

#------------------------------------The multiplying program--

def requestPrecisionFromUser():

 �msg ='Choose the decimal precision of your answer (from 0

to 17):'

 while True:

 data = input (msg)

 ch = data.strip()

 if ch in {'X', 'x'}:

 print (' Goodbye.')

 return

 try:

 precision = int(data)

 �if (precision < 0)or(precision> 17)

or(type(precision) != int):

 raise Error

 except:

 �msg = 'Bad input. Choose a non-negative integer

(0 to 17).'

Chapter 15 A Lesson in Design

191

 continue

 return precision

#------------------------------------The multiplying program--

def requestAndMultiplyTwoNumbers():

#---Initialize.

 from math import sqrt, log, log10

 precision = 2

 problemCounter = 0

 errorMsg = ''

 while True:

 msg = errorMsg \

 �+ 'Enter expression * expression, P (precision),

or X (exit).'

 data = input(msg) # Dialog box

#-------Check for 'X or x'.

 ch = data.strip()

 if ch in {'X', 'x'}:

 print (' Goodbye.')

 return

#-------Check for 'P or p.

 if ch in {'P', 'p'}:

 precision = requestPrecisionFromUser()

 errorMsg = ''

 continue

#-------Attempt to calculate an answer.

 try:

 answer = eval(data)

 �if not isinstance(answer,(int, float)): raise

exception

Chapter 15 A Lesson in Design

192

 errorMsg = ''

 except:

 errorMsg = '============ BAD INPUT ===========\n'\

 + 'You entered --> ' + data +'.\n'

 continue

#-------Print the answer.

�Sample output: "1. 1.23 * 4.56 = 5.61 [decimal

precision = 2.]"

 problemCounter += 1

 if type(answer) == float:

 �print(' ', str(problemCounter) + '. ',

data, ' = ' , \

 round(answer, precision), \

 �' [decimal precision = ', precision, '.]',

sep ='')

 else:

 �print(' ', str(problemCounter) + '.', data, '=',

answer)

#==========================<MAIN>===========================

def main():

 printDirections()

 requestAndMultiplyTwoNumbers()

#============<GLOBAL CONSTANTS and GLOBAL IMPORTS>============

if __name__ == '__main__':

 from time import clock; START_TIME = clock(); main();

print('- '*12);

 print('RUN TIME:%6.2f'%(clock()-START_TIME), 'seconds.');

#######################<END OF PROGRAM>#######################

Chapter 15 A Lesson in Design

193

Question: Why allow, or even introduce, students to the eval function?

There are warnings all over the Internet to stay away from this Python

function. As a test of how dangerous eval can be, I made up a bogus file

called filex.py in my Windows E directory. Then I destroyed the file by

running this one line in Python.

eval("__import__('os').remove('e:filex.py')")

I imagine this line could be useful for having a trial program erase itself.

The eval function is dangerous only if it accepts user input from an

untrusted source. Since the student is usually the only person who has

access to his or her own code, this fear is unfounded for school problems.

The eval function can work miracles in a program, as it did here.

Introducing eval to students is an opportunity to discuss what eval can

do with malicious code, and—much more interesting—what motivates

people to be malicious.

Discussions of the eval function, and absolute adherence to certain

programming styles can easily turn into arguments of emotion, not logic.

The following outline is a design methodology that I believe in, but as

they say in Zen, it must be experienced to be appreciated.

�How to Approach a Major Computer
Science Project

	 1.	 Set aside more time than you think you will need.

You can spend much time working on a program

and have little to show for it, except some insights

on how not to write the program.

	 2.	 Plan to focus. This means moving away from the

seductive-but-chatty classmate. If you have a

partner, then consider pair programming.

Chapter 15 A Lesson in Design

194

	 3.	 Understand the problem (= analysis + program

specifications). This may mean constructing some

examples. You are also searching for relationships

and insights.

	 4.	 Choose your data types and then design/redesign

your program.

	 a.	 Produce a minimum design. The must have

functions are written first, hence, an early

working program. Later, the should have

functions are added. Finally, the could have

functions are written, if at all. [In a smart

tic-tac-toe program, the first version would be

a program where the computer plays legally,

but moves randomly.]

	 b.	 Expect that the initial design may be poor and

that your datatypes may need to be changed.

	 5.	 Write the code.

	 a.	 Use stepwise refinement and self-documenting

code (few comments).

	 b.	 Use asserts and error traps.

	 c.	 Test each key function after you write it (white

box testing).

	 d.	 Consider writing a crude test function before a

tricky algorithm is written.

	 e.	 Consider testing a complicated algorithm with

hundreds of random inputs, after it is written.

Chapter 15 A Lesson in Design

195

	 6.	 Return to step 4 as often as needed to redesign

the program and change datatypes based on new

insights, coding difficulties, user feedback, and

maybe changing specifications. Again, accept that

the initial version often turns out to be a failure that

insures success in the second or later versions.

	 7.	 Fix any final bugs by testing the entire program

(black box testing). You may have overlooked some

special cases or borderline cases.

	 8.	 Refactor the entire program. This is where you learn

program design.

	 9.	 Reflect on your mistakes and the lessons you

learned.

Chapter 15 A Lesson in Design

197© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_16

CHAPTER 16

Beware of OOP
My opinion is that OOP is one of the great frauds

perpetrated on the community. The truth of the

matter is that the single most important aspect

of OOP is an approach devised decades ago:

encapsulation of subroutines and data. All the rest

is frosting. I used to say that encapsulation is 70%

of what object programming provides, but I think

I’m changing that to 90%.—Thomas Kurtz, Found in

Masterminds of Programming (O’Reilly, 2009), pages

91 and 93. [Dartmouth professors Thomas Kurtz and

John Kemeny co-developed the BASIC language in

1963–64. Kemeny won the IEEE Computer Pioneer

award in 1986, and, for the same work, Kurtz won it

in 1991. At the time of this interview, the 80-year-old

Kurtz had been retired for 15 years and no longer

wrote code.]

A study by Potok, et al. has shown no significant

difference in productivity between OOP and

procedural approaches.—Wikipedia, s.v. Object-

oriented programming.

198

After many years, OOP is still controversial.1 The C++ language (C with

classes) did not replace the C language. A claimed justification for classes

is code reuse through inheritance (an is a relationship). Of course, we

already have code reuse through cut-and-paste and through importing

library files (modules). Some classes get so coupled with their applications

that they are not easily reused. The advantages of code reuse through

classes are more appreciated in industry than in school problems. Coding

in terms of objects and classes without inheritance is sometimes called

object-based programming.

That being said, I once used inheritance to import four functions

(methods) that worked with vectors into a Vector class. Those functions

were only applicable to the particular problem I was coding using vectors,

and I did not want my Vector class to be redesigned. But that was more of

a composition (a has a relationship) of two classes than inheritance.

Another advantage of inheritance is that a single change to a parent is a

change to all of its children, because the commonality of all the children’s

code resides only in one place: the parent. Yet, even for programs without

classes, commonality can be factored out into functions.

The most useful advantage of classes is encapsulation (bundling

functions and data into a new data type, an abstraction,2 and creating

a mini-language to manipulate them). If the class models something

in reality or even the programmer’s perspective on a problem, then the

1�See Wikipedia/Object-oriented programming/criticism.
2�An abstraction in programming is considered to have two parts: interface and
implementation. A class interface is the collection of methods—e.g., getters,
setters, finders, modifiers, reporters, etc.—that are used to manipulate the
data. The implementation consists of the private methods, and the primitive
statements in the body of all of the class’s methods. The benefit is that details are
abstracted away from (hidden from) the interface. This makes coding easier. For
all classes, the minimum number of method types you need is six: constructor,
getter, setter, mutator (to change parts of an object), comparison of objects (=, !=,
and maybe >), and a printer. In Python you don’t actually need getters and
setters—e.g., Oop.x = 5, an Oop.setX(5) is not necessary.

Chapter 16 Beware of OOP

199

programmer can think and write code in terms of objects instead of their

individual parts. Thinking in terms of objects is like thinking about music

in terms of chords instead of individual notes. This sounds great, but I

have never encountered worthwhile problems that benefited much from

an abstract data type. What I have encountered are artificial problems

designed to require encapsulation for student learning—e.g., cars and

motorcycles inheriting from vehicles.

Encapsulation is design, and an efficient design often comes from

throwing out several inefficient designs. You can spend much time trying

to produce a generic class. The experts give us the following advice:

	 1.	 Try to write natural functions that closely

correspond to reality. The whole point of classes

(abstractions) is that they should make thinking and

programming more intuitive. Rather than trying to

design a near-optimal class, design it so that it is

easy to extend.

	 2.	 Despite many claims that promise a smooth

transition from object-oriented analysis to design,

in practice the transition is anything but smooth.—

Erich Gamma, Richard Helm, Ralph Johnson, and

John Vlissides (the “gang of four”), Design Patterns,

Elements of Reusable Object-Oriented Software

(Addison-Wesley, 1995), pages 11 and 353.

With encapsulation comes data hiding with private data—i.e., data

that either cannot be accessed or can be accessed only through getters and

setters, which limit modifications. The user could rewrite the class so that

the private data could be accessed with no limits, but then that would be

a different class. If a class has been well tested, then the bugs in a program

that uses the class are unlikely to be found in the class. Of course, the same

can be said about the well tested functions in any library module.

Chapter 16 Beware of OOP

200

What is rarely talked about with objects is the way the objects

communicate with each other. According to some OOP gurus, efficient
messaging is of paramount importance.

When I wrote my first neural network program, I thought making a Node

class made sense, because a network is made up of nodes. Unfortunately,

the Node class seemed to complicate matters. So I rewrote the network

without any classes. Then I decided to re-write the network program again

as a neural-network class with only one object. This shouldn’t make any

sense, because then that object would have no other objects to interact

with. What’s the point? But, in fact, it made the coding simpler. Because of

the semi-global properties of the many internal instance variables, I didn’t

have to pass or return them in the class methods. Since the network was

small, the negative side-effects of globalization didn’t occur. Nevertheless,

I eventually re-wrote the program again, without the class.

Polymorphism with classes supports operator overloading. For

example, when working with vectors, we can overload all of the operators

in a Vector class and end up writing this

F = 3*(B+C)/4 - A/2,

instead of:

F = vectMinus(scalarMult(3/4, VectAdd(B,C)), scalarMult(1/2, A)).

Now you see why I built a Vector class. The operator overloading made

a positive difference—for about ten lines of code. This was worth the effort

mainly because my students learned how to build a class and apply it to a

serious problem: searching with the beautiful Nelder-Mead algorithm.

Java allows programmers to overload functions, but not operators.

In Python, you can overload the operators, but not its functions. I think this

is because in Python any function will accept parameter lists (signatures)

of variable sizes and types using the star (*) operator. See the code below.

The single doIt() function is in effect overloaded.

Chapter 16 Beware of OOP

201

def doIt(*args):

 if len(args) == 1:

 print(args[0])

 return

 if type(args[1]) == list:

 print('list')

 else:

 print(args[1])

#-------------------------------

def main():

 doIt(1) # output: 1

 doIt(1,'A') # output: A

 doIt(1,[1,2,]) # output: list

In both C++ and Python, you can overload operators that already exist, but

cannot introduce new operators. Continuing with my vector example, if I want

to write a line of code involving the cross product, I can NOT use the letter “x”

as an operator. Instead I must write something like A = B.crossProd(C), or A

= Vector.crossProd(B,C), or overload the star (*) operator.

Industry tells us that classes make sense in huge programs where code

can be written in terms of the objects. In most school problems this sense

seems lacking.

Digression. Can you think of a simple geometrical diagram that can not

be drawn to scale? The answer is in the footnote.3 End of digression.

3�No cross product diagram with units can be drawn to scale. If vectors A and B have
scalars in terms of meters, the perpendicular cross product vector C = AxB will
have scalars in terms of square meters. Also note that scalars in a vector must all
have no units or must all have identical units. Otherwise the magnitude will not
exist. I was told this by a physics teacher, and curiously never found this fact in a
math book. Later I found this mistake in David R. Causton’s otherwise excellent
book, A Biologist’s Mathematics (London: Edward Arnold, 1977), page 37. The
author tried to find the “distance” between two plant species by measuring both
stalk lengths and the number of flowers.

Chapter 16 Beware of OOP

203© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_17

CHAPTER 17

The Evolution
of a Function

The two things I have the most trouble with when

I’m coding are what to name things and where

to put things. And I’ve come to the conclusion

that they are the same problem. Does each name

represent everything I want to say about the named

thing, and do the names that appear together evoke

ideas that seem to go together? And if I’m having

trouble naming things, I often discover that the

problem is that things are together that shouldn’t

be, or they aren’t together that should be.—Dale

Emery, Understanding Coupling and Cohesion,

YouTube video.

I’m going to show you a trivial problem I once worked on: replacing

a character in a string. Since Python strings are immutable (cannot be

changed), a line of code must be written to work around this limitation. So

why not just use a mutable type instead, like a list? A list cannot be a key to

a dictionary. All languages have their limits and imperfections.

The nine-character string in this problem represents a tic-tac-toe

board. The empty board looks like this:

board ='---------'.

204

After two moves, the board might look like this:

board = '----X---O'.

So, how do we proceed from '---------' to '----x----'? Answer:

We break the string apart, replace a hyphen character, and then glue the

string back together:

0. My first try immediately solves the problem:

board = board[:position] + char + board[position + 1:]

Justification: The author could not make the line any simpler.

1. The first improvement: Make the line into a function:

def insertMove(board, position, char):

 return board[:position] + char + board[position + 1:]

Justification: The function call insertMove(board, position, char)

is more descriptive than the instruction itself.

2. The second improvement: Stuff the board into a list.

 def insertMove(board, position, char, boardCollection):

 newBoard = board[:position] + char + board[position + 1:]

 boardCollection.append(newBoard)

 return newBoard

Justification: It turns out that every new board needs to be stored

in a list called boardCollection, hence the append line. (Later, the

boards would become dictionary keys. At this moment in the program

construction, I didn't have any values to go with the keys. So, I just loaded

the keys into a list, instead of a dictionary.)

By placing both instructions in the same function, two lines of

code (inserting and storing) are reduced to one function call. However,

the function now does two tasks, not one. An alarm should go off in

any programmer's head, that this (two tasks in one function) makes

modification more difficult and bugs more difficult to detect.

Chapter 17 The Evolution of a Function

205

3. The third improvement: Change the name of the function.

 �def insertMoveAndStoreBoardInDictionary(board, position,

char, boardCollection):

 newBoard = board[:position] + char + board[position + 1:]

 boardCollection.append(newBoard)

 return newBoard

Justification: The function’s name must change as the function evolves.

4. The fourth improvement: Split the function into two functions.

 �def insertXAndStoreBoardInDictionary(board, position,

boardCollection):

 newBoard = board[:position] + 'X' + board[position + 1:]

 boardCollection.append(newBoard)

 return newBoard

 �def insertOAndStoreBoardInDictionary(board, position,

boardCollection):

 newBoard = board[:position] + 'O' + board[position + 1:]

 boardCollection.append(newBoard)

 return newBoard

Justification: The program will be easier to debug if the name of the

function tells us which letter ('X' or 'O') is being inserted into the board.

An alarm goes off: This code is violating the DRY (do not repeat yourself)

principle. Also, do these two functions really make the program easier to

debug? Note that this improvement did remove char from the parameter list.

5. The fifth and FINAL improvement: Return to the one-task-per

function principle, which still violates the DRY principle.

 def insertX(board, position):

 return board[:position] + 'X' + board[position + 1:]

 def insertO(board, position):

 return board[:position] + 'O' + board[position + 1:]

Chapter 17 The Evolution of a Function

206

Justification: I became tired of alarms going off in my head every time

I looked at my code. I was breaking two principles DRY, and one-task-per-

function. I continued to break the DRY principle because I fell in love with

the readability of this code. I told myself that because the two functions

were physically close to each other, it was less likely that I would forget to

make two changes instead of just one.

6. Attempt to improve: Change the function’s name (REJECTED):

 def insertXInBoard(board, position): ...

Justification: The InBoard makes the name longer and adds little to the

understanding, mainly because board is the name of the first parameter.

This is a nice example of how a well chosen parameter can combine with a

function name to improve understanding.

7. Attempt to improve: Use OOP (REJECTED).

I considered combining the data and its functions into a class object.

Then, instead of writing

 insertX(board, position),

I would write

 board.insertX(position).

Does this help? My guess is no, but in many cases, a programmer

cannot know if encapsulation brings an advantage unless the program

is written once with encapsulation and once without encapsulation. The

general rule is that objects will not confer a benefit unless they interact

with each other and have effective communication.

So what is the point of all this fiddling with the code? Is this function call

insertX(board, position)

Chapter 17 The Evolution of a Function

207

significantly better than the original single line:

board = board[:position] + char + board[position + 1:] ?

I feel the function call is better because it helps us understand more

and faster and with less effort. It may seem that this discussion is an

obsession with details. But obsession with details is exactly the appropriate

attitude for coding, for communicating complicated ideas, for chess

playing, and for anything creative. If we rarely re-think our designs, because

they are “good enough,” then we don’t gain enough experience doing

quality design.

Chapter 17 The Evolution of a Function

209© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_18

CHAPTER 18

Do Not Snub
Inefficient Algorithms
In the excellent popular mathematics book The Golden Ticket (P, NP,

and the Search for the Impossible), the reader is asked to partition the

38 numbers below into two distinct sets of 19 numbers that each sum to

1,000,000.

 �Lst = �[14175, 15055, 16616, 17495, 18072, 19390, 19731,

22161, 23320, 23717, 26343, 28725, 29127, 32257,

40020, 41867, 43155, 46298, 56734, 57176, 58306,

61848, 65825, 66042, 68634, 69189, 72936, 74287,

74537, 81942, 82027, 82623, 82802, 82988, 90467,

97042, 97507, 99564]

The author made the comment, “Not so easy, is it. There over 17 billion

ways to break these numbers into two groups.” The programming solution

the author had in mind is “dynamic programming.” This method is so

difficult to apply that whole books of examples have been written just to

help programmers build their skills.

210

That said, there is another, much easier way to solve this problem, a

method that every programmer should have in his or her toolkit: fail-fast
guessing. My code follows.

