
www.allitebooks.com

http://www.allitebooks.org

LOCATION OF VIDEO NOTES IN THE TEXT
Chapter 1 Compiling and Running a C++ Program, p. 27

Solution to Programming Project 1.6, p. 37

Chapter 2 Precedence and Arithmetic Operators, p. 71
Common Bugs with = and ==, p. 81
Solution to Programming Project 2.13, p. 107

Chapter 3 switch Statement Example, p. 132
Nested Loop Example, p. 161
Solution to Programming Project 3.13, p. 178

Chapter 4 Programmer-Defined Function Example, p. 201
Walkthrough of Functions and Local Variables, p. 223
Solution to Programming Project 4.7, p. 245

Chapter 5 Call by Reference and Call by Value, p. 268
Debugging, p. 287
Solution to Programming Project 5.9, p. 299

Chapter 6 Solution to Programming Project 6.18, p. 371

Chapter 7 Array Walkthrough, p. 381
Passing Arrays to Functions, p. 388
Selection Sort Walkthrough, p. 415
Solution to Programming Project 7.3, p. 434

Chapter 8 Example using cin and getline with the string class, p. 472
Solution to Programming Project 8.1, p. 491

Chapter 9 Solution to Programming Project 9.6, p. 526

Chapter 10 Class Scope, Public and Private Members, p. 553
Separate Interface and Implementation, p. 579
Solution to Programming Project 10.3, p. 604

Chapter 11 Arrays of Classes using Dynamic Arrays, p. 663
Overloading = and == for a Class, p. 672
Solution to Programming Project 11.15, p. 693

Chapter 12 Solution to Programming Project 12.3, p. 730

Chapter 13 Solution to Programming Project 13.6, p. 778
Solution to Programming Project 13.9, p. 780

Chapter 14 Recursion and the Stack, p. 794
Solution to Programming Project 14.7, p. 821

Chapter 15 Inheritance Example, p. 848
Solution to Programming Project 15.12, p. 879

Chapter 16 The STL exception Class, p. 906
Solution to Programming Project 16.3, p. 909

Chapter 17 Solution to Programming Project 17.10, p. 942

Chapter 18 Solution to Programming Project 18.7, p. 996

www.allitebooks.com

http://www.allitebooks.org

PROBLEM SOLVING

SEVENTH EDITION

WITH

www.allitebooks.com

http://www.allitebooks.org

This page intentionally left blank

www.allitebooks.com

http://www.allitebooks.org

PROBLEM SOLVING

WALTER SAVITCH

CONTRIBUTOR

KENRICK MOCK

SEVENTH EDITION

UNIVERSITY OF CALIFORNIA, SAN DIEGO

UNIVERSITY OF ALASKA, ANCHORAGE

WITH

Boston San Francisco NewYork
London Toronto Sydney Tokyo Singapore Madrid

Mexico City Munich Paris Cape Town Hong Kong Montreal

www.allitebooks.com

http://www.allitebooks.org

Executive Editor Michael Hirsch
Acquisitions Editor Matt Goldstein
Editorial Assistant Sarah Milmore
Senior Production Supervisor Marilyn Lloyd
Marketing Manager Christopher Kelly
Production Services,

Composition and Art Nesbitt Graphics, Inc.
Copy Editor, Proofreader, and

Indexer Rose Kernan
Text Design Sandra Rigney
Cover Design Barbara Atkinson
Media Producer Bethany Tidd
Senior Manufacturing Buyer Carol Melville
Cover Image Stepping stones in pond, Japan

Digital Vision Ltd./Super Stock
Printer Courier Westford

Access the latest information about Addison-Wesley Computing titles from our
World Wide Web site: http://www.aw-bc/computing

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks. Where those designations appear in this book, and
Addison-Wesley was aware of a trademark claim, the designations have been printed
in initial caps or all caps.

The programs and applications presented in this book have been included for their
instructional value. They have been tested with care, but are not guaranteed for any
particular purpose. The publisher does not offer any warranties or representations, nor
does it accept any liabilities with respect to the programs or applications.

Library of Congress Cataloging-in-Publication Data

Savitch, Walter J., 1943-
 Problem solving with C++ / Walter Savitch. -- 7th ed.
 p. cm.
 ISBN 0-321-53134-5
 1. C++ (Computer program language) I. Title.
 QA76.73.C153S29 2008
 005.13'3--dc22
 2007052559

Copyright © 2009 by Pearson Education, Inc. All rights reserved. No part of this
publication may be reproduced, stored in a retrieval system, or transmitted, in any
form or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior written permission of the publisher. Printed in the United States of
America. For information on obtaining permission for use of material in this work,
please submit a written request to Pearson Education, Inc., Rights and Contracts
Department, 501 Boylston Street, Suite 900, Boston, MA 02116, fax your request to
617 671-3447, or contact http://www.pearsoned.com/legal/permissions.htm

ISBN 13: 9780321531346
ISBN 10: 0-321-53134-5
1 2 3 4 5 6 7 8 9 10-CRW-11 10 09 08

http://www.aw-bc/computing
http://www.pearsoned.com/legal/permissions.htm

v

Preface

This book is meant to be used in a first course in programming and computer
science using the C++ language. It assumes no previous programming experi-
ence and no mathematics beyond high school algebra.

If you have used the previous edition of this book, you should read the
following section that explains the changes to this seventh edition, and then
you can skip the rest of this preface. If you are new to this book, the rest of this
preface will give you an overview of the book.

Changes to the Seventh Edition

This seventh edition presents the same programming philosophy as the sixth
edition. All of the material from the sixth edition remains. Thirty new program-
ming projects have been added, and the presentation has been reworked in
several chapters. Additional material on the map class has been added and the
program examples have been updated for greater compatibility with a majority
of compilers in use today. Moreover, thirty-nine videos that cover specific topics
and solutions to the Programming Projects have been added to the book’s
website. These video notes walk students through the process of both problem
solving and coding to help reinforce key programming concepts. An icon
appears in the margin of the book when a video is available regarding the topic
covered in the text. Finally, in response to instructors’ reviews of the previous
edition, introductory material on inheritance has been moved from Chapter 6,
“I/O Streams,” to Chapter 10, “Defining Classes.” However, if you are an
instructor already using the sixth edition, you can continue to teach your course
almost without change.

Choose Your Own Ordering of Topics

Most introductory textbooks that use C++ have a very detailed agenda that
instructors must follow to use the book in their courses. That is not true of this
book. If you are an instructor, this book adapts to the way you teach, rather than
making you adapt to the book. You can easily change the order in which
chapters and sections are covered without loss of continuity. A dependency
chart at the end of this preface gives an overview of the orders in which chapters
and sections may be covered, and each chapter has a “Prerequisites” section that
explains what parts of the book need to be covered before each section in that
chapter. This allows instructors to easily rearrange the order in which chapters,
or even sections, are covered.

vi PREFACE

Although this book uses libraries and teaches students the importance of
libraries, it does not require any nonstandard libraries. This book uses only
libraries that are provided with essentially all C++ implementations.

Allows either Late or Early Introduction of Classes

This book allows for flexible coverage of classes. You may cover classes either
early or late.

The default ordering of chapters begins by introducing students to the
fundamental concepts of variable declarations, expression evaluation, control
structures, procedural abstraction, function definition, arrays, and pointer manip-
ulation. This gives the student a solid foundation in the most basic of program-
ming concepts before tackling the more sophisticated concepts involved in object-
oriented programming. The book covers these most basic of programming
concepts in Chapters 2 through 9. In Chapter 6, file I/O streams are used to teach
students how to use classes. Because stream I/O does require some use of
namespaces and class libraries, some minimal coverage of how to use predefined
namespaces and some standard library I/O classes is integrated into the first few
chapters. In Chapter 10, students learn how to write their own classes.

Instructors who prefer to introduce classes earlier in the course can rear-
range the order of chapters to suit their approach. This is discussed in the section
“Flexibility in Topic Ordering” later in this preface. Essentially, instructors can
cover Chapter 10, “Defining Classes,” immediately after Chapter 6.

The book uses a measured approach to teaching classes. It teaches students
to write some very simple classes, then adds constructors, overloading simple
operators, overloading the I/O operators, and so forth. This measured approach
keeps the student from being overwhelmed with a long list of complicated
constructions and concepts. However, one goal of this book is to get students to
write realistic class definitions without spending time writing classes that are
artificially simple. By the end of Chapter 11, students are writing essentially the
same kinds of classes that they will be writing when they finish the course.

Inheritance is covered briefly in Chapter 10 so that students become aware of
the concept. However, this book does not teach students how to write their own
derived classes and use virtual functions until Chapter 15. Some instructors may
choose to leave that material for a second course. Other instructors will want to
integrate this inheritance coverage into their course. If desired, the material on
inheritance may be moved later, since Chapters 16 through 18 do not require
inheritance.

Accessibility to Students

It is not enough for a book to present the right topics in the right order. It is not
even enough for it to be clear and correct when read by an instructor or other
experienced programmer. The material needs to be presented in a way that is
accessible to beginning students. In this introductory textbook, I have endeav-
ored to write in a way that students find clear and friendly. Reports from the

PREFACE vii

many students who have used the earlier editions of this book confirm that this
style makes the material clear and often even enjoyable to students.

ANSI/ISO C++ Standard

This edition is fully compatible with compilers that meet the latest ANSI/ISO
C++ standard.

Advanced Topics

Many “advanced topics” are becoming part of a standard CS1 course. Even if
they are not part of a course, it is good to have them available in the text as
enrichment material. This book offers a number of advanced topics that can
be integrated into a course or left as enrichment topics. It gives thorough
coverage of C++ templates, inheritance (including virtual functions), excep-
tion handling, and the STL (Standard Template Library).

Summary Boxes

Each major point is summarized in a boxed section. These boxed sections are
spread throughout each chapter.

Self-Test Exercises

Each chapter contains numerous Self-Test Exercises at strategic points. Com-
plete answers for all the Self-Test Exercises are given at the end of each chapter.

Video Notes

The icon in the margin indicates when an online video is available that relates
to the current topic in the book.

Classroom Tested

Hundreds of thousands of students have used the first six editions of this
book. Many of these students and many of their instructors have given me
feedback about what worked and what did not work for them. The vast
majority of the comments were extremely positive and indicated that students
and teachers liked the book pretty much as it was, but suggestions for some
changes were made. All suggestions for changes were carefully considered.
That valuable feedback was used to revise this edition so that it fits students’
and instructors’ needs even better than the previous editions.

Flexibility in Topic Ordering

This book was written to allow instructors wide latitude in reordering the
material. To illustrate this flexibility, we suggest two alternative ways to order

viii PREFACE

the topics. There is no loss of continuity when the book is read in either of
these ways. To ensure this continuity when you rearrange material, you may
need to move sections rather than entire chapters. However, only large
sections in convenient locations are moved. To help customize a particular
order for any class’s needs, the end of this preface contains a dependency
chart, and each chapter has a “Prerequisites” section that explains what
material needs to be covered before each section in that chapter.

