
Real-Time
C++

Christopher Kormanyos

Efficient Object-Oriented and Template
Microcontroller Programming

Second Edition

www.allitebooks.com

http://www.allitebooks.org

Real-Time C++

www.allitebooks.com

http://www.allitebooks.org

Christopher Kormanyos

Real-Time C++
Efficient Object-Oriented and Template
Microcontroller Programming

Second Edition

123

www.allitebooks.com

http://www.allitebooks.org

Christopher Kormanyos
Reutlingen
Baden-Württemberg
Germany

ISBN 978-3-662-47809-7 ISBN 978-3-662-47810-3 (eBook)
DOI 10.1007/978-3-662-47810-3

Library of Congress Control Number: 2015944733

Springer Heidelberg New York Dordrecht London
© Springer-Verlag Berlin Heidelberg 2013, 2015
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar
methodology now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publication does not imply, even in the absence of a specific statement, that such names are exempt from
the relevant protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authors or the editors give a warranty, express or implied, with respect to the material contained herein or
for any errors or omissions that may have been made.

Printed on acid-free paper

Springer-Verlag GmbH Berlin Heidelberg is part of Springer Science+Business Media
(www.springer.com)

www.allitebooks.com

http://www.allitebooks.org

To those who pursue the art of technical
creativity

www.allitebooks.com

http://www.allitebooks.org

Preface to the Second Edition

C++ seamlessly blends object-oriented techniques with generic template methods,
creating a modern powerful programming language useful for problem-solving in
countless domains. The most recent evolution of C++ from C++11 to C++14 has
brought yet further improvements to this rich language.1 As C++ becomes even
more expressive, growing numbers of embedded systems developers are discov-
ering new and fascinating ways to utilize its multifaceted capabilities for creating
efficient and effective microcontroller software.

The second edition of this book retains its original purpose to serve as a practical
guide to programming real-time embedded microcontroller systems in C++. New
material has been incorporated predominantly reflecting changes introduced in the
C++14 standard. Various sections have been reworked according to reader sug-
gestions. Selected passages have been reformulated in a continued effort to improve
clarity. In addition, all known errors throughout the text have been corrected.

New sections have been added (in particular for C++14) covering:

• digit separators (Sect. 3.15),
• binary literals (Sect. 3.16),
• user-defined literals (Sect. 3.17),
• variable templates (Sect. 5.12),
• and the chapter09_07 sample project (Sect. 9.7) controlling an

industry-standard seven-segment display.

Two new sample projects, chapter02_03a and chapter09_07, have been
added to the companion code.

1At the time of writing the second edition of this book, C++14 is brand new. World-class com-
pilers are shipped with support for C++14. Work is in progress on C++1z, the next specification of
C++ (sometimes known as C++17). Experts anticipate that the specification of C++1z could be
finished in 2017.

vii

www.allitebooks.com

http://dx.doi.org/10.1007/978-3-662-47810-3_3
http://dx.doi.org/10.1007/978-3-662-47810-3_3
http://dx.doi.org/10.1007/978-3-662-47810-3_3
http://dx.doi.org/10.1007/978-3-662-47810-3_5
http://dx.doi.org/10.1007/978-3-662-47810-3_9
http://www.allitebooks.org

The chapter02_03a sample project implements LED toggling at 1=2Hz
with timing provided by a simple multitasking scheduler in combination with a
timer utility.
The chapter09_07 sample project in the newly added Sect. 9.7 uses many
of the advanced programming methods in this book to animate an
industry-standard seven-segment display.

Significantly reworked or corrected parts of this book include:

• corrections and clarifications in Chap. 1 on getting started with C++,
• the description of the chapter02_02 project in Sect. 2.2,
• parts of Chap. 3 on the jump-start in real-time C++,
• corrections and clarifications in Chap. 5 on templates,
• Sects. 6.1 and 6.2 on optimization and performance,
• parts of Chap. 10 on custom memory management,
• parts of Chaps. 12 and 13 on mathematics,
• the literature list in Sect. 17.1,
• parts of Appendix A in the C++ tutorial,
• and repairs and extensions of the citations in some chapter references.

Companion Code

The companion code continues to be supported and numerous developers have
successfully worked with it on various cross-development platforms. The scope
of the companion code has been expanded to include a much wider range of target
microcontrollers. In addition, the chapter02_03a and chapter09_07 sample
projects that are mentioned above have been added to the companion code.

The companion code is available at:
http://github.com/ckormanyos/real-time-cpp

More Notes on Coding Style

The second edition of this book features slight changes in coding style. These can
be encountered in the code samples throughout the text.

Compiler support for standard C99 and C++11 macros of the form UINT8_C(),
UINT16_C(), UINT32_C(), etc., and corresponding macros for signed types in
the <stdint.h> and <cstdint> headers has become more prevalent (see also
Sect. 3.2). Consequently, these macros are used more frequently throughout the code
samples.

viii Preface to the Second Edition

www.allitebooks.com

http://dx.doi.org/10.1007/978-3-662-47810-3_9
http://dx.doi.org/10.1007/978-3-662-47810-3_1
http://dx.doi.org/10.1007/978-3-662-47810-3_2
http://dx.doi.org/10.1007/978-3-662-47810-3_3
http://dx.doi.org/10.1007/978-3-662-47810-3_5
http://dx.doi.org/10.1007/978-3-662-47810-3_6
http://dx.doi.org/10.1007/978-3-662-47810-3_6
http://dx.doi.org/10.1007/978-3-662-47810-3_10
http://dx.doi.org/10.1007/978-3-662-47810-3_12
http://dx.doi.org/10.1007/978-3-662-47810-3_13
http://dx.doi.org/10.1007/978-3-662-47810-3_17
http://github.com/ckormanyos/real-time-cpp
http://www.allitebooks.org

These macros are useful for creating integer numeric literal values having
specified widths. The code below, for example, utilizes UINT8_C() to initialize an
8-bit integer variable with a numeric literal value.

Digit separators have become available with C++14 (Sect. 3.15). These are used
in selected code samples to improve the clarity of long numeric literals. Digit
separators are shown in the code sample below.

Other than these minor changes, however, the coding style in the second edition
of this book remains consistent with that of the first edition and is intended to be
clean and clear.

Reutlingen, Germany Christopher Kormanyos
Seattle, Washington
May 2015

Preface to the Second Edition ix

www.allitebooks.com

http://dx.doi.org/10.1007/978-3-662-47810-3_3
http://www.allitebooks.org

Preface to the First Edition

This book is a practical guide to programming real-time embedded microcontroller
systems in C++. The C++ language has powerful object-oriented and template
features that can improve software design and portability, while simultaneously
reducing code complexity and the risk of error. At the same time, C++ compiles
highly efficient native code. This unique and effective combination makes C++
well-suited for programming microcontroller systems that require compact size,
high performance, and safety-critical reliability.

The target audience of this book includes hobbyists, students, and professionals
interested in real-time C++. The reader should be familiar with C or another pro-
gramming language and should ideally have had some exposure to microcontroller
electronics and the performance and size issues prevalent in embedded systems
programming.

About This Book

This is an interdisciplinary book that includes a broad range of topics. Real-world
examples have been combined with brief descriptions in an effort to provide an
intuitive and straightforward methodology for microcontroller programming in
C++. Efficiency is always in focus and numerous examples are backed up with
real-time performance measurements and size analyses that quantify the true costs
of the code down to the very last byte and microsecond.

Throughout the chapters, C++ is used in a bare-bones, no-frills fashion without
relying on any libraries other than those specified in the language standard itself.
This approach facilitates portability.

This book has three parts and several appendices. The three parts generally build
on each other with the combined goal of providing a coherent and effective set of
C++ methods that can be used with a wide range of embedded microcontrollers.

xi

www.allitebooks.com

http://www.allitebooks.org

• Part I provides a foundation for real-time C++ by covering language technolo-
gies. Topics include getting started in real-time C++, object-oriented methods,
template programming, and optimization. The first three chapters have a par-
ticularly hands-on nature and are intended to boost competence in real-time C++.
Chapter 6 has a unique and important role in that it is wholly dedicated to
optimization techniques appropriate for microcontroller programming in C++.

• Part II presents detailed descriptions of a variety of C++ components that are
widely used in microcontroller programming. These components can be either
used as presented, or adapted for other projects. This part of the book uses some
of C++’s most powerful language elements, such as class types, templates, and
the STL, to develop components for microcontroller register access, low-level
drivers, custom memory management, embedded containers, multitasking, etc.

• Part III describes mathematical methods and generic utilities that can be
employed to solve recurring problems in real-time C++.

• The appendices include a C++ language tutorial, information on the real-time
C++ development environment and instructions for building GNU GCC
cross-compilers and a microcontroller circuit.

C++ is a rich language with many features and details, the description of which
can fill entire bookshelves. This book, however, primarily concentrates on how to
use C++ in a real-time microcontroller environment. Along these lines, C++ lan-
guage tutorials have been held terse, and information on microcontroller hardware
and compilers is included only insofar as it is needed for the examples. A suggested
list of additional reading material is given in Chap. 17 for those seeking supple-
mentary information on C++, the C++ standard library and STL, software design,
C++ coding guidelines, the embedded systems toolchain, and microcontroller
hardware.

When units are needed to express physical quantities, the MKS (meter, kilogram,
second) system of units is used.

Companion Code, Targets, and Tools

The companion code includes three introductory projects and one reference project.
The introductory projects treat various aspects of the material presented in Chaps.
1 and 2. The reference project is larger in scope and exercises many of the methods
from all the chapters.

The companion code is available at:
http://github.com/ckormanyos/real-time-cpp
The C++ techniques in this book specifically target microcontrollers in the

small-to-medium size range. Here, small-to-medium spans the following approxi-
mate size and performance ranges.

• 4 kB … 1-MB program code
• 256 byte … 128-kB RAM

xii Preface to the First Edition

www.allitebooks.com

http://github.com/ckormanyos/real-time-cpp
http://www.allitebooks.org

• 8–bit … 32–bit CPU
• 8 MHz … 200-MHz CPU frequency

Most of the methods described in this book are, however, scalable. As such, they
can be used equally well on larger or smaller devices, even on PCs and worksta-
tions. In particular, they can be employed if the application has strict performance
and size constraints.

A popular 8–bit microcontroller clocked with a frequency of 16 MHz has been
used as the primary target for benchmarking and testing the code samples in this
book. Certain benchmarks have also been performed with a well-known 32–bit
microcontroller clocked at 24 MHz. An 8–bit microcontroller and a 32–bit micro-
controller have been selected in order to exercise the C++ methods over a wide range
of microcontroller performance.

All the C++ examples and benchmarks in the book and the companion code
have been compiled with GNU GCC versions 4.6.2 and 4.7.0. Certain examples
and benchmarks have also been compiled with other PC-based compilers.

The most recent specification of C++11 in ISO/IEC 14882:2011 is used
throughout the text. At the time this book is written, the specification of C++11 is
brand new. The advent of C++11 has made C++ significantly more effective and
easy-to-use. This will profoundly influence C++ programming. The well-informed
reader will, therefore, want to keep in touch with C++11 best-practice as it evolves
in the development community.

Notes on Coding Style

A consistent coding style is used throughout the examples in this book and in the
companion code.

Code samples are written with a fixed-width font. C++ language keywords
and built-in types use the same font, but they are in boldface. For instance,

In general, the names of all symbols such as variables, class types, members, and
subroutines are written in lower-case. A single underscore (_) is used to separate
words and abbreviations in names. For instance, a system-tick variable expressed
with this style is shown in the code sample below:

Using prefixes, suffixes, or abbreviations to incorporate type information in a
name, sometimes known as Hungarian notation, is not done. Superfluous prefixes,

Preface to the First Edition xiii

suffixes, and abbreviations in Hungarian notation may obscure the name of a
symbol and symbol names can be more intuitive and clear without them. For
example,

Names that are intended for use in public domains are preferentially long and
descriptive rather than short and abbreviated. Here, clarity of expression is preferred
over terseness. Symbols used for local subroutine parameters or private imple-
mentation details with obvious meanings, however, often have terse or abbreviated
names.

The global subroutine below, for example, uses this naming style. It returns the
float value of the squared Euclidean distance from the origin of a point in
two-dimensional Cartesian space R

2:

C++ references are heavily used because this can be advantageous for small
microcontrollers. Consider an 8–bit microcontroller. The work of copying sub-
routine parameters or the work of pushing them onto the stack for anything wider
than 8 bits can be significant. This workload can potentially be reduced by using
references. In the previous code sample, for instance, the floating-point subroutine
parameters x and y, each 4 bytes wide, have been passed to the subroutine by
reference (i.e., const float&).

Fixed-size integer types defined in the std namespace of the C++ standard
library such as std::uint8_t, std::uint16_t, and std::uint32_t, and
the like are preferentially used instead of plain built-in types such as char, short,
and int. This improves clarity and portability. An unsigned login response with
exactly 8 bits, for instance, is shown below.

Code samples often rely on one or more of the C++ standard library headers
such as <algorithm>, <array>, <cstdint>, <limits>, <tuple>,
<vector>, etc. In general, code samples requiring library headers do not
explicitly include their necessary library headers.

xiv Preface to the First Edition

The declaration of login_response above, for example, actually requires
<cstdint> for the definition of std::uint8_t. The library file is, however,
not included. In general, the code samples focus on the core of the code, not on the
inclusion of library headers.

It is easy to guess or remember, for example, that std::array can be found in
<array> and that std::vector is located <vector>. It can, however, be
more difficult to guess or remember that std::size_t is in <cstddef> or that
std::accumulate() is in <numeric>. With assistance from online help and
other resources and with a little practice, though, it becomes routine to identify what
standard library parts can be found in which headers.

In cases for which particular emphasis is placed on the inclusion of a header file,
the relevant #include line(s) may be explicitly written. For instance,

Namespaces are used frequently. In general, though, the using directive is not
used to inject symbols in namespaces into the global namespace. This means that
the entire namespace must be typed with the name of a symbol in it. This, again,
favors non-ambiguity over brevity.

The unsigned 16–bit counter below, for example, uses a type from the std
namespace. Since the “using namespace std” directive is not used, the name
of the namespace (std) is explicitly included in the type.

Suffixes are generally appended to literal constant values. When a suffix is
appended to a literal constant value, its optional case is upper-case. For example,

Certain established C++ coding guidelines have strongly influenced the coding
style. For the sake of terseness and clarity, however, not every guideline has been
followed all the time.

Preface to the First Edition xv

One clearly recognizable influence of the coding guidelines is the diligent use of
C++-style casts when converting built-in types. The following code, for instance,
explicitly casts from float to an unsigned integer type.

Even though explicit casts like these are not always mandatory, they can resolve
ambiguity and eliminate potential misinterpretation caused by integer promotion.

Another influence of the coding guidelines on the code is the ordering of class
members according to their access level in the class. The communication class
below, for example, represents the base class in a hierarchy of communication
objects. The members in the class definition are ordered according to access level.
In particular,

C-style preprocessor macros are used occasionally. Preprocessor macros are
written entirely in upper case letters. Underscores separate the words in the names
of preprocessor macros. The MAKE_WORD() preprocessor macro below, for
example, creates an unsigned 16–bit word from two unsigned 8–bit constituents.

xvi Preface to the First Edition

Acknowledgments

First and foremost, I would like to thank my wife and my daughter for encouraging
me to write this book and also for creating a peaceful, caring atmosphere in which I
could work productively. Thank you for your support and your time. You have my
gratitude.

I would also like to express appreciation to family, friends, and associates, too
numerous to list, who contributed to this project with their innovative ideas, sup-
port, friendship, and companionship.

Thanks go to the members of the C++ standards committee, Boost, the volun-
teers at GCC, and all the developers in the vibrant C++ and embedded systems
communities. Through your efforts, often times for no pay whatsoever, C++ has
evolved to an unprecedented level of expressiveness, making object-oriented and
generic programming more effective and easier than ever.

Working with Springer Verlag was a delightful experience. I thank my editor,
who first identified the merit of this work and supported me throughout the writing
process. I also thank the copy editing team and all the staff at Springer Verlag for
their professionalism and capable assistance.

• ATMEL® and AVR® are registered trademarks of Atmel Corporation or its
subsidiaries, in the US and other countries.

• Real-Time C++: Efficient Object-Oriented and Template Microcontroller
Programming is a book authored by Christopher Kormanyos and published by
Springer Verlag and has not been authorized, sponsored, or otherwise approved
of by Atmel Corporation.

• ARDUINO® is a registered trademark of the Arduino Group.
• SPITM is a trademark of Motorola Corporation.
• The circuit of the target hardware described in this book and depicted in Chapter

2 and Appendix D was designed and assembled on a solderless prototyping
breadboard by Christopher Kormanyos.

• The photographs of the target hardware described in this book and depicted in
Chapter 2 and Appendix D were taken by Christopher Kormanyos.

Reutlingen, Germany Christopher Kormanyos
Seattle, Washington
September 2012

Preface to the First Edition xvii

Contents

Part I Language Technologies for Real-Time C++

1 Getting Started with Real-Time C++ . 3
1.1 The LED Program . 3
1.2 The Syntax of C++ . 6
1.3 Class Types . 6
1.4 Members . 9
1.5 Objects and Instances . 11
1.6 #include . 12
1.7 Namespaces . 13
1.8 C++ Standard Library . 15
1.9 The main() Subroutine . 15
1.10 Low-Level Register Access . 16
1.11 Compile-Time Constant . 17
References. 18

2 Working with a Real-Time C++ Program on a Board 19
2.1 The Target Hardware . 19
2.2 Build and Flash the LED Program . 20
2.3 Adding Timing for Visible LED Toggling 24
2.4 Run and Reset the LED Program . 26
2.5 Recognizing and Handling Errors and Warnings 27
2.6 Reaching the Right Efficiency . 29
References. 31

3 An Easy Jump-Start in Real-Time C++ . 33
3.1 Declare Locals When Used . 33
3.2 Fixed-Size Integer Types . 34
3.3 The bool Type . 36
3.4 Organization with Namespaces . 37

xix

http://dx.doi.org/10.1007/978-3-662-47810-3_1
http://dx.doi.org/10.1007/978-3-662-47810-3_1
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec8
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec8
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec9
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec9
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec10
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec10
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec11
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Sec11
http://dx.doi.org/10.1007/978-3-662-47810-3_1#Bib1
http://dx.doi.org/10.1007/978-3-662-47810-3_2
http://dx.doi.org/10.1007/978-3-662-47810-3_2
http://dx.doi.org/10.1007/978-3-662-47810-3_2#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_2#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_2#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_2#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_2#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_2#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_2#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_2#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_2#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_2#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_2#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_2#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_2#Bib1
http://dx.doi.org/10.1007/978-3-662-47810-3_3
http://dx.doi.org/10.1007/978-3-662-47810-3_3
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec4

3.5 Basic Classes . 38
3.6 Basic Templates . 39
3.7 nullptr Replaces NULL . 40
3.8 Generalized Constant Expressions with constexpr 41
3.9 static_assert . 42
3.10 Using <limits>. 43
3.11 std::array . 43
3.12 Basic STL Algorithms . 44
3.13 <numeric> . 45
3.14 atomic_load() and atomic_store() 46
3.15 Digit Separators . 46
3.16 Binary Literals . 47
3.17 User-Defined Literals . 48
Reference . 49

4 Object-Oriented Techniques for Microcontrollers 51
4.1 Object Oriented Programming . 51
4.2 Objects and Encapsulation . 56
4.3 Inheritance . 57
4.4 Dynamic Polymorphism. 59
4.5 The Real Overhead of Dynamic Polymorphism 60
4.6 Pure Virtual and Abstract. 61
4.7 Class Relationships . 62
4.8 Non-Copyable Classes . 64
4.9 Constant Methods . 65
4.10 Static Constant Integral Members . 68
4.11 Class Friends . 69
4.12 Virtual Is Unavailable in the Base Class Constructor 71
References. 74

5 C++ Templates for Microcontrollers . 75
5.1 Template Functions . 75
5.2 Template Scalability, Code Re-Use and Efficiency 77
5.3 Template Member Functions . 79
5.4 Template Class Types . 82
5.5 Template Default Parameters . 83
5.6 Template Specialization . 85
5.7 Static Polymorphism . 86
5.8 Using the STL with Microcontrollers. 89
5.9 Variadic Templates . 91
5.10 Template Metaprogramming. 93
5.11 Tuples and Generic Metaprogramming 96
5.12 Variable Templates . 99
References. 101

xx Contents

http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec8
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec8
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec9
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec9
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec10
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec10
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec11
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec11
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec12
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec12
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec13
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec13
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec14
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec14
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec15
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec15
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec16
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec16
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec17
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Sec17
http://dx.doi.org/10.1007/978-3-662-47810-3_3#Bib1
http://dx.doi.org/10.1007/978-3-662-47810-3_4
http://dx.doi.org/10.1007/978-3-662-47810-3_4
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec8
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec8
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec9
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec9
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec10
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec10
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec11
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec11
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec12
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Sec12
http://dx.doi.org/10.1007/978-3-662-47810-3_4#Bib1
http://dx.doi.org/10.1007/978-3-662-47810-3_5
http://dx.doi.org/10.1007/978-3-662-47810-3_5
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec8
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec8
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec9
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec9
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec10
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec10
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec11
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec11
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec12
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Sec12
http://dx.doi.org/10.1007/978-3-662-47810-3_5#Bib1

6 Optimized C++ Programming for Microcontrollers 103
6.1 Use Compiler Optimization Settings 103
6.2 Know the Microcontroller’s Performance 106
6.3 Know an Algorithm’s Complexity. 108
6.4 Use Assembly Listings . 109
6.5 Use Map Files . 110
6.6 Understand Name Mangling and De-Mangling 111
6.7 Know When to Use Assembly and When Not to 112
6.8 Use Comments Sparingly. 114
6.9 Simplify Code with typedef . 114
6.10 Use Native Integer Types. 116
6.11 Use Scaling with Powers of Two . 118
6.12 Potentially Replace Multiply with Shift-and-Add 119
6.13 Consider Advantageous Hardware Dimensioning 120
6.14 Consider ROM-Ability . 122
6.15 Minimize the Interrupt Frame . 123
6.16 Use Custom Memory Management . 126
6.17 Use the STL Consistently . 126
6.18 Use Lambda Expressions . 128
6.19 Use Templates and Scalability . 129
6.20 Use Metaprogramming to Unroll Loops 130
References. 130

Part II Components for Real-Time C++

7 Accessing Microcontroller Registers. 133
7.1 Defining Constant Register Addresses 133
7.2 Using Templates for Register Access. 135
7.3 Generic Templates for Register Access 137
7.4 Bit-Mapped Structures . 140
Reference . 142

8 The Right Start . 143
8.1 The Startup Code . 143
8.2 Initializing RAM . 145
8.3 Initializing the Static Constructors. 147
8.4 The Connection between the Linker and Startup 149
8.5 Understand Static Initialization Rules 151
8.6 Avoid Using Uninitialized Objects . 152
8.7 Jump to main() and Never return 154
8.8 When in main(), What Comes Next? 155
References. 156

Contents xxi

http://dx.doi.org/10.1007/978-3-662-47810-3_6
http://dx.doi.org/10.1007/978-3-662-47810-3_6
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec8
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec8
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec9
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec9
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec10
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec10
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec11
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec11
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec12
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec12
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec13
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec13
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec14
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec14
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec15
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec15
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec16
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec16
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec17
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec17
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec18
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec18
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec19
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec19
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec20
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Sec20
http://dx.doi.org/10.1007/978-3-662-47810-3_6#Bib1
http://dx.doi.org/10.1007/978-3-662-47810-3_7
http://dx.doi.org/10.1007/978-3-662-47810-3_7
http://dx.doi.org/10.1007/978-3-662-47810-3_7#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_7#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_7#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_7#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_7#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_7#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_7#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_7#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_7#Bib1
http://dx.doi.org/10.1007/978-3-662-47810-3_8
http://dx.doi.org/10.1007/978-3-662-47810-3_8
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec8
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Sec8
http://dx.doi.org/10.1007/978-3-662-47810-3_8#Bib1

9 Low-Level Hardware Drivers in C++. 157
9.1 An I/O Port Pin Driver Template Class 157
9.2 Programming Interrupts in C++ . 160
9.3 Implementing a System-Tick . 164
9.4 A Software PWM Template Class. 167
9.5 A Serial SPITM Driver Class . 171
9.6 CPU-Load Monitors . 176
9.7 Controlling a Seven-Segment Display 178
References. 183

10 Custom Memory Management . 185
10.1 Dynamic Memory Considerations . 185
10.2 Using Placement-new . 186
10.3 Allocators and STL Containers . 188
10.4 The Standard Allocator . 189
10.5 Writing a Specialized ring_allocator. 190
10.6 Using ring_allocator and Other Allocators 193
10.7 Recognizing and Handling Memory Limitations 195
References. 197

11 C++ Multitasking . 199
11.1 Multitasking Schedulers . 199
11.2 Task Timing . 201
11.3 The Task Control Block . 202
11.4 The Task List . 204
11.5 The Scheduler . 205
11.6 Extended Multitasking . 206
11.7 Preemptive Multitasking . 208
11.8 The C++ Thread Support Library . 209
References. 210

Part III Mathematics and Utilities for Real-Time C++

12 Floating-Point Mathematics . 213
12.1 Floating-Point Arithmetic . 213
12.2 Mathematical Constants . 216
12.3 Elementary Functions . 218
12.4 Special Functions . 219
12.5 Complex-Valued Mathematics . 225
12.6 Compile-Time Evaluation of Functions with constexpr 228
12.7 Generic Numeric Programming. 231
References. 238

xxii Contents

http://dx.doi.org/10.1007/978-3-662-47810-3_9
http://dx.doi.org/10.1007/978-3-662-47810-3_9
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_9#Bib1
http://dx.doi.org/10.1007/978-3-662-47810-3_10
http://dx.doi.org/10.1007/978-3-662-47810-3_10
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_10#Bib1
http://dx.doi.org/10.1007/978-3-662-47810-3_11
http://dx.doi.org/10.1007/978-3-662-47810-3_11
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec8
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Sec8
http://dx.doi.org/10.1007/978-3-662-47810-3_11#Bib1
http://dx.doi.org/10.1007/978-3-662-47810-3_12
http://dx.doi.org/10.1007/978-3-662-47810-3_12
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Sec7
http://dx.doi.org/10.1007/978-3-662-47810-3_12#Bib1

13 Fixed-Point Mathematics . 241
13.1 Fixed-Point Data Types . 241
13.2 A Scalable Fixed-Point Template Class 244
13.3 Using the fixed_point Class. 247
13.4 Fixed-Point Elementary Transcendental Functions 250
13.5 A Specialization of std::numeric_limits 260
References. 262

14 High-Performance Digital Filters . 263
14.1 A Floating-Point Order-1 Filter. 263
14.2 An Order-1 Integer Filter . 266
14.3 Order-N Integer FIR Filters . 269
14.4 Some Worked-Out Filter Examples . 274
References. 279

15 C++ Utilities . 281
15.1 The nothing Structure . 281
15.2 The noncopyable Class . 284
15.3 A Template timer Class . 286
15.4 Linear Interpolation. 289
15.5 A circular_buffer Template Class 292
15.6 The Boost Library. 296
References. 297

16 Extending the C++ Standard Library and the STL 299
16.1 Defining the Custom dynamic_array Container 299
16.2 Implementing and Using dynamic_array 301
16.3 Writing Parts of the C++ Library if None Is Available 305
16.4 Implementation Notes for Parts of the C++ Library

and STL . 306
16.5 Providing now() for <chrono>’s

High-Resolution Clock . 312
Reference . 313

17 Additional Reading . 315
17.1 Literature List. 315
References. 316

Appendix A: A Tutorial for Real-Time C++ . 319

Appendix B: A Robust Real-Time C++ Environment 345

Appendix C: Building and Installing GNU GCC Cross Compilers 351

Contents xxiii

www.allitebooks.com

http://dx.doi.org/10.1007/978-3-662-47810-3_13
http://dx.doi.org/10.1007/978-3-662-47810-3_13
http://dx.doi.org/10.1007/978-3-662-47810-3_13#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_13#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_13#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_13#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_13#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_13#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_13#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_13#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_13#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_13#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_13#Bib1
http://dx.doi.org/10.1007/978-3-662-47810-3_14
http://dx.doi.org/10.1007/978-3-662-47810-3_14
http://dx.doi.org/10.1007/978-3-662-47810-3_14#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_14#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_14#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_14#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_14#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_14#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_14#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_14#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_14#Bib1
http://dx.doi.org/10.1007/978-3-662-47810-3_15
http://dx.doi.org/10.1007/978-3-662-47810-3_15
http://dx.doi.org/10.1007/978-3-662-47810-3_15#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_15#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_15#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_15#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_15#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_15#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_15#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_15#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_15#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_15#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_15#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_15#Sec6
http://dx.doi.org/10.1007/978-3-662-47810-3_15#Bib1
http://dx.doi.org/10.1007/978-3-662-47810-3_16
http://dx.doi.org/10.1007/978-3-662-47810-3_16
http://dx.doi.org/10.1007/978-3-662-47810-3_16#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_16#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_16#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_16#Sec2
http://dx.doi.org/10.1007/978-3-662-47810-3_16#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_16#Sec3
http://dx.doi.org/10.1007/978-3-662-47810-3_16#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_16#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_16#Sec4
http://dx.doi.org/10.1007/978-3-662-47810-3_16#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_16#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_16#Sec5
http://dx.doi.org/10.1007/978-3-662-47810-3_16#Bib1
http://dx.doi.org/10.1007/978-3-662-47810-3_17
http://dx.doi.org/10.1007/978-3-662-47810-3_17
http://dx.doi.org/10.1007/978-3-662-47810-3_17#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_17#Sec1
http://dx.doi.org/10.1007/978-3-662-47810-3_17#Bib1
http://www.allitebooks.org

Appendix D: Building a Microcontroller Circuit 363

Glossary . 367

Index . 369

xxiv Contents

Acronyms

C C represents the set of complex numbers in mathematics
R R represents the set of real numbers on the real axis in mathematics
R

2
R

2 represents two-dimensional Cartesian space in mathematics and
geometry

R
3

R
3 represents three-dimensional Cartesian space in mathematics and

geometry
Z Z represents the set of integer numbers in mathematics
ADC Analog-Digital Converter
AUTOSAR AUTomotive Open System ARchitecture [1] is a worldwide

cooperation of automotive manufacturers and companies supplying
electronics, semiconductors and software that concentrates on,
among other things, a standardized architecture for automotive
microcontroller software

AWG American Wire Gauge
Binutils Binary Utilities [4] are the GNU binary utilities such as archiver,

assembler, linker, object file parsers, etc., for GCC
C C is the C programming language
C99 C99 is the C programming language, as specified in ISO/IEC

9899:1999 [11]
C++ C++ is the C++ programming language
C++98 C++98 is the C++ programming language, as specified in ISO/IEC

14882:1998 [13]
C++03 C++03 is the C++ programming language, as specified in ISO/IEC

14882:2003 [14]
C++11 C++11 is the C++ programming language, as specified in ISO/IEC

14882:2011 [15]
C++14 C++14 is the C++ programming language, as specified in ISO/IEC

14882:2014 [16]
CLooG Chunky Loop Generator [3] is a software library used for geometric

polyhedron analysis

xxv

CPU Central-Processing Unit
ctor constructor of a class object in object-oriented programming is a

special subroutine that is called when an object is created
DIL Dual In-Line electronic component packaging
DSP Digital Signal Processor
dtor destructor of a class object in object-oriented programming is a

special subroutine that is called when an object is destroyed or
deleted

FIR Finite-Impulse Response is a kind of digital filter
FLASH Flash Memory is a nonvolatile computer memory that can be

electrically written and erased. Flash is commonly used as an
alternative to ROM

FPU Floating-Point Unit implements floating-point arithmetic in hard-
ware. Many modern high-performance microcontrollers use an FPU
to accelerate floating-point calculations

GAS is the GNU ASsembler
GCC GNU Compiler Collection [5] is a collection of free compilers for

several popular programming languages including, among others, C
and C++. GCC is supported for a wide range of targets

GMP GMP is the GNU Multiple-Precision library [8]. It implements
highly efficient multiple-precision representations of integer and
floating-point data types

GNU Is a �nix-like computer operating system consisting entirely of free
software [6]

GUI Graphical User Interface
HEX Hexadecimal representation is a base–16 numerical representation

commonly used to store program data in computer engineering
ICE In-Circuit Emulator is a highly sophisticated hardware device used to

debug embedded microcontroller software with an emulated
bond-out processor

ISL Integer Set Library [10] is a software library used for manipulating
sets of integers

ISP In-System-Programming is the act of programming the program
code of a microcontroller using a communication interface while the
microcontroller is fitted in the application, rather than as a standalone
non-soldered component

ISR Interrupt Service Routine
JTAG Joint Test Action Group, which was later standardized as IEEE

1149.1 [9], is a protocol and hardware interface used for printed
circuit board testing, boundary scan and recently more and more for
debugging embedded systems

LED Light-Emitting Diode is a semiconductor-based light source used in
diverse applications such as lighting, consumer electronics and toys

xxvi Acronyms

MCAL Microcontroller Abstraction Layer is a low-level layer in a layered
software architecture (such as AUTOSAR). The interface of the
MCAL is typically written in a portable fashion. The MCAL
implementation itself, however, contains partially non-portable
components that access microcontroller peripherals and their regis-
ters, such as PWM signal generators, timers, serial UARTs and other
communication interfaces, etc

MinGW Minimalist GNU [18] is an open-source programming toolset that
emulates �nix-like environments

MKS Meter, Kilogram, Second is a system of units used to express
physical quantities

MPC Multiple-Precision Complex [19] is a GNU C library that imple-
ments multiple-precision arithmetic of complex numbers

MPFR Multiple-Precision Floating-Point with correct Rounding [7] is the
GNU multiple-precision floating-point library. It is built on top of
GMP and places special emphasis on efficiency and correct rounding

MSYS Minimal SYStem [18] is a collection of GNU utilities that enhance
and extend the MinGW shell

newlib newlib [21] is a free implementation of the C standard library. It is
well-suited for use with embedded systems and has been ported to a
variety of CPU architectures

nop No OPeration is a common assembly instruction that simply does no
operation. One or more nops are often chained sequentially in order
to be used for ultra low-level functions such as creating very short
delays or flushing an instruction pipeline

opcode OPeration CODE is a machine language instruction containing the
operation to be done

PC Personal Computer
POSIX Portable Operating System Interface is an open standardized

operating system specified in ISO/IEC 9945:2003 [12]
PPL Parma Polyhedra Library [2] is a software library for abstract

geometrical polyhedron representations
PWM Pulse-Width Modulated signal is a square wave that usually has a

fixed period and a variable duty cycle
RAM Random Access Memory is computer memory with nearly constant

access time regardless of address or memory size. RAM is volatile in
the sense that data are typically lost when the power is switched off

ROM Read-Only Memory is a class of computer memory that, once
written, can only be modified with external programming tools—or
not be modified at all. ROM has permanent character in the sense
that data are retained throughout power on/off cycles

SPITM Serial Peripheral Interface bus is a four-wire serial communication
interface commonly used for communication between a microcon-
troller and one or more off-chip devices on the printed circuit board

Acronyms xxvii

STL Standard Template Library is part of the C++ standard library. The
standard template library contains a vast collection of generic
containers, iterators and algorithms

TO–220 Transistor Outline electronic component packaging, number 220
TR1 C++ Technical Report 1 includes the standard library extensions that

are specified in ISO/IEC TR 19768:2007 [17]. TR1 has been
predominantly integrated in C++11 (ISO/IEC 14882:2011 [15])

UART Universal Asynchronous Receiver/Transmitter is an asynchronous
receiver and transmitter commonly used for serial communication
between a PC and a microcontroller

References

1. AUTOSAR, Automotive Open System Architecture (2012), http://www.autosar.org
2. BUGSENG, Parma Polyhedra Library (PPL) (2012), http://www.bugseng.com/products/ppl
3. CLooG, Chunky Loop Generator (2015), http://www.cloog.org
4. Free Software Foundation, GNU Binutils (2011), http://www.gnu.org/software/binutils
5. Free Software Foundation, GNU Compiler Collection (2015), http://gcc.gnu.org
6. Free Software Foundation, GNU Operating System (2015), http://gnu.org
7. L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, MPFR: A Multiple-Precision

Binary Floating-Point Library with Correct Rounding, ACM Trans. Math. Soft. 33(2), June
2007

8. GMP, GNU Multiple Precision Arithmetic Library (2012), http://gmplib.org
9. IEEE Computer Society, IEEE Std 1149.1—1990: IEEE Standard Test Access Port and

Boundary-Scan Architecture (1990), available at http://standards.ieee.org/findstds/standard/
1149.1-1990.html

10. ISL, Integer Set Library (2015), http://isl.gforge.inria.fr
11. ISO/IEC, ISO/IEC 9899:1999: Programming languages—C (International Organization for

Standardization, Geneva, 1999)
12. ISO/IEC, ISO/IEC 9945:2003: Information Technology—Portable Operating System Interface

(POSIX) (International Organization for Standardization, Geneva, 2003)
13. ISO/IEC, ISO/IEC 14882:1998: Programming languages—C++ (International Organization

for Standardization, Geneva, 1998)
14. ISO/IEC, ISO/IEC 14882:2003: Programming languages—C++ (International Organization

for Standardization, Geneva, 2003)
15. ISO/IEC, ISO/IEC 14882:2011: Information technology—Programming languages—C++

(International Organization for Standardization, Geneva, 2011)
16. ISO/IEC, ISO/IEC 14882:2014: Information technology—Programming languages—C++

(International Organization for Standardization, Geneva, 2014)
17. ISO/IEC, ISO/IEC TR 19768:2007: Information technology—Programming languages—

Technical Report on C++ Library Extensions (International Organization for Standardization,
Geneva, 2007)

18. MinGW, Home of the MinGW and MSYS Projects (2012), http://www.mingw.org
19. MPC, GNU MPC (2012), http://www.multiprecision.org
20. MPFR, GNU MPFR Library (2013), http://www.mpfr.org
21. Red Hat, newlib (2013), http://sourceware.org/newlib

xxviii Acronyms

http://www.autosar.org
http://www.bugseng.com/products/ppl
http://www.cloog.org
http://www.gnu.org/software/binutils
http://gcc.gnu.org
http://gnu.org
http://gmplib.org
http://standards.ieee.org/findstds/standard/1149.1-1990.html
http://standards.ieee.org/findstds/standard/1149.1-1990.html
http://isl.gforge.inria.fr
http://www.mingw.org
http://www.multiprecision.org
http://www.mpfr.org
http://sourceware.org/newlib

Part I
Language Technologies for Real-Time C++

Chapter 1
Getting Started with Real-Time C++

C++ programs combine class types that encapsulate objects with procedural subrou-
tines in order to embody the functionality of the application. This chapter presents
these main language elements of C++ using a short, intuitive program that toggles
an LED on a microcontroller output port pin. In addition, other language features
are introduced including the syntax of C++, namespaces, the C++ standard library
and optimization with compile time constants. This chapter uses our target system
with the 8-bit microcontroller.

1.1 The LED Program

A simple microcontroller application is shown in Fig. 1.1 on the following page.
The circuit in this figure has one LED connected to a digital output port pin on
the microcontroller over a resistor to ground. Switching the port pin to high drives
current through the resistor and the LED, and thereby switches the LED on. Setting
the port pin to low stops current flow through the resistor and the LED, subsequently
turning the LED off.

The LED circuit shown in Fig. 1.1 is part of the circuit belonging to our target
system with the 8-bit microcontroller. Further details on the entire circuit in this
application and its electrical components can be found in the figure here and also in
Sect. 2.1 and Appendix D.

An object-oriented C++ program designed to control the LED circuit in Fig. 1.1
is shown below. It is called the LED program. In the LED program, an led object
called led_b5 is created on portb.5. The LED object led_b5 is subsequently
toggled from low to high and vice versa indefinitely without pause, break or return
in an iterative loop in the main() subroutine.

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_1

3

http://dx.doi.org/10.1007/978-3-662-47810-3_2

4 1 Getting Started with Real-Time C++

Fig. 1.1 The circuit of the
LED D1 on our target with
the 8-bit microcontroller is
shown. D1 is connected to
portb.5 on microcontroller
pin 17 over a 750 � resistor
R1 to ground

// The LED program.

#include <cstdint>
#include "mcal_reg.h"

class led
{
public:
// Use convenient class-specific typedefs.
typedef std::uint8_t port_type;
typedef std::uint8_t bval_type;

// The led class constructor.
led(const port_type p,

const bval_type b) : port(p),
bval(b)

{
// Set the port pin value to low.

reinterpret_cast<volatile bval_type>(port)
&= static_cast<bval_type>(~bval);

// Set the port pin direction to output.

reinterpret_cast<volatile bval_type>(port - 1U)
|= bval;

}

void toggle() const
{

// Toggle the LED via direct memory access.

reinterpret_cast<volatile bval_type>(port)
^= bval;

}

1.1 The LED Program 5

private:
// Private member variables of the class.
const port_type port;
const bval_type bval;

};

namespace
{
// Create led_b5 on portb.5.
const led led_b5
{
mcal::reg::portb,
mcal::reg::bval5

};
}

int main()
{
// Toggle led_b5 in a loop forever.
for(;;)
{
led_b5.toggle();

}
}

The LED program uses various C++ language elements. These include classes,
namespaces, type definitions, C++ cast operators, direct memory access and even a
little bit of the C++ standard library.

In particular, the predominant parts of the LED program are:

• the inclusion of header files with #include,
• the led class,
• the led class constructor and class members that encapsulate the initialization

and toggling of the LED via direct memory access,
• the anonymous namespace containing the led_b5 object,
• and the main() subroutine that toggles the led_b5 object indefinitely in a

never-ending for(;;)-loop.

In the following sections of this chapter, we will investigate in detail how each
one of these parts of the LED program is written and how each one works. Along

6 1 Getting Started with Real-Time C++

the way, we will briefly discuss many aspects of the syntax of C++ and efficient
ways to use the C++ language with real-time embedded systems.

1.2 The Syntax of C++

The syntax of C++ is similar to that of C. In fact, C++ is based on C. With a few
minor exceptions, nearly all valid C language constructs can also be used in a C++
program.

As with C, the C++ language uses curly braces { ... } to delimit scope.
Parenthesizing and operator priorities are the same in C++ and C. The C++ language
has familiar built-in types such as char, short, int, long, float, double,
etc. C++ also supports C’s well-known #include syntax for inclusion of user-
defined header files and standard library files.

C++ uses C’s iteration statements for, while and do-while. Source-level
comments in C++ can be written in either slash-slash form (//...) or block form
(/*... */). Most C++ developers, however, preferentially use slash-slash com-
ments instead of C-style block comments. See also Item 4 in Meyers [4].

1.3 Class Types

Classes, structures (structs) and unions are class types in C++. The LED program
has a class called led. In particular,

class led
{
// ...

};

Class types enable object-oriented programming in C++ because they group data
together with functions operating on them in a self-contained entity. The led class,
for example, encapsulates the real LED hardware by grouping the LED’s port pin
together with its toggle function.

Classes, structures and unions typically have a mixture of data, functions and
overloaded operators called members. The public interface of the led class, for
instance, has a constructor (also known as a ctor) and a member function called
toggle().

A class constructor has the same name as its containing class. Constructors can
have any number of input parameters. The constructor of led has two input para-

www.allitebooks.com

http://www.allitebooks.org

1.3 Class Types 7

meters. They characterize the address of the port data register and the bit-position
of the output port pin of the LED hardware.

Class initialization code can be placed in the body of the constructor. In particu-
lar, the port hardware of the LED is initialized in the body of the led constructor.

class led
{
public:
// The led class constructor.
led(const port_type p,

const bval_type b) : port(p),
bval(b)

{
// Set the port pin value to low.

reinterpret_cast<volatile bval_type>(port)
&= static_cast<bval_type>(~bval);

// Set the port pin direction to output.

reinterpret_cast<volatile bval_type>(port - 1U)
|= bval;

}
// ...

};

Here, the address of the LED’s port direction register is calculated from the
address of its port data register. In addition, the port pin value is set to low before
the port pin direction is set to output. This strategy eliminates potential spikes on
I/O pins. These kinds of electrical characteristics of I/O ports are specific to the
underlying microcontroller hardware and need to be modified when porting the led
class to another system.

The so-called constructor initialization list is placed after the constructor func-
tion parameters and a colon, but before the opening brace of the constructor body.
In particular,

led(const port_type p,
const bval_type b) : port(p),

bval(b)
{
// ...

}

8 1 Getting Started with Real-Time C++

In the constructor initialization list of the led class here, for example, we initial-
ize the member variables port and bval with the corresponding values supplied
by the input parameters p and b.

Constant member variables must be initialized in the constructor initialization
list. Non-constant member variables should be initialized in the constructor initial-
ization list. The order of all member variables present in the constructor initialization
list should be identical to their order of appearance in the class definition because
the compiler initializes them in the order they are declared. See also Item 13 in
Meyers [4].

The implementation of the led class shown above is entirely contained within
its definition. Alternatively, part or all of the implementation of a class type can be
placed in a separate source file.

The definition of the led class, for instance, could be placed in a header file
called led.h. In other words,

// In the file led.h
class led
{
public:
led(const port_type p,

const bval_type b);

void toggle() const;
// ...

};

The corresponding implementation details of the led class could be put in the
led.cpp source file. For example,

// In the file led.cpp
#include "led.h"

led::led(const port_type p,
const bval_type b) : port(p),

bval(b)
{
// Set the port pin value to low.

reinterpret_cast<volatile bval_type>(port)
&= static_cast<bval_type>(~bval);

// Set the port pin direction to output.

reinterpret_cast<volatile bval_type>(port - 1U)
|= bval;

}

1.3 Class Types 9

void led::toggle() const
{
// Toggle the LED.

reinterpret_cast<volatile bval_type>(port)
^= bval;

}

// ...

When members are defined outside of a class definition, the scope resolution
operator (::) is used to resolve the class name from the names of members in the
implementation file. For example,

// The scope resolution operator (::).
void led::toggle() const
{
// ...

}

Including implementation details directly in the class definition can improve opti-
mization via inlining. There is no need to explicitly recommend inlining to the com-
piler with the inline keyword because a function implemented directly in the
class declaration is per default inline. Short, non-virtual subroutines that require the
utmost performance may be implemented in the class definition, allowing for poten-
tial compiler inlining. Long calculations and polymorphic functions that may be less
time critical or rely on the runtime virtual mechanism (Sect. 4.4) should generally
be localized in the source file corresponding to the class definition.

1.4 Members

The led class has a member function called toggle(). In particular,

void toggle() const
{
// Toggle the LED.

reinterpret_cast<volatile bval_type>(port)
^= bval;

}

The toggle() function is responsible for toggling the LED from off to on and
vice versa. The toggling of the port pin is carried out with bit manipulation through

http://dx.doi.org/10.1007/978-3-662-47810-3_4

10 1 Getting Started with Real-Time C++

direct memory access. This, as well as C++’s templated reinterpret_cast
operator, will be described in greater detail in Sect. 1.10.

The trailing const qualifier means that toggle() is a constant member func-
tion. A constant member function is not usually intended to alter the state of any
class member variables. A constant function can, however, modify class member
variables that are qualified with the keyword mutable.1 Here, mutable means
capable of being changed. Class member functions that do modify member vari-
ables should, in general, be non-constant (see also Sect. 4.9).

The led class also has two private constant member variables (data members).
These are port and bval. In particular,

private:
const port_type port;
const bval_type bval;

Once set, the value of a constant class data member can not be modified. So after
port and bval are set, they retain their values for the lifetime of the class instance.
The variable port represents the LED’s port address and the variable bval stores
the numerical value corresponding to the pin position of the LED on the port.

Both member variables, port as well as bval, have the underlying type of
std::uint8_t, which is itself type defined from the built-in type unsigned
char. For the sake of convenience and intuitive legibility, the types of port and
bval have been declared as class-local types using typedef statements. The sug-
gestive names port_type and bval_type (as in bit-value type) are used.

In C++, members of a class type have one of three access controls. These are
public, private or protected, whereby protected access has not been used yet. For
example,

class led
{
public:
// ...

protected:
// ...

private:
// ...

};

1The mutable keyword—although quite useful at times—is not frequently used in this book.

http://dx.doi.org/10.1007/978-3-662-47810-3_4

1.4 Members 11

The public members of a class constitute its user interface because they can be
accessed by any part of the program. Private members can only be accessed by the
class itself and its friends. Class friends are described in Sect. 4.11. Private members
make it possible to hide selected data and implementation details when desired.
Protected members are useful for code re-use via inheritance in class hierarchies
(Sect. 4.3). Class inheritance is also subject to access control.

Some C++ programming guidelines recommend ordering the appearance of class
members according to access control. Public members should appear first because
users of a class type are most interested in the public interface. Protected members
should come second because authors of derived classes are also interested in the pro-
tected interface. Private members should come last because they are only of interest
to the class author.

If left unspecified, the default levels of member access and inheritance are pri-
vate for classes and public for structures. This is the only non-stylistic difference
between classes and structures in C++. Some C++ guidelines do, however, recom-
mend exclusively using classes for objects having member functions and restricting
the use of structures to more simple data structures that only have data members
and possibly a trivial constructor.

1.5 Objects and Instances

A class type is an object that represents an actual thing, concept, or group or collec-
tion thereof that can be manipulated as a cohesive entity. An instance is an occur-
rence of a class type. A class defines how instances of it behave. In object-oriented
programming, object is often used interchangeably with instance of a class.

In the LED program, led_b5 is an instance of the led class. In other words,

const led led_b5
{
mcal::reg::portb,
mcal::reg::bval5

};

The parameters in the constructor of led_b5 use C++’s uniform initialization
syntax (Sect. A.2). This convenient braced initialization syntax allows for uniform
initialization of, well, anything including built-in types, class types, STL containers
and C-style arrays alike. Uniform initialization was introduced with C++11.

Here, led_b5 is a constant object that will not be modified for the entire life-
time of the program. As such, it is declared using the const keyword. Further-
more, led_b5 is created using constant register values contained in a user-defined
namespace called mcal::reg. When the register addresses are resolved, the code
of led_b5’s constructor is equivalent to the following.

http://dx.doi.org/10.1007/978-3-662-47810-3_4
http://dx.doi.org/10.1007/978-3-662-47810-3_4

12 1 Getting Started with Real-Time C++

const led led_b5
{
0x25, // The address of portb.
0x20 // The bit-value of portb.5 (1 << 5).

};

The LED D1 on our target with the 8-bit microcontroller is connected to
portb.5 on the microcontroller. When the constructor code of led_b5 is exe-
cuted, the physical address of portb (0x25) is stored in the port member and
the pin’s bit value (0x20) is stored in the bval member.

Since led_b5 is a static instance, its constructor requires initialization code that
needs to execute before the object is used in main(). The compiler takes care of
this by automatically generating an internal subroutine for led_b5’s constructor
that is called from a static initialization mechanism in the so-called startup code.
The startup code executes before the jump to main(), ensuring that led_b5 will
be properly initialized before it is used. See Chap. 8 for more information on startup
code and static initialization.

The led_b5 instance is toggled by calling its toggle() member function in
the for(;;)-loop in main(). In particular,

led_b5.toggle();

Notice, in the way toggle() is called, how led_b5 really does behave like an
encapsulated object in the sense of object-oriented programming, see Chap. 4. The
toggling is also carried out in real-time on our target with the 8-bit microcontroller,
as we will see when we build, flash and run the LED program in Chap. 2.

1.6 #include

Files such as library files or user-defined header files can be included in another file
with the #include syntax. For example,

#include <cstdint>
#include "mcal_reg.h"

With these two lines, the standard library header file <cstdint> and a project-
specific header file called "mcal_reg.h" are included in the LED program. Here,
the acronym MCAL stands for MicroController Abstraction Layer, inspired by the
AUTOSAR [1] software architecture from the automotive industry. The MCAL
directly interfaces with the microcontroller peripherals, and we will be using it in
various parts of this book.

http://dx.doi.org/10.1007/978-3-662-47810-3_8
http://dx.doi.org/10.1007/978-3-662-47810-3_4
http://dx.doi.org/10.1007/978-3-662-47810-3_2

1.6 #include 13

Path information uses dots and forward slashes in the ∗nix-way. In addition to
forward slash, C++ compilers also understand backward slash. It is even possible
mix forward and backward slashes in the same #include line. The forward slash,
however, is considered standard in C++ and should be used consistently throughout
the project.

The C++ compiler has its own specific collection of default include paths includ-
ing, among others, the location of the standard library headers. It is also possible to
add other directories to the compiler’s search path using command line options in
order to improve coding ease and portability. Angled brackets (< ... >) should
be used for files that are in the compiler’s default include paths. Quotation marks
(" ... ") should delimit the names of user-defined include files that are not in
the compiler’s default include paths.

1.7 Namespaces

A namespace is a collection of related symbol names. For example, the symbols in
the C++ standard library are contained in the namespace std. In particular,

#include <stdint.h>

namespace std
{
// Inject global ::uint8_t into namespace std.
using ::uint8_t;

// Lots of other standard library stuff
// in lots of files.
// ...

}

Namespaces can be used to create unique names for symbols by adding addi-
tional naming information. For instance,

namespace this_space
{
constexpr int version = 1;

}

namespace another_space
{
constexpr int version = 3;

}

14 1 Getting Started with Real-Time C++

In this case, there are two versions of version in individual namespaces occur-
ring in the same file-level scope. However, since the two versions of version are
in different namespaces, they are unique. In particular, this_space::version
and another_space::version are distinct. If namespaces were not used,
there would be a naming conflict due to ambiguity. The scope resolution opera-
tor (::) is used to resolve symbols in namespaces.

The LED program presents another example of a namespace, this time using an
unnamed namespace.

namespace
{
const led led_b5
{
// ...

};
}

A unnamed namespace is called an anonymous namespace. An anonymous
namespace limits the scope of anything within itself to file-level. A file-local anony-
mous namespace guarantees unique names for otherwise same-named symbols
occurring in different files. The anonymous namespace may be considered superior
to C-style static. In fact, some developers consider the anonymous namespace to
be the preferred mechanism for file-level scope localization and reduction of naming
ambiguity in C++ projects.

An optional using directive may be used to eliminate the necessity to type the
namespace prefix. For example,

using namespace std;

When the “using namespace std” directive is present, the code beneath it
can use all the symbols in the namespace std without explicitly typing the std
prefix and scope resolution operator. In particular,

#include <cstdint>

using namespace std;

uint8_t my_u8; // No need for std:: with uint8_t

It is also possible to inject individual symbols from a named namespace into the
global namespace by using a using directive for only that symbol. For example,

1.7 Namespaces 15

#include <cstdint>

using std::uint8_t;

uint8_t my_u8; // No need for std:: with uint8_t

In this book, however, we generally do not use the using directive in non-library
code. We thereby prefer clarity over terseness in style.

1.8 C++ Standard Library

The namespace std contains all the symbols in the C++ standard library. The
standard library is a vast collection of types, functions and classes that is an essential
part of the C++ language. The standard library also contains an extensive set of
generic containers and algorithms called the standard template library (STL). In
this book, we will make considerable use of the C++ standard library and the STL
part of it. See also Sect. 5.8 and A.6–A.8.

The LED program uses the C++ standard library for std::uint8_t, one
of several available fixed-size integer types. Readers familiar with the C99 spec-
ification of the C language [2] might have experience with <stdint.h>. This
C library file defines identical fixed-size integer types, but in the global namespace.
Using C++’s fixed-size integer types can improve portability because potentially
non-portable user-defined types such as, say, my_uint8, my_uint16, etc. no
longer need to be defined manually and managed with potentially hard-to-read pre-
processor switches. See Sects. 3.2 and 6.10 for additional details on fixed-size inte-
ger types.

1.9 The main() Subroutine

The work of the LED program takes place in the main() subroutine. In particular,

int main()
{
for(;;)
{
led_b5.toggle();

}
}

http://dx.doi.org/10.1007/978-3-662-47810-3_5
http://dx.doi.org/10.1007/978-3-662-47810-3_3
http://dx.doi.org/10.1007/978-3-662-47810-3_6

16 1 Getting Started with Real-Time C++

Every C++ program is required to have one and only one implementation of
main(). In C++, the return type of main() is plain integer, in other words
signed int. When we just write int in C++, we mean signed int. This is
because the default for integral types (if left blank) is signed, unless explicitly
declared as unsigned.

The main() subroutine in the LED program lacks an explicit return code. The
C++ compiler can, however, automatically generate the return code for main() if
needed. If the compiler does generate return code for main(), its type is signed
int and its value is zero. The implicit generation of code to return a value is specific
to the main() subroutine only. All subroutines other than main() returning any
type other than void must supply explicit return code.

The main() subroutine is called from the startup code after the static initial-
ization mechanisms for RAM and static constructors have been carried out. See
Chap. 8 and Sect. 3.6.2 in [3] for additional information on startup code and static
initialization.

Two portable definitions of main() are allowed according to the C++ standard
(Sect. 3.6.1 in [3]):

int main()
{
// ...

}

and

int main(int argc, char* argv[])
{
// ...

}

The second form is used when program arguments are passed to main(). For
our embedded microcontroller programs, no arguments are passed to main() and
the first form is used.

1.10 Low-Level Register Access

Microcontroller programming in C++ requires low-level register access. For exam-
ple, both the constructor as well as the toggle() function of the led class manip-
ulate registers via direct memory access to control the LED hardware. See Chap. 7
for further discussions of register manipulation.

In particular, led’s member function toggle() is responsible for toggling the
LED.

www.allitebooks.com

http://dx.doi.org/10.1007/978-3-662-47810-3_8
http://dx.doi.org/10.1007/978-3-662-47810-3_7
http://www.allitebooks.org

1.10 Low-Level Register Access 17

void toggle() const
{
// Toggle the LED.

reinterpret_cast<volatile bval_type>(port)
^= bval;

}

The templated cast operator reinterpret_cast is one of four specialized
cast operators available in C++. See Sect. A.1 for a description of C++ cast oper-
ators. The reinterpret_cast operator is the one that is designed for casting
integral types to pointers and back. Readers familiar with low-level register access
in C might find the following equivalence example helpful.

// C++ register access.

reinterpret_cast<volatile bval_type>(port)
^= bval;

// Equivalent C-style.

((volatile bval_type) port) ^= bval;

1.11 Compile-Time Constant

In the LED program, registers are defined with C++’s generalized constant expres-
sion syntax using the constexpr keyword. In particular,

namespace mcal
{
// Compile-time constant register addresses.
namespace reg
{
// The address of portb.
constexpr std::uint8_t portb = 0x25U;

// The values of bit0 through bit7.
constexpr std::uint8_t bval0 = 1U;
constexpr std::uint8_t bval1 = 1U << 1U;
constexpr std::uint8_t bval2 = 1U << 2U;
constexpr std::uint8_t bval3 = 1U << 3U;
constexpr std::uint8_t bval4 = 1U << 4U;
constexpr std::uint8_t bval5 = 1U << 5U;

18 1 Getting Started with Real-Time C++

constexpr std::uint8_t bval6 = 1U << 6U;
constexpr std::uint8_t bval7 = 1U << 7U;

}
}

A generalized constant expression, denoted with the keyword constexpr, is
guaranteed to be a compile-time constant. In general, using constexpr is consid-
ered superior to the preprocessor #define because generalized constant expres-
sions have clearly defined type information. See Sect. 3.8 for more information on
constexpr and generalized constant expressions, and also Sect. 7.1 for additional
details on register addresses.

An alternative for ensuring that an integral value is a compile-time constant is
with a static constant member of a class type. See also Item 1 in Meyers [4]. There
will be more on static constant integral class members in Sect. 4.10.

Using compile-time constants almost always facilitates optimization in C++.
As mentioned previously in Sect. 1.5, for example, led_b5’s constructor code is
equivalent the following.

const led led_b5
{
0x25, // Address of portb.
0x20 // Bit-value of portb.5.

};

Since the constructor’s parameters are compile-time constants, the compiler can
directly initialize led_b5’s member variables without using the stack or interme-
diate CPU registers. This efficient kind of optimization is called constant folding,
and is often useful in real-time C++ programming. Section 2.6 describes methods
for improving performance even further by combining constant folding with C++
templates.

References

1. AUTOSAR, Automotive Open System Architecture (2012), http://www.autosar.org
2. ISO/IEC, ISO/IEC 9899:1999: Programming Languages—C (International Organization for

Standardization, Geneva, 1999)
3. ISO/IEC, ISO/IEC 14882:2011: Information Technology—Programming Languages—C++

(International Organization for Standardization, Geneva, 2011)
4. S. Meyers, Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd edn.

(Addison-Wesley, Boston, 2005)

http://dx.doi.org/10.1007/978-3-662-47810-3_3
http://dx.doi.org/10.1007/978-3-662-47810-3_7
http://dx.doi.org/10.1007/978-3-662-47810-3_4
http://dx.doi.org/10.1007/978-3-662-47810-3_2
http://www.autosar.org

Chapter 2
Working with a Real-Time C++ Program
on a Board

This chapter presents a complete example of building, flashing and executing a
microcontroller C++ program using the LED program. The LED program will be
built with GCC cross tools in the MinGW/MSYS [9] environment. Our target micro-
controller is an 8-bit ATMEL® AVR® microcontroller [2]. This popular microcon-
troller has state-of-the-art quality and widespread availability. In addition, there is
a well-maintained GCC port for this microcontroller making it well-suited for our
example. In the second half of this chapter, we will investigate efficiency aspects
and compiler warnings and errors based on the example of the LED program.

2.1 The Target Hardware

Our target hardware is shown in Fig. 2.1. It is a single-chip microcontroller circuit
that has been hand-built on a solderless prototyping breadboard. This board uses an
8-bit ATMEL® AVR® microcontroller [2], featuring 32 kB of program code, 2 kB
of RAM and 1 kB of EEPROM. The microcontroller is clocked with an external
quartz at 16MHz. The schematic for the circuit of our target hardware and details
about building it with discrete components on a solderless prototyping breadboard
are given in AppendixD.

Our target hardware uses the same microcontroller and LED port pin as the
well-known and versatile ARDUINO® open source project [1, 6, 11]. In addition,
an ARDUINO® or an ARDUINO®-compatible board can optionally be used for
the exercises in this chapter. Note, though, that our target hardware is not fully
ARDUINO®-compatible because it lacks the circuitry for the serial UART inter-
face that the ARDUINO® uses for communication with its bootloader.

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_2

19

20 2 Working with a Real-Time C++ Program on a Board

Fig. 2.1 Our target system
built with discrete compo-
nents on a breadboard is
shown

2.2 Build and Flash the LED Program

The workflow for building and flashing a C++ program is shown in Fig. 2.2. The
main steps include compiling the sources, linking the object files, extracting the
HEX-file and flashing it in the microcontroller. We will build the LED program
according to the workflow in Fig. 2.2. We will use traditional ∗nix-style commands
within the MinGW/MSYS [9] environment.1

Here, we assume that the GNU GCC cross compiler has been built and installed,
and that its path is available in the MinGW/MSYS command shell. See Appendix C
for details on building and installing a GNU GCC cross compiler.

We will now build the example in the chapter02_02 project of the com-
panion code. In the MinGW/MSYS command shell, navigate to the directory
chapter02_02 and locate the batch file build.bat. The batch file accepts two
command-line parameters, the path of the GCC executable programs and the prefix
of GCC.2

An example of the syntax for calling build.bat in the MinGW/MSYS com-
mand shell for the chapter02_02 project is shown below.

build.bat "C:\gcc-4.8.1-avr-unknown-elf\bin" \
avr-unknown-elf

In this example, the backslash is used to separate the long command into two
lines. It is not part of the command itself.

1There are numerous tools and methods available for building microcontroller C++ projects. In
addition to traditional command boxes and ∗nix-style shells, other popular build facilities include
GNUmake [3], the Python programming language [10] and SCons [12]. Furthermore, a variety of
both cost-free as well as commercial GUIs are available for project management and build.
2Here, the prefix of GCC is the target-specific decoration in the name of the toolchain (such as
avr-unknown-elf, arm-none-eabi, etc.), as described in Appendix C.

2.2 Build and Flash the LED Program 21

Assemble
startup files

C++ files

Compile C++
files

Link object files

Startup files

Map file

Absolute object
file (ELF)

Extract HEX
file

Program flash

Reset
microcontroller

Object files

HEX file

Fig. 2.2 The workflow for building, flashing and running a C++ program is shown

build.bat is intended to compile and link the LED program and subsequently
extract the executable HEX-file according to the workflow in Fig. 2.2. Additional
files containing C++ symbol information, an assembly listing, a report on code
size, etc. are also created by build.bat. The results of the build are stored in the
bin-directory. In the following paragraphs, we will investigate the most important
commands in build.bat.

The startup code crt0.s (see Sect. 8.1) is assembled with the following com-
mand.

avr-unknown-elf-g++ -mmcu=atmega328p \
-x assembler crt0.s -c -o bin/crt0.o

http://dx.doi.org/10.1007/978-3-662-47810-3_8

22 2 Working with a Real-Time C++ Program on a Board

This command means:

• Invoke the cross compiler avr-unknown-elf-g++ as an assembler. Here and
subsequently, we use the decorated name of g++ specially built for our target
with the 8-bit microcontroller (Appendix C).

• Select the microcontroller architecture with the -mmcu=atmega328p flag.
• Assemble crt0.s using -x assembler crt0.s -c -o bin/crt0.o.
This produces the object file bin/crt0.o.

The source file led.cpp is compiled with the following command.

avr-unknown-elf-g++ -mmcu=atmega328p \
-O2 -std=c++11 -I. -c led.cpp -o bin/led.o

This command means:

• Invoke the cross compiler avr-unknown-elf-g++ as a C++ compiler.
• Select the microcontroller architecture with the -mmcu=atmega328p flag.
• Use level 2 optimization (a medium-high level) with the -O2 flag, see also
Sect. 6.1.

• Use the C++11 language standard with the -std=c++11 flag.3

• Include the current directory in the compiler’s default include path with the -I.
flag. This is needed for finding the self-written header file <cstdint> present
in the chapter02_02 directory itself.

• Compile led.cpp using -c led.cpp -o bin/led.o. This produces the
object file bin/led.o.

The following command links the LED program to create an absolute object file.
Here, the compiled startup code in bin/crt0.o will be linked with bin/led.o
to create the absolute object file led.elf.

avr-unknown-elf-g++ -mmcu=atmega328p \
-nostartfiles -nostdlib \
-Wl,-Tavr.ld,-Map,bin/led.map \
bin/led.o bin/crt0.o -o bin/led.elf

This command means:

• Invoke the cross compiler avr-unknown-elf-g++ as a linker.
• Select the microcontroller architecture with the -mmcu=atmega328p flag.
• Use the -nostartfiles flag to prevent the linker from linking with the com-
piler’s own startup files. We have provided our own startup code in crt0.s.

• Use the -nostdlib flag to eliminate any standard library object code since we
do not use any standard library functions.

3With GCC version 4.9 or later, the newer flag -std=c++14 can be used to select the C++14
language standard.

http://dx.doi.org/10.1007/978-3-662-47810-3_6

2.2 Build and Flash the LED Program 23

• Use the memory definitions in the linker input file avr.ld and create an output
memory map file led.map with the flags -Wl,-Tavr.ld,-Map,led.map.

• Link the object files bin/led.o and bin/crt0.o. This command creates the
absolute object file bin/led.elf using bin/led.o bin/crt0.o
-o bin/led.elf. The absolute object file is in ELF binary format, the Exe-
cutable and Linkable Format [13].

The following command extracts the HEX-file from the absolute object fileusing
the program objcopy. This command creates the executable HEX-file
bin/led.hex.

avr-unknown-elf-objcopy -O ihex \
bin/led.elf bin/led.hex

This command means:

• Invoke object copy avr-unknown-elf-objcopy.
• Create an output HEX-file in a well-known 16-bit text-based hexadecimal file
format with the -O ihex flags.

• Extract bin/led.hex from bin/led.elf supplying the input filename and
output filename as bin/led.elf bin/led.hex.

We should now have the HEX-file bin/led.hex that contains the executable
code of the LED program. It is a short, text-based file that should be similar to the
one shown in the listing below.

:040000000E94020058
:1000040011241FBEC0E0D8E0DEBFCDBF0E941100A6
:100014000E941D000E9426000E943700FFCF11E0BD
:10002400A0E0B1E0EEE9F0E002C005900D92A0304E
:10003400B107D9F7089511E0A2E0B1E001C01D9223
:10004400A230B107E1F7089510E0C6E6D0E004C09D
:100054002297FE010E943300C436D107C9F70895E0
:1000640040000590F491E02D0994E0910001F0E046
:1000740090910101808189278083FCCFE0E0F1E049
:1000840085E2808380E2809301012D98E081E15034
:0A009400F0E080818062808308950F
:040000030000006495
:00000001FF

This executable HEX-file file can be flashed into the microcontroller’s program
FLASHmemory using any of several available cost-free or commercial tools such as
a JTAG [5] debugger,an ICE, etc. The instructions in the chapter02_02 directory
show how to flash the HEX-file using a commercially available JTAG SPITM ISP
flash tool.

24 2 Working with a Real-Time C++ Program on a Board

Users of the ARDUINO® should, however, note that the bootloader that comes
pre-programmed in the ARDUINO® will be erased when we flash the LED pro-
gram. If needed for development in the ARDUINO® environment, the ARDUINO®

bootloader can be re-flashed [1].
When the LED program is executed, the LEDD1 should light up because it will

be toggling. The toggling will, however, be extremely rapid, with a frequency of
approximately 1.1MHz. This is far too fast for the human eye to resolve. Toggling
can be viewed with a digital oscilloscope if available. Alternatively, the toggling
frequency can be reduced using a delay loop or a timer, as shown in the following
section.

2.3 Adding Timing for Visible LED Toggling

As mentioned above, the LED program toggles the LED too quickly to observe.
Therefore, we will slow down the toggling in another version of the LED program
that uses timing. This version of the program is included in the chapter02_03
project of the companion code and it is partially listed below.

// The LED program with timing.

#include <cstdint>
#include <util/utility/util_time.h>
#include <mcal/mcal.h>

class led
{
// ...

};

namespace
{
// Define a convenient local 16-bit timer type.
typedef util::timer<std::uint16_t> timer_type;

// Create led_b5 at port B, bit-position 5.
const led led_b5
{
mcal::reg::portb,
mcal::reg::bval5

};
}

2.3 Adding Timing for Visible LED Toggling 25

int main()
{
// Enable all global interrupts.
mcal::irq::enable_all();

// Initialize the mcal.
mcal::init();

// Toggle led_b5 forever with a 1s delay (0.5Hz).
for(;;)
{
led_b5.toggle();

// Wait 1s in a blocking delay.
timer_type::blocking_delay(timer_type::seconds(1));

}
}

The major change here is the inclusion of a 1 s blocking delay following the LED
toggle(). In particular, in main(),

// Toggle led_b5 forever with a 1s delay (0.5Hz).
for(;;)
{
led_b5.toggle();

// Wait 1s in a blocking delay.
timer_type::blocking_delay(timer_type::seconds(1U));

}

This reduces the LED toggling frequency to 1/ 2Hz, allowing the toggling to
be observed with the human eye. In order to implement timing, we have included
more software components. In particular, we have included a timer utility header
file util_time.h and simplified the code with a convenient typedef for a
timer_type. See Sects. 6.9 and 15.3. We have also initialized a small MCAL
in order to create a system-tick, as described in Sect. 9.3.

Try to build, flash and run the LED program with timing in the way previously
described for the original LED program. This should result in a program that has
visually pleasing LED toggling with a frequency of 1/ 2Hz.

As mentioned above, the LED toggling frequency in the chapter02_03
project comes from a 1 s blocking delay. Using a blocking delay may, however, be
considered poor style. Multitasking methods (Chap. 11) could result in a superior

http://dx.doi.org/10.1007/978-3-662-47810-3_6
http://dx.doi.org/10.1007/978-3-662-47810-3_15
http://dx.doi.org/10.1007/978-3-662-47810-3_9
http://dx.doi.org/10.1007/978-3-662-47810-3_11

26 2 Working with a Real-Time C++ Program on a Board

implementation. To exemplify this, an additional project called chapter02_03a
has been created for Sect. 2.3 and included in the companion code. Example
chapter02_03a also uses material from later in the book to implement a tiny
multitasking scheduler which manages an LED application task. The LED applica-
tion task uses a 1 s timer to generate the LED toggling frequency.

2.4 Run and Reset the LED Program

After the program has been flashed, it stays in flash memory even when the board
is powered off and disconnected from the PC or any other electrical supply. When
the board is supplied with power, the microcontroller boots and program execution
begins. It should not be necessary to push the reset button or do anything else other
than simply plug in the power jack.