 Lst = [See above.]

 count = 0

 flag = True

 while flag:

 #----Initializing.

 count += 1

 s = set() # = empty set

 #----Randomly assemble 19 different indices.

 while len(s) < 19:

 s.add(randint(0,37)) # Duplicates are never added.

 #----Check the total.

 if sum(Lst[n] for n in s) == 1000000:

 #--Print the solution.

 s = sorted(s)

 print('Answer =', end = ' ')

 for n in s:

 print(Lst[n], end =', ')

 print('\ntotal =', sum(Lst[n] for n in s))

 print('This took', count, 'tries.')

 flag = False

My code solved this problem in less than ten seconds (about 220,000

guesses). Evidently, there are many solutions to the original problem.

If there had been only one solution, then methodically checking every

possibility could take almost nine days (with 22,000 unique probes per

Chapter 18 Do Not Snub Inefficient Algorithms

211

second) for the worst case. When we need a numeric solution quickly

and do not have an algorithm to find it, fail-fast guessing can sometimes

quickly find a decent answer, and sometimes the best answer.

The following is the infamous bubble sort, or at least my six-line

version of it:

def bubble(x):

 leng = len(x)

 for i in range(leng-1):

 for j in range(leng-i-1):

 if x[j] > x[j+1]:

 x[j], x[j+1] = x[j+1], x[j]

 return x

The bubble sort seems to have nothing to

recommend it, except a catchy name and the

fact that it leads to some interesting theoretical

problems.—Donald Knuth, The Art of Computer

Programming, Vol. 3.

Is the bubble sort good for anything, except introducing sorting

algorithms to beginners? We will see. [This bubble sort can be made more

efficient. Do you see how?1]

The return x is not needed. I put it in for two reasons. First, the call

x = bubble(x) explicitly tells the reader that x is being modified, without

having to look at the function’s code. Second, if the function code is later

modified so that the address of x is reassigned, then the code will still work.

The first pass of the bubble sort will place the final element in place.

The second pass will place the next-to-last element in place, etc. With each

pass we sort one-less element. This explains the leng-i expression.

1�The j+1 computation is done three times. Let k = j+1 and then let k replace j+1.
A student had to point this out to me.

Chapter 18 Do Not Snub Inefficient Algorithms

212

I have read that the bubble sort is the world's fastest sort for four-or-

fewer elements. That seems reasonable, and I had been sharing that fact

with my students for years. One day I decided to compare the bubble sort

to the built-in Python sort. To sort four random floats a million times,

the Python built-in sort took an amazingly short time: 0.63 seconds. The

bubble sort above took 2.93 seconds. I wasn't expecting such a large

difference in time, and I was upset that my decades-long claim seemed

false. Then I realized I could cheat. Behold the bub1 function, below.

def bub1(x):

 if x[0] > x[1]:

 x[0], x[1] = x[1], x[0]

 if x[1] > x[2]:

 x[1], x[2] = x[2], x[1]

 if x[2] > x[3]:

 x[2], x[3] = x[3], x[2]

 if x[0] > x[1]:

 x[0], x[1] = x[1], x[0]

 if x[1] > x[2]:

 x[1], x[2] = x[2], x[1]

 if x[0] > x[1]:

 x[0], x[1] = x[1], x[0]

 return x

This is much faster (1 second), but not fast enough. Could I cheat

anymore? Yes, behold bub2.

def bub2(x):

 [a,b,c,d] = x

 if a > b:

 a, b = b, a

 if b > c:

 b, c = c, b

Chapter 18 Do Not Snub Inefficient Algorithms

213

 if c > d:

 c, d = d, c

 if a > b:

 a, b = b, a

 if b > c:

 b, c = c, b

 if a > b:

 a, b = b, a

 return [a, b, c, d]

The result is 0.52 seconds. My claim was verified. Or was it? My code

omitted loops, changed the data type (list variables are slower to access

than primitive variables), and copied the list elements to a new list instead

of in-place sorting. Is this what people think of as the bubble sort? Also, the

Python built-in sort is probably running C-code (40-50 times faster than

Python code).

My little experiment was not convincing. I needed to run the standard

bubble sort (bubble above) against the quick sort also written in Python.

On the Stack Overflow site, I found the following clever and fast quick sort

version

def quickSort(array):

 if len(array) < 2:

 return array

 less, equal, greater = [], [], []

 pivot = array[0]

 for x in array:

 if x < pivot:

 less.append(x)

 elif x == pivot:

 equal.append(x)

Chapter 18 Do Not Snub Inefficient Algorithms

214

 else:

 greater.append(x)

 return quickSort(less) + equal + quickSort(greater)

This code took a whopping 3 seconds to run. When coded up in a

similar way, the standard bubble sort is slightly faster than the quick sort

for four elements. You may not be impressed. Who cares about sorting four

elements?

Suppose you needed to sort a large list in place (almost no extra

memory). What sort would you use? Maybe not the quick sort, because

that needs extra stack memory in both the iterative and recursive versions.

Would you reject the bubble sort as being too slow? That would be making

a big mistake. The quick sort is only about twice to three times as fast as a

well-tuned bubble sort, and the bubble sort is much easier to code. Let us

assume a million random integers. Look again at this bubble sort line:

for j in range(leng-i-1).

The -i makes the bubble sort more efficient, because elements moved

to the end do not have to be re-examined. Suppose we exchange the -i

with -gap, where the variable gap (initialized to leng = len(x)) would

reduce in size (by being divided by 1.3) on every pass until it became 1.

This clever trick (first published in 1980) produces the so-called comb
sort. The comb sort has a speed of half to a third of the quick sort, is much

easier to code, and (because it is an exchange sort) needs almost no extra

memory. [See Wikipedia, s.v. comb sort.]

So is the comb sort a bubble sort or a close relative? The question

has no answer, because the definition of the bubble sort is not precise.

My point in this chapter is that even otherwise inefficient ideas may be

efficient in certain contexts.

As simple as the comb sort sounds, it took me over two hours to write,

debug, test, and refactor the code. What took so long? Why not write this

Chapter 18 Do Not Snub Inefficient Algorithms

215

sort on your own and compare your code and coding time with mine. My

code follows:

def combSort(array):

 aLength = len(array)

 recentSwap = False

 gap = aLength

 while recentSwap or gap > 1:

 gap = max(1, int(gap/1.3))

 recentSwap = False

 for i in range(aLength-gap):

 j = i+gap

 if array[i] > array[j]:

 array[i], array[j] = array[j], array[i]

 recentSwap = True

 return array

I wrote the following code to test my creation:

def sortTest(trialRuns, sortFunct):

#---This sub function checks if an array is sorted or not.

 def arraySorted(x):

 for i in range(len(x)-1):

 if x[i] > x[i+1]:

 print('NOT SORTED! at positions', i, 'and', i+1)

 return False

 return True

#---Create random-sized array of random integers, then sort and

check if sorted.

 for n in range(trialRuns):

 listSize = randint(0,50)

 array = []

 r = randint(0,20)

Chapter 18 Do Not Snub Inefficient Algorithms

216

 for i in range(listSize):

 array.append(randint(-r,r))

 sortFunct(array)

 if not arraySorted(array):

 exit()

 print('\nTested', sortFunct)

 print('Passed test of', trialRuns, 'random trialRuns.')

 print('-'*46)

#============<GLOBAL CONSTANTS and GLOBAL IMPORTS>=============

from random import shuffle, randint

#========================<MAIN>================================

def main():

 sortTest(trialRuns = 10000, sortFunct = combSort)

#--

To test that the combSort actually sorted an array, I had to write a

Boolean arraySorted function to examine every element in the array. I

embedded this function in the sortTest function. The sortTest function

then created 10,000 random-sized arrays with random integers and tested

the combSort 10,000 times. The assignment was to write one function, the

comb sort, but I felt I had to write two more functions to trust my code.

Hence, the two hours.

The fastest sorts are of order nlog(n). This is actually knlog(n), where

the k is dependent on the efficiency of coding, the speed of the processor,

etc. This expression makes it looks like the base of the log function must

be 10. But it doesn’t matter what the base is, because there is only one

log function (your choice). All the others are just multiples of what you

choose as the logarithmic function—e.g., log log10 2x c x() = () , where c

Chapter 18 Do Not Snub Inefficient Algorithms

217

does not vary as x varies. Can you calculate the numerical value of c in this

equation? The answer is in the footnote.2

In special cases we can sort n numbers faster than n log(n) order time.

Suppose I need to sort a list of 10,000 random numbers. Why can’t I just

read in a list of 10,000 random numbers that I sorted last week. In that

case, the sorting is of constant, order O(1). Suppose I have to sort 10,000

integers in the range of 1 to 100. In that case I can just count how many

there are of each value and generate a sorted list. That is a sort of linear

order, O(n). As a challenge, write this countSort now. You can compare

your code’s readability to mine. The sortTest code can be reused. My code

follows:

def countSort(array, max):

#---This array is assumed to take values in the range of 0 to

max (inclusive).

 counters = [0] * max

 for number in array:

 counters[number] += 1

 array = []

 for (number, count) in enumerate(counters):

 array.extend([number]*count)

 return array

2�c x x x x= () () = ()¸ () ()() = () =log /log log log /log log10 2 10 10 10 102 2 0..30102¼

Chapter 18 Do Not Snub Inefficient Algorithms

218

There are certain questions we always need to ask while programming,

and I asked them here:

	 1.	 If our function is going to be an algorithm, should

the tests be written first?

	 2.	 If we need both a list element and its index, should

we use the Python enumerate function?

	 3.	 If a for loop produces a list, should we use a list

comprehension?

The three answers for the countSort are YES, YES, and NO. By using

the built-in enumerate function and using extend instead of append, I was

able to write this code with only two loops. Although we have a for loop

producing a list, I could not get the list comprehension to work without an

additional flattening of the sorted array, which I thought would complicate

the function.

The moral here is that certain otherwise inefficient algorithms may

work well in certain cases, or have an advantage—e.g., quick to code—that

makes it a good choice in a particular situation.

Somewhere I read that on a data size of 50 elements or less all

algorithms are efficient. Even the humble—and trivial to write—bubble

sort looks good with such a data set.

Chapter 18 Do Not Snub Inefficient Algorithms

Walk the Walk

PART IV

221© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_19

CHAPTER 19

Problems Worth
Solving

In a well-run computer course, the student does

many exercises. He should also do at least one

problem. The distinction is this: An exercise relates

to a specific technique, and the approach is usually

spelled out. A problem, on the other hand, will

involve a broad goal, using many techniques, and

with very little spelled out.—Fred Greunberger

(RAND) and George Jaffray (Los Angeles Valley

College), Problems for Computer Solution (John

Wiley, 1965), page xv.

Several of my former students who became programmers later returned

and gave talks about professional programming. One of them mentioned

that he had set up short, after-work classes to help the newer programmers

improve their skills. He told me that he was disappointed to discover that

instead of trying to solve the problems he gave them, some of the new

programmers would find a solution on the Internet and turn it in as their

own work. My guess is that these programmers had gone through school

relying on too much help from their friends, the Internet, and perhaps

grade inflation.

222

The following interview-type questions1 are graded not only on the

code working, but also on their designs and readability. Good luck.

Problem 1. Microsoft programmer Steve Maguire used to ask

perspective programmers to write code for him.2 This is daunting, because

there are many algorithms that are hard to code on the fly. Once, Maguire

asked his candidates to write a function that only uppercased a character.

Ignore the fact that there is already a built-in function to do this. As simple

as this sounds, more than half the programmers interviewed did not do

a satisfactory job. Since every candidate probably submitted code that

worked, what were Maguire’s objections? Write up your own code function

and compare it to the several designs that follow.

Problem 1 Answers

#=====================<FIVE POSSIBLE ANSWERS>==================

def upper1(ch): # Bad. It should ignore non-lowercase letters.

 return chr(ord(ch) - 32)

#--

def upper2(ch): # BAD: It aborts program.

 if 'a' <= ch <= 'z':

 return chr(ord(ch) - 32)

 exit('ERROR: Bad input = ' + str(ch))

#--

def upper3(ch): # BAD: It returns TWO different data types.

 if 'a' <= ch <= 'z':

 return chr(ord(ch) - 32)

 return -1

1�Currently on the Internet you can find a wonderful set of C.S. articles and book
reviews by computer scientist and journalist Brian Hayes. Just type in Brian
Hayes - American Scientist or go to http://www.americanscientist.org/
authors/detail/brian-hayes.

2�Steve Maguire, Writing Solid Code (Microsoft Press, 1993), pages 100–101.

Chapter 19 Problems Worth Solving

http://www.americanscientist.org/authors/detail/brian-hayes
http://www.americanscientist.org/authors/detail/brian-hayes

223

#--

def upper4(ch): # OK, however, the error traps are unnecessary.

 assert type(ch) == str and len(ch) == 1, ch

 if 'a' <= ch <= 'z':

 ch = chr(ord(ch) - 32)

 return ch

#--

def upper5(ch): # Best: 1. It ignores non-lowercase letters.

 # 2. It returns only one data type.

 # 3. It has no needless error traps.

 if 'a' <= ch <= 'z':

 ch = chr(ord(ch) - 32)

 return ch

The important question to ask is, “What is the context?” Probably this

function will be used to help parse a string, where the user needs letters

in only one form (capitals). What happens if a digit or punctuation mark is

passed to the function? The function should probably just ignore it. What

happens if a multi-character string is passed to the function? That is such a

huge error that an exception should be thrown.

Problem 2. In your favorite language, or in pseudo-code, write a

function named equal that will accept two numbers num1 and num2 (floats,

integers, or one of each). The function will return False if the numbers

are a trillionth or more apart, or else True. The one-trillionth was chosen

Chapter 19 Problems Worth Solving

224

because in Python you can add a tenth (0.1) nearly a 1000 times before

you have a round-off error of plus or minus a trillionth.3 When you finish,

compare your work to my Python solutions below.

Problem 2 Answers

#

def equal1(num1, num2): # Terrible code

#---Check the data

 if not isinstance(num1, (int, float)) or \

 not isinstance(num2, (int, float)):

 return None

#---Return equality (True or false)

 if abs(num1 - num2) < 0.000000000001:

 return True

 return False

3�Did this justification of the trillionth seem valid to you? It did to me when I first
wrote it, but later I realized that it is little more than nice-sounding words. I
classify stuff like this as metaphysics, which in my opinion is another word for
nonsense. “Metaphysics, that fertile field of delusion propagated by language…
”—J.S. Mill. “Commit it [any book of metaphysics] then to the flames: for it can
contain nothing but sophistry and illusion.”—David Hume. The following is a
metaphysical joke, which, I think, shows metaphysics is one step away from crazy.

When the great French philosopher Jean-Paul Sartre was young, he asked his
uncle if he could work as a waiter Saturday afternoons in his uncle’s café so he could
make some pocket change. The uncle, who already knew young Sartre to be strange,
was hesitant, but decided to give his nephew a practice run. “Memorize today’s
menu and I’ll test you,” said the uncle. Sartre took an unusually long time to study
the menu, and even insisted on verifying it with the kitchen. But eventually he com-
pleted the task. “Put on this apron, wait on the customer over there, and I will watch
you,” said his uncle. Sartre complied and approached the customer. “How may I
help you, sir?” queried the young Sartre. “Bring me a cup of coffee, without cream,”
replied the customer. “We are out of cream,” said Sartre. “May I bring you a cup of
coffee without milk?”

Chapter 19 Problems Worth Solving

225

def equal2(x, y): # Ex.: equals2(0.000 000 000 01, 0) is False,

 # but equals2(0.000 000 000 001, 0) is True.

 �return abs(x-y) <= 1e-12 # 1e-12 = 0.000 000 000 001

(eleven decimal zeros)

def equal3(x, y): # Ex.: equals3(0.000 000 000 01, 0) is False,

 # but equals3(0.000 000 000 001, 0) is True.

 �return round (x, 11) == round (y, 11) # 1e-12 = 0.000 000

000 001 = 1 billionth

Notice that the first version returns TWO different data types: Boolean

and None. This is usually a mistake. The error trap in the first version

is unnecessary, because the compiler will catch this error in a run. The

comments help in the next two versions. The final function seems easiest

to debug.

Problem 3. Consider the famous Bertrand’s Box Paradox (1889).4

A chest contains three drawers. Each drawer has

two coins. One drawer has two gold coins. Another

drawer has a gold coin and a silver coin. The last

drawer has two silver coins. You go to the chest

and randomly pull out a drawer. You reach in and

randomly take out a coin. It is a gold coin. What is

the probability (a number between 0 and 1) that the

other coin is also a gold coin?

Write the code fragment to solve this problem by computer simulation.

In other words, make an abstract model in computer code to reproduce

the situation described in the puzzle. Then run the situation 100,000 times

4�For a readable and interesting discussion, see Wikipedia s.v.” Bertrand’s
box paradox.” This article references other simple-to-state puzzles with
counterintuitive answers, which make excellent practice problems for high school
computer science students.

Chapter 19 Problems Worth Solving

226

to discover how often the second coin is gold, when the first coin chosen is

gold. Next, print this ratio, which is the answer. My solution follows.

Problem 3 My Answer

def solveBertrandsParadox():

#---Initialize.

 from random import randint

 trials = 100000

 goldFirst = 0

 goldMatch = 0

 coin = [['gold', 'gold'],

 ['gold', 'silver'],

 ['silver','silver'],]

#---Run many simulation trials.

 for n in range(trials):

 drawer = randint(0,2)

 position = randint(0,1)

 if coin[drawer][position] == 'silver':

 continue

 goldFirst += 1

 if coin[drawer][position] == coin[drawer][1-position]:

 goldMatch += 1

#---Print labeled answer.

 print('Six coin answer for', trials, 'trials:',

 round(goldMatch/goldFirst * 100, 1), '%')

The output answer should be 2/3, not 1/2. Notice that the continue

statement answers the question, “What happens if the silver coin is chosen

first?” This design closely mirrors physical reality; you do not want to

abbreviate or condense in a simulation.

Chapter 19 Problems Worth Solving

227

Note on Proof by Computer (Simulation and Verification): How

important is computer simulation? As far as I can tell, there are only

five ways to make progress in the sciences: 1) abstract modeling (with

mathematical proof), 2) field observation, 3) experimentation, 4)

mathematical calculation of measurements, and 5) computer simulation.