Reordering 1: Earlier Classes

To effectively design classes, a student needs some basic tools such as control
structures and function definitions. This basic material is covered in Chapters
1 through 6. After completing Chapter 6, students can begin to write their own
classes. One possible reordering of chapters that allows for such early coverage
of classes is the following:

Basics: Chapters 1, 2, 3, 4, 5, and 6. This material covers all control struc-
tures, function definitions, and basic file I/O. Chapter 3, which covers
additional control structures, could be deferred if you wish to cover
classes as early as possible.

Classes and namespaces: Chapter 10, Sections 11.1 and 11.2 of Chapter 11,
and Chapter 12. This material covers defining classes, friends, overloaded
operators, and namespaces.

Arrays, strings and vectors: Chapters 7 and 8.

Pointers and dynamic arrays: Chapter 9.

Arrays in classes: Sections 11.3 and 11.4 of Chapter 11.

Inheritance: Chapter 15.

Recursion: Chapter 14 (Alternately, recursion may be moved to later in the
course.)

Pointers and linked lists: Chapter 13.

Any subset of the following chapters may also be used:

Exception handling: Chapter 16.

Templates: Chapter 17.

Standard Template Library: Chapter 18.

Reordering 2: Classes Slightly Later but Still Early

This version covers all control structures and the basic material on arrays
before doing classes, but classes are covered later than the previous ordering
and slightly earlier than the default ordering.

Basics: Chapters 1, 2, 3, 4, 5, and 6. This material covers all control struc-
tures, function definitions, and the basic file I/O.

PREFACE ix

Arrays and strings: Chapter 7, Sections 8.1 and 8.2 of Chapter 8.

Classes and namespaces: Chapter 10, Sections 11.1 and 11.2 of Chapter 11,
and Chapter 12. This material covers defining classes, friends, overloaded
operators, and namespaces.

Pointers and dynamic arrays: Chapter 9.

Arrays in classes: Sections 11.3 and 11.4 of Chapter 11.

Inheritance: Chapter 15.

Recursion: Chapter 14. (Alternately, recursion may be moved to later in
the course.)

Vectors: Chapter 8.3.

Pointers and linked lists: Chapter 13.

Any subset of the following chapters may also be used:

Exception handling: Chapter 16.

Templates: Chapter 17.

Standard Template Library: Chapter 18.

Support Material

There is support material available to all users of this book and additional
material available only to qualified instructors.

Materials Available to All Users of this Book

■ Source Code from the book

■ PowerPoint slides

■ Video Notes

To access these materials, go to:

http://www.aw.com/cssupport

Resources Available to Qualified Instructors Only

Visit Addison-Wesley’s instructor resource center (http://www.aw.com/irc), con-
tact your local AW sales representative, or send email to computing@aw.com
for information on how to access instructor supplements:

■ Instructor’s Resource Guide—including chapter-by-chapter teaching hints,
quiz questions with solutions, and solutions to many programming projects

■ Test Bank and Test Generator

■ PowerPoint Lectures—including programs and art from the text

■ Lab Manual

■ Instructor access to Addison-Wesley’s MyCodeMate

http://www.aw.com/cssupport
http://www.aw.com/irc

x PREFACE

Visual C++ Support

In addition to the already listed support material, this text is also available
with supplementary Visual C++ materials:

■ Visual C++ 2008 Programming Companion (includes Microsoft’s Visual
C++ Express compiler)

■ Visual C++ 2005 Programming Companion (includes Microsoft’s Visual
C++ 2005 compiler)

Contact your local Addison-Wesley/Pearson representative, or send email to
computing@aw.com for information on obtaining the book with Visual C++.

Additional Support Material

■ Addison-Wesley’s C++ Backpack Reference Guide is a quick reference to
C++’s most frequently used keywords and libraries. It integrates all the
specifics of C++ in one handy place including syntax examples, keyword
descriptions, and programming tips. The C++ Backpack Reference Guide is
offered at a discount when packaged with a new copy of this text.

■ Addison-Wesley’s MyCodeMate is a book-specific Web resource that pro-
vides tutorial help and evaluation of student programs. A complimentary
subscription to MyCodeMate is offered when the access code is ordered
in a package with a new copy of this text. Subscriptions can also be pur-
chased online. For more information, visit http://www.mycodemate.com.

For more information on these and other resources available with the
book, contact your local Addison-Wesley representative, or send email to
computing@aw.com.

Acknowledgments

Numerous individuals and groups have provided me with suggestions,
discussions, and other help in preparing this textbook. Much of the first
edition of this book was written while I was visiting the Computer Science
Department at the University of Colorado in Boulder. The remainder of the
writing on the first edition and the work on subsequent editions was done in
the Computer Science and Engineering Department at the University of
California, San Diego (UCSD). I am grateful to these institutions for providing
a conducive environment for teaching this material and writing this book.

I would like to thank reviewers of this edition. They are: Joseph Allen
(Community College of Rhode Island), Noah Aydin (Kenyon College), Andrew
Haas (University at Albany, SUNY), Huzefa Kagdi (Kent State University), Gilliean
Lee (Lander University), Cynthia Martincic (Saint Vincent College), Jeff Roach
(East Tennessee State University), Susanne Sherba (University of Colorado, Boul-
der), Michal Sramka (Florida Atlantic University), James Stepleton (Stevens Insti-
tute of Technology), and Jeffrey Watson (Walla Walla Community College).

http://www.mycodemate.com

PREFACE xi

I extend a special thanks to all the individuals who have contributed
critiques or programming projects for this or earlier editions and drafts of this
book. In alphabetical order they are: Claire Bono, Richard Borie, Andrew Burt,
Edward Carr, Karla Chaveau, Wei Lian Chen, Joel Cohen, Doug Cosman,
Charles Dowling, Scot Drysdale, Joe Faletti, Alex Feldman, Sheila Foster, Paulo
Franca, Len Garrett, Jerrold Grossman, Eitan M. Gurari, Dennis Heckman, Bob
Holloway, Nisar Hundewale, Matt Johnson, Bruce Johnston, Larry Johnson,
Thomas Judson, Paul J. Kaiser, Michael Keenan, Brian R. King, Paul Kube,
Barney MacCabe, Steve Mahaney, Michael Main, Walter A. Manrique, Anne
Marchant, John Marsaglia, Nat Martin, Bob Matthews, Jesse Morehouse, Ethan
Munson, Donald Needham, Dung Nguyen, Joseph D. Oldham, Jennifer
Perkins, Carol Roberts, Ken Rockwood, John Russo, Amber Settle, Naomi
Shapiro, Scott Strong, David Teague, Jerry Weltman, John J. Westman, and
Linda F. Wilson.

I extend a special thanks to the many instructors who used early editions
of this book. Their comments provided some of the most helpful reviewing
that the book received.

I thank all the individuals at Addison-Wesley who contributed so much to
making this book possible: Marilyn Lloyd, Sarah Milmore, Chris Kelly, and my
editor, Matt Goldstein.

Finally, I thank Kenrick Mock who implemented the changes in this
edition. He had the almost impossible task of pleasing me, my editor, and his
own sensibilities, and he did a superb job of it.

Walter Savitch

Dependency Chart

The dependency chart on the next page shows possible orderings of chapters
and subsections. A line joining two boxes means that the upper box must be
covered before the lower box. Any ordering that is consistent with this partial
ordering can be read without loss of continuity. If a box contains a section
number or numbers, then the box refers only to those sections and not to the
entire chapter.

xii PREFACE

Chapter 12
Separate

Compilation &
Namespaces

*Chapter 16
Exception
Handling

Chapter 11
Classes 2
11.1–11.2

Chapter 7
7.4, Multi-

Dimensional
Arrays

Chapter 10
Classes 1

Chapter 6
I/O Streams

Chapter 5
Functions 2

Chapter 4
Functions 1

Chapter 2
C++ Basics

Chapter 3
More Flow of

Control

Chapter 7
Arrays
7.1–7.3

Chapter 8
Strings and

Vectors

Chapter 11
11.3 Classes

& Arrays

Chapter 11
11.4 Classes
& Dynamic

Arrays

Chapter 17
Templates

Chapter 18
STL

Chapter 13
Pointers and
Linked Lists

Chapter 15
Inheritance

Chapter 9
Pointers and

Dynamic
Arrays

Chapter 14
Recursion

Chapter 1
Introduction

*Chapter 16 contains
occasional references
to derived classes, but
those references can
be omitted

DISPLAY P.1 Dependency Chart

xiii

Brief Contents

Table of Location of Video Notes
Inside front cover

Chapter 1 Introduction to Computers and
C++ Programming 1

Chapter 2 C++ Basics 39

Chapter 3 More Flow of Control 111

Chapter 4 Procedural Abstraction and Functions That
Return a Value 181

Chapter 5 Functions for All Subtasks 251

Chapter 6 I/O Streams as an Introduction to Objects
and Classes 305

Chapter 7 Arrays 375

Chapter 8 Strings and Vectors 445

Chapter 9 Pointers and Dynamic Arrays 499

Chapter 10 Defining Classes 529

Chapter 11 Friends, Overloaded Operators, and Arrays
in Classes 609

xiv BRIEF CONTENTS

Chapter 12 Separate Compilation and Namespaces 695

Chapter 13 Pointers and Linked Lists 733

Chapter 14 Recursion 781

Chapter 15 Inheritance 825

Chapter 16 Exception Handling 881

Chapter 17 Templates 913

Chapter 18 Standard Template Library 943

Appendices
1 C++ Keywords 999
2 Precedence of Operators 1000
3 The ASCII Character Set 1002
4 Some Library Functions 1003
5 Inline Functions 1011
6 Overloading the Array Index

Square Brackets 1012
7 The this Pointer 1014
8 Overloading Operators as Member

Operators 1017

Index 1019

xv

Contents

TABLE OF LOCATION OF VIDEO NOTES

Inside front cover

Chapter 1 Introduction to Computers and C++
Programming 1

1.1 COMPUTER SYSTEMS 2
Hardware 2
Software 7
High-Level Languages 8
Compilers 9
History Note 12

1.2 PROGRAMMING AND PROBLEM-SOLVING 12
Algorithms 12
Program Design 15
Object-Oriented Programming 17
The Software Life Cycle 17

1.3 INTRODUCTION TO C++ 19
Origins of the C++ Language 19
A Sample C++ Program 20
Pitfall: Using the Wrong Slash in \n 24
Programming Tip: Input and Output Syntax 24
Layout of a Simple C++ Program 24
Pitfall: Putting a Space before the include File Name 26
Compiling and Running a C++ Program 27
Programming Tip: Getting Your Program to Run 27

1.4 TESTING AND DEBUGGING 30
Kinds of Program Errors 30
Pitfall: Assuming Your Program Is Correct 31

xvi CONTENTS

Chapter Summary 32

Answers to Self-Test Exercises 33

Programming Projects 36

Chapter 2 C++ Basics 39

2.1 VARIABLES AND ASSIGNMENTS 40
Variables 40
Names: Identifiers 42
Variable Declarations 44
Assignment Statements 45
Pitfall: Uninitialized Variables 47
Programming Tip: Use Meaningful Names 49

2.2 INPUT AND OUTPUT 50
Output Using cout 50
Include Directives and Namespaces 52
Escape Sequences 53
Programming Tip: End Each Program with a \n or endl 55
Formatting for Numbers with a Decimal Point 55
Input Using cin 56
Designing Input and Output 58
Programming Tip: Line Breaks in I/O 58