It may seem remarkable how quickly the microcontroller boots. It only requires
a few milliseconds for the target system to boot and work through the startup code
(Sect. 8.1). As a result, the LED will seem to start toggling essentially immediately
after power-up.

The program can also be manually resetanytime while it is running using the reset
button on the board. A photograph depicting the microcontroller reset button on our
target system is shown in Fig. 2.3. The reset button gives the microcontroller an
electrical soft-boot signal. This results in immediate program reset and subsequent
execution of the startup code, etc. just like normal power-up.

It may be helpful to become familiar with both power-on reset using the power
jack as well as soft reset using the manual reset button on the board. Try each one
out a few times and make sure everything is working as expected.

Fig. 2.3 Pointing toward
the reset button on our target
board is shown

www.allitebooks.com

http://dx.doi.org/10.1007/978-3-662-47810-3_8
http://www.allitebooks.org

2.5 Recognizing and Handling Errors and Warnings 27

2.5 Recognizing and Handling Errors and Warnings

Properly handling errors and warnings is an essential part of learning the C++ lan-
guage. If a mistake in typing or syntax is present in the code, the compiler will report
an error upon the attempted compilation of it.

We will now provoke an error in order to experience how this works. Consider
typing some nonsensical characters such as “asdf” in one of the blank lines of
led.cpp in the LED program from Sect. 1.1. For example,

// The LED program.

#include <cstdint>
#include "mcal_reg.h"
asdf
class led
{
// ...

};

// ...

The led.cpp file now contains an error. If we save the faulty file and try to
compile it, GCC will report an error message similar to the one shown below.

led.cpp:5:1: error: ’asdf’ does not name a type

It is easy to interpret the error message within the context of the offending code.
The compiler reports an error in line 5 at column 1 of led.cpp.

In addition to errors, the compiler can issue warnings. A warning indicates that
the compiler has encountered ambiguous code. Warnings should be taken seriously
and corrected because the compiler is reporting a potentially false interpretation of
the code.

We will now provoke a warning. Consider removing the “int” part of the code
preceding main() in led.cpp. For instance,

http://dx.doi.org/10.1007/978-3-662-47810-3_1

28 2 Working with a Real-Time C++ Program on a Board

// ...

main()
{
// ...

}

When compiling this code with the -pedantic warning option (see below),
GCC issues the following warning.

led.cpp(50) :6: warning: ISO C++ forbids declaration
of ’main’ with no type [-pedantic]

Here, GCC is warning that the subroutine main() has been declared with no
type. The warning is in line 50 at the beginning of column 6, whereby the beginning
of column 6 is in the middle of the parentheses of the declaration of main().

For GCC, the warning options shown below result in a depth of warning that can
be appropriate for most C++ projects.4

-Wall -Wextra -pedantic

This means:

• report warnings for all normal issues,
• also report extra warnings,
• and issue warnings in a pedantic fashion regarding ISOC++ adherence.

Another useful warning option is -Weffc++, which warns about failure to con-
form with certain guidelines in Meyers’ well-known books [7, 8].

When the compiler encounters one or more warnings, it nonetheless completes
compilation. The warning option -Werror can be used to treat all warnings as
errors, thereby stopping compilation upon warning (well, now an error).

The error and warning messages shown previously are easy to understand. Error
and warning messages can, however, become quite verbose including long sym-
bol names and recursive file references. This can complicate tracing the origin of
the offending code. In particular, it can be difficult to properly decipher error and
warning messages originating from C++ templates. With a little practice, though,
properly interpreting error and warning messages becomes routine.

Error and warning messages in C++ can be of immense help when trying to
diagnose coding problems. Using a high warning level will also improve the overall
quality of the code.

4See also [4], in both Chapter 1 (Section Exploring C Warning Messages) as well as AppendixA
in the same source for comprehensive information on GCC’s warning options.

2.6 Reaching the Right Efficiency 29

2.6 Reaching the Right Efficiency

C++ is a rich language with powerful features, giving vast control over the imple-
mentation details. In order to effectively program microcontrollers in C++, then,
developers need to make insightful and sensible design choices.

When considering the led class in the LED program of Chap. 1, for example, an
experienced microcontroller programmer might be thinking, That class has a lot of
overhead for simply toggling an LED! It may be a poor design choice.

This astute observation would, in fact, be correct in this particular case. Indeed,
the storage requirement alone for led’s member variables is at least two bytes, pos-
sibly even four bytes or eight—depending on the CPU architecture and the memory
alignment characteristics of the compiler. Add to this the overhead of a potentially
non-inlined call to the toggle() function, and the led class may be excessively
bulky for its modest functionality.

C++ templates can be used to remedy this situation. A C++ template is a function
or class that can have parameters of different types. See Chap. 5 for more informa-
tion on C++ templates.

We will now convert the led class to a template class. In particular,

template<typename port_type,
typename bval_type,
const port_type port,
const bval_type bval>

class led_template
{
public:
led_template()
{
// Set the port pin value to low.

reinterpret_cast<volatile bval_type>(port)
&= static_cast<bval_type>(~bval);

// Set the port pin direction to output.

reinterpret_cast<volatile bval_type>(pdir)
|= bval;

}

static void toggle()
{
// Toggle the LED.

reinterpret_cast<volatile bval_type>(port)
^= bval;

}

http://dx.doi.org/10.1007/978-3-662-47810-3_1
http://dx.doi.org/10.1007/978-3-662-47810-3_5

30 2 Working with a Real-Time C++ Program on a Board

private:
static constexpr port_type pdir = port - 1U;

};

In the led_template class, the types and member variables present in the
original led class have been replaced with template parameters. This remarkable
method profoundly improves efficiency because template parameters and their cor-
responding code are entities known at compile time. Templates can improve effi-
ciency and reduce potentially redundant code by providing scalability. In this sense,
templates offer high performance and strong generic character. We will discuss tem-
plate programming in greater depth in Chap. 5.

Using the led_template class in code is straightforward. For example,

namespace
{
// Create led_b5 at port B, bit-position 5.
const led_template<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
mcal::reg::bval5> led_b5;

}

int main()
{
// Toggle led_b5 forever.
for(;;)
{
led_b5.toggle();

}
}

In this version of main(), the template instance of led_b5 is used in exactly
the same fashion as the non-template instance has been used previously in Sect. 1.1.
We see that template classes can also be used to encapsulate objects. It can take a
bit of trial-and-error to get accustomed with the syntax of templates and find stylis-
tically appealing ways to write them in code. These issues can, however, readily be
resolved with a bit of practice.

This version of the LED program is available in the companion code for Chap. 2.
We can build this template version of the program for our target with the 8-bit
microcontroller and create an assembly listing for the led.cpp file (Sect. 6.4). The
assembly listing reveals that the efficiency of the led_template class approaches
that of hand-programmed assembler. Remarkably, though, we are programming

http://dx.doi.org/10.1007/978-3-662-47810-3_5
http://dx.doi.org/10.1007/978-3-662-47810-3_1
http://dx.doi.org/10.1007/978-3-662-47810-3_2
http://dx.doi.org/10.1007/978-3-662-47810-3_6

2.6 Reaching the Right Efficiency 31

Table 2.1 The resources required for led.cpp for both the template as well as the non-template
versions of the LED program are shown

Class version Code Size main() RAM Size led_b5 Runtime for(;;)-loop

(byte) (byte) (µs)

Non-template 36 2 0.44

Template 16 0 0.31

with a C++ class that utilizes the benefits of object-oriented design and data encap-
sulation.

We will now investigate how the efficiency and resource consumption of the
template version of the LED program compare with those of the non-template ver-
sion. The storage requirement of the led_template class have been reduced
because the member variables port and bval have been replaced by template
parameters that are compile-time constants. These template parameters can be elim-
inated at compile-time via constant folding. In addition, the toggle() function
has been made static. This potentially reduces the call overhead when servicing
the toggle() member.

As shown in Table 2.1, the template version of the program is both smaller and
faster than the non-template one. It is somewhat remarkable, but not uncommon,
that template-based design decreases memory consumption while simultaneously
improving performance.

Selecting a template or a non-template LED class is an example of a typical
design choice in microcontroller C++ programming. Although this is just one small
example from infinitely many potential design choices, it does show how decisions
about design and implementation can crucially impact efficiency.

References

1. ARDUINO®, ARDUINO® (2015), http://www.arduino.cc
2. ATMEL®, 8-bit ATMEL® Microcontroller with 4/8/16/32K Bytes In-System Programmable

Flash (ATmega48A, ATmega48PA, ATmega88A, ATmega88PA, ATmega168A, ATmega168PA,
ATmega328, ATmega328P), Rev. 8271D-AVR-05/11 (ATMEL®, 2011)

3. Free Software Foundation, GNUmake Version 3.81 (2006), http://www.gnu.org/software/make
4. W. van Hagen, The Definitive Guide to GCC (Apress, Berkeley, 2006)
5. IEEE Computer Society, IEEE Std 1149.1–1990: IEEE Standard Test Access Port and

Boundary-Scan Architecture (1990), available at http://standards.ieee.org/findstds/standard/
1149.1-1990.html

6. M. Margolis, ARDUINO®Cookbook, 2nd edn. (O’Reilly, Sebastopol, 2011)
7. S. Meyers, Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd edn.

(Addison-Wesley, Boston, 2005)
8. S. Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs

(Addison-Wesley, Boston, 1996)
9. MinGW, Home of the MinGW and MSYS Projects (2012), http://www.mingw.org

http://www.arduino.cc
http://www.gnu.org/software/make
http://standards.ieee.org/findstds/standard/1149.1-1990.html
http://standards.ieee.org/findstds/standard/1149.1-1990.html
http://www.mingw.org

32 2 Working with a Real-Time C++ Program on a Board

10. Python Software Foundation, Python Programming Language—Official Website (2012),
http://www.python.org

11. M. Schmidt, ARDUINO®: A Quick-Start Guide (Pragmatic Programmers, Raleigh, 2011)
12. SCons, SCons: A Software Construction Tool (2012), http://www.scons.org
13. Wikipedia, Executable and Linkable Format (2012), http://en.wikipedia.org/wiki/Executable_

and_Linkable_Format

http://www.python.org
http://www.scons.org
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format
http://en.wikipedia.org/wiki/Executable_and_Linkable_Format

Chapter 3
An Easy Jump-Start in Real-Time C++

Developers new to real-time C++ may want to obtain some useful results quickly
before taking the time to master all the intricate details of the C++ language. This
chapter addresses this desire by presenting a simple, yet effective, subset of the
C++ language specifically designed for those seeking a lightweight and reliable
jump-start in real-time C++. The C++ subset in this chapter represents a judicious
selection of some of the most easy-to-do things in C++ that can potentially be used
in the widest possible range of programming situations. The strategy of this C++
subset is shown in Fig. 3.1.

3.1 Declare Locals When Used

In C++, local variables can be declared where they are first used. They do not nec-
essarily need to be bound to the opening curly brace of a scope. This can improve
code readability and facilitate compiler optimization.

Fig. 3.1 The sketch shows
how a small subset of C++
can potentially be used for a
wide variety of programming
situations

C++ subset

Everything I would like
to do in real-time C++

Where the subset can
potentially be used

All of C++

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_3

33

34 3 An Easy Jump-Start in Real-Time C++

The code below, for example, conveniently declares integral variables i, j and k
near where they are first used in the subroutine.

void initialize();
void use_i(const int);
void use_j(const int);
void use_k(const int);

void do_something()
{
// Initialize someting.
initialize();

// Declare i when using it in use_i().
const int i = 3;
use_i(i);

// Declare j when using it in use_j().
const int j = 7;
use_j(j);

// Declare k in the scope of the for-loop.
for(int k = 0; k < 10; ++k)
{
use_k(k);

}
}

3.2 Fixed-Size Integer Types

The C++ standard library has a complete set of portable fixed-size integer types
in its <cstdint> header file. As mentioned in Sect. 1.8, user-defined types such
as my_uint8, my_uint16, and the like can potentially be clumsy and hard-
to-maintain. They can be replaced with standard fixed-size integer types such as
std::uint8_t, std::uint16_t, std::uint32_t, etc. and corresponding
signed types.1

1Fixed-size integer types have been available in the C header file <stdint.h> since C99 (in
the global namespace) and in the C++ header file <cstdint> since C++11 (in both the global
namespace as well as in namespace std).

http://dx.doi.org/10.1007/978-3-662-47810-3_1

3.2 Fixed-Size Integer Types 35

The code below, for instance, uses integer variables having specified widths such
as exactly 16 bits and at least 32 bits.

#include <cstdint>

// This has *exactly* 16-bits signed.
constexpr std::int16_t value16 = INT16_C(0x7FFF);

// This has *at least* 32-bits unsigned.
constexpr std::uint_least32_t value32 =
UINT32_C(4’294’967’295);

Standard macros of the form UINT8_C(), UINT16_C(), UINT32_C(),
etc. and corresponding macros for signed types are also defined in the <cstdint>
header file.2 As shown above, they can be convenient for creating numeric literal
integral values having specified widths.

These macros also improve the integrity of code. In particular, they can be supe-
rior to commonly used suffixes such as U, L, UL, LL, ULL, etc. Consider, for exam-
ple, the initialization of prime_number below.

#include <cstdint>

// The suffix U means unsigned int.
constexpr std::uint32_t prime_number = 10’006’721U;

This code could potentially be non-robust or suffer from portability problems.
The integer literal constant 10’006’721U (i.e., 10,006,721) relies on the suffix U,
meaning unsigned int. When porting this code, especially to small 8-bit plat-
forms, unsigned int might not be 32-bits wide. It might be only 16-bits wide
or even merely 8-bits wide. In such cases, unsigned int is not large enough to
contain the integer value 10,006,721 and the initialization is potentially confusing
(or even incorrect).

We will now slightly modify the initialization of prime_number in order to
improve coding integrity. In particular,

2These macros have been available in the C header file <stdint.h> since C99 and in the C++
header file <cstdint> since C++11.

36 3 An Easy Jump-Start in Real-Time C++

#include <cstdint>

// Here, the macro UINT32_C() is clearly formulated.
constexpr std::uint32_t prime_number =
UINT32_C(10’006’721);

In this case, the initialization is unequivocal and clearly formulated. The macro
UINT32_C() is guaranteed to handle all unsigned 32-bit integer values within the
full range of the data type from 0 . . . 4,294,967,295.

3.3 The bool Type

C++ includes a built-in Boolean type bool that has two and only two possible
values, true and false. In C++, the result of a Boolean test has the type bool
and its value is either true or false. Using C++’s built-in Boolean type can
improve the clarity of logic and simplify coding.

The code below, for instance, uses C++’s built-in Boolean type bool in logical
statements.

bool valid();
bool login();
void start_session();

void do_something()
{
// This Boolean test yields true or false.
const bool session_is_ok = (valid() && login());

// This tests if session_is_ok == true.
if(session_is_ok)
{
start_session();

}
}

www.allitebooks.com

http://www.allitebooks.org

3.4 Organization with Namespaces 37

3.4 Organization with Namespaces

C++ supports namespaces. Namespaces can be used for improving program organi-
zation and code readability. Namespaces can optionally be employed to correspond
to different parts or functional groups of the software. Namespaces were first intro-
duced in Sect. 1.7.

The code below, for example, uses C++ namespaces to organize several parts of
the microcontroller abstraction layer (MCAL) in the software architecture.3

// Namespace for the microcontroller abstraction layer.
namespace mcal
{
// The mcal initialization.
void init();

// The general purpose timer stuff in the mcal.
namespace gpt
{
void init();
std::uint32_t get_time_elapsed();

}

// The ADC stuff in the mcal.
namespace adc
{
void init();
std::uint16_t read_value(const unsigned);

}
}

// Initialize the mcal.
// Note the clean organization with namespaces.
void mcal::init()
{
mcal::gpt::init();
mcal::adc::init();

}

An unnamed namespace (i.e., an anonymous namespace) can be used for file-
level localization. For example,

3See Sect. 1.6 for the first formal mention of the MCAL in this book and also Sect. B.2 for addi-
tional details on software architecture.

http://dx.doi.org/10.1007/978-3-662-47810-3_1
http://dx.doi.org/10.1007/978-3-662-47810-3_1

38 3 An Easy Jump-Start in Real-Time C++

namespace
{
unsigned local_counter;

}

3.5 Basic Classes

It is not difficult to start working with class types in C++. As a first step, simple
C-style structures can be replaced with C++ classes or structures having just a con-
structor, a few data members and possibly some simple functions. To keep things
easy at first, it may be preferable to avoid using inheritance and runtime polymor-
phism. One can, and really should, use these powerful object-oriented features when
confident enough to do so in order to make full use of C++. Additional information
on classes and object-oriented programming can be found in Chap. 4.

The class below, for instance, encapsulates an unsigned integer coordinate point
located in the first quadrant of two-dimensional Cartesian space R2.

#include <cstdint>

// An unsigned xy-coordinate point with some geometry.
class point
{
public:
std::uint8_t x;
std::uint8_t y;

point(const std::uint8 x_ = UINT8_C(0),
const std::uint8 y_ = UINT8_C(0)) : x(x_),

y(y_)
{ }

std::uint16_t squared_euclidean_distance() const
{
// Squared Euclidean distance from the origin.
const std::uint16_t x2 = std::uint16_t(x) * x;
const std::uint16_t y2 = std::uint16_t(y) * y;

return x2 + y2;
}

};

http://dx.doi.org/10.1007/978-3-662-47810-3_4

3.5 Basic Classes 39

point p1;

point p2
{
UINT8_C(31),
UINT8_C(47)

};

// The squared Euclidean distance d1 is 0.
std::uint16_t d1 = p1.squared_euclidean_distance();

// The squared Euclidean distance d2 is 3,170.
std::uint16_t d2 = p2.squared_euclidean_distance();

3.6 Basic Templates

C++ templates use the same code for different types. Templates can reduce the effort
of code upkeep and eliminate redundant sources of error. C++ templates also allow
for scalability. When beginning with templates, it may be preferable to keep tem-
plate depth and subroutine complexity low. C++ templates are described in detail in
Chap. 5.

The code below, for instance, implements a template subroutine for computing
the sum of two objects.

template<typename T>
T add(const T& a, const T& b)
{
return a + b;

}

The class below, for instance, implements a signed or unsigned xy-coordinate
point in all four quadrants of two-dimensional Cartesian space R2. This class is
similar to the one shown in the previous section, but it is implemented as a template
class with potentially signed or unsigned xy-components.

#include <cstdint>

// Template version of the x-y point class.

template<typename short_type,
typename long_type>

http://dx.doi.org/10.1007/978-3-662-47810-3_5

40 3 An Easy Jump-Start in Real-Time C++

class point
{
public:
short_type x;
short_type y;

point(const short_type& x = short_type(),
const short_type& y = short_type()) : x(x_),

y(y_)
{
}

long_type squared_euclidean_distance() const
{
// Squared Euclidean distance from the origin.
const long_type x2 = long_type(x) * x;
const long_type y2 = long_type(y) * y;

return x2 + y2;
}

};

point<std::int16_t, std::int32_t> p
{
INT16_C(-2129),
INT32_C(+5471)

};

std::int32_t d = p.squared_euclidean_distance();
// 11,647,759

3.7 nullptr Replaces NULL

C++ offers the nullptr keyword (since C++11). The nullptr keyword elim-
inates the need for redundant and potentially conflicting definitions of NULL or
testing with possibly awkward hand-written zero-pointers.

The code below, for example, uses the nullptr keyword to test if a pointer to
some object, a something*, is non-zero.

3.7 nullptr Replaces NULL 41

class something
{
public:
something() { }

};

namespace
{
// Default initialized to nullptr (i.e., 0).
something* ps;

}

void do_something()
{
// Any kind of zero pointer equals nullptr.
if(ps == nullptr)
{
// Initialize ps.
// ...

}

// Do something with ps.
// ...

}

3.8 Generalized Constant Expressions with constexpr

Compile-time constants can be defined with constexpr or by using integral class
members of type static constexpr or (the older) static const.4 As briefly
mentioned in Sect. 1.11, constants defined this way are known at compile time and
have clearly defined type information.

The code below depicts various ways to use the constexpr keyword to make
compile-time constants.

// A compile-time constant version number.
constexpr unsigned int version = 3U;

// A compile-time floating-point value.
constexpr float pi = 3.1415926535’8979323846F;

4The constexpr keyword has been available since C++11.

http://dx.doi.org/10.1007/978-3-662-47810-3_1

42 3 An Easy Jump-Start in Real-Time C++

The constexpr keyword can make compile-time constants from a wider vari-
ety of things than the original const keyword.5 In particular, constexpr can
also be used to define subroutines adhering to low-complexity constraints, certain
constant-valued aggregates such as std::arrays (Sect. 3.11), and member vari-
ables of class types.

#include <array>

// A compile-time constant function of low complexity.
constexpr int three() { return 3; }

// A constant array of integers.
constexpr std::array<int, 3U> my_array
{
{ 1, 2, 3 }

};

struct version_information
{
// A compile-time constant member variable.
static constexpr unsigned version = 3U;

};

3.9 static_assert

The C++ compiler can perform checks on Boolean expressions that are known at
compile time using the static_assert facility. There are additional details on
static_assert in Sect. A.4.

The code below, for instance, uses static_assert to ensure that the program
version is high enough. The test with static_assert is performed at compile
time.

constexpr unsigned int version = 3U;

// Print an error if version is less than 2.
static_assert(version >= 2U, "Version is too low!");

5Both the const keyword as well as the constexpr keyword are available for declaring con-
stant symbols for various use cases in C++11 and beyond.

3.10 Using <limits> 43

3.10 Using <limits>

The C++ standard library includes portable and convenient numeric limits in its
<limits> header. These can be used for obtaining and querying the limits of
built-in types or also be extended (specialized) for user-defined types. The classes in
<limits> are templates and, as mentioned above, it is common to implement tem-
plate specializations of std::numeric_limits for custom user-defined types.
The <limits> library is described in greater detail in Sect. A.5

The code below uses some members of std::numeric_limits to obtain
and check information on limits for built-in integral and floating-point types.

#include <limits>

// This is 31 on a system with 4 byte int.
// The sign bit is not included in digits.
constexpr int n_dig = std::numeric_limits<int>::digits;

// This is 2,147,483,647 if int is 4 bytes.
constexpr int n_max = std::numeric_limits<int>::max();

// Compile-time check if float conforms to IEEE-754.
static_assert(std::numeric_limits<float>::is_iec559,

"float is not IEEE754 conforming!");

3.11 std::array

Perhaps the simplest STL container is std::array. In C++, std::array can
be used as a drop-in replacement for C-style arrays. Since std::array is a
sequential STL container, it offers the benefits of iterators, container size, compati-
bility with STL algorithms, etc.

Using the std::array container is key for microcontroller programming
because std::array has the added benefit of size known at compile-time. The
compiler can, therefore, allocate storage for an std::array where it needs to—
on the stack, in static memory, on-the-fly for an std::array declared as a
constexpr, etc. Using std::array provides the comfort of a sequential con-
tainer while simultaneously reducing concerns about potential memory fragmenta-
tion from dynamic memory allocation and the complexity of allocators (Sect. 10.3).

http://dx.doi.org/10.1007/978-3-662-47810-3_10

44 3 An Easy Jump-Start in Real-Time C++

The code below creates a login key consisting of three 8-bit unsigned integers.

#include <array>
#include <cstdint>

// A login key stored in an std::array.
constexpr std::array<std::uint8_t, 3U> login_key
{
{
UINT8_C(0x01),
UINT8_C(0x02),
UINT8_C(0x03)

}
};

3.12 Basic STL Algorithms

Using STL algorithms in C++ can significantly reduce coding effort and elimi-
nate potential sources of error from hand-written code sequences. It is easy to get
started with a few intuitive and easy-to-use STL algorithms such as simple mini-
max operations std::min() and std::max(), mutating (i.e. change-causing)
sequence operations like std::fill() and std::copy(), or non-modifying
sequence operations including std::all_of(), std::for_each(), etc. See
also Sects. 5.8, 6.17, and A.6–A.8 in the C++ tutorial for more information on STL
algorithms.

The code below, for example, initializes (and re-initializes) four unsigned integer
counters in an array using the std::fill() algorithm.

#include <algorithm>
#include <array>
#include <cstdint>

namespace
{
// Four counters.
std::array<std::uint8_t, 4U> counters;

}

void do_something()
{
// (Re-)Initialize the counters with std::fill().
std::fill(counters.begin(),

http://dx.doi.org/10.1007/978-3-662-47810-3_5
http://dx.doi.org/10.1007/978-3-662-47810-3_6

3.12 Basic STL Algorithms 45

counters.end(),
static_cast<std::uint8_t>(0U));

// Do something with the counters.
// ...

}

3.13 <numeric>

The STL’s <numeric> library has some particularly useful algorithms for micro-
controller programming including, among others, std::accumulate() and
std::inner_product() which can be used for computations such as check-
sums, vector-matrix mathematics, etc. The functions in <numeric> can reduce
code complexity and bring the heart of the algorithm at hand into clear focus. See
Sect. A.8 for further information on <numeric>.

The example below computes the inner product of two arrays.

#include <array>
#include <numeric>

const std::array<int, 3U> u
{
{ 1, 2, 3 }

};

const std::array<int, 3U> v
{
{ 4, 5, 6 }

};

const int uv = std::inner_product(u.begin(),
u.end(),
v.begin(),
0);

// The result is 32.

The result is
(
4 + 10 + 18

) = 32. Readers familiar with physics or vector
mathematics might recognize this as the dot-product

�u · �v = uv (3.1)

in three-dimensional Cartesian space R3, the result of which is a scalar.

46 3 An Easy Jump-Start in Real-Time C++

3.14 atomic_load() and atomic_store()

The C++ standard library includes a collection of safe and portable atomic opera-
tions in its <atomic> library. The <atomic> library is large with many func-
tions. It is, however, possible to get an easy start in the <atomic> library with two
simple functions, std::atomic_load() and std::atomic_store().

The code below, for example, uses std::atomic_load() to perform a con-
sistent read of the 32-bit system-tick on an 8-bit CPU. Here, it is assumed that
system_tick is modified in a timer interrupt service routine, thereby making a
consistent read via means such as std::atomic_load() mandatory.

#include <atomic>
#include <cstdint>

namespace
{
// The one (and only one) 32-bit system-tick.
volatile std::uint32_t system_tick;

}

std::uint32_t get_time_elapsed()
{
// Ensure 32-bit consistency on an 8-bit CPU.
return std::atomic_load(&system_tick);

}

3.15 Digit Separators

The single quote character is used for separating groups of digits in numeric literals.
Digit separators were introduced with C++14.

Consider initializing an integer number with many digits such as 1 trillion, in
other words 1012. In particular,

constexpr std::uint64_t one_trillion =
UINT64_C(1’000’000’000’000);

Digit separators make the initialization of one_trillion easy-to-read because
groups of three zeros can be readily identified.

www.allitebooks.com

http://www.allitebooks.org

3.15 Digit Separators 47

Digit separators can also be used with floating-point numeric literals. The code
below, for example, initializes a floating-point representation of Archimedes’ con-
stant π .6

constexpr long double pi =
3.1415926535’8979323846’2643383279’5028841972L;

Here, we use the built-in floating-point type long double. The floating-point
initialization is carried out with 40 decimal digits of precision after the decimal
point. Digit separators are used between groups of ten digits. This makes the initial-
ization more legible and appear in a well-organized fashion.

The granularity of digit separators is not restricted to clusters of three digits or ten
digits or any other grouping. Digit separators can be used with arbitrary numbers of
digits between the separations. As such, digit separators can improve the readability
of numeric literals according to the standardizations of different locales.

3.16 Binary Literals

Binary literals are numeric literals written in binary form using any of the prefixes
0b, 0B, b or B. Binary literals were introduced with C++14.

The following code, for example, initializes easy-to-recognize constant unsigned
integer values using binary literals.

constexpr std::uint8_t one = UINT8_C(0b1);

constexpr std::uint8_t seven = UINT8_C(0b0000’0111);

In microcontroller programming, binary literals are particularly useful because
hardware registers often have detailed bit-level descriptions. Manipulating hardware
registers via binary literals can make it easier to understand which register bits will
be set and cleared. The following example uses a binary literal numeric constant to
switch the value of portb.5 from low to high.

void do_something()
{
// The address of the portb register.
constexpr std::uint8_t portb = UINT8_C(0x25);

// Switch portb.5 from low to high.

reinterpret_cast<volatile std::uint8_t>(portb)
|= UINT8_C(0b0010’0000);

}

6See also Sect. 12.2 and [1] for more information on mathematical constants.

http://dx.doi.org/10.1007/978-3-662-47810-3_12

48 3 An Easy Jump-Start in Real-Time C++

3.17 User-Defined Literals

User-defined literals provide a syntax for applying custom suffixes to literal values.
The following code, for instance, uses the specialized user-defined suffixes inch,
foot and yard for conversions from traditional length units to units of meters in
the MKS system.7

inline constexpr float
operator"" inch(long double inches)
{
return static_cast<float>(inches * 0.0254L);

}

inline constexpr float
operator"" foot(long double feet)
{
return static_cast<float>(feet * 0.294L);

}

inline constexpr float
operator"" yard(long double yards)
{
return static_cast<float>(yards * 0.9144L);

}

With these suffixes, lengths expressed as literal values in inches, feet and yards
are converted to meters at compile time. For example,

constexpr float
one_foot = 12.0inch; // 0.3048m

constexpr float
basketball_player = 7.0foot; // 2.058m

constexpr float
football_field = 100.0yard; // 91.44m

Here, we convert one_foot to 0.3048m, basketball_player to 2.058m
and football_field to 91.44m.

7The conversions are approximate, based on 3–4 decimal digits of precision resulting from com-
mon conversion factors. As such, the conversions here are not carried out with full scientific preci-
sion.

3.17 User-Defined Literals 49

Several user-defined literals were standardized with C++14. In particular, the
standard library supports a string suffix s for character string literals such as
std::string. For example,

#include <string>

std::string str = "creativity"s;

The standardized chronological suffixes are h, min, s, ms, us and ns. They are
used for expressing time-spans in common units. The standardized chronological
suffixes are defined in <chrono>. For instance,

#include <chrono>

std::chrono::duration time_span = 10ms;

For the suffix s, the theme of the use-case (be it character string or time-span)
can be properly identified by the compiler. This renders it non-ambiguous and con-
textually meaningful for use with both literal strings as well as literal chronological
values.

Reference

1. S.R. Finch, Mathematical Constants (Cambridge University Press, Cambridge, 2003)

Chapter 4
Object-Oriented Techniques
for Microcontrollers

Object-oriented programs are built from various class objects that intuitively embody
the application through their actions and interrelations among each other. This
chapter introduces object-oriented real-time C++ methods using classes for LEDs,
PWM signal generators and communication interfaces.

4.1 Object Oriented Programming

Consider the application shown in Fig. 4.1.

Fig. 4.1 An application with four LEDs is shown

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_4

51

52 4 Object-Oriented Techniques for Microcontrollers

This application has four LEDs and two peripheral timers used as pulse-width
modulated (PWM) signal generators. The LEDs L0 and L1 are connected to port
pins P2.0 and P2.1, respectively. These LEDs have the same circuit as the one
shown previously in Chap. 1, Fig. 1.1. They are controlled with bit manipulation of
the microcontroller’s port P2, as introduced in the LED program of Sect. 1.1.

The LEDs L2 and L3 are connected to PWM signals generated from peripheral
timers in the microcontroller. L2 is connected to timer0 and L3 is connected to
timer1. Setting the duty cycle of the PWM signal to 0 or 100 % switches the
corresponding LED off or on, respectively. Intermediate duty cycles with values
greater than 0 % but less than 100 % can be used for dimming the corresponding
LED. Dimming is an additional feature that an LED on a simple digital I/O pin does
not have.

We will now design a class hierarchy for the LED objects in Fig. 4.1. This is the
class hierarchy that the developer in Fig. 4.1 is considering. The two types of LEDs
can be represented with a base class and two derived classes. The base class is
called led_base. The two derived classes are called led_port and led_pwm.

One potential implementation of the led_base class is shown below.

class led_base
{
public:
virtual void toggle() = 0; // Pure abstract.
virtual ~led_base() { } // Virtual destructor.

// Interface for querying the LED state.
bool state_is_on() const { return is_on; }

protected:
bool is_on;

// A protected default constructor.
led_base() : is_on(false) { }

private:
// Private non-implemented copy constructor.
led_base(const led_base&) = delete;

// Private non-implemented copy assignment operator.
const led_base& operator=(const led_base&) = delete;

};

http://dx.doi.org/10.1007/978-3-662-47810-3_1
http://dx.doi.org/10.1007/978-3-662-47810-3_1

4.1 Object Oriented Programming 53

The public interface of the led_base class has two virtual functions, the virtual
toggle() function and a virtual destructor called ~led_base().

In object-oriented programming, a derived class provides its own specific version
of a virtual function in its base class. This is called a function override. When calling
a member function on a base class pointer or reference to an object, the virtual
function in the derived class will be used.

This is the virtual function mechanism in C++, and it is an essential part of
dynamic polymorphism in object-oriented programming.

In dynamic polymorphism, derived classes in a class hierarchy can be manipu-
lated with a common interface yet still exhibit specialized behavior. In our case here,
it means that any kind of LED derived from led_base can toggle() in its own
way.

In general, the destructor of a derived class should be virtual. This ensures that
the proper derived class destructor is called when destroying an object via a base
class pointer.

For more information on virtual function overrides and virtual destructors, con-
sult Eckel [4], Chap. 15, Sect. “virtual functions” and also Sect. “Destructors and
virtual destructors”.

Another interesting feature of the led_base class is its protected constructor.
The protected constructor can not be called from any other parts of the program
except classes derived from led_base. This makes sense because led_base is
intended to be just that, a base class. No one is actually supposed to create instances
of led_base. Furthermore, if one were to try, the compiler would forbid it.

Now that we have the led_base class, we can derive another class from it
called led_port.

class led_port : public led_base
{
public:
typedef std::uint8_t port_type;
typedef std::uint8_t bval_type;

led_port(const port_type p,
const bval_type b) : port(p),

bval(b)
{
// ...

}

virtual ~led_port() { }

virtual void toggle()
{
// Toggle the LED.

54 4 Object-Oriented Techniques for Microcontrollers

reinterpret_cast<volatile bval_type>(port)
^= bval;

// Toggle the is_on indication flag.
is_on = !is_on;

}

private:
const port_type port;
const bval_type bval;

};

The led_port class is specifically designed to toggle LEDs connected to a
port pin. In our case here, this means L0 and L1 in Fig. 4.1. The led_port class
is similar to the led class from the LED program in Sect. 1.1. There is nonetheless
an important distinction between the two. The led_port class is derived from
led_base.

Take a moment to notice how both led_base as well as led_port have
the virtual toggle() function. This is a common interface that is shared by
led_port and led_base.

A virtual override in a derived class does not need to explicitly use the virtual
keyword, unless this is required for further derived classes. Some developers feel
that supplying the optional virtual keyword in a derived class is redundant and
should be avoided. Others consider it to be a helpful reminder that the function is
virtual and is, in fact, overriding a function with the same signature in its base class.

For the LEDs on PWM signal generators in Fig. 4.1, we need an LED class that
encapsulates a second kind of LED driver. Instead of manually switching an LED
on and off by toggling a port pin, this class controls the brightness of its LED with
a PWM signal generator. In particular,

class led_pwm : public led_base
{
public:
explicit led_pwm(pwm* p) : my_pwm(p) { }
virtual ~led_pwm() { }

virtual void toggle()
{
// Toggle the LED with the PWM signal.
is_on = (my_pwm->get_duty() > 0U);

my_pwm->set_duty(is_on ? 0U : 100U);

is_on = !is_on;

http://dx.doi.org/10.1007/978-3-662-47810-3_1

4.1 Object Oriented Programming 55

}

// This LED class also supports dimming.
void dimming(const std::uint8_t duty)
{
my_pwm->set_duty(duty);
is_on = (duty != 0U);

}

private:
pwm* my_pwm;

};

Just like the led_port class, led_pwm has its own override of the toggle()
function. This is led_pwm’s specialized way to toggle(). Notice in the imple-
mentation of the toggle() member how the led_pwm class uses its private vari-
able my_pwm for manipulating the PWM signal generator connected to its corre-
sponding LED.

In addition to the toggle() function, led_pwm also has a dimming() func-
tion. As mentioned above, dimming can be used to set intermediate values of LED
brightness that lie between 0 and 100 %. There is additional logic in the toggle()
algorithm that synchronizes dimming with toggling. If the PWM signal has any non-
zero duty cycle upon entering the toggle() function, then the LED is assumed to
be on and it will be switched off by setting the duty cycle to 0 %. If the PWM signal
has a duty cycle of 0 %, then toggle() switches the LED on by setting the duty
cycle to 100 %.

The constructor of the led_pwm class is declared with the explicit keyword.
This ensures that the constructor can only be used if the input parameters are sup-
plied and prevents potential unintended automatic compiler conversion of the class
to another type. See also Eckel [4], Chap. 12, Sect. “Preventing constructor conver-
sion”.

The PWM signal generators can be encapsulated with a pwm class. In particular,

class pwm
{
public:
explicit pwm(const int channel) : duty_cycle(0U) { }
~pwm() { }

void set_duty(const std::uint8_t duty)
{
// Limit the duty cycle to 0...100.
duty_cycle = std::min<std::uint8_t>(duty, 100U);

56 4 Object-Oriented Techniques for Microcontrollers

// Set the duty cycle in the PWM hardware.
// ...

}

std::uint8_t get_duty() const
{
return duty_cycle;

}

private:
std::uint8_t duty_cycle;

};

The pwm class has a simple public interface consisting of its ctor and two func-
tions, set_duty() and get_duty(). These two functions are designed for
setting and retrieving the value of the pwm’s duty cycle. In our example here, we
assume that the duty cycle can be set from 0 . . . 100 % in 101 discrete steps. The
microcontroller-specific code sequences required for initializing the PWM hard-
ware and setting the duty cycle are not shown. These are treated in greater detail
in Sect. 9.4.

4.2 Objects and Encapsulation

Objects, through their actions and relations among each other (both concrete as well
as abstract), compose the functionality of an object-oriented application. Objects
for microcontrollers usually encapsulate electronic sub-circuits or control functions
such as digital filters, regulation loops, communication devices, measurement equip-
ment, graphical instruments, etc.

The LED class hierarchy and the pwm class, for example, encapsulate the elec-
tronic sub-circuits shown in Fig. 4.1 by uniting their respective functionalities
with their internal data. In particular, the code sample below shows led_port,
led_pwm and pwm objects.

namespace
{
// Two LEDs on port2.0 and port2.1
led_port led0
{
mcal::reg::port2,
mcal::reg::bval0

};

led_port led1

http://dx.doi.org/10.1007/978-3-662-47810-3_9

4.2 Objects and Encapsulation 57

{
mcal::reg::port2,
mcal::reg::bval1

};

// Two PWMs on channels timer0 and timer1.
pwm pwm0 { 0 };
pwm pwm1 { 1 };

// Two LEDs connected to pwm0 and pwm1.
led_pwm led2 { &pwm0 };
led_pwm led3 { &pwm1 };

}

This code has instances of all four LEDs (L0–L3) and the two PWM signals from
Fig. 4.1. The pwm instances, objects themselves, are used to initialize the led_pwm
objects.

Now that we have our LEDs, it is straightforward to toggle them. For example,

void do_something()
{
// Toggle L0-L3.
led0.toggle();
led1.toggle();
led2.toggle();
led3.toggle();

}

This code toggles led0–led3. Notice how the uniform toggle() interface
makes it convenient to toggle both kinds of LEDs using the same function call. This
is an example of object-oriented microcontroller programming in C++.1

4.3 Inheritance

Consider class inheritance in object-oriented C++ programming. For example,

class led_port : public led_base
{
// ...

};

1This code does not yet make use of the runtime virtual function mechanism. We will re-examine
this example in association with dynamic polymorphism and the runtime virtual function mecha-
nism in Sect. 4.4.

58 4 Object-Oriented Techniques for Microcontrollers

A derived class inherits data members and methods from its base(s) and can
use them subject to access control. For example, led_port can use led_base’s
public and protected members. In particular, led_port can directly manipulate
led_base’s protected member is_on.

class led_port : public led_base
{
public:
virtual void toggle()
{
// Toggle the LED.

reinterpret_cast<volatile bval_type>(port)
^= bval;

// Toggle the is_on indication flag.
is_on = !is_on;

}

// ...
};

The toggle() function also toggles the state of is_on from false to true
and vice versa after toggling the LED. Since led_port is publicly derived from
led_base, it is allowed to manipulate the protected member variable of its base
class. Clients of classes derived from led_base can query the state of is_on by
calling the state_is_on() method.

Each successively more derived class adds to the inheritance chain. For exam-
ple, led_port and led_pwm add their individualized toggle() capabilities. In
addition, led_pwm adds its dimming function. We could potentially derive another
kind of PWM-based LED class, say led_pwm2, from led_pwm. This new class
would inherit both the toggle() function as well as the dimming() function—
and could even add other functions of its own.

As mentioned earlier in Sect. 1.4, inheritance has three access controls: public,
protected and private. When not explicitly specified, the default inheritance level of a
class is private. The default inheritance level of a struct is public. Private inheritance
is less common, but can be useful. The noncopyable class of Sect. 15.2 shows an
interesting example of private inheritance used to control the access level of class
copying. The access level of inheritance allows for fine-tuning copy semantics and
hiding private data in class hierarchies.

Inheritance runs through the class hierarchy, providing for distribution of pro-
gram complexity. Armed with the right object granularity and prudent design of
class hierarchies, it is possible to build powerful and expressive object-oriented
microcontroller programs in C++.

http://dx.doi.org/10.1007/978-3-662-47810-3_1
http://dx.doi.org/10.1007/978-3-662-47810-3_15

4.4 Dynamic Polymorphism 59

4.4 Dynamic Polymorphism

Dynamic polymorphism, or runtime polymorphism, is one of the most powerful
tools in object-oriented C++ programming. Dynamic polymorphism in C++ uses a
runtime virtual function mechanism to call methods of a derived class by accessing
them from a base class pointer or reference. For example,

void led_toggler(led_base* led)
{
// Use dynamic polymorphism to toggle
// a base class pointer.
led->toggle();

}

void do_something()
{
led_toggler(&led0); // Toggle an led_port.
led_toggler(&led1); // Toggle an led_port.
led_toggler(&led2); // Toggle an led_pwm.
led_toggler(&led3); // Toggle an led_pwm.

}

In this code, led_toggler() uses dynamic polymorphism on a base class
pointer (led_base∗) to call the toggle() function for two different kinds of
LED objects (i.e., led_port and led_pwm). The virtual function mechanism
selects the right toggle() function at runtime. The compiler has automatically
generated a small amount of object code for this.

In the calls to led_toggler() above, the compiler automatically downcasts
the led_port and led_pwm pointers to base class pointers. Explicit downcast is
possible, and exemplified below.

void do_something()
{
led_toggler(static_cast<led_base*>(&led0));
led_toggler(static_cast<led_base*>(&led1));
led_toggler(static_cast<led_base*>(&led2));
led_toggler(static_cast<led_base*>(&led3));

}

According to stylistic preferences and coding guidelines, some developers prefer
to supply the explicit downcast. Others consider a non-necessary downcast redun-
dant. They believe that it makes code “over-casted” and reduces legibility.

60 4 Object-Oriented Techniques for Microcontrollers

Dynamic polymorphism also works with a base class reference. For example,

void led_toggler(led_base& led)
{
// Use dynamic polymorphism to toggle
// a base class reference.
led.toggle();

}

void do_something()
{
led_toggler(led0); // Toggle an led_port.
led_toggler(led1); // Toggle an led_port.
led_toggler(led2); // Toggle an led_pwm.
led_toggler(led3); // Toggle an led_pwm.

}

The microcontroller programmer needs to be aware that dynamic polymorphism
has slight runtime and size costs. When designing classes and class hierarchies, one
should be sure that the benefits of dynamic polymorphism are worth its overhead.
The following section provides more detail on this.

Dynamic polymorphism and the runtime virtual function mechanism are pow-
erful object-oriented methods. They allow specialized objects that share a common
inheritance to be treated identically while still retaining their own specific character-
istics. This allows for enormous design flexibility because a uniform interface can
be used throughout the entire class hierarchy.

4.5 The Real Overhead of Dynamic Polymorphism

One may wonder how much overhead is associated with dynamic polymorphism
and the runtime virtual function mechanism in C++. Since the implementation
details of the virtual function mechanism depend on the compiler’s internals, there
is no exact answer to this question. In general, though, the best compilers in the
market have remarkably low overhead for dynamic polymorphism.

We will now examine a scheme commonly used to implement the runtime virtual
mechanism in C++. Many compilers store the addresses of virtual functions in a
compiler-generated table at a location that could be either in static RAM or program
code. A general rule-of-thumb, then, is that each virtual function of a class costs
one chunk of memory large enough to hold a function pointer. Consider an 8-bit
platform. If a function pointer requires two bytes on this platform and a derived class
has three virtual functions, then the implementation of the derived class requires six
bytes of storage for its virtual function table.

4.5 The Real Overhead of Dynamic Polymorphism 61

Calling a virtual function is fast because all the compiler needs to do is select
the proper entry from the virtual function table and call it. This is only slightly
slower than a normal function call. In addition, the call overhead of a virtual func-
tion remains the same regardless of how many levels of inheritance there are. It is
always the same effort for accessing the virtual function table. Readers interested in
additional details on the overhead associated with the runtime virtual function mech-
anism can consult FAQ 20.4 of Parashift [1] or Eckel [4], Chap. 15, Sect. “Under
the hood”.

Even though modern C++ compilers have little overhead associated with dynamic
polymorphism, low-level drivers that are called very often (e.g. in high-frequency
interrupts) may be unsuited for dynamic polymorphism. Procedural methods or sta-
tic polymorphism (Sect. 5.7) could be better options for extremely time critical code.
Functions in the application layer that are less time critical can greatly benefit from
well-designed class hierarchies because the advantages of dynamic polymorphism
usually far outweigh its modest costs.

4.6 Pure Virtual and Abstract

Examination of the led_base class implementation reveals that its toggle()
function does not have a body. Rather, the toggle() function of led_base is
a so-called pure virtual function, implemented with the unmistakably recognizable
syntax “= 0”. In other words,

class led_base
{
public:
virtual void toggle() = 0; // Abstract.

// ...
};

A class that has one or more pure virtual methods is called an abstract class.
An abstract class is the generalized notion of something, as opposed to a concrete
example of a specific thing. As such, the pure virtual functions of an abstract class
are not intended to be called. Instead, pure virtual functions define a mandatory
interface for derived classes. In other words, pure virtual functions define a sort of
blueprint for derived classes.

Consider an abstract base class. Any to-be-instantiated class derived from it
must implement overrides for each pure virtual method of its base(s). Otherwise,
no objects of the derived class can be instantiated.

For example, both led_port as well as led_pwm are derived from the abstract
led_base class. Therefore, both of them must provide a member override for

http://dx.doi.org/10.1007/978-3-662-47810-3_5

62 4 Object-Oriented Techniques for Microcontrollers

toggle(). In this way, C++ provides clear language semantics for data abstrac-
tion.

Say we derive a class called led_no_toggle from led_base but fail to
include the required virtual toggle() function. If anyone attempted to instantiate
an instance of led_no_toggle, there would be a compiler error. In particular,

class led_no_toggle : public led_base
{
public:
led_no_toggle() { }
virtual ~led_no_toggle() { }

// Does not have a toggle function.
// ...

};

namespace
{
led_no_toggle led_no; // Compiler error!

}

As mentioned above, an abstract object is an idealization—not intended to be
created. It is usually a good idea to protect the constructor of an abstract class type.
This is why the constructor of led_base is protected. The protected constructor
ensures that no one is able to create led_base objects. Yet the constructor is only
protected, and not private. Publicly derived classes are, therefore, granted access to
the base class constructor.

A derived class can, itself, contribute methods to the abstract interface by adding
pure virtual functions of its own. However, it is always important to remember that
class types with pure virtual functions are not intended to be instantiated and hence
will lead to a compiler error.

4.7 Class Relationships

There is a variety of well-known class relationships in object-oriented design. In
fact, we have already worked with some of them without even explicitly mention-
ing them. Possibly the most important class relationship is the is-a relationship for
which a derived class is-a subclass of a base class. In other words, led_port is-a
subclass of led_base, and led_pwm also is-a subclass of led_base.

Another special relationship is that of has-a, in the sense of having something.
The led_pwm class exhibits the has-a relationship with its member variable pwm.
In other words, the led_pwm class has its own PWM signal generator. Since it
has its own pwm object, it can use this for the internal workings of the toggle()
function.

4.7 Class Relationships 63

There is also the uses-a relationship. The relationship of using usually requires
some way to pass the thing-being-used to its user. This can be done, for example, via
function parameter or by accessing an existing instance through pointer or reference.

The difference between has-a and uses-a can be subtle, but important. In partic-
ular, if led_pwm were to use a pwm and not have one, then its toggle() function
would need an input pwm pointer or reference parameter. Note, though, that this
would break the uniformity of the toggle() interface within the class hierarchy.

We will now visualize these important class relationships with a few simple code
snippets.

The led_pwm class is-a specialized kind of led_base.

class led_pwm : public led_base
{
// led_pwm is-a led_base.
// ...

};

The led_pwm class has-a class-owned pwm.

class led_pwm : public led_base
{
// ...

private:
// led_pwm has-a pwm.
pwm* my_pwm;

};

Perhaps in a different implementation, the led_pwm class might use-a PWM
signal. In this case, a pointer to a PWM signal, in other words a pwm∗, could be
used as a subroutine input parameter to the toggle() function instead of being
a class member. Even though this would wreck the uniformity of the toggle()
interface in our example, the use-a relationship can be a useful class relationship in
many other cases.

class led_pwm : public led_base
{
// ...

// This led_pwm uses the use-a relationship
// to toggle.
virtual void toggle(pwm* p)
{
// ...

}
};

64 4 Object-Oriented Techniques for Microcontrollers

Careful consideration of class relationships is necessary for successful object-
oriented design because class relationships strongly influence the efficiency and
cleanliness of the interfaces in a software project. A thorough description of class
relationships can be found in Sect. 6.4 in Coplien [2]. Additional information on the
is-a relationship is available in Eckel [4], Chap. 1, Sect. “Is-a vs. is-like-a relation-
ships”.

4.8 Non-Copyable Classes

The led_base class has private yet non-implemented declarations of a copy con-
structor and a copy assignment operator. In particular,

class led_base
{
public:
// ...

private:
// Private non-implemented copy constructor.
led_base(const led_base&) = delete;

// Private non-implemented copy assignment operator.
const led_base& operator=(const led_base&) = delete;

};

This means that the led_base class and its derived classes are non-copyable.
Declaring a private copy constructor and a private copy assignment operator and
qualifying them with the delete keyword tells the compiler that a given class and
its derived classes should be treated as strictly non-copyable without exception.

When using non-copyable classes, the compiler will issue an error for any code,
including compiler-generated code, that tries to copy the class. This technique is
often done on purpose in order to eliminate the risk of both intentional as well as
unintentional attempts to copy a class instance.

Explicitly making certain classes non-copyable can be particularly useful in real-
time C++ because some classes or class instantiations may be intimately linked to a
particular hardware unit or peripheral device. For instance, an LED on a port pin, a
PWM signal on a timer output or a communication interface such as a serial UART
may be bound to a unique microcontroller peripheral resource.

If only one instance of a class should be allowed to use a single resource, then
non-copyable semantics can reduce the risk of unintentionally using the resource
with multiple class instances. Non-copyable semantics can also improve intuitive
clarity in the code by unmistakably indicating if a class is intended to be copied
or not.

4.8 Non-Copyable Classes 65

In fact, the non-copyable mechanism is so widely established that some high-
reliability guidelines [8] recommend using it when appropriate. In addition, a stan-
dard C++ utility called noncopyable in Boost [3] has been invented to simplify
the semantics of making a class object non-copyable. See Sect. 15.2 for our own
version of the noncopyable utility.

Class copying is a rich topic involving issues such as eliminating reliance on
compiler generated default copy, deep-copy mechanisms for pointer members,
checking for self-assign, etc. For additional information on class copying, see
Eckel [4], all of Chap. 11 “References & the Copy-Constructor” and also Chap. 12,
Sect. “Overloading assignment”. Meyers [7] describes deep-copy mechanisms in
Item 11 and copy assignment in Items 15, 16 and 17.

4.9 Constant Methods

We have already encountered several examples of constant member functions pre-
viously. For example, the toggle() function in the LED program of Sect. 1.1 and
the squared_euclidean_distance() member of the point structure in
Sect. 3.5 are both constant methods.

Constant member functions have read-only character regarding the member vari-
ables of a class. As such, they can not modify the value of any class member vari-
able. If there are good reasons to do so, however, a constant member function can
modify a non-constant variable if that variable is qualified with the mutable key-
word.

We will now examine an example of a richer class that has both constant as well
as non-constant member functions. Consider a communication class designed
to send and receive single-byte data frames.

extern "C"
void com_recv_isr() __attribute__((interrupt));

class communication
{
public:
communication() : recv_buf(0U),

has_recv(false) { }
~communication() { }

bool send_byte(const std::uint8_t by) const
{

reinterpret_cast<volatile std::uint8_t>(tbuf)
= by;

}

http://dx.doi.org/10.1007/978-3-662-47810-3_15
http://dx.doi.org/10.1007/978-3-662-47810-3_1
http://dx.doi.org/10.1007/978-3-662-47810-3_3

66 4 Object-Oriented Techniques for Microcontrollers

bool recv_ready() const { return has_recv; }

std::uint8_t recv_byte()
{
if(has_recv)
{

has_recv = false;
return recv_buf;

}

return 0U;
}

private:
static constexpr std::uint8_t tbuf = 0xAAU;
static constexpr std::uint8_t rbuf = 0xAEU;

std::uint8_t recv_buf;
bool has_recv;

communication(const communication&) = delete;
const communication& operator=(const communication&)
= delete;

friend
void com_recv_isr() __attribute__((interrupt));

};

The communication class is simple and versatile. It is designed for low-level
asynchronous communication with a microcontroller peripheral interface. With
slight modification, the communication class can be used with physical layers
such as SPITM, CAN [6], etc. The serial SPITM driver class in Sect. 9.5, for example,
is based on the communication class shown above.

For now, do not worry about the friend function com_recv_isr() nor about
its interrupt __attributes__(). Class friends are described in greater detail in
Sect. 4.11, and additional information on interrupts and GCC’s language extensions
for them is provided in Sect. 9.2.2

Byte transmission is carried out with the send_byte() member using direct
memory access to write a to-be-transmitted byte to communication’s transmit
buffer tbuf. As such, send_byte() does not need to modify any class-internal
data and can be declared as const. In particular,

2In the example here, however, simplified interrupt attributes have been used for the sake of clarity.

http://dx.doi.org/10.1007/978-3-662-47810-3_9
http://dx.doi.org/10.1007/978-3-662-47810-3_9

4.9 Constant Methods 67

class communication
{
public:
// ...

bool send_byte(const std::uint8_t by) const
{

reinterpret_cast<volatile std::uint8_t>(tbuf)
= by;

}
};

A client using a constant instance of class can only call constant members of the
class. For instance,

bool wakeup(const communication& com)
{
// OK. Call a const member of a const reference.
return com.send_byte(0x12U);

}

In this code, wakeup() uses a constant communication reference, in other
words const communication&, to send the wake-up pattern. The wake-up is
sent with a call to the constant send_byte() member. This compiles without
error.

Consider the implementation of a communication login that sends the wake-up
pattern 0x12 and expects to receive the login response 0x34. In particular,

bool login(const communication& com)
{
// OK. Call the const send_byte on a const reference.
const bool wakeup_is_ok = com.send_byte(0x12U);

if(wakeup_is_ok)
{
// Compiler error!
return (com.recv_byte() == 0x34U);

}
else
{
return false;

}
}

68 4 Object-Oriented Techniques for Microcontrollers

In login(), the call of the constant send_byte() member on the constant
communication class reference compiles without error. The attempted call of the
non-constant recv_byte() member, however, does not. The compiler issues an
error because calling a non-constant member on a constant object is not allowed.

In order to call recv_byte(), the reference to communication must be
made non-constant in the input parameter to the login() function. In other words,

bool login(communication& com)
{
// OK.
const bool wakeup_is_ok = com.send_byte(0x12U);

if(wakeup_is_ok)
{
// OK.
return (com.recv_byte() == 0x34U);

}
else
{
return false;

}
}

Many development guidelines recommend making member functions constant
whenever it makes sense to do so. This provides additional intuitive insight into how
a class and its interface are intended to be used. This is a part of what is generally
known as const-correctness in the literature.

There are no added runtime or storage costs associated with qualifying mem-
ber functions as const. So the microcontroller programmer can freely use con-
stant methods to improve program clarity without introducing undue resource
consumption.

4.10 Static Constant Integral Members

The communication class has two static constant integral data members, tbuf
and rbuf. We first encountered static constant integral members of a class in
Sect. 3.8. Similar to symbols defined with a preprocessor #define, static constant
integral members of class types are compile-time constants.

For effective C++ design, it is essential to understand that static constant integral
members have distinct advantages over preprocessor #defines. For example, sta-
tic constant integral members have a clearly defined type and name. They may, thus,
potentially have compiler symbol information. Symbols that have been defined with

http://dx.doi.org/10.1007/978-3-662-47810-3_3

4.10 Static Constant Integral Members 69

a preprocessor #define, on the other hand, are used exclusively by the preproces-
sor and lack these. Type and symbol information can be useful with a debugger or
when examining program contents in a linker map file (see also Sect. 6.5).

At the same time, static constant integral class members are guaranteed to be
known at compile time. Using them often eliminates the code overhead associated
with runtime address load or move operations by taking advantage of constant fold-
ing (Sect. 2.6). For further discussions of static constant integral members versus
preprocessor #defines, see Item 1 in Meyers [7].

4.11 Class Friends

Byte reception in the communication class of the previous section uses the
member function recv_byte(). This receive function does not directly retrieve
the byte by reading the UART’s hardware buffer register. Instead, recv_byte()
reads the software receive buffer, recv_buf. It thereby also checks and clears the
has_recv-flag. In this way, communication is designed for asynchronous byte
reception.

To provide a mechanism for asynchronous receive, communication uses a
friend subroutine called com_recv_isr(). As perhaps expected, the “isr”-part
of the friend subroutine’s name is, in fact, intended to indicate that this an interrupt
service routine.

extern "C"
void com_recv_isr() __attribute__((interrupt));

class communication
{
// ...

friend
void com_recv_isr() __attribute__((interrupt));

};

A friend of a class is allowed to access any class member variable or method
regardless of its access level, public, protected or private. Class friends can be
either global or local functions, member functions or even other class types. Note
that friend functions do not necessarily need to have C-linkage (qualified with
extern "C"). This is a characteristic of the particular example at hand which
uses a friend function that just so happens to be an interrupt service routine.

http://dx.doi.org/10.1007/978-3-662-47810-3_6
http://dx.doi.org/10.1007/978-3-662-47810-3_2

70 4 Object-Oriented Techniques for Microcontrollers

A possible implementation of com_recv_isr() is shown below.

extern "C"
void com_recv_isr() __attribute__((interrupt));

communication com;

// Communication’s friend and also an ISR.
void com_recv_isr()
{
// Asynchronous byte reception can use the
// private members of com.

com.recv_buf =

reinterpret_cast<volatile std::uint8_t>
(communication::rbuf);

com.has_recv = true;
}

The communication object com is a static instance of the communication
class with global scope. When an asynchronous hardware receive interrupt occurs,
the microcontroller calls com_recv_isr(). This interrupt service routine subse-
quently reads the hardware receive buffer (communication::rbuf) and fills
com’s receive buffer with the received byte. The com_recv_isr() interrupt
also activates the has_recv-flag. This announces the new reception to a polling
listener. In this way, com_recv_isr() executes asynchronous byte-reception.
Notice in all this how the interrupt service routine—a friend of the
communication class—can access communication’s private members.

Another part of the program such as a cyclical task can poll com, querying its
Boolean member function recv_ready() to find out if a new byte has been
received. Upon reception of a new byte, recv_ready() returns true. The new
byte in the receive queue can be retrieved with the recv_byte subroutine. For
example,

extern communication com;

void task_poll_the_com()
{
if(com.recv_ready())
{
const std::uint8_t the_byte = com.recv_byte();

4.11 Class Friends 71

// Do something with the_byte.
// ...

}
}

Some developers avoid using class friends, arguing they break data hiding and
fragment encapsulation.3 This is not necessarily the case. Using class friends in cer-
tain cases can actually improve data encapsulation by eliminating thin set()-and-
get() interfaces that might weaken class boundaries by exposing internal class
details. For such reasons, using class friends tends to ensure that private members
remain private. See also FAQ 14.2 at Parashift [1] for a further discussion of this.

It can be wise to use class friends, but sparingly, and only if the use of friendship
is justified by tangible design improvement beyond mere convenience. For exam-
ple, interrupt service routines require static C-linkage, making them difficult to be
encapsulated in a class while simultaneously included in the interrupt vector table
(Sect. 9.2). When accessing a global object such as com within an interrupt service
routine, class friendship can provide just the right mechanism to retain encapsula-
tion while adhering to the constraints of interrupt programming.

4.12 Virtual Is Unavailable in the Base Class Constructor

The virtual function mechanism for a given class is neither available in its own class
constructor nor in any base class constructor because the object is not fully formed
yet. Any attempt to use the virtual function mechanism within a base class construc-
tor will result in undefined behavior. In the code below, communication_base
is a base class for communication and communication_serial is a specialized
class derived from it. In particular,

class communication_serial : public communication_base
{
public:
communication_serial(const std::uint16_t c,

const std::uint8_t b)
: channel(c),

baud(b) { }

virtual ~communication_serial() { }

3The high-integrity coding guidelines in [8], for example, recommend avoiding the use of class
friends (with certain justified exceptions), indicating that class friends may potentially degrade the
strength of encapsulation.

http://dx.doi.org/10.1007/978-3-662-47810-3_9

72 4 Object-Oriented Techniques for Microcontrollers

virtual void init()
{
// Initialize this communication_serial class.
// ...

}

private:
const std::uint8_t channel;
const std::uint16_t baud;

};

The candidate base class communication_base is shown below. It makes
erroneous, undefined use of the virtual function mechanism in the base class con-
structor.

class communication_base
{
public:
virtual ~communication_base() { }

// A virtual initialization function.
virtual void init() { }

protected:
communication_base()
{
// Undefined use of the virtual mechanism!
init();

}
};

Here, the constructor of communication_base attempts to use the virtual
function mechanism to call init(). Unfortunately, this code might not do what its
author intended. The code is meant to use the virtual function mechanism to call the
init() function of the derived class in the base class constructor. The virtual func-
tion mechanism is, however, unavailable in the base class constructor. Therefore,
the communication_serial object might be created using the empty init()
function of communication_base.

The compiler might not even issue a warning for attempting to use the virtual
mechanism in a base class constructor because it may be incapable of differentiating
an inadvertent to-be-warned virtual function call from an intended it’s-my-own-
member call.

In order to properly initialize communication_serial, its init() func-
tion needs to be explicitly called after the constructors are finished. In particular,

4.12 Virtual Is Unavailable in the Base Class Constructor 73

we will redesign communication_base such that its constructor no longer calls
init().

class communication_base
{
public:
// ...

protected:
// Remove initialization from the base class ctor.
communication_base() { }

};

class communication_serial : public communication_base
{
// ...

};

Now the constructor of the communication_base class no longer attempts
to call the virtual init() function. Clients of the communication_serial
class need to explicitly call the init() method after the object has been created.
For example,

void do_something()
{
// Create com_serial on channel 1 with 9600bps.
communication_serial com_serial(1U, 9600U);

// Explicitly initialize com_serial.
// It is fully formed.
com_serial.init();

// Use com_serial.
// ...

}

Understandably, it can be all too easy to forget to explicitly call the init()-
like functions of a class needing explicit initialization after creation. One possible
remedy for this problem uses an abstract interface (often called a factory) to dynam-
ically create objects and simultaneously ensure that they are explicitly initialized
when fully formed, but before being used.4

4Factories are described in good design books such as [5]. In addition, Sect. 5.9 in this book uses a
simple factory to introduce variadic templates.

http://dx.doi.org/10.1007/978-3-662-47810-3_5

74 4 Object-Oriented Techniques for Microcontrollers

Through empirical investigations or trial-and-error, one may find compilers for
which, by chance, the virtual function mechanism seems to be available in the base
class constructor. Relying on this behavior, however, is unreliable and can be con-
fusing because the code might work with one compiler yet be broken by another.

Always remember that the C++ language specification is clear on this matter. The
virtual function mechanism is not available in the base class constructor. Potential
confusion can be spared by remembering and adhering to this rule. See Item 23.5 at
Parashift [1] for more information on the unavailability of the virtual function mech-
anism in the base class constructor.

References

1. M. Cline, Parashift C++ FAQ (2012), http://www.parashift.com/c++-faq
2. J.O. Coplien, Advanced C++ Programming Styles and Idioms (Addison-Wesley, Boston, 1992)
3. B. Dawes, D. Abrahams, Boost C++ Libraries (2012), http://www.boost.org
4. B. Eckel, Thinking in C++ Volume 1: Introduction to Standard C++, 2nd edn. (Pearson Prentice

Hall, Upper Saddle River, 2000)
5. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software (Addison-Wesley, Boston, 1994)
6. ISO, ISO 11898–1:2003: Road Vehicles—Controller Area Network (CAN)—Part 1: Data Link

Layer and Physical Signaling (International Organization for Standardization, Geneva, 2003)
7. S. Meyers, Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd edn.

(Addison-Wesley, Boston, 2005)
8. Programming Research Ltd, High Integrity C++ Coding Standard Version 4.0 (2015), http://

www.codingstandard.com/HICPPCM/index.html

http://www.parashift.com/c++-faq
http://www.boost.org
http://www.codingstandard.com/HICPPCM/index.html
http://www.codingstandard.com/HICPPCM/index.html

Chapter 5
C++ Templates for Microcontrollers

C++ templates use the same source code for different types. This can improve code
flexibility and make programs easier to maintain because code can be written and
tested once, yet used with different types. Templates can also be used in generic
programming that treats different types with the same semantics. This chapter intro-
duces templates and static polymorphism, the STL, template metaprogramming and
some generic programming methods, and shows how these can be used effectively
for microcontrollers.

5.1 Template Functions

Consider the simple template function below.

template<typename T>
T add(const T& a, const T& b)
{
return a + b;

}

The template function add() returns the sum of (a + b), where a, b and
the return value of add() all have the same type as the template parameter T.
A template parameter can be considered a placeholder for a not-yet-specified type.
Template parameters can be class types, built-in types, constant integral or pointer
values, but not floating-point values. See Sect. 4.3 in Vandevoorde and Josuttis [3].

When a template is used in code, the compiler instantiates it for a known type
by filling in the template code corresponding to its template parameters at compiler
time. This is the same vocabulary that is used for instances of a class types in object-
oriented programming. The context should be considered when discerning the two.

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_5

75

http://dx.doi.org/10.1007/978-3-662-47810-3_4

76 5 C++ Templates for Microcontrollers

The code below, for example, uses add() twice, one time to add two integer
variables and a second time to add two variables of type std::string, the stan-
dard library’s string class.

int n = add(1, 2); // 3

std::string s = add(std::string("abc"),
std::string("xyz")); // "abcxyz".

In the calls to add() above, the template parameter is not explicitly given. The
compiler can automatically deduce the types of template parameters if it has suffi-
cient information to do so from the context of usage. Even if the template parameters
could be deduced, though, they can still be optionally provided. For example,

const int c = add<int>(a, b);

The template parameters must be compatible with the functionality of the tem-
plated code. In order to be used with add() , for example, a given template para-
meter must support the binary addition operator (in other words operator+).

The compiler does not automatically perform type conversion for templates. So
if the function’s parameters do not exactly match those of the template, then the
template parameters must be explicitly provided. For example,

double d1 = add(1.1, 2.2); // OK, 3.3, double
double d2 = add(1.1, 2); // Not OK, ambiguous
double d3 = add<double>(1.1, 2); // OK, 3.1, double

If multiple types are needed, template functions can have more than one template
parameter.1

For instance,

template<typename T1,
typename T2>

T1 add(const T1& a, const T2& b)
{
return a + T1(b);

}

double d = add(1.1, 2); // OK, 3.1, double

1Multiple template parameters are provided in a comma-separated template parameter list in angled
brackets.

5.2 Template Scalability, Code Re-Use and Efficiency 77

5.2 Template Scalability, Code Re-Use and Efficiency

Templates are scalable. For instance, we will now consider a scalable template func-
tion that may be useful in microcontroller programming. It is based on the ubi-
quitous “MAKE_WORD()” preprocessor macro. The MAKE_WORD() macro is nor-
mally used to make a 16-bit unsigned integer from two constituent 8-bit unsigned
bytes. One possible implementation of MAKE_WORD() using a C-style preproces-
sor macro with #define is shown below.

#define MAKE_WORD(lo, hi) \
(uint16_t) (((uint16_t) (hi) << 8) | (lo))

We will now replace the C-style MAKE_WORD() preprocessor macro with a
more generic template function called make_large() In particular,

template<typename ularge_type,
typename ushort_type>

ularge_type make_large(const ushort_type& lo,
const ushort_type& hi)

{
constexpr int ushort_digits
= std::numeric_limits<ushort_type>::digits;

constexpr int ularge_digits
= std::numeric_limits<ularge_type>::digits;

// Ensure proper width of the large type.
static_assert(ularge_digits == (2 * ushort_digits),

"error: ularge_type must be twice
as wide as ushort_type");

// Shift the high part to the left.
const ularge_type uh
= static_cast<ularge_type>(hi) << ushort_digits;

// Return the composite result.
return static_cast<ularge_type>(uh | lo);

}

The make_large() template function returns the composite value of a larger
unsigned type ularge_type made from two constituents of a smaller unsigned
type ushort_type. Here, ularge_type is twice as wide as ushort_type.
The high-part of the composite value is first shifted left by an amount corresponding

78 5 C++ Templates for Microcontrollers

to the width of the smaller unsigned type ushort_type . Afterwards, the low-part
is OR-ed with the shifted high-part to generate the result.

The standard library’s std::numeric_limits template is used to obtain
the number of binary digits in the large and short types (Sect. A.5). This template
function also uses static_assert to ensure that the ularge_type has exactly
twice as many binary digits as the ushort_type. It can be wise to build these
types of checks into template utilities to prevent error caused by instantiation with
non-compatible types. Further security could be included by adding compile-time
assertions that verify that ularge_type and ushort_type are both unsigned
integer types.

Using make_large() in code is simple. For example,

std::uint8_t lo8 = UINT8_C(0x34);
std::uint8_t hi8 = UINT8_C(0x12);
std::uint16_t u16

= make_large<std::uint16_t>(lo8, hi8);

std::uint16_t lo16 = UINT16_C(0x5678);
std::uint16_t hi16 = UINT16_C(0x1234);
std::uint32_t u32
= make_large<std::uint32_t>(lo16, hi16);

std::uint32_t lo32 = UINT32_C(0x9ABC’DEF0);
std::uint32_t hi32 = UINT32_C(0x1234’5678);
std::uint64_t u64
= make_large<std::uint64_t>(lo32, hi32);

This code uses make_large() to make three results of widths 16, 32 and
64-bit, respectively. The results are made from their corresponding half-width con-
stituents. This shows how templates are scalable. Notice how make_large()
automatically scales its width at compile time to accommodate different integer
types.

One of the great features of templates is code re-use. To provide the same scal-
ability with preprocessor macros, three individual ones would be needed. In partic-
ular, we would need equivalent preprocessor macros such as MAKE_WORD() for
16-bit results, MAKE_DWORD() for 32-bit results and MAKE_QWORD() for 64-bit
results. The make_large() template is superior to multiple preprocessor macros
because it only needs to be implemented once and maintained in one place.

A generic template, tested and written in a type-safe fashion, is a tool that can
be used, re-used and readily ported to other platforms without needing redesign.
Furthermore, preprocessor macros can be plagued by non-safe side-effects such as
unwanted parameter modification, etc. C++ Templates are freed from the problems
of C-style macros and generally improve code portability and robustness.

5.2 Template Scalability, Code Re-Use and Efficiency 79

Templates are not necessarily expanded inline by default because template inlin-
ing is relegated to the compiler’s internal optimization characteristics. The inline
keyword can be used in order to recommend to the compiler to treat a template
function as inline. The compiler can, however, still optionally choose to disregard
the inline keyword based on its optimization settings, and the length and com-
plexity of a given template. See Sect. 6.1 for further information on optimization.

Templates facilitate efficiency because they make all of their code and template
parameters known to the compiler at compile time. Templates can, however, also
incur additional code costs. Each time the compiler encounters a template subrou-
tine or object, it must create new code for each individual instance. This phenom-
enon can potentially lead to excessive code bloat if left unchecked. For additional
discussion on code bloat and how to avoid it, see Eckel [1], Chap. 5, Sect. “Prevent-
ing template code bloat”. The microcontroller C++ programmer must be aware of
this trade-off and wisely find the right mixture of templates and non-templates when
designing code. When used properly, templates can be highly effective for optimized
programming. The benefits of improved performance and scalability often far out-
weigh any potential costs.