In some cases some people will prefer simulation to a mathematical proof,

especially if they cannot understand the mathematical proof. But even the

most rigorous proof has some philosophical objections.5

Problem 4a. From the 1700s until 1910, Cambridge

University held examinations on pure and

applied mathematics called “the Tripos.” These

examinations were exceptionally difficult and

lasted for several days. In the morning session of

January 18, 1854, the following question was posed:

A [straight] rod is marked at random at two points,

and then divided into three parts at these points;

determine the probability of forming a triangle with

the three pieces.6

Your job is to answer the Tripos problem using computer simulation—

i.e., translate physical reality into a virtual world formed by computer code.

Then repeatedly run your counterfeit reality (10,000,000 times) and count

5�inference, rules of. Methods of deduction (which are assumed not to lead to
error), usually combined with axioms (which are believed not to be inconsistent) in
a careful manner (which is hoped not to involve a mistake) that produce theorems
(which are presumed not to be paradoxical) in the study of mathematics—the
science whose conclusions are considered absolutely certain. [In other words,
deduction is ultimately based on induction.]

6�Source: Gerald S. Goodman, “The Problem of the Broken Stick,” The
Mathematical Intelligencer, Vol. 30, No. 3 (Springer, 2008), pages 43–49. I have
slightly reworded the question for our purposes. The line after the semicolon
originally read “shew that the probability of its being possible to form a triangle
with the pieces is ¼.”

Chapter 19 Problems Worth Solving

228

how many times certain events occur or do not occur. By forming a ratio

of these counts, you can obtain a probability (accurate to three decimal

places) describing the real world.

Problem 4b. Curiously, there is another definition

of “random” that could be applied to this problem.

A human would break the given stick once, and then

break the longer of the two pieces. Your job is again

to solve the Tripos problem using this definition of

“random.”

Problem 4c. Surprisingly, there is a third definition

of “random” that can be applied to this problem. A

human might break the given stick once, and then

randomly grab one of the two pieces to break next.

Again, your job is to solve the Tripos problem using

this third definition of “random.”

Problem 4d. Believe it or not, there is yet a fourth

definition of “random” as applied to this problem.

A human might break the given stick once, and

then randomly grab one of the two pieces with a

probability proportional to its length. [For example,

if one piece was twice as long as the other, then

that longer piece would have a probability of 2/3

of being chosen for the second break.] Then break

the chosen piece into two parts. Once again, your

job is to solve the Tripos problem using this fourth

definition of “random.”

Chapter 19 Problems Worth Solving

229

########################<START OF PROGRAM>####################

"""

 �VERSION 4a. �Two break points are randomly marked on the

given stick, and the stick is broken into

 three parts.

"""

def puzzle4a():

 triangleCount = 0

 for n in range(TOTAL_RUNS):

 a, b = random(), random()

 if a > b:

 �a, b = b, a # a = length of left piece

 �if (a < 0.5 and b-a < 0.5 and b > 0.5):

 # b-a = length of middle piece.

 �triangleCount += 1

 # 1-b = length of right piece.

 print('Puzzle 4a: The probability of forming a triangle is',

 round(triangleCount/TOTAL_RUNS, 3))

#---Output: Probability of forming a triangle is +------+ �in 4.39

seconds.

| 0.25 |

+------+

#--computer simulation--

"""

 �VERSION 4b. �One break point is randomly marked on the given

stick. The stick is broken into two parts.

 �A second break point is marked on the longer of

 the two sticks. That stick is broken.

"""

#--computer simulation--

Chapter 19 Problems Worth Solving

230

def puzzle4b():

 triangleCount = 0

 for n in range(TOTAL_RUNS):

 a = random()

 if a < 0.5:

 b = uniform(a, 1)

 else:

 b = a

 a = uniform(0, b)

 if (a < 0.5 and b-a < 0.5 and b > 0.5): # a < b

 triangleCount += 1

 print('Puzzle 4b: The probability of forming a triangle is',

 round(triangleCount/TOTAL_RUNS, 3))

#---Output: Probability of forming a triangle is +-------+ �in 8.3

seconds.

| 0.386 |

+-------+

#---computer simulation--

"""

 �VERSION 4c. �One break point is randomly marked on the given

stick.The stick is broken. One of the sticks

 �is randomly chosen,and a second break point is

 �marked on it. That stick is broken.

"""

def puzzle4c():

 triangleCount = 0

 for n in range(TOTAL_RUNS):

 r = random() # r = first break point

Chapter 19 Problems Worth Solving

231

 if random() < 0.5: # flip a coin

 a = uniform(0, r) # cut on the left side

 b = r

 else:

 a = r # cut on the right side

 b = uniform(r, 1)

 if (a < 0.5 and b-a < 0.5 and b > 0.5): # a < b

 triangleCount += 1

 print('Puzzle 4c: The probability of forming a triangle is',

 round(triangleCount/TOTAL_RUNS, 3))

#---Output: Probability of forming a triangle is +-------+ �in 8.70

seconds.

| 0.193 |

+-------+

#---computer simulation--

"""

 �VERSION 4d. �One break point is randomly marked on the given

stick. The stick is broken. One of the sticks

 �is randomly chosen WITH A PROBABILITY

 �PROPORTIONAL TO ITS LENGTH, and a second break

point is marked

 on it. That stick is broken.

"""

def puzzle4d():

 triangleCount = 0

 for n in range(TOTAL_RUNS):

 r = random() # r = first break point

Chapter 19 Problems Worth Solving

232

 if random() < r: # break left stick

 a = uniform(0, r)

 b = r

 else: # break right stick

 a = r

 b = uniform(r, 1)

 if (a < 0.5 and b-a < 0.5 and b > 0.5): # a < b

 triangleCount += 1

 print('Puzzle 4d: The probability of forming a triangle is',

 round(triangleCount/TOTAL_RUNS, 3))

#---Output: Probability of forming a triangle is +-------+ �in 8.68

seconds

| 0.25 |

+-------+

Notice that the answer to Problem 4d is the same as the answer to

Problem 4a. One lesson to be learned here is to make sure you understand

the problem before you code it, especially a probability problem. The word

random can have different meanings.

This branch of mathematics [probability theory]

is the only one, I believe, in which good writers

frequently get results entirely erroneous.—Charles

S. Peirce, “The Doctrine of Chances,” Popular

Science Monthly (1878), Found in Justin Buchler,

Philosophical Writings of Peirce (Dover 1955),

page 157.

Chapter 19 Problems Worth Solving

233

Problem 5. (Developing an algorithm.7) Occasionally we need to

generate the rth permutation from some ordering of a sequence (n-choose-

r = nPr). Write this function. In particular, write a RECURSIVE function

called permute(Lst, r) to accept a sequence like Lst = [0,1,2,3,] and

a positive integer, like r = 13. Then the permute function returns the rth

permutation of the given sequence. Of course the “ordering” is arbitrary,

but fixed for a particular problem. [I recall taking 45 minutes to write this

function.]

EXAMPLE: There are 24 permutations of [0,1,2,3,], as shown

below. Under this ordering, which is excellent for this problem, the 13th

permutation is [2,0,3,1,]. GOOD NOTATION CAN MAKE A PROBLEM

EASIER TO SOLVE. We start counting at 0 (not 1).

+---+

| ==> Lst = [0,1,2,3,] <== |

| |

| 0 [0, 1, 2, 3,] 6 [1, 0, 2, 3,] 12 [2, 0, 1, 3,] 18 [3, 0, 1, 2,]     |

| 1 [0, 1, 3, 2,] 7 [1, 0, 3, 2,] 13 [2, 0, 3, 1,] 19 [3, 0, 2, 1,]     |

| 2 [0, 2, 1, 3,] 8 [1, 2, 0, 3,] 14 [2, 1, 0, 3,] 20 [3, 1, 0, 2,]     |

| 3 [0, 2, 3, 1,] 9 [1, 2, 3, 0,] 15 [2, 1, 3, 0,] 21 [3, 1, 2, 0,]     |

| 4 [0, 3, 1, 2,] 10 [1, 3, 0, 2,] 16 [2, 3, 0, 1,] 22 [3, 2, 0, 1,]     |

| 5 [0, 3, 2, 1,] 11 [1, 3, 2, 0,] 17 [2, 3, 1, 0,] 23 [3, 2, 1, 0,]     |

+---+

If we could extract the left-most digit (2 in [2, 0, 3, 1]), then

we could recursively call our function to extract the left-most digit

from a smaller list, etc. IMPORTANT: We would be passing up Lst =

[0,1,3,]. That is, we would be passing up [0,1,2,3,] with 2 removed,

7�My favorite way to describe computer science is to say that it is the study
of algorithms.—Donald E. Knuth, “Computer Science and Its Relation to
Mathematics,” American Mathematical Monthly (April, 1974), page 323.

Chapter 19 Problems Worth Solving

234

not [0,3,1,]. This counterintuitive fact tripped me up for a while. My

code follows.

Problem 5 My Answer

def permute(Lst, r):

 from math import factorial

 L = len(Lst)

 assert L>=1 and r>=0 and r<factorial(L), ['L=', L, 'r=', r]

 Lst = Lst[:]

 if L == 1: return Lst

 d = factorial(L-1)

 digit = Lst[r//d]

 Lst.remove(digit)

 return [digit] + permute(Lst, r%d)

Problem 6. Write a function called fizzBuzz(limit) that prints the

positive integers from 1 to limit = 100 inclusive. But for multiples of 3,

it prints “Fizz” instead of the integer; for multiples of 5 it prints “Buzz”

instead of the integer; and for multiples of both 3 and 5 it prints the phrase

“Fizz and Buzz” instead of the integer. See the Wikipedia article under

“Fizz buzz.”

Coding guru and Internet blogger Jeff Atwood used this test for coders

applying for jobs at his company. Do you think he could make a good

decision about a programmer based on such a simple test?

When I was in high school, I heard a restaurant inspector claim that

he could rate a restaurant based on ordering a cup of coffee. I doubted

his claim at the time. Now, years later, I consider his claim to be at least

a half-truth. In poor restaurants, everything seems poor: the food, the

service, the silverware, the china, and the environment. The entire staff

doesn’t seem to be sensitive to details.

Chapter 19 Problems Worth Solving

235

Perhaps Mr. Atwood could eliminate the weakest programmers with

this tiny test. After you write this code, I will show you several solutions.

Most of them show some clever design, but a few are terrible. This is

definitely a problem worth a student’s time.

Problem 6: Answers

#

#--Solution 1 Best, because it is so easy to debug.

 for x in range(1,101):

 if x % 15 == 0: print('Fizz and Buzz'); continue

 if x % 3 == 0: print('Fizz'); continue

 if x % 5 == 0: print('Buzz'); continue

 print(x)

#---

#--Solution 2 Mr. Stueben's solution.

 for x in range(1, 101):

 if x % 15 == 0: print('Fizz and Buzz')

 if x % 3 == 0 and x % 5 != 0: print('Fizz')

 if x % 5 == 0 and x % 3 != 0: print('Buzz')

 if x % 5 != 0 and x % 3 != 0: print(x)

#---

#--Solution 3 Not bad.

 for x in range(1, 101):

 if x % 15 == 0:

 print('Fizz and Buzz')

 elif x % 3 == 0:

 print('Fizz')

 elif x % 5 == 0:

 print('Buzz')

 else:

 print(x)

#---

Chapter 19 Problems Worth Solving

236

#--Solution 4 Clever.

 for x in range(1, 101):

 stng = ''

 if x % 3 == 0: stng += 'Fizz'

 if x % 15 == 0: stng += ' and '

 if x % 5 == 0: stng += 'Buzz'

 print(stng if stng else x)

#---

#--Solution 5 Maybe too clever.

 for x in range(1, 101):

 stng = 'Fizz and Buzz' if x%15 == 0 \

 else 'Fizz' if x% 3 == 0 \

 else 'Buzz' if x% 5 == 0 \

 else ''

 print(stng if stng else x)

#---

#--Solution 6 # The "not" makes the code more difficult to

understand.

 for n in range (101):

 stng = str(n)

 if not(n%3): stng = 'Fizz'

 if not(n%5): stng = 'Buzz'

 if not(n%3 + n%5):

 stng ='Fizz and Buzz'

 print(n, stng)

#---

#--Solution 7 This code says much about the programmer's lack

of experience in refactoring.

 for n in range(1,101):

 flag = True

Chapter 19 Problems Worth Solving

237

 if n%3 == 0:

 print('Fizz', end = '')

 if n%15 == 0:

 print(' and Buzz', end = '')

 print()

 flag = False

 if flag and n%5 == 0:

 print('Buzz')

 flag = False

 if flag:

 print(n)

#---

#--Solution 8 Why would anyone work with x+1 instead of x? Why

would

anyone write "if (x+1) % 3 == 0: if (x+1) % 5 == 0",

instead of a single "if (x+1) % 15 == 0"?

 for x in range(100):

 if (x+1) % 3 ==0:

 if (x+1) % 5 == 0:

 print('Fizz and Buzz')

 else:

 print('Fizz')

 elif (x+1) % 5 == 0:

 print('Buzz')

 else:

 print((x+1))

My students took between three to seven minutes to handwrite this

loop (pencil and paper). In all, 45 (73%) students passed and 18 students

(29%) failed. I did not fail any student for writing needlessly complicated

code. The main cause for failure was not mentally double-checking the

Chapter 19 Problems Worth Solving

238

logic through a few examples. At least this exercise told me who I should

not hire as a summer assistant. Thanks, Jeff Atwood.

Quite frankly, I’d rather weed out the people who

don’t start being careful early rather than late. That

sounds callous, and by God, it _is_ callous. But it’s

not the “if you can’t take the heat, get out of the

kitchen” kind of remark that some people take it

for. No, it’s something deeper: I’d rather not work

with people who aren’t careful. It’s Darwinism in

software development.—Linus Torvalds (Creator

of Linux), found in Bill Blunden, Software Exorism

(Apress, 2003), page 1.

Note to problem 4a. Actually, the mathematical proof is easy to

follow, but difficult to construct unless one has some experience with

proofs like this.

Consider the stick to be the interval from 0 to 1. The two cuts are two

randomly chosen numbers on the interval. Let x be the smaller number

and y be the larger number. We can consider the ordered pair (x,  y) to

be randomly chosen in the upper left part of the unit square. See figure.

If three pieces are to form a triangle, then x must not be larger than ½.

(Region I is eliminated.) And y must not be smaller than ½. (Region II is

eliminated.) Finally the distance from x to y must not be larger than ½.

(Region III is eliminated.) Since all four triangles in the upper left half are

all congruent, the answer must be ¼. Source: Thomas J. Bannon,

The Mathematics Teacher, Vol. 103, No. 1 (August 2009) pages 56-61.

Chapter 19 Problems Worth Solving

239

Assignment: Write a program to simulate cutting of a circle into three

pieces by three random cuts. What is the probability that one piece is larger

than a semi-circle? [Alternate statement: What is the probability that three

randomly chosen points on a circle are contained in a semicircle?] Surprise,

this is the same question as dividing a stick into three pieces to make a

triangle. Why? Because the first cut severs the circle into a segment. Then

the next two cuts correspond to x and y in the previous problem. However,

the answer to this re-formulation of the straight-stick problem is ¾.

Chapter 19 Problems Worth Solving

241© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_20

CHAPTER 20

Problem Solving
The lame in the path outstrip the swift who wander

from it.—Francis Bacon (scientific philosopher),

Novum Organum (1620), section 61.

Writing code at midnight may be fun, but writing

code at midnight the day the assignment is due is

not fun.—a senior taking his fourth programming

class (December 2011).

Another reason for the dullness of so many short

pieces is that too few academic writers have had

enough experience of writing. A good writer, like a

good pianist, needs daily practice and a love of the

art for its own sake. To keep in practice, he must

write his weekly minimum of three to five thousand

words.—G.B. Harrison Profession of English

(Doubleday, 1962), page 111.1

1�G. B. Harrison’s short and wonderful book Profession of English (1967) is his
attempt to answer what he should be trying to accomplish in teaching English at
the university level. I think some of his ideas apply to the teaching of any subject
or craft.

242

What do you do when you don’t know what to do? Of course, you can

check the Internet, review books, and talk to others—if you can get them

to listen. After that, when no new ideas come, then what? It may seem that

there is nothing to do. But that is not correct.

First, start making up examples: Look for patterns, observations, and

relationships. (“Extreme cases are particularly instructive.”—Polya) When

you notice relationships, you can think in terms of relationships. This is

called deep thinking. If you can find relationships among the relationships,

then you can do deeper thinking. Second, work related, but easier

problems. This way you train yourself to solve the original problem.

I have listed two actions to take. There is a third action that is even

more important than the first two: Come to the problem with a history

of trying to work challenging problems. That is the key to solving all hard

problems, and it is also why practicing problem-solving is important. Did I

say important? “Vital” is the better word.

So how does one learn or practice effectively? The first step is imitation

and memorization. The second step is trying to work out many challenging

problems by yourself.2 If, after some considerable effort, you can’t solve a

problem, then ask for help. But you may not omit the struggle. Otherwise,

2�1. “How should we go about trying to improve? My guess is that chess skill
emerges from chess playing combined with chess training, where ‘training’
means working things out for yourself.”—(GM) Jonathan Rowson, Chess for
Zebras (Gambit, 2005), pages 28–29.

 �2. Japanese saying: “Ambition is the source of discipline.”—Thomas P. Rohlen,
Japan’s High Schools (University of California, 1983), page 266.

 �3. “The student is taught the best who is taught the least.”—R.L. Moore, found
in John Parker, R.L. Moore (MAA, 2005), page 263. [The famous Moore
method of teaching is to make problem-solving almost the entire course
experience. Little lecturing, no tests, no quizzes, and–absolutely—no hints,
just problems for each student to work out for himself. I think Moore was
mostly right, if one’s goal is to increase the student’s problem-solving abili-
ties. That is the best way to learn mathematics. “The Moore method is, I am
convinced, the right way to teach anything and everything.”—Paul Halmos, I
Want to be a Mathematician—Springer-Verlag, 1985), page 258.]