2.3 DATA TYPES AND EXPRESSIONS 60
The Types int and double 60
Other Number Types 62
The Type char 63
The Type bool 64
Introduction to the Class string 65
Type Compatibilities 66
Arithmetic Operators and Expressions 69
Pitfall: Whole Numbers in Division 71
More Assignment Statements 73

2.4 SIMPLE FLOW OF CONTROL 74
A Simple Branching Mechanism 74
Pitfall: Strings of Inequalities 80
Pitfall: Using = in place of == 81
Compound Statements 82
Simple Loop Mechanisms 84

CONTENTS xvii

Increment and Decrement Operators 87
Programming Example: Charge Card Balance 89

Pitfall: Infinite Loops 90

2.5 PROGRAM STYLE 93
Indenting 93
Comments 94
Naming Constants 96

Chapter Summary 98

Answers to Self-Test Exercises 99

Programming Projects 104

Chapter 3 More Flow of Control 111

3.1 USING BOOLEAN EXPRESSIONS 112
Evaluating Boolean Expressions 112
Pitfall: Boolean Expressions Convert to int Values 116
Enumeration Types (Optional) 119

3.2 MULTIWAY BRANCHES 120
Nested Statements 120
Programming Tip: Use Braces in Nested Statements 121
Multiway if-else Statements 123
Programming Example: State Income Tax 125

The switch Statement 129
Pitfall: Forgetting a break in a switch Statement 133
Using switch Statements for Menus 134
Blocks 134
Pitfall: Inadvertent Local Variables 139

3.3 MORE ABOUT C++ LOOP STATEMENTS 140
The while Statements Reviewed 141
Increment and Decrement Operators Revisited 142
The for Statement 145
Pitfall: Extra Semicolon in a for Statement 150
What Kind of Loop to Use 151
Pitfall: Uninitialized Variables and Infinite Loops 153
The break Statement 153
Pitfall: The break Statement in Nested Loops 155

xviii CONTENTS

3.4 DESIGNING LOOPS 156
Loops for Sums and Products 156
Ending a Loop 157
Nested Loops 161
Debugging Loops 163

Chapter Summary 166

Answers to Self-Test Exercises 167

Programming Projects 173

Chapter 4 Procedural Abstraction and Functions
That Return a Value 181

4.1 TOP-DOWN DESIGN 182

4.2 PREDEFINED FUNCTIONS 183
Using Predefined Functions 183
Type Casting 188
Older Form of Type Casting 190
Pitfall: Integer Division Drops the Fractional Part 191

4.3 PROGRAMMER-DEFINED FUNCTIONS 192
Function Definitions 192
Functions That Return a Boolean Value 196
Alternate Form for Function Declarations 199
Pitfall: Arguments in the Wrong Order 199
Function Definition–Syntax Summary 201
More About Placement of Function Definitions 202
Programming Tip: Use Function Calls in Branching Statements 202

4.4 PROCEDURAL ABSTRACTION 204
The Black Box Analogy 204
Programming Tip: Choosing Formal Parameter Names 206
Programming Tip: Nested Loops 208
Case Study: Buying Pizza 211
Programming Tip: Use Pseudocode 217

4.5 LOCAL VARIABLES 218
The Small Program Analogy 218
Programming Example: Experimental Pea Patch 220

Global Constants and Global Variables 221

CONTENTS xix

Call-by-Value Formal Parameters Are Local Variables 224
Namespaces Revisited 226
Programming Example: The Factorial Function 229

4.6 OVERLOADING FUNCTION NAMES 230
Introduction to Overloading 231
Programming Example: Revised Pizza-Buying Program 233

Automatic Type Conversion 236

Chapter Summary 239

Answers to Self-Test Exercises 239

Programming Projects 244

Chapter 5 Functions for All Subtasks 251

5.1 void FUNCTIONS 252
Definitions of void Functions 252
Programming Example: Converting Temperatures 255

return Statements in void Functions 255

5.2 CALL-BY-REFERENCE PARAMETERS 259
A First View of Call-by-Reference 259
Call-by-Reference in Detail 262
Programming Example: The swap_values Function 266

Mixed Parameter Lists 268
Programming Tip: What Kind of Parameter to Use 268
Pitfall: Inadvertent Local Variables 270

5.3 USING PROCEDURAL ABSTRACTION 272
Functions Calling Functions 273
Preconditions and Postconditions 273
Case Study: Supermarket Pricing 274

5.4 TESTING AND DEBUGGING FUNCTIONS 282
Stubs and Drivers 282

5.5 GENERAL DEBUGGING TECHNIQUES 287
Keep an Open Mind 287
Check Common Errors 288
Localize the Error 288
The assert macro 291

xx CONTENTS

Chapter Summary 292

Answers to Self-Test Exercises 293

Programming Projects 297

Chapter 6 I/O Streams as an Introduction to Objects
and Classes 305

6.1 STREAMS AND BASIC FILE I/O 306
Why Use Files for I/O? 307
File I/O 308
Introduction to Classes and Objects 312
Programming Tip: Check Whether a File Was Opened Successfully 313
Techniques for File I/O 316
Appending to a File (Optional) 320
File Names as Input (Optional) 320

6.2 TOOLS FOR STREAM I/O 323
Formatting Output with Stream Functions 323
Manipulators 328
Streams as Arguments to Functions 332
Programming Tip: Checking for the End of a File 332
A Note on Namespaces 336
Programming Example: Cleaning Up a File Format 337

6.3 CHARACTER I/O 338
The Member Functions get and put 339
The putback Member Function (Optional) 342
Programming Example: Checking Input 343

Pitfall: Unexpected '\n' in Input 346
The eof Member Function 349
Programming Example: Editing a Text File 352

Predefined Character Functions 352
Pitfall: toupper and tolower Return Values 355

Chapter Summary 357

Answers to Self-Test Exercises 359

Programming Projects 364

CONTENTS xxi

Chapter 7 Arrays 375

7.1 INTRODUCTION TO ARRAYS 376
Declaring and Referencing Arrays 376
Programming Tip: Use for Loops with Arrays 378
Pitfall: Array Indexes Always Start with Zero 378
Programming Tip: Use a Defined Constant for the Size of an Array 378
Arrays in Memory 380
Pitfall: Array Index Out of Range 381
Initializing Arrays 383

7.2 ARRAYS IN FUNCTIONS 385
Indexed Variables as Function Arguments 385
Entire Arrays as Function Arguments 388
The const Parameter Modifier 391
Pitfall: Inconsistent Use of const Parameters 393
Functions That Return an Array 394
Case Study: Production Graph 394

7.3 PROGRAMMING WITH ARRAYS 408
Partially Filled Arrays 408
Programming Tip: Do Not Skimp on Formal Parameters 411
Programming Example: Searching an Array 412

Programming Example: Sorting an Array 414

7.4 MULTIDIMENSIONAL ARRAYS 419
Multidimensional Array Basics 420
Multidimensional Array Parameters 420
Programming Example: Two-Dimensional Grading Program 422

Pitfall: Using Commas Between Array Indexes 427

Chapter Summary 427

Answers to Self-Test Exercises 428

Programming Projects 433

Chapter 8 Strings and Vectors 445

8.1 AN ARRAY TYPE FOR STRINGS 447
C-String Values and C-String Variables 447
Pitfall: Using = and == with C Strings 451

xxii CONTENTS

Other Functions in <cstring> 453
C-String Input and Output 457
C-String-to-Number Conversions and Robust Input 460

8.2 THE STANDARD string CLASS 465
Introduction to the Standard Class string 465
I/O with the Class string 468
Programming Tip: More Versions of getline 472
Pitfall: Mixing cin >> variable; and getline 472
String Processing with the Class string 474
Programming Example: Palindrome Testing 476

Converting between string Objects and C Strings 481

8.3 VECTORS 482
Vector Basics 482
Pitfall: Using Square Brackets Beyond the Vector Size 484
Programming Tip: Vector Assignment Is Well Behaved 486
Efficiency Issues 487

Chapter Summary 488

Answers to Self-Test Exercises 489

Programming Projects 491

Chapter 9 Pointers and Dynamic Arrays 499

9.1 POINTERS 500
Pointer Variables 501
Basic Memory Management 508
Pitfall: Dangling Pointers 509
Static Variables and Automatic Variables 510
Programming Tip: Define Pointer Types 510

9.2 DYNAMIC ARRAYS 513
Array Variables and Pointer Variables 513
Creating and Using Dynamic Arrays 513
Pointer Arithmetic (Optional) 519
Multidimensional Dynamic Arrays (Optional) 521

Chapter Summary 523

Answers to Self-Test Exercises 523

Programming Projects 524

CONTENTS xxiii

Chapter 10 Defining Classes 529

10.1 STRUCTURES 530
Structures for Diverse Data 530
Pitfall: Forgetting a Semicolon in a Structure Definition 535
Structures as Function Arguments 536
Programming Tip: Use Hierarchical Structures 537
Initializing Structures 539

10.2 CLASSES 542
Defining Classes and Member Functions 542
Public and Private Members 547
Programming Tip: Make All Member Variables Private 555
Programming Tip: Define Accessor and Mutator Functions 555
Programming Tip: Use the Assignment Operator with Objects 557
Programming Example: BankAccount Class—Version 1 557

Summary of Some Properties of Classes 562
Constructors for Initialization 564
Programming Tip: Always Include a Default Constructor 572
Pitfall: Constructors with No Arguments 573

10.3 ABSTRACT DATA TYPES 575
Classes to Produce Abstract Data Types 576
Programming Example: Alternative Implementation of a Class 580

10.4 INTRODUCTION TO INHERITANCE 584
Inheritance Among Stream Classes 585
Programming Example: Another new_line Function 588

Default Arguments for Functions (Optional) 589
Defining Derived Classes 591

Chapter Summary 594

Answers to Self-Test Exercises 595

Programming Projects 603

Chapter 11 Friends, Overloaded Operators, and
Arrays in Classes 609

11.1 FRIEND FUNCTIONS 610
Programming Example: An Equality Function 610

Friend Functions 614

xxiv CONTENTS

Programming Tip: Define Both Accessor Functions and Friend
 Functions 616
Programming Tip: Use Both Member and Nonmember Functions 618
Programming Example: Money Class (Version 1) 618

Implementation of digit_to_int (Optional) 625
Pitfall: Leading Zeros in Number Constants 626
The const Parameter Modifier 628
Pitfall: Inconsistent Use of const 630

11.2 OVERLOADING OPERATORS 633
Overloading Operators 634
Constructors for Automatic Type Conversion 638
Overloading Unary Operators 640
Overloading >> and << 640

11.3 ARRAYS AND CLASSES 651
Arrays of Classes 651
Arrays as Class Members 655
Programming Example: A Class for a Partially Filled Array 656

11.4 CLASSES AND DYNAMIC ARRAYS 659
Programming Example: A String Variable Class 659

Destructors 663
Pitfall: Pointers as Call-by-Value Parameters 665
Copy Constructors 667
Overloading the Assignment Operator 672

Chapter Summary 675

Answers to Self-Test Exercises 676

Programming Projects 686

Chapter 12 Separate Compilation and Namespaces 695

12.1 SEPARATE COMPILATION 696
ADTs Reviewed 697
Case Study: DigitalTime—A Class Compiled Separately 698
Using #ifndef 707
Programming Tip: Defining Other Libraries 710