5.3 Template Member Functions

Member functions of class types can be templates. For example, consider a simpli-
fied version of the communication class from Sect. 4.9.

class communication
{
public:
virtual ~communication() { }

virtual bool send(const std::uint8_t b) const;
{
// ...

}

std::uint8_t recv() const { return recv_buffer; }

protected:
communication();

private:
std::uint8_t recv_buffer;

};

http://dx.doi.org/10.1007/978-3-662-47810-3_6
http://dx.doi.org/10.1007/978-3-662-47810-3_5
http://dx.doi.org/10.1007/978-3-662-47810-3_4

80 5 C++ Templates for Microcontrollers

Say we would like to add the capability of sending larger chunks of data with
the communication class. For example, in addition to 8-bit unsigned bytes
(std::uint8_t), we would also like to send 16-bit or 32-bit unsigned integers
over the communication interface. In order to do this, we could add a new tem-
plated send_type() member function. For example,

class communication
{
public:
// ...

// Add a templated send_type function.
template<typename unsigned_type>
bool send_type(const unsigned_type& u) const
{
constexpr bool type_is_signed

= std::numeric_limits<unsigned_type>::is_signed;

// Ensure that unsigned_type is unsigned.
static_assert(type_is_signed == false,

"error: unsigned_type must be
unsigned");

constexpr std::size_t count =
std::numeric_limits<unsigned_type>::digits / 8;

std::size_t i;

for(i = 0U; i < count; i++)
{

const std::uint8_t by = u >> (i * 8U);

if(!send(by))
{
break;

}
}

return (i == count);
}

};

In this listing, the templated Boolean member function send_type() has been
added to the communication class. In this code, the type of unsigned_type

5.3 Template Member Functions 81

is intended to be a right-shift-capable unsigned integral type. Similar to the send()
function, send_type() performs asynchronous data transmission. However,
instead of transmitting a single byte, send_type() transmits the number of bytes
contained in its template parameter type T. For example, send_type() sends one
byte if unsigned_type is std::uint8_t, two bytes for std::uint16_t,
four bytes for std::uint32_t and eight bytes for std::uint64_t.

Calling templated class member functions is straightforward. In fact, templated
class methods can be called just like non-templated ones using the usual mem-
ber selection operators (.) and (->). For example, we will now use the modified
communication class to simulate communication with an external target system.

class communication
{
// ...

};

namespace login
{
constexpr std::uint32_t key = UINT32_C(0x12345678);
constexpr std::uint8_t ack = UINT8_C(0x11);
constexpr std::uint16_t start = UINT16_C(0xAA55);

};

bool start_session(const communication& com)
{
// Send the 32-bit login key.
const bool key_ok = com.send_type(login::key);

if(key_ok)
{
// Evaluate the login acknowledgment.
const bool ack_ok = (com.recv() == login::ack);

// Start the session with the 16-bit key.
return (ack_ok && com.send_type(login::start));

}
else
{
return false;

}
}

The start_session() subroutine above depicts a made-up sequence for
starting a communication session with an off-chip target system. The new templated

82 5 C++ Templates for Microcontrollers

send_type() member function added to the communication class is used
twice in this sequence, once to send the 32-bit login::key and a second time to
send the 16-bit login::start. The subroutine returns true if the login, target
acknowledgment and session start are all successful.2

As with non-class template subroutines, the compiler is capable of deducing the
template parameters of templated class methods. Of course, sufficient information
still needs to be available to the compiler for automatic template deduction via the
type(s) of the input argument(s).

Templated member functions can improve coding quality and clarity of design
when used sensibly. For example, the templated send_type() member function
adds flexibility and scalability to communication’s send mechanisms. In addi-
tion, the templated send_type() function only needs to be implemented and
debugged once. Furthermore, it works for various types. This eliminates potential
sources of error and reduces coding complexity when using communication to
send multi-byte data.

5.4 Template Class Types

Class types can also be templated. This is convenient for making re-usable or
scalable objects. For example, a coordinate point in two-dimensional Cartesian
space R2 can be implemented as a scalable template. In particular,

template<typename x_type,
typename y_type>

class point
{
public:
x_type x;
y_type y;

point(const x_type& x_ = x_type(),
const y_type& y_ = y_type()) : x(x_),

y(y_) { }
};

// An (x16, y16) point.
point<std::uint16_t,

std::uint16_t>
pt16_16

2Notice, as an aside, how a const communication& is used as the input parameter to the
start_session() subroutine. Remember from Sect. 4.3 how this technique can also use
dynamic polymorphism if communication is a base class.

http://dx.doi.org/10.1007/978-3-662-47810-3_4

5.4 Template Class Types 83

{
UINT16_C(1234),
UINT16_C(5678)

};

// An (x8, y8) point.
point<std::uint8_t,

std::uint8_t>
pt08_08
{
UINT8_C(12),
UINT8_C(34)

};

// An (x8, y16) point.
point<std::uint8_t,

std::uint16_t>
pt08_16
{
UINT8_C(34),
UINT16_C(5678)

};

5.5 Template Default Parameters

Template functions and class types support default template parameters. For exam-
ple,

template<typename x_type = std::uint16_t,
typename y_type = x_type>

class point
{
// ...

};

// An (x16, y16) point.
point<> pt16_16
{
UINT16_C(1234),
UINT16_C(5678)

};

// An (x8, y8) point.

84 5 C++ Templates for Microcontrollers

point<std::uint8_t>
pt08_08
{
UINT8_C(12),
UINT8_C(34)

};

// An (x8, y16) point.
point<std::uint8_t,

std::uint16_t>
pt08_16
{
UINT8_C(34),
UINT16_C(5678)

};

A default template parameter type can be set to the symbolic typename of one
of the previously supplied template parameters. For example, the default type of the
template parameter y_type above is x_type.

When writing templates with default template parameters, it is not necessary
to supply defaults for each template parameter. Template default parameters begin
with the last template parameter and work sequentially toward the beginning of the
template parameter list.

template<typename x_type = std::uint8_t, // OK.
typename y_type = std::uint16_t> // OK

class point
{
// ...

};

template<typename x_type,
typename y_type = std::uint16_t> // OK

class point
{
// ...

};

template<typename x_type = std::uint16_t, // Not OK
typename y_type>

class point
{
// ...

};

5.6 Template Specialization 85

5.6 Template Specialization

Templates can be specialized for a particular type. This creates a unique template
specialization for this type. When writing a template specialization, the to-be-
specialized parameter is removed from original template parameter list and added
to a second comma-separated template parameter list following the symbol name.

In particular, suppose that the project design rules discourage the use of floating-
point types. In order to enforce this design rule, we might explicitly cause errors
when using built-in floating-point types with the add template by making special-
ized versions with errors for float double, and long double. For example,

// The original add template function.
template<typename T>
T add(const T& a, const T& b)
{
return a + b;

}

// Make template specializations of add() with
// easy-to-detect errors for float, double
// and long double.

template<>
float add<float>(const float&, const float&)
{
// Explicitly create an erroneous result!
return 0.0F;

}

template<>
double add<double>(const double&, const double&)
{
// Explicitly create an erroneous result!
return 0.0;

}

template<>
long double add<long double>(const long double&,

const long double&)
{
// Explicitly create an erroneous result!
return 0.0L;

}

86 5 C++ Templates for Microcontrollers

Template specialization can be applied to templates with multiple parameters
and also to specialize different parameters. When a subset of template parameters
is specialized, it is called a partial template specialization. For example, we will
now make a partial template specialization of the point class whose x-coordinate
members are of type std::uint8_t. In particular,

// The original point template class.
template<typename x_type,

typename y_type>
class point { ... };

// A partial specialization of the point
// class with x-axis having type std::uint8_t.

template<typename y_type>
class point<std::uint8_t, y_type>
{
public:
std::uint8_t x;
y_type y;

point(const std::uint8_t& x_ = x_type(),
const y_type& y_ = y_type()) : x(x_),

y(y_)
{
}

};

5.7 Static Polymorphism

Templates provide a mechanism for static polymorphism, or in other words, for
polymorphic behavior determined at compile time. This is distinctly different from
the dynamic (runtime) polymorphism described in Sect. 4.4.

Consider once again the two LED classes in the class hierarchy of Sect. 4.1,
led_port and led_pwm. We will now take a look at static polymorphism using
these two LED classes. We will first slightly modify these classes to be better suited
for static polymorphism instead of dynamic polymorphism. In particular, we will
remove the classes from a class hierarchy and eliminate the virtual functions.

http://dx.doi.org/10.1007/978-3-662-47810-3_4
http://dx.doi.org/10.1007/978-3-662-47810-3_4

5.7 Static Polymorphism 87

class led_port // No base class.
{
public:
led_port(const port_type p,

const bval_type b);

void toggle() // Not virtual.
{
// ...

}

// ...
};

class led_pwm // No base class.
{
public:
led_pwm(pwm* p);

void toggle() // Not virtual.
{
// ...

}

// ...
};

These new LED classes are no longer related to each other through a class
hierarchy. Both of these new LED classes do, however, now have a non-virtual
toggle() function. Therefore, static polymorphism can be used to create a
generic toggle mechanism for them. For example,

template<typename led_type>
void led_toggler(led_type& led)
{
// Toggle with static polymorphism.
led.toggle();

}

The led_toggler() subroutine accepts a reference to an led_type. Thus,
any led_type object that has a toggle() member can be successfully toggled
with led_toggler(). Instead of using the virtual function mechanism to select

88 5 C++ Templates for Microcontrollers

the right toggle function at runtime, the compiler generates the appropriate call of
each object’s toggle() member at compile time. This is static polymorphism.

As a final example of static polymorphism, we will redo the toggle code of the
LEDs L0 . . . L3 from Sect. 4.2. This time we will use static polymorphism instead
of dynamic polymorphism.

namespace
{
// Two LEDs connected P2.0-P2.1
led_port led0 { mcal::reg::port2, 1U };
led_port led1 { mcal::reg::port2, 2U };

// Two PWMs on channels T0 and T1.
pwm pwm0 { 0 };
pwm pwm1 { 1 };

// Two LEDs connected to pwm0 and pwm1.
led_pwm led2 { &pwm0 };
led_pwm led3 { &pwm1 };

}

void toggle_all_leds()
{
led_toggler(L0); // Uses led_port::toggle().
led_toggler(L1); // Uses led_port::toggle().

led_toggler(L2); // Uses led_pwm::toggle().
led_toggler(L3); // Uses led_pwm::toggle().

}

Static polymorphism removes the runtime overhead caused by the virtual func-
tion mechanism. As such, static polymorphism can improve runtime performance.
At the same time, though, a given implementation based on static polymorphism
might have significantly more code than a comparable implementation based on
dynamic polymorphism because of multiple instantiation. On the other hand, sta-
tic polymorphism could just as well result in improved performance and reduced
code due the potentially improved optimization made possible by templates. This
can also be observed in Table 2.1 of Sect. 2.6.

The microcontroller programmer should be cognizant of the existence of static
polymorphism and dynamic polymorphism and be aware of potential advantages
or costs resulting from their use. When designing code, one should try to identify
situations in which each one (or a mixture of the two) can produce the most effective
and reliable results.

http://dx.doi.org/10.1007/978-3-662-47810-3_4
http://dx.doi.org/10.1007/978-3-662-47810-3_2

5.8 Using the STL with Microcontrollers 89

5.8 Using the STL with Microcontrollers

The Standard Template Library (STL) is an innovative collection of containers, iter-
ators, algorithms, etc. The STL provides a remarkably complete and powerful set of
generic tools and is highly regarded as an example of generic programming in C++.
See Sect. 14.5, “Generic Programming” in [3].

The STL is part of the C++ standard library. This section provides only a brief
introduction to the richness of the STL. Consult [2] and also Appendix A for further
details on the STL.

The code below uses the STL’s templated std::vector container in combi-
nation with the std::for_each() algorithm.

#include <algorithm>
#include <vector>

void do_something_with_the_stl()
{
// Create v with the decimal values (1, 2, 3).
// Initialize with a convenient initializer_list.

std::vector<char> v { 1, 2, 3 };

// Use an algorithm with a lambda function.
// Convert from decimal int to ASCII char.

std::for_each(v.begin(),
v.end(),
[](char& c)
{
c += 0x30;

});
}

In this example, the three characters in the vector v with decimal values (1, 2, 3)
are converted to ASCII characters with the values (’1’, ’2’, ’3’). The conver-
sion from decimal to ASCII is carried out with a so-called lambda expression as the
third input parameter to std::for_each(). The vector v is constructed and ini-
tialized at the same time using a convenient std::initializer_list in com-
bination with uniform initialization syntax. The initializer list is also an STL con-
tainer. See Sect. A.2 for more information on uniform initialization syntax, Sect. A.9
for lambda expressions and Sect. A.10 for initializer lists.

Sometimes more than one algorithm is available for a particular programming
task. The conversion of the characters in v from decimal to ASCII could, for exam-
ple, just as well be accomplished with std::transform().

http://dx.doi.org/10.1007/978-3-662-47810-3_14

90 5 C++ Templates for Microcontrollers

#include <algorithm>
#include <vector>

void do_something_with_the_stl()
{
std::vector<char> v { 1, 2, 3 };

std::transform(v.begin(),
v.end(),
v.begin(),
[](char& c) { c += 0x30; });

}

These kinds of conversion operations—and many others like them—often arise
in real-time C++ software. Although the conversion from decimal to ASCII is some-
what trivial, these examples do provide a glimpse into the power and flexibility of
the STL.

The code of the STL can be found in the include path where the compiler’s
STL headers are stored.3 Those curious about the implementation details of the
compiler’s STL can simply investigate the source code.

The std::for_each() algorithm, for example, could be implemented in the
STL in a way similar to the code shown below.

namespace std
{
template<typename iterator_type,

typename function_type>
function_type for_each(iterator_type first,

iterator_type last,
function_type function)

{
while(first != last)
{

function(*first);
++first;

}

return function;
}

}

3It might be difficult to read the code, but it’s there!

5.8 Using the STL with Microcontrollers 91

Using the STL can simplify programming, reduce error and improve efficiency
and portability in microcontroller programming. Instead of arduously developing
and testing hand-written containers and loops, the standardized components of the
STL can be used out-of -the-box. With the consistent use of the standardized con-
tainers, iterators, algorithms, etc. of the STL, code will adopt a recognizable look
and feel with easy-to-understand style.

One might also want to glance ahead to Sects. 10.3 and 10.5 which describe
methods for outfitting STL containers with custom dynamic memory management
mechanisms appropriate for microcontrollers. These techniques allow us to fit sur-
prisingly many parts of the STL into the strictly limited memories of even the most
tiny embedded controllers.

5.9 Variadic Templates

Variadic templates are template functions or class types that have a variable number
of template parameters. Variadic templates were introduced in C++11.

Consider a simple software factory.

template<typename type_to_make>
type_to_make* factory(void* mem)
{
// Construct a new pointer of kind type_to_make
// with the placement-new operator.

type_to_make* p = new(mem) type_to_make;

return p;
}

This factory() makes products of kind type_to_make. The placement-
new() operator, described in Sect. 10.2, is used to create the product in a caller-
supplied memory pool.

We will now make something with this factory(). For example,

class something
{
public:
something() { }

};

extern void* pool;

something* ps = factory<something>(pool);

http://dx.doi.org/10.1007/978-3-662-47810-3_10
http://dx.doi.org/10.1007/978-3-662-47810-3_10
http://dx.doi.org/10.1007/978-3-662-47810-3_10

92 5 C++ Templates for Microcontrollers

Here, ps is created in the memory pool. The newly created ps is just like any
other pointer. It can be used accordingly and deleted when no longer needed.

Consider, next, another class called something_else.

class something_else
{
public:
something_else(const int M, const int N) : m(M),

n(N) { }

virtual ~something_else() { }

private:
int m;
int n;

};

Imagine that we would like to create a pointer to something_else. Unlike
the constructor of the something class, the constructor of something_else
supports has up to two input parameters. In this case, our factory() is not flex-
ible enough to create something_else because it can only create things with
parameter-less constructors.

In order to make a flexible factory(), then, we can use a variadic template.
For example,

template<typename type_to_make,
typename ...parameters>

type_to_make* factory(void* mem,
parameters... params)

{
// Construct a new pointer of kind type_to_make
// with the placement-new operator
// and a parameter pack argument.

type_to_make* p = new(mem) type_to_make(params...);

return p;
}

Here, the variadic template parameter parameters can contain any num-
ber of all kinds of things, including built-in types, class types, etc. Notice that
operator... is used in two different ways. The operator... is used on the
left side to declare a parameter pack in the template parameter list and on the right

5.9 Variadic Templates 93

side to unpack the parameter pack into separate arguments in the function call. The
parameter pack will be unpacked at compile time. In this case, C++ trades compi-
lation effort for improved runtime efficiency, which is usually the right trade-off for
real-time C++.

With this new, more flexible version of our factory(), we can successfully
create objects of any class types having any kinds and numbers of constructor para-
meters. An instance of something_else, for example, can readily be made with
the new factory(). In particular,

class something_else
{
// ...

};

extern void* pool;

something_else* p_else
= factory<something_else>(pool, 12, 34);

Variadic templates add a new dimension of flexibility to template programming.
They can be used to elegantly solve a class of problems that arise when multiple
varying types need to be handled by a generic mechanism.

5.10 Template Metaprogramming

Template metaprogramming uses templates at compile time to do work that may
otherwise need to be done during runtime. Template metaprogramming can be use-
ful for sophisticated optimizations such as compile-time generation of constant val-
ues and loop unrolling.

The archetypal introductory template metaprogram computes the value of the
unsigned integer factorial function at compile time. The factorial function N ! is
defined by

N ! ≡ N (N − 1) · · · 2 · 1 . (5.1)

A possible implementation of a template metaprogram for computing N ! is
shown below.

template<const std::uint32_t N>
struct factorial
{
// Multiply N * (N - 1U) with template recursion.
static constexpr std::uint32_t value

94 5 C++ Templates for Microcontrollers

= N * factorial<N - 1U>::value;
};

template<>
struct factorial<0U>
{
// Zero’th specialization terminates the recursion.
static constexpr std::uint32_t value = 1U;

};

When the compiler instantiates factorial<N>::value for a given value
of N, it recursively multiplies N with factorial<N - 1>::value. Template
recursion terminates with the template specialization of factorial<0U>::value.
The compiler produces no intermediate code and the result of the factorial is
generated as a compile-time constant.

Consider, for example, the computation of 5! below.

constexpr std::uint32_t fact5 = factorial<5U>::value;

Here, the factorial template is used to calculate 5!, the result of which is
5 × 4 × 3 × 2 × 1 = 120. This value is generated by the compiler and directly
injected into the code as a compile-time constant. The factorial example, although
somewhat trivial, shows how template metaprogramming uses recursive templates
for radical compile-time optimization.

A less trivial metaprogram computes the inner product of two equally sized
ranges of adjacent iterator types. Consider the inner_product structure below.

template<const std::size_t N,
const std::size_t M = 0U>

struct inner_product
{
template<typename iterator_left,

typename iterator_right,
typename result_type>

static result_type sum(iterator_left u,
iterator_right v,
const result_type& init)

{
// Add (u[M] * v[M]) recursively.
const result_type uvm

= *(u + M) * result_type(*(v + M));

5.10 Template Metaprogramming 95

return uvm
+ inner_product<N, M + 1U>::sum(u, v, init);

}
};

template<const std::size_t N>
struct inner_product<N, N>
{
template<typename iterator_left,

typename iterator_right,
typename result_type>

static result_type sum(iterator_left,
iterator_right,
const result_type&)

{
// N’th specialization terminates the recursion.
return result_type(0);

}
};

The inner_product structure computes the inner product of the elements in
the range [M, N-1). The template parameters M and N are used to represent the start
index and total length of the inner product, respectively. The Mth value of the sum is
recursively passed to the (M + 1)th index in the inner product. Template recursion
stops when the index parameter M reaches the upper bound of the inner product N.
The inner_product template can be used with C-style arrays, std::array,
std::vector, etc. (Sect. 5.8).

The template parameter result_type provides for optional scalability of the
result. Notice that the start index M need not necessarily begin with zero. The inner
product can start with an index higher than zero by appropriately setting M in the
calling code.

The following code uses the inner_product metaprogram to compute the
inner product of two std::array s, u and v , where each array has three elements.

constexpr std::array<unsigned, 3U> u
{
{ 1U, 2U, 3U }

};

constexpr std::array<unsigned, 3U> v
{
{ 4U, 5U, 6U }

};

constexpr unsigned w

96 5 C++ Templates for Microcontrollers

= inner_product<3U>::sum(u.begin(),
v.begin(),
0U);

// The result is 32.

In this example, the values in both arrays u and v as well as the index parameters
are known at compile time. Therefore, the compiler can fully compute the constant
value of the inner product when setting w. This metaprogramming technique can
be useful in areas involving coordinates such as linear algebra graphics, vehicle
dynamic detection, navigation, etc.

5.11 Tuples and Generic Metaprogramming

One of the most versatile templates added to the standard library with C++11 is
std::tuple. The std::tuple template is a generalization of std::pair to
triple, quadruple, quin-tuple, sex-tuple, etc. See Sect. A.13 for more information on
tuples.

Unlike templated STL containers such as std::vector, a tuple can contain
different kinds of objects. For example,

#include <tuple>

class apple
{
// ...

};

class car
{
// ...

};

class tiger
{
// ...

};

std::tuple<apple, car, tiger> things;

Grouping objects of different types together can be useful if they need to be
organized and manipulated as a cohesive collection. For example, the things tuple
above can be passed by reference to a subroutine or included in a class as a member
variable. In this way, tuples can improve program organization.

5.11 Tuples and Generic Metaprogramming 97

Another advantage of tuples is their ability to be manipulated with templates
and metaprogramming. For example, imagine that all of the seemingly unrelated
objects in the things tuple, the apple, car and tiger, have a same-named
public member function called setup(). In other words, the apple class has
apple::setup(), the car class has car::setup() and the tiger class
has tiger::setup(). In this made-up example, the setup() member func-
tions are responsible for setting up the internals of their respective class, such as the
apple’s ripeness, the car’s fuel level or the tiger’s state of health. For instance,

class apple
{
public:
apple() { }

void setup() { / * ... */ }
};

class car
{
public:
car() { }

void setup() { / * ... */ }
};

class tiger
{
public:
tiger() { }

void setup() { / * ... */ }
};

We will now take our things tuple and explicitly setup() each element in it
using the STL’s templated std::get() facility. In particular,

std::tuple<apple, car, tiger> things;

void do_something()
{
std::get<0>(things).setup();
std::get<1>(things).setup();
std::get<2>(things).setup();

}

98 5 C++ Templates for Microcontrollers

Here, std::get() is used to get a reference to each object in the things
tuple by index. Since each one of the objects in things has a setup() function,
it can be called with the regular member selection operator (.) for references.

This situation lends itself well to generic metaprogramming. In particular, we
could easily modify the inner product example from the last section to run through
the indexes in a tuple and call each object’s setup() function.

template<const unsigned N,
const unsigned M = 0U>

struct tuple_setup_each
{
template<typename tuple_type>
static void setup(tuple_type& t)
{
// Setup the M’th object and the next higher one.
std::get<M>(t).setup();
tuple_setup_each<N, M + 1U>::setup(t);

}
};

template<const unsigned N>
struct tuple_setup_each<N, N>
{
template<typename tuple_type>
static void setup(tuple_type&) { }

};

With the tuple_setup_each metaprogram, it’s almost trivial to setup()
the objects in the things tuple. In particular,

std::tuple<apple, car, tiger> things;

void do_something()
{
// Setup the things.
tuple_setup_each<3U>::setup(things);

}

The tuple_setup_each metaprogram recursively generates setup code for
each object in the things tuple via its setup() member.

This code can be made even more generic by strategically employing the stan-
dard std::tuple_size facility. The std::tuple_size facility returns the
number of objects in a tuple-type as a compile-time constant. We will now slightly
modify the code accordingly.

5.11 Tuples and Generic Metaprogramming 99

// Use a convenient type definition for the tuple_type.
typedef std::tuple<apple, car, tiger> tuple_type;

tuple_type things;

// Use tuple_size to get the size of the things.
constexpr unsigned size
= std::tuple_size<tuple_type>::value;

void do_something()
{
// Setup the things.
tuple_setup_each<size>::setup(things);

}

This metaprogramming technique can setup the things in any tuple with any num-
ber and all kinds of elements—as long as the type of each element in the tuple has
a setup() function. Generic metaprogramming with tuples can be useful when
objects with a partially or wholly common interface are to be treated with the same
semantics.

5.12 Variable Templates

In addition to class types and functions, variables can also be templates. Variable
templates were introduced with C++14. Variable templates can improve generic pro-
gramming and reduce the complexity of template code.

The following code sets the value of the prime_number variable template
equal to 541—the value of the 100th prime number. The variable template is instan-
tiated as a 16-bit unsigned integer.

template<typename T>
T prime_number = T(541);

std::uint16_t p = prime_number<std::uint16_t>;

Variable templates can be particularly useful in generic numeric programming
(Sect. 12.7). The code sequences below, for example, define scalable represen-
tations of two well-known mathematical constants, Archimedes’ constant (π ≈
3.14159 . . .).

http://dx.doi.org/10.1007/978-3-662-47810-3_12

100 5 C++ Templates for Microcontrollers

template<typename T>
constexpr T pi =
T(3.1415926535’8979323846’2643383279’5028841972L);

and the natural logarithmic base (e ≈ 2.71828 . . .).

template<typename T>
constexpr T e =
T(2.7182818284’5904523536’0287471352’6624977572L);

Consider a non-trivial mathematical computation such as Stirling’s approxima-
tion of the Gamma function for large argument expanded to order 1. In particular,

Γ (x) ≈
√
2π

x

(x

e

)x
, for x � 1 . (5.2)

We can use the representations of π and e above to simplify typing in a template
implementation of this approximation. In particular,

#include <cmath>

template<typename T>
T tgamma_order_1(T x)
{
return std::sqrt((2 * pi<T>) / x)

* std::pow (x / e<T>, x);
}

In addition to the variable template representations of π and e, this order 1
implementation of Stirling’s approximation also uses the elementary transcenden-
tal functions std::sqrt() and std::pow() from the <cmath> header file
in the standard library (see also Sect. 12.3). These library functions have over-
loads (Sect. A.3) for the built-in data types float, double and long double.
Accordingly, this template approximation of the Gamma function is intended to be
instantiated with float, double and long double, but not with user-defined
types.

The order 1 approximation of Γ (20) as programmed above obtains a result
of 1.211 . . . × 1017. This result agrees with the known value of 1.21645 . . . × 1017

to within about 3–4 decimal digits of precision.

http://dx.doi.org/10.1007/978-3-662-47810-3_12

References 101

References

1. B. Eckel, Thinking in C++ Volume 2: Practical Programming (Pearson Prentice Hall, Upper
Saddle River, 2004)

2. N.M. Josuttis, The C++ Standard Library: A Tutorial and Reference, 2nd edn. (Addison-
Wesley, Boston, 2011)

3. D. Vandevoorde, N.M. Josuttis, C++ Templates: The Complete Guide (Addison-Wesley,
Boston, 2003)

Chapter 6
Optimized C++ Programming
for Microcontrollers

Embedded systems software, possibly even more than other kinds of software,
is time critical and has cost-sensitive size constraints. Literally every bit of the
microcontroller software costs precious code space and cycles. Even the most
minute software weakness can lead to system-debilitating resource problems. Writ-
ing efficient C++ code for microcontrollers mandates command of the language and
solid development practices. This chapter aids this endeavor by providing a selec-
tion of helpful tips for optimized C++ microcontroller programming.

6.1 Use Compiler Optimization Settings

Compiler optimization settings allow for flexible tuning of the compiler’s code gen-
eration. It is possible to optimize with emphasis on space, speed or a combination
thereof. GNU compilers have a particularly rich set of command-line optimization
settings. See van Hagen [3] Chap. 5 and Appendix A for further information on
optimization settings in GCC.

When researching microcontroller optimization techniques for this book, a
computationally intensive code sequence rich in 32-bit operations implementing a
CRC32 cyclic redundancy check [4] was benchmarked. There are numerous well-
known types of CRC calcuations with various bit widths ranging from 4 to 64-bits.
In this benchmark, we use a CRC32 / MPEG–2 algorithm, also commonly used for
data-integrity verification in MPEG–2 program streaming [2, 5]. For the investiga-
tion here, the code has been optimized and specially designed for reliable porting to
8, 16, and 32-bit microcontrollers.

After being prepared for efficient use with microcontrollers, the CRC32 code was
compiled three times for our target with the 8-bit microcontroller, the first two times
optimized for speed and the third time optimized for space.

When benchmarking the CRC32 program for speed, two runs were made with
optimization settings -O2 and -O3. The space optimized run used the optimization
setting -Os. For the GNU C++ compiler, optimization setting -O2 performs most

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_6

103

http://dx.doi.org/10.1007/978-3-662-47810-3_5

104 6 Optimized C++ Programming for Microcontrollers

Table 6.1 The code size and runtime for a CRC32 algorithm on our target with the 8-bit micro-
controller with optimization tuned for space (with -Os) and speed (with -O2 and -O3) are listed

Optimization goal Code size CRC32 Runtime CRC32(0x31 . . . 0x39)

(byte) (µs)

Space (with -Os) 280 320

Speed (with -O2) 320 300

Speed (with -O3) 1,700 280

available optimizations that do not strongly increase code size. Optimization setting
-O3 performs all the optimizations of level -O2 plus additional potentially expen-
sive optimizations such as inline functions and loop distribution. See also [1, 3] for
further details on GCC optimization settings.

Table 6.1 shows the benchmark results for computing the CRC32 of the 8-bit
ASCII characters representing the nine digits 1 to 9 (in other words: 0x31, 0x32,
0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39).1 Both the space-optimized ver-
sion as well as each of the two speed-optimized versions obtain the correct result
for the CRC32.2 In particular,

CRC32 (0x31 . . . 0x39) = 0x0376’E6E7. (6.1)

The space-optimized version of the algorithm results in a code size about 20 %
smaller than the version optimized for speed with -O2, whereas, the version opti-
mized for speed with -O2 runs approximately 10 % faster than the space-optimized
one. In general, space and speed are opposing optimization goals. Improvements in
speed are usually obtained at the cost of larger code size. The benchmark results
shown above confirm this tendency.

Differences between speed and space optimization can be strongly pronounced
if inline-depth control, loop unrolling and common subexpression elimination are
available. In particular, the size and speed of template-intensive code can be signif-
icantly influenced by the compiler optimization settings.

The impact of these factors can be observed in Table 6.1. Consider the code sizes
and the runtime characteristics resulting from optimization settings -O2 and -O3.
The version fully optimized with -O3 runs about 10 % faster than the version opti-
mized with -O2, as expected. The code size, however, significantly increases with
optimization setting -O3. In fact, the resulting code size with optimization setting
-O3 is about a five times larger than the code size resulting from optimization set-
ting -O2. Does a 10 % improvement in runtime justify a five-fold increase in code
size? This depends on the characteristics and design goals of the application.

1Calculating the CRC of the ASCII characters representing the nine digits 1 − 9 has evolved into
a standard test for CRC checksum algorithms.
2This is another testament to the quality and language standards adherence capabilities of GCC.
GCC correctly compiles this 32-bit computationally intensive CRC32 calculation with ease and
absolute correctness—even for an 8-bit platform.

6.1 Use Compiler Optimization Settings 105

It is usually best to carefully study the available compiler optimization settings.
If possible, try to understand which optimization features get activated at each opti-
mization level. Investigate the benefits of certain optimizations and determine if oth-
ers are too expensive. Try to select the right overall compiler optimization settings
for the project.

The CRC32 code used for the benchmark in this section is shown in its entirety
below. It is also included in the reference project of the companion code. The
CRC32 calculation is based on 4-bit nibbles and uses a look-up table with sixteen
unsigned 32-bit integer entries derived from the polynomial 0x04C1’1DB7.

template<typename input_iterator>
std::uint32_t crc32_mpeg2(input_iterator first,

input_iterator last)
{
// Name : CRC-32/MPEG-2
// Polynomial : 0x04C11DB7
// Initial value : 0xFFFFFFFF
// Test: ’1’...’9’ : 0x0376E6E7

// ISO/IEC 13818-1:2000
// Recommendation H.222.0 Annex A

// CRC-32/MPEG-2 Table based on nibbles.
const std::array<std::uint32_t, 16U> table =
{{
UINT32_C(0x00000000), UINT32_C(0x04C11DB7),
UINT32_C(0x09823B6E), UINT32_C(0x0D4326D9),
UINT32_C(0x130476DC), UINT32_C(0x17C56B6B),
UINT32_C(0x1A864DB2), UINT32_C(0x1E475005),
UINT32_C(0x2608EDB8), UINT32_C(0x22C9F00F),
UINT32_C(0x2F8AD6D6), UINT32_C(0x2B4BCB61),
UINT32_C(0x350C9B64), UINT32_C(0x31CD86D3),
UINT32_C(0x3C8EA00A), UINT32_C(0x384FBDBD)

}};

// Set the initial value.
std::uint32_t crc = UINT32_C(0xFFFFFFFF);

// Loop through the input data stream.
while(first != last)
{
// Define a local value_type.
typedef typename
std::iterator_traits<input_iterator>::value_type

106 6 Optimized C++ Programming for Microcontrollers

value_type;

const value_type value = (*first) & UINT8_C(0xFF);

const std::uint_fast8_t byte = uint_fast8_t(value);

std::uint_fast8_t index;

// Perform the CRC-32/MPEG-2 algorithm.
index = ((std::uint_fast8_t(crc >> 28))

^ (std::uint_fast8_t(byte >> 4))
) & UINT8_C(0x0F);

crc = std::uint32_t(std::uint32_t(crc << 4)
& UINT32_C(0xFFFFFFF0))

^ table[index];

index = ((std::uint_fast8_t(crc >> 28))
^ (std::uint_fast8_t(byte))
) & UINT8_C(0x0F);

crc = std::uint32_t(std::uint32_t(crc << 4)
& UINT32_C(0xFFFFFFF0))

^ table[index];

++first;
}

return crc;
}

6.2 Know the Microcontroller’s Performance

The same C++ code running on different microcontrollers can have vastly different
performance on each of them. Consider the two microcontrollers used in this book,
the 8-bit target running at 16 MHz and the 32-bit target clocked at 24 MHz. These
are both excellent microcontrollers offering the industry’s highest levels of product
quality combined with world-class CPU architectures and peripherals. In addition,
both microcontrollers can readily be programmed in C++ with the versatile GCC.
The two microcontrollers are, however, in radically different performance classes,
and this must be taken into account when assessing their ranges of application.

6.2 Know the Microcontroller’s Performance 107

Table 6.2 The code size and runtime for a CRC32 algorithm on our targets with 8-bit and 32-bit
microcontrollers are listed. The compiler optimization has been tuned for speed

Target system Code size CRC32 Runtime CRC32(0x31 . . . 0x39)

(byte) (µs)

32-bit target at 24 MHz (-O2) 110 10

8-bit target at 16 MHz (-O2) 320 300

Table 6.2 compares the code size and runtime for the CRC32 algorithm from the
previous section on these two microcontrollers. As mentioned above, this CRC32
code is computationally intensive and has numerous 32-bit integer operations. Con-
sequently, the program runs significantly faster—about 30 times faster—on the 32-
bit microcontroller than on the 8-bit machine. In addition, the code on the 32-bit
target requires merely 1/ 3 of the program space taken up by the corresponding
code on the 8-bit target.

The reasons for these performance and size differences are easy to understand.
Basic operations on 32-bit integers such as shift and bitwise logic operations make
up the core of the CRC32 algorithm. These operations require significant software
support on the 8-bit microcontroller, whereas they are single opcodes on the 32-
bit target. From the perspective of code size, on the other hand, 32-bit opcodes are
wider than the 8-bit or 16-bit opcodes in the vocabulary of the 8-bit machine. So
32-bit code could, in general, be larger than corresponding 8-bit code.3 In the case
of the CRC32 algorithm, however, the improved efficiency of 32-bit operations is
so overwhelmingly beneficial for the CRC32 that both the code size as well as the
runtime are significantly better on the 32-bit machine.

Bigger and faster is not always better. If the application is cost-sensitive and only
needs to perform a few functions, then a small 8-bit microcontroller can be the right
choice. A big 32-bit microcontroller might be too expensive for the application. If,
however, the microcontroller lacks sufficient resources for the requirements of the
application, then the CPU may be overloaded and the system could be unreliable
or might even fail. In this case, a larger 32-bit CPU may be necessary. In order to
guarantee the right efficiency for the application, it is necessary to select a micro-
controller with the right performance and size.

A chunk of portable, computationally intensive microcontroller C++ code with
a non-trivial result such as a CRC32 algorithm can be used as part of a benchmark
to provide reliable data for proper microcontroller selection. There are additional
notes on microcontroller selection in the checklist of Sect. B.1 and some details on
establishing reliable runtime limits in Sect. B.3.

3In fact, it is not uncommon that code compiled for an 8-bit target is more compact than the
corresponding code compiled for a 32-bit target. This usually only occurs if the code at hand can,
without introducing error, be scaled to the architecture using, among other things, the so-called
native integer width of the CPU (Sect. 6.10).

108 6 Optimized C++ Programming for Microcontrollers

6.3 Know an Algorithm’s Complexity

In computer science, the limiting behavior of algorithmic complexity can be charac-
terized by the number of terms N in the algorithm’s input size. The so-called big-O
notation (pronounced big-oh) is often used to express the algorithmic complexity
as a power of N . For example, counting loops, simple additive checksums such
as CRCs and digital filters (Chap. 14) have linear complexity of order-N , in other
words O (N). Traditional grade-school multiplication of a × b, where both a and
b have N constituents, has quadratic complexity of O

(
N 2

)
.

The runtime of an algorithm may grow rapidly or—for all practical matters—
become essentially unbounded as N increases. In such cases, it usually makes sense
to find better algorithms for large N . For example, interpolation in an ordered set of
points can use either a linear search or a binary search (Sect. 15.4). A linear search
has complexity of O (N) because it loops through the points until the interpolation
pair is found. A binary search, on the other hand, uses interval-halving methods
with logarithmic complexity of O

(
log2 N

)
. If N is 128, then a linear search has

a maximum complexity of ∼128, while the corresponding binary search with the
same N has a complexity of ∼7. Many searching and sorting algorithms in the STL
use a binary search under-the-hood. These algorithms, therefore, benefit from the
efficiency of logarithmic complexity, as opposed to linear complexity.

The speed of multiplication often determines the performance of mathematical
calculations because many mathematical calculations spend the majority of their
time doing multiplications. The efficiency of multiplication can have a particularly
strong influence on common integer calculations such as graphics algorithms, sen-
sor data analysis, hashing functions, fixed-point computations, etc. When designing
code, then, writing multiplication operations in the optimum way can improve per-
formance.

Consider the multiplication of two unsigned 16-bit integers with an unsigned 32-
bit integer result. One potentially efficient way to express this multiplication in C++
on an 8-bit CPU architecture is shown below.

std::uint16_t a = UINT16_C(55555);
std::uint16_t b = UINT16_C(61234);

void do_something()
{
// Unsigned 16 x 16 --> 32-bit = 3,401,854,870.

std::uint32_t result =
a * static_cast<std::uint32_t>(b);

}

In this example, only one side of the multiplication of a × b has been casted
to std::uint32_t. The compiler can, therefore, optionally choose between the

http://dx.doi.org/10.1007/978-3-662-47810-3_14
http://dx.doi.org/10.1007/978-3-662-47810-3_15

6.3 Know an Algorithm’s Complexity 109

better of 16 × 16 → 32–bit multiplication and 32 × 32 → 32–bit multiplication
and still get the right answer. For an 8-bit CPU architecture, a good compiler will
select 16 × 16 → 32–bit multiplication with algorithmic complexity 2N = 22 =
4. Casting both a and b to std::uint32_t would, however, force the compiler
to use 32 × 32 → 32–bit multiplication with complexity 2N = 24 = 16. The
code as written above is portable, yet still allows the compiler to take advantage of
the optimization of half-sized multiplication when necessary.

In mathematics, graphics, signal processing, etc., a convolution such as a fast
Fourier transform (FFT) is often used to reduce the computational complexity of an
algorithm in the transform space. Transformation makes sense if the added runtime
effort of the transformation is more than compensated by reduced work in the trans-
form domain. There is often a cut-off point, in other words a particular value of N ,
above which the transformation reduces an algorithm’s runtime and below which it
does not.

Hardware accelerators and digital signal processors (DSP) can be integrated in
microcontrollers to perform some functions faster than possible in software. They
are commonly used for mathematical operations like multiplication and division,
transformations such as FFT, checksums such as CRC, hashing algorithms, digi-
tal filters and other common signal processing tasks. If computationally intensive
operations play a central role in the application, preferentially selecting a micro-
controller with the appropriate accelerator or DSP can significantly reduce the CPU
work load.

In general, one should attempt to understand the algorithmic complexity and
input sizes that are expected in the project. Is binary arithmetic coded with ideal
operand sizes? Are linear algorithms adequate? Are optimized algorithms such as
those in the STL consistently used? Does the application need hardware accelera-
tion or even a dedicated DSP? These are the kinds of design questions that should
be considered when selecting the chip and the software libraries or beginning with
software design and implementation.

6.4 Use Assembly Listings

Assembly listings allow us to follow the original high-level C++ source code into
the intricate depths of compiler-generated assembly language and machine-level
opcodes. Analyses of assembly listings facilitate the process of designing and writ-
ing optimized code because assembly listings show the actual code which will run
on the target processor in a very low-level form.

In general, the way in which C++ code is written strongly influences how the
compiler generates assembly code and, ultimately, which machine-level opcodes
are placed in the executable. A basic understanding of assembly file listings makes it
possible to guide the implementations of time critical code sequences in a controlled
and iterative fashion. In this way, highly optimized results can be achieved.

By studying assembly listings one will, over time, obtain an intuitive feeling for
efficient coding. Developing this skill is a long-term process. Investigating assembly

110 6 Optimized C++ Programming for Microcontrollers

listings can teach us when and how to use templates and how to develop efficient
class objects. Assembly listings can also reveal the benefits and costs of runtime
polymorphism, inline functions, templates, using the STL, etc.

With GNU compilers, an assembly listing can be generated with the objdump
program. The object dump program is available in GCC’s binary utilities and also in
the bash shell on most ∗nix-like environments. A sample command using objdump
is shown below.

objdump -j .text -S my_file.o > my_file.lst

In this command, my_file.o is an object file that has been created with g++.
The text-based results are piped into my_file.lst.

6.5 Use Map Files

Most linkers can generate a map file. Map files contain detailed information about
the addresses, types and sizes of program components such as program code, static
variables and objects, interrupt tables, debug sections, etc.

Map files can be used to verify that the program parts are properly located in
memory and also to investigate their resource consumption. This facilitates guided
size optimization. Together with assembly listings, it is possible to use map file
information to iteratively find the best compromise between space and speed in the
code.

With GNU compilers, a map file can be generated by the linker when creating
the absolute object file. For example, app.map can be created with the following
command.

g++ a.o b.o c.o -Wl,-Tldef.ld,-Map,app.map -o app.elf

In this command, the files a.o, b.o and c.oare object files compiled from the
corresponding source codes a.cpp, b.cpp and c.cpp. The file ldef.ld is a
linker definition file (Sect. 8.4). The absolute object file app.elf is the output of
the linker in ELF binary format. In this particular example, the map file is a by-
product of linking the program.

ELF files are in binary format and can be read with the utility program readelf.
Again, readelf is a standard tool available in GCC’s binary utilities and on most
∗nix-like environments. A sample command using readelf is shown below.

readelf --syms app.elf > app.txt

Here, app.elf is the absolute object file mentioned above. The text-based
results from readelf are piped into app.txt. The command program option
--syms stands for display the symbol table and is equivalent to the short-hand
option -s.

http://dx.doi.org/10.1007/978-3-662-47810-3_8

6.6 Understand Name Mangling and De-Mangling 111

6.6 Understand Name Mangling and De-Mangling

Symbol names created by the C++ compiler can be difficult to read in the map
file. C++ supports namespaces, function overrides, etc. This means that symbols
can potentially have the same name. For example, both integers in the two separate
namespaces below are named the_int.

namespace this_space
{
int the_int;

}

namespace another_space
{
int the_int;

}

Same-named symbols such as the_int need to be uniquely identifiable. In
order to guarantee non-conflicting symbol names in C++, the compiler needs
to make decorated internal names for variables and subroutines using additional
information based on the partial names of parameters, namespaces, classes, etc.
These can be optionally combined with random numbers, letters and selected non-
alphanumeric characters such as ‘ &’, ‘_’, ‘?’, ‘!’, ‘@’, etc. to create unique names.

In practice, the names that a C++ compiler makes can be so long and difficult
to read that the name-decorating process has come to be known as name man-
gling. Name mangling is mandatory for establishing unequivocal symbol names
in C++. As an aside, note that name mangling is dreadfully compiler-specific. Man-
gled names can not be found in the source code. Mangled names are constructed by
the compiler for internal use and will only be encountered in map files, assembly
listings, debuggers, etc.

Consider the rather uncomplicated subroutine declaration below.

os::event_type os::get_event(const os::task_id_type);

This is the name of a multitasking scheduler’s get_event() function (such
as the kind mentioned toward the end of Chap. 11). This function resides in the
namespace os. Its sole input parameter is a typedef-ed enumeration for task-
IDs, also located within the namespace os. GCC creates the mangled name shown
below for the subroutine os::get_event().

__ZN2os9get_eventENS_17enum_task_id_typeE

http://dx.doi.org/10.1007/978-3-662-47810-3_11

112 6 Optimized C++ Programming for Microcontrollers

The essential elements of the original name are recognizable and it is possible
to vaguely guess how the name mangling has augmented the original name with
namespace and parameter information to create a unique name. Nonetheless, the
mangled name is rather hard to read.

With the c++filt program, it is possible to demangle the mangled names cre-
ated by g++. Yes, it really is called name demangling. The sample bash session
below illustrates how c++filt can be used to demangle the mangled name of
os::get_event().

chris@chris-PC ~
$ c++filt __ZN2os9get_eventENS_17enum_task_id_typeE
os::get_event(os::enum_task_id_type)

chris@chris-PC ~
$ exit

It can also be convenient to initially produce a list of mangled names with nm,
the names program, and subsequently demangle them with c++filt. For exam-
ple, the following command extracts the mangled names from app.elf with nm,
subsequently sorts them numerically (by address) and demangles them by piping
the sorted list to c++filt.

nm --numeric-sort app.elf | c++filt

This simple command demangles even the most complicated names from g++,
creating a clean, easy to read list of recognizable symbol names. A basic understand-
ing of name mangling and how to de-mangle names with readily available tools can
be helpful when interpreting map files.

6.7 Know When to Use Assembly and When Not to

Assembly programming, by its very nature, is non-portable and should be avoided in
C++. Nonetheless, there are a few rare situations in microcontroller programming
which require assembly. This can be the case either because assembly program-
ming is the only way to accomplish the programming task at hand or because the
efficiency can be so radically improved (e.g. for a time critical sequence that runs
frequently) that using assembly is justified.

Assembly sequences should be buried within the microcontroller layer of the
software architecture in order to shield the system and application layers from non-
portability. See Sect. B.2 for information on layered software architecture. For short
assembly sequences of just a few lines, it may be preferable to use so-called inline
assembly, directly integrated into the C++ compiler via language extension. For

6.7 Know When to Use Assembly and When Not to 113

larger assembly sequences with more than, say, ten or twenty lines (e.g., for parts of
an extended multitasking scheduler), a dedicated assembly file may be more appro-
priate.

GCC’s inline assembly syntax uses microcontroller-specific assembly dialects
expressed in the language of GAS, the GNU assembler. Other compilers have simi-
lar language extensions with varying syntaxes.

Inline assembly can be convenient for creating short inline functions for things
such as global interrupt enable and disable, the nop operation, etc. For example,

namespace mcal
{
namespace irq
{
// Interrupt enable/disable.
inline void enable_all () { asm volatile("sei"); }
inline void disable_all() { asm volatile("cli"); }

}
}

namespace mcal
{
namespace cpu
{
// The no-operation.
inline void nop() { asm volatile("nop"); }

}
}

Calling a C++ function, whether inline or non-inline, that is either partly or com-
pletely composed of assembly is done in the same way as calling a normal C++
function. For example, the code sample below enables global interrupts in main()
via call of mcal::irq::enable_all().

int main()
{
// Enable all global interrupts.
// The enable_all() function uses assembly!
mcal::irq::enable_all();

// Initialize the mcal.
// ...

// Start multitasking.
// ...

}

114 6 Optimized C++ Programming for Microcontrollers

6.8 Use Comments Sparingly

Once, I wrote the following line of code:

CalculateSpeed(); // Calculate speed.

Years after its origination, an amused colleague indicated that the comment does not
foster understanding, but detracts from code legibility instead.

Long, redundant comments throttle coding efficiency, obscuring clarity and read-
ability. Comments can also be a source of error. Code evolves over time and com-
ments, once written by a motivated programmer, often disagree with the code at a
later stage in its evolution. In fact, a skeptical developer once said, If the code and
the comment disagree, then they are probably both wrong. Trying to improve poorly
written code by adding comments simply sidesteps an underlying quality problem.
Commenting clear code is superfluous.

On the other hand, comments that explain non-obvious algorithm details or illu-
minate the obscure meaning of register bit assignments do deserve to be com-
mented in the code. It is important to find the right compromise between legibility
and understanding and, above all, strive to write code that is clear, terse and self-
explanatory.

6.9 Simplify Code with typedef

Using typedef can reduce typing effort and, at the same time, make code easier
to read and understand. In Sect. 7.3 ahead, we will define a template class used for
generic access to microcontroller registers. In particular,

template<typename addr_type,
typename reg_type,
const addr_type addr,
const reg_type val>

class reg_access
{
public:
static void reg_set() { /* ... */ }
static void reg_and() { /* ... */ }
static void reg_or () { /* ... */ }
static reg_type reg_get() { /* ... */ }

static void bit_set() { /* ... */ }
static void bit_clr() { /* ... */ }
static void bit_not() { /* ... */ }
static bool bit_get() { /* ... */ }

http://dx.doi.org/10.1007/978-3-662-47810-3_7

6.9 Simplify Code with typedef 115

static void variable_reg_set(const reg_type)
{
// ...

}
};

The versatile reg_access template can be used for most common regis-
ter manipulations. For example, we can use the bit_not() member to toggle
portb.5. In other words,

// Toggle portb.5.
reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
5U>::bit_not();

That is quite a bit of typing for the modest task of toggling a port bit. It is, how-
ever, possible to reduce the typing effort of the toggle operation with a typedef.
For instance,

typedef reg_access<std::uint8_t,
std::uint8_t,
mcal::reg::portb,
5U> port_b5_type;

// Toggle portb.5.
port_b5_type::bit_not();

Previously in Sect. 2.6, we defined the led_template class and used it to
encapsulate an LED on portb.5. Combining the reg_access template with
typedefs can simplify the implementation of this class. In particular,

template<typename port_type,
typename bval_type,
const port_type port,
const bval_type bval>

class led_template
{
public:
led_template()
{
// Set the port pin value to low.

http://dx.doi.org/10.1007/978-3-662-47810-3_2

116 6 Optimized C++ Programming for Microcontrollers

port_pin_type::bit_clr();

// Set the port pin direction to output.
port_dir_type::bit_set();

}

static void toggle()
{
// Toggle the LED.
port_pin_type::bit_not();

}

private:
static constexpr port_type pdir = port - 1U;

// Type definition of the port data register.
typedef reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
port> port_pin_type;

// Type definition of the port direction register.
typedef reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
pdir> port_dir_type;

};

Here, the strategic use of templates and typedefs makes the functionality of
the led_template class more intuitive and easier to understand. Throughout this
book, typedef is used to simplify code and improve program clarity.

6.10 Use Native Integer Types

Operations with integers have optimum performance if implemented with the so-
called native integer type, in other words either the signed or unsigned version
of plain int. These are the native integer types of the microcontroller. They are, in
some sense, indigenous to the CPU architecture insofar as they typically have the
same width as CPU registers. The C99 specification calls signed and unsigned
int the natural integer types.

For example, 32-bit signed and unsigned integers are the native integer types on
a 32-bit machine, whereas 8-bit integers are native to an 8-bit architecture.

6.10 Use Native Integer Types 117

Consider the loop operation shown in the subroutine checksum() below.

std::uint8_t checksum(const std::uint8_t* p,
const std::uint8_t len)

{
std::uint8_t sum = UINT8_C(0);

for(std::uint8_t i = UINT8_C(0); i < len; i++)
{
sum += *p;
++p;

};

return sum;
}

Here, the checksum() subroutine computes the byte-wise std::uint8_t
sum as a simple additive summation. In other words,

sum =
i < len∑

i = 0

pi , (6.2)

where pi is the zero-based i th element in an std::uint8_t-pointer sequence of
length len, and

0 ≤ len < 256. (6.3)

We will now compile the checksum() subroutine for our target with the 32-
bit microcontroller. The compiled subroutine requires 192 bytes of program code,
which is excessively large for this simple checksum. Investigations of the assembly
listing reveal that the compiler generates code for loading and manipulating 8-bit
entities, struggling through numerous zero-clear actions on the three unused bytes
in 32-bit registers after loading a value. These operations are inefficient for this 32-
bit machine and not actually needed for the checksum algorithm.

Using native integer types improves efficiency. For example, we will now sim-
ply change the types of sum, len and the index i from std::uint8_t to
the compiler’s fastest 8-bit unsigned integer type std::uint_fast8_t. This
is an integer type that is guaranteed to have at least 8-bits (but may optionally have
more) and is intended to be the fastest one of its kind on its target architecture.4 We
have selected std::uint_fast8_t instead of, say, std::uint_fast32_t
because the resulting code will also be fast on 8-bit and 16-bit architectures, yet still
fulfill the requirements of the checksum operation.

4Here, the C++ specification leaves the interpretation of fastest open to the compiler implemen-
tation. In widespread practice, though, the fast integer types simply have the same width as CPU
registers on the target architecture.

118 6 Optimized C++ Programming for Microcontrollers

The modified source code is shown below.

std::uint8_t checksum(const std::uint8_t* p,
const std::uint_fast8_t len)

{
std::uint_fast8_t sum = UINT8_C(0);

for(std::uint_fast8_t i = UINT8_C(0); i < len; i++)
{
sum += *p;
++p;

};

return sum;
}

This minor code change switching from std::uint8_t with exactly 8 bits to
std::uint_fast8_t with at least 8 bits vastly improves the algorithm’s effi-
ciency on the 32-bit target. In particular, the disassembled source code is markedly
shorter.

The compiled subroutine using std::uint_fast8_t has a size of 24 bytes.
Compare 24 bytes with the 192 bytes from the previous listing. Using the fastest
8-bit integer type for the inner loop of the algorithm has improved the space and
performance by a factor of ∼8. Yes, that is right, an eightfold improvement. This
striking betterment shows that using native integer types can really pay off.

6.11 Use Scaling with Powers of Two

Multiplication and division with powers of two can be replaced by efficient shift
operations. For example, division by 4 can be replaced with a right-shift of 2. Mul-
tiplication with 32 can be replaced with a left-shift of 5. All good compilers do this
automatically, assuming that the right-hand operator is a compile-time constant. One
of the simplest and most effective ways to remove costly multiply and divide oper-
ations is to scale with powers of two.

Consider a software counter, in other words a prescaler, used to divide a timebase
into slower secondary frequencies.

namespace { std::uint_fast16_t prescaler; }

void do_something()
{
++prescaler;

6.11 Use Scaling with Powers of Two 119

do_it_at_01x_period();

if((prescaler % 2U) == 0U)
{
do_it_at_02x_period();

if((prescaler % 4U) == 0U)
{

do_it_at_04x_period();

if((prescaler % 8U) == 0U)
{
do_it_at_08x_period();

}
}

}
}

In this example, different software operations are carried out with frequencies
of 1, 1/ 2, 1/ 4 and 1/ 8 of the base frequency. The conditional operations are per-
formed with modulus 2n so the compiler automatically uses shifts instead of costly
division for them. If a base–10 prescaler were used instead, it would require division.
This would be much less efficient. Here, we assume that the do_it_at...()
functions are frequently-called inline functions, possibly in an interrupt service rou-
tine, quick enough in call and execution to warrant the prescaler optimization. A
further refinement is achieved by nesting the if-statements, reducing the average
load of conditional-testing, making it non-constant though.

6.12 Potentially Replace Multiply with Shift-and-Add

For some microcontrollers, the compiler might replace potentially slow multipli-
cation operations with fast shift-and-add sequences. This is particularly prevalent
for small microcontrollers that lack fast hardware multiplication.5 Good compil-
ers know which is faster, a shift-and-add sequence or its corresponding multiplica-
tion operation. For example, a long sequence of shift-and-add algorithms might be
slower than a single multiplication with a large integer or an integer having a non-
simple prime factorization. Consider multiplication by 23, which needs three shifts

5Even though most modern microcontrollers have fast hardware multiplication, replacing multiply
with shift-and-add can still be useful for older microcontrollers or price-sensitive microcontrollers
that emulate multiplication in software.

120 6 Optimized C++ Programming for Microcontrollers

and three adds (i.e., 23 = 16 + 4 + 2 + 1). This is a lot of shift-and-add and it might
be slower than the corresponding multiplication operation.

Modern compilers are remarkably aware of these situations and preferentially
select the faster of multiply or shift-and-add. Positive integers that are small-valued,
even and non-prime lend themselves well to optimization with shift-and-add. Pref-
erentially using them can lead to significant performance improvements. Check the
assembly listings (Sect. 6.4) to ensure that the compiler is aware of optimization via
shift-and-add, and preferentially use compile-time constants that lend themselves
well to shift-and-add.

6.13 Consider Advantageous Hardware Dimensioning

Peripheral hardware can be dimensioned so that it simplifies microcontroller pro-
gramming. In particular, carefully designed hardware can make it possible to write
code for which the compiler can replace costly multiplication and/or division with
shift operations. In this way, a few simple hardware design considerations can sig-
nificantly improve software efficiency.

For example, scaling with 2n can be directly designed into the microcontroller
board. Consider the simple Analog-Digital Converter (ADC) circuit shown in Fig. 6.1.
Suppose the ADC has 10-bit resolution and 5 V logic. Conversion results range from
0 . . . 1,023 steps for ADC voltage after the voltage divider (VADC) ranging from
0 . . . 5 V.

We will now design the ADC circuit for input voltage VI N � 25 V and simul-
taneously select the voltage divider parameters such that software conversion from
ADC raw value to mV can be accomplished with multiplication by 32, which is a
left shift by 5.

Fig. 6.1 An ADC circuit is
shown

6.13 Consider Advantageous Hardware Dimensioning 121

The maximum ADC result of 1,023 steps should occur when the maximum read-
able input voltage of 32 V × 1,023 = 32,736 mV lies on VI N . This corresponds to the
maximum ADC voltage of 5 V (in other words 5,000 mV) on VADC . So the voltage
divider made from R1 and R2 should be dimensioned according to

VADC

VI N
= 5,000

32,736
= R2

R1 + R2
, (6.4)

which gives

R2 =
(

5,000

27,736

)
× R1. (6.5)

We will use resistors with 1 % tolerance and limit the worst-case injection current
on the ADC pin to � 1/ 2 mA for VI N = 25 V by selecting the resistor R1 =
64.9 k�. This results in R2 ≈ 11.70 k�, which is very close to the nearest standard
1 % resistor value of 11.8 k�. So, the final dimension of the voltage divider is R1 =
64.9 k� and R2 = 11.8 k�. We can complete the circuit by selecting C1 = 22 nF
such that the low-pass filter has a rise time of τ ∼ 1.4 ms.

We will now verify the dimension of the ADC circuit. For an input voltage VI N

of 16 V, the voltage on VADC is

16 V ×
(

11.8

64.9 + 11.8

)
≈ 2.462 V, (6.6)

resulting in an integer conversion value of

1023 ×
(

2.462

5.0

)
= 503. (6.7)

To check the result, multiply 503 × 32 mV, giving 16,096 mV. This result is
within 1 % of the true value of 16,000 mV. The circuit dimension is quite acceptable.
The accuracy of the software conversion is less than but comparable to the total
hardware uncertainty, estimated by

√

2 (0.01)2 +
(

2

1023

)2

� 2 % , (6.8)

originating from 2 resistors with 1 % tolerance and 2 LSB tolerance (a typical value)
for the ADC.

When the software designers write a conversion routine from ADC raw to mV
for this circuit, it will be a simple multiplication with 32. For example,

122 6 Optimized C++ Programming for Microcontrollers

inline std::uint16_t raw2mv(const std::uint16_t& raw)
{
return raw * UINT16_C(32);

}

6.14 Consider ROM-Ability

In microcontroller programming, every resource is limited. In many projects, though,
the most rare resource of all can be RAM. This makes it essential to preferentially
use objects that can be entirely placed in read-only program memory, so-called
ROM-able objects. A ROM-able object is entirely constant, in other words bitwise
constant, and the compiler can save costly RAM by locating ROM-able objects in
program code.

Consider the two version strings shown below.

namespace
{
// A version stored in a constant std::string.
const std::string version_string1("1.23");

// A version stored in a constant std::array.
const std::array<char, 5U> version_string2
{
{ ’1’, ’.’, ’2’, ’3’, ’\0’ }

};
}

In this example, version_string1 is stored in a constant std::string
and version_string2 is stored in a constant std::array. Both version
strings have roughly equivalent values for the user. They both represent the ASCII
character string “1.23”. The storage requirements, however, can be quite different
for the two version strings.

Benchmark examinations of various map files for a few different CPU architec-
tures revealed that version_string1 must always be stored in RAM, whereby
version_string2 can potentially be stored in read-only program code for some
targets. Furthermore, version_string1 requires the overhead of compiler-
generated code for the pre- main() initialization of its static constructor (Sect. 8.3).

The instance of version_string1 is not ROM-able because, among other
reasons, it is a complex object involving runtime initialization with a constructor
and memory allocation (e.g., with a custom allocator, as described in Sect. 6.16 and
Chap. 10). The instance of version_string2, on the other hand, is ROM-able

http://dx.doi.org/10.1007/978-3-662-47810-3_8
http://dx.doi.org/10.1007/978-3-662-47810-3_10

6.14 Consider ROM-Ability 123

because its contents are entirely known at compile time and can be directly placed
in program code accordingly—or even used by the compiler on-the-fly.

In fact, std::arrays of constant-valued built-in types fulfill the requirements
for constexpr (Sect. 3.8). It is, therefore, possible to force the compiler to treat
the version string as a compile-time entity by using constexpr instead of const.
In particular,

namespace
{
// A version that is compile-time constant.
constexpr std::array<char, 5U> version_string
{
{ ’1’, ’.’, ’2’, ’3’, ’\0’ }

};
}

It can be even more efficient (and the version string is just as constant) if the data
are placed in a constant std::initializer_list. For example,

namespace
{
// A version that is compile-time constant.
constexpr std::initializer_list<char> version_string
{
’1’, ’.’, ’2’, ’3’, ’\0’

};
}

When programming with constant-valued objects, consider their ROM-ability
and their potential to be treated as compile-time constant. Preferentially employing
ROM-able constant objects when possible can save significant RAM in the project.

6.15 Minimize the Interrupt Frame

Interrupts can be called frequently, so it is essential they be programmed efficiently.
We will now examine how the code in an interrupt service routine can influence
the efficiency of its interrupt frame. The interrupt frame is the compiler-generated
assembly code at the head and tail of the interrupt service routine that brackets the
user-written code. The interrupt frame is responsible for context save and restore at
interrupt entry and exit. See Sect. 9.2 for more information on interrupts.

The code below establishes the system timebase of the software by incrementing
the system_tick in timer interrupt __timer0_cmp_a_isr(). Essentially

http://dx.doi.org/10.1007/978-3-662-47810-3_3
http://dx.doi.org/10.1007/978-3-662-47810-3_9

124 6 Optimized C++ Programming for Microcontrollers

the same code can be found in the general-purpose-timer (gpt) part of the MCAL
in the reference project of the companion code. It is the interrupt service routine for
the timer0 compare register a match event.

namespace
{
volatile std::uint16_t system_tick;

}

// Attributes indicate interrupt service routine.
extern "C"
void __timer0_cmp_a_isr() __attribute__((interrupt));

// This is the interrupt service routine.
// This interrupt occurs when the 8-bit timer0
// counter register reaches the value in the
// compare register a.
void __timer0_cmp_a_isr()
{
// Increment the system-tick.
++system_tick;

}

A summarized representation of the assembly code that the GNU compiler cre-
ates for the interrupt service routine __timer0_cmp_a_isr() is shown below.

extern "C" void __timer0_cmp_a_isr()
{
; Save the ISR context.
; 7 assembly lines to save the context.

; Increment the system-tick.
; ++system_tick;
; 5 assembly lines to increment the system_tick.

; Restore the ISR context.
; 7 assembly lines to restore the context.

}

The interrupt frame is relatively brief. It uses 7 assembly lines to push a hand-
ful of registers in preparation for the interrupt. In the body of the interrupt service
routine, the value of the 16-bit system_tick is incremented. This requires only
two 8-bit CPU registers. Since just a few registers are used in the ISR, the compiler

6.15 Minimize the Interrupt Frame 125

knows that it does not have to save and restore the entire register context informa-
tion, just those registers that are actually used in the interrupt service routine itself.
All good C and C+++ compilers keep track of the registers used in an interrupt
service routine. Consequently, the compiler generates a minimal interrupt frame.

If more complicated code is placed in an ISR, the interrupt frame grows accord-
ingly. The worst situation results from calling a non-inline, external function in an
ISR. Consider an alternative way to increment the system-tick using a subroutine
call in the interrupt service routine. For instance,

extern "C"
void __timer0_cmp_a_isr() __attribute__((interrupt));

extern void increment_system_tick();

void __timer0_cmp_a_isr()
{
// Increment the system-tick with a subroutine call.
increment_system_tick();

}

This version of the interrupt service routine __timer0_cmp_a_isr() also
increments the system-tick. The system_tick variable is, however, not directly
incremented. Rather the increment operation takes place in a non-inline, external
subroutine called increment_system_tick().

The corresponding interrupt frame generated by the compiler for this version of
the interrupt service routine is extensive. The synopsis is shown below.

extern "C" void __timer0_cmp_a_isr()
{
; Save the ISR context.
; 17 assembly lines to save the context.

; Increment the system_tick in a function.
; increment_system_tick();

; Restore the ISR context.
; 17 assembly lines to restore the context.

}

This is certainly a drastic difference caused by changing just one line of code. The
sizes of the head and tail in the interrupt frame have grown from 7 to 17 lines in the
assembly listing. The increased size of the interrupt frame is, however, mandatory.
As far as the compiler knows, there might be complicated operations or secondary

126 6 Optimized C++ Programming for Microcontrollers

subroutine calls in increment_system_tick(). The values of every register
might be changed or modified (i.e., clobbered). Perhaps none or only some registers
will really be clobbered. The compiler, however, has no way to determine what
happens in the function call because it lacks call-tree analysis capabilities.

Instead of saving and restoring the registers used before and after the call of
increment_system_tick(), then, the compiler must perform a full context
save and restore of all the user-registers in the interrupt frame of this version of
__timer0_cmp_a_isr(). Each register is sequentially push-ed onto the stack
in the head of the interrupt frame. Each register is subsequently restored via pop
instruction in reverse order in the tail thereafter.

The difference in performance and size is striking. To do the same tick incre-
menting, the total work of the interrupt routine has grown significantly. This kind
of hidden performance hit can be eliminated by avoiding complicated code in inter-
rupts, especially calls to non-inline external functions. This minimizes the interrupt
frame and saves precious cycles.

6.16 Use Custom Memory Management

Small-to-medium size microcontrollers might have a tiny heap for dynamic memory
allocation, or even no heap at all. It rarely makes sense, therefore, to allow uncon-
ditional use of new and delete. When using new and delete during runtime,
the heap quickly runs out of memory or becomes fragmented beyond repair, taking
on a non-usable form. In addition, the standard implementations of global new and
delete may require undesired linked-in object code from the C++ library.

Developers can forget to catch() an std::bad_alloc exception thrown
by a potentially failed allocation attempt, Sect. 10.7. This can result in a hard-to-
find defect because a non-caught exception or a non-thrown one can be difficult to
detect or reproduce during testing.

The problems outlined above can be avoided, and in most cases eliminated alto-
gether, if careful, attentive use is made of user-defined memory management using
placement- new. STL containers can also take advantage of user-defined memory
allocation using custom allocators based on placement-new. User-defined allocation
provides fine-grained control over dynamic memory resulting in efficient resource
use and error reduction. Using placement- new and designing custom allocators for
STL containers are described in Chap. 10.

6.17 Use the STL Consistently

Use the STL consistently throughout the entire microcontroller software project. In
doing so, it is possible to significantly decrease coding complexity while simulta-
neously improving legibility, portability and performance. Loops previously written
with laborious, possibly error-prone attention to detail will become simple, eloquent

http://dx.doi.org/10.1007/978-3-662-47810-3_10
http://dx.doi.org/10.1007/978-3-662-47810-3_10

6.17 Use the STL Consistently 127

one-liners. For all good compilers, the STL authors have meticulously optimized the
STL implementation for the specific characteristics of the compiler at hand. One can
be relatively certain that the library developers have used programming idioms that
can be optimized particularly well by the compiler. When using anything from the
STL, then, one can be relatively sure that these parts of the code will reach the
highest level of efficiency that the compiler has to offer.

As a case in point, reconsider the checksum algorithm from Sect. 6.10. We will
now investigate the efficiency of the summation if, instead of a manually-written
algorithm, std::accumulate() from STL’s <numeric> is used.

#include <numeric>

std::uint8_t checksum(const std::uint8_t* p,
const std::uint_fast8_t len)

{
return std::accumulate(p,

p + len,
std::uint_fast8_t(0U));

}

The implementation is a simple one-liner. In addition, it is even more efficient
than the second optimized implementation in Sect. 6.10. It is an interesting exer-
cise to use reverse engineering in an effort to find out how the STL might program
this particular algorithm with such high efficiency. After a few attempts via trial-
and-error, the implementations shown below has been discovered. It has the same
efficiency as the STL implementation.

std::uint8_t checksum(const std::uint8_t* p,
const std::uint_fast8_t len)

{
std::uint_fast8_t sum = UINT8_C(0);
const std::uint8_t* end = p + len;

while(p != end)
{
sum += *p;
++p;

};

return sum;
}

128 6 Optimized C++ Programming for Microcontrollers

This, for example, may or may not be how one programs. It is, nonetheless,
probably the most efficient way to implement this particular algorithm in C++ for
this compiler. When investigating this benchmark, for example, I did not innately
program in such a way as to reach the compiler’s highest efficiency. The STL imple-
mentation beat me by two lines of assembly.

A common algorithm rarely needs to be reinvented and programed from scratch
because the algorithm is probably available in the STL. In addition, the STL authors
have diligently optimized it and tested it. Using the STL throughout the project,
therefore, results in a more legible, efficient and portable body of source code, auto-
matically. In addition, other developers will find it easy to analyze and review source
code that uses the STL because the standardized template interface encourages con-
sistent style and reinforces coding clarity.

6.18 Use Lambda Expressions

The example below is based on part of the startup code as described in Sect. 8.3.
The code initializes the static ctors before the jump to main(). The code calls the
compiler-generated ctors in the range

[
ctors_begin, ctors_end

)
using the

STL’s std::for_each() algorithm.
We will now write this part of the startup code in two ways. The first uses the

std::for_each() algorithm in combination with a lambda expression, whereas
the second uses a function with static linkage.

The code below is written with a lambda expression.

typedef void(*function_type)();
function_type ctors_end[];
function_type ctors_begin[];

void init_ctors()
{
std::for_each(ctors_begin,

ctors_end,
[](const function_type& pf)
{
pf();

});
}

http://dx.doi.org/10.1007/978-3-662-47810-3_8

6.18 Use Lambda Expressions 129

The following code uses a static function.

typedef void(*function_type)();

function_type ctors_end[];
function_type ctors_begin[];

namespace
{
void call_ctor(const function_type& pf) { pf(); }

}

void init_ctors()
{
std::for_each(ctors_begin, ctors_end, call_ctor);

}

Analyses of the assembly listings of the two cases reveal that the version using
the algorithm with the lambda expression has higher performance. In my bench-
mark, the version using the lambda expression had a savings of about 25 % in run-
time.

Lambda expressions offer the compiler more opportunities to optimize by mak-
ing the function, its iterator range and its parameters visible to the compiler within
a single block of code. In this way, the compiler has access to richer set of register
combinations, merge possibilities, etc. and it can do a better optimization. Using
lambda expressions consistently throughout an entire project can save significant
code and generally improve the performance of the whole software.

