
Pete Goodliffe

Becoming
a Better
Programmer
A HANDBOOK FOR PEOPLE WHO CARE ABOUT CODE

www.allitebooks.com

http://www.allitebooks.org

PROGR AMMING

Becoming a Better Programmer

ISBN: 978-1-491-90553-1

US $39.99 CAN $41.99

“	This	book	will	fuel	your	
passion	for	the	art	and	
science	of	programming.	
Pete	understands	that	
great	software	comes	
from	good	people	doing	
their	best	work.”

—Lisa Crispin
Author of Agile Testing: A Practical Guide

for Testers and Agile Teams

Twitter: @oreillymedia
facebook.com/oreilly

If you're passionate about programming and want to get better at it,
you've come to the right source. Code Craft author Pete Goodliffe presents
a collection of useful techniques and approaches to the art and craft of
programming that will help boost your career and your well-being.

Goodliffe presents sound advice that he's learned in 15 years of professional
programming. The book's standalone chapters span the range of a software
developer's life—dealing with code, learning the trade, and improving
performance—with no language or industry bias. Whether you're a seasoned
developer, a neophyte professional, or a hobbyist, you'll find valuable tips in
five independent categories:

 ■ Code-level techniques for crafting lines of code, testing,
debugging, and coping with complexity

 ■ Practices, approaches, and attitudes: keep it simple,
collaborate well, reuse, and create malleable code

 ■ Tactics for learning effectively, behaving ethically, finding
challenges, and avoiding stagnation

 ■ Practical ways to complete things: use the right tools, know
what “done” looks like, and seek help from colleagues

 ■ Habits for working well with others, and pursuing development
as a social activity

Pete Goodliffe is a programmer, software development columnist,musician,
and author. He never stays at the same place in the software food chain. Pete
writes a magazine column called “Becoming a Better Programmer,” and has
contributed to several software development books. He regularly speaks on
software development topics.

Pete Goodliffe

Becoming
a Better
Programmer
A HANDBOOK FOR PEOPLE WHO CARE ABOUT CODE

B
ecom

ing a B
etter Program

m
er

Goodliffe

www.allitebooks.com

http://www.allitebooks.org

Praise for Becoming a Better Programmer

Becoming a Better Programmer oozes experience and communicates the wisdom drawn
from a career in the software business. Snappy, single-topic chapters make the book really
readable with common themes being tackled from every angle. If you are a software engineer

looking to go from good to great, this book is for you. I will be using it with the junior
developers I’m responsible for mentoring.

— Andrew Burrows
 lead developer

Goodliffe takes the very broad subject of computer programming and manages to break it
down into a clear, compelling, and engaging narrative. He has a particular flair for saying

things that seem obvious, but I hadn’t realised before he said them. Any programmer who
aspires to be a great programmer should read this book.

— Greg Law
 cofounder and CEO of Undo Software

Pete Goodliffe successfully blends the theoretical with the practical. Where things must be
done in a particular way, he pulls no punches. Where grey areas exist, he clearly explains

different points of view. If you consider and apply what he says you’ll benefit and be better;
you’ll become a better programmer. Overall this book is full of distilled real-world

experience, mixed with humor, to provide gentle wisdom.
— Dr. Andrew Bennett

 BEng/PhD/MIET/MIEEE

This book will fuel your passion for the art and science of programming. Pete understands
that great software comes from good people doing their best work. He illustrates how to do

this through good coding practices, a good attitude, and good relationships, with lots of
examples. Bonus: it’s really fun to read!

— Lisa Crispin
 coauthor of Agile Testing: A Practical Guide

for Testers and Agile Teams

www.allitebooks.com

http://www.allitebooks.org

Pete’s got a wealth of experience being a programmer and mentor. In this book, he’s applied
the same attention to detail categorising and describing those experiences as he does to the
task of actually being a programmer. Knowing about programming is only one part of “being

a programmer,” and whether you’re new to the Code Factory, an old hand, or starting to
mentor someone, this is a treasure trove of advice about how to go about it—from someone

who really knows. It’s a manual about many of the hurdles you’ll encounter, and how to
negotiate them safely and effectively.

— Steve Love
 editor of C Vu magazine

All too often, programmers are divided into average programmers and rockstar or ninja
developers. Where there’s a rockstar, there’s a trashed codebase with broken classes and

spaced-out control flow. Where there’s a ninja, there’s mysterious bugs and build problems
that appear in the middle of the night. Where there’s an average, there’s a distribution. In

the longterm, what matters is less where on the distribution someone is than where they are
headed. If you want to divide programmers into two groups, there are programmers who

get better and programmers who don’t. You care about the first group. This book is for
them.

— Kevlin Henney
 consultant, speaker, and author of 97 Things Every

Programmer Should Know

This book is quite dull, and I’m not convinced by the fish on the cover.
— Alice Goodliffe

 age 12

www.allitebooks.com

http://www.allitebooks.org

Pete Goodliffe

Becoming a Better Programmer

www.allitebooks.com

http://www.allitebooks.org

Becoming a Better Programmer
by Pete Goodliffe

Copyright © 2015 Pete Goodliffe. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://safaribooksonline.com). For more information, contact our corporate/
institutional sales department: 800-998-9938 or corporate@oreilly.com.

Editors: Mike Loukides and Brian MacDonald
Production Editor: Melanie Yarbrough
Copyeditor: Jasmine Kwityn
Proofreader: Sonia Saruba

Indexer: Pete Goodliffe
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Pete Goodliffe

October 2014: First Edition

Revision History for the First Edition:

2014-10-01: First release

See http://oreilly.com/catalog/errata.csp?isbn=9781491905531 for release details.

The O’Reilly logo is a registered trademarks of O’Reilly Media, Inc. Becoming a Better Programmer, the cover
image, and related trade dress are trademarks of O’Reilly Media, Inc.

While the publisher and the author have used good faith efforts to ensure that the information and instruc‐
tions contained in this work are accurate, the publisher and the author disclaim all responsibility for errors
or omissions, including without limitation responsibility for damages resulting from the use of or reliance
on this work. Use of the information and instructions contained in this work is at your own risk. If any code
samples or other technology this work contains or describes is subject to open source licenses or the intel‐
lectual property rights of others, it is your responsibility to ensure that your use thereof complies with such
licenses and/or rights.

ISBN: 978-1-491-90553-1

[LSI]

www.allitebooks.com

http://safaribooksonline.com
mailto:corporate@oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781491905531
http://www.allitebooks.org

For my wife, Bryony, who I adore.

And our three wonderful girls.

Psalm 150.

www.allitebooks.com

http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

Also by Pete Goodliffe. xi
Introduction. xiii

1. Care About the Code. 1
Adopting the correct approach and attitude to code

Part I. you.write(code);

2. Keeping Up Appearances. 7
Code presentation: layout and naming

3. Write Less Code!. 17
Avoiding unnecessary lines of code

4. Improve Code by Removing It. 29
Identifying and removing dead code

5. The Ghost of a Codebase Past. 37
Learning from the code you wrote in the past

6. Navigating a Route. 45
How to start working with unfamiliar code

7. Wallowing in Filth. 55
Dealing with unpleasant, messy code

8. Don’t Ignore That Error!. 63
Healthy attitudes for error handling

vii

www.allitebooks.com

http://www.allitebooks.org

9. Expect the Unexpected. 69
Writing robust code that considers all possibilities

10. Bug Hunting. 75
How to find and fix bugs

11. Testing Times. 87
Developer testing: unit, integration, and system tests

12. Coping with Complexity. 103
Designing code well, to avoid unnecessary complexity

13. A Tale of Two Systems. 113
The consequences of good and bad design

Part II. Practice Makes Perfect

14. Software Development Is…. 131
What is this software stuff?

15. Playing by the Rules. 141
Inventing rules that define your development team

16. Keep It Simple. 145
Striving for simplicity in our software

17. Use Your Brain. 153
Programmers are allowed and encouraged to use their brain; don't be stupid!

18. Nothing Is Set in Stone. 157
No code is sacred, everything changes

19. A Case for Code Reuse. 165
The healthy way to reuse code

20. Effective Version Control. 171
Using version control well

viii | Table of Contents

www.allitebooks.com

http://www.allitebooks.org

21. Getting One Past the Goalpost. 183
Working effectively with the QA team

22. The Curious Case of the Frozen Code. 195
Code freeze: what it is, and whether it is necessary

23. Please Release Me. 203
Making software releases

Part III. Getting Personal

24. Live to Love to Learn. 215
How to learn effectively

25. Test-Driven Developers. 225
Driving as an analogy to programming: how do we learn and pass the test?

26. Relish the Challenge. 231
How to find the right challenges to stay motivated and keep your skills sharp

27. Avoid Stagnation. 237
Preventing your programming skills from going stale

28. The Ethical Programmer. 243
Ethical issues in the developer's life

29. A Love for Languages. 253
Learning many programming languages and loving the ones you use

30. Posturing Programmers. 261
Improving the programmer's health: posture, eye strain, and keeping your spirits up

Part IV. Getting Things Done

31. Smarter, Not Harder. 273
Working effectively: avoiding unnecessary work and solving the right problems

32. It’s Done When It’s Done. 283
Defining your programming tasks and knowing exactly when you're done

Table of Contents | ix

33. This Time I’ve Got It…. 291
Avoiding a narrow focus: find the best way to solve a problem

Part V. The People Pursuit

34. People Power. 299
How to position yourself alongside excellent programmers, and how to work well in a team

35. It’s the Thought That Accounts. 305
Accountability: how it improves you and your work

36. Speak Up!. 313
Communication skills for the software developer

37. Many-festos. 323
Software manifestors: what and why?

38. An Ode to Code. 329
A cautionary tale of software mismanagement

Epilogue. 333

Index. 337

x | Table of Contents

Also by Pete Goodliffe

Code Craft: The Practice of Writing Excellent Code
(No Starch Press)

97 Things Every Programmer Should Know
(O’Reilly, contributed three chapters)

Beautiful Architecture
(O’Reilly, contributed one chapter)

xi

http://shop.oreilly.com/product/9780596809492.do
http://shop.oreilly.com/product/9780596517984.do

Introduction

You care about code. You’re passionate about programming. You’re the kind of developer
who likes to craft truly great software. And you’ve picked up this book because you want
to do it even better. Good call.

This book will help you.

The aim is to do exactly what it says on the cover: help you become a better programmer.
But what does that mean exactly?

Pretty early in any programmer’s career comes the realisation that there’s more to being
a great coder than a simple understanding of syntax and a mastery of basic design. The
awesome programmers, those productive people who craft beautiful code and work
effectively with other people, know far more. There are methods of working, attitudes,
approaches, idioms, and techniques you learn over time that increase your effectiveness.
There are useful social skills, and a whole pile of tribal knowledge to pick up.

And, of course, you need to learn syntax and design.

That is exactly what this book is about. It’s a catalogue of useful techniques and ap‐
proaches to the art and craft of programming that will help you become better.

I won’t pretend that this is an exhaustive treatise. The field is vast. There’s always more
to learn, with new ground being claimed every day. These chapters are simply the fruit
of more than 15 years of my work as a professional programmer. I’ve seen enough code,
and made enough mistakes. I won’t claim I’m an expert; I’m just well seasoned. If you
can learn from the mistakes I’ve made and garner inspiration from what I’ve experi‐
enced, then you’ll gain a leg up in your own development career.

What’s Covered?
The topics covered in this book run the whole gamut of the software developer’s life:

xiii

• Code-level concerns that affect how you write individual lines of code, as well as
how you design your software modules.

• Practical techniques that will help you work better.
• Illustrations of effective attitudes and approaches to adopt that will help you become

both super effective and well grounded.
• Procedural and organisational tricks and tips that will help you flourish whilst you

are incarcerated in the software factory.

There’s no particular language or industry bias here.

Who Should Read This?
You!

Whether you’re an industry expert, a seasoned developer, a neophyte professional, or a
hobbyist coder—this book will serve you.

Becoming a Better Programmer aims to help programmers at any level improve. That’s
a grand claim, but there’s always something we can learn, and always room for im‐
provement, no matter how experienced a programmer you are. Each chapter provides
the opportunity to review your skills and work out practical ways to improve.

The only prerequisite for making use of this book is that you must want to become a
better programmer.

The Structure
The information in this book is presented in a series of simple, self-contained chapters,
each covering a single topic. If you’re a traditionalist, you can read them in order from
front to back. But feel free to read chapters in any order you want. Go straight to what
seems most pertinent to you, if that makes you most happy.

The chapters are presented in five parts:
you.write(code);

We start right at the bottom, at the codeface, where programmers feel most com‐
fortable. This section reveals important code-writing techniques, and shows ways
to write the best code possible. It covers code writing, code reading, code design,
and mechanisms to write robust code.

Practice Makes Perfect
Stepping back from the codeface, this part covers the important programming
practices that help make you a better programmer. We’ll see healthy attitudes and

xiv | Introduction

approaches to the coding task, and sound techniques that will help you craft better
code.

Getting Personal
These chapters dig deep to build excellence into your personal programming life.
We’ll look at how to learn effectively, consider behaving ethically, find stimulating
challenges, avoid stagnation, as well as improve physical well-being.

Getting Things Done
These chapters talk about practical ways to get things done: to deliver code on time
without getting sidetracked or delayed.

The People Pursuit
Software development is a social activity. These chapters show how to work well
with the other inhabitants of the software factory.

More important than the order you consume these chapters is how you approach the
material. In order to actually improve, you have to apply what you read practically. The
structure of each chapter is designed to help you with this.

In each chapter, the topic at hand is unpacked in flowing prose with stark clarity. You’ll
laugh; you’ll cry; you’ll wonder why. The conclusion of each chapter includes the fol‐
lowing subsections:
Questions

A series of questions for you to consider, and to answer. Do not skip these! They do
not ask you to regurgitate the information you’ve just read. They are there to make
you think deeper, beyond the original material, and to work out how the topic
weaves into your existing experience.

See also
Links to any related chapters in the book, with an explanation of how the chapters
fit together.

Try this…
Finally, each chapter is rounded off with a simple challenge. This is a specific task
that will help you improve and apply the topic to your coding regimen.

Throughout each chapter, there are particularly important key points. They are high‐
lighted so you don’t miss them.

KEY ➤ This is a key point. Take heed.

As you work through each chapter, please do spend time considering the questions and
the Try this… challenges. Don’t gloss over them. They’re an important part of Becoming
a Better Programmer. If you just flick through the information in each chapter, then it

Introduction | xv

will be just that: information. Hopefully interesting. No doubt informative. But unlikely
to make you a much better programmer.

You need to be challenged, and absorb what you read to your programming skillset.
These closing exercises won’t take you too long. Honestly. And they will really help
cement each chapter’s theme in your mind.

A Note for Mentors
This book has been designed to work as a valuable tool for mentoring fellow program‐
mers. You can use it one-on-one or in a study group.

The best approach to this material is not to methodically work through each section
together. Instead, read a chapter separately, and then get together to discuss the contents.
The questions really work as a springboard for discussion, so it’s a good idea to start
there.

Safari® Books Online
Safari Books Online is an on-demand digital library that
delivers expert content in both book and video form from
the world’s leading authors in technology and business.

Technology professionals, software developers, web designers, and business and crea‐
tive professionals use Safari Books Online as their primary resource for research, prob‐
lem solving, learning, and certification training.

Safari Books Online offers a range of product mixes and pricing programs for organi‐
zations, government agencies, and individuals. Subscribers have access to thousands of
books, training videos, and prepublication manuscripts in one fully searchable database
from publishers like O’Reilly Media, Prentice Hall Professional, Addison-Wesley Pro‐
fessional, Microsoft Press, Sams, Que, Peachpit Press, Focal Press, Cisco Press, John
Wiley & Sons, Syngress, Morgan Kaufmann, IBM Redbooks, Packt, Adobe Press, FT
Press, Apress, Manning, New Riders, McGraw-Hill, Jones & Bartlett, Course Technol‐
ogy, and dozens more. For more information about Safari Books Online, please visit us
online.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472

xvi | Introduction

http://safaribooksonline.com
http://www.safaribooksonline.com/content
http://www.safaribooksonline.com/subscriptions
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/organizations-teams
http://www.safaribooksonline.com/government
http://www.safaribooksonline.com/individuals
http://www.safaribooksonline.com/publishers
http://www.safaribooksonline.com/

800-998-9938 (in the United States or Canada)
707-829-0515 (international or local)
707-829-0104 (fax)

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at http://bit.ly/becoming_a_better_programmer.

To comment or ask technical questions about this book, send email to bookques
tions@oreilly.com.

For more information about our books, courses, conferences, and news, see our website
at http://www.oreilly.com.

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
Writing a book is a surprisingly large undertaking: one that tends to take over your life
and suck other people into the maelstrom on the way. There are many people who have
in some way contributed to the state of this book, from the very early drafts of this
material right through until it became the complete tome that rests on your (potentially
digital) bookshelf.

My wonderful wife, Bryony, has patiently supported (and put up with) me whilst my
finger has been in this pie, alongside the many other pies my other fingers find. I love
you, and I appreciate you very much. Alice and Amelia have provided many welcome
distractions; you make life fun!

Some parts of this book originated in articles I wrote over the last few years. Steve Love,
the esteemed editor of ACCU’s C Vu magazine, has contributed valuable feedback on
many of these, and his encouragement and sage opinion has always been appreciated.
(If you don’t know about ACCU, it is an awesome organisation for programmers who
care about code.)

Many friends and colleagues have contributed valuable inspiration, feedback, and cri‐
tique. These include my Akai family: Dave English, Will Augar, Łukasz Kozakiewicz,
and Geoff Smith. Lisa Crispin and Jon Moore provided insight from the QA perspective,
Greg Law taught me facts about bugs, whilst Seb Rose and Chris Oldwood offered much-
appreciated and timely reviews.

The technical reviewers—Kevlin Henney, Richard Warburton, and Jim Brikman—pro‐
vided much valuable feedback and helped shape the text you’re reading. I am grateful
for their expert input.

Introduction | xvii

http://bit.ly/becoming_a_better_programmer
mailto:bookquestions@oreilly.com
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia
http://www.accu.org

The excellent O’Reilly team of editors and production geniuses have worked hard on
this book, and I’m grateful for their skillful attention. In particular, Mike Loukides and
Brian MacDonald’s early formative work helped shape the material considerably.

Lorna Ridley drew a chicken, single-handedly preventing this book from being fowl.

xviii | Introduction

www.allitebooks.com

http://www.allitebooks.org

CHAPTER 1

Care About the Code

From caring comes courage.
— Lao Tzu

It doesn’t take Sherlock Holmes to work out that good programmers write good code.
Bad programmers… don’t. They produce elephantine monstrosities that the rest of us
have to clean up. You want to write the good stuff, right? You want to be a good pro‐
grammer.

Good code doesn’t pop out of thin air. It isn’t something that happens by luck when the
planets align. To get good code you have to work at it. Hard. And you’ll only get good
code if you actually care about good code.

KEY ➤ To write good code, you have to care about it. To become a bet‐
ter programmer you must invest time and effort.

Good programming is not born from mere technical competence. I’ve seen highly in‐
tellectual programmers who can produce intense and impressive algorithms, who know
their language standard by heart, but who write the most awful code. It’s painful to read,
painful to use, and painful to modify. I’ve seen more humble programmers who stick
to very simple code, but who write elegant and expressive programs that are a joy to
work with.

Based on my years of experience in the software factory, I’ve concluded that the real
difference between mediocre programmers and great programmers is this: attitude.
Good programming lies in taking a professional approach, and wanting to write the
best software you can, within the real-world constraints and pressures of the software
factory.

The code to hell is paved with good intentions. To be an excellent programmer you have
to rise above good intentions and actually care about the code—foster positive per‐
spectives and develop healthy attitudes. Great code is carefully crafted by master arti‐

1

sans, not thoughtlessly hacked out by sloppy programmers or erected mysteriously by
self-professed coding gurus.

You want to write good code. You want to be a good programmer. So, you care about
the code. This means you act accordingly; for example:

• In any coding situation, you refuse to hack something that only seems to work. You
strive to craft elegant code that is clearly correct (and has good tests to show that it
is correct).

• You write code that reveals intent (that other programmers can easily pick up and
understand), that is maintainable (that you, or other programmers, will be able to
easily modify in the future), and that is correct (you take all steps possible to de‐
termine that you have solved the problem, not just made it look like the program
works).

• You work well alongside other programmers. No programmer is an island. Few
programmers work alone; most work in a team of programmers, either in a com‐
pany environment or on an open source project. You consider other programmers,
and construct code that others can read. You want the team to write the best software
possible, rather than to make yourself look clever.

• Any time you touch a piece of code, you strive to leave it better than you found it
(better structured, better tested, and more understandable…).

• You care about code and about programming, so you are constantly learning new
languages, idioms, and techniques. But you only apply them when appropriate.

Fortunately, you’re reading this book because you do care about code. It interests you.
It’s your passion. You like doing it well. Read on, and we’ll see how to turn this code
concern into practical action.

As you do this, never forget to have fun programming. Enjoy cutting code to solve tricky
problems. Produce software that makes you proud.

KEY ➤ There is nothing wrong with an emotional response to code.
Being proud of your great work, or disgusted at bad code, is
healthy.

Questions

1. Do you care about code? How does this manifest in the work you produce?
2. Do you want to improve as a programmer? What areas do you think you need to

work on the most?
3. If you don’t care about code, why are you reading this book?!

2 | Chapter 1: Care About the Code

4. How accurate is the statement Good programmers write good code. Bad program‐
mers… don’t? Is it possible for good programmers to write bad code? How?

See also

• Software Development Is… What is this thing we care about?
• Speak Up! We care about working with good code. We should also care about

working with good people.

Try this….
Commit now to improving your programming skills. Resolve to engage with what you
read in this book, answer the questions, and attempt all of the Try this… challenges.

Chapter 1: Care About the Code | 3

PART I

you.write(code);

This first part deals with life on the front lines: our daily battle with code.

We’ll look at low-level details that programmers revel in: how to write individual lines
of code, how to improve sections of code, and how to plan a route into existing code.
We’ll also spend some time preparing for the unexpected: handling errors, writing ro‐
bust code, and the black art of tracking down bugs. Finally, we look at the bigger picture:
considering the design aspects of our software systems and investigating the technical
and practical consequences of those designs.

1. Vim is. That is all.

CHAPTER 2

Keeping Up Appearances

Appearances are deceptive.
— Aesop

No one likes working with messy code. No one wants to wallow in a mire of jagged,
inconsistent formatting, or battle with gibberish names. It’s not fun. It’s not productive.
It’s the programmer’s purgatory.

We care about good code. And so we naturally care about code aesthetics; it is the most
immediate determinant of how easy a section of code will be to work with. Practically
every book about programming has a chapter on presentation. Oh look, this one does,
too. Go figure.

Sadly, programmers care so much about code presentation that they end up bickering
about it. This is the stuff that holy wars are made of. That, and which editor is best.1

Tabs versus spaces. Brace positioning. Columns per line. Capitalisation. I’ve got my
preferences. You have yours.

Godwin’s law states that as any discussion on the Internet grows longer, the probability
of a comparison to the Nazis or Hitler approaches one. Goodliffe’s law (unveiled here)
states that as any discussion about code layout grows, the probability of it descending
into a fruitless argument approaches one.

Good programmers care deeply about good code presentation. But they rise above this
kind of petty squabble. Let’s act like grown-ups.

KEY ➤ Stop fighting over code layout. Adopt a healthy attitude to your
code presentation.

7

2. This is not just an academic example to fill books! Serious real-life bugs stem from these kinds of mistakes.
Apple’s infamous 2014 goto fail security vulnerability in its SSL/TLS implementation was caused by exactly
this kind of layout error.

Our myopic focus on layout is most clearly illustrated by the classic dysfunctional code
review. When given a section of code, the tendency is to pick myriad holes in the pre‐
sentation. (Especially if you only give it a cursory skim-read, then layout is all you’ll
pick up on.) You feel like you’ve made many useful comments. The design flaws will be
completely overlooked because the position of a bracket is wrong. Indeed, it seems that
the larger the code review, and the faster it’s done, the more likely this blindness will
strike.

Presentation Is Powerful
We can’t pretend that code formatting is unimportant. But understand why it matters.
A good code format is not the one you think looks prettiest. We do not lay out code in
order to exercise our deep artistic leanings. (Can you hear the code-art critics? Daaaah‐
ling, look at the wonderful Pre-Raphaelite framing on that nested switch statement. Or:
you have to appreciate the poignant subtext of this method. I think not.)

Good code is clear. It is consistent. The layout is almost invisible. Good presentation
does not draw attention or distract; it serves only to reveal the code’s intent. This helps
programmers work with the code effectively. It reduces the effort required to maintain
the code.

KEY ➤ Good code presentation reveals your code’s intent. It is not an
artistic endeavour.

Good presentation techniques are important, not for beauty’s sake, but to avoid mis‐
takes in your code. As an example, consider the following C snippet:

bool ok = thisCouldGoWrong();
if (!ok)
 fprintf(stderr, "Error: exiting...\n");
 exit(0);

You can see what the author intended here: exit(0) was only to be called when the test
failed. But the presentation has hidden the real behaviour: the code will always exit.
The layout choices have made the code a liability.2

Names have a similarly profound effect. Bad naming can be more than just distracting,
it can be downright dangerous. Which of these is the bad name?

bool numberOfGreenWidgets;
string name;
void turnGreen();

8 | Chapter 2: Keeping Up Appearances

The numberOfGreenWidgets is a variable, right? Clearly a counter is not represented by
a boolean type. No; it’s a trick question. They’re all bad. The string does not actually
hold a name, but the name of a colour; it is set by the turnGreen() function. So that
variable name is misleading. And turnGreen was implemented thus:

void turnGreen()
{
 name = "yellow";
}

The names are all lies!

Is this a contrived example? Perhaps; but after a little careless maintenance, code can
quickly end up in this state. What happens when you work with code like this? Bugs.
Many, many bugs.

KEY ➤ We need good presentation to avoid making code errors. Not so
we can create pretty ASCII art.

Encountering inconsistent layout and hodgepodge naming is a sure sign that code
quality is not high. If the authors haven’t looked after the layout, then they’ve probably
taken no care over other vital quality issues (like good design, thorough testing, etc.).

It’s About Communication
We write code for two audiences. First: for the compiler (or the language runtime). This
beast is perfectly happy to read any old code slop and will turn it into an executable
program the only way it knows how. It will impassionately do this without passing
judgment on the quality of what you’ve fed it, nor on the style it was presented in. This
is more a conversion exercise than any kind of code “reading.”

The other, more important, audience is other programmers. We write code to be executed
by a computer, but to be read by humans. This means:

• You right now, as you’re writing it. The code has to be crystal clear so you don’t
make implementation mistakes.

• You, a few weeks (or months) later as you prepare the software for release.
• The other people on your team who have to integrate their work with this code.
• The maintenance programmer (which could be you or another programmer) years

later, when investigating a bug in an old release.

Code that is hard to read is hard to work with. This is why we strive for clear, sympathetic,
supporting presentation.

KEY ➤ Remember who you’re writing code for: other people.

Chapter 2: Keeping Up Appearances | 9

We’ve already seen that code can look pretty but obscure its intent. It can also look pretty,
but be unreasonably hard to maintain. A great example of this is the “comment box.”
Some programmers like to present banner comments in pretty ASCII-art boxes:

/**
 * This is a pretty comment. *
 * Note that there are asterisks on the *
 * righthand side of the box. Wow; it looks neat. *
 * Hope I never have to fix this tiypo. *
 **/

It’s cute, but it’s not easy to maintain. If you want to change the comment text, you’ll
have to manually rework the right-hand line of comment markers. Frankly, this is a
sadistic presentation style, and the people who choose it do not value the time and sanity
of their colleagues. (Or they hope to make it so crushingly tedious to edit their comments
that no one dare adjust their prose.)

Layout
If any man wishes to write a clear style, let him first be clear in his thoughts.

— Johann von Goethe

Code layout concerns include indentation, use of whitespace around operators, capi‐
talisation, brace placement (be it K&R style, Allman, Whitesmith, or the like), and the
age-old tabs versus spaces indent debate. In each of these areas there are a number of
layout decisions you can make, and each choice has good reasons to commend it. As
long as your layout choices enhance the structure of your code and help to reveal the
intent, then they’re good.

A quick glance at your code should reveal the shape and structure. Rather than argue
about brace positioning, there are more important layout considerations, which we’ll
explore in the following sections.

Structure Well
Write your code like you write prose.

Break it up into chapters, paragraphs, and sentences. Bind the like things together;
separate the different things. Functions are akin to chapters. Within each chapter may
be a few distinct but related parts of code. Break them up into paragraphs by inserting
blank lines between them. Do not insert blank lines unless there is a natural “paragraph”
break. This technique helps to emphasise flow and structure.

For example:

void exampleFunction(int param)
{
 // We group things related to input

10 | Chapter 2: Keeping Up Appearances

www.allitebooks.com

http://www.allitebooks.org

 param = sanitiseParamValue(param);
 doSomethingWithParam(param);

 // In a separate "paragraph" comes other work
 updateInternalInvariants();
 notifyOthersOfChange();
}

The order of code revelation is important. Consider the reader: put the most important
information first, not last. Ensure APIs read in a sensible order. Put what a reader cares
about at the top of your class definition. That is, all public information comes before
private information. Creation of an object comes before use of an object.

This grouping might be expressed in a class declaration like this:

class Example
{
public:
 Example(); // lifetime management first
 ~Example();

 void doMostImportantThing(); // this starts a new "paragraph"
 void doSomethingRelated(); // each line here is like a sentence

 void somethingDifferent(); // this is another paragraph
 void aRelatedThing();

private:
 int privateStuffComesLast;
};

Prefer to write shorter code blocks. Don’t write one function with five “paragraphs.”
Consider splitting this up into five functions, each with a well-chosen name.

Consistency
Avoid being precious about layout styles. Pick one. Use it consistently. It is best to be
idiomatic—use what fits best with your language. Follow the style of standard libraries.

Write code using the same layout conventions as the rest of your team. Don’t use your
own style because you think it’s prettier or better. If there is no consistency on your
project then consider adopting a coding standard or style guide. This does not need to
be a lengthy, draconian document; just a few agreed upon layout princples to pull the
team together will suffice. In this situation, coding standards must be agreed on mutu‐
ally, not enforced.

If you’re working in a file that doesn’t follow the layout conventions of the rest of your
project, follow the layout conventions in that file.

Chapter 2: Keeping Up Appearances | 11

Ensure that the entire team’s IDEs and source code editors are configured the same way.
Get the tab stop size the same. Set the brace position and comment layout options
identically. Make the line ending options match. This is particularly important on cross-
platform projects where very different development environments are used simultane‐
ously. If you aren’t diligent in this, then the source code will naturally become fractured
and inconsistent; you will breed bad code.

War Story: The Whitespace Wars
I joined a project where the programmers had paid no attention to presentation. The
code was messy, inconsistent, and unpleasant. I petitioned to introduce a coding stan‐
dard.

All developers agreed that this was a good idea, and were willing to agree on conventions
for naming, layout, and directory hierarchy. This was a huge step forward. The code
began to grower neater.

However, there was one point we simply couldn’t reach consensus on. You guessed it:
tabs or spaces. Almost everyone preferred four-space indents. One guy swore tabs were
superior. He argued, complained, and refused to change his coding style. (He probably
still argues about it to this very day.)

Because we’d made some significant improvements, and in the interest of avoiding un‐
necessarily divisive arguments, we let this issue slide. We all used spaces. He used tabs.

The result was that the code remained frustrating and hard to work with. Editing was
surprisingly inconsistent; sometimes your cursor moved one space at a time, sometimes
it leapt around. Some tools would display the code reasonably well if you set an appro‐
priate tab stop. Other tools (including our version control viewer and our online code
review system) could not be adjusted and displayed ragged, awful looking code.

Names
When I use a word, Humpty Dumpty said, in a rather scornful tone,

it means just what I choose it to mean—neither more nor less.
— Lewis Carroll

We name many things: variables, functions and methods, types (e.g., enumerations,
classes), namespaces, and packages. Equally important are larger things, like files,
projects, and programs. Public APIs (e.g., library interfaces or web service APIs) are
perhaps the most significant things we choose names for, as “released” public APIs are
most often set in stone and particularly hard to change.

12 | Chapter 2: Keeping Up Appearances

A name conveys the identity of an object; it describes the thing, indicates its behaviour
and intended use. A misnamed variable can be very confusing. A good name is de‐
scriptive, correct, and idiomatic.

You can only name something when you know exactly what it is. If you can’t describe
it clearly, or don’t know what it will be used for, you simply can’t name it well.

Avoid Redundancy
When naming, avoid redundancy and exploit context. Consider:

class WidgetList {
 public int numberOfWidgets() { ... }
};

The numberOfWidgets method name is unnecessarily long, repeating the word Widg‐
et. This makes the code harder, and more tedious, to read. Because this method returns
the size of the list, it can simply be called size(). There will be no confusion, as the
context of the enclosing class clearly defines what size means in this case.

Avoid redundant words.

I once worked on a project with a class called DataObject. That was a masterpiece of
baffling, redundant naming.

Be Clear
Favour clarity over brevity. Names don’t need to be short to save you key presses—you’ll
read the variable name far more times than you’ll type it. But there is, however, a case
for single-letter variable names: as counter variables in short loops, they tend to read
clearly. Again, context matters!

Names don’t need to be cryptic. The poster child for this is Hungarian Notation. It’s not
useful.

Baroque acronyms or “amusing” plays on words are not helpful.

Be Idiomatic
Prefer idiomatic names. Employ the capitalisation conventions most often used in your
language. These are powerful conventions that you should only break with good reason.
For example:

• In C, macros are usually given uppercase names.
• Capitalised names often denote types (e.g., a class), where uncapitalised names are

reserved for methods and variables. This can be such a univerally accepted idiom
that breaking it will render your code confusing.

Chapter 2: Keeping Up Appearances | 13

Be Accurate
Ensure that your names are accurate. Don’t call a type WidgetSet if it behaves like an
array of widgets. The inaccurate name may cause the reader to make invalid assumptions
about the behaviour or characteristics of the type.

Making Yourself Presentable
We come across badly formatted code all the time. Be careful how you work with it.

If you must “tidy it up” never alter presentation at the same time as making functional
changes. Check in the presention change to source control as a separate step. Then alter
the code’s behaviour. It’s confusing to see commits mixing the two things. The layout
changes might mask mistakes in the functionality.

KEY ➤ Never alter presentation and behaviour at the same time. Make
them separate version-controlled changes.

Don’t feel you have to pick a layout style and stick with it faithfully for your entire life.
Continually gather feedback from how layout choices affect how you work with code.
Learn from the code you read. Adapt your presentation style as you gain experience.

Over my career, I have slowly migrated my coding style, moving ever towards a more
consistent and easier to modify layout.

From time to time, every project considers running automated layout tools over the
source tree, or adding them as a pre-commit hook. This is always worth investigating,
and rarely worth using. Such layout tools tend to be (understandably) simplistic, and
are never able to deal with the subtlties of code structure in the real world.

Conclusion
Stop fighting about code presentation. Favour a common convention in your project,
even if it’s not your personal preferred layout style.

But do have an informed opinion on what constitutes a good layout style, and why.
Continually learn and gain more experience from reading other code.

Strive for conistency and clarity in your code layout.

Questions

1. Should you alter layout of legacy code to match the company coding standard? Or
is it better to leave it in the author’s original style? Why?

2. How valuable are code reformatting tools? How much does this depend on the
language you’re using?

14 | Chapter 2: Keeping Up Appearances

3. Which is more important: good code presentation or good code design?
4. How consistent is your current project’s code? How can you improve this?
5. Tabs or spaces? Why? Does it matter?
6. Is it important to follow a language’s layout and naming conventions? Or is it useful

to adopt a different “house style” so you can differentiate your application code
from the standard library?

7. Does our use of colourful syntax-highlighting code editors mean that there is less
requirement for certain presentation concerns because the colour helps to reveal
code structure?

See also

• Speak Up! Writing and presenting code is all about communication. This chapter
discusses how a programmer communicates, in both code and the written word,
and in speech.

• The Ghost of a Codebase Past Discusses how your programming style develops over
time. Code presentation style is likely something you’ll adapt as you gain experience.

Try this….
Review your layout preferences. Are they idiomatic, low ceremony, clear, and consis‐
tent? How can you improve them? Do you disagree with teammates about presentation?
How can these differences be resolved?

Chapter 2: Keeping Up Appearances | 15

16 | Chapter 2: Keeping Up Appearances

CHAPTER 3

Write Less Code!

A well-used minimum suffices for everything.
— Jules Verne

 Around the World in Eighty Days

It’s sad, but it’s true: in our modern world there’s just too much code.

I can cope with the fact that my car engine is controlled by a computer. There’s obviously
software cooking the food in my microwave. And it wouldn’t surprise me if my genet‐
ically modified cucumbers had an embedded microcontroller in them. That’s all fine;
it’s not what I’m obsessing about. I’m worried about all of the unnecessary code out there.

There’s simply too much unnecessary code kicking around. Like weeds, these evil lines
of code clog up our precious bytes of storage, obfuscate our revision control histories,
stubbornly get in the way of our development, and use up precious code space, choking
the good code around them.

Why is there so much unnecessary code?

Some people like the sound of their own voice. You’ve met them; you just can’t shut
them up. They’re the kind of people you don’t want to get stuck with at parties. Yada
yada yada. Other people like their own code too much. They like it so much they write
reams of it: { yada->yada.yada(); }.

Or perhaps they’re the programmers with misguided managers who judge progress by
how many thousands of lines of code have been written a day.

Writing lots of code does not mean that you’ve written lots of software. Indeed, some
code can actually negatively affect the amount of software you have—it gets in the way,
causes faults, and reduces the quality of the user experience. The programming equiv‐
alent of antimatter.

KEY ➤ Less code can mean more software.

17

Some of my best software improvement work has been by removing code. I fondly
remember one time when I lopped thousands of lines of code out of a sprawling system,
and replaced it with a mere 10 lines of code. What a wonderfully smug feeling of satis‐
faction. I suggest you try it some time.

Why Should We Care?
So why is this phenomenon bad, rather than merely annoying?

There are many reasons why unnecessary code is the root of all evil. Here are a few bullet
points:

• Writing a fresh line of code is the birth of a little life form. It will need to be lovingly
nurtured into a useful and profitable member of software society before you can
release a product using it.
Over the life of your software system, that line of code needs maintenance. Each
line of code costs a little. The more code you write, the higher the cost. The longer
a line of code lives, the higher its cost. Clearly, unnecessary code needs to meet a
timely demise before it bankrupts us.

• More code means there is more to read and more to understand—it makes our
programs harder to comprehend. Unnecessary code can mask the purpose of a
function, or hide small but important differences in otherwise similar code.

• The more code there is, the more work is required to make modifications—the
program is harder to modify.

• Code harbours bugs. The more code you have, the more places there are for bugs
to hide.

• Duplicated code is particularly pernicious; you can fix a bug in one copy of the code
and, unbeknown to you, still have another 32 identical little bugs kicking around
elsewhere.

Unnecessary code is nefarious. It comes in many guises: unused components, dead code,
pointless comments, unnecessary verbosity, and so on. Let’s look at some of these in
detail.

Flappy Logic
A simple and common class of pointless code is the unnecessary use of conditional
statements and tautological logic constructs. Flappy logic is the sign of a flappy mind.
Or, at least, of a poor understanding of logic constructs. For example:

if (expression)
 return true;

18 | Chapter 3: Write Less Code!

else
 return false;

can more simply, and directly, be written:

return expression;

This is not only more compact, it is easier to read, and therefore easier to understand.
It looks more like an English sentence, which greatly aids human readers. And do you
know what? The compiler doesn’t mind one bit.

Similarly, the verbose expression:

if (something == true)
{
 // ...
}

would read much better as:

if (something)

Now, these examples are clearly simplistic. In the wild we see much more elaborate
constructs created; never underestimate the ability of a programmer to complicate the
simple. Real-world code is riddled with things like this:

bool should_we_pick_bananas()
{
 if (gorilla_is_hungry())
 {
 if (bananas_are_ripe())
 {
 return true;
 }
 else
 {
 return false;
 }
 }
 else
 {
 return false;
 }
}

which reduces neatly to the one-liner:

return gorilla_is_hungry() && bananas_are_ripe();

Cut through the waffle and say things clearly, but succinctly. Don’t feel ashamed to know
how your language works. It’s not dirty, and you won’t grow hairy palms. Knowing, and
exploiting, the order in which expressions are evaluated saves a lot of unnecessary logic
in conditional expressions. For example:

Chapter 3: Write Less Code! | 19

1. Martin Fowler, Refactoring: Improving the Design of Existing Code (Boston: Addison-Wesley, 1999).

if (a
 || (!a && b))
{
 // what a complicated expression!
}

can simply be written:

if (a || b)
{
 // isn't that better?
 // didn't hurt, did it?
}

KEY ➤ Express code clearly and succinctly. Avoid unnecessarily long-
winded statements.

Refactoring
The term refactor entered the programmer lexicon in the 1990s. It describes a particular
kind of software modification, and was popularised by Martin Fowler’s book, Refactor‐
ing: Improving the Design of Existing Code.1

The term, in my experience, is frequently misused.

It specifically describes a change made to the structure of existing code (i.e., its factor‐
ing) that does not change its exhibited behaviour. It’s that last part that’s often forgotten.
A refactor is only a refactor if it is a transformation of the source code, preserving
behaviour. An “improvement” that changes how the program reacts (no matter how
subtly) is not a refactor; it’s an improvement. A “tidy-up” that adjusts the UI is not a
refactor; it’s a tidy-up.

We refactor to increase the readability of the code, to improve the internal structure, to
make the code more maintainable, and—most often—to prepare the code for some later
functional enhancement.

There are catalogues of simple refactorings which can be applied in sequence to the
code. Many language’s IDEs provide automated support for these. Such transforms in‐
clude: Extract Class and Extract Method, which break up functionality into better logic
pieces, and Rename Method and Pull Up/Pull Down, which help move it to the right
place.

Proper refactoring requires discipline and is greatly simplified by a good suite of unit
tests that cover the code in question. These help to prove that any transformation has
indeed preserved behaviour.

20 | Chapter 3: Write Less Code!

www.allitebooks.com

http://www.allitebooks.org

Duplication
Unnecessary code duplication is evil. We mostly see this crime perpetrated through the
application of cut-and-paste programming: when a lazy programmer chooses not to
factor repeated code sections into a common function, but physically copies it from one
place to another in their editor. Sloppy. The sin is compounded when the code is pasted
with minor changes.

When you duplicate code, you hide the repeated structure, and you copy all of the
existing bugs. Even if you repair one instance of the code, there will be a queue of
identical bugs ready to bite you another day. Refactor duplicated code sections into a
single function. If there are similar code sections with slight differences, capture the
differences in one function with a configuration parameter.

KEY ➤ Do not copy code sections. Factor them into a common func‐
tion. Use parameters to express any differences.

This is commonly known as the DRY principle: Don’t Repeat Yourself! We aim for
“DRY” code, without unnecessary redundancy. However, be aware that factoring similar
code into a shared function introduces tight coupling between those sections of code.
They both now rely on a shared interface; if you change that interface, both sections of
code must be adjusted. In many situations this is perfectly appropriate; however, it’s not
always a desirable outcome, and can cause more problems in the long run than the
duplication—so DRY your code responsibly!

Not all code duplication is malicious or the fault of lazy programmers. Duplication can
happen by accident too, by someone reinventing a wheel that they didn’t know existed.
Or it can happen by constructing a new function when a perfectly acceptable third-party
library already exists. This is bad because the existent library is far more likely to be
correct and debugged already. Using common libraries saves you effort, and shields you
from a world of potential faults.

There are also microcode-level duplication patterns. For example:

if (foo) do something();
if (foo) do_something_else()
if (foo) do_more();

could all be neatly wrapped in a single if statement. Multiple loops can usually be
reduced to a single loop. For example, the following code:

for (int a = 0; a < MAX; ++a)
{
 // do something
}
// make hot buttered toast
for (int a = 0; a < MAX; ++a)
{

Chapter 3: Write Less Code! | 21

 // do something else
}

probably boils down to:

for (int a = 0; a < MAX; ++a)
{
 // do something
 // do something else
}
// make hot buttered toast

if the making of hot buttered toast doesn’t depend on either loop. Not only is this simpler
to read and understand, it’s likely to perform better, too, because only one loop needs
to be run. Also consider redundant duplicated conditionals:

if (foo)
{
 if (foo && some_other_reason)
 {
 // the 2nd check for foo was redundant
 }
}

You probably wouldn’t write that on purpose, but after a bit of maintenance work a lot
of code ends up with sloppy structure like that.

KEY ➤ If you spot duplication, remove it.

I was recently trying to debug a device driver that was structured with two main pro‐
cessing loops. Upon inspection, these loops were almost entirely identical, with some
minor differences for the type of data they were processing. This fact was not immedi‐
ately obvious because each loop was 300 lines (of very dense C code) long! It was tortuous
and hard to follow. Each loop had seen a different set of bugfixes, and consequently the
code was flaky and unpredictable. A little effort to factor the two loops into a single
version halved the problem space immediately; I could then concentrate on one place
to find and fix faults.

Dead Code
If you don’t maintain it, your code can rot. And it can also die. Dead code is code that
is never run, that can never be reached. That has no life. Tell your code to get a life, or
get lost.

These examples both contain dead code sections that aren’t immediately obvious if you
quickly glance over them:

if (size == 0)
{
 // ... 20 lines of malarkey ...

22 | Chapter 3: Write Less Code!

 for (int n = 0; n < size; ++n)
 {
 // this code will never run
 }
 // ... 20 more lines of shenanigans ...
}

and

void loop(char *str)
{
 size_t length = strlen(str);
 if (length == 0) return;
 for (size_t n = 0; n < length; n++)
 {
 if (str[n] == '\0')
 {
 // this code will never run
 }
 }
 if (length) return;
 // neither will this code
}

Other manifestations of dead code include:

• Functions that are never called
• Variables that are written but never read
• Parameters passed to an internal method that are never used
• Enums, structs, classes, or interfaces that are never used

Comments
Sadly, the world is riddled with awful code comments. You can’t turn around in an editor
without tripping over a few of them. It doesn’t help that many corporate coding stand‐
ards are a pile of rot, mandating the inclusion of millions of brain-dead comments.

Good code does not need reams of comments to prop it up, or to explain how it works.
Careful choice of variable, function, and class names, and good structure should make
your code entirely clear. Duplicating all of that information in a set of comments is
unnecessary redundancy. And like any other form of duplication, it is also dangerous;
it’s far too easy to change one without changing the other.

Stupid, redundant comments range from the classic example of byte wastage:

++i; // increment i

to more subtle examples, where an algorithm is described just above it in the code:

Chapter 3: Write Less Code! | 23

// loop over all items, and add them up
int total = 0;
for (int n = 0; n < MAX; n++)
{
 total += items[n];
}

Very few algorithms when expressed in code are complex enough to justify that level of
exposition. (But some are—learn the difference!) If an algorithm does need commen‐
tary, it may be better supplied by factoring the logic into a new, well-named function.

KEY ➤ Make sure that every comment adds value to the code. The code
itself says what and how. A comment should explain why—but
only if it’s not already clear.

It’s also common to enter a crufty codebase and see “old” code that has been surgically
removed by commenting it out. Don’t do this; it’s the sign of someone who wasn’t brave
enough to perform the surgical extraction completely, or who didn’t really understand
what they were doing and thought that they might have to graft the code back in later.
Remove code completely. You can always get it back afterwards from your source control
system.

KEY ➤ Do not remove code by commenting it out. It confuses the read‐
er and gets in the way.

Don’t write comments describing what the code used to do; it doesn’t matter anymore.
Don’t put comments at the end of code blocks or scopes; the code structure makes that
clear. And don’t write gratuitous ASCII art.

Verbosity
A lot of code is needlessly chatty. At the simplest end of the verbosity spectrum (which
ranges from infra-redundant to ultra-voluble) is code like this:

bool is_valid(const char *str)
{
 if (str)
 return strcmp(str, “VALID”) == 0;
 else
 return false;
}

It is quite wordy, and so it’s relatively hard to see what the intent is. It can easily be
rewritten:

bool is_valid(const char *str)
{
 return str && strcmp(str, “VALID”) == 0;
}

24 | Chapter 3: Write Less Code!

Don’t be afraid of the ternary operator if your language provides one; it really helps to
reduce code clutter. Replace this kind of monstrosity:

public String getPath(URL url) {
 if (url == null) {
 return null;
 }
 else {
 return url.getPath();
 }
}

with:

public String getPath(URL url) {
 return url == null ? null : url.getPath();
}

C-style declarations (where all variables are declared at the top of a block, and used
much, much later on) are now officially passé (unless you’re still forced to use officially
defunct compiler technology). The world has moved on, and so should your code. Avoid
writing this:

int a;
// ... 20 lines of C code ...
a = foo();
// what type was an “a” again?

Move variable declarations and definitions together, to reduce the effort required to
understand the code, and reduce potential errors from uninitialised variables. In fact,
sometimes these variables are pointless anyway. For example:

bool a;
int b;
a = fn1();
b = fn2();
if (a)
 foo(10, b);
else
 foo(5, b);

can easily become the less verbose (and, arguably clearer):

foo(fn1() ? 10 : 5, fn2());

Bad Design
Of course, unnecessary code is not just the product of low-level code mistakes or bad
maintenance. It can be caused by higher-level design flaws.

Chapter 3: Write Less Code! | 25

Bad design may introduce many unnecessary communication paths between compo‐
nents—lots of extra data marshalling code for no apparent reason. The further data
flows, the more likely it is to get corrupted en route.

Over time, code components become redundant, or can mutate from their original use
to something quite different, leaving large sections of unused code. When this happens,
don’t be afraid to clear away all of the deadwood. Replace the old component with a
simpler one that does all that is required.

Your design should consider whether off-the-shelf libraries already exist that solve your
programming problems. Using these libraries will remove the need to write a whole
load of unnecessary code. As a bonus, popular libraries will likely be robust, extensible,
and well used.

Whitespace
Don’t panic! I’m not going to attack whitespace (that is, spaces, tabs, and newlines).
Whitespace is a good thing—do not be afraid to use it. Like a well-placed pause when
reciting a poem, sensible use of whitespace helps to frame our code.

Use of whitespace is not usually misleading or unnecessary. But you can have too much
of a good thing, and 20 newlines between functions probably is too much.

Consider, too, the use of parentheses to group logic constructs. Sometimes brackets help
to clarify the logic even when they are not necessary to defeat operator precedence.
Sometimes they are unnecessary and get in the way.

So What Do We Do?
To be fair, often such a buildup of code cruft isn’t intentional. Few people set out to write
deliberately laborious, duplicated, pointless code. (But there are some lazy programmers
who continually take the low road rather than invest extra time to write great code.)
Most frequently, we end up with these code problems as the legacy of code that has been
maintained, extended, worked with, and debugged by many people over a large period
of time.

So what do we do about it? We must take responsibility. Don’t write unnecessary code,
and when you work on “legacy” code, watch out for the warning signs. It’s time to get
militant. Reclaim our whitespace. Reduce the clutter. Spring clean. Redress the balance.

Pigs live in their own filth. Programmers needn’t. Clean up after yourself. As you work
on a piece of code, remove all of the unnecessary code that you encounter.

26 | Chapter 3: Write Less Code!

2. Robert C. Martin, Clean Code: A Handbook of Agile Software Craftsmanship (Upper Saddle River, NJ: Prentice
Hall, 2008).

This is an example of how to follow Robert Martin’s advice and honour “the Boy Scout
Rule” in the coding world: Always leave the campground cleaner than you found it.2

KEY ➤ Every day, leave your code a little better than it was. Remove
redundancy and duplication as you find it.

But take heed of this simple rule: make “tidying up” changes separately from other
functional changes. This will ensure that it’s clear in your source control system what’s
happened. Gratuitous structural changes mixed in with functional modifications are
hard to follow. And if there is a bug then it’s harder to work out whether it was due to
your new functionality, or because of the structural improvement.

Conclusion
Software functionality does not correlate with the number of lines of code, or to the
number of components in a system. More lines of code do not necessarily mean more
software.

So if you don’t need it, don’t write it. Write less code, and find something more fun to
do instead.

Questions

1. Do you naturally write succinct logical expressions? Are your succinct expressions
so terse as to be incomprehensible?

2. Does the C-language-family’s ternary operator (e.g., condition ? true_value :
false_value) make expressions more or less readable? Why?

3. We should avoid cut-and-paste coding. How different does a section of code have
to be before it is justifiable to not factor into a common function?

4. How can you spot and remove dead code?
5. Some coding standards mandate that every function is documented with specially

formatted code comments. Is this useful? Or is it an unnecessary burden introduc‐
ing a load of worthless extra comments?

See also

• Improve Code by Removing It Describes techniques for identifying larger sections
of redundant, dead code and removing it.

Chapter 3: Write Less Code! | 27

Try this….
For the next few days, look at your code critically to identify any redundant, duplicated,
or long-winded sections. Work on removing this unnecessary code.

28 | Chapter 3: Write Less Code!

CHAPTER 4

Improve Code by Removing It

We ascribe beauty to that which is simple;
which has no superfluous parts; which exactly answers its end...

— Ralph Waldo Emerson

Less is more. It’s a trite maxim, but sometimes it really is true.

Some of the most exciting improvements I remember making to code involved remov‐
ing vast chunks of it. Let me tell you, it’s a good feeling.

War Story: No Need for the Code
As an Agile software development team, we’d been following the hallowed eXtreme
Programming tenets, including YAGNI. That is, You Aren’t Gonna Need It: a caution
to not write unnecessary code—even code you think is going to be needed in future
versions. Don’t write it now if you don’t need it now. Wait until you do have a genuine
need.

This sounds like eminently sensible advice. And we’d all bought in to it.

But human nature being what it is, we fell short in a few places. At one point, I observed
that the product was taking too long to execute certain tasks—simple tasks that should
have been near instantaneous. This was because they had been over-implemented, fes‐
tooned with extra bells and whistles that were not required, and littered with hooks for
later extension. None of these things were being used, but at the time they each had
seemed sensible additions.

So I simplified the code, improved the product performance, and reduced the level of
global code entropy by simply removing all of the offending “features” from the code‐
base. Helpfully, my unit tests told me that I hadn’t broken anything else during the
operation. A simple and thoroughly satisfying experience.

29

KEY ➤ You can improve a system by adding new code. You can also
improve a system by removing code.

Code Indulgence
So why did all that unnecessary code get written? Why did one programmer feel the
need to write extra code, and how did it get past review or the pairing process?

It was almost certainly the programmers’ indulging their own personal vices. Something
like:

• It was a fun bit of extra code, and the programmer wanted to write it. (Hint: Write
code because it adds value, not because it amuses you, or you’d enjoy trying to write
it.)

• Someone thought it was a feature that would be needed in the future, so decided to
code it now, whilst they thought about it. (Hint: That isn’t YAGNI. If you don’t need
it right now, don’t write it right now.)

• But it was only a small thing; not a massive “extra” feature. It was easier to just
implement it now, rather than go back to the customer to see whether it was really
required. (Hint: It always takes longer to write and to maintain extra code. And the
customer is actually quite approachable. A small extra bit of code snowballs over time
to a large piece of work that needs maintenance.)

• The programmer invented extra requirements that were not documented in the
story that justified the extra feature. The requirement was actually bogus. (Hint:
Programmers do not set system requirements; the customer does.)

Now, we had a well-understood lean development process, very good developers, and
procedural checks in place to avoid this kind of thing. And unnecessary extra code still
snuck in.

That’s quite a surprise, isn’t it?

It’s Not Bad, It’s Inevitable
Even if you can avoid adding unnecessary new features, dead pieces of code will still
spring up naturally during your software development. Don’t be embarrassed about it!
They come from a number of unavoidable accidental sources, including:

• Features are removed from an application’s user interface, but the backend support
code is left in. It’s never called again. Instant code necrosis. Often it’s not removed
“because we might need it in the future, and leaving it there isn’t going to hurt
anyone.”