CONTENTS xxv

12.2 NAMESPACES 712
Namespaces and using Directives 712
Creating a Namespace 714
Qualifying Names 717
A Subtle Point About Namespaces (Optional) 718
Unnamed Namespaces 719
Programming Tip: Choosing a Name for a Namespace 722
Pitfall: Confusing the Global Namespace and the Unnamed
 Namespace 724

Chapter Summary 727

Answers to Self-Test Exercises 727

Programming Projects 729

Chapter 13 Pointers and Linked Lists 733

13.1 NODES AND LINKED LISTS 734
Nodes 734
Linked Lists 740
Inserting a Node at the Head of a List 741
Pitfall: Losing Nodes 744
Searching a Linked List 745
Pointers as Iterators 749
Inserting and Removing Nodes Inside a List 749
Pitfall: Using the Assignment Operator with Dynamic
 Data Structures 752
Variations on Linked Lists 754
Linked Lists of Classes 756

13.2 STACKS AND QUEUES 760
Stacks 760
Programming Example: A Stack Class 761

Queues 766
Programming Example: A Queue Class 767

Chapter Summary 771

Answers to Self-Test Exercises 772

Programming Projects 775

xxvi CONTENTS

Chapter 14 Recursion 781

14.1 RECURSIVE FUNCTIONS FOR TASKS 783
Case Study: Vertical Numbers 783
A Closer Look at Recursion 790
Pitfall: Infinite Recursion 791
Stacks for Recursion 793
Pitfall: Stack Overflow 794
Recursion Versus Iteration 795

14.2 RECURSIVE FUNCTIONS FOR VALUES 796
General Form for a Recursive Function That Returns a Value 796
Programming Example: Another Powers Function 797

14.3 THINKING RECURSIVELY 801
Recursive Design Techniques 801
Case Study: Binary Search—An Example of Recursive Thinking 803
Programming Example: A Recursive Member Function 810

Chapter Summary 815

Answers to Self-Test Exercises 815

Programming Projects 820

Chapter 15 Inheritance 825

15.1 INHERITANCE BASICS 826
Derived Classes 827
Constructors in Derived Classes 835
Pitfall: Use of Private Member Variables from the Base Class 838
Pitfall: Private Member Functions Are Effectively Not Inherited 840
The protected Qualifier 840
Redefinition of Member Functions 843
Redefining Versus Overloading 847
Access to a Redefined Base Function 848

15.2 INHERITANCE DETAILS 849
Functions That Are Not Inherited 850
Assignment Operators and Copy Constructors in Derived Classes 850
Destructors in Derived Classes 851

CONTENTS xxvii

15.3 POLYMORPHISM 853
Late Binding 853
Virtual Functions in C++ 854
Virtual Functions and Extended Type Compatibility 860
Pitfall: The Slicing Problem 864
Pitfall: Not Using Virtual Member Functions 864
Pitfall: Attempting to Compile Class Definitions Without Definitions for
 Every Virtual Member Function 865
Programming Tip: Make Destructors Virtual 866

Chapter Summary 867

Answers to Self-Test Exercises 868

Programming Projects 872

Chapter 16 Exception Handling 881

16.1 EXCEPTION-HANDLING BASICS 883
A Toy Example of Exception Handling 883
Defining Your Own Exception Classes 892
Multiple Throws and Catches 892
Pitfall: Catch the More Specific Exception First 896
Programming Tip: Exception Classes Can Be Trivial 897
Throwing an Exception in a Function 898
Exception Specification 898
Pitfall: Exception Specification in Derived Classes 902

16.2 PROGRAMMING TECHNIQUES FOR
EXCEPTION HANDLING 903
When to Throw an Exception 903
Pitfall: Uncaught Exceptions 905
Pitfall: Nested try-catch Blocks 905
Pitfall: Overuse of Exceptions 905
Exception Class Hierarchies 906
Testing for Available Memory 906
Rethrowing an Exception 907

Chapter Summary 907

Answers to Self-Test Exercises 907

Programming Projects 909

xxviii CONTENTS

Chapter 17 Templates 913

17.1 TEMPLATES FOR ALGORITHM ABSTRACTION 914
Templates for Functions 915
Pitfall: Compiler Complications 919
Programming Example: A Generic Sorting Function 921

Programming Tip: How to Define Templates 925
Pitfall: Using a Template with an Inappropriate Type 926

17.2 TEMPLATES FOR DATA ABSTRACTION 927
Syntax for Class Templates 927
Programming Example: An Array Class 930

Chapter Summary 936

Answers to Self-Test Exercises 936

Programming Projects 939

Chapter 18 Standard Template Library 943

18.1 ITERATORS 945
using Declarations 945
Iterator Basics 946
Pitfall: Compiler Problems 951
Kinds of Iterators 952
Constant and Mutable Iterators 956
Reverse Iterators 957
Other Kinds of Iterators 959

18.2 CONTAINERS 960
Sequential Containers 960
Pitfall: Iterators and Removing Elements 965
Programming Tip: Type Definitions in Containers 965
Container Adapters stack and queue 966
Associative Containers set and map 970
Efficiency 976

18.3 GENERIC ALGORITHMS 977
Running Times and Big-O Notation 978
Container Access Running Times 982
Nonmodifying Sequence Algorithms 983
Container Modifying Algorithms 989

CONTENTS xxix

Set Algorithms 989
Sorting Algorithms 991

Chapter Summary 991

Answers to Self-Test Exercises 992

Programming Projects 994

APPENDICES
1 C++ Keywords 999

2 Precedence of Operators 1000

3 The ASCII Character Set 1002

4 Some Library Functions 1003

5 Inline Functions 1011

6 Overloading the Array Index Square Brackets 1012

7 The this Pointer 1014

8 Overloading Operators as Member Operators 1017

INDEX 1019

This page intentionally left blank

1
Introduction to
Computers and

C++ Programming

1.1 COMPUTER SYSTEMS 2
Hardware 2
Software 7
High-Level Languages 8
Compilers 9
History Note 12

1.2 PROGRAMMING AND
PROBLEM-SOLVING 12
Algorithms 12
Program Design 15
Object-Oriented Programming 17
The Software Life Cycle 17

1.3 INTRODUCTION TO C++ 19
Origins of the C++ Language 19
A Sample C++ Program 20
Pitfall: Using the Wrong Slash in \n 24
Programming Tip: Input and Output Syntax 24
Layout of a Simple C++ Program 24
Pitfall: Putting a Space before the include

File Name 26
Compiling and Running a C++ Program 27
Programming Tip: Getting Your Program to Run 27

1.4 TESTING AND DEBUGGING 30
Kinds of Program Errors 30
Pitfall: Assuming Your Program Is Correct 31

Chapter Summary 32
Answers to Self-Test Exercises 33
Programming Projects 36

2

The whole of the development and operation of analysis are now
capable of being executed by machinery.... As soon as an Analytical
Engine exists, it will necessarily guide the future course of science.
CHARLES BABBAGE (1792–1871)

INTRODUCTION
In this chapter we describe the basic components of a computer, as well as
the basic technique for designing and writing a program. We then show you
a sample C++ program and describe how it works.

1.1 COMPUTER SYSTEMS

A set of instructions for a computer to follow is called a program. The
collection of programs used by a computer is referred to as the software for
that computer. The actual physical machines that make up a computer
installation are referred to as hardware. As we will see, the hardware for a
computer is conceptually very simple. However, computers now come with a
large array of software to aid in the task of programming. This software
includes editors, translators, and managers of various sorts. The resulting
environment is a complicated and powerful system. In this book we are
concerned almost exclusively with software, but a brief overview of how the
hardware is organized will be useful.

Hardware

There are three main classes of computers: PCs, workstations, and mainframes. A
PC (personal computer) is a relatively small computer designed to be used by
one person at a time. Most home computers are PCs, but PCs are also widely
used in business, industry, and science. A workstation is essentially a larger and
more powerful PC. You can think of it as an “industrial-strength” PC. A
mainframe is an even larger computer that typically requires some support staff
and generally is shared by more than one user. The distinctions between PCs,
workstations, and mainframes are not precise, but the terms are commonly used
and do convey some very general information about a computer.

A network consists of a number of computers connected, so that they may
share resources such as printers, and may share information. A network might
contain a number of workstations and one or more mainframes, as well as
shared devices such as printers.

For our purposes in learning programming, it will not matter whether you
are working on a PC, a mainframe, or a workstation. The basic configuration
of the computer, as we will view it, is the same for all three types of computers.

software

hardware

PCs,
workstations,

and
mainframes

network

1.1 Computer Systems 3

The hardware for most computer systems is organized as shown in
Display 1.1. The computer can be thought of as having five main components:
the input device(s), the output device(s), the processor (also called the CPU, for
central processing unit), the main memory, and the secondary memory. The
processor, main memory, and sometimes even secondary memory are normal-
ly housed in a single cabinet. The processor and main memory form the heart
of a computer and can be thought of as an integrated unit. Other components
connect to the main memory and operate under the direction of the processor.
The arrows in Display 1.1 indicate the direction of information flow.

An input device is any device that allows a person to communicate
information to the computer. Your primary input devices are likely to be a
keyboard and a mouse.

An output device is anything that allows the computer to communicate
information to you. The most common output device is a display screen,
referred to as a monitor. Quite often, there is more than one output device. For
example, in addition to the monitor, your computer probably is connected to
a printer for producing output on paper. The keyboard and monitor are
sometimes thought of as a single unit called a terminal.

input devices

output devices

DISPLAY 1.1 Main Components of a Computer

Main memory

Processor (CPU)

Secondary
memory

Input
device(s)

Output
device(s)

4 CHAPTER 1 / Introduction to Computers and C++ Programming

In order to store input and to have the equivalent of scratch paper for
performing calculations, computers are provided with memory. The program
that the computer executes is also stored in this memory. A computer has two
forms of memory, called main memory and secondary memory. The program
that is being executed is kept in main memory, and main memory is, as the
name implies, the most important memory. Main memory consists of a long
list of numbered locations called memory locations; the number of memory
locations varies from one computer to another, ranging from a few thousand
to many millions, and sometimes even into the billions. Each memory
location contains a string of zeros and ones. The contents of these locations
can change. Hence, you can think of each memory location as a tiny
blackboard on which the computer can write and erase. In most computers,
all memory locations contain the same number of zero/one digits. A digit that
can assume only the values zero or one is called a binary digit or a bit. The
memory locations in most computers contain eight bits (or some multiple of
eight bits). An eight-bit portion of memory is called a byte, so we can refer to
these numbered memory locations as bytes. To rephrase the situation, you can
think of the computer’s main memory as a long list of numbered memory
locations called bytes. The number that identifies a byte is called its address. A
data item, such as a number or a letter, can be stored in one of these bytes, and
the address of the byte is then used to find the data item when it is needed.