6.19 Use Templates and Scalability

Templates expose all of their code, their template parameters, function calls, pro-
gram loops, etc. to compiler optimization at compile time. This provides the com-
piler with a wealth of information allowing for many intricate optimizations such as
constant folding and loop unrolling. Using templates can result in many (sometimes
subtle) improvements in runtime performance.

Always remember, though, that additional template instantiation could result in
the creation of additional code. Although this does not necessarily have to be the
case because added code resulting from templates might be more than offset by
size reductions gained from improved compilation efficiency. So, if performance
and size really matter, consider template design. Write the code without templates.
Write it again with templates. If a mix is better, templates can be combineed with
non-templates. Analyze the assembly code listings along the way and strike the right
balance between using templates and using non-templated classes and subroutines.

130 6 Optimized C++ Programming for Microcontrollers

As mentioned above in Sect. 6.17, one of the most effective ways in which tem-
plates can improve overall performance is simply by using the STL. In many senses,
making consistent use of the STL is a kind of global project optimization.

Templates provide for scalability, allowing the scale and complexity of a partic-
ular calculation to be adjusted by changing the template parameters. For example,
the timers of Sect. 15.3 are implemented as scalable templates. The best efficiency
of these timers can be achieved if the template parameter uses the native unsigned
integer type (Sect. 6.10). The digital filter classes of Chap. 14 are also scalable.
Section 14.4 shows how to achieve maximum filter performance and functionality
by properly scaling the template parameters.

6.20 Use Metaprogramming to Unroll Loops

Template metaprogramming can be used to improve code performance by forcing
compile-time loop unrolling. An interesting analysis of this can be found by revisit-
ing the inner product metaprogram in the code samples of Sect. 5.10.

In the original example, both sides of the dot-product, (�u·�v) including their ranges
were compile-time constants, allowing for complete evaluation of the result at com-
pile time. In other situations, however, the values of the container elements might
not be known at compile time. For example, if dynamic containers with variable
size unknown to the compiler are used or if a lower optimization level is applied,
the inner product might not be unrolled by compiler optimization alone.

A template metaprogram will always force loop unrolling, regardless of the con-
tainer type or optimization level. Care must be taken, though, to ensure that the
range index stays in bounds when unrolling dynamic containers with metaprogram-
ming. Loop unrolling with template metaprogramming is a versatile programming
tool that can be employed to improve performance in many different situations.

References

1. Free Software Foundation, Invoking GCC: 3.10 Options that Control Optimization (2015),
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html

2. ISO/IEC, ISO/IEC 13818 Parts 1–10: Information Technology—Generic Coding of Moving
Pictures and Associated Audio Information: Systems (International Organization for Standard-
ization, Geneva, 2010)

3. W. van Hagen, The Definitive Guide to GCC (Apress, Berkeley, 2006)
4. Wikipedia, Cyclic redundancy check (2015), http://en.wikipedia.org/wiki/Cyclic_redundancy_

check
5. Wikipedia, MPEG program stream (2015), http://en.wikipedia.org/wiki/MPEG_program_

stream

http://dx.doi.org/10.1007/978-3-662-47810-3_15
http://dx.doi.org/10.1007/978-3-662-47810-3_14
http://dx.doi.org/10.1007/978-3-662-47810-3_14
http://dx.doi.org/10.1007/978-3-662-47810-3_5
http://gcc.gnu.org/onlinedocs/gcc/Optimize-Options.html
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://en.wikipedia.org/wiki/Cyclic_redundancy_check
http://en.wikipedia.org/wiki/MPEG_program_stream
http://en.wikipedia.org/wiki/MPEG_program_stream

Part II
Components for Real-Time C++

Chapter 7
Accessing Microcontroller Registers

Microcontroller programming requires efficient techniques for register access.
Registers are used to configure the CPU and peripheral hardware devices such as
flash access, clocks, I/O ports, timers, communication interfaces (UART, SPITM,
CAN [1]), etc. This chapter describes C++ methods that can be used to manipulate
microcontroller registers. The focus of this chapter is placed on template methods
that provide for efficient, scalable and nearly portable register access.

7.1 Defining Constant Register Addresses

C programmers often define register addresses with a preprocessor #define. For
example,

// The 8-bit address of portb.
#define REG_PORTB ((uint8_t) 0x25U)

The preprocessor symbol REG_PORTB represents the 8-bit address of portb
on our target with the 8-bit microcontroller. We first encountered this register in
the LED program of Sect. 1.1. The value of portb’s address is 0x25. The type
of the address is uint8_t. In addition, the type information is tightly bound to
the preprocessor definition with a C-style cast operator. All-in-all, this is a robust
register definition in C.

As mentioned in association with the LED program in Sect. 1.10, portb can
also be manipulated via direct memory access in the C language. For example, the
following C code sets the value of portb to zero.

// Set portb to 0.

((volatile uint8_t) REG_PORTB) = UINT8_C(0);

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_7

133

http://dx.doi.org/10.1007/978-3-662-47810-3_1
http://dx.doi.org/10.1007/978-3-662-47810-3_1

134 7 Accessing Microcontroller Registers

In C++ it can be convenient to define register addresses with compile-time con-
stant static integral members of a class type (such as a structure) or using the
constexpr keyword. This technique has already been used a few times in this
book and is described in greater detail in Sect. 4.10. In particular,

namespace mcal
{
struct reg
{
static constexpr std::uint8_t portb =

UINT8_C(0x25);

// Additional registers
// ...

};
}

Register addresses can alternatively be defined as compile-time constants with
constexpr possibly in a namespace for naming uniqueness. For example,

namespace mcal
{
namespace reg
{
constexpr std::uint8_t portb = UINT8_C(0x25);

// Additional registers
// ...

}
};

The mcal::reg structure (or the mcal::reg namespace) can be used to
define a variety of microcontroller register addresses. Each register address needed
in the program can be included as a compile-time constant. In the mcal::reg
structure above, for example, the 8-bit address of portb on our target with the
8-bit microcontroller has a compile-time constant value equal to 0x25.

Using the mcal::reg structure (or alternatively the namespace mcal::reg)
it is straightforward to set portb via direct memory access in C++. For instance,

// Set portb to 0.

reinterpret_cast<volatile std::uint8_t>
(mcal::reg::portb) = UINT8_C(0);

http://dx.doi.org/10.1007/978-3-662-47810-3_4

7.1 Defining Constant Register Addresses 135

As mentioned in Sects. 1.10 and 4.10, compile-time constants are just as efficient
as preprocessor #defines, but have superior type information. Compile-time con-
stants are well-suited for defining register addresses because they require no storage
and are available for constant folding. Register addresses defined as compile-time
constants can also be used as parameters in C++ templates. This can be used to cre-
ate highly optimized template classes that can be mapped to the microcontroller’s
peripherals resulting in efficient hardware-access code that possesses a high degree
of portability. This technique will be shown in the next section and also used for a
serial SPITM driver in Sect. 9.5.

7.2 Using Templates for Register Access

Consider the template class below. It is a scalable template class designed for setting
the value of a microcontroller register.

template<typename addr_type,
typename reg_type,
const addr_type addr,
const reg_type val>

class reg_access
{
public:
static void reg_set()
{

reinterpret_cast<volatile reg_type>(addr) = val;
}

};

The reg_access class has four template parameters that specify the character-
istics of the microcontroller register. The addr_type parameter defines the type of
the register’s address. When used with portb on our target with the 8-bit microcon-
troller, for example, the type of addr_type is std::uint8_t. The reg_type
parameter defines the physical width of the register. This is also std::uint8_t
for portb on our target with the 8-bit microcontroller.1 The last two template para-
meters, addr and val, define the register’s address and the value that should be
written it. These two parameters must be integral compile-time constants.

The reg_access template has one static method called reg_set(). This
function is designed for setting a register at a fixed address with a constant value.
For example,

1Note, however, that a register’s width need not necessarily have the same type as its address. One
often encounters registers with 8-bit width or 16-bit width on a 32-bit machine, etc.

http://dx.doi.org/10.1007/978-3-662-47810-3_1
http://dx.doi.org/10.1007/978-3-662-47810-3_4
http://dx.doi.org/10.1007/978-3-662-47810-3_9

136 7 Accessing Microcontroller Registers

// Set portb to 0.
reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
UINT8_C(0x00)>::reg_set();

As in the examples in the previous section, this code also sets the value of the
portb register to zero. This is accomplished by calling the reg_set() function.
Notice how this code obtains the address of portb from the mcal::reg class.

There are several advantages to implementing register access functions in a tem-
plated class such as reg_access. In particular, reg_access offers scalability
and portability because it can be used with different register types and microcon-
troller architectures.

In the code below, for example, a register with a 32-bit address and an 8-bit width
is set with an 8-bit value.2

// Set timer0 mode register tm0ctl0 to zero.
reg_access<std::uint32_t,

std::uint8_t,
mcal::reg::tm0ctl0,
UINT8_C(0x00)>::reg_set();

In the following code, a register with a 32-bit address and 16-bit width is set with
a 16-bit value.

// Set timer0 compare register tm0cmp0 to 32,000.
reg_access<std::uint32_t,

std::uint16_t,
mcal::reg::tm0cmp0,
UINT16_C(32000)>::reg_set();

The reg_set() function of the reg_access class is quite efficient because
all the template parameters are compile-time entities. When compiling the sample
above, for example, the compiler eliminates the addr and val template parameters
via constant folding and sees in reg_set() the following statement.

reinterpret_cast<volatile std::uint16_t>
(std::uint32_t(0xFFFFF694)) = UINT16_C(32000);

2This example and the following one have been taken from code originally written to initialize
timer0 for a well-known 32-bit microcontroller.

7.2 Using Templates for Register Access 137

Since this code is entirely known at compile time, the compiler can optimize
it to the best of its ability. In fact, the compiler could potentially substitute a single
opcode for the operation if one is available for the CPU architecture and the compiler
is capable of recognizing the opportunity to do so.

7.3 Generic Templates for Register Access

Based on the reg_set() subroutine in the previous section, we can add additional
functions such as logic and bit operations to the reg_access class. For example,
we will now add to the reg_access class a function for the logical or operator.

template<typename addr_type,
typename reg_type,
const addr_type addr,
const reg_type val = 0>

class reg_access
{
public:
static void reg_set()
{

reinterpret_cast<volatile reg_type>(addr) = val;
}

static void reg_or()
{

reinterpret_cast<volatile reg_type>(addr) |= val;
}

};

The reg_or() function is similar to the reg_set() function. The only differ-
ence is that instead of setting the value with operator=, the logical or operator
is used. This subroutine can be used for or-ing the value of a register at a fixed
address with a constant value. In particular,

// Set portb.5 to 1.
reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
UINT8_C(0x20)>::reg_or();

138 7 Accessing Microcontroller Registers

This code is equivalent to

reinterpret_cast<volatile std::uint8_t>(0x25)
|= UINT8_C(0x20);

and it performs a bitwise or of portb with the 8-bit value 0x20. This sets
portb.5 on our target with the 8-bit microcontroller to high.

As a final example, we will add a dedicated bit operation to the reg_access
class. For example,

template<typename addr_type,
typename reg_type,
const addr_type addr,
const reg_type val = reg_type(0)>

class reg_access
{
public:
// ...

static void bit_not()
{

reinterpret_cast<volatile reg_type>(addr)
^= reg_type(reg_type(1U) << val);

}
};

The bit_not() function performs a bitwise exclusive-or (xor) of a register
with a bitmask containing a single bit. Notice that the val parameter here is used
to create the bitmask from 1 shifted left val times.

The bit_not() function has the effect of toggling a bit from low to high and
vice versa. For example,

// Toggle portb.5.
reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
UINT8_C(5)>::bit_not();

This code is equivalent to

reinterpret_cast<volatile std::uint8_t>(0x25)
^= UINT8_C(0x20);

7.3 Generic Templates for Register Access 139

and it performs a bitwise xor of portb with 0x20. This toggles portb.5 on our
target with the 8-bit microcontroller from low to high and vice versa. It is the same
register manipulation that was introduced in the toggle() function of the led
class in the LED program of Sect. 1.1.

So now the reg_access class includes functions for register set, logical or
and bitwise xor. It is straightforward to add even more register functions. For exam-
ple, the class synopsis of an extended reg_access class is shown below.

template<typename addr_type,
typename reg_type,
const addr_type addr,
const reg_type val>

class reg_access
{
public:
static void reg_set() { /* ... */ }
static void reg_and() { /* ... */ }
static void reg_or () { /* ... */ }
static reg_type reg_get() { /* ... */ }

static void bit_set() { /* ... */ }
static void bit_clr() { /* ... */ }
static void bit_not() { /* ... */ }
static bool bit_get() { /* ... */ }

static void variable_reg_set(const reg_type)
{
// ...

}
};

This version of the reg_access class is contained in the companion code of
this book. It has functions for register set, get, various bit operations, etc. In this
sense, the reg_access class is a scalable, flexible and generic template that can
be used for register manipulation on any microcontroller platform, regardless of the
address widths and register types.

Register manipulation code can never be truly portable because the addresses
and purposes of registers are specific to a given microcontroller. The reg_access
class, however, makes no use of these kinds of microcontroller-specific details. So
as long as the microcontroller-specific details are localized somewhere else (such
as in something like the mcal::reg structure), the reg_access class remains
portable—perhaps as portable as possible for microcontroller register access.

http://dx.doi.org/10.1007/978-3-662-47810-3_1

140 7 Accessing Microcontroller Registers

7.4 Bit-Mapped Structures

Microcontroller programmers often use C-style structures with bit-fields to rep-
resent bits or groups of bits in a register. This is useful for creating a bit-mapped
structure that identically matches the bits in a hardware register. For example, an
8-bit port register can be represented with the C-style bit-mapped structure shown
below.

typedef struct struct_bit8_type
{
std::uint8_t b0 : 1;
std::uint8_t b1 : 1;
std::uint8_t b2 : 1;
std::uint8_t b3 : 1;
std::uint8_t b4 : 1;
std::uint8_t b5 : 1;
std::uint8_t b6 : 1;
std::uint8_t b7 : 1;

}
bit8_type;

Using the bit8_type structure is straightforward. For example, the code below
sets portb.5 to high.

reinterpret_cast<volatile bit8_type*>
(mcal::reg::portb)->b5 = 1U;

It can also be convenient to combine a built-in integral type with a bit-mapped
register structure in a C-style union. For instance,

typedef union union_reg_map_c
{
std::uint8_t value;
bit8_type bits;

}
reg_map_c;

In this example, we have combined the eight bits in the bit8_type structure
with an std::uint8_t in the reg_map_c union. This makes it possible to
manipulate either the individual bits or the value of the entire register depending
on the coding situation. In particular,

7.4 Bit-Mapped Structures 141

// Set portb to 0.
reinterpret_cast<volatile reg_map_c*>
(mcal::reg::portb)->value = UINT8_C(0);

// Set portb.5 to 1.
reinterpret_cast<volatile reg_map_c*>
(mcal::reg::portb)->bits.b5 = 1U;

In C++, it is possible to take the concept of the reg_map_c union and create
from it a generic template class for register mapping. For example,

template<typename addr_type,
typename reg_type,
typename bits_type,
const addr_type addr>

class reg_map
{
public:
static reg_type& value()
{
return

reinterpret_cast<volatile reg_type>(addr);
}

static bits_type& bits()
{
return

reinterpret_cast<volatile bits_type>(addr);
}

};

The reg_map class has four template parameters similar to the ones in the
reg_access structure from the previous sections of this chapter. In particular,
the addr_type parameter specifies the type of the register’s address. The addr
parameter provides the constant value of the register’s address. The reg_type
gives the type of the register. The new bits_type template parameter is intended
to be a bit-mapped structure representing the bit-mapping of the hardware register.

These template parameters are used by reg_map’s two static members functions
to provide access the register as a value or a bit-map. The value() subroutine
returns a non-constant (i.e., modifiable) reference to the value of the register. The
bits() subroutine returns a non-constant reference to the bit-mapped value of the
register.

142 7 Accessing Microcontroller Registers

Imagine we would like to use the reg_map class to access the portb register
on our target with the 8-bit microcontroller. In particular,

// Set portb to 0.
reg_map<std::uint8_t,

std::uint8_t,
bit8_type,
mcal::reg::portb>::value() = UINT8_C(0);

// Set portb.5 to 1.
reg_map<std::uint8_t,

std::uint8_t,
bit8_type,
mcal::reg::portb>::bits().b5 = 1U;

Bit-mapped structures provide an intuitive and elegant way to identically map
a software structure to a hardware register or set of registers. Using bit-mapped
structures, however, can result in potentially non-portable code. This is because,
according to specification, the type of bit-field members in a structure must be one
of signed or unsigned int. Bit-mapped structures, however, often use other
integral types in order to obtain the right structure packing for the hardware.

If bit-mapped structures are to be used, one may want to check how the com-
piler handles them and ensure that the desired bit-mapping is actually carried out.
The code of bit-mapped structures should also be clearly marked with a comment
indicating potential non-portability.

Reference

1. ISO, ISO 11898–1:2003: Road Vehicles—Controller Area Network (CAN)—Part 1: Data Link
Layer and Physical Signaling (International Organization for Standardization, Geneva, 2003)

Chapter 8
The Right Start

The startup code is called by the microcontroller hardware after reset and is the
first code to execute before calling the main() subroutine. The startup code pre-
dominantly consists of initialization code and may include, among other things,
CPU-initialization, zero-clear RAM initialization, ROM-to-RAM static initializa-
tion and static ctor call initialization. The compiler’s default startup code is often
tightly bound to the compiler’s runtime libraries and may not be available as source
code. In addition, even if the source of the startup code is available, it can be hard to
understand because it may be written in assembly and cluttered with a multitude of
options required for supporting a variety of chip derivatives. This chapter describes
how to implement a custom startup code and its initializations written predominantly
in C++, from reset to main().

8.1 The Startup Code

It can be preferable to write a custom version of the startup code. This makes it
possible to include specialized initialization mechanisms for I/O pins, oscillators,
watchdog timers, etc. These might otherwise be postponed to an unduly late time,
such as in the main() subroutine. The flowchart of a custom startup code is shown
in Fig. 8.1.

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_8

143

144 8 The Right Start

Fig. 8.1 The flowchart of a
customized startup code is
shown

Initialize CPU registers

Initialize chip
(I/O ports, watchdog, clock, etc.)

Zero-clear bss

Initialize static data

Call static ctors

Unexpected return
from main

Jump to main
(and never return)

We will now examine the main parts of this startup code going step-by-step
through a real example. The code below shows the implementation of the startup
code for the 32-bit target in the reference project of the companion code.

extern "C" void startup()
{
// Set the stack pointers.
asm volatile("movs r1, #0");

// Initialize I/O pins, oscillators and watchdog.
mcal::cpu::init();

// Initialize statics from ROM to RAM.
// Zero-clear non-initialized static RAM.
crt::init_ram();
mcal::wdg::trigger();

// Call all ctor initializations.
crt::init_ctors();

8.1 The Startup Code 145

mcal::wdg::trigger();

// Jump to main (and never return).
asm volatile("bl main");

// Catch an unexpected return from main.
for(;;)
{
// Replace with an even louder error, if desired.
mcal::wdg::trigger();

}
}

The first part of the startup code initializes the stack pointer. For other architec-
tures, it may also be necessary to initialize other important CPU registers and data
pointers needed for rudimentary operations such as bus access, subroutine calls,etc.
These kinds of registers are target-specific and need to be carefully studied in the
microcontroller handbook. This portion of the startup code usually needs to be writ-
ten in assembly or, as is the case above, with one or more lines of inline assembly.

The remaining parts of the startup code can often be written in C++. These
include low-level hardware initialization (Chap. 9), RAM initialization, static con-
structor initialization and the jump to main().

This example of the startup code is primarily written in C++ with small hybrid
assembly components. This makes it convenient to distribute the important parts of
the initialization sequence in procedural subroutines with easy-to-recognize names.
With this technique, it is possible to implement the startup codes for different micro-
controllers in a similar fashion. This can potentially be a significant improvement
over the all-assembly implementations predominantly found for many compilers
and most target systems.

8.2 Initializing RAM

There are usually at least two kinds of RAM that need to be initialized in the startup
code. These include both non-initialized static variables as well as the initialized
ones. Non-initialized, non-local static variables need to be zero-cleared. Non-local
static variables that are initialized must be set with constant values extracted from a
so-called ROM-to-RAM table. For example,

namespace
{
// Needs zero-clear.
std::uint16_t flag;

http://dx.doi.org/10.1007/978-3-662-47810-3_9

146 8 The Right Start

// Needs ROM-to-RAM init.
std::uint8_t version = UINT8_C(3);

}

In this code, there are two static variables with file-level scope, flag and
version. The flag variable is not initialized. As such, it needs to be initialized
with the default value of zero. The variable version is initialized with the value
3. Its initialization is carried out with a runtime mechanism that copies into it the
initial value of 3.

All non-initialized static variables such as the flag variable shown above need
to be zero-cleared. In order to facilitate this, the compiler and linker have located
variables of this kind in special linker section. For GNU compilers, this is often
called the bss-section.

In order to zero-clear the bss-section, the startup code loops through the bss-
section from begin to end and sets its contents to zero. The code below shows a
potential implementation of the zero-clear mechanism for the bss-section.

// Linker-defined begin and end of the .bss section.
extern std::uintptr_t _bss_begin;
extern std::uintptr_t _bss_end;

void init_bss()
{
// Clear the bss segment.
std::fill(&_bss_begin, &_bss_end, 0U);

}

The init_bss() subroutine uses std::fill() to loop through the bss-
section and zero-clear its contents. Notice how the external symbols _bss_begin
and _bss_end have been made available to simplify the coding. These symbols
have been defined in the linker script. We will discuss the linker script and the
definitions of these symbols in Sect. 8.4.

Initialized static variables such as version shown above need to be initialized
with constant values. The compiler and linker have, once again, created two special
linker sections to facilitate these kinds of initializations. One linker section contains
all the static variables needing initialization. This is often called the data-section.
The other linker section contains a table of the actual values used to initialize them.
This is referred to as the rodata-section (as in “read-only” data).

In order to initialize the static variables, then, all one needs to do is loop through
the data-section and copy to it the contents of the rodata-section. For example,

// Linker-defined begin of rodata.
extern std::uintptr_t _rodata_begin;

8.2 Initializing RAM 147

// Linker-defined begin and end of data.
extern std::uintptr_t _data_begin;
extern std::uintptr_t _data_end;

void init_data()
{
// Calculate the size of the data section.
const std::size_t cnt = (&_data_end - &_data_begin);

// Copy the rodata section to the data section.
std::copy(&_rodata_begin,

&_rodata_begin + cnt,
&_data_begin);

}

The initialization sequence in init_data() uses std::copy() to loop
through the rodata-section and copy the ROM-to-RAM initialization contents to
the data-section. Again, this mechanism makes use of external symbols that have
been defined in the linker script (Sect. 8.4).

8.3 Initializing the Static Constructors

As mentioned in Sect. 1.5, static constructors of class types have compiler-generated
constructor code. The same is true for static variables initialized with the return
value of a subroutine. For example, recall the constructor call of led_b5.

// Create led_b5 on portb.5.
const led led_b5
{
mcal::reg::portb,
mcal::reg::bval5

};

This code was first introduced in the LED program of Sect. 1.1. It has a static
instance of the led class called led_b5. Since led_b5 must be fully formed
before it can be used in main(), the compiler has automatically generated a sub-
routine for its constructor. For example, GCC for our target with the 8-bit micro-
controller creates a subroutine named _GLOBAL__I_main() that carries out the
initialization of led_b5.

The pseudo-code that the compiler generates for _GLOBAL__I_main() is
shown below.

000000ba <_GLOBAL__I_main>:

http://dx.doi.org/10.1007/978-3-662-47810-3_1
http://dx.doi.org/10.1007/978-3-662-47810-3_1

148 8 The Right Start

;led(const port_type p, const bval_type b) : port(p),
; bval(b)

; 4 assembly lines to initialize port, bval.

;{
; // Set the port pin to low.
; *reinterpret_cast<volatile bval_type*>(port)
; &= static_cast<bval_type>(~bval);

; 1 assembly line to clear the port pin.

; // Set the port pin to output.
; *reinterpret_cast<volatile bval_type*>(port - 1u)
; |= bval;

; 1 assembly line to set the port direction.
;}

The original C++ source code from the led class constructor has been included
in this assembly listing in the form of comments. With the source code included, it
is possible to recognize the assembly code sequences generated for both the con-
structor initialization list and also for setting the port pin direction to output and the
port pin value to low.

Most C++ programs have numerous objects requiring construction. In general,
the compiler generates a subroutine with construction code for each one of them.
The addresses of these compiler-generated subroutines are stored in a special linker
section. Different compilers use different names for the linker section containing
the constructors. Section names such as ctors, init_array and the like are
used by ports of GCC. Regardless of what the linker section is called, however, it is
essentially just a table of function pointers.

In order to initialize the constructors, then, a mechanism is needed that loops
through the ctors-section and sequentially calls each compiler-generated con-
structor function. For example,

typedef void(*function_type)();

// Linker-defined begin and end of the ctors.
extern function_type* _ctors_begin[];
extern function_type* _ctors_end[];

void init_ctors()
{

8.3 Initializing the Static Constructors 149

std::for_each(_ctors_begin,
_ctors_end,
[](const function_type pf)
{
pf();

});
}

This code was first introduced in Sect. 6.18 as an example providing moti-
vation to use lambda expressions. As mentioned in that section, the code calls
the compiler-generated constructors in the range

[
ctors_begin, ctors_end

)

with the STL’s std::for_each() algorithm. Thereby, each compiler generated
constructor code is executed and every static object is fully formed before the jump
to main(). Actually, the real code runs through the range of constructors in reverse
order using an std::reverse_iterator because GCC stores its static con-
structors in reverse order. This detail is, however, irrelevant for the example.

8.4 The Connection between the Linker and Startup

In the previous two sections, we have discussed three initializations that occur before
the jump to main(). These include zero-clearing the bss-section, initializing stat-
ics in the bss-section and calling all of the static constructors in the ctors-section.

One might wonder how convenient symbols like _bss_begin and _bss_end
for the bss-section or _ctors_begin and _ctors_end for the ctors-section
come into existence and can be used like normal variables in C++ code. The answer
lies in the so-called linker definition file, also known as a linker script. The linker
definition file defines the addresses where all program components will be located.
For example, all normal program code (also known as text) will be located in the
text-section. Static variables that need to be zero-cleared will be located in the
bss-section, and so on.

The linker definition file needs to be written with intimate knowledge of the
microcontroller’s memory map in order to ensure that each program component
gets located in the right place. Components such as program code, the list of static
constructors and the ROM-to-RAM data table should be located in the read-only
program memory of the microcontroller. The contents of the bss-section and the
data-section need to be placed in static RAM.

GNU compilers use a specific language for the linker definition file. A simplified
example of a linker definition file is shown below. For additional information on
GNU linker definition files, turn to Barr’s book [1].

ENTRY(start)

MEMORY

http://dx.doi.org/10.1007/978-3-662-47810-3_6

150 8 The Right Start

{
ROM(rx) : ORIGIN = 0x08000000, LENGTH = 128K
RAM(rwx) : ORIGIN = 0x20000000, LENGTH = 8K

}

SECTIONS
{
/* Program code, read-only data and static ctors */
.text :
{
. = ALIGN(4);
KEEP(*(.isr_vector))

*(.text)

(.text.)

*(.rodata)

(.rodata)
_ctors_begin = .;
KEEP (*(SORT(.init_array.*)))
KEEP (*(.init_array))
_ctors_end = .;

} > ROM

_rom_data_begin = .;

/* The ROM-to-RAM initialized data section */
.data :
{
. = ALIGN(4);
_data_begin = . ;

*(.data)

(.data.)
_data_end = . ;

} > RAM AT > ROM

/* The uninitialized (zero-cleared) data section */
.bss :
{
. = ALIGN(4);
_bss_begin = .;

*(.bss)

(.bss)
_bss_end = . ;

} > RAM
}

8.4 The Connection between the Linker and Startup 151

This sketch of a linker definition file shows how the most important linker sec-
tions and symbols can be defined in a linker script. It can be difficult to understand
the language of the GNU linker. Even without understanding every part of it, though,
it is possible to gain an intuitive feeling of how the linker definition file works. There
are three main parts in this linker script. The first part uses the ENTRY directive to
define the startup routine startup(). This is the routine that was first shown in
Sect. 8.1. The second part of the linker definition file uses the MEMORY directive to
define two important memory classes, ROM and RAM. The MEMORY directive also
defines the addresses and sizes of the ROM and RAM. The third part of the linker def-
inition file uses the SECTIONS directive to define how the various program sections
should be located in ROM and RAM.

It is possible to define variables (in other words symbols) in the linker def-
inition file. Symbols defined in this way become available for use in the source
code as variables. For example, the bss-section begins at address 0x20000000
in RAM and includes all non-initialized statics. Bracketing the begin and end of the
lines describing the bss-section are the symbols _bss_begin and _bss_end.
These symbols can actually be used in C++ code, in particular for the C++ loop
that initializes the bss-section in init_bss above. Similarly, other symbols such
as _ctors_begin, _ctors_end, _data_begin, _data_end, etc. can be
defined in the linker script used in their respective C++ initialization loops.

8.5 Understand Static Initialization Rules

Now that we have discussed RAM and static ctor initialization, we will consider
some of the storage requirements pertaining to initialization. C++ has several rules
governing the initialization of statics. It is essential to understand these rules in
order to avoid redundant initialization code and avoid subtle pitfalls such as using
an object before it has been initialized.

All statics with file-level or global scope, both built-in types and class types alike,
are initialized by the startup code before the jump to main(). In particular, consider
non-local statics with one of the built-in integer, character, floating-point or Boolean
types. These are initialized by the startup code with the appropriate default values
such as 0, ’\0’, 0.0F, false, etc.

The statics in following code, for example, do not need explicit initialization
because they are default initialized by the startup code.

namespace
{
std::uint8_t key; // Default initialized.
float val; // Default initialized.
bool flag; // Default initialized.

}

152 8 The Right Start

struct protocol_frame
{
static std::uint8_t count;
protocol_frame() { }

};

// Default initialized.
std::uint8_t protocol_frame::count;

If the default value is the desired one, then explicit initialization is not necessary.
For example,

namespace
{
std::uint8_t key = UINT8_C(0); // Not necessary.
float val = 0.0F; // Not necessary.
bool flag = false; // Not necessary.

}

These static variables do no not need explicit initialization. In fact, extra initial-
ization when the default suffices is redundant. It increases both the code size and the
runtime of the pre-main by adding more entries to the initialization sequence.

A static with an initial value that differs from the default value needs to be explic-
itly initialized. For example,

namespace
{
std::uint8_t version = UINT8_C(3); // Explicit init.
float val = 4.56F; // Explicit init.
bool flag = true; // Explicit init.

}

8.6 Avoid Using Uninitialized Objects

Static initialization also has runtime characteristics that should be kept in mind when
designing stable software. For example, all non-subroutine-local statics must be ini-
tialized by the compiler before the call to main(). This is simply a necessity.

Furthermore, a non-subroutine-local static is guaranteed to be initialized before
any function in its containing file uses it. This rule is simple enough to keep in mind
for any given file. Because C++ supports the translation of separate files, though, no

8.6 Avoid Using Uninitialized Objects 153

rule governs the order of initialization of different files. Even though this aspect of
the C++ language is well-known, it understandably remains a big source of confu-
sion that can lead to an unpredictable program crash.

We will now examine a case in point. Consider a simple structure called alpha
and a static instance of it named instance_of_alpha residing in alpha.cpp.
For example,

struct alpha
{
std::uint16_t value;
alpha(const std::uint16_t a) : value(a) { }

};

// In file alpha.cpp.
alpha instance_of_alpha(3U);

Imagine, further, that the value member of instance_of_alpha is used to
initialize an unrelated static unsigned integer called beta residing in beta.cpp.
In particular,

// In file beta.cpp.
extern alpha instance_of_alpha; // From alpha.cpp.

// Oops, instance_of_alpha might be uninitialized!
std::uint16_t beta = instance_of_alpha.value;

Suppose that the static contents of beta.cpp just happen to be initialized
before those of alpha.cpp. In this case, the instance_of_alpha object in
alpha.cpp will be uninitialized when beta in beta.cpp tries to use it. This
subtle, almost hidden, phenomenon can truly wreak havoc in the code of the unwary
programmer. It afflicts simple built-in types and class types alike, regardless of an
object’s complexity. This makes it all too easy to use something before it has been
initialized.

A well-known design pattern using a so-called singleton instance remedies this
problem.

// In file alpha.cpp.
alpha& safe_reference_to_alpha()
{
static alpha instance_of_alpha(3U);
return instance_of_alpha;

}

154 8 The Right Start

// In file b.cpp.
// OK, but mind the overhead.
extern alpha& safe_reference_to_alpha();

// OK, safe_reference_to_alpha() always returns
// an initialized object.
std::uint16_t beta = safe_reference_to_alpha().value;

The singleton instance solves this problem because a subroutine-local static
will be initialized one time only, at the moment first encountered in the subrou-
tine. The solution is simple enough, but it comes at the expense of overhead.
In particular, the singleton instance has overhead for the call of the subroutine
safe_reference_to_alpha(). This overhead includes both the first-time
initialization of the local static object instance_of_alpha as well as the neces-
sity to check its guard-variables every time safe_reference_to_alpha() is
called.1 See Item 47 in Meyers [2] for additional details on the singleton instance.

8.7 Jump to main() and Never return

Near the end of the startup code listed in Sect. 8.1, there is a line which jumps to
main(). In particular,

extern "C" void startup()
{
// ...

// Jump to main (and never return).
asm volatile("bl main");

// ...
}

Since the C++ compiler forbids explicit call of the main() subroutine, the jump
to main() must be programmed in assembly. This line, of course, must be written
in the local assembly dialect of appropriate for the microcontroller being used.

In the startup code presented in this chapter, the program is never expected to
return from main(). This is typical for a microcontroller application that starts
at power-up and never stops execution, only stopping upon hard power-down (i.e.,

1Guard-variables are compiler-generated flags used to mark the if a given file-local static has been
initialized—a sort of “I am already set” marker preventing multiple initialization. Note also, as an
aside, that guard-variables usually have severely mangled names.

8.7 Jump to main() and Never return 155

switching off the microcontroller power). If the application stops with a controlled
shutdown, then the return from main()must be properly handled and a mechanism
for calling the static destructors should be implemented.

Most of the programs in this book are never expected to return from main().
An unexpected exit from main() is handled with an infinite loop that services the
watchdog timer and never breaks. For example,

extern "C" void startup()
{
// ...

// Catch an unexpected return from main.
for(;;)
{
mcal::wdt::service();

}
}

The strategy used here is to keep the hardware in its last known state and under-
take no further actions as a sensible error reaction to an unexpected exit from
main(). This may or may not be an appropriate reaction for a given microcon-
troller application. A reset or some other kind of error reaction may be better suited
to another application.

8.8 When in main(), What Comes Next?

One might be tempted to implement large parts of the application in the main()
subroutine. It can, however, be considered poor style to do so because this detracts
from modularity and clarity of design.

The main() function in a typical real-time C++ project, therefore, might consist
of just a few lines. For instance,

namespace mcal
{
void init();

}

void scheduler();

int main()
{

156 8 The Right Start

// Initialize the microcontroller layer.
mcal::init();

// Call the multitasking scheduler
// and never return.
scheduler();

}

Here, main() is literally a two-liner. After initializing the MCAL (Sect. B.2),
the program calls its multitasking scheduler. This scheme for main() is also used
in Sect. 11.5.

Control never returns to the main() subroutine, and the application runs indefi-
nitely in a multitasking environment. Ideally the application will be robust, designed
with clear modularity, appropriate temporal efficiency and sensible architectural
granularity, as described in Appendix B.

References

1. M. Barr, Programming Embedded Systems with C and GNU Development Tools, 2nd edn.
(O’Reilly, Sebastopol, 2006)

2. S. Meyers, Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd edn.
(Addison-Wesley, Boston, 2005)

http://dx.doi.org/10.1007/978-3-662-47810-3_11

Chapter 9
Low-Level Hardware Drivers in C++

Microcontroller applications usually require low-level drivers for peripheral devices
such as I/O ports, interrupts, timers,communication interfaces like UART, CAN [4],
SPITM, etc. This chapter presents several efficient methods for programming periph-
eral hardware drivers in C++. Low-level drivers are inherently dependent on the
microcontroller and its peripherals. Even though the low-level hardware drivers in
this chapter are primarily designed for our target with the 8-bit microcontroller, an
effort has been made to keep them as portable as possible. In this way, they can
be adapted to other microcontrollers. The final section in this chapter presents a
complete, non-trivial example of controlling a seven-segment display [3].

9.1 An I/O Port Pin Driver Template Class

General purpose I/O ports can be used for a variety of interfaces to on-board and
off-board devices. A simple general purpose I/O port can be controlled via three
registers, an output data register for setting the output value, a direction register
for selecting input or output, and an input data register for reading the input value.
Port pins often come grouped in registers that are 8, 16 or 32 bits wide. The general
purpose I/O ports on our target with the 8-bit microcontroller, for example, can be
controlled with three 8-bit registers, the data register, the direction register and the
input register, as shown in Table 9.1.

We will now write a template port_pin class that encapsulates a port pin in
one of the general purpose I/O ports, portb, portc or portd, as summarized in
Table 9.1.

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_9

157

158 9 Low-Level Hardware Drivers in C++

Table 9.1 The registers of the general purpose I/O ports on our target with the 8-bit microcon-
troller are summarized

I/O port Data register Direction register Input register

portb 0x25 0x24 0x23

portc 0x28 0x27 0x26

portd 0x2B 0x2A 0x29

template<typename addr_type,
typename reg_type,
const addr_type port,
const reg_type bpos>

class port_pin
{
public:
static void set_direction_output()
{
// Set the port pin direction to output.
port_dir_type::bit_set();

}

static void set_direction_input()
{
// Set the port pin direction to input.
port_dir_type::bit_clr();

}

static void set_pin_high()
{
// Set the port output value to high.
port_pin_type::bit_set();

}

static void set_pin_low()
{
// Set the port output value to low.
port_pin_type::bit_clr();

}

static bool read_input_value()
{
// Read the port input value.
port_inp_type::bit_get();

}

9.1 An I/O Port Pin Driver Template Class 159

static void toggle()
{
// Toggle the port output value.
port_pin_type::bit_not();

}

private:
static constexpr addr_type pdir = port - 1U;
static constexpr addr_type pinp = port - 2U;

// Type definition of the port data register.
typedef reg_access<addr_type,

reg_type,
port,
bpos> port_pin_type;

// Type definition of the port direction register.
typedef reg_access<addr_type,

reg_type,
pdir,
bpos> port_dir_type;

// Type definition of the port input register.
typedef reg_access<addr_type,

reg_type,
pinp,
bpos> port_inp_type;

};

The port_pin template class is essentially a light-weight wrapper around the
reg_access template class previously introduced in Chap. 7. The fixed-bit sub-
routines of the reg_access class are called in order to manipulate the port pins.
The member functions of port_pin class are all declared with the static
keyword and there is no class constructor because port_pin is designed to be
mapped to a specific port pin using a type definition. In other words, objects of type
port_pin are not intended to be created.

Using the port_pin template class is straightforward. The code below, for
example, maps the port_pin template class to portd.0 and subsequently sets
the I/O pin to output with logic level high.

void do_something()
{
// Map portd.0 using a type definition.

http://dx.doi.org/10.1007/978-3-662-47810-3_7

160 9 Low-Level Hardware Drivers in C++

typedef port_pin<std::uint8_t,
std::uint8_t,
mcal::reg::portd,
UINT8_C(0)> port_d0_type;

// Set portd.0 to output with logic level high.
// Set the value before direction to avoid spikes.
port_d0_type::set_pin_high();
port_d0_type::set_direction_output();

}

Additional security can be added to the port_pin template class if desired.
The functions that set the output value, for instance, could first ensure that the port
pin direction is actually set to output before setting the logic level.

9.2 Programming Interrupts in C++

Developing low-level drivers in real-time C++ such as a timer counter or a serial
UART interface may require the programming of one or more interrupts. An inter-
rupt is an asynchronous signal caused by a hardware or software event that indicates
that a special interrupt service routine should execute.

Interrupt service routines usually have higher CPU priority than the priority of
the main() subroutine. Consider, for example, a microcontroller peripheral timer
that is programmed to count in the upward direction. This up-counting timer can
be configured to generate a hardware interrupt request when the value of the timer
counter register reaches the value programmed in its compare register. In this way,
a timer can be used to call an interrupt service routine with a fixed period. The
resulting interrupt frequency is more precise than that which could be achieved with
the CPU priority of the main() subroutine.

Programming an interrupt in C++ involves three main steps:

• Writing an interrupt service routine.
• Putting the interrupt service routine in the interrupt vector table.
• Activating the interrupt source and enabling global interrupts.

Among other timers, our target with the 8-bit microcontroller has an 8-bit periph-
eral timer called timer0. The timer0 has a compare register a. The interrupt
service routine shown below is designed to be called when the counter register
of timer0 register reaches the value set in its compare register a. This interrupt
service routine has been discussed previously within the context of efficiency in
Sect. 6.15.

// Attributes for an ISR and C-linkage.
extern "C"
void __timer0_cmp_a_isr() __attribute__((interrupt));

http://dx.doi.org/10.1007/978-3-662-47810-3_6

9.2 Programming Interrupts in C++ 161

// The timer0 compare-a interrupt service routine.
void __timer0_cmp_a_isr()
{
// This interrupt occurs when the counter
// register reaches the compare-a register.

// Do something...
}

The GNU C++ compiler uses special attributes in the function prototype of an
interrupt service routine. These can be seen in the __attribute__() syntax in
the prototype of __timer0_cmp_a_isr(). The __attribute__() syntax
is a language extension specific to the GNU compilers.1 The pairs of two leading
and trailing underscores are intended to make the __attribute__() language
extension uniquely visible.

GCC ports to other microcontrollers use different attribute keys and other compil-
ers use different language extensions for declaring interrupt service routines, making
interrupt syntax highly compiler-dependent. Declaring an interrupt service routine
in C or C++ always relies on compiler-dependent syntax because it is not specified
by ISO/IEC [5, 6], and is considered to be an implementation detail of the compiler.

Interrupt service routines abruptly interrupt normal program flow. The compiler
may, therefore, need to create a special subroutine frame consisting of assembly
sequences that save and restore the register context at interrupt entry and exit. The
__attribute__() syntax shown above clearly indicates that this function is
an interrupt service routine, allowing the compiler to generate the interrupt frame.
Assuming that an interrupt service routine can be identified as such via language
extensions, the compiler generates the interrupt frame automatically.

Depending on the characteristics of the underlying peripherals and the microcon-
troller architecture, it may be necessary to actively clear an interrupt request flag in
software in the interrupt service routine. It is, on the other hand, just as common
for the microcontroller hardware to automatically clear the interrupt request in the
interrupt service routine. In __timer0_cmp_a_isr() above, for instance, it is
not necessary to explicitly clear an interrupt request flag in software because the
microcontroller hardware does it.

Interrupts can be generated for all sorts of hardware and software events, not
only for timers. A communication device such as a serial UART, for instance, will
usually have at least three unique interrupt sources, one for byte reception, a second
for byte transmission and a third for framing error on a failed reception. Typically,
these interrupts will be employed when developing a real-time asynchronous serial
communication driver.

1GNU compilers support numerous attributes for functions, variables, objects and types with its
__attribute__() syntax. See [2] and [7] for additional details.

162 9 Low-Level Hardware Drivers in C++

Small microcontrollers usually have a few tens of interrupt sources. Large micro-
controllers may have hundreds of interrupt sources or even more. It is customary,
then, to store the addresses of the interrupt service routines in what is known as an
interrupt vector table.

In practice, the interrupt vector table is implemented as an array of function point-
ers, possibly with added fill bytes, containing the addresses of the interrupt service
subroutines. For example, the interrupt vector table for the 8-bit microcontroller in
the reference project is shown below.

// Declare the interrupt vector table.
extern "C"
const volatile isr_type isr_vectors[26U]
__attribute__ ((section(".isr_vectors")));

// The interrupt vector table.
extern "C"
const volatile isr_type isr_vectors[26U] =
{
{{0x0C, 0x94}, startup }, // 1 reset
{{0x0C, 0x94}, __unused_isr}, // 2 ext0
{{0x0C, 0x94}, __unused_isr}, // 3 ext1
{{0x0C, 0x94}, __unused_isr}, // 4 pin0
{{0x0C, 0x94}, __unused_isr}, // 5 pin1
{{0x0C, 0x94}, __unused_isr}, // 6 pin2
{{0x0C, 0x94}, __unused_isr}, // 7 watchdog
{{0x0C, 0x94}, __unused_isr}, // 8 timer2 cmp a
{{0x0C, 0x94}, __unused_isr}, // 9 timer2 cmp b
{{0x0C, 0x94}, __unused_isr}, // 10 timer2 ovf
{{0x0C, 0x94}, __unused_isr}, // 11 timer1 cap
{{0x0C, 0x94}, __unused_isr}, // 12 timer1 cmp a
{{0x0C, 0x94}, __unused_isr}, // 13 timer1 cmp b
{{0x0C, 0x94}, __unused_isr}, // 14 timer1 ovf

// 15 timer0 cmp a
{{0x0C, 0x94}, __timer0_cmp_a_isr},
{{0x0C, 0x94}, __unused_isr}, // 16 timer0 cmp b
{{0x0C, 0x94}, __unused_isr}, // 17 timer0 ovf
{{0x0C, 0x94}, __unused_isr}, // 18 spi(TM)
{{0x0C, 0x94}, __unused_isr}, // 19 usart rx
{{0x0C, 0x94}, __unused_isr}, // 20 usart err
{{0x0C, 0x94}, __unused_isr}, // 21 usart rx
{{0x0C, 0x94}, __unused_isr}, // 22 adc
{{0x0C, 0x94}, __unused_isr}, // 23 eep Ready
{{0x0C, 0x94}, __unused_isr}, // 24 comparator
{{0x0C, 0x94}, __unused_isr}, // 25 two-wire

9.2 Programming Interrupts in C++ 163

{{0x0C, 0x94}, __unused_isr} // 26 spm
};

The first position in the interrupt vector table is often used by the microcontroller
hardware as the entry point of the program. This is where program execution starts
after microcontroller reset. In the sample above, for instance, startup() is the
program entry point. This is, for example, the same startup() routine that was
described in Sect. 8.1. Notice how the timer0 compare register a interrupt service
routine __timer0_cmp_a_isr() is entered at the 15th position of the interrupt
vector table, which is where it belongs for this particular microcontroller hardware.

The interrupt vector table must usually be mapped to a fixed physical address.
The can be accomplished in software using a linker section. As shown above, plac-
ing objects in a linker section uses special section attributes, again a language exten-
sion particular to GCC. The interrupt vector table uses C-linkage in order to elim-
inate potential C++ name mangling. This produces a non-mangled name for the
interrupt vector table and makes it easier to identify it in the map file, for exam-
ple, when troubleshooting or verifying the proper location, alignment, contents and
length. See Sects. 6.5, 6.6 and 8.4.

It can be good practice to fill unused entries in the interrupt vector table with
a user-provided handler for unused interrupts. For example, unused interrupts in
the isr_vectors table shown above use the subroutine __unused_isr().
The unused interrupt handler can generate a loud error such as waiting forever in
en endless loop, optionally executing a nop-operation or, even louder, toggling a
digital I/O port. A potential implementation of an unused interrupt service routine
is shown below.

extern "C"
void __unused_isr() __attribute__((interrupt));

// The unused interrupt handler.
extern "C"
void __unused_isr()
{
// Generate a loud error. It could be made
// even louder by toggling an I/O port.
for(;;)
{
mcal::irq::nop();

}
}

For some microcontrollers, it may also be necessary to add fill bytes to the inter-
rupt vector table. Fill bytes in the interrupt vector table generally have a special

http://dx.doi.org/10.1007/978-3-662-47810-3_8
http://dx.doi.org/10.1007/978-3-662-47810-3_6
http://dx.doi.org/10.1007/978-3-662-47810-3_6
http://dx.doi.org/10.1007/978-3-662-47810-3_8

164 9 Low-Level Hardware Drivers in C++

hardware purpose such as ensuring proper memory alignment or executing a low-
level jump operation. The fill bytes {0x0C, 0x94} shown in the sample interrupt
vector table above, for instance, constitute the opcode for a jump operation on our
target with the 8-bit microcontroller. These aspects of interrupt programming in
C++ are notoriously non-portable. They are specific to a given microcontroller and
compiler and usually can not be written in a generic form.

The final step involved in programming an interrupt is enabling the interrupt
source. In practice, this is usually done by writing special enable bits in a special
function register via direct memory access (Chap. 7). For example,

// Enable the timer0 compare match a interrupt.
mcal::reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::timsk0,
UINT8_C(0x02)>::reg_set();

This line of code enables bit-1 in the timsk0 special function register of our
target with the 8-bit microcontroller. This example enables a timer interrupt, and is
described in the following section.

9.3 Implementing a System-Tick

A system-tick may be one of the most essential parts of the low-level driver software
because it provides the timebase for the entire software project. The multitasking
scheduler described in Chap. 11, for instance, uses a timebase that originates from
a system-tick. In this section, we will use timer0 on our target with the 8-bit
microcontroller counting in the upward direction in compare mode to create a high-
resolution 32-bit system-tick with a frequency of 1MHz.

Since timer0 has counter and compare registers that are 8-bits in width, the
32-bit system-tick needs to be synthesized from a combination of hardware and
software. The lower byte of the system-tick comes from the timer0 counter reg-
ister tcnt0 and the upper three bytes are stored in the variable system_tick.
This composite representation of the system-tick is shown in Fig. 9.1.

One possible declaration of the system_tick is shown below.

namespace
{
// The one (and only one) 32-bit system-tick.
volatile std::uint32_t system_tick;

}

http://dx.doi.org/10.1007/978-3-662-47810-3_7
http://dx.doi.org/10.1007/978-3-662-47810-3_11

9.3 Implementing a System-Tick 165

Fig. 9.1 The representation of the 32-bit system-tick is shown. The three upper bytes of the
system-tick are stored in the system_tick variable. The lower byte of the system-tick comes
from timer0’s counter register tcnt0

The system_tick variable is qualified as volatile This tells the compiler
that it should avoid aggressive optimization involving system_tick. This is nec-
essary because the value of system_tick value is changed via incrementation in
the interrupt service routine but used elsewhere.

We will now setup timer0 to generate a periodic interrupt for incrementing the
system-tick. The code below initializes timer0 to count in the upward direction.
The frequency of the clock source is set to 2MHz. The timer0 compare register a
is set to 0xFF= 255 and the compare match interrupt is activated.

void mcal::gpt::init()
{
// Clear the timer0 overflow flag.
mcal::reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::tifr0,
UINT8_C(0x02)>::reg_set();

// Enable the compare match a interrupt.
mcal::reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::timsk0,
UINT8_C(0x02)>::reg_set();

166 9 Low-Level Hardware Drivers in C++

// Set ctc mode 2 for timer0 compare match a.
mcal::reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::tccr0a,
UINT8_C(0x02)>::reg_set();

// Set the compare match a value to 255.
mcal::reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::ocr0a,
UINT8_C(0xFF)>::reg_set();

// Set the timer0 source to 16MHz/8 = 2MHz and
// start counting.
mcal::reg_access<std::uint8_t,

std::uint8_t,
mcal::reg::tccr0b,
UINT8_C(0x03)>::reg_set();

}

The mcal::gpt::init() routine is designed to be called once, and only
once, from the initialization mechanism of theMCAL. The result of the initialization
code in mcal::gpt::init() is to set the timer0 frequency to 2MHz and
activate an interrupt at every full cycle of its 8-bit timer period.

When the timer0 counter register rolls over from 255 to 0, an interrupt for
match on compare register a is generated. The corresponding interrupt service rou-
tine __timer0_cmp_a_isr() is called and it increments the upper three bytes
of the system-tick. One possible implementation of this mechanism is shown in the
code sample below.

void __timer0_cmp_a_isr()
{
// This interrupt occurs every 128us.
// Increment the 32-bit system-tick by 128.
system_tick += UINT8_C(0x80);

}

Here, the system-tick is incremented with 0x80 which is 128. The 256 timer
ticks required for the compare match interrupt have been divided by 2 because the
underlying timer frequency is 2MHz, which is double the system-tick frequency. In
this way, a 32-bit system-tick with a frequency of 1MHz and a resolution of 1µs
has been created with the 8-bit timer0 hardware and a small amount of software.

To obtain the entire value of the 32-bit system-tick, the timer counter register
tcnt0 is combined with the upper three bytes of the system_tick variable

9.3 Implementing a System-Tick 167

using logical or. Since the timer counter register is rapidly incremented by the
timer hardware, a consistency check must be included in the routine that reads the
system_tick variable.

The interface to the system-tick can be found in the gpt namespace of the
MCAL in the reference project of the companion code. Here, gpt stands for gen-
eral purpose timer. The interface to the system-tick uses a procedural subroutine
called get_time_elapsed(). In other words,

mcal::gpt::value_type mcal::gpt::get_time_elapsed();

Complete details on the implementation of the system-tick for both our targets
with the 8-bit microcontroller and the 32-bit microcontroller can be found in the ref-
erence project of the companion code. For the 32-bit target, a 16-bit timer hardware
counter register is combined with a quad-word in software to synthesize a 64-bit
system-tick with a frequency of 1MHz and a resolution of 1µs.

The standard library time facilities in <chrono> require the implementation
of several clocks, one of them being a high-resolution clock. The system-tick
presented in this section is well-suited for providing the underlying timebase for
the high_resolution_clock in <chrono>. A methodology for using the
system-tick as the timebase for <chrono>’s high-resolution clock is presented in
Sect. 16.5.

9.4 A Software PWM Template Class

A pulse-width modulated signal (PWM) is a square wave that usually has a fixed
period and a variable duty cycle. A PWM signal uses a cyclical counter that incre-
ments and is reset at the end of the PWM period. When the counter reaches the
value matching the duty cycle of the PWM, the output switches from high to low,
thereby creating a square wave. PWM signals with duty cycles of 20, 50 and 80%
are shown in Fig. 9.2. PWM signals can be generated with software or with a periph-
eral timer. The duty cycle, period and resolution of a PWM signal are determined
by the configuration of the underlying software or timer.

Dedicated PWM units are often integrated in the microcontroller hardware
peripherals. For example, a PWM signal can be created with a peripheral timer that
has a counter, a compare register and a dedicated auto-toggle output pin associated
with the compare event of the timer compare register. A hardware-based PWM sig-
nal can be set up and programmed to run independently without CPU supervision.

A typical user interface for a PWM signal generator provides public methods
for setting and retrieving the duty cycle. This interface has been used with the pwm
class in conjunction with the LED class hierarchy presented previously in Sect. 4.1.
The example here makes a more detailed implementation of a dedicated PWM class
called pwm_type.

http://dx.doi.org/10.1007/978-3-662-47810-3_16
http://dx.doi.org/10.1007/978-3-662-47810-3_4

168 9 Low-Level Hardware Drivers in C++

Fig. 9.2 PWM signals with duty cycles of 20, 50 and 80% are shown

The synopsis of the pwm_type class is shown below.

class pwm_type
{
public:
pwm_type(const std::uint8_t duty = UINT8_C(0));

void set_duty(const uint8_t duty);

std::uint8_t get_duty() const;
};

A PWM signal generated with software uses a timebase for the counter and man-
ual manipulation of an I/O pin to toggle the signal. Generating a PWM signal with
software may be more CPU-intensive than using a dedicated hardware peripheral.
A software PWM signal generator does, however, have a slightly higher degree of
flexibility than one in hardware and can also be used even if no dedicated PWM
hardware is available.

We will now write a template class designed to encapsulate a software PWM
signal generator on a digital I/O port.

template<typename addr_type,
typename reg_type,
const addr_type addr,
const reg_type bpos,
const std::uint8_t resol = UINT8_C(100)>

9.4 A Software PWM Template Class 169

class pwm_type
{
public:
pwm_type(const std::uint8_t duty = UINT8_C(0))
: counter(0U),

duty_cycle(duty),
shadow(duty)

{
// Set the pin to output, low.
port_pin_type::set_pin_low();
port_pin_type::set_direction_output();

}

void set_duty(const uint8_t duty)
{
// Set new duty cycle in the shadow register.
std::atomic_store(&shadow,

std::min(duty, resol));
}

std::uint8_t get_duty() const
{
// Retrieve the duty cycle.
return std::atomic_load(&duty_cycle);

}

void service()
{
// Increment the counter.
++counter;

// Set output according to duty cycle.
if(counter <= duty_cycle)
{

port_pin_type::set_pin_high();
}
else
{

port_pin_type::set_pin_low();
}

if(counter >= resol)
{

// Latch in duty cycle from shadow register.
duty_cycle = shadow;

170 9 Low-Level Hardware Drivers in C++

// Reset the counter for a new PWM period.
counter = 0U;

}
}

private:
std::uint8_t counter;
volatile std::uint8_t duty_cycle;
std::uint8_t shadow;

// Define the type for the PWM port pin.
typedef port_pin<addr_type,

reg_type,
addr,
bpos> port_pin_type;

// Make the pwm_type class non-copyable.
pwm_type(const pwm_type&) = delete;
const pwm_type& operator=(const pwm_type&) = delete;

};

This software encapsulation of a PWM signal driver closely mimics a hardware
PWM peripheral timer. When the internal counter is less than the duty cycle, the
output pin is set to high. When the internal counter exceeds the duty cycle, the
output pin is set to low. In this way, the requested signal is generated on the output
pin. The service()member should be called with a fixed tick cycle, such as from
a timer interrupt service routine with a period of 50µs. If there are, say, 100 ticks
specified with the resol template parameter and a tick cycle of 50µs, then the
resulting PWM signal will have a frequency of 200Hz and a resolution of 1%.

A new duty cycle can be set with the set_duty()member function. It includes
a range check and an atomic manipulation of the software shadow register. The new
duty cycle is latched in from the shadow register at the end of each full period of
the counter. This avoids incomplete PWM periods when setting the duty cycle in a
process that is asynchronous to the call of the service() routine.

The example below creates a PWM signal generator on portb.0 with the
default initial duty cycle of 0%. The PWM duty cycle is subsequently set to 20%.
Here, it is assumed that the PWM’s service() routine is called with a fixed tick
cycle, for instance, in an asynchronous timer interrupt service routine.

9.4 A Software PWM Template Class 171

// Make a type definition for a PWM signal on portb.0.
typedef pwm_type<std::uint8_t,

std::uint8_t,
mcal::reg::portb,
UINT8_C(0)> pwm_b0_type;

// Create pwm0 on portb.0.
pwm_b0_type pwm0;

void do_something()
{
// Set the duty cycle to 20 percent.
pwm0.set_duty(UINT8_C(20));

}

9.5 A Serial SPITM Driver Class

SPITM is a synchronous full-duplex serial communication interface commonly used
for microcontroller communication with other devices. SPITM is a four-wire serial
bus. A single bus master device initiates data frame transfer with one or more slave
devices using three communication lines and one device-select line per slave device.

An example of an SPITM bus with the master device connected to one slave
device is sketched in Fig. 9.3. Data are clocked out from the bus master to the slave
device on the Master-Out-Slave-In line (MOSI) and clocked from the slave device
into the master on the Master-In-Slave-Out line (MISO). The flanks of the serial
clock line (SCLK) provide the timebase for bit transfer, which can be quite fast
reaching speeds of several mega-bits per second. Depending on the SPITM dialect,
either rising or falling edge can be used for latching the data bits, and the clock can
optionally idle to high or low,

Fig. 9.3 SPITM

communication with the
master device connected to a
single slave device is shown 5

8
6

b4

b1

b2

7

7

b3

5
8

6

b4

b1

b2

7

7 b3

SPITM Bus

SCLK

MOSI

MISO

CSN

SPITM

Master
SPITM

Slave Device

172 9 Low-Level Hardware Drivers in C++

The synopsis of a potential SPITM communication class is shown in the code
below. It is designed for a microcontroller bus master. This SPITM communication
class is derived from a communication base class similar to the one first intro-
duced in Sect. 4.9.

class spi_communication : public communication
{
public:
typedef circular_buffer<std::uint8_t, 16U> data_type;

spi_communication();
virtual ~spi_communication();

// The virtual communication interface.
virtual bool send(const std::uint8_t byte_to_send);
virtual bool send(const data_type& data_to_send);
virtual bool recv(std::uint8_t& byte_to_recv);
virtual bool recv(data_type& data_to_recv);
virtual std::size_t recv_ready() const;
virtual bool idle() const;

// Specific channel select for SPI(TM).
bool select_channel(const std::uint8_t ch);

private:
// Private class details.
volatile bool send_is_active;
data_type send_buffer;
data_type recv_buffer;
std::uint8_t channel;

// Friend interrupt service routine for Rx/Tx.
friend void :: __vector_spi_rx_tx_isr();

};

The spi_communication class includes members that are intended for send-
ing and receiving both one byte as well as a container of bytes. Here, the container
type is called data_type and this can be type defined from a standard container
such as std::vector or a specialized container. In the class synopsis here, for
example, data_type is type defined from the custom circular_ buffer class
described in Sect. 15.5.

The spi_communication class also supplies the public member functions
recv_ready() and idle(). These are used for querying the number of bytes
ready in the receive queue and for checking if the SPITM bus is idle.

http://dx.doi.org/10.1007/978-3-662-47810-3_4
http://dx.doi.org/10.1007/978-3-662-47810-3_15

9.5 A Serial SPITM Driver Class 173

The interface of the spi_communication class is intended to be completely
independent of the underlying microcontroller registers. Hardware details are hid-
den in the source file of the class implementation. In this way, the user interface of
the spi_communication class is completely portable.

A glance at the private details of the spi_communication class reveals that
the send and receive queues use two individual circular buffers (Sect. 15.5). The
sizes of these buffers need to be appropriately set for the intended use of the class.

The work of the spi_communication class is predominantly implemented
in the send and receive algorithms. The send routine is shown below.

bool spi_communication::send(
const std::uint8_t byte_to_send)

{
mcal::irq::disable_all();

// If the SPI(TM) is idle, begin transmission.
if(!send_is_active)
{
// Set the send-active flag.
send_is_active = true;

// Set the chip-select-not to low.
if(channel == UINT8_C(1))
{

mcal::port::port3::set_pin_low();
}
else
{

mcal::port::port2::set_pin_low();
}

// Send the first byte over SPI(TM).
mcal::reg_access

<std::uint8_t,
std::uint8_t,
mcal::reg::spdr>::reg_set(byte_to_send);

// Enable the SPI(TM) rx/tx interrupt.
enable_rx_tx_interrupt();

mcal::irq::enable_all();
}

http://dx.doi.org/10.1007/978-3-662-47810-3_15

174 9 Low-Level Hardware Drivers in C++

else
{
// A transmission is already in progress.
// Pack the next byte-to-send in the send-buffer.
send_buffer.in(byte_to_send);

mcal::irq::enable_all();
}

return true;
}

The send() function uses a standard queuing mechanism. When sending data,
the function first checks if the bus is idle by checking the send_is_active flag.
If so, data transfer is initiated by writing the first data byte to the transfer register
spdr. If a send is already in progress, the byte to send is queued in the circular send
buffer. Queued bytes are sent sequentially in a daisy-chained fashion in the SPITM

bus interrupt service routine until the send queue is empty.
This SPITM bus driver is implemented for two slave devices, and the appropriate

chip-select pin is asserted to low prior to the start of data transmission. Enable and
disable of both the global interrupts as well as the send and receive interrupts of the
SPITM bus ensure atomic data consistency in the send buffer.

The SPITM bus interrupt service routine is shown below.

void __vector_spi_rx_tx_isr()
{
// The SPI(TM) interrupt is on end-of-transmission.

// Receive the byte from the last transmission.
const std::uint8_t byte_to_recv
= mcal::reg_access

<std::uint8_t,
std::uint8_t,
mcal::reg::spdr>::reg_get();

mcal::spi::the_spi.recv_buffer.in(byte_to_recv);

const bool send_buffer_is_empty
= mcal::spi::the_spi.send_buffer.empty();

if(send_buffer_is_empty)
{
// The send-buffer is empty and reception from
// the previous (final) transmission is done.

9.5 A Serial SPITM Driver Class 175

// Deactivate the send-active flag.
mcal::spi::the_spi.send_is_active = false;

// Reset the chip-select-not to high.
if(mcal::spi::the_spi.channel == UINT8_C(1))
{

mcal::port::port3::set_pin_high();
}
else
{

mcal::port::port2::set_pin_high();
}

// Disable the SPI(TM) rx/tx interrupt.
disable_rx_tx_interrupt();

}
else
{
// Send the next byte if there is at least
// one in the send queue.
const std::uint8_t byte_to_send

= mcal::spi::the_spi.send_buffer.out();

mcal::reg_access
<std::uint8_t,
std::uint8_t,
mcal::reg::spdr>::reg_set(byte_to_send);

}
}

The SPITM bus interrupt service routine performs several tasks. It reads the
response byte from the receive register and pushes it onto the receive queue. In
addition, the interrupt sends the next queued byte in the send buffer. When the last
queued byte in the send buffer is fully clocked out of the microcontroller, the chip-
select pin is reset to its idle state of high. The SPITM bus interrupt service routine
uses a non-global static spi_communication object and is privy to its class
internals via friendship with the spi_communication class.

The SPITM bus driver presented here is non-trivial, yet robust, and it has a
portable user interface. The implementation of the spi_communication class
in its entirety can be found in the reference project of the companion code.

176 9 Low-Level Hardware Drivers in C++

9.6 CPU-Load Monitors

It is good practice to monitor the runtime of all tasks and interrupts in the project
during all phases of the development cycle. Adherence to runtime limits can be
tested with runtime monitoring mechanisms such as real-time measurements via
port pins, software timers or in-circuit emulators.

One of the most rudimentary yet effective means for measuring the runtime of
a code sequence is to toggle a digital I/O port to high directly before the sequence
begins and to toggle it to low just after the sequence completes. Using this tech-
nique, we can observe timing results and statistical variances in timing with a digital
oscilloscope.

Extraneous interrupt load can be eliminated from short timing measurements
by disabling all interrupts for the duration of the measurement and enabling them
immediately thereafter.2 Disabling and enabling all interrupts is a CPU-specific
operation that can be accomplished by setting and clearing the global interrupt flag
or manipulating the CPU priority or other microcontroller-specific means. Most of
the real-time measurements in this book have been performed with this kind of tech-
nique.

The code that has been used to measure the runtime of the CRC32 checksum
algorithm in Sects. 6.1 and 6.2, for example, is shown below.

#include <array>
#include <cstdint>
#include <math/checksums/crc/crc32.h>
#include <mcal_benchmark.h>
#include <mcal_cpu.h>
#include <mcal_irq.h>

std::uint32_t app_benchmark_crc;

void app::benchmark::task_func()
{
// Define the test data ’0’ ... ’9’.
constexpr std::array<std::uint8_t, 9U> data =
{{
UINT8_C(0x31), UINT8_C(0x32), UINT8_C(0x33),
UINT8_C(0x34), UINT8_C(0x35), UINT8_C(0x36),
UINT8_C(0x37), UINT8_C(0x38), UINT8_C(0x39)

}};

// Convenient typedef of the benchmark port pin type.
typedef

2Note, however, that disabling the interrupts for too long or forgetting to re-enable them in a timely
fashion may lead to a system crash with unpredictable results.

http://dx.doi.org/10.1007/978-3-662-47810-3_6
http://dx.doi.org/10.1007/978-3-662-47810-3_6

9.6 CPU-Load Monitors 177

mcal::benchmark::benchmark_port_type
port_type;

mcal::irq::disable_all();
port_type::set_pin_high();

// Calculate the CRC-32/MPEG-2 checksum.
app_benchmark_crc =
math::checksums::crc32_mpeg2(data.cbegin(),

data.cend());

port_type::set_pin_low();
mcal::irq::enable_all();

if(app_benchmark_crc == UINT32_C(0x0376E6E7))
{
// The benchmark is OK.
// ...

}
}

This code simply uses a regular I/O port pin such as portb.4 configured as
an output pin to generate a time pulse that can be measured with a digital oscillo-
scope. The port pin used for the timing measurement is abstracted with a template
class called benchmark_port_type which is typedef-ed from port_pin
(Sect. 9.1) in <mcal_benchmark.h>. The port pin is toggled high before the
CRC32 checksum calculation begins and low after the computation completes. The
interrupts are disabled for the duration of the measurement. This measurement tech-
nique is trivially simple, yet nonetheless highly effective.

Fig. 9.4 The timing result
of a real-time performance
benchmark is shown. The
digital oscilloscope captures
the toggling of the port pin
in the microsecond regime

178 9 Low-Level Hardware Drivers in C++

The timing result of a real-time performance benchmark is shown in Fig. 9.4.
This benchmark has been carried out with a modern digital oscilloscope. The oscil-
loscope has been used to capture the real-time measurement within the range of
its adjustable cursors. The timing result has been acquired over numerous cycles in
order to obtain a stable average.

9.7 Controlling a Seven-Segment Display

This section presents a complete example of controlling a seven-segment display3

using our target system with the 8-bit microcontroller. The complete source codes
for this example can be found in the chapter09_07 sample project in the com-
panion code.

This is a non-trivial project that uses state-of-the-art programming technol-
ogy to control a classic electronic device. In particular, this project makes com-
bined use of various advanced programming methods including object-orientated
design (Chap. 4), templates and static polymorphism (Chap. 5), low-level hardware
drivers such as the port_pin template class (Sect. 9.1), a multitasking sched-
uler (Chap. 11), and the utility classes noncopyable and timer (Sects. 15.2
and 15.3). These are used to build up a layered architecture (Section “Software
Architecture”) that abstracts low-level pin-driven LED segments to images of
hexadecimal digits represented on the seven-segment display with animation.

A standard seven-segment display with one digit and a decimal point is used.
It has a red color with a character height of 1/2 in (≈1.27 cm). The display has a
10-pin package with two common anode pins. The display segments are low-active
and light up when connected over a resistor to ground. Here, we use 750� resistors
resulting in a current of approximately 4.4mA through each LED segment.4

The display is capable of representing recognizable images of the hexadecimal
digits 0123456789AbCdEF, where b and d are lowercase. A decimal point to
the lower right of the digit can be controlled independently from the digit segments.

In this example, our target system with the 8-bit microcontroller is connected to
the seven-segment display as shown in Fig. 9.5. Electrical connections between the
microcontroller ports and the seven-segment display have been made with a custom
break-out board and traditional wire-wrapping techniques using AWG-30 wire [8].

3See also [3] Sect. 9.10 in the paragraph called “Displays” for additional information on seven-
segment displays.
4The forward voltage of the LED in a given display segment is specified with a typical value of
approximately 1.7V such that

Iseg ≈ (5.0 − 1.7)V

750�
≈ 4.4mA,

where Iseg is the current in one switched-on LED segment. On the microcontroller ports, the current
of approximately 4.4mA per port pin is well below the specified maximum value of 40mA (see
Table 29.1 Absolute Maximum Ratings in [1]).

http://dx.doi.org/10.1007/978-3-662-47810-3_4
http://dx.doi.org/10.1007/978-3-662-47810-3_5
http://dx.doi.org/10.1007/978-3-662-47810-3_11
http://dx.doi.org/10.1007/978-3-662-47810-3_15
http://dx.doi.org/10.1007/978-3-662-47810-3_15

9.7 Controlling a Seven-Segment Display 179

Fig. 9.5 Our target system
with the 8-bit microcontroller
connected to the seven-
segment display is shown.
The display has been fitted
on a custom break-out board.
Electrical connections between
the microcontroller ports and
the display board use tradi-
tional wire-wrapping
techniques

In order to make room for the seven-segment display, certain component placements
on the board have been changed compared with those shown in Fig. 2.1.

The pin connections between the microcontroller and the seven-segment dis-
play are listed in Table 9.2. Pinning uses a combination of port pins from portc
and portd, and the +5V supply.

The class hierarchy of the display classes in the chapter09_07 project is
shown in Fig. 9.6. The two most highly derived classes in the diagram are called
display_console and display_board. These two classes are intended to
be instantiated by the client and subsequently used in the application layer.

Table 9.2 The pin connections between the microcontroller and the seven-segment display are
listed

Pin on
7-segment display

Display pin’s
function

Electrical
connection

Microcontroller
pin

1 Segment E portc.5 28

2 Segment D portc.0 23

3 Common Anode +5V –

4 Segment C portc.1 24

5 Decimal Point portc.2 25

6 Segment B portc.3 26

7 Segment A portc.4 27

8 Common Anode +5V –

9 Segment F portd.0 2

10 Segment G portd.1 3

http://dx.doi.org/10.1007/978-3-662-47810-3_2

180 9 Low-Level Hardware Drivers in C++

display_console

noncopyable

display_seven_segment

display_base

display_board

Fig. 9.6 The class hierarchy of the display classes in the chapter09_07 project is shown

The display_console class simulates the seven-segment display in a con-
sole. This class is intended to be used for convenient testing of the project on a
PC.5

The display_board class encapsulates the real seven-segment display on the
board. This class has been designed to control the display via eight port pins on the
microcontroller (i.e., as wired in Fig. 9.5).