30 | Chapter 4: Improve Code by Removing It

www.allitebooks.com

http://www.allitebooks.org

• Data types or classes that are no longer being used tend to stay put in the project.
It’s not easy to tell that you’re removing the last reference to a class when working
in a separate part of the project. You can also render parts of a class obsolete: for
example, reworking methods so a member variable is no longer needed.

• Legacy product features are rarely removed. Even if your users no longer want them
and will never use them again, removing product features never looks good. It
would put a dent in the awesome list of tick-box features. So we incur perpetual
product testing overhead for features that will never be used again.

• The maintenance of code over its lifetime causes sections of a function to not be
executable. Loops may never iterate because code added above them negates an
invariant, or conditional code blocks are never entered. The older a codebase gets,
the more of this we see. C helpfully provides the preprocessor as a rich mechanism
for writing non-executable spaghetti.

• Wizard-generated UI code inserts hooks that are frequently never used. If a devel‐
oper accidentally double-clicks on a control, the wizard adds backend code, but the
programmer never goes anywhere near the implementation. It’s more work to re‐
move these kinds of autogenerated code blocks than to simply ignore them and
pretend that they don’t exist.

• Many function return values are never used. We all know that it’s morally repre‐
hensible to ignore a function’s error code, and we would never do that, would we?
But many functions are written to do something and return a result that someone
might find useful. Or might not. It’s not an error code, just a small factoid. Why go
through extra effort to calculate the return value, and write tests for it, if no one
ever uses it?

• Much “debug” code is necrotic. A lot of support code is not needed once the initial
implementation has been completed. It is unsightly scaffolding that hides the beau‐
tiful architecture underneath. It’s not unusual to see reams of inactive diagnostic
printouts and invariant checks, testing hook points, and the like, that will never be
used again. They clutter up the code and make maintenance harder.

So What?
Does this really matter? Surely we should just accept that dead code is inevitable, and
not worry about it too much if the project still works. What’s the cost of unnecessary
code?

• It is undeniable that unnecessary code, like any other code, requires maintenance
over time. It costs time and money.

• Extra code also makes it harder to learn the project, and requires extra under‐
standing and navigating.

Chapter 4: Improve Code by Removing It | 31

1. You might even already have them—look at the warning options provided by your compiler.

• Classes with one million methods that may, or may not, be used are impenetrable
and only encourage sloppy use rather than careful programming.

• Even if you buy the fastest machine money can buy, and the best compiler toolchain,
dead code will slow down your builds, making you less productive.

• It is harder to refactor, simplify, or optimise your program when it is bogged down
by zombie code.

Dead code won’t kill you, but it will make your life harder than it needs to be.

KEY ➤ Remove dead code wherever possible. It gets in the way and slows
you down.

Waking the Dead
How can you find dead code?

The best approach is to pay attention whilst working in the codebase. Be responsible
for your actions, and ensure that you always clean up after your work. Regular code
reviews do help to highlight dead code.

If you’re serious about rooting out unused code sections, there are some great code
coverage tools that will show you exactly where the problems are.1 Good IDEs, especially
when used with statically typed languages, can automatically highlight unused code. For
public APIs, many IDEs have a “find references” feature that can show whether a func‐
tion is ever called.

To identify dead features, you can instrument your product and gather metrics on what
customers actually use. This is useful for making all sorts of business decisions, rather
than just identifying unused code.

Surgical Extraction
There is no harm in removing dead code. Amputate it. It’s not like you’re throwing it
away. Whenever you realise that you need an old feature again, it can easily be fetched
from your version control system.

KEY ➤ It is safe to remove code that you might need in the future. You
can always get it back from version control.

There is a counter argument to that simple (and true) view, though: how will a new
recruit know that the removed code is available in version control if they don’t know

32 | Chapter 4: Improve Code by Removing It

that it existed in the first place? What’s going to stop them writing their own (buggy or
incomplete) version instead? This is a valid concern. But similarly, what would stop
them rewriting their own version if they simply didn’t notice the code fragment was
already located elsewhere?

As in previous chapters, remember to remove dead code as a single step; do not conflate
it in a version control check-in that also adds functionality. Always separate your “spring
cleaning” work from other development tasks. This makes the version history clearer,
and also makes revivifying removed code a breeze.

KEY ➤ Code cleanup should always be made in separate commits to
functional changes.

Conclusion
Dead code happens in even the best codebases. The larger the project, the more dead
code you’ll have. It’s not a sign of failure. But not doing something about it when you
find dead code is a sign of failure. When you discover code that is not being used, or
find a code path that cannot be executed, remove that unnecessary code.

When writing a new piece of code, don’t creep the specification. Don’t add “minor”
features that you think are interesting, but no one has asked for. They’ll be easy enough
to add later, if they are required. Even if it seems like a good idea. Don’t do it.

Questions

1. How can you identify “dead code” that is not run in your program?
2. If you temporarily remove code that is not currently required (but may be needed

in the future) should you leave it commented out (so it is still visible) in the source
tree, or just delete it completely (as it will be stored in the revision history)? Why?

3. Is the removal of legacy (unused) features always the right thing to do? Is there any
inherent risk in removing sections of code? How can you determine the right time
to remove unused features?

4. What percentage of your current project’s codebase do you think is unnecessary?
Does your team have a culture of adding things they like or that they think will be
useful?

See also

• Write Less Code! Talks about removing duplication at the micro level: whittling
away unncessary lines of code.

• Wallowing in Filth How to navigate a route into problematic code so you can spot
what needs to be removed.

• Coping with Complexity Removing dead code reduces complexity in your software.

Chapter 4: Improve Code by Removing It | 33

• Effective Version Control Removing dead code does not mean it’s lost forever. You
can retrieve it from version control if you make a mistake.

Try this….
Look for dead and unnecessary code in the files you are working in. Remove it!

34 | Chapter 4: Improve Code by Removing It

CHAPTER 5

The Ghost of a Codebase Past

I will live in the Past, the Present, and the Future.
The Spirits of all Three shall strive within me.
I will not shut out the lessons that they teach!

— Charles Dickens
 A Christmas Carol

Nostalgia isn’t what it used to be. And neither is your old code. Who knows what func‐
tional gremlins and typographical demons lurk in your ancient handiwork? You thought
it was perfect when you wrote it—but cast a critical eye over your old code and you’ll
inevitably bring to light all manner of code gotchas.

Programmers, as a breed, strive to move onwards. We love to learn new and exciting
techniques, to face fresh challenges, and to solve more interesting problems. It’s natural.
Considering the rapid turnover in the job market, and the average duration of pro‐
gramming contracts, it’s hardly surprising that very few software developers stick with
the same codebase for a prolonged period of time.

But what does this do to the code we produce? What kind of attitude does it foster in
our work? I maintain that exceptional programmers are determined more by their at‐
titude to the code they write and the way they write it, than by the actual code itself.

The average programmer tends not to maintain their own code for too long. Rather than
roll around in our own filth, we move on to new pastures and roll around in someone
else’s filth. Nice. We even tend to let our own “pet projects” fall by the wayside as our
interests evolve.

Of course, it’s fun to complain about other people’s poor code, but we easily forget how
bad our own work was. And you’d never intentionally write bad code, would you?

Revisiting your old code can be an enlightening experience. It’s like visiting an ageing,
distant relative you don’t see very often. You soon discover that you don’t know them
as well as you think. You’ve forgotten things about them, about their funny quirks and

37

irritating ways. And you’re surprised at how they’ve changed since you last saw them
(perhaps, for the worst).

KEY ➤ Looking back at your older code will inform you about the im‐
provement (or otherwise) in your coding skills.

Looking back at old code you’ve produced, you might shudder for a number of reasons.

Presentation
Many languages permit artistic interpretation in the indentation layout of code. Even
though some languages have a de facto presentation style, there is still a large gamut of
layout issues which you may find yourself exploring over time. Which ones stick de‐
pends on the conventions of your current project, or on your experiences after years of
experimentation.

Different tribes of C++ programmers, for example, follow different presentation
schemes. Some developers follow the standard library scheme:

struct standard_style_cpp
{
 int variable_name;
 bool method_name();
};

Some have more Java-esque leanings:

struct JavaStyleCpp
{
 int variableName;
 bool methodName();
};

And some follow a C# model:

struct CSharpStyleCpp
{
 int variableName;
 bool MethodName();
};

A simple difference, but it profoundly affects your code in several ways.

Another C++ example is the layout of member initialiser lists. One of my teams moved
from this traditional scheme:

Foo::Foo(int param)
: member_one(1),
 member_two(param),
 member_three(42)
{
}

38 | Chapter 5: The Ghost of a Codebase Past

to a style that places the comma separators at the beginning of the following line, thus:

Foo::Foo(int param)
: member_one(1)
, member_two(param)
, member_three(42)
{
}

We found a number of advantages with the latter style (it’s easier to “knock out” parts
in the middle via preprocessor macros or comments, for example). This prefix-comma
scheme can be employed in a number of layout situations (e.g., many kinds of lists:
members, enumerations, base classes, and more), providing a nice consistent shape.
There are also disadvantages, one of the major cited issues being that it’s not as “com‐
mon” as the former layout style. IDEs’ default auto-layout also tends to fight with it.

I know over the years that my own presentation style has changed wildly, depending on
the company I’m working for at the time.

As long as a style is employed consistently in your codebase, this is really a trivial concern
and nothing to be embarrassed about. Individual coding styles rarely make much of a
difference once you get used to them, but inconsistent coding styles in one project make
everyone slower.

The State of the Art
Most languages have rapidly developed their in-built libraries. Over the years, the Java
libraries have grown from a few hundred helpful classes to a veritable plethora of classes,
with different skews of the library depending on the Java deployment target. Over C#’s
revisions, its standard library has also burgeoned. As languages grow, their libraries
accrete more features.

And as those libraries grow, some of the older parts become deprecated.

Such evolution (which is especially rapid early in a language’s life) can unfortunately
render your code anachronistic. Anyone reading your code for the first time might
presume that you didn’t understand the newer language or library features, when those
features simply did not exist when the code was written.

For example, when C# added generics, the code you would have written like this:

ArrayList list = new ArrayList(); // untyped
list.Add("Foo");
list.Add(3); // oops!

with its inherent potential for bugs, would have become:

List<string> list = new List<string>();
list.Add("Foo");
list.Add(3); // compiler error - nice

Chapter 5: The Ghost of a Codebase Past | 39

There is a very similar Java example with surprisingly similar class names!

The state of the art moves much faster than your code. Especially your old, untended
code.

Even the (relatively conservative) C++ library has grown considerably with each new
revision. C++11 language features and library support have made much old C++ code
look old-fashioned. The introduction of a language-supported threading model renders
third-party thread libraries (often implemented with rather questionable APIs) redun‐
dant. The introduction of lambdas removes the need for a lot of verbose handwritten
“trampoline” code. The range-based for helps remove a lot of syntactical trees so you
can see the code-design wood. Once you start using these facilities, returning to older
code without them feels like a retrograde step.

Idioms
Each language, with its unique set of language constructs and library facilities, has a
particular “best practice” method of use. These are the idioms that experienced users
adopt, the modes of use that have become honed and preferred over time.

These idioms are important. They are what experienced programmers expect to read;
they are familiar shapes that enable you to focus on the overall code design rather than
get bogged down in macro-level code concerns. They usually formalise patterns that
avoid common mistakes or bugs.

It’s perhaps most embarrassing to look back at old code, and see how un-idiomatic it is.
If you now know more of the accepted idioms for the language you’re working with,
your old non-idiomatic code can look quite, quite wrong.

Many years ago, I worked with a team of C programmers moving (well, shuffling slowly)
towards the (then) brave new world of C++. One of their initial additions to a new
codebase was a max helper macro:

#define max(a,b) ((a)>(b)) ? (a) : (b))
// do you know why we have all those brackets?

void example()
{
 int a = 3, b = 10;
 int c = max(a, b);
}

In time, someone revisited that early code and, knowing more about C++, realised how
bad it was. They rewrote it in the more idiomatic C++ shown here, which fixed some
very subtle lurking bugs:

template <typename T>
inline T max(const T &a, const T &b)

40 | Chapter 5: The Ghost of a Codebase Past

www.allitebooks.com

http://www.allitebooks.org

{
 // Look mum! No brackets needed!
 return a > b ? a : b;
}

void better_example()
{
 int a = 3, b = 10;

 // this would have failed using the macro
 // because ++a would be evaluated twice
 int c = max(++a, b);
}

The original version also had another problem: wheel reinvention. The best solution is
to just use the built-in std::max function that always existed. It’s obvious in hindsight:

// don't declare any max function

void even_better_example()
{
 int a = 3, b = 10;
 int c = std::max(a,b);
}

This is the kind of thing you’d cringe about now, if you came back to it. But you had no
idea about the right idiom back in the day.

That’s a simple example, but as languages gain new features (e.g., lambdas) the kind of
idiomatic code you’d write today may look very different from previous generations of
the code.

Design Decisions
Did I really write that in Perl; what was I thinking?! Did I really use such a simplistic
sorting algorithm? Did I really write all that code by hand, rather than just using a built-
in library function? Did I really couple those classes together so unnecessarily? Could
I really not have invented a cleaner API? Did I really leave resource management up to
the client code? I can see many potential bugs and leaks lurking there!

As you learn more, you realise that there are better ways of formulating your design in
code. This is the voice of experience. You make a few mistakes, read some different code,
work with talented coders, and pretty soon find you have improved design skills.

Bugs
Perhaps this is the reason that drags you back to an old codebase. Sometimes coming
back with fresh eyes uncovers obvious problems that you missed at the time. After you’ve
been bitten by certain kinds of bugs (often those that the common idioms steer you

Chapter 5: The Ghost of a Codebase Past | 41

away from) you naturally begin to see potential bugs in old code. It’s the programmer’s
sixth sense.

Conclusion
No space of regret can make amends for one life’s opportunity misused.

— Charles Dickens
 A Christmas Carol

Looking back over your old code is like a code review for yourself. It’s a valuable exercise;
perhaps you should take a quick tour through some of your old work. Do you like the
way you used to program? How much have you learnt since then?

Does this kind of thing actually matter? If your old code isn’t perfect, but it works, should
you do anything about it? Should you go back and “adjust” the code? Probably not—if
it ain’t broke don’t fix it. Code does not rot, unless the world changes around it. Your
bits and bytes don’t degrade, so the meaning will likely stay constant. Occasionally a
compiler or language upgrade or a third-party library update might “break” your old
code, or perhaps a code change elsewhere will invalidate a presumption you made. But
normally, the code will soldier on faithfully, even if it’s not perfect.

It’s important to appreciate how times have changed, how the programming world has
moved on, and how your personal skills have improved over time. Finding old code
that no longer feels “right” is a good thing: it shows that you have learnt and improved.
Perhaps you don’t have the opportunity to revise it now, but knowing where you’ve come
from helps to shape where you’re going in your coding career.

Like the Ghost of Christmas Past, there are interesting cautionary lessons to be learnt
from our old code if you take the time to look at it.

Questions

1. How does your old code shape up in the modern world? If it doesn’t look too bad,
does that mean that you haven’t learnt anything new recently?

2. How long have you been working in your primary language? How many revisions
of the language standard or built-in library have been introduced in that time? What
language features have been introduced that have shaped the style of the code you
write?

3. Consider some of the common idioms you now naturally employ. How do they
help you avoid errors?

See also

• Keeping Up Appearances Contains more discussion of code layout.
• Nothing Is Set in Stone Code never stands still, nor does your understanding of it.

42 | Chapter 5: The Ghost of a Codebase Past

• A Tale of Two Systems An example of revisiting old code; learning from mistakes
and appreciating successes.

Try this….
Take a quick tour through some of your old work. Do you like the way you used to
program? How much have you learnt since then?

Chapter 5: The Ghost of a Codebase Past | 43

CHAPTER 6

Navigating a Route

...the Investigation of difficult Things by the Method of Analysis,
ought ever to precede the Method of Composition.

— Sir Isaac Newton

A new recruit joined my development team. Our project, whilst not vast, was relatively
large and contained a number of different areas. There was a lot to learn before he could
become effective. How could he plot a route into the code? From a standing start, how
could he rapidly become productive?

It’s a common situation; one which we all face from time to time. If you don’t, then you
need to see more code and move on to new projects more often. (It’s important not to
get stale from working on one codebase with one team forever.)

Coming into any large existing codebase is hard. You have to rapidly:

• Discover where to start looking at the code
• Work out what each section of the code does, and how it achieves it
• Gauge the quality of the code
• Work out how to navigate around the system
• Understand the coding idioms, so your changes will fit in sympathetically
• Find the likely location of any functionality (and the consequent bugs caused by it)
• Understand the relationship of the code to its important satellite parts (e.g., its tests

and documentation)

You need to learn this quickly, as you don’t want your first changes to be too embar‐
rassing, accidentally duplicate existing work, or break something elsewhere.

45

A Little Help from My Friends
My new colleague had a wonderful head start in this learning process. He joined an
office with people who already knew the code, who could answer innumerable small
questions about it, and point out where existing functionality could be found. This kind
of help is simply invaluable.

If you are able to work alongside someone already versed in the code, then exploit this.
Don’t be afraid to ask questions. If you can, take opportunities to pair program and/or
to get your changes reviewed.

KEY ➤ Your best route into code is to be led by someone who already
knows the terrain. Don’t be afraid to ask for help!

If you can’t pester people nearby, don’t fear; there may still be helpful people further
afield. Look for online forums or mailing lists that contain helpful information and
helpful people. There is often a healthy community that grows around popular open
source projects.

The trick when asking for help is to always be polite, and to be grateful. Ask sensible,
appropriate questions. “Can you do my homework for me?” is never going to get a good
response. Always be prepared to help others out with information in return.

Employ common sense: make sure that you’ve Googled for an answer to your question
first. It’s simple politeness to not ask foolish questions that you could easily research
yourself. You won’t endear yourself to anyone if you continually ask basic questions and
waste people’s precious time. Like the boy who cried wolf and failed to get help when
he really needed it, a series of mind-numbingly dumb questions will make you less likely
to receive more complex help when you need it.

Look for Clues
If you are rooting in the murky depths of a software system without a personal guide,
then you need to look for the clues that will orient you around the code.

These are good indicators:
Ease of getting the source

How easy is it to obtain the source?

Is it a single, simple checkout from version control that can be placed in any direc‐
tory on your development machine? Or must you check out multiple separate parts,
and install them in specific locations on your computer?

Hardcoded file paths are evil. They prohibit you from easily building different ver‐
isons of the code.

46 | Chapter 6: Navigating a Route

1. A single, automatic build step means your build can be placed into a CI harness and run automatically.

KEY ➤ Healthy projects require a single checkout to obtain the whole
codebase, and the code can be placed in any directory on your
build machine. Do not rely on multiple checkout steps, or
code in hardcoded locations.

As well as availabilty of the source code itself, consider availability of information
about the code’s health. Is there a CI (continuous integration) build server that
continually ensures that all parts of the code build successfully? Are there published
results of any automated tests?

Ease of building the code
This can be very telling. If it’s hard to build the code, it’s often hard to work with it.

Does the build depend on unusual tools that you’ll have to install? (How up-to-date
are those tools?)

How easy is it to build the code from scratch? Is there adequate and simple docu‐
mentation in the code itself? Does the code build straight out of source control, or
do you first have to manually perform many small configuration tweaks before it
will build?

Does one simple, single step build the entire system, or does it require many indi‐
vidual build steps? Does the build process require manual intervention?1 Can you
work on a small part of the code, and only build that section, or must you rebuild
the whole project repeatedly to work on a small component?

KEY ➤ A healthy build runs in one step, with no manual interven‐
tion during the build process.

How is a release build made? Is it the same process as the development builds, or
do you have to follow a very different set of steps?

When the build runs, is it quiet? Or are there many, many warnings that may obscure
more insidious problems?

Tests
Look for tests: unit tests, integration tests, end-to-end tests, and the like. Are there
any? How much of the codebase is under test? Do the tests run automatically, or do
they require an additional build step? How often are the tests run? How much
coverage do they provide? Do they appear appropriate and well constructed, or are
there just a few simple stubs to make it look like the code has test coverage?

There is an almost universal link here: code with a good suite of tests is usually also
well factored, well thought out, and well designed. These tests act as a great route

Chapter 6: Navigating a Route | 47

into the code under test, helping you understand the code’s interface and usage
patterns. It’s also a great place from which to start working on a bugfix (you can
start by adding a simple, failing unit test—then fix that test, without breaking the
others).

File structure
Look at the directory structure. Does it match the code shape? Does it clearly reveal
the areas, subsystems, or layers of the code? Is it neat? Are third-party libraries
neatly separated from the project code, or is it all messily intermingled?

Documentation
Look for the project documentation. Is there any? Is it well written? Is it up-to-date?
Perhaps the documentation is written in the code itself using NDoc, Javadoc, Doxy‐
gen, or a similar system. How comprehensive and up-to-date does this documen‐
tation appear?

Static analysis
Run tools over the code to determine the health and to plot out the associations.
There are some great source navigation tools available, and Doxygen can also pro‐
duce very usable class diagrams and control flow diagrams.

Requirements
Are there any original project requirements documents or functional specifica‐
tions? (In my experience, these often tend to bear little relation to the final product,
but they are interesting historical documents nonetheless.) Is there a project wiki
where common concepts are collected?

Project dependencies
Does the code use specific frameworks and third-party libraries? How much in‐
formation do you need to know about them? You can’t learn every aspect of all of
them initially, especially because some libraries are huge (Boost, I’m looking at you).
But it pays to get a feel for what facilities are provided for you, and where you can
look for them.

Does the code make good use of the language’s standard library? Or do many wheels
get reinvented? Be wary of code with its own set of custom collection classes or
homegrown thread primitives. System-supplied core code is more likely to be ro‐
bust, well tested, and bug-free.

Code quality
Browse through the code to get a feel for the quality. Observe the amount and the
quality of code comments. Is there much dead code—redundant code commented
out but left to rot? Is the coding style consistent throughout?

It’s hard to draw a conclusive opinion from a brief investigation like this, but you
can quickly get a reasonable feel for a codebase from some basic reading.

48 | Chapter 6: Navigating a Route

Architecture
By now you should be able to get a reasonable feel for the shape and the modular‐
isation of the system. Can you identify the main layers? Are the layers cleanly sep‐
arated, or are they all rather interwoven? Is there a database layer? How sensible
does it look? Can you see the schema? Is it sane? How does the app talk to the outside
world? What is the GUI technology? The file I/O tech? The networking tech?

Ideally, the architecture of a system is a top-level concept that you learn before
digging in too deeply. However, this is often not the case, and you discover the real
architecture as you delve into the code.

KEY ➤ Often the real architecture of a system differs from the ideal
design. Always trust the code, not the documentation.

Perform software archaeology on any code that looks questionable. Drill back through
version control logs and “svn blame” (or the equivalent) to see the origin and evolution
of some of the messes. Try to get a feel for the number of people who worked on the
code in the past. How many of them are still on the team?

Learn by Doing
A woman needs a man like a fish needs a bicycle.

— Irina Dunn

You can read as many books as you like about the theory of riding a bicycle. You can
study bicycles, take them apart, reassemble them, investigate the physics and engineer‐
ing behind them. But you may as well be learning to ride a fish. Until you get on a
bicycle, put your feet on the pedals and try to ride it for real, you’ll never advance. You’ll
learn more by falling off a few times than from days of reading about how to balance.

It’s the same with code.

Reading code will only get you so far. You can only really learn a codebase by getting
on it, by trying to ride it, by making mistakes and falling off. Don’t let inactivity prevent
you from moving on. Don’t erect an intellectual barrier to prevent you from working
on the code.

I’ve seen plenty of great programmers initially paralysed through their own lack of
confidence in their understanding.

Stuff that. Jump in. Boldly. Modify the code.

KEY ➤ The best way to learn code is to modify it. Then learn from your
mistakes.

So what should you modify?

Chapter 6: Navigating a Route | 49

As you are learning the code, look for places where you can immediately make a benefit,
but that will minimise the chances you’ll break something (or write embarrassing code).

Aim for anything that will take you around the system.

Low-Hanging Fruit
Try some simple, small things, like tracking down a minor bug that has a very direct
correlation to an event you can start hunting from (e.g., a GUI activity). Start with a
small, repeatable, low-risk fault report, rather than a meaty intermittent nightmare.

Inspect the Code
Run the codebase through some code validators (like Lint, Fortify, Cppcheck, FxCop,
ReSharper, or the like). Look to see if compiler warnings have been disabled; re-enable
them, and fix the messages. This will teach you the code structure and give you a clue
about the code quality.

Fixing this kind of thing is often not tricky, but very worthwhile; a great introduction.
It often gets you around most of the code quickly. This kind of nonfunctional code
change teaches you how things fit together and about what lives where. It gives you a
great feel for the diligence of the existing developers, and highlights which parts of the
code are the most worrisome and will require extra care.

Study, Then Act
Study a small piece of code. Critique it. Determine if there are weak spots. Refactor it.
Mercilessly. Name variables correctly. Turn sprawling code sections into smaller well-
named functions.

A few such exercises will give you a good feel for how malleable the code is and how
yielding to fixes and modifications. (I’ve seen codebases that really fought back against
refactoring).

Be wary: writing code is easier than reading it. Many programmers, rather than putting
in the effort to read and understand existing code, prefer to say “it’s ugly” and rewrite
it. This certainly helps them get a deep understanding of the code, but at the expense
of lots of unnecessary code churn, wasted time, and in all likelihood, new bugs.

Test First
Look at the tests. Work out how to add a new unit test, and how to add a new test file
to the suite. How do the tests get run?

A great trick is to try adding a single, one-line, failing test. Does the test suite immediately
fail? This smoke test proves that the tests are not actively being ignored.

50 | Chapter 6: Navigating a Route

www.allitebooks.com

http://www.allitebooks.org

Do the tests serve to illustrate how each component works? Do they illustrate the in‐
terface points well?

Housekeeping
Do some spit-and-polish on the user interface. Make some simple UI improvements
that don’t affect core functionality, but do make the app more pleasant to use.

Tidy the source files: correct the directory hierarchy. Make it match the organisation in
the IDE or project files.

Document What You Find
Does the code have any kind of top-level README documentation file explaining how
to start working on it? If not, create one and include the things that you have learned
so far.

Ask one of the more experienced programmers to review it. This will show how correct
your knowledge is, and also help future newbies.

As you gain understanding of the system, maintain a layer diagram of the main sections
of code. Keep it up-to-date as you learn. Do you discover that the system is well layered,
with clear interfaces between each layer and no unnecessary coupling? Or do you find
the sections of code are needlessly interconnected? Look for ways of introducing inter‐
faces to bring about separation without changing the existing functionality.

If there are no architectural descriptions so far, yours can serve as the documentation
that will lead the new recruit into the system.

Conclusion
Scientific investigations are a sort of warfare carried on in the closet

or on the couch against all one’s contemporaries and predecessors.
— Thomas Young

The more you exercise, the less pain you feel and the greater the benefit you receive.
Coding is no different. The more you work on new codebases, the more you are able to
pick up new code effectively.

Questions

1. Do you often enter new codebases? Do you find it easy to work your way around
unfamiliar code? What are the common tools you use to investigate a project? What
tools can you add to this arsenal?

2. Describe some strategies for adding new code to a system you don’t understand
fully yet. How can you put a firewall around the existing code to protect it (and
you)?

Chapter 6: Navigating a Route | 51

3. How can you make code easier for a new recruit to understand? What should you
do now to improve the state of your current project?

4. Does the likely time you will spend working on the code in the future affect the
effort and manner in which you learn existing code? Are you more likely to make
a “quick and dirty” fix to code that you will no longer have to maintain, even though
others will have to later on? Is this appropriate?

See also

• Wallowing in Filth How to gauge the quality of code, and make safe adjustments.
• Live to Love to Learn Learning a new codebase is like learning any new subject.

These techniques will help.
• Nothing is Set in Stone Learn by doing: make changes to the code to understand it

better.

Try this….
The next time you approach new code, plan a mindful route into it. Use these techniques
to build a good understanding.

52 | Chapter 6: Navigating a Route

CHAPTER 7

Wallowing in Filth

As a dog returns to its vomit, so fools repeat their folly.
— Psalms 26:11

We’ve all encountered it: quicksand code. You wade into it unawares, and pretty soon
you get that sinking feeling. The code is dense, not malleable, and resists any effort made
to move it. The more effort you put in, the deeper you get sucked in. It’s the man-trap
of the digital age.

How does the effective programmer approach code that is, to be polite, not so great?
What are our strategies for coping with crap?

Don’t panic, don your sand-proof trousers, and we’ll wade in…

Smell the Signs
Some code is great, like fine art, or well-crafted poetry. It has discernible structure,
recognisable cadences, well-paced meter, and a coherence and beauty that make it en‐
joyable to read and a pleasure to work with.

But, sadly, that is not always the case.

Some code is messy and unstructured: a slalom of gotos that hide any semblance of
algorithm. Some is hard to read: with poor layout and shabby naming. Some code is
cursed with an unnecessarily rigid structure: nasty coupling and poor cohesion. Some
code has poor factoring: entwining UI code with low-level logic. Some code is riddled
with duplication: making the project larger and more complex than it need be, whilst
harbouring the exact same bug many times over. Some code commits “OO abuse”:
inheriting, for all the wrong reasons, tightly associating parts of code that have no real
need to be bound. Some code sits like a pernicious cuckoo in the nest: C# written in the
style of JavaScript.

55

Some code has even more insidious badness: brittle behaviour where a change in one
place causes a seemingly unconnected module to fail—the very definition of code chaos
theory. Some code suffers from poor threading behaviour: employing inappropriate
thread primitives or exercising a total lack of understanding of the safe concurrent use
of resources. This problem can be very hard to spot, reproduce, and diagnose, as it
manifests so intermittently.

(I know I shouldn’t moan, but sometimes I swear that programmers shouldn’t be allowed
to type the word thread without first obtaining a license to wield such a dangerous
weapon.)

KEY ➤ Be prepared to encounter bad code. Fill your toolbox with sharp
tools to deal with it.

To work effectively with alien code, you need to able to quickly spot these kinds of
problems, and understand how to respond.

Wading into the Cesspit
The first step is to take a realistic survey of the coding crime scene. You arrive at the
shores of new code. What are you wading into?

The code may have been given to you with a pre-attached stigma. No one wants to touch
it because they know it’s foul. Some quicksand code you discover yourself when you feel
yourself sinking.

It’s all too easy to pick up new code and dismiss it because it’s not written in the style
you’d prefer. Is it really dire work? Is it truly quicksand code, or is it merely unfamiliar?
Don’t make snap judgments about the code, or the authors who produced it, until you’ve
spent some time investigating.

Take care not to make this personal.

Understand that few people set out to write shoddy code. Some filthy code was simply
written by a less capable programmer. Or by a capable programmer on a bad day. Once
you learn a new technique or pick up a team’s preferred idiom, code that seemed perfectly
fine a month ago is an embarrassing mess now and requires refactoring.

You can’t expect any code, even your own, to be perfect.

KEY ➤ Silence the feeling of revulsion when you encounter “bad” code.
Instead, look for ways to practically improve it.

The Survey Says…
We’ve already looked at techniques for navigating a new codebase in Chapter 6.

56 | Chapter 7: Wallowing in Filth

As you build a mental model of a new piece of code, you can begin to gauge its quality
using benchmarks like:

• Are the external APIs clean and sensible?
• Are the types used well chosen, and well named?
• Is the code layout neat and consistent? (Whilst this is certainly not a guarantee of

underlying code quality, I do find that inconsistent, messy code tends also to be
poorly structured and hard to work with. Programmers who aim for high-quality,
malleable code also tend to care about clean, clear presentation. But don’t base your
judgment on presentation alone.)

• Is the structure of cooperating objects simple and clear to see? Or does control flow
unpredictably around the codebase?

• Can you easily determine where to find the code that produces a certain effect?

It can be hard to perform this initial survey. Maybe you don’t know the technology
involved, or the problem domain. You may not be familiar with coding style.

Consider employing software archaeology in your survey: mine your revision control
system logs for hints about the quality. Determine: how old is this code? How old is it
in relation to the entire project? How many people have worked on it over time? When
was it last changed? Are any recent contributors still working on the project? Can you
ask them for information about the code? How many bugs have been found and fixed
in this area? Many bugfixes centered here indicates that the code is poor.

Working in the Sandpit
You’ve identified quicksand code, and you are now on the alert. You need a sound
strategy to work with it.

What is the appropriate plan of attack?

• Should you repair the bad code?
• Should you perform the minimal adjustment necessary to solve your current prob‐

lem, and then run away?
• Should you cut out the necrotic code and replace it with new, better work?

Gaze into your crystal ball. Often the right answer will be informed by your future plans.
How long will you be working with this section of code? Knowing that you will be
pitching camp and working here for a while influences the amount of investment you’ll
put in. Don’t attempt a sweeping rewrite if you haven’t the time.

Also, consider how frequently this code has been modified up to now. Financial advisors
will tell you that past performance is not an indicator of future results. But often it is.

Chapter 7: Wallowing in Filth | 57

Invest your time wisely. This code might be unpleasant, but if it has been working ad‐
equately for years without tinkering, it is probably inappropriate to “tidy it up” now,
especially if you’re unlikely to need to make many more changes in the future.

KEY ➤ Pick your battles. Consider carefully whether you should invest
time and effort in “tidying up” bad code. It may be pragmatic to
leave it alone right now.

If you determine that it is not appropriate to embark on a massive code rework right
now, that doesn’t mean you are necessarily left to drift in a sea of sewage. You can wrestle
back some control of the code by cleaning progressively.

Cleaning Up Messes
Whether you’re digging in for the long haul, or just making a simple fix-and-run, heed
Robert Martin’s advice and follow the “the Boy Scout Rule”: Always leave the camp‐
ground cleaner than you found it. It might not be appropriate to make a sweeping im‐
provement today, but that doesn’t mean you can’t make the world a slightly less awful
place.

KEY ➤ Follow the Boy Scout Rule. Whenever you touch some code leave
it better than you found it.

This can be a simple change: address inconstant layout, correct a misleading variable
name, simplify a complex conditional clause, or split a long method into smaller, well-
named sub-functions.

If you regularly visit a section of code, and each time leave it slightly better than it was,
then before long you’ll wind up with something that might be classified as good.

Making Adjustments
The single most important advice when working with messy code is this:

KEY ➤ Make code changes slowly, and carefully. Make one change at a
time.

This is so important that I’d like you to stop, go back, and read it again.

There are many practical ways to follow this advice. Specifically:

• Do not change code layout whilst adjusting functionality. Tidy up the layout, if you
must. Then commit your code. Only then make functional changes. (However, it’s
preferable to preserve the existing layout unless it’s so bad that it gets in the way.)

58 | Chapter 7: Wallowing in Filth

1. Michael Feathers, Working Effectively with Legacy Code (Upper Saddle River, NJ: Prentice Hall, 2004).

• Do everything you can to ensure that your “tidying” preserves existing behaviour.
Use trusted automated tools, or (if they are not available) review and inspect your
changes carefully; get extra sets of eyeballs on it. This is the prime directive of
refactoring: the well-known set of techniques for improving code structure.
This goal can only be reached effectively if the code is wrapped in a sound set of
unit tests. It is likely that messy code will not have any tests in place, so consider
whether you should first write some tests to capture important code behaviour.

• Adjust the APIs that wrap the code without directly modifying the internal logic.
Correct naming, parameter types, and ordering; generally introduce consistency.
Perhaps introduce a new outer interface—the interface you wish that code had.
Implement it in terms of the existing API. Then at a later date you can rework the
code behind that interface.

Have courage in your ability to change the code. You have a safety net: source control.
If you make a mistake, you can always go back in time and try again. It’s probably not
wasted effort, as you will have learnt about the code and its adaptability in doing so.

Sometimes it is worth boldly ripping out code in order to replace it. Badly maintained
code that has seen no tidying or refactoring can be too painful and hard to correct
piecemeal. There is an inherent danger in replacing code wholesale, though: the un‐
readable mess of special cases might be like that for a reason. Each bodge and code hack
encodes an important piece of functionality that has been uncovered through bitter
experience. Ignore these subtle behaviours at your peril.

An excellent book that deals with making appropriate changes in quicksand code is
Micheal Feathers’ Working Effectively with Legacy Code.1 In it, he describes sound tech‐
niques to introduce seams into the code—places where you can introduce test points
and most safely introduce sanity.

War Story: The Curious Case of the Container Code
There was a container class. It was central to our project. Internally, it was foul. The API
stank, too. The original coder had worked hard to wreak code mischief. The bugs in it
were hidden by the already confusing behaviour. Indeed, the confusing behaviour was
a bug itself.

One of our programmers, a highly skilled developer, tried to refactor and repair this
container. He kept the external interface intact, and improved many internal qualities:
the correctness of the methods, the buggy object lifetime behaviour, performance, and
code elegance.

Chapter 7: Wallowing in Filth | 59

He took out nasty, ugly, simplistic, stupid code and replaced it with the polar opposite.
But in his effort to maintain the old API, this new version was internally far too contrived,
more like a science project than useful code. It was hard to work with. Although it
succinctly expressed the old (bizarre) behaviour, there was no room for extension.

We struggled to work with this new version, too. It had been a wasted effort.

Later on, another developer simplified the way we used the container: removing the
weirder requirements, therefore simplifying the API. This was a relatively simple ad‐
justment to the project. Inside the container, we removed swaths of code. The class was
simpler, smaller, and easier to verify.

Sometimes you have to think laterally to see the right improvement.

Bad Code? Bad Programmers?
Yes, it’s frustrating to be slowed down by bad code. The effective programmer does not
only deal well with the bad code, but also with the people that wrote it. It is not helpful
to apportion blame for code problems. People don’t tend to purposefully write drivel.

KEY ➤ There is no need to apportion blame for “bad” code.

Perhaps the original author didn’t understand the utility of code refactoring, or see a
way to express the logic neatly. It’s just as likely there are other similar things you do not
yet understand. Perhaps they felt under pressure to work fast and had to cut corners
(believing the lie that it helps you get there faster; it rarely does).

But of course, you know better.

If you can, enjoy the chance to tidy. It can be very rewarding to bring structure and
sanity to a mess. Rather than see it as a tedious exercise, look at it as a chance to introduce
higher quality.

Treat it as a lesson. Learn. How will you avoid repeating these same coding mistakes
yourself?

Check your attitude as you make improvements. You might think that you know better
than the original author. But do you always know better?

I’ve seen this story play out many times: a junior programmer “fixed” a more experi‐
enced programmer’s work, with the commit message “refactored the code to look neat‐
er.” The code indeed looked neater. But he had removed important functionality. The
original author later reverted the change with the commit message: “refactored code
back to working.”

60 | Chapter 7: Wallowing in Filth

Questions

1. Why does code frequently get so messy?
2. How can we avoid this from happening in first place? Can we?
3. What are the advantages of making layout changes separately from code changes?
4. How many times have you been confronted with distasteful code? How often was

this code really dire, rather than “not to your taste”?

See also

• Navigating a Route Techniques to familiarise yourself with a new codebase.
• Improve Code by Removing It Improve “filthy” programs by exorcising dead code.
• An Ode to Code An unnecessarily extreme reaction to bad code.

Try this….
Employ the Boy Scout Rule. Leave every piece of code you touch better, if even only
fractionally.

Chapter 7: Wallowing in Filth | 61

CHAPTER 8

Don’t Ignore That Error!

All you need is ignorance and confidence and the success is sure.
— Mark Twain

Settle yourself down for an apocryphal bedtime story. A programmer’s parable, if you
will….

I was walking down the street one evening to meet some friends in a bar. We hadn’t shared
a beer in some time and I was looking forward to seeing them again. In my haste, I wasn’t
looking where I was going. I tripped over the edge of a curb and ended up flat on my face.
Well, it serves me right for not paying attention, I guess.

It hurt my leg, but I was in a hurry to meet my friends. So I pulled myself up and carried
on. As I walked further the pain was getting worse. Although I’d initially dismissed it as
shock, I rapidly realised there was something wrong.

But, I hurried on to the bar regardless. I was in agony by the time I arrived. I didn’t have
a great night out, because I was terribly distracted. In the morning I went to the doctor
and found out I’d fractured my shinbone. Had I stopped when I felt the pain, I’d’ve pre‐
vented a lot of extra damage that I caused by walking on it. Probably the worst morning-
after of my life…

Too many programmers write code like my disastrous night out.

Error? What error? It won’t be serious. Honestly. I can ignore it. This is not a winning
strategy for solid code. In fact, it’s just plain laziness. (The bad sort.) No matter how
unlikely you think an error is in your code, you should always check for it, and always
handle it. Every time. If you don’t, you’re not saving time, you’re storing up potential
problems for the future.

KEY ➤ Do not ignore possible errors in your code. Don’t put off han‐
dling errors until “later” (you won’t get around to it).

63

The Mechanism
We report errors in our code in a number of ways, including:
Return codes

A function returns a value. Some of which mean “it didn’t work.” Error return codes
are far too easy to ignore. You won’t see anything in the code to highlight the prob‐
lem. Indeed, it’s become standard practice to ignore some standard C functions’
return values. How often do you check the return value from printf?

Return codes are perhaps the most popular error-report channel: we see func‐
tions return values, operating system processes return values, in some systems even
threads can return values.

Often this code is an integer value; conventionally, zero means success and non-
zero is an error code. In modern code it’s a rather strange idiom, and we can write
far more expressive code by either returning a tuple of values or an “optional” type
encoding success and the value in one type (e.g., the boost::optional type in C++
or Nullable<T> in C#). Functional programming languages may indicate errors
through the return type of the function rather than a magical value; Haskell provides
the Maybe class, Scala provides Option and Either.

Side effects
errno, the poster child for side effects, is a curious C language aberration: a separate
global variable used to signal an error. It’s easy to ignore, hard to use, and leads to
all sorts of nasty problems—for example, what happens when you have multiple
threads calling the same function?

You may see other side channels or side effects used to signal error. For example,
you may see another function that must be called to check the “success state,” or an
object going into an “invalid” state when something goes wrong.

Exceptions
Exceptions are a more structured, language-supported way of signalling and han‐
dling errors. And you can’t possibly ignore them. Or can you? I’ve seen lots of code
like this:

try
{
 // ...do something...
}
catch (...) {} // ignore errors

The saving grace of this awful construct is that it highlights the fact you’re doing
something morally dubious.

Exceptions aren’t perfect. Their detractors complain that they hide the error-path.
An exception could unwind through a method with awful repercussions (e.g., leak‐

64 | Chapter 8: Don’t Ignore That Error!

ing resources or failing to satisfying a function contract). But because that method
contains no error-handling code itself, you’d not realise these problems.

Like many other technologies, effective use of exceptions requires much discipline.
This is far outside the scope of this chapter.

KEY ➤ Use exceptions well, with discipline. Understand your lan‐
guage’s idioms and requirements for effective exception use.

The Madness
Not handling errors leads to:
Brittle code

This type of code is full of hard-to-find crashes.

Insecure code
Crackers often exploit poor error handling to break into software systems.

Bad structure
If there are errors from your code that are tedious to deal with continually, you
probably have a bad interface. Express it better, so the errors are not so onerous.

Just as you should check all potential errors in your code, you must expose all potentially
erroneous conditions in your interfaces. Do not hide them, and pretend that your serv‐
ices will always work.

Programmers must be made aware of programmatic errors. Users must be made aware
of usage errors.

It’s not good enough to log the error (somewhere), and hope that a diligent operator will
notice an error and do something about it one day. Who knows about the log? Who
checks the log? Who is likely to do anything about it? If program termination is not an
option, ensure that problems are flagged up in an unobtrusive, but obvious and unign‐
orable manner.

The Mitigation
Why don’t we check for errors? There are a number of common excuses. Which of these
do you agree with? How would you counter each of them?

• Error handling clutters up the flow of the code, making it harder to read, and harder
to spot the “normal” flow of execution.

• It’s extra work and I have a deadline looming.

Chapter 8: Don’t Ignore That Error! | 65

• I know that this function call will never return an error (printf always works,
malloc always returns new memory, and if it fails we have bigger problems, any‐
way…).

• It’s only a toy program, and needn’t be written to a production-worthy level.
• My language encourages me not to. (E.g., Erlang’s philosophy is “let it fail”: erro‐

neous code should fail fast and cause its Erlang process to terminate. Good Erlang
systems are designed to be robust to failing processes, so error handling is not such
a big deal.)

Conclusion
This is a very short chapter. It could be much, much longer. But doing so would be an
error. The message is simple: Do. Not. Ignore. Errors.

Questions

1. How can you ensure your code does not ignore errors that are reported by lower
levels? Consider code-level solutions and process-related techniques.

2. Exceptions cannot be ignored as easily as return codes. Does that make them a safer
mechanism for reporting errors?

3. What approaches are required when working on code that mixes error codes and
exceptions?

4. What testing techniques will help identify code that fails due to inadequate error
handling?

See also

• A Love for Languages The appropriate style of error reporting and handling depends
on the language in use.

• Expect the Unexpected Error conditions are one example of the kind of “unexpected”
situations that we must consider for our code to be robust.

Try this….
Set up a review of the most frequently worked-on code in your system. Determine how
many error conditions have been left unhandled. Next, review some infrequently main‐
tained code and compare the results.

66 | Chapter 8: Don’t Ignore That Error!

Chapter 8: Don’t Ignore That Error! | 67

CHAPTER 9

Expect the Unexpected

Be Prepared…the meaning of the motto is that a scout must prepare
himself by previous thinking out and practicing how to act on any accident

or emergency so that he is never taken by surprise.
— Robert Baden-Powell

They say that some people see the glass half full, some see it half empty. But most pro‐
grammers don’t see the glass at all; they write code that simply does not consider unusual
situations. They are neither optimists nor pessimists. They are not even realists. They’re
ignore-ists.

When writing your code, don’t consider only the thread of execution that you expect to
happen. At every step, consider all of the unusual things that might occur, no matter
how unlikely you think they’ll be.

Errors
Any function you call may not work as you expect.

• If you are lucky, it will return an error code to signal this. If so, you should check
that value; never ignore it.

• The function might throw an exception if it cannot honor its contract. Ensure that
your code will cope with an exception bubbling up through it. Whether you catch
the exception and handle it, or allow it to pass further up the call stack, ensure that
your code is correct. Correctness includes not leaking resources or leaving the pro‐
gram in an invalid state.

• Or the function might return no indication of failure, but silently not do what you
expected. You ask a function to print a message. Will it always print it? Might it
sometimes fail and consume the message?

69

Always consider errors that you can recover from, and write appropriate recovery code.
Consider also the errors that you cannot recover from. Write your code to do the best
thing possible—don’t just ignore it.

Ensure that your error handling is idiomatic, and uses the appropriate language mech‐
anisms. Erlang, for example, has a “let it crash” philosophy, where defensive coding is
discouraged in favour of letting errors cause loud and visible failures, to be handled at
a process level.

Threading
The world has moved from single-threaded applications to more complex, often highly
threaded, environments. Unusual interactions between pieces of code are staple here.
It’s hard to enumerate every possible interweaving of code paths, let alone reproduce
one particular problematic interaction more than once.

To tame this level of unpredictability, make sure you understand basic concurrency
principles, and how to decouple threads so they cannot interact in dangerous ways.
Understand mechanisms to reliably and quickly pass messages between thread contexts
without introducing race conditions or blocking the threads unnecessarily.

Shutdown
We plan how to construct a system: how to create all the objects, how to get all the plates
to spin, and how to keep those objects running and those plates spinning. Less attention
is given to the other end of the life cycle: how to bring the code to a graceful halt without
leaking resources, locking up, or crashing.

Shutting down your system and destroying all the objects is especially hard in a multi-
threaded system. As your application shuts down and destroys its worker objects, make
sure you can’t leave one object attempting to use another that has already been disposed
of. Don’t enqueue threaded callbacks that target objects already discarded by other
threads.

The Moral of the Story
The “unexpected” is not the unusual. It’s the stuff bugs are made of. You need to write
your code in the light of this.

It’s important to think about these issues early on in your code development. You can’t
tack on this kind of correctness as an afterthought; the problems are insidious and run
deeply into the grain of your code. Such demons are very hard to exorcise after the code
has been fleshed out.

70 | Chapter 9: Expect the Unexpected

KEY ➤ Consider all potential code paths as you write your code. Do not
plan to handle “unusual” cases later: you’ll forget and your code
will be buggy.

Writing good code is not about being an optimist or a pessimist. It’s not about how much
water is in the glass right now. It’s about making a watertight glass so that there will be
no spillages, no matter how much water the glass contains.

Questions

1. What kinds of problems have you observed from code that did not adequately
handle “unexpected” situations?

2. Do you always include robust error handling in all your code?
3. When is it acceptable to forego rigorous error handling?
4. What other sources of surprise scenarios can you think of that would affect the

quality and robustness of your code?

See also

• Don’t Ignore That Error! Advice for handling error conditions—and an admonition
to expect them.

• Wallowing in Filth You must consider all potential conditions in your code, even
unlikely ones or it will end up a filthy, brittle mess.

• Bug Hunting If you don’t handle all cases appropriately, you’re introducing bugs.
This is what you’ll be doing as a consequence.

• Testing Times A good testing regimen can help you enumerate and keep track of
unexpected conditions.

Try this….
Inspect the last section of code you worked on. Audit the code for diligence in error
handling and potential unusual interactions. How can you improve it?

Chapter 9: Expect the Unexpected | 71

72 | Chapter 9: Expect the Unexpected

CHAPTER 10

Bug Hunting

If debugging is the process of removing software bugs,
then programming must be the process of putting them in.

— Edsger Dijkstra

It’s open season; a season that lasts all year round. There are no permits required, no
restrictions levied. Grab yourself a shotgun and head out into the open software fields
to root out those pesky varmints, the elusive bugs, and squash them, dead.

OK, reality is not as saccharin as that. But sometimes you end up working on code in
which you swear the bugs are multiplying and ganging up on you. A shotgun is the only
response.

The story is an old one, and it goes like this: Programmers write code. Programmers
aren’t perfect. The programmer’s code isn’t perfect. It therefore doesn’t work perfectly
the first time. So we have bugs.

If we bred better programmers we’d clearly breed better bugs.

Some bugs are simple mistakes that are obvious to spot and easy to fix. When we en‐
counter these, we are lucky.

The majority of bugs—the ones we invest hours of effort tracking down, losing our
follicles and/or hair pigment in the search—are the nasty, subtle issues. These are the
odd, surprising interactions; the unexpected consequences of our algorithms; the seem‐
ingly non-deterministic behaviour of software that looked so very simple. It can only
have been infected by gremlins.

This isn’t a problem limited to newbie programmers who don’t know any better. Experts
are just as prone. The pioneers of our craft suffered; the eminent computer scientist
Maurice Wilkes wrote: “I well remember […] on one of my journeys between the EDSAC
room and the punching equipment that hesitating at the angles of stairs the realisation

75

1. Maurice Wilkes, Memoirs of a Computer Pioneer (Cambridge, MA: The MIT Press, 1985).

2. “Cambridge University Study States Software Bugs Cost Economy $312 Billion per Year”

came over me with full force that a good part of the remainder of my life was going to be
spent in finding errors in my own programs.”1

So face it. You’ll be doing a lot of debugging. You’d better get used to it. And you better
get good at it. (At least you can console yourself that you’ll have plenty of chances to
practice.)

An Economic Concern
How much time do you think is spent debugging? Add up the effort of all of the pro‐
grammers in every country around the world. Go on, guess.

A staggering $312 billion per year is spent on the wage bills for programmers debugging
their software. To put that in perspective, that’s two times all Eurozone bailouts since
2008! This huge, but realistic, figure comes from research carried out by Cambridge
University’s Judge Business School.2

You have a responsibility to fix bugs faster: to save the global economy. The state of the
world is in your hands.

It’s not just the wage bill, though. Consider all the other implications of buggy software:
shipping delays, cancelled projects, the reputation damage from unreliable software,
and the cost of bugs fixed in shipping software.

An Ounce of Prevention
It would be remiss of a chapter about debugging to not stress how much better it is to
actively prevent bugs manifesting in the first place, rather than attempt a post-bug fix.
An ounce of prevention is worth a pound of cure. If the cost of debugging is astronomical,
we should primarily aim to mitigate this by not creating bugs in the first place.

This, in a classic editorial sleight of hand, is material for a different chapter, and so we
won’t investigate the theme exhaustively here. Do remember the advice in Chapter 9
and always Chapter 17.

Suffice to say, we should always employ sound engineering techniques that minimise
the likelihood of unpleasant surprises. Thoughtful design, code review, pair program‐
ming, and a considered test strategy (including TDD practices and fully automated unit
test suites) are all of the utmost importance. Techniques like assertions, defensive pro‐
gramming, and code coverage tools will all help minimise the likelihood of errors
sneaking past.

76 | Chapter 10: Bug Hunting

http://undo-software.com/company/press/press-release-8

We all know these mantras. Don’t we? But how diligent are we in employing such tactics?

KEY ➤ Avoid injecting bugs into your code by employing sound engi‐
neering practices. Don’t expect quickly hacked-out code to be of
high quality.

The best bug-avoidance advice is to not write incredibly “clever” (which often equates
to complex) code. Brian Kernighan states: Debugging is twice as hard as writing the code
in the first place. Therefore, if you write the code as cleverly as possible, you are, by defi‐
nition, not smart enough to debug it. Martin Fowler reminds us: Any fool can write code
that a computer can understand. Good programmers write code that humans can un‐
derstand.

Bug Hunting
Beware of bugs in the above code; I have only proved it correct, not tried it.

— Donald Knuth

Being realistic, no matter how sound your code-writing regimen, some of those perni‐
cious bugs will always manage to squeeze through the defences and require you to don
the coder’s hunting cap and an anti-bug shotgun. How should we go about finding and
eliminating them? This can be a Herculean task, akin to finding a needle in a haystack.
Or, more accurately, a needle in a needle stack.

Finding and fixing a bug is like solving a logic puzzle. Generally the problem isn’t too
hard when approached methodically; the majority of bugs are easily found and fixed in
minutes. However, some are nastier and take longer. Those hard bugs are few in number,
but given their nature, that’s where we will spend most of our time.

Two factors usually determine how hard a bug is to fix:

• How reproducible it is.
• The time between the cause of the bug entering the code, the “software fault” itself

—the bad line of code, or faulty integration assumption—and you actually noticing.

When a bug scores highly on both counts, it’s almost impossible to track down without
sharp tools and a keen intellect. There are a number of practical techniques and strategies
we can employ to solve the puzzle and locate the fault.

The first, and most important thing, is to methodically investigate and characterise the
bug. Give yourself the best raw material to work with:

• Reduce it to the simplest set of reproduction steps possible. This is vital. Sift out all
the extraneous fluff that isn’t contributing to the problem, and only serves to dis‐
tract.

Chapter 10: Bug Hunting | 77

• Ensure that you are focusing on a single problem. It can be very easy to get into a
tangle when you don’t realise you’re conflating two separate—but related—faults
into one.

• Determine how repeatable the problem is. How frequently do your repro steps
demonstrate the problem? Is it reliant on a simple series of actions? Does it depend
on software configuration or the type of machine you’re running on? Do peripheral
devices attached make any difference? These are all crucial data points in the in‐
vestigation work that is to come.

In reality, when you’ve constructed a single set of reproduction steps, you really have
won most of the battle.

The following sections cover some of the most useful debugging strategies.

Lay Traps
You have errant behaviour. You know a point when the system seems correct; maybe it’s
at start-up, but hopefully a lot later through the reproduction steps. You can get it to a
point where its state is invalid. Find places in the code path between these two points,
and set traps to catch the fault.

Add assertions or tests to verify the system invariants—the facts that must hold for the
state to be correct. Add diagnostic printouts to see the state of the code so you can work
out what’s going on.

As you do this, you’ll gain a greater understanding of the code, reasoning more about
its structure, and will likely add many more assertions to the mix to prove your as‐
sumptions hold. Some of these will be genuine assertions about invariant conditions in
the code, others will be assertions relevant to this particular run. Both are valid tools to
help you pinpoint the bug. Eventually a trap will snap, and you’ll have the bug cornered.