Chapter 20 Problem Solving

243

both skill and fact retention are retarded. The late mathematician George

Polya tried to condense this advice into the following anecdote:

The landlady hurried into the backyard, put the

mousetrap on the ground (it was an old fashioned

trap, a cage with a trapdoor) and called to her

daughter to fetch the cat. The mouse in the trap

seemed to understand the gist of these proceedings;

he raced frantically in his cage, threw himself

violently against the bars, now on this side and then

on the other, and in the last moment he succeeded

in squeezing himself through and disappeared in the

neighbour's field. There must have been on that side

one slightly wider opening between the bars of the

mousetrap. The landlady looked disappointed, and

so did the cat who arrived too late. My sympathy from

the beginning was with the mouse; and so I found it

difficult to say something polite to the landlady, or

to the cat; but I silently congratulated the mouse. He

solved a great problem, and gave a great example.

That is the way to solve problems. We must try and

try again until eventually we recognize the slight

difference between the various openings on which

everything depends. We must vary our trials so that

we may explore all sides of the problem. Indeed, we

cannot know in advance on which side is the only

practicable opening where we can squeeze through.

The fundamental method of mice and men is the

same; to try, try again, and to vary the trials so that

we do not miss the few favorable possibilities.

—George Polya, Mathematical Discovery, combined

edition (Wiley, 1981), pages 75–76.

Chapter 20 Problem Solving

244

The third step to learning is to reflect on both the result and the

experience. You need to become philosophical every time you solve a

tough problem: What should you have noticed to have found the solution

sooner? Can the solution be simplified? Does the solution offer a key to

solving other problems?

A curious method of self-reflection is called “the method of five whys.”3

Example:

	 1.	 Why did this happen? (I overlooked a special case.)

	 2.	 Why did I overlook the special case? (It never

occurred to me.)

	 3.	 Why didn’t it occur to me? (My thinking was

superficial.)

	 4.	 Why was my thinking superficial? (I worked too fast.)

	 5.	 Why did I work too fast? (I wanted to be finished.)

The fourth and last step is to associate with smart people and get them

to talk shop (or read the books they wrote).

Stanford computer science professor Donald Knuth made an

interesting observation about common errors in programming.

In volume 1 of The Art of Computer Programming,

I wrote: “Another good debugging practice is to

keep a record of every mistake that is made. It

will help you learn how to reduce the number

of future errors.” But if you ask whether keeping

such a log [916 errors in TEX] has helped me learn

how to reduce the number of future errors, my

answer has to be No. I kept a similar log for errors

3�This idea is from Kent Beck’s Extreme Programming Explained, 2nd ed. (Addison
Wesley, 2005), page 65.

Chapter 20 Problem Solving

245

in METAFONT, and there was no perceivable

reduction. I continue to make the same kinds of

mistakes.—Donald E. Knuth, Literate Programming,

CSLI Lecture Notes 27 (Center for the Study of

Language and Information, 1992), page 286.

I think Knuth is talking about the little problems that we all make and

we all quickly fix. Such errors are more embarrassing than a hindrance

to coding. Certainly some coders don’t get much better after years of

coding, because they don’t analyze their mistakes and forget too many of

their experiences. They are disconnected from their work. Others are the

opposite and become better with each difficult problem they solve.

The following is a compilation of common errors that I share with

my students. Does this list reduce their errors? Very little, because such a

list must be constructed from personal experience in order to be recalled

when needed. Again, each student must teach himself. The teacher simply

selects the problems and then offers insights when the student is ready to

appreciate them.

	 1.	 You interchanged parameters—e.g., (a,b)

was passed as (b,a); coordinates x and y were

interchanged; matrix row and column subscripts

were interchanged.

	 2.	 You have a memory location error. Something

got moved, overwritten, or your reference was

accidentally changed.

	 3.	 You have an aliasing error—i.e., two variables access

the same memory address (a deepcopy was not

made). You have two functions with the same name.

You have used a reserved word as a variable name

or as a file name.

Chapter 20 Problem Solving

246

	 4.	 You were looking at one file (say, lab99.py), but

running another file (lab99).

	 5.	 You never called the function in the first place.

	 6.	 An outer for-loop index was used as an inner loop

index. [This cannot occur in Python.]

	 7.	 You dropped the parentheses pair from a function

name.

	 8.	 You used == for =, or vice versa.

	 9.	 You wrote < for <= or vice versa. [This error has cost

me hours of time on several occasions.]

	 10.	 You were ignorant of precedence—e.g., a and b

!= True means a and (b != True), not (a and b)

!= True.

	 11.	 You failed to initialize a variable (not possible in

Python).

	 12.	 Your numbers got too big (overflow).

	 13.	 You misspelled two similar words—e.g., the variable

names differenceInYears, differenceinYears,

and differenceInYears are all different.

	 14.	 Round-off accumulations produced a wrong

number.

	 15.	 A list/array in a for-loop header was changed in the

for-loop body.

Chapter 20 Problem Solving

247

	 16.	 You have an OBOE (off-by-one error) .

	 17.	 You have an indenting or scope error.

	 18.	 You confused a list value (x[n]) with its position (n).

	 19.	 You assumed A += B always operates exactly like

A = A + B. Not with lists.

	 20.	 You misunderstand how a built-in function

works—e.g., a function may operate on data in place

and does not return data as you think.

	 21.	 You compared floats for absolute equality.

	 22.	 You never mastered your language. A built-in

function or clever syntax arrangement would have

simplified your complex code.

	 23.	 You wrote the letter ‘O’ for zero (0), or vice versa.

	 24.	 You were expecting [], "", or None in a function

header, but got one of the others, instead.

	 25.	 Your if-else statements appear independent, but

are connected. You may have

	 a.	 a dangling else (an else connected to the

wrong if),

	 b.	 a back-stabbing else (two or more ifs followed

by an else), and

	 c.	 bleeding ifs that change the test data between

if comparisons.

* * *

Chapter 20 Problem Solving

248

War Story 1. On a graphics program I assigned, a

student copied my code from a handout and then

told me she kept getting the error “Unassigned

global variable…”. The global variable was being

imported and worked on all the other students’

computers. After five minutes of inspecting the code,

and comparing it to mine, I had nothing. What to

do? What would you do? I never discovered what

the problem was, but I was able to remove the error.

I simply copied my working code, removing the

functions I wanted the student to write, and e-mailed

it to her. It worked. I later asked her to send me the

defective code, but she had overwritten it. Too bad,

because those are the errors that teach us something.

War Story 2. I once had a student construct a giant

Python dictionary that would not compile. Compile

errors are usually easy to remove, but not this one.

The dictionary, made up of many lines, was viewed

as one line by the computer. Consequently, the

compiler could not give the actual physical line

number of the error. After much disassembling of

the dictionary, I found the error. On the second line

of the dictionary, the student had written the letter

‘o’ for a zero (0).

War Story 3. My colleague Dr. Torbert once spent

half a day (yes, half a day!) trying to debug a

student’s code. The student had used the reasonable

identifiers getx and gety, which, unbeknownst to

her and to Dr. Torbert, were reserved words in the

inherited JPanel class. You would think the original

designer would use more obscure identifiers, or

even something like JPgetX or GETX.

Chapter 20 Problem Solving

249

War Story 4. I once wrote a program to solve a

Sudoku puzzle. I created a matrix of cell objects

to represent the Sudoku board. Each cell object

contained the address of its own matrix: the

matrix that contained all of the cells. This was

accomplished with a Python class variable. (See

below.) Thus, a change to the value in one cell could

be detected by the code referencing another cell.

class cell(object):

 matrix = None <-- class variable

#--constructor-------------------------

 def __init__(self, val, r, c, matrix):

 if val != 0:

 self.value = {val,}

 else:

 self.value = {1,2,3,4,5,6,}

 self.row = r

 self.col = c

 self.block = self.blockNumber(r, c)

 �cell.matrix = matrix <–- accessed with the

class name.

The program worked fine for a simple Sudoku.

This made me confident about the class variable

and general design. But the program failed under

recursion. After about a week of debugging, I

finally realized the matrix was not being reset in

backtracking, even though the code to reset the

matrix was being executed. How was this possible?

Chapter 20 Problem Solving

250

Eventually I copied the code and threw out all of the

lines that seemed irrelevant to the bug. This gave me

a simpler structure with which to examine the bug. To

my surprise, the bug didn’t appear. I decided to think

about this later and got up from my desk to get my

lunch. As I was walking down the hall, the complete

answer hit me. Evidently my brain had been thinking

about this problem without my being aware.

The problem occurred with copying of the matrix.

When the data structure was copied, the copy

resided at a new address, but each cell contained the

address of the original matrix. Remember, I had used

a class variable, not an instance variable, to hold the

initial address of the matrix. Those cell addresses

needed to be changed, or the values of the copied

matrix needed to be fed back into the original matrix

to reset it. I discussed this error with my students and

concluded with the following remarks.

Recursive errors can take hours to fix if there is no

bug-effect until deep into the recursion. If we throw

enough time at the problem, we usually can fix it.

This process can take a lot out of us emotionally.

Some people can handle the unending frustration

and not let it take away from the more enjoyable and

creative aspects of coding. Yet, there are many smart

people who have no patience for this kind of mental

struggle. For them, coding seems torturous. The

only general piece of advice I can give you is to ask

how each big error you discover could have been

prevented, and then change the way you write code

based on your analysis.

Chapter 20 Problem Solving

251

Having given you this piece of advice, you might

ask me how I could have avoided spending a week

looking for the matrix bug that I discussed earlier.

Could I have set up an error trap? Could I have

tested earlier? In fact, I don’t know what I could

have done that would have either avoided the bug,

or exposed it earlier. I had never before worked with

a class variable used in recursion.

It is not unreasonable to think that with every line of code a student

writes, the student is becoming a worse coder, by reinforcing bad habits.

Couldn’t a good teacher help here? Not beyond offering worthwhile

assignments and making many insightful remarks, some about life. It is

vanity to think we can save others—they can only save themselves.4

So, again, how do we become good coders, especially if errors are

impossible to eliminate? The answer is to learn the details of our computer

language, work many challenging problems that offer insight, don’t easily

quit on these problems, practice refactoring, reflect over both solutions

and errors, and talk shop with other good coders.

And now for a surprise. If there is any advice that will help you develop

your programming skills, then you must discover it on your own, or at least

you must identify coding problems so that you can seek out advice from

others by asking them explicit questions. To beginners, this book must

necessarily be just so much background noise. My perspective cannot

be yours. Even telling you about my perspective is not enough to make

it meaningful. The goal of this book is to inform you that professional

programmers (and chess players and pianists) believe that certain habits

have increased their productivity and reduced their frustrations. My words

can only be a weak guide to finding your own personal perspective in

coding. Good luck.

4�Paraphrased from the French film Queen to Play (2009).

Chapter 20 Problem Solving

252

�The Evolution of a Programmer

Chapter 20 Problem Solving

253© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4_21

CHAPTER 21

Dynamic
Programming
Preface. A preface to a chapter is unusual, but dynamic programming

requires some motivation.

�The Most Profound Academic
Joke Ever Told
A professor was searching near a lamppost for his dropped keys when

one of his former students walked by. “Did you lose your keys, Professor?”

asked the student.

“Yes, I did,” replied the professor.

“Well, I’ll help you look,” said the student.

After a few minutes of search, the student asked, “Do you know on

which side of the lamppost you most likely dropped them?”

“Oh,” said the professor, “I dropped them somewhere over there by the

side of the building.”

“What!” exclaimed the student. “Then why are you looking for them

here?”

“Oh, the light is so much better here that the search is easier.”

254

�A Memoir by Richard Hamming
Alan Chynoweth mentioned that I used to eat at the physics table. I had

been eating with the mathematicians, and I found out that I already knew

a fair amount of mathematics; in fact, I wasn’t learning much. The physics

table was, as he said, an exciting place, but I think he exaggerated on how

much I contributed. It was very interesting to listen to Shockley, Brattain,

Bardeen, J.B. Johnson, Ken McKay, and other people, and I was learning

a lot. But unfortunately a Nobel Prize came, and a promotion came, and

many of them left. Over on the other side of the dining hall was a chemistry

table. I had worked with one of the fellows, Dave McCall; furthermore he

was courting our secretary at the time. I went over and said, “Do you mind

if I join you?” He couldn’t say no, so I started eating with them for a while.

And I started asking, “What are the important problems of your field?” And

after a week or so, “What important problems are you working on?” And

after some more time I came in one day and said, “If what you are doing

is not important, and if you don't think it is going to lead to something

important, why are you at Bell Labs working on it?” I wasn't welcomed

after that; I had to find somebody else to eat with! That was in the spring.

In the fall, Dave McCall stopped me in the hall and said, “Hamming,

that remark of yours got underneath my skin. I thought about it all

summer, i.e. what were the important problems in my field. I haven't

changed my research,” he says, “but I think it was well worthwhile.” And

I said, “Thank you, Dave,” and went on. I noticed a couple of months

later he was made the head of the department. I noticed the other day he

was a Member of the National Academy of Engineering. I noticed he has

succeeded. I have never heard the names of any of the other fellows at that

table mentioned in science and scientific circles. They were unable to ask

themselves, “What are the important problems in my field?”—Richard

Chapter 21 Dynamic Programming

255

Hamming (An excerpt from a formal talk “You and Your Research” given

by Richard Hamming given on March 7, 1986. The entire talk is on the

Internet. Read it.)

�The Wayfarer
The wayfarer,

Perceiving the pathway to truth,

Was struck with astonishment.

It was thickly grown with weeds.

“Ha,” he said,

“I see that none has passed here

In a long time.”

Later he saw that each weed

Was a singular knife.

“Well,” he mumbled at last,

“Doubtless there are other roads.”

—Stephen Crane, War Is Kind and Other Lines (1899).

Introduction. Welcome to dynamic programming, and to the most

difficult chapter in this book. Why is such a difficult topic placed in a

book for still-developing programmers? The answer is that we build skills

for deriving and coding difficult algorithms by trying to derive and code

difficult algorithms. That is the only way.

Chapter 21 Dynamic Programming

256

History. In the late 1940s and early 1950s, mathematician Dr. Richard

Bellman1 was one of many mathematicians employed by the RAND

Corporation to solve military and industrial problems. He observed that he

and some of his coworkers often used the same methods to solve certain

kinds of problems. He coined the term dynamic programming to describe

these methods.2 His technical book Dynamic Programming was published

1�In 1979 Richard Bellman received the IEEE Medal of Honor (the highest award
in electrical engineering) for his work in dynamic programming. In 1985
the Bellman Prize in Mathematical Bioscience was established to honor his
contributions.

2�The earliest use of the term “dynamic programming” I have found is Richard
Bellman, “On the Theory of Dynamic Programming,” Proceedings of the National
Academy of Sciences, 38 (8), 716–719 (1952), which is available online. Here he
stated, “The theory of dynamic programming is intimately related to the theory of
sequential analysis (1947) due to Wald [Wald’s Statistical Decision Functions, John
Wiley & Sons, 1950.]” Abraham Wald died in 1950 at age 48 in an airplane crash.
In this paper, Bellman referenced several other technical papers dealing with
decision processes—e.g., Arrow, K.J., Blackwell, D., and Girshick, M.A., “Bayes
and Minimax Solutions of Sequential Decision Problems,” Econometrica, 17,
214–244 (1949).

 �In the DVD the bellman equation (Shami Media, 2013), one of Bellman’s wives
said Bellman told her that dynamic programming was in the wind at the time.
And if he had not discovered it (actually formalized the method, named it,
and wrote a book expounding its use), then someone else would have. Harold
J. Kushner, one of Bellman’s colleagues at RAND, once stated in a speech,
“Bellman did not quite invent dynamic programming, and many others
contributed to its early development. But no one grasped its essence, isolated its
essential features, and showed its full potential in control and operations research
as well as in applications to the biological and social sciences, as did Bellman.”

Chapter 21 Dynamic Programming

257

in 1957, the same year Fortran, the first high-level programming language,

was introduced.3 In 1962, he and co-author Stuart Dreyfus published a

second exposition: Applied Dynamic Programming.4

3�Fortran replaced assembler language in many programs, thereby reducing the
size of those programs by an average factor of 20. See Wikipedia, s.v. Fortran.
There were few computers in 1957, partly because they were so expensive, and
the ones that existed were computationally feeble. Processing speed and memory
size were both extremely limited. Computer memory was being converted from
mercury tubes to iron cores. The operating systems and editors were crude.
The machines were programmed in assembly languages. The first commercial
computer (the UVIVAC I with 5000 vacuum tubes) was not shipped until
1952, and was priced at $159,000. Eventually the price rose to $1,500,000. As a
comparison, I remember my mother complaining in the late 50s that she had
difficulty buying groceries for a family of four on twenty dollars a week. Bellman
worked at the RAND Corporation and their computer was the JOHNNIAC,
hand-built by their engineers with funds from the Air Force and first working in
1953. The mean free time between (machine) failures was 500 seconds. It is not
easy to communicate how difficult it was to run a complicated program on such
a machine. Search the Internet for the 20-page History of the JONNIAC by Fred
Joseph Gruenberger (1968).

4�In 1973 Bellman developed a brain tumor, which when removed left him severely
disabled. Nevertheless, he continued to publish at a high rate until he died in
1984 at age 63.

 �“Hal Shaperio asked me [Bellman], do you think you will be a better
mathematician than Erdős?” “Far better,” I said. Immediately four pairs of
incredulous eyes fastened upon me. I explained. “Erdős has great talent, even
genius, but he has no judgement. He does not match the problems he works on
with his ability.” I doubt whether at the time those listening got the point. I think
they understand now.—Richard Bellman, Eye of the Hurricane (World Scientific,
1984), page 109.

 �This statement was made around 1946. Bellman (pre-PhD) was 26, and the
Hungarian Paul Erdős was 35. Erdős later became one of the world’s most prolific,
respected, and admired mathematicians. His field was analytic number theory,
one of the most difficult areas of mathematics. Bellman who initially specialized
in the same field eventually gave it up for applied mathematics. In my opinion,
the two mathematicians cannot be compared. The world needs both. Notice that
Bellman’s 1946 comment echoes this chapter’s preface.

Chapter 21 Dynamic Programming

258

The term “dynamic programming” is not particularly descriptive,

but “linear programming” was then a new term for a process that solved

problems by working with systems of linear inequalities. Dynamic

programming solved problems by working with systems of recursive

functional equations. Plus, Bellman, in his interesting autobiography,

admitted that he liked the term “dynamic.”