The two base classes, display_base and display_seven_segment, are
abstract (Sect. 4.6). They serve the primary purpose of providing a pure-virtual pub-
lic interface for clients of the display classes.

The display_base class inherits privately from the noncopyable utility
class (Sect. 15.2). This ensures that all of the classes in the display class hierarchy
can not be copied. This is desired in our design because a given display exists once
and only once on a given board. An instantiation encapsulating a display is, there-
fore, not intended to be copied.

5Console testing is supported via cross development methods that port the entire project to a PC-
based compiler. Hereby, the hardware-specific MCAL has been partially simulated in the PC envi-
ronment.

http://dx.doi.org/10.1007/978-3-662-47810-3_4
http://dx.doi.org/10.1007/978-3-662-47810-3_15

9.7 Controlling a Seven-Segment Display 181

The synopsis of the display_board class is shown in the code below.

template<typename segment_a_port,
typename segment_b_port,
typename segment_c_port,
typename segment_d_port,
typename segment_e_port,
typename segment_f_port,
typename segment_g_port,
typename segment_dp_port>

class display_board final :
public display_seven_segment

{
public:
display_board();

display_board(const std::uint8_t,
const bool);

virtual ~display_board();

virtual bool write(const std::uint8_t);
virtual bool read (std::uint8_t&) const;

virtual bool write_dp(const bool);
virtual bool read_dp (bool&) const;

private:
// Private class details ...

};

The display_board class is a template class. It accepts eight template para-
meters representing the eight port pins connected to the display—seven port pins
for the seven segments in the digit and one port pin for the decimal point. The pub-
lic interface of the display_board class provides virtual Boolean functions for
reading and writing both the digit as well as the decimal point.

The port pin types corresponding to the template parameters must adhere to the
public interface of the port_pin template class from Sect. 9.1. This is because the
private details of the display_board class make use of some of port_pin’s
static public member functions such as toggle(), etc. via static polymorphism
(Sect. 5.7). The display_board class and its parents in the class hierarchy can be
readily ported to other microcontroller projects as long as the port_pin template
class is properly supported.

http://dx.doi.org/10.1007/978-3-662-47810-3_5

182 9 Low-Level Hardware Drivers in C++

A global display_board object is provided to the application layer by a sub-
routine that returns a singleton instance (Sect. 8.6) of the base class. This mechanism
is depicted in pseudo-code below.

display_seven_segment& display0()
{
// Define some board-specific types, etc.
...

// Create a static display_board object...

static display_board the_display;

// ... and return a base class reference to it.

return the_display;
}

Here, the instance is returned in the form of a non-constant reference to the
base class (i.e., a display_seven_segment&). This allows display0()
to exhibit run-time polymorphism, making the entire public abstract interface of the
display class hierarchy available to the caller of display0().

The display task in the application layer uses the display0() subroutine for
animating the seven-segment display. The sixteen hexadecimal digits 0123 4567
89Ab CdEF are sequentially represented on the display, continually cycling from
0 to F and beginning anew with the digit 0. Digits are refreshed at a rate of 1 s per
digit. The decimal point is toggled once per group of sixteen hexadecimal digits to
add a further detail to the display animation. The display task also toggles the user
LED on portb.5 at 1/2Hz—in the same fashion as done in the chapter 02_
03a sample project.

Timing is derived from a simple multitasking scheduler (Chap. 11) in combina-
tion with a static instance of the timer utility class (Sect. 15.3). The display task
is scheduled every 2ms and the timer object provides a secondary timebase that
services the display and LED every 1 s.

The synopsis of the display task is listed in pseudo-code below.6

void task_func()
{
if(app_display_timer.timeout())
{
// Start a new 1s interval.

6Here, the namespace resolutions have been removed from the pseudo-code for the sake of
simplicity.

http://dx.doi.org/10.1007/978-3-662-47810-3_8
http://dx.doi.org/10.1007/978-3-662-47810-3_11
http://dx.doi.org/10.1007/978-3-662-47810-3_15

9.7 Controlling a Seven-Segment Display 183

app_display_timer.start_interval(
timer_type::seconds(1U));

// Toggle the user LED on portb.5.
...

// Select the next hexadecimal digit.
...

// Toggle the phase of the decimal point at
// full cycles of sixteen hexadecimal digits.
...

// Write the decimal point.
display0().write_dp(...);

// Write the hexadecimal digit.
display0().write(...);

}
}

As mentioned at the beginning of this section, the complete source code of the
chapter09_07 project (including various build scripts and the port to the PC-
console) can be found in the companion code. This project has been tested on our
target with the 8-bit microcontroller (as shown in Fig. 9.5). Program verification has
been carried out using both GCC 4.8.1 as well as GCC 4.9.2 [2]7 built for the avr-
unknown- elf target (Sect. 2.2 and Appendix 3) and using C++11.8

References

1. ATMEL®: 8-bit ATMEL® Microcontroller with 4/8/16/32K Bytes In-System Programmable
Flash (ATmega48A, ATmega48PA, ATmega88A, ATmega88PA, ATmega168A, ATmega168PA,
ATmega328, ATmega328P), Rev. 8271D-AVR-05/11 (ATMEL®, 2011)

2. Free Software Foundation, The GNU Compiler Collection Version 4.6.2 (2012), http://gcc.gnu.
org

3. P. Horowitz, W. Hill, The Art of Electronics, 2nd edn. (Cambridge University Press, Cambridge,
1989)

4. ISO, ISO 11898–1:2003: Road Vehicles—Controller Area Network (CAN)—Part 1: Data Link
Layer and Physical Signaling (International Organization for Standardization, Geneva, 2003)

7The original citation here refers to GCC 4.6.2 [2]. At the time of writing the chapter09_07
sample project and the second edition of this book, however, both GCC 4.8.1 as well as GCC 4.9.2
have been used to build and verify this project.
8Also recall that the C++11 dialect is enabled in GCC with the compiler flag -std=c++11.

http://dx.doi.org/10.1007/978-3-662-47810-3_2
http://gcc.gnu.org
http://gcc.gnu.org

184 9 Low-Level Hardware Drivers in C++

5. ISO/IEC, ISO/IEC 9899:1999: Programming Languages—C (International Organization for
Standardization, Geneva, 1999)

6. ISO/IEC, ISO/IEC 14882:2011: Information Technology—Programming Languages—C++
(International Organization for Standardization, Geneva, 2011)

7. W. van Hagen, The Definitive Guide to GCC (Apress, Berkeley, 2006)
8. Wikipedia, American wire gauge (2012), http://en.wikipedia.org/wiki/American_wire_gauge

http://en.wikipedia.org/wiki/American_wire_gauge

Chapter 10
Custom Memory Management

Effective microcontroller programming in C++ mandates dependable memory man-
agement beyond that offered by the language’s default mechanisms. Some of the
countless situations in microcontroller programming that require customized mem-
ory management include dynamic creation polymorphic objects, using STL contain-
ers and mapping hardware devices are. This chapter describes memory management
methods that are robust and reliable enough to perform these tasks while adhering
to the strict constraints of limited microcontroller memory resources.

10.1 Dynamic Memory Considerations

Dynamic memory allocation is useful in C++ programming, in particular for creat-
ing polymorphic objects. The operators new and delete can be used for dynamic
memory allocation and deallocation in C++.

The new operator allocates memory for an object in a heap of dynamic mem-
ory. If sufficient memory is available and allocation succeeds, new initializes the
object in the allocated memory by calling its constructor and returns a pointer to the
object. If insufficient memory is available, new either returns nullptr or throws
an std::bad_alloc exception (depending on the version of new being used).
Calling delete for a memory block allocated with new destroys the object by
calling its destructor and frees the memory.

The syntax of new and delete is shown below.

class something
{
public:
something() { }
~something() { }

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_10

185

186 10 Custom Memory Management

void do_my_thing() { }
};

void do_something()
{
// Allocate ps with operator new.
something* ps = new something;

// Do something with ps.
ps->do_my_thing();

// Delete ps when finished with it.
delete ps;

}

As described in Sect. 6.16, the use of new and delete can be inappropriate for
microcontrollers with strictly limited heaps of, say, a few tens or hundreds of bytes.
Consider the example above. In a typical microcontroller situation, the subroutine
do_something()might be called thousands of times—even millions of times. It
might only take a few calls, or at most a few hundred calls of do_something()
and similar subroutines to completely fragment a microcontroller’s tiny heap beyond
repair.

One potential solution to this problem is to overload the global operators new and
delete and to provide a memory allocation mechanism for individual classes. This
technique can be effective for making selected dedicated class-specific allocators.
For additional information on overloading the global operators new and delete
for a particular class, see Eckel [1], Chap. 13, Sect. “Overloading new & delete for
a class”. Flexible memory management, however, often requires allocation methods
that are generic and can be used with any kind of object. So we need to investigate
other methods of memory management for microcontroller programming.

10.2 Using Placement-new

Fortunately, new is also available in its so-called placement version, known as
placement-new. Placement-new allows programmers to explicitly control a dynam-
ically created object’s placement in memory (i.e., its physical address).

Placement-new is the essential ingredient for generic memory management in
microcontroller programming. It allows one to determine where (in other words
at which address) a given dynamic allocation should be carried out in memory.
The caller of placement-new is responsible for finding and managing the mem-
ory chunks used in calls to placement-new. These can be carefully defined memory
locations such as the stack in a subroutine call or a local or global static memory
pool.

http://dx.doi.org/10.1007/978-3-662-47810-3_6

10.2 Using Placement-new 187

There are several versions of placement-new. The form shown below is the most
useful one for the purposes of this chapter.

void* operator new(size_t, void*) noexcept;

This version of placement-new creates a pointer to a single object. Placement-
new does not throw any exceptions. The first input parameter to placement-new
(the one of type size_t) gives the size of the object in bytes. The second input
parameter (the one of type void*) specifies the place in memory where the new
object should be created.

For example, placement-new can be used to place an instance of something
in a subroutine-local memory pool on the stack.

class something
{
// ...

};

void do_something()
{
std::uint8_t pool[sizeof(something)];

something* ps = new(pool) something;

// Do something with ps.
ps->do_my_thing();

// Do not delete ps when finished with it.

// The destructor needs to be called manually.
~ps();

}

In this example, ps is created with placement-new rather than the global operator
new. Instead of using memory from the heap, ps is placed in a memory pool on
the stack. Every time do_something() is called, ps is created on the stack. The
memory used for storing ps is recycled because the stack is cleared upon subroutine
return. Since the heap is not used, there is no risk of fragmenting or overflowing the
heap, as might occur when using the global operator new.

The code sample above presents an uncommon sight in C++ programming—an
explicit call to a class destructor (i.e., the call to ~ps()). Pointers to class types cre-
ated with placement-new require manual destructor call. They should not be deleted
with the global operator delete. This differs from pointers created with the global

188 10 Custom Memory Management

operator new. These always need a corresponding call to delete which recycles
the memory and also implicitly calls the destructor. Custom memory management
is one of very few programming situations in C++ that requires explicit call of an
object’s destructor.

10.3 Allocators and STL Containers

STL containers have an additional (sometimes overlooked) template parameter that
defines the so-called allocator type used for dynamic memory management. For
example, the full template definition of std::vector has not only an elem_-
type parameter for the element type but also a second alloc_type parameter
for the allocator type. In particular,

namespace std
{
template
<typename elem_type,
typename alloc_type = std::allocator<elem_type>>

class vector
{
// ...

};
}

The second template parameter alloc_type is the allocator type. This is the
allocator that a given instantiation of std::vector uses to allocate and deallo-
cate elements when dynamically changing its size. If otherwise left unspecified, the
value of this allocator type is the STL’s templated default allocator class std::-
allocator instantiated for the type of element in the container.

The key to using STL containers effectively in microcontrollers is to replace the
default allocator with a specialized custom allocator. The default allocator uses the
global operators new and delete which, as mentioned previously, can be inappro-
priate for microcontroller programming. Custom allocators can use memory policies
that rely on placement-new acting on, for example, a pool of local stack memory or
a chunk of re-usable static RAM, etc.

The code below uses std::vector with the default allocator.

#include <vector>

// A vector with three 32-bit uints.
std::vector<std::uint32_t> v(3U);

10.3 Allocators and STL Containers 189

The code below is almost the same. However, it uses std::vector with a
custom allocator.

#include <vector>
#include "my_allocator.h"

std::vector<std::uint32_t,
my_allocator<std::uint32_t>> v(3U);

Here, my_allocator is assumed to have memory allocation and deallocation
mechanisms suitable for the microcontroller’s memory.

10.4 The Standard Allocator

In order to be used with STL containers, a custom allocator must adhere to the
interface of the standard allocator, std::allocator. The partial synopsis of the
standard library’s default allocator class is shown below.

namespace std {

template<typename T>
class allocator
{
public:
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef value_type& reference;
typedef const value_type& const_reference;

allocator() noexcept;
allocator(const allocator&) noexcept;

template<class U>
allocator(const allocator<U>&) noexcept;

~allocator() noexcept;

template <class U>
struct rebind { typedef allocator<U> other; };

190 10 Custom Memory Management

size_type max_size() const noexcept;

pointer address(reference) const;
const_pointer address(const_reference) const;

pointer allocate(size_type,
typename allocator<void>::const_pointer = nullptr);

void construct(pointer, const value_type&);

void destroy(pointer);

void deallocate(pointer, size_type);
};

} // namespace std

The complete specification of the behavior and requirements of the default allo-
cator can be found in [2], with details in Sect. 20.1.5 (especially Table 32) and
Sect. 20.6.9 therein. Consult also Sect. 19.3 of [3] for a detailed description of the
data types and operations of std::allocator.

10.5 Writing a Specialized ring_allocator

In the following, we will write a custom ring_allocator. The ring allocator
obtains its memory from a static pool that behaves like a ring buffer. Memory is
consumed as needed for allocation and automatically recycled in the ring buffer.

The functions needing specialization in a custom allocator are max_size(),
allocate() and deallocate() (Sect. 19.2 in [3]). Armed with this list, writ-
ing a custom allocator using specialized memory management instead of global new
and delete is straightforward.

We will begin with a base class that predominantly handles the ring allocator’s
memory management. In particular,

class ring_allocator_base
{
public:
typedef std::size_t size_type;

protected:
ring_allocator_base() { }

10.5 Writing a Specialized ring_allocator 191

// The ring_allocator’s buffer size.
static constexpr size_type buffer_size = 64U;

// The ring_allocator’s memory allocation.
static void* do_allocate(const size_type);

};

The ring_allocator_base class defines the buffer_size. It is 64 bytes
in this example. The ring allocator base class also defines a static function called
do_allocate(). The do_allocate() function is responsible for the nuts and
bolts of the memory allocation in the ring buffer. In particular,

void*
ring_allocator_base::do_allocate(const size_type size)
{
// Define a static buffer and memory pointer.
static std::uint8_t buffer[buffer_size];
static std::uint8_t* get_ptr = buffer;

// Get the newly allocated pointer.
std::uint8_t* p = get_ptr;

// Increment the pointer for the next allocation.
get_ptr += size;

// Does this allocation overflow the top
// of the buffer?
const bool is_wrap =
(get_ptr >= (buffer + buffer_size));

if(is_wrap)
{
// Here, the allocation overflows the top
// of the buffer. Reset the allocated pointer
// to the bottom of the buffer and increment
// the next get-pointer accordingly.
p = buffer;
get_ptr = buffer + size;

}

return static_cast<void*>(p);
}

192 10 Custom Memory Management

The do_allocate() subroutine returns a non-constant void-pointer to the
next free chunk of memory in its ring buffer. A local static buffer called buffer
and a ring pointer named get_ptr are defined in the subroutine. The get_ptr
variable cycles through the ring buffer, always pointing to the next block of free
memory. When the top of the requested memory block exceeds the top of the buffer,
get_ptrwraps around to the beginning of the buffer—in the sense of a ring buffer.

Armed with the memory allocation mechanism of the ring allocator base class,
it is straightforward to write the derived ring_allocator template class. For
example,

template<typename T>
class ring_allocator : public ring_allocator_base
{
public:
// ...

size_type max_size() const noexcept
{
// The max. size is based on the buffer size.
return buffer_size / sizeof(value_type);

}

pointer allocate(size_type count,
ring_allocator<void>::const_pointer = nullptr)

{
// Use the base class ring allocation mechanism.
void* p = do_allocate(count * sizeof(value_type));

return static_cast<pointer>(p);
}

void deallocate(pointer, size_type)
{
// Deallocation does nothing.

}

// ...
};

This code sample shows possible implementations of the three subroutines
needing specialization when creating the custom ring allocator—max_size(),
allocate() and deallocate(). The most significant details of these func-
tions include:

10.5 Writing a Specialized ring_allocator 193

• The max_size() member. This function evaluates the maximum available
memory size based on the buffer_size.

• The allocate() function. Memory allocation uses the memory management
scheme of the do_allocate() function in the base class.

• The deallocate() function, which is empty. Memory is simply recycled
and re-used in the ring buffer without being cleared or otherwise modified. The
deallocate() function can, therefore, be empty.

The allocate() function of the ring allocator calls do_allocate() as its
sole instance for memory allocation. The ring buffer cycles through and eventually
wraps around to its start. This means that previously allocated memory is overwrit-
ten without taking any particular precautions or even warning the caller about buffer
overrun. Users of the ring_allocator, then, need to be acutely aware of this
limitation and set the size of the internal buffer accordingly for the intended use of
this allocator.

With additional software, an out-of-memory check could optionally be added to
the class if needed, possibly in conjunction with a mechanism for properly handling
an out-of-memory exception. See Sect. 10.7 for further details on this.

Memory alignment is not taken into consideration in the allocation mechanism of
the ring_allocator. If memory alignment on, say, 4-byte or 8-byte boundaries
is necessary, a simple modulus check needs to be added to the size passed to the
allocation routine.

10.6 Using ring_allocator and Other Allocators

The ring_allocator has been designed to be particularly effective when used
with subroutine-local STL containers. Consider, for instance, a subroutine that pre-
pares a made-up login response.

// Type definition for the ring allocator of uint8_t.
typedef ring_allocator<std::uint8_t> alloc_type;

// Type definition of a vector using alloc_type.
typedef
std::vector<std::uint8_t, alloc_type> response_type;

// Create the login response in a vector.
void login_response(response_type& rsp)
{
// Reserve memory in the vector.
// This uses the ring allocator.
rsp.reserve(5U);

// Fill the login data in the response vector.

194 10 Custom Memory Management

rsp.push_back(UINT8_C(0x55)); // The login-OK key.
rsp.push_back(UINT8_C(0x31)); // Data rsp[1] = ’1’.
rsp.push_back(UINT8_C(0x32)); // Data rsp[2] = ’2’.
rsp.push_back(UINT8_C(0x33)); // Data rsp[3] = ’3’.

// Make a byte checksum of the response payload.
const std::uint8_t checksum =
std::accumulate(rsp.begin(),

rsp.end()
UINT8_C(0));

// Append the checksum to the login response.
rsp.push_back(checksum);

}

The login_response() subroutine prepares a communication frame respon-
sible for responding to a login request. These bytes represent a fictional login hand-
shake frame consisting of a key byte (0x55), a response with three data bytes
(’1’, ’2’, ’3’) and a byte-wise checksum over the previous four bytes in the
frame.

The data bytes in the login response are stored in an std::vector that uses
the custom ring_allocator. The significance of this for the real-time C++ pro-
grammer is that the login_response() subroutine can be called time and time
again—thousands of times, millions of times, etc.—without causing any memory
fragmentation whatsoever. Memory for the login response is merely taken from the
internal pool of the ring allocator and the modest memory consumption of the login
response does not overflow the capacity of the allocator’s buffer.

The ring_allocator is an efficient, bare-bones allocator. Its allocation rou-
tine is fast, and the overhead of deallocation is entirely eliminated because its mem-
ory is simply recycled through the ring buffer. As mentioned above, though, care
must be taken when using ring_allocator (or something similar) to ensure
that the allocator’s buffer is large enough to prevent buffer overrun for the use-cases
at hand.

Other kinds of custom allocators can also be written for various situations that
commonly arise in microcontroller programming. One may, for example, consider
writing a static_allocator that has a one-shot, non-recyclable memory pool.
This could be useful for static constant STL container objects such as version
strings, lookup tables, etc. that are created once and remain unchanged for the dura-
tion of the program. Another example of a well-known custom allocator is one that
holds a pointer to a buffer called an arena. This kind of arena pool can be used to
create a stack-based allocator. In addition, it is possible to wrap a constant address
in, say, a mapped_allocator. This can be used to overlay a memory-mapped
vector onto a memory-aligned set of hardware registers such as a DMA in a micro-
controller peripheral device.

10.6 Using ring_allocator and Other Allocators 195

Custom allocators make it possible to embed the power of STL containers
and algorithms working on them in remarkably tiny microcontrollers—safely and
efficiently—in environments bounded by strict memory limitations. Using custom
STL allocators that are tailored to the needs of the application can potentially add a
new dimension of elegance and ease to microcontroller programming.

10.7 Recognizing and Handling Memory Limitations

Because we are not using C++ exceptions in this book, the ring_allocator
described in the previous section does not include checks for out-of-memory or
for excessive block size. A standards-adherent custom allocator should, however,
include checks for both an out-of-memory error as well as an excessive-length
error. STL authors will, therefore, typically support C++ exceptions when request-
ing memory from an allocator.

An ideal allocator should throw an std::bad_alloc exception if the allo-
cator is out of memory. In addition, it should throw an std::length_error
exception if the requested block size exceeds the size returned from max_size().
The code below depicts a possible implementation of the reserve() method that
includes support for std::length_error.

#include <memory>
#include <exception>

template<typename T,
typename alloc = std::allocator<T>>

class vector
{
public:
// ...

void reserve(size_type count);
{
// Calculate the requested block-size.
const size_type size = count * sizeof(value_type);

// Obtain the maximum size available.
const size_type the_max

= allocator_type().max_size();

// Is the maximum size exceeded?
if(size > the_max)
{

// Throw a length error exception.
throw std::length_error();

196 10 Custom Memory Management

}

// Reserve the requested count.
// ...

}

// ...
};

Before allocating any memory, the reserve() method queries the allocator’s
max_size() to find out if the requested memory size exceeds the available size.
If the allocator’s max_size() will be exceeded by the requested allocation, then
there is insufficient memory and an std::length_error exception is thrown.

Developers can check for exceptions using a try-catch clause. We will now
modify the login_response() subroutine from the previous section to catch a
length error exception that may potentially be thrown when attempting to reserve
the response vector.

// Type definition for the ring allocator of uint8_t.
typedef ring_allocator<std::uint8_t> alloc_type;

// Type definition of a vector using the alloc_type.
typedef
std::vector<std::uint8_t,

alloc_type> response_type;

// Create the login response in a vector.
void login_response(response_type& rsp)
{
// Try to reserve 5 bytes in the vector.
try
{
rsp.reserve(5U);

}
catch(const std::length_error& e)
{
// Catch a length error exception.

// Implement an error reaction.
// ...

}

// ...
}

10.7 Recognizing and Handling Memory Limitations 197

C++ exception handling can potentially improve the reliability of embedded real-
time software. C++ exception handling may, however, increase the code size of the
project by several tens of kilobytes, depending on the characteristics of the compiler
implementation of exception handling. Enabling and using C++ exceptions should,
therefore, only be undertaken if sufficient resources are available.

References

1. B. Eckel, Thinking in C++ Volume 1: Introduction to Standard C++, 2nd edn. (Pearson Prentice
Hall, Upper Saddle River, 2000)

2. ISO/IEC, ISO/IEC 14882:2011: Information Technology—Programming Languages—C++
(International Organization for Standardization, Geneva, 2011)

3. N.M. Josuttis, The C++ Standard Library: A Tutorial and Reference, 2nd edn. (Addison-
Wesley, Boston, 2011)

Chapter 11
C++ Multitasking

A multitasking scheduler is an indispensable tool for providing temporal and
functional software distribution. In this chapter, we design a cooperative C++ mul-
titasking scheduler that performs a top-down call of its tasks using time slices and a
basic priority mechanism. This multitasking scheduler is compact and portable and
can be used for a wide variety of projects ranging from small to large. Toward the
end of this chapter, we will discuss additional multitasking features such as extended
scheduling with yield and sleep functions and the C++ thread support library.

11.1 Multitasking Schedulers

The basic operation of a multitasking scheduler is depicted in Fig. 11.1. In general,
a multitasking scheduler runs, possibly indefinitely, in a loop and uses a scheduling
algorithm to identify and call ready tasks. Here, ready is the state of needing to be
called. The scheduler’s ready-check usually involves timing and possibly event or
alarm conditions. In this way, a multitasking scheduler distributes software func-
tionality among various modules and time slices.

Consider the multitasking scheduler shown below. This basic multitasking sched-
uler is designed to schedule three tasks, task_a(), task_b() and task_c().

#include <array>
#include <algorithm>

void task_a() { /* ... */ }
void task_b() { /* ... */ }
void task_c() { /* ... */ }

typedef void(*function_type)();
typedef std::array<function_type, 3U> task_list_type;

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_11

199

200 11 C++ Multitasking

const task_list_type task_list
{
{ task_a, task_b, task_c };

}

void scheduler()
{
for(;;)
{
std::for_each(task_list.begin(),

task_list.end(),
[](const function_type& func)
{
func();

});
}

}

Every multitasking scheduler uses some form of scheduling algorithm to search
for ready tasks. In the case of the scheduler() above, for example, the search-
ing algorithm is trivially simple. It uses neither timing nor priority nor any other
kinds of events or alarms. Since each task is ready to be called at any given time, the
ready condition for a given task is simply unconditional-true. Accordingly, each
task is called via lambda expression in the std::for_each() algorithm of the
multitasking scheduler as soon as its corresponding iterator in the task_list is
reached. The outer for(;;)-loop causes the multitasking scheduler to run indefi-
nitely.

This multitasking scheduler is extraordinarily simple, requiring only a few tens
of bytes of program code and no RAM whatsoever. It sequentially calls the tasks in
its task_list, indefinitely without pause, break or return.

Fig. 11.1 A multitasking
scheduler and its tasks,
task_a, task_b, . . .
task_x, are sketched

task_a ready? execute task_a

No

Yes

Scheduler Tasks

task_b ready? execute task_b

No

Yes

task_x ready? execute task_x

No

Yes

11.1 Multitasking Schedulers 201

Even though the rudimentary temporal distribution of this multitasking scheduler
may be inadequate for most practical situations, this example does, nonetheless,
clearly exhibit the general concept of a multitasking scheduler. In the upcoming
sections, we will add timing and a more sophisticated scheduling mechanism to this
multitasking scheduler.

11.2 Task Timing

We will now discuss timing aspects for our multitasking scheduler. Imagine that
the multitasking scheduler should call task_a(), task_b() and task_c() at
even multiples of 2, 8 and 16ms, respectively.

With this call scheduling, there are time points at which two or more tasks need
to be called back-to-back. For example, at even multiples of 8ms, both task_a()
as well as task_b() need to be called. At even multiples of 16ms, all three tasks
need to be called. This could lead to a timing crunch.

In order to avoid timing bottlenecks or at least lessen their impact, call offsets
can be added to the call cycle timing of the scheduler. Small-valued prime numbers

Table 11.1 The call
schedules for task_a(),
task_b() and task_c()
with call cycles of (2, 8,
16)ms and call offsets of
(0, 7, 13)ms are shown

System- Call Call Call

Tick (ms) task_a() task_b() task_c()

0 •
1 •
2 •
3 •
4 •
5

6 •
7

8 •
9 •
10 •
11

12 •
13

14 •
15

16 •
17 •
18 •
19 •

202 11 C++ Multitasking

are well-suited for schedule offsets. For example, we will select for task_b() an
offset of 7ms and for task_c(), an offset of 13ms, while task_a() retains its
0ms offset.

The first few scheduled task call times using these offsets are shown in Table 11.1.
The bottleneck situation has been effectively removed. As can be seen in the
table, task_a() is always called at system-tick values which are multiples of
two—and these are always even-numbered. Both task_b() as well as task_c(),
however, are always called at odd-numbered values of the system-tick. Therefore,
the call of task_a() is never scheduled simultaneously with the calls of either
task_b() or task_c(). Furthermore, simultaneous scheduling of task_b()
and task_c() has been eliminated because the call cycles of these two tasks no
longer intersect.

11.3 The Task Control Block

A class which encapsulates the scheduling characteristics of a task is often called a
task control block, sometimes also known as a TCB. Typical things in a task control
block may include:

• The task to be scheduled
• The timing characteristics of the task’s scheduling
• A scheduling function that checks for task-ready
• A task execution mechanism
• Optional event or alarm information

For example, the scheduling characteristics of task_a, task_b and task_c
can be represented with the task control block shown below.

class task_control_block
{
public:
typedef void (*function_type)();

typedef timer<mcal::gpt::value_type> timer_type;
typedef timer_type::tick_type tick_type;

task_control_block(const function_type f,
const tick_type c,
const tick_type o = 0U)

: function(f),
cycle(c),
time(o) { }

11.3 The Task Control Block 203

bool execute();

private:
const function_type function;
const tick_type cycle;
timer_type time;

};

The task_control_block class has three member variables, function,
cycle and time. The variable function is a constant pointer to a void
function with static linkage. This is the function that is encapsulated in the task
control block, in other words it is the task that is to be called by the scheduler. The
variables cycle and time contain the task cycle in milliseconds and its interval
timer. The interval timer uses the timer utility described later in Sect. 15.3.

The time member of the task control block is initialized with the offset of the
task. The type of the time member is timer_type, a class-local type that is
scaled to the width of the system-tick, Sect. 9.3. A less wide timer type could option-
ally be used to optimize the RAM storage requirements of the task control block.
This, however, assumes that the necessary intervals can still be represented by this
type.

The member function execute() checks if a task is ready and, if so, calls it.
In particular,

bool task_control_block::execute()
{
// Check if the task is ready via timeout.
if(time.timeout())
{
// Increment the task’s interval timer
// with the task cycle.
time.start_interval(cycle);

// Call the task.
function();

return true;
}
else
{
return false;

}
}

After a ready task is called, its interval timer is incremented with the task cycle
and the execute() function returns true. Otherwise, execute() leaves the

http://dx.doi.org/10.1007/978-3-662-47810-3_15
http://dx.doi.org/10.1007/978-3-662-47810-3_9

204 11 C++ Multitasking

state of the task unchanged and returns false. Since execute() returns a
Boolean result, it can be used with a predicate-based searching algorithm, as will
be shown below.

11.4 The Task List

The task_list is a list of task_control_block objects that define the
task and timing characteristics of the application. For our system with task_a(),
task_b() and task_c() and the timing characteristics shown in Table 11.1, a
potential task_list is shown below.

#include <array>

typedef
std::array<task_control_block, 3U> task_list_type;

void task_a() { /* ... */ }
void task_b() { /* ... */ }
void task_c() { /* ... */ }

task_list_type task_list
{{
task_control_block
{
task_a,
task_control_block::timer_type::milliseconds(2),
task_control_block::timer_type::milliseconds(0)

},
task_control_block
{
task_b,
task_control_block::timer_type::milliseconds(8),
task_control_block::timer_type::milliseconds(7)

},
task_control_block
{
task_c,
task_control_block::timer_type::milliseconds(16),
task_control_block::timer_type::milliseconds(13)

}
}};

11.4 The Task List 205

The task_list is stored in an std::array containing three objects of type
task_control_block. These represent the task control blocks of task_a(),
task_b() and task_c(), and they are to be scheduled with cycles of 2, 8, 16ms
and offsets of 0, 7, 13ms, respectively.

11.5 The Scheduler

Armed with our task_control_block and the task_list, we will now
write a multitasking scheduler(). In particular,

#include <algorithm>

void scheduler()
{
for(;;)
{
// Find the next ready task using std::find_if.
std::find_if(task_list.begin(),

task_list.end(),
[](task_control_block& tcb) -> bool
{
// Call the ready task.
return tcb.execute();

});
}

}

In this multitasking scheduler(), the outer for(;;)-loop continuously
polls the task_list and never pauses, breaks or returns. The std::find_if()
algorithm sequentially loops through the task_list. If a ready task is found, it
is called via lambda function in combination with the execute() method of the
task_control_block.

A ready task that is called thereby breaks the loop in std::find_if(). If no
ready task is found, the outer for(;;)-loop continues polling the task_list
waiting for the next ready task.

The STL’s std::find_if() algorithm implements a simple task priority
mechanism. Recall that std::find_if() locates the iterator of the first occur-
rence of an element in a range that satisfies the given find condition. In other
words, it finds the iterator to the reference of a task_control_block in the
task_list whose execute() function returns true. If, however, no task is
ready, the iterator at the end of the task_list is found. All of this means that
std::find_if() performs a priority-based search. The order of the tasks in the
task_list defines the priority of the tasks.

206 11 C++ Multitasking

The multitasking scheduler implemented with the scheduler() function is
designed to be called one time only, for example, in main(). For instance, the
multitasking scheduler might be called after initializing the MCAL. This has been
discussed previously in Sect. 8.8. In particular,

namespace mcal
{
void init();

}

void scheduler();

int main()
{
// Initialize the microcontroller layer.
mcal::init();

// Call the multitasking scheduler
// and never return.
scheduler();

}

Our multitasking scheduler can be used with a wide variety of projects rang-
ing from small to large. It is efficient. In fact, the entire size of the multitasking
scheduler including the implementation of the task_control_block and the
task_list including three tasks only requires a few hundred bytes of code.

Our multitasking scheduler also has a high degree of portability. The only things
needed to port to another microcontroller are the system-tick and the timer’s con-
version to milliseconds.

11.6 Extended Multitasking

The example of the multitasking scheduler shown in the previous sections has called
its tasks in a top-down fashion. This means that tasks have been implemented as
run-capable entities that are called by the scheduler via top-down subroutine call.
Each task always runs to completion before returning control to the scheduler.

At times, such basic tasks are insufficient for certain multitasking design needs.
For example, it is often desired to wait in a task for an indefinite time within a deeply
nested, polling loop. Perhaps the task needs to wait for a critical communication
response or a reaction from a hardware device. This is shown in the code sample
below.

http://dx.doi.org/10.1007/978-3-662-47810-3_8

11.6 Extended Multitasking 207

// External functions in the application.
bool initialize_state();
bool response_ready();
void handle_response();

// An example of an extended task.
void extended_task()
{
// The task initialization.
const bool state_is_valid = initialize_state();

// The task worker loop.
for(;;)
{
if(state_is_valid)
{

// Wait indefinitely for a response.
while(!response_ready())
{
// Yield control to the scheduler.
os::yield();

}

// Handle the communication response.
handle_response();

}
}

}

In this sample, the extended task initializes its state and then enters a loop that
waits indefinitely for a communication response. When waiting for the response,
extended_task() calls os::yield() in order to yield control to the sched-
uler.

The extended task’s yield gives the scheduler the opportunity to check if any
other tasks with higher priority are pending and execute them if so. In this way, a
running task can hand over control to the scheduler, allowing other potentially ready
tasks to run. The scheduler returns control to the task at the same place at which
control was yielded and also ensures that the task has the same state as before. This
form of multitasking is known as cooperative multitasking with extended tasks.

When switching from one task to another, the scheduler is responsible for sav-
ing and restoring the task’s context, in other words its state. This is called context
switching. Context switching can be understood in very simple terms. The sched-
uler needs to remember where the task was and also what the task was doing at the

208 11 C++ Multitasking

time of the yield in order to properly save and restore a context. In the listing above,
where the task was is in the while()-loop that calls response_ready(). What
the task was doing is waiting for a communication response. From the perspective
of the CPU, however, the where is represented by the value of instruction pointer
(or an equivalent CPU register). The what is described in terms of the values of the
CPU registers and, possibly, a task stack.

Be aware that context switching is written in target-specific assembly language.
Context switching also requires additional resources. This includes runtime for the
context save and restore, and, in particular, RAM for context storage and individual
task stacks. These efficiency factors should be taken into account when considering
the use of an extended multitasking scheduler.

11.7 Preemptive Multitasking

Certain applications may need preemptive multitasking and synchronization objects
such as mutexes. When deciding whether or not to employ preemptive multitasking,
however, it is essential to carefully consider the expected benefits compared with
the costs. This is because preemptive scheduling and the use of synchronization
mechanisms may lead to significantly increased resource consumption and design
complexity.

In particular, preemptive multitasking might result in a more obscure relation
between the written code and its runtime characteristics. Preemptive multitasking
requires added resources because each preemptive task requires its own individual
stack and context storage. Furthermore, widespread use of synchronization mecha-
nisms introduces numerous potential sources of error related to re-entrance and con-
currency. Many experienced embedded systems programmers rarely use preemptive
multitasking. It is often possible to eliminate a perceived necessity for preemptive
multitasking. Keep a watchful eye on runtime characteristics and ensure that object
encapsulations and interrelations are clear and efficient. If the project, nonetheless,
really needs preemptive multitasking, then by all means use it.

For preemptive multitasking, one may consider using a third-party operating sys-
tem. In particular, LaBrosse’s book [4] describes a popular and robust real-time
kernel that can optionally be used with preemptive scheduling and synchronization
objects. LaBrosse’s kernel is written in C and assembly. It is stable, well-tested and
has been ported to a variety of architectures.

Another widely used free operating system of high-quality is FreeRTOS [1]. The
FreeRTOS system has been ported to many CPU architectures and features a clearly
defined, simple interface to the underlying hardware timer and memory resources.
The FreeRTOS licensing also allows the use of FreeRTOS in proprietary commer-
cial products.

11.8 The C++ Thread Support Library 209

11.8 The C++ Thread Support Library

C++ offers support for multi-threading in its thread support library. Although
implementation of the C++ thread support library can be difficult to find among
microcontroller compilers.

Thread support is predominantly implemented in the <thread> library, which
makes secondary use of the headers <condition_variable>, <chrono> and
<ratio>. The specification of the <thread> library can be found in Chap 30 of
[3]. The <atomic> and <mutex> libraries can be used for synchronizing access
to shared data if a preemptive threading environment is used.

The code sample below uses C++ threads.

#include <chrono>
#include <thread>

void thread_1()
{
for(;;)
{
// Do something in thread_1.
// ...

// Yield control to the scheduler for 2ms.
std::this_thread::sleep_for(2ms);

}
}

void thread_2()
{
for(;;)
{
// Do something in thread_2.
// ...

// Yield control to the scheduler for 7ms.
std::this_thread::sleep_for(7ms);

}
}

void do_something()
{
// Create two threads, thread_1 and thread_2.
std::thread t1(thread_1);
std::thread t2(thread_2);

210 11 C++ Multitasking

// Wait for thread_1 and thread_2 to finish.

// In this example, the join() functions will wait
// indefinitely because neither thread returns.

t1.join();
t2.join();

}

This example creates two std::thread objects, t1 and t2. The first thread
carries out its internal work and subsequently yields control to the scheduler for
2ms, whereas the second thread has a cycle time of 7ms. The cooperative multi-
tasking yield is accomplished with the standard library’s sleep_for() subrou-
tine. Notice how the convenient timing mechanisms from the <chrono> library
can be used compatibly with the thread support library. The durations of the sleep
times in milliseconds are eloquently expressed using the standard library suffix ms
(see Sect. 3.17 on user-defined literals).

After creating the two threads, the do_something() subroutine waits for
both threads to complete before returning. This is accomplished with the join()
method. In this example, however, the program will wait indefinitely because both
threads are programmed to run without return.

The syntax and design of the C++ thread support library were strongly influenced
by the POSIX standard [2]. In addition, C++ threads were implemented in Boost’s
Boost.Thread library prior to becoming part of the C++ language in C++11.
So anyone familiar with POSIX pthreads from <pthread.h> or who has worked
with Boost.Thread, should be able to understand and use C++11 threads with
no trouble at all.

References

1. R. Barry, FreeRTOS Home (2012), http://www.FreeRTOS.org
2. ISO/IEC, ISO/IEC 9945:2003: Information Technology—Portable Operating System Interface

(POSIX) (International Organization for Standardization, Geneva, 2003)
3. ISO/IEC, ISO/IEC 14882:2011: Information Technology—Programming Languages—C++

(International Organization for Standardization, Geneva, 2011)
4. J. LaBrosse, µC/OS-III, The Real-Time Kernel (Micrium Press, Magalia, 2009)

http://dx.doi.org/10.1007/978-3-662-47810-3_3
http://www.FreeRTOS.org

Part III
Mathematics and Utilities

for Real-Time C++

Chapter 12
Floating-Point Mathematics

This chapter describes floating-point mathematics for real-time C++ using built-in
floating-point types such as float, double and long double. The first sections
of this chapter introduce floating-point arithmetic, mathematical constants, elemen-
tary transcendental functions and higher transcendental functions. The last sections
of this chapter cover more advanced topics including complex-numbered mathe-
matics, compile-time evaluation of floating-point functions and generic numeric
programming.

12.1 Floating-Point Arithmetic

Floating-point arithmetic can be used effectively in real-time C++. For example, the
simple function below computes the floating-point area of a circle of radius r , where
the area a is given by

a = πr2. (12.1)

float area_of_a_circle(float r)
{
constexpr float pi = 3.14159265358979323846F;

return (pi * r) * r;
}

The C++ standard specifies three built-in floating-point types, float, double
and long double.1 The standard, however, does not specify any details about the
internal representations of these types.

1We primarily use float and double in this book.

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_12

213

214 12 Floating-Point Mathematics

Basically, the standard merely states that double needs to provide at least as
much precision as float, and that long double must provide at least as much
precision as double. The way that the compiler internally stores and treats floating-
point types remains implementation-defined. See Sect. 3.9.1, Paragraph 8 in [9] for
additional details.

Most suppliers of high-quality compilers strive to provide conformance with the
floating-point standard IEEE–754:2008 [7]. This standard specifies (among other
things) the following.

• Single-precision is usually implemented as float, which is required to be four
bytes in width and to provide 24 binary digits of precision (∼7 decimal digits).

• Double-precision is often implemented as double, which is required to be eight
bytes in width and to provide 53 binary digits of precision (∼15 decimal digits).

• Quadruple-precision2 is occasionally implemented as long double, which is
required to be sixteen bytes in width and to provide 113 binary digits of precision
(∼33 decimal digits).

The IEEE–754 floating-point standard covers an enormous amount of informa-
tion on single-precision, double-precision and quadruple-precision floating-point
representations including rounding characteristics, subnormal numbers such as
infinity (∞) and not-a-number (NaN), conversion to and from integer, etc. We will
not discuss all of these details here due to space considerations. A comprehensive
treatment of floating-point arithmetic can be found in the definitive reference work
on the topic by Muller et al. [14].

Some microcontrollers have hardware support for floating-point arithmetic using
a floating-point unit (FPU). An FPU can make floating-point arithmetic as efficient
as integer calculations—or even more so. Many small-to-medium microcontrollers,
however, do not have an FPU, and floating-point calculations are performed with a
software floating-point emulation library. Floating-point emulation can be slow and
may introduce large amounts of library code in the executable program. The real-
time C++ programmer should attempt to be aware of the potentially high resource
consumption of floating-point arithmetic.

C++ supports many floating-point functions including elementary transcenden-
tal functions, floating-point classification functions, rounding functions, absolute
value functions, etc. These functions are predominantly included in the <cmath>
and <cstdlib> libraries (Sect. 12.3). In addition, care was taken during the spec-
ifications of C++11 and C99 to improve consistency in floating-point functions
between C and C++ [8, 9].

As mentioned above, floating-point arithmetic in C++ supports the concept
of infinity and other non-representable subnormal floating-point values. Consider
finite, positive x with x ∈ R and x representable in the compiler’s floating-point
implementation of IEEE–754:2008. In this floating-point system, for example, the
result of x/ 0 is ∞ and the result of

√−x is NaN. Subnormals and floating-point
limits are supported in the C++ language with the std::numeric_limits tem-

2Quadruple-precision is not commonly implemented for microcontroller compilers.

12.1 Floating-Point Arithmetic 215

plate, as described in Sect. A.5.
Some developers use the symbol F to denote the set of numbers representable

in a floating-point system. In this book, however, we simply use R for the sake of
convenience.

We will now perform some additional floating-point math using the built-in
float type. Consider the sinc function that often arises in fields such as optics,
scattering and radiation theory,

sinc x = sin x

x
. (12.2)

We will use the following approximation scheme to calculate the sinc function.

sinc x =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1, for |x | < ε,

1 − x2

6
+ x4

120
− x6

540
, for |x | < 0.03,

sin x

x
, otherwise,

(12.3)

where x ∈ R and x is of type float. Here, ε represents the smallest number
distinguishable from 1 that can be represented by float (in other words ε =
std::numeric_limits<float>::epsilon(), as described in Sects. 13.5
and A.5).

The corresponding code for the sinc function is shown below.

#include <cmath>
#include <limits>

float sinc(const float& x)
{
if(std::fabs(x) <

std::numeric_limits<float>::epsilon())
{
return 1.0F;

}
else if(std::fabs(x) < 0.03F)
{
const float x2 = x * x;

const float sum = ((- 1.984126984E-04F

* x2 + 8.333333333E-03F)

* x2 - 1.666666667E-01F)

* x2;

return 1.0F + sum;

http://dx.doi.org/10.1007/978-3-662-47810-3_13

216 12 Floating-Point Mathematics

}
else
{
return std::sin(x) / x;

}
}

As shown in Eq. 12.3, the sinc function is symmetric about the origin which
allows us to use the absolute value function std::fabs() from <cmath> in
key locations. See also Sect. 12.3 for further information on <cmath>. Very small
arguments with |x | < ε return 1. Small arguments with |x | < 0.03 use a Tay-
lor series of order 6. Larger arguments with |x | ≥ 0.03 use the library function
std::sin() combined with division (in other words, sin(x)/ x). The polyno-
mial expansion in the Taylor series uses the method of Horner, as described in [11],
Vol. 2, Sect. 4.6.4 in the paragraph named “Horner’s Rule”.

12.2 Mathematical Constants

Some mathematical constants [4] such as
√

2, π , log 2, e, γ and others appear time
and time again in mathematical formulas. It makes sense, then, to implement these
numbers in a dedicated fashion. In C++, it is straightforward to implement mathe-
matical constants as variable templates (Sect. 5.12) representing compile-time con-
stant values.

Here, we use approximately 40 decimal digits after the decimal point. This
slightly exceeds the precision of quadruple-precision floating-point with 113 binary
digits, or ∼33 decimal digits. Even if the application does not need this many digits,
the precision is available for any extended-use situation that may arise. Since the
values are compile-time constant, the extra digits do not add any overhead.

The variable template pi below, for example, provides a scalable compile-time
constant floating-point approximation of π .

template<typename T>
constexpr T pi =
T(3.1415926535’8979323846’2643383279’5028841972L);

Using templated constants in code is simple. For example, this new version of
area_of_a_circle() uses the pi variable template to compute the float
area of a circle of radius r .

http://dx.doi.org/10.1007/978-3-662-47810-3_5

12.2 Mathematical Constants 217

float area_of_a_circle(const float& r)
{
return (pi<float> * r) * r;

}

A selection of useful mathematical constants is implemented in the variable tem-
plates below, including Pythagoras’ constant (

√
2 ≈ 1.41421 . . .),

template<typename T>
constexpr T sqrt2 =
T(1.4142135623’7309504880’1688724209’6980785697L);

Archimedes’ constant (π ≈ 3.14159 . . .),

template<typename T>
constexpr T pi =
T(3.1415926535’8979323846’2643383279’5028841972L);

the natural logarithm of two (log 2 ≈ 0.69314 . . .),

template<typename T>
constexpr T ln2 =
T(0.6931471805’5994530941’7232121458’1765680755L);

the natural logarithmic base (e ≈ 2.71828 . . .),

template<typename T>
constexpr T e =
T(2.7182818284’5904523536’0287471352’6624977572L);

the Euler-Mascheroni constant (γ ≈ 0.57721 . . .),

template<typename T>
constexpr T euler_gamma =
T(0.5772156649’0153286060’6512090082’4024310422L);

and Apéry’s constant (ζ(3) ≈ 1.20205 . . .).

218 12 Floating-Point Mathematics

template<typename T>
constexpr T zeta_three =
T(1.2020569031’5959428539’9738161511’4499907650L);

Boost [2] provides a wide selection of scalable mathematical constants in its
Boost.Math.Constants library. The syntax of Boost’s mathematical con-
stants library is similar to the syntax in the examples above.3

12.3 Elementary Functions

As mentioned previously, C++ supports many floating-point mathematical functions
and elementary transcendental functions in its C-compatibility headers <cmath>
and <cstdlib>. Basically, <cmath> and <cstdlib> include everything in the
C99 library headers <math.h> and <stdlib.h> and also add overloaded ver-
sions of the functions for float and long double (in addition to the original
versions for double).

The <cmath> and <cstdlib> libraries have a host of functions related to the
floating-point number system including, among others, trigonometric, exponential,
logarithmic, power, hyperbolic, rounding, absolute value functions, etc. Again, see
Sect. 26.8 in [9] for details on the specifications of <cmath> and <cstdlib>.

The code below, for example, computes sin(1.23) for float.

#include <cmath>

const float s = std::sin(1.23F);

Floating-point functions can require significant resources. The results of floating-
point benchmarks on our target with the 8-bit microcontroller are shown in
Table 12.1. Multiplication, division and square root are the fastest functions. More
complicated functions such as hyperbolic arc-cosine and Gamma (Sect. 12.4) require
significantly more resources.

An interesting perspective on the runtime characteristics of floating-point func-
tions can be obtained by comparing the floating-point benchmark results in
Table 12.1 with those of the CRC32 calculation in Sects. 6.1 and 6.2. For our target
with the 8-bit microcontroller, the CRC32 is a non-trivial, computationally intensive
task that needs about 300 bytes of code and a bit more than 300µs. The floating-
point hyperbolic arc-cosine computation has a similar runtime but requires signifi-
cantly more code—possibly due to the inclusion of significant parts of the software
floating-point library.

3Boost uses template functions in its interface to mathematical constants whereas variable tem-
plates (Sect. 5.12) are used here.

http://dx.doi.org/10.1007/978-3-662-47810-3_6
http://dx.doi.org/10.1007/978-3-662-47810-3_6.2
http://dx.doi.org/10.1007/978-3-662-47810-3_5

12.3 Elementary Functions 219

Table 12.1 Resource consumptions for single-precision floating-point functions on our target
with the 8-bit microcontroller are shown

Function Result
(float)

Result
(known)

Runtime
(µs)

Code size
(byte)

1.23 × 3.45 4.2435 Exact 10 420

1.23/ 3.45 0.35652 17 0.35652 17391 · · · 30 430√
1.23 1.10905 4 1.10905 36506 · · · 30 290√

1.232 + 3.452 3.66270 4 3.66270 39192 · · · 60 1,080

sin(1.23) 0.94248 88 0.94248 88019 · · · 110 890

log(3.45) 1.23837 4 1.23837 42310 · · · 140 1,050

exp(1.23) 3.42123 0 3.42122 95363 · · · 170 1,270

acosh(3.45) 1.90982 3 1.90982 29687 · · · 240 1,670

Γ (3.45) 3.14631 2 3.14631 20534 · · · 280 2,550

The performance of floating-point elementary function calculations may vary
considerably from one microcontroller to another. In particular, floating-point ele-
mentary function calculations might be greatly accelerated if an FPU is used. In
addition, there can even be strong variations in size and performance when switch-
ing from one compiler to another or when using different implementations of the
underlying floating-point library. In order to understanding floating-point efficiency
in the project, some simple benchmarking in hard real-time such as the kind sum-
marized in Table 12.1 above can be performed.

12.4 Special Functions

Some special functions of pure and applied mathematics such as Bessel functions,
orthogonal polynomials, elliptic integrals, the Riemann Zeta function, etc. are spec-
ified in the optional special functions part of the C++ standard library [10] (since
C++11). Here, the general term special functions means higher transcendental func-
tions as described in depth in Erdélyi’s three-volume treatise on the subject [3] and
also in [1, 15].

Since implementations of special functions are, in fact, optional in the C++ stan-
dard and because they can be quite difficult to calculate accurately and efficiently,
compiler support for them may be very limited among embedded targets. For these
reasons, it may be necessary at some point in time to either write certain special
functions oneself or arrange for dedicated compiler support for them in cooperation
with the compiler supplier.

In general, the complexity of computing special functions increases the higher
a function gets. In particular, the Gamma function Γ (x) is often considered the

220 12 Floating-Point Mathematics

Fig. 12.1 The Gamma
function Γ (x) for x ∈ R

with 0 � x ≤ 4 is shown.
The Gamma function Γ (x)

has a singularity at the origin
and grows rapidly for large x

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3 3.5 4

Γ (x)

x

The Gamma Function

simplest special function of all to compute.4 Orthogonal polynomials are thought to
be more difficult to compute than the Gamma function. The Bessel function Jν(x),
which requires the Gamma function, is frequently judged to be yet more difficult to
compute, etc.

Writing a library of special functions that is accurate, efficient and supports cor-
rect range checking and handling of subnormals is a task beyond the scope of this
book. To get better acquainted with the ways of programming special functions in
real-time C++, though, we will write an implementation of the Gamma function
Γ (x) for x ∈ R for single-precision float.

The Gamma function Γ (x) is the extension of the integer factorial function to
both real as well as complex numbers x with x ∈ C. The relation between the
Gamma function and the factorial is Γ (n + 1) = n!, where n ∈ Z

+ is a positive
integer or zero. The behavior of the Gamma function is shown in Fig. 12.1 for x ∈
R with 0 � x ≤ 4. The Gamma function has a complex-valued singularity at the
origin and grows rapidly for increasing argument (i.e., like the factorial). Notice at
the right-hand side of the graph the expected value of Γ (4) = 3! = 6.

Our computational scheme for computing Γ (x) is primarily based on polynomial
expansion. In particular, we use

Γ (x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

reflection of Γ (x) for x < 0,

NaN for x = 0,

inverse of the Taylor series of 1/ Γ (x) for 0 < x < 0.1,

polynomial expansion of Γ (x + 1) for 0.1 ≤ x < 1,

1 for x = 1 and x = 2,

upward recursion of Γ (x) for x > 1, x 	= 2,

and + ∞ for overflow when x is large or near 0.

(12.4)

4Even though some compilers do not include Gamma functions, both Γ (x) as well as log Γ (x) are
intended to be available in the optional special functions of C++11 for x ∈ R for float, double
and long double.

12.4 Special Functions 221

We have chosen to use polynomial expansion and recursion in this book because
the resulting code is compact and easy to understand. Many numerical specialists
prefer to use a Lanczos-type approximation for small-to-medium values combined
with an asymptotic Stirling-type expansion for large arguments to compute log Γ (x)

and subsequently take the exponent of it for Γ (x). This is, for example, done in GCC
for targets that support the Gamma function.

The small-argument Taylor series for
1

Γ (x)
is given by

1

Γ (x)
= x + γ x2 − 0.65587 80715 x3 − 0.04200 26350 x4

+ 0.16653 86114 x5 − 0.04219 77346 x6 + . . . , (12.5)

where γ = 0.57721 56649 . . . is the Euler-Mascheroni constant.
The polynomial expansion for Γ (x + 1) is given by

Γ (x + 1) =
(

9∑

n = 0

an xn

)

+ ε(x), (12.6)

where the relative error |ε(x)| � 3 × 10−8 and the coefficients an are given by5

a0 = 0.99999 99703 a5 = −0.86491 08124
a1 = −0.57720 69549 a6 = 0.67213 15341
a2 = 0.98875 89417 a7 = −0.38608 71683
a3 = −0.90350 83713 a8 = 0.14050 04023
a4 = 0.95390 74630 a9 = −0.02358 50272 .

(12.7)

These coefficients have been computed with a computer algebra system. A least-
squares curve-fit of a table of Γ (x + 1) with 81 equidistant points in the range
0 ≤ x ≤ 1 has been used. The polynomial fit has been performed with 50 decimal
digits of precision.

For our calculation, we also need both reflection of the Gamma function

Γ (−x) = − π

x Γ (x) sin πx
, (12.8)

as well as upward recursion of the Gamma function

Γ (x + 1) = x Γ (x). (12.9)

5A similar polynomial expansion for Γ (x + 1) is given in Sect. 6.1.36 of [1], originating from
the work of C. Hastings in [6]. In the polynomial expansion in Eq. 12.6 here, however, the number
of coefficients has been increased from Hastings’ original 8 up to 10. With 10 coefficients, this
approximation reaches a precision slightly better than the approximate 7 decimal digits of single-
precision float.

222 12 Floating-Point Mathematics

Armed with all these mathematical equations, we are finally ready to implement
the core part of our Gamma function calculation. We will call it gamma1(). It
computes the float value of Γ (x) for 0 < x < 1. In particular,

float gamma1(const float& x)
{
// Compute Gamma(x) for 0 < x < 1 (float).

if(x < 0.1F)
{
// Small-argument Taylor series for 1/gamma.
const float sum = (((((((+ 0.0072189432F

* x - 0.0096219715F)

* x - 0.0421977346F)

* x + 0.1665386114F)

* x - 0.0420026350F)

* x - 0.6558780715F)

* x + 0.5772156649F)

* x + 1)

* x;

return 1.0F / sum;
}
else
{
// Do the order-9 polynomial fit.
const float g = ((((((((- 0.0235850272F

* x + 0.1405004023F)

* x - 0.3860871683F)

* x + 0.6721315341F)

* x - 0.8649108124F)

* x + 0.9539074630F)

* x - 0.9035083713F)

* x + 0.9887589417F)

* x - 0.5772069549F)

* x + 0.9999999703F;

// Note: We use one downward recursion here.
return g / x;

}
}

12.4 Special Functions 223

To make the complete implementation of tgamma(), we need to include range
checks, handling of subnormals, possible upward recursion of the result and reflec-
tion for negative arguments. For example,

float tgamma(float x)
{
// Is the argument a subnormal?
if(!isfinite(x))
{
return x;

}

// Check for pure zero argument.
if(x == 0.0F)
{
return std::numeric_limits<float>::quiet_NaN();

}

// Check for overflow and underflow.
if((x > 35.0F)

|| ((x > -1.0E-4F) && (x < 1.0E-4F))
)

{
return std::numeric_limits<float>::infinity();

}

// Is the argument 1 or 2?
if((x == 1.0F) || (x == 2.0F))
{
return 1.0F;

}

// Use a positive argument for the Gamma calculation.
const bool b_neg = (x < 0.0F);

x = std::fabs(x);

// Get any integer recursion and scale the argument.
const std::uint_fast8_t nx =
static_cast<std::uint_fast8_t>(std::floor(x));

x -= static_cast<float>(nx);

224 12 Floating-Point Mathematics

// Calculate gamma of the scaled argument.
float g = gamma1(x);

// Do the recursion if necessary.
for(std::uint_fast8_t i = UINT8_C(0); i < nx; ++i)
{
g *= x;
++x;

}

// Return (and possibly reflect) the result.
if(b_neg == false)
{
return g;

}
else
{
const float sin_pi_x = std::sin(pi<float> * x);

return -pi<float> / ((x * g) * sin_pi_x);
}

}

This implementation of the tgamma() function is relatively complete. In prac-
tice, though, it should throw an std::out_of_range exception for arguments
that are too large or so close to zero or negative integers that the results will be
subnormal. In addition, it may be preferable to switch from recursion to Stirling’s
approximation for arguments above, say, x ≥ 10 since many upward recursions can
be costly. Even with its limitations, though, this version of tgamma() is a compact
efficient Gamma function for float that may be adequate if the compiler does not
include one. A variation of this implementation of tgamma() is included in the
reference project of the companion code.

The numerical results of our tgamma() function are compared with known
control values in Table 12.2. The relative deviations of the calculated values lie in
the range |ε(x)| � 10−7—accurate to within the approximate 7 decimal digits of
single-precision float.

Table 12.2 Calculations of tgamma(x) are compared with known values of Γ (x)

x tgamma(x) Γ (x)

0.5 1.77245 38 1.77245 38509 . . .

8.76 24203.830 24203.81462 . . .

0.02 49.44221 1 49.44221 01631 . . .

−0.345 0.29302 791 0.29302 79565 . . .

12.4 Special Functions 225

Another example of a special function often needed in real-time C++ is the cylin-
drical Bessel function Jν(x).

The Taylor series for Jν(z) is

Jν(z) =
(

1

2
z

)ν ∞∑

k = 0

(− 1
4 z2

)k

k! Γ (ν + k + 1)
, (12.10)

where z, ν ∈ C.
Equation 12.10 is a simple enough series. Accurately calculating Bessel func-

tions over a wide range of arguments and orders is, however, relatively compli-
cated. Numerical methods for computing the Bessel function Jν(x) and other spe-
cial functions are described in detail in [5] (in a language-neutral form) and in [17]
(in traditional Fortran 77). In addition, Boost’s Boost.Math library [2] includes
portable and well-tested C++ implementations of numerous higher transcendental
functions for both built-in floating-point types as well as user-defined types. The
Boost.Math library, for example, is also designed to interact with its user-defined
extended multiple-precision library Boost.Multiprecision [12].

12.5 Complex-Valued Mathematics

The C++ standard library supports complex-valued mathematics with its tem-
plated data type std::complex. The std::complex data type is defined in
<complex> and specified for (and only for) the built-in types float, double
and long double.

The public interface of the std::complex class supports basic arithmetic
operators, elementary transcendental functions, the norm, polar coordinates, etc. See
Sects. 26.4.1–26.4.9 in [9] for a complete synopsis of the <complex> library.

Consider x and y of type std::complex<float> given by

x = 1.23 + 3.45i

y = 0.77 + 0.22i. (12.11)

The following code computes the complex values

z1 = x/ y

z2 = sin(x), (12.12)

where z1 and z2 are of type std::complex<float> .

226 12 Floating-Point Mathematics

std::complex<float> x(1.23F, 3.45F); // (1.23 + 3.45 I)
std::complex<float> y(0.77F, 0.22F); // (0.77 + 0.22 I)

std::complex<float> z1;
std::complex<float> z2;

z1 = x / y; // (2.6603774 + 3.7204117 I)
z2 = std::sin(x); // (14.859343 + 5.2590045 I)

The <complex> library also supports, among others, common complex oper-
ations such as norm and absolute value. For the same complex values x and y,
consider the norm and absolute value given by

nx = ‖x‖ = (�x)2 + (�x)2

ay = |y| =
√

(�y)2 + (�y)2. (12.13)

The following code computes the float values of nx and ay .

std::complex<float> x(1.23F, 3.45F); // (1.23 + 3.45 I)
std::complex<float> y(0.77F, 0.22F); // (0.77 + 0.22 I)

float nx = std::norm(x); // 13.415400
float ay = std::abs(y); // 0.80081209

Setting and retrieving the real and imaginary parts of a complex number is done
with the member functions real() and imag(). For instance,

std::complex<float> z(0); // (0 + 0 I)

z.real(1.23F); // Set the real part.
z.imag(3.45F); // Set the imag part.

float zr = z.real(); // Get the real part, 1.23.
float zi = z.imag(); // Get the imag part, 3.45.

In general, complex-valued floating-point calculations are at least four times
slower than corresponding real-valued computations. The rule of thumb here is
that mathematical software does the majority of its work with multiplication—an
O

(
N 2

)
operation. Since complex numbers have two components, real and imagi-

nary, the computational effort of complex-valued math can be expected to be at least
four times that of real-valued math (i.e., O(N 2) → 22 ∼ 4).

12.5 Complex-Valued Mathematics 227

Table 12.3 Timing of complex-valued floating-point calculations

Function Runtime
(µs)

Code size
(byte)

(1.23 + 3.45i)×(0.77 + 0.22i) 210 940√
1.23 + 3.45i 740 3,280

sin (1.23 + 3.45i) 1,320 3,000

log (1.23 + 3.45i) 940 3,760

exp (1.23 + 3.45i) 1,110 2,840

acosh (1.23 + 3.45i) 3,630 5,470

For two cases in point, consider the work of multiplying two complex numbers

(a + ib) × (c + id) = (ac − bd) + i (ad + bc) , (12.14)

and that of evaluating the sine of a complex number

sin (x + iy) = sin x cosh y + i cos x sinh y. (12.15)

The multiplication algorithm in Eq. 12.14 requires four real-valued multipli-
cations and two additions.6 The computation of the trigonometric sine function
in Eq. 12.15 requires the evaluation of four real-valued elementary transcendental
functions.7

Table 12.3 shows the runtime and code size for various complex-valued functions
performed with std::complex<float> on our target with the 8-bit microcon-

6There is also a well-known alternate scheme for multiplication of complex numbers that requires
only three real-valued multiplications, but five additions. In particular,

(a + ib) × (c + id) = (α − β) + i (α + γ) ,

where

α = a (c + d)

β = d (a + b)

γ = c (b − a) .

This alternate scheme for multiplication of complex numbers may or may not be faster than the
original O

(
N 2

)
scheme on a given CPU architecture.

7Note here, however, that the sometimes supported function sincos() may boost efficiency
because both sin x as well as cos x are required. In addition, only one calculation of ey is needed
because

cosh y = ey + e−y

2
,

sinh y = ey − e−y

2
.

.

228 12 Floating-Point Mathematics

troller. Comparison of the runtimes and code sizes with those of the corresponding
real-valued floating-point calculations shown in Table 12.3 confirm that complex-
valued math is 4–20 times bulkier than real-valued math.

Aside from potential resource consumption issues that need to be kept in mind,
however, there are no other significant technical reasons to avoid using complex-
valued floating-point math in real-time C++. So if a project can benefit from
complex-valued math and the performance constraints can be satisfied, then the
<complex> library can safely be used.

12.6 Compile-Time Evaluation of Functions with
constexpr

Compile-time evaluation of floating-point functions uses the constexpr key-
word. For example, we can re-factor the area_of_a_circle() function from
Sects. 12.1 and 12.2 for compile-time evaluation via constexpr.

template<typename T>
constexpr T area_of_a_circle(T r)
{
return (pi<T> * r) * r;

}

This function returns the floating-point value representing the approximate area
of a circle with radius r as a compile-time constant. For example, to compute the
area of a circle with approximate float radius 1.23 (a ∼ 4.752916), we simply
use

constexpr float a = area_of_a_circle(1.23F);

Using constexpr floating-point values in this way allows for portable and
legible compile-time evaluation of even non-trivial floating-point functions such as
trigonometric functions.

Consider, for instance, an order 19 polynomial approximation of the sine function,

sin x = sin
(π

2
χ

)
=

⎛

⎝
n = 19∑

n = 1,n odd

anχn

⎞

⎠ + O
(

10−20
)

, (12.16)

using the scaled argument

χ = x

(
2

π

)
(12.17)

12.6 Compile-Time Evaluation of Functions with constexpr 229

in the range −1 ≤ χ ≤ 1, where the coefficients an are given by

a1 = 1.57079 63267 94896 61922 76341
a3 = −6.45964 09750 62462 53373 25359 10−1

a5 = 7.96926 26246 16703 87700 53004 10−2

a7 = −4.68175 41353 18622 85169 58362 10−3

a9 = 1.60441 18478 69923 28124 60184 10−4

a11 = −3.59884 32339 70852 51537 71884 10−6

a13 = 5.69217 26597 22165 75609 94942 10−8

a15 = −6.68800 01786 32981 94595 55395 10−10

a17 = 6.06408 55645 94093 05881 23490 10−12

a19 = −4.24681 71354 84152 33794 93663 10−14.

(12.18)

These coefficients have also been computed with a computer algebra system using
a least-squares fitting technique.

It takes a bit of typing, cleverly crafted #defines, and careful considerations
about argument reduction, reflection and the like. It is, however, relatively straight-
forward to write a compile-time sine function for floating-point arguments based on
Eqs. 12.16–12.18. In particular, the subroutine below performs a compile-time com-
putation of sin x for floating-point argument x with better than 20 decimal digits of
precision.8

// Scale the argument.
#define CHI_S T(T(x * 2) / pi<T>)

// Take the absolute value of CHI.
#define IS_NEG bool(CHI_S < T(0))
#define CHI_A T(IS_NEG ? -CHI_S : CHI_S)

// Do the argument reduction.
#define NPI2 std::uint32_t(CHI_A / 2)
#define NPI std::uint32_t(\

(CHI_A - (NPI2 * 2) > T(1)) \
? NPI2 + 1 \
: NPI2)

#define CHI T(CHI_A - T(NPI * 2))
#define CHI2 T(CHI * CHI)

// Do the order-19 polynomial expansion.

8This implementation uses solely range reduction, reflection and the polynomial approximation.
To obtain the highest possible precision-conserving characteristics, however, it may be better to
use Taylor series approximations near the turning points at x = 0 and x = π /2 after the range
reduction. See [13] for further details on techniques for range reduction.

230 12 Floating-Point Mathematics

#define SUM \
(((((((((- T(4.2468171354841523379493663E-14L) \

* CHI2 + T(6.0640855645940930588123490E-12L)) \

* CHI2 - T(6.6880001786329819459555395E-10L)) \

* CHI2 + T(5.6921726597221657560994942E-08L)) \

* CHI2 - T(3.5988432339708525153771884E-06L)) \

* CHI2 + T(1.6044118478699232812460184E-04L)) \

* CHI2 - T(4.6817541353186228516958362E-03L)) \

* CHI2 + T(7.9692626246167038770053004E-02L)) \

* CHI2 - T(6.4596409750624625337325359E-01L)) \

* CHI2 + T(1.5707963267948966192276341E+00L)) \

* CHI

// Reflect the result if necessary.
#define NEEDS_REFLECT bool((NPI % 2) != 0)

namespace math { namespace const_functions {

template<typename T>
constexpr T sin(T x)
{
return ((NEEDS_REFLECT == IS_NEG) ? SUM : -SUM);

}

} } // namespace math::const_functions

Here, the constexpr version of the sin() function has been implemented
within namespace math::const_functions. Thereby, it can be differenti-
ated from global ::sin() and the standard library’s std::sin() in <cmath>
which are often used without namespace resolution.

Using math::const_functions::sin() for compile-time calculations
of the sine function in code is simple. In the example below, for instance, the com-
piler computes the approximate double-precision representation of sin (1/ 2).

constexpr double y = math::const_functions::sin(0.5);

If y is subsequently used in a subroutine, the compiler should be able to com-
pute the value of the sine function at compile time. Investigations of the compiler-
generated assembly code reveal that the compiler directly replaced the variable y
with the 8-byte hexadecimal representation of

sin (1/ 2) ≈ 0.47942 55386 04203 01 = 0x3FDE’AEE8’744B’05F0.

(12.19)

12.6 Compile-Time Evaluation of Functions with constexpr 231

This is an extremely efficient form of constant folding.9 In fact, using the
constexpr subroutine math::const_functions::sin() reduces the run-
time effort for computing sin x for compile-time constant x to that of merely loading
a constant value computed by the compiler into CPU registers.10

With a bit of additional effort, compile-time constant versions of cosine and tan-
gent can also be written. In particular,

namespace math { namespace const_functions {

template<typename T>
constexpr T cos(T x)
{
return -sin<T>(x - T(pi<T> / 2));

}

template<typename T>
constexpr T tan(T x)
{
return sin<T>(x) / cos<T>(x);

}

} } // namespace math::const_functions

It is possible to use compile-time evaluation of functions to compute essentially
any function, bounded only by the compiler’s internal limits. It is possible to extend
the number of coefficients in polynomial expansions and the like to obtain even
higher precision. In addition, template metaprogramming can be employed for more
complicated range reduction if needed. Compile-time evaluation of floating-point
functions may potentially be a new research topic in the area of high-performance
numerical computing made possible by the abilities of constexpr in C++11.

12.7 Generic Numeric Programming

Some forms of generic numeric programming employ C++ templates to use the
same code for different data types and function objects.11 We have already encoun-
tered generic numeric programming previously in this chapter. In particular, recall
the templated function area_of_a_circle() from Sect. 12.6.

9This benchmark was investigated with GCC version 4.8.1 for avr-unknown-elf and GCC
version 4.8.3 for arm-unknown-eabi.
10In this example, the floating-point representation of double is 8 bytes wide and conforms with
double-precision floating-point representation in IEEE–754..
11See also [16] for a description of a fundamental relationship between mathematics and generic
programming.