If the computer needs to deal with a data item (such as a large number)
that is too large to fit in a single byte, it will use several adjacent bytes to hold
the data item. In this case the entire chunk of memory that holds the data item
is still called a memory location. The address of the first of the bytes that make
up this memory location is used as the address for this larger memory
location. Thus, as a practical matter, you can think of the computer’s main
memory as a long list of memory locations of varying sizes. The size of each of
these locations is expressed in bytes and the address of the first byte is used as
the address (name) of that memory location. Display 1.2 shows a picture of a
hypothetical computer’s main memory. The sizes of the memory locations are
not fixed, but can change when a new program is run on the computer.

The fact that the information in a computer’s memory is represented as
zeros and ones need not be of great concern to you when programming in C++

Bytes and Addresses

Main memory is divided into numbered locations called bytes. The
number associated with a byte is called its address. A group of consecutive
bytes is used as the location for a data item, such as a number or letter. The
address of the first byte in the group is used as the address of this larger
memory location.

main memory

bit

byte

address

memory location

1.1 Computer Systems 5

(or in most other programming languages). There is, however, one point
about this use of zeros and ones that will concern us as soon as we start to
write programs. The computer needs to interpret these strings of zeros and
ones as numbers, letters, instructions, or other types of information. The
computer performs these interpretations automatically according to certain
coding schemes. A different code is used for each different type of item that is
stored in the computer’s memory: one code for letters, another for whole
numbers, another for fractions, another for instructions, and so on. For
example, in one commonly used set of codes, 01000001 is the code for the
letter A and also for the number 65. In order to know what the string 01000001
in a particular location stands for, the computer must keep track of which code
is currently being used for that location. Fortunately, the programmer seldom
needs to be concerned with such codes and can safely reason as though the
locations actually contained letters, numbers, or whatever is desired.

Why Eight?

A byte is a memory location that can hold eight bits. What is so special
about eight? Why not ten bits? There are two reasons why eight is special.
First, eight is a power of 2. (8 is 23.) Since computers use bits, which have
only two possible values, powers of two are more convenient than powers
of 10. Second, it turns out that eight bits (one byte) are required to code a
single character (such as a letter or other keyboard symbol).

DISPLAY 1.2 Memory Locations and Bytes

byte 1
byte 2
byte 3
byte 4
byte 5
byte 6
byte 7
byte 8
byte 9

3 byte location with address 1

2 byte location with address 4

1 byte location with address 6

3 byte location with address 7

6 CHAPTER 1 / Introduction to Computers and C++ Programming

The memory we have been discussing up until now is the main memory.
Without its main memory, a computer can do nothing. However, main memory
is only used while the computer is actually following the instructions in a
program. The computer also has another form of memory called secondary
memory or secondary storage. (The words memory and storage are exact synonyms
in this context.) Secondary memory is the memory that is used for keeping a
permanent record of information after (and before) the computer is used. Some
alternative terms that are commonly used to refer to secondary memory are
auxiliary memory, auxiliary storage, external memory, and external storage.

Information in secondary storage is kept in units called files, which can be
as large or as small as you like. A program, for example, is stored in a file in
secondary storage and copied into main memory when the program is run.
You can store a program, a letter, an inventory list, or any other unit of
information in a file.

 Several different kinds of secondary memory can be attached to a single
computer. The most common forms of secondary memory are hard disks,
diskettes, CDs, DVDs and removable flash memory drives. (Diskettes are also
sometimes referred to as floppy disks.) CDs (compact discs) used on computers
are basically the same as those used to record and play music, while DVDs
(digital video discs) are the same as those used to play videos. CDs and DVDs
for computers can be read-only so that your computer can read, but cannot
change, the data on the disc; CDs and DVDs for computers can also be read/
write, which can have their data changed by the computer. Information is
stored on hard disks and diskettes in basically the same way as it is stored on
CDs and DVDs. Hard disks are fixed in place and are normally not removed
from the disk drive. Diskettes and CDs can be easily removed from the disk
drive and carried to another computer. Diskettes and CDs have the advantages
of being inexpensive and portable, but hard disks hold more data and operate
faster. Other forms of secondary memory are also available, but this list covers
most forms that you are likely to encounter.

Main memory is often referred to as RAM or random access memory. It
is called random access because the computer can immediately access the data
in any memory location. Secondary memory often requires sequential access,
which means that the computer must look through all (or at least very many)
memory locations until it finds the item it needs.

The processor (also known as the central processing unit, or CPU) is the
“brain” of the computer. When a computer is advertised, the computer
company tells you what chip it contains. The chip is the processor. The
processor follows the instructions in a program and performs the calculations
specified by the program. The processor is, however, a very simple brain. All it
can do is follow a set of simple instructions provided by the programmer.
Typical processor instructions say things like “Interpret the zeros and ones as
numbers, and then add the number in memory location 37 to the number in
memory location 59, and put the answer in location 43,” or “Read a letter of
input, convert it to its code as a string of zeros and ones, and place it in

secondary
memory

files

CDs, DVDs, disks,
and diskettes

RAM

processor

chip

1.1 Computer Systems 7

memory location 1298.” The processor can add, subtract, multiply, and divide
and can move things from one memory location to another. It can interpret
strings of zeros and ones as letters and send the letters to an output device. The
processor also has some primitive ability to rearrange the order of instructions.
Processor instructions vary somewhat from one computer to another. The
processor of a modern computer can have as many as several hundred
available instructions. However, these instructions are typically all about as
simple as those we have just described.

Software

You do not normally talk directly to the computer, but communicate with it
through an operating system. The operating system allocates the computer’s
resources to the different tasks that the computer must accomplish. The
operating system is actually a program, but it is perhaps better to think of it as
your chief servant. It is in charge of all your other servant programs, and it
delivers your requests to them. If you want to run a program, you tell the
operating system the name of the file that contains it, and the operating
system runs the program. If you want to edit a file, you tell the operating
system the name of the file and it starts up the editor to work on that file. To
most users the operating system is the computer. Most users never see the
computer without its operating system. The names of some common operat-
ing systems are UNIX, DOS, Linux, Windows, Mac OS, and VMS.

A program is a set of instructions for a computer to follow. As shown in
Display 1.3, the input to a computer can be thought of as consisting of two
parts, a program and some data. The computer follows the instructions in the
program, and in that way, performs some process. The data is what we
conceptualize as the input to the program. For example, if the program adds
two numbers, then the two numbers are the data. In other words, the data is
the input to the program, and both the program and the data are input to the
computer (usually via the operating system). Whenever we give a computer

operating
system

program

DISPLAY 1.3 Simple View of Running a Program

Program

Computer

Data

Output

data

8 CHAPTER 1 / Introduction to Computers and C++ Programming

both a program to follow and some data for the program, we are said to be
running the program on the data, and the computer is said to execute the
program on the data. The word data also has a much more general meaning
than the one we have just given it. In its most general sense it means any
information available to the computer. The word is commonly used in both
the narrow sense and the more general sense.

High-Level Languages

There are many languages for writing programs. In this text we will discuss the
C++ programming language and use it to write our programs. C++ is a high-
level language, as are most of the other programming languages you are likely
to have heard of, such as C, Java, Pascal, Visual Basic, FORTRAN, COBOL,
Lisp, Scheme, and Ada. High-level languages resemble human languages in
many ways. They are designed to be easy for human beings to write programs
in and to be easy for human beings to read. A high-level language, such as
C++, contains instructions that are much more complicated than the simple
instructions a computer’s processor (CPU) is capable of following.

The kind of language a computer can understand is called a low-level
language. The exact details of low-level languages differ from one kind of
computer to another. A typical low-level instruction might be the following:

ADD X Y Z

This instruction might mean “Add the number in the memory location called
X to the number in the memory location called Y, and place the result in the
memory location called Z.” The above sample instruction is written in what is
called assembly language. Although assembly language is almost the same as
the language understood by the computer, it must undergo one simple
translation before the computer can understand it. In order to get a computer
to follow an assembly language instruction, the words need to be translated
into strings of zeros and ones. For example, the word ADD might translate to
0110, the X might translate to 1001, the Y to 1010, and the Z to 1011. The
version of the above instruction that the computer ultimately follows would
then be:

0110 1001 1010 1011

Assembly language instructions and their translation into zeros and ones
differ from machine to machine.

Programs written in the form of zeros and ones are said to be written in
machine language, because that is the version of the program that the
computer (the machine) actually reads and follows. Assembly language and
machine language are almost the same thing, and the distinction between
them will not be important to us. The important distinction is that between

running a
program

executing a
program

high-level
language

low-level
language

assembly
language

machine
language

1.1 Computer Systems 9

machine language and high-level languages like C++: Any high-level language
program must be translated into machine language before the computer can
understand and follow the program.

Compilers

A program that translates a high-level language like C++ to a machine
language is called a compiler. A compiler is thus a somewhat peculiar sort of
program, in that its input or data is some other program, and its output is yet
another program. To avoid confusion, the input program is usually called the
source program or source code, and the translated version produced by the
compiler is called the object program or object code. The word code is
frequently used to mean a program or a part of a program, and this usage is
particularly common when referring to object programs. Now, suppose you
want to run a C++ program that you have written. In order to get the computer
to follow your C++ instructions, proceed as follows. First, run the compiler
using your C++ program as data. Notice that in this case, your C++ program is
not being treated as a set of instructions. To the compiler, your C++ program
is just a long string of characters. The output will be another long string of
characters, which is the machine-language equivalent of your C++ program.
Next, run this machine-language program on what we normally think of as the
data for the C++ program. The output will be what we normally conceptualize
as the output of the C++ program. The basic process is easier to visualize if you
have two computers available, as diagrammed in Display 1.4. In reality, the
entire process is accomplished by using one computer two times.

The complete process of translating and running a C++ program is a bit
more complicated than what we show in Display 1.4. Any C++ program you
write will use some operations (such as input and output routines) that have
already been programmed for you. These items that are already programmed
for you (like input and output routines) are already compiled and have their
object code waiting to be combined with your program’s object code to produce
a complete machine-language program that can be run on the computer.
Another program, called a linker, combines the object code for these program
pieces with the object code that the compiler produced from your C++ program.

Compiler

A compiler is a program that translates a high-level language program,
such as a C++ program, into a machine-language program that the
computer can directly understand and execute.

compiler

source program
object program
code

linker

10 CHAPTER 1 / Introduction to Computers and C++ Programming

The interaction of the compiler and the linker are diagrammed in Display 1.5. In
routine cases, many systems will do this linking for you automatically. Thus, you
may not need to worry about linking in very simple cases.

Linking

The object code for your C++ program must be combined with the object
code for routines (such as input and output routines) that your program
uses. This process of combining object code is called linking and is done
by a program called a linker. For simple programs, linking may be done
for you automatically.