DEFINITION. The term dynamic programming in operations

research refers to the mathematical theory of multi-stage decision

making—i.e., making the best decisions at different stages of a process,

usually by creating an optimal policy function. That is its defining

characteristic. The word “programming” in “dynamic programming”

means scheduling, or planning, both when the term was coined and even

today. Sometimes the policy function is used to find a single (usually

optimal) value—e.g., the length of a shortest path instead of the path itself

(directions to the goal).

Since calculus is famous for finding maximums and minimums by

way of vanishing derivatives, what does dynamic programming bring to

the study of optimization? Applied problems, common in industry and

the military, are often discrete and not continuous, and hence, have no

derivatives. Applied problems often have so many variables that calculus

expressions become too difficult to compute, even for a computer.

THE METHOD OF DYNAMIC PROGRAMMING (DP)

	1.	R educe a problem to subcases by reducing the number of

parameters, choices, decisions, capacity, objects, or the size of an

integer domain—i.e., reduce the problem’s dimensionality at each

step. Then reduce those subcases to more subcases, and those to

even more subcases. Do this until the subcases are easy to solve.

	2.	A ll of the subcases must be produced in a similar (recursive) way.

Chapter 21 Dynamic Programming

259

	3.	T he value of any case or stage must be determined by some

combination of the values of its immediate subcases, often

(but not always) as a maximum or minimum of the subcases.

This is called the principle of optimality, and leads to an

optimal policy function.

	4.	P runing is usually necessary in practice. Find a way to compute
overlapping (shared) subcases (if they exist) no more than
once. [Each subcase will be only slightly simpler than its parent.

If each subcase were significantly simpler than its parent,

then there would be no need for dynamic programming. Just

breaking up a problem into subcases in any way and solving

them by brute force would work.]

Note well: In computer science, DP has come to mean a recursive

algorithm that does not evaluate a subproblem twice. See Wikipedia.

Choose your definition based on the problem you are trying to solve.

Dynamic programming has three (many say two) forms:

Form a) �an iterative algorithm that builds a table of

past calculations, which it uses to make new

calculations (called the bottom-up approach)

Form b) �a recursive algorithm with no reference

to accumulating memory, just repeatedly

calculating the same subcases (called the

top-down approach)

Form c) �a recursive algorithm that remembers

previously computed subcases (also called

the top-down approach).

Notice that form b above violates the fourth attribute of dynamic

programming. Consequently, some people do not consider form b to

be dynamic programming. Nevertheless, form b satisfies the defining

characteristics of operations research DP, is the simplest DP function to

Chapter 21 Dynamic Programming

260

write, is sometimes adequate to solve a problem at hand, and is the first

step to writing form c, which in turn often helps to produce the faster form a.

So, form b is at least part of the dynamic programming toolbox.

Functional Equations. The subcases of DP usually involve

functional equations—i.e., equations that contain at least one function.

Here is a simple example (Denardo, page 28). Suppose you wanted to

know the probability of throwing a 3 before throwing a 7 with a pair

of fair dice: f 3 7,() = ? . The probability of getting a 3 in one roll is
2

36
.

The probability of getting a 7 is
6

36
. The probability of getting neither is

1
2

36

6

36
− − . Then our answer is the infinite geometric series:

f 3 7
2

36
1

2

36

6

36

2

36
1

2

36

6

36

2

36
1

2

36

6

3

2

,() = + − −



 + − −



 + − −

66

2

36

3




 +…(1)

This series can be solved with the precalculus formula:

a ar ar ar ar
a

r
r

k

k+ + + + = =
-

<
=

¥

å2 3

0 1
1� , for

What if you can’t recall the formula? A simple idea is to consider the

series as a functional equation (1):

f f3 7
2

36
1

2

36

6

36
3 7, ,() = + − −



 ()

And now just solve for x: x
x x

x f= + ⇒ = ⇒ = ()=2

36

28

36

8

36

2

36
3 7

1

4
, .

Thus, if you know about functional equations, then you never need
to remember the infinite geometric series formula., except for |r| < 1.

Incidentally, how would you check the validity of equation (1)? The answer

is in the footnote.5 Functional equations are handy tools that can help us

solve problems as well as simplify calculations.

5�By the same reasoning, the probability of f (7,3) should work out to be ¾, which it
does.

Chapter 21 Dynamic Programming

261

Bottom-up, Top-Down and Memoization. Consider trying to

generate the fifth Fibonacci number. A natural solution is in terms of

DP—i.e., embedding the original problem in terms of recursive functional

equations with reduced dimensionality:

(5) f[5] = f[4] + f[3]

(4) f[4] = f[3] + f[2]

(3) f[3] = f[2] + f[1]

(2) f[2] = f[1] + f[0]

(1) f[1] = 1

(0) f[0] = 0

In this example, working bottom-up, we would need to compute f[2]

only once on line (2) and then use it on lines (3) and (4). If we wanted to

work top-down, we would need to make calls to f[2] on lines (3) and (4).

But when we finally calculated f[2] on line (2), we could save the result

and not need to recalculate it on lines 3 and 4.

If you asked a beginner to write a Python function that would print the

nth Fibonacci number, he or she would probably write a simple iteration

function, like this:

def fib1 (num): # ITERATION, bottom-up (form a)

 if num < 3: return 1

 a = b = 1

 for i in range(2, num):

 a, b = b, a+b

 return b

#--

Chapter 21 Dynamic Programming

262

If you asked the beginner to solve the same problem recursively, you

would get something like this:

def fib2 (num): # RECURSION, top-down (form b)

 if num < 3: return 1

 return fib2(num-1) + fib2(num-2)

#--

It is important to note that the top-down (actually recursive) approach

refers to the initial function calls starting at one end and not obtaining

values until the calls reach the other end, then bouncing back with

numbers. Since the actual computations cannot begin until the top-down

calls reach the other end, embedded in the top-down approach is the

bottom-up approach. In that case, why would anyone choose the top-

down approach? Answer: The slower top-down approach is simpler to

write than the faster bottom-up approach.

Here (fib2) the top-down approach is grossly inefficient. It repeatedly

computes the exact same subcases. We can improve fib2 by introducing

a dynamic (changing) look-up table. This trick is called memoization.6

Below are two versions. The first keeps the earlier numbers in a semi-

global list. The second version keeps the earlier numbers in a Python

dictionary whose address is being passed along with each recursive call.

def fib3 (num): # RECURSION with memoization, top-down (form c)

 if num < len(fibNums): return fibNums[num]

 fibNums.append(fib2(num-1) + fib2(num-2))

 return fibNums.pop()

fibNums =[0,1,1]

#--

6�The word “memoization” was coined from the root word “memo” by British AI
pioneer Donald Michie in 1968.

Chapter 21 Dynamic Programming

263

def fib4 (num, Dict): # RECURSION with memoization, top-down,

(form c)

 if num in Dict: return Dict[num]

 Dict[num] = fib4(num-1, Dict) + fib4(num-2, Dict)

 return Dict[num]

 print(fib4(12, {1:1, 2:1})) # The call.

#--

There is a significant observation to be made by examining the tree of

recursive calls leading to the nth Fibonacci number. Every level (except

the bottom few) has twice as many nodes as the level above it. With

memoization, the computer goes down only one side of the tree and never

branches away, except to recall one previously computed number for

each level. This is extreme pruning. This is changing an exponential run

time into a linear runtime. This is why recursive dynamic programming is

usually combined with memoization.7

A Problem from Operations Research. Whenever we realize that

a problem can be reduced to a simpler case and that case can again be

reduced in the same way to a simpler case, then we are probably talking

about dynamic programming. Consider the famous jeep problem (aka the

desert-crossing problem). You are not asked to solve this difficult problem,

just notice the form of the solution.8

7�Those who cannot remember the past are condemned to repeat it.—George
Santayana, (1905) Reason in Common Sense, p. 284, volume 1 of the Life of
Reason.

8�I found the solution in Martin Gardner, My Best Mathematical and Logic Puzzles
(Dover, 1994). The solution had appeared in an earlier book of Gardner’s (1961).
I met Martin Gardner twice and found him to be an extraordinarily warm and
modest person. Gardner died in 2010. To this day (2017), there are meetings each
called Gathering4Gardner.

Chapter 21 Dynamic Programming

264

The Problem. (RAND 1946) Suppose that we have a jeep that can

carry enough gasoline to go a distance of d miles. In order to traverse

a distance of 2d miles over a flat and barren terrain, it is necessary to

establish intermediate caches of gasoline. The jeep's fuel consumption is

assumed to be constant, and at any point the jeep may leave any amount

of fuel that it is carrying in a cache, or may collect any amount of fuel

that was left in a cache on a previous trip, as long as its fuel load never

exceeds one full tank. The home depot has an infinite amount of gasoline.

Two questions naturally arise: 1) How should the caches be located so

as to minimize the total expenditure of gasoline required to travel 2d

miles, and 2) what is the total distance traveled by the jeep to reach its

destination?—R. Bellman, Dynamic Programming (Princeton, 1957),

page 103, problem 54 (paraphrased here).

Comment. There are many different schemes to travel 2d across the

desert. Consider the following. Suppose we start with 11 tanks of gasoline

and move back and forth a distance of d/4, dropping off a half-tank every

time. On the eleventh trip we arrive at d/4 with 5-3/4 tanks remaining.

By repeating the process we move to d/2 with 3 tanks left. Then we move

to 3d/4 with 1-3/4 tanks left. Then we move to d with one tank left, just

enough fuel to go the final distance to 2d. This is one solution (11 tanks),

but we can do better.

Solution by dynamic programming (N.J. Fine, American

Mathematical Monthly, Vol. 54, 1947, pages 458-462). Let us think in terms

of recursive functional equations. We define f (t) = d, where t is one full

tank of gasoline and d is in terms of miles.9

9�Tech. Note. Any physics teacher insists on writing f (t) = d, with both letters
containing units (fuel tanks and miles). Most math teachers tend to keep the
units implicit to focus more on the mathematical structure: f (1) = d. The physics
teachers are correct.

Chapter 21 Dynamic Programming

265

Then f (2t) = d/3 + d. Why? The jeep advances d/3 miles, deposits

a third of its tank, and returns to the home depot. On the second trip it

arrives at the cache and refills to a full tank, and the problem reduces

to f (t).

Next f (3t) = d/5 + d/3 + d. Why? The jeep advances to d/5 and deposits

3/5 of a tank and returns. It then repeats this trip. On the third and final

trip, the jeep arrives at the cache with 4/5 of a tank and has 6/5 of a tank

waiting for it. This is 2 full tanks, and the problem reduces in the same way

to the previous case.

Next f (4t) = d/7 + d/5 + d/3 + d. Why? The jeep begins by advancing

d/7 miles and depositing 5/7 of a tank. It repeats this trip two more times.

On the fourth trip, the jeep arrives at the first cache with 6/7 of a tank and

finds the equivalent of 15/7 fuel tanks waiting. This is 3 full tanks, and the

problem reduces in the same way to the previous case.

Consequently, we see the pattern of caches for n full tanks: f (nt) = d,

d/3, d/5, d/7, d/9, d/11, …, d/(2n-1). The distance traveled forward into the

desert with n tanks of fuel is expressible as a recursive functional equation:

f (nt) = d/(2n-1) + f ((n-1)t), with f (t) = d.

So, with 8 tanks in the home depot, the jeep can travel forward

f (8t) = d + d/3 + d/5 + d/7 + d/9 + d/11 + d/13 + d/15 ≈ 2.02d. And, of

course, with 8 tanks of fuel, the jeep will travel a total distance (back and

forth) of 8d. The key idea is that the solution to the original problem is

repeatedly embedded in a family of recursive functional equations of

smaller and smaller dimensionality (integer domain, here).

Chapter 21 Dynamic Programming

266

Distance in miles Fuel measured in full jeep tanks

2d 8

3d 57

4d 419

5d 3092

6d 22,846

7d 168,804

8d 1,247,298

9d 9,216,354

10d 68,100,151

Because the sequence of fractions with odd denominators is divergent,

there is no limit (in theory) as to how far the jeep could travel. Check out

the table on the right. The distance traveled with n tanks of fuel can also be

given in closed form:

1
1

3

1

5

1

2 1

1

2 11

+ + + +
−

=
−=

∑�
n kk

n

N.B. This is not a proof (“we can see the pattern”) for the general nth

case, and neither was optimality proved. Bellman’s book contains many

pages of existence and uniqueness proofs for DP theorems, which are

understandable only by the mathematical expert.

We now will examine four classic dynamic programming problems.

The ideal way to proceed is to try to make some progress on each problem

before looking at my solution. Other solutions and problems can be found

on the Internet.

Chapter 21 Dynamic Programming

267

Problem 1. Shortest Path.

In the following (acyclic and directed)10 graph we seek the shortest
path from any node to node 9.

Or do we? Don’t we seek a function (an optimal policy) that given a

node just tells us the next node to move to for an optimum path? Isn’t that

in the spirit of DP? Both yes and no. Producing a function to guide us in

choosing the next node is how Bellman first described DP. And that is what

is needed in industry. However, to find the next optimum node from any

current node, we must first find the entire optimum path from the current

node. So, we can’t have one without the other.11

10�The term “acyclic” means a loop (cycle) is impossible, and “directed” means all
links are one way. Here we use the terms nodes and links (arcs) instead of vertices
and edges, and we use graph instead of network. Any acyclic directed graph
may have its nodes labeled so that any link (i,j) [from node i to j] will have the
property that i < j. Why? If the graph is acyclic, then there must be at least one
node with no incoming links. Label that node 1 and remove all outgoing links
from that node. Then the remaining network must have at least one node with no
incoming links (for the same reason as before). Then repeat.

11�Reference: R. Bellman and S. Dreyfus, Applied Dynamic Programming
(Princeton, 1962), page 229, A Routing Problem.

Chapter 21 Dynamic Programming

268

This figure was taken from Eric V. Denardo, Dynamic Programming

Models and Applications (Dover, 2003), page 9. The shortest of the eleven

possible paths is through nodes 1, 3, 4, 5, 7, 9, with a total length or cost of

19. Curiously, the greedy (myopic) algorithm produces the longest path

(1,2,4,6,8,9) of length 27.

First, translate the graph picture into computer data. That will be

an associative list—i.e., a list of lists: a list of nodes with each node

having its own list of immediate forward neighbors and the distances

to those neighbors. Python offers a built-in dictionary data type to help

us work with this information. The following data structure can be used

(unchanged) for both the top-down and bottom-up algorithms:

graph = {1:[(1,2), (2,3)], # (d,n) = (distance to next node,

next node)

 2:[(12,5),(6,4)],

 3:[(3,4), (4,6)],

 4:[(4,5), (15,7), (7,8), (3,6)],

 5:[(7,7)],

 6:[(7,8), (15,9)],

 7:[(3,9)],

 8:[(10,9)],

 9:[(0,0)], }

Now ask yourself what information you would need at any node to

proceed by an optimal path to our goal (node 9, here). You would need

a list of immediate forward neighbors and the distance to each neighbor

from your current location (node). This information is already given in

the statement of the problem (the graph data structure). The final piece of

information you need is the optimum distance f (i) from each neighbor (i)

to the goal. This is where recursion comes in. Finding the shortest distance

from a neighbor node to the goal node is exactly the same question we

are asking at our present node, except the dimensionality (length of

the remaining path in nodes) has been slightly reduced. Finding such a

Chapter 21 Dynamic Programming

269

recursive function often requires much ingenuity. If it can be found and

solved, then the would-be solver will be able to make the optimal decision

at each stage. Although the thinking is recursive, the function we write

could be either iterative or recursive, as we saw with the two Fibonacci

functions.

Our function f (i) represents the minimum (optimal) distance between

node i and node 9. Clearly, f 9 0() = . But then

* f i d f j
j

ij() = + ()()min , [The Bellman equation]

where dij is the distance from node i forward to an immediate neighbor

node j. Note that i j< , and f (j) is the minimum distance from node j forward

to node 9. In DP theory, technically when the recursive function is derived,

the optimization problem is solved.12

The concise wording above needs to be more concrete. Consequently,

by looking at either the graph picture, or at the graph data structure, write

out, by hand, the nine equations f(9) = 0 to f(1) = 19 using formula (*).

Warning: Do not skip this step. The answer (check after you finish) is given

later.

The next paragraph contains the key idea behind determining the

minimum path length without having to examine every possible path’s

length. We must, however, associate every node with a number

(the minimum distance from that node forward to node 9).

When we come to node 6, we must evaluate two (short) distances

to the goal. When we come to node 4, we need only examine four

(not five) distances, because node 6 is now associated with only one

distance (the optimal distance), not two distances. When we come

to node 3, we need only examine two distances, not seven distances,

12�Tech. Note. This particular recursive functional equation (*) is called a Bellman
equation or, more accurately, the Bellman equation for this problem. See
Wikipedia, s.v. Bellman equation. Some problems in dynamic programming do
not require a max or a min—e.g., the Fibonacci function, the jeep problem, and
Problem 3, given later.

Chapter 21 Dynamic Programming

270

because node 4 is associated with only one distance, and node 6

is associated with only one distance. This is the pruning power of

dynamic programming with memoization. And it brings us to your first

assignments. My code (the solution) follows the assignments.

Assignment 1. Write an iterative function named

fa (form a) to receive only a node (the graph data

is global), and return the distance from that node

to the goal node (9). The key idea for this short

function is the recursive functional equation (*).

You must create a local data structure to hold the

optimum distances from each node to the goal

node. I named my data structure data. My notes tell

me this first function took me 50 minutes to write

and another 10 minutes to refactor.

Assignment 2. Write a recursive function

(no pruning by memoization) named fb (form b)

to receive only a node (the graph data is global),

and return the distance from that node to the goal

node (9).

Assignment 3. Write a recursive function named

fc (form c) that is a modification of function fb to

include memoization.

Assignment 4. Write a function

determineMinimumPathAndDistance to call either

fb, fc, or fa, and to return both the shortest path

and the length of that path.