232 12 Floating-Point Mathematics

template<typename T>
constexpr T area_of_a_circle(T r)
{
return (pi<T> * r) * r;

}

This subroutine has strong generic character because it can be used with vari-
ous floating-point types to provide results with differing precisions. For example,
if float, double and long double correspond to IEEE–754 single-precision,
double-precision and quadruple-precision, respectively, on a given system, then the
following results are obtained for the area of a circle with radius 1.23.

constexpr float f = area_of_a_circle(1.23F);
// 4.7529155

constexpr double d = area_of_a_circle(1.23);
// 4.752915525615998

constexpr long double ld = area_of_a_circle(1.23L);
// 4.7529155256159981904701331745635599

We will now add even more power to generic numeric programming using not
only different floating-point types but also function objects as template parameters.
Consider some well-known central difference rules for numerically computing the
first derivative of a function f ′(x) with x ∈ R. In particular,

f ′ (x) ≈ m1 + O(dx2)

f ′ (x) ≈ 4

3
m1 − 1

3
m2 + O(dx4)

f ′ (x) ≈ 3

2
m1 − 3

5
m2 + 1

10
m3 + O(dx6), (12.20)

where the difference terms mn are given by

m1 = f (x + dx) − f (x − dx)

2 dx

m2 = f (x + 2dx) − f (x − 2dx)

4 dx

m3 = f (x + 3dx) − f (x − 3dx)

6 dx
, (12.21)

and dx is the step-size of the derivative.

12.7 Generic Numeric Programming 233

The third expression in Eq. 12.20 is a three-point central difference rule. It calcu-
lates the first derivative of f (x) with respect to x to O(dx6), where dx is the given
step-size. If the step-size is 0.01, for example, this derivative calculation is expected
to provide results having about 6 decimal digits of precision—just about right for
the 7 decimal digits of single-precision float.

We will now make a generic template subroutine using this three-point central
difference rule. In particular,12

template<typename value_type,
typename function_type>

value_type derivative(const value_type x,
const value_type dx,
function_type function)

{
// Compute the derivative using a three point
// central difference rule of O(dx^6).

const value_type dx1 = dx;
const value_type dx2 = dx1 * 2;
const value_type dx3 = dx1 * 3;

const value_type m1 =
(function(x + dx1) - function(x - dx1)) / 2;

const value_type m2 =
(function(x + dx2) - function(x - dx2)) / 4;

const value_type m3 =
(function(x + dx3) - function(x - dx3)) / 6;

const value_type fifteen_m1 = 15 * m1;
const value_type six_m2 = 6 * m2;
const value_type ten_dx1 = 10 * dx1;

return ((fifteen_m1 - six_m2) + m3) / ten_dx1;
}

The derivative() template function can be used to compute the first deriva-
tive of any continuous function to O(dx6). For example, consider the first derivative

12Here, we rearrange the terms in the third expression of Eq. 12.20 such that

f ′ (x) ≈ (15m1 − 6m2 + m3) dx

10dx
. (12.22)

234 12 Floating-Point Mathematics

of sin x evaluated at x = π/ 3. In other words,

d

dx
sin x

∣∣∣∣
x = π

3

= cos
(π

3

)
= 1

2
. (12.23)

The code below computes this derivative with about 6 decimal digits of precision
using the derivative() function.

const float x = pi<float> / 3.0F;

// Should be very near 0.5.
const float y =
derivative(x,

0.01F,
[](const float& x) -> float
{

return std::sin(x);
});

The expected value is 1/ 2 = 0.5. The compiler that was used to test this
code sequence obtained 0.50000 286. This result is within the expected tolerance
of O

(
dx6

)
with dx = 1/ 100 = 0.01.13 This code also makes use of the pi

variable template from Sect. 12.2 and a lambda expression—both of which are C++
language elements with strong generic character as well.

The derivative() template function can also be used with function objects.
Consider the quadratic equation,

ax2 + bx + c = 0. (12.24)

The code below implements a template function object that encapsulates the left-
hand side of the quadratic equation.

template<typename T>
class quadratic
{
public:
const T a;
const T b;
const T c;

13When using binary floating-point representations, however, best results are typically obtained
from derivative central difference rules with a step-size of the form (1/ 2)n . Using a somewhat
larger step size of 1/ 64 = 0.015625, for example, produces a result of 0.50000 173, which is even
slightly better than the result of 0.50000 286 obtained with the smaller step-size of 1/ 100 = 0.01.

12.7 Generic Numeric Programming 235

quadratic(const T& a_,
const T& b_,
const T& c_) : a(a_),

b(b_),
c(c_) { }

T operator()(const T& x) const
{
return ((a * x + b) * x) + c;

}
};

The first derivative of the quadratic equation can be computed in closed form. In
other words,

d

dx

(
ax2 + bx + c

)
= 2ax + b. (12.25)

The derivative() template function can handily compute the first derivative
of the quadratic function object. In particular, the code below computes

d

dx

(
1.2x2 + 3.4x + 5.6

)∣∣∣∣
x = 1

2

= 1.2 + 3.4 = 4.6. (12.26)

const float x = 0.5F;

// Should be very near 4.6.
const float y =
derivative(x,

0.01F,
quadratic<float>(1.2F, 3.4F, 5.6F));

The expected value is 4.6. The compiler that was used to test this code sequence
obtained 4.60000 086, which is well within the expected tolerance of O

(
dx6

)
.

The versatile derivative() template function exemplifies generic numeric
programming because both the floating-point type (value_type) as well as the
function-type (function_type) are template parameters. This means that the
derivative() template function can be used equally well with both built-in
floating-point types (float, double, long double) as well as user-defined
types such as extended precision floating-point types (i.e., as in [12]), fixed-point
types (Chap. 13), etc. Furthermore, the derivative() template function accepts
all valid function types in its third input parameter including functions having static
linkage, lambda expressions, and function objects alike.

http://dx.doi.org/10.1007/978-3-662-47810-3_13

236 12 Floating-Point Mathematics

A similar generic template method can be used for computing the numerical
definite integral of a function. Recall the definite integral of a real-valued function
f (x) from a to b, in other words

∫ b

a
f (x) dx . (12.27)

The integral() template function shown below uses a recursive trapezoid
rule to perform this kind of numerical integration.14 In particular,

template<typename real_value_type,
typename real_function_type>

real_value_type integral(
const real_value_type& a,
const real_value_type& b,
const real_value_type& tol,
real_function_type real_function)

{
std::uint_fast32_t n2(1);

real_value_type step = ((b - a) / 2U);

real_value_type result =
(real_function(a) + real_function(b)) * step;

const std::uint_fast8_t k_max = UINT8_C(32);

for(std::uint_fast8_t k(0U); k < k_max; ++k)
{
real_value_type sum(0);

for(std::uint_fast32_t j(0U); j < n2; ++j)
{

const std::uint_fast32_t two_j_plus_one =
(j * UINT32_C(2)) + UINT32_C(1);

sum +=
real_function(a + (step * two_j_plus_one));

}

const real_value_type tmp = result;

result = (result / 2U) + (step * sum);

14See also Sect. 5.2.2 in [5] for additional information on this recursive trapezoid rule.

12.7 Generic Numeric Programming 237

const real_value_type ratio =
std::abs(tmp / result);

const real_value_type delta = std::abs(ratio - 1U);

if((k > UINT8_C(1)) && (delta < tol))
{

break;
}

n2 *= 2U;

step /= 2U;
}

return result;
}

We will now use the integral() template function to compute the value of a
cylindrical Bessel function. Consider the well-known integral representation of the
cylindrical Bessel function of integer order on the real axis. In particular,15

Jn(x) = 1

π

∫ π

0
cos

(
x sin θ − nθ

)
dθ, for x ∈ R, n ∈ Z. (12.28)

The template code below implements cyl_bessel_j() based on the integral
representation in Eq. 12.28.16

template<typename float_type>
float_type cyl_bessel_j(const std::uint_fast8_t n,

const float_type& x)
{
const float_type epsilon =
std::numeric_limits<float_type>::epsilon();

const float_type tol = std::sqrt(epsilon);

const float_type jn =
integral(float_type(0),

pi<float_type>,

15See, for example, Eq. 10.9.1 in [15].
16This implementation of cyl_bessel_j(), however, only converges well for limited parame-
ter ranges such as small x, n � 5.

238 12 Floating-Point Mathematics

tol,
[&x,&n](const float_type& t) -> float_type
{

return
std::cos(x * std::sin(t) - (n * t));

})
/ pi<float_type>;

return jn;
}

Here, we use standard mathematical functions combined with generic template
methods. A lambda function is used for passing the integral representation of the
Bessel function to the recursive trapezoid mechanism in integral().

We can use the cyl_bessel_j() template to compute, for example, J2(1.23)

for single-precision float. In other words,

const float j2 = cyl_bessel_j(UINT8_C(2), 1.23F);
// Computed result: 0.16636 941
// Known value: 0.16636 93837...

The result of the computation of j2 is 0.16636 941. This computed result agrees
with the known value of J2(1.23) ≈ 0.16636 93837 . . . to within the approximate
seven decimal digit precision of single-precision float.

Generic numeric programming can be quite useful in real-time C++ because it is
flexible and scalable. Since generic numeric programming utilizes template meth-
ods, the results can be highly optimized by the compiler, resulting in exceptionally
efficient algorithms.

References

1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 9th Printing (Dover,
New York, 1972)

2. B. Dawes, D. Abrahams, Boost C++ Libraries (2012), http://www.boost.org
3. A. Erdélyi, W. Magnus, F. Oberhettinger, F.G. Tricomi, Higher Transcendental Functions,

vols. 1–3 (Krieger, New York, 1981)
4. S.R. Finch, Mathematical Constants (Cambridge University Press, Cambridge, 2003)
5. A. Gil, J. Segura, N.M. Temme, Numerical Methods for Special Functions (Society for Indus-

trial and Applied Mathematics, Philadelphia, 2007)
6. C. Hastings, Approximations for Digital Computers (Princeton University Press, Princeton,

1955)
7. IEEE Computer Society, IEEE Std 1003.1–2008, IEEE Standard 754 (2008), http://ieeexplore.

ieee.org/servlet/opac?punumber=4610933

http://www.boost.org
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933
http://ieeexplore.ieee.org/servlet/opac?punumber=4610933

References 239

8. ISO/IEC, ISO/IEC 9899:1999: Programming Languages—C (International Organization for
Standardization, Geneva, 1999)

9. ISO/IEC, ISO/IEC 14882:2011: Information Technology—Programming Languages—C++
(International Organization for Standardization, Geneva, 2011)

10. ISO/IEC, ISO/IEC 29124:2010: Information Technology—Programming Languages, Their
Environments and System Software Interfaces—Extensions to the C++ Library to Support
Mathematical Special Functions (International Organization for Standardization, Geneva,
2010)

11. D.E. Knuth, The Art of Computer Programming, vols. 1–3, 3rd edn. (Addison-Wesley, Boston,
1998)

12. J. Maddock, C. Kormanyos, Boost Multiprecision (2013), http://www.boost.org/doc/libs/1_
58_0/libs/multiprecision/doc/html/index.html

13. J.M. Muller, Elementary Functions: Algorithms and Implementation (Birkhäuser, Boston,
2006)

14. J.M. Muller, N. Brisebarre, F. de Dinechin, C.M. Jeannerod, V. Lefèvre, G. Melquiond, N.
Revol, D. Stehlé, T. Torres, Handbook of Floating-Point Arithmetic (Birkhäuser, Boston,
2010)

15. F.W.J. Olver, D.W. Lozier, R.F. Boisvert, C.W. Clark, NIST Handbook of Mathematical Func-
tions (Cambridge University Press, Cambridge, 2010)

16. A.A. Stepanov, D.E. Rose, From Mathematics to Generic Programming (Addison-Wesley,
Boston, 2014)

17. S. Zhang, J. Jin, Computation of Special Functions (Wiley, New York, 1996)

http://www.boost.org/doc/libs/1_58_0/libs/multiprecision/doc/html/index.html
http://www.boost.org/doc/libs/1_58_0/libs/multiprecision/doc/html/index.html

Chapter 13
Fixed-Point Mathematics

Many embedded systems applications need to perform floating-point calculations.
As mentioned in the previous chapter, however, small-scale microcontrollers may
not have hardware support for floating-point calculations with a floating-point unit
(FPU). To avoid potentially slow floating-point emulation libraries manipulating 32-
bit single-precision float or even 64-bit double-precision double, many devel-
opers elect to use integer-based fixed-point arithmetic. The first part of this chapter
describes fixed-point data types and presents a scalable template class representation
for fixed-point. In the second part of this chapter, we will use our fixed-point class
to compute some elementary transcendental functions, discuss fixed-point efficiency
and develop a specialization of std::numeric_limits.

13.1 Fixed-Point Data Types

A fixed-point number is an integer-based data type representing a real-valued frac-
tional number, optionally signed, having a fixed number of integer digits to the left
of the decimal point and another fixed number of fractional digits to the right of
the decimal point.1 Fixed-point data types are commonly implemented in base-2
or base-10. Fixed-point calculations can be highly efficient in microcontroller pro-
gramming because they use a near-integer representation of the data type.

Consider a base-2 fixed-point system consisting of an integer representation with
four binary digits, having two integer digits to the left of the decimal point and two
fractional digits to the right of the decimal point. In this system, the fractional num-
ber 1.5 could be represented as an integer with binary value 0b0110 (i.e. decimal
value 6). Here, the fractional value has been left-shifted by 2 (multiplied by 4) in
order to fit within the integer representation. The decimal point in this fixed-point
system lies between bits {0 . . . 1} and bits {2 . . . 3}.

1See Chapter 9 in [5] and also [7] for more information on fixed-point numbers.

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_13

241

242 13 Fixed-Point Mathematics

std::int16_t

Integer Fraction

+/- 255/256,254/256… 1/256,0127,126… 1,0

Decimal PointSign Bit

F7 F6 F5 F4 F3 F2 F1 F0S0 I6 I5 I4 I3 I2 I1 I0

Fig. 13.1 A representation of the Q7.8 fixed-point type is shown

High-performance implementations of fixed-point numbers for modern micro-
controllers commonly use base-2. In Fig. 13.1, for example, a common base-2,
signed, 16-bit fixed-point representation is depicted. It has one sign bit, 7 binary
integer digits to the left of the decimal point, and 8 binary fractional digits to the
right of the decimal point.

This is known as a Q7.8 fixed-point type using the Q-notation. In the unam-
biguous Q-notation, the entire fixed-point number is represented as a single two’s-
complement signed integer with an implicit sign bit. For example, Q15.16 describes
a fixed-point type with one sign bit, 15 integer bits and 16 fractional bits. The
Q15.16 representation is stored in a signed 32-bit two’s-complement integer.

Fixed-point numbers generally do not have an exponent field, lending them a
near-integer representation. Therefore, manipulations of fixed-point numbers such
as addition, multiplication and division use integer algorithms which can be simpler
and potentially more efficient than those of conventional floating-point representa-
tions.

The Q7.8 representation can hold real numbers ranging from

±
{
0x00.01 . . .0x7F.FF

}
, (13.1)

in other words from

±
{

1

28
. . .

(
27 − 1

28

) }
, (13.2)

which is approximately equal to

13.1 Fixed-Point Data Types 243

±
{
0.004 . . . 127.996

}
. (13.3)

The decimal point has been symbolically included in the hexadecimal represen-
tation of Eq. 13.1 in an intuitive fashion. The Q7.8 fixed-point representation has
slightly more than 2 decimal digits of precision both to the left of the decimal point
as well as to the right of the decimal point. Note that the fractional part of the
Q7.8 representation has one binary digit more of precision than the integer part due
to the sign bit in the integer part.

Since the decimal point has a fixed position in the underlying integer data
type, smaller numbers have decreased precision. In fact, the minimum value of the
Q7.8 representation is

(
1/ 28

) ≈ 0.004, with merely one binary digit of precision.
In addition, fixed-point representations lacking an exponent usually have smaller
range than floating-point types. In particular, the maximum value of the Q7.8 repre-
sentation is approximately +127.996.

Fixed-point types generally have less range and reduced precision compared with
floating-point representations. The underlying reason for this is the near-integer rep-
resentation of fixed-point types. This is, however, exactly what lends them their
improved performance. Fixed-point trades reduced range and decreased precision
in favor of potentially improved efficiency using simpler integer algorithms.

It is possible to vary the fundamental integer size and/or the decimal split char-
acteristics when defining fixed-point types. This can be done in order to obtain
different performances or other numerical ranges. For example, a signed, 32-bit
Q15.16 representation could be used for a fixed-point type with optimized per-
formance on a 32-bit architecture. If storage size or performance on an 8-bit plat-
form are considerations, then an unsigned, 8-bit Q0.8 representation could be used.
The Q0.8 representation is able to store fixed-point numbers with positive values
less than one with about two decimal digits of precision. The Q0.8 representation
could be useful, for example, if the application only needs to implement a couple of
trigonometric calculations, such as sine and cosine functions with just a few digits of
precision. Whatever the fixed-point representation, one must be aware of its range.
In addition, utmost care must be taken to remain within the numerical limitations at
all times when performing fixed-point calculations.

It is also possible to dynamically vary the characteristics of a fixed-point type’s
decimal split during runtime. This may be desired for optimizing the results of
numerical calculations within specific ranges. For example, calculations of the expo-
nential function of, say, e2 . . . e3 have results that range from about 7 . . . 20. Com-
paring these values with the results of calculations of the sine or cosine functions,
for instance, shows that the exponential function benefits from more digits to the
left of the decimal point and fewer to the right. So preferentially shifting the deci-
mal point of the fixed-point type a few places to the right in order to make room for
more digits in the integer part will generally improve fixed-point calculations of the
exponential function.

In this book, however, dynamic modification of the decimal split is not done
because it can lead to additional sources of error and a more complicated implemen-

244 13 Fixed-Point Mathematics

tation. It may be best to consider the kinds of calculations planned for a particular
application up front and, based on the analysis, limit the required range to some
reasonable values, such as 0.001 . . . 1, 000. Once the fixed-point range has been
defined, a dedicated fixed-point type adequate for the given range can be selected
up front.

13.2 A Scalable Fixed-Point Template Class

A class representation of a specialized numeric type in C++ should behave like a
built-in type as closely as possible. In other words, it should be possible to per-
form operations on the specialized type such as assignment, binary arithmetic, com-
parison, etc. In order to accomplish this, the author of a specialized numeric class
usually needs to implement some or all of the following features.

• Make a copy constructor from the self-type and additional constructors from other
built-in types.

• Implement assignment operators from the self-type and other built-in types.
• Write overloads for the assignment operator and also for arithmetic compound
assignment operators such as operator+=, operator-=, operator*=,
operator/=, etc.

• Make the global unary operators operator+ and operator- as well as
the operators for the pre-forms and post-forms of increment and decrement
operator++ and operator--.

• Implement standard global operators for binary arithmetic operations including
operator+, operator-, operator*, operator/, etc.

• Write global comparison operators for the specialized type as well as other built-
in types such as operator<, operator<=, operator==, operator!=,
operator>=, operator>, etc.

• Optionally implement a template specialization of std::numeric_limits
for the numeric type.

These steps have been carried out in the reference project of the companion code
to make a specialized fixed_point class. The fixed_point class implements
a relatively complete representation of fixed-point arithmetic in C++. This class
is based on a scalable template that supports varying decimal digits of precision
depending on the width of the underlying template parameter.

A partial synopsis of the fixed_point template class is shown in the listing
below. Complete implementation details can be found in the source code of the
reference project.

// The scalable fixed_point template class.
template<typename integer_type>
class fixed_point
{
public:

13.2 A Scalable Fixed-Point Template Class 245

// Signed representation of the fixed_point type.
typedef integer_type signed_value_type;

// Default constructor.
fixed_point();

// Constructors from POD.
fixed_point(const char);
fixed_point(const signed char);
fixed_point(const unsigned char);
fixed_point(const signed short);
fixed_point(const unsigned short);
fixed_point(const signed int);
fixed_point(const unsigned int);
fixed_point(const signed long);
fixed_point(const unsigned long);
fixed_point(const float&);
fixed_point(const double&);

// Copy constructor.
fixed_point(const fixed_point&);

// Copy construction from another fixed-point type.
template<typename other_type>
fixed_point(const fixed_point<other>&);

// Copy assignment operators from POD.
fixed_point& operator=(const char);
fixed_point& operator=(const signed char);
fixed_point& operator=(const unsigned char);
fixed_point& operator=(const signed short);
fixed_point& operator=(const unsigned short);
fixed_point& operator=(const signed int);
fixed_point& operator=(const unsigned int);
fixed_point& operator=(const signed long);
fixed_point& operator=(const unsigned long);
fixed_point& operator=(const float&);
fixed_point& operator=(const double&);

// Copy assignment operator.
fixed_point& operator=(const fixed_point&);

// Copy assignment from another fixed-point type.
template<typename other>
fixed_point& operator=(const fixed_point<other>&);

// Negation.

246 13 Fixed-Point Mathematics

void negate();

// Pre-increment and pre-decrement.
fixed_point& operator++();
fixed_point& operator--();

// Compound assignment operations.
fixed_point& operator+=(const fixed_point&);
fixed_point& operator-=(const fixed_point&);
fixed_point& operator*=(const fixed_point&);
fixed_point& operator/=(const fixed_point&);

// Conversion operations.
float to_float() const;
double to_double() const;
signed_value_type to_int() const;
std::int8_t to_int8() const;
std::int16_t to_int16() const;
std::int32_t to_int32() const;

private:
// Internal data representation.
signed_value_type data;

// Internal structure for special constructor.
typedef nothing internal;

// Special constructor from data representation.
fixed_point(const internal&,

const signed_value_type&);

// Comparison functions.
// ...

// Other private implementation details.
// ...

};

// Global post-increment and post-decrement.
// Global binary mathematical operations.
// Global binary comparison operations.
// Global math functions and transcendental functions.

// ...

13.2 A Scalable Fixed-Point Template Class 247

In the fixed_point class, the decimal split is always in the middle of the under-
lying integer integer representation of the type. The size of the template parameter
integer_type sets the scale of the fixed_point class. Here, the integer_type
parameter is assumed to be one of the signed fixed-size integer types such as
std::int16_t, std::int32_t, etc. If integer_type is std::int16_t, for
example, then the fixed_point class represents Q7.8 fixed-point numbers. With a
larger integer_type such as std::int32_t, the fixed_point class represents
Q15.16 fixed-point numbers.

Dedicated types have been defined for the fixed-point representations that can be
made from the fixed_point class. In particular,

// Define four scalable fixed_point types.
typedef fixed_point<std::int8_t> fixed_point_3pt4;
typedef fixed_point<std::int16_t> fixed_point_7pt8;
typedef fixed_point<std::int32_t> fixed_point_15pt16;
typedef fixed_point<std::int64_t> fixed_point_31pt32;

For our target with the 8-bit microcontroller, the first three can be used effectively. On
this 8-bit platform, though, the manipulation of signed 64-bit integers required for the
Q31.32 representation is excessively costly and this fixed-point type should be avoided.
On our target with the 32-bit microcontroller, however, the Q31.32 representation can
be quite efficient. When selecting the right fixed-point types for a system, it may be
beneficial to analyze runtimes and assembly listings in order to find the right trade-off
between performance, range and precision.

13.3 Using the fixed_point Class

Using the fixed_point class is straightforward. For example, we will set the value
of a Q7.8 fixed-point variable r to approximately 1.23.

// r is approximately 1.23.
const fixed_point_7pt8 r(1.23F);

Here, the fixed-point variable r is constructed from the float representation of 1.23.
It can, however, be more efficient to construct fixed-point values using pure integers
instead of, say, float or double. In particular, we will create the variable r again—
this time using an integer constructor.

// r is approximately 1.23.
const fixed_point_7pt8 r(fixed_point_7pt8(123) / 100);

In this case, r uses an intermediate fixed-point object created from the integer 123
which is subsequently divided by the integer 100. In general, this kind of fixed-point

248 13 Fixed-Point Mathematics

construction should offer the best performance, even with subsequent integer division.
In fact, depending on the compiler’s capabilities and the characteristics of the underlying
fixed-point type, the compiler may be able to directly initialize this kind of expression
using constant-folding. One does need to carefully benchmark the results in order to
verify that this is, in fact, the case for a particular fixed-point type on a given architecture.

It is also essential to be aware of the range limitations of fixed-point types. For exam-
ple, when setting the intermediate value in the constructor shown above to 123, we are
not far away from the maximum value of 127 that can fit in the integer part of the
Q7.8 representation. An initial value of, say, 234 would overflow the integer part of the
Q7.8 representation.

It is easy to write functions using the fixed_point class. Consider the template
function below that computes the fixed-point area of a circle.

template<typename fixed_point_type>
fixed_point_type
area_of_a_circle(const fixed_point_type& r)
{
return (fixed_point_type::value_pi() * r) * r;

}

In particular, we will use this template with the Q7.8 fixed-point type to compute the
approximate area of a circle with radius 1.23.

// r is approximately 1.23.
const fixed_point_7pt8 r(fixed_point_7pt8(123) / 100);

// a is approximately 4.723.
const fixed_point_7pt8 a = area_of_a_circle(r);

The result for the area a is ∼4.723, which differs from the actual value of
4.75291 . . . by merely 0.6%.

The fixed_point class can be seamlessly mixed with other built-in integral and
floating-point types in mathematical expressions. For example, a simple template sub-
routine that implements the left-hand side of a cubic equation with signed integer poly-
nomial coefficients could be implemented like this.

template<typename fixed_point_type,
const int_fast8_t c0,
const int_fast8_t c1,
const int_fast8_t c2,
const int_fast8_t c3>

fixed_point_type cubic(const fixed_point_type& x)
{
return (((c3 * x + c2) * x + c1) * x) + c0;

}

13.3 Using the fixed_point Class 249

As mentioned above, the fixed_point class can also be used with built-in float.
In particular, consider an order 5 polynomial approximation of the trigonometric sine
function

sin x = 1.57041 28χ − 0.64256 39χ3 + 0.07227 39χ5 + ε (x) , (13.4)

where

χ = x

(
2

π

)
. (13.5)

This polynomial approximates sin x in the range −π/ 2 ≤ x ≤ π/ 2 (in other words
−1 ≤ χ ≤ 1) with relative error |ε (x)| � 0.0002.

The polynomial approximation in Eq. 13.4 can be implemented with a template sub-
routine using the fixed_point class as follows.2

template<typename fixed_point_type>
fixed_point_type sin(const fixed_point_type& x)
{
// Scale x to chi (+-pi/2 to +-1).
fixed_point_type chi(x * 0.6366198F);

// Calculate chi^2 for the polynomial expansion.
fixed_point_type chi2 = chi * chi;

// Do the order-5 polynomial expansion.
return ((0.0722739F

* chi2 - 0.6425639F)

* chi2 + 1.5704128F)

* chi;
}

We will now use the Q15.16 fixed-point representation to compute the approximate
value of sin (1/ 2).

// 0.47937
fixed_point_15pt16 y = sin(fixed_point_15pt16(1) / 2);

The result for y is 0.47937, which differs from the actual value of approximately
0.47942 . . . by less than 1 part in 10,000.

2This is, though, a somewhat naive and incomplete fixed-point implementation of the sine function.
It loses performance via use of float and is missing range reduction and reflection. A more effi-
cient and complete fixed-point implementation of the sine function will be shown in the following
section.

250 13 Fixed-Point Mathematics

13.4 Fixed-Point Elementary Transcendental Functions

Fixed-point math can be used to create elementary transcendental functions such as
trigonometric functions, exponential functions or logarithmic functions. Such functions
can be quite efficient and might significantly outperform corresponding functions using
built-in floating-point types such as float or double. For further information on
efficient algorithms for elementary transcendental functions, the interested reader can
consult [2, 3, 6].

Consider, for example, the naive fixed-point implementation of the trigonometric sine
function based on Eq. 13.4 in the previous section. We will now re-design this naive
implementation using more efficient integer construction of the polynomial coefficients
(instead of construction from float) and also to include range reduction and reflection.

The algorithm for computing the fixed-point sine function uses the following scheme:

• argument transformation from x to χ according to Eq. 13.5,
• argument reduction via removing multiples of π ,
• reflection for negative arguments and odd integral multiples of π ,
• and polynomial expansion according to Eq. 13.4.

A possible implementation of the fixed-point sine function according to this scheme
is shown below.

friend inline fixed_point sin(const fixed_point& x)
{
// This function makes uses fixed_point’s internals
// and is, therefore, a friend of fixed_point.

// Transform x to chi (+-pi/2 to +-1).
fixed_point
chi(x * fixed_point::value_two_over_pi());

// Take the absolute value for argument reduction.
const bool is_neg = (chi < 0);

if(is_neg)
{
chi.negate();

}

// Do the argument reduction.
std::uint_fast8_t npi = UINT8_C(0);

// Remove multiples of pi (1 in the units of chi).
if(chi.data > fixed_point::decimal_split_value)
{
const std::uint_fast8_t npi1 =

13.4 Fixed-Point Elementary Transcendental Functions 251

(chi.data >> 1) >> fixed_point::decimal_split;

npi = ((chi - (npi1 * 2U) > 1U) ? npi1 + 1U
: npi1);

chi -= fixed_point(npi * 2U);
}

const fixed_point chi2 = chi * chi;

// Do the polynomial expansion in terms of chi.
const fixed_point sum =
((
fixed_point(internal(), // near 0.072273923

UINT64_C(0x0’1280’8B37) >> (32 - decimal_split))

* chi2 -
fixed_point(internal(), // near 0.642563935

UINT64_C(0x0’A47F’11EE) >> (32 - decimal_split)))

* chi2 +
fixed_point(internal(), // near 1.570412766

UINT64_C(0x1’9206’922F) >> (32 - decimal_split)))

* chi;

// Reflect the result if necessary.
const bool needs_reflect = ((npi % 2U) != 0U);

return ((is_neg == needs_reflect) ? sum : -sum);
}

The sin() function has been implemented as a friend of the fixed_point
class because it makes use of the private decimal split value and a private construc-
tor from fixed_point. These are optimizations specifically intended to improve the
performance of this implementation of the sine function. In general, one should try to
find and incorporate these and similar kinds of optimizations when devising fixed-point
functions because they can drastically improve the efficiency of fixed-point functions.

Using the fixed-point sine function in code is straightforward. For example, the code
sequence below computes the approximate fixed-point values of sin (1/ 2) for several
different fixed-point representations.

// 0.438: relative error 960/10,000
fixed_point_3pt4 y0 = sin(fixed_point_3pt4(1) / 2);

// 0.4766: relative error 60/10,000
fixed_point_7pt8 y1 = sin(fixed_point_7pt8(1) / 2);

252 13 Fixed-Point Mathematics

// 0.47937: relative error 1/10,000
fixed_point_15pt16 y2 = sin(fixed_point_15pt16(1) / 2);

// actual value:
// 0.4794255386...

This implementation of the fixed-point sine function includes range reduction and
reflection and can, therefore, be used in a robust computational environment. There are,
however, potential improvements including proper handling of excessively large argu-
ments and subnormal numbers such as infinity and NaN. These features can be option-
ally included in the sine function if the underlying fixed-point class supports subnormals.

The computational complexity of fixed-point transcendental functions increases with
increasing precision and width of the underlying fixed-point type used in the computa-
tions. Table 13.1 compares the performance and efficiency characteristics of the com-
putation of sin (1.23) for various fixed-point types and float on our target with the
8-bit microcontroller. On this architecture, the fixed-point calculations are significantly
faster and generally smaller than the corresponding float implementation in the C++
standard library.3

Another common elementary transcendental function that can be readily imple-
mented in fixed-point is the exponential function ex for x ∈ R. The exponential function
has a very wide range of results that are of interest. One of the most effective methods
for reaching a large part of the range of ex is based on argument scaling via removing
integral multiples of log 2 from x .

In particular, we start with

ex = eα−n log 2 , (13.6)

where we select

n = x

log 2
, (13.7)

Table 13.1 The performance and efficiency of the computation of sin (1.23) for various fixed-
point types and float on our target with the 8-bit microcontroller are shown. The runtime values
exclude the time needed for float construction from 1.23

fp Type sin (1.23) Error Runtime Relative time Code size

(µs)

(
fixed_point

float

)
(byte)

Q3.4 0.438 10−1 8 0.1 300

Q7.8 0.4766 10−3 17 0.2 520

Q15.16 0.47937 10−4 50 0.5 1,170

float 0.4794255 10−8 105 – 890

known value 0.4794255386 . . . –

3As mentioned previously, though, our fixed-point sine function does not properly treat subnor-
mals, whereas the float version in the C++ standard library does include this formal correctness.

13.4 Fixed-Point Elementary Transcendental Functions 253

such that − log 2 ≤ α ≤ log 2. The final result of the exponential function is obtained
from

ex = eα 2n . (13.8)

After approximating eα , the final multiplication by 2n requires only a shift operation.
This is very efficient in binary fixed-point arithmetic.

For our calculation, we will approximate eα for − log 2 ≤ α ≤ log 2 using the
polynomial

eα = 1 + c1 α + c2 α2 + c3 α3 + c4 α4 + ε(α) , (13.9)

where the relative error |ε(α)| � 2 × 10−4.
The coefficients cn are given by

c1 = 0.99785 46
c2 = 0.49947 21
c3 = 0.17637 23
c4 = 0.04351 08 .

(13.10)

The code corresponding to Eqs. 13.6–13.10 for the fixed-point exponential function
can be implemented as shown below.

friend fixed_point exp(const fixed_point& x)
{
// Scale the argument by removing multiples of ln2.
fixed_point x_over_ln2(x);
x_over_ln2 *= fixed_point::value_one_over_ln2();

const std::int_fast8_t n = x_over_ln2.to_int8();

fixed_point alpha(x);
alpha -= (fixed_point::value_ln2() * n);

// Do the polynomial expansion in terms of alpha.
fixed_point sum =
(((
fixed_point(internal(), // near 4.3510841353E-2

UINT64_C(0x0’0B23’8740) >> (32 - decimal_split))

* alpha +
fixed_point(internal(), // near 1.7637226246E-1

UINT64_C(0x0’2D26’BC00) >> (32 - decimal_split)))

* alpha +
fixed_point(internal(), // near 4.9947209750E-1

UINT64_C(0x0’7FDD’6C80) >> (32 - decimal_split)))

* alpha +

254 13 Fixed-Point Mathematics

fixed_point(internal(), // near 9.9785463267E-1
UINT64_C(0x0’FF73’5F00) >> (32 - decimal_split)))

* alpha;

sum.data += decimal_split_value;

// Scale the result by 2^n if necessary.
if(n > 0)
{
sum.data <<= n;

}
else if(n < 0)
{
sum.data >>= (-n);

}

return sum;
}

Using the fixed-point exponential function is easy. The code sample below, for
instance, computes the approximate fixed-point values of exp (3.7) for both the Q7.8
as well as the Q15.16 fixed-point representations. The result of exp (3.7), however, over-
flows the Q3.4 representation, so Q3.4 cannot be used for this calculation.

fixed_point_7pt8 y1
= exp(fixed_point_7pt8(37) / 10);

// 40.625: relative error 44/10,000

fixed_point_15pt16 y2
= exp(fixed_point_15pt16(37) / 10);

// 40.4341: relative error 3/10,000

// Actual value:
// 40.4473043601...

To complement the exponential function, we will compute the logarithm function
log x for x ∈ R and x > 0. In our approximation, we will first compute the base-2
logarithm log2 (x + 1) in the range 0 ≤ x ≤ 1. Argument scaling is done by removing
integer powers of 2 from x . After scaling, the result of the natural logarithm is obtained
from the well-known relation

log x = log 2 × log2 x . (13.11)

13.4 Fixed-Point Elementary Transcendental Functions 255

The logarithm function calculates log2(x + 1) using the polynomial approximation

log2 (x + 1) = d1 x + d2 x2 + d3 x3 + d4 x4 + ε (x) , (13.12)

where the coefficients dn are given by

d1 = 1.43841 89

d2 = −0.67719 00

d3 = 0.32185 38

d4 = −0.08322 29 ,

(13.13)

and the relative error |ε(x)| � 1 × 10−4.
Arguments ranging from 0 < x < 1 use the negated result from one recursive call

of the logarithm function with the argument inverted. In other words,

log (x) = − log

(
1

x

)
. (13.14)

A fixed_point implementation of the logarithm function based on Eqs. 13.12–
13.14 is shown below.

friend inline fixed_point log(const fixed_point& x)
{
// Check for negative arguments.
if(x.data < 0)
{
return fixed_point(0);

}

unsigned_value_type x2_data(x.data);

if(x2_data == decimal_split_value)
{
// The argument is identically equal to one.
return fixed_point(0);

}
else if(x2_data < decimal_split_value)
{
// Invert and negate for 0 < x < 1.
return -log(1 / x);

}

std::uint_fast8_t n2 = 0U;

256 13 Fixed-Point Mathematics

// Remove even powers of two from the argument.
while(x2_data > (decimal_split_value * 2))
{
++n2;
x2_data >>= 1;

}

const fixed_point my_x2 =
fixed_point(internal(),

x2_data - decimal_split_value);

// Do the order-4 polynomial expansion.
const fixed_point sum =
(((
- fixed_point(internal(), // near 8.3222941295E-2

UINT64_C(0x0’154E’1943) >> (32 - decimal_split))

* my_x2 +
fixed_point(internal(), // near 3.2185380545E-1

UINT64_C(0x0’5265’02D0) >> (32 - decimal_split)))

* my_x2 -
fixed_point(internal(), // near 6.7718997268E-1
UINT64_C(0x0’AD5C’5271) >> (32 - decimal_split)))

* my_x2 +
fixed_point(internal(), // near 1.4384189488

UINT64_C(0x1’703C’3967) >> (32 - decimal_split)))

* my_x2;

// Account for 2^n, scale the result and return.
return (sum + n2) * value_ln2();

}

We now have fixed-point implementations for the sine, exponential and logarithm
functions. We can use these basic functions to compute other associated functions such
as the remaining trigonometric functions and the hyperbolic trigonometric functions.

For example, it is straightforward to derive the fixed-point cosine and tangent func-
tions from the sine function. In particular,

friend inline fixed_point cos(const fixed_point& x)
{
return -sin(x - half_pi());

}

friend inline fixed_point tan(const fixed_point& x)
{

13.4 Fixed-Point Elementary Transcendental Functions 257

const fixed_point s(sin(x));
const fixed_point c(cos(x));

if(s.data >= decimal_split_value || c.data == 0)
{
return fixed_point(0);

}
else
{
return

fixed_point(internal(),
(s.data << decimal_split) / c.data);

}
}

The hyperbolic trigonometric functions can be derived from the exponential function
using the well-known algebraic relations

sinh x = ex − e−x

2
(13.15)

cosh x = ex + e−x

2
(13.16)

tanh x = sinh x

cosh x
= ex − e−x

ex + e−x
. (13.17)

When computing hyperbolic trigonometric functions, the computation of e−x can be
replaced with more efficient division using the reflection relation

e−x = 1

ex
. (13.18)

The corresponding code for the fixed-point hyperbolic trigonometric functions is
shown below.

friend inline fixed_point sinh(const fixed_point& x)
{
// Compute exp(x) and exp(-x)
const fixed_point ep = exp(x);
const fixed_point em = 1 / ep;

// Subtract exp(-x) from exp(x) and divide by two.
fixed_point result(ep - em);
result.data >>= 1;

258 13 Fixed-Point Mathematics

return result;
}

friend inline fixed_point cosh(const fixed_point& x)
{
// Compute exp(x) and exp(-x)
const fixed_point ep = exp(x);
const fixed_point em = 1 / ep;

// Add exp(x) and exp(-x) and divide by two.
fixed_point result(ep + em);
result.data >>= 1;

return result;
}

friend inline fixed_point tanh(const fixed_point& x)
{
// Compute exp(x) and exp(-x)
const fixed_point ep = exp(x);
const fixed_point em = 1 / ep;

// Do the division and return the result.
return (ep - em) / (ep + em);

}

Inverse trigonometric functions can be computed from polynomial approximations
as well. For instance, the reference project in the companion code uses4

sin−1 x = π

2
− (1 − x)

1
2

(
a0 + a1x + a2x2 + a3x3

) + ε(x) , (13.19)

for 0 ≤ x ≤ 1. The coefficients an are given by

a0 = 1.57072 88
a1 = −0.21211 44
a2 = 0.07426 10
a3 = −0.01872 93 ,

(13.20)

and the relative error is |ε(x)| � 5 × 10−5. Negative arguments use odd reflection with
sin−1 x = − sin−1 |x | for −1 ≤ x < 0.

4This polynomial has been taken from Abramowitz and Stegun [1], paragraph 4.4.45. It originates
with the work of C. Hastings [4].

13.4 Fixed-Point Elementary Transcendental Functions 259

The inverse cosine function is derived from the inverse sine function using

cos−1 x = π

2
− sin−1 x . (13.21)

The inverse tangent function uses

tan−1 x

x
= 1 − 0.32825 30 x2 + 0.16175 71 x4 − 0.04849 48 x6 + ε(x) , (13.22)

for 0 ≤ x ≤ 1. The coefficients have been derived with computer algebra and the
relative error |ε(x)| � 1 × 10−4. Arguments greater than 1 use

tan−1 x = π

2
− tan−1

(
1

x

)
. (13.23)

Negative arguments use odd reflection with tan−1 x = − tan−1 |x | for x < 0.
The inverse hyperbolic trigonometric functions can be computed with well-known

relations involving logarithmic functions. In particular,5

sinh−1 x = log
(

x +
√

x2 + 1
)

(13.24)

cosh−1 x = log
(

x +
√

x2 − 1
)

(13.25)

tanh−1 x = 1

2
log

(
1 + x

1 − x

)
. (13.26)

In this section, we have used polynomial approximations combined with argument
reduction and reflection to compute real-valued fixed-point elementary transcendental
functions. Excellent results for calculating transcendental function in fixed-point can be
obtained from numerous other techniques including table-lookup methods, Taylor series,
Newton iteration , Padé approximations, Chebyshev polynomial expansions, CORDIC
(COordinate Rotation DIgital Computer) algorithms, etc.

CORDIC algorithms provide efficient shift-and-add methods for computing hyper-
bolic and trigonometric functions. CORDIC methods are commonly used when the cost
of multiplication is significantly higher than addition, subtraction, shift and table lookup.
Fast CORDIC algorithms have the potential disadvantage of requiring large tables, mak-
ing scalability difficult and resulting in potentially large code size.

5Here we use x ∈ R for all three inverse hyperbolic trigonometric functions. For cosh−1 x , we
limit the range of the argument to x ≥ 1. For tanh−1 x , we limit the range of the argument to
|x | < 1 combined with odd reflection with tanh−1 x = − tanh−1 |x | for −1 < x < 0.

260 13 Fixed-Point Mathematics

13.5 A Specialization of std::numeric_limits

Numeric limits are only provided for built-in types including floating-point types, integer
types and bool. The author of a specialized numeric type such as the fixed_point
class is, therefore, responsible for providing a template specialization of
std::numeric_limits.

Consider, for example, the Q15.16 fixed-point representation. It has 15 binary digits
to the left of the decimal point and 16 binary digits to the right of the decimal point. A
possible implementation of the std::numeric_limits template class the Q15.16
fixed-point representation is listed below.

namespace std
{
template<>
class numeric_limits<fixed_point_15pt16>
{
public:
static constexpr bool is_specialized = true;

static constexpr fixed_point_15pt16 min()
{ return

fixed_point_15pt16(nothing(), 1); }

static constexpr fixed_point_15pt16 max()
{ return

fixed_point_15pt16(nothing(),
INT32_C(0x7FFFFFFF)); }

static constexpr fixed_point_15pt16 lowest()
{ return min(); }

static constexpr int digits = 16;
static constexpr int digits10 = 4;
static constexpr int max_digits10 = 5;
static constexpr bool is_signed = true;
static constexpr bool is_integer = false;
static constexpr bool is_exact = false;
static constexpr int radix = 2;
static constexpr T epsilon()
{ return

fixed_point_15pt16(nothing(), 7); }

static constexpr T round_error()
{ return

13.5 A Specialization of std::numeric_limits 261

fixed_point_15pt16(nothing(),
INT32_C(0x8000)); }

static constexpr int min_exponent = -15;
static constexpr int min_exponent10 = -4;
static constexpr int max_exponent = 14;
static constexpr int max_exponent10 = 4;

static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm =

denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr T infinity()
{ return fixed_point_15pt16(); }
static constexpr T quiet_NaN()
{ return fixed_point_15pt16(); }
static constexpr T signaling_NaN()
{ return fixed_point_15pt16(); }
static constexpr T denorm_min()
{ return fixed_point_15pt16(); }

static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = false;
static constexpr bool is_modulo = false;
static constexpr bool traps = false;
static constexpr bool tinyness_before = false;
static constexpr float_round_style round_style =

round_toward_zero;
};

}

Certain members of numeric_limits<fixed_point_15pt16>, such as the
value of true for is_specialized, are self-explanatory. Understanding the values
of other class members can be more subtle. The digitsmember, for example, contains
only the binary digits to the right of the decimal point. This is fair because any non-trivial
fixed-point calculations will lose about half their digits due to truncation or argument
reduction.

The digits10 member is derived from digits. The maximum and minimum
values are given by the internal representations of 0x7FFFFFFF and 1, respectively.
The nothing structure, as described in Sect. 15.1, is used in the fixed-point constructor
to set these values without left-shifting them.

The epsilon() member represents the smallest number that, when subtracted
from 1, results in a value that differs from 1. Since this fixed-point type has four decimal

http://dx.doi.org/10.1007/978-3-662-47810-3_15

262 13 Fixed-Point Mathematics

digits of precision to the right of the decimal point, epsilon() for this type is equal
to 0.0001. In other words, epsilon() should return

0xFFFF

10, 000
≈ 7 . (13.27)

Specializations of std::numeric_limits for the fixed_point types in the
reference project of the companion code are implemented as a generic template. Details
can be found in the source code.

References

1. M. Abramowitz, I.A. Stegun, Handbook of Mathematical Functions, 9th Printing (Dover, New
York, 1972)

2. W.J. Cody, W. Waite, Software Manual for the Elementary Functions (Prentice Hall, Upper
Saddle River, 1980)

3. J.W. Crenshaw, Math Toolkit for Real-Time Programming, 1st edn. (CMP Books, Lawrence,
2000)

4. C. Hastings, Approximations for Digital Computers (Princeton University Press, Princeton,
1955)

5. J. LaBrosse, Embedded Systems Building Blocks: Complete and Ready-to-Use Modules in C
(CMP Books, Lawrence, 1999)

6. J.M. Muller, Elementary Functions: Algorithms and Implementation (Birkhäuser, Boston,
2006)

7. Wikipedia: Fixed-point arithmetic (2012), http://en.wikipedia.org/wiki/Fixed-point_arithmetic

http://en.wikipedia.org/wiki/Fixed-point_arithmetic

Chapter 14
High-Performance Digital Filters

There may be no other signal-processing tool more widely used in embedded soft-
ware than the digital filter because even the simplest applications usually read some
kinds of input signals that need filtering. In this chapter, we will implement sev-
eral types of finite impulse response (FIR) filters. The first section of this chapter
presents a simple order 1 floating-point FIR filter. In order to obtain high perfor-
mance for filters on microcontrollers without a floating-point unit or digital signal
processor (DSP), however, the filters in the rest of this chapter use pure-integer
mathematics combined with template design.

14.1 A Floating-Point Order-1 Filter

Consider the floating-point filter

y1 = (1 − β) x0 + βx1, (14.1)

where the weight β ranges from 0 . . . 1. The index convention here uses the highest
index for the newest sample in the delay line. Successively lower indexes are used
for older samples, reaching index 0 for the oldest sample.

Equation 14.1 is a floating-point order 1 low-pass FIR filter. The frequency
response of this filter is given by

H
(

eiω
)

= 1

β
+ e−iω

1 − β
, (14.2)

where ω is the frequency in radians per sample.
At this point, we could investigate a host of theoretical characteristics of this

filter, such as the Z–transform of the impulse response, the absolute value of the
frequency response or the phase response. The rich theory of digital filters and dig-
ital signal processing are, however, beyond the scope of this book. So we will just

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_14

263

264 14 High-Performance Digital Filters

concentrate on how to program digital filters. Readers can find additional informa-
tion on digital filters in Refs. [1–3].

The order 1 FIR low-pass filter from Eq. 14.1 can be implemented with a template
class. For example,

template<typename T>
class fir_01_fp
{
public:
typedef T result_type;
typedef T value_type;

fir_01_fp(const value_type val = 0) : result(val)
{
std::fill(values.begin(), values.end(), val);

}

void new_sample(const std::array<value_type, 2U>& b,
const value_type& val)

{
// Shift the delay line.
values[0U] = values[1U];

// Put the new sample in the delay line.
values[1U] = val;

// Calculate the FIR algorithm.
result = (b[0U] * values[0U])

+ (b[1U] * values[1U]);
}

const result_type& get_result() const
{
return result;

}

private:
result_type result;
std::array<value_type, 2U> values;

};

The class fir_01_fp is a template filter class. As indicated by the trailing
“fp” in its name, fir_01_fp is designed for floating-point types. For instance,
fir_01_fp can be effectively used with floating-point types such as float,
double, long double, the fixed_point class from the previous chapter, etc.

14.1 A Floating-Point Order-1 Filter 265

The fir_01_fp class has member variables for both the delay line (values)
as well as the filter result (result). Notice how the delay line in values is stored
as an array. The public interface of fir_01_fp has two functions, one called
new_sample() and another called get_result().

Using fir_01_fp in code is straightforward. For example,

fir_01_fp<float> f(4.0F);

constexpr std::array<float, 2U> b
{
{ 0.875F, 0.125F }

};

void do_something()
{
// The result of the first call is 16.0.
f.new_sample(b, 100.0F);

}

The filter coefficients β and (1 − β) from Eq. 14.1 are 1
8 and 7

8 , respectively.
They are stored in the array as the floating-point values 0.125 and 0.875. The filter
f is initialized with 4.0. Thereby, both values of the delay line are initialized to 4.0.

In the first call to the new_sample() function, f’s member variable result
is set to

result = (0.875 × 4.0) + (0.125 × 100.0) = 16.0. (14.3)

The new_sample() function executes the filter algorithm and sets the new
value of the filter result each time it is called. Users of fir_01_fp are expected to
call the new_sample() method in a periodic cycle, thereby providing the value
of the new sample and the desired filter coefficients as input parameters. The sum
of the filter coefficients should always be equal to 1.0.

The template coefficients stored in b are passed to the new_sample() function
as a constant reference to std::array. In this case, using a pass-by-reference
(instead of pass-by-value) is essential for maintaining the performance of the filter
function.

The filter’s get_result() member function can be used for accessing the
filtered result at any time. For example,

const float my_filter_result = f.get_result();

The fir_01_fp template filter class could potentially be used on micro-
controller platforms that support fast floating-point math. Many small microcon-
trollers, however, lack a hardware floating-point unit (FPU) and floating-point math

266 14 High-Performance Digital Filters

is emulated with software. This can be very inefficient. Double-precision math is
excruciatingly slow on embedded microcontrollers without a hardware FPU. Even
single-precision and fixed-point math are often unduly inefficient for many practical
microcontroller applications.

For this reason, a floating-point filter such as fir_01_fp may be too slow
for microcontrollers. In order to reach the desired high performance for embedded
systems, we need to design filters that use integer math.

14.2 An Order-1 Integer Filter

When implementing integer filters instead of floating-point filters, one of the first
design steps encountered is to express the floating-point sample values and coeffi-
cients in terms of normalized integer values. This can be accomplished by rewriting
the order 1 FIR filter expression from Eq. 14.1 in integer form,

y1 = β0x0 + β1x1 + 1
2 (β0 + β1)

β0 + β1
, (14.4)

where y1, x0, x1, β0 and β1 are unsigned integer values and the extra term in the
numerator, 1

2 (β0 + β1), handles unsigned integer rounding.
Equation 14.4 can be implemented in a scalable, optimized fashion using the

template class shown below.

template<const std::size_t resol = 4U,
typename sample_t = std::uint16_t,
typename value_t = sample_t,
typename result_t = sample_t>

class fir_01
{
public:
typedef sample_t sample_type;
typedef value_t value_type;
typedef result_t result_type;
typedef std::int_fast16_t weight_type;

fir_01(const sample_type& val = 0U)
: result(val * resol)

{
std::fill(values.begin(),

values.end(),
result);

}

14.2 An Order-1 Integer Filter 267

template<const weight_type B0,
const weight_type B1>

void new_sample(const sample_type& val)
{
values[0U] = values[1U];

values[1U]
= val * static_cast<value_type>(resol);

value_type new_val = (B0 * values[0U])
+ (B1 * values[1U]);

result = (new_val + ((B0 + B1) / 2)) / (B0 + B1);
}

result_type get_result() const
{
return (result + (resol / 2U)) / resol;

}

private:
result_type result;
std::array<value_type, 2U> values;

};

The class fir_01 is a scalable template filter class. The last three template
parameters, sample_t, value_t and result_t, are scaling parameters that
can be used to define the dimension of the filter. They can be set to 8-bit, 16-bit,
32-bit or even 64-bit. These three template parameters provide for scalability with
several degrees of freedom because the sizes of the variables representing the filter
sample, the delay line and the filter result can be set independently.

The first template parameter, resol, provides a resolution scale by multiplying
each new sample with a constant integer. Closer approximation to the analog filter
regime is obtained for higher values of the resol parameter. The resolution scale
is removed from the filter result in the get_result() function.

Care should be taken to ensure that resol is a multiple of two. Only then will
the rounding correction (given by resol/ 2) be exact. Furthermore, the best perfor-
mance can be achieved if resol is a power of 2n , where n is a small positive integer
value. This is because the compiler can replace the division with a fast, efficient shift
operation. See Sect. 6.11.

The class fir_01 is a template, and its new_sample() function is a tem-
plate function within a template class. The template parameters of new_sample()
are the filter coefficients, B0 and B1. These are constant signed integers of type

http://dx.doi.org/10.1007/978-3-662-47810-3_6

268 14 High-Performance Digital Filters

std::int_fast16_t. Since the filter coefficients are compile-time constants,
the filter algorithm can be optimized to a high degree, see Sect. 6.12. Just as
described above for the resol parameter, the sum of

(
|B0| + |B1|) should also

be a small integer power of two such that the rounding correction is exact and such
that the compiler can replace division by

(
|B0| + |B1|) with an efficient shift

operation.
Care must be taken to select the proper dimension of a filter such that the entire

range of sample values can be filtered without numerical overflow. At the same time,
the filter operations need to be matched to the CPU architecture.

For example, we will dimension a filter running on a 16-bit machine. Imagine a
filter that should be designed to sample 10-bit ADC values ranging from 0 . . . 1023.
Furthermore, say that this filter will be sampled with a high frequency, such as in
an interrupt service routine. For this 16-bit microcontroller, the high performance
of 16-bit math is mandatory, as opposed to costly 32-bit operations. In this case, all
three template parameters (sample_t, value_t and result_t) should be set
to std::uint16_t. The samples need 10 bits. Therefore, there are 6 bits remain-
ing to be split among the coefficients and the resolution. The resolution could be
set to 4, requiring two bits. This leaves four bits for the filter coefficients. Thus,
the filter coefficients, B0 and B1 can range from 1 . . . 15, whereby the sum of(
|B0| + |B1|) should always be equal to 16.

A filter with larger sample values or higher valued coefficients may need to be
dimensioned with wider data types for one or more of the template parameters. For
example, the following template parameters could be selected for a high-frequency
filter running, for example, on a 32-bit machine.

sample_t = std::uint16_t

value_t = std::uint32_t

result_t = std::uint16_t. (14.5)

A filter with these dimensions can be used to filter samples within the entire
range of std::uint16_t (0 . . . 65,535) because the type of value_t
is std::uint32_t. This is large enough to hold the internal values of the filter
algorithm without overflow. Examples showing how significantly a filter’s dimen-
sion impacts its runtime performance will be shown in Sect. 14.4.

Using an fir_01 object in code is straightforward. For example,

typedef fir_01<> filter_type;
filter_type f(4U);

void do_something()
{
// The result of the first call is 16.
f.new_sample<7, 1>(100U);

}

http://dx.doi.org/10.1007/978-3-662-47810-3_6

14.2 An Order-1 Integer Filter 269

This sample code creates an fir_01 object called f. The type of its first
template parameter, sample_t, is std::uint16_t, which is the default tem-
plate parameter. By way of default, the other two template parameters, value_t
and result_t are also set to the type of sample_t (i.e., std::uint16_t).

This example has numerical values similar to the example of the floating-point
filter in the previous section. The filter is initialized with an initial value of 4.
The sample function of the filter is called in do_something() with a sample
value of 100. The filter coefficients (B0 and B1) are 7 and 1, respectively. The
new_sample() function places the new sample value of 100 at the top of the
delay line. It is weighted with the coefficient 1. The old value in the delay line is the
initialization value of 4. It is weighted with the coefficient 7. The result of calling
the filter’s template subroutine new_sample<7, 1>(100) is

(7 × 4) + (1 × 100) + (8/ 2)

8
= 16, (14.6)

where 16 is a rounded pure integer result.
It is interesting to study the disassembled source code listing which the compiler

produces when compiling the code of this example. The constructor code is efficient
because the compiler can unroll the loop in std::fill(). Thereby, the values of
result and those in the delay line can be directly initialized with 16, evaluated
via constant folding from (|resol| × 4) = 16.

Similarly, the filter algorithm of the new_sample() subroutine can be highly
optimized. The compiler can replace all of the multiplication operations in the inner
product of the filter algorithm with fast shift-and-add operations. This, combined
with constant folding , makes the filter code extremely efficient. This is a very sig-
nificant result which is essential for obtaining high performance with integer tem-
plate filters. A further optimization is the normalization with the coefficient sum.
The division by

(
|B0| + |B1|) = 8 can be replaced with a right shift of 3.

In this example, every part of the filter sampling function can been inlined
and optimized by the compiler. There is no function call to new_sample()
and there are no parameters passed to the subroutine. The disassembled source of
new_sample() is near to, or possibly even is, as optimally efficient as compiled
code can be—approaching the efficiency of assembly programming itself.

The sampling subroutine can be used with equal efficiently in both interrupt ser-
vice routines as well as normal task levels. This is a very satisfying result which
exemplifies how the power of C++ templates can be utilized to obtain the highest
possible filter performance.

14.3 Order-N Integer FIR Filters

We will now extend the techniques used for the order 1 FIR filter in the previous
section to order N FIR filters. The order N FIR filter is defined by the difference
equation

270 14 High-Performance Digital Filters

yn = b0 x[n] + b1 x[n − 1] + · · · + bN x[n − N], (14.7)

where x[n] are the delay line values, yn is the filter result, bi are the coefficients and
N is the filter order. An order N FIR filter has N + 1 terms on the right hand side.
These are the filter samples weighted with their coefficients. They are commonly
referred to as taps. Equation 14.7 can also be expressed as

yn =
N∑

i=0

bi x[n − i]. (14.8)

The order 1 filter template class from the previous section can be extended to
order N using Eqs. 14.7 and 14.8. A synopsis of a template class that can be used to
implement these filter algorithms is shown below.

template<const std::size_t order,
const std::size_t resol = 4U,
typename sample_t = std::uint16_t,
typename value_t = sample_t,
typename result_t = sample_t>

class fir_order_n
{
public:
static_assert((order > 0U) && (order < 48U),

"error: filter order must be from 1 to 48");

fir_order_n() { }

explicit fir_order_n(const sample_t&) { }

template<typename... dummy_parameters>
void new_sample(const sample_t&) { }

result_t get_result() const { return result_t(0); }
};

The template class fir_order_n has the same template parameters as the tem-
plate class fir_01, plus one additional template parameter order that represents
the order of the filter. As can be deduced from the class synopsis, this class is meant
to serve only as a template for further specializations of the order. Each individ-
ual class implementation of the N th filter order must be explicitly programmed as
separate template specialization.

14.3 Order-N Integer FIR Filters 271

An example of the template class specialization of fir_order_n for order 5
is shown below.

template<const std::size_t resol,
typename sample_t,
typename value_t,
typename result_t>

class fir_order_n<5U,
resol,
sample_t,
value_t,
result_t>

{
public:
typedef sample_t sample_type;
typedef value_t value_type;
typedef result_t result_type;

fir_order_n() : result(0)
{
std::fill(data.begin(), data.end(), result);

}

explicit fir_order_n(const sample_type& x)
: result(value_type(x) * resol)

{
std::fill(data.begin(), data.end(), result);

}

template<const std::int_fast16_t B0,
const std::int_fast16_t B1,
const std::int_fast16_t B2,
const std::int_fast16_t B3,
const std::int_fast16_t B4,
const std::int_fast16_t B5>

void new_sample(const sample_type& x)
{
// Shift the delay line.
std::copy(data.begin() + 1U,

data.end(),
data.begin());

// Store the new sample at top of delay line.

*(data.end() - 1U) = value_type(x) * resol;

272 14 High-Performance Digital Filters

// Calculate the FIR algorithm.
const value_type new_val

= value_type(data[0U] * B0)
+ value_type(data[1U] * B1)
+ value_type(data[2U] * B2)
+ value_type(data[3U] * B3)
+ value_type(data[4U] * B4)
+ value_type(data[5U] * B5);

constexpr std::int_fast16_t weight
= B0 + B1 + B2 + B3 + B4 + B5;

result = (new_val + (weight / 2)) / weight;
}

result_type get_result() const
{
return (result + (resol / 2U)) / resol;

}

private:
result_type result;
std::array<value_type, 6U> data;

};

Aside from the constructor and some convenient type definitions, the template
class specialization of fir_order_n has only one function with significant algo-
rithmic complexity, new_sample(). It is in the new_sample()method that the
FIR algorithm in Eq. 14.7 is implemented. Notice how the delay line is shifted and
the new sample, weighted with the resolution, is put at the top of the delay line.

The new_sample() function in fir_order_n is a template function with
six integral template parameters. This explains why each individual order N filter
needs to be implemented as a template class specialization. It is because every dif-
ferent value of the template parameter N needs to have its own specific template
variation of the new_sample() subroutine with N+ 1 template parameters for
the filter coefficients.

This design choice may be considered somewhat inconvenient. There are, how-
ever, not very many ways to accomplish this without making individual special-
izations containing template implementations of the new_sample() function.
A variadic template (Sect. 5.9) that accepts a variable number of template para-
meters could be considered. This would, however, allow template users to supply
non-integer template parameter types for the filter coefficients, potentially result-

http://dx.doi.org/10.1007/978-3-662-47810-3_5

14.3 Order-N Integer FIR Filters 273

ing in undefined behavior. In light of these conditions, each individual order N
fir_order_n class has been explicitly specialized providing a place in code at
which the specific template variations of new_sample() can be defined.

A collection of template specializations of fir_order_n filters including fil-
ter order ranging from 1 . . . 48 is available in the reference project of the companion
code. In order to avoid tedious typing work and to ensure that the implementations
are error free, these template specializations have been created with a simple, auto-
matic code generator which has been specifically written for this purpose.

Using fir_order_n objects in code is simple and intuitive. The following
sample code, uses an order 5 low-pass filter that is dimensioned for 16-bit unsigned
math with a coefficient sum of 32 and a resolution scale of 4. The coefficient sum
uses 5 bits and the resolution scale uses 2 bits. Together, they use a total of 7 bits
from the 16 bits available, leaving 9 bits remaining for the range of the sample
values. This filter can filter 9-bit unsigned integer values ranging from 0 . . . 511.

typedef fir_order_n<5U> filter_type;

filter_type f(4U);

void do_something()
{
f.new_sample<5, 5, 6, 6, 5, 5>(100U);

}

The result of the filter operation is

(5 × 4) + (5 × 4) + (6 × 4) + (6 × 4) + (5 × 4) + (5 × 100) + 16

32
= 19,

(14.9)
where 19 is the rounded pure integer result.

As is the case for the order 1 filter in the previous section, the examination of the
disassembled source code listing for this filter operation reveals highly optimized
code. The generation and investigation of this listing are left as exercises for the
reader. In the benchmark carried out, all parts of the new_sample() function were
successfully inlined by the compiler. Furthermore, because the filter coefficients are
available at compile time and since the coefficient sum is a power of 2, the compiler
replaced slow multiply and divide operations with fast shift-and-add operations in
the FIR algorithm.

A filter with larger dimensions and a greater number of filter parameters is shown
in the code sample below.

typedef fir_order_n<17U,
64U,
std::uint16_t,

274 14 High-Performance Digital Filters

std::uint32_t> filter_type;

filter_type f(4U);
void do_something()
{
f.new_sample<-2, -2, -2, -1, 3, 9, 15, 20, 24,

24, 20, 15, 9, 3, -1, -2, -2, -2>(100U);
}

This is an order 17 low-pass FIR filter. It is also known as an 18-tap filter because
it has 18 filter coefficients. The sum of the filter coefficients is 128 and the resolution
scale is 64. The symmetry of the coefficients has been exploited to write all 18
template parameters of the new_sample() function in a legible fashion. This
filter uses std::uint32_t to represent the internal algorithm values because
they do not always fit within std::uint16_t. This filter can filter input values
within the entire range of std::uint16_t.

The order 17 filter in this example requires significantly more code and runtime
than the order 5 filter from the previous example. This is not only because the filter
has more coefficients, but also because the delay line values are 32 bits wide instead
of 16. With the numerous 32-bit operations of its new_sample() function, this
order 17 filter is definitely over-dimensioned for 8-bit or 16-bit targets. It would be
more appropriate for 32-bit targets. However, it is possible to get the same filter
quality with much less code and runtime expense using two or more cascaded filters
of lower order. This technique will be discussed in Sect. 14.4. This order 17 filter
can be comfortably used with 32-bit targets and examination of its disassembled
source code listing shows the same kind of high-performance optimizations that
were observed for the order 5 filter above—inlining, unrolling, shift-and-add, etc.

The filter coefficients for the order 17 filter operation have been obtained with a
filter design tool. Scaling and rationalization of the coefficients has done with the
filter design tool to obtain pure integer coefficients. Thereby care has been taken to
ensure that the coefficient sum of 128 is an unsigned integer power of two.

14.4 Some Worked-Out Filter Examples

This section presents some worked out filter examples. The results have been
prepared for visualization within a PC environment and also tested in real-time on
two different microcontrollers.

Consider the unfiltered raw signal S shown with connected open circles (◦) in
Fig. 14.1. This signal could, for example, result from a voltage measurement fed to a
10-bit ADC input. The main component of the signal is a sine wave with a frequency
of 60 Hz, an amplitude of 150 and an offset of 250. Added to this underlying sine
wave is a strong, asynchronous noise component. The noise has 10 times the signal’s
frequency (10 × 60 = 600 Hz), 1

5 of its amplitude (150/ 5 = 30) and an offset of
0.317 ms.

14.4 Some Worked-Out Filter Examples 275

-100

0

100

200

300

400

500

0 5 10 15 20 25
time [ms]

Digitized Eq. 14.10

◦
◦◦◦◦◦◦

◦◦
◦◦◦◦◦

◦◦◦◦◦◦◦
◦◦◦

◦◦◦◦◦◦◦
◦◦◦◦◦◦

◦
◦◦◦◦◦◦

◦◦◦◦
◦◦◦◦◦◦

◦◦◦◦◦◦
◦
◦◦◦◦◦◦

◦
◦◦◦◦◦

◦
◦◦◦◦◦◦

◦◦
◦◦◦◦◦

◦◦◦◦
◦◦◦◦◦◦

◦
◦◦◦

◦
Order–17

∗∗∗∗∗∗∗∗∗∗∗
∗∗∗

∗∗∗
∗∗∗∗∗

∗∗
∗∗∗

∗∗∗
∗∗∗

∗∗∗
∗∗∗

∗∗∗
∗∗∗∗∗

∗∗∗∗∗∗∗∗∗∗∗∗

∗
Order–5 cascaded

�����
���

��
��

��
���

��
���

��
��

��
��

��
��

��
��

���
������������������

�
Order–10 high–pass

••••••••••
••••••

•••••••
••••••

•••••••
•••••••

••••••
•••••••

•••••••
••••••

•••••••
•••••••

••••••
•••••••

•••••

•

Fig. 14.1 Test results for various filters are shown. The connected open circles (◦) show the digi-
tized test data. The asterisks (∗) show the results of an order 17 low-pass filter. The stars (�) show
the results of two cascaded order 5 low-pass filters. The solid circles (•) show the results of an
order 11 high-pass filter

The mathematical representation of the signal S is given by

S = 250 + 150 ×
[

sin (0.12π t) + 1

5
sin (0.317 + 1.2π t)

]
, (14.10)

where t is the time in ms.
We will now filter this signal with an order N , low-pass FIR filter such that the

noise component with a frequency of 600 Hz is strongly suppressed and the main
component at 60 Hz passes through the filter with as little attenuation as possible.
This is a typical filter design problem. The first step in designing the filter is to
consider the sampling frequency. Imagine that about 3–4 samples should be taken
per half-wave of noise. As mentioned above, the noise has a frequency of 600 Hz.
So, if there should be, say, 3 1

2 samples per half-wave of noise, then the resulting
sampling frequency Ts is given by

Ts = 3
1

2
(2 × 600 Hz) = 4,200 Hz ≈ 4,000 Hz, (14.11)

where Ts has been rounded down to 4 kHz. The corresponding sampling period is
250µs.

To design this filter, we will select a pass-band upper frequency of 200 Hz and
a stop-band lower frequency of 600 Hz, with a stop-band attenuation of 40 dB. A
ripple of 1 dB is allowed within the pass-band. The pass-band upper frequency
of 200 Hz is high enough to expect good signal passing at 60 Hz, and the stop-
band lower frequency of 600 Hz with 40 dB attenuation should effectively suppress
the noise.

Supplying these filter parameters to the filter design tool and instructing the tool
to compute the unbound optimum number of taps produces 18 double-precision
coefficients for an 18-tap, order 17 filter. These double-precision coefficients corre-

276 14 High-Performance Digital Filters

spond to the scaled integer coefficients in the order 17 filter of Sect. 14.3. In fact,
these filter parameters have been used to generate them.

For the purpose of testing this order 17 filter, a PC-based simulation has been
written. A separate program has been used to generate 101 digitized points from
Eq. 14.10 using the desired sampling frequency of 4 kHz. These are the test data.
They are shown in Fig. 14.1. The test data span 1 1

2 full periods of the 60 Hz signal
and about 15 full periods of the signal’s noise. The code below shows the test data,
stored in a static constant STL array with 101 elements.

#include <cstdint>
#include <array>

const std::array<std::uint16_t, 101U> data =
{
{
250U, 288U, 306U, 301U, 287U, 288U, 312U, 351U,
381U, 386U, 371U, 354U, 357U, 381U, 412U, 428U,
417U, 390U, 370U, 372U, 392U, 411U, 409U, 383U,
347U, 326U, 328U, 343U, 350U, 333U, 296U, 258U,
241U, 246U, 258U, 256U, 231U, 190U, 158U, 150U,
162U, 176U, 170U, 141U, 106U, 87U, 93U, 116U,
132U, 125U, 100U, 77U, 75U, 97U, 129U, 147U,
141U, 123U, 113U, 127U, 162U, 198U, 215U, 209U,
195U, 197U, 224U, 264U, 297U, 306U, 296U, 285U,
293U, 325U, 363U, 386U, 383U, 364U, 352U, 363U,
392U, 420U, 427U, 409U, 381U, 368U, 377U, 400U,
414U, 403U, 371U, 338U, 324U, 332U, 348U, 348U,
322U, 282U, 250U, 240U, 250U

}
};

The code below uses the order 17 filter that we have just designed to filter these
test data.

#include <iostream>
#include <math/filters/fir_order_n.h>

typedef fir_order_n<17U,
64U,
std::uint16_t,
std::uint32_t> filter_type;

void do_something()

14.4 Some Worked-Out Filter Examples 277

{
filter_type f(data[0U]);

std::cout << f.get_result() << "\n";

std::for_each(
data.begin() + 1U,
data.end(),
[&f](const std::uint16_t& s)
{

f.new_sample
<-2, -2, -2, -1, 3, 9, 15, 20, 24,
24, 20, 15, 9, 3, -1, -2, -2, -2>(s);

std::cout << f.get_result() << "\n";
});

}

The order 17 filter, f, sequentially filters the test data in do_something()
using STL’s for_each() algorithm in combination with a lambda expression.
The filter results are printed to the standard output.

The results of this filter simulation are shown in Fig. 14.1. As can be seen in the
figure, the filter quality is excellent. The main component of the signal at 60 Hz
passes through the filter essentially unattenuated. The noise at 600 Hz has, for all
practical purposes, been eliminated. The filtered signal has a phase shift correspond-
ing to the delay line of the 18-tap filter.

The new_sample() function of the order 17 filter runs quickly on 32-bit tar-
gets, requiring just a few microseconds. For example, it requires approximately
9.6µs on our target with the 32-bit microcontroller. Since the sample rate is 4 kHz
and the corresponding sample period is 250µs, the filter operation requires approx-
imately 9.6/ 250 ≈ 3.8 % of the total CPU power. This filter can, therefore, be
comfortably used with this target. The sample rate could even be doubled or four-
folded if higher frequencies need to be filtered.

However, this order 17 filter has many 32-bit operations. In fact, it needs at
least nineteen 32-bit move operations alone for shifting the delay line. In addition,
roughly twice again as many operations are required for the filter algorithm itself,
and most of these are also 32-bit operations. So this filter is actually over dimen-
sioned for most applications using 16-bit or 8-bit architectures. In comparison with
the runtime of 9.6µs on the 32-bit target, the new_sample() function requires
approximately 56µs on our 8-bit target, and this corresponds to 56/ 250 ≈ 22 %
of the total CPU power with a 4 kHz sampling rate. This is too much CPU load for
the filter function on this target.