DISPLAY 1.4 Compiling and Running a C++ Program (Basic Outline)

C++ program
Data for

C++ program

Compiler

Computer

Machine-
language

Computer

Output of
C++ program

1.1 Computer Systems 11

SELF -TEST EXERC ISES

1. What are the five main components of a computer?

2. What would be the data for a program to add two numbers?

3. What would be the data for a program that assigns letter grades to stu-
dents in a class?

4. What is the difference between a machine-language program and a high-
level language program?

5. What is the role of a compiler?

6. What is a source program? What is an object program?

7. What is an operating system?

8. What purpose does the operating system serve?

DISPLAY 1.5 Preparing a C++ Program for Running

Complete machine-
language code
ready to run

Object code for
C++ program

Object code for
other routines

C++ program

Compiler

Linker

12 CHAPTER 1 / Introduction to Computers and C++ Programming

9. Name the operating system that runs on the computer you use to prepare
programs for this course.

10. What is linking?

11. Find out whether linking is done automatically by the compiler you use
for this course.

History Note

The first truly programmable computer was designed by Charles Babbage, an
English mathematician and physical scientist. Babbage began the project
sometime before 1822 and worked on it for the rest of his life. Although he
never completed the construction of his machine, the design was a conceptual
milestone in the history of computing. Much of what we know about Charles
Babbage and his computer design comes from the writings of his colleague
Ada Augusta. Ada Augusta was the daughter of the poet Byron and was the
Countess of Lovelace. Ada Augusta is frequently given the title of the first
computer programmer. Her comments, quoted in the opening of the next
section, still apply to the process of solving problems on a computer.
Computers are not magic and do not, at least as yet, have the ability to
formulate sophisticated solutions to all the problems we encounter. Comput-
ers simply do what the programmer orders them to do. The solutions to
problems are carried out by the computer, but the solutions are formulated by
the programmer. Our discussion of computer programming begins with a
discussion of how a programmer formulates these solutions.

1.2 PROGRAMMING AND PROBLEM-SOLVING

The Analytical Engine has no pretensions whatever to originate anything. It can
do whatever we know how to order it to perform. It can follow analysis; but it
has no power of anticipating any analytical relations or truths. Its province is to
assist us in making available what we are already acquainted with.

ADA AUGUSTA, COUNTESS OF LOVELACE (1815–1852)

In this section we describe some general principles that you can use to design
and write programs. These principles are not particular to C++. They apply no
matter what programming language you are using.

Algorithms

When learning your first programming language it is easy to get the impres-
sion that the hard part of solving a problem on a computer is translating your

Charles Babbage

Ada Augusta

1.2 Programming and Problem-Solving 13

ideas into the specific language that will be fed into the computer. This
definitely is not the case. The most difficult part of solving a problem on a
computer is discovering the method of solution. After you come up with a
method of solution, it is routine to translate your method into the required
language, be it C++ or some other programming language. It is therefore
helpful to temporarily ignore the programming language and to concentrate
instead on formulating the steps of the solution and writing them down in
plain English, as if the instructions were to be given to a human being rather
than a computer. A sequence of instructions expressed in this way is frequently
referred to as an algorithm.

A sequence of precise instructions which leads to a solution is called an
algorithm. Some approximately equivalent words are recipe, method, directions,

Ada Augusta,
Countess of Lovelace and
the first computer programmer

A model of
Babbage’s
computer

Charles Babbage

algorithm

14 CHAPTER 1 / Introduction to Computers and C++ Programming

procedure, and routine. The instructions may be expressed in a programming
language or a human language. Our algorithms will be expressed in English
and in the programming language C++. A computer program is simply an
algorithm expressed in a language that a computer can understand. Thus, the
term algorithm is more general than the term program. However, when we say
that a sequence of instructions is an algorithm, we usually mean that the
instructions are expressed in English, since if they were expressed in a
programming language we would use the more specific term program. An
example may help to clarify the concept.

Display 1.6 contains an algorithm expressed in English. The algorithm
determines the number of times a specified name occurs on a list of names. If
the list contains the winners of each of last season’s football games and the
name is that of your favorite team, then the algorithm determines how many
games your team won. The algorithm is short and simple but is otherwise very
typical of the algorithms with which we will be dealing.

The instructions numbered 1 through 5 in our sample algorithm are
meant to be carried out in the order they are listed. Unless otherwise specified,
we will always assume that the instructions of an algorithm are carried out in
the order in which they are given (written down). Most interesting algorithms
do, however, specify some change of order, usually a repeating of some
instruction again and again such as in instruction 4 of our sample algorithm.

The word algorithm has a long history. It derives from the name of a ninth-
century Persian mathematician and astronomer al-Khowarizmi. He wrote a
famous textbook on the manipulation of numbers and equations. The book
was entitled Kitab al-jabr w’almuqabala, which can be translated as Rules for
reuniting and reducing. The similar-sounding word algebra was derived from
the arabic word al-jabr, which appears in the title of the book and which is
often translated as reuniting or restoring. The meanings of the words algebra
and algorithm used to be much more intimately related than they are today.
Indeed, until modern times, the word algorithm usually referred only to

DISPLAY 1.6 An Algorithm

 Algorithm that determines how many times a name occurs in a list of names:

1. Get the list of names.

2. Get the name being checked.

3. Set a counter to zero.

4. Do the following for each name on the list:
Compare the name on the list to the name being checked,
and if the names are the same, then add one to the counter.

5. Announce that the answer is the number indicated by the counter.

origin of the
word algorithm

1.2 Programming and Problem-Solving 15

algebraic rules for solving numerical equations. Today the word algorithm can
be applied to a wide variety of kinds of instructions for manipulating symbolic
as well as numeric data. The properties that qualify a set of instructions as an
algorithm now are determined by the nature of the instructions rather than by
the things manipulated by the instructions. To qualify as an algorithm, a set
of instructions must completely and unambiguously specify the steps to be
taken and the order in which they are taken. The person or machine carrying
out the algorithm does exactly what the algorithm says, neither more nor less.

Program Design

Designing a program is often a difficult task. There is no complete set of rules,
no algorithm to tell you how to write programs. Program design is a creative
process. Still, there is the outline of a plan to follow. The outline is given in
diagrammatic form in Display 1.7. As indicated there, the entire program-
design process can be divided into two phases, the problem-solving phase and
the implementation phase. The result of the problem-solving phase is an
algorithm, expressed in English, for solving the problem. To produce a
program in a programming language such as C++, the algorithm is translated
into the programming language. Producing the final program from the
algorithm is called the implementation phase.

The first step is to be certain that the task—that you want your program to
do—is completely and precisely specified. Do not take this step lightly. If you
do not know exactly what you want as the output of your program, you may
be surprised at what your program produces. Be certain that you know what
the input to the program will be and exactly what information is supposed to
be in the output, as well as what form that information should be in. For
example, if the program is a bank accounting program, you must know not
only the interest rate, but also whether interest is to be compounded annually,
monthly, daily, or whatever. If the program is supposed to write poetry, you
need to determine whether the poems can be in free verse or must be in
iambic pentameter or some other meter.

 Many novice programmers do not understand the need to design an
algorithm before writing a program in a programming language, such as C++,
and so they try to short-circuit the process by omitting the problem-solving
phase entirely, or by reducing it to just the problem definition part. This seems
reasonable. Why not “go for the mark” and save time? The answer is that it does
not save time! Experience has shown that the two-phase process will produce a

Algorithm

An algorithm is a sequence of precise instructions that leads to a solution.

problem-solving
phase

implementation
phase

16 CHAPTER 1 / Introduction to Computers and C++ Programming

correctly working program faster. The two-phase process simplifies the algo-
rithm design phase by isolating it from the detailed rules of a programming
language such as C++. The result is that the algorithm design process becomes
much less intricate and much less prone to error. For even a modest-size
program, it can represent the difference between a half day of careful work and
several frustrating days of looking for mistakes in a poorly understood program.

 The implementation phase is not a trivial step. There are details to be
concerned about, and occasionally some of these details can be subtle, but it
is much simpler than you might at first think. Once you become familiar with
C++ or any other programming language, the translation of an algorithm from
English into the programming language becomes a routine task.

 As indicated in Display 1.7, testing takes place in both phases. Before the
program is written, the algorithm is tested, and if the algorithm is found to be
deficient, then the algorithm is redesigned. That desktop testing is performed
by mentally going through the algorithm and executing the steps yourself. On
large algorithms this will require a pencil and paper. The C++ program is
tested by compiling it and running it on some sample input data. The
compiler will give error messages for certain kinds of errors. To find other
types of errors, you must somehow check to see whether the output is correct.

The process diagrammed in Display 1.7 is an idealized picture of the
program design process. It is the basic picture you should have in mind, but

DISPLAY 1.7 Program Design Process

Translating
to C++

Testing

Start

Working
program

Desktop
testing

Algorithm
design

Problem
definition

Problem-solving phase

Implementation phase

1.2 Programming and Problem-Solving 17

reality is sometimes more complicated. In reality, mistakes and deficiencies
are discovered at unexpected times, and you may have to back up and redo an
earlier step. For example, as shown in Display 1.7, testing the algorithm might
reveal that the definition of the problem was incomplete. In such a case you
must back up and reformulate the definition. Occasionally, deficiencies in the
definition or algorithm may not be observed until a program is tested. In that
case you must back up and modify the problem definition or algorithm and
all that follows them in the design process.

Object-Oriented Programming

The program design process that we outlined in the previous section repre-
sents a program as an algorithm (set of instructions) for manipulating some
data. That is a correct view, but not always the most productive view. Modern
programs are usually designed using a method known as object-oriented
programming, or OOP. In OOP a program is viewed as a collection of
interacting objects. The methodology is easiest to understand when the
program is a simulation program. For example, for a program to simulate a
highway interchange, the objects might represent the automobiles and the
lanes of the highway. Each object has algorithms that describe how it should
behave in different situations. Programming in the OOP style consists of
designing the objects and the algorithms they use. When programming in the
OOP framework the term Algorithm design in Display 1.7 would be replaced
with the phrase Designing the objects and their algorithms.

The main characteristics of OOP are encapsulation, inheritance, and
polymorphism. Encapsulation is usually described as a form of information
hiding or abstraction. That description is correct, but perhaps an easier to
understand characterization is to say that encapsulation is a form of simplifi-
cation of the descriptions of objects. Inheritance has to do with writing
reusable program code. Polymorphism refers to a way that a single name can
have multiple meanings in the context of inheritance. Having made those
statements, we must admit that they hold little meaning for readers who have
not heard of OOP before. However, we will describe all these terms in detail
later in this book. C++ accommodates OOP by providing classes, a kind of
data type combining both data and algorithms.

The Software Life Cycle

Designers of large software systems, such as compilers and operating systems,
divide the software development process into six phases collectively known as
the software life cycle. The six phases of this life cycle are:

1. Analysis and specification of the task (problem definition)

2. Design of the software (object and algorithm design)

OOP

class

software life
cycle

18 CHAPTER 1 / Introduction to Computers and C++ Programming

3. Implementation (coding)

4. Testing

5. Maintenance and evolution of the system

6. Obsolescence

We did not mention the last two phases in our discussion of program design
because they take place after the program is finished and put into service.
However, they should always be kept in mind. You will not be able to add
improvements or corrections to your program unless you design it to be easy
to read and easy to change. Designing programs so that they can be easily
modified is an important topic that we will discuss in detail when we have
developed a bit more background and a few more programming techniques.
The meaning of obsolescence is obvious, but it is not always easy to accept.
When a program is not working as it should and cannot be fixed with a
reasonable amount of effort, it should be discarded and replaced with a
completely new program.

SELF -TEST EXERC ISES

12. An algorithm is approximately the same thing as a recipe, but some kinds
of steps that would be allowed in a recipe are not allowed in an algorithm.
Which steps in the following recipe would be allowed in an algorithm?

Place 2 teaspoons of sugar in mixing bowl.

Add 1 egg to mixing bowl.