Chapter 21 Dynamic Programming

271

The Nine Equations

	

f

f f

f f

f
f

f

9 0

8 10 9 10

7 3 9 3

6
7 8 7 10

15 9

() =
() = + ()=
() = + ()=

() = + ()= +
+

min (() = +




=

()= + () =
15 0

15

5 7 7 10f f 	

	

f

f

f

f

f

4

4 5 4 10

15 7 15 3

7 8 7 10

3 6 3 15

() =

+ ()= +
+ ()= +
+ ()= +
+ ()= +









min



=

()= + ()= +
+ ()= +





=

()= + ()=

14

3
3 4 3 14

4 6 4 15
17

2
12 5

f
f

f

f
f

min

min
112 10

6 4 6 14
20

1
1 2 1 20

2 3 2 17
1

+
+ ()= +





=

()= + ()= +
+ ()= +





=

f

f
f

f
min 99

	

The Author's Four Solutions

"""+===============-========-========-========-========-======+

 || DYNAMIC PROGRAMMING (shortest route problem)   ||

 || by M. Stueben (October 8, 2017) ||

 || ||

 || Description: This program contains three functions (fa, ||

 || fb, and fc) which each determine the next ||

 || node to move to in proceeding by the shortest    ||

 || path to goal node 9. Then each of these ||

 || functions is used to find the shortest route   ||

 || and its distance from node 1 to node 9.     ||

Chapter 21 Dynamic Programming

272

 || Reference: Eric V. Denardo, Dynamic Programming ||

 || (Dover, 2003), pages 6-19. ||

 || Language: Python Ver. 3.4 ||

 || Graphics: None ||

 +===========-========-========-========-========-==========+

"""

####################<BEGINING OF PROGRAM>######################

#============<GLOBAL CONSTANTS and GLOBAL IMPORTS>=============

graph = {1:[(1,2), (2,3)], �# Each neighbor node moves us

towards goal node 9.

 2:[(12,5), (6,4)], �# (d,n) = (distance to next node,

next node)

 3:[(3,4), (4,6)],

 4:[(4,5), (15,7),(7,8),(3,6)],

 5:[(7,7)],

 6:[(7,8), (15,9)],

 7:[(3,9)],

 8:[(10,9)],

 9:[(0,0)], }

count = 0 # Counts the number of recursive calls.

#==

Chapter 21 Dynamic Programming

273

def printResults(distance, path, func):

 print('--', func.__name__,'min path:', path)

 print(' distance =', distance, 'recursive calls =', count)

#==

def fb(node): # Recursion with NO memoization.

 global count; count += 1

 if node == 9: return 0

 �shortest = min([dist + fb(neighbor) for (dist, neighbor)

in graph[node]])

 �return shortest # = �shortest distance from current

node to goal node.

#==

def fc(node, dict = {}): # Recursion with memoization.

 global count; count += 1;

 if node == 9: return 0

 data = [] �# data = [(dist to goal,

neighbor),...]

 for (dist, neighbor) in graph[node]:

 if neighbor in dict:

 data.append((dist + dict[neighbor], neighbor))

 else:

 neighborsDistToGoal = fc(neighbor, dict)

 data.append((dist + neighborsDistToGoal, neighbor))

 dict[neighbor] = neighborsDistToGoal

 shortest = min(data)[0]

 �return shortest # = �shortest distance from current node to

the goal node.

#==

Chapter 21 Dynamic Programming

274

def fa (node):

 �data = ['-',0,0,0,0,0,0,0,0,0,] # = �distances of each node

to goal node (9).

 for n in range (8, 0, -1):

 �data[n] = min([dist + data[neighbor] for (dist,

neighbor) in graph[n]])

 return data[node]

#==

def determineMinimumPathAndDistance(func, node):

 global count; count = 0

 minimumPath = [node]

 shortestDistance = 0

 while node != 9:

 �(_, dist, node) = �min([(dist + func(neighbor),

dist, neighbor)

 �for (dist, neighbor) in graph

[node]])

 minimumPath.append(node)

 shortestDistance += dist

 return shortestDistance, minimumPath

#==========================<MAIN>==============================

def main():

 for func in (fb, fc, fa):

 �distance, path = �determineMinimumPathAndDistance

(func, node=1)

 printResults(distance, path, func)

#--

Chapter 21 Dynamic Programming

275

if __name__ == '__main__':

 from time import clock; START_TIME = clock();

 main(); print('- '*16);

 print('Program run time:%6.2f'%(clock()-START_TIME), 'seconds.')

########################<END OF PROGRAM>#######################

Output:

-- fb min path: [1, 3, 4, 5, 7, 9]

 distance = 19 recursive calls = 63

-- fc min path: [1, 3, 4, 5, 7, 9]

 distance = 19 recursive calls = 16

-- fa min path: [1, 3, 4, 5, 7, 9]

 distance = 19 recursive calls = 0

- - - - - - - - - - - - - - - -

Program run time: 0.06 seconds.

The times for one million calls follow:

fb function run time: 16.5 seconds with 63 recursive

calls and a max recursive depth of 27.

fc (function run time: 8.5 seconds, with16 recursive

calls and a max recursive depth of 4.

fa function run time: 6.5 seconds.

It has always been my experience that iterative DP is faster than

recursive DP. However, when I first ran this test, fc was many times faster

than fa. I knew I had made some mistake in comparing the times, but what

was it? Perhaps the reader can guess before looking at the footnote.13

13�I had forgotten to deconstruct the dictionary (dict) before the beginning of each
call. Consequently, neighbor was always in dict after the first call. A Bellman
equation never had to be evaluated for the final 999,999 calls. Oops!

Chapter 21 Dynamic Programming

276

Code comments:

	 1.	 This is a rare case when a for loop in the main

function actually simplifies the reading of the code.

However, the purpose of this code is to demonstrate

the three functions, not to solve a problem.

	 2.	 The function determineMinimumPathAndDistance

includes the throw-away underscore variable (‘_’).

	 3.	 Why did I place the distance before the neighbor in

the graph, instead of the other way around? Answer:

The min function examines only the first element

in a tuple or a list. This is a useful design trick when

the min or max function is to be called in Python with

tuples or lists.

	 4.	 Notice I used so-called magic numbers instead

of assigning these numbers to identifiers—e.g.,

rootNode = 9. This made the code easier to

understand, but harder to extend or debug if placed

in a much larger program.

Although memoization makes a function harder to write, memoization

(with recursion or iteration) gives dynamic programming its power. If the

reader has reached this point without writing any code, then it is time to

put the book aside, go back and write the code from both memory and

understanding. Peek if you get stuck.

And now for a surprise. Having written the easy fb, we can define fc as

fb with a decorator:

def memoize(function):

 �from sys import setrecursionlimit; setrecursionlimit(100)

default = 1000

 dict = {}

Chapter 21 Dynamic Programming

277

 def wrapper(num):

 if num not in dict:

 dict[num] = function(num)

 return dict[num]

 �wrapper.__name__ = function.__name__ # �In case we need the

function's name.

 return wrapper

#==

@memoize

def fb(node): # Recursion with NO memoization.

 global count; count += 1

 if node == 9: return 0

 �shortest = min([dist + fb(neighbor) for (dist, neighbor)

in graph[node]])

 �return shortest # = �shortest distance from current

node to goal node.

The disadvantages of decoration are 1) it places the code in two

different locations, 2) it requires more recursion, 3) it is slower, and 4)

the code is harder to understand if you have not mastered the decorator

syntax.

Here is something curious. It is possible to construct graph like this:

graph = {9:[(10,8), (3,7), (15,6)],

 8:[(7,6), (7,4)],

 7:[(7,5), (15,4)],

 6:[(3,4), (4,3)],

 5:[(4,4),(12,2)],

 4:[(3,3), (6,2)],

 3:[(2,1)],

 2:[(1,1)],

 1:[(0,0)], }

Chapter 21 Dynamic Programming

278

So, the new neighbors (i) are the nodes that feed into a given node

(  j) instead of neighbors following from a given node. Then the Bellman

equation looks like this: f j d f i
i

ij() = + ()()min , where i j< , f (i) is the

distance from node i back to node 1, and f 1 0() = . Which form is better?

Neither, as far as I can see. Here is the code for the three forms, if you are

interested:

#---1. Returns distance only (form a).

def f(n): # ITERATIVE, bottom-up, memoization.

 ff = [0,0,0,0,0,0,0,0,0,0,]

 for i in range(1, n+1):

 ff[i] = min([(ff[j]+d) for (d,j) in graph[i]])

 return ff[n] # = dist. from node n down to node 1.

#--

#---2. Returns distance only (form b).

def f(n): # RECURSIVE, top-down, no memoization.

 if n == 1: return 0

 return min([d+f(neighbor) for (d, neighbor) in graph[n]])

Bellman equation

#--

#---3. Returns distance only (form c).

def f(n): # RECURSIVE, top-down, memoization.

 dist = []

 for (d, neighbor) in graph[n]:

 �if neighbor not in f.dict: f.dict[neighbor] =

f(neighbor)

 dist.append(d + f.dict[neighbor])

 return min(dist)

f.dict = {0:0, 1:0} # �A global dictionary makes the code easier

to understand.

#--

Chapter 21 Dynamic Programming

279

Bellman wrote a second book on dynamic programming with Stuart

E. Dreyfus. Fifteen years later Dreyfus wrote another book on dynamic

programming, which included 187 solved problems. Dreyfus and his

co-author offered the following advice:

It is our conviction, based on considerable

experience teaching the subject, that the art of

formulating and solving problems using dynamic

programming can be learned only through active

participation by the student. No amount of passive

listening to lectures or of reading text material

prepares the student to formulate and solve novel

problems. The student must first discover, by

experience, that proper formulation is not quite

as trivial as it appears when reading a textbook

solution. Then, by considerable practice with

solving problems on his own, he will acquire the

feel for the subject that ultimately renders proper

formulation easy and natural. For this reason, this

book contains a large number of instructional

problems. The student must do these problems

on his own. Any student who reads the solution

before seriously attempting the problem does so

at his own peril. He will almost certainly regret this

passivity when faced with an examination or when

confronted with real-world problems. Do not just

read the solution and think “of course that is how

to do them.”—Stuart Dreyfus and Averill M. Law,

The Art and Theory of Dynamic Programming

(Academic Press, 1977), page xi.

Chapter 21 Dynamic Programming

280

A natural question is this: Why don’t all textbooks contain a good

number of worked-out examples? My opinion: 1) Finding good examples

is difficult and time-consuming. 2) Authors fear that criticism may come

from their non-optimal solutions. And 3) the authors either already have

the examples in mind or can construct them without much effort, and do

not realize that their text is not easily understandable to others without

such examples.

It has been said that teaching by example is not just one way of

teaching—it is the only way of teaching. I would go one step further.

Students should be given many problems that they do not find easy, but

which can be solved by principles illustrated in the given examples

(See Wikipedia, s.v. Moore method). Our late friend George Polya said it

this way:

“Teaching to solve problems is education of the will.

Solving problems which are not too easy for him, the

student learns to persevere through unsuccess, to

appreciate small advances, to wait for the essential

idea, to concentrate with all his might when it

appears. If the student had no opportunity in school

to familiarize himself with the varying emotions

of the struggle for the solution, his mathematical

education failed in the most vital point.”—George

Polya, How To Solve It, 2nd Ed. (Doubleday, 1957),

page 94.

Chapter 21 Dynamic Programming

281

Problem 2. The 0-1 Knapsack Problem (aka The Cargo-Loading
Problem).

A knapsack has a maximum capacity of C lbs. A given set of
items, each with a weight and a dollar value, may be placed in the
knapsack. Determine the maximum total dollar value the knapsack
can hold, constrained by its capacity. (Later we will determine the
items to be placed in the knapsack to maximize the value. But as
beginners, we do the easier problem first.)

The 0-1 refers to the fact that only 1 item of any particular weight may

be loaded.14 Thus, that item is either included (1) or not included (0) in the

knapsack. Below are the values we will use:

value cost (= weight); C = 8

 v[1] = 15, w[1] = 1

 v[2] = 10, w[2] = 5

 v[3] = 9, w[3] = 3

 v[4] = 5, w[4] = 4

Recall that in dynamic programming the original problem is to be

recursively broken up into smaller problems. The knapsack could have a

smaller capacity (j) or allow fewer items (indexed by i) into the knapsack.

Thus, we can reduce the size (dimensionality) of the problem in two

different ways. The numbers in the following table represent all possible

14�An early reference to this problem is Richard Bellman, Dynamic Programming
(Princeton, 1957), page 45, problem 21. Bellman referred to loading cargo
on a ship, not a knapsack. On page 117 of The Art and Theory of Dynamic
Programming (Academic Press, 1977), the authors (Dreyfus and Law) imply
that the knapsack problem is only the 0-1 version of the cargo-loading problem.
Today entire books have been written about the cargo-loading problem and its
variants.

Chapter 21 Dynamic Programming

282

subcases. The order of the items we consider placing in the knapsack is

irrelevant. The answer is found in the bottom-right corner. How was this

table/matrix produced?

 The matrix (M) is a table of values

 �0 1 2 3 4 5 6 7 8 <--remaining

capacity of knapsack

 +--------------------------

 0th item | 0 0 0 0 0 0 0 0 0

 1st item | 0 15 15 15 15 15 15 15 15

 2nd item | 0 15 15 15 15 15 25 25 25

 3rd item | 0 15 15 15 24 24 25 25 25

 4th item | 0 15 15 15 24 24 25 25 29 �Answer = max value

= 29 = M[4][8]

 Best weight set: [4, 3, 1]

Note well: The j values are indices in the code that follows.

Consequently, this scheme would not work for non-integer weight/costs.

Consider trying to place the i-th item (with weight w[i] and value

v[i]) in the partially filled (or empty) knapsack of remaining capacity j.

In other words, we seek the value of the cell M[i][j]. Only three cases can

occur:

Case 1. (simplest). We CAN'T ever put w[i] in the

knapsack, because w[i] alone is greater than C.

The value currently in the knapsack is optimal.

Consequently, M[i][j] = M[i-1][j].

Case 2. We should not put weight w[i] in the

knapsack, because w[i] will push out other weights

that give the knapsack greater value than with the

w[i] weight in it. (How could we know this? You will

see in a moment.) Again, M[i][j] = M[i-1][j].

Chapter 21 Dynamic Programming

283

Case 3. We should put the w[i] weight in the

knapsack, but then we will have to take out some

(or none) of the items already in the knapsack, and

fill the remaining space (if any) with the optimal

combination of smaller weights. This optimal

combination has already been determined as

M[i-1][j-w[i]]. Thus,

M[i][j] = v[i]+ M[i-1][j-w[i]].

We can combine cases 2 and 3:

M[i][j] = max(M[i-1][j], v[i]+M[i-1][j-w[i]])

Look at cases 2 and 3 again. Suppose there is not enough room left

in the knapsack (capacity = C) to insert the current item (with weight

w[i]) under consideration. This does not mean we cannot insert it. We

simply empty the knapsack, place the item under consideration into the

knapsack—which reduces the knapsack capacity to a number already

considered (C – w[i])—and then reload the reduced capacity knapsack.

How do we know which items to place into the knapsack? The answer to

that question is already in the table under j = C – w[i]. Then we decide:

Does inserting the item (which perhaps pushed out some other items)

increase the value of the knapsack (compared with not inserting it) or not?

What will make this coding easier is to append two zeros to the data

sets w and v.

 if w[0] != 0 or v[0] != 0:

 w = [0] + w

 v = [0] + v

Chapter 21 Dynamic Programming

284

These zeros are needed because the index i-1 will eventually reduce to

-1 if we aren’t careful. If we don’t put in the zeros, then we will need more

if statements, which will make the code more complicated. To test your

program, here are some data sets with their answers:

Data set 1

w = [1, 5, 3, 4] # weights with index i.

v = [15, 10, 9, 5] # values with index i, not j.

C = 8 # �Answer: max val = 29; weights =

[4, 3, 1]

#-----------------------------

DATA SET 2

w = [1, 2, 3, 4, 5, 6, 7, 8, 9,] # w[i]

v = [7, 4, 5, 15, 9, 12, 11, 10, 3,] # v[i]

C = 20 # �Answer: max value: 49; weights:

[7, 6, 4, 2, 1]

#-----------------------------

DATA SET 3

w = [1,2,3,4,5,6,7,8,9]

v = [5,2,8,1,9,7,4,3,6]

C = 20 �# Answer: max val = 31; weights =

[6, 5, 3, 2, 1]

 # Note that 6+5+3+2+1 = 17, not C = 20.

#-----------------------------

Chapter 21 Dynamic Programming

285

DATA SET 4

w = [1, 2, 3, 4, 5, 6, 7, 8, 9,10,11,12,13,14,15,]

v = [12, 2,11, 1, 9,10, 4,15, 6, 7, 8,14, 3, 5, 9,]

C = 25 �# Answer: max value = 59 weights =

[8, 6, 5, 3, 2, 1]

C = 50 �# Answer: max value = 81 weights =

[12, 11, 8, 6, 5, 3, 2, 1]

C = 60 �# Answer: max value = 88 weights =

[12, 11, 10, 8, 6, 5, 3, 2, 1]

#-----------------------------

Write the iterative function to return the maximum value for any data

set. My iterative function follows. It references any one of the data sets w, v

and C, previously given.

def knapsackI(w,v,C): # Iterative: returns max value.

#---Special case (impossible).

 if w == []:

 return (0, [])

#---Append zero weights and values to make the top row and left

col zeros.

 w = [0]+w

 v = [0]+v

#---Set matrix size.

 rowMax = len(w)

 colMax = C + 1

#---Create empty matrix, filled with zeros. Note: Because of

w[0] = 0 and

v[0] = 0, the top row and left col are complete as zeros.

 M = [[0 for j in range(colMax)] # j = col index.

 for i in range(rowMax)] # i = row index.

Chapter 21 Dynamic Programming

286

#This is what we have so far:

�0 1 2 3 4 5 6 7 8 <--capacities

of the knapsack (j)

+--------------------------

i = 0th item | 0 0 0 0 0 0 0 0 0

i = 1st item | 0 0 0 0 0 0 0 0 0

M = i = 2nd item | 0 0 0 0 0 0 0 0 0

i = 3rd item | 0 0 0 0 0 0 0 0 0

i = 4th item | 0 0 0 0 0 0 0 0 0

#---Fill the matrix with values from the bottom-up, starting at 1.

 for i in range(1,rowMax):

 for j in range(1,colMax):

 �if w[i] > j: # �Case 1: weight exceeds

capacity C.