KEY ➤ Assertions and logging (even the humble printf) are potent de‐
bugging tools. Use them often.

Diagnostic logs and assertions may be valid to leave in the code after you’ve found and
fixed the problem. But be careful you don’t litter the code with useless logging that hides
what’s really going on, making unnecessary debug noise.

Learn to Binary Chop
Aim for a binary chop strategy, to focus in on bugs as quickly as possible.

Rather than single-stepping through code paths, work out the start of a chain of events,
and the end. Then partition the problem space into two, and work out if the middle
point is good or bad. Based on this information, you’ve narrowed the problem space to

78 | Chapter 10: Bug Hunting

3. The git bisect tool automates this binary chop for you, and is worth keeping in your toolbox if you’re a
Git user.

something half the size. Repeat this a few times, and you’ll soon have honed in on the
problem.

This is a very powerful approach—allowing you to get to a solution in order O(log n)
time, rather than O(n). That is significantly faster.

KEY ➤ Binary chop problem spaces to get results faster.

Employ this technique with trap laying. Or with the other techniques described next.

Employ Software Archaeology
Software archaeology describes the art of mining through the historical records in your
version control system. This can provide an excellent route into the problem; it’s often
a surprisingly simple way to hunt a bug.

Determine a point in the near past of the codebase when this bug didn’t exist. Armed
with your reproducible test case, step forward in time to determine which code change‐
set caused the breakage. Again, a binary chop strategy is the best bet here.3

Once you find the breaking code change, the cause of the fault is usually obvious, and
the fix is self-evident. (This is another compelling reason to make series of small, fre‐
quent, atomic check-ins, rather than massive commits covering a range of things at
once.)

Test, Test, Test
As you develop your software, invest time to write a suite of unit tests. This will not only
help shape how you develop and verify the code you’ve initially written. It acts as a great
early warning device for changes you make later; much like the miner’s canary, the test
fails long before the problem becomes complex to find and expensive to fix.

These tests can also act as great points from which to begin debugging sessions. A simple,
reproducible unit test case is a far simpler scaffold to debug than a fully running program
that has to spin up and have a series of manual actions run to reproduce the fault. For
this reason, it’s advisable to write a unit test to demonstrate a bug, rather than start to
hunt it from a running “full system.”

Once you have a suite of tests, consider employing a code coverage tool to inspect how
much of your code is actually covered by the tests. You may be surprised. A simple rule
of thumb is: if your test suite does not exercise it, then you can’t believe it works. Even
if it looks like it’s OK now, without a test harness then it’ll be very likely to get broken
later.

Chapter 10: Bug Hunting | 79

KEY ➤ Untested code is a breeding ground for bugs. Tests are your
bleach.

When you finally determine the cause of a bug, consider writing a simple test that clearly
illustrates the problem, and add it to the test suite before you really fix the code. This
takes genuine discipline, as once you find the code culprit, you’ll naturally want to fix
it ASAP and publish the fix. Instead, first write a test harness to demonstrate the prob‐
lem, and use this harness to prove that you’ve fixed it. The test will serve to prevent the
bug coming back in the future.

Invest in Sharp Tools
The are many tools that are worth getting accustomed to, including memory checkers
like Electric Fence, and Swiss Army knife tools like Valgrind. These are worth learning
about now rather than reaching for them at the last minute. If you know how to use a
tool before you have a problem that demands it, you’ll be far more effective.

Learning a range of tools will prevent you from cracking a nut with a pneumatic drill.

Of course, the tool of debugging champions is the debugger. This is the king of tools
that allows you to break into the execution of a running program, step forward by a
single instruction, or step in and out of functions. Other very handy facilities include
the ability to watch variables for changes, set conditional breakpoints (e.g., “break if x
> y”), and change variable values on the fly to quickly experiment with different code
paths. Some advanced debuggers even allow you to step backward (now that’s real voo‐
doo).

Most IDEs come with a debugger built in, so you’re never far from deploying a break‐
point. But you may find it worth investing in a higher quality alternative, don’t rely on
the first tool that falls to hand.

In some circles there is a real disdain for the debugger. Real programmers don’t need a
debugger. To some extent this is true; being overly reliant on the debugger is a bad thing.
Single-stepping through code mindlessly can trick you into focusing on the micro level,
rather than thinking about the macro, overall shape of the code.

But it’s not a sign of weakness. Sometimes it’s just far easier and quicker to pull out the
big guns. Don’t be afraid to use the right tool for the job.

KEY ➤ Learn how to use your debugger well. Then use it at the right
times.

Remove Code to Exclude It from Cause Analysis
When you can reproduce a fault, consider removing everything that doesn’t appear to
contribute to the problem to help focus in on the offending lines of code. Disable other

80 | Chapter 10: Bug Hunting

4. Broken windows theory implies that keeping neighbourhoods in good condition prevents vandalism and
crime.

threads that shouldn’t be involved. Remove subsections of code that do not look like
they’re related.

It’s common to discover objects indirectly attached to the “problem area”—for example,
via a message bus or a notifier-listener mechanism. Physically disconnect this coupling
(even if you’re convinced it’s benign). If you still reproduce the fault, you have proven
your hunch about isolation, and have reduced the problem space.

Then consider removing, or skipping over, sections of code leading up to the error (as
much as makes practical sense). Delete, or comment out blocks that don’t appear to be
involved.

Cleanliness Prevents Infection
Don’t allow bugs to stay in your software for longer than necessary. Don’t let them linger.

Don’t dismiss niggling problems as known issues. This is a dangerous practice. It can
lead to broken window syndrome,4 making it gradually feel normal and acceptable to
have buggy behaviour. This lingering bad behaviour can mask the causes of other bugs
you’re hunting.

KEY ➤ Fix bugs as soon as you can. Don’t let them pile up until you’re
stuck in a code cesspit.

One project I worked on was demoralisingly bad in this respect. When given a bug
report to fix, before managing to reproduce the initial bug you’d encounter 10 different
issues that all also needed to be fixed, and may (or may not) have contributed to the bug
in question.

Oblique Strategies
Sometimes you can bash your head against a gnarly problem for hours and get nowhere.
Try an oblique strategy to avoid getting stuck in a debugging rut.
Take a break

It’s important to learn when you should simply stop and walk away. A break can
give you fresh perspective.

This can help you to think more carefully. Rather than running headlong back into
the code, take a break to consider the problem description and code structure.

Chapter 10: Bug Hunting | 81

http://en.wikipedia.org/wiki/Broken_windows_theory

5. Andrew Hunt and David Thomas, The Pragmatic Programmer (Boston: Addison Wesley, 1999).

Go for a walk to force you to step away from the keyboard. (How many times have
you had those “eureka” moments in the shower? Or in the bathroom?! It happens
to me all the time.)

Explain it to someone else
Describe the problem to someone else. Often when describing any problem (in‐
cluding a bug hunt) to another person, you instantly explain it to yourself and solve
it.

Failing another actual, live person, you can follow the rubber duck strategy described
by Andrew Hunt and David Thomas.5 Talk to an inanimate object on your desk to
explain the problem to yourself. It’s only a problem if the rubber duck starts to talk
back.

Don’t Rush Away
Once you find and fix a bug, don’t rush mindlessly on. Stop for a moment and consider
if there are other related problems lurking in that section of code. Perhaps the problem
you’ve fixed is a pattern that repeats in other sections of the code. Is there further work
that you could do to shore up the system with the knowledge you just gained?

Keep notes on which parts of the code harbour more faults. There are always hotspots.
These hotspots are either the 20% of the code that 80% of users actually run, or a sign
of ropey, badly written software. When you have spent enough time gathering notes, it
may be worth devoting time to those problem areas: perhaps a rewrite, a deep code
review, or an extra unit test harness.

Non-Reproducible Bugs
Sometimes you discover a bug for which you can’t easily form a set of reproduction
steps. The bug defies logic and reason; it’s not possible to determine the cause-and-
effect. These nasty, intermittent bugs seem to be caused by cosmic rays rather than any
direct user interaction. They take ages to track down, often because we never get a chance
to see them on a development machine, or when running in a debugger.

How do we go about finding, and fixing, these fiends?

• Keep records of the factors that contribute to the fault. Over time you may spot a
pattern that will help you identify the common causes.

• As you get more information, start to draw conclusions. Perhaps you can identify
more data points to keep in the record.

82 | Chapter 10: Bug Hunting

• Consider adding more logging and assertions in beta or release builds to help gather
information from the field.

• If it’s a really pressing problem, set up a test farm to run long-running soak tests. If
you can automate driving the system in a representative manner, then you can
accelerate the hunting season.

There are a few things that are known to contribute to such unreliable bugs. You may
find they provide hints for where to start investigating:
Threaded code

As threads entwine and interact in nondeterministic and hard-to-reproduce ways,
they often contribute to freaky intermittent failure.

Often this behaviour is very different when you pause the code in a debugger, so it
is hard to observe forensically. Logging can also change the interaction of the
threads and mask the problem. And non-optimised, “debug,” builds of your soft‐
ware can perform rather differently from the “release” builds.

These are affectionately known as Heisenbugs, after the physicist Werner Heisen‐
berg’s “observer effect” in quantum mechanics. The act of observing a system can
alter its state.

Network interaction
Networks are, by definition, laggy and may drop or stall at any point in time. Most
code presumes that all access to local storage works (because, most often, it does).
This is careless, and will not scale to storage over a network, where failures and
intermittent long load times are common.

The variable speed of storage
It’s not just network latency that can cause this. Slow spinny disks, or database
operations, may change the behaviour of your program, especially if you are bal‐
anced precariously on the edge of timeout thresholds.

Memory corruption
Oh, the humanity! When your aberrant code overwrites part of the stack or the
heap, you can see a myriad of unreproducible strangenesses that are very hard to
detect. Software archaeology is often the easiest route to diagnose these errors.

Global variables/singletons
Hardcoded communication points can be a clearinghouse for unpredictable be‐
haviour. It can be impossible to reason about the correctness of your code, or predict
what will happen, when anyone at any time can reach into a piece of global state
and adjust it under your feet.

Chapter 10: Bug Hunting | 83

Conclusion
Debugging isn’t easy. But it’s our own fault. We wrote the bugs.

Effective debugging is an essential skill for any programmer.

Questions

1. Assess how much of your time you think you spend debugging. Consider every
activity that isn’t writing a fresh line of code in a system.

2. Do you spend more time debugging new lines of code you have written, or on
adjustments to existing code?

3. Does the existence of a suite of unit tests for existent code change the amount of
time you spend debugging, or the way you debug?

4. Is it realistic to aim for bug-free software? Is this achievable? When is it appropriate
to genuinely aim for bug-free software? What determines the optimal amount of
“bugginess” in a product?

See also

• Expected the Unexpected Most bugs are caused by failing to account for all possible
conditions in the code’s control flow.

• The Ghost of a Codebase Past Discovering bugs in your old code forces you to visit
and appraise your old work.

• Testing Times Use unit tests to document and help fix the bugs you find, and to
prevent future regressions in the code.

Try this….
Next time you face a bug, attempt a more methodical approach to finding the cause.
How can you employ trap laying, binary chop, and sharp tools to more effectively track
it?

84 | Chapter 10: Bug Hunting

Chapter 10: Bug Hunting | 85

CHAPTER 11

Testing Times

Quality is free, but only to those who are willing to pay heavily for it.
— Tom DeMarco and Timothy Lister

 Peopleware: Productive Projects and Teams

Test-driven development (TDD): to some it’s a religion. To some, it’s the only sane way
to develop code. To some, it’s a nice idea that they can’t quite make work. And to others,
it’s a pure waste of effort.

What is it, really?

TDD is an important technique for building better software, although there is still con‐
fusion over what it means to be test driven, and over what a unit test really is. Let’s break
through this and discover a healthy approach to developer testing, so we can write better
code.

Why Test?
It’s a no-brainer: we have to test our code.

Of course you run your new program to see whether it works. Few programmers are
confident enough, or arrogant enough, to write code and release it without trying it out
somehow. When you do see corners cut, the code rarely works the first time: problems
are found, either by QA, or—worse—when a customer uses it.

Shortening the Feedback Loop
To develop great software, and develop it well, programmers need feedback. We need
to receive feedback as frequently and as quickly as possible. Good testing strategies
shorten the feedback loop, so we can work most effectively:

87

• We know that our code works when it’s used in the field and returns accurate results
to users. If it doesn’t, they complain. If that was our only feedback loop, software
development would be very slow and very expensive. We can do better.

• To ensure correctness before we ship, the QA team tests candidate releases. This
pulls in the feedback loop; the answers come back more quickly, and we avoid
making expensive (and embarrassing) mistakes in the field. But we can still do
better.

• We want to check that our new subsystems work before integrating them into the
project. Typically, a developer will spin up the application and execute their new
code as best they can. Some code can be rather inconvenient to test like this, so it’s
possible to create a small separate test harness application that exercises the code.
These development tests again reduce the feedback loop; now we find out whether
our code is functioning correctly as we work on it, not later on. But we can still do
better.

• The subsystems are comprised of smaller units: classes and functions. If we can
easily get feedback on correctness and quality of code at this level, then we reduce
the feedback loop again. Tests at the smallest level give the fastest feedback.

The shorter the feedback loop, the faster we can iterate over design changes, and the
more confident we can feel about our code. The sooner we learn that there’s a problem,
the easier and less expensive the fix is, because our brain is still engaged with the problem
and we recall the shape of the code.

KEY ➤ To improve our software development we need rapid feedback,
to learn of problems as soon as they appear. Good testing strate‐
gies provide short feedback loops.

Manual tests (either performed by a QA team, or by the programmers inspecting their
own handiwork) are laborious and slow. To be at all comprehensive, it requires many
individual steps that need repeating each time you make a minor adjustment to the
code.

But hang on, isn’t repeated laborious work something that computers are good at? Surely
we can use the computer to run the tests for us automatically. That speeds up the running
of the tests, and helps to close the feedback loop further.

Automated tests with a short feedback loop don’t just help you to develop the code.
Once you have a selection of tests, you needn’t throw them away. Stash them in a test
pool, and keep running them. In this way your test code works like a canary in a mine
—signalling any problem before it becomes fatal. If in the future someone (even you on
a bad day) modifies the code to introduce errant behaviour (a functional regression),
the test will point this out immediately.

88 | Chapter 11: Testing Times

1. David Janzen and Hossein Saiedian, “Test-Driven Development Concepts, Taxonomy, and Future Direction,”
Computer 38:9 (2005).

Code That Tests Code
So the ideal is to automate our development testing as much as possible: work smarter,
not harder. Your IDE can highlight syntax errors as you type—wouldn’t it be great if it
could show you test breakages at the same speed?

Computers can run tests rapidly and repeatedly, reducing the feedback loop. Although
you can automate desktop applications with UI testing tools, or use browser-based
technology, most often development tests see the coder writing a programmatic test
scaffold that invokes their production code (the SUT: System Under Test), prodding it
in particular ways to check that it responds as expected.

We write code to test code. Very meta.

Yes, writing these tests takes up the programmer’s precious time. And yes, your confi‐
dence in the code is only as good as the quality of the tests that you write. But it’s not
hard to adopt a test strategy that improves the quality of your code and makes it safer
to write. This helps reduce the time it takes you to develop code: more haste, less speed.
Studies have shown that a sound testing strategy substantially reduces the incidence of
defects.1

It is true that a test suite can slow you down if you write brittle, hard to understand tests,
and if your code is so rigid that a change in one method forces a million tests to be re-
written. That is an argument against bad test suites, not against testing in general (in
the same way that bad code is not an argument against programming in general).

Who Writes the Tests?
In the past some have argued for the role of a dedicated “unit-test engineer” who spe‐
cialises in verifying the code of an upstream programmer. But the most effective ap‐
proach is for the programmers themselves to write their own development tests.

After all, you’d be testing your code as you write it, anyway.

KEY ➤ We need tests at all levels of the software stack and develop‐
ment process. However, programmers particularly require tests
at the smallest scope possible, to reduce the feedback loop and
help develop high-quality software as quickly and easily as pos‐
sible.

Chapter 11: Testing Times | 89

Types of Tests
There are many kinds of tests, and often when you hear someone talk about a “unit test”
they may very likely mean some other kind of code test. We employ:
Unit tests

Unit tests specifically exercise the smallest “units” of functionality in isolation, to
ensure that they each function correctly. If it’s not driving a single unit of code
(which could be one class or one function) in isolation (i.e., without involving any
other “units” from the production code), then it’s not a unit test.

This isolation specifically means that a unit test will not involve any external access:
no database, network, or filesystem operations will be run.

Unit-test code is usually written using an off-the-shelf “xUnit” style framework.
Every language and environment has a selection of these, and some have a de facto
standard. There’s nothing magical about a testing framework, and you can get a
long way writing unit tests with just the humble assert. We’ll look at frameworks
later.

Integration tests
These tests inspect how individual units integrate into larger cohesive sets of co‐
operating functionality. We check that the integrated components glue together and
interoperate correctly.

Integration tests are often written in the same unit test frameworks; the difference
is simply the scope of the system under test. Many people’s “unit tests” are really
integration-level tests, dealing with more than one object in the SUT. In truth, what
we call this test is nowhere near as important as the fact that the test exists!

System tests
Otherwise known as end-to-end tests, these can be seen as a specification of the
required functionality of the entire system. They run against the fully integrated
software stack, and can be used as acceptance criteria for the project.

System tests can be implemented as code that exercises the public APIs and entry
points to the system, or they may drive the system from outside using a tool like
Selenium, a web browser automator. It can be hard to realistically test all of an
application’s functionality through its UI layer, in which case we employ subcuta‐
neous tests that drive the code from the layer just below the interface logic.

Because of the larger scope of system tests, the full suite of tests can take considerable
time to execute. There may be much network traffic involved or slow database access
to account for. The set-up and tear-down costs can be huge to get the SUT ready to
run each system test.

90 | Chapter 11: Testing Times

Each level of developer tests establishes a number of facts about the SUT, and constructs
a series of test cases that prove that these facts hold.

There are different styles of test-driven development. A project can be driven by a unit-
test mentality: where you would expect to see more unit tests than integration tests, and
more integration tests than system tests. Or it may be driven by a system-test mentality:
the reverse, with far fewer unit tests. Each kind of test is important in its own right, and
all should be present in a mature software project.

When to Write Tests
The term TDD (that is, test-driven development) is conflated with test-first development,
although there really are two separate themes here. You can “drive” your design from
the feedback given by tests without religiously writing those tests first.

However, the longer you leave it to write your tests, the less effective those tests will be:
you’ll forget how the code is supposed to work, fail to handle edge cases, or perhaps
even forget to write tests at all. The longer you leave it to write your tests, the slower
and less effective your feedback loop will be.

The test-first “TDD” approach is commonly seen in XP circles. The mantra is: don’t
write any production code unless you have a failing test. The test-first TDD cycle is:

1. Determine the next piece of functionality you need. Write a test for your new func‐
tionality. Of course, it will fail.

2. Only then implement that functionality, in the simplest way possible. You know
that your functionally is in place when the test passes. As you code, you may run
the test suite many times. Because each step adds a small new part of functionality,
and therefore a small test, these tests should run rapidly.

3. This is the important part that’s often overlooked: now tidy up the code. Refactor
unpleasant commonality. Restructure the SUT to have a better internal structure.
You can do all this with full confidence that you won’t break anything, as you have
a suite of tests to validate against.

4. Go back to step 1 and repeat until you have written passing test cases for all of the
required functionality.

This is a great example of a powerful, and gloriously short, feedback loop. It’s often
referred to as the red-green-refactor cycle in honour of unit-test tools that show failing
tests as a red progress bar, and passing tests as a green bar.

Even if you don’t honour the test-first mantra, keep your feedback loop short and write
unit tests during, or very shortly after, a section of code. Unit tests really do help “drive”
our design: not only does it ensure that everything is functionally correct and prevent
regressions, it’s also a great way to explore how a class API will be used in production

Chapter 11: Testing Times | 91

2. Without good code structure, an attempt to write a test will help drive you towards better code structure.

—how easy and neat it is. This is invaluable feedback. The tests also stand as useful
documentation of how to use a class once it’s complete.

KEY ➤ Write tests as you write the code under test. Do not postpone test
writing, or your tests will not be as effective.

This test-early, test-often approach can be applied at the unit, integration, and system
level. Even if your project has no infrastructure for automated system tests, you can still
take responsibility and verify the lines of code you write with unit tests. It’s cheap and,
given good code structure, it’s easy.2

Another essential time to write a test is when you have to fix a bug in the production
code. Rather than rush out a code fix, first write a failing unit test that illustrates the
cause of the bug. Sometimes the act of writing this test serves to show other related flaws
in the code. Then apply your bugfix, and make the test pass. The test enters your test
pool, and will serve to ensure that the bug doesn’t reappear in the future.

When to Run Tests
You can see a lot by just looking.

— Yogi Berra

Clearly, if you develop using TDD, you will be running your tests as you develop each
feature to prove that your implementation is correct and sufficient.

But that is not the only life of your test code.

Add both the production code and its tests to version control. Your test is not thrown
away, but joins the suite of existent tests. It lives on to ensure that your software continues
to work as you expect. If someone later modifies the code badly, they’ll be alerted to the
fact before they get very far.

All tests should run on your build server as part of a continuous integration toolchain.
Unit tests should be run by developers frequently on their development machines. Some
development environments provide shortcuts to launch the unit tests easily; some sys‐
tems scan your filesystem and run the unit tests when files change. However, I prefer
to bake tests right into the build/compile/run process. If my unit-test suite fails, the code
compilation is considered to have failed and the software cannot be run. This way, the
tests are not ignorable. They run every time the code is built. When invoked manually,
developers can forget to run tests, or will “avoid the inconvenience” whilst working.

Injecting the tests directly into the build process also encourages tests to be kept small,
and to run fast.

92 | Chapter 11: Testing Times

KEY ➤ Encourage tests to be run early and often. Bake them into your
build process.

Integration and system tests may take too long to run on a developer’s machine every
compilation. In this case, they may justifiably run only on the CI build server.

Remember that code-level, automated testing doesn’t remove the need for a human QA
review before your software release. Exploratory testing by real testing experts is in‐
valuable, no matter how many unit, integration, and system tests you have in place. An
automated suite of tests avoids introducing those easily fixable, easily preventable mis‐
takes that would waste QA’s time. It means that the things the QA guys do find will be
really nasty bugs, not just simple ones. Hurrah!

KEY ➤ Good development tests do not replace thorough QA testing.

What to Test
Test whatever is important in your application. What are your requirements?

Your tests must, naturally, test that each code unit behaves as required, returning accu‐
rate results. However, if performance is an important requirement for your application,
then you should have tests in place to monitor the code’s performance. If your server
must answer queries within a certain time frame, include tests for this condition.

You may want to consider the coverage of your production code that the test cases
execute. You can run tools to determine this. However, this tends to be an awful metric
to chase after. It can be a huge distraction to write test code that tries to laboriously cover
every production line; it’s more important to focus on the most important behaviours
and system characteristics.

Good Tests
Writing good tests requires practice and experience; it is perfectly possible to write bad
tests. Don’t be overly worried about this at first—it’s most important to actually start
writing tests than to be paralysed by fear that your tests are rubbish. Start writing tests
and you’ll start to learn.

Bad tests become baggage: a liability rather than an asset. They can slow down code
development if they take ages to run. They can make code modification difficult if a
simple code change breaks many hard-to-read tests.

The longer your tests take to run, the less frequently you’ll run them, the less you’ll use
them, the less feedback you’ll get from them. The less value they provide.

Chapter 11: Testing Times | 93

I once inherited a codebase that had a large suite of unit tests; this seemed a great sign.
Sadly, those tests were effectively worse legacy code than the production code. Any code
modification we made caused several test failures in hundreds-of-lines-long test meth‐
ods that were intractable, dense, and hard to understand. Thankfully, this is not a com‐
mon experience.

KEY ➤ Bad tests can be a liability. They can impede effective develop‐
ment.

These are the characteristics of a good test:

• Short, clear name, so when it fails you can easily determine what the problem is
(e.g., new list is empty)

• Maintainable: it is easy to write, easy to read, and easy to modify
• Runs quickly
• Up-to-date
• Runs without any prior machine configuration (e.g., you don’t have to prepare your

filesystem paths or configure a database before running it)
• Does not depend on any other tests that have run before or after it; there is no

reliance on external state, or on any shared variables in the code
• Tests the actual production code (I’ve seen “unit tests” that worked on a copy of the

production code—a copy that was out of date. Not useful. I’ve also seen special
“testing” behaviour added to the SUT in test builds; this, too, is not a test of the real
production code.)

These are some common descriptions of badly constructed tests:

• Tests that sometimes run, sometimes fail (often this is caused by the use of threads,
or racy code that relies on specific timing, by reliance on external dependencies,
the order of tests being run in the test suite, or on shared state)

• Tests that look awful and are hard to read or modify
• Tests that are too large (large tests are hard to understand, and the SUT clearly isn’t

very isolatable if it takes hundreds of lines to set up)
• Tests that exercise more than one thing in a single test case (a “test case” is a singu‐

lar thing)
• Tests that attack a class API function by function, rather than addressing individual

behaviours
• Tests for third-party code that you didn’t write (there is no need to do that unless

you have a good reason to distrust it)

94 | Chapter 11: Testing Times

• Tests that don’t actually cover the main functionality or behaviour of a class, but
that hide this behind a raft of tests for less important things (if you can do this, your
class is probably too large)

• Tests that cover pointless things in excruciating detail (e.g., property getters and
setters)

• Tests that rely on “white-box” knowledge of the internal implementation details of
the SUT (this means you can’t change the implementation without changing all the
tests)

• Tests that work on only one machine

Sometimes a bad test smell indicates not (only) a bad test, but also bad code under test.
These smells should be observed, and used to drive the design of your code.

What Does a Test Look Like?
The test framework you use will determine the shape of your test code. It may provide
a structured set-up, and tear-down facility, and a way to group individual tests into larger
fixtures.

Conventionally, in each test there will be some preparation, you then perform an op‐
eration, and finally validate the result of that operation. This is commonly known as the
arrange-act-assert pattern. For unit tests, at the assert stage we typically aim for a single
check—if you need to write multiple assertions then your test may not be performing
a single test case.

Here’s an example Java unit test method that follows this pattern:

@Test
public void stringsCanBeCapitalised()
{
 String input = "This string should be uppercase.";
 String expected = "THIS STRING SHOULD BE UPPERCASE.";

 String result = input.toUpperCase();

 assertEquals(result, expected);
}

Arrange: we prepare the input
Act: we perform the operation
Assert: we validate the results of that operation

Maintaining this pattern helps keep tests focused and readable.

Chapter 11: Testing Times | 95

Of course, this test alone does not cover all of the potential ways to use and abuse String
capitalisation. We need more tests to cover other inputs and expectations. Each test
should be added as a new test method, not placed into this one.

Test Names
Focused tests have very clear names that read as simple sentences. If you can’t easily
name a test case, then your requirement is probably ambiguous, or you are attempting
to test multiple things.

The fact that the test method is a test is usually implicit (because of an attribute like the
@Test we saw earlier), so you needn’t add the word test to the name. The preceding
example need not be called testThatStringsCanBeCapitalised.

Imagine that your tests are read as specifications for your code; each test name is a
statement about what the SUT does, a single fact. Avoid ambiguous words like “should,”
or words that don’t add value like “must.” Just as when we create names in our production
code, avoid redundancy and unnecessary length.

Test names need not follow the same style conventions as production code; they effec‐
tively form their own domain-specific language. It’s common to see much longer meth‐
od names and the liberal use of underscores, even in languages like C# and Java where
they are not idiomatic (the argument being strings_can_be_capitalised requires less
squinting to read).

The Structure of Tests
Ensure that your test suite covers the important functionality of your code. Consider
the “normal” input cases. Consider also the common “failure cases.” Consider what
happens at boundary values, including the empty or zero state. It’s a laudable goal to
aim to cover all requirements and all the functionality of your entire system with system
and integration tests, and cover all code with unit tests. However, that can require some
serious effort.

Do not duplicate tests: it adds effort, confusion, and maintenance cost. Each test case
you write verifies one fact; that fact does not need to be verified again, either in a second
test, or as part of the test for something else. If your first test case checks a precondition
after constructing an object, then you can assume that this precondition holds in every
other test case you write—there is no need to reproduce the check every time you con‐
struct an object.

A common mistake is to see a class with five methods, and think that you need five tests,
one to exercise each method. This is an understandable (but naïve) approach. Function-
based tests are rarely useful, as you cannot generally test a single method in isolation.
After calling it, you’ll need to use other methods to inspect the object’s state.

96 | Chapter 11: Testing Times

3. The Catch unit test framework (available from GitHub).

Instead, write tests that go through the specific behaviours of the code. This leads to a
far more cohesive and clear set of tests.

Maintain the Tests
Your test code is as important as the production code, so consider its shape and structure.
If things get messy, clean it, and refactor it.

If you change the behaviour of a class so its tests fail, don’t just comment out the tests
and run away. Maintain the tests. It can be tempting to “save time” near deadlines by
skipping test cleanliness. But rushed carelessness here will come back to bite you.

On one project, I received an email from a colleague: I was working on your XYZ class,
and the unit tests stopped working, so I had to remove them all. I was rather surprised
by this, and looked at what tests had been removed. Sadly, these were important test
cases that were clearly pointing out a fundamental problem with the new code. So I
restored the test code and “fixed” the bug by backing out the change. We then worked
together to craft a new test case for the required functionality, and then reimplemented
a version that satisfied the old tests and the new.

KEY ➤ Maintain your test suite, and listen to it when it talks to you.

Picking a Test Framework
The unit or integration test framework you use shapes your tests, dictating the style of
assertions and checks you can use, and the structure of your test code (e.g., are the test
cases written in free functions, or as methods within a test fixture class?).

So it’s important to pick a good unit test framework. It doesn’t need to be complex or
heavyweight. Indeed, it’s preferable to not choose an unwieldy tool. Remember, you can
get very very far with the humble assert. I often start testing new prototype code with
just a main method and a series of asserts.

Most test frameworks follow the “xUnit” model which came from Kent Beck’s original
Smalltalk SUnit. This model was ported and popularised with JUnit (for Java) although
there are broadly equivalent implementations in most every language—for example,
NUnit (C#) and CppUnit (C++). This kind of framework is not always ideal; xUnit style
testing leads to non-idiomatic code in some languages (in C++, for example, it’s rather
clumsy and anachronistic; other test frameworks can work better—check out Catch as
a great alternative3).

Some frameworks provide pretty GUIs with red and green bars to clearly indicate suc‐
cess or failure. That might make you happy, but I’m not a big fan. I think you shouldn’t

Chapter 11: Testing Times | 97

http://github.com/philsquared/Catch

need a separate UI or a different execution step for development tests. They should
ideally be baked right into your build system. The feedback should be reported instantly
like any other code error.

System tests tend to use a different form of framework, where we see the use of tools
like Fit and Cucumber. These tools attempt to define tests in a more humane, less pro‐
grammatic manner, allowing nonprogrammers to participate in the test/specification-
wring process.

No Code Is an Island
When writing unit tests, we aim to place truly isolated units of code into the “system
under test.” These units can be instantiated without the rest of the system being present.

A unit’s interaction with the outside world is expressed through two contracts: the in‐
terface it provides, and the interfaces it expects. The unit must not depend on anything
else—specifically not on any shared global state or singleton objects.

KEY ➤ Global variables and singleton objects are anathema to reliable
testing. You can’t easily test a unit with hidden dependencies.

The interface that a unit of code provides is simply the methods, functions, events, and
properties in its API. Perhaps it also provides some kind of callback interface.

The interfaces it expects are determined by the objects it collaborates with through its
API. These are the parameter types in its public methods or any messages it subscribes
to. For example, an Invoice class that requires a Date parameter relies on the date’s
interface.

The objects that a class collaborates with should be passed in as constructor parameters,
a practice known as parameterise from above. This allows your class to eschew hard-
wired internal dependencies on other code, instead having the link configured by its
owner. If the collaborators are described by an interface rather than a concrete type,
then we have a seam through which we can perform our tests; we have the ability to
provide alternative test implementations.

This is an example of how tests tend to lead to better factored code. It forces your code
to have fewer hardwired connections and internal assumptions. It’s also good practice
to rely on a minimal interface that describes a specific collaboration, rather than on an
entire class that may provide much more than the simple interface required.

KEY ➤ Factoring your code to make it “testable” leads to better code
design.

98 | Chapter 11: Testing Times

http://fit.c2.com/
http://cukes.info

When you test an object that relies on an external interface, you can provide a “dummy”
version of that interface in the test case. Terms vary in testing circles, but often these
are called test doubles. There are various forms of doubles, but we most commonly use:
Dummies

Dummy objects are usually empty husks—the test will not invoke them, but they
exist to satisfy parameter lists.

Stubs
Stub objects are simplistic implementations of an interface, usually returning a
canned answer, perhaps also recording information about the calls into it.

Mocks
Mock objects are the kings of test double land, a facility provided by a number of
different mocking libraries. A mock object can be created automatically from a
named interface, and then told up-front about how the SUT will use it. A SUT test
operation is performed, and then you can inspect the mock object to verify the
behaviour was as expected.

Different languages have different support for mocking frameworks. It’s easiest to
synthesize mocks in languages with reflection.

Sensible use of mock objects can make tests simpler and clearer. But, of course, you
can have too much of a good thing. Tests that are encumbered by complex use of
many mock objects can become very tricky to reason about, and hard to maintain.
Mock mania is another common smell of bad test code, and may highlight that the
structure of the SUT is not correct.

Conclusion
If you don’t care about quality, you can meet any other requirement.

— Gerald M. Weinberg

Tests help us to write our code. They help us to write good code. They help maintain
the quality of our code. They can drive the code design, and serve to document how to
use it. But tests don’t solve all problems with software development. Edsger Dijkstra
said: Program testing can be used to show the presence of bugs, but never to show their
absence.

No test is perfect, but the existence of tests serves to increase confidence in the code you
write, and in the code you maintain. The effort you put into developer testing is a trade-
off; how much effort do you want to invest in writing tests to gain confidence? Re‐
member that your test suite is only as good as the tests you have in it. It is perfectly
possible to miss an important case; you can deploy into production and still let a problem
slip through. For this reason, test code should be reviewed as carefully as production
code.

Chapter 11: Testing Times | 99

Nonetheless, the punchline is simple: if code is important enough to be written, it is
important enough to be tested. So write development tests for your production code.
Use them to drive the design of your code. Write the tests as you write the production
code. And automate the running of those tests.

Shorten the feedback loop.

Testing is fundamental and important. This chapter can only really scratch the surface,
encourage you to test, and prompt you to find out more about good testing techniques.

Questions

1. How many styles of testing have you been exposed to?
2. Which is the best development test technique: test-first, or test (very shortly) after

coding? Why? How has your experience shaped this answer?
3. Is it a good idea to employ a specialist unit-test writing engineer to help craft a high-

quality test suite?
4. Why do QA departments traditionally not write much test code, and generally focus

on running through test scripts and performing exploratory testing?
5. How can you best introduce test-driven development into a codebase that has never

received automated testing? What kind of problems would you encounter?
6. Investigate behaviour-driven development. How does it differ from “traditional”

TDD? What problems does it solve? Does it complement or replace TDD? Is this a
direction you should move your testing in?

See also

• Getting One Past the Goalpost Programmer testing improves confidence in the re‐
leases we give to the QA team for their testing purposes.

• Keeping Up Appearances Good code layout and presentation is as essential in test
code as it is in production code.

• Expect the Unexpected It is sensible to include test cases for the “less likely” scenarios
that your code may not be expecting.

• Bug Hunting Use tests to guide your debugging process.
• A Tale of Two Systems An example of how unit tests help to improve code quality.

Try this….
If you don’t already, start to write unit tests for your code today. If you already use tests,
pay attention to how they inform and drive your code design.

100 | Chapter 11: Testing Times

Chapter 11: Testing Times | 101

CHAPTER 12

Coping with Complexity

Simplicity is a great virtue but it requires hard work to achieve it and
education to appreciate it. And to make matters worse: complexity sells better.

— Edsger Dijkstra

Code is complex. Complexity is a battle that we all have to fight daily.

Of course, your code is great, isn’t it? It’s other people’s code that is complex.

Well, no. Not always. Admit it. It’s all too easy to write something complicated. It happens
when you’re not paying attention. It happens when you don’t plan ahead sufficiently. It
happens when you start working on a “simple” problem, but soon you’ve discovered so
many corner cases that your simple algorithm has grown to reflect a labyrinth, ready to
entrap an unwary programmer.

My observation is that software complexity stems from three main sources. Blobs. And
lines.

And what you get when you combine them: people.

103

In this chapter, we’ll take a look at each of these and see what we can learn about writing
better software.

Blobs
The first part of software complexity we should consider relates to blobs: that is, the
components we write. The size and number of those blobs determine complexity.

Some software complexity is a natural consequence of size; the larger a project becomes,
the more blobs we need, the harder it is to comprehend, and the harder it is to work
with. This is necessary complexity.

But there is plenty of unnecessary complexity that causes hassle. I’ve lost count of the
times I have opened a C++ header file, and balked at thousands of lines in a single class
declaration. How is a mere mortal supposed to be able to understand what such a beast
does? This is surely unnecessary complexity.

Sometimes these large monsters are autogenerated by code “wizards” (notable examples
are GUI construction tools). However, it’s not just tools that are to blame. Serious code
hooligans can produce these code monsters without a second thought. (In fact, the lack
of thought is often the cause of such abominations.)

So we need to manage our necessary complexity. And educate—or shoot—our unnec‐
essary programmers.

It’s important to realise that size itself is not the enemy. If you have a software system
that has to do three things, then you need to put code in there to do those three things.
If you remove some of that code in order to reduce complexity, then you’ll have different
problems. (That’s being simplistic rather than simple, and it’s not a good thing.)

No, size itself is not the problem. We need enough code to meet requirements. The
problem is how we structure that code. It’s how that size is distributed.

Imagine you start working on a vast system. And you discover that the class structure
of the beast is like the image shown here:

104 | Chapter 12: Coping with Complexity

Three whole classes! Now, is that a complex system or not?

On one level, it doesn’t seem complicated at all. There are only three parts! How could
that be hard to understand? And the software design has the added benefit of looking
like Mickey Mouse, so it must be good.

In fact, this appears to be a beautifully simple design. You could describe it to someone
in seconds.

But, of course, each of those parts will be so large and dense, presumably with so much
interconnection and spaghetti logic that they are likely to be practically impossible to
work with. So this is almost certainly a very complex system, hidden behind a simplis‐
tic design.

Clearly, a better structure—one that is simpler to understand, and simpler to maintain
—would consider those three sections as “modules” and further subdivide them into
other parts: packages, components, classes, or whatever abstraction makes sense. Some‐
thing more like the following image:

Immediately, this feels better. It looks like a lot of small (so understandable, and likely
simpler) components connected into a larger whole. Our brains are suited to dividing
problems into hierarchies like this and reasoning about the problems when thus ab‐
stracted.

Chapter 12: Coping with Complexity | 105

The consequences of such a design are increased comprehension and greater modifia‐
bility (you can work on a part of the system’s functionality by identifying the smaller
part that relates to it, rather than having to roll your sleeves up and dive into a single
behemoth class). We prefer classes with better cohesion that do a small number of things
well—preferably just one thing.

Of course, the trick to making this work—the trick that enables a design like this to
actually be simple rather than just look simple—is to ensure that each of the blobs has
the correct roles and responsibilities. That is, a single responsibility resides in a single
part of the system rather than smeared across it.

Case Study: Reducing Blob Complexity
One of my favourite recent reductions in software complexity was a section of code with
two very large objects that were so interrelated they were practically one and the same
class.

I started chipping away at one of the objects, realising that it contained hundreds of
unused “helper” methods. I mercilessly removed them; an enjoyable experience not
unlike deflating a helium balloon. And so for effect, I started speaking in an excitable
high voice. This was code becoming simpler.

Now that I could see the remainder of the object, it was clear that the majority of its
methods simply forwarded to the partner. So I removed those methods and made all
calling code just use the other object. There were just two remaining methods, one of
which belonged on the partner anyway, and one which should have been a simple non-
member function.

106 | Chapter 12: Coping with Complexity

The result?

A far simpler class design, I think you’ll agree.

Of course, the next step was to decompose the remaining blob. But that’s another story.
(And nowhere near as interesting.)

Lines
We’ve considered blobs: the components and objects that we create. To paraphrase John
Donne: No code is an island. Complexity is not borne solely from the blobs, but from
the way they connect.

In general, software designs are simpler when there are fewer lines. The more connec‐
tions between blobs (this is known as greater coupling if you’re talking like a proper
grown-up), the more rigid a design is, and the more interoperation you have to com‐
prehend (and fight) as you work on a system.

At the most basic level, a system comprised of many objects, none of which are con‐
nected at all, would appear the simplest. But it is not a single system at all. It’s a number
of separate systems.

As we add connections, we create actual software systems. As we add more blobs and,
crucially, lines between them, the more complex our systems become.

The structure of our software interconnections dramatically affects our ease of working
with it. Consider the following structures, which are based on real examples I have been
working on.

Chapter 12: Coping with Complexity | 107

What’s your reaction to them? Which looks simpler? I’ll admit that working on the last
one almost caused my head to explode.

When we map out connections, we see that complexity often springs from cycles in our
graph. Cyclical dependencies are generally the most complex relationships to consider.
When objects are codependent, their structure is rigid, not easy to change, and often
very hard to work with. A change to one object usually requires a change to the other.
The objects effectively become one entity; one that’s harder to maintain.

108 | Chapter 12: Coping with Complexity

These kinds of relationships can be simplified by breaking one of the links. Perhaps by
introducing new abstract interfaces to reduce the coupling between objects.

This kind of structure enhances composability, introduces flexibility, and fosters testa‐
bility (you can write testing versions of components behind those abstract interfaces).
We can use well-named interfaces to make those relationships descriptive.

One of the nastiest systems I’ve had to work with in a long time looked like this:

It seems a superficially simple model: one parent object represents “the system” and
creates all of the child objects. However, each of those objects was given a back-reference
to the parent, so they could access each other. This design effectively allowed every child-
object to rely on (and become closely coupled with) every sibling, locking the entire
system down into one rigid shape.

Michael Feathers described this to me as the known anti-pattern distributed self. I had
another name for it, but it’s not polite enough to print.

And Finally: People
So software complexity depends on the structure of our blobs and lines.

But it’s important to observe that blobs and lines don’t create themselves. Those struc‐
tures are not intrinsically to blame. It is the people writing the code who are responsible
(yes, that’s you, gentle reader). It is the programmer who has the power to introduce

Chapter 12: Coping with Complexity | 109

incredible complexity, or to reduce a nasty problem down to an elegant and simple
solution.

How often do people set out to write nasty, complex code? You may think that your
corrupt coworkers are planning to introduce more stress in your life with their Ma‐
chiavellian code. But complexity is generally accidental, rarely something someone adds
wilfully.

It’s often the product of history: programmers extend and extend and extend the system,
with no time allowed for refactoring. Or the “prototype to throw away” turns into a
production system. By the time it’s being used, there’s no chance to take it apart and
start again.

Software complexity is caused by humans working in real-world situations. The only
way we can reduce complexity is by taking charge of it, and trying to prevent work
pressures from forcing our code into unworkable structures.

Conclusion
In this little saunter through software complexity territory, we’ve seen that complexity
arises from blobs (our software components), lines (the connections between those
components), but mostly from the people who construct these software monstrosities.

Oh, and of course, it comes from the Singleton design pattern. But no one uses that
anymore, do they?

Questions

1. Why is simplicity in code design better? Is there a difference between simplicity in
design and in code implementation?

2. How do you strive for simplicity in your code? How do you know you’ve achieved
it?

3. Does the nature of connections matter as much as the number of connections?
What connections are “better” than others?

4. If software complexity stems from social problems, how can we address it?
5. How can you tell the difference between necessary and unnecessary complexity?
6. If it’s true that many programmers do know that their software designs should be

simpler, how can we encourage them to craft simpler code?

See also

• Keep It Simple The flip side of complexity: simplicity. This chapter covers some
ideas for constructing simple designs.

• People Power It’s people who create complexity. Aim to work with the kind of people
who reduce, not promote, disorder.

110 | Chapter 12: Coping with Complexity

• Wallowing in Filth Unnecessary complexity leads to messy code that is hard to
understand.

• A Case for Code Reuse Employing the right code reuse strategy can help reduce
complexity. The wrong strategy makes a complex ball of mud.

• A Tale of Two Systems An example of a complex design contrasted with a simpler
one, showing the consequences of each design.

Try this….
Identify the ways that you have introduced unnecessary complexity into your recent
code. How can you address this?

Chapter 12: Coping with Complexity | 111

CHAPTER 13

A Tale of Two Systems

Architecture is the art of how to waste space.
— Philip Johnson

A software system is like a city—an intricate network of highways and hostelries, of
backroads and buildings. There’s a lot going on in a busy city; flows of control are
continually being born, weaving their life through it, and dying. A wealth of data is
amassed, stored, and destroyed. There are a range of buildings: some tall and beautiful,
some squat and functional, others dilapidated, falling into disrepair. As data flows
around them, there are traffic jams and tailbacks, rush hours, and road works. The
quality of your software city is directly related to how much town planning went into
it.

Some software systems are lucky; they have had thoughtful design from experienced
architects. They are structured with a sense of elegance and balance. They are well-
mapped and easy to navigate. Others are not so lucky—a software settlement that grew
up around the accidental gathering of some code. The transport infrastructure is inad‐
equate and the buildings are drab and uninspiring. Placed in the middle of it, you’d get
completely lost trying to find a route out.

Where would your code rather live? What kind of software city would you rather con‐
struct?

In this chapter I will tell the story of two such software cities. It’s a true story and, like
all good stories, this one has a moral at the end. They say experience is a great teacher,
but other people’s experience is even better; if you can learn from these projects’ mistakes
and successes then you might save yourself—and your software—a lot of pain.

These two systems are particularly interesting because they turned out very differently,
despite being superficially very similar, having similar code size, product domain, and
experience level of engineers.

113

In this story, names have been changed to protect the innocent. And the guilty.

The Messy Metropolis
Build up, build up, prepare the road! Remove the obstacles out of the way of my people.

— Isaiah 57:14

The first software system we’ll look at is known as The Messy Metropolis. It’s one I look
back on fondly—not because it was good, or because it was enjoyable to work with, but
because it taught me a valuable lesson about software development when I first came
across it.

I joined the Metropolis project when it was “mature.” It was a complex codebase that
took a fantastically long time to learn. At the micro level, lines of code were messy and
inconsistent. At the macro level, the design was messy and inconsistent.

No one on the team really knew how all of the code worked. The code had grown
“organically” over a period of years (which is a polite way to say that no one had per‐
formed any architectural design of note, and that various bits had been bolted on over
time without much thought). No one had ever stopped to impose a sane structure on
the code. It had grown by acretion; this was a classic example of a system that had
received absolutely no architectural design. But a codebase never has no architecture.
It just has a very poor one.

The Metropolis’ state of affairs was understandable (but not condonable) when you
looked at the history of the company that built it: it was a start-up with heavy pressure
to get many new releases out rapidly. Delays were not tolerable—they would spell fi‐
nancial ruin. The software engineers were driven to get code shipping as quickly as
humanly possible (if not sooner). And so the code had been thrown together in a series
of mad dashes.

KEY ➤ Poor company structure and unhealthy development processes
will be reflected by a poor software architecture.

The Metropolis’ lack of town planning had many consequences, which we’ll see here.
These ramifications were severe and went far beyond what you might naïvely expect of
a bad design.

Incomprehensiblity
The Metropolis’ architecture, with its lack of imposed structure, had led to a software
system that was remarkably tricky to comprehend, and practically impossible to modify.
New recruits coming into the project (like myself) were stunned by the complexity and
unable to get to grips with what was going on.

114 | Chapter 13: A Tale of Two Systems

The bad design encouraged further bad design to be bolted onto it—in fact, it literally
forced you to do so—as there was no way to extend the design in a sane way. The path
of least resistance for the job in hand was always taken; there was no obvious way to fix
the structural problems and so new functionality was thrown in wherever it would cause
less hassle.

KEY ➤ Maintain the quality of a software design. Bad design leads to
further bad design.

Lack of Cohesion
The system’s components were not at all cohesive. Where each one should have had a
single, well-defined role, they each contained a grab bag of functionality that wasn’t
necessarily related. This made it hard to determine why a component existed at all, and
hard to work out where a particular piece of functionality had been implemented in the
system.

Naturally, this made bug fixing a nightmare. It seriously affected the quality and relia‐
bility of the software.

Both functionality and data were located in the wrong place in the system. Many things
you’d consider “core services” were not implemented in the hub of the system, but were
simulated by the outlying modules (at great pain and expense).

Further software archaeology showed why: there had been personality struggles in the
original team, and so a few key programmers had begun to build their own little software
empires. They’d grab the functionality they thought was cool and plonk it into their
module, even if it didn’t belong there. To deal with this they would then make ever-more
baroque communication mechanisms to stitch the control back to the correct place.

KEY ➤ The health of the working relationships in your development
team will feed directly into the software design. Unhealthy rela‐
tionships and inflated egos lead to unhealthy software.

Cohesion and Coupling
Key qualities of software design are cohesion and coupling. This is not a newfangled
“OO” concept; developers have been talking about this for many years (since the emer‐
gence of structured design in the early 1970s). We aim to design systems with compo‐
nents that have:
Strong cohesion

Cohesion is a measure of how related functionality is gathered together and how
well the parts inside a module work as a whole. Cohesion is the glue holding a
module together.

Chapter 13: A Tale of Two Systems | 115

Weakly cohesive modules are a sign of bad decomposition. Each module must have
a clearly defined role, and not be a grab bag of unrelated functionality.

Loose coupling
Coupling is a measure of the interdependency between modules; the amount of
wiring to and from them. In the simplest designs, modules have little coupling and
so are less reliant on one another. Obviously, modules can’t be totally decoupled,
or they wouldn’t be working together at all!

Modules interconnect in many ways, some direct, some indirect. A module can call
functions on other modules or be called by other modules. It may use web services
or facilities published by another module. It may use another module’s data types
or share some data (perhaps variables or files).

Good software design limits the lines of communication to only those that are absolutely
necessary. These communication lines are part of what determines the architecture.

Unnecessary Coupling
The Metropolis had no clear layering. Dependencies between modules were not uni‐
directional; coupling was often bidirectional. Component A would hackily reach into
the innards of component B to get its work done for one task. Elsewhere component B
had hardcoded calls onto component A. There was no bottom layer, or central hub to
the system. It was one monolithic blob of software.

This meant that the individual parts of the system were so tightly coupled that you
couldn’t bring up a skeletal system without creating every single component. Any change
in a single component rippled out, requiring changes in many dependent components.
The code components did not make sense in isolation.

This made low-level testing impossible. Not only were code-level unit tests impossible
to write, but component-level integration tests could not be constructed as every com‐
ponent depended on almost every other component. Of course, testing had never been
a particularly high priority in the company (we don’t have anywhere near enough time
to do that), so this “wasn’t a problem.” Needless to say, the software was not very reliable.

KEY ➤ Good design takes into account connection mechanisms and the
number (and nature) of inter-component connections. The in‐
dividual parts of a system should be able to stand alone. Tight
coupling leads to untestable code.

Code Problems
The problems with bad top-level design had wormed their way down to the code level.
Problems beget problems. Because there was no common design and no overall project

116 | Chapter 13: A Tale of Two Systems

“style,” no one bothered with common coding standards, the use of common libraries,
or employing common idioms. There were no naming conventions for components,
classes, or files. There was not even a common build system; duct tape, shell scripts, and
Perl glue nestled alongside makefiles and Visual Studio project files. Compiling this
monster was considered a rite of passage!

One of the most subtle, but serious, Metropolis problems was duplication. Without a
clear design, and a clear place for functionality to live, wheels had been reinvented across
the entire codebase. Simple things like common algorithms and data structures were
repeated across many modules, each implementation with its own set of obscure bugs
and quirky behavioural traits. Larger-scale concerns like external communication and
data caching were also implemented multiple times.

More software archaeology showed why: the Metropolis started out as a series of sep‐
arate prototypes that got tacked together when they should have been thrown away. The
Metropolis was actually an accidental conurbation. When stitched together, the code
components had never really fitted together properly. Over time, the careless stitches
began to tear, so the components pulled against one another and caused friction in the
codebase, rather than working in harmony.

KEY ➤ A lax and fuzzy architecture leads to individual code compo‐
nents that are badly written and don’t fit well together. It also leads
to duplication of code and effort.

Problems Outside the Code
The problems within the Metropolis spilled out from the codebase to cause havoc else‐
where in the company. There were problems in the development team, but the archi‐
tectural rot also affected the people supporting and using the product:
The development team

New recruits coming into the project (like myself) were stunned by the complexity
and unable to get to grips with what was going on. This partially explains why very
few new recruits stayed at the company for any length of time—staff turnover was
very high.

Those who remained had to work very hard—stress levels on the project were high.
Planning new features instilled a dread fear.

Slow development cycle
Maintaining the Metropolis was a frightful task, so even simple changes or small
bugfixes took an unpredictable length of time. Managing the software development
cycle was difficult, timescales were hard to plan, and the release cycle was cumber‐
some and slow. Customers were left waiting for important features, and manage‐

Chapter 13: A Tale of Two Systems | 117

ment got increasingly frustrated at the development team’s inability to meet busi‐
ness requirements.

Support engineers
The product support engineers had an awful time trying to support a flaky product,
whilst working out the intricate behavioural differences between relatively minor
software releases.

Third-party support
An external control protocol has been developed, enabling other devices to control
the Metropolis remotely. Because it was a thin veneer over the guts of the software,
it reflected the Metropolis’ architecture, which means that it was baroque, hard to
understand, prone to fail randomly, and impossible to use. Third-party engineers’
lives were also made miserable by the poor structure of the Metropolis.

Intra-company politics
The development problems led to friction between different tribes in the company.
The development team had strained relations with the marketing and sales guys,
and the manufacturing department was permanently stressed every time a release
loomed on the horizon. The managers despaired.

KEY ➤ The consequences of a bad architecture are not constrained
within the code. They spill outside to affect people, teams, pro‐
cesses, and timescales.

A Postcard from the Metropolis
The Metropolis’ design was almost completely irredeemable—believe me we tried to fix
it. The amount of effort required to rework, refactor, and correct the problems with the
code structure had become prohibitive. A rewrite wasn’t a cheap option.

The consequence of the Metropolis’ “design” was a diabolical situation that was inex‐
orably getting worse. It was so hard to add new features that people were just applying
more bodges, sticking plasters, and calculated fudges. No one enjoyed working with the
code, and the project was heading in a downward spiral. The lack of design had led to
bad code, which led to bad team morale and increasingly lengthy development cycles.
This eventually led to severe financial problems for the company.

Bad architecture has a profound effect and severe repercussions. The lack of foresight
and design in the Messy Metropolis led to:

• A low-quality product with infrequent releases
• An inflexible system which couldn’t accommodate change or the addition of new

functionality
• Pervasive code problems

118 | Chapter 13: A Tale of Two Systems

• Staffing problems (stress, morale, turnover)
• A lot of messy internal company politics
• Lack of success for the company
• Many painful headaches and late nights working on the code

Design Town
Form ever follows function.

— Louis Henry Sullivan

The Design Town software project was superficially very similar to the Messy Metrop‐
olis. It was a similar product implemented in the same technologies. However, it was
built in a very different way and so the internal structure worked out very differently.

The Design Town project was written from scratch by a small number of programmers.
Like the Metropolis, the team structure was flat. Fortunately, there was no interpersonal
rivalry, or any vying for positions of power in the team. From the outset there was a
clear vision and set of requirements for the initial product.

An initial design direction was decided (not a big up-front design, but just enough design
to work). The major functional areas were demarked, and some core architectural con‐
cerns like threading models sketched. The most important functional areas received
some initial design attention.