Add 1 cup of milk to mixing bowl.

Add 1 ounce of rum, if you are not driving.

Add vanilla extract to taste.

Beat until smooth.

Pour into a pretty glass.

Sprinkle with nutmeg.

13. What is the first step you should take when creating a program?

14. The program design process can be divided into two main phases. What
are they?

15. Explain why the problem-solving phase should not be slighted.

1.3 Introduction to C++ 19

1.3 INTRODUCTION TO C++

Language is the only instrument of science...

SAMUEL JOHNSON (1709–1784)

In this section we introduce you to the C++ programming language, which is
the programming language used in this book.

Origins of the C++ Language

The first thing that people notice about the C++ language is its unusual name.
Is there a C programming language, you might ask? Is there a C– or a C––
language? Are there programming languages named A and B? The answer to
most of these questions is no. But the general thrust of the questions is on the
mark. There is a B programming language; it was not derived from a language
called A, but from a language called BCPL. The C language was derived from
the B language, and C++ was derived from the C language. Why are there two
pluses in the name C++? As you will see in the next chapter, ++ is an operation
in the C and C++ languages, so using ++ produces a nice pun. The languages
BCPL and B do not concern us. They are earlier versions of the C programming
language. We will start our description of the C++ programming language with
a description of the C language.

The C programming language was developed by Dennis Ritchie of AT&T
Bell Laboratories in the 1970s. It was first used for writing and maintaining the
UNIX operating system. (Up until that time UNIX systems programs were
written either in assembly language or in B, a language developed by Ken
Thompson, who is the originator of UNIX.) C is a general-purpose language
that can be used for writing any sort of program, but its success and popularity
are closely tied to the UNIX operating system. If you wanted to maintain your
UNIX system, you needed to use C. C and UNIX fit together so well that soon
not just systems programs, but almost all commercial programs that ran under
UNIX were written in the C language. C became so popular that versions of
the language were written for other popular operating systems; its use is not
limited to computers that use UNIX. However, despite its popularity, C is not
without its shortcomings.

The C language is peculiar because it is a high-level language with many
of the features of a low-level language. C is somewhere in between the two
extremes of a very high-level language and a low-level language, and therein
lies both its strengths and its weaknesses. Like (low-level) assembly language,
C language programs can directly manipulate the computer’s memory. On the
other hand, C has many features of a high-level language, which makes it
easier to read and write than assembly language. This makes C an excellent

20 CHAPTER 1 / Introduction to Computers and C++ Programming

choice for writing systems programs, but for other programs (and in some
sense even for systems programs), C is not as easy to understand as other
languages; also, it does not have as many automatic checks as some other
high-level languages.

To overcome these and other shortcomings of C, Bjarne Stroustrup of
AT&T Bell Laboratories developed C++ in the early 1980s. Stroustrup designed
C++ to be a better C. Most of C is a subset of C++, and so most C programs
are also C++ programs. (The reverse is not true; many C++ programs are
definitely not C programs.) Unlike C, C++ has facilities to do object-oriented
programming, which is a recently developed and very powerful programming
technique, described earlier in this chapter.

A Sample C++ Program

Display 1.8 contains a simple C++ program and the screen display that might
be generated when a user runs and interacts with this program. The person
who runs a program is called the user. The text typed in by the user is shown
in boldface to distinguish it from the text written by the program. On the
actual screen both texts would look alike. The person who writes the program
is called the programmer. Do not confuse the roles of the user and the
programmer. The user and the programmer might or might not be the same
person. For example, if you write and then run a program, you are both the
programmer and the user. With professionally produced programs, the
programmer (or programmers) and the user are usually different persons.

In the next chapter we will explain in detail all the C++ features you need
to write programs like the one in Display 1.8, but to give you a feel for how a
C++ program works, we will now give a brief description of how this particular
program works. If some of the details are a bit unclear, do not worry. In this
section, we just want to give you a feel for what a C++ program is.

The beginning and end of our sample program contain some details that
need not concern us yet. The program begins with the following lines:

#include <iostream>
using namespace std;

int main()
{

For now we will consider these lines to be a rather complicated way of saying
“The program starts here.”

The program ends with the following two lines:

return 0;
}

For a simple program, these two lines simply mean “The program ends here.”

user

programmer

beginning of
program

return 0;

1.3 Introduction to C++ 21

The lines in between these beginning and ending lines are the heart of the
program. We will briefly describe these lines, starting with the following line:

int number_of_pods, peas_per_pod, total_peas;

DISPLAY 1.8 A Sample C++ Program

1 #include <iostream>
2 using namespace std;

3 int main()
4 {
5 int number_of_pods, peas_per_pod, total_peas;

6 cout << "Press return after entering a number.\n";
7 cout << "Enter the number of pods:\n";
8 cin >> number_of_pods;
9 cout << "Enter the number of peas in a pod:\n";

10 cin >> peas_per_pod;

11 total_peas = number_of_pods * peas_per_pod;

12 cout << "If you have ";
13 cout << number_of_pods;
14 cout << " pea pods\n";
15 cout << "and ";
16 cout << peas_per_pod;
17 cout << " peas in each pod, then\n";
18 cout << "you have ";
19 cout << total_peas;
20 cout << " peas in all the pods.\n";

21 return 0;
22 }

Sample Dialogue

Press return after entering a number.

Enter the number of pods:
10

Enter the number of peas in a pod:
9

If you have 10 pea pods

and 9 peas in each pod, then

you have 90 peas in all the pods.

22 CHAPTER 1 / Introduction to Computers and C++ Programming

This line is called a variable declaration. This variable declaration tells the
computer that number_of_pods, peas_per_pod, and total_peas will be used as
names for three variables. Variables will be explained more precisely in the next
chapter, but it is easy to understand how they are used in this program. In this
program, the variables are used to name numbers. The word that starts this
line, int, is an abbreviation for the word integer and it tells the computer that
the numbers named by these variables will be integers. An integer is a whole
number, like 1, 2, −1, −7, 0, 205, −103, and so forth.

The remaining lines are all instructions that tell the computer to do
something. These instructions are called statements or executable statements.
In this program each statement fits on exactly one line. That need not be true,
but for very simple programs, statements are usually listed one per line.

Most of the statements begin with either the word cin or cout. These
statements are input statements and output statements. The word cin, which
is pronounced “see-in,” is used for input. The statements that begin with cin
tell the computer what to do when information is entered from the keyboard.
The word cout, which is pronounced “see-out,” is used for output; that is, for
sending information from the program to the terminal screen. The letter c is
there because the language is C++. The arrows, written << or >>, tell you the
direction that data is moving. The arrows, << and >>, are called ‘insert’ and
‘extract,’ or ‘put to’ and ‘get from,’ respectively. For example, consider the line:

cout << "Press return after entering a number.\n";

This line may be read, ‘put "Press...number.\n" to cout’ or simply ‘output
"Press...number.\n"’. If you think of the word cout as a name for the screen
(the output device), then the arrows tell the computer to send the string in
quotes to the screen. As shown in the sample dialogue, this causes the text
contained in the quotes to be written to the screen, The \n at the end of the
quoted string tells the computer to start a new line after writing out the text.
Similarly, the next line of the program also begins with cout, and that program
line causes the following line of text to be written to the screen:

The next program line starts with the word cin, so it is an input statement.
Let’s look at that line:

cin >> number_of_pods;

This line may be read, ‘get number_of_pods from cin’ or simply ‘input
number_of_pods’.

If you think of the word cin as standing for the keyboard (the input
device), then the arrows say that input should be sent from the keyboard to the
variable number_of_pods. Look again at the sample dialogue. The next line
shown has a 10 written in bold. We use bold to indicate something typed in at
the keyboard. If you type in the number 10, then the 10 appears on the screen.

variable
declarations

variables

integer

statements

cin and cout

\n

Enter the number of pods:

1.3 Introduction to C++ 23

If you then press the Return key (which is also sometimes called the Enter key),
that makes the 10 available to the program. The statement which begins with
cin tells the computer to send that input value of 10 to the variable
number_of_pods. From that point on, number_of_pods has the value 10; when
we see number_of_pods later in the program, we can think of it as standing for
the number 10.

Consider the next two program lines:

cout << "Enter the number of peas in a pod:\n";
cin >> peas_per_pod;

These lines are similar to the previous two lines. The first sends a message
to the screen asking for a number. When you type in a number at the keyboard
and press the Return key, that number becomes the value of the variable
peas_per_pod. In the sample dialogue, we assume that you type in the number 9.
After you type in 9 and press the Return key, the value of the variable
peas_per_pod becomes 9.

The next nonblank program line, shown below, does all the computation
that is done in this simple program:

total_peas = number_of_pods * peas_per_pod;

The asterisk symbol, *, is used for multiplication in C++. So this statement says
to multiply number_of_pods and peas_per_pod. In this case, 10 is multiplied
by 9 to give a result of 90. The equal sign says that the variable total_peas
should be made equal to this result of 90. This is a special use of the equal sign;
its meaning here is different than in other mathematical contexts. It gives the
variable on the left-hand side a (possibly new) value; in this case it makes 90
the value of total_peas.

The rest of the program is basically more of the same sort of output.
Consider the next three nonblank lines:

cout << "If you have ";
cout << number_of_pods;
cout << " pea pods\n";

These are just three more output statements that work basically the same as
the previous statements that begin with cout. The only thing that is new is the
second of these three statements, which says to output the variable
number_of_pods. When a variable is output, it is the value of the variable that
is output. So this statement causes a 10 to be output. (Remember that in this
sample run of the program, the variable number_of_pods was set to 10 by the
user who ran the program.) Thus, the output produced by these three lines is:

Notice that the output is all on one line. A new line is not begun until the
special instruction \n is sent as output.

If you have 10 pea pods

24 CHAPTER 1 / Introduction to Computers and C++ Programming

The rest of the program contains nothing new, and if you understand
what we have discussed so far, you should be able to understand the rest of
the program.

■ PITFALL Using the Wrong Slash in \n

When you use a \n in a cout statement be sure that you use the backslash,
which is written \. If you make a mistake and use /n rather than \n, the
compiler will not give you an error message. Your program will run, but the
output will look peculiar. ■

■ PROGRAMMING TIP Input and Output Syntax

If you think of cin as a name for the keyboard or input device and think of
cout as a name for the screen or the output device, then it is easy to remember
the direction of the arrows >> and <<. They point in the direction that data
moves. For example, consider the statement:

cin >> number_of_pods;

In the above statement, data moves from the keyboard to the variable
number_of_pods, and so the arrow points from cin to the variable.