 M[i][j] = M[i-1][j]

 else:

 �M[i][j] = max(M[i-1][j],

v[i]+M[i-1][j-w[i]]) # cases 2 & 3

#---Select the answer (lower-right corner) and return it.

 return M[rowMax-1][colMax-1]

#--

Now we write the same function recursively without memoization

(form b). I have written this function two different ways:

def knapsackR(i,j,w,v): # �RECURSIVE, NO MEMOIZATION

(returns max value only)

#---Special case.

 if w == []:

 return (0)

Chapter 21 Dynamic Programming

287

#---Append zero weights.

 if w[0] != 0 or v[0] != 0:

 w = [0] + w

 v = [0] + v

 i += 1

#---Base cases.

 if i == 0 or j == 0:

 return 0 # base cases

#---Recursive cases.

 if w[i] > j:

 return knapsackR(i-1,j,w,v)

 �return max(knapsackR(i-1,j,w,v), v[i] + knapsackR

(i-1,j-w[i],w,v))

The call: print('Maximum value =', knapsackR(len(w)-1, C, w, v))

#--- Knapsack problem--

Notice how much shorter and simpler the form b recursive method

is than the iterative method. Unfortunately for every recursive call the

“Special case” is considered. This is inefficient. The special case needs

only to be considered on the first call. The next version remedies this

inefficiency. Maybe, before looking, you can determine how I did this by

design, and not by if statements. My code follows:

def knapsackRR(w,v,C): # �RECURSIVE, NO MEMOIZATION (returns max

value only)

#---Special case.

 if w == []:

 return (0)

#---Append zero weights, if necessary.

 if w[0] != 0 or v[0] != 0:

Chapter 21 Dynamic Programming

288

 w = [0] + w

 v = [0] + v

#--

 def f(i,j): # <-- Helper function. Remember this trick.

#------Base cases.

 if i == 0 or j == 0:

 return 0 # base cases

#------Recursive cases.

 if w[i] > j:

 return f(i-1,j)

 return max(f(i-1,j), v[i] + f(i-1,j-w[i]))

#--

#---�Call the recursive function with lower-left indices of the

implicit matrix.

 return(f(len(w)-1,C))

The call: print('Maximum value =', knapsackRR(w,v,C)

#--

Which form (knapsackR or knapsackRR) is better? I prefer knapsackRR,

because of the simpler call: knapsackRR(w,v,C) compared to

knapsackR(len(w)-1, C, w, v)).

Next, we seek to return the optimal set of weights to go into the

knapsack, not just the maximum value. We do this by backtracking. Let’s

do the iterative function first. Do you need some hints on how to do this?

Maybe not, because it is the solving without hints that builds our skill.

Hints are in the next paragraph if you want them.

Start at the bottom in the lower right-hand corner of the matrix:

M[maxRow-1][maxCol-1]. If this number is larger than the number directly

above it, then we include w[i], in our answer (list of particular weights),

and move up one row, i = i-1, and left a distance of w[i] (j = j - w[i]),

and repeat. If the number is NOT greater than the number above it, then

Chapter 21 Dynamic Programming

289

we just move up, and do not include w[i] in our set of optimal weights.

It is that simple. My code follows, which is just some add-on code to the

knapsackI function:

def knapsackII(w,v,C): # Iterative: returns both max value and

list of weights.

#---Special case:

 if w == []:

 return (0, [])

#---�Append zero weights and values, then when the "empty"

matrix is created, the top row and left column are correct

as zeros.

 w = [0]+w

 v = [0]+v

#---Set matrix size.

 rowMax = len(w)

 colMax = C + 1

#---�Create empty matrix with top row and left col correct as

zeros.

 M = [[0 for j in range(colMax)] # j = col index.

 for i in range(rowMax)] # i = row index.

#---�Fill the matrix with values from the bottom-up.

 for i in range(rowMax):

 for j in range(colMax):

 if w[i] > j:

 M[i][j] = M[i-1][j]

 else:

 �M[i][j] = max(M[i-1][j],

v[i]+M[i-1][j-w[i]])

 maxValue = M[rowMax-1][colMax-1]

Chapter 21 Dynamic Programming

290

#---�Backtrack through matrix to find weights to give the

maxValue. Without the w[0] = 0 (and v[0] = 0), this code

�would ignore the first weight. Thefinal value if i-1

�in M[i-1][j] would refer to the last row of M,

instead of the first row.

 i = rowMax-1

 j = colMax-1 �# �i,j is the lower-right

corner of M.

 bestWeights = w[1:] �# �Ignore the 0th weight

element.

 wPtr = len(bestWeights)-1 �# �wPtr is a pointer to

the weight

 �# �currently under

consideration.

 for n in range(len(bestWeights)):

 if M[i-1][j] < M[i][j]:

 j -= bestWeights[wPtr] # Keep this weight.

 else:

 bestWeights.pop(wPtr) # �Remove a weight from

bestWeights list.

 wPtr -= 1

 i -= 1

 return maxValue, bestWeights

#--

Only one more function to write and we are done with the 0-1

knapsack problem. This is a recursive function with memoization. We

want to find both the optimal set of weights and the maximum value

without constructing the matrix. Since the backtracking is exactly the same

Chapter 21 Dynamic Programming

291

as was done with the matrix, this should be easy, right? I had made an

assumption that turned this assignment into a nightmare. I quickly wrote

a function that worked well with all of the previous test cases, but failed

if there was one item whose weight was greater than the capacity of the

empty knapsack.

w = [0, 1, 5, 3, 8] # weights with index i.

v = [0, 15, 10, 9, 50] # values with index i, not j.

C = 8 # Answer: max val = 50; weights = [8]

My recursive function kept claiming either that there was an out-of-

range list index error, or that the dictionary of previously computed values

did not hold a necessary value. The solution was to place the top row

and the left column of the matrix into the memoization dictionary before

the recursion began. This is another example as to why programming

(debugging) algorithms can be so extremely difficult. The coder is not

aware of a subtle relationship that must be reflected in the code. Here is the

corrected code:

def knapsackRR(w,v,C): # �Recursive: returns both max value and

list of weights.

 �# Uses a dictionary (dict) for memoization.

#---This function recursively finds the max value while

building a dictionary.

 def f(i,j, dict): # <-- Helper function

 if i == 0 or j == 0:

 return 0 # Base cases

 if w[i] > j:

 if (i,j) not in dict:

 dict[i,j] = f(i-1,j, dict)

 return dict[i,j]

Chapter 21 Dynamic Programming

292

 if (i-1,j) not in dict:

 dict[i-1,j] = f(i-1,j, dict)

 a = dict[i-1,j]

 if (i-1,j-w[i]) not in dict:

 dict[i-1,j-w[i]] = f(i-1,j-w[i], dict)

 b = v[i] + dict[i-1,j-w[i]]

 dict[i,j] = max(a,b)

 return dict[i,j]

----------------<End of helper function>------------------

#---Special case:

 if w == []:

 return (0, [])

#---Having w[0] = 0 and v[0] = 0 simplifies the code.

 if w[0] != 0 or v[0] != 0:

 w = [0] + w

 v = [0] + v

#---Make (i,j) the lower right-hand corner of table.

 i = len(w)-1

 j = C

#---Set up dictionary base cases (top row and left column).

 dict = {}

 for ii in range(i+1):

 �dict[(ii,0)] = 0 # <-- �Necessary (Omitting this was my

3-day mistake.)

 for jj in range(j+1):

 �dict[(0,jj)] = 0 # <-- �Necessary (Omitting this was my

3-day mistake.)

Chapter 21 Dynamic Programming

293

#---Find max value.

 maxValue = f(i,j, dict)

#---Backtrack through dictionary to find best weights.

 bestWeights = w[1:] # Ignore the 0th weight.

 wPtr = len(bestWeights)-1 # = weight pointer

 for n in range(len(bestWeights)):

 if (dict[(i-1, j)] < dict[(i,j)]):

 j -= bestWeights[wPtr]

 else:

 bestWeights.pop(wPtr) �# Remove a weight from

bestWeights.

 wPtr -= 1

 i -= 1

 return maxValue, bestWeights

#--

In industry, tests are sometimes written before the functions to be

tested. In a way I did that. I had a simple data set with an obvious answer:

w = [0, 1, 5, 3, 4] #

v = [0, 15, 10, 9, 5] #

C = 8 �# Answer: max val = 29; weights =

[4, 3, 1]

But that is not enough of a test. The knapsack function needs to be

tested a thousand times:

def runKnapsackTests(runs = 10):

 print('Wait. Now running tests.')

 from random import randint, random

 for n in range(runs):

 �if n % 100 == 0: print('.', end = '') # �crude animation

for time.

Chapter 21 Dynamic Programming

294

 arrayLength = randint(0, 30)

 sm = �randint(1, 20) # sm = smallest

possible value in array.

 lg = �randint(20, 40) # lg =

largest possible value in array.

 w = �list({randint(sm,lg) for j in

range(arrayLength)})

 C = int(random() * sum(w))

 v = [randint(1,40) for j in range(len(w))]

 ans1 = knapsackII(w,v,C)

 ans2 = knapsackRR(w,v,C)

 if ans1 != ans2:

 print('\n==FAILED!: w =', w, 'v =', v, 'C =', C)

 print('Iterative results =', ans1)

 print('Recursive results =', ans2)

 return

 print('\nPassed', runs, 'tests.')

#--

With a complicated algorithm you can never trust your thinking. The

thousand random tests must be run to claim the code is finished.

Notice the crude animation, which tells the user of the progress made.

We can sound an alarm at the end of a Python program using Windows.

def noise():

 import winsound

 winsound.Beep(1500,500) # Frequency, milliseconds

 winsound.MessageBeep()

 soundfile = 'c:/windows/media/chimes.wav'

 soundfile = 'c:/windows/media/tada.wav'

 soundfile = 'c:/windows/media/Alarm10.wav' # 01 to 10

 soundfile = 'c:/windows/media/Ring01.wav' # 01 to 10

 winsound.PlaySound(soundfile, winsound.SND_FILENAME)

Chapter 21 Dynamic Programming

295

How much space does the recursive form save over the iterative form?

Very little: The larger the matrix, the larger the dictionary needs to be. The

iterative form was a little faster than the recursive form, even when the

recursive code was tweaked.

The knapsack problem is a good problem to memorize, because its

solution is typical of dynamic programming strategy. How easy did the

genius Richard Bellman find these problems? We know:

These problems, although arising in a multitude of

diverse fields, share a common property—they are

exceedingly difficult.—Richard Bellman, Dynamic

Programming (Dover, 2003), reprinted from the 1957

edition, page viii.

We, however, have the benefit of personal computers, faster computers,

the Internet, more convenient operating systems, languages with simple

syntax, powerful built-in instructions, and useful data types, etc.

Problem 3. Matrix Parentheses Count.
Suppose we have several matrices to multiply in fixed order—e.g.,

A×B×C×D×E×F. There are many different ways (actually 42) to insert

parentheses to get our answer—e.g., ((((A×B)×C)×D)×E)×F and

(A×((B×C)×(D×E)))×F. Here is our problem:

Given n matrices to be multiplied in fixed order, how many ways are
there to parenthesize the matrices?

The first four numbers are easy

A ‡ f(1) = 1

A×B ‡ f(2) = 1

A×B×C ‡ f(3) = 2

A×B×C×D ‡ f(4) = 5

A×B×C×D×E ‡ f(5) = ?

A×B×C×D×E×F ‡ f(6) = ? etc.

Chapter 21 Dynamic Programming

296

We can solve this problem by splitting it into two groups in all possible

ways, thereby reducing the dimensionality to previously solved cases. If

there are 4 matrices (A×B×C×D), then we need only to consider A×(B×C×D),

and (A×B)×(C×D), and (A×B×C)×D. Here, the expression A×(B×C)×D has not

been ignored. It is derived from splitting (A×B×C) into all possible pairs in

(A×B×C)×D. In other words,

f(4) = f(1)*f(3) + f(2)*f(2) + f(3)*f(1) = 1*2 + 1*1 + 2*1 = 5.

Determine how many ways there are to insert parentheses for f(5)

now, in your head, without pencil and paper. The answer follows.

Mathematically we can state our splitting-into-pairs observation like this:

	

f n

n

f k f n k
k

n() =
=

() −()





 =

−

∑

1 1

1

1

, if or else

	

	

f

f f f

f f f f f

1 1

2 1 1 1 1 1

3 1 1 2 1 1 1 1 1

() =
() = ()× () = × =
()= ()× ()+ ()× () = × + × ==
()= ()× ()+ ()× ()+ ()× () = × + × + × =
()=

2

4 1 3 2 2 3 1 1 2 1 1 2 1 5

5 1

f f f f f f f

f f (()× ()+ ()× ()+ ()× ()+ ()× () =
() = ()× ()+

f f f f f f f

f f f f

4 2 3 3 2 4 1 14

6 1 5 2(()× ()+ ()× ()+ ()× ()+ ()× () =f f f f f f f4 3 3 4 2 5 1 42 	

Our recursive functional equation f (n) is the sum of products of

previous cells. There are no maximums or minimums involved, yet it is

still considered dynamic programming, just like the Fibonacci functions,

and the jeep problem. Your job is to write a recursive function (no

memoization) to return this number. My code follows:

def f(n): # recursive only

#---base case

 if n == 1:

 return 1

Chapter 21 Dynamic Programming

297

#---recursive cases (n >= 2).

 total = 0

 for k in range(1, n):

 total += f(k)*f(n-k)

 return total

#--

Incidentally, the resulting numbers are called Catalan numbers:

1, 1, 2, 5, 14, 42, 132, 429, 1430, 4862, 16796, 58786, 208012, 742900,

2674440, 9694845, 35357670, 129644790, 477638700, 1767263190,

6564120420, 24466267020, 91482563640, 343059613650, 1289904147324,

4861946401452, etc. The first number is indexed at 1, not 0—e.g., f (1) = 1,

f (2) = 1, f (3) = 2, f (4) = 5, etc. The zeroth Catalan number is zero: f (0) = 0.

My code is form b. We need the memoization of dynamic

programming to make this a faster function. Rewrite it both iteratively and

with recursion. My code follows.

def f(n, ff = [0, 1]): # recursive with memoization

#---base case

 if n == 1:

 return 1

#---recursive cases (n >= 2).

 total = 0

 for k in range(1, n):

 if n-k >= len(ff):

 ff.append(f(n-k))

 total += ff[k]*ff[n-k]

 return total

#--

Chapter 21 Dynamic Programming

298

def f(n): # iterative

 ff = [0, 1]

 for i in range(2, n+1):

 total = 0

 for k in range(1, i):

 total += ff[k]*ff[i-k]

 ff.append(total)

 return ff[n]

#---

Problem 4. Matrix Parenthesization. We now come to a famous

problem in dynamic programming. You probably recall that matrix

multiplication is not commutative—i.e., A×B is usually not the same as

B×A. But matrix multiplication is associative—e.g., A×(B×C) = (A×B)×C. If

you multiply a 4×3 matrix (A) by a 3×2 matrix (B), you end up doing 24 (=

4×3×2) multiplications to get A×B. And if you multiply that result by a 2 by

5 matrix C, you end up doing 64 (= 4×3×2 + 4×2×5) multiplications to get

(A×B)×C. If we multiply these three matrices in a different order: A×(B×C),

then we need to do 90 (= 3×2×5 + 4×3×5) multiplications. The first order is

better. Here is our problem:

Place parentheses around a set of matrices that are about to be
multiplied in fixed order to minimize the number of multiplications.

It is necessary to check that every pair of matrices that are to be

multiplied are conformable—i.e., the number of the columns of the left

matrix is equal to the number of rows of the right matrix. Otherwise, we are

coding nonsense.

For 20 matrices, using brute force, we would have to consider about 1.7

billion cases. If we use memoization, then many of those subcases overlap

and do not need to be recalculated, just recalled. Note that we are not

asked to multiply any matrices in our code.

Chapter 21 Dynamic Programming

299

If you don’t know how to apply recursion to a particular problem, there

is a psychological trick that may help. Just start writing out one base case

after another. (That is what I had to do with this problem.) When I worked

out the case for three matrices, I suddenly saw that case as reducible to two

cases of two matrices each. At that point, I saw the recursive pattern for all

large sets of matrices.

Choosing the notation took some time. The following is one of my

inputs with the output. Matrix A is 4×3; matrix B is 3×2, matrix C is 2×5,

matrix D is 5×10, and matrix E is 10×4. The 0s are to be used for the number

of multiplications necessary to obtain the particular matrix. For ABC this

number is 64 in the optimum form of (AB)C.

 initialMatrixList = [(0, 'A', 4, 3), (0, 'B', 3, 2),

 �(0, 'C', 2, 5), (0, 'D', 5, 10),

(0, 'E', 10, 4)]

Output: expr = (AB)((CD)E) value = 236 # optimum placement

of parentheses

Then my dictionary (associated with initialMatrixList) came to

look like this (sorted by hand):

 dictionary (dict)

num key value

 1. A: (0, 'A', 4, 3)

 2. B: (0, 'B', 3, 2)

 3. C: (0, 'C', 2, 5)

 4. D: (0, 'D', 5, 10)

 5. E: (0, 'E', 10, 4)

 6. AB: (24, '(AB)', 4, 2)

 7. BC: (30, '(BC)', 3, 5)

 8. CD: (100, '(CD)', 2, 10)

 9. DE: (200, '(DE)', 5, 4)

10. ABC: (64, '((AB)C)', 4, 5)

Chapter 21 Dynamic Programming

300

11. BCD: (160, '(B(CD))', 3, 10)

12. CDE: (180, '((CD)E)', 2, 4)

13. ABCD: (204, '((AB)(CD))', 4, 10)

14. BCDE: (204, '(B((CD)E))', 3, 4)

15. ABCDE: (236, '((AB)((CD)E))', 4, 4)

For the key ABCD, the minimum number of multiplications is 204, but

only when the four matrices are multiplied like this (AB)(CD). My code

follows:

def f(M): # Recursive chain matrix multiplication with NO

MEMOIZATION

Example:

�M = [(0, 'A',4,3), (0, 'B',3,2,), (0, 'C',2,5,),

(0, 'D',5,3,)]

(0 = value (multiplications), 'A' = expression,

4 = rows, 3 = cols)

answer = 'expr = (AB)(CD) value = 78'

 n = len(M) # = 4 in the example above.

 if n == 1: # A trivial, but necessary, base case.

 return M[0] # M[0] = (0, 'A',4,3) in the example above.

 if n == 2: # �This base case combines two previously

computed expressions.