Decisions about some of the basic housekeeping concerns were made early to ensure
that the code would grow easily and cohesively: the top-level file structure, how we’d
name things, a “house” presentation style with common coding idioms, the choice of
unit test framework, and the supporting infrastructure. These fine detail factors were
very important, they influenced many later design decisions.

Design and code construction was either done in pairs or carefully reviewed to ensure
that work was correct. The design and the code developed and matured over time, and
as the story of Design Town unfolded, there were consequences.

Locating Functionality
With a clear overview of the system structure in place from the very beginning, new
units of functionality were consistently added to the correct functional areas of the
codebase. There was never a question about where code belonged. It was also easy to
find the implementation of existing functionality in order to extend it, or to fix problems.

Now, sometimes putting new code in the right place was harder than simply bodging it
into a more convenient, but less tasteful, place. So the existence of an architectural plan
sometimes made the developers work harder. The payoff for this extra effort was a much

Chapter 13: A Tale of Two Systems | 119

easier life later on, when maintaining or extending the system—there was very little
cruft to trip over.

An architecture helps you to locate functionality: to add it, to modify it, or to fix it. It
provides a template for you to slot work into and a map to navigate the system.

Consistency
The entire system was consistent. Every decision at every level was taken in the context
of the whole design. The developers did this intentionally from the outset so all the code
produced matched the design fully, and matched all the other code written.

Over the project’s history, despite many changes ranging across the entire scope of the
codebase—from individual lines of code to the system structure—everything followed
the original design template.

KEY ➤ A clear architectural design leads to a consistent system. All de‐
cisions should be taken in the context of the architectural design.

The good taste and elegance of the top-level design naturally fed down to the lower
levels. Even at the lowest levels, the code was uniform and neat. A clearly defined soft‐
ware design ensured that there was no duplication, that familiar design patterns were
used throughout, familiar interface idioms were adopted, and that there were no unusual
object lifetimes or odd resource management issues. Lines of code were written in the
context of the town plan.

KEY ➤ Clear architecture helps reduce duplication of functionality.

Growing the Architecture
Some entirely new functional areas appeared in the “big picture” design—storage man‐
agement and an external control facility, for example. In the Metropolis project, this
was a crushing blow and incredibly hard to do. But in Design Town things worked
differently.

The system design, like the code, was considered malleable and refactorable. One of the
development team’s core principles was to stay nimble—that nothing should be set in
stone—and so the architecture should be changed when necessary. This encouraged us
to keep our designs simple and easy to change. Consequently the code could grow
rapidly and maintain a good internal structure. Accommodating new functional blocks
was not a problem.

KEY ➤ Software architecture is not set in stone. Change it if you need
to. To be changeable, the architecture must remain simple. Re‐
sist changes that compromise simplicity.

120 | Chapter 13: A Tale of Two Systems

Deferring Design Decisions
An XP principle that enhanced the quality of Design Town was YAGNI (don’t do any‐
thing if you aren’t going to need it). It encouraged us to design only the important stuff
early on, and to defer all remaining decisions until later—when we had a clearer picture
of the actual requirements and how best to fit them into the system. This is an immensely
powerful design approach, and quite liberating:

• One of the worst things you can do is design something you don’t yet understand.
YAGNI forces you to wait until you know what the problem really is and how it
should be accommodated by the design. It eliminates guesswork, and ensures that
the design will be correct.

• It is dangerous to add everything you might need (including the kitchen sink) to a
software design when you first create it. Most of your design work will be wasted
effort, extra baggage that you’ll need to support over the entire changing life of the
software. It costs more at first, and continues to cost over the life of the project.

KEY ➤ Defer design decisions until you have to take them. Don’t make
architectural decisions when you don’t know the requirements
yet. Don’t guess.

Maintaining Quality
From the outset, the Design Town project put a number of quality control processes in
place:

• Pair programming
• Code/design reviews for anything not pair programmed
• Unit tests for every piece of code

These ensured that the system never had an incorrect, badly fitting change applied.
Anything that didn’t mesh with the software design was rejected. This might sound
draconian, but these were processes that the developers bought into.

This buy-in highlights an important attitude: the developers believed in the design, and
considered it important enough to protect. They took ownership of, and personal re‐
sponsibility for, the design.

KEY ➤ Design quality must be maintained. This can only happen when
the developers are given responsibility and take it seriously.

Chapter 13: A Tale of Two Systems | 121

Managing Technical Debt
Despite these quality control measures, Design Town development was fairly pragmatic.
As deadlines approached, a number of corners were cut to allow projects to ship on
time. Small code sins or design warts were allowed to enter the codebase, either to get
functionality working quickly or to avoid high-risk changes near a release.

However, unlike the Messy Metropolis project, these fudges were marked as technical
debt and scheduled for later revision. These warts stood out clearly and the developers
were not happy about them until they were dealt with. Again, we see the developers
taking responsibility for the quality of the design.

Technical Debt
Technical debt is a term coined by Ward Cunningham that’s widely used in the software
industry today. The metaphor leans on the financial world: making a decision to help
ship software quickly is like taking on a loan. It can enable you to do something now
that you would not otherwise be able to do.

But you can’t ignore that loan—you always have to pay it back. The longer it takes to
pay back, the more it costs you. If you fail to make timely repayments, you’ll be stuck
paying off interest on the loan, and your purchase power diminishes.

In the software world, that means return to your code to update it, or else your progress
will slow as the code bogs down in accrued debt. This is important: in the long run,
lower code quality means longer development times, but a responsible short-term loan
can speed things up.

Technical debt might be deferred refactoring, design adjustments that reflect what
you’ve discovered, waiting to update libraries or toolchains until after the next major
release, or rationalising the logging/debugging scaffolding.

This is a colourful metaphor that can be misused: technical debt does not just mean
doing something badly. Sometimes writing bad code is justified as being “pragmatic”;
there is a difference between a pragmatic choice and a sloppy one.

Consciously managing technical debt is a powerful weapon in your development ar‐
senal. Don’t let debt build up, and keep it visible. Like a real loan, pay back debt as early
as possible to avoid suffering excessive interest and charges.

Tests Shape Design
One of our core decisions was that the code should be unit tested and the system covered
with integration and acceptance tests. Unit testing brings many advantages, one of which
is the ability to change sections of the software without worrying about destroying
everything else in the process.

122 | Chapter 13: A Tale of Two Systems

Some areas of the Design Town internal structure received quite radical rework whilst
the unit tests gave us confidence that the rest of the system had not been broken. For
example, the thread model and interconnection interface of the data pipeline was
changed fundamentally. This was a serious design change relatively late in the devel‐
opment of that subsystem, but the rest of the code interfacing with that pipeline con‐
tinued executing perfectly. The tests gave us capability to change the design.

This kind of “major” design change slowed down as Design Town matured. After an
amount of design rework, things settled down, and subsequently there were only minor
design changes. The system developed quickly, in an iterative manner, with each step
improving the design, until it reached a relatively stable plateau.

KEY ➤ Having a good set of automated tests for your system allows you
to make fundamental architectural changes with minimal risk. It
gives you space to work in.

Another major benefit of the unit tests was their remarkable shaping of the code design;
they practically enforced good structure. Each small code component was crafted as a
well-defined entity that could stand alone—as it had to be constructible in a unit test
without requiring the rest of the system to be built up around it. Writing unit tests
ensured that each module of code was internally cohesive and loosely coupled from the
rest of the system. The unit tests forced careful thought about each unit’s interface, and
ensured that its API was meaningful and internally consistent.

KEY ➤ Unit testing your code leads to better software designs, so de‐
sign for testability.

Time for Design
One of the contributing factors to Design Town’s success was the allotted development
timescale, which was neither too long nor too short (as Goldilocks would say, it was
“just right”). A project needs a conducive environment in which to thrive.

Given too much time, programmers often want to create their magnum opus (the kind
of thing which will always be almost ready, but never quite materialises). A little pressure
is a wonderful thing, and a sense of urgency helps to get things done. However, given
too little time, it simply isn’t possible to achieve any worthwhile design, and you’ll only
get a half-baked solution rushed out—just like the Metropolis.

KEY ➤ Good project planning leads to superior designs. Allot suffi‐
cient time to create an architectural masterpiece—they don’t ap‐
pear instantly.

Chapter 13: A Tale of Two Systems | 123

1. Conway’s law states that code structure follows team structure. Simply stated, it says, If you have four groups
working on a compiler, you’ll get a four-pass compiler.

Working with the Design
Whilst the codebase was large, it was coherent and easily understood. New programmers
could pick it up and work with it relatively easily. There were no unnecessarily complex
interconnections to understand, or weird legacy code to work around.

Because the code has generated relatively few problems, and is still enjoyable to work
with, there has been a very, very low turnover of team members. This is due, in part, to
the developers taking ownership of the design and continually wanting to improve it.

It was interesting to observe how the development team dynamics followed the archi‐
tecture. Design Town project principles mandated that no one owned any area of the
design, that any developer could work anywhere in the system. Everyone was expected
to write high-quality code. Whereas the Metropolis was a sprawling mess created by
many uncoordinated, fighting programmers, Design Town was clean and cohesive,
closely cooperating software components created by closely cooperating colleagues. In
many ways, Conway’s law worked in reverse and the team gelled together as the software
did.1

KEY ➤ A team’s organisation has an inevitable effect on the code it pro‐
duces. Over time, the architecture also affects how well the team
works together. When teams separate, the code interacts clums‐
ily. When they work together, the architecture integrates well.

So What?
This simple story about two software systems is certainly not an exhaustive treatise on
software architecture, but I have shown how architecture profoundly affects a software
project. An architecture influences almost everything that comes into contact with it,
determining the health of the codebase and also the health of the surrounding areas.
Just as a thriving city can bring prosperity and renown to its local area, a good software
architecture will help its project flourish and bring success to those depending on it.

Good architecture is the product of many factors, including (but not limited to):

• Actually doing intentional up-front design before ploughing into code. Many
projects fail in this way before they even start. There is a tension here: to not under-
design, but likewise to not over-design.

• The quality and experience of the designers. (It helps to have made a few mistakes
beforehand to point you in the right direction next time! The Metropolis project
certainly taught me a thing or two.)

124 | Chapter 13: A Tale of Two Systems

• Keeping the design clearly in view as development progresses.
• The team being given, and taking responsibility for the overall design of the soft‐

ware.
• Never being afraid of changing the design: nothing is set in stone.
• Having the right people on the team: including designers, programmers, and man‐

agers. Ensure that the development team is the right size. Ensure that they have
healthy working relationships, as these relationships will inevitably feed into the
structure of the code.

• Making design decisions at the appropriate time, when you know all the informa‐
tion to be able to make them. Deferring design decisions you cannot yet make.

• Good project management, with the right kind of deadlines.

Questions

1. What’s the best system architecture you’ve ever seen?

• How did you recognise it as good?
• What were the consequences of this architecture, both inside the codebase and

outside?
• What led to it being so well-designed?
• What have you learnt from it?

2. What’s the worst architecture system you’ve ever seen?

• How did you recognise it as bad?
• What were the consequences of this architecture, both inside the codebase and

outside?
• How did it get into that state?
• What have you learnt from it?
• How would you resolve its problems?

3. Where does your current project sit between the two? Which of your prior expe‐
riences can you build on now to improve the code, or the processes with which you
build it?

See also

• Coping With Complexity How to cope with (and avoid) complex designs.
• Keep It Simple The shape of simple code.
• The Ghost of a Codebase Past About learning from existing code. No matter how

good a system, you can learn from it and improve on it in your next design.

Chapter 13: A Tale of Two Systems | 125

• Testing Times Unit tests helped Design Town develop in a well-factored and reliable
manner.

Try this….
Consider how you’d describe your current project to an outsider. What are you proud
of, and what could be improved? How can your team celebrate the good things you’re
doing? Determine what you can do now to strengthen your weak areas.

126 | Chapter 13: A Tale of Two Systems

PART II

Practice Makes Perfect

Now we step back from the codeface, and take a broader view. We’ll inspect the impor‐
tant practices that comprise better programming.

These chapters cover important techniques, practices, and approaches to writing good
code. I’ll introduce rules of engagement with the software development process, ways
of approaching the coding task, and sound techniques that will help you collaborate
with other development team members.

CHAPTER 14

Software Development Is…

And this, our life, exempt from public haunt, finds tongues in trees,
books in the running brooks, sermons in stones, and good in everything.

— William Shakespeare
 As You Like It

It’s a sad fact that I won’t be able to rely on my sharply honed intellect forever. Some
time in the future my wits will fade, and I’ll no longer be the sharp, erudite, humble
genius I am now. So I need a pension plan, a way to make my millions so that I can live
in luxury in my old age.

My original plan for world domination seemed so simple it couldn’t fail: fizzy milk!
However, before I got a chance to work out the finer details of the recipe, I received
devastating news: fizzy milk had already been invented. Gutted, and with the patent
rights slipping through my fingers, I went back to the drawing board to come up with
a new pension plan. And this time it was a good one.

This piece of genius goes back to the classic foods of my youth: custard and Alphabetti
Spaghetti. I’m sure you can see where I’m going: Alphabetti custard! My initial experi‐
ments have proved promising. And almost palatable: it’s a bit like rice pudding, but
wheatier. Admittedly, it’s an acquired taste, but I think it could catch on.

This Software (Food)stuff
Too much modern software is like my Alphabetti custard: it’s the wrong thing, written
the wrong way.

To make Alphabetti custard the “right” way you’d make the pasta first by hand, and
hand-mix a custard. The cheating, wrong way would be to buy tins of pasta, wash the
sauce off, and then pour instant custard over the top.

131

One is a recipe, a method for reliable construction. The other is, at best, an adequate
way to prototype, but not a large-scale fabrication technique.

As conscientious software developers, we should all aspire to write the right thing in the
right way. One of the key characteristics of truly excellent programmers is actually caring
about the software that we write, and how we write it. We need more lovingly baked
artisanal code, no more of this tinned spaghetti nonsense.

In this chapter, we’ll peer into the saucepan to investigate the nature of the software we
write, and how we can avoid writing alphanumeric spaghetti ourselves. I’ll pose a series
of questions along the way to apply the lessons we learn. The first being: Do you want
to improve as a programmer? Do you actually want to write the right thing in the right
way?

If your answer is “no” then give up and stop reading now.

So, what is software development? To be sure, it’s complex, with many interweaving
aspects. Whilst this chapter can’t be a comprehensive intellectual treaty on software
development, we can investigate some of its nuances: that it is part science, art, game,
sport, chore, and more.

Software Development Is…an Art
A great programmer needs to be, in part, a great artist. But is programming really an
art? This is a debate that has long been held in software development circles. Some
people think that programming is an engineering discipline, some an art form, some
sit in-between, considering it a craft (I did call my first book Code Craft, after all).

Knuth is probably the most famous proponent of software as art, naming his famous
series of books The Art of Computer Programming. He said this: Some programs are
elegant, some are exquisite, some are sparkling. My claim is that is it possible to write
grand programs, noble programs, truly magnificent ones! Stirring stuff.

There’s more to code than bits and bytes, more than brackets and braces. There’s struc‐
ture and elegance. There’s poise and balance. There is a sense of taste and aesthetics.

KEY ➤ A programmer needs good taste and a sense of aesthetics to write
exceptional code.

There are many parts of the software development process akin to the creation of a work
of art. The process is:
Creative

It requires imagination. The software must be skilfully constructed and precisely
designed. Programmers must have a vision for the code they are about to create,
and a plan of how they will make it. Sometimes that involves a great deal of ingenuity.

132 | Chapter 14: Software Development Is…

Aesthetic
Good code is hallmarked by elegance, beauty, and balance. It stands within the
framework of certain cultural idioms. We consider the code’s form alongside its
function.

Mechanical
As any artist, we work in our particular medium with our particular tools, processes,
and techniques. We work under commission for generous benefactors.

Team-based
Many forms of art are not single-person endeavours. Not every art form sees an
artist sitting alone in their studio slaving day and night until their masterpiece is
complete. Consider master sculptors with their apprentices. Consider the orchestra,
each member held together by the conductor. Consider a musical composer, writing
a piece which will then be interpreted by the performer(s). Or the architect design‐
ing a building that will be erected by a team of builders.

In many respects, the skill set of an artist is similar to that of a programmer.

Michelangelo was the archetypal renaissance man: a painter, sculptor, architect, poet,
and engineer. Perhaps he would have made an incredible programmer. When asked
about how he created one of his most famous works, the statue of David, he said: I looked
into the stone and saw him there, and just chipped away everything else.

Is that what you do? Do you reduce and remove the complexities of the problem space,
chipping them all away until you reach the beautiful code you were aiming for?

Here are a few questions to ask yourself on the theme of software as art:

• Do I consider the creative aspects of software development, or do I treat it as a
mechanistic activity?

• Should I develop a keener sense of elegance and aesthetics in my code? Should I
look beyond what’s functional and solves the immediate problem?

• Do I think that my idea of “beautiful” code is the One True Opinion? Should I
consider artistry as a team pursuit?

Software Development Is…a Science
We talk about computer science. So there must be something vaguely scientific going on
somewhere, mustn’t there? It’s probably fair to say that in most development organisa‐
tions there is much less science and far more plumbing happening.

The archetypal scientist is, of course, Albert Einstein. He was not only a genius, but also
one of the most quotable people there has ever been (which helps authors considerably).

Chapter 14: Software Development Is… | 133

He said this: Any intelligent fool can make things bigger, more complex, and more violent.
It takes a touch of genius—and a lot of courage—to move in the opposite direction.

That is really profound; inappropriate complexity is a real killer in most software
projects.

Einstein was also an aesthete. He appreciated elegance and beauty in his theories, and
aimed to reduce things to a coherent whole. He said: I am enough of an artist to draw
freely upon my imagination. Imagination is more important than knowledge. Knowledge
is limited. Imagination encircles the world.

See, I told you he was quotable.

So if software development is like a science, what does that mean? It is (or, rather, should
be):
Rigourous

We look for bug-free code that works, all the time, every time. It must work with
all sets of valid input, and respond appropriately to invalid input. Good software
must be accurate, proven, measured, tested, and verified.

How do we achieve this? Good testing is key. We look for unit tests, integration
tests, and system tests. Preferably automated to remove the risk of human error.
We also look for experiential testing.

Systematic
Software development is not a hit-and-miss affair. You can’t aim to create a well-
structured large computer system by randomly accreting blobs of code until it ap‐
pears to work. You need to plan, design, budget, and systematically construct.

It is an intellectual, logical, rational process; bringing order and understanding out
of the chaos of the problem space and the design alternatives.

Insightful
Software development requires intellectual effort and astute analytical powers. This
is especially apparent when tracking down tricky bugs. Like scientists, we form
hypotheses, and apply something akin to scientific method (form a hypothesis,
work out experiments, run experiments, and validate the theory).

KEY ➤ Good software development is not cowboy coding, throwing
down the first code you can think of. It is a deliberate, consid‐
ered, accurate endeavour.

Based on that, ask yourself:

• Is my software always totally correct and completely accurate? How do I prove this?
How can I make this explicit, now and in the future?

134 | Chapter 14: Software Development Is…

• Do I strive to bring order out of chaos? Do I collapse complexity in my code until
there are a few, small, unified parts?

• Do I approach problems methodically and thoughtfully, or do I rush headlong into
them in an unstructured way?

Software Development Is…a Sport
Most sports require great skill and effort: tenacity, training, discipline, teamwork,
coaching, and self-consciousness. Likewise, software development involves:
Teamwork

It requires the concert of many people, with different skills, working in harmony.

Discipline
Each team member must be committed to the team, and willing give their best. This
requires dedication, hard work, and a lot of training.

You can’t get good at soccer by sitting on a couch and watching soccer training
videos. In fact, if you do it with a few beers and a tub of popcorn, you’re likely to
get worse at soccer! You have to actually do it, get out there on the pitch with people,
practise your skills, and then you’ll improve. You must train—have someone tell
you how to improve.

The team must practise together, and work out how to function as a whole.

Rules
We’re playing to (developing to) a set of rules, and a particular team culture. This
is embodied in our development processes and procedures, as well as the rites and
rituals of the software team and their tool workflows (consider how you collaborate
around things like the source control system).

The teamwork analogy is clearest with a sport like soccer. You work in a group of closely
functioning people, playing a game by a set of well-defined rules.

Have you seen a team of seven-year-olds playing soccer? There’s one small guy left back
standing in the goal mouth, and every other kid is running around the pitch maniacally
chasing the ball. There’s no passing. There’s no communication. There’s no awareness
of the other team members. Just a pack of children converging on a small moving sphere.

Contrast that to a high-quality premier league team. They operate in a much more
cohesive way. Everyone knows their responsibility, and the team works cohesively to‐
gether. There is a shared vision that they work towards, and they form a high-
functioning, well-coordinated whole:

Chapter 14: Software Development Is… | 135

• Do I have all of these skills? Do I work well in a team, or could I improve in some
areas?

• Am I committed to my team, willing to work for the good of everyone?
• Am I still learning about software development? Do I learn from others, and am I

perfecting my team skills?

Software Development Is…Child’s Play
For me, this observation seems particularly appropriate; I’m really just a child at heart.
Aren’t we all?

It’s fascinating to see how children grow and learn, how their world view changes and
is shaped by each new experience. We can glean a lot from the way a child learns and
reacts to the world.

Consider how this applies to our software development:
Learning

A child is aware that they are learning, that they don’t know everything. This re‐
quires a simple characteristic: humility. Some of the programmers I have found
hardest to work with think that they know it all. If there’s something new they need
to know, they read a book and then presume that they’re an expert. A total humility
bypass.

A child is constantly assimilating new knowledge. We must recognise that if we
want to improve, we must learn. And we must be realistic about what we do, and
do not, know.

Enjoy learning, savour finding out new things. Practise and improve your craft.

KEY ➤ Good programmers work with humility. They admit that they
don’t know it all.

Simplicity
Do you write the simplest code possible? Do you reduce everything to the least
complex form to make it easier to understand and easier to code?

I love the way kids try to get to the bottom of things, to understand things from
their own limited perspective. They’re always asking why. Take, for example, a con‐
versation I had with my daughter when she was six: Daddy, why is Millie my sis‐
ter? Because you’re in the same family as her, Alice. Why? Well, because you have
the same mummy and daddy. Why? Because, well, you see, there are the birds and
the bees… Oh go and get a book! … (thinking) … Why?…

136 | Chapter 14: Software Development Is…

We should be constantly asking why—questioning what we are doing and the rea‐
sons for it. Seeking a better understanding of the problem and the best solution.
And we should strive for simplicity in our handiwork. That is not the most sim‐
plistic “dumb” code possible, but the appropriately non-complex code.

Having fun
If all else fails, there’s nothing wrong with this. All good developers enjoy a little
playtime. My office currently houses a unicycle and a makeshift cricket pitch.

With that in mind, we can ask ourselves:

• Do I strive to write the simplest code possible? Or do I type what comes to mind,
and not think about commonality, refactoring, or code design?

• Am I still learning? What can I learn about? What do I need to learn about?
• Am I a humble programmer?

Software Development Is…a Chore
A lot of our software development work is not pleasant. It’s not glamourous. It’s not
plain sailing. It’s just donkeywork that has to be done to get a project completed.

To be an effective programmer, you mustn’t be afraid of the chores. Recognise that
programming is hard work. Yes, it’s great to do a cool design on the newest product
version, but sometimes you need to do the tedious bug fixing and grubbing around the
old awful messy code to get a product shipping and make some money.

From time to time we must become software janitors. This requires us to:
Clean up

We must spot problems and address them; work out where breakages are and what
the appropriate fixes are. These fixes must be made in a timely and nondisruptive
manner. A janitor does not leave the unpleasant tasks to someone else, but takes
responsibility for them.

Work in the background
Janitors do not work in the limelight. They probably receive little recognition for
their heroic efforts. This is very much a supporting, not a lead role.

Maintenance
A software janitor will remove dead code, fix broken code, refactor and rebuild
inappropriate workmanship, and tidy and clean the code to ensure that it doesn’t
fall into disrepair.

Chapter 14: Software Development Is… | 137

Ask yourself:

• Am I happy to do code chores? Or do I only want the glamourous work?
• Do I take responsibility for messy code and clean it up?

Metaphor Overload
We often construct metaphors for the act of software development. Many of the insights
we glean can be informative. However, no metaphor is perfect. Software development
is its own special thing, and the act of creating it is not entirely like any other discipline.
It’s still a field we’re exploring and refining. Beware of making wonky deductions from
bad comparisons.

Good code and good coders are born from a desire to write the right thing in the right
way, not from the software equivalent of Alphabetti custard.

Questions

1. Which of the metaphors outlined here do you relate most clearly with? Which most
accurately reflects your work at the moment?

2. What other metaphors can you construct for the software pursuit? (Perhaps gar‐
dening or shepherding.) What new insights do these reveal?

3. How would you make Alphabetti custard?

See also

• Care About the Code We must care about crafting the right software, the right way.
• People Power Here we’ve seen a couple of metaphors that speak of our software

development teamwork. Programming is a people pursuit.

Try this….
Revisit the preceding questions. Which area should you focus on most right now?

138 | Chapter 14: Software Development Is…

Chapter 14: Software Development Is… | 139

CHAPTER 15

Playing by the Rules

If I’d observed all the rules, I’d never have got anywhere.
— Marilyn Monroe

We live our lives by many rules. This could be a dystopian Orwellian nightmare, but it’s
not. Some rules are imposed on us. But some we set ourselves. These rules oil the cogs
of our lives.

Rules facilitate our play, describing how a game works: say‐
ing who has won and how. They make our sports fair and
enjoyable, and provide plenty of opportunity for (mis)in‐
terpretation (see soccer’s off-side rule).

They impinge on our travel, where security rules dictate you
can only carry so much liquid, and no sharp objects, on
airplanes. They describe traffic speed limits, and how to
safely navigate a path on the road. Such rules ensure the
safety of all.

Rules bound our social norms, stating that it’s not appro‐
priate to lick a stranger’s ear when you first meet them, no matter how tasty it looks.

Yes, we live our lives continually observing a set of rules. We’re so used to this that we
often don’t think about them.

Unsurprisingly, the same holds in our development work. There are a wide range of
rules we follow at the codeface. Development process norms. Mandated toolchains and
workflows. Office etiquette. Language syntax. Design patterns. These are the things that
define what it is to be a professional programmer, and the way we play the development
game with other people.

If you join a new project, there are various rules that you’d expect to be in place. Rules
governing the responsible creation of high-quality code. Rules governing working pro‐

141

cesses and practices. And specific rules about the project and problem domain: perhaps
legal regulations in force for financial trading, or safety guidelines for health markets.

These rules they help us work well together. They help orchestrate and harmonise our
efforts.

We Need More Rules!
But sometimes all of these rules, good as they are, aren’t enough. Sometimes the poor
programmers need more rules. Really, we do.

We need rules that we’ve made ourselves. Rules that we can take ownership of. Rules
that define the culture and working methods of development in our particular team.
These needn’t be large unwieldy draconian edicts. Just something simple you can give
new team members so that they can immediately play the game with you. These are
rules that describe something more than mere methods and processes; they are rules
that describe a coding culture—how to be a good player in the team.

KEY ➤ Programming teams have a set of rules. These rules define what
we do and how we do it. But they also describe a coding culture.

Sound sane? Well, we think so. Our team’s Tao of development is summed up in three
short complementary statements. From these all other practices follow. These state‐
ments are now enshrined in our team folklore, have been printed out in large, friendly
letters, and emblazon our communal work area. They reign over all we do; whenever
we face a choice, a tricky decision, or a heated discussion, they help to guide us to the
right answer.

Are you ready to receive our wisdom? Brace yourself. Our three earth-shattering rules
for writing good code are:

• Keep it simple
• Use your brain
• Nothing is set in stone

That’s it. Aren’t they great?

We set these rules because we think they lead to better software, and have helped us
become better programmers. I’ll describe what they mean in the following chapters.

They perfectly describe the attitude, the sense of community, and the culture of our
team. Our rules are purposefully short and pithy; we don’t like lengthy bureaucratic
dictats or unnecessary complication. They require developer responsibility to interpret
and follow; we trust our team, and these rules empower the team. They are always new
ways to apply them in our codebase; we are always learning and seeking to improve.

142 | Chapter 15: Playing by the Rules

Set the Rules
These rules make sense to us, in our project, in our company, and in our industry. They
may not have the same import for you.

What rules are you currently working to? That is, apart from the ban on licking your
colleagues’ ears. Do you have a coding standard (either formal, or informal) in place?
Do you have development process rules (perhaps the likes of: Be in for 10 a.m. because
we have a stand-up meeting. All code must be reviewed before check-in. All bug reports
must have clear repro steps before being handed to a developer)?

What rules govern your team culture? What informal, unwritten ways of collaborating,
or approaches to the code, are particular to your team?

Consider formulating a small, simple set of rules that you can define your coding culture
with. Can you distill it to something pithy like our three rules?

KEY ➤ Don’t rely on vague unwritten team “rules.” Make the implicit
rules explicit, and take control of your coding culture.

In the spirit of our third rule, don’t forget that nothing is set in stone—including your
rules. Rules are there to be broken, after all. Or rather, rules are there to be remade. Your
rules may justifiably change over time as your team learns and grows. What is pertinent
now may not be in the future.

Questions

1. List the software development process rules currently in place in your project. How
well are these enforced and followed?

2. How does this project’s culture differ from your previous projects? Is it a better or
worse project to work in? Can the difference be captured or improved in a rule?

3. Do you think your team would rally around an agreed set of rules?
4. Does the shape, style, and quality of your code have any effect on a projects’ coding

culture? Does the team shape the code, or does the code shape the team?

See also

• Keep It Simple, Use Your Brain, Nothing Is Set in Stone Exposition of my team’s three
earth shattering rules for effective software development.

• Many-festos The militant side of rule creation: manifestos.
• It’s the Thought That Accounts You must be in agreement with, and accountable to,

others when following team rules.

Chapter 15: Playing by the Rules | 143

Try this….
Formulate your own team “rules” for software development. Print them out and stick
them in a wall over your development office.

144 | Chapter 15: Playing by the Rules

CHAPTER 16

Keep It Simple

Simplicity is the ultimate sophistication.
— Leonardo da Vinci

You’ve heard the advice before: “KISS.” Keep it simple, stupid. Exactly how stupid do
you have to be to get that wrong? Simplicity is an undoubtedly excellent objective; you
should certainly strive for it in your code. No programmer yearns to work with overly
complex code. Simple code is transparent; its structure is clear, it does not hide bugs, it
is easy to learn, and easy to work with.

So why isn’t all code like that?

In the developer world, there are two kinds of simplicity: the wrong sort and the right
sort. The “simplicity” we are looking for specifically does not mean: write your code the
easiest way you can, cut corners, ignore all the nasty complicated stuff (brush it all under
the rug and hope it goes away), and generally be a programming simpleton.

Oh, if only it were that easy. Too many programmers in the real world do write “simple”
code like this. Their brain does not engage. Some of them don’t even realise that they’re
doing anything wrong; they just don’t think enough about the code they’re writing, and
fail to appreciate all of the inherent subtle complexities.

Such a mindless approach leads not to simple code, but to simplistic code. Simplistic
code is incorrect code. Because it is ill-thought through, it doesn’t perform exactly as
required—often it only covers the obvious “main case,” ignoring error conditions, or it
does not correctly handle the less likely inputs. For this reason, simplistic code harbours
faults. These are cracks that (in the typical simplistic-coder way) tend to get papered
over with more ill-applied simplistic code. These fixes begin to pile on top of one another
until the code becomes a monstrous lumpy mess; the very opposite of well-structured,
simple code.

Simplicity is never an excuse for incorrect code.

145

KEY ➤ Simple code takes effort to design. It is not the same thing as
overly simplistic code.

Instead of this wrong simple-minded “simplicity,” we must strive to write the simplest
code possible. This is very different from disengaging your brain and writing stupid,
simplistic code. It is a very brain intensive pursuit—ironically, it’s hard to write some‐
thing simple.

Simple Designs
There is one sure sign of a simple design: the fact thatit can be quickly and clearly
described, and easily understood. You can summarise it in a simple sentence, or in one
clear diagram. Simple designs are easy to conceptualise.

Simple designs have a number of notable properties. Let’s take a look.

Simple to Use
A simple design is, by definition, simple to use. It has a low cognitive overhead.

It is easy to pick up because there is not too much to learn at first. You can start working
with the most basic facilities, and as you need to adopt the more advanced capabilities,
they gradually open up like a well-crafted narrative.

Prevents Misuse
A simple design is hard to misuse and hard to abuse. It reduces burden on the code’s
clients by keeping interfaces clean and not putting an unnecessary burden on the user.
For example, a “simple” interface design will not return dynamically allocated objects
that the user has to manually delete. The user will forget. The code will leak or fail.

The secret is to place the complexity in the right places: generally hidden away behind
a simple API.

KEY ➤ Simple designs aim to prevent misuse. They may involve extra
internal complexity in order to present a simpler API.

Size Matters
Simple code minimises the number of components in the design. Big projects with many
moving parts may justifiably require a large number of components; it is possible to
have many flying parts and be “as simple as possible.”

KEY ➤ Simple designs are as small as possible. And no smaller.

146 | Chapter 16: Keep It Simple

Shorter Code Paths
Remember the famous programmers’ maxim: every problem can be solved by adding an
extra level of indirection? Many complex problems can be subtly masked, and even
caused by, unnecessary levels of indirection hiding the problem. If you have to follow
a long chain of function calls, or trace indirected data access through many levels of
“getter” functions, forwarding mechanisms, and abstraction layers, you will soon lose
the will to live. It’s inhuman. It’s unnecessarily complex.

Simple designs reduce indirection, and ensure that functionality and data are close to
where it’s needed.

They also avoid unnecessary inheritance, polymorphism, or dynamic binding. These
techniques are all good things, when used at the right times. But when applied blindly,
they bring unnecessary complexity.

Stability
The sure sign of a simple design is that it can be enhanced and extended without massive
amounts of rewriting. If you continually end up reworking a section of code as your
project matures, then you either have a ludicrously volatile set of requirements (which
does happen, but is a very different problem) or you have an indication that the design
was not simple enough in the first place.

Simple interfaces tend to be stable, and don’t change much. You may extend them with
new services, but do not need to rework the entire API. However, this should not be a
straightjacket: interfaces need not be set in stone. Don’t make your code unnecessarily
rigid—this itself is not simple.

Simple Lines of Code
Simple code is easy to read, and easy to understand. It is therefore easy to work with.

Personal preference and familiarity tends to determine what makes individual lines of
code look simple. Some people find that certain layout idioms help clarify their code.
Others find those same idioms a huge hindrance. More than anything else, consisten‐
cy leads to simple code. Code with widely varying styles, naming conventions, design
approaches, and file formats is needlessly obfuscated.

KEY ➤ Consistency leads to clarity.

Do not write needless obscure code for any reason: not for job security (we joke about
this, but some people truly do), not to impress your colleagues by your coding prowess,
and not to try out a new language feature. If you can write an acceptable implementation
in mundane, but clear, coding style then do so. The maintenance programmers will
thank you for that.

Chapter 16: Keep It Simple | 147

Keeping It Simple, Not Stupid
When you encounter a bug, there are often two ways to address it:

• Take the easiest route to solve the problem. Hey, you’re keeping things simple, right?
Fix the superficial problem—that is, apply a sticking plaster—but don’t worry about
solving any deeper underlying issues if it will be too much work. This is the least
effort for you now, but will likely lead to the kind of simplistic code mess we saw
earlier.
This doesn’t make things simpler; it makes things more complex. You’ve added a
new wart and not addressed the underlying problem.

• Or, you can rework the code so that it accommodates a fix, and remains simple.
You may have to adjust APIs to be more appropriate, refactor some logic to create
the correct seam for the bugfix, or even perform serious rework because you spot
code assumptions that do not hold.

This latter option is the goal. It does require more effort, but boiling the code down to
its simplest form pays off in the long run.

KEY ➤ Apply bugfixes to the root cause, not where symptoms mani‐
fest. Sticking plaster symptom-fixes do not lead to simple code.

Assumptions Can Reduce Simplicity
Invalid “simplifying” assumptions are easy to make when you’re coding and, whilst they
can reduce the complexity in your head, they tend to build into twisted logic.

Simple code does not make unnecessary assumptions, either about the requirements or
problem domain, about the reader, about the runtime environment, or about the tool‐
chain used. Assumptions can reduce simplicity, as you implicitly require the reader to
know extra information to make sense of the code.

KEY ➤ Avoid implicit assumptions in your code.

Assumptions can, though, increase simplicity. The trick is to make it clear exactly what
assumptions are being made; for example, the constraints and context that the code is
designed for.

148 | Chapter 16: Keep It Simple

1. In Computer Programming as an Art, his 1974 Turing Award Lecture.

Avoid Premature Optimisation
Optimisation is the antithesis of simplicity. Knuth famously said: Premature optimisa‐
tion is the root of all evil (or at least most of it) in programming.1

The act of code optimisation is generally that of taking a straightforward, readable,
algorithmic implementation and butchering it: pulling the algorithm out of shape so
that it executes faster on a given machine under particular conditions. This inevitably
alters the shape to be less clear and, therefore, less simple.

Write clear code first. Make it complex only when needed.

Employ a simple, standard sort, until you know you need to make it cleverer. Write the
most straightforward implementation of an algorithm and then measure to see if you
need to make it faster. Again, beware of making assumptions: many programmers op‐
timise the parts they think will be slow. The bottlenecks are often elsewhere.

Sufficiently Simple
Simplicity is allied with sufficiency. This works in a few directions:

• You should work in the simplest way possible and write the simplest code possible.
But keep it sufficiently simple. If you oversimplify, you will not solve the actual
problem. Our “simple” solutions must be “sufficient” or they are not solutions.

• Only write as much code as is required to solve your problem. Don’t write reams
of code that you think will be useful. Code that is not in use is just baggage. It’s an
extra burden. It’s complexity you don’t need. Write the sufficient amount of code.
The less code you write, the fewer bugs you’ll create.

• Don’t overcomplicate solutions; excitable developers find this a very real tempta‐
tion. Solve only the issue at hand. Don’t invent a needlessly general solution for a
whole class of problems that are not relevant. Work until you reach a splendid
sufficiency.

KEY ➤ Only write as much code as is needed. Anything extra is com‐
plexity that will become a burden.

A Simple Conclusion
We all know that beautifully simple code is better than needlessly complex code. And
we’ve all seen our fair share of foul, ugly, complex code. Few people aim to write code

Chapter 16: Keep It Simple | 149

like that. The road to complexity is usually trodden with hurried changes and slipping
standards. Just one slack change. Just one sticking plaster fix. Just one code review
skipped. Just one “I don’t have time to refactor.” After enough of these, the code is an
unholy mess, and it’s hard to figure a way to restore sanity.

Sadly, simplicity is pretty hard work.

Simplicity is a banner born out by many popular developer maxims: YAGNI—you aren’t
going to need it—speaks to the theme of sufficiency. DRY—don’t repeat yourself—speaks
to the theme of code size. Our preference for high cohesion and low coupling speaks to
simplicity in design.

Questions

1. What is the simplest code you’ve seen recently? What is the most complex code you
have seen? How did they differ?

2. What sort of unnecessary assumptions can a coder make about his code that will
render it too complex? What assumptions are valid to make?

3. We talk a lot about optimisation at the code level. How can you optimise at the
design or architecture level?

4. Is it possible to optimise code but maintain its simplicity?
5. Does the “simplicity” of a section of code depend on the capabilities of the pro‐

grammer reading it? How should an experienced coder work in order to ensure his
code is of high quality, but appears “simple” to a less experienced maintenance
coder?

See also

• Playing by the Rules “Keep it simple” is one of three complementary rules my team
has converged on.

• Coping with Complexity The flipside of simplicity: complexity. Here’s how to man‐
age it.

Try this….
Check whether the code modifications you are making contribute to the simplicity of
the code. Avoid adding complexity. Fight code entropy!

150 | Chapter 16: Keep It Simple

Chapter 16: Keep It Simple | 151

CHAPTER 17

Use Your Brain

“Rabbit’s clever,” said Pooh thoughtfully.
“Yes,” said Piglet, “Rabbit’s clever.”

“And he has Brain.”
“Yes,” said Piglet, “Rabbit has Brain.”

There was a long silence. “I suppose,” said Pooh,
“that that’s why he never understands anything.”

— A.A. Milne
 Winnie-the-Pooh

“Use your brain” is not a derogatory injunctive to slipshod colleagues. Rather, it is a core
principle for the conscientious coder. It is the second of my team’s hand-picked rules
for guru programming. It has a number of important applications to our daily coding
regimen.

Don’t Be Stupid
We’ve mentioned the KISS rule already: keep it simple, stupid. Here we take it one step
further: don’t be stupid. It sounds like obvious advice, but we programmers need re‐
peated reminders.

It’s incredible how dumb hyperintelligent people can be. Some utter geniuses suffer a
chronic medical bypass of the common sense gland. Code that ninjas trip over because
of their myopic vision; they miss the blindingly obvious right in front of them. Awesome
architects walk into walls because their heads are stuck in the clouds.

Stereotypical geek stuff.

The desire to write an exciting new algorithm or craft a cunning data structure can
consume us, obscuring the observation that a simple array will suffice. In the rush to

153

get a release out, it’s easy to dash out reams of substandard code; the pressure tempts us
to think less carefully. We write stupid code.

The coding experts do this, and so can we mere mortals. Make sure your code doesn’t
miss the blindingly obvious. Don’t accidentally overcomplicate designs. Don’t add stu‐
pidity that is easily avoidable.

KEY ➤ Stop and think. Don’t write stupid code.

Now, we all make mistakes from time to time. No one’s code is consistently perfect. So
don’t feel paralysed, or think that you are a failure when you realise you’ve written some
stupid code, or conceived a dumb design.

Simply admit when you are wrong, back out the work, and take a better approach. It
takes courage to admit a failure and rework the mistake. It’s braver to do so than to try
to save face by hobbling on with crippled code. Treat the code with respect. Clean up
your messes.

KEY ➤ Admit to your mistakes and bad coding decisions. Learn from
them.

Avoid Mindlessness
Be honest, we’ve all done it: programming on autopilot.

It’s far too easy to program without engaging your brain. Really. It’s easy to just follow
your fingers as they bash out lines of code. It’s easy to get stuck in a rut trying to solve
(what you think is) the immediate problem, without really considering the bigger pic‐
ture, without thinking about the code that surrounds you, or whether what you’re typing
is actually correct.

This inevitably leads to stupid code. It leads to verbose, over-complex code. It leads to
incorrect code that does not fulfill all requirements. It leads to buggy code that doesn’t
handle every case.

Whenever you face a coding task: stop, take a mental step back, and consider if there is
an alternative solution. Check that you’re not forging ahead with the first plan you
conceived purely because you haven’t tried to think of alternatives.

To paraphrase World War I propaganda: Careless code costs lives.

KEY ➤ Pay attention. Don’t write code without care.

The best strategies to avoid the mindlessness trap and our own stupidity involve ac‐
countability. Perform design reviews before ploughing into your editor. Pair program.
Run code reviews.

154 | Chapter 17: Use Your Brain

You Are Allowed to Think!
“Use your brain” is, above all, an empowering rule. You are actually allowed, even en‐
couraged, to use your brain.

Some programmers fail to assume enough responsibility. They function as code mon‐
keys, filling the blanks in other people’s designs, or following existing structures and
idioms, rather than being empowered to think for themselves.

You are not a coding automaton. You have a brain: use it!

As you work on a section of code, make conscious decisions about its shape and struc‐
ture. Own the code. Take responsibility for the code. Be proactive in determining any
required improvements or changes.

If the existing code patterns are questionable, consider whether they should be changed.
Make a judgment call as to whether now is the right time to refactor.

If you find code riddled with Band-Aid warts, don’t follow suit and add another Band-
Aid when a more brutal adjustment is required. Understand that it is your responsibil‐
ity to look for this kind of problem. You are allowed to critically appraise code.

Having an opinion, and feeling able to voice it, requires you to be brave and courageous.
Stand up for what will make the code better.

KEY ➤ Have the courage to use your brain. Feel empowered to critique
code and make decisions about how to improve it.

Questions

1. What is the difference between simple code and stupid code?
2. How do you ensure you don’t write stupid code? Do you think you have good code

“common sense”? Justify your answer.
3. What are the tell-tale signs that code was written by someone who wasn’t paying

attention?
4. What are the deciding factors in choosing whether to rework a section of bad code,

or to “pragmatically” mark it as technical debt and chicken out?

See also

• Playing by the Rules “Use your brain” is one of three complementary rules my team
has converged on.

• This Time I’ve Got It A case study in when to step back and employ the gray matter.

Chapter 17: Use Your Brain | 155

Try this….
Pay more attention as you work. Right now, select two techniques that will help you to
focus better and to avoid writing stupid code.

156 | Chapter 17: Use Your Brain

CHAPTER 18

Nothing Is Set in Stone

They always say time changes things, but you actually have to change them yourself.
— Andy Warhol

There is a strange fiction prevalent in programming circles: once you’ve written some
code then it is sacred. It should not be changed. Ever.

That goes double for anyone else’s code. Don’t you dare touch it.

Somewhere along the development line, perhaps at the first check-in, or perhaps just
after a product release, the code gets embalmed. It changes league. It is promoted. No
longer riffraff, it becomes digital royalty. The once-questionable design is suddenly
considered beyond reproach and becomes unchangeable. The internal code structure
is no longer to be messed with. All of the interfaces to the outside world are sacred and
can never be revised.

Why do programmers think like this? Fear. Fear of getting it wrong. Fear of breaking
things. Fear of extra work. Fear of the cost of change.

There is a very real anxiety that comes from changing code you don’t know fully. If you
don’t understand the logic from the inside out, if you’re not entirely sure what you’re
doing, if you don’t understand every possible consequence of a change, then you could
break the program in strange ways or alter odd corner-case behaviour and introduce
very subtle bugs into the product. You don’t want to do that, do you?

Software is supposed to be soft, not hard. Yet fear leads us to freeze our code solid in an
attempt to avoid breaking it. This is software rigor mortis.

KEY ➤ Do not embalm your code. If you have “unchangeable” code in
your product, then your product will rot.

We see rigor mortis set when the original authors leave a project and no one left fully
understands their old business-critical code. When it’s hard to work with legacy code,

157

or to even make a reliable estimate for working with it, programmers avoid the code’s
core. It becomes an untamed code wilderness, where wild digital beasts roam unfettered.
To work in a timely and predictable way, new functionality is added as new satellite
modules around the edge.

We see rigor mortis set when a product is rolled onto production servers and is used by
many clients daily. The original system APIs stick because it will cost too much to change
them; so many other teams or services now depend on them.

Code should never stay still. No code is sacred. No code is ever perfect. How could it
be? The world is constantly changing around it. Requirements are always in a state of
flux, no matter how diligently they were captured. Product version 2.4 is so radically
different from version 1.6 that it’s entirely possible the internal code structure should be
totally different. And we’re always finding new bugs in our old code that need to be
fixed.

When your code becomes a straightjacket then you are fighting with the software, not
developing it. You will be permanently dancing around necrotic logic and plotting ever
more arcane courses around dodgy design.

KEY ➤ You are the master of your software; it’s under your control. Do
not let the code, or the processes around it, dictate how the code
grows.

Fearless Change
Of course, it is perfectly sensible to fear breaking software. Large software projects con‐
tain myriad subtleties and complexities that must be mastered. We don’t want to intro‐
duce bugs through reckless modification. Only fools would glibly make changes without
actually knowing what they’re doing. That’s cowboy coding.

So how do we reconcile courageous modification with fear of error?

• Learn how to make good changes—there are practices that increase the safety of
your work and reduce the chance of error. Courage comes from a confidence that
your modification is safe.

• Learn what makes software easy to change, and strive to craft software with these
attributes.

• Make daily improvements to your code that make it more malleable. Refuse to
compromise code quality.

• Embrace healthy attitudes that lead to flourishing code.

But ultimately: just make the change! Fearlessly. You may fail; it may go wrong. But you
can always revert the code back to a working state and try again. There is no shame in

158 | Chapter 18: Nothing Is Set in Stone

trying, and you will always learn from your mistakes. Just make sure that any change
you make is backed up by sufficient testing and inspection before it hits production.

Nothing is set in stone. Not the design. Not the team. Not the process. Not the code.
Understand this, and the part you can play in improving your software.

KEY ➤ To modify code you need courage and skill. Not recklessness.

Change Your Attitude
To “enable” healthy change in your code, the programming team has to adopt the right
attitudes. They must be committed to code quality and actually want to write good code.

Fearful, cowardly coding approaches don’t make the grade. We shun: I didn’t write this.
It looks rubbish. I want nothing to do with it. I will venture into this code as little as
possible. This attitude makes the coder’s life a little easier now, but leads to design rot.
Old code becomes stagnant whilst new driftwood washes up around its edges.

KEY ➤ “Good code” is not somebody else’s problem. It is your respon‐
sibility. You have the power to make a change and to bring about
an improvement.

Here are important attitudes, both for the team and for the individual, that contribute
to healthy code growth:

• Fixing wrong, dangerous, bad, duplicated, or distasteful code is not a distraction,
a sidetrack, or a waste of precious time. It is positively encouraged. In fact, it is
expected. You don’t want to leave weak spots festering for too long. If you find code
that is too scary to change, then it must be changed!

• Refactoring is encouraged. If you have a job that requires a fundamental code
change to be done properly, then do it properly: refactor. The team understands
that this is required, and that some jobs may take a little longer when we find such
problems.

• No one “owns” any area of the code. Anyone is allowed to make changes in any
section. Avoid code parochialism; it stifles the rate of change.

• It is not a crime to make a mistake or to write the wrong code (accidentally, at least!).
If someone fixes or improves your code, then it is not a sign that you are weak or
that the other programmer is better than you. You’ll probably tinker with their work
tomorrow. That’s just the way it works. Learn and grow.

• No one’s opinion should be considered more important than anyone else’s. Every‐
one has a valid contribution to make in any part of the codebase. Sure, some people
have more experience in certain areas. But they are not code “owners” or gatekeepers
of the sacred code. Treating some people’s work as “more accurate” or “better” than

Chapter 18: Nothing Is Set in Stone | 159

others’ puts them on a false pedestal and demeans the contribution of the rest of
the team.

• Good programmers expect change, because that is what software development is
all about. You need nerves of steel and to not mind the ground changing underneath
you. The code changes quickly; get used to it.

• We lean on the safety net of accountability. Again, we see reviews, pair program‐
ming, and testing (both automated unit and integration tests, and great QA/devel‐
oper interactions) being key parts of ensuring our code remains supple. If you do
the wrong thing, or introduce rigidity, it will be spotted before it becomes a problem.

Make the Change
An apocryphal story states that a tourist, lost in a country village, stopped a local and
asked for directions to a town in a distant borough. The villager spent a moment in
careful thought, and then answered slowly: if I were going there, I wouldn’t start from
here!

It sounds silly, but often the best place to start your journey from is not where you are,
in a code quagmire. If you try to move forward you may sink. It may instead be best to
work your way back to a sound point, leading the code on a route to a local highway,
and once there press onto your destination at greater speed.

Obviously, it’s important to learn how to navigate a route into code; how to map it, trace
it, and understand where it hides surprising side effects.

Design for Change
We strive for code that encourages change. This is code that reveals its shape and intent,
and encourages modification through simplicity, clarity, and consistency. We avoid code
with side effects because it is brittle in the face of change. If you encounter a function
that does two things, separate it into two parts. Make the implicit explicit. We avoid
rigid coupling and unnecessary complexity.

When an ugly, rigid codebase resists change, then we need a battle strategy: we slowly
improve the code day by day, making safe, piecemeal improvements; we make changes
to lines of code and to the overall structure. Over a period of time, we watch it gradually
slide into a malleable shape.

KEY ➤ Often it is best to make a series of frequent, small, verifiable
adjustments, rather than one large sweeping code change.

160 | Chapter 18: Nothing Is Set in Stone

Don’t try to fight with the entire codebase at once. That may be a daunting, and perhaps
intractable, task. Instead, identify a bounded section of the code that you need to interact
with and focus on changing that.

Tools for Change
Pay attention now! This is really important: good tooling can help you make safe changes
supremely fast.

A good automated test suite allows you to work fast and work well. It enables you to
make modifications and get rapid, reliable feedback on whether your modifications have
broken anything. Consider introducing some kind of verifiable test for the sections of
code you pick up in order to avoid errors. Just as code benefits from accountability and
a careful review processes, so do these tests.

KEY ➤ Automated tests are an invaluable safety harness that build con‐
fidence in your code changes.

The backbone of your development should be continuous integration: a server that
continually checks out and builds the latest version of the code. If—heaven forbid—
anything bad slips through to break the build, you will find out about it quickly. The
automated tests should be run on the build server, too.

Pick Your Battles
Nothing is set in stone, but not everything should be fluid.

Naturally, we pick our battles. We can’t possibly change all of the code all of the time,
whilst simultaneously adding more new work. We will always find unpleasant code that
we can’t fix right now, no matter how much we’d like to. The job may be too large. Or
it may be past the scope of a mammoth refactor.

There is a certain amount of technical debt that we live with until we get a chance to
make later improvement. This should be factored back into the project plan. Significant
debt becomes work items that are placed onto the development roadmap, rather than
forgotten and left to fester.

Plus ça Change
It sounds like a nightmare. Who could possibly work with code that is constantly
changing? It’s hard enough to track many simultaneous changes, let alone join in with
them!

However, we must embrace the fact that code changes: any code that stands still is a
liability. No code is beyond modification. Treating a section of code as avoidably scary
is counterproductive.

Chapter 18: Nothing Is Set in Stone | 161

Questions

1. What particular attributes make software easy to change? Do you naturally write
software like this?

2. How can we balance “no code ownership” with the fact that some people have more
experience than others? How does this affect the allocation of tasks to program‐
mers?

3. Every project has code that changes frequently, and code that changes little. The
latter code may be staid because it’s not used, because it is healthily designed for
extension by external modules, or because people actively avoid the nastiness with‐
in. How much of each of these kinds of rigid code do you have?

4. Does your project tooling support your code changes? How can you improve it?

See also

• Playing by the Rules “Nothing is set in stone” is one of three complementary rules
my team has converged on.

• The Ghost of a Codebase Past Expect to change code regularly, and learn from each
change you make.

• It’s Done When It’s Done No software is ever “complete.” It is soft stuff, and may
change in many ways in the future. However, it’s important to know when the cur‐
rent work on it is done.

• Wallowing in Filth Describes some techniques for making fearless changes.
• The Curious Case of the Frozen Code The very opposite of dynamic, mutable code:

frozen code.

Try this….
Identify the code in your project that no one wants to touch. Is it appropriate to rework
this code now? Work out how to improve it.

162 | Chapter 18: Nothing Is Set in Stone

Chapter 18: Nothing Is Set in Stone | 163

CHAPTER 19

A Case for Code Reuse

If it can’t be reduced, reused, repaired, rebuilt, refurbished, refinished, resold, recycled or
composted, then it should be restricted, redesigned or removed from production.

— Pete Seeger

We hear about a mythical thing called “code reuse.” For a while it became incredibly
fashionable; another software silver bullet, something new for the snake-oil vendors to
peddle. I’m not sold on it.

We often talk in terms of “use cases” when developing software. We also see these reuse
cases:

Reuse Case 1: The Copy-Pasta
Code copied out of one app is surgically placed into another. Well, in my book that’s less
code reuse and more like code duplication. Or, less politely: copy-and-paste program‐
ming. It’s often evil; tantamount to code piracy. Imagine a bunch of swashbuckling pro‐
grammers pillaging and hoarding software gems from rich codebases around the seven
software seas. Daring. But dangerous. It’s coding with the bad hygiene of a salty seaman.

Remember the DRY mantra: do not repeat yourself.

This kind of “reuse” is a real killer when you’ve duplicated the same code fragment 516
times in one project and then discover that there’s a bug in it. How will you make sure
that you find and fix every manifestation of the problem? Good luck with that.