Similar filter quality can be obtained using 16-bit operations that are more appro-
priate for smaller architectures such as our target with the 8-bit microcontroller. One

278 14 High-Performance Digital Filters

way to accomplish this is by using two or more cascaded filters with much lower
order. For example, we will use two cascaded, 16-bit order 5 filters instead of the
order 17 filter. When using these, it should be possible to significantly reduce the
CPU load on the 8-bit target.

To design an order 5 filter for this purpose, the filter parameters previously used
to design the order 17 filter can be used. This time, however, the number of taps
is limited to 6. The resulting integer coefficients are (5, 5, 6, 6, 5, 5). The code
sample below shows how to use two cascaded 16-bit, order 5 filters with these coef-
ficients.

#include <iostream>

typedef fir_order_n<5U> filter_type;

void do_something()
{
filter_type f1(data[0U]);
filter_type f2(f1.get_result());

std::cout << f2.get_result() << std::endl;

std::for_each(
data.begin() + 1U,
data.end(),
[&f1, &f2](const std::uint16_t& s)
{

f1.new_sample<5, 5, 6, 6, 5, 5>(s);

filter_type::result_type r = f1.get_result();

f2.new_sample<5, 5, 6, 6, 5, 5>(r);

std::cout << f2.get_result() << std::endl;
});

}

This code uses two filters, f1 and f2. The filter result of f1 is supplied to the
new_sample() function of f2. In this way, the filters are cascaded.

The results of this filter operation on the test data are also shown in Fig. 14.1.
The filter quality is just as good as that of the order 17 filter. However, the required
CPU power has been significantly reduced. This cascaded filter operation is accept-
able for 16-bit architectures with a sampling frequency of 4 kHz. The runtime of
the new_sample() function on the 8-bit target has been reduced from 56µs for
the order 17 filter to 22µs for two cascaded order 5 filters. In other words, with

14.4 Some Worked-Out Filter Examples 279

a sampling period of 250µs, the fraction of the total CPU power invested in filter
sampling has been reduced from the unacceptably high level of approximately 22 %
to the tolerable amount of 22/ 250 ≈ 9 %.

As a final example, we will filter the test data with a high-pass filter. This time, the
filter design tool needs parameters for a high-pass filter. We use a stop-band upper
frequency of 80 Hz with an attenuation of 40 dB and a pass-band lower frequency
of 600 Hz with a pass-band ripple of 1 dB. The result is an order 10, eleven tap
high-pass filter with the integer coefficients (1, 2, 4, 6, 8, −40, 8, 6, 4, 2, 1).

The results of this filter are signed. Therefore, precautions for signed arithmetic
and rounding need to be included in the filter algorithms. This has been done in the
companion code, but not explicitly listed here.

Programming the PC simulation with the signed high-pass filter is left as an exer-
cise for the reader. The results that have been obtained when researching for this
book are shown in Fig. 14.1. A few samples are needed before the high-pass filter
attenuates the 60 Hz part of the signal, leaving only the ripple at 600 Hz part—as
per design goal for this high-pass filter.

References

1. R.G. Lyons, Understanding Digital Signal Processing (Prentice Hall, Upper Saddle River,
2004)

2. A.V. Oppenheim, R.W. Schafer, Digital Signal Processing (Prentice Hall, Upper Saddle River,
1975)

3. L. Thede, Analog and Digital Filter Design Using C (Prentice Hall, Upper Saddle River, 1996)

Chapter 15
C++ Utilities

This chapter presents a selection of C++ utilities that are useful for solving recurring
problems in microcontroller programming.

15.1 The nothing Structure

Consider the implementation of the nothing structure below.

struct nothing { };

The nothing structure contains no members and encapsulates no functionality
whatsoever. Although the nothing structure does not actually do anything itself,
it can be quite useful as a place holder for other function and template parameters.

Recall the fixed_point class from Sect. 13.2. Consider the constructors of
the fixed_point class that accept integral types as input parameters. These con-
structors perform a left-shift of their input parameter before using it to initialize
the internal representation of the fixed-point number. This accounts for the fixed
position of the decimal point. For a simplified version of the Q7.8 fixed-point rep-
resentation, for example, we have something like the following.

// A simplified Q7.8 fixed-point representation.
class fixed_point
{
public:
fixed_point(std::uint16_t u) : value(u << 8) { }

private:
std::uint16_t value;

};

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_15

281

http://dx.doi.org/10.1007/978-3-662-47810-3_13

282 15 C++ Utilities

At the same time, the values of special fixed-point numbers such as mathemat-
ical constants have a known integral representation in this fixed-point system. The
integral representation of the numerical constant π in this fixed-point system, for
example, is 0x0324. To accommodate construction from a known integral value
that is not supposed to be left-shifted, the fixed_point class has an additional
private constructor that takes an integral type parameter and a nothing-type struc-
ture. In other words,

// A simplified Q7.8 fixed-point representation.
class fixed_point
{
public:
// Construct from integer with left-shift.
fixed_point(std::uint16_t u) : value(u << 8) { }

// Create pi with the special constructor.
static fixed_point value_pi()
{
return fixed_point(nothing(), 0x0324U);

}

private:
std::uint16_t value;

// Constructor from integer without left-shift.
fixed_point(const nothing&,

std::uint16_t u) : value(u) { }
};

Here, the nothing structure provides for unambiguous differentiation between
the normal constructor from std::uint16_t with left-shift and the private con-
structor from std::uint16_t without left-shift. If the nothing structure were
not used, the two constructors would be ambiguous. The special private constructor
from an integer without left-shift is used to efficiently return the value of π in the
value_pi() method.

We will now use the nothing structure to create a template class that represents
a collection of three things. We will call this class a triple. The triple class
can be made by using three template parameters and supplying defaults for them.
For instance,

15.1 The nothing Structure 283

struct nothing {};

template <typename first_type = nothing,
typename second_type = nothing,
typename third_type = nothing>

class triple
{
public:
// Constructor with default values.
triple(const first_type& t1_ = first_type(),

const second_type& t2_ = second_type(),
const third_type& t3_ = third_type())

: t1(t1_),
t2(t2_),
t3(t3_)

{
}

// Element access.
first_type& first() { return t1; }
second_type& second() { return t2; }
third_type& third() { return t3; }

private:
first_type t1;
second_type t2;
third_type t3;

};

The triple class is similar to the std::pair class in the standard library’s
<utility> header. The triple class, however, has three elements, whereas
std::pair has two.

Using the triple class is straightforward. The code below, for example, uses a
triple containing a char, an int and an instance of a structure.

struct something
{
something() { }

};

triple<char, int, something>
things(’a’, 123, something());

284 15 C++ Utilities

void do_something()
{
if(things.first() == ’a’)
{
}

}

Techniques using a nothing-like class type are often employed to implement
std::tuple for compilers that lack C++11 support for variadic templates.

15.2 The noncopyable Class

In Sect. 4.8, we first discussed non-copyable classes. Frequently, we would like to
prohibit intentional and unintentional copying of a class object. A potential imple-
mentation of a non-copyable mechanism for classes is shown in below. This imple-
mentation is based on the noncopyable class in Boost.

class noncopyable
{
protected:
noncopyable() {}
~noncopyable() {}

private:
// Emphasize: The following members are private.
noncopyable(const noncopyable&) = delete;

const noncopyable& operator=(const noncopyable&)
= delete;

};

Here, the copy constructor and copy assignment operator have been declared pri-
vate and explicitly qualified with delete. This causes all classes that are privately
derived from noncopyable to be non-copyable because derived classes inherit
the private non-copyable members.

It is common in microcontroller programming to purposely prohibit class copy-
ing. Consider, once again, an LED mapped to a port pin. We will use an led class
similar to the one in Sect. 1.1.

http://dx.doi.org/10.1007/978-3-662-47810-3_4
http://dx.doi.org/10.1007/978-3-662-47810-3_1

15.2 The noncopyable Class 285

class led
{
public:
// The led class constructor.
led(const port_type p,

const bval_type b) : port(p),
bval(b)

{
// ...

}
void toggle() const
{
// ...

}

private:
// Private member variables of the class.
port_type port;
bval_type bval;

};

As in Sect. 1.1, we can create an instance of the led class on microcontroller
port bin portb.5. In particular,

// Create led_b5 on portb.5.
led led_b5
{
mcal::reg::portb,
mcal::reg::bval5

};

Here, led_b5 is directly associated with portb.5 and with no other pin. In the
present form, however, it is possible to copy led_b5. The copy operation below,
for instance, can successfully be compiled.

// Create led_b5 on portb.5.
led led_b5
{
mcal::reg::portb,
mcal::reg::bval5

};

http://dx.doi.org/10.1007/978-3-662-47810-3_1

286 15 C++ Utilities

// Copy led_b5 to another led instance.
led led_other = led_b5;

Probably, though, we would prefer to prohibit copying the led class in this fash-
ion. This policy will help ensure that only one class instance uses the hardware pin
at one time. The modified version of the led class shown below inherits privately
from the noncopyable class.

class noncopyable { /* ... */ };

// Make the led class noncopyable.
class led : private noncopyable
{
// ...

};

Here, the led class has been made non-copyable by simply inheriting privately
from noncopyable.

The noncopyable utility simplifies typing and reduces the burden of code
upkeep because the non-copyable attribute can simply be inherited via private
derivation. This eliminates the need to manually implement a private copy con-
structor and copy assignment operator for each non-copyable class, as was shown
in Sect. 4.8.

15.3 A Template timer Class

A timer class can be used for diverse timing applications in real-time C++. For
example, the visible LED toggling in Sect. 2.3 has used a 1 s blocking delay to create
a toggle frequency of 1/2Hz. In addition, the multitasking scheduler in Sect. 11.2
has included interval timing for task scheduling.

We will now present a template timer class. The synopsis of the public interface
of our timer class is shown below.

template<typename unsigned_tick>
class timer
{
public:
// A class-specific tick type.
typedef unsigned_tick tick_type;

http://dx.doi.org/10.1007/978-3-662-47810-3_4
http://dx.doi.org/10.1007/978-3-662-47810-3_2
http://dx.doi.org/10.1007/978-3-662-47810-3_11

15.3 A Template timer Class 287

// Utility functions for creating timespans.
template<typename other>
static tick_type microseconds(const other&);

template<typename other>
static tick_type milliseconds(const other&);

template<typename other>
static tick_type seconds(const other&);

template<typename other>
static tick_type minutes(const other&);

template<typename other>
static tick_type hours(const other&);

// Constructors.
timer();
explicit timer(const tick_type&);
timer(const timer&);

// Copy assignment operator.
timer& operator=(const timer&);

// Interval and relative timeout functions.
void start_interval(const tick_type&);
void start_relative(const tick_type&);

// The timeout, now, and delay functions.
bool timeout() const;
static tick_type now();
static void blocking_delay(const tick_type&);

};

This timer class provides the following operations in its public interface.

• Query the current time point with now().
• Set relative timeouts with start_relative().
• Set interval timeouts with start_interval().
• Wait in a blocking delay with blocking_delay().

288 15 C++ Utilities

This implementation of the timer class requires a timebase in hard real-time.
This may, for example, originate from an underlying microcontroller peripheral
timer. Here, we use the procedural get_time_elapsed() function from the
MCAL, as described in Sect. 9.3. In particular, the timer’s now() function sim-
ply returns the elapsed time from get_time_elapsed(). In other words,

template<typename unsigned_tick>
class timer
{
public:
typedef unsigned_tick tick_type;

// ...

static tick_type now()
{
// Return the elapsed time in microseconds.
return mcal::gpt::get_time_elapsed();

}
};

In our example, the resolution of the underlying timebase is microseconds. The
overlying timer class obtains the same microsecond resolution.

Since the timer class is a template, it can be scaled to various widths such as
16-bit or 32-bit. For example, we can set a relative timeout for a time point that lies
250µs in the future using a 16-bit timer. In particular,

// Use a convenient type definition.
typedef timer<std::uint16_t> timer_type;

// Set a time point 250us in the future.
timer_type time(timer_type::microseconds(250U));

A polling task can query if the timer object has timed out by calling the
timeout() member function. For instance,

void do_something()
{
if(time.timeout())
{
// Do something at this time.

}
}

http://dx.doi.org/10.1007/978-3-662-47810-3_9

15.3 A Template timer Class 289

The timer class, or a class similar to it, can also be used as a building block
together with callbacks to encapsulate the functionality of event and alarm objects.
To do this, a timer object might be included as a member of a larger alarm or event
object. These composite objects may be stored in a container and manipulated with
a scheduling mechanism to fully implement events and alarms.

15.4 Linear Interpolation

Linear interpolation is a method of curve fitting on data points using linear poly-
nomials. The need to perform linear interpolation on an ordered set of data points
arises frequently in real-time microcontroller programming. Operations like sensor
calibration and analysis of position data can often be carried out quickly and with
sufficient accuracy using linear interpolation. The data points shown in Fig. 15.1,
for example, are suitable for linear interpolation.

An example of linear interpolation using Eq. 15.2 is shown in Fig. 15.1. Linear
interpolation with a straight line between the two (x, y) points (10, 44) and (20, 53)
gives y = 48 at x = 15. Here, we are using integer calculations.

We will consider linear interpolation using a straight line between two points
(x0, y0) and (x1, y1). The equation for the straight line between these two points is

y − y0
x − x0

= y1 − y0
x1 − x0

. (15.1)

Solving Eq. 15.1 for an unknown value y at a known value x results in

y = y0 + (x − x0)
y1 − y0
x1 − x0

. (15.2)

Fig. 15.1 A set of data
points suitable for linear
interpolation is shown

Data Points

y

x

20

40

60 (15, 48)

0 5010 20 30 40

290 15 C++ Utilities

A template subroutine for straight-line linear interpolation based on Eq. 15.2 is
shown in the code below.

template<typename point_iterator,
typename x_type,
typename y_type = x_type>

y_type linear_interpolate(point_iterator pts_begin,
point_iterator pts_end,
const x_type& x,
const y_type& offset)

{
if(pts_begin == pts_end)
{
// There are no data points to interpolate.
return y_type();

}
else if((x <= pts_begin->x)

|| (pts_begin + 1U == pts_end))
{
// We are beneath the lower x-range or there
// is only one data point to interpolate.
return pts_begin->y;

}
else if(x >= (pts_end - 1U)->x)
{
// We are above the upper x-range.
return (pts_end - 1U)->y;

}
else
{
// Find interpolation pair with binary search.
point_iterator it

= std::lower_bound(pts_begin,
pts_end,
point<x_type>(x));

// Do the linear interpolation.
const x_type xn = (it - 1U)->x;
const x_type delta_xn = it->x - xn;
const x_type delta_x = x - xn;
const y_type yn = (it - 1U)->y;
const y_type delta_yn = it->y - yn;

const y_type delta_y

15.4 Linear Interpolation 291

= (delta_x * delta_yn) / delta_xn;

return (yn + delta_y) + offset;
}

}

Following some elementary bounds checking, the core of this linear interpo-
lation function uses the std::lower_bound() algorithm to find the pair of
interpolation points. The linear_interpolate() subroutine thereby profits
from the high efficiency of std::lower_bound() which uses a binary search
for sequences having random access iterators.

The fourth input parameter to linear_interpolate() called offset has
a dual role. It allows an optional non-zero offset to be applied to the result of the
linear interpolation. In addition, the offset parameter provides the compiler with
enough information to automatically deduce all of the template parameters.

The linear_interpolate() subroutine is designed to work particularly
well with a template point class type such as the one shown in Sect. 5.4. The lower-
bound algorithm tests for inequality using operator<. In order to be used with
linear_interpolate(), then, the point class needs to have an implementa-
tion of operator<. Here, the sense of less-than is based on the x-value of a point.
In other words, the point (xi , yi) is less than the point

(
x j , y j

)
if xi < x j .

A modified implementation of the point class that supports operator< is
shown below.

template<typename x_type,
typename y_type = x_type>

class point
{
public:
x_type x;
y_type y;

point(const x_type& x_ = x_type(),
const y_type& y_ = y_type()) : x(x_),

y(y_) { }

bool operator<(const point& other) const
{
return (x < other.x);

}
};

http://dx.doi.org/10.1007/978-3-662-47810-3_5

292 15 C++ Utilities

Using linear_interpolate() with a collection of points is straightfor-
ward. The sample below, for instance, performs the linear interpolation that is
depicted in Fig. 15.1.

// The data points.
const std::array<point<std::uint16_t>, 6U> points
{
{
point<std::uint16_t> { 0U, 0U },
point<std::uint16_t> { 10U, 44U },
point<std::uint16_t> { 20U, 53U },
point<std::uint16_t> { 30U, 28U },
point<std::uint16_t> { 40U, 22U },
point<std::uint16_t> { 50U, 47U }

}
};

const std::uint16_t y
= linear_interpolate(points.begin(),

points.end(),
std::uint16_t(15U),
std::uint16_t(0U));

// The value of y is 48.

The linear_interpolate() subroutine can be used with built-in integral
and floating-point types. It can also be used with user-defined types such as the
fixed_point class in Sect. 13.2. If used exclusively for integral types, it may
be beneficial to include a simple rounding correction in the division of the linear
interpolation equation.

15.5 A circular_buffer Template Class

A circular buffer can be an efficient storage queue that is useful for communication
interfaces and other input-output operations. The SPITM driver class in Sect. 9.5, for
example, uses circular buffers for its transmit and receive queues.

A possible implementation of a template circular buffer class is shown below.

template<typename T,
const std::size_t N>

class circular_buffer

http://dx.doi.org/10.1007/978-3-662-47810-3_13
http://dx.doi.org/10.1007/978-3-662-47810-3_9

15.5 A circular_buffer Template Class 293

{
public:
typedef T value_type;
typedef value_type* pointer;
typedef const value_type* const_pointer;
typedef std::size_t size_type;
typedef value_type& reference;
typedef const value_type& const_reference;

circular_buffer(
const T& value = value_type(),
const size_type count = size_type(0U))

: in_ptr (buffer),
out_ptr(buffer)

{
const size_type the_count =

(std::min)(N, count);

std::fill(in_ptr,
in_ptr + the_count,
value);

in_ptr += the_count;
}

circular_buffer(const circular_buffer& other)
: in_ptr (other.in_ptr),

out_ptr(other.out_ptr)
{
std::copy(other.buffer,

other.buffer + N,
buffer);

}

circular_buffer& operator=(
const circular_buffer& other)

{
if(this != &other)
{

in_ptr (other.in_ptr);
out_ptr (other.out_ptr);
std::copy(other.buffer,

other.buffer + N,
buffer);

}

294 15 C++ Utilities

return *this;
}

size_type capacity() const { return N; }

bool empty() const
{
return (in_ptr == out_ptr);

}

size_type size() const
{
const bool is_wrap = (in_ptr < out_ptr);

return size_type((is_wrap == false)
? size_type(in_ptr - out_ptr)
: N - size_type(out_ptr - in_ptr));

}

void clear()
{
in_ptr = buffer;
out_ptr = buffer;

}

void in(const value_type value)
{
if(in_ptr >= (buffer + N))
{

in_ptr = buffer;
}

*in_ptr = value;

++in_ptr;
}

value_type out()
{
if(out_ptr >= (buffer + N))
{

out_ptr = buffer;
}

15.5 A circular_buffer Template Class 295

const value_type value = *out_ptr;

++out_ptr;

return value;
}

reference front()
{
return ((out_ptr >= (buffer + N))

? buffer[N - 1U]
: *out_ptr);

}

const_reference front() const
{
return ((out_ptr >= (buffer + N))

? buffer[N - 1U]
: *out_ptr);

}

reference back()
{
return ((in_ptr >= (buffer + N))

? buffer[N - 1U]
: *in_ptr);

}

const_reference back() const
{
return ((in_ptr >= (buffer + N))

? buffer[N - 1U]
: *in_ptr);

}

private:
value_type buffer[N];
pointer in_ptr;
pointer out_ptr;

};

The circular_buffer class supports input and output queuing of elements.
There are some STL-like members such as size() and empty(). Full support
for STL iterators, however, has not been included in this implementation. A more

296 15 C++ Utilities

refined circular buffer class with iterator support and STL compliance is included in
Boost [1].

Using the circular_buffer class is simple. For instance,

typedef
circular_buffer<std::uint8_t, 4U>
buffer_type;

void do_something()
{
buffer_type buffer;

// Put three bytes into the buffer.
buffer.in(1U);
buffer.in(2U);
buffer.in(3U);

// The size of the buffer is 3.
const buffer_type::size_type count = buffer.size();

// The buffer is not empty.
const bool is_empty = buffer.empty();

// Extract the first element.
const buffer_type::value_type value = buffer.out();

// The size of the buffer is now 2.
count = buffer.size();

}

15.6 The Boost Library

The Boost library is a large collection of generic utilities aimed at a wide range of
C++ users and application domains. The Boost libraries extend the functionality of
C++ beyond the language specification. Boost contains many individual libraries,
including libraries for generic utilities, numeric and lexical operations, mathemat-
ics and numbers, threading and concurrency, image processing, networking, task
scheduling, regular expressions, etc. The Boost libraries are known for their high
quality, partly because a candidate library is subjected to peer reviews before being
accepted to Boost.

15.6 The Boost Library 297

Some of the concepts in this chapter originate from Boost. For example, the
concept of the noncopyable class in Sect. 15.2 has been taken from the utilities
part of Boost. The circular_buffer class in Sect. 15.5 is similar to Boost’s
circular_buffer.

The Boost website indicates that Boost aims to provide reference implementa-
tions potentially suitable for standardization [1]. This makes Boost a great place to
follow the development of the C++ language. In fact, some of Boost’s active mem-
bers are on the C++ standards committee, and a variety of Boost libraries have been
included in the C++11 standard [2], see also [3].

References

1. B. Dawes, D. Abrahams, Boost C++ Libraries (2012), http://www.boost.org
2. ISO/IEC, ISO/IEC 14882:2011: Information Technology—Programming Languages—C++

(International Organization for Standardization, Geneva, 2011)
3. B. Karlsson, Beyond the C++ Standard Library: An Introduction to Boost (Addison-Wesley,

Boston, 2005)

http://www.boost.org

Chapter 16
Extending the C++ Standard Library
and the STL

The C++ standard library and the STL provide a wide selection of functions, classes
and generic containers that can be used in common programming situations. There
are, however, times when just the right container or function for a particular pro-
gramming task is missing from the standard library and the STL. In the first part of
this chapter, we will extend the C++ standard library and the STL by developing a
custom dynamic_array container that has a functionality that lies between those
of std::array and std::vector. Furthermore, one often encounters a good
C++ compiler that lacks large parts of the C++ standard library such as the STL, C99
compatibility, the time utilities in <chrono> or the thread support library. The sec-
ond half of this chapter shows how to emulate partial standard library support with
certain self-written parts of the C++ standard library and the STL.

16.1 Defining the Custom dynamic_array Container

The std::array container can be used when the number of elements is known
at compile time. For instance,

// Fixed-size array of four counters init. to 1.
std::array<unsigned, 4U> counters
{
{ 1U, 1U, 1U, 1U }

};

void do_something()
{
// Increment the counters.
std::for_each(std::begin(counters),

std::end (counters),

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_16

299

300 16 Extending the C++ Standard Library and the STL

[](unsigned& u)
{
++u;

});

// It is not possible to resize the array.
}

On the other hand, the std::vector container is designed for dynamic allo-
cation. Using vector’s constructors or member functions such as push_back(),
resize(), insert(), erase(), etc., the number of elements in a vector can
be changed from zero to the maximum capacity during the entire lifetime of the
object. For example,

// Dynamic vector of four counters init. to 1.
std::vector<unsigned> counters(4U, 1U);

void do_something()
{
// Increment the counters.
std::for_each(std::begin(counters),

std::end(counters),
[](unsigned& u)
{
++u;

});

// We can resize the vector.
counters.push_back(counters.front());

}

Basically, std::array is efficient but has the limitation of constant compile-
time size. While std::vector does offer flexible resizing during runtime, it also
has slight performance and storage disadvantages caused by its dynamic allocation
mechanisms.

At times it may be convenient to use a container with characteristics that lie
between those of std::array and std::vector. For example, consider a con-
tainer that can be dynamically allocated one time in the constructor and retains its
size for the lifetime of the object. This container offers the flexibility of dynamic
sizing at creation time without the added overhead needed for reallocation. We will
call this container dynamic_array. For example,

16.1 Defining the Custom dynamic_array Container 301

// A dynamic array of four counters initialized with 1.
dynamic_array<unsigned> counters(4U, 1U);

void do_something()
{
// Increment the counters.
std::for_each(std::begin(counters),

std::end(counters),
[](unsigned& u)
{
++u;

});

// It is not possible to resize the dynamic_array.
}

Here, we have created a dynamic_array of counters and initialized them
with 1. Although it is possible to dynamically set the number of elements in this
container during construction, the size can not be modified thereafter. In this way,
dynamic_array is a kind of hybrid container that combines the efficiency of an
array with the dynamic sizing (albeit via one-shot allocation) of std::vector.

As will be described below, the custom dynamic_array container will be
designed to fulfill the general requirements for sequential STL containers.1 In this
way, the dynamic_array container is consistent with the STL and also fills a
functional niche between the fixed-size std::array and that of the dynamic
std::vector. This can be considered a kind of user-defined extension of the
STL that, even though not formally standardized in ISO/IEC [1], can potentially be
useful in generic programming.

16.2 Implementing and Using dynamic_array

We will now present an implementation of dynamic_array. The class definition
of dynamic_array is similar to that of std::array but also has features in its
constructors closely resembling those of the constructors of std::vector.2 The
class synopsis of a possible implementation of dynamic_array is shown in the
code sample below.

1The general requirements for STL containers are specified in Paragraph 23.2.1 of [1] and listed in
Tables 96 and 97 therein.
2Consult Sect. 23.3.2 in [1] for an overview of std::array and Sect. 23.3.6 for a summary of
std::vector.

302 16 Extending the C++ Standard Library and the STL

#include <algorithm>
#include <initializer_list>
#include <iterator>
#include <memory>

template<typename T,
typename alloc = std::allocator<T>>

class dynamic_array
{
public:
// Type definitions.
typedef alloc allocator_type;
typedef T value_type;
typedef T& reference;
typedef const T& const_reference;
typedef T* iterator;
typedef const T* const_iterator;
typedef T* pointer;
typedef const T* const_pointer;
typedef std::size_t size_type;
typedef std::ptrdiff_t difference_type;
typedef std::reverse_iterator<iterator>

reverse_iterator;
typedef std::reverse_iterator<const_iterator>

const_reverse_iterator;

// Constructors.
dynamic_array();
dynamic_array(size_type);
dynamic_array(
size_type,
const value_type&,
const allocator_type& = allocator_type());

dynamic_array(const dynamic_array&);

template<typename input_iterator>
dynamic_array(
input_iterator,
input_iterator,
const allocator_type& = allocator_type());

dynamic_array(
std::initializer_list<T> lst,

16.2 Implementing and Using dynamic_array 303

const allocator_type& = allocator_type());

// Destructor.
~dynamic_array();

// Iterator members:
iterator begin ();
iterator end ();
const_iterator begin () const;
const_iterator end () const;
const_iterator cbegin () const;
const_iterator cend () const;
reverse_iterator rbegin ();
reverse_iterator rend ();
const_reverse_iterator rbegin () const;
const_reverse_iterator rend () const;
const_reverse_iterator crbegin() const;
const_reverse_iterator crend () const;

// Size and capacity.
size_type size () const;
size_type max_size() const;
bool empty () const;

// Element access members.
reference operator[](const size_type);
const_reference operator[](const size_type);

reference front();
const_reference front() const;
reference back ();
const_reference back () const;

reference at(const size_type);
const_reference at(const size_type) const;

// Element manipulation members.
void fill(const value_type&);

void swap(dynamic_array&);

private:
const size_type N;
pointer elems;

304 16 Extending the C++ Standard Library and the STL

// Note: dynamic_array can not be copied
// with operator=().
dynamic_array& operator=(const dynamic_array&);

};

The dynamic_array class has the standard type definitions and iterator sup-
port required for a sequential STL container such as value_type, iterator,
size_type, etc. In addition, the dynamic_array class has several constructors
responsible for allocation and initialization of the elements. Consider, for example,
the third of dynamic_array’s constructors shown in the class synopsis. This
constructor could be implemented as follows.

dynamic_array(size_type count,
const value_type& v,
const allocator_type& a) : N(count)

{
const size_type the_size =
std::max(size_type(1U), N);

elems = allocator_type(a).allocate(the_size);

if(N > size_type(0U))
{
std::fill_n(begin(), N, v);

}
else
{
elems[0U] = value_type();

}
}

Here, the elements of the dynamic array are allocated and initialized with the
value stored in the second parameter of the constructor. None of the functions in
dynamic_array other than the constructors modify the number of elements in
the container, meaning that once a dynamic_array is created, it keeps its size for
its entire lifetime. The remaining implementation details of the dynamic_array
class can be found in the companion code.

The dynamic_array container fulfills most of the general requirements for
sequential STL containers. It can, therefore, be used with the standard algorithms
of the STL. The code sample below, for instance, initializes a dynamic_array
with three data bytes from an std::initializer_list and calculates the byte
checksum thereof.

16.2 Implementing and Using dynamic_array 305

util::dynamic_array<int> values ({ 1, 2, 3 });

int sum = std::accumulate(values.begin(),
values.end(),
0);

The dynamic_array container can also be used with other functions and class
types. Consider, for example, a potential interface to a communication class.

class communication
{
public:
communication() { }
~communication() { }

bool send(const dynamic_array<std::uint8_t>& cmd);
bool recv(dynamic_array<std::uint8_t>& rsp);

};

Here, the communication class has member functions send() and recv()
responsible for sending and receiving communication frames, respectively. Data
transfer in transmission and reception is carried out using dynamic_array con-
tainers holding 8-bit data bytes.

16.3 Writing Parts of the C++ Library if None Is Available

Some C++ compilers, even very good ones, fail to provide implementations of the
C++ library and the STL. At times, even if the C++ library and the STL are available,
the implementations provided by the compiler may be incomplete and could lack
some new and potentially useful C++ language features.

If certain components of the C++ library and the STL are missing, it may be
possible to manually write them. This assumes, however, that the development and
testing of these components can be carried out with the reliability mandated by real-
time C++.

Throughout this book, for example, the code samples have used many parts of the
C++ library and the STL. For the most part, these samples have been successfully
tested and executed on several 8-bit and 32-bit microcontrollers. Some of the GCC
ports used for these tests, however, include only an incomplete C++ standard library
and lack the STL entirely. In order to resolve this problem, parts of the C++ library
and STL components were explicitly written for this book. The implementations of
these can be found in the reference project of the companion code.

306 16 Extending the C++ Standard Library and the STL

Writing a complete implementation of the C++ library and the STL that closely
adheres to the standard and provides optimal efficiency is a large-scale programming
endeavor. In fact, this is generally considered to be a task for the most experienced
C++ specialists because it requires the utmost in programming skill, deep under-
standing of compiler optimization techniques, meticulous attention to detail and an
extensive testing effort.

Writing a complete standards-adherent C++ library might be a task that lies
beyond the capabilities of most of us. It can, nonetheless, be feasible and practi-
cal to write a small subset of the C++ standard library and the STL. In the following
section, we will consider a strategy for writing a subset of the C++ library.

16.4 Implementation Notes for Parts of the C++ Library
and STL

It may make sense to select a single location for storage of library headers and any
necessary source files when writing a subset of the C++ library and the STL. This
can, for example, be a single root directory combined with additional subdirectories
for the platform-specific library parts. For instance, the directory structure for the
self-written subset of the C++ library for the GCC port for our target with the 8-
bit microcontroller is shown in Fig. 16.1. Selecting a single location for self-written
library headers simplifies the process of adding the path information to the com-
piler’s default search paths, as described in Sect. 1.6.

The selection of which C++ library components to write may be primarily based
on usefulness and ease of implementation. Consider the subset of the C++ library
and the STL listed below.

• The fixed-size integer types including those with an exact number of bits, those
with at least a specific number of bits and the fastest types with at least a certain
number of bits.

• Partial support for std::array, optionally not including reverse iterators.
• Commonly used yet simple-to-write functions from the <algorithm> library
such as the minimax functions, std::min() and std::max(), and others
operating on sequential iterators such as std::for_each(), std::fill(),
std::copy(), std::find_if() and others.

Fixed-size integer types are defined in <cstdint>. If the C++ compiler has
C99 compatibility and supports the C99 fixed-size integer types, then it is a simple
matter to inject these types into the namespace std. For example,

// A partial implementation of <cstdint>

// Include the C99 fixed-size integers.
#include <stdint.h>

http://dx.doi.org/10.1007/978-3-662-47810-3_1

16.4 Implementation Notes for Parts of the C++ Library and STL 307

Fig. 16.1 The directory structure for the self-written subset of the C++ library and the STL written
for this book is shown

namespace std
{
// Types with an exact number of bits.
using ::uint8_t;
using ::uint16_t;
using ::uint32_t;
using ::uint64_t;

// Types with at least a certain number of bits.
using ::uint_least8_t;
using ::uint_least16_t;
using ::uint_least32_t;
using ::uint_least64_t;

308 16 Extending the C++ Standard Library and the STL

// Fastest types with at least a certain
// number of bits.
using ::uint_fast8_t;
using ::uint_fast16_t;
using ::uint_fast32_t;
using ::uint_fast64_t;

}

If the C++ compiler does not have C99 compatibility, then the fixed-size integer
types must be defined. This can be readily accomplished using simple typedefs
of platform-dependent built-in types such as char, short, int, long and possi-
bly long long. This does, however, result in slight portability issues because the
widths of the built-in types are compiler-dependent. These portability issues can,
however, be managed because the fixed-size integer types need be set up only once
for a given platform. Once this is done, it is relatively straightforward to separate
processor-specific versions of header files such as <cstdint> in different direc-
tories or to use preprocessor definitions to achieve separation within larger header
files.

A partial implementation of std::array is shown in the listing below. This
implementation does not include support for reverse iterators.

// A partial implementation of <array>
#include <algorithm>
#include <cstddef>

namespace std
{
template <typename T, size_t N>
struct array
{
// Type definitions:
typedef T& reference;
typedef const T& const_reference;
typedef T* iterator;
typedef const T* const_iterator;
typedef size_t size_type;
typedef ptrdiff_t difference_type;
typedef T value_type;
typedef T* pointer;
typedef const T* const_pointer;

// Data elements:
T elems[N];

16.4 Implementation Notes for Parts of the C++ Library and STL 309

// iterators:
iterator begin() { return elems; }
iterator end() { return elems + N; }
const_iterator begin() const
{ return elems; }
const_iterator end() const
{ return elems + N; }
const_iterator cbegin() const
{ return elems; }
const_iterator cend() const
{ return elems + N; }

// Size-related members:
constexpr size_type size() { return N; }
constexpr size_type max_size() { return N; }
constexpr bool empty() { return false; }

// Element access members:
reference operator[](size_type n)
{ return elems[n]; }
const_reference operator[](size_type n) const
{ return elems[n]; }
const_reference at(size_type n) const
{ return elems[n]; }
reference at(size_type n)
{ return elems[n]; }
reference front()
{ return elems[0U]; }
const_reference front() const
{ return elems[0U]; }
reference back()
{ return elems[N - 1U]; }
const_reference back() const
{ return elems[N - 1U]; }

T* data() { return elems; }
const T* data() const { return elems; }

// Element manipulation members:
void fill(const T& u) { fill_n(begin(), N, u); }
void swap(const array<T, N>& other)
{ swap_ranges(begin(), end(), other.begin()); }

};
}

310 16 Extending the C++ Standard Library and the STL

This implementation of std::arraymakes use of other parts of the C++ stan-
dard library including the types std::size_t and std::ptrdiff_t as well
as the algorithms std::fill_n() and std::swap_ranges(). So these parts
of the library must also be available for this implementation of std::array.

The minimax algorithms std::min() and std::max() can be implemented
as shown below.

namespace std
{
template<typename T>
const T& min(const T& a, const T& b)
{
return (a < b ? a : b);

}

template<typename T>
const T& max(const T& a, const T& b)
{
return (a > b ? a : b);

}
}

Some examples of sequential STL algorithms that navigate through iterators
include std::fill(), std::for_each() and std::find_if(). These
algorithms have linear complexity and are relatively easy to implement. The fol-
lowing code samples show possible implementations of these algorithms.

One potential implementation of std::fill() is shown below.

// Sample implementation of std::fill:
template<typename forward_iterator,

typename value_type>
void std::fill(forward_iterator first,

forward_iterator last,
const value_type& value)

{
// Fill each element in [first, last) with value.
while(first != last)
{

*first = value;
++first;

}
}

16.4 Implementation Notes for Parts of the C++ Library and STL 311

A sample implementation of std::for_each() follows below. This version
of std::for_each() was also shown previously in Sect. 5.8.

// Sample implementation of std::for_each:
template<typename iterator_type,

typename function_type>
function_type std::for_each(iterator_type first,

iterator_type last,
function_type function)

{
// Apply function to each element in [first, last).
while(first != last)
{
function(*first);
++first;

}

return function;
}

A potential realization of std::find_if() is shown below.

// Sample implementation of std::find_if:
template<typename iterator_type,

typename predicate_type>
iterator_type std::find_if(iterator_type first,

iterator_type last,
predicate_type predicate)

{
// Find the first element satisfying predicate.
while((first != last)

&& (false == predicate(*first)))
{
++first;

}

return first;
}

http://dx.doi.org/10.1007/978-3-662-47810-3_5

312 16 Extending the C++ Standard Library and the STL

16.5 Providing now() for <chrono>’s High-Resolution
Clock

The C++ standard library supports chronological timing functions in its <chrono>
library. Part of the <chrono> library includes support for various clocks such as
a system clock and a high-resolution clock. See Sect. 20.11.7 in [1] for details on
the specification of <chrono>. The standard library’s high-resolution clock (called
std::chrono::high_resolution_clock) may be well-suited for provid-
ing the timebase in a real-time C++ project.

A potential synopsis of std::chrono::high_resolution_clock in
<chrono> is shown below.

namespace std { namespace chrono {

class high_resolution_clock
{
public:
// The resolution of the clock is microseconds.
typedef chrono::microseconds duration;

// Types for representation, period and time point.
typedef duration::rep rep;

typedef duration::period period;

typedef chrono::time_point<high_resolution_clock,
duration> time_point;

// The counter is steady. This means that
// a call to now() always returns a later
// timer than a previous call.

static constexpr bool is_steady = true;

// The platform-specific implementation of now().
// It is declared, but not implemented.

static time_point now();
};

} } // namespace std::chrono

Here, the timebase of the high-resolution clock is a static member function called
now(). An up-to-date C++ compiler with standard library support for <chrono>
should have a definition of the high_resolution_clock class. The subroutine

16.5 Providing now() for <chrono>’s High-Resolution Clock 313

now(), however, could merely be declared in the class, but not implemented. In
other words, it might lack a function body. This makes perfect sense because it may
be impossible for the C++ standard library authors to know which timer or counter
peripheral is used for the timebase in now() or what frequency it has.

For this reason, it might be necessary to manually implement the subroutine
now() for the high_resolution_clock class. This makes it possible to use
the high-resolution chronological functions in the <chrono> library. A potential
implementation of now() is shown below.

// Implement std::chrono::high_resolution_clock::now()
// for the standard library high-resolution clock.
std::chrono::high_resolution_clock::time_point
high_resolution_clock::now()

{
// The high-resolution clock source is microseconds.
typedef
std::chrono::time_point<high_resolution_clock,

microseconds> from_type;

// Get the consistent tick in microseconds.
// This function should be in the mcal.
auto microsecond_tick
= consistent_microsecond_tick();

// Now obtain a time point in microseconds.
auto from_micro
= from_type(microseconds(microsecond_tick));

// Return the duration in microseconds.
return time_point_cast<duration>(from_micro);

}

Here, the timebase of the high-resolution clock is microseconds. Based on the
necessities of the project, the microcontroller performance and the capabilities of
its peripherals, a different timebase can be selected. Other common choices include
milliseconds and nanoseconds.

In the example above, consistent_microsecond_tick() is assumed to
be a project-specific function that returns the underlying hardware system-tick in
microseconds. This subroutine can, for example, be derived from a free-running
timer or a timer interrupt service routine with a fixed period (see also Sect. 9.3).

Reference

1. ISO/IEC, ISO/IEC 14882:2011: Information Technology—Programming Languages—C++
(International Organization for Standardization, Geneva, 2011)

http://dx.doi.org/10.1007/978-3-662-47810-3_9

Chapter 17
Additional Reading

This chapter provides additional references covering background information on C,
modern C++ programming, the C++ standard library and STL, C++ coding guide-
lines, software design, the embedded systems toolchain, andmicrocontroller software
and hardware.

17.1 Literature List

Readers seeking additional information may find the following references helpful.
Most of these references have also been mentioned in the previous chapters.

• The specification of the C language can be found in [15].
• A detailed documentation of the original C standard library is provided in [35].
• Embedded extensions to C are specified in [19].
• The formal language specifications ofC++98,C++03,C++11 andC++14are avail-
able from ISO [14, 16, 20, 21]. ISO-published norms may be prohibitively expen-
sive for hobbyists and students.Cost-free draft versions are available on the Internet
and final versions can be found in any good public library.

• Comprehensive information on the C++ core language, object-oriented techniques
and effective STL usage can be found in [6, 10, 11, 25, 30–32].

• A detailed description of the C++ standard library extensions (TR1) can be found
in [4]. The TR1 extensions were originally published in [18], and are now pre-
dominantly integrated in the C++11 standard [20].

• Awell-respected, up-to-date book describing how to use C++11 and C++14 effec-
tively is [33].

• A detailed report on C++ performance with particular focus on efficiency for
embedded systems is available in [17]. This report also addresses various topics
discussed in this book such as the special needs of C++ for embedded systems,
space and size considerations in optimization, ROM-ability, hardware interfacing,
etc. The effectiveness ofC++ for embedded systems is clearly demonstrated herein.

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3_17

315

316 17 Additional Reading

• See [22, 28] for in-depth coverage of the containers and algorithms of the STL.
• C++ templates and template metaprogramming are described in [2, 9, 41].
• In [39] the authors describe a fundamental relationship between mathematics and
generic programming. The code examples make extensive use of C++11 and tem-
plate programming.

• See [27] for C++ I/O streams. Although not used extensively in this book, I/O
streams are useful for PC-based applications. A well-rounded understanding of
C++ should, therefore, include basic knowledge of I/O streams.

• The Boost libraries are intended to provide reference implementations potentially
suitable for standardization [8]. This makes Boost a great place to track the future
development of the C++ language. More information on the Boost libraries can
be found in [23, 37].

• C++ coding guidelines can be found in [36].
• A well-respected software design book is [13].
• A comprehensive description of algorithms and computer programming with code
samples written in a language-neutral form can be found in [24].1

• Microcontroller board design, tools, startup, processor architectures and memory
topologies are discussed in [5, 34].

• Additional details on the well-known and versatile ARDUINO® open-source
microcontroller board project can be found in [1, 29, 38].

• Information on microcontroller programming in C with GNU development tools
can be found in [3, 26].

• Programming microcontrollers in C from the ground up with detailed information
on software design, architecture and microcontroller peripheral programming is
covered in [42].

• A description of mathematical programming in real-time microcontroller envi-
ronments can be found in [7]. This book includes a comprehensive collection of
practical examples and numerous performance analyses.

• Detailed coverage of GNU GCC is available in [40].
• The GCC sources are available at the GNU GCC website [12].

References

1. ARDUINO®, ARDUINO® (2015), http://www.arduino.cc
2. D.Abrahams,A.Gurtovoy,C++ Template Metaprogramming: Concepts, Tools and Techniques

from Boost and Beyond (Addison-Wesley, Boston, 2004)
3. M. Barr, Programming Embedded Systems with C and GNU Development Tools, 2nd edn.

(O’Reilly, Sebastopol, 2006)
4. P. Becker, The C++ Standard Library Extensions: A Tutorial and Reference (Addison-Wesley,

Boston, 2006)
5. J. Catsoulis, Designing Embedded Hardware (O’Reilly, Sebastopol, 2005)

1The original reference here refers to a three volume set. At the time of writing the second edition
of this book, an updated work with an additional fourth volume is available.

http://www.arduino.cc

References 317

6. J.O. Coplien,Advanced C++ Programming Styles and Idioms (Addison-Wesley, Boston, 1992)
7. J.W. Crenshaw, Math Toolkit for Real-Time Programming, 1st edn. (CMP Books, Lawrence,

2000)
8. B. Dawes, D. Abrahams, Boost C++ Libraries (2015), http://www.boost.org
9. D. Di Gennaro, Advanced C++ Metaprogramming (Addison-Wesley, Boston, 2011)
10. B. Eckel,Thinking in C++ Volume 1: Introduction to Standard C++, 2nd edn. (PearsonPrentice

Hall, Upper Saddle River, 2000)
11. B. Eckel, Thinking in C++ Volume 2: Practical Programming (Pearson Prentice Hall, Upper

Saddle River, 2004)
12. Free Software Foundation, The GNU Compiler Collection Version 4.9.2 (2015), http://gcc.gnu.

org
13. E. Gamma, R. Helm, R. Johnson, J. Vlissides, Design Patterns: Elements of Reusable Object-

Oriented Software (Addison-Wesley, Boston, 1994)
14. ISO/IEC, ISO/IEC 14882:1998: Programming Languages—C++ (International Organization

for Standardization, Geneva, 1998)
15. ISO/IEC, ISO/IEC 9899:1999: Programming Languages—C (International Organization for

Standardization, Geneva, 1999)
16. ISO/IEC, ISO/IEC 14882:2003: Programming Languages—C++ (International Organization

for Standardization, Geneva, 2003)
17. ISO/IEC, ISO/IEC TR 18015:2006: Information Technology— Programming Languages, Their

Environments and System Software Interfaces—Technical Report on C++ Performance (Inter-
national Organization for Standardization, Geneva, 2006)

18. ISO/IEC, ISO/IEC TR 19768:2007: Information Technology— Programming Languages—
Technical Report on C++ Library Extensions (International Organization for Standardization,
Geneva, 2007)

19. ISO/IEC, ISO/IEC TR 18037:2008: Programming Languages—C—Extensions to Support
Embedded Processors (International Organization for Standardization, Geneva, 2008)

20. ISO/IEC, ISO/IEC 14882:2011: Information Technology—Programming Languages—C++
(International Organization for Standardization, Geneva, 2011)

21. ISO/IEC, ISO/IEC 14882:2014: Information Technology—Programming Languages—C++
(International Organization for Standardization, Geneva, 2014)

22. N.M. Josuttis, The C++ Standard Library: A Tutorial and Reference, 2nd edn. (Addison-
Wesley, Boston, 2011)

23. B. Karlsson, Beyond the C++ Standard Library: An Introduction to Boost (Addison-Wesley,
Boston, 2005)

24. D.E. Knuth, The Art of Computer Programming, Vols. 1–3, 3rd edn. (Addison-Wesley, Boston,
1998)

25. A. Koenig, B.E. Moo, Accelerated C++: Practical Programming by Example (Addison-
Wesley, Boston, 2000)

26. J. LaBrosse, Embedded Systems Building Blocks: Complete and Ready-to-Use Modules in C
(CMP Books, Lawrence, 1999)

27. A. Langer, K. Kreft, Standard C++ I/O Streams and Locales: Advanced Programmer’s Guide
and Reference (Addison-Wesley, Boston, 2008)

28. R. Lischner, STL Pocket Reference (O’Reilly, Sebastopol, 2004)
29. M. Margolis, ARDUINO® Cookbook, 2nd edn. (O’Reilly, Sebastopol, 2011)
30. S. Meyers, More Effective C++: 35 New Ways to Improve Your Programs and Designs

(Addison-Wesley, Boston, 1996)
31. S. Meyers, Effective STL: 50 Specific Ways to Improve Your Use of the Standard Template

Library (Addison-Wesley, Boston, 2001)
32. S. Meyers, Effective C++: 55 Specific Ways to Improve Your Programs and Designs, 3rd edn.

(Addison-Wesley, Boston, 2005)
33. S. Meyers, Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11 and

C++14 (O’Reilly, Sebastopol, 2014)

http://www.boost.org
http://gcc.gnu.org
http://gcc.gnu.org

318 17 Additional Reading

34. T. Noergaard, Embedded Systems Architecture: A Comprehensive Guide for Engineers and
Programmers (Newnes Publishing, Burlington, 2005)

35. P.J. Plauger, The Standard C Library (Prentice Hall P T R, Englewood Cliffs, 1992)
36. Programming Research Ltd,: High Integrity C++ Coding Standard Version 4.0 (2015), http://

www.codingstandard.com/HICPPCM/index.html
37. B. Schäling, The Boost C++ Libraries (XML Press, Laguna Hills, 2011)
38. M. Schmidt, ARDUINO®: A Quick-Start Guide (Pragmatic Programmers, Raleigh, 2011)
39. A.A. Stepanov, D.E. Rose, From Mathematics to Generic Programming (Addison-Wesley,

Boston, 2014)
40. W. van Hagen, The Definitive Guide to GCC (Apress, Berkeley, 2006)
41. D. Vandevoorde, N.M. Josuttis, C++ Templates: The Complete Guide (Addison-Wesley,

Boston, 2003)
42. E. White, Making Embedded Systems: Design Patterns for Great Software (O’Reilly,

Sebastopol, 2011)

http://www.codingstandard.com/HICPPCM/index.html
http://www.codingstandard.com/HICPPCM/index.html

Appendix A
A Tutorial for Real-Time C++

This appendix presents a short tutorial on C++. It is not intended to be a complete
language tutorial, but rather a brief introduction to the most important parts of C++
for programming real-time embedded systems.

A.1 C++ Cast Operators

C++ has four template cast operators. The code below, for instance, uses the
static_cast operator to cast from float to int.

float f = 3.14159265358979323846F;

int n = static_cast<int>(f); // The value is 3

The code sequence below uses the reinterpret_cast operator to set bit–5
in the microcontroller port register portb.

// The address of portb is 0x25.
constexpr std::uint8_t portb = UINT8_C(0x25);

// Cast std::uint8_t to std::uint8_t*.
volatile std::uint8_t* pb =
reinterpret_cast<volatile std::uint8_t*>(portb);

// Set portb.5.

*pb |= UINT8_C(0x20);

The reinterpret_cast operator is sometimes considered unsafe because
it can convert unrelated types. For a detailed description of the potential dangers of

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3

319

320 Appendix A: A Tutorial for Real-Time C++

reinterpret_cast, see Eckel [1], Chap. 3, in the subsection on
reinterpret_cast. For direct memory access in microcontroller program-
ming, however, reinterpret_cast can be considered safe and appropriate.

This book only uses the static_cast and reinterpret_cast cast oper-
ators. C++ also has the dynamic_cast and const_cast operators. The
dynamic_cast operator converts pointers and references. It also performs a
costly but robust runtime check to ensure that the result of the cast is valid. The
const_cast operator can change the constness or volatile qualification of an
object by either setting or removing its const or volatile attribute.

A.2 Uniform Initialization Syntax

C++ has a syntax for fully uniform type initialization that works on any object.
It was introduced with C++11. Uniform initialization syntax can be used along-
side traditional constructor initialization with parentheses and initialization with
operator= alike.

Uniform initialization syntax uses curly braces to hold the initial values. The
code below, for instance, initializes built-in types with uniform initialization syntax.

int n { 123 };

float f { 3.1415926535’8979323846F };

Aggregate types can also be initialized with uniform initialization syntax. The
code below initializes a structure with two data members.

struct my_struct
{
int n;
float f;

my_struct(const int n_ = 0,
const float& f_ = 0.0F) : n(n_),

f(f_) { }
};

my_struct instance
{
123, // Initial value of n.
3.14159265358979323846F // Initial value of f.

};

http://dx.doi.org/10.1007/978-3-662-47810-3_3

Appendix A: A Tutorial for Real-Time C++ 321

In certain situations the compiler can also deduce the type of an object based on
uniform initialization syntax. For example,

struct my_struct
{
// ...

};

my_struct function()
{
// The compiler correctly deduces the return type.
return
{
456,
0.5772156649’0153286061F

};
}

Uniform initialization syntax can be used in the constructor initialization list of
a class type as well as to initialize an instance of a class type. For instance,

struct point
{
point(const int x_ = 0,

const int y_ = 0) : x{x_},
y{y_} { }

int x;
int y;

};

point pt
{
123,
456

};

In addition, uniform initialization syntax can be used to conveniently initial-
ize STL containers such as std::array and std::vector (Sect. A.6). Some
examples are shown below.

322 Appendix A: A Tutorial for Real-Time C++

std::array<int, 3U> a
{
{ 1, 2, 3 }

};

std::vector<char> v
{
{ ’a’, ’b’, ’c’ }

};

A.3 Overloading

Function overloading in C++ allows for the creation of several functions with the
same name but different types of input and output parameters. For example,

// The area of a rectangle.
float area(const float& length,

const float& width)
{
return length * width;

}

// The area of a circle.
float area(const float& radius)
{
constexpr float pi = 3.14159265358979323846F;

return (pi * radius) * radius;
}

Global functions and local functions as well as class member functions can be
overloaded. It is essential, however, not to confuse class member overloading with
dynamic polymorphism and the runtime virtual function mechanism, described in
Sect. 4.4.

http://dx.doi.org/10.1007/978-3-662-47810-3_4

Appendix A: A Tutorial for Real-Time C++ 323

A.4 Compile-Time Assert

The static_assert facility checks a constant expression at compile time. The
syntax of static_assert is

static_assert(expression, message);

Here, expression is a condition to be checked by the compiler and message
contains potentially useful diagnostic text. If the result of expression tests
true, then static_assert does nothing. Compilation continues unabatedly.
If the result of expression tests false, then a compiler error ensues and the
message text is shown like a regular compiler error.
static_assert can be used to perform compile-time diagnostics. This can

be convenient for checking platform-specific requirements. For example,

constexpr unsigned int version = 3U;

// Print error message if version is less than 2.
static_assert(version >= 2U, "Version is too low!");

In this example, static_assert ensures that version is 2 or higher and
issues a compiler error if not.

A.5 Numeric Limits

The C++ standard library supports numeric limits of built-in types in its <limits>
header. The <limits> library provides the std::numeric_limits template
and provides specializations for both built-in floating-point and integer types as well
as bool. The member variable is_specialized is true for a specialization
of std::numeric_limits.

The synopsis of the std::numeric_limits template class is shown below.

namespace std
{
template<class T>
class numeric_limits
{
public:
static constexpr bool is_specialized = false;
static constexpr T min () { return T(); }
static constexpr T max () { return T(); }

324 Appendix A: A Tutorial for Real-Time C++

static constexpr T lowest() { return T(); }

static constexpr int digits = 0;
static constexpr int digits10 = 0;
static constexpr int max_digits10 = 0;
static constexpr bool is_signed = false;
static constexpr bool is_integer = false;
static constexpr bool is_exact = false;
static constexpr int radix = 0;
static constexpr T epsilon() { return T(); }
static constexpr T round_error() { return T(); }

static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;

static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm

= denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr T infinity () { return T(); }
static constexpr T quiet_NaN () { return T(); }
static constexpr T signaling_NaN() { return T(); }
static constexpr T denorm_min () { return T(); }

static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = false;
static constexpr bool is_modulo = false;
static constexpr bool traps = false;
static constexpr bool tinyness_before = false;
static constexpr float_round_style round_style

= round_toward_zero;
};

}

The specialization of std::numeric_limits for int on a platform with
32–bit int, for example, might be implemented as follows.

Appendix A: A Tutorial for Real-Time C++ 325

namespace std
{
template<>
class numeric_limits<int>
{
public:
static constexpr bool is_specialized = true;

static constexpr int min() { return 0; }
static constexpr int max()

{ return +2147483647; }
static constexpr int lowest()

{ return -2147483648; }

static constexpr int digits = 32;
static constexpr int digits10 = 9;
static constexpr int max_digits10 = 9;
static constexpr bool is_signed = false;
static constexpr bool is_integer = true;
static constexpr bool is_exact = true;
static constexpr int radix = 2;
static constexpr int epsilon() { return 0; }
static constexpr int round_error()

{ return 0; }

static constexpr int min_exponent = 0;
static constexpr int min_exponent10 = 0;
static constexpr int max_exponent = 0;
static constexpr int max_exponent10 = 0;

static constexpr bool has_infinity = false;
static constexpr bool has_quiet_NaN = false;
static constexpr bool has_signaling_NaN = false;
static constexpr float_denorm_style has_denorm

= denorm_absent;
static constexpr bool has_denorm_loss = false;
static constexpr int infinity () { return 0; }
static constexpr int quiet_NaN() { return 0; }
static constexpr int signaling_NaN()

{ return 0; }
static constexpr int denorm_min() { return 0; }

static constexpr bool is_iec559 = false;
static constexpr bool is_bounded = false;

326 Appendix A: A Tutorial for Real-Time C++

static constexpr bool is_modulo = false;
static constexpr bool traps = false;
static constexpr bool tinyness_before = false;
static constexpr float_round_style round_style

= round_toward_zero;
};

}

The std::numeric_limits templates allow the programmer to query infor-
mation about the numeric limits of built-in types. For example,

constexpr int n_max = std::numeric_limits<int>::max();

Numeric limits can be conveniently used in other templates. For example,

template<typename unsigned_type>
struct hi_bit
{
// The bit-position of the high bit.
static constexpr int bpos
= std::numeric_limits<unsigned_type>::digits - 1;

// The value of the type with the high-bit set.
static constexpr unsigned_type value
= static_cast<unsigned_type>(1) << bpos;

};

The scalable hi_bit template structure provides compile-time constant values.
For instance,

constexpr std::uint8_t hi08 =
hi_bit<std::uint8_t>::value; // (1 << 7)

constexpr std::uint16_t hi16 =
hi_bit<std::uint16_t>::value; // (1 << 15)

constexpr std::uint32_t hi32 =
hi_bit<std::uint32_t>::value; // (1 << 31)

constexpr std::uint64_t hi64 =
hi_bit<std::uint64_t>::value; // (1 << 63)

Appendix A: A Tutorial for Real-Time C++ 327

Specializations of std::numeric_limits can also be written to provide
information about the numeric limits of user-defined types.

A.6 STL Containers

The C++ standard library has a collection of container types in its STL. Containers
store multiple elements in a single object. There are various kinds of containers in
the STL. Some are optimized for fast random access, others for fast insertion and
deletion, etc. The choice of which container to use depends on the programming
situation at hand.

The most prevalent STL containers appearing in this book are the standard
sequential containers:

• std::array is a fixed-length sequential array aligned in memory.
• std::vector is similar to std::array. The std::vector container,
however, does not have fixed-length. Instead, a vector has a size that can be
dynamically changed at any time during its lifetime. The std::vector con-
tainer is designed for fast random access at any index within its range.

• std::deque is a double-ended queue. It is designed for fast insertion and dele-
tion at the front and back ends.

• std::list is a sequence that can be bidirectionally traversed, but lacks random
access. The std::list container supports fast insertion and deletion anywhere
in the sequence.

• std::forward_list is like std::list, but it can only be traversed in the
forward direction.

• std::basic_string, std::string and std::wstring are used to
store character-based sequences (i.e., strings). Even though strings do not ful-
fill all the formal requirements for sequential STL containers, many programmers
think of strings as sequential containers.

The STL also includes associative containers such as std::set, std::-
multiset, std::map, and std::multimap. Associative containers are not
sequentially ordered but rather use an internal mapping scheme such as lookup with
a key-and-value mechanism.

The STL also includes a collection of standard adapters such as std::stack,
std::queue and std::priority_queue. These provide different interfaces
by adapting the functionality of existing standard sequential containers.

STL containers are templated, meaning they have strong generic character. Con-
tainers have various constructors, a destructor and a selection of member functions.
Using STL containers is straightforward. For example,

328 Appendix A: A Tutorial for Real-Time C++

#include <vector>

void do_something()
{
// Create v with three elements having value 0.
std::vector<int> v(3U, 0);

// Set the values in v to (1,2,3).
v[0U] = 1;
v[1U] = 2;
v[2U] = 3;

// The initial size is 3.
std::vector<int>::size_type s = v.size();

v.push_back(4);

// The size is now 4.
s = v.size();

int v0 = v.at(0U); // Value of v0 is 1.
int v3 = v.back(); // Value of v3 is 4.

// Copy constructor from another vector.
std::vector<int> v2(v);

// Constructor from other input iterators.
std::vector<int> v3(v.begin(), v.end());

// Support for operator=().
std::vector<int> v4 = v;

}

This code creates a vector of integers, an std::vector<int>, called v. The
vector v is initially created with three elements set to zero. The three elements are
subsequently set to (1, 2, 3) using the index operator (operator[]). A fourth
element with a value of 4 is pushed back onto the back end of the vector using
the member function push_back(). The code sample also illustrates some of
std::vector’s other convenient methods such as size(), at() and back().

Containers can be copy constructed, created from another sequence of iterators
and copy assigned. Additional member functions of containers include other access
functions and sequence operations such as insertion, assignment, etc. See [5, 7] for
complete documentation of containers and their member functions.

Appendix A: A Tutorial for Real-Time C++ 329

Templated containers use member type definitions to define common member
types. An example is std::vector’s size_type, shown above. Other common
member types of containers include iterator types, pointer types, reference types and
a value type. Again, consult [5, 7] for complete documentation of these.

STL containers are useful for embedded systems programming and are used
extensively in this book and its companion code. Containers facilitate program orga-
nization and data localization. Containers of base class pointers or references allow
for powerful sequential polymorphism. Containers are particularly useful in combi-
nation with STL algorithms (Sect. A.8).

A.7 STL Iterators

An iterator is an object designed for traversing through the elements of sequential
containers and accessing their values. Iterators can be used to read and write the
elements of standard STL containers. In particular, each standard STL container
facilitates manipulation of its elements via iterators by providing dedicated itera-
tor types and standardized iterator functions such as begin() and end(). For
example,

#include <vector>

void do_something()
{
// Set v to (1,2,3).
std::vector<int> v({ 1, 2, 3 });

// Declare an iterator for std::vector<int>.
std::vector<int>::iterator it;

// Add 5 to each element in v.
for(it = v.begin(); it != v.end(); ++it)
{

*it += 5;
}

// Now v is (6,7,8).
}

This code uses std::vector’s iterator type to walk through v in the
range from v.begin() to the element just before v.end(). The loop statement
adds 5 to each of v’s elements.

330 Appendix A: A Tutorial for Real-Time C++

An iterator pair that delimits a range in a sequence from First to Last is
denoted by

[
First, Last

)
, (A.1)

where established convention mandates that First points to the first element in
the sequence and Last points to the element that is 1 increment past the final ele-
ment. The STL’s standard algorithms (Sect. A.8) use this convention. Using this
convention consistently ensures compatibility with the STL and other code. The
code sample below uses a range of input iterators with std::copy().

#include <algorithm>
#include <array>
#include <vector>

void do_something()
{
// Initialized src with (101, 101, 101).
const std::vector<int> src(3U, 101);

// Uninitialized dst.
std::array<int, 3U> dst;

// Copy from vector src to array dst.
// dst now also contains (101, 101, 101).
std::copy(src.begin(), src.end(), dst.begin());

}

All iterators support incrementing (++) to advance the iterator to the next element
in the sequence. Some STL iterators support decrementing (--) to lower the itera-
tor to the previous element. In general, the pre-increment and pre-decrement forms
of (++) and (--) are more efficient than the post-increment and post-decrement
forms. Many programmers, therefore, preferentially use the pre-forms in situations
for which pre and post are functionally identical. All STL iterators use the derefer-
encing operator (*) or the member selection operator (->) for element access.

C++ has several categories of iterators including (among others) forward itera-
tors, bidirectional iterators and random access iterators.

There is a clear distinction between constant iterators and non-constant itera-
tors. In particular, constant iterators are limited to read-only access. Non-constant
iterators can read and write container elements.

Appendix A: A Tutorial for Real-Time C++ 331

container_type::iterator nonconst_iterator1
= cnt.begin();

container_type::const_iterator const_iterator2
= cnt.begin();

container_type::const_iterator const_iterator3
= cnt.cbegin();

*nonconst_iterator1 = 1; // OK

*const_iterator2 = 2; // Error!

*const_iterator3 = 3; // Error!

The “c” in cbegin() emphasizes that the iterator iterates over constant ele-
ments, as in const_iterator. Some special container member iterator func-
tions such as begin() and end() are overridden, having both constant as well
as non-constant versions. Others like cbegin() and cend() are solely constant.
The STL has several iterator classes that can be used standalone or as base classes
for custom iterators. The standard iterator classes are defined in <iterator>.

A.8 STL Algorithms

The STL has an extensive collection of templated algorithms specifically designed
to operate on a range of iterators in a generic way. Most of the standard algorithms
are defined in <algorithm> and some others are defined in <numeric> and
<memory>.

STL algorithms are highly versatile because they can be used generically with
any kind of iterator—even with regular pointers. The standard algorithms can sim-
plify many common coding situations by transferring program complexity from the
user code to the STL. More information on STL algorithms can be found in [2, 5,
7].

There are several categories of algorithms including:

• non-modifying sequence operations like std::all_of(), std::count(),
std::for_each(), std::search(), etc,

• mutating sequence operations that modify the elements in the range including
algorithms such as std::copy(), std::move(), std::fill() and the
like.

• sorting algorithms,
• binary search algorithms operating on sorted ranges,
• merge operations that act on sorted ranges,
• heap operations,

332 Appendix A: A Tutorial for Real-Time C++

• and comparison operations including algorithms such as the minimax functions
std::min() and std::max() and the generalized alphabetical compare
algorithm std::lexicographical_compare().

A typical function prototype of an STL algorithm is shown below.

template<typename iterator_type,
typename function_type>

function_type std::for_each(iterator_type first,
iterator_type last,
function_type function);

This is the function prototype of std::for_each(), which was also shown
in Sect. 5.8. The std::for_each() algorithm applies its function parameter
(function) to each element in the range

[
first, last

)

We will now present several examples showing how to use STL algorithms.

#include <algorithm>
#include <vector>

namespace
{
void add_five(int& elem)
{
elem += 5;

}
}

void do_something()
{
std::vector<int> v(3U);

// Set v to (1,2,3).
v[0U] = 1;
v[1U] = 2;
v[2U] = 3;

// Now v is (6,7,8).
std::for_each(v.begin(), v.end(), add_five);

}

In this example, the add_five() subroutine is called for each element in the
range

[
v.begin(), v.end()

)
. An algorithm’s function parameter can be a func-

tion with static linkage that has non-subroutine-local scope.

http://dx.doi.org/10.1007/978-3-662-47810-3_5

Appendix A: A Tutorial for Real-Time C++ 333

It is also possible to use a dedicated class type for an algorithm’s function para-
meter. This is called a functor, or a function object. In order to work properly, the
functor must support the function call operator, operator(). Dedicated function
objects incur overhead. It only makes sense to use one if its advantages (i.e., encap-
sulation, data localization and reduction of complexity) justify its costs.

An example using a functor struct is shown below. Also in this code sample,
5 is added to each element in v using std::for_each().

#include <algorithm>
#include <vector>

struct add_five
{
add_five() { }

void operator()(int& elem)
{
elem += 5;

}
};

void do_something()
{
std::vector<int> v(3U);

// Set v to (1,2,3).
v[0U] = 1;
v[1U] = 2;
v[2U] = 3;

std::for_each(v.begin(), v.end(), add_five());

// Now v is (6,7,8).
}

Algorithms can use a so-called lambda expression (Sect. A.9) for the function
object. For example,

#include <algorithm>
#include <vector>

void do_something()
{

334 Appendix A: A Tutorial for Real-Time C++

std::vector<int> v(3U);

// Set v to (1,2,3).
v[0U] = 1;
v[1U] = 2;
v[2U] = 3;

std::for_each(v.begin(),
v.end(),
[](int& elem)
{
elem += 5;

});

// Now v is (6,7,8).
}

Lambda expressions are efficient and elegant when used with algorithms because
they integrate the entire functionality of the function object within the algorithm’s
call parameters. This also facilitates compiler optimization, see Sect. 6.18.

To complete the examples in this section, we will briefly look ahead to Sect. A.10
and initialize the vector with an std::initializer_list.

#include <algorithm>
#include <initializer_list>
#include <vector>

void do_something()
{
// Set v to (1,2,3).
std::vector<int> v({ 1, 2, 3 });

std::for_each(v.begin(),
v.end(),
[](int& elem)
{
elem += 5;

});

// Now v is (6,7,8).
}

http://dx.doi.org/10.1007/978-3-662-47810-3_6

Appendix A: A Tutorial for Real-Time C++ 335

In this coding example, the combined use of a standard algorithm, a lambda expres-
sion and an initializer list provides for a high degree of coding efficiency and per-
formance in C++.

There are many algorithms in the STL and most developers do not rigorously
maintain a complete mental list of all available algorithms and in which situations
to use them. The most important things to remember about the standard algorithms
are that there even are standard algorithms in the first place and where to find help
about them, for example, with help functions, additional literature, etc.

A.9 Lambda Expressions

A lambda expression is an anonymous function that has a body but does not have a
name. Lambda expressions are stylistically eloquent and can be optimized particu-
larly well when used with the standard algorithms of the STL.

A C++ lambda expression has the form shown below [8].

[capture](arguments) -> return-type { body }

We have already used lambda expressions with STL algorithms previously in
this book. Lambda expressions can also be used as standalone function objects. The
lambda expression shown below, for example, computes the float value of the
hypotenuse,

h =
√

x2 + y2 . (A.2)

#include <cmath>

void do_something()
{
const float x = 3.0F;
const float y = 4.0F;

// Capture x and y by reference.
// The lambda expression has no input parameters.
// The lambda expression returns the float value
// of the hypotenuse.

const float h
= [&x, &y]() -> float

{
return std::sqrt((x * x) + (y * y));

336 Appendix A: A Tutorial for Real-Time C++

}();

// The value of h is 5.0F.
}

The local variables x and y are captured by reference. The body of the anony-
mous function is implemented within the scope of the curly braces. The trailing set
of parentheses after the closing curly brace effects the function call.

A.10 Initializer Lists

C++11 added several useful templated container classes to the STL. One of these
is std::initializer_list. An initializer list is a sequential list of constant
objects or values. Elements in an initializer list must be type-identical or type-
convertible. STL containers can be conveniently initialized with an initializer list.
These convenient kinds of initializations were not possible prior to the inclusion of
std::initializer_list in the STL.

The following pseudo-code sequences, for example, use an std::initial-
izer_list to initialize a (non-specified) STL container with constant values.

// Initialization with the container’s operator=.
container c1 = { 1, 2, 3 };

// Initialization with the container’s ctor.
container c2({ 1, 2, 3 });

// Initialization with uniform initialization syntax.
container c3 { { 1, 2, 3 } };

Functions can accept initializer lists as parameters. In addition, initializer lists
support iterators. For example,

#include <initializer_list>
#include <numeric>

constexpr std::initializer_list<int> lst {1, 2, 3};

const int sum = std::accumulate(std::begin(lst),
std::end(lst),
0);

Appendix A: A Tutorial for Real-Time C++ 337

Initializer lists are quite useful for embedded systems programming because, just
like tuples, they provide a way to group objects while incurring low code over-
head. Because their values are potentially compile-time constant, initializer lists
lend themselves well to inlining and template metaprogramming.

A.11 Type Inference with Auto

What follows is a note for C and traditional C++ programmers. The meaning of
the auto keyword drastically changed as C++ evolved from C++03 to C++11 and
beyond. The original legacy auto keyword was used, in both C as well as C++03
and C++98, as a qualifier for local variables. It was a hint to the compiler to prefer-
entially store a local variable on the stack instead of in a CPU register.

C++11, C++14 and later, however, use the auto keyword for automatic compile-
time type inference. For example,

auto n = 3; // n is int.
auto u = std::uint8_t(3U); // u is std::uint8_t.

// A bit more complicated... Here, the type
// of collection is std::initializer_list<int>.
auto collection { 1, 2, 3 };

Type inference can reduce the complexity of code. In particular, instead of writ-
ing long iterator type names such as this:

for(std::array<int>::const_iterator i = a.cbegin();
i != a.cend();
++i)

{
// ...

}

automatic type inference with auto can be used like this:

for(auto i = a.cbegin(); i != a.cend(); ++i)
{
// ...

}

338 Appendix A: A Tutorial for Real-Time C++

This can be made even more generic and flexible with the STL’s range access
template functions std::cbegin() and std::cend(). See, for example,
Sect. 24.6.5 in [4]. In particular,

for(auto i = std::cbegin(a); i != std::cend(a); ++i)
{
// ...

}

This type of construction comes in handy for, among other things, generic tem-
plate programming.