 # �Almost all of the function's work is done

here, because the

 # �magic line (for n > 2) repeatedly calls this

base case.

 value = M[0][0]+M[1][0]+M[0][2]*M[0][3]*M[1][3]

 key = '(' + M[0][1] + M[1][1] + ')' # �Insert parentheses =

(AB) in ex. above.

 rows = M[0][2]

 col = M[1][3]

 return (value, key, rows, col)

Chapter 21 Dynamic Programming

301

 if n > 2: # Recursive case.

 best = []

 for k in range(1,n):

 �best.append(f([f(M[:k]), f(M[k:])]))

The magic line.

 return min(best) # �min evaluates on the first component of

each tuple.

#--

If you did not solve this problem on your own and cannot understand

my code, then you may have to copy my code, load it with print statements,

and then run it to understand how it works. I have needed to do this many

times with code I found on the Internet or in books.

def f(M, dict = {}): # Recursive chain matrix multiplication

with memoization.

 n = len(M)

 if n == 1:

 return M[0]

 if n == 2:

 key = '('+ M[0][1]+'x'+M[1][1]+')'

 if key not in dict:

 result = M[0][0]+M[1][0]+M[0][2]*M[0][3]*M[1][3], \

 �'('+M[0][1]+'x'+M[1][1]+')', M[0][2],

M[1][3],

 dict[key] = result

 return (dict[key])

 if n > 2:

 best = []

 for k in range(1,n):

 �best.append(f([f(M[:k], dict), f(M[k:], dict)],

dict))

 return min(best)

#--

Chapter 21 Dynamic Programming

302

Next is the iterative function, which uses the same notation. You may

not have enough time to attempt this problem. Glance at the length of my

code before you commit yourself. Good luck.

def f(matrices): # Iterative using memoization

#---Check data format.

 for m in matrices:

 assert len(m) == 4 # example: m = (0, 'A', 4, 3)

 assert m[0] == 0

 assert 65 <= ord(m[1]) <= 90

 assert type(m[2]) == type(m[3]) == int

 for n in range(len(matrices)-1):

 assert matrices[n][3] == matrices[n+1][2]

#---Calculate the number of matrices

 limit = len(matrices)

HELPER FUNCTION

 def insertInDict (A,B,dict):

 �# Example: if A = (0, 'A', 4, 3) and B = (0, 'B', 3, 2),

then

 # key = 'AB' and result = (24, '(AB)', 4, 2)

 key = A[1]+B[1]

 value = A[0]+B[0]+A[2]*A[3]*B[3]

 expression = '('+A[1]+B[1]+')'

 result = value, expression, A[2], B[3]

 dict[key] = result

HELPER FUNCTION

 def dictKey(Lst):

 �# Example: Lst =[(0, 'B', 3, 2), (0, 'C', 2, 5)]

returns key = 'BC'.

 key = ''

 for x in Lst:

Chapter 21 Dynamic Programming

303

 key += ''.join(x[1])

 return key

HELPER FUNCTION

 def mult (key1, key2, dict):

 �# This function multiplies two matrix expressions

(denoted by their

 �# keys) and puts the result in the dictionary with a

new key.

 newKey = key1 + key2

 A = dict[key1]

 B = dict[key2]

 value = A[0]+B[0]+A[2]*A[3]*B[3]

 expression = '('+A[1]+B[1]+')'

 �# Below, we tack on the newKey with the result and

return both.

 result = value, expression, A[2], B[3], newKey

 return result

#---Create empty dictionary.

 dict = {}

#---�Insert singles into dictionary--e.g., (0, 'A', 4, 3) with a

key of 'A'

 for n in range(0,limit):

 key = matrices[n][1]

 dict[key] = matrices[n]

#---�insert the rest (doubles, triples, quads, etc.) into

dictionary.

This is a complicated function/algorithm with FOUR loops.

 for i in range(2,limit+1): # i = len(Lst)

Chapter 21 Dynamic Programming

304

 �for j in range(0,limit-i+1): # Lst below starts at

position j.

 Lst = [matrices[j+n] for n in range(0, i)]

�Example: Lst = [(0, 'A', 4, 3), (0, 'B', 3, 2),

(0, 'C', 2, 5)]

 candidates = []

 �# Strategy: Split any Lst into two consecutive

parts. (This can be

 # �done several ways.) Then multiply the

two parts and

 # �place the result in the candidates

list. Then only the

 # �candidate with the least value goes

into the dictionary

 for k in range(1,len(Lst)):

 key1 = dictKey(Lst[:k]) # = left part of Lst.

 key2 = dictKey(Lst[k:]) # = right part of Lst.

 candidates.append(mult(key1, key2, dict))

 best = min(candidates)

 �dict[best[4]] = best[:-1] # The key is at the

end (index 4).

 printDictionary(dict)

#---Return dictionary value with key equal to all matrix

letters.

 finalKey = ''

 for tuple in matrices:

 finalKey += tuple[1]

 return dict[finalKey]

#--

Chapter 21 Dynamic Programming

305

Perhaps the reader can improve, or at least code it in less than the 10

days it took me. Could I have written this program in five days? Maybe, if

I were motivated by a deadline. Could I assign this problem to my high

school students? I always have a few students who are much faster at

coding than I am. Only those few students could solve this problem.

I could break the assignment up into little parts, and later have the

students put these parts together to solve the big problem. Occasionally

I do this, but there are two shortcomings with this teaching strategy.

First, the teacher is doing the assignment for the students. They are

just solving the easy parts. Still, they do see the big picture. Second is the

fact that when time comes to put the completed pieces together, some

of the students will not have finished even the first part. This is usually

not due to lack of intelligence. Some students have severe problems

with procrastination and disconnect with any small distraction. Aging

sometimes remedies this problem.

To give adequate instruction in an advanced programming course,

or an honors math course, I have always felt it necessary to teach to near

the top, not the middle, and adjust the grades so that there were more As

than any other grade, and that few students, if any, receive a D or F. This,

of course, is grade inflation, which has its downside. It also keeps me from

handing out assignments that do not challenge the top students. Is this the

best way to teach? For me in teaching students in advanced classes, yes;

for other teachers, and with other students, definitely not, and for good

reasons. The world needs both easy teachers and hard teachers. Even the

same course taught in the same school needs both easy teachers and hard

teachers. One size does not fit all.

In conclusion, I hope the reader has found something of value in

these pages, if no more than the philosophy that we must do our subject to

adequately and confidently teach it. (G.B. Harrison was right.) I wish you

the best of luck in your future programming.

Chapter 21 Dynamic Programming

307© Michael Stueben 2018
M. Stueben, Good Habits for Great Coding, https://doi.org/10.1007/978-1-4842-3459-4

Index

A
Anti-idiom, 132
Arguments, 80
Arithmetical expression, 186
Atwood, J., 234, 235

B
Babbage, C., 173
Bad code, 97
Baden-Powell, Lord, 153
Beck, K., 244
Bellman equation, 269
Bentley, J., 150
Bertrand’s Box Paradox, 225–226
Binary search, 146

fault injection, 150
number of mid values

(probes), 151
smoke test, 146
tangled code, 149

Binary system, 40
Binet’s formulas, 21
Boolean functions, 68, 95
Boolean variable, 127–128
Bottom-up design, 92
Boundary conditions, 111
Built-in functions, 9
Built-in index function, 129

C
Carnegie, D., 175
Chess, 15, 96, 169, 207, 242, 251

Joel Johnson, 15
Clever code, 170–173
Code-readability, 184
Coding-on-the-fly, 106
Cohesion vs. coupling, 6
Comb sort, 214
Comments, 96

docstrings, 103
in-line, 96
outline, 98
printBoard(), 96

Compile errors, 184
Computer arithmetic, 22

integers to floats, 25
Computer bugs

compile errors and logic
errors, 184

functionality errors, 184
interface error, 185
style errors, 184

Computer science project,
steps, 193–195

rollover, 23
Computer simulation, 225, 227

Monte Carlo method

https://doi.org/10.1007/978-1-4842-3459-4

308

Crash reporting, 124
Cross product, 201
Cunningham, W., 56
Cultures of coding

D
Darwin, C., 40
Data structures, 9
Data type, 78
Defensive measures, 8
Defensive programming

definition, 123
errorCheck/debug, 124

Definition of technology, 51
DeMorgan’s laws, 135
Depth-first search function, 97
Desert-crossing problem, 263
Deutsch, L.P.
Developing programmers,

advice for, 6–13
Dogmatic law, 73
doIt function, 69, 85, 88
DRY, 56
Dynamic programming, 18

bottom-up approach, 261
comment, 264
definition, 258–260
functional equations, 260
history, 256–258
Knapsack problem

data sets, 283–284
iterative function, 285
matrix, 288–290

Python program, 294–295
recursive function, 290
recursive method, 287–288
table/matrix

process, 282
value of cell, 282–283
values, 281

memoization, 262–263
method of, 258–259
operations research, 263
problem, 264
recursive functional

equations, 264, 265
Richard Hamming, 254
shortest path

assignments, 270
author’s four solutions,

271–273, 275
Bellman equation, 269, 278
code comments, 276
construct graph, 277
disadvantages of

decoration, 277
Fibonacci functions, 269
forms, 278
graph data structure, 269
greedy (myopic)

algorithm, 268
nine equations, 271
optimum path, 267–268
times for, 275
top-down and bottom-up

algorithms, 268
top-down approach, 262

Index

309

E
Embedded function, 41
Emery, D., 203
Encapsulation, 199
errorCheck/debug, 124
Error code, 124
Error handling, 124
Error traps, 115
eval function, 188–189, 193
Evaluating an algorithm, 51
Evolution of programmer, 252
Expression parser, 186
Extensibility, 162
External documentation, 82

F
Factorial function, 37
Fail fast, 153
Fail-fast guessing, 210
fibJ() function, 45
fibL vs. fibK, 47, 50
Fibonacci functions, 296

embedded function, 28
Java/C/C++, 29
recursion and memorization, 28
simple iterative, 28
simple recursive, 28

Fibonacci matrix, 38
classical theorems, 43
fibJ code, 45
function, 49
instantiation types, 50

linear algebra, 43
Fibonacci numbers, 15, 24
Fizz buzz, 234
Fudge factor, 165
Functionality, 184, 187
Function design

Boolean parameter, 55
color, 55
gray scale, 55
multipurpose code, 55

G
Gabor, P., xxviii
Galanos, R., xx
Global variables, 18, 155–156
Greedy algorithm, 268
Greunberger, F., 221

H
Harrison, G.B., 241
Hayes, B., 85, 222
Hungarian notation, 79

I
Identifiers/file names, 7
Idioms and tricks, 9
if statement, 4
Incremental prototyping, 111
Inefficient algorithms

bubble sort, 211
bub1 function, 212

Index

310

built-in Python sort, 212
clever and fast quick sort

version, 213
coding, 215–216
comb sort, 214, 216
countSort, 218
data type change, 213
four-or-fewer

elements, 212
knlog(n), 216
Python built-in sort, 213
sortTest function, 216, 217
well-tuned bubble sort, 214

fail-fast guessing, 210–211
function code, 211
infamous bubble sort, 211

Inference, rules of, 227
Inheritance, 198
Inline comment, example, 75
Instantiation, 50
Interface, 185, 187
Iteration function, 16, 261

J
Jaffray, G., 221

K
Kernighan, B.W., 131
Knuth, D.E., 35, 150, 233

mathematics, 233
Kurtz, T., 197

L
Label and align, 6
Legacy code, 103
Linear inequalities, 258
Liskov, B., 170
Logarithms, 39
Logic errors, 184
Look-up table, 37

M
Magic numbers, 165
Maguire, S., 222
Martin, R.C., 130
Matrix multiplication, 39
Matrix parentheses count

Catalan numbers, 297
Fibonacci functions, 296
memoization, 297
splitting-into-pairs, 296

Matrix parenthesization
chain matrix

multiplication, 300–301
iterative function, 302, 304
matrix multiplication, 298
pair of matrices, 298–299

McConnell, S., 130
Memoization, 17, 19–20, 262–263
Memory address, 43
Metaphysics, 224
Minimax decision-rule, 98
Moore, R.L., 242
MoSCoW method, 94

Inefficient algorithms (cont.)

Index

311

Multipurpose code
Boolean expression, 58
cohesion, 56
colorFlag, 56
coupling, 56
createAlphametic(), 62–65
3D-distance function, 60
debug, 58
error messages, 61
makeComputerReply(), 59
n×n Sudoku board, 57–58

N
Nelder-Mead algorithm, 58, 200
Nested function, 18
Nine-character string

boardCollection, 204
function name changing,

205–206
insertMove(board, position,

char), 204
one-task-per function principle,

205
OOP, 206
split function, 205

Non-nested function, 18
Non-rigorous mathematics, 44

O
Object-oriented programming

(OOP)
abstraction, 198

code reuse, 198
data hiding, 199
definition, 198
doIt() function, 200
efficient messaging, 200
encapsulation, 198–199
inheritance, 198
polymorphism, 200
semi-global properties, 200

Optimality, principle of, 259
Optimal policy function, 258–259

P
Pair programming, 5, 174
Peirce, C.S., 232
PEP 0008, 85
Pike, R., 131
Plauger, P.J., 131, 170
Policy function, 258
Polya, G., 243
Polymorphism, 200
Problem solving

Bertrand’s Box
Paradox, 225–226

coding, uppercase
character, 222–223

compilation of common
errors, 245, 247

data types, 225
deep thinking, 242
Donald Knuth, common

errors, 244
Fizz buzz, 234

Index

312

George Polya advice, 243
giant Python dictionary, 248
imitation and

memorization, 242
learning, 244
method of five whys, 244
permutations, 233
pseudo-code, 223
Python solutions, 224
recursive errors, 250
simulation and

verification, 227
smart people, 244
Sudoku puzzle, 249–250
the Tripos, 227
unassigned global

variable, 248
work challenging

problems, 242
Programming tips

avoid function, returns single
variable of two different
data types, 156–159

beware advice from
experts, 176–177

clever code, 170–173
do not repeat code, 166–168
fail fast, 153
feature creep, 174
fudge factor, 165
global variables, 155–156
if statement, 156
magic numbers, 165

optimization, 169
pair programming, 174–175
printResults function, 167–168
re-use code, 161–164
robust code writing, 155
SESE, 156
team coordination, 176
try/except construct, 161
vertical alignment, 154–155

Programming tricks
class variables, 25
default values, 25
embedded functions, 25
memoization, 25

Proof, 44
Python, 38, 46–47

A += B, 114
and/or trick, 38
clever indexing method, 17
decorators, 19

decorating a function, 20
memoize, 19

default parameter, 46
function.__name__, 21
generator comprehension, 119
idioms, 29
list comprehensions, 87
Python trick, 110
zip, 119

Q
Quick sort, 50, 150, 213, 214
Quiz, 113–122, 133–143

Problem solving (cont.)

Index

313

R
Readable code

easy-to-read code, 31
hard-to-read code, 31

Recursive function, 36
Refactoring

array, 128
Boolean variable, 127–128
built-in index function, 129
default value, 128
definition, 127
if-else, 132–133
process, 32–33
shell program, 133–134
string, 127, 130

Robust code, 155
Run-time error, 117

S
Scaffolding, see Defensive

programming)
Self-documenting code, 7, 68, 95
Simple-minded code, 99
Sophisticate editor, 9
sortTest function, 216
Stack frame, 36
Step-wise refinement, 91

bottom-up design, 92
top-down design, 91–94

Stop coding, 105
mutable lists coding, 106
outlines, 106

philosophies
characteristics, 107
do the right thing, 107
modification, 108
rules, 66
worse is better, 107

refactor, 106
resources, 109
universal matrix printer

vertical alignment, 109
YAGNI principle, 110

Stroustrup, B.
Structured programming, 91
Style

debugging, 27
Fibonacci functions, 28
modifying, 27
understanding, 27

Symbol-manipulation, 44
Systematic testing, 111

T
Tail recursion, 36
Tangled code, 137
Team coordination, 176
Testing

advantages, 118
assertion, 117
bad game moves, 111
binary search, 145–146, 148
black-box, 145
bug correction, 115
bugs, 111

Index

314

CABTAB, 111
coding error reduction, 111
compile, 117
conditions, 111
debug, 111
division by zero, 111
domain, 145
empty sets, 111
error file, 117
error traps, 115
guess tool, 115
incremental prototyping, 111
invariants, 111
logical errors, 113
non-empty tuple, 117
nonsense/interchanged

data, 111
off-by-one values, 111
out-of-range values, 111
proper relationships, 111
reasons, 119
results, 150
run-time error, 117
systematic testing, 111
test a bit, 111
white-box, 145

zero-length steps, 111
Thompson, K., 169
Top-down design, 131

incremental development, 94
time boxing, 94

Torvalds, L., 238
Tracing, 123
Tripos, 227
Turing Award, 35

Alan Turing, 35

U
Undefined, 92
Unit testing, 4–5

V
van Rossum, G., 175
Vertical alignment, 79, 154–155
VIM code editor, 85
Visual organization, 79

The Imitation Game, 35

W, X, Y, Z
Wilkes, M., 123

Testing (cont.)

Index

	Table of Contents
	About the Author
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Part I: Not Learned in School
	Chapter 1: A Coding Fantasy
	Advice for Developing Programmers (pain management)

	Chapter 2: Coding Tricks
	Chapter 3: Style
	Chapter 4: More Coding Tricks

	Part II: Coding Advice
	Chapter 5: Function Design
	Chapter 6: Self-Documenting Code
	Chapter 7: Step-Wise Refinement
	Chapter 8: Comments
	Chapter 9: Stop Coding
	Chapter 10: Testing
	Chapter 11: Defensive Programming
	Chapter 12: Refactoring
	Chapter 13: Write the Tests First (Sometimes)
	Chapter 14: Expert Advice

	Part III: Perspective
	Chapter 15: A Lesson in Design
	How to Approach a Major Computer Science Project

	Chapter 16: Beware of OOP
	Chapter 17: The Evolution of a Function
	Chapter 18: Do Not Snub Inefficient Algorithms

	Part IV: Walk the Walk
	Chapter 19: Problems Worth Solving
	Chapter 20: Problem Solving
	The Evolution of a Programmer

	Chapter 21: Dynamic Programming
	The Most Profound Academic Joke Ever Told
	A Memoir by Richard Hamming
	The Wayfarer

	Index