Having said that, you can argue that copy-and-paste between projects actually gets stuff
done. There’s a lot of it about and the world hasn’t come to a crashing end. Yet. And
copy-and-paste code avoids the unnecessary coupling which overly DRY code can suf‐
fer.

165

However, copy-and-paste is a nasty business and no self-respecting programmer will
admit to this kind of code “reuse.”

KEY ➤ Avoid copy-and-paste coding. Factor your logic into shared
functions and common libraries, rather than suffer duplicated
code (and duplicated bugs).

Whilst it is tempting to copy-and-paste code between files in a codebase, it is even more
tempting to copy in large sections of code from the Web. We’ve all done it. You research
something online (yes, Google is a great programming tool, and good programmers
know how to wield it well). You find a snippet of quite plausible-looking code in a forum
or blog post. And you slap it straight into your project to see whether it works. Ah! That
seems to do it. Commit.

Whilst it’s awesome that kind souls provide online tutorials and code examples to en‐
lighten us, it’s dangerous to take these at face value, and not apply critical judgment
before incorporating them into our work.

Consider first:

• Is the code genuinely completely correct? Does it handle all errors properly, or was
it only illustrative? (Often we leave error handling and special cases as an exercise
for the reader when publishing examples.) Is it bug free?

• Is it the best way to achieve what you need? Is it an out-of-date example? Does it
come from a really old blog post, containing anachronistic code?

• Do you have rights to include it in your code? Are there any license terms applied
to it?

• How thoroughly have you tested it?

KEY ➤ Don’t copy code you find on the Web into your project without
carefully inspecting it first.

Reuse Case 2: Design for Reuse
You design a library from the outset for inclusion in multiple projects. That’s clearly
more theologically correct than yucky copy-and-paste programming. However, I’m
sorry: this is not code “reuse.” It’s code use. The library was designed to be used like this
from the very start!

This approach could also be a huge unnecessary sidetrack.

Even if you suspect that a section of code will be used by more than one project, it’s
usually not worth engineering it for multiple uses from the start. Doing so can lead to
overly complex, bloated software, with high-ceremony APIs that try to cover all general

166 | Chapter 19: A Case for Code Reuse

use cases. Instead, employ the YAGNI principle: if you aren’t going to need it (yet), then
then don’t write it (yet).

Focus on constructing the simplest code that satisfies the requirements right now. Write
only what’s needed, and create the smallest, most appropriate API possible.

Then, when another program wants to incorporate this component, you can add or
extend the existing, working code. By only producing the smallest amount of software
possible, you will reduce the risk of introducing bugs, or of constructing unnecessary
APIs that you’ll have to support for years to come.

Often your planned second “use” never materialises, or the second user has surprisingly
different requirements than anyone expected.

Reuse Case 3: Promote and Refactor
Write small, modular sections of code. Keep it clean and neat.

As soon as you realise that it needs to be used in more than one place, refactor: create
a shared library or a shared code file. Move the code in there. Extend the API as little
as possible to accommodate the second user.

It’s tempting at this stage to think that the interface must be dusted off, reworked, and
filled out. But that might not be a good idea at all. Aim to keep your changes minimal
and simple, because:

• Your existing code works. (It does work well, doesn’t it? And you have the tests to
prove it?!) Every gratuitous change you make moves it further from this working
state.

• It’s possible that a third client will appear shortly with slightly different require‐
ments. It would be a shame (as well as a waste of effort) to have to rip up the adjusted
API again and adapt it.

KEY ➤ Code should be “shared” because it is useful to multiple clients,
not because the developers want to create a nifty shared library.

Reuse Case 4: Buy In, or Reinvent the Wheel
When you need to add a new feature, there may already be third-party libraries available
that provide the functionality.

Carefully consider whether it is economically more sensible to roll your own code, to
pull in an open source version (if license terms permit), or to buy in a third-party
solution with vendor support.

Chapter 19: A Case for Code Reuse | 167

You need to weigh the ownership costs against build costs, the likely code quality, and
the ease of integration and maintenance of each solution. Developers tend to want to
write things themselves, not just for the intellectual exercise, but also due to a distrust
of the unknown. Make an informed decision.

KEY ➤ Don’t dismiss other people’s code. It may be better to use exist‐
ing libraries rather than write your own version.

Questions

1. How much duplication is there in your codebase? How often do you see code copied
and pasted between functions?

2. How can you determine how different sections of code have to be before it is ac‐
ceptable to consider it not duplication, and to not try to refactor the versions to‐
gether?

3. Do you often copy code examples from books or websites into your work? How
much effort do you invest in “sanitising” the code for inclusion? Do you mercilessly
update the layout, variable names, etc.? Do you add tests?

4. When you add code from the web, should you place comments around it stating
the source of the implementation? Why?

See also

• Keep It Simple Appropriate reuse maintains simplicity in your code and avoids the
kind of problems we see in Chapter 7.

• Navigating a Route Unnecessary duplication makes it hard to navigate around a
codebase.

Try this….
If you are working on any unnecessarily general code, work out how to remove that
generality and only keep the essential husk of useful logic.

168 | Chapter 19: A Case for Code Reuse

Chapter 19: A Case for Code Reuse | 169

CHAPTER 20

Effective Version Control

Everything changes, nothing perishes.
— Ovid

Version control, to the developer, is like eating and breathing; like a source editor and
compiler. It’s an essential part of daily development life.

Version control is the process of managing multiple revisions of a set of files. These are
commonly the source files for a software system (so it is often called source control), but
it could just as easily be revisions of a document tree, or of anything else you’d store in
a filesystem.

This is a simple enough facility. But a good version control system, used well, brings us
many benefits:

• It provides a central collaboration hub, orchestrating how developers work together.
• It defines and publishes the state of the art; no code has been integrated unless it is

stored in the system. Other tools link into this update feed—for example, contin‐
uous integration, release engineering, and code audit systems.

• It maintains a history of the work on a project, archiving the exact contents that
went into each specific release. It is a code time machine.
This facilitates software archaeology, tracing the changes in files to work out the
changes that comprised a particular feature. It catalogues who changed each file,
and why.

• It provides a central backup of your work.
• It provides the developer with a safety net. It leaves room to experiment, to try

changes, and roll them back if they do not work.
• It fosters a rhythm and cadence of work: you do a chunk of work, test it, and then

check it in. Then you move on to the next chunk of work.

171

1. For example, a single git init command in a directory establishes a Git repository in a heartbeat.

• It enables multiple concurrent streams of development to occur on the same
codebase without interference.

• It enables reversibility: any change in the history of the project can be identified
and reversed if it is found to be wrong.

Use It or Lose It
That’s an impressive list. Version control is the backbone of your development process;
without it you lack structural support.

So the first, golden rule of version control is: do it. Right from the very beginning of any
project, employ version control. No ifs, no buts.

Most modern VCSs (version control systems) require practically no effort to set up, so
there is no real excuse to defer version control.1 Even the simplest prototypes (those
pernicious things that all too often grow into production systems) can start off with
their own repository and tracked history.

KEY ➤ Use version control. It is not optional or a nice-to-have tool. It is
the backbone of development. Your work is at risk without it.

Software is not inherently safe; source code on a disk is like digital smoke: all too easily
blown away by a move of the hand. I’ve lost count of the times over the years that I’ve
deleted the wrong thing, or made a mistaken change, but didn’t have a checkpoint to
roll back to. Version control alleviates this. A decent, lightweight VCS encourages small,
frequent check-ins, providing a serious level of insulation against your own stupidity.

War Story: Distributed Data Loss
Standing outside a restaurant, I asked the members of a team I was collaborating with
where I could get their source code. Implicitly, I meant, “which server hosts the repos‐
itory that I should check out?” These guys worked out of their homes, distributed around
a city.

They thought for a while, looking at each other quizzically. Then Dave said: Bill, it’s on
your computer, isn’t it? Surprised by the response, I probed further.

It turns out, they weren’t fans of source control—it was “too much work.” They thought
a VCS was heavy-handed and process-driven. They preferred to take turns “looking
after” the code. All changes were emailed at the end of every week for the owner to wind
up into a big ball, and send it back around again.

172 | Chapter 20: Effective Version Control

2. I am now so entrenched in the distributed Git workflow that I will now only ever consider using a Subversion
repository if I can use Git as the “frontend” connection client. Everyone I speak to shares this experience.

Yes, there were often many code conflicts to resolve; these were dealt with by guesswork,
not always successfully. Yes, things got lost or forgotten every now and again. Yes, there
were no backups. And yes, the source code had been lost catastrophically a couple of
times over the years.

But even so, they were convinced that version control was too high ceremony, too much
work. Yes, they were happy working like this.

That wasn’t very many years ago. I’ve avoided the team since.

Pick One, Any One
There have been many different VCS systems produced over the years, from the pioneer
days of Unix’s rcs command (dating from the early 1980s), through the centralised CVS
(popular in the 1990s), its modernising cousin Subversion (which held sway in the
2000s), and into the world of modern distributed systems like Git and Mercurial (which
now rule the 2010s). Some tools are commercial, many are open source. They differ by
license, cost, ease of use, platform support, maturity, scalability, and feature set.

A key differentiator is the mode of operation. The historical centralised systems funnel
all communication through a central server that hosts the repository of all version-
controlled files. This is a simple model, but requires access to that server for any non-
trivial operation. The most recent VCS development is the distributed model, a peer-
to-peer approach where each computer can host its own copy of the repository. This
enables more impressive workflows, and allows you to interact with the repository even
when away from a network connection.

Which tool should you use, if you have a choice?

Favour a modern, supported, and conventional system. Until recently, Subversion was
probably the default choice due to its cost (free), range of supported platforms (practi‐
cally everything, including your toaster), and ease of use. However, recently Git has
taken over this crown. Distributed version control systems have become more popular,
and for good reason. They provide more capable workflows that are genuinely useful.
However, this power comes at a cost: Git definitely has a steeper learning curve.2

Storing the Right Things
We create so many files that we have them coming out of our ears. We have source files,
configuration files, binary assets, build scripts, intermediate build files, object files,

Chapter 20: Effective Version Control | 173

bytecode, compiled executables, and more. Which of these should be stored under ver‐
sion control?

For our source-code projects there are two different answers. They are not entirely
contradictory.

Answer One: Store Everything
You must store every file that’s required to re-create your software. It doesn’t matter if
it’s a “binary” or a “source” file. Version control it. A good VCS can handle large binaries
in a reasonable way, and so you should not have to worry about managing binary files.
(And if you didn’t store your binaries under a VCS, you’d still have to archive them and
manage revisions elsewhere, anyway.)

Starting with an appropriately configured build machine, and with the correct OS and
compilation environment (the build tools, standard libraries, etc., plus sufficient disk
space), one simple checkout operation should get you a good buildable source tree.

That means your repository must include:

• All source code files
• All documentation
• All build files (makefiles, IDE setup, scripts)
• All configuration files
• All assets (graphics, sounds, install media, resource files)
• Any third-party–supplied files (e.g., code libraries you depend on, or DLLs from

an outside company)

Answer Two: Store as Little as Possible
You clearly have to store a lot of stuff. But don’t include unnecessary cruft that will
confuse, bloat, and get in the way. Keep the repository file structure as simple as you
can. Specifically:

• Don’t store IDE configuration files or cache files. Avoid checking in precompiled
header files or dynamically created code information, ctags files, user preference
settings files, etc.

• Don’t store generated artefacts—you needn’t check in object files, library files, or
application binaries if they are a result of the build process. You needn’t even check
in automatically generated source files.

174 | Chapter 20: Effective Version Control

3. No build system should rely on fixed locations on a computer. This is bad build system design. Fix it!

Sometimes auto-generated files do get checked in: if they are particularly hard to
generate or take a long time to create. This decision must be made very carefully—
don’t pollute your repository with unnecessary rubbish.

• Don’t store things that are not a part of your project, like the installers for devel‐
opment tools, or an operating system image for the build server.

• Don’t check in test or bug reports. They should be managed in a bug reporting
system elsewhere.

• “Interesting” project emails do not belong in the repository. If they contain useful
information, then it should be placed into more structured documentation files.

• Don’t store personal settings, like the colour scheme for your editor, view config‐
uration for your IDE, or (particularly) any setup that describes the location of build
files on your computer.3 This is especially nasty when your settings will fight with
another user’s computer.

• Don’t keep things in the repository that you think you might need one day. Re‐
member: you can delete stuff under version control if it isn’t related to the current
state of the art (it’s perfectly safe—it’s still there in the archives). Don’t hold on to
digital baggage that can be thrown away.

KEY ➤ Store every file that comprises your software project under ver‐
sion control. But store as little as possible; do not include any
unnecessary files.

Storing Software Releases
Should you version control the software releases that you build? Some shops put all
their releases into a repository. This is usually a separate “release” repository; the binaries
do not really belong beside the source files.

Consider archiving these in a simple static directory structure elsewhere. Version con‐
trol does not buy you much when recording less dynamic file structures for posterity.
It can be easier to navigate a file server for this kind of archiving.

Repository Layout
Think carefully about the layout of your repository. Ensure that the directory structure
is clear and reveals the shape of the code. Include a helpful “read me” document at the
top level.

Chapter 20: Effective Version Control | 175

Mercilessly avoid duplication. Just as duplication in your code leads to bugs, so does
duplication of files within a repository.

Manage third-party code carefully. Keep it separate from your own source files. Place
it in clearly marked subdirectories. This helps you to be able to track changes from a
third party without getting confused by your files.

Ensure that your repository is configured to ignore inappropriate files. You can instruct
most systems to ignore certain files based on pattern-matching rules. This helps to
prevent you from accidentally checking in personal settings files, derived files, and the
like.

Use Version Control Well
To change and change for the better are two different things.

— Proverb

If the golden rule is: “use version control,” then the silver rule is: “use version control
well.” It’s important to truly understand how your version control system works and the
best practices for working with it.

A number of these practices are universal.

Make Atomic Commits
The changes you commit to a repository tell a story of your work on the code. Consider
how you tell this story so that the recorded history is clear.

Make small, atomic commits. They are easier to understand, and easier to inspect for
correctness. This is the little and often check-in strategy.

KEY ➤ Check in changes little and often.

Don’t accumulate a week’s worth of work before you check in. Or even a day. It leads to
problems:

• It’s harder to track the changes made in the code, as the changes are larger and
coarser-grained.

• The rest of the code repository could have changed massively between your updates.
Your new work might not be valid anymore.

• If the world changes around you, you are more likely to have conflicts: where you’ve
changed the same section of code as someone else and now have to resolve a com‐
mon set of changes.

Atomic commits are cohesive and coherent, presenting related changes as an individual
step. Do not create a check-in that covers more than one change. If you find yourself

176 | Chapter 20: Effective Version Control

writing the commit message: Refactor internal structure and turn button green, then it’s
clear that you’ve done two things. Do them in two separate commits. As a specific, and
common, example, do not change code layout and functionality at the same time.

An atomic commit is complete. Don’t check in half-done work. Each commit must stand
as an entire step.

Sending the Right Messages
With each commit, provide a good check-in message. This should start with a brief
summary of what has changed, ideally one clear sentence. Then follow up with the
reasons why you made the change, if these are of interest. If appropriate, include a bug
reference number or other supporting information.

Make the message clear, succinct, and unambiguous, just like good code. Remember
the DRY principle: don’t repeat yourself. There is no need to list the files that you’ve
changed; the VCS already records this for you.

Aim for messages that sum up the change in the first sentence. These scan well in a list
of commits as you browse the repository history.

Here are some examples of real check-in messages from a single codebase. Which ones
do you think are good or bad?

• fix #4507: Utility windows load behind ACVS
• add some credits.. fix a bug that caused sample edit mode tab not to work..
• ‘`’' (…yes, an empty string; this is a surprisingly common commit message)
• adjusted a deviance
• Documented some super-scary code in program loading whilst looking at a crasher.

You know, sometimes I really despair at what I see in this codebase.
• seriously, does anybody read this stuff?

Craft Good Commits
A diligent programmer is considerate, and makes appropriate check-ins. Just as the
commit message should be well-crafted, so should the contents of the commit.

• Don’t break the build. Before you check in any code, first test it against the latest
version of the repository. This will ensure that your new code won’t break the build
and annoy other developers. Other components it depends on might have changed
since you wrote the code, causing your new work to be erroneous.
The simple process is: make a change, test that it builds against the head of the
repository, test that it works, check it in. In that order. Always. When you’re dashing

Chapter 20: Effective Version Control | 177

out the door to catch a bus it can be very tempting to rush a check-in of code that
“should work.” Take it from me: it rarely does.

• Don’t trash or move a file unless you know that everyone is done with it. This is
particularly important on cross-platform multibuild system projects.

• Don’t let editors fight over line endings; this is another easy trap to fall into on cross-
platform projects.

Branches: Seeing the Wood for the Trees
Branches are a fundamental and important VCS facility. They enable you to “fork” your
development effort and work on different features simultaneously, without those de‐
velopment lines interfering with one another. Once complete, each code branch can be
merged back onto the mainline to synchronise the forks with their parent. This is an
immensely powerful development tool.

Branches can be used for personal work (as a playground for an individual’s develop‐
ment or for risky experiments), to aid in team collaboration (defining integration or
test areas), and for release management.

Many common tasks are made much easier with branches. Consider using them for:

• Encapsulating revisions of the source tree. For example, each feature can be devel‐
oped on its own branch.

• Exploratory development work—the stuff you’re not sure will work. Don’t risk
breaking the main development line: tinker on a branch and then merge down if
the experiment is a success. You can create multiple branches to test out different
ways of implementing the same functionality; merge down the most successful
attempt (a form of code natural selection).

• Major changes that cut across a lot of the source tree and will take a while to com‐
plete, requiring many QA tests, and many individual check-ins to get right. Doing
this work on a branch prevents other developers from stalling for days on end with
a broken code tree.

• Individual bug fixes. Open a branch to work on a bug fix, test the work, and then
merge the branch down once the fault has been closed.

• Separating volatile development from stable release lines. For example, we use
release branches to “freeze” the code that comprises a software release. Release
branches are described in Please Release Me.

Branches are an excellent organisation facility just waiting to be used. Don’t be afraid
of them. Don’t pollute your main development line with unnecessary distraction that
can be hived off into a branch.

178 | Chapter 20: Effective Version Control

4. A feature toggle is a configuration file that selectively enables or disables functionality in your software. It
might be a run-time-parsed XML config file, or a set of compile-time preprocessor flags.

However, be aware that branches are not always the most appropriate concurrent de‐
velopment technique. Sometimes it is better to eschew multiple, practically invisible,
concurrent development efforts (with the consequent periodic integration overhead)
in favour of a simple feature-toggle based approach on the main line of code develop‐
ment.4

The Home for Your Code
A version controlled repository is the home for your code. Be careful that it doesn’t
become a nursing home. Or a morgue.

After seeing enough large projects, you’ll observe that any reasonably complex project’s
source code tends to become accustomed to the VCS it’s stored in.

This happens as the project and its infrastructure grows up. As code passes infancy into
adolescence, build scripts and release tools become deeply integrated with the reposi‐
tory. For example, automated version update scripts drive the version control machi‐
nery. Certain file structure conventions are followed because the VCS mandates them
(e.g., the existence of empty directories, or whether you can create symbolic links).

These things tend to shape the way you work with the code, for better or for worse.

KEY ➤ Source code inhabits the VCS it is stored in. The more mature a
project, the more deeply it relies on this habitat.

We don’t tend to migrate projects between VCSs frequently, as we value the revision
history that the repository records. Migration is possible, but often it’s a lossy and messy
process. This is a key reason to choose an appropriate VCS at the beginning of a project.

Conclusion
To improve is to change; to be perfect is to change often.

— Sir Winston Churchill

Version control is one of our fundamental software development tools. Every program‐
mer should know how to wield a VCS well, just as you should have a good working
knowledge of a powerful source code editor.

Version control forms the backbone of team collaboration. It is essential for software
development but can be used for many other purposes: for example, for managing
document trees. This book was written as a set of AsciiDoc files held under Git. This

Chapter 20: Effective Version Control | 179

has allowed me to back up my work easily, to move files between computers with no
hassle, to track the changes I have made, and to share the manuscript with my publisher.

Version control is even useful for non-collaborative scenarios; most important infor‐
mation will benefit from being stored in a repository. By default, I create a repository
for every prototype project I start, even if it’s a pet personal project. I manage many
other things with Git, like the personal settings saved in my computer’s home directory.
This makes it super easy to set up a new computer to my personal taste by just cloning
that repository.

Questions

1. Version control systems come with GUI and command-line tools. What are the
pros and cons for each? Is it important to know how to use both? Why?

2. What are the possible problems that distributed VCSs introduce over the simpler
centralised model? How can you avoid these problems?

3. Are you using the right version control system? What facilities does your current
system lack that you have seen in an alternative VCS?

4. Does using a version control system mean that you do not need to back up a personal
development machine?

5. Which is a safer mechanism for concurrent working: feature-toggles or concurrent
branches? Which involves the least management and integration overhead?

6. You are about to commit your changes to a repository and realise that you’ve worked
on two separate things. Should you stop and rework the changeset, or just commit
the code because you’ve done it already? Why? How do different VCS tools help
this situation?

See also

• Improve Code by Removing It Version control allows you to delete code with con‐
fidence. You can always get it back from the archives.

• Please Release Me Version control is an essential part of a good release and deploy‐
ment pipeline. This chapter describes release branches in more detail.

• The Curious Case of the Frozen Code Release branches are the VCS mechanism used
to enforce a code freeze whilst work can continue on the development mainline.

• Navigating a Route Your repository history can contain valuable information that
will help you to navigate your way around and gauge the quality of a codebase.

180 | Chapter 20: Effective Version Control

Try this….
Pay attention to the quality of your commits. Are they frequent, atomic, small, and
coherent? Work on creating better changes.

Chapter 20: Effective Version Control | 181

CHAPTER 21

Getting One Past the Goalpost

Fights would not last if only one side was wrong.
— François de la Rochefoucauld

The mid-twentieth-century philosophers and purveyors of jaunty, tuneful hair, The
Beatles, told us all you need is love. They emphasised the point: love is all you need. Love;
that’s it. Literally. Nothing else.

It’s incredible how long a career they had given that they didn’t need to eat or drink.

In our working relationships with other inhabitants of the software factory, we would
definitely benefit from more of that sentiment. A little more love might lead to a lot
better code! Programming in the real world is an interpersonal endeavour, and so is
inevitably bound up in relationship issues, politics, and friction from our development
processes.

We work closely with many people. Sometimes in stressful scenarios.

It is not healthy for our working relationships, nor for the consequent quality of our
software, if our teams are not working smoothly together. But many teams suffer these
kinds of problem.

As a tribe of developers, one of our rockier relationships is with the QA enclave; largely
because we interact with them very closely, often at the most stressful points in the
development process. In the rush to ship software before a deadline, we try to kick the
software soccer ball past the testing goalkeepers.

So let’s look at that relationship now. We’ll see why it’s fraught, and why it must not be.

183

What Is QA Good for?
To some it’s obvious what they do. To others it’s a mystery. The “QA” department (that
is, Quality Assurance) exists to ensure that your project ships a software product of
sufficient quality. They are a necessary and vital part of the construction process.

What does this entail? The most obvious and practical answer is that they have to test
the living daylights out of whatever the developers create in order to ensure:

• That it matches the specification and requirements—that every feature that should
be implemented has been implemented.

• That the software works correctly on all platforms—that is, it works on all OSes,
on all versions of those OSes, on all hardware platforms, and on all supported
configurations (e.g., meeting minimum memory requirements, minimum pro‐
cessor speeds, network bandwidth, etc.).

• That no faults have been introduced in the latest build—the new features don’t break
any other behaviour, and no regressions (the reintroduction of previous bad be‐
haviour) have been introduced.

Their name is “QA,” not just “the testing department,” and for a reason. Their role is not
just pushing buttons like robots; it’s baking quality into the product.

To do this, QA must be deeply involved throughout, not just a final adjunct to the
development process.

• They have a hand in the specification of the software, to understand—and shape—
what will be built.

• They contribute to design and construction, to ensure that what’s built will be test‐
able.

• They are involved heavily in the testing phase, naturally.
• And also in the final physical release: they ensure that what was tested is what is

actually released and deployed.

Software Development: Shovelling Manure
In unenlightened workplaces, the development process is modelled as a huge pipe:
conveying raw materials pumped in the top, through various processes, until perfectly
formed software gushes (well, perhaps dribbles) out the end. The process goes some‐
thing like this:

1. Someone (perhaps a business analyst or product manager) pours some requirements
into the mouth of the pipe.

184 | Chapter 21: Getting One Past the Goalpost

1. This model is often attributed to Winston Royce. Although he wrote about it in the 1970s, it was as an
illustration of a flawed development process, not a laudable one. See Winston Royce, “Managing the Devel‐
opment of Large Software Systems,” Proceedings of IEEE WESCON 26 (1970): 1–9.

2. They flow through architects and designers, where they turn into specifications and
pretty diagrams (or good intentions, and smoke and mirrors).

3. This flows through the programmers (where the real work gets done, naturally),
and turns into executable code.

4. Then it flows into QA. Where it hits a blockage as the “perfectly formed” software
magically turns into a nonfunctioning disaster. These people break the code!

5. Eventually the developers push hard enough down the pipe to break this blockage,
and the software finally flows out of the far end of the pipe.

In the fouler development environments, this pipe more closely resembles a sewer. QA
feels like the developers are pumping raw sewage down to them, rather than handing
them a thoughtfully gift-wrapped present. They feel they are being dumped on, rather
than worked with.

Is software development really this linear? Do our processes really work like this simple
pipeline (regardless of how pure the contents)?

No. They don’t.

The pipe is an interesting first approximation (after all, you can’t test code that hasn’t
been written yet), but far too simplistic a model for real development. The linear pipeline
view is a logical corollary of our industry’s long fascination with the flawed waterfall
development methodology.1

KEY ➤ It is wrong to view software development as a linear process.

However, this view of the development process does explain why the development team’s
interaction with the QA team isn’t as smooth as it should be. Our processes and models
of interaction are too often shaped by the flawed sewage-based development metaphor.
We should be in constant communication, rather that just throwing them software to‐
wards the end of the development effort.

A False Dichotomy
Our inter-team interactions are hindered because they are just that: interactions between
separate teams. The QA people are considered a different tribe, distinct from the “im‐
portant” developers. This bogus, partitioned vision of the development organisation
inevitably leads to problems.

Chapter 21: Getting One Past the Goalpost | 185

When QA and development are seen as separate steps, as separate activities, and there‐
fore as very separate teams, an artificial rivalry and disconnect can too easily grow. This
is reinforced physically by our building artificial silos between testers and developers.
For example:

• The two teams have different managers and different reporting lines of responsi‐
bility.

• The teams are not colocated, and have very different desk locations (I’ve seen QA
in separate desk clusters, on different floors, in different buildings, and even—in
an extremely silly case—on another continent).

• There are different team structures, recruiting policies, and expected turnover of
staff. Developers are valued resources, whereas testers are seen as replaceable cheap
mercenaries.

• And most pernicious: the teams have very different incentives to complete tasks.
For example, the developers are working with the promise of bonus pay if they
complete a job quickly, but the testers are not. In this case, the developers rush to
write the code (probably badly, because they’re hurrying). They then get very cross
when the QA guys won’t sanction it for a timely release.

We reinforce this chasm with stereotypes: developers create, testers break.

There is an element of truth there. There are different activities and different skills
required in both camps. But they are not logically separate, silo-ed activities. Testers
don’t find software faults to just break things and cause merry hell for developers. They
do it to improve the final product.

They are there to bake in quality. That’s the Q in QA. And they can only do this effectively
in tandem with developers.

KEY ➤ Beware of fostering an artificial separation between develop‐
ment and testing efforts.

By separating these activities, we breed rivalry and discord. Often, development pro‐
cesses pit QA as the bad guy against the developer hero. Testers are pictured standing
in the doorway, blocking a plucky software release getting out. It’s as if they are unrea‐
sonably finding faults in our software. They are nit-picking over minutiae.

It’s almost as if they’re running into the forests, catching wild bugs, and then injecting
them into our otherwise perfect code.

Does that sound silly?

Of course it does when you read it here, but it’s easy to start thinking that way: The code
is fine; those guys just don’t know how to use it. Or: They’ve been working far too long to
find such a basic bug; they really don’t know what they’re doing.

186 | Chapter 21: Getting One Past the Goalpost

2. Melvin E. Conway, “How Do Committees Invent?” Datamation 14:5 (1968): 28–31.

Software development is not a battle. (Well, it shouldn’t be.) We’re all on the same side.

Fix the Team to Fix the Code
Conway’s famous law describes how an organisation’s structure—and specifically the
lines of communication between its teams—dictates software structure.2 It is popularly
paraphrased as “if you have four teams writing a compiler, it’ll be a four-pass compiler.”
Experience shows this to be pretty accurate. In the same way that team structure affects
the code, so does the health of the interactions within the software.

KEY ➤ Unhealthy team interactions result in unhealthy code.

We can improve the quality of our software, and the likelihood of producing a great
release, by addressing these health issues: by improving the relationship between de‐
velopers and QA. Working together rather than waging war. Love, remember, is all you
need.

This is a general principle and applies far more broadly than just between developers
and QA. Cross-functional teams in all respects are very helpful.

This comes down to the way we interact and work with QA. We should not treat them
as puppets whose strings we pull, or to whom we throw ropey software to test. Instead,
we treat them as coworkers. Developers must have good rapport with QA: a friendship
and camaraderie.

Let’s look at the practical ways we can work better with these inhabitants of the QA
kingdom. We’ll do this by looking at the major places that developers interact with QA.

But We Have Unit Tests!
We are conscientious coders. We want to make rock-solid software. We want to craft
great lines of code with a coherent design, that contribute to an awesome product.

That’s what we do.

So we employ development practices that ensure our code is as good as possible. We
review, we pair, we inspect. And we test. We write automated unit tests.

We have tests! And they pass! The software must be good. Mustn’t it?

Even with unit tests coming out of our ears, we still can’t guarantee that our software is
perfect. The code might operate as the developers intended, with green test lights all the
way. But that may not reflect what the software is supposed to do.

Chapter 21: Getting One Past the Goalpost | 187

The tests may show that all input the developers envisioned was handled correctly. But
that may not be what the user will actually do. Not all of the use cases (and abuse cases)
of the software have been considered up front. It is hard to consider all such cases—
software is a mightily complex thing. Thinking about this is exactly what the QA people
are great at.

Because of this, a rigorous testing and QA process is still a vital part of a software de‐
velopment process, even if we have comprehensive unit tests in place. Unit tests act as
our responsible actions to prove that the code is good enough before we hand it over to
the testers to work on.

Releasing a Build to QA
We know that the development process isn’t a straight line; it’s not a simple pipeline. We
develop iteratively and release incremental improvements: either a new feature that
needs validation or a fixed bug that should be validated. It’s a cycle that we go around
many times. Over the course of the construction process, we will create numerous builds
that will be sent to QA.

So we need a smooth build and handoff process.

This is vital: the handoff of our code must be flawless—the code must be responsibly
created and thoughtfully distributed. Anything less is an insult to our QA colleagues.

We must build with the right attitude: giving something to QA is not the act of throwing
some dog-eared code, built on any old machine, over the fence for them. It’s not a
slapdash or slipshod act.

Also, remember that this is not a battle: we don’t aim to slip a release past QA, deftly
avoiding their defence. Our work must be high quality, and our fixes correct. Don’t cover
over the symptoms of the more obvious bugs and hope they’ll not have time to notice
the underlying evils in the software.

Rather, we must do everything we can to ensure that we provide QA with something
worthy of their time and effort. We must avoid any silly errors or frustrating sidetracks.
Not to do so shows a lack of respect to them.

KEY ➤ Not creating a QA build thoughtfully and carefully shows a lack
of respect to the testers.

This means that you should follow the guidelines covered in the following sections.

Test Your Work First
Prior to creating a release build, the developers should have done as good a job as
possible to prove that it is correct. They should have tested the work they’ve done be‐

188 | Chapter 21: Getting One Past the Goalpost

forehand. Naturally, this is best achieved with a comprehensive suite of regularly run
unit tests. This helps catch any behavioural regressions (reoccurrences of previous er‐
rors). Automated tests can weed out silly mistakes and embarrassing errors that would
waste the tester’s time and prevent them from finding more important issues.

With or without unit tests, the developers must have actually tried the new functionality,
and satisfied themselves that it works as well as is required. This sounds obvious, but
all too often changes or fixes that should “just work” get released, and cause embar‐
rassing problems. Or a developer sees the code working in a simple case, considers it
adequate for release, and doesn’t even think about the myriad ways it could fail or be
mis-used.

Of course, running a suite of unit tests is only as effective as the quality of those tests.
Developers take full responsibility for this. The test set should be thorough and repre‐
sentative. Whenever a fault is reported from QA, demonstrative unit tests should be
added to ensure that those faults don’t reappear after repair.

Release with Intent
When a new version is being released to QA, the developer must make it clear exactly
how it is expected to work. Don’t produce a build and just say, “see how this one works.”

Describe clearly exactly what new functionality is and isn’t implemented: exactly what
is known to work and what is not. Without this information you cannot direct what
testing is required. You will waste the testers’ time. You communicate this in release
notes.

It’s important to draw up a set of good, clear release notes. Bundle them with the build
in an unambiguous way (e.g., in the deployment file, or with a filename that matches
the installer). The build must be given a (unique) version number (perhaps with an
incrementing build number for each release). The release notes should be versioned
with this same number.

For each release, the release notes should clearly state what has changed and what areas
require greater testing effort.

More Haste, Less Speed
Never rush out a build, no matter how compelling it seems. The pressure to do this is
greatest as a deadline looms, but it’s also tempting to sneak a build out before leaving
the office for the evening. Rushing work like this encourages you to cut corners, not
check everything thoroughly, or pay careful attention to what you’re doing. It’s just too
easy. And it’s not the right way to give a release to QA. Don’t do it.

Chapter 21: Getting One Past the Goalpost | 189

If you feel like a school kid desperately trying to rush your homework and get “some‐
thing” in on time, in the full knowledge that the teacher will be annoyed and make you
do it again, then something is wrong! Stop. And think.

KEY ➤ Never rush the creation of a build. You will make mistakes.

Some products have more complex testing requirements than others. Only kick off an
expensive test run across platforms or OSes if you think it’s worthwhile, when an agreed
number of features and fixes have been implemented.

Automate
Automation of manual steps always removes the potential for human error. So automate
your build or release process as much as possible. If you can create a single script that
automatically checks out the code, builds it, runs all unit tests, creates installers or de‐
ploys on a testing server, and uploads the build with its release notes, then you remove
the potential for human error for a number of steps. Avoiding human error with auto‐
mation helps to create releases that install properly each time and do not contain any
regressions. The QA guys will love you for that.

Respect
The delivery of code into QA is the act of producing something stable and worthy of
potential release, not the act of chucking the latest untested build at QA. Don’t throw a
code grenade over the fence, or pump raw software sewage at them.

On Getting a Fault Report
We give the test guys a build. It’s our best effort yet, and we’re proud of it. They play
with it. Then they find faults. Don’t act surprised. You knew it was going to happen.

KEY ➤ Testing will only reveal problems that software developers add‐
ed to the system (by omission or commission). If they find a fault,
it was your fault!

On finding a bug, they lodge a fault report: a trackable report of the problem. This report
can be prioritised, managed, and once fixed, checked for later regression.

It is their responsibility to provide accurate, reliable fault reports, and to send them
through in a structured and orderly way—using a good bug tracking system, for ex‐
ample. But faults can be maintained in a spreadsheet, or even by placing stories in a
work backlog. (I’ve seen all these work.) As long as there’s a clear system in place that
records and announces changes to the state of a fault report.

So how do we respond to a fault report?

190 | Chapter 21: Getting One Past the Goalpost

First, remember that QA isn’t there to prove that you’re an idiot and make you look bad.
The fault report isn’t a personal slight. So don’t take it personally.

KEY ➤ Don’t take fault reports personally. They are not a personal insult!

Our “professional” response is “thanks, I’ll look into it.” Just be glad it was QA who they
found it, and not a customer. You are allowed to feel disappointed that a bug slipped
through your net.

You should be worried if you are swamped by so many fault reports that you don’t know
where to start—this is a sign that something very fundamental is wrong and needs
addressing. If you’re in this kind of situation, it’s easy to resent each new report that
comes in.

Of course, we don’t leap onto every single fault as soon as it is reported. Unless it is a
trivial problem with a super-simple fix, there are almost certainly more important
problems to address first. We must work in collaboration with all the project stake‐
holders (managers, product specialists, customers, etc.) to agree which are the most
pressing issues to spend our time on.

Perhaps the fault report is ambiguous, unclear, or needs more information. If this is the
case, work with the reporter to clarify the issues so you can both understand the problem
fully, can reproduce it reliably, and know when it has been closed.

QA can only uncover bugs from development, even if it’s not a fault that you were the
direct author of. Perhaps it stems from a design decision that you had no control over.
Or perhaps it lurks in a section of code that you didn’t write. But it is a healthy and
professional attitude to take responsibility for the whole product, not just your little part
of the codebase.

Our Differences Make Us Stronger
Whenever you’re in conflict with someone, there is one factor that can make the difference

between damaging your relationship and deepening it. That factor is attitude.
— William James (philosopher and psychologist)

Effective working relationships stem from the right developer attitudes. When we’re
working with QA engineers, we must understand and exploit our differences:

• Testers are very different from developers. Developers often lack the correct mind-
set to test effectively. It requires a particular way of looking at software, particular
skills and peccadilloes to do well. We must respect the QA team for these skills—
skills that are essential if we want to produce high-quality software.

Chapter 21: Getting One Past the Goalpost | 191

• Testers are inclined to think more like a user than a computer; they can give valuable
feedback on perceived product quality, not just on correctness. Listen to their opin‐
ions and value them.

• When a developer works on a feature, the natural instinct is to focus on the happy
path—on how the code works when everything goes well (when all input is valid,
when the system is working fully with maximum CPU, no memory or disk space
issues, and every system call works perfectly).
It’s easy to overlook the many ways that software can be used incorrectly, or to
overlook whole classes of invalid input. We are wired to consider our code through
these natural cognitive biases. Testers tend not to be straightjacketed by such biases.

• Never succumb to the fallacy that QA testers are just “failed devs.” There is a com‐
mon misconception that they are somehow less intelligent, or less able. This is a
damaging point of view and must be avoided.

KEY ➤ Cultivate a healthy respect for the QA team. Enjoy working with
them to craft excellent software.

Pieces of the Puzzle
We need to see testing not as the “last activity” in a classic waterfall model; development
just doesn’t work like that. Once you get 90% of the way through a waterfall development
process into testing, you will likely discover that another 90% of effort is required to
complete the project. You cannot predict how long testing will take, especially when
you start it far too late in the process.

Just as code benefits from a test-first approach, so does the entire development process.
Work with the QA department and get their input early on to help make your specifi‐
cations verifiable, ensure their expertise feeds into product design, and that they will
agree that the software is maximally testable before you even write a line of code.

KEY ➤ The QA team is not the sole owner of, nor the gatekeeper of
“quality.” It is everyone’s responsibility.

To build quality into our software and to ensure that we work well together, all devel‐
opers should understand the QA process and appreciate its intricate details.

Remember that QA is part of the same team; they are not a rival faction. We need to
foster a holistic approach, and maintain healthy relationships to grow healthy software.
All we need is love.

192 | Chapter 21: Getting One Past the Goalpost

Questions

1. How close do you think your working relationship with your QA colleagues is?
Should it be better? If so, what steps can you take to improve it?

2. What is the biggest impediment to software quality in your development organi‐
sation? What is required to fix this?

3. How healthy are your release procedures? How can you improve them? Ask the QA
team what would help them most.

4. Who is responsible for the “quality” of your software? Who gets the “blame” when
things go wrong? How healthy is this?

5. How good do you think your testing skills are? How methodically do you test a
piece of code you’re working on before you check in or hand off?

6. How many silly faults have you let slip through your coding net recently?
7. What could you add to your development regimen in addition to unit tests to ensure

the quality of the software you hand to QA?

See also

• Testing Times Development testing: writing automated unit, integration, and sys‐
tem tests.

• People Power Working well with excellent QA folk is an example of the important
working relationships we must foster.

• Please Release Me The testing/QA process and the QA team are vital to making
effective software releases.

Try this….
Commit to working more closely with your QA department. Adjust your working re‐
lationships with them, so you construct better software together.

Chapter 21: Getting One Past the Goalpost | 193

194 | Chapter 21: Getting One Past the Goalpost

CHAPTER 22

The Curious Case of the Frozen Code

There she blows!—there she blows!
A hump like a snow-hill! It is Moby Dick!

— Herman Melville
 Moby Dick

Managers pronounce it in planning meetings. Developers utter it in reverent awe. Pro‐
cess ceremonies build up around it. And I have to stifle the gag reflex.

It’s a shout I imagine coming from a sailor in Moby Dick. Not “There she blows!” but
“Code freeze!” It’s about as likely, and just as fictitious.

Our hunt for another mythical state of code.

Hunting the Code Freeze
Code freeze is a term bandied around with, presumably, good intentions. But often
people don’t intend to say what the words actually imply.

A code freeze denotes the period between some “done” point—when no further work
is expected to be performed—and the release date.

Exactly when are these points? And what happens in the middle?

The release date is pretty easy to define: sometimes called release to manufacture or
RTM. It’s when the Gold Master of an installer disk is burnt and sent for duplication. In
the enlightened twenty-first century we may not always ship physical media, but we
tend to follow the mechanical conventions dictated by such a release schedule none‐
theless. Is this useful and appropriate? Sometimes yes; sometimes no. It does lend a
useful cadence to the delivery schedule.

195

But what is the preceding “done” point that initiates code freeze? Clearly, it should be
the point when we consider the code to be complete, with all features implemented and
no egregious outstanding bugs. However, some “freeze” their code at:

• The feature complete point, when all functionality has been written, but not fully
tested, and no bugs necessarily addressed.

• The point of the first alpha or beta release being made (of course, the definition of
these states is also beautifully ambiguous).

• When a release candidate build is first made.

During this period, we “freeze” the code so that no further work ought to be performed
on it. However, this notion is pure bunk; the code never stands still. Whatever happens
to the code, this is the phase when a final, exhaustive regression test sweep is run on the
software to ensure that it is adequate for release.

KEY ➤ “Code freeze” is the period leading up to a release when no
changes are anticipated.

At best: frozen is figurative term. The code is considered frozen for development work,
but is still open for final testing. We anticipate some changes being made in light of
these tests—if it was not possible to change the code at all, we could just release it now
regardless.

Because we’re testing to find problems, we will probably uncover a few nasty things that
need remedial work. What happens then? You must fix the faults, which implies that
the code isn’t as frozen as all that! It’s not a very deep freeze.

At worst: the code freeze metaphor isn’t particularly useful. It’s a misnomer. Even glaciers
move; just very slowly.

KEY ➤ “Code freeze” is a misleading term. Code never stands still, even
if you’d like it to.

A New World Order
So, at code freeze, we do anticipate some final work will be required. But we carefully
monitor the software’s development, selectively including or excluding changes in the
release code.

Rather than a complete lockdown on changes, “code freeze” really signifies a new rule
of order is in place for the development effort. Changes cannot be applied blindly. Even
worthwhile changes must be added with careful agreement.

We work very hard to maintain the integrity of the release, so each change is reviewed
very carefully before inclusion. We only include changes that are strictly necessary for

196 | Chapter 22: The Curious Case of the Frozen Code

the release. Not all issues or bugs found in the “frozen” code will be considered for fixing
post code freeze. Only “showstoppers” that will prevent a release from being made will
be addressed. Some lower priority issues may be queued for a later release, depending
on their priority. We balance the risk: it may be more important to release the product
than invest time and energy finding and fixing these faults.

Specifically, there is absolutely no more work on new features. No bugs are “fixed”
without prior agreement; we prioritise the issues that have to be addressed. This is a
discipline; we do this because even the simplest feature addition or bug fix may introduce
unexpected and unwanted side effects.

So this stage of development is not so much a “freeze” of the code; it is more a very
intentional deceleration. It is a mindful reduction of the rate of change of the code line.

KEY ➤ We slow down development work to carefully shepherd a code
line to release, managing the final fixes and changes carefully.

Careless speed costs lines (of code).

During the freeze period, some larger (and more departmental) organisations will in‐
voke the services of the “installer team” to create the install/distribution systems, or get
to work on any remaining collateral (artwork, text files, etc.) for the final release. Per‐
sonally, I believe this is wrong—by the time you enter a “freeze,” all work should have
been completed, ready for final test.

Forms of Freeze
It helps to consider the three different forms of “freeze,” and to be specific in the terms
we use. Code freeze itself is a bit too woolly and misleading:
Feature freeze

A feature freeze declares that only bug fixes may now be committed—no new fea‐
tures will be developed. This helps to avoid “feature creep”—as we get near a sched‐
uled release, it’s always tempting to sneak that one extra little facility in without fully
considering the risk or potential bugs that the change may introduce.

Code freeze
We no longer work on any features, nor on any bugs that have not been highly
prioritised. We only accept fixes for “showstopping” issues. We dearly need a better,
less ambiguous, name for this state.

“Hard” code freeze
No changes are allowed at all. Any change required after this point is tantamount
to bringing out the defibrillators and trying to revivify the development team. We
never really consider this state, because by the time you get here the software has
shipped, and the party has moved on to another code line.

Chapter 22: The Curious Case of the Frozen Code | 197

Branches Make It Work
Typically, when a code freeze is declared, we branch the code in the revision control
system. Specifically, we create a release branch. This allows the release’s development
code line to be frozen, without delaying other work that can continue on the main code
branch.

It is best practice, when working with a release branch, that absolutely no code work
takes place on the branch itself. The release branch remains, always, stable with no
speculative changes applied.

Instead, all work takes place on a spongier branch, perhaps the development mainline.
Each fix is tested and verified there and, only when ready, is merged to the release branch.
By doing this, only acceptably good code ever arrives on the release branch.

Code should always flow between branches towards points of stability. We “promote”
change sets based on their proven quality.

Every change that is incorporated into the frozen branch goes through more rigour than
previous development changes:

• They are each carefully reviewed.
• They are given focused testing effort.
• They are risk-analysed, so any potential differences they introduce are well under‐

stood and, if necessary, mitigated.
• They are prioritised—they will be carefully reviewed for appropriateness in the

release.

Branches are pivotal to a team being able to manage code freezes. Without a release
branch, all the developers would physically have to put down their tools, and stall work
for the duration of the freeze. This isn’t a good use of time or expensive resources.
Developers like to develop; soon they’ll get itchy feet, and write code anyway.

KEY ➤ Branch or bust.

That said, it’s a good idea to avoid concurrent work as much as possible—it can be
confusing and lead to conflicting goals and aims for the team.

But It’s Not Really Frozen!
Be careful that the “code freeze” misnomer doesn’t lead you into a false sense of confi‐
dence. Often the term code freeze is pronounced to managers to imply a more stable
project state, to garner their confidence. It sounds great, doesn’t it?

198 | Chapter 22: The Curious Case of the Frozen Code

But don’t believe your code is in a better state than it is. At all times it’s important to
have a realistic appraisal of the state of your project.

Be wary that the word “freeze” doesn’t tempt you to keep things rigid when they should
not be. When changes must be made, they must be made.

Length of the Freeze
You must declare a digital winter for the right length of time. Like the Narnian winter,
you don’t want an unnecessarily lengthy freeze where Christmas never comes! But have
it too short, and the freeze is a pointless exercise.

The correct period depends on the complexity of your project, the test demands it
imposes (both on people and resources: do we need to install or configure a whole
separate test platform with administrators and boffins to keep it spinning?), the scope
of the changes that have gone into this release (which may influence the level of regres‐
sion testing performed), and the resources available to devote to test and verification.

A typical freeze period length is two weeks.

Beware the Pareto principle: we often see in IT projects where the “last” 20% of effort
expands to take up 80% of the total time (or thereabouts). To avoid this, make sure you
enter the freeze at the right point. Don’t declare a freeze when you think you just need
to “finish off ” a few things. You freeze once everything is finished off.

Feel the Freeze
A code freeze is the hard road to release—not a picnic in the park. Set your expectations
accordingly.

During a code freeze period, expect to find bugs that you will not be able to fix because
they are not important enough to risk inclusion. This is no longer a coding free-for-all
where any code change is permissible; otherwise you wouldn’t have declared freeze.
Therefore expect to be disappointed, and to ship a product that you’d hoped would be
better!

KEY ➤ It’s not unusual (or wrong) to ship software that you know could
be better.

Look on the bright side: because you’ve found them, you can fix those bugs in the next
release.

Chapter 22: The Curious Case of the Frozen Code | 199

1. For more on the technical debt metaphor, see http://martinfowler.com/bliki/TechnicalDebt.html.

Also expect to rack up technical debt during a freeze.1 This is one of the few valid times
to do so: when there’s no scope to make wide-ranging repairs, you have to fix problems
with stopgap “paper over the cracks” techniques to get a “good enough” shipping prod‐
uct. But do remember to consider this kind of work as debt, not normal practice, and
plan to pay this off in the development cycles after the release.

KEY ➤ During code freeze you will accrue technical debt. Monitor this,
and be prepared to pay the debt off soon after the release ships.

If you make a change during freeze that has serious implications, consider if the code
should be thawed and refrozen, with a thorough test cycle kicked off from scratch.
Postpone the release and restart your code freeze period if you have to.

Scientists tell us that freezing-thawing-freezing is bad for your health. So be careful not
to do this too many times, or you’ll end up with food poisoning!

A long freeze period is a warning sign that you don’t have a stable enough codebase.

The End Draws Near
At the end of a code freeze period, when we reach the RTM point, the code line is really,
honestly frozen. No changes will now occur as the release has (finally) been made. Close
the release branch. Archive the code line. Go and celebrate.

Any further changes will be made to a different code line.

KEY ➤ The only true “code freeze” is when an acceptable release is made.
This is the point that the code is finally set in stone.

This point is the real honest-to-goodness code freeze. But no one ever talks about this!

Antifreeze
If you work well, it is possible to avoid code freeze periods altogether. You can skip this
sordid dance.

Many development teams are no longer constrained by a physical manufacturing pro‐
cess—they ship software over the Internet, or create web services that can be deployed
into production servers in a heartbeat. The “disaster” of a bug making it through to an
external release is minimised here—an online software update can be deployed to rem‐
edy the issue in the field before many users even spot the problem.

200 | Chapter 22: The Curious Case of the Frozen Code

http://martinfowler.com/bliki/TechnicalDebt.html

However, this is no excuse to chuck code out without testing. Rapid code-freeze-less
releases require a new mind-set, and discipline. We strive to release fast by writing
reliable, provably bug-free code from the start.

We can minimise, and even remove, code freeze periods by:

• Employing continuous delivery; setting up a pipeline that ushers each build into a
full deployable state. This ensures that you are always ready to deploy.

• Establishing a good automated test harness with good coverage. These tests must
cover the code, the integration, and final user-facing aspects of the system to give
reliable feedback on the state of the product.

• Good acceptance criteria testing—tools like Cucumber can be used to ensure that
the full set of high-level user requirements have been met by the software.

• Reduce the test period—reduce the scope or size of project so that you don’t need
a lengthy lockdown for each release.

• Develop a simple and reliable “release pipeline” that will take your code and deploy
it into production with little effort and no human intervention.

With this kind of discipline it’s perfectly possible to “release” code into production reg‐
ularly, with far less ceremony than the traditional release engineering process. Many
teams can make a software release every week. Some are capable of deploying code onto
their production systems daily.

These super-short development cycles require a coding mind-set that is more disci‐
plined throughout, so you don’t need to switch gears and apply more care at the frozen
end of a development phase.

KEY ➤ Aim for code that never “freezes,” but is permanently ready to
release to production.

Conclusion
Code freeze is a problematic term; it is a misleading metaphor. Code doesn’t really freeze
or thaw. Code is a malleable substance, constantly changing and adapting to the world
around it. What really happens is that the rate of change of development slows, and we
change the focus of our work.

However, it is true that as we get near a software release we need more discipline in the
development regimen to ensure that the software is of a releasable quality.

Chapter 22: The Curious Case of the Frozen Code | 201

http://cukes.info

Questions

1. Do you have a formal code freeze period in your development practice? How dili‐
gently is it observed?

2. How do you ensure that changes applied in the freeze period are safe and appro‐
priate?

3. Is a single person responsible for the quality of the build, or is it a team concern?
Which is the right approach, and why?

4. Does it take your project a long time to get to the code freeze point? Why? How can
you shorten this?

See also

• Please Release Me A “code freeze” exists to help you stablise your software in the
run up to a release.

• Effective Version Control A release branch is used to encapsulate frozen code.

Try this….
Consider how to improve your release process. How can you minimise (or eliminate)
the code freeze period?

202 | Chapter 22: The Curious Case of the Frozen Code

CHAPTER 23

Please Release Me

I heard an Angel singing
When the day was springing,

“Mercy, Pity, Peace
Is the world’s release.”

— William Blake
 I Heard an Angel

Creating a software release is an incredibly important step in your software development
process, and not one that should left to the last minute. It requires discipline and plan‐
ning.

Many times I have run into silly, perfectly avoidable problems
that were caused by a lackadaisical approach to the construction
of software releases.

Most of these were caused by the sloppy habit of creating a “re‐
lease” from a local working directory, rather than from a clean
checkout. (Hint: this is not a real software release, it’s a “build”
of your code, you need a lot more process and diligence to create a proper release.)

Some examples:

• A software release was made from a developer’s local working directory. The de‐
veloper hadn’t cleaned the code first, and the directory contained uncommitted
source file changes. He noticed, but made the “release” anyway. When problems
were reported, we had no record of exactly what went into that build. The result:
debugging the software was a nightmare, mostly guesswork.

• A software release was made from a local directory that wasn’t up-to-date; the de‐
veloper hadn’t updated to the HEAD of the Subversion code repository. So the
release was missing features and bug fixes. Helpfully, the developer tagged the

203

HEAD of the repository as the “release point,” claiming he’d build that version. The
result: much confusion, embarrassment, and a dent in the project’s reputation.

• A project was released whose code was not under source control; it lived locally on
the hard disk of one machine which—as I’m sure you can guess—was not being
backed up. The code was based upon an original software release by another or‐
ganisation. We had no record of where the original code came from, which version
it was based on, or how it had been subsequently modified. For bonus points, the
machine’s exact build environment was unknown—the result of years of tweaks
and adjustments. Murphy’s law struck. The machine died. The result: all copies of
the source were lost, along with the understanding of how to build it for the target
platform. Game over.

Each was an incredibly frustrating experience.

Creating a serious high-quality software release is a lot more work than just hitting
“build” in your IDE and shipping whatever comes out. If you are not prepared to put
in this extra work, then you should not be creating releases.

KEY ➤ Creating software releases requires discipline and planning. It is
more than hitting “build” in a developer’s IDE.

In the previous chapter we looked at “code freeze,” where we attempted to stabilise our
code in the run up to a release. We also questioned whether a code freeze period should
exist at all. Once you have your code ready to release, be it a snapshot of your mainline,
or a frozen branch of development, you need rigour and discipline to construct a sound
release from it.

Part of the Process
Most people write software for the benefit of others as well as themselves. So it has to
get into the hands of your “users” somehow. Whether you end up rolling a software
installer shipped on a CD, a downloadable installer bundle, a zipfile of source code, or
deploy the software on a live web server, this is the important process of creating a
software release.

The software release process is a critical part of your software development regimen,
just as important as design, coding, debugging, and testing. To be effective, your release
process must be:

• Simple
• Repeatable
• Reliable

204 | Chapter 23: Please Release Me

1. Other kinds of releases—for example, to a live web server—largely follow this pattern with few adjustments.

Get it wrong, and you will be storing up some potentially nasty problems for your future
self. When you construct a release you must:

• Ensure that you can get the exact same code that built it back again from your source
control system. (You do use source control, don’t you?) This is the only concrete
way to prove which bugs were and were not fixed in that release. Then when you
have to fix a critical bug in version 1.02 of a product that’s five years old, you can
do so.