A.12 Range-Based for (:)

C++11 added a simplified range-based for(:) short-hand notation for iterating
over the elements of a list. This simplified range-based iteration statement allows
for easy navigation through a list of elements. For example,

std::vector<char> v({1, 2, 3});

for(char& c : v)
{
c += static_cast<char>(0x30);

}

This simplified loop basically means, iterate over every character in v, and add
0x30 to each one. The traditional for(;;)-loop and the for_each() algorithm
still work and can be used for the same things. The new shorthand of the range-based
for(:)-loop is, however, potentially more convenient and terse.

Range-based for(:)-loops work for C-style arrays, initializer lists, and any
type that has the normal begin() and end() functions. This includes all of the
standard library containers that have begin() and end().

A.13 Tuple

A tuple is the generalization of an ordered group of objects, such as a pair or a triple,
a quadruple, a quin-tuple, a sex-tuple, etc. While other programming languages such
as Python and Perl have had tuples for quite a while, they are relatively new in C++,
available with C++11. Tuples are implemented as template classes. The template
parameters of a tuple define the number of tuple objects and their types.

For example, a tuple consisting of three objects, a float, a char and an int,
can be created and used as shown below.

Appendix A: A Tutorial for Real-Time C++ 339

#include <tuple>

typedef std::tuple<float, char, int> tuple_type;

void do_something()
{
// Make a tuple of a float, char and an int.
tuple_type t(1.23F, char(’a’), 123);

// Get element number 1 of the tuple (’a’).
char c = std::get<1>(t);

// Get element number 2 of the tuple (123).
int n = std::get<2>(t);

// Use the type member of tuple_element to obtain
// the float value of the zero’th tuple element.
std::tuple_element<0, tuple_type>::type val
= std::get<0>(t);

// Get the size of the tuple.
int size = std::tuple_size<tuple_type>::value;

}

Tuples can be created and initialized with their ctor using appropriate arguments.
tuple also provides a default ctor which uses the default ctors of its respec-
tive elements. The N th element of an ordered tuple or a reference thereto can be
retrieved with the template std::get() function. STL’s std::tuple_size
wraps the tuple element count by storing the number of elements in its member
variable value. The std::tuple_element template wraps the type of a tuple
element. Note in the listing that a convenient type definition has been used in order
to avoid typing long and complicated tuple types.

Tuples can be copy assigned with operator=. They can also be copy con-
structed. Copy and assign use member-wise assignment. Copy and assign also
require that for each element pair the destination can be converted from the source.

Tuples can be assigned using STL’s std::make_tuple() facility. For exam-
ple, the tuple in the listing above could be created with std::make_tuple().
In particular,

#include <tuple>

typedef std::tuple<float, char, int> tuple_type;

tuple_type t = std::make_tuple(1.23F, char(’a’), 123);

340 Appendix A: A Tutorial for Real-Time C++

Tuples can be compared. Comparison functions use relational operators and per-
form pair-wise comparison. Comparison stops when the first element pair compari-
son yields true.

The code sample below shows tuple copy and compare.

#include <string>
#include <tuple>

void do_something()
{
std::tuple<int, std::string> t1(123, "identical");
std::tuple<int, std::string> t2 = t1;
std::tuple<int, std::string> t3(t1);

bool result;
result = (t1 == t2); // true
result = (t1 == t3); // true

std::get<0>(t2) += 1; // 123 -> 124
result = (t2 > t1); // true

// Transform identical -> xdentical
std::get<1>(t3).at(0U) = ’x’;
result = (t3 > t1); // true

}

Tuples are immensely useful because they can group collections of objects
together in a single representation. At the same time, tuples incur a minimum of
code overhead because tuple elements are partly or completely available at compile-
time. In particular, the template facilities std::get(), std::tuple_size
and std::tuple_element can be optimized particularly well at compile time.
Tuples lend themselves readily to template design and template metaprogramming,
see Sect. 5.10.

A.14 Regular Expressions

Support for lexical parsing of regular expressions in C++ is implemented in the
<regex> library. A complete implementation of <regex> involves extensive
templates and a significant amount of object code. Therefore, <regex> is often
too large-scale for most microcontroller projects.

Microcontroller programming, however, usually involves other associated PC-
based programs and utilities used for a variety of purposes such as manipulating

http://dx.doi.org/10.1007/978-3-662-47810-3_5

Appendix A: A Tutorial for Real-Time C++ 341

files, automatic code generation, designing specialized language parsers, etc. Lex-
ical parsing with regular expressions can drastically simplify the implementations
of these programs. Therefore, the microcontroller programmer should have basic
competence with <regex>.

Consider a regular expression designed for parsing a composite string composed
of three substrings. The first substring is an alphanumeric name including under-
scores. The second substring is a hexadecimal number. The third substring is a
base–10 unsigned integer. For example,

_My_Variable123 03FFB004 4

A regular expression for parsing this composite string is shown below:

const std::regex
rx(std::string("([_0-9a-zA-Z]+)") // Alnum name.

+ std::string("[[:space:]]+") // 1+ spaces.
+ std::string("([0-9a-fA-F]+)") // Hex integer.
+ std::string("[[:space:]]+") // 1+ spaces.
+ std::string("([0-9]+)")); // Base-10 int.

This regular expression (rx) uses POSIX syntax [3]. The <regex> library sup-
ports several syntaxes, POSIX being the default. The first, third and fifth strings in
the definition of the regular expression are enclosed in parentheses. The parenthe-
ses indicate a capture group of the regular expression. A capture group contains
an expression which should be caught, in other words stored, when checking for a
regular expression match.

A program showing how to use this regular expression is shown in the sample
code below.

#include <algorithm>
#include <iostream>
#include <iterator>
#include <regex>
#include <string>

int main()
{
const std::regex rx(std::string("([_0-9a-zA-Z]+)")

+ std::string("[[:space:]]+")
+ std::string("([0-9a-fA-F]+)")
+ std::string("[[:space:]]+")
+ std::string("([0-9]+)"));

342 Appendix A: A Tutorial for Real-Time C++

const std::string str("_My_Variable123 03FFB004 4");

std::match_results<std::string::const_iterator> mr;

if(std::regex_match(str, mr, rx))
{
std::copy(mr.begin(),

mr.end(),
std::ostream_iterator

<std::string>(std::cout, "\n"));
}

}

The regex_match() function is a Boolean subroutine with three input para-
meters. There are six different overwritten forms of regex_match(). The form
used in the listing checks if its input string, str, identically matches its input regular
expression, rx. If the regular expression matches, then regex_match() returns
true. The match results, mr, contain the results of the regular expression match.

The output of the program is:

_My_Variable123 03FFB004 4
_My_Variable123
03FFB004
4

A successful match has N + 1 elements in the match results, where N is the
number of capture groups in the regular expression. The 0th match result contains
the entire string submitted to the match. In this example, there are four elements in
the match results, one for the input string and three for the capture groups.

Regular expressions are templated. For example, std::regex is actually a
type definition for std::basic_regex<char>. Therefore, regular expressions
can be used with strings or sequences of other types. In addition, match_results
are templated and support iterators allowing for convenient manipulation with STL
standard algorithms.

Additional information on std::regex can be found in [6]. Even though this
reference describes the Boost.Regex library, it is also applicable here because
std::regex originates from Boost.

Appendix A: A Tutorial for Real-Time C++ 343

References

1. B. Eckel, Thinking in C++ Volume 1: Introduction to Standard C++, 2nd edn (Pearson Pren-
tice Hall, Upper Saddle River, 2000)

2. B. Eckel, Thinking in C++ Volume 2: Practical Programming (Pearson Prentice Hall, Upper
Saddle River, 2004)

3. ISO/IEC, ISO/IEC 9945:2003: Information Technology-Portable Operating System Interface
(POSIX) (International Organization for Standardization, Geneva, 2003)

4. ISO/IEC, ISO/IEC 14882:2011: Information Technology-Programming Languages—C++
(International Organization for Standardization, Geneva, 2011)

5. N.M. Josuttis, The C++ Standard Library: A Tutorial and Reference, 2nd edn. (Addison-
Wesley, Boston, 2011)

6. B. Karlsson, Beyond the C++ Standard Library: An Introduction to Boost (Addison-Wesley,
Boston, 2005)

7. R. Lischner, STL Pocket Reference (O’Reilly, Sebastopol, 2004)
8. Wikipedia, Anonymous Function (2012), http://en.wikipedia.org/wiki/Anonymous_function

http://en.wikipedia.org/wiki/Anonymous_function

Appendix B
A Robust Real-Time C++ Environment

Real-time programming is characterized by demanding performance, size and safety
constraints. This, combined with the large scope of the C++ language and a poten-
tially complex set of development tools, can make the creation of high-quality real-
time C++ software a truly challenging endeavor. In the harsh world of real-time
C++, the stability of the development environment can contribute to the overall
quality of the software as much or even more than the actual coding itself. This
chapter discusses various aspects related to the robust real-time C++ environment.

B.1 Addressing the Challenges of Real-Time C++

Microcontroller software is usually cost-sensitive, safety-critical or both and dem-
ands the utmost in efficiency and robustness. The development environment and
the executable program usually run on separate systems. In addition, flashing the
microcontroller generally uses a connection with a hardware interface for in-system
programming (ISP) with an on-chip debugger or an in-circuit emulator (ICE). This
can make it particularly difficult to visualize, debug and test microcontroller soft-
ware.

When addressing the challenges of real-time C++ programming, it may be best
to start with a simple project and build up tools, coding competence and a collection
of re-usable software components steadily and methodically. The brief checklist
below describes some considerations that need to be made when doing real-time
C++ programming.

• Select the right microcontroller for the application. Consider performance and
cost aspects. Decide if the application needs a cost-sensitive 8–bit microcontroller
or a more powerful, more expensive 32–bit or 64–bit microcontroller. Try to esti-
mate how much program memory and RAM are needed and select the microcon-
troller accordingly. If future versions of the application are planned, it may be
advisable to use a scalable microcontroller family that includes pin-compatible
chip derivatives accommodating potential extensions of functionality.

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3

345

346 Appendix B: A Robust Real-Time C++ Environment

• Get a microcontroller prototype up and running. Students and hobbyists may be
well served with a commercially available microcontroller starter kit including a
board, a debug interface and a demo compiler. Using a starter kit can ease the
learning curve by providing a functioning set of hardware, software and code
examples, all in one package. If working in a production environment, try to
ensure that a functioning prototype board is available early in the development
cycle.

• Obtain a high-quality C++ compiler. Compiler availability can be an issue and
successful development mandates that a good C++ compiler is available for the
microcontroller. GCC is cost free and known for having a high degree of lan-
guage standards conformance. Professionally supplied compilers might beat the
performance of GCC, particularly for low-level hardware programming requir-
ing intimate knowledge of the microcontroller architecture. At the same time,
professionally supplied compilers tend to be prohibitively expensive for students
and hobbyists. Those interested in assessing compiler price and performance may
want to carry out market research in combination with compiler benchmarks for
the domain of the application.

• Depending on project necessities, make sure a microcontroller programmer, a
simulator, a debugger or an ICE, or several of these are available. If other test
and measurement devices such as an oscilloscope or logic analyzer are required,
verify that the equipment is available. One should verify that the equipment works
and that one has basic knowledge of how to use it, or knows where to find help
if not.

• Design and use a software architecture (Sect. B.2). The architecture significantly
influences the overall quality of the entire software.When doing any robust micro-
controller programming in C++, it is essential to use a layered software architec-
ture that shields the application layer from the low-level hardware-specific, non-
portable register manipulation code. In this way, application software can be used
and re-used, thereby improving portability and localizing the work of switching
the microcontroller to the hardware layer.

• Establish coding competence. C++ is a rich, multifaceted language. If working
alone, try to learn the C++ language as best as possible through independent
study. Keep in touch with other programmers and best-practice in the commu-
nity e.g., via Internet forums, additional literature, etc.

• Software reliability can be improved by adhering to established coding guide-
lines, such as [2]. Conforming to guidelines can be mandatory when working in
a professional setting where proving reliability to customers may be required in
an assessment or audit situation. When working on projects that demand high
reliability, consider using a static syntax checker in addition to the compiler.

• Build up a library of re-usable code. Programming microcontrollers in C++ can be
a long-term process based on years of effort. Over the course of time, a body of re-
usable, portable code can be built up for programming situations that repeatedly
arise. Some examples of components that I have collected in my own libraries, and
partially in this book, include register manipulation mechanisms (Chap. 7), cus-
tom allocators (Chap. 10), timers (Sect. 15.3), multitasking schedulers (Chap. 11),

http://dx.doi.org/10.1007/978-3-662-47810-3_7
http://dx.doi.org/10.1007/978-3-662-47810-3_10
http://dx.doi.org/10.1007/978-3-662-47810-3_15
http://dx.doi.org/10.1007/978-3-662-47810-3_11

Appendix B: A Robust Real-Time C++ Environment 347

filter functions (Chap. 14), mathematical functions (Chap. 12), convenient utilities
(Chap. 15), etc.

B.2 Software Architecture

No matter how small or large a given software may be, it is essential to use a good,
properly sized software architecture. The architecture may contribute to the overall
quality of the software more strongly than any other factor. Programming skill and
elegance of implementation alone can only augment software quality, not create
it. The combination of solid architecture and competent coding ultimately leads to
success in real-time C++.

When working in a project with a documented software architecture, one is
not merely programming but engaging in software engineering and system design
instead. Metaphorically speaking, software architecture comprises the foundation,
floors and walls of the project; the code being the plaster, paint and furniture. In the
absence of a stable and robust architecture, even good code will, in time, erode and
crumble under its own weight.

Designing a software architecture can start with a simple block diagram of the
major software layers and components such as the one shown in Fig. B.1. Initially,
this can be a rudimentary hand-sketched diagram. Create the corresponding direc-
tories and files and fill them with preliminary namespaces, classes and functions
that embody the most important interfaces. At first, classes and functions can be

A Microcontroller Software Architecture

Microcontroller Abstraction Layer

Oscillator Watchdog Timer Serial

System Layer

Startup Monitor Debug Idle

Application Layer

Appl_1 Appl_2

O
pe

ra
tin

g
S

ys
te

m

U
til

iti
es

Fig. B.1 A layered microcontroller software architecture is shown

http://dx.doi.org/10.1007/978-3-662-47810-3_14
http://dx.doi.org/10.1007/978-3-662-47810-3_12
http://dx.doi.org/10.1007/978-3-662-47810-3_15

348 Appendix B: A Robust Real-Time C++ Environment

Table B.1 The runtime limits for a system with three priority classes are shown

Priority class Design target
(µs)

Worst-case maximum
(µs)

High-priority interrupts < 10 � 25

Low-priority interrupts < 40 � 100

All tasks < 500 � 1,000

incomplete skeletons. Implementation details can be added later. Try to ensure that
names of namespaces, classes, functions, etc. have recognizable associations with
the architecture sketch.

Software architecture need not be complicated. A straightforward one with a few
clearly defined layers is usually best. Consider, once again, the software architecture
shown in Fig. B.1. This architecture consists of three layers that have successively
higher levels of abstraction.

The MCAL contains microcontroller-specific peripheral drivers such as timer,
watchdog or communication interfaces. Intermediate system-level software such as
startup routines and monitor functions can be implemented in the System Layer. The
Application Layer contains high-level application software. Modules in the applica-
tion layer should be kept entirely portable. The operating system and project util-
ities can be used by all three layers in the architecture. Over the years, I have had
good results with this kind of layered architecture in numerous projects with varying
application size.

When developing a software architecture, try to achieve easy-to-understand mod-
ularity and object granularity. Avoid overly long files, classes and subroutines.
It may take a few iterations until the architecture and functional granularity feel
right. Time invested in designing software architecture is, however, time spent well
because the architecture provides for long-lasting organization in a project that may
potentially be worked on for years.

B.3 Establishing and Adhering to Runtime Limits

Microcontroller programming is time critical and things tend to go wrong if the
software has unpredictable timing. For example, a late response from a communi-
cation attempt might be just as bad as the wrong response, regardless of its content.
To address this problem, it can be helpful to establish runtime limits and adhere to
them.

This can be done by identifying the priority classes of tasks and interrupts in
the system and defining runtime constraints for them. Table B.1, for example, lists
potential runtime limits selected for a system with three priority classes: high-
priority interrupts, low-priority interrupts and the task-level priority. The runtime
constraints are given in a form indicating a typical value representing the design

Appendix B: A Robust Real-Time C++ Environment 349

target and a maximum limit which should never be exceeded and only sporadically
neared under worst-case load conditions.

When designing an embedded microcontroller system, the most time consuming
software processes should be identified up front and designed with a temporal gran-
ularity that facilitates an even distribution of the work load. In general, it is poor
form to program with blocking calls that engage the CPU for long time spans such
as hundreds of microseconds or even several milliseconds. It is much better to pro-
gram short, fast sequences in a multitasking environment that process information
or service a state machine quickly and rapidly relinquish control to other processes
in the system. Interrupt service routines should be held terse and efficient. Keep-
ing the runtime within the established limits generally leads to a more predictable
software with higher quality and reliability.

References

1. W. van Hagen, The Definitive Guide to GCC (Apress, Berkeley, 2006)
2. Programming Research Ltd., High Integrity C++ Coding Standard Version 4.0 (2015), http://

www.codingstandard.com/HICPPCM/index.html

http://www.codingstandard.com/HICPPCM/index.html
http://www.codingstandard.com/HICPPCM/index.html

Appendix C
Building and Installing GNU GCC Cross
Compilers

There are several reasons one might want to build GCC [4], such as to obtain the
newest version of the compilers or to enable additional language features or other
languages. This appendix provides step-by-step instructions for building a GNU
GCC cross compiler for our target with the 8–bit microcontroller. GCC can be most
easily built on ∗nix-like systems. In this example, the build is done in MinGW/M-
SYS [10] using standard GNU auto-tools configure scripts and make procedures.
The methods in this chapter can easily be adapted for building a cross compiler
targeted to another microcontroller architecture.

C.1 The GCC Prerequisites

Building GCC has prerequisites [5]. This means that certain libraries must be
installed and available to the build system before GCC can be built. If any pre-
requisites are missing, these either need to be installed or built from source before
building GCC. At the time of writing this book, the prerequisites for building GCC
include:

• GMP [7], the GNU multiprecision library.
• MPFR [6, 12], the GNU multiprecision floating-point library.
• MPC [11], a C library for the multiprecision arithmetic of complex numbers.
• PPL, the Parma Polyhedra Library [1], used for abstract geometrical polyhedron
representation.

• Binutils [3], the binary utilities for the cross compiler such as linker, assembler,
object dump, C++ name demangler, etc.

The prerequisites for building GCC evolve over time. At the time of writing the
second edition of this book, the prerequisites for building GCC include:

• GMP [7], the GNU multiprecision library.
• MPFR [6, 12], the GNU multiprecision floating-point library.

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3

351

352 Appendix C: Building and Installing GNU GCC Cross Compilers

• MPC [11], a C library for the multiprecision arithmetic of complex numbers.
• ISL [9], the integer set library used for manipulating sets of integers. GCC uses
ISL for its graphite loop optimizations [5]. Building ISL requires an installed
CLooG library [2], another software library used for polyhedron analysis.

• Binutils [3], the binary utilities for the cross compiler such as linker, assembler,
object dump, C++ name demangler, etc.

It may seem odd that GCC has prerequisites for such exotic mathematical func-
tions as multiprecision floating-point numbers and geometrical polyhedron repre-
sentations. The multiprecision functions in GMP, MPFR and MPC are needed by
GCC for compile-time calculation of floating-point mathematical expressions. The
geometrical polyhedron representations in PPL (or ISL) are used for high-level opti-
mizations including program loop analysis, parallelization and vectorization.

Perhaps the binary utilities should be considered part of the compiler rather than
a prerequisite. Here, we will call the binary utilities a prerequisite simply because
the build of GCC needs to use them. This, in turn, means that the binary utilities
need to be built and installed prior to building GCC.

C.2 Getting Started

Building the GCC prerequisites and GCC can take several hours of manual work. At
times, this work can be tedious involving intricate command lines, detailed operat-
ing system operations and careful monitoring. It may, therefore, be best to undertake
building the GCC prerequisites and GCC only if ample time and peace of mind are
available for this kind of endeavor. The process of building, installing and using
GCC constitutes a rich topic, see [4, 8].

Sometimes building a GNU cross compiler works. At other times, it does not.
There are several reasons why building GCC might fail. The prerequisites might
be absent or improperly built. The binary utilities or the compiler sources might
be flawed for the particular compiler version and target. Very experienced compiler
builders often patch the sources of a new compiler version, thereby correcting minor
flaws. The strategy thereby is to integrate the patches in a compiler bug-fix in a later
subversion.

Middle-of-the-road compiler builders and users should probably avoid such
advanced compiler development as patching the sources. It may, therefore, be nec-
essary to do a bit of trial-and-error work in order to find a combination of prerequi-
sites, binary utilities and a compiler version that harmoniously build together. The
components selected in this appendix have been successfully built.

The entire build session including all the prerequisites, the binary utilities and
GCC can best be organized within a single root directory. It is not a good idea to
perform the build of a given component in its own source tree directory. For each
component, therefore, we use two directories, one for the component’s source tree
and another sibling object directory next to the source tree in which the build is
carried out.

Appendix C: Building and Installing GNU GCC Cross Compilers 353

We begin by creating a root directory for all the builds. Here, for example, we
will use the directory /home/tmp as the root directory for performing the builds.

• Create the directory /home/tmp.

C.3 Building GMP

We will now build GMP version 5.0.5 in MinGW/MSYS.

• cd /home/tmp
• Get the GMP sources and unpack them in /home/tmp.
• Perform the command mkdir objdir-gmp-5.0.5 in order to make the
GMP sibling directory.

• cd objdir-gmp-5.0.5

The source tree of GMP should be in the GMP source directory:

/home/tmp/gmp-5.0.5

We should now be in the GMP sibling object directory:

/home/tmp/objdir-gmp-5.0.5

In the objdir-gmp-5.0.5 GMP sibling object directory, configure GMP
with the following command:

../gmp-5.0.5/configure --prefix=/usr/local \
--build=i686-pc-mingw32 --disable-shared \
--enable-static --enable-cxx CPPFLAGS="-fexceptions"

This configuration defines the characteristics that will be used when building
GMP. It defines the prefix where the build results will be installed, specifies the build
system and instructs the build to create static libraries, not dynamic link libraries.

In the objdir-gmp-5.0.5 GMP sibling object directory, make GMP with
the command:

make --jobs=2

This will take a while. The optional --jobs=2 flag indicates that two processes
should be used to speed up the build. It is also possible to use more processes.

In the objdir-gmp-5.0.5 GMP sibling object directory, install GMP with
the command:

make install

354 Appendix C: Building and Installing GNU GCC Cross Compilers

C.4 Building MPFR

We will now build MPFR version 3.1.1 in MinGW/MSYS.

• cd /home/tmp
• Get the MPFR sources and unpack them in /home/tmp.
• Perform the command mkdir objdir-mpfr-3.1.1 in order to make the
MPFR sibling directory.

• cd objdir-mpfr-3.1.1

The source tree of MPFR should be in the MPFR source directory:

/home/tmp/mpfr-3.1.1

We should now be in the MPFR sibling object directory:

/home/tmp/objdir-mpfr-3.1.1

In the objdir-mpfr-3.1.1MPFR sibling object directory, configure MPFR
with the following command:

../mpfr-3.1.1/configure --prefix=/usr/local \
--build=i686-pc-mingw32 --disable-shared \
--enable-static --with-gmp=/usr/local

This configuration defines the characteristics that will be used when building
MPFR. It defines the prefix where the build results will be installed, specifies the
build system and instructs the build to create static libraries, not dynamic link
libraries. The configuration also tells the build of MPFR where the installation of
GMP can be found.

In the objdir-mpfr-3.1.1 MPFR sibling object directory, make MPFR
with the command:

make --jobs=2

This will take a while. The optional --jobs=2 flag indicates that two processes
should be used to speed up the build. It is also possible to use more processes.

In the objdir-mpfr-3.1.1 MPFR sibling object directory, install MPFR
with the command:

make install

Appendix C: Building and Installing GNU GCC Cross Compilers 355

C.5 Building MPC

We will now build MPC version 0.9 in MinGW/MSYS.

• cd /home/tmp
• Get the MPC sources and unpack them in /home/tmp.
• Perform the command mkdir objdir-mpc-0.9 in order to make the MPC
sibling directory.

• cd objdir-mpc-0.9

The source tree of MPC should be in the MPC source directory:

/home/tmp/mpc-0.9

We should now be in the MPC sibling object directory:

/home/tmp/objdir-mpc-0.9

In the objdir-mpc-0.9 MPC sibling object directory, configure MPC with
the following command:

../mpc-0.9/configure --prefix=/usr/local \
--build=i686-pc-mingw32 --disable-shared \
--enable-static --with-gmp=/usr/local \
--with-mpfr=/usr/local

This configuration defines the characteristics that will be used when building
MPC. It defines the prefix where the build results will be installed, specifies the build
system and instructs the build to create static libraries, not dynamic link libraries.
The configuration also tells the build of MPC where the installations of GMP and
MPFR can be found.

In the objdir-mpc-0.9 MPC sibling object directory, make MPC with the
command:

make --jobs=2

This will take a while. The optional --jobs=2 flag indicates that two processes
should be used to speed up the build. It is also possible to use more processes.

In the objdir-mpc-0.9 MPC sibling object directory, install MPC with the
command:

make install

356 Appendix C: Building and Installing GNU GCC Cross Compilers

C.6 Building PPL

We will now build PPL version 0.12.1 in MinGW/MSYS.

• cd /home/tmp
• Get the PPL sources and unpack them in /home/tmp.
• Perform the command mkdir objdir-ppl-0.12.1 in order to make the
PPL sibling directory.

• cd objdir-ppl-0.12.1

The source tree of PPL should be in the PPL source directory:

/home/tmp/ppl-0.12.1

We should now be in the PPL sibling object directory:

/home/tmp/objdir-ppl-0.12.1

In the objdir-ppl-0.12.1 PPL sibling object directory, configure PPL with
the following command:

../ppl-0.12.1/configure --prefix=/usr/local \
--build=i686-pc-mingw32 --disable-shared \
--enable-static CPPFLAGS="-fexceptions" \
--with-gmp=/usr/local

This configuration defines the characteristics that will be used when building
PPL. It defines the prefix where the build results will be installed, specifies the build
system and instructs the build to create static libraries, not dynamic link libraries.
The configuration also tells the build of PPL where the installation of GMP can be
found.

In the objdir-ppl-0.12.1 PPL sibling object directory, make PPL with the
command:

make --jobs=2

This will take a while. The optional --jobs=2 flag indicates that two processes
should be used to speed up the build. It is also possible to use more processes.

In the objdir-ppl-0.12.1 PPL sibling object directory, install PPL with
the command:

make install

Appendix C: Building and Installing GNU GCC Cross Compilers 357

C.7 Building ISL

Building ISL in MinGW/MSYS (and CLooG if necessary) follow the same schema
as described above for PPL. Separate up-to-date instructions for building ISL and
CLooG can be found in the Internet.

C.8 Building the Binary Utilities for the Cross Compiler

We will now build the binary utilities (binutils) version 2.22 in MinGW/MSYS. The
binary utilities provide tools needed by the cross compiler such as the assembler,
the linker, the library archiver and assorted utilities for manipulating binary files in
ELF binary format.

In this example, the binary utilities will be specifically built in preparation for
building GCC version 4.6.2 for the --target=avr-unknown-elf cross target.

• cd /home/tmp
• Get the binutils sources and unpack them in /home/tmp.
• Perform mkdir objdir-binutils-2.22-avr-unknown-elf in order
to make the binutils sibling directory.

• cd objdir-binutils-2.22-avr-unknown-elf

The source tree of the binutils should be in the binutils source directory:

/home/tmp/binutils-2.22

We should now be in the binutils sibling object directory:

/home/tmp/objdir-binutils-2.22-avr-unknown-elf

In the objdir-binutils-2.22-avr-unknown-elf binutils sibling obj-
ect directory, configure the binutils with the following command:

../binutils-2.22/configure \
--prefix=/usr/local/gcc-4.6.2-avr-unknown-elf \
--target=avr-unknown-elf --build=i686-pc-mingw32 \
--disable-__cxa_atexit --disable-nls \
--disable-threads --disable-shared \
--enable-static --disable-win32-registry \
--disable-sjlj-exceptions --with-dwarf2 \
--with-gmp=/usr/local --with-mpfr=/usr/local \
--with-mpc=/usr/local --with-ppl=/usr/local

358 Appendix C: Building and Installing GNU GCC Cross Compilers

This configuration defines the characteristics that will be used when building
the binutils. It defines the prefix where the build results will be installed, speci-
fies the build system and instructs the build to create static libraries, not dynamic
link libraries. For building the binutils, there are additional configuration flags for
compiler details. The configuration also tells the build of the binutils where the
installations of GMP, MPFR, MPC and PPL can be found.

In the objdir-binutils-2.22-avr-unknown-elf binutils sibling object
directory, make the binutils with the command:

make --jobs=2

This will take a while. The optional --jobs=2 flag indicates that two processes
should be used to speed up the build. It is also possible to use more processes.

In the objdir-binutils-2.22-avr-unknown-elf binutils sibling object
directory, install the binutils with the command:

make install

C.9 Building the Cross Compiler

We will now build GCC version 4.6.2 in MinGW/MSYS. GCC will be built for the
--target=avr-unknown-elf cross target. GCC will be built with the newlib
library [13].

• cd /home/tmp
• Get the GCC sources and unpack them in /home/tmp.
• Get the newlib sources and unpack them in /home/tmp.
• Perform the command mkdir objdir-gcc-4.6.2-avr-unknown-elf
in order to make the GCC sibling directory.

The source tree of the GCC should be in the GCC source directory:

/home/tmp/gcc-4.6.2

After unpacking GCC and newlib, the newlib sources need to be copied to the
GCC source tree. For newlib version 1.20.0, for example,

cd /home/tmp/newlib-1.20.0
cp -r newlib libgloss ../gcc-4.6.2

Return to the GCC sibling object directory for building GCC with:

cd /home/tmp/objdir-gcc-4.6.2-avr-unknown-elf

Appendix C: Building and Installing GNU GCC Cross Compilers 359

We should now be in the GCC sibling object directory:

/home/tmp/objdir-gcc-4.6.2-avr-unknown-elf

In the objdir-gcc-4.6.2-avr-unknown-elf GCC sibling object direc-
tory, configure GCC with the following command:

../gcc-4.6.2/configure \
--prefix=/usr/local/gcc-4.6.2-avr-unknown-elf \
--target=avr-unknown-elf --build=i686-pc-mingw32 \
--enable-languages=c,c++ --with-newlib \
--disable-__cxa_atexit --disable-nls \
--disable-threads --disable-shared --enable-static \
--disable-win32-registry --disable-sjlj-exceptions \
--with-dwarf2 --with-gmp=/usr/local \
--with-mpfr=/usr/local --with-mpc=/usr/local \
--with-ppl=/usr/local

This configuration defines the characteristics that will be used when building
GCC. It defines the prefix where the build results will be installed, specifies the build
system and instructs the build to create static libraries, not dynamic link libraries.
There are additional configuration flags for compiler details including the languages
to build (C and C++) and to use newlib. The configuration also tells the build of GCC
where the installations of GMP, MPFR, MPC and PPL can be found.

In the objdir-gcc-4.6.2-avr-unknown-elf GCC sibling object direc-
tory, make GCC with the command:

make --jobs=2

This will take a while. The optional --jobs=2 flag indicates that two processes
should be used to speed up the build. It is also possible to use more processes.

In the objdir-gcc-4.6.2-avr-unknown-elf GCC sibling object direc-
tory, install GCC with the command:

make install

C.10 Using the Cross Compiler

We will now assume that the work of building the GCC prerequisites and GCC has
been successfully completed. If this is the case, the GCC build results should be
located in the installation directory:

/usr/local/gcc-4.6.2-avr-unknown-elf

360 Appendix C: Building and Installing GNU GCC Cross Compilers

Note, however, that the /usr directory in MinGW/MSYS could be an alias for
a directory such as /msys/1.0.

We will now investigate the structure of the build results. In particular, two ver-
sions of the compiler should have been installed. There should be one version with
tools having decorated names and a second version with tools having undecorated,
plain names.

In /usr/local/gcc-4.6.2-avr-unknown-elf, the installation direc-
tory, there should be versions of the tools with decorated names. For example, the
version of g++ with a decorated name is:

bin/avr-unknown-elf-g++.exe

In /usr/local/gcc-4.6.2-avr-unknown-elf, the installation direc-
tory, there should also be versions of the tools with undecorated names. For exam-
ple, the version of g++ with an undecorated name is:

avr-unknown-elf/bin/g++.exe

Both the decorated version of the toolchain as well as the undecorated one func-
tion equivalently. It is, however, best to use only one of them at one time. Consider
which version of the toolchain to use for cross development and use it consistently.

When using GCC, it can be convenient to add the path of the compiler executa-
bles to the PATH variable of the shell. In MinGW/MSYS, path information for the
cross compiler can be added to the PATH variable in the file /etc/profile. In
other ∗nix-like systems, path information for the cross compiler can added to the
PATH variable in the file /home/.bashrc.

Some developers recommend not moving an installation of GCC. It is, however,
possible to move a fully-built installation of GCC to another location provided the
entire directory tree of the compiler is moved. In our example, for instance, this
means moving all files, directories, etc. in gcc-4.6.2-avr-unknown-elf/*
from their installed location to another place as a cohesive unit.

A GCC installation that has been built in MinGW/MSYS can also be used out-
side of the MinGW/MSYS environment, for example, by employing another com-
mand line interface. When doing so, it is necessary to include several dynamic link
libraries from the MinGW/MSYS installation in the path of the compiler’s binaries
or in the build environment. This technique is used in the reference project of the
companion code.

Appendix C: Building and Installing GNU GCC Cross Compilers 361

References

1. BUGSENG, Parma Polyhedra Library (PPL) (2012), http://www.bugseng.com/products/ppl
2. CLooG, Chunky Loop Generator (2015), http://www.cloog.org
3. Free Software Foundation, GNU Binutils (2011), http://www.gnu.org/software/binutils
4. Free Software Foundation, GNU Compiler Collection Version 4.6.2 (2012), http://gcc.gnu.org
5. Free Software Foundation, Prerequisites for GCC (2015), http://gcc.gnu.org/install/prerequisites.

html
6. L. Fousse, G. Hanrot, V. Lefèvre, P. Pélissier, P. Zimmermann, MPFR: A Multiple-Precision

Binary Floating-Point Library with Correct Rounding, ACM Trans. Math. Soft. 33(2), (2007)
7. GMP, GNU Multiple Precision Arithmetic Library (2012), http://gmplib.org
8. W. van Hagen, The Definitive Guide to GCC (Apress, Berkeley, 2006)
9. ISL, Integer Set Library (2015), http://isl.gforge.inria.fr
10. MinGW, Home of the MinGW and MSYS Projects (2012), http://www.mingw.org
11. MPC, GNU MPC (2012), http://www.multiprecision.org
12. MPFR, GNU MPFR Library (2013), http://www.mpfr.org
13. Red Hat, Newlib (2013), http://sourceware.org/newlib

http://www.bugseng.com/products/ppl
http://www.cloog.org
http://www.gnu.org/software/binutils
http://gcc.gnu.org
http://gcc.gnu.org/install/prerequisites.html
http://gcc.gnu.org/install/prerequisites.html
http://gmplib.org
http://isl.gforge.inria.fr
http://www.mingw.org
http://www.multiprecision.org
http://www.mpfr.org
http://sourceware.org/newlib

Appendix D
Building a Microcontroller Circuit

This appendix provides details on assembling the microcontroller circuit depicted in
Fig. 2.1. Information on the circuit, the schematic and its assembly on a solderless
prototyping breadboard are included.

D.1 The Circuit Schematic

Recall the microcontroller circuit on the prototyping breadboard first presented in
Sect. 2.1, Fig. 2.1. The corresponding schematic for this circuit is shown in Fig. D.1
on the following page. This is a simple microcontroller circuit that can be assembled
with just a handful of components.

Our microcontroller circuit consists of the following three main circuit groups:

1. 5 V Regulator
2. Microcontroller and Peripheries
3. JTAG Connector

The 5 V regulator group is shown in the upper right of the schematic. It is respon-
sible for converting an input voltage ranging from about+8 V . . . 24 V to the+5 V
TTL voltage required by the microcontroller. The ideal input voltage range is around
+9 V . . . 12 V .

Moving counterclockwise, down and to the left, we encounter the second circuit
group, which is the microcontroller and its peripheries. This circuit group contains
the microcontroller, its crystal quartz oscillator circuit, a reset push-button and the
LED D1. Note that the LED D1 in our circuit diagram here is the same LED that
was first presented in the LED program of Chap. 1, see Fig. 1.1.

The third circuit group located to the right and above the circuit label is the JTAG
connector. This is a six-pin connection that can interface to a commercially available
SPITM programmer or JTAG ICE debugger.

A microcontroller circuit assembled on a breadboard generally does not have the
robustness necessary for high-volume production. Circuit assembly on a solderless

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3

363

http://dx.doi.org/10.1007/978-3-662-47810-3_2
http://dx.doi.org/10.1007/978-3-662-47810-3_2
http://dx.doi.org/10.1007/978-3-662-47810-3_1

364 Appendix D: Building a Microcontroller Circuit

C3
22pF

22pF

16
MHz

GND

GND

GND

GND

GND

GND

GND
GND

GND

C4

Q1

1

10

+5V

+5V

+5V

+5V

C6
68nF

Vcc
7

8

RST

RST

XTAL 2

XTAL 1

MOSI

MOSI

MISO
MISO

SCK

SCK

9

17

18

19

IC1

R1
750Ω

15KΩ

D1
GREEN

R3
750Ω
R2

INPUT

+9....12V

SWITCH 1

D3
IN 4002

C5 C1
68nF 1μF

C2
2μF

IC 2
LM 7805

IN OUT

+ D2
RED

CON 1
02 04 06

01 03 05

Breadboard
ATMega® 328P

ATMega®328P Christopher Kormanyos

04-Aug-2012

+

Fig. D.1 The schematic of our target system is shown

prototyping breadboard does, however, provide adequate quality for microcontroller
benchmarking and compiler testing.

The part list for our microcontroller circuit is provided in Table. D.1. All of the
components needed for our microcontroller circuit should be available at any good
electronics store.

D.2 Assembling the Circuit on a Breadboard

Our microcontroller circuit assembled with discrete components on a solderless pro-
totyping breadboard is shown in Fig. D.2. The three main circuit groups are high-
lighted in rectangular boxes.

Circuit assembly uses standard breadboard methods. See, for example, Sects. 3.2–
3.3 in [2] for additional information on working with a breadboard. An effort should
be made to keep wire connections as short as possible and flat on the breadboard.
In general, try prevent wire crossings as far as possible. Optionally, a kit containing
pre-formed wires, isolated and bent for the breadboard slots, can be conveniently
used for some connections.

For other connections, it may be better to make custom-length isolated wires.
AWG–22 [3] conducting wire cut to length and appropriately bent for the slots

Appendix D: Building a Microcontroller Circuit 365

Table D.1 The discrete components in our microcontroller circuit are listed

Label Type Value Function

D3 1N4002-type rectifier 100V Short-circuit protection

IC2 7805 voltage regulator +5V Linear voltage regulator in
TO–220 package [5]

C1 Electrolytic capacitor 1μF Input stabilization

C2 Electrolytic capacitor 2μF +5V stabilization

R1, R2 1/ 4 Watt resistor 750� LED current limitation

D2 LED red 5–10mA Power indicator

C5, C6 Ceramic capacitor 68 nF High-frequency filter

IC1 ATMEL® AVR® ATmega328P [1] – 8–bit microcontroller in
DIL–28 package [4]

D1 LED green 5–10mA User LED on pin 17

Q1 Quartz 16MHz Oscillator circuit

C3, C4 Ceramic capacitor 10 pF Oscillator circuit

R3 1/ 4 Watt resistor 15 k� +5V pull-up on reset

SWITCH1 Mini push-button – Manual reset button

CON1 6-pin 2.54mm connector – SPITM connector

is suitable for breadboard connections. AWG–22 wire has a diameter of approxi-
mately 0.6mm. Custom breadboard wires can be isolated with commercially avail-
able skinny, round silicon tubes or small heat-shrink tubing.

Critical circuit components requiring high electromagnetic stability benefit from
short, soldered connections. In our circuit on the breadboard, for example, the quartz
periphery and the JTAG SPITM connector have been fitted on secondary snap-on
boards built with soldered connections.

Fig. D.2 Our
microcontroller circuit
assembled with discrete
components on a breadboard
is shown

366 Appendix D: Building a Microcontroller Circuit

In addition, overall stability of the board can be improved by keeping capacitors
physically near the components they are meant to stabilize. For example, C1 and C2
are placed near the +5 V voltage regulator, C5 is close to the input rectifier and C6
is tight on the microcontroller VCC and GND pins.

Assembling a microcontroller circuit on a breadboard requires reliable work. It is
best to work methodically, properly fitting one circuit group at a time. A volt meter
can be used to check the proper placement of the components and their electrical
connections.

References

1. ATMEL®, 8-bit ATMEL® Microcontroller with 4/8/16/32K Bytes In-System Programmable
Flash (ATmega48A, ATmega48PA, ATmega88A, ATmega88PA, ATmega168A, ATmega168PA,
ATmega328, ATmega328P), Rev. 8271D-AVR-05/11 (ATMEL®, 2011)

2. M. Schmidt, ARDUINO®: A Quick-Start Guide (Pragmatic Programmers, Raleigh, 2011)
3. Wikipedia, American wire gauge (2012), http://en.wikipedia.org/wiki/American_wire_gauge
4. Wikipedia, Dual in-line package (2012), http://en.wikipedia.org/wiki/Dual_in-line_package
5. Wikipedia, TO-220 (2012), http://en.wikipedia.org/wiki/TO-220

http://en.wikipedia.org/wiki/American_wire_gauge
http://en.wikipedia.org/wiki/Dual_in-line_package
http://en.wikipedia.org/wiki/TO-220

Glossary

Bootloader A bootloader is a small program, the job of which is to program
another application via communication with another part of memory and/or
another device.

Build Build is the process of building a software project including compiling
the sources, linking them, extracting the executable program and optionally pro-
gramming it into the microcontroller memory.

Debug Debug means finding and removing software defects caused by errors or
flaws in coding, design, timing characteristics or any other mistake.

Flash, flashing Flashing is the act of programming an executable program into
the FLASH program memory of the microcontroller.

Flashed Flashed is the state of the FLASH program memory of the microcon-
troller having undergone flash programming.

Heap The term heap commonly refers to a pool of computer memory typically
used for dynamic memory allocation and deallocation.

Multitasking Multitasking is a programming technique used to distribute the
work of a computer program among more than one task or process, thereby
potentially improving program robustness via carefully designed temporal and
functional distribution.

Stack A stack is a linear chunk of computer memory usually used for storing local
variables and preserving register contents within one or more (possibly nested)
subroutine or interrupt call(s).

Standard library The standard library refers to the C++ standard library (as
specified in ISO/IEC 14882:2014), which is an extensive collection of types,
functions, classes, generic containers and algorithms.

Startup code The startup code is the part of the program that runs before the
main() subroutine. The startup code is responsible for initializing RAM and
static constructors and subsequently calling main().

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3

367

Index

Symbols
<algorithm>, 44, 89, 199, 205, 301, 306,

308
<algorithm>, 331–334, 341
<algorithm>, 330
<array>, 41, 44, 45, 176, 199, 204, 276
<array>

partial implementation of, 308
<array>, 330
<atomic>, 46, 209
<chrono>, 49, 167, 209, 299, 312
<cmath>, 214
<cmath>, 215, 218
<condition_variable>, 209
<cstddef>, 308
<cstdint>, 34, 35, 38, 39, 41, 44, 46,

176, 276, 306
<cstdint>, 22, 24, 27

partial implementation of, 306
<cstdint>, 3, 12, 14
<cstdlib>, 214
<cstdlib>, 218
<initializer_list>, 334
<initializer_list>, 301
<iostream>, 341
<iterator>, 301
<iterator>, 341
<limits>, 43
<limits>, 323
<limits>, 215
<math.h>, 218
<memory>, 301
<memory>, 331
<mutex>, 209
<numeric>, 127
<numeric>, 45
<numeric>, 331

<pthread.h>, 210
<ratio>, 209
<regex>, 341
<stdint.h>, 306
<stdint.h>, 15
<stdlib.h>, 218
<string>, 341
<thread>, 209
<tuple>, 96
<tuple>, 338
<vector>, 89
<vector>, 330, 332–334
#define, 133, 135
__attribute__, 65, 124, 125, 160
#define, 18
#include, 5, 6, 12

Numbers
1N4002-type rectifier, 365
7805 voltage regulator, 365

A
Abstract class, 61
Access control, 10
ADC

see analog-digital converter, 120
add() template function, 75
algorithm (STL) see STL algorithms, 331
Algorithmic complexity, 108

linear, 108
logarithmic, 108
quadratic, 108

Allocator
std::allocator, 189
and STL containers, 188

© Springer-Verlag Berlin Heidelberg 2015
C. Kormanyos, Real-Time C++, DOI 10.1007/978-3-662-47810-3

369

370 Index

custom, 126, 188, 189
ring_allocator, 190

Americal wire guage (AWG), 178, 364
Analog-digital converter (ADC), 120, 268,

274
optimizing circuit of, 120

Apéry’s constant, ζ(3), 217
Archimedes’ constant, π , 47, 99, 213, 216,

217, 248, 250
Architecture (of software), 347

AUTOSAR architecture, 12
layered, 347
MCAL, 12

Area
of circle, 213, 248, 322
of rectangle, 322

Array, C-style, 11
and inner product, 95
and range-based for(:), 338
and std::array, 43

Assembly
dedicated file, 113
GCC inline syntax, 113
in startup code, 145
inline, 112

Assembly listing, 109
from objdump, 110
mangled names in, 111

auto keyword, 313
auto keyword, 337
AUTOSAR, 12
AWG (American wire gauge), 178, 364

B
bash (∗nix shell), 112
Big-O notation, 108
Binary literal, 47
Binary utilities (binutils), 110, 351, 352

build, 357
Bit-field, 140
Bitwise constant, 122
bool, 36
Boost, 296

and C++ standardization, 297
Boost.Math, 225
Boost.Multiprecision, 225
Boost.Regex, 342
Boost.Thread, 210
circular_buffer, 297
noncopyable, 65

Boot
microcontroller boot time, 26

Braced initialization syntax
see uniform initialization syntax, 11

Breadboard, 19, 363
working with, 364

Built-in types, 6
and numeric limits, 43, 326
and std::complex, 225
and uniform initialization syntax, 320
as template parameter, 75
as variadic template parameter, 92
C99 compatibility, 308
fixed-point emulation of, 244
initialization of global, 151

C
C, 315

C99, 15, 116, 218, 308, 315
embedded extensions, 315
similar syntax of C and C++, 6
standard library, 315

C++
C++03, 315
C++11, 297, 315
C++14, 315
C++98, 315
object-oriented programming, 51
syntax of, 6
tutorial, 319

C++ standard library
see standard library, C++, 5

C++11, 315
-std=c++11 GCC flag, 22
consistency with C99, 214
constexpr, 231
thread library, 210
TR1, 315
uniform initialization syntax, 11
variadic template, 91

C++11
auto keyword, 337
evolution from C++03 to C++11, 337
initializer list, 336
range-based for(:), 338
tuple, 338
type inference, 337
uniform initialization syntax, 320

C++14, 315
-std=c++14 GCC flag, 22
binary literal, 47
digit separator, 46
standard user-defined literals, 49
variable template, 99

Index 371

c++filt program, 112
C-linkage, 69, 163
C-style

arrays, 11, 43
block comments, 6
direct memory access, 17
preprocessor macros, 77
register access, 133
static, 14
structures, 38
structures with bit-fields, 140
union, 140

Capacitor
ceramic, 365
electrolytic, 365

Cartesian space
R
2, 38, 82

R
3, 45

Cast operators, C++, 319
const_cast, 320
dynamic_cast, 320
reinterpret_cast, 319
reinterpret_cast, 10, 17
static_cast, 319

char, 6
circular_buffer class, 172, 292
Class, 6, 38

base class, 52
class hierarchy, 52
class types, 6
derived class, 52
template class types, 82

Class relationships, 62
has-a, 62
is-a, 62
uses-a, 63

CLooG, 352
Coding style

and the STL, 91
Comment

block form (/* ... */), 6
slash-slash form (// ...), 6
source-level, 6
use sparingly, 114

Common subexpression elimination, 104
Companion code

chapter02_02 sample project, 20
chapter02_03 sample project, 24
chapter02_03a sample project, 26,
182

chapter09_07 sample project, 178
Compile-time assert

see static_assert, 323

Compile-time constant
see constant, compile-time, 17

const_cast, 320
Constant

bitwise, 122
const correctness, 68
generalized constant expressions, 17, 41

Constant folding, 18, 31, 69, 129, 135, 136,
231, 248, 269

Constant, compile-time, 17, 41
and metaprogramming, 94
and shift-and-add, 120
and user-defined suffixes, 48
constexpr, 17, 41
mathematical constants, 216
register addresses, 134
static const members, 68
with std::tuple_size, 98

constexpr
superior to #define, 135

constexpr, 41
constexpr, 17

superior to #define, 18
Constructor, 6

initialization code in, 7
initialization list, 7
private, 284
protected, 53, 62

Container
custom dynamic_array, 301
STL see STL containers, 327

CORDIC algorithms, 259
CPU performance, 106

8-bit compared with 32-bit, 106
load monitor, 176

CRC32 algorithm, 103
benchmark results space/speed, 104
benchmark results two CPUs, 107
CRC32 /MPEG–2, 103

Cross compiler, 20, 351

D
delete keyword, 64
delete keyword, 284
delete operator, 126, 185
Derivative

central difference rules, 232
of a function, 232

derivative() template function, 233
Destructor, 53

explicit call, 187
virtual, 53

372 Index

Digit separator, 46
Digital filter, 263

cascaded filters, 278
filter design tool, 274
FIR, 263, 269
floating-point, 263
integer, 266
order 1, 266
order 10 high-pass FIR, 279
order 17 low-pass FIR, 274
order 5 low-pass FIR, 271
tap (coefficient), 270
worked-Out examples, 274

Digital signal processor (DSP), 109, 263
DIL–28 package, 365
Direct memory access, 3, 5, 10, 16, 66, 133,

164, 320
Dot-product, 45, 130
double, 6, 85, 213, 232

and Gamma function, 220
and std::complex, 225
in C++ standard, 213
in IEEE–754 specification, 214
precision of, 214
versus fixed-point, 250
with digital filter, 264

Double-precision, 214
dynamic_cast, 320
dynamic_array class, 301

E
Elementary functions, 100, 218

floating-point timing, 218
in <cmath> and <cstdlib>, 218

ELF binary format, 23, 110, 357
Euler-Mascheroni constant, γ , 216, 217,

221
Exception

and memory management, 193
std::bad_alloc, 185
std::bad_alloc, 126, 195
std::length_error, 195
std::out_of_range, 224

explicit keyword, 55
extern "C" (C-linkage), 65, 69
extern "C" (C-linkage), 144, 160, 163

F
F, set of floating-point numbers, 215
factorial meta-structure, 93
Factory, 91

factory() variadic template, 92

filter see digital filter, 263
Fixed-point, 241

arithmetic, 241
efficiency of, 241, 242, 252
number, 241
Q-notation for, 242
transcendental functions, 250

Fixed-Size integer types, 34
Fixed-size integer types

and improving portability, 15
implementation of, 306
in <cstdint>, 34
in<cstdint>, 306

fixed_point class, 244
std::numeric_limits for, 260
synopsis of, 244
using the, 247

float, 6, 85, 213, 220, 232
and Gamma function, 220
and std::complex, 225
in C++ standard, 213
in IEEE–754 specification, 214
precision of, 214
versus fixed-point, 250
with digital filter, 264

Floating-point
efficiency aspects of, 219
elementary function timing, 218
floating-point arithmetic, 213
floating-point unit (FPU), 214

Fortran 77, 225
and special functions, 225

FPU (floating-point unit), 214, 241, 265
Friend (of class), 69

and class access level, 69
and data encapsulation, 71
example of, 69

G
Gamma function �(x), 100, 219

float version, 220
polynomial approximation O(10−8),
221

Stirling’s approximation, 100, 224
Taylor series, 221

GAS (GNU assembler), 113
GCC (GNU compiler collection)

attribute syntax, 161
building, 351
building the LED program with, 19
C++ standards adherence of, 104
cross compiler, 352

Index 373

errors and warnings, 27
optimization with, 103
warning options, 28

GCC prerequisites, 351
binutils, 351, 352
CLooG, 352
GMP, 351
ISL, 352
MPC, 351, 352
MPFR, 351
PPL, 351

Generic programming
and LED toggle mechanism, 87
and templates, 75, 78
and variable template, 99
numerical, 231
STL as example of, 89
tuples and metaprogramming, 96

GMP (GNUmultiple-precision library), 351
building, 353

H
Heap, 126, 185

fragmentation, 186
Heat-shrink tubing, 365
HEX-file, 23

format, 23
high_resolution_clock

in std::chrono, 167, 312
Horner, method of, 216

I
IEEE–754 specification, 214, 231
In-circuit emulator (ICE), 23, 345
In-system programming (ISP), 23
In-system programming (ISP), 345
Include syntax, 6
Infinity, 214
Inheritance, 11, 38, 57

access control of, 11, 58
private, 58

Initialization
and uninitialized objects, 152
RAM, 145, 146
singleton instance, 153
static constructor, 12, 145, 147
static initialization rules, 151

Inner product, 45, 94, 130
inner_product meta-structure, 94
int, 6
Integral

of a function, 236
recursive trapezoid rule, 236

Interpolation
see linear interpolation, 289

Interrupt, 160
__timer0_cmp_a_isr, 123
and C-linkage, 69, 163
frame, 123, 161
global disable, 113
global enable, 113, 160
programming in C++, 160
service routine, 124, 160
syntax for, 161
unused interrupt handler, 163
vector table, 162

ISL
build, 357

ISL (integer set library), 352
Iteration

in range-based for(:), 338
Newton, 259
statement, 6
with STL iterator, 329

iterator (STL) see STL iterators, 329

J
JTAG

connector, 363
debugger, 23
flash tool, 23

Jump
in interrupt vector table, 164
to main(), 144, 154

L
Lambda expression, 89, 149, 200, 234, 277,

333, 335
optimization with, 128

LED, 3, 51
circuit, 3, 52
dimming, 52
LED program, 3
LED program, build the, 20
LED program, flash the, 23
LED program, reset the, 26
LED program, run the, 26
on breadboard, 3, 24, 363, 365

led class, 5, 6
led_base class, 52
led_port class, 52, 53
led_pwm class, 52, 54
led_ template class, 29

374 Index

Linear interpolation, 289
Linker

definition file, 149
definition file, example, 149

Logarithm of two, log 2, 216, 217
long, 6
long double, 85, 213, 232

and Gamma function, 220
and std::complex, 225
in C++ standard, 213
precision of, 214
with digital filter, 264

long double, 213
Loop unrolling, 93, 104, 129, 130

metaprogramming, 130

M
main(), 5, 15

and C++ standard, 16
in startup code, 145
jump to, 12, 145, 154
never return to, 154
typical example of, 155
unexpected return from, 155

make_large(). template function, 77
MAKE_WORD() preprocessor macro, 77
Map file, 110

g++ command line for, 110
mangled names in, 111

Mathematical constants, 216
and digit separators, 47
Apéry’s constant, ζ(3), 217
Archimedes’ constant, π , 47, 217
constexpr templates for, 217
Euler-Mascheroni constant, γ , 217
logarithm of two, log 2, 217
natural logarithmic base, e, 100, 217
Pythagoras’ constant,

√
2, 217

Mathematical functions
absolute value, 218
and Fortran 77, 225
Bessel, 225
elementary functions, 218
exponential, 218, 250
Gamma function, �(x), 219
hyperbolic, 218
logarithmic, 218, 250
power, 218
rounding, 218
sinc function, 215
special functions, 219
trigonometric, 218, 250

MCAL (microcontroller abstraction layer),
3, 12, 25, 37, 124, 134, 156, 166,
206, 288, 348

Member (data member)
constant data member, 10
in constructor initialization list, 8, 10
static const integral, 18, 68

Member (method/function member), 6
constant methods, 65

Member (of class type), 6
Memory

customized management, 126
dynamic allocation, 126, 185
FLASH, 23
flashing a program, 20, 23
handling limitations, 195

Metaprogramming, 93
compile-time evaluation, 93
factorial meta-structure, 93
inner_product meta-structure, 94
loop unrolling, 93, 130

MinGW/MSYS
building binutils in, 357
building CLooG in, 357
building GCC in, 351, 358
building GMP in, 353
building ISL in, 357
building MPC in, 355
building MPFR in, 354
building PPL in, 356
building the LED program in, 19
PATH variable in, 360

MKS (meter, kilogram, second), 48
MPC, 351, 352

build, 355
MPFR, 351

build, 354
Multitasking, 25, 199

and system design, 349
basic, 199
C++ thread support, 209
extended, 206
preemptive, 208, 209
preemptive, pros and cons, 208
start in main(), 156, 206

Multitasking scheduler, 113, 156, 199
scheduler(), 205
scheduling algorithm, 199
start in main(), 156, 206
task control block, 202
task list, 204
task timing, 201

mutable, 10, 65

Index 375

Mutex, 208

N
Name mangling, 111

demangling, 112
namespace, 5, 13

anonymous, 5, 14, 37
program organization with, 37
std namespace, 13

NaN (not-a-number), 214, 252
Native (natural) integer types, 116
Natural logarithmic base, e, 100, 216, 217
new operator, 126, 185

placement, 186, 188
Newlib, 358

build GCC with, 358
copy to GCC source tree, 358

Newton iteration, 259
nm (the names program), 112
Non-Copyable class mechanism, 64
Non-copyable class mechanism, 170, 284
noncopyable class, 58, 65, 284

in Boost, 65
Nop operation, 113, 163
nothing structure, 281

as place-holder, 281
in fixed_point class, 282
in triple class, 283

nullptr, 40
replaces NULL, 40

Numeric algorithms (STL)
see STL numeric, 45

Numeric limits, 43, 78, 215, 323
and subnormals, 214
specialization for fixed_point, 260
specialization of, 244, 323
specialization for 32–bit int, 324
std::numeric_limits synopsis,
323

numeric_limits in std
see numeric limits, 323

O
Object file

absolute, 22, 23
crt0.o, 22
led.elf, 22
led.o, 22

Object-Oriented programming, 51
Opcode

and bit operations, 137
generated by compiler, 109

in assembly listings, 109
jump, 164
width of for differenct CPUs, 107

Operating system, 208
FreeRTOS, 208
LaBrosse’s, 208

Optimization
and tuples, 340
common subexpression elimination, 104
compiler settings, 103
constant folding, 18, 31, 69, 129, 135,
136, 231, 248, 269

CRC32 benchmark, 103
hardware dimensioning, 120
lambda expressions, 128
loop unrolling, 93, 104, 129, 130
metaprogramming, 130
minimize interrupt frame, 123
native integer types, 117
ROM-able objects, 122, 315
shift-and-add, 119
space, 103
space versus speed, 104
speed, 103

Oscillator circuit
capacitor in, 365
quartz in, 365

Overload, 322
function overloading, 322
math functions in <cmath>, 100, 218
new delete, 186
operator overloading, 6
overloading assignment, 65, 244

P
Package

10-pin 7-segment display, 178
DIL–28, 365
TO–220, 365

point class, 38
template version, 82

Polymorphism
dynamic, 38, 53, 59, 110, 322
dynamic, example of, 59
dynamic, overhead of, 60
static, 75, 86
static versus dynamic, 88
static, example of, 88

Pop opcode, 126
port, I/O

driver class, 157
LED on port, 3, 4, 52

376 Index

registers, 133
toggle for loud error, 163

POSIX, 210
regular expression syntax, 341
threads (pthreads), 210

Power jack, 26
PPL, 351

build, 356
Priority

class (of program parts), 348
of tasks in multitasking, 200, 205

Pull-up resistor, 365
Pulse-width modulated signal (PWM), 52,

167
driver class, 167

pure virtual see virtual, 61
Push opcode, 124, 126
pwm class, 55
pwm_type class, 167
Pythagoras’ constant,

√
2, 216, 217

Q
Q-notation (for fixed-point), 242
Quadratic equation, 234

derivative of, 235
Quadruple-precision, 214
Quartz, 365

R
R, set of real numbers, 214
R
2, two-dimensional Cartesian space, 38,

82
R
3, three-dimensional Cartesian space, 45

range-based for (:), 338
range-based for(:)

applicable uses of, 338
readelf program, 110
reg_access structure, 135, 137
Register, 133

access, 133
access template, 135, 137
address, 133

Regular expression, 340
Boost.Regex, 342
capture group, 341
POSIX syntax, 341

reinterpret_cast, 319
potential dangers of, 320

reinterpret_cast
in the LED program, 10, 17

Reset button, 26, 365
Resistor, 4, 121, 178, 365

ring_allocator class, 192
ROM-able, 122, 315

S
Scope

and static initialization rules, 151
delimited with curly braces, 6, 33
file-level, 14, 146
file-level via anonymous namespace, 14
global, 70
non-subroutine-local, 332
of for(;;)-loop, 34
of the C++ language, 345

Scope resolution operator (::), 9
and using directive, 14
with class members, 9
with namespaces, 14

Seven-segment display, 157, 178
Shift-and-add, 119

CORDIC algorithms, 259
in digital filters, 269, 273, 274
replace multiply and divide, 119

short, 6
Short-circuit protection, 365
Sine function

complex argument, 225
sin constexpr version, 229
derivative of, 234
fixed-point version, 250
fixed-point version (naive), 249
float version, 218
in fixed-point cosine, 256
in fixed-point tangent, 256
in sinc function, 216
in reflection of Gamma, 221

Single-precision, 214
Singleton instance, 153, 182
SPITM , 171

driver class, 172
SPITM

connector, 365
SPITM

flash tool, 23
spi_communication class, 172
Standard library, C, 315
Standard library, C++, 5, 15

algorithms see STL algorithms, 331
atomic operations, 46
containers see STL containers, 327
fixed-size integer types, 34
iterators see STL iterators, 329
limits see numeric limits, 43

Index 377

namespace std, 13
numeric see STL numeric, 45

Standard user-defined literals, 49
Startup code, 12, 26, 143

customized, 143
Static

constructor initialization, 143, 147
initialization, 16, 151
ROM-to-RAM static initialization, 143,
145

zero-clear static initialization, 145
static, 12

and singleton instance, 153
and uninitialized objects, 152
C-style, 14
constructors, 16
member function, 31
non-subroutine-local, 152
static const member, 18

static
non-subroutine-local, 332

static_assert, 323
static_cast, 319
static_assert, 42
static_assert, 77, 270
static_cast

and explicit downcast, 59
Stirling’s approximation, 100, 224
STL (standard template library), 89

efficiency, 91
portability, 91
use consistently, 126
using with microcontrollers, 89, 91

STL algorithms, 44, 89, 331
and lambda expressions, 89
and STL containers, 329
categories of, 331
minimax, 44, 306, 310
std::all_of(), 331
std::all_of(), 44
std::copy(), 44
std::count(), 331
std::fill(), 44
std::for_each(), 331–333
std::for_each(), 44, 89, 128, 148,
199, 276, 299

std::lower_bound(), 291
std::search(), 331

STL containers, 43, 89, 327, 338
std::array, 42, 43, 45, 95, 122, 176,
204, 264, 265, 292, 299, 308

std::array, 321, 327, 337
std::basic_string, 327

std::deque, 327
std::forward_list, 327
std::initializer_list, 336
std::list, 327
std::string, 49, 76, 122
std::string, 327, 340, 341
std::vector, 89, 95, 96, 172, 188,
189, 299

std::vector, 321, 327, 328, 332
std::wstring, 327

STL iterators, 43, 89, 291, 306, 329
categories of, 330
constant, 330
in dynamic_array class, 301
in task-list priority, 205
non-constant, 330
range in sequence, 129, 330
std::reverse_iterator, 149

STL numeric, 45
std::accumulate(), 45
std::inner_product(), 45

Structure, 6
bit-field, 140
bit-mapped, 140
bit-mapped, non-portable, 142
C-style, 140
data structure, 11
difference between classes/structures,
11

Subnormal numbers, 214, 252
infinity, 214, 252
NaN, 214, 252

Suffix
user-defined suffixes, 48

System-tick, 164
system_tick variable, 123, 164

T
task_control_block class, 202
task_list (of task control blocks), 204
Template, 39, 75

and scalability, 39, 77
and static polymorphism, 86
and the STL, 89
class member functions, 79
class types, 82
default parameters, 83
functions, 75
metaprogramming, 93
parameter, 75
scalability, 129
specialization, 85

378 Index

specialization, partial, 86
variable template, 99
variadic, 91

Template parameter
see template, parameter, 75

tgamma()
float implementation, 223
in C++ standard, 220
numerical results, 224

Thread
Boost.Thread, 210
C++ thread support, 209
POSIX threads (<pthread.h>), 210

TO–220 package, 365
Tuple, 337, 338

and generic metaprogramming, 96
std::get() facility, 97
std::get() facility, 340
std::make_tuple facility, 339
std::tuple_element facility, 340
std::tuple_size facility, 340
std::tuple_size facility, 98
things tuple, 96

Type inference see auto keyword, 337
typedef, 10

in the LED program, 3
simplify code with, 114

U
Underscore

in GCC attribute syntax, 161
Uniform initialization syntax, 11, 320

and aggregate types, 320
and built-in types, 320

and std::initializer_list, 89
and STL containers, 321
in constructor initialization list, 321

Union, 6
C-style, 140
with bit-mapped structure, 140

User-Defined literals, 48
User-defined literals, 210
using directive, 14

V
Variable

local variables, 33
variable template, 99

Variable template, 99
and generic programming, 99

Variadic template, 91
and operator..., 92
example of, 92
parameter pack, 92

Virtual
pure virtual, abstract, 61

virtual
destructor, 53
member function, 53
override, 53
using the virtual keyword, 54

Virtual function mechanism, 53, 322
and dynamic polymorphism, 53
overhead of, 60
unavailable in the base class, 71

Volt meter, 366
Voltage divider, 120

	Preface to the Second Edition
	Preface to the First Edition
	Contents
	Acronyms
	Part I Language Technologies for Real-Time C++
	1 Getting Started with Real-Time C++
	1.1 The LED Program
	1.2 The Syntax of C++
	1.3 Class Types
	1.4 Members
	1.5 Objects and Instances
	1.6 #include
	1.7 Namespaces
	1.8 C++ Standard Library
	1.9 The main() Subroutine
	1.10 Low-Level Register Access
	1.11 Compile-Time Constant
	References

	2 Working with a Real-Time C++ Program on a Board
	2.1 The Target Hardware
	2.2 Build and Flash the LED Program
	2.3 Adding Timing for Visible LED Toggling
	2.4 Run and Reset the LED Program
	2.5 Recognizing and Handling Errors and Warnings
	2.6 Reaching the Right Efficiency
	References

	3 An Easy Jump-Start in Real-Time C++
	3.1 Declare Locals When Used
	3.2 Fixed-Size Integer Types
	3.3 The bool Type
	3.4 Organization with Namespaces
	3.5 Basic Classes
	3.6 Basic Templates
	3.7 nullptr Replaces NULL
	3.8 Generalized Constant Expressions with constexpr
	3.9 static_assert
	3.10 Using <limits>
	3.11 std::array
	3.12 Basic STL Algorithms
	3.13 <numeric>
	3.14 atomic_load() and atomic_store()
	3.15 Digit Separators
	3.16 Binary Literals
	3.17 User-Defined Literals
	Reference

	4 Object-Oriented Techniques for Microcontrollers
	4.1 Object Oriented Programming
	4.2 Objects and Encapsulation
	4.3 Inheritance
	4.4 Dynamic Polymorphism
	4.5 The Real Overhead of Dynamic Polymorphism
	4.6 Pure Virtual and Abstract
	4.7 Class Relationships
	4.8 Non-Copyable Classes
	4.9 Constant Methods
	4.10 Static Constant Integral Members
	4.11 Class Friends
	4.12 Virtual Is Unavailable in the Base Class Constructor
	References

	5 C++ Templates for Microcontrollers
	5.1 Template Functions
	5.2 Template Scalability, Code Re-Use and Efficiency
	5.3 Template Member Functions
	5.4 Template Class Types
	5.5 Template Default Parameters
	5.6 Template Specialization
	5.7 Static Polymorphism
	5.8 Using the STL with Microcontrollers
	5.9 Variadic Templates
	5.10 Template Metaprogramming
	5.11 Tuples and Generic Metaprogramming
	5.12 Variable Templates
	References

	6 Optimized C++ Programming for Microcontrollers
	6.1 Use Compiler Optimization Settings
	6.2 Know the Microcontroller's Performance
	6.3 Know an Algorithm's Complexity
	6.4 Use Assembly Listings
	6.5 Use Map Files
	6.6 Understand Name Mangling and De-Mangling
	6.7 Know When to Use Assembly and When Not to
	6.8 Use Comments Sparingly
	6.9 Simplify Code with typedef
	6.10 Use Native Integer Types
	6.11 Use Scaling with Powers of Two
	6.12 Potentially Replace Multiply with Shift-and-Add
	6.13 Consider Advantageous Hardware Dimensioning
	6.14 Consider ROM-Ability
	6.15 Minimize the Interrupt Frame
	6.16 Use Custom Memory Management
	6.17 Use the STL Consistently
	6.18 Use Lambda Expressions
	6.19 Use Templates and Scalability
	6.20 Use Metaprogramming to Unroll Loops
	References

	Part II Components for Real-Time C++
	7 Accessing Microcontroller Registers
	7.1 Defining Constant Register Addresses
	7.2 Using Templates for Register Access
	7.3 Generic Templates for Register Access
	7.4 Bit-Mapped Structures
	Reference

	8 The Right Start
	8.1 The Startup Code
	8.2 Initializing RAM
	8.3 Initializing the Static Constructors
	8.4 The Connection between the Linker and Startup
	8.5 Understand Static Initialization Rules
	8.6 Avoid Using Uninitialized Objects
	8.7 Jump to main() and Never return
	8.8 When in main(), What Comes Next?
	References

	9 Low-Level Hardware Drivers in C++
	9.1 An I/O Port Pin Driver Template Class
	9.2 Programming Interrupts in C++
	9.3 Implementing a System-Tick
	9.4 A Software PWM Template Class
	9.5 A Serial SPITM Driver Class
	9.6 CPU-Load Monitors
	9.7 Controlling a Seven-Segment Display
	References

	10 Custom Memory Management
	10.1 Dynamic Memory Considerations
	10.2 Using Placement-new
	10.3 Allocators and STL Containers
	10.4 The Standard Allocator
	10.5 Writing a Specialized ring_allocator
	10.6 Using ring_allocator and Other Allocators
	10.7 Recognizing and Handling Memory Limitations
	References

	11 C++ Multitasking
	11.1 Multitasking Schedulers
	11.2 Task Timing
	11.3 The Task Control Block
	11.4 The Task List
	11.5 The Scheduler
	11.6 Extended Multitasking
	11.7 Preemptive Multitasking
	11.8 The C++ Thread Support Library
	References

	Part III Mathematics and Utilities for Real-Time C++
	12 Floating-Point Mathematics
	12.1 Floating-Point Arithmetic
	12.2 Mathematical Constants
	12.3 Elementary Functions
	12.4 Special Functions
	12.5 Complex-Valued Mathematics
	12.6 Compile-Time Evaluation of Functions with constexpr
	12.7 Generic Numeric Programming
	References

	13 Fixed-Point Mathematics
	13.1 Fixed-Point Data Types
	13.2 A Scalable Fixed-Point Template Class
	13.3 Using the fixed_point Class
	13.4 Fixed-Point Elementary Transcendental Functions
	13.5 A Specialization of std::numeric_limits
	References

	14 High-Performance Digital Filters
	14.1 A Floating-Point Order-1 Filter
	14.2 An Order-1 Integer Filter
	14.3 Order-N Integer FIR Filters
	14.4 Some Worked-Out Filter Examples
	References

	15 C++ Utilities
	15.1 The nothing Structure
	15.2 The noncopyable Class
	15.3 A Template timer Class
	15.4 Linear Interpolation
	15.5 A circular_buffer Template Class
	15.6 The Boost Library
	References

	16 Extending the C++ Standard Library and the STL
	16.1 Defining the Custom dynamic_array Container
	16.2 Implementing and Using dynamic_array
	16.3 Writing Parts of the C++ Library if None Is Available
	16.4 Implementation Notes for Parts of the C++ Library and STL
	16.5 Providing now() for <chrono>'s High-Resolution Clock
	Reference

	17 Additional Reading
	17.1 Literature List
	References

	Appendix A A Tutorial for Real-Time C++
	Appendix B A Robust Real-Time C++ Environment
	Appendix C Building and Installing GNU GCC CrossCompilers
	Appendix D Building a Microcontroller Circuit
	Glossary
	Index