• Record exactly how it was built (including the compiler optimisation settings, target
CPU configuration, etc.). These features may subtly affect how well your code runs
and whether certain bugs manifest.

• Capture the build log for future reference.

A Cog in the Machine
The bare outline of a good release process, specifically for a “shrink-wrap” distributable
application, is shown next.1

Step 1: Initiate the Release
Agree that it’s time to spin a new release. A formal release is treated differently than a
developer’s test build, and should never come from an existing working directory.

Agree what the name and type of the release is (e.g., “5.06 Beta1” or “1.2 Release Can‐
didate”).

Step 2: Prepare the Release
Determine exactly what code will constitute this release. In most cases, you will already
be working on a release branch in your source control system, so it’s the state of that
branch right now. You should rarely release code directly from your source control
system’s mainline of code development (i.e., trunk or master).

A release branch is a stable snapshot of the code that allows you to continue development
of “unstable” features on the trunk. You can merge in the good, stable, known work from
the mainline into the release branch once it is proven. This maintains the integrity of
the release codebase whilst allowing other new work to continue on the mainline.

If you run unit tests and a continuous integration system on your code’s mainline, then
you must also arrange to run these on the release branch, for as long as the branch is
alive. The release process should be short, and so release branches should be short-lived.

Chapter 23: Please Release Me | 205

Tag the code in source control to record what is going into the release. The tag name
must reflect the release name.

Release Branches
You can make a branch in your version control system for just about any reason: to work
on a new feature independent of the rest of the codebase, or to work on a bugfix or
exploratory refactor without disrupting others. The branch encapsulates a set of
changes. When you’ve completed the work, you typically merge the branch back onto
the mainline. Or throw it away. Standard stuff.

“Release branches” are made for the exact opposite reason—to mark a point in the
codebase where you want to ensure stability. Once you have made a branch for your
software release, then other new features can be developed on the code mainline without
fear of compromising the impending software release. This provides a mechanism for
your “code freeze.”

The QA department can perform regression testing of the branch code without worrying
that any new work will move the goalposts under their feet. Very occasionally an im‐
portant bugfix from the mainline may get merged into the release branch, but each
merge is made carefully, with the consent of all people who have an interest in the quality
of the software on that branch.

A release branch is not merged back down onto the trunk, as you perform no fresh
development within it. All development occurs on the trunk, is sanity tested there, and
then merged onto the release branch.

A good release process does not necessarily require a release branch. If you keep your
code mainline in a permanently shippable state (by developing with more rigour and
employing sound automated tests), then it is possible to bypass the release branch ritual
altogether.

Step 3: Build the Release
Check out a virgin copy of the entire codebase at that tag. Never use an existing checkout.
You may have uncommitted local changes that affect the build, or other untracked files
that make a difference. Always tag and then checkout that tag. This will avoid many
potential problems.

KEY ➤ Always build your software in a fresh checkout, from scratch.
Never reuse old parts of a software build.

Now build the software. This step must not involve hand-editing any files at all, other‐
wise you do not have a versioned record of exactly the code you built.

206 | Chapter 23: Please Release Me

Ideally, the build should be automated: a single button press, or a single script invocation.
Checking the mechanics of the build into source control alongside the code unambig‐
uously records how the code was constructed. Automation reduces the potential for
human error in the release process.

KEY ➤ Make your build as simple as a single step that automates all parts
of the process. Use a scripting language to do this.

The build script acts as unambiguous documentation on how to build the project. It
also ensures that it is simple to deploy the build on a CI (continuous integration) server,
where it can be automatically run to ensure validity of the build. Indeed, the best release
builds are triggered from a CI server directly, and need never touch human hands.

KEY ➤ Deploy your builds on a CI server to ensure their health. Make
formal releases from the same system.

Step 4: Package the Release
Ideally, this is an integral part of the previous step.

Construct a set of “release notes” describing how the release differs from the previous
release: the new features and the bugs that have been fixed. (This can be automated,
pulled from source control logs. However, check-in messages might not be the best
customer-facing notes.)

Package the code (create an installer image, CD ISO images, etc.). This step should also
be part of the automated build script for the same reason.

Step 5: Deploy the Release
Store the generated artefacts and the build log for future reference. Put them on a shared
file server.

Test the release! Yes, you tested the code already to prove that it was time to release, but
now you should test this “release” version to ensure that everything is correct, and that
the artefacts are of suitable release quality.

KEY ➤ Never release software without testing the final artefacts.

There should be an initial smoke test to ensure that the installers work OK (on all
supported deployment platforms) and that the software appears to run and function
correctly.

Then perform whatever testing is appropriate for this type of release. Internal test re‐
leases may be run through test scripts by in-house testers. Beta releases may be released

Chapter 23: Please Release Me | 207

2. This is originally from Mary and Tom Poppendieck’s Lean Software Development: An Agile Toolkit (Boston:
Addison-Wesley, 2003), where they describe it as: the moment at which failing to make a decision eliminates
an important alternative.

to select external testers. Release candidates should see suitable final regression checks.
A software release should not be distributed until it has been thoroughly checked.

Finally, deploy the release. If you ship directly to an end user, then this perhaps involves
putting the installer on your website, and sending out emails or press releases. Perhaps
it means sending the software to a manufacturer to burn onto physical media.

If your code is deployed on a live, running production server, then we enter the world
of devops (development/operations, where software development meshes with IT oper‐
ations). This is the art of deploying new code onto a remote server, upgrading any
required software components, upgrading datastores (e.g., performing database schema
migration), and restarting the server with the new code; all with as little downtime as
possible. This process needs to offer sensible fallback in case of any installation issues.
As with many other software processes, automation is very much the key to an effecient
and successful server deployment.

Release Early and Often
One of the worst release process sins is to think about this stuff only as you reach the
end of a project, when you finally need to perform a public software release.

In the software world, it’s an increasingly popular belief that you should defer any task
or decision until the last responsible moment;2 that is, until the point you know most
about the exact requirements and have minimised the opportunity cost of what you
could be doing instead. This is a sound viewpoint; however, the last responsible minute
to construct a release process is a lot sooner than most developers expect.

KEY ➤ Do not defer the planning and construction of a software re‐
lease process until the last minute. Build it early, iterate through
builds rapidly and frequently. Debug the build like you’d debug
any other software.

We’ve seen that the ideal release process is entirely automated. The automated build and
release plumbing should be established very early on in the development process. It
should then be used often (daily, if not more frequently) to prove that it works, and that
it is robust. This will also help to highlight and eliminate any nefarious presumptions
in the code about the installation environment (hardcoded paths, assumptions about
the computer’s installed libraries, capabilities, etc.).

Starting the software release process early in the development effort gives you plenty of
time to iron out wrinkles and flaws so that when you are in the run-up to a real public

208 | Chapter 23: Please Release Me

release, you can focus on the important task of making your software work, rather than
the tedious mechanics of how to ship it. Indeed, some people set up their release process
as the very first thing on a new software project.

And There’s More…
This is a large topic, tied intimately with configuration management, source control,
testing procedures, software product management, and the like. If you have any part in
releasing a software product, you really must understand and respect the sanctity of the
software release process.

Questions

1. When do you decide to kick off a new software release?
2. How repeatable and reliable is your build and release process? How simple is it?

How often do builds fail?
3. What is the worst release-creation failure you have seen? How could it have been

avoided?
4. Does your build intermittently fail? Does this happen on developer machines, or

the CI server? Which is the worse place for this to happen?
5. Should the creation and curation of the build and release process be a specific job

for a specific person, or should everyone on the team be responsible for this? Why?

See also

• The Curious Case of the Frozen Code How we try to marshall the code development
work towards a release.

• Effective Version Control A software release is built from virgin code taken straight
out of the source repository. The VCS hosts our release branch of code.

Try this….
Review your project’s build and release process. Work out how to improve it. If it is not
automated via a single script invocation, write this script now.

Chapter 23: Please Release Me | 209

210 | Chapter 23: Please Release Me

PART III

Getting Personal

Becoming a better programmer requires more than a mere grasp of good coding and
of good design, even though these are deep enough topics. There’s a whole raft of other
skills you need to pick up, and attitudes and approaches that will build you into a master.

The following chapters will help you grow in this area, presenting a selection of topics
on personal development. We’ll learn how to learn, consider behaving ethically, be
challenged to avoid stagnation, as well as look at our physical well-being. These are all
important parts of the coder’s life.

CHAPTER 24

Live to Love to Learn

Learning is like rowing upstream: not to advance is to drop back.
— Chinese proverb

Programming is an exciting and dynamic field to work in; there is always something
new to learn. Programmers are rarely forced to repeat the same task for years, only
discovering new ways to develop RSI and failing eyesight. We continually face the un‐
known: new problems, new situations, new teams, new technologies, or a new combi‐
nation of them all.

We are continually challenged to learn, to increase our skills and our capabilities. If you
feel like you’re stagnating in your career, one of the most practical steps you can take to
get out of the rut is to make a conscious effort to learn something new.

KEY ➤ Be in a state of continual learning. Always look to learn some‐
thing new.

Some people are naturally better at learning; they excel at absorbing new information
and can “get up to speed” rapidly. That’s natural. But it is something we can all improve
at, if we try. You need to take charge of your learning.

If you want to improve as a programmer, you need to be a skilled and seasoned learner.
And you need to learn to enjoy it.

KEY ➤ Learn to enjoy learning.

What to Learn?
There’s a whole world of things you could attempt to pick up. So what should you look
at? American political poet Donald Rumsfeld summed up this conundrum in a partic‐
ularly apt way when he made an infamous White House press conference:

215

As we know, there are known knowns; there are things we know we know. We also know
there are known unknowns; that is to say, we know there are some things we do not know.

But there are also unknown unknowns—the ones we don’t know we don’t know.

That is surprisingly profound.

You’re aiming for a known unknown—something you’d like to learn. Or shoot for the
unknown unknowns: spend some time investigating interesting things to learn first.

Ultimately, pick something that interests you. Pick something that will benefit you (the
act of learning in itself is a benefit, but choosing something because it will give you fresh
usable skills, broadens your insight, or brings you pleasure is a good thing). You will be
investing a significant amount of time, so invest wisely!
Learn a new technology

For programmers this is the obvious choice. We’re fascinated by the different ways
we can make electrons dance, and there are so many ways to do it.

There is no shortage of new and interesting programming languages; you don’t have
to become an expert, but do get beyond “Hello, World!” Learn a new library, an
application framework, or a software tool. Learn how to use a new text editor or
IDE. Learn a new documentation tool, or a test framework. Learn a new build
system, an issue tracking system, a source control system (indulge yourself in the
new distributed version control craze that all the cool kids are going on about), a
new operating system, and so on.

Learn new technical skills
Learn how to effectively read alien code, or how to write technical documentation.
Learn how to architect software.

Learn how to work with people
Yes, this is tediously “touchy-feely” for most code monkeys. But it is an incredibly
interesting, useful field. Study sociology, or management texts. Read about becom‐
ing a software team leader. This will help you to become a more capable team
worker. It will help you to understand how to communicate well with your team
and how to understand your customer better.

Learn a new problem domain
Perhaps you’ve always wanted to write mathematical modelling software, or work
on audio DSP. Without any experience or knowledge you’d be unlikely to find a job
in a new sphere, so give yourself a head start and begin to learn about it. Then work
out how to get practical, demonstrable experience.

Learn how to learn
Seriously! Find new techniques that will help you absorb knowledge more effec‐
tively. Do you find there’s a constant barrage of information you need to tap into,

216 | Chapter 24: Live to Love to Learn

1. It’s interesting to note that, although the left/right brain characterisation is prevalent in pop-psychology
writing, no scientific studies have proved that such a distinction actually exists.

and it just seems to flow past you? Investigate ways to seek out, consume, and absorb
knowledge. Practice new skills like mind mapping and speed reading.

Learn something completely different
Or, more interestingly, focus on something completely left field with no relevance
to your day job, and no obvious software applicability. Learn a new foreign language,
a musical instrument, a new branch of science, art, or philosophy. Even spirituality.
This will widen your world view, and will inevitably inform the way you program.

Learning to Learn
Learning is a basic human skill. We all do it, all the time. When it arrives freshly for‐
matted, the human brain rapidly absorbs information and develops skills across a wide
range of experiences.

Then we hop aboard the academic train, where our learning is progressively funnelled
through an increasingly restricted system. We move from a general education into a
more specialised secondary education, until at university we focus on a single major
topic. Post-graduate study focuses on an even more specific area of that specific topic.
This increasing focus enables us to become highly proficient in an area, but in the process
we train ourselves to become very narrow minded.

KEY ➤ Our learning is often too narrowly focused. Consider a wider
sphere of reference. Draw inspiration from many fields.

There are a few techniques to employ that will help you learn more successfully.

Understand how you best learn and exploit that to your advantage; your personality
type affects your learning style. People who are traditionally categorised as “right-brain”
learn best when presented with patterns and a holistic view of a subject; they struggle
when bombarded by a serial stream of information. Their “left-brain” counterparts
thrive on a linear, rational presentation of the topic. They prefer to assimilate facts than
to have a grand story told to them.1 Introverts prefer to learn on their own, whereas
extroverts thrive in collaborative workshops. Understanding your particular personality
type will reveal specific ways to make your learning routine maximally effective.

You may find it useful to try absorbing information from many different information
sources. In the modern connected world we’re presented with many media forms:

• The written (e.g., books, magazines, blogs)
• The spoken (e.g., audio books, presentations, user groups, podcasts, courses)

Chapter 24: Live to Love to Learn | 217

• The visual (e.g., video podcasts, TV shows, performances)

Some people respond better to particular media. What works best for you? For the best
results, mix several of these sources. Use podcasts on a topic to reinforce what you’re
reading in a book. Attend a training course and read a book on the topic, too.

KEY ➤ Use as many sources as possible to improve the quality of your
learning.

Cross-sensory feedback attempts to stimulate parts of the brain that you don’t normally
exercise whilst learning, to increase the brain’s effectiveness. Consider trying some of
these actions whilst learning—some may work well for you:

• Listen to music whilst you work
• Doodle whilst you think (yes I am paying attention in your meeting, look at how

many doodles I’ve made…)
• Fiddle with something (a pen or a paper clip, perhaps)
• Talk whilst you work (vocalising what you’re doing or learning, it really does help

you retain more knowledge)
• Make thought processes concrete rather than purely intellectual—like modelling

things with building blocks or CRC cards
• Employ meditative practices (may help you attain greater focus and cut out dis‐

tractions)

A surprisingly simple way to improve your information recall is to grab a notepad and
capture information as you uncover it, rather than let it wash past you.

This serves two purposes. Firstly, it keeps you focussed and helps you to maintain con‐
centration on the topic. It’s a basic idea, but remarkably helpful. Secondly, even if you
throw those notes away immediately afterwards, the cross-sensory stimulation will aid
your recall of facts.

KEY ➤ Takes notes as you learn. Even if you throw them away.

Your mental state affects the quality of your learning. Studies have shown that cultivating
a positive attitude towards learning significantly enhances your recall. So find things to
learn that engage you. Stress and lack of sleep will contribute to an inability to concen‐
trate, degrading your ability to learn.

218 | Chapter 24: Live to Love to Learn

2. Stuart E. Dreyfus and Hubert L. Dreyfus, A Five-Stage Model of the Mental Activities Involved in Directed
Skill Acquisition (Washington, DC: Storming Media).

The Four Stages of Competence

You can learn falsehood and believe that it’s right. This can be at best embarrassing, and
at worst dangerous. This is illustrated by the Four Stages of Competence (a classification
posited in the by 1940s by psychologist Abraham Maslow). You may have:
Conscious incompetence

You don’t know something. But you know that you’re ignorant. This is a relatively
safe position to be in. You probably don’t care—it’s not something you need to know.
Or you know that you’re ignorant and it is a source of frustration.

Conscious competence
This is also a good state to be in. You know something. And you know that you
know it. To use this skill you have to make a conscious effort, and concentrate.

Unconscious competence
This is when your knowledge of a topic is so great that it has become second nature.
You are no longer aware that you are using your expertise. Most adults, for example,
can consider walking and balance as an unconscious competence—we just do it
without a second thought.

Unconscious incompetence
This is a dangerous place to be. You don’t know that you don’t know something.
You are ignorant of your ignorance. Indeed, it is very possible that you think you
understand the subject but don’t appreciate how very wrong you are. It is a blind
spot in your knowledge.

Learning Models
There are a number of very illuminating models of learning that have been constructed
by educational psychologists. The Dreyfus model of skill acquisition is a particularly
interesting example, postulated by brothers Stuart and Hubert Dreyfus in 1980 whilst
they were working on artificial computer intelligence.2 After examining highly skilled
practitioners such as airline pilots and chess grand-masters, they identified five specific
levels of understanding:
Novice

A complete newbie. Novices want to get results fast, but have no experience to guide
them in doing so. They look for rules they can follow by rote, and have no judgment

Chapter 24: Live to Love to Learn | 219

to tell whether those rules are good or bad. Given good rules (or luck finding suitable
resources on Google), novices can get quite far. Novices have no knowledge of a
topic (yet).

Advanced beginner
At this level, some experience has led to learning; you can break free from rules a
little and try tasks on your own. But perception is still limited, and you’ll get stuck
when things go wrong. At this level there is a better understanding of where to get
answers (you know the best API references, for example) but you are still not at a
level where you can comprehend the bigger picture. The beginner can’t focus out
irrelevant details; as far as they’re concerned everything and anything could be
important to the problem at hand. Beginners rapidly gain explicit knowledge—the
kind of factual knowledge that can be easily written down and articulated.

Competent
This stage sees you with a mental model of the problem domain; you’ve mapped
the knowledge base, have begun to associate its parts, and understand the relative
importance of different aspects. This big picture view allows you to approach un‐
known problems and plan methodical routes into those problems, rather than div‐
ing in and hoping rules will get you to a solution. At this point, you actively seek
out new rules to formulate a plan of attack, and begin to see the limitation of those
rules.

This is a good place to be.

Proficient
Proficient people move beyond competency. They have a much better understand‐
ing of the big picture, and are frustrated with the simplifications that the novice
needed. They can correct previous errors and reflect on their experiences to work
better in the future. At this point you can also learn from other’s experiences and
assimilate them into your body of understanding. Proficient people can interpret
maxims (as opposed to simplistic rules) and apply them to a problem (e.g., they
know how and when to apply design patterns). Now it is easy to identify and focus
only on the issues that really matter, confidently ignoring irrelevant details. Here
we see the person has gained significant tacit knowledge—knowledge that’s hard to
transfer by exposition, that is only gained by experience and deep understanding.

Expert
This is the pinnacle of the learning tree. There are very few experts. They are au‐
thorities on a subject; they know it completely, and can use this skill interlinked
with other skills. They can teach others (although they probably teach competents
better than novices as there is less of a disconnect). Experts have intuition, so rather
than needing rules, they naturally see an answer, even if they can’t articulate why
it’s the best solution.

220 | Chapter 24: Live to Love to Learn

3. Hunt and Thomas, The Pragmatic Programmer.

Why is the Dreyfus model interesting? It’s a revealing framework to understand where
you currently stand in the mastery of a topic, and helps determine where you need to
get to. Do you need to be an expert? Most people are competent and this is satisfactory
(indeed, a team of experts would be far too top-heavy, and probably dysfunctional).

It also illustrates how you should expect to be solving problems at each stage of your
learning. Are you looking for simple rules to apply, hungrily gathering maxims to draw
experience from, or intuitively sensing answers? How much of a “big picture” view do
you have of the topic?

The Dreyfus model is also a very useful aid for teamwork. If you know where a colleague
sits on the novice-expert spectrum, you can better tailor your interaction with them. It
will help you learn how to work with other people—whether you should give them some
simple rules, explain some maxims, or leave them to weave new information into their
broader understanding.

Note that the Dreyfus model applies per skill. You may be an expert in a particular topic,
and a complete notice in another. This is natural. And should also be a source of humility
—even if you know all there is to know about behaviour-driven design, you may know
nothing about the Joe Bloggs test framework. It should excite you that there is something
more to learn that may enhance your expertise in BDD, whilst keeping you humble that
you aren’t an infallible expert in every subject! No one likes a know-it-all.

The Knowledge Portfolio
The Pragmatic Programmers describe a vivid and potent metaphor for learning—they
talk about your knowledge portfolio.3 Consider your current working set of knowledge
like a portfolio of investments. This metaphor beautifully highlights how we should
manage the information we have gathered, prudently investing to keep our portfolio
current, and bringing in new investments to strengthen it. Consider which items you
should retire from your portfolio to make room for other things.

Be aware of the risk/reward balance of the items in your portfolio. Some things are
common knowledge, but a safe investment to hold—they are low risk, easy to learn
about, and guaranteed to be useful in the future. Other investments are riskier—they
may not be mainstream technologies and practices, so studying them may not pay off
in the future. But if they do become mainstream, then you will be one of a smaller set
of people experienced in that niche, and so able to exploit that knowledge more. These
higher risk knowledge investments may pay much greater dividends in the future. You
need a good spread of risk and a healthy range of knowledge investments.

KEY ➤ Purposefully manage your knowledge portfolio.

Chapter 24: Live to Love to Learn | 221

Teach to Learn
To teach is to learn twice.

— Joseph Joubert

One of the most effective ways to learn anything is to teach it; explaining a topic to
someone else solidifies the knowledge in your head. When you have to explain some‐
thing, you are encouraged to go deeper so you truly understand the topic. Teaching
forces you to review the material, reinforcing it in your memory.

Write a blog post on what you learn, give a talk, teach a friend, or start to mentor a
colleague. Each of these will benefit you just as much as they benefit the other person.

Einstein said: If you can’t explain it simply, you don’t understand it well enough. When
reading a book, or listening to a teacher, it’s easy to fool yourself that you “know” a topic.
You’ve heard about it, but nothing has yet tested where the limits of your knowledge lie.
Teaching pushes on this boundary: you’ll have to answer tricky questions that stretch
your knowledge. If you’re asked a question that you can’t answer, the right response is:
I don’t know, but I’ll find out for you. You’ve both learnt.

KEY ➤ Teach a topic to learn that topic well.

Act to Learn
I hear and I forget. I see and I remember. I do and I understand.

— Confucius

An essential learning technique is to learn by doing. Reading books and articles, watch‐
ing online tutorials, and attending programming conferences are all very well. But until
you actually try to use that skill, it’s just an abstract collection of concepts in your head.

Make the abstract concrete—dive in. Try it.

Ideally, do this whilst you’re studying. Kick off a test project and try to use the knowledge
as you amass it. When learning a new language, start writing code in it immediately.
Take the code examples you read and try them out. Play around with the code; make
mistakes, see what works and what doesn’t.

KEY ➤ Using what you just learned cements it in your memory. Try
examples, answer questions, create pet projects.

Using information is a sure way to gain understanding about it. It will generate more
questions that will guide you in your learning.

222 | Chapter 24: Live to Love to Learn

What Have We Learnt?
Tell me, and I will forget. Show me, and I may remember. Involve me, and I will understand.

— Confucius

You have to take responsibility for your own learning. It’s not up to your employer, your
state education system, an assigned mentor, or any other person.

You are in charge of your own learning. It’s important to continually improve your skills
to improve as a developer. And to do that you have to learn to learn. To make it rewarding
you have to learn to love doing it.

Learn to live to love to learn.

Questions

1. When were you last in a situation that required learning? How did you approach
it?

2. How successful were you?
3. How quickly did you learn?
4. How could you have performed better?
5. Did you learn, then work, or learn as you worked? Which do you think is most

effective?
6. When was the last time you taught someone? How did it affect your understanding

of that topic?
7. How can you find the time to learn new things when you are under pressure to

produce work?

See also

• A Love for Languages One of the things a programmer frequently learns: a new
language.

• Many-festos Learn about the latest thoughts, trends, fashions, fads, and movements
in the software development world.

• Test-Driven Developers Considers how to prove that you know a programming skill
well. Is examination and certification valuable?

• Navigating a Route Sharp learning skills help you learn new codebases more effec‐
tively.

Chapter 24: Live to Love to Learn | 223

Try this….
Take responsibility for your learning. Step up. Decide on a topic you need to learn about,
and formulate a plan to learn it.

224 | Chapter 24: Live to Love to Learn

CHAPTER 25

Test-Driven Developers

Logic will get you from A to B. Imagination will take you everywhere.
— Albert Einstein

After years trapped in the software factory and many long hours of bitter experience,
software development becomes second nature. Once you are familiar with the syntax
of your programming language, understand the concepts of program design, and have
learnt to appreciate the difference between good and bad code, you find yourself natu‐
rally making reasonable coding decisions without discernible effort. Daily coding ac‐
tivities and “design in the small” become instinctive. Correct syntax flows from your
fingers’ muscle memory.

A mindless “shoot from the hip” approach is symptomatic of the cowboy coder, but
experienced programmers can work incredibly effectively without much deep thought.
This is the benefit that experience brings you.

Have you reached this stage?

According to the Four Stages of Competence model, described in Live to Love to
Learn, this idealic state is unconscious competence. It is an act we are able to do without
needing to consciously think, a task we can perform effectively without even realising
exactly what we’re doing and how difficult it is.

There are many activities in which we achieve a state of unconscious competence. Some
are professional. Some are far more mundane: most humans can walk and eat without
careful concentration. A common task in which people see their skills progress through
the four stages of competency is driving a car.

Driving is an interesting analogue of programming. Learning to drive has many parallels
with learning our craft, and there are lessons we can learn from a comparison of the
two.

225

Driving the Point Home
It takes a significant amount of learning to become a competent driver. It requires effort
to learn the mechanics of the car, as well as the etiquette and rules of the road. Driving
well requires a concert of actions and skills; it’s an intricate process. You must invest a
lot of effort and practice to achieve competence.

When new drivers first pass their driving test they are at the conscious competence stage
of learning. They know that they can drive, and they have to pay attention to carefully
coordinate all the contending forces. The selection of a new gear is a conscious process
(for those enlightened drivers with manual transmission). Mastery of the clutch requires
thoughtful balance.

But with experience, a lot of these actions become automatic reactions. We gain confi‐
dence. The controls and handling of the vehicle become second nature. We become
accustomed to how the vehicle responds to our control. We naturally adopt the correct
road positioning. We become masters of the operation of the vehicle.

Once a driver reaches this stage, their attention is freed to concentrate on the remaining
unknown: the road itself, and the decisions that it constantly presents.

Similarly, once software developers gain a mastery of their tools and languages, they are
freed to see the bigger shape of the problem to be solved. They are able to plan a route
without having to concentrate on the minutiae of how they will manage it.

Some drivers are better than others. Some are more conscientious. Some have more
natural ability.

Similarly, some developers are “naturals.” Others have to invest serious effort to work
effectively. Some developers are more thoughtful and careful than others. Others lack
diligence and an appreciation of what’s going on around them.

The majority of problems on the road—the accidents, delays, and so on—are due to
driver error. Crashes happen to cars but they are caused by the people who learnt to use
them.

The majority of coding disasters are due to programmer error. Crashes happen to pro‐
grams, but they are caused by the people who learnt to write them.

Success Breeds Complacency
Success breeds complacency. Complacency breeds failure. Only the paranoid survive.

— Andy Grove

The state of conscious competence can, if you’re not careful, lead to complacency.
Complacent drivers do not concentrate on the road, but end up “coasting”: driving

226 | Chapter 25: Test-Driven Developers

without due care and attention. Rather than look for hazards on the road ahead, you’re
thinking about what to eat for dinner, or singing along with the radio.

To become a better driver, it is important to overcome this complacency. Otherwise you
are a liability: a very real danger. You could easily collide with something or run someone
over.

Programming presents parallel pitfalls. Unless you take care, you’ll craft a code catas‐
trophe. Remember: careless code costs lives!

KEY ➤ Beware of becoming complacent when you reach a state of “com‐
petence.” Always code with your brain fully engaged to avoid silly,
potentially dangerous, errors.

Testing Times
Before you are let loose in a vehicle, you have to prove that you are capable. You have
to pass a driving test. It’s illegal to drive on public roads without having first passed this
test. The driving test proves that you have the necessary skills, and the responsibility, to
drive. It demonstrates that you can not only handle a car, but can make good decisions
under the pressured conditions of the road.

The existence of a test ensures that all drivers on the road have reached a certain stan‐
dard, and have completed a certain amount of training. This training means that:

• Learner drivers must amass hours of real-world driving experience before they are
ready to attempt the test. They don’t just study the theory of driving, and understand
the mechanics of a car, but gain practical hands-on experience on the road. Whilst
learning, they are effectively “driving apprentices” studying under a master.

• There is a reduced risk of accidents on the road; drivers are taught the dangers and
pitfalls inherent in driving and how to avoid them.

• Trained, experienced drivers have more confidence in their abilities and can make
mature decisions.

• Drivers understand how the road is shared between all types of users, and are con‐
siderate to other road users.

• Drivers are aware of the limitations of their equipment. They know how to react in
emergency situations when things go wrong.

The driving test ensures that a complex human activity does not end in disaster. It doesn’t
just encourage people to be good drivers based on good intentions, but mandates it.

Some countries go further, with an additional “advanced” driving test—a higher stan‐
dard of driving capability. This test is a requirement for certain jobs.

Chapter 25: Test-Driven Developers | 227

Test-Driven Developers
Now, there isn’t a direct equivalent of a driving test in the programming world; certifi‐
cation is not a legal prerequisite to write code (nor should it be, in the author’s opinion).
But to enter gainful employment you do usually have to demonstrate a reasonable level
of skill: having passed a reputable training course, or showing tangible prior experience.

So here is the obvious thought experiment: what would the equivalent of a driving test
for software developers look like? How can you realistically demonstrate competence?
Does it even make sense to try to?

I’m sure there are coders whom you respect and recognise as advanced. But is it possible,
or practical, or useful, to certify them as such?

We debate the true value of certification in our industry. Certainly, much of the certif‐
ication pedalled by training organisations is pure bunk, snake oil that helps you tick
boxes on a job application form but that means very little. Are you a certified scrum
master? How marvellous. I hope it didn’t cost too much to buy that certificate.

Would a physical coding test be of any use? What would it look like? How tailored would
it have to be to specific technology areas? Would the many specialisations make it im‐
practical to create? How would you measure engineers who don’t predominantly work
in code?

As we’ve seen, the majority of programmer skills are gained by experience garnered on
the job. So recognising progression through the apprentice-journeyman-craftsman
model may suit us better. Not every long-serving coder continues to learn and hone his
skills; not everyone becomes a master craftsman. Time on the job is not enough.

Indeed, advancing coding skills can be orthogonal to the typical developer promotion
path. If you serve faithfully in a job for n years, then your company might give you a
pay raise and allow you to climb another step up the corporate ladder. But that doesn’t
necessarily mean that you’re any better a programmer than when you started.

It is not at all clear that the benefits of the driving test can be brought to our profession
in a meaningful way.

Conclusion
Think for yourself and let others enjoy the privilege of doing so too.

— Voltaire

This is a little thought experiment, a rhetorical question. Nothing more. But it’s inter‐
esting to think about this kind of thing, to provide a framework that will help us become
better programmers.

228 | Chapter 25: Test-Driven Developers

It’s certainly valuable to consider the stages of coding ability we progress through. De‐
termine when you have moved from conscious competence to unconscious compe‐
tence. And beware of mindlessness and complacency.

Questions

1. What do you think? What is the programmer’s equivalent of a driving test? Could
there be such a thing?

2. Are your programming skills at the standard test level or at the advanced level? Do
you think you frequently achieve unconscious competence?

3. Do you want to maintain your current skill level? Do you want to improve it? How
will do you this?

4. How could you test a programmer’s ability to perform an “emergency stop”?!
5. Is there any extra value to be gained from investing in your skills? If good drivers

enjoy lower insurance premiums, how does being a “safer coder” materially benefit
you?

6. If coding is like driving, do we treat code testers like crash test dummies?

See also

• Live to Love to Learn Describes models of learning and the Four Stages of Compe‐
tence model in detail.

• Relish the Challenge Whether or not our knowledge is formally tested, we should
strive to continually improve our skills.

Try this….
Consider how to change your habits to become a more mindful and less complacent
programmer. Ensure you do not slip from unconscious competence into cowboy coding.

Chapter 25: Test-Driven Developers | 229

CHAPTER 26

Relish the Challenge

Success is not final, failure is not fatal: it is the courage to continue that counts.
— Winston Churchill

We are “knowledge workers.” We employ our skill and knowledge of technology to make
good things happen. Or to fix it when they don’t. This is our joy. It’s what we live for.
We revel in the chance to build things, to solve problems, to work on new technologies,
and to assemble pieces that complete interesting puzzles.

We’re wired that way. We relish the challenge.

The engaged, active programmer is constantly looking for a new, exciting challenge.

Take a look at yourself now. Do you actively seek out new challenges in your program‐
ming life? Do you hunt for the novel problems, or for the things that you’re really
interested in? Or are you just coasting from one assignment to the next without much
of a thought for what would motivate you?

Can you do anything about it?

It’s the Motivation
Working on something stimulating, something challenging, on something that you en‐
joy getting into helps keep you motivated.

If, instead, you get stuck in the coding “sausage factory”—just churning out the same
tired code on demand—you will stop paying attention. You will stop learning. You will
stop caring and investing in crafting the best code you can. The quality of your work
will suffer. And your passion will wane.

You will stop becoming better.

231

Conversely, actively working on coding problems that challenge you will encourage you,
excite you, and help you to learn and develop. It will stop you from becoming staid and
stale.

Nobody likes a stale programmer. Least of all, yourself.

What’s the Challenge?
So what is it that particularly interests you?

It might be that new language you’ve been reading about. Or it might be working on a
different platform. It might just be trying out a new algorithm or library. Or to kick off
that pet project you thought about a while ago. It might even be attempting an optimi‐
sation or refactor of your current system; just because it looks elegant, even if—shudder
to think—it doesn’t actually provide business value.

Often this kind of personal challenge can only be gained on a side project; something
you work on alongside the more mundane day-to-day tasks. And that’s perfect—it’s the
antidote to dull “professional” development. A programming panacea. The crap code
cure.

What excites you about programming? Think about what you’d like to work on right
now, and why:

• Are you happy to be paid for producing any old code, or do you want to be paid
because you produce particularly exceptional work?

• Are you performing tasks for the kudos; do you seek the recognition of your peers
or the plaudits of managers?

• Do you want to work on an open source project; would sharing your code give you
a sense of satisfaction?

• Do you want to be the first person to provide a solution in a new niche, or to a tricky
new problem?

• Do you solve problems for the joy of the intellectual exercise?
• Do you like working on a particular kind of project, or do certain technologies suit

your strange peccadilloes?
• Do you want to work alongside and learn from certain types of developers?
• Do you look at projects with an entrepreneurial eye—seeking something you think

will one day make you millions?

As I look back over my career, I can see that I’ve tried to work on things in many of
those camps. But I’ve had the most fun, and produced the best software, when working
on projects that I’ve been invested in; where I’ve cared about the project itself, as well
as wanting to write exceptional code.

232 | Chapter 26: Relish the Challenge

Don’t Do It!
Of course, there are potential downsides to seeking out cool coding problems for “the
fun of it.” There are perfectly valid reasons not to:

• It’s selfish to steer yourself towards exciting things all the time, leaving boring stuff
for other programmers to pick up.

• It’s dangerous to “tinker” a working system just for the sake of the tweak, if it’s not
introducing real business value. You’re adding unnecessary change and risk. In a
commercial environment, it’s a waste of time that could be invested elsewhere more
profitably.

• If you get sidetracked on pet projects or little “science experiments,” then you’ll
never get any “real” work done.

• Remember: not every programming task is going to be glamorous or exciting. A
lot of our day-to-day tasks are mundane plumbing. That’s just the nature of pro‐
gramming in the real world.

• Life is too short. I don’t want to waste my spare time working on code as well!
• Rewriting something that already exists is a gross waste of effort. You are not con‐

tributing to our profession’s corpus of knowledge. You are likely to just re-create
something that already exists, possibly not as good as the existing implementations,
and full of new terrible bugs. What a waste of time!

Yada. Yada. Yada.

These positions do have some merit. But they should not become excuses that prevent
us from becoming better programmers.

It is exactly because we have to perform dull tasks all day that we should also seek to
balance them with the exciting challenges. We must be responsible in how we use our
time do this, and whether we use the resulting code or throw it away.

Get Challenged
So work out what you’d like to do. And then do it:

• Perform some code katas—short practice exercises—that will provide valuable de‐
liberate practice. Throw the code away afterwards.

• Find a coding problem you’d like to solve, just for the fun of it.
• Kick off a personal project. Don’t waste all your spare time on it, but find something

you can invest effort in that will teach you something new.

Chapter 26: Relish the Challenge | 233

• Maintain a broad field of personal interest, so you have good ideas of other things
to investigate and learn from.

• Don’t ignore other platforms and paradigms. Try rewriting something you know
and love on another platform or in another kind of programming language. Com‐
pare and contrast the outcome. Which environment lent itself better to that kind
of problem?

• Consider looking for a new job if you’re not being stretched and challenged where
you’re currently working. Don’t blindly accept the status quo! Sometimes the boat
needs to be rocked.

• Work with, or meet up with other motivated programmers. Try going to program‐
ming conferences, or join local user groups. Attendees come back with a head full
of new ideas, and invigorated from the enthusiasm of their peers.

• Make sure you can see the progress you’re making. Review source control logs to
see what you’ve achieved. Keep a daily log, or a to-do list. Enjoy knocking off items
as you make headway.

• Keep it fresh: take breaks so you don’t get overwhelmed, stifled, or bored by bits of
code.

• Don’t be afraid of reinventing the wheel! Write something that has already been
done before. There is no harm in trying to write your own linked-list, or standard
GUI component. It’s a really good exercise to see how yours compares to existing
ones. (Just be careful how you employ them in practice.)

Conclusion
It’s impractical and dangerous to just chase shiny new things all the time and not write
practical, useful code. But it’s also personally dangerous to get stuck in a coding rut,
only ever working on meaningless, tedious software, without being challenged and
having fun.

Do you have something you’re engaged in and love to work on?

Questions

1. Do you have projects that challenge you and stretch your skills?
2. Are there some project ideas you’ve thought about for a while, but not started? Why

not start a little side project?
3. Do you balance “interesting” challenges with your day-to-day work?
4. Are you challenged by other motivated programmers around you?
5. Do you have a broad field of interest that informs your work?

234 | Chapter 26: Relish the Challenge

See also

• Live to Love to Learn When you are enthused to learn a new skill, you need to employ
effective learning techniques.

• Avoid Stagnation Maintain motivation and seek new challenges to prevent your
skills and your career from stagnating.

Try this….
Consider what you’d really like to be working on right now. Is it your current job? Lucky
you! Otherwise, how can you work on this now? Should you start a “pet project” or
change jobs?

Chapter 26: Relish the Challenge | 235

1. The “distant past” is not so long ago when you measure in programmer years, which is why people find it so
hard to estimate the duration of software projects!

CHAPTER 27

Avoid Stagnation

Iron rusts from disuse; water loses its purity from stagnation...
even so does inaction sap the vigor of the mind.

— Leonardo da Vinci

When was the last time you learnt something new and exciting enough to put on your
résumé? When was the last time you were stretched beyond your capabilities? When
was the last time your work made you feel uncomfortable? When was the last time you
discovered something that delighted you? When were you last humbled by another
programmer and encouraged to learn from them?

If the answers to these questions are the dim and distant past,1 then you have entered
the comfort zone: a place that some regard as nirvana—where your life is easy and your
work days are short and predictable.

However, the comfort zone is a pernicious place. It’s a trap. An easy life means you’re
not learning, not progressing, not getting better. The comfort zone is where you stagnate.
Pretty soon you’ll be overtaken by younger developer upstarts. The comfort zone is an
express route to obsolescence.

KEY ➤ Be wary of stagnation. Seeking to become a better programmer,
by definition, is not the most comfortable lifestyle.

Few people make a conscious decision to stagnate. But it can be easy to slip into the
comfort zone and coast along your development career without realising. Take a reality
check: is this what you’re doing right now?

237

Your Skills Are Your Investment
Beware: maintaining your skill set is hard work. It involves putting yourself in uncom‐
fortable situations. It requires a very real investment of effort. It can be risky and hard.
You might even embarass yourself. That doesn’t sound entirely pleasant, does it?

It’s therefore not something that many people feel naturally inclined to do. You spend
so many hours of the day working, don’t you deserve to have an easy life and then go
home to forget all about it? It’s natural to learn towards the familiar and the comfortable.

Don’t do it!

You have to make a conscious decision to invest in your skills. And you have to make
that decision repeatedly. Don’t see it as an arduous task. Delight in the challenge. Ap‐
preciate that you are making an investment that will make you a better programmer,
and a better person.

KEY ➤ Expect to invest time and effort to grow your skill set. This is a
worthwhile investment; it will repay itself.

An Exercise for the Reader
How can you shake yourself up right now? Here are some changes to make that will
push you out of the comfort zone:

• Stop using the same tools; there might be better ones that will make your life easier
if you’d only learn about them.

• Stop using the same programming language for every problem; you might be
smashing a walnut with a sledgehammer.

• Start using a different OS. Learn how to use it properly. Even if it’s one that you
don’t like, spend a while trying it out to really learn its strengths and weaknesses.

• Start using a different text editor.
• Learn keyboard shortcuts and see how it impacts your workflow. Make a conscious

effort to stop using a mouse.
• Learn about a new topic, something that you don’t currently need to know. Perhaps

deepen your knowledge of maths or of sorting algorithms.
• Start a personal pet project. Yes, use some of your precious spare time to be geeky.

Publish it as open source.
• Maneuver yourself to work on a new part of your project, one you know little about.

You might not be productive immediately, but you’ll gain a wider knowledge of the
code and will learn new things.

238 | Chapter 27: Avoid Stagnation

Consider expanding yourself beyond the programming realm:

• Lean a new language. But not a programming language. Listen to audiobook teach‐
ing series on Japanese on your drive into work.

• Rearrange your desk! Try to look at the way you work in a new light.
• Start a new activity. Perhaps start a blog to journal your learning. Spend more time

on a hobby.
• Take up exercise: join a gym or start running.
• Socialise more. Spend time with geeks and with non-geeks.
• Consider adjusting your diet. Or going to bed earlier.

Job Security
Being a better developer, one with a more rounded skillset, one who is constantly learn‐
ing, will increase your job security. But ask yourself if you really need that: are you in
the right job?

Hopefully you are in the right career: you enjoy programming. (If you don’t, consider
seriously if a career change might be a good option. What would you really like to do?)

There is a danger in staying in one job or one role too long, of doing the same thing
over and over with no new challenges. All too easily, we get entrenched in what we’re
doing. We like being local experts; the king of our little coding castle. It’s comfortable.

Perhaps it’s now time to move on to a new employer? To face new challenges and move
on in your coding journey. To escape the comfort zone.

Staying put is usually easier, more familiar, and more convenient. In the recent rocky
economic climate, it’s also the safer bet. But it might not be the best thing for you. A
good programmer is courageous, both in their approach to the code and their approach
to their career.

Questions

1. Are you currently stagnating? How can you tell?
2. What was the last new thing you learnt?
3. When did you last learn a new language? When did you last learn a new technique?
4. What new skill should you learn next? How will you learn it? What books, courses,

or online material will you use?
5. Are you in the right job at the moment? Do you enjoy it, or has all the joy been

sucked out? Are you working the 9-to-5, or are you enthused and engaged to see
your project succeed? Should you look around for new challenges?

Chapter 27: Avoid Stagnation | 239

6. When did you last get a promotion? Or a pay raise? Does a job title have any real
meaning? Does your job title bear any relation to your skills?

See also

• Relish the Challenge Avoid stagnation by seeking new challenges.

Try this….
Commit now to avoiding stagnation. Make an honest assessment of how “stuck in the
mud” you currently are. Construct a practical plan to better yourself.

240 | Chapter 27: Avoid Stagnation

CHAPTER 28

The Ethical Programmer

I might fairly reply to him, “You are mistaken, my friend, if you think that
a man who is worth anything ought to spend his time weighing up the prospects
of life and death. He has only one thing to consider in performing any action—
that is, whether he is acting rightly or wrongly, like a good man or a bad one.”

— Socrates
 The Apology

I often describe how the quality of a coder depends more on their attitude than their
technical prowess. A recent conversation on this subject led me to consider the topic of
the ethical programmer.

What does this mean? What does it look like? Do ethics even have an appreciable part
to play in the programmer’s life?

It’s impossible to divorce the act of programming from any other part of the coder’s
human existence. So, naturally, ethical concerns govern what we, as programmers, do
and how we relate to people professionally.

It stands to reason, then, that being an “ethical programmer” is a worthwhile thing; at
least as worthwhile as being an ethical person. You’d certainly worry about anyone who
aspired to be an unethical programmer.

Many professions have specific ethical codes of conduct. The medical profession has
the Hippocratic oath, binding doctors to work for the benefit of their patients, and to
not commit harm. Lawyers and engineers have their own professional bodies conferring
chartered status, which require members to abide by certain rules of conduct. These
ethical codes exist to protect their clients, to safeguard the practitioners, as well as to
ensure the good name of the profession.

In software “engineering” we have no such universal rules. There are few industry
standards that we can be usefully accredited against. Various organisations publish their

243

own crafted code of ethics, for example the ACM and the BSI. However, these have little
legal standing, nor are they universally recognised.

The ethics of our work are largely guided by our own moral compass. There are certainly
many great coders out there who work for the love of their craft and the advancement
of the profession. There are also some shadier types who are playing the game pre‐
dominantly for their own selfish gain. I’ve met both.

The subject of computer ethics was first coined by Walter Maner in the mid-1970s. Like
other topics of ethical study, this is considered a branch of philosophy.

Working as an “ethical” programmer has considerations in a number of areas: notably
in our attitudes towards code, and towards people. There are also a bunch of legal issues
that need to be understood. We’ll look at these in the following sections.

Attitude to Code
Do not write code that is deliberately hard to read, or designed in such a complex way
that no one else can follow it.

We joke about this being a “job security” scheme: writing code that only you can read
will ensure you will never get fired! Ethical programmers know that their job security
lies in their talent, integrity, and value to a company, not in their ability to engineer the
company to depend on them.

KEY ➤ Do not make yourself “indispensable” by writing unreadable or
unnecessary “clever” code.

Do not “fix” bugs by putting sticking-plaster workarounds or quick bodges in place,
hiding one issue but leaving the door open for other variants of the problem to manifest.
The ethical programmer finds the bug, understands it, and applies a proper, solid, tested
fix. It’s the “professional” thing to do.

So, what happens if you’re within a gnat’s whisker of an unmovable deadline and you
simply have to ship code, when you discover an awful, embarrassing, showstopping
bug? Is it ethical to apply a temporary quick-fix in order to rescue the imminent release?
Perhaps. In this case, it may be a perfectly pragmatic solution. But the ethical program‐
mer does not let it rest here: he adds a new task to the work pool to track the “technical
debt” incurred, and attempts to pay it off shortly after the software ships. These kinds
of Band-Aid solutions should not be left to fester any longer than necessary.

The ethical programmer aims to write the best code possible. At any point in time, work
to the best of your ability. Employ the most appropriate tools and techniques that will
lead to the best results—for example, use automated tests that ensure quality, pair pro‐
gramming, and/or code review to catch mistakes and sharpen designs.

244 | Chapter 28: The Ethical Programmer

http://www.acm.org/about/code-of-ethics
http://www.bcs.org/server.php?show=nav.6030

Legal Issues
An ethical, professional programmer understands pertinent legal issues and makes sure
to abide by the rules. Consider, for example, the thorny field of software licensing.

Do not use copyrighted code, like GPL source, in proprietary code when the license
does not permit this.

KEY ➤ Honour software licenses.

When changing jobs, do not take source code or technology from an old company and
transplant parts of it into a new company. Or even show parts of it in an interview with
another company.

This is an interesting topic, as it leads to a large gray area: copying private intellectual
property or code that has a clear copyright notice is clearly stealing. However, we hire
programmers based on their prior experience—the things they have done in the past.
Is rewriting the same kind of code from memory, without duplicating exact source lines,
ethical? Is re-implementing another version of a proprietary algorithm that conferred
competitive advantage unethical if you’ve hired the designer of that algorithm specifi‐
cally for their experience?

Often code is published online with a very liberal license, merely asking for attribution.
The ethical programmer takes care to make sure attribution is given appropriately for
such code.

KEY ➤ Ensure appropriate credit is given for work you reuse in your
codebase.

If you know that there are legal issues surrounding some technology you’re using (e.g.,
encryption or decryption algorithms that are encumbered by trade restrictions), you
have to make sure your work does not violate these laws.

Do not steal software, or use pirated development tools. If you are given a copy of an
IDE make sure that there is a valid license for you to use it. Just as you would not pirate
a movie, or share copyrighted music online, you should not use illegally copied technical
books.

Do not hack or crack your way into computers or information stores for which you do
not have access authority. If you realise it’s possible to access such a system, let the
administrators know so they can remedy the permissions.

Chapter 28: The Ethical Programmer | 245

http://www.gnu.org/licenses/gpl.html

Attitude to People
Treat others as you would want them to treat you.

— Matthew 7:12

We’ve already considered some “ethical attitudes” towards people, as we write code
primarily for the audience of other programmers, not for the compiler. Programming
problems are almost always people problems, even if the solutions have a technical
nature.

KEY ➤ Good attitudes towards code are also good attitudes to other
programmers.

Imagine yourself as a heroic coder. The kind of programmer who wears your underwear
atop your trousers, and not simply as a geeky fashion faux pas. Now: do not abuse your
super powers for evil. Only write software for the good of mankind.

In practice, this means: don’t write viruses or malware. Don’t write software that breaks
the law. Don’t write software to make people’s life worse, either materially, physically,
emotionally, or psychologically.

Don’t turn to the dark side.

KEY ➤ Do not write software that will make another person’s life worse.
This is an abuse of power.

And here we open a wonderful new can of worms: is it ethical to write software that
makes some people very rich at the expense of poorer people, if it doesn’t break any
laws? Is it ethical to write software to distribute pornographic content, if the software
itself breaks no laws? You can argue that people are exploited as a byproduct of both
activities. Is it ethical to work in these industries? This is a question that I can only leave
for the reader to answer.

What about working on military projects? Would an ethical programmer feel comfort‐
able working on weapons systems that could be used to take a life? Perhaps such a system
will actually save lives by acting as a deterrent against attack. This is a great example of
how the ethics of software development is a philosophical topic, not an entirely black-
and-white affair. You have to reconcile yourself with the consequences that your code
has on other people’s lives.

Teammates
The people you encounter most frequently in your programming career are your team‐
mates—the programmers, testers, and so on, that you work with closely day by day. The

246 | Chapter 28: The Ethical Programmer

ethical programmer works conscientiously with all of them, looking to honour each
team member, and to work together to achieve the best result possible.

Speak well of all people. Do not engage in gossip or backbiting. Do not encourage jokes
at the expense of others.

Always believe that anyone, no matter how mature or how experienced, has something
valuable to contribute. They have an opinion that is worth hearing, and should be able
to put forward points of view without being shot down.

Be honest and trustworthy. Deal with everyone with integrity.

Do not pretend to agree with someone when you believe they are wrong; this is dishonest
and rarely useful. Constructive disagreements and reasoned discussions can lead to
genuinely better code design decisions. Understand what level of “debate” a team mem‐
ber can handle. Some people thrive on intense, passionate intellectual debate; others are
frightened by confrontation. The ethical programmer seeks to engage in the most pro‐
ductive discussion result without insulting or offending anyone. This isn’t always pos‐
sible, but the goal is to always treat people with respect.

Do not discriminate against anyone, on any grounds, including gender, race, physical
ability, sexual orientation, mental capability, or skill.

The ethical programmer takes great care to deal with “difficult people” in the most fair,
transparent way, attempts to diffuse difficult situations, and works to avoid unnecessary
conflict.

KEY ➤ Treat others as you would like them to treat you.

Manager
Many issues that may be seen as agreements between you and your manager can also
be seen as ethical contracts between you and the other members of the team, as the
manager acts as a bridge with the team.

Do not take credit for work that is not yours, even if you take someone else’s idea and
modify it to fit the context a bit. Give credit where it’s due.

Do not give an unnecessarily high estimate for the complexity of a task, just so that you
can slack off and do something more enjoyable on the pretence of working hard on a
tricky problem.

If you see looming issues that will prevent the smooth running of the project, report
them as soon as you notice. Do not hide bad news because you don’t want to worry or
offend someone, or be seen to be a pessimistic killjoy. The sooner issues are raised,
planned around, and dealt with, the smoother the project will go for everyone.

Chapter 28: The Ethical Programmer | 247

If you spot a bug in the system, report it. Put a bug in the fault tracking system. Don’t
turn a blind eye and hope that no one else will notice it.

KEY ➤ The ethical programmer takes responsibility for the quality of the
product at all times.

Do not pretend to have skills or technical knowledge that you do not possess. Don’t put
a project schedule in danger by committing to a task you cannot complete, just because
you think it’s interesting and you’d like to work on it.

If you realise that a task you’re working on is going to take significantly longer to com‐
plete that you expected, voice that concern as soon as possible. The ethical programmer
does not keep it quiet in order to save face.

When given responsibility for something, honour the trust placed in you. Work to the
best of your ability to fulfill that responsibility.

Employer
Treat your employer with respect.

Do not reveal company confidential information, including source code, algorithms, or
inside information. Do not break the terms of your employment contact.

Don’t sell work you have done for one company to another, unless you have express
permission to do so.

However, if you realise that your employer is engaged in illegal activities, it is your ethical
duty to raise it with them, or report their malfeasance as appropriate. The ethical pro‐
grammer does not turn a blind eye to wrongdoing just to keep her own job secure.

Do not falsely represent, or bad-mouth your employer in public.

Yourself
As an ethical programmer, you should keep yourself up-to-date on good programming
practice.

Ethical programmers do not work so hard that they burn themselves out. This is not
only personally disadvantageous, but also bad news for the whole team. Hours and hours
of extra work, week in, week out, will lead to a tired programmer, which will inevitably
lead to sloppy mistakes, and a worse final outcome. The ethical programmer under‐
stands that although it’s nice to look like a hero who works incredibly hard, it’s not a
good idea to set unrealistic expectations and to burn yourself out.

KEY ➤ A tired programmer is of no use to anyone. Do not overwork.
Know your limits.

248 | Chapter 28: The Ethical Programmer

You have a right to expect the same ethical conduct from others you work with.

The Hippocodic Oath
What would the ideal programmers’ code of ethics look like? The ACM and BSI ethics
documents are formal, lengthy, and hard to recall.

We need something pithier; more of a mission statement for the ethical programmer.

I humbly suggest:

I swear to cause no harm to the code, or to the business; to seek personal advancement,
and the advancement of my craft. I will perform my allotted tasks to the best of my ability,
working harmoniously with my team. I will deal with others with integrity, working to
make the project, and the team, maximally effective and valuable.

Conclusion
Ethics is in origin the art of recommending to others

the sacrifices required for cooperation with oneself.
— Bertrand Russell

How much you care about this kind of thing depends on your level of diligence, your
professionalism, and your personal moral code. Are you in the programming game for
fun, enjoyment, and the development of great code? Or are you in it for yourself, for
career development (at the expense of others, if necessary), to make as much money as
you can, and to hoist yourself above others on the professional ladder?

It’s a choice. You can choose your attitude. It will shape the trajectory of your career.

I find my attitudes shaped by my desire to write good code and to participate in a
community that cares about working well. I seek to work amongst excellent developers
whom I can learn from. As a Christian, I have a moral framework that encourages me
to prefer others over myself and to honour my employers. This shapes the way I act.

I conclude from what we’ve seen here that there are (at least) two levels to the ethical
programming career: the mandate to “do no harm” is the base level, to not tread on
people, or be involved in work that exploits others. Beyond this is a more involved ethical
mantra: to only work on projects that provide sound social benefits, to specifically make
the world better with your talents, and to share knowledge in order to advance the
programming craft. I suspect that many people ascribe to the first camp of ethics. Fewer
feel the urge, or are able to devote themselves to the cause of the second.

How do your beliefs and attitudes shape the way you work? Do you think you are an
ethical programmer?

Chapter 28: The Ethical Programmer | 249

Questions

1. Do you consider yourself an “ethical” programmer? Is there a difference between
being an ethical programmer and an ethical person?

2. Do you agree or disagree with any of the observations in this chapter? Why?
3. Is it ethical to write software that makes bankers fabulously wealthy if the money

they make comes at the expense of other people, who are not able to exploit the
same computing power? Does it make a difference whether the trading practice is
legal or not?

4. If your company is using GPL code in its proprietary products, but is not fulfilling
the obligations of the license terms (by withholding its own code), what should you
do? Should you lobby for the license terms to be met by open sourcing the company’s
code? Or should you ask for that GPL code to be replaced with a closed source
alternative? If the product has already shipped, should you be a “whistle-blower”
and expose the license violation? What if your job security depended on keeping
quiet?

5. What should you do if you identify another programmer acting “unethically”? How
does this answer differ if that programmer is a coworker, a friend, someone whom
you’ve been asked to give a reference for, or a coder you’ve met but do not work
directly with?

6. How do software patents fit into the world of ethical programming?
7. Should your passion for software development have any bearing on how much you

care about ethical issues? Does a passionate programmer act more ethically than a
career coder?

See also

• It’s the Thought That Accounts Being accountable to another programmer will mo‐
tivate you to act virtuously.

• People Power Treat the people you work with with respect. Learn from them; en‐
courage them to improve.

Try this….
Review the issues mentioned in this chapter. How can you ensure that you are acting
ethically in each area? Which area makes you feel the least comfortable? Make a specific
step to address this.

250 | Chapter 28: The Ethical Programmer

Chapter 28: The Ethical Programmer | 251

CHAPTER 29

A Love for Languages

Those who know nothing of foreign languages know nothing of their own.
— Johann Wolfgang von Goethe

 Maxims and Reflections

No two problems are the same. No two challenges are identical. And so no two programs
are exactly alike. Thankfully, this makes our job interesting.

Now, some tasks are suspiciously similar. For us, that’s the easy money; reusing the skills
we’ve already learnt. This is experience—what makes you valuable on the job market.
But it’s also what makes you a staid developer, a one-trick pony. A dog that knows no
new tricks.

We must continually face new challenges, continually learn, continually solve new
problems, and continually use new technologies.

That’s how you become a better programmer.

KEY ➤ Don’t become a one-trick pony. Position yourself to face new
challenges, learn, and grow as a developer.

253

1. These are the languages where you give a serial list of instructions detailing how the code should work. In
the opposite, declarative languages, you describe what should be done. The language works out how.

Love All Languages
Part of this growth regime is to work in more than one lan‐
guage. Getting stuck in a single language rut will force your
problem solving to be one-dimensional. Too many developers
plough a career knowing only one thing and miss out on a
world of opportunity.

Learn multiple languages so you are fluent in multiple kinds
of solutions. Learn scripting languages, learn compiled lan‐
guages. Learn simple languages with minimal tooling, learn
languages with vast and comprehensive libraries. Most im‐
portantly, learn languages that follow different idioms and
paradigms.

These days, the bread-and-butter work is still in imperative languages (usually proce‐
dural languages),1 most often object-oriented: C#, Java, C++, Python, and their ilk.
Smalltalk is an interesting OO language that has some different ideas worth learning; it
has fed directly into Objective-C’s design. There are non-OO procedural languages
knocking about, although most have had OO warts bolted on these days: Basic or Pascal,
for example. Most shell scripting languages are still pure procedural contraptions.

Functional languages provide a particularly rich seam to learn from. Even if you don’t
use one daily, understanding the concepts espoused by functional languages will inform
procedural programmers and help them write more solid, expressive, and robust code.
Lisp, Scheme, Scala, Clojure, Haskell, and Erlang are all very worth studying.

Logic languages, like Prolog, teach an entirely different way of thinking about and ex‐
pressing a solution. Formal specification languages like Z, whilst rarely in active use,
illustrate how much more rigorous we can be. This rigour moved toward a more prac‐
tical application in the language Eiffel, which wraps the notion of strong contracts into
an OO language.

Consider also learning some “dead” languages that are no longer commonly used, to
understand the history of your craft. BCPL was the forerunner to the C-type curly brace
family of languages. Simula’s concepts fed into the design of C++. COBOL, a real veteran
language, was historically used in business applications. Many such systems still run
today. (COBOL programmers earned a fortune fixing Y2K bugs.)

Gain an understanding of assembly language: speaking (almost) directly to CPU. Most
programmers rarely need to resort to opcodes and cryptic mnemonics, but under‐
standing what your high-level languages are built atop helps you to write better software.

254 | Chapter 29: A Love for Languages

KEY ➤ A good programmer knows many languages, and multiple idi‐
oms, broadening their palette of solutions. It improves the code
they write.

Whilst knowing many languages is laudable, it’s hard to be super-proficient in every
one. You will likely focus most of your talent on a couple, else you risk becoming a jack
of all trades, master of none.

Love Your Language
Day to day, I use C++ more than any other language. So I’ll use it as an example. Many
people spurn C++ as overly complex and archaic. It’s not. It’s powerful, expressive, and
performant. But it does allow you to blow your own leg off if you want to.

Having used C++ in anger for many years (sometimes, quite literally in anger) has been
a great deal of fun, and a very enlightening experience. So much so, I now have a love/
hate relationship with the language.

It’s not perfect. C++ is a very sharp tool and, like all sharp tools, it has sharp edges. Often
you can wield the language to produce incredible, expressive code in a way that no other
language can. But sometimes you accidentally cut yourself on one of its sharp edges,
and end up staring at pages of inexplicable template errors, mumbling expletives under
your breath.

These mumbled expletives don’t prove that C++ is a bad language (although some would
claim that they do). Every language has its flaws. It’s just a language that you have to
learn to live with. A language that you have to understand well to work with properly.
You must grok how it works under the covers, and what makes it tick. It’s more de‐
manding than some alternatives.

I was musing about this, and then it struck me….

We are very much involved in a real relationship with our language. It can even be akin
to marriage; it’s a rewarding relationship, but it requires work.

KEY ➤ Working with your programming language is a relationship you
have to work at each day.

You have to be careful how you treat C++. It’s a fickle beast: it gives you many wonderful
and exciting techniques to play with, and in doing so it gives you plenty of rope to hang
yourself with. With templates come unfathomable type-related error messages. With
multiple inheritance comes greater potential for bad class design and the deadly dia‐
mond. With new and delete come memory leaks and dangling pointers.

Does this mean that C++ is bad? Should we ditch C++ now and all use Java or C# instead?
Of course not! Some programmers argue for this, but it’s a misguided and myopic

Chapter 29: A Love for Languages | 255

2. How many people ditch their first relationship in the hope of trading it for something that requires less
maintenance, only to discover that the replacement model is just as fickle, equally as hard to live with, and
not as fulfilling?

viewpoint. You don’t get anything in life for free; you must expect to invest something
costly to achieve a fulfilling relationship. It’s hard to live with someone (or something)
day by day, to share your most intimate (programming) thoughts, and to not get upset
with them occasionally. You can expect a certain amount of friction as you get close and
become accustomed to one another. Any relationship leads you along a path of constant
learning about each other, of working out how to accommodate each other’s foibles,
and how to bring out the best in each other.

Admittedly, C++ isn’t going to put much effort into learning about you, but many clever
people (the guys who designed and standardised the beast) already did.

Becoming proficient in any language requires commitment. Many programmers are
averse to putting in the required effort, or get frustrated too easily when things go wrong.
So they prostitute themselves with other languages which they think will be more ful‐
filling, or take up with a younger, more glamorous alternative. (It’s always a big ego boost
to be seen with a young trophy language on your arm. Is this the programmers’ equiv‐
alent of a mid-life crisis?2)

Cultivating Your Language Relationship
There are a few generally accepted hallmarks of a healthy marriage. They can shed some
light on a healthy relationship with your language.

A good marriage requires love and respect, commitment, communication, patience,
and shared values. Let’s take a closer look.

Love and Respect
For a marriage to succeed, the partners must like each other, value each other, and want
to spend time with each other. There must be a level of attraction. They must love each
other.

Most code monkeys program because it’s their passion. They love to write code. And
they usually pick a language because they genuinely enjoy using it.

KEY ➤ Love your language! Work in a language you enjoy.

Now, many people are forced to use a certain language at work because the existing
codebase is written in it—in this sense, they enter an arranged marriage. At home they’d
rather tinker with a cool bit of Ruby or Python. Remember, some arranged marriages
work perfectly well. Some do not. They aren’t common or popular in Western culture.

256 | Chapter 29: A Love for Languages

But sometimes you are forced into bed with a language you don’t think you’ll enjoy only
to discover, with time and experience, that it is profoundly enjoyable.

How much does your appreciation of a language shape the quality of the code you write,
or the way you’ll improve your skills working with it? How much of this is born from
acceptance, respect, and a growing familiarity? Understand that love and respect can
grow over time.

Commitment
A good marriage requires commitment: a determination to stick with it through good
and bad, rather than jump out when things get uncomfortable.

To become an expert programmer in any given language, or with any technology, you
must have a commitment to learn about it, to spend time with it, and to work with it.
You can’t be selfish and expect it to pander to your every need, especially when it is
specifically designed to suit many diverse situations and requirements.

Commitment may also mean that you have to sacrifice. You must give up some of your
preferred ways of working in order to accommodate the other party. The language has
particular idioms and ways of working that suit it best. You might not like them, or
would prefer to work in other ways. But if they are the definition of “good” code, then
they are the idioms you should adopt.

Does your commitment to writing good code in the current language supersede your
desire to do things your own way? Good code or an easy life? It’s all about commitment.

KEY ➤ To write the best code in a language, you should commit to its
styles and idioms rather than force your own upon it.

Communication
In a good marriage you constantly communicate. You share facts, feelings, hurts, and
joys. You don’t just talk superficially as you would with acquaintances you meet in the
street, but at a real heart-to-heart level. It’s deep. You share things with your partner that
you would share with no one else. This kind of communication requires an immense
level of trust, acceptance, and understanding.

This isn’t necessarily easy; people communicate in very different ways. Communication
can be very easily misconstrued or misinterpreted. It takes a huge effort to communicate
successfully in a marriage. It’s something that you have to pay attention to and make a
constant effort with. Communication is very much a skill that you learn, not just some‐
thing you can or can’t do.

Chapter 29: A Love for Languages | 257

The act of programming is entirely about communication. The code we write is as much
a communication of the intent of our program (both to ourselves and to other pro‐
grammers who might pick it up) as it is a list of instructions for a computer to execute.

In this sense, we communicate both to the language—to tell it what to do, in a clear,
concise, unambiguous, correct way—and also to others using the programming lan‐
guage as the medium.

Good communication is a vital (and often lacking) skill in high-quality software devel‐
opers. It takes a huge amount of effort, and constant attention, to do this well. Remem‐
ber: communication is as much about listening as it is about talking.

KEY ➤ Good programmers are good communicators. They talk, write,
code, listen, and read well.

Patience
Good marriages aren’t created overnight. They are cultivated. They grow. Gradually.

In our fast food culture we have learnt to expect everything now: instant food, instant
cash, instant downloads, instant gratification. But relationships never work like this.

It’s the same with our programming relationship. You can learn of the existence of a
language in an instant. You might even have an instant attraction: programming lust.
But it can take a long time to master a language fully, to be able to honestly claim that
you really know how to write “good” code in it. It can take a long time, and an awful lot
of patience, until you fully appreciate the beauty of a language.

KEY ➤ Don’t expect to become a language master overnight, and don’t
get frustrated whilst you work at it.

Of course, the most enjoyable languages have a shallow initial learning curve, so you
feel that you’re making good progress as you start your relationship.

Shared Values
A strong glue that holds many relationships together is a common sense of morals,
values, and beliefs. For example, research shows that couples with shared strong reli‐
gious beliefs are far more likely to stay together than those without them; it acts as a
solid foundation to build the relationship upon.

If you don’t agree with a languages’ basic values—the many facilities and idioms it pro‐
vides—then you’ll always have a skewed relationship with the language.

258 | Chapter 29: A Love for Languages

A Perfect Metaphor?
This is illuminating. But no metaphor is perfect. Is faithfulness to your language as
important to healthy coding as it is to a healthy marriage? No. It is actually very useful
to “play the field” and mess around with other languages on the side. Make C# your
muse, and Python your bit on the side. It’ll teach you about different programming skills
and techniques, and help you to avoid getting stuck in a programming rut.

Or is that actually very like marriage? I’ll leave that for you to decide.

Conclusion
This colourful marriage metaphor shows us that knowledge of a programming language
isn’t all there is to programming. Consider how you work with your tools, the kind of
relationship you have with them.

Good programmers think about more than mere lines of code, or an isolated code
design. They care about how they use and interact with their tools, and how to get the
best out of them, as much as they care about simple fact-based knowledge of them.

Good programmers don’t expect quick-fix answers to problems, but learn to live with
and appreciate the strong and weak points of their tools. They commit to a life with
them, and invest time and effort getting to know them. They appreciate and value them.

Questions

1. What are the rough edges with your current language? List its strong and weak
points.

2. What other languages and tools do you work with? How much commitment have
you shown to learning them intimately?

3. They say married couples grow more alike over time. Have you adjusted to be
shaped by your language? Is that for better, or for worse?

4. Which languages most rapidly show signs of neglect if programmers fail to commit
to them? (You come home via one too many indirected pointers, and find your
object inside the dog. And try as you might, you can’t see what you’ve done to offend
the language.)

See also

• Care About the Code You care about languages because you love to learn and you
care about code.

• Live to Love to Learn These techniques will help you to learn new languages.
• Software Development Is… More metaphors for software development. (In case you

were running out of them.)

Chapter 29: A Love for Languages | 259

Try this….
Determine how to deepen your relationship with your language(s) of choice.

260 | Chapter 29: A Love for Languages

1. VDU: Vision Destruction Unit

CHAPTER 30

Posturing Programmers

A good stance and posture reflect a proper state of mind.
— Morihei Ueshiba

As modern software development project pressures increase, the demand placed on
programmers grows, moving us from the once traditional 15-hour working day closer
to the continental 26-hour working day. In such a climate, it’s becoming increasingly
important to ensure that you have a comfortable and ergonomically sound working
environment.

This is perhaps as vital an issue to the twenty-first-century programmer as good code
design or any other software development practice. After all, you can’t be an Agile de‐
veloper with a bad back; no one wants to employ a rigid programmer. And you can’t
navigate a complex UML class diagram with failing eyesight.

In order to improve the quality of the life you spend in front of a computer, and to
safeguard your physical well-being, we’ll look in this chapter at how to optimise your
working environment.

Pay close attention; if you don’t get this stuff right, you could end up with large medical
bills. You’ll thank me one day.

Basic Computer Posture
First, let’s look at the most basic case of day-to-day computer use: sitting in front of a
monitor (or as old-school Human Resources departments like to call it: a “VDU”1). You
probably do this for many, many hours a day, so it’s vital to make sure that you sit
correctly. Surprisingly, sitting down is a quite complicated task. It requires hard work

261

and determination to master. Practice makes perfect. As you work through this section,
remember to take regular breaks—go for a run or something equally relaxing.

The way you sit at a computer has implications for not just your productivity (bad
posture can have a significant effect on your concentration and, therefore, your pro‐
ductivity) but also your health. Poor posture can lead to neck pain, back pain, headaches,
digestive problems, breathing difficulties, eye strain…the list goes on. An example of
good sitting posture is illustrated in Figure 30-1.

Figure 30-1. Good posture

These are the ergonomic experts’ recommendations:

• Adjust your chair and monitor position so that your eyes are level with the top of
your screen and your knees are slightly lower than your hips. Adjust the monitor
so that it is a comfortable distance from you (say about 18 to 24 inches).

• Your elbows should rest at an angle of about 90 degrees. You should not need to
significantly move your shoulders when typing or using the mouse. To achieve this,
your keyboard should be at about elbow height.

• The angle of your hips should ideally be 90 degrees, or slightly more. (You’re think‐
ing about this as you read, aren’t you?)

• Your feet should rest flat on the floor; do not tuck them under your chair. Don’t sit
on them, either—you’ll get terrible leg-ache and a footprint on your rump.

• Your wrists should rest on the desk in front of you. (It’s certainly very poor posture
to let them rest on a desk behind you. Unless you are severely double-jointed.) Your
wrists should remain straight when typing.

• Adjust your chair to support the lower back.

To avoid problems:

• Shift your position throughout the day to keep your muscles loose and to ease
tension in your body.

262 | Chapter 30: Posturing Programmers

• Take plenty of breaks, and walk around the office. You may find it beneficial to talk
to other people. After a little practice, oral communication can become second
nature, even to the seasoned programmer.

• Don’t collapse your neck as you read the screen. Hold your head high, and be proud
to be a programmer.

• Defocus your eyes occasionally. Try those auto-stereogram thingies that were pop‐
ular in the 1990s. Or look up from the screen and focus on a distant object (perhaps
you could look longingly at the door, or glace at the deadlines that are receding into
the distance).

• In truly extreme cases of muscle fatigue, you may find it necessary to take drastic
action: step outside of the building (yes, it is perfectly safe to do this) and take an
extended stroll. If the stroll gets too relaxing, you’ll find plenty of seats in the local
park where you can practice sitting down momentarily.

KEY ➤ Take care of yourself. Maintain good posture as you work.

Having determined a good posture for the basic case of computer use, let’s now look at
some of the less-considered postures required by the modern programmer. After all, it’s
important to ensure that we remain ergonomically sound during the entire day.

The Debugging Posture
Code got you down? Are the gremlins refusing to budge? Have you been concentrating
for six hours flat, yet you still can’t work out why there’s an ugly brown rectangle on the
screen when you should have an elegant turquoise octagon?

In this case, your body needs a slightly different posture to accommodate the weight of
the world on your shoulders and the shift of your cerebral cortex from the top of your
body to somewhere inside your shoe. To adequately support your body and prevent
further strain (unfortunately, the brain-strain is unavoidable), follow these steps:

• Lean forward slightly (a hip angle of 45 to 60 degrees is best).
• Place your elbows on the desk on front of you (ideally, they should rest at your

wrists’ positions when typing).
• Extend your forearms vertically upwards.
• Lean your head against your arms.
• Sigh.

Figure 30-2 illustrates this. In these situations, you may also find it more comfortable
to move the monitor a little closer to the front of the desk than you would ordinarily

Chapter 30: Posturing Programmers | 263

have it. You’ll find that this makes it much easier to repeatedly bang your head against
it when you’re feeling particularly frustrated.

Figure 30-2. The pondering posture

When It’s Really Going Badly
Sometimes, despite adopting a careful debugging poise, you won’t be able to solve that
thorny problem. The bugs just won’t budge. You can look as nonchalant as you want,
they just don’t seem to respect your determined (yet comfortable) posture. Program‐
ming is not always plain sailing, and sometimes all that straight-back, slack-shoulder
nonsense can take a running jump.

If you find that it is going really badly, then adopt the position shown in Figure 30-3,
and brace yourself for when it all crashes and burns around you.

Figure 30-3. The predicament posture

264 | Chapter 30: Posturing Programmers

The All-Nighter
When deadlines loom you may find yourself working heroic hours to get everything
finished in time. Of course, you know that no one is going to thank you for it, but a
sense of moral obligation and a pride in your work will compel you to stay up three
nights in a row and to live off a diet of caffeine and stale doughnuts.

In these situations, you will find the posture in Figure 30-4 particularly useful, especially
after the fourth all-night stint. Like any other ergonomic consideration, the really im‐
portant thing here is to adjust your working environment to help you. If possible, shut
the blinds and close the door to block out extraneous noise or anything that might
distract you from your current task. If you work in a loud communal area with many
people walking past all day, then arrange your desk and chair so as to offer maximum
potential to not be seen.

Try not to snore too loudly. You may find it useful to insert the mouse firmly into your
mouth to plug the airway. (Remember not to do this if you have a blocked nose, or you
might asphyxiate yourself.)

Figure 30-4. The power nap posture

Intervention from Above
Occasionally a boss feels compelled to prowl around to ensure that his minions are
working as hard as pack mules. In order to ensure his maximum comfort and to prevent
him from straining his delicate aggravation muscle, you should adopt the posture shown
in Figure 30-5. It’s for his own good:

• Employ a taught, pained posture. Tighten all your muscles, and look like you are
poised to chase after a burglar.

• Adopt a screwed-up facial expression (if this is not already your natural appearance
after years of programming). Something along the lines of severe constipation con‐
veys an adequate appearance of extreme concentration.

Chapter 30: Posturing Programmers | 265

• For the best effect, purchase some dry ice (this can be readily obtained from a stage
supplies store) and leave it under your desk. The boss will be impressed at the
perspiration generated by your fervent work. Don’t be tempted to overdo this
though, or your colleagues may become concerned at your flatulence problems, or
security may call the fire department.

Ideally, orient your workspace so that your back is against a wall so that no one can walk
up behind you unawares. Adopting the posture shown in Figure 30-5 at very short notice
can lead to sprained muscles (especially if you have to rapidly remove your feet from
the desk) and fused nerves.

Figure 30-5. The “perfect” posture

The All-Clear
Be careful when adopting the above posture to not screw your eyes up too much. It’s
important to be able to see your boss walk away so you know when it is safe to relax,
and adopt the posture in Figure 30-6.

You will find that using a joystick to play network games requires rather less wrist strain
than a keyboard, and so it is preferable to use one, where available. Creative filing of
expense claim forms should enable you to justify the purchase of a very good quality
gaming device. Do not consider Nintendo Wii controllers in the office—they are not
especially subtle.

266 | Chapter 30: Posturing Programmers

Figure 30-6. The playful posture

Design Time
Our final programmer posture should be employed when designing new code, or work‐
ing on extremely hard problems. At these times it is important to ensure maximum
comfort so that you will not be distracted by your surroundings.

You should find that Figure 30-7 is fairly self-descriptive.

Figure 30-7. The powder room posture

Eye Strain
Finally, it is valuable to spend a little time considering the health of your eyes. Make
sure that as you peer at your monitor you don’t strain your eyesight. Take frequent
breaks. Ensure that your screen doesn’t suffer excessive reflections from windows or
lights; move the screen if this is a problem. Make sure that direct light sources (a window
or a lamp) are not directly pointing at you, too.

Every now and again, stare wistfully out of the window at the joy of the real world
outside.

Chapter 30: Posturing Programmers | 267

Regular eye tests are essential. Here’s one simple test you can try in the comfort of your
swivel chair, which doubles as a good regular eye exercise. Print a copy of Figure 30-8
and hang it on the wall above your desk (you may need to experiment to work out the
best distance you should be from the chart). From time to time during the day, move
your focus away from the computer screen and look at the chart. Start by reading the
top letter, and work steadily downwards. Read as far as you can to the bottom.

Figure 30-8. iTest

Conclusion
Yes, I’m being flippant. But this is an important topic that you have to think about. Many
programmers don’t take enough care of themselves physically.

It’s vital to ensure that your workstation is ergonomically sound and that you don’t ruin
your eyes, develop RSI, or strain your back spending long days sitting on your backside,
staring at a computer screen. You only get one body: look after it.

No, I’m not your dad nagging you not to slouch. (But take your feet off the desk, you’re
making the place look untidy.)

Consider using a standing desk (these are quite popular at the moment). Ensure that
your chair is not a cheap-and-nasty wreck, but something appropriately adjustable, with
suitable lumbar support. Perhaps you would benefit from an ergonomic keyboard and
mouse?

Take regular breaks. Stay hydrated throughout the working day. Avoid eye strain with
appropriate eye exercises. Work a reasonable number of hours and get sufficient rest at
night.

Look after yourself!

268 | Chapter 30: Posturing Programmers

Questions

1. How well is your workspace set out? Is it comfortable? Do you feel any strain as you
work?

2. How can you improve your workspace? For example, is your monitor at a com‐
fortable height? Is your chair adjustable so you can keep straight wrists as you type?

3. How many hours do you work a day? Do you work long hours to get things done?
What effect does this have on your body?

4. Do you maintain a good level of hydration as you work? (Not drinking enough will
lead to a reduction in your ability to concentrate.)

Try this….
Survey how your workstation is set up. Take appropriate measures to avoid bad posture
and to reduce eye strain. You only get one body: look after it.

Chapter 30: Posturing Programmers | 269

PART IV

Getting Things Done

Life in the software factory can be hectic and fast-paced, with many unreasonable de‐
mands. “Make it super-elegant.” “Make it feature-rich.” “Make it bug-free.” “And make
it now!” With the pressures of unrealistic deadlines and tricky coding tasks looming
over your head, it can be easy to lose focus, and deliver the wrong thing, or fail to deliver
at all.

In these chapters, we’ll explore ways of cutting excellent code in the best ways possible
—the art of getting things done.

CHAPTER 31

Smarter, Not Harder

Battles are won by slaughter and maneuver. The greater the general,
the more he contributes in maneuver, the less he demands in slaughter.

— Winston Churchill

Let me tell you a story. It’s all true. A colleague, working on some UI code, needed to
overlay pretty rounded arrows over his display. After he struggled to do it program‐
matically using the drawing primitives provided, I suggested he just overlay a graphic
on the screen. That would be much easier to implement.

So off he went. He fired up Photoshop. And fiddled. And tweaked. And fiddled some
more. In this, the Rolls-Royce of image composition applications, there is no quick-
and-easy way to draw a rounded arrow that looks halfway decent. Presumably an ex‐
perienced graphic artist could knock one up in two minutes. But after almost an hour
of drawing, cutting, compositing, and rearranging, he still didn’t have a convincing
rounded arrow.

He mentioned it to me in frustration as he went to make a cup of tea.

On his return, tea in hand, he found a shiny new rounded arrow image sitting on his
desktop ready for use.

“How did you do that so quickly?” he asked.

“I just used the right tool,” I replied, dodging a flying mug of tea.

Photoshop should have been the right tool. It’s what most image design work is done in.
But I knew that Open Office provides a handy configurable rounded arrow tool. I had
drawn one in 10 seconds and sent him a screenshot. It wasn’t elegant. But it worked.

The moral?

273

There is a constant danger of focusing too closely on one tool, or on a singular approach
to solve a problem. It’s tantalisingly easy to lose hours of effort exploring its blind alleys
when there’s a simpler, more direct route to your goal.

So how can we do better?

Pick Your Battles
To be a productive programmer, you need to learn to work smarter rather than hard‐
er. One of the hallmarks of experienced programmers is not just their technical acumen,
but how they solve problems and pick their battles.

Good programmers get things done quickly. Now, they don’t bodge things like a shoot-
from-the-hip cowboy coder. They just work smart. This is not necessarily because they
are more clever; they just know how to solve problems well. They have an armoury of
experience to draw from that will guide them to use the correct approach. They can see
lateral solutions—the application of an unusual technique that will get the job done with
less hassle. They know how to chart a route around looming obstacles. They can make
informed decisions about where best to invest effort.

Battle Tactics
Here are some simple ideas to help you work smarter.

Reuse Wisely
Don’t write a lump of code yourself when you can use an existing library, or can repur‐
pose code from elsewhere.

Even if you have to pay for a third-party library, it is often far more cost effective to take
an off-the-shelf implementation than to write your own. And test your own. And then
debug your own.

KEY ➤ Use existing code, rather than writing your own from scratch.
Employ your time on more important things.

Overcome “not invented here” syndrome. Many people think that they can do a much
better job themselves, or fashion a more appropriate version for their specific applica‐
tion. Is that really the case? Even if the other code isn’t designed exactly how you prefer,
just use it. You don’t necessarily need to rewrite it if it’s working already. Make a facade
around it if you must to integrate into your system.

274 | Chapter 31: Smarter, Not Harder

1. It’s another issue whether you should have getters and setters in your APIs in the first place.

Make It Someone Else’s Problem
Don’t work out how to do a task yourself if someone already knows how to do it. You
might like to bask in the glory of the accomplishment. You might like to learn something
new. But if someone else can give you a leg up, or complete the job much faster than
you, then it may be better to put the task in their work queue instead.

Only Do What You Have To
Consider sacrilege: Do you need to refactor? Do you need to unit test?

I’m a firm advocate of both practices, but sometimes they might not be appropriate or
a worthwhile investment of your time. Yes, yes: refactoring and unit testing both bring
great benefits and should never be tossed aside thoughtlessly. However, if you’re working
on a small prototype, or exploring a possible functional design with some throwaway
code, then you might be better off saving the theologically correct practices for later.

If you do (laudably) invest time in unit tests, consider exactly which tests to write. A
stubborn “test every method” approach is not sensible. (Often you’ll think you have
better coverage than you expect). For example, you need not test every single getter and
setter in your API.1 Focus your testing on usage, not methods, and pay particular at‐
tention to the places you would likely expect brittleness.

Pick your testing battles.

Put It on a Spike
If you’re presented with multiple design options and you’re not sure which solution to
pick, don’t waste hours cogitating about which is best. A quick spike solution (a throw-
away prototype) might generate more useful answers in minutes.

To make this work well, set a specific Pomodoro-like time window within which you
will perform the spike. Stop when the time elapses. (And in true Pomodoro style, get
yourself a nice hard-to-ignore windup timer to force you to stop.)

Use tools that will help you backtrack quickly (e.g., an effective version control system).

Prioritise
Prioritise your work list. Do the most important things first.

KEY ➤ Concentrate effort on the most important things first. What is
most urgent, or will produce the most value?

Chapter 31: Smarter, Not Harder | 275

http://www.pomodorotechnique.com

2. For many events, roughly 80% of the effects come from 20% of the causes. For more on this, see http://
en.wikipedia.org/wiki/Pareto_principle.

Be rigorous about this. Don’t get caught up on unimportant minutiae; it’s incredibly
easy to do. Especially when one simple job turns out to depend on another simple job.
Which depends on another simple job, which depends on…. After two hours you’ll
surface from a rabbit hole and wonder why on earth you’re reconfiguring the mail server
on your computer when what you wanted to do was modify a method on a container
class. In computer folklore, this is referred to as yak shaving.

Beware of the many small tasks you do that aren’t that important; email, paperwork,
phone calls—the administrivia. Instead of doing those little things throughout the day,
interrupting and distracting you from your flow on important tasks, batch them together
and do them at one (or a few) set times each day.

You may find it helps to write these tasks down on a small “to do” list, and at a set time
start processing them as quickly as possible. Ticking them off your list—the sense of
accomplishment can be a motivating reward.

What’s Really Required?
When you are given a new task, check what’s really needed now. What does the customer
actually need you to deliver?

Don’t implement the Rolls-Royce full bells-and-whistles version if it’s not necessary.
Even if the work request asks for it, push back and verify what is genuinely required. To
do this, you need to know the context your code lives in.

This isn’t just laziness. There is a danger in writing too much code too early. The Pareto
principle2 implies that 80% of required benefit could come from just 20% of the intended
implementation. Do you really need to write the remainder of that code, or could your
time be better employed elsewhere?

One Thing at a Time
Do one thing at a time. It’s hard to focus on more than one job at once (especially for
men with our uni-tasking brains). If you try to work concurrently, you’ll do both jobs
badly. Finish one job then move on to another. You’ll get both jobs completed in a shorter
space of time.

Keep It Small (and Simple)
Keep your code and design as small and as simple as possible. Otherwise, you’ll just add
a lot more code that will cost you time and effort to maintain in the future.

276 | Chapter 31: Smarter, Not Harder

http://bit.ly/Y1J0fB

KEY ➤ Remember KISS: Keep It Simple, Stupid.

You will need to change it; you can never foretell exactly what the future requirements
are. Predicting the future is an incredibly inexact science. It is easier and smarter to
make your code malleable to change now than it is to build in support for every possible
future feature on day one.

A small, focused body of code is far easier to change than a large one.

Don’t Defer and Store Up Problems
Some things that are hard (like code integration) should not be avoided because they
are hard. Many people do so; they defer these tasks to try to minimise the pain. It sounds
like picking your battles, doesn’t it?

In reality, the smarter thing is to start sooner and face the pain when it is smaller. It’s
easier to integrate small pieces of code early on, and then to frequently integrate the
subsequent changes, than it is to work on three major features for a year and then try
to stitch them together at the end.

The same goes for unit testing: write tests now, alongside your code (or before). It’ll be
far harder, and less productive, to wait until the code is “working” before you write the
tests.

As the saying goes: If it hurts, do it more often.

Automate
Remember the classic advice: if you have to do it more than once, write a script to do it
for you.

KEY ➤ If you do something often, make the computer do it for you.
Automate it with a script.

Automating a common, tedious task could save you many hours of effort. Consider also
a single task that has a high degree of repetition. It might be faster to write a tool and
run that once, than to do the repetitive job by hand yourself.

This automation has an added advantage: it helps others to work smarter, too. If you
can run your build with one command, rather than a series of 15 complex commands
and button presses, then your entire team can build more easily, and newcomers can
get up to speed faster.

To aid this automation, experienced programmers will naturally pick automatable tools,
even if they don’t intend to automate anything right now. Favour workflows that produce
plain text, or simple structured (e.g., JSON or XML) intermediate files. Select tools that
have a command-line interface as well as (or instead of) an inflexible GUI panel.

Chapter 31: Smarter, Not Harder | 277

It can be hard to know whether it’s worth writing a script for a task. Obviously, if you
are likely to perform a task multiple times then it’s worth considering. Unless the script
is particularly hard to write, you are unlikely to waste time writing it.

Error Prevention
Find errors sooner, so you don’t spend too long doing the wrong thing.

To achieve this:

• Show your product to customers early and often, so you’ll find out quickly if you’re
building them the wrong thing.

• Discuss your code design with others, so you’ll find out if there’s a better way to
structure your solution earlier. Don’t invest effort in bad code if you can avoid it.

• Code review small, understandable bits of work often, not large dense bits of code.
• Unit-test code from the outset. Ensure the unit tests are run frequently to catch

errors before they bite you.

Communicate
Learn to communicate better. Learn how to ask the right questions to understand un‐
ambiguously. A misunderstanding now might mean you’ll end up reworking your code
later on. Or suffer delays waiting for more answers to outstanding questions. This is
particularly important, and we’ll spend a whole chapter on Communication.

Learn how to run productive meetings so your life is not sucked out by the demons who
sit in the corners of meeting rooms.

Avoid Burnout
Don’t burn yourself out working silly hours, leading people to expect unrealistic levels
of work from you all the time. Make it clear if you are moving beyond the call of duty,
so people learn not to expect it too often.

Healthy projects do not require reams of overtime.

Power Tools
Always look out for new tools that will boost your workflow.

But don’t become a slave to finding new software. Often new software has sharp edges
that could cut you. Favour tried-and-tested tools that many people have used. You can’t
put a price on the collected knowledge of these tools available via Google.

278 | Chapter 31: Smarter, Not Harder

Conclusion
Pick your battles. (Yeah, yeah.) Work smarter, not harder. (We’ve heard it all before.)

They are trite maxims. But they are true.

Of course, this doesn’t mean don’t work hard. Unless you want to get fired. But that’s
not smart.

Questions

1. How do you determine the right amount of testing to apply to your work? Do you
rely on experience or guidelines? Look back over your last month’s work; was it
really tested adequately?

2. How good are you at prioritising your workload? How can you improve?
3. How do you ensure you find issues as soon as possible? How many errors or re-

workings have you had to perform that could have been avoided?
4. Do you suffer from not invented here syndrome? Is everyone else’s code rubbish?

Could you do better? Can you stomach incorporating other’s work in your own?
5. If you work in a culture that values the number of hours worked over the quality

of that work, how can work reconcile “working smart” with not looking lazy?

See also

• This Time I’ve Got It A cautionary tale: it’s easy to not work as smart as you are able.
• A Case for Code Reuse Employ the “smart” approach to code reuse. Don’t make a

duplicated mess, but don’t write more code than you have to.
• It’s Done When It’s Done Don’t do more work than necessary—learn how to define

when it’s “done.”

Try this….
Identify three techniques that will help you become a more productive programmer.
Aim for two new practices to adopt, and one thing to stop doing. Start employing these
techniques tomorrow. Become accountable to someone over them.

Chapter 31: Smarter, Not Harder | 279

280 | Chapter 31: Smarter, Not Harder

CHAPTER 32

It’s Done When It’s Done

In the name of God, stop a moment, cease your work, look around you.
— Leo Tolstoy

A program is made of a number of subsystems. Each of those subsystems is composed
of smaller parts—components, modules, classes, functions, data types, and the like.
Sometimes even boxes and lines. Or clever ideas.

The jobbing programmer moves from one assignment to the
next; from one task to another. The working day is composed of
a series of construction and maintenance tasks on a series of
these software components: composing new parts, stitching
parts together, and extending, enhancing, or mending existing
pieces of code.

So our job is simply a string of lots of smaller jobs. It’s recursive.
Programmers love that kind of thing.

Are We There Yet?
So there you are, getting the job done. (You think.)

Just like a small child travelling in the back of a car constantly brays are we there yet?,
pretty soon you’ll encounter the braying manager: are you done yet?

This is an important question. It’s essential for a software developer to be able to answer
that one simple request: to know what “done” looks like, and to have a realistic idea of
how close you are to being “done.” And then to communicate it.

Many programmers fall short here; it’s tempting to just keep hacking away until the task
seems complete. They don’t have a good grasp on whether they’re nearly finished or

283

not. They think: There could be any number of bugs to iron out, or unforeseen problems
to trip me up. I can’t possibly tell if I’m almost done.

But that’s simply not good enough. Usually, avoiding the question is an excuse for lazy
practice, a justification for “coding from the hip,” without forethought and planning. It’s
not methodical.

It’s also likely to create problems for you. I often see people working far too hard:

• They are doing more work than necessary, because they didn’t know when to stop.
• Without knowing when they’ll be done, they don’t actually complete the tasks they

think are finished. This leads to having to pick things back up later on, to work out
what’s missing and how to stitch it in. Code construction is far slower and harder
this way.

• The wrong bits of code get polished, as the correct goal was never in sight. This is
wasted work.

• Developers working too hard are forced to put in extra hours. You’ll not get enough
sleep!

Let’s see how to avoid this and to answer “are we there yet?” effectively.

Developing Backwards: Decomposition
Different programming shops manage their day-to-day development efforts differently.
Often this depends on the size and structure of the software team.

Some place a single developer in charge of a large swath of functionality, give them a
delivery date, and ask them for occasional progress reports. Others follow more agile
processes, and manage a backlog of granular tasks (perhaps phrasing them as stories),
divvying those out to programmers as they are able to move into a new task.

The first step towards defining “done” is to know exactly what you’re working on. If it’s
a fiendishly large and complex problem, then it’s going to be fiendishly complex to say
when you’ll be done.

It’s a far simpler exercise to answer how far you are through a small, well-understood
problem. Obvious, really.

So if you have been allotted a monster task, before you begin chipping away at it, break
it down into smaller, understandable parts. Too many people rush headlong into code
or design without taking a step back to consider how they will work through it.

KEY ➤ Split large tasks up into a series of smaller, well-understood tasks.
You will be able to judge progress through these more accurately.

284 | Chapter 32: It’s Done When It’s Done

Often this isn’t a complex task, at least for a top-level decomposition. (You may have to
drill down a few times. Do so. But take note: this is an indication that you’ve been handed
a task at far too high a granularity.)

Sometimes such a decomposition is hard to do, and is a significant task itself. Don’t let
that put you off. If you don’t do it up front for estimation purposes, you’ll only end up
doing it later on in less focused ways as you battle to the finish line.

Make sure that at any point in time, you know the smallest unit you’re working on;
rather than just the big target for your project.

Define “Done”
You’ve got an idea of the big picture; you know what you’re ultimately trying to build.
And you know the particular sub-task you’re working on at the moment.

Now, make sure that for whatever task you are working on, you know when to stop.

To do this, you have to define what “done” is. You have to know what “success” means.
What the “complete” software will look like.

KEY ➤ Make sure you define “done.”

This is important. If you haven’t determined when to stop, you’ll keep working far past
when you needed to. You’ll be working harder and longer than you needed to. Or, you
won’t work hard enough—you’ll not get everything done. (Not getting everything done
sounds easier, doesn’t it? But it’s not…the half-done work will come back to bite you,
and will make more work for you later down the line, whether that’s bugs, rework, or
an unstable product.)

Don’t start a piece of coding work until you know what success is. If you don’t yet know,
make your first task determining what “done” is. Most often it’s not the programmer
who defines this, but a product owner, system designer, customer, or the end user.

Only then, get going. With the certainty of knowing where you’re headed, you’ll be able
to work in a focused, directed manner. You’ll be able to make informed choices, and to
discount unnecessary things that might sidetrack or delay you.

KEY ➤ If you can’t tell when it’s done, then you shouldn’t start it.

So how does this look in practice? How do you define “done”? Your “done” criteria needs
to be:
Clear

It must be unambiguous and specific. A list of all the features to be implemented,
the APIs added or extended, or the specific faults to be fixed.

Chapter 32: It’s Done When It’s Done | 285

If, as you get into the task, you discover things that might affect the completion
criteria (e.g., you discover more bugs that need fixing, or uncover unforeseen prob‐
lems) then you must make sure that you reflect this in your “done” criteria.

This criteria is usually directly traceable to some software requirements or a user
story—if you have them. If this is the case, make sure that this connection is doc‐
umented.

Visible
Make sure that the success criteria is seen by all important parties. This probably
includes your manager, your customers, the downstream teams using your code,
or the testers who will validate your work.

Make sure everyone knows and agrees on this criteria. And make sure they’ll have
a way of telling—and agreeing—when you are “done.”

Achievable
Define the “done” criteria carefully. An unachievable “done” definition is useless: if
it’s beyond the reach of the current team then it will become an albatross around
their neck, rather than a goal to strive for. For example, a goal of 100% code coverage
in a low-test environment is not realistic.

The nature of each task will clearly define what “done” means. However, you should
consider:

• How much code must be completed. (Do you measure this in units of functionality,
APIs implemented, or user stories completed?)

• How much design is done, and how it’s captured.
• Whether any documents or reports must be generated.

When it’s a coding task, you can mostly clearly demonstrate “being done” by creating
an unambiguous test set. Write tests that will show when you’ve fashioned the full suite
of code required.

KEY ➤ Use tests written in code to define when your code is complete
and working.

There are some other questions that you may have to consider when you describe what
“done” is:

• Where is the code delivered to? (To version control, for example.)
• Where is the code deployed to? (Is it “done” when it’s live on a server? Or do you

deliver testable product ready for a deployment team to roll out?)
• What are the economics of “done”? The exact numbers required that may lead to

certain trade-offs or measurements. For example, how well should your solution

286 | Chapter 32: It’s Done When It’s Done

scale? It’s not good enough if your software only manages 10 simultaneous users if
10,000 are required. The more precise your done criteria, the better you understand
these economics.

• How will you signal that you’re done? When you think you’re done, how will you
let the customer/manager/QA department know? This probably looks different for
each person. How will you garner agreement that you are indeed done—who signs
off on your work? Do you just check in, do you change a project reporting ticket,
or do you raise an invoice?

Just Do It
When you’ve defined “done,” you can work with focus. Work up to the “done” point.
Don’t do more than necessary.

Stop when your code is good enough—not necessarily perfect (there may be a real dif‐
ference between the two states). If the code gets used or worked on an awful lot, it may
eventually be refactored to be perfect—but don’t polish it yet. This may just be wasted
effort. (Beware: this is not an excuse to write bad code, just a warning against unneces‐
sary over-polishing.)

KEY ➤ Don’t do more work than necessary. Work until you’re “done.”
Then stop.

Having a single, specific goal in mind helps you to focus on a single task. Without this
focus, it’s easy to hack at code randomly trying to achieve a number of things and not
managing any of them successfully.

Questions

1. Do you know when your current task will be “done”? What does “done” look like?
2. Have you decomposed your current task into a single goal, or a series of simple

goals?
3. Do you decompose your work into achievable, measurable units?
4. How does your current development process determine how you break up and

estimate work? Is it sufficient?
5. How much variation in accuracy is there between the estimates made by people on

your team? Why do you think this is? What makes the most accurate estimators
better?

See also

• Smarter, Not Harder Define “done” and don’t do more. That’s working smart, not
hard.

Chapter 32: It’s Done When It’s Done | 287

• Nothing Is Set in Stone No software is ever completely “done.” By definition, software
is soft, the requirements may change tomorrow and require us to change it.

Try this….
Review your current code task. Is it the right size? Is it correctly decomposed? Define a
clear “done” point. Work out how to track your progress through it more accurately.

288 | Chapter 32: It’s Done When It’s Done

CHAPTER 33

This Time I’ve Got It…

It is easier to prevent bad habits than to break them.
— Benjamin Franklin

“Just one more minute,” Jim said. “I think I really do know what the problem is now.
This time I’ll fix it.”

Julie had been watching him trying to solve the problem for almost a whole day now,
with increasing amusement.

Jim had been hunched over the keyboard for hours
straight. He’d hardly glanced up. He’d certainly not eat‐
en. And he’d only had the one cup of coffee that Julie had
brought mid-morning, mostly out of pity.

It wasn’t like him at all. He was a man on a mission.

A sense of urgency, if not mild panic, had been brought
about by a “level 1” bug discovered in the live system.
How it had got through the QA process was anyone’s
guess.

It was thought to be a problem in some of Jim’s code, and
so Jim sprang into action. It was partly pride that stopped
him from asking for help, but there was also a hint of naiveté—he thought he’d have it
tracked down in 10 minutes, and he would then look like a hero for fixing the running
system.

So far that plan had failed.

With every minute that passed, the pressure increased. Reports from customers were
trickling in about the problem. One or two reports early in the morning had become a
steady stream. Before long, that stream would become a flood, and then the whole team

291

would be dumped in it. Indeed, if the problem wasn’t fixed soon, the company could
suffer as a result.

No one wants that on their conscience.

Or their resumé.

Jim had to get this fixed. And fast. The pressure was building.

By now they surely should have rolled the code back to a previously known good release
and taken more time over the diagnosis and the fix, but at every turn Jim assured Julie
that he was “almost there.” And he truly believed it. But each time he got close to the
cause of the problem, each time he thought he had it cornered, it seemed to back off
into a darker recess of the system.

The problem was clearly now not solely in Jim’s code. All his unit tests showed that the
module functioned as well as had been expected. No, this was a gnarly integration issue;
something strange happening at the boundary of a number of software modules. And
it was intermittent, too. The problem was related to some subtle timing or ordering of
events flowing around the system.

Jim’s prey, like a shy deer, was evading his sights. He just couldn’t quite find it.

“I think I know where it is now. It’s not in the event dispatcher itself. I think there’s some
nastiness in the communication between it, the database, and the processing backend,”
said Jim. “I’ve got it down to those three components. I haven’t fixed it yet, but the next
fix really has to work.” He tried to sound more certain than he really was.

“Really? Are you sure?” chimed Julie. There was a hint of mocking in her tone. It wasn’t
missed. Normally Jim would play along, but he wasn’t in the mood today. He gave her
the glare that he normally reserved for traffic wardens and turned his gaze back to the
scores of source code windows open on his screen.

“If I could just…”

“Wait a minute,” interrupted Julie. “Seriously, just wait. Stop and think about what you’re
doing.” Her calm voice cut across Jim and he looked up again. He looked tired. And
stressed. “Come on, walk with me to the coffee machine. Tell me what you think the
problem is.”

Jim had been thinking. All day. But he did need a coffee, so he acquiesced. He’d been
too proud to ask for help; increasingly so as the day wore on. But now he realised that
he needed a listening ear and a fresh perspective. He was out of good ideas, and was
now operating on educated guesses and adrenaline.

Jim had been too close to the problem. He’d tried every first thing that entered his head
without seeing (or yet understanding) the bigger picture. He had started with a pre‐
conception of the issue, and hadn’t focused on detecting the fault before applying
sticking-plasters. Each one was a “little fix” that should have been the solution, but just

292 | Chapter 33: This Time I’ve Got It…

masked, or moved the problem around—like smoothing an air bubble trapped under
wallpaper.

And he’d spent a whole day doing it. He felt no closer to the solution, and he felt the
rest of the teams eyes boring into the back of his head as he worked frantically on a fix.

“Don’t worry,” said Julie. She had seen it many times over. She’d done it herself enough
times in the past. And she knew well enough that she was still perfectly capable of doing
it again. “Tell me what you’ve found so far.” Jim started to describe the situation.

One coffee, and one chat later Jim felt refreshed and had a new focus. As he had explained
the full problem to Julie, without her saying a single word, it dawned on him that he’d
missed a large piece of the puzzle. As he described what he was going to do next, he
realised how he’d not seen the real problem. He described what he’d do instead.

“That makes perfect sense,” said Julie encouragingly. “Do you want me to pair with you?”

“I think I’ve got this covered now,” said Jim. “But do come back in 10 minutes and check
that I’m not going off on one again.” Then he added, thoughtfully, “And, when I’m done,
would you mind reviewing the fix?”

“Of course not,” said Julie. She smiled.

Jim was like her in many respects. She knew that he’d only learn by making mistakes.
At the end of the day, she’d ask him to reflect on what had happened, a little personal
retrospective. Hopefully he wouldn’t be doing that again in a hurry.

Jim fixed the issue, they reviewed the fix, and deployed it by the end of the day (which
was spent celebrating over a drink, when it could have been spent hunched over a key‐
board working late into the night).

Desert Island Development
No developer is an island. Beware the peril of getting so narrowly focused, and so close
to a part of the problem that you’re not really able to see the whole issue, or be able to
effectively work on it.

Watch yourself. Check whether you’re going down a coding blind alley, and make sure
that you will notice and can get back out. How can you do this? Work out some practical
mechanisms. Set yourself short time limits and deadlines, and review your progress as
you go. Make yourself accountable to someone else as you work, either by pairing,
reviewing, or informally reporting progress to them.

KEY ➤ Be accountable to another programmer. Review progress with
them regularly.

Never be too proud to ask for help. As we just saw, it’s often in describing a problem
that you’ll explain to yourself how to fix it. If you’ve never tried doing this, you’ll be

Chapter 33: This Time I’ve Got It… | 293

1. Hunt and Thomas, The Pragmatic Programmer.

amazed at how frequently it happens. You don’t even need to talk to another program‐
mer. It could even be a rubber duck.1

Stood at the Bottom of the Mountain
Many software design issues, coding decisions, or bug fixes feel like a huge mountain
you have to climb. Running directly to the foot of the mountain and starting to clamber
up is often the wrong approach.

Often it is better (i.e., easier, more time- or money-effective) to approach the mountain
in a team. The team can help each other up. One person can point out when another is
going to climb into a difficult situation. The team can work together in ways that an
individual can’t.

It always pays to take a step back first and plan a route before starting your ascent. Round
the far side of the mountain there may be a far easier route to get up, if you’d only look
for it. Indeed, there may already be a path laid. With signposts. And lights. And an
escalator. Your first route into a problem is rarely the best.

KEY ➤ When facing a problem, make sure you’ve considered more than
one approach to solve it. Only then should you start working on
it.

This is one example, of many, of how software development is often more of a human
problem than a technical problem. We have to learn how to enable ourselves to solve
problems most effectively, and overcome our natural instincts to solve problems quickly
—but ineffectively.

Questions

1. How effectively do you work with others in your team?
2. Can you ask for help, or to discuss problems?
3. How often do you “code yourself into a dead end”? When did you last do this? How

long did it take you to notice?
4. Are you accountable to others? If not, to whom could you become accountable?
5. Do you think sharing your progress and discussing problems would make you look

like a weaker programmer to others in the team?

See also

• Smarter, Not Harder This tale highlights how important it is to work smarter, not
harder.

294 | Chapter 33: This Time I’ve Got It…

• Use Your Brain Don’t suffer tunnel vision, racing towards a goal down the wrong
path. Stop, and use your brain.

• It’s the Thought That Accounts Accountability, and daily (or more frequent) con‐
versations about what you are working on can help avoid mindless mistakes.

Try this….
Before starting your next coding task, write down a “plan of attack” for how you will
solve/diagnose/design/approach the code. Use this to prevent you from running in
head-first without due consideration.

Chapter 33: This Time I’ve Got It… | 295

PART V

The People Pursuit

Software development is rarely a lone activity; it is a social sport, a people pursuit. A
good programmer is able to work well with the other inhabitants of the software factory.
To become a better programmer, you must learn how to work effectively with others,
and how to learn from them.

1. Frederick P. Brooks Jr., The Mythical Man Month (Boston: Addison Wesley, 1995).

2. Tom Demarco and Timothy Lister, Peopleware (New York: Dorset House Publishing, 1999).

CHAPTER 34

People Power

Two things are infinite: the universe and human stupidity;
and I’m not sure about the universe.

— Albert Einstein

Programming is a people pursuit.

Almost since the first programs were constructed we have realised that programming
is not a solely technical challenge. It is also a social challenge. Software development is
a pastime that involves writing code with other people, for other people to understand.
It means working with other people’s code, joining and leaving software teams, working
under your boss’ supervision, managing developers (which is rather like herding cats),
and so on.

Many of the most enduring programming tomes are devoted to the people problem,
for example, The Mythical Man Month1 and Peopleware.2

Just as the people working with a codebase will inevitably shape the code they produce,
the people who work with you will inevitably shape you.

KEY ➤ Purposefully place yourself beside excellent programmers.

That is, if you want to be an exceptional programmer, then you must consciously place
yourself daily amongst people who are exceptional programmers. It’s a really simple but
profound way to make sure that you improve your skills and attitudes.

We are products of our environment, after all. Just as plants need good soil, fertiliser,
and the correct atmosphere to grow healthily, so do we.

299

Spending too long with depressing people will make you feel depressed. Spending too
long with run-down people will make you feel tired and lethargic. Spending too long
with sloppy workers will encourage you to work sloppily yourself—why bother trying
if no one else is? Conversely, working with individuals who are passionate about good
code and strive to make better software will encourage you to do the same.

By immersing yourself in the environment of excellent programmers, you will treat
yourself to:

• Enthusiasm that is infectious
• Motivation that is inspirational
• Responsibility that is contagious

Find people like that and marinate yourself in their company. Consciously seek out the
people who care about good code, and about writing it well. In that kind of environment,
you won’t fail to be nurtured and encouraged.

By working with high calibre developers you will gain far more than technical knowl‐
edge; although that knowledge itself is very valuable. You’ll enjoy positive reinforcement
of good programming habits and attitudes. You’ll be encouraged to grow, and be chal‐
lenged to improve in your weaker areas. This isn’t always comfortable or easy, but it is
worthwhile.

So make a point of seeking out the best programmers and work with them. Design code
with them. Pair program with them. Socialise with them.

What to Do
You could make this kind of relationship formal with mentorship; indeed many good
workplaces try to put mentorship schemes into practice formally. Carve out specific
chunks of time to work together.

Or you may pursue it informally: get yourself assigned on the same projects as great
programmers. Change jobs to work with them. Go to conferences, talks, or user groups
to meet with them. Or just make a point of hanging out with other great programmers.

As you do this, learn from them. Watch out for:

• How they think and solve puzzles
• How they plan a route into problems
• The attitude they adopt when things get hard
• How they know to keep pushing on a problem, when to take a break, or when try

a different approach

300 | Chapter 34: People Power

• Their specific coding skills and techniques that you don’t yet understand

Know Your Experts
Consider carefully what you think an excellent programmer looks like.

You specifically don’t want to get alongside people who work too hard, filling all the
hours God sends with code. Those people are almost certainly not the exceptional pro‐
grammers! Managers often think that employees who spend every waking hour on a
project are the programming heroes, but often this really hints at their lack of ability.
They can’t get things right the first time, so they have to spend many more hours getting
the code to “work” than was actually necessary.

Experts make it look easy and get things done on time.

20/20 Hindsight
As I look back over my career, I realise that the most enjoyable and personally productive
times I’ve encountered have been when I’ve been working alongside excellent, motiva‐
ted, interesting developers. And because of this, I will now always attempt to place myself
alongside people like that.

I’ve learnt that they make me better at what I do, and I have more fun whilst I’m doing
it.

An interesting and beneficial side effect of working with good coders is that you are far
more likely to end up working with good code.

Questions

1. Are you around people you think are excellent programmers right now? Why? Or
why not?

2. How can you move yourself nearer better coders? Can you move to a new project
or team? Is it time to look for a new job with a different company?

3. How can you tell who is an excellent developer, and who isn’t?

See also

• Relish the Challenge Seek out good colleagues who can encourange and challenge
you.

• It’s the Thought That Accounts Become accountable to them.
• Speak Up! Learn to communicate well; listening is essential if you are to learn.
• An Ode to Code Not every colleague is a saint.

Chapter 34: People Power | 301

Try this….
Identify some “coding heroes” you’d like to learn from, and plan a way to work alongside
them. Consider asking to be mentored by them.

302 | Chapter 34: People Power

CHAPTER 35

It’s the Thought That Accounts

Thinking well is wise; planning well, wiser; doing well, wisest and best of all.
— Persian Proverb

I run. Every week. It’s my waistline, you see. Perhaps it’s guilt, but I feel I need to do
something to keep it under control.

Now, let’s be clear: I’m no masochist. Exercise is not my favourite thing in the world.
Far from it. It ranks marginally above hot pokers being stuck in my eyes. There are
plenty of things I’d rather do with my evenings. Many of them involve sitting down,
preferably with a glass of wine.

But I know that I should run. It’s good for me.

Is that fact alone enough to ensure I go regularly, every week, for the full distance? With
no slacking or slowing of the pace?

It is not.

I dislike exercise and would gladly employ the weakest of excuses to get out of a run.
“Oh no, my running shorts have a loose thread.” “Oh no, I have a runny nose.” “Oh no,
I’m a bit tired.” “Oh no, my leg has fallen off.”

(Ok, some excuses are better than others.)

What unseen force coaxes me to continue running regularly when guilt alone can’t drag
me out the door? What magical power leads me on where willpower fails?

Accountability.

I run with a friend. That person knows when I’m slacking, and encourages me out of
the house even when I don’t fancy it. That person turns up at the door, as arranged,
before my lethargy sets in. I perform the same service back. I’ve lost count of the times

305

that I wouldn’t have run, or would have given up halfway around had I not had someone
there, watching me and running alongside me.

And, as a by-product we enjoy the run more for the company and shared experience.

Sometimes we both don’t feel like going on the run. Even if we admit it to each other,
we won’t let each other off the hook. We encourage ourselves to push through the pain.
And, once we’ve run, we’re always glad we did it, even if it didn’t feel like a great idea at
the time.

Stretching the Metaphor
Some metaphors are tenuous literary devices, written to entertain, or for use as contrived
segues. Some are so oblique as to be distracting, or form such a bad parallel as to be
downright misleading.

However, I believe this picture of accountability is directly relevant to the quality of our
code.

We hear our industry experts, speakers, writers, and code prophets talk about producing
good, well-crafted code. They extol the virtues of “clean” code and explain why we need
well-factored code. But it matters not one jot if, in the heat of the workplace, we can’t
put that into practice. If the pressures of the codeface cause us to shed our development
morals and resort to hacking like uninformed idiots, what use is their advice?

The spirit is willing, but when the deadline looms, all too often the flesh is weak. We
can complain about the poor state of our codebases, but who do we look at to blame?

We need to bake into our development regimen ways to avoid the temptation for short‐
cuts, bodges, and quick fixes. We need something to lure us out of the trap of thoughtless
design, sloppy, easy solutions, and half-baked practices. The kind of thing that costs us
effort to do, but that in retrospect we’re always glad we have done.

How do you think we’ll achieve this?

Accountability Counts
I know that in my career to date, the single most import thing that has encouraged me
to work to the best of my abilities has been accountability, to a team of great program‐
mers.

It’s the other coders that make me look good. It’s those other coders that have made me
a better programmer.

KEY ➤ Being accountable to other programmers for the quality of your
work will dramatically improve the quality of your coding.

306 | Chapter 35: It’s the Thought That Accounts

1. This is one of the reasons open source code is often of higher quality than proprietary code: you know that
many other programmers will be looking at your work.

That is a single simple, but powerful idea.

Code++
To ensure you’re crafting excellent code, you need people who are checking it at every
step of the way. People who will make sure you’re working to the best of your ability,
and are keeping up to the quality standard of the project you’re working on.1

This needn’t be some bureaucratic big-brother process, or a regimented personal de‐
velopment plan that feeds back directly into your salary. In fact, it had better not be. A
lightweight, low-ceremony system of accountability, involving no forms, no lengthy
reviewing sessions or formal reviews is far superior, and will yield much better results.

Most important is to simply recognise the need for accountability; that being answerable
to other people for the quality of your code encourages you to work your best. Realise
that actively putting yourself into the vulnerable position of accountability is not a sign
of weakness, but a valuable way to gain feedback and improve your skills.

How accountable do you currently feel you are for the quality of the code you produce?
Is anyone challenging you to produce high-quality work, to prevent you from slipping
into bad, lazy practices?

Accountability is worth pursuing not only in the quality of our code output, but also in
the way we learn, and how we plan our personal development. It’s even beneficial in
matters of character and personal life (but that’s a whole other book).

Making It Work
There are some simple ways to build accountability for the quality of code into your
development process. In one development team we found it particularly useful when
all the coders agreed on a simple rule: all code passed two sets of eyes before entering
source control. With this as a peer-agreed rule, it was our choice to be accountable to one
another, rather then some managerial diktat passed down from faceless suits on high.
Grassroots buy-in was key to this success of the scheme.

To satisfy the rule, we employed pair programming and/or a low-ceremony one-on-one
code review, keeping each checked-in change small to make the scheme manageable.
Knowing another person was going to scrutinise your work was enough to foster a
resistance to sloppy practice and to improve the general quality of our code.

Chapter 35: It’s the Thought That Accounts | 307

KEY ➤ If you know that someone else will read and comment on your
code, you’re more likely to write good code.

This practice genuinely improved the quality of the team, too. We all learnt from one
another, and shared our knowledge of the system. It encouraged a greater responsibility
for and understanding of the system.

We also ended up with closer collaboration, enjoyed working with each other, and had
more fun writing the code as a consequence of this scheme. The accountability led to a
pleasant, more productive workflow.

Setting the Standard
When building developer accountability into your daily routine, it is worth spending a
while considering the benchmark that you’re aiming for. Ask yourself the following
questions:

How is the quality of your work judged? How do people currently rate your perfor‐
mance? What is the yardstick they use to gauge its quality? How do you think they should
rate it?

• The software works, that’s good enough.
• It was written fast, and released on schedule (internal quality is not paramount).
• It was well-written, and can be maintained easily in the future.
• Some combination of the above.

Which is seen as most important?

Who currently judges your work? Who is the audience for your work? Is it only seen
by yourself? Your peers? Your superiors? Your manager? Your customer? How are they
qualified to judge the quality of your handiwork?

Who should be the arbiter of your work quality? Who really knows how well you’ve
performed? How can you get them involved? Is it as simple as asking them? Does their
opinion have any bearing on the company’s current view of your work’s quality?

Which aspects of your work should be placed under accountability?

• The lines of code you produce?
• The design?
• The conduct and process you used to develop it?
• The way you worked with others?
• The clothes you wore when you did it?

308 | Chapter 35: It’s the Thought That Accounts

Which aspect matters the most to you at the moment? Where do you need the most
accountability and encouragement to keep improving?

The Next Steps
If you think that this is important, and something you should start adding to your work:

• Agree that accountability is a good thing. Commit to it.
• Find someone to become accountable to. Consider making it a reciprocal arrange‐

ment; perhaps involve the entire development team.
• Consider implementing a simple scheme like the one described above in your team,

where every line of code changed, added, or removed must go past two sets of eyes.
• Agree on how you will work out the accountability—small meetings, end-of-week

reviews, design meetings, pair programming, code reviews, etc.
• Commit to a certain quality of work, be prepared to be challenged on it. Don’t be

defensive.
• If this happens team-wide, or project-wide, then ensure you have everyone’s buy-

in. Draft a set of team standards or group code of conduct for quality of develop‐
ment.

Also, consider approaching this from the other side: can you help someone else out with
feedback, encouragement, and accountability? Could you become another program‐
mer’s moral software compass?

Often this kind of accountability works better in pairs of peers, rather than in a subor‐
dinate relationship.

Conclusion
Accountability between programmers requires a degree of bravery; you have to be will‐
ing to accept criticism. And tactful enough to give it well. But the benefits can be marked
and profound in the quality of code you create.

Questions

1. How are you accountable to others for the quality of your work?
2. What should you be held accountable for?
3. How do you ensure the work you do today is as good as previous work?
4. How is your current work teaching you and helping you to improve?
5. When have you been glad you kept quality up, even when you didn’t feel like it?

Chapter 35: It’s the Thought That Accounts | 309

6. Does accountability only work when you choose to enter into an accountability
relationship, or can it effectively be something you are required to do?

See also

• The Ethical Programmer You should be accountable for the quality of your conduct
as well as the quality of your code.

• People Power When working alongside excellent coders, you cannot help but be
challenged to improve your skills.

• This Time I’ve Got It Accountability can help avoid embarrassing and silly mistakes.
• Playing by the Rules Employ accountability between team members to encourage

everyone to stick with your team “rules.”

Try this….
Find a colleague to become accountable to. Commit to a certain quality of work. Ask
them to keep an eye on your code. Consider making this a two-way relationship.

310 | Chapter 35: It’s the Thought That Accounts

Chapter 35: It’s the Thought That Accounts | 311

CHAPTER 36

Speak Up!

The single biggest problem in communication is the illusion that it has taken place.
— George Bernard Shaw

It’s the classic stereotype of a programmer: an antisocial geek who slaves alone, in a
stuffy room with dimmed lights, hunched over a console tapping keys furiously. Never
seeing the light of day. Never speaking to another person “in real life.”

But nothing could be further from the truth.

This job is all about communication. It’s no exaggeration to say we succeed or fail based
on the quality of our communication.

This communication is more than the conversations that kick off at the water cooler.
Although those are essential. It’s more than conversations in a coffee shop, over lunch,
or in the pub. Although those are all also essential.

Our communication runs far deeper; it is multifaceted.

Code Is Communication
Software itself, the very act of writing code, is a form of communication.

This works several ways….

Talking to the Machines
When we write code we are talking to the computer, via an interpreter. This may literally
be an “interpreter” for scripting languages that are interpreted at runtime. Or we com‐
municate via a translator: a compiler or JIT. Few programmers these days converse in
the CPU’s natural language: machine code.

Our code exists to give a literal list of instructions to the CPU.

313

Every so often, my wife leaves me a list of jobs to do. Make dinner, clean the living room,
wash the car. If her instructions are illegible, or unclear, I won’t do what she actually
wants me to. I’ll iron the cutlery and hoover the bathtub. (I’ve learnt to not argue, and
do what I’m told, even if it makes no sense to me.) If she wants the right results, she has
to leave me the right kind of instructions.

It is the same with our code.

Sloppy programmers are not explicit. The results of their code can be the equivalent of
ironed cutlery.

KEY ➤ Code is communication with the computer. It must be clear and
unambiguous if your instructions are to be carried out as you
intend.

We are not talking in the CPU’s mother tongue, so it’s always important to know what
nuances of its language get lost in translation to our programming language. The con‐
venience of using our preferred language comes at a cost.

Talking to the Animals
Although your code forms an ongoing conversation with your mechanical friend, the
computer, it does not just speak to a CPU.

It speaks to other humans, too—to the other people who share the code with you, and
who have to read what you have written. It is read by the people you are collaborating
with. It is read by the people who review your work. It is read by the maintenance
programmer who picks up your code later on. It will be read by you when you come
back in a few months to fix nasty bugs in your old handiwork.

KEY ➤ Your code is communication to other humans. Including you. It
must be clear and unambiguous if others are to maintain it.

This is important.

A high-calibre programmer strives to write code that clearly communicates its intent.
The code should be transparent: exposing the algorithms, not obscuring the logic. It
should enable others to modify it easily.

If code does not reveal itself, showing what it does, then it will be difficult to change.
And the one thing we know about coding in the real world is the only constant is
change. Uncommunicative code is a bottleneck and will impede your later development.

Good code is not terse to the point of unreadability. But neither is it lengthy and la‐
boured. And it is most definitely not filled with comments. More comments do not make
code better, they just make it longer—and probably worse as the comments can easily
get out of sync with the code.

314 | Chapter 36: Speak Up!

KEY ➤ More comments do not necessarily make your code better. Com‐
municative code does not need extra commentary to prop it up.

Good code is not trickily clever, deftly using “advanced” language features to such
aplomb that it will leave maintenance programmers scratching their heads. (Of course,
the amount of head scratching does depend on the quality of the maintenance pro‐
grammers; this kind of thing always depends on context.)

The quality of our expression in code is determined by the programming languages we
choose to use, and in how we use them. Are you using a language that allows you to
naturally express the concepts you are modelling?

We must talk the same language at the same time, or we’ll suffer a biblical Tower of Babel
cacophony. The team working on a section of code must write in the same language; it’s
not a winning formula to add lines of Basic to a Python script. If your entire application
is written in C++, then the first person to add code in another language had better have
a compelling reason.

However, even in an environment using the same programming language, it is possible
to use different dialects and end up introducing communication barriers. You may adopt
different formatting conventions, or employ different coding idioms (e.g., using
“modern” C++ versus “C++ as a better C”).

Of course, using multiple programming languages is not evil. Larger projects may le‐
gitimately be composed of code in more than one language. This is a standard for big
distributed systems where the backend runs on a server in one language, with remote
clients implemented in other, often more dynamic, browser-hosted languages. This kind
of architecture allows you to employ the right kind of language for each task. We see
here yet another language in play: the language that those parts communicate through
(perhaps a REST API with JSON data formatting).

Consider also the natural language you program in. Most teams are based in the same
country, so this is not a concern. However, I often work on multi-country projects with
many nonnative English speakers. We made a conscious choice to write all code in
English: all variable names, comments, class or function names, everything. This affords
us a degree of sanity.

I’ve worked on multisite projects that didn’t do this, and it’s a real problem having to
run code comments through Google Translate to work out if they’re important or not.
I’ve been left wondering whether a variable name has a Hungarian wart at the start, is
misspelled, abbreviated, or if I just have a very bad grasp of the natural language used.

KEY ➤ How well code communicates depends on the programming
language, idioms employed, and the underlying natural lan‐
guage. All these have to be understood by the readership.

Chapter 36: Speak Up! | 315

Remember that code is read by humans far more often than it is written. Therefore, it
should be optimised for reading, not for writing. Use a concise construct only if it’s easier
for someone else to understand, rather than easier for you to type. Follow a layout
convention that reveals intent clearly, not one that requires fewer keystrokes.

Talking to Tools
Our code communicates even further—to other tools that work with it. Here “tools” is
not a euphemism for your colleagues.

Your code may be fed into documentation generators, source control systems, bug
tracking software, and code analysers. Even the editors we use can have a bearing (what
character set encoding is your editor using?).

It isn’t unusual to add extra directives to our code to sate these processors’ whinging, or
to adapt our code to suit those tools (adjusting formatting, comment style, or coding
idioms).

How does this affect the readability of the code?

Interpersonal Communication
Electric communication will never be a substitute for the face of someone

who with their soul encourages another person to be brave and true.
— Charles Dickens

We don’t just communicate by typing code. Programmers work in teams with other
programmers. And with the wider organisation.

There’s a lot of communication going on here. Because we’re doing this all the time,
high-quality programmers have to be high-quality communicators. We write messages
to speak with, even gesticulate at, others all the time.

Ways to Converse
There are many communication channels we use for conversations, most notably:

• Talking face-to-face
• Talking on the phone, one-to-one
• Talking on the phone in a “conference call”
• Talking on VoIP channels (which isn’t necessarily different from the phone, but is

more likely to be hands-free and allow you to send files over the same communi‐
cation channel)

• Email

316 | Chapter 36: Speak Up!

• Instant messaging (e.g., typing in Skype, on IRC channels, in chatrooms, or via
SMS)

• Videoconferencing
• Sending written letters via the physical postal system (do you remember that quaint

practice?)
• Fax (which has largely been replaced by scanners and common sense; however, it

still has a place in our comms pantheon because it is regarded as useful for sending
legally binding documents)

Each of these mechanisms are different, varying in the locations spanned, the number
of people involved at each end of the communication, the facilities available and richness
of interaction (can the other person hear your tone of voice, or read your body lan‐
guage?), the typical duration, required urgency and deferrability of a discussion, and
the way a conversation is started (e.g., does it need a meeting request to set up, or is it
acceptable to interrupt someone with no warning?).

They each have different etiquettes and conventions, and require different skills to use
effectively. It is important to select the correct communication channel for the conver‐
sation you need to have. How urgent is an answer? How many people should be in‐
volved?

Don’t send someone an email when you need an urgent answer; email can sit ignored
for days. Walk over to them, ring them, Skype them. Conversely, don’t phone someone
for a non-urgent issue. Their time is precious, and your interruption will disrupt their
flow, stopping them from working on their current task.

When you next need to ask someone a question, consider whether you are about to use
the correct communication mechanism.

KEY ➤ Master the different forms of communication. Use the appropri‐
ate mechanism for each conversation.

Watch Your Language
As a project evolves, it gains its own dialect: a vocabulary of project and domain-specific
terms, and the prevalent idioms used to design or think about the shape of the software
design. We also settle on terminology for the process used to work together (e.g., we
talk about user stories, epics, sprints).

KEY ➤ Take care to use the right vocabulary with the right people.

Does your customer need to be forced to learn technical terms? Does your CEO need
to know about software development terminology?

Chapter 36: Speak Up! | 317

1. See the “Secret Service Dentists” sketch from Monty Python’s Flying Circus.

Body Language
You’d be upset if someone sat beside you, sparked up a conversation, but spent the whole
time facing in the opposite direction. (Or you could pretend they were from a bad spy
movie; I hear the gooseberries are doing well this year…and so are the mangoes.1)

If they pulled rude faces every time you spoke, you’d be offended. If they played with a
Rubik’s cube throughout the conversation you’d feel less than valued.

It is easy to do exactly this when we communicate electronically; to not fully respect the
person we’re talking with. On a voice-only conversation, it’s easy to zone out, read email,
surf the Web, and not give someone else your full attention.

Having fully embraced our modern, always-connected, broadband age, I now default
to selecting a video-on communication channel. Often I’ll kick off a conversation that
might have been via phone or instant message with a VOIP video chat. Even if my
conversant will never enable their own video, I like to broadcast a picture so that my
face and body language are clearly visible.

This shows I’m not hiding anything, and fosters a more open conversation.

A video chat forces you to concentrate on the conversation. It engages the other person
more strongly, and maintains focus.

Parallel Communication
Your computer is having many conversations at once: talking to the operating system,
other programs, device drivers, and other computers. It’s really quite clever like that.
We have to make sure that our code communication with it is clear and won’t confuse
matters whilst it’s having conversations with other code.

That’s a powerful analogy to our interpersonal communication. With so many com‐
munication channels available simultaneously, we could be engaging in office banter,
instant messaging a remote worker, and exchanging SMSs with our partner, all whilst
participating in several email threads.

And then the telephone rings. Your whole tottering pile of communication falls over.

How do you ensure that each of your conversations is clear enough and well-structured
so it won’t confuse any other communication you’re concurrently engaged in?

I’ve lost count of the number of times I’ve typed the wrong response into the wrong
Skype window and confused someone. Fortunately, I’ve never revealed company con‐
fidential information that way. Yet.

318 | Chapter 36: Speak Up!

KEY ➤ Effective communication requires focus.

Talking of Teams
Communication is the oil that lubricates teamwork. It is simply impossible to work with
other people and not talk to them.

This, once more, underscores Conway’s law. Your code shapes itself around the structure
of your teams’ communications. The boundaries of your teams and the effectiveness of
their interactions shapes, and is shaped by, the way they communicate.

KEY ➤ Good communication fosters good code. The shape of your
communications will shape your code.

Healthy communication builds camaraderie, and makes your workplace an enjoyable
place to inhabit. Unhealthy communication rapidly breaks trust and hinders teamwork.
To avoid this, you must talk to people with respect, trust, friendship, concern, no hidden
motives, and a lack of aggression.

KEY ➤ Speak to others transparently, with a healthy attitude, to foster
effective teamwork.

Communication within a team must be free-flowing and frequent. It must be normal
to share information, and everyone’s voice must be heard.

If teams don’t talk frequently, if they fail to share their plans and designs, then the
inevitable consequences will be duplication of code and effort. We’ll see conflicting
designs in the codebase. There will be failures when things are integrated.

Many processes encourage specific, structured communication with a set cadence; the
more frequent the better. Some teams have a weekly progress meeting, but this really
isn’t good enough. Short daily meetings are far better (often run as scrums, or stand-
up meetings). These meetings help share progress, raise issues, and identify roadblocks
without apportioning blame. They make sure that everyone has a clear picture of the
current state of the project.

The trick with these meetings is to keep them short and to the point; without care, they
degrade into tedious rambling discussions of off-topic issues. Keeping them running
on-time is also important. Otherwise they can become distractions that interrupt your
flow.

Talking to the Customer
There are many other people we must talk to in order to develop excellent software.
One of the most important conversations that we must hold is with the customer.

Chapter 36: Speak Up! | 319

We have to understand what the customer wants, otherwise we can’t build it. So you
have to ask them, and work in their language to determine their requirements.

After you’ve asked them once, it’s vital to keep talking to them as you go along to ensure
that it’s still what they want, and that assumptions you make match their expectations.

The only way to do this is in their language (not yours), using plenty of examples that
they understand—for example, demos of the system under construction.

Other Communication
And still, the programmer’s communication runs deeper than all this. We don’t just
write code, and we don’t just have conversations. The programmer communicates in
other ways; for example, by writing documentation and specifications, publishing blog
articles, or writing for technical journals.

How many ways are you communicating as a programmer?

Conclusion
First learn the meaning of what you say, and then speak.

— Epictetus

A good programmer is hallmarked by good communication skills. Effective commu‐
nication is:

• Clear
• Frequent
• Respectful
• Performed at the right levels
• Using the right medium

We must be mindful of this, and practice communication—we must seek to constantly
improve in written, verbal, and code communication.

Questions

1. How does personality type affect your communication skills? How can an intro‐
verted programmer communicate most effectively?

2. How formal or casual should our interactions be? Does this depend on the com‐
munication medium?

3. How do you keep colleagues abreast of your work without endlessly bugging them
about it?

320 | Chapter 36: Speak Up!

4. How does communication with a manager differ from communication with a fellow
coder?

5. What kind of communication is important to ensure that a development project
runs successfully?

6. How do you best communicate a code design? They say a picture speaks a thousand
words. Is this true?

7. Do distributed teams need to interact and communicate more than colocated teams?
8. What are the most common barriers to effective communication?

See also

• Keeping Up Appearances Code is communication. Here’s how to communicate ef‐
fectively in code.

• Smarter, Not Harder Keeping in constant communication with your team, manager,
or customer can save you from accidentally working on the wrong thing. It’s good
to talk!

Try this….
Over the next week, keep a watch on all the ways you communicate with other people.
Determine two practical things you could do to improve the quality of your commu‐
nications.

Chapter 36: Speak Up! | 321

CHAPTER 37

Many-festos

Confusion of goals and perfection of means seems, in my opinion, to characterise our age.
— Albert Einstein

It’s becoming an epidemic! They’re springing up everywhere. We’ve got them coming
out of our ears. It’s as if you can’t write a line of code, kick off a project, or even think
about software development without signing up to one.

The manifestos are everywhere.

With all these different manifestos for software development,
our profession is in danger of becoming more about politics
than the actual art, craft, science, and trade of software devel‐
opment.

Of course, professional software development is largely a people
problem. So it necessarily involves a certain amount of politics.
But we’re making even the foundational coding principles into
a political battle.

Some of the developer manifestos are gloriously ambiguous;
more akin to a development horoscope. And, sadly, when a manifesto becomes popular
we see factions form around it, leading to disputes about what the manifesto really stands
for. Whole debates spring up around the exegesis of particular manifesto items.

Software religion is alive and well.

Manifestos seem to spring up for any conceivable purpose. But I have a solution. In
order to stem the flow, and make it easier for future software activists who’d like to pen
their own, here I present the one, the overarching, generic software development man‐
ifesto. The Manifesto<PET_SUBJECT>, if you like.

323

A Generic Manifesto for Software Development
We, the undersigned, have an opinion about software development. We are concerned
about the future of our profession, and our experience leads us to draw the following
conclusions:

• We believe in a fixed set of immutable ideals over tailoring our approach to each
specific situation.

• We believe in concentrating on and discussing only the things that interest us over
the bigger problem.

• We believe in our opinion over the opinions and experiences of others.
• We believe in arbitrary black-and-white mandates over real-world scenarios with

complex issues and delicate resolutions.
• We believe that when our approach is hard to follow then it only shows how much

more important it is.
• We believe in crafting an arbitrary set of commandments over the realisation that

it’s just never that simple.
• We believe in trying to establish a movement to promote our view over something

that will be genuinely useful.
• We believe that we are better developers than those who don’t agree with us be‐

cause they don’t agree with us.

That is, we believe we’re doing the right thing. And if you don’t you’re wrong. And if
you don’t do what we do, you’re doing it wrong.

OK, OK
Alright. I’ll admit it. My tongue is in my cheek. Mostly.

The Manyfestos
Perhaps the most famous developer manifesto is The Agile Manifesto crafted in 2001
as a rally against the ineffectual heavyweight processes that had hindered software de‐
livery in the preceding decade(s). The more recent Craftsmanship Manifesto is, sadly,
a response to the perceived degradation in importance of technical practices and re‐
sponsibility for good code in Agile circles.

There are manifestos for other software movements, notably the GNU manifesto, The
Refactoring Manifesto, and The Hacker Manifesto. And still there are more.

Know the major manifestos. Form your own informed opinion about each.

324 | Chapter 37: Many-festos

http://agilemanifesto.org
http://manifesto.softwarecraftsmanship.org
http://www.gnu.org/gnu/manifesto.html
http://refactoringmanifesto.org
http://en.wikipedia.org/wiki/Hacker_Manifesto

KEY ➤ Learn about development methodologies, trends, manifestos,
and fads.

But, Really?
Good developers are passionate about their work. They become invested in what they
are doing, and seek to constantly improve.

This is a good thing.

When they find a set of practices, ideals, or standards that work well, it is natural to
want to capture them and share them with others to advance the profession. These days
it has become popular to phrase this as a manifesto. As we’ve seen, there are many of
them.

A manifesto is to our craft what coding standards are to code: useful guidelines, ideals
to strive for, and pointers to best practice.

And, just like coding standards, unhelpful holy wars can brew around these documents.
Some acolytes view them as invariants: mandates, indelibly carved on precious stone
tablets by hallowed prophets. They shun those who do not follow the One True Way.

That is a far from useful attitude.

KEY ➤ Subscribe to development manifestos that seem sensible. But
don’t blindly follow them, and don’t treat them dogmatically.

Any manifesto can only be a broad statement of principles, never the One True Way.
For example, the Agile evangelists explicitly state there are multiple ways to implement
the goals of their manifesto; it’s just an attempt to codify best practices.

If you care about becoming a better programmer, adopt a pragmatic approach to such
things. Learn from them, and understand the views on development they each espouse.
Use what works for you. Make sure that you keep up-to-date; learn about the new fash‐
ions and the en-vogue catechisms. Appreciate what’s good about them, but don’t follow
them blindly. Appraise them with an open mind.

The Punchline
So, are manifestos silly and pointless? No. Are they helpful? Mostly. That is, when they
contain good information and are used responsibly, to spark conversation, rather than
as gospel. Can they be misused? Yes! Easily. But so can anything else in the software
development world.

Chapter 37: Many-festos | 325

What would be on your Manifesto for Software Development? Here’s a go at mine. But
please don’t write it in stone as The Better Programmer Manifesto. At least, not until I’ve
formed a large enough movement behind it.

• Care about the code.
• Empower your team.
• Keep it simple.
• Use your brain.
• Nothing is set in stone.
• Learn. Constantly.
• Seek to improve. Constantly. (Yourself, your team, and your code.)
• Always deliver value, considering the long term.

Questions

1. What foundational development “principles” do you hold dear?
2. Do you sign up to, or align yourself with, development streams like “Agile,” “crafts‐

manship,” and so on? How closely do you agree with each of the items in their
manifesto?

3. What do you think these manifestos have to offer the development community?
4. What kinds of harm might they really be able to do, if any?
5. Or do you keep your head down and ignore this kind of thing? Should you actually

follow these software fashions and fads to maintain your personal development?

See also

• Live to Love to Learn Take time to learn about new fashions and fads in the industry.
• Playing by the Rules Write your own manifesto!

Try this….
Read the manifestos listed above. Consider your views on them. Consider what would
be in your personal manifesto for software development.

326 | Chapter 37: Many-festos

Chapter 37: Many-festos | 327

CHAPTER 38

An Ode to Code

All bad poetry springs from genuine feeling.
— Oscar Wilde

Gerald was a coder who worked in a small team.
The thing was: other coders coded code that was not clean.
The mess was detrimental, distracting, diabolic;
The inhumane detritus of an evil workaholic.
But Gerald had a conscience. He wouldn’t let this lie.
He lay awake at night devising schemes to rectify
The awful internal structure, the confusing variable names,
And the contrived control flow that was consistently insane.
Those early days the “Boy Scout Rule” was how he planned to beat
The bugs and turgid software that had formed beneath his feet.
A tidy here, a bug fix there, refactors left and right.
Pretty soon, he thought, (with work) they’ll all be out of sight.
But poor old Gerald, plan in action, missed one vital fact:
To make a dent, all programmers must enter in the pact.
His slapdash coding colleagues, just saw a rule to flout
And continued writing drivel whilst he tried to sort it out.
One step forwards, two steps back. Gerald danced this dance.
Until he learnt he needed a more militant stance.
Agile teams are excellent and clean code is the best.
To achieve this: the team, and not the code, would have to be addressed.
Conway’s law describes to us how software follows team—
Sympathetic software is born from a well-oiled machine.
If cogs get stuck or grate, and stop doing what they ought.
Then there’s only one option: to remove them, Gerald thought.
So the team refactor started, with the pattern: “Parameterise from Above”:
The manager, on his cycle home, received a surprise shove.

329

He landed down a manhole. You might call it homocide.
Gerald called it team hygiene. One problem had then died.
One by one his team mates met with unusual fates.
The unsuspecting QA team were hit by flying plates.
(The lesson learned from this event was: never hold team meetings
In a diner with bad furniture, and poltergeisty leanings.)
The programmers who caused such ire each met a gory end.
One “caught his tie in the printer”; his face will never mend.
Another tripped atop the stairs on his way out for a break,
A pile of deadly Unix manuals flying in his wake.
Gerald’s life was vastly better; the team was little more
Than one coder, a sys admin, and the guy who manned the door.
The problem with this setup, Gerald shortly found:
The code got no worse—good!—but it hardly changed, as no coders were around.
Progress was slow and tough, though heroic Gerald tried.
Deadlines made a “whooshing” sound as often they flew by.
With features sadly lacking, the project was a farce.
Then one day a policeman came, and put Gerald behind bars.
The moral of this simple tale is to react with care
When callous coder colleagues deign to drive you to despair.
The only sensible way there is to retaliate
Is British: maintain a healthy level of pent-up angst and hate.

Coding Is a People Problem
Hopefully you’ve read the chapter on ethics, so you probably agree that it is inadvisable
to perform such a dramatic cull of the poorly performing members of your software
team. However, how should you react when working with team members who do not
perform adequately, or seem to willfully make the code worse?

What if the software team leaders do not notice or comprehend the problem? What if,
heaven forbid, they are part of the problem itself?

Sadly, at the bleeding edge of the codeface, this is not entirely unusual. Although some
teams are full of awesome codesmiths, many are not. Unless you are unusually blessed
in your coding career, you will at some point find yourself in sticky situations that seem
to have no solution.

KEY ➤ Often, the tricky part of software development isn’t in the tech‐
nical aspects of the code; it’s the people problems.

When the programmers just don’t seem to get it, and fail to understand that they are
making things worse, not better, you must respond.

330 | Chapter 38: An Ode to Code

Consider introducing practices that promote responsibility for the code and illustrate
(in a way that avoids apportioning blame) how to work most effectively: introduce pair
programming, mentoring, design review meetings, or the like.

Set an excellent example yourself. Do not fall into a trap of those bad habits; it’s very
easy to lose enthusiasm and cut corners because everyone else is. If you can’t beat them,
don’t join them.

KEY ➤ When surrounded by coders who do not care about the code,
maintain healthy attitudes yourself. Beware of absorbing bad
practices by osmosis.

It will not be simple or rapid to change a coding culture and steer development back
towards healthy principles. But that doesn’t mean that it can’t be done.

Questions

1. How healthy is your current development team?
2. How can you quickly recognise when a developer is not performing as diligently as

she should?
3. Which is most likely: people work sloppily on purpose, or they are sloppy because

they don’t appreciate how to work better?
4. How can you be sure that you’re not adopting sloppy practices yourself? How can

you prevent yourself from slipping into bad practices in the future?

See also

• Care About the Code You have to care about the code. But can you care too much?
• The Ethical Programmer Please reread this chapter, just in case you are about to go

on a murderous rampage.
• Wallowing in Filth How to cope with the mess left by colleagues who don’t know

better.

Try this….
Consider whether you have adopted any bad habits recently. How can you rectify this?

Chapter 38: An Ode to Code | 331

332 | Chapter 38: An Ode to Code

1. With apologies to the late, great Douglas Adams.

Epilogue

Not every end is the goal. The end of a melody is not its goal,
and yet if a melody has not reached its end, it has not reached its goal.

— Friedrich Nietzsche

Far out in the uncharted backwaters of the unfashionable end of the western spiral arm
of the Galaxy lies a small unregarded yellow sun. Orbiting this at a distance of roughly
92 million miles is an utterly insignificant little blue-green planet whose ape-descended
life-forms are so amazingly primitive that they still think computer programs are a pretty
neat idea.

This planet has—or rather, had—a problem, which was this: most
of the programmers on it wrote poor code pretty much all of the
time, even when they were being paid to do a good job. Many
solutions were suggested for this problem, but most of these were
largely concerned with the education of programmers, which is
odd because on the whole the programmers didn’t want to be
educated.

And so the problem remained; lots of the code produced was rubbish, and most of the
users were miserable, even the ones who could write good computer programs.1

Well done: you got to the end of the book. That’s a lot of chapters digested. (If you just
skipped here to ruin the ending for yourself: the butler did it. Now go back and read
why.)

Over the last few hundred pages you’ve seen techniques for writing technically elegant
code, for creating beautiful designs, and for constructing pragmatic, maintainable sys‐
tems. You’ve learnt approaches for dealing with legacy code and seen how to work
effectively with other people.

333

But all of this head knowledge, the understanding of specific skills, won’t help you at all
unless you are driven by the correct attitude: the desire and passion to work well.

Do you have that?

Attitude
Attitude is what sets the good programmers apart from the bad ones; it’s what distin‐
guishes exceptional programmers from merely adequate ones.

Attitude trumps technical skill: intricate knowledge of a programming language does
not guarantee maintainable code. Understanding many models of programming doesn’t
always lead to elegant designs. It’s your attitude that determines whether your code is
“good” and whether you are a pleasure to work with.

The dictionary definition of an attitude is:

Attitude: (n) at-ti-tude

1. A state of mind or a feeling; a disposition.
2. The position of an aircraft relative to a frame of reference.

That first definition isn’t surprising, but the second is actually more revealing than the
first.

There are three imaginary lines of axis running through an aircraft; one from wing to
wing, one from nose to tail, and one running vertically where the other two cross. A
pilot positions his aircraft around these axes; they define the aircraft’s angle of approach.
This is known as the attitude of the aircraft. If you apply a little power to the aircraft
whilst it has the wrong attitude, it will end up missing the target massively. A pilot has
to constantly monitor his vehicle’s attitude, especially at critical times like takeoff and
landing.

This parallels our software development experiences. The plane’s attitude defines its
angle of approach, and our attitude defines our angle of approach to coding. It doesn’t
matter how technically competent a programmer you are, if your abilities aren’t tem‐
pered by healthy attitudes then your work will suffer.

With the wrong attitude you can shoot miles off in the wrong direction. A wrong attitude
can make or break a software project, so it’s vital we maintain the right angle of approach
to programming. Your attitude will either hinder or promote your personal growth. To
become better programmers, we need to ensure that we have the right attitudes.

334 | Epilogue

KEY ➤ Your attitude determines how you will progress as a program‐
mer. Aim for better attitudes to become a better programmer.

Go Forth and Code
So care about good code, and seek to create it in better ways. Always learn. Learn to
design, learn to code, learn to collaborate. Seek always to work alongside excellent en‐
gineers who will challenge and encourage you to improve. Be diligent, be conscientious,
and be professional.

Enjoy programming. And more than anything else, enjoy becoming better!

Try this….
Read this book again in a few months. Revisit the material, and see what speaks to you
next time around. Attempt the questions afresh; and observe how your perspectives,
experience, and understanding have changed. If you are diligent, and concentrate on
deliberate practice, you’ll be amazed at how you’ve developed.

Epilogue | 335

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

Index

A
accountability, 160, 293, 305
administrivia, 276
aesthetics, 7
Agile, 284
alpha, 196
Alphabetti custard, 131
API, 12, 57, 59, 98, 146
APIs, 158
archaeology, 49, 57, 79, 83, 115
architecture, 49, 113, 120
arguments, 7
art, 132
assertion, 78, 95, 97
assumptions, 148
attitude, 1, 60, 159

to code, 244
to people, 246

audience
for code, 9

automation, 88, 190, 201, 207, 277

B
backups, 171
bad code, 55, 65
battles

picking, 58
picking your, 161, 274

beginner, 220
behaviour-driven development, 100
beta, 196
binary chop

debugging, 78
version control, 79

blame, 60
blobs, 104
body language, 318
Boy Scout Rule, 27, 58
brain, 153
branches, 178, 198, 206
bugs, 18, 41, 75, 248

and testing, 92
fault report, 175, 190
Heisenbug, 83
non-reproducible, 82

builds, 47, 188, 206

C
C++, 40, 255
caring, 1, 232
cars, 225
change, 120, 157

making, 160
tests, 161

changing
code, 58

changing code, 314

337

check-in, 176
child’s play, 136
chores, 137
code, 313

as communication, 9, 313
bad, 55, 65, 153
comments, 23
dead, 22, 30
dialects, 315
ownership, 124
quality, 48, 55, 115
readability, 18, 314
removing, 17, 29
replacing, 59
reuse, 165
simplistic, 145
too much, 17
unnecessary, 17, 18, 30
verbose, 24

code coverage, 79
code freeze, 195, 197

avoiding, 200
code of conduct, 243
code ownership, 159
code review, 8, 278, 307
coding standard, 11
cohesion, 106, 115
collaboration, 171
command line, 277
comments, 10, 23, 314
commits, 176
common sense, 153
communication, 9, 257, 278, 313

code, 313
interpersonal, 316

competence, 219, 225
complacency, 226
complexity, 103

necessary, 104
comprehension, 106
computer posture, 261
computer science, 133
consistency, 11, 120, 147
continuous delivery, 201
continuous integration, 47, 161

and testing, 92
Conway’s law, 187, 319
copy-and-paste, 165
coupling, 107, 115–116

courage, 59, 155
crap, 55
creativity, 132
cross-sensory feedback, 218
customer, 278, 319
cut-and-paste, 21, 165
CVS, 173

D
dead code, 22, 30
debug code, 31
debugging, 75, 263, 291
decisions

deferring, 121
declarative languages, 254
decomposition, 284
dependencies, 108

cyclical, 108
design, 25, 41, 113

abuse, 146
for change, 160
for re-use, 166
misuse, 146
simple, 146
simplistic, 104, 145

disagreements, 7
discipline, 135
discoverability, 2
distributed self, 109
documentation, 48
done, 196, 285
Dreyfus, 219
driving, 225
DRY, 21, 150, 165, 177
dummy objects, 99
duplication, 18, 21, 165

E
education, 217
employer, 248
end-to-end tests, 90
errno, 64
error code, 64
error prevention, 278
errors, 63, 69
estimation, 247, 283
ethics, 243
evil, 18

338 | Index

exceptions, 64, 69
experience, 225
experts, 220, 301
eye strain, 267

F
fault, 190
fear, 157
feature complete, 196
feature freeze, 197
feature toggle, 179
feedback, 87
file structure, 48, 51, 175
fizzy milk, 131
Four Stages of Competence, 219, 225
fun, 137
functional languages, 254

G
geek, 313
Git, 173
Godwin’s law, 7
gold master, 195

H
Heisenbug, 83
Hippocodic Oath, 249
Hippocratic Oath, 243
history, 110
holy wars, 7, 325

I
idioms, 40, 147, 257
imperative languages, 254
indirection, 147
integration tests, 90
interpreter, 313
invariants, 78
investing

time, 57
investing time, 274, 275
ironed cutlery, 314

J
JIT, 313
job security, 244

K
KISS, 145, 276
knowledge, 221

L
languages, 216, 253

code, 315
data, 315
dead, 254
declarative, 254
functional, 254
imperative, 254
libraries, 39
Logic, 254
natural, 315

last responsible moment, 208
latency, 83
layers, 49, 51
layout, 7, 10, 38, 57, 58
learning, 60, 136, 215

code, 45
languages, 254
models, 219

legacy
code, 26, 59, 94
features, 31

legal issues, 245
libraries, 48, 167, 274
licenses, 245
lines, 107
little-and-often, 79, 176
logic, 18
Logic languages, 254
love, 183, 256

M
maintainability, 2
maintenance, 31
manager, 17, 247
manure, 184
meetings, 278, 319
memory corruption, 83
mental state, 218
mentoring, 300
Mercurial, 173
metaphors, 138, 259
mindlessness, 154, 225

Index | 339

mistakes, 154
are OK, 159

mock objects, 99
modifiability, 106
motivation, 300
multi-tasking, 276

N
nagging wife, 314
names, 8, 12
navigating, 45, 56
network, 83
not invented here, 274
novice, 219

O
Oath

Hippocodic, 249
Hippocratic, 243

obfuscation, 147
optimisation, 149
ownership

of code, 124, 159

P
pair programming, 307
parameterise from above, 98
people, 109, 299, 306

attitude to, 56, 60
employer, 248
manager, 247
team, 246, 319
yourself, 248

politics, 115, 118
Pomodoro, 275
presentation, 7, 38, 147
pride, 293
prioritisation, 275
process, 135

ownership of, 121
release, 204

procrastination, 277
programming languages, 315
project size, 146

Q
QA, 160, 183, 184

and TDD, 93
quality, 48
quicksand, 55

R
rcs, 173
README, 51
refactoring, 20, 59, 159, 167
release, 47, 175, 195, 203
release branch, 178, 198, 206
release candidate, 196
release notes, 189
removing code, 17
replacing code, 59
requirements, 48, 93
respect, 256
responsibility, 155, 159, 248
return value, 31, 64
reuse, 165, 274
revision control, 57
rigor mortis, 157
RTM, 195
rubber duck, 82

S
science, 133
scripting, 277
self-improvement, 231, 233
shutdown, 70
side effects, 64
simplicity, 104, 136, 145, 204, 276
singleton, 83
skills, 225
social, 299
software archaeology, 171
software license, 245
software release, 203
software stuff, 131
source control, 171
sport, 135
stability, 147
static analysis, 48
storage, 83
stub objects, 99
stupidity, 145, 153

340 | Index

style guide, 11
Subversion, 173
success, 285
sufficiency, 149
survey, 56
SUT, 89
system tests, 90

T
tag, 206
TDD, 87, 91
team, 246, 319
teamwork, 115, 133, 135, 187, 216, 221, 294
technical debt, 122, 161, 200
test-driven development, 91
test-first, 91
testing, 87, 116, 160–161, 184, 187, 207
tests, 47, 50, 59, 79, 201, 275, 278

bad, 94
change, 122
code, 89
doubles, 99
good, 93
integration tests, 90
system tests, 90
TDD, 87, 91
test-first, 91
unit tests, 90

threads, 56, 70, 83
tidying, 59
tidying code, 27, 58
to-do list, 276
tools, 47, 161, 278
town planning, 113

U
UI, 51

unexpected, 69
unit tests, 90, 187
use cases, 165

V
VCS, 171
VDU, 261
verbosity, 24
version control, 32–33, 46, 171, 275

archaeology, 49, 79
branches, 178
centralised, 173
distributed, 173
presentation changes, 14
release branch, 198, 206
tag, 206

W
waterfall, 185, 192
whitespace, 10, 12, 26
wizards, 31, 104
work/life balance

burnout, 278
overtime, 278

working
smart, 89, 274
too hard, 284

Y
YAGNI, 29, 121, 150, 166
yak shaving, 276

Index | 341

About the Author
Pete Goodliffe is a programmer, software development columnist, musician, and au‐
thor. He never stays at the same place in the software food chain; his projects range from
OS implementation, to audio codecs, to multimedia applications; from embedded firm‐
ware, to iOS development, to desktop applications. He has a passion for curry and
doesn’t wear shoes.

Pete’s popular development book, Code Craft, is a practical and entertaining investiga‐
tion of the entire programming pursuit. In about 600 pages. No mean feat! It has been
translated into many languages. He writes a magazine column called “Becoming a Better
Programmer,” has contributed to several software development books, and regularly
speaks on software development topics.

Colophon
The animal on the cover of Becoming a Better Programmer is a two-winged flying fish
(Exocoetidae). The flying fish can be distinguished by its unusually large pectoral fins.
As the name suggests, it makes powerful, self-propelled leaps out of the water into the
air by moving its tail up to 70 times per second. In the early 1900s, flying fish were
studied as models for developing airplanes. Once in the air, it spreads its wing-like fins
and tilts them upward, which enables it to glide for considerable distances. The pectoral
fin, or “wing,” has a similar aerodynamic shape as a bird wing. At the end of the glide,
it either reenters the sea by folding the pectoral fins, or dropping its tail into the water
to lift itself for another glide. The record is 45 seconds in flight, as recorded by a Japanese
television crew in 2008.

Their ability to fly into the air is often used as a defense mechanism against predators,
which include dolphins, tuna, marlin, birds, squids, and porpoises. They’re commer‐
cially fished by gillnetting in Japan, Vietnam, and China, and by dipnetting in Indonesia
and India. In the Solomon Islands, flying fish are caught during flight in nets from
outrigger canoes. Commercial fishing of this species is done in complete darkness when
no moonlight is available, as the fish are attracted to lit torches. Flying fish feed mainly
on plankton, and live in all of the oceans, mostly in warm, tropical or subtropical waters.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world. To learn more about how you can help, go to animals.oreilly.com.

The manuscript was prepared using asciidoc, love, and vim. The cover image is from
loose plates. The cover fonts are URW Typewriter and Guardian Sans. The text font is
Adobe Minion Pro; the heading font is Adobe Myriad Condensed; and the code font is
Dalton Maag’s Ubuntu Mono. Cartoons are drawn in AutoDesk SketchBook with layout
in Adobe Photoshop.

http://animals.oreilly.com

	Copyright
	Table of Contents
	Also by Pete Goodliffe
	Introduction
	What’s Covered?
	Who Should Read This?
	The Structure
	A Note for Mentors
	Safari® Books Online
	How to Contact Us
	Acknowledgments

	Chapter 1. Care About the Code
	Part I. you.write(code);
	Chapter 2. Keeping Up Appearances
	Presentation Is Powerful
	It’s About Communication
	Layout
	Structure Well
	Consistency

	Names
	Avoid Redundancy
	Be Clear
	Be Idiomatic
	Be Accurate

	Making Yourself Presentable
	Conclusion

	Chapter 3. Write Less Code!
	Why Should We Care?
	Flappy Logic
	Duplication
	Dead Code
	Comments
	Verbosity
	Bad Design
	Whitespace
	So What Do We Do?
	Conclusion

	Chapter 4. Improve Code by Removing It
	Code Indulgence
	It’s Not Bad, It’s Inevitable
	So What?
	Waking the Dead
	Surgical Extraction
	Conclusion

	Chapter 5. The Ghost of a Codebase Past
	Presentation
	The State of the Art
	Idioms
	Design Decisions
	Bugs
	Conclusion

	Chapter 6. Navigating a Route
	A Little Help from My Friends
	Look for Clues
	Learn by Doing
	Low-Hanging Fruit
	Inspect the Code
	Study, Then Act
	Test First
	Housekeeping
	Document What You Find

	Conclusion

	Chapter 7. Wallowing in Filth
	Smell the Signs
	Wading into the Cesspit
	The Survey Says…
	Working in the Sandpit
	Cleaning Up Messes
	Making Adjustments
	Bad Code? Bad Programmers?

	Chapter 8. Don’t Ignore That Error!
	The Mechanism
	The Madness
	The Mitigation
	Conclusion

	Chapter 9. Expect the Unexpected
	Errors
	Threading
	Shutdown
	The Moral of the Story

	Chapter 10. Bug Hunting
	An Economic Concern
	An Ounce of Prevention
	Bug Hunting
	Lay Traps
	Learn to Binary Chop
	Employ Software Archaeology
	Test, Test, Test
	Invest in Sharp Tools
	Remove Code to Exclude It from Cause Analysis
	Cleanliness Prevents Infection
	Oblique Strategies
	Don’t Rush Away

	Non-Reproducible Bugs
	Conclusion

	Chapter 11. Testing Times
	Why Test?
	Shortening the Feedback Loop
	Code That Tests Code
	Who Writes the Tests?

	Types of Tests
	When to Write Tests
	When to Run Tests
	What to Test
	Good Tests
	What Does a Test Look Like?
	Test Names

	The Structure of Tests
	Maintain the Tests
	Picking a Test Framework

	No Code Is an Island
	Conclusion

	Chapter 12. Coping with Complexity
	Blobs
	Case Study: Reducing Blob Complexity
	Lines
	And Finally: People
	Conclusion

	Chapter 13. A Tale of Two Systems
	The Messy Metropolis
	Incomprehensiblity
	Lack of Cohesion
	Unnecessary Coupling
	Code Problems
	Problems Outside the Code
	A Postcard from the Metropolis

	Design Town
	Locating Functionality
	Consistency
	Growing the Architecture
	Deferring Design Decisions
	Maintaining Quality
	Managing Technical Debt
	Tests Shape Design
	Time for Design
	Working with the Design

	So What?

	Part II. Practice Makes Perfect
	Chapter 14. Software Development Is…
	This Software (Food)stuff
	Software Development Is…an Art
	Software Development Is…a Science
	Software Development Is…a Sport
	Software Development Is…Child’s Play
	Software Development Is…a Chore
	Metaphor Overload

	Chapter 15. Playing by the Rules
	We Need More Rules!
	Set the Rules

	Chapter 16. Keep It Simple
	Simple Designs
	Simple to Use
	Prevents Misuse
	Size Matters
	Shorter Code Paths
	Stability

	Simple Lines of Code
	Keeping It Simple, Not Stupid
	Assumptions Can Reduce Simplicity
	Avoid Premature Optimisation
	Sufficiently Simple
	A Simple Conclusion

	Chapter 17. Use Your Brain
	Don’t Be Stupid
	Avoid Mindlessness
	You Are Allowed to Think!

	Chapter 18. Nothing Is Set in Stone
	Fearless Change
	Change Your Attitude
	Make the Change
	Design for Change
	Tools for Change
	Pick Your Battles

	Plus ça Change

	Chapter 19. A Case for Code Reuse
	Reuse Case 1: The Copy-Pasta
	Reuse Case 2: Design for Reuse
	Reuse Case 3: Promote and Refactor
	Reuse Case 4: Buy In, or Reinvent the Wheel

	Chapter 20. Effective Version Control
	Use It or Lose It
	Pick One, Any One
	Storing the Right Things
	Answer One: Store Everything
	Answer Two: Store as Little as Possible
	Storing Software Releases
	Repository Layout

	Use Version Control Well
	Make Atomic Commits
	Sending the Right Messages
	Craft Good Commits

	Branches: Seeing the Wood for the Trees
	The Home for Your Code
	Conclusion

	Chapter 21. Getting One Past the Goalpost
	Software Development: Shovelling Manure
	A False Dichotomy
	Fix the Team to Fix the Code
	Releasing a Build to QA
	Test Your Work First
	Release with Intent
	More Haste, Less Speed
	Automate
	Respect

	On Getting a Fault Report
	Our Differences Make Us Stronger
	Pieces of the Puzzle

	Chapter 22. The Curious Case of the Frozen Code
	Hunting the Code Freeze
	A New World Order
	Forms of Freeze
	Branches Make It Work
	But It’s Not Really Frozen!
	Length of the Freeze
	Feel the Freeze
	The End Draws Near
	Antifreeze
	Conclusion

	Chapter 23. Please Release Me
	Part of the Process
	A Cog in the Machine
	Step 1: Initiate the Release
	Step 2: Prepare the Release
	Step 3: Build the Release
	Step 4: Package the Release
	Step 5: Deploy the Release

	Release Early and Often
	And There’s More…

	Part III. Getting Personal
	Chapter 24. Live to Love to Learn
	What to Learn?
	Learning to Learn
	Learning Models
	The Knowledge Portfolio

	Teach to Learn
	Act to Learn
	What Have We Learnt?

	Chapter 25. Test-Driven Developers
	Driving the Point Home
	Success Breeds Complacency
	Testing Times
	Test-Driven Developers
	Conclusion

	Chapter 26. Relish the Challenge
	It’s the Motivation
	What’s the Challenge?
	Don’t Do It!
	Get Challenged
	Conclusion

	Chapter 27. Avoid Stagnation
	Your Skills Are Your Investment
	An Exercise for the Reader
	Job Security

	Chapter 28. The Ethical Programmer
	Attitude to Code
	Legal Issues
	Attitude to People
	Teammates
	Manager
	Employer
	Yourself

	The Hippocodic Oath
	Conclusion

	Chapter 29. A Love for Languages
	Love All Languages
	Love Your Language
	Cultivating Your Language Relationship
	Love and Respect
	Commitment
	Communication
	Patience
	Shared Values

	A Perfect Metaphor?
	Conclusion

	Chapter 30. Posturing Programmers
	Basic Computer Posture
	The Debugging Posture
	When It’s Really Going Badly
	The All-Nighter
	Intervention from Above
	The All-Clear
	Design Time

	Eye Strain
	Conclusion

	Part IV. Getting Things Done
	Chapter 31. Smarter, Not Harder
	Pick Your Battles
	Battle Tactics
	Reuse Wisely
	Make It Someone Else’s Problem
	Only Do What You Have To
	Put It on a Spike
	Prioritise
	What’s Really Required?
	One Thing at a Time
	Keep It Small (and Simple)
	Don’t Defer and Store Up Problems
	Automate
	Error Prevention
	Communicate
	Avoid Burnout
	Power Tools

	Conclusion

	Chapter 32. It’s Done When It’s Done
	Are We There Yet?
	Developing Backwards: Decomposition
	Define “Done”
	Just Do It

	Chapter 33. This Time I’ve Got It…
	Desert Island Development
	Stood at the Bottom of the Mountain

	Part V. The People Pursuit
	Chapter 34. People Power
	What to Do
	Know Your Experts
	20/20 Hindsight

	Chapter 35. It’s the Thought That Accounts
	Stretching the Metaphor
	Accountability Counts
	Code++
	Making It Work
	Setting the Standard
	The Next Steps
	Conclusion

	Chapter 36. Speak Up!
	Code Is Communication
	Talking to the Machines
	Talking to the Animals
	Talking to Tools

	Interpersonal Communication
	Ways to Converse
	Watch Your Language
	Body Language
	Parallel Communication

	Talking of Teams
	Talking to the Customer
	Other Communication
	Conclusion

	Chapter 37. Many-festos
	A Generic Manifesto for Software Development
	OK, OK
	The Manyfestos
	But, Really?
	The Punchline

	Chapter 38. An Ode to Code
	Coding Is a People Problem

	Epilogue
	Index
	About the Author

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