On the other hand, consider the output statement:

cout << number_of_pods;

In this statement the data moves from the variable number_of_pods to the
screen, so the arrow points from the variable number_of_pods to cout. ■

Layout of a Simple C++ Program

The general form of a simple C++ program is shown in Display 1.9. As far as the
compiler is concerned, the line breaks and spacing need not be as shown there
and in our examples. The compiler will accept any reasonable pattern of line
breaks and indentation. In fact, the compiler will even accept most unreason-
able patterns of line breaks and indentation. However, a program should always
be laid out so that it is easy to read. Placing the opening brace, {, on a line by
itself and also placing the closing brace, }, on a line by itself will make these
punctuations easy to find. Indenting each statement and placing each statement
on a separate line makes it easy to see what the program instructions are. Later
on, some of our statements will be too long to fit on one line and then we will
use a slight variant of this pattern for indenting and line breaks. You should
follow the pattern set by the examples in this book, or follow the pattern
specified by your instructor if you are in a class.

backslash

line breaks
and spaces

1.3 Introduction to C++ 25

In Display 1.8, the variable declarations are on the line that begins with
the word int. As we will see in the next chapter, you need not place all your
variable declarations at the beginning of your program, but that is a good
default location for them. Unless you have a reason to place them somewhere
else, place them at the start of your program as shown in Display 1.9 and in
the sample program in Display 1.8. The statements are the instructions that
are followed by the computer. In Display 1.8, the statements are the lines that
begin with cout or cin, and the one line that begins with total_peas followed
by an equal sign. Statements are often called executable statements. We will
use the terms statement and executable statement interchangeably. Notice that
each of the statements we have seen ends with a semicolon. The semicolon in
statements is used in more or less the same way that the period is used in
English sentences; it marks the end of a statement.

For now you can view the first few lines as a funny way to say “this is the
beginning of the program.” But we can explain them in a bit more detail. The
first line

#include <iostream>

is called an include directive. It tells the compiler where to find information
about certain items that are used in your program. In this case iostream is the
name of a library that contains the definitions of the routines that handle
input from the keyboard and output to the screen; iostream is a file that
contains some basic information about this library. The linker program that
we discussed earlier in this chapter combines the object code for the library
iostream and the object code for the program you write. For the library
iostream this will probably happen automatically on your system. You will
eventually use other libraries as well, and when you use them, they will have

DISPLAY 1.9 Layout of a Simple C++ Program

1 #include <iostream>
2 using namespace std;
3
4 int main()
5 {
6 Variable_Declarations
7
8 Statement_1
9 Statement_2

10 ...
11 Statement_Last
12
13 return 0;
14 }

statement

executable
statement

#include

include
directive

26 CHAPTER 1 / Introduction to Computers and C++ Programming

to be named in directives at the start of your program. For other libraries, you
may need to do more than just place an include directive in your program,
but in order to use any library in your program, you will always need to at least
place an include directive for that library in your program. Directives always
begin with the symbol #. Some compilers require that directives have no
spaces around the #; so it is always safest to place the # at the very start of the
line and not include any space between the # and the word include.

The following line further explains the include directive that we just
explained.

using namespace std;

This line says that the names defined in iostream are to be interpreted in the
“standard way” (std is an abbreviation of standard). We will have more to say
about this line a bit later in this book.

The third and fourth nonblank lines, shown next, simply say that the
main part of the program starts here:

int main()
{

The correct term is main function, rather than main part, but the reason for that
subtlety will not concern us until Chapter 4. The braces { and } mark the
beginning and end of the main part of the program. They need not be on a
line by themselves, but that is the way to make them easy to find and we will
therefore always place each of them on a line by itself.

The next-to-last line

return 0;

says to “end the program when you get to here.” This line need not be the last
thing in the program, but in a very simple program it makes no sense to place it
anywhere else. Some compilers will allow you to omit this line and will figure
out that the program ends when there are no more statements to execute.
However, other compilers will insist that you include this line, so it is best to get
in the habit of including it, even if your compiler is happy without it. This line
is called a return statement and is considered to be an executable statement
because it tells the computer to do something; specifically, it tells the computer
to end the program. The number 0 has no intuitive significance to us yet, but
must be there; its meaning will become clear as you learn more about C++. Note
that even though the return statement says to end the program, you still must
add a closing brace } at the end of the main part of your program.

■ PITFALL Putting a Space before the include File Name

Be certain that you do not have any extra space between the < and the iostream
file name (Display 1.9) or between the end of the file name and the closing >.

int main()

return 0;

return statement

1.3 Introduction to C++ 27

The compiler include directive is not very smart: It will search for a file name
that starts or ends with a space! The file name will not be found, producing an
error that is quite difficult to find. You should make this error deliberately in
a small program, then compile it. Save the message that your compiler
produces so you know what the error message means the next time you get
that error message. ■

Compiling and Running a C++ Program

In the previous section you learned what would happen if you ran the C++
program shown in Display 1.8. But where is that program and how do you
make it run?

You write a C++ program using a text editor in the same way that you write
any other document such as a term paper, a love letter, a shopping list, or
whatever. The program is kept in a file just like any other document you
prepare using a text editor. There are different text editors, and the details of
how to use the text editor will vary from one text editor to another, so we
cannot say too much more about your text editor. You should consult the
documentation for your editor.

The way that you compile and run a C++ program also depends on the
particular system you are using, so we will discuss these points in only a very
general way. You need to learn how to give the commands to compile, link, and
run a C++ program on your system. These commands can be found in the
manuals for your system and by asking people who are already using C++ on
your system. When you give the command to compile your program, this will
produce a machine-language translation of your C++ program. This translated
version of your program is called the object code for your program. The object
code for your program must be linked (that is, combined) with the object code
for routines (such as input and output routines) that are already written for you.
It is likely that this linking will be done automatically, so you do not need to
worry about linking. But on some systems, you may be required to make a
separate call to the linker. Again, consult your manuals or a local expert. Finally,
you give the command to run your program; how you give that command also
depends on the system you are using, so check with the manuals or a local expert.

■ PROGRAMMING TIP Getting Your Program to Run

Different compilers and different environments might require a slight varia-
tion in some details of how you set up a file with your C++ program. Obtain
a copy of the program in Display 1.10. It is available for downloading over the
Internet. (See the preface for details.) Alternatively, very carefully type in the
program yourself. Compile the program. If you get an error message, check
your typing, fix any typing mistakes, and recompile the file. Once the program
compiles with no error messages, try running the program.

Video Note
Compiling and
Running a C++
Program

28 CHAPTER 1 / Introduction to Computers and C++ Programming

If you get the program to compile and run normally, you are all set. You
do not need to do anything different from the examples shown in the book.
If this program does not compile or does not run normally, then read on. In
what follows we offer some hints for dealing with your C++ setup. Once you
get this simple program to run normally, you will know what small changes
to make to your C++ program files in order to get them to run on your system.

If your program seems to run, but you do not see the output line

Testing 1, 2, 3

then, in all likelihood, the program probably did give that output, but it
disappeared before you could see it. Try adding the following to the end of
your program, just before the line return 0; these lines should stop your
program to allow you to read the output.

char letter;
cout << "Enter a letter to end the program:\n";
cin >> letter;

The part in braces should then read as follows:

cout << "Testing 1, 2, 3\n";
char letter;
cout << "Enter a letter to end the program:\n";
cin >> letter;
return 0;

For now you need not understand these added lines, but they will be clear to
you by the end of Chapter 2.

If the program does not compile or run at all, then try changing

DISPLAY 1.10 Testing Your C++ Setup

1 #include <iostream>
2 using namespace std;
3
4 int main()
5 {
6 cout << "Testing 1, 2, 3\n";
7 return 0;
8 }
9

Sample Dialogue

Testing 1, 2, 3

If you cannot compile and run this program, then
see the programming tip entitled “Getting Your
Program to Run.” It suggests some things to do
to get your C++ programs to run on your particular
computer setup.

1.3 Introduction to C++ 29

#include <iostream>

by adding .h to the end of iostream, so it reads as follows:

#include <iostream.h>

If your program requires iostream.h instead of iostream, then you have an
old C++ compiler and should obtain a more recent compiler.

If your program still does not compile and run normally, try deleting

using namespace std;

If your program still does not compile and run, then check the documen-
tation for your version of C++ to see if any more “directives” are needed for
“console” input/output.

If all this fails, consult your instructor if you are in a course. If you are not
in a course or you are not using the course computer, check the documenta-
tion for your C++ compiler or check with a friend who has a similar computer
setup. The necessary change is undoubtedly very small and, once you find out
what it is, very easy. ■

SELF -TEST EXERC ISES

16. If the following statement were used in a C++ program, what would it
cause to be written on the screen?

cout << "C++ is easy to understand.";

17. What is the meaning of \n as used in the following statement (which
appears in Display 1.8)?

cout << "Enter the number of peas in a pod:\n";

18. What is the meaning of the following statement (which appears in Dis-
play 1.8)?

cin >> peas_per_pod;

19. What is the meaning of the following statement (which appears in Display
1.8)?

total_peas = number_of_pods * peas_per_pod;

20. What is the meaning of this directive?

#include <iostream>

30 CHAPTER 1 / Introduction to Computers and C++ Programming

21. What, if anything, is wrong with the following #include directives?

a. #include <iostream >

b. #include < iostream>

c. #include <iostream>

1.4 TESTING AND DEBUGGING

“And if you take one from three hundred and sixty-five, what remains?”
“Three hundred and sixty-four, of course.”
Humpty Dumpty looked doubtful. “I’d rather see that done on paper,” he said.

LEWIS CARROLL, Through the Looking-Glass

A mistake in a program is usually called a bug, and the process of eliminating
bugs is called debugging. There is colorful history of how this term came into
use. It occurred in the early days of computers, when computer hardware was
extremely sensitive. Rear Admiral Grace Murray Hopper (1906–1992) was “the
third programmer on the world’s first large-scale digital computer.” (Denise W.
Gurer, “Pioneering women in computer science” CACM 38(1):45–54, January
1995.) While Hopper was working on the Harvard Mark I computer under the
command of Harvard professor Howard H. Aiken, an unfortunate moth caused
a relay to fail. Hopper and the other programmers taped the deceased moth in
the logbook with the note “First actual case of bug being found.” The logbook
is currently on display at the Naval Museum in Dahlgren, Virginia. This was
the first documented computer bug. Professor Aiken would come into the
facility during a slack time and inquire if any numbers were being computed.
The programmers would reply that they were debugging the computer. For more
information about Admiral Hopper and other persons in computing, see
Robert Slater, Portraits in Silicon, MIT Press, 1987. Today, a bug is a mistake in
a program. In this section we describe the three main kinds of programming
mistakes and give some hints on how to correct them.

Kinds of Program Errors

The compiler will catch certain kinds of mistakes and will write out an error
message when it finds a mistake. It will detect what are called syntax errors,
because they are, by and large, violation of the syntax (that is, the grammar
rules) of the programming language, such as omitting a semicolon.

 If the compiler discovers that your program contains a syntax error, it will
tell you where the error is likely to be and what kind of error it is likely to be. If
the compiler says your program contains a syntax error, you can be confident
that it does. However, the compiler may be incorrect about either the location
or the nature of the error. It does a better job of determining the location of an
error, to within a line or two, than it does of determining the source of the error.

bug
debugging

syntax error

1.4 Testing and Debugging 31

This is because the compiler is guessing at what you meant to write down and
can easily guess wrong. After all, the compiler cannot read your mind. Error
messages subsequent to the first one have a higher likelihood of being incorrect
with respect to either the location or the nature of the error. Again, this is
because the compiler must guess your meaning. If the compiler’s first guess was
incorrect, this will affect its analysis of future mistakes, since the analysis will be
based on a false assumption.

If your program contains something that is a direct violation of the syntax
rules for your programming language, the compiler will give you an error
message. However, sometimes the compiler will give you only a warning
message, which indicates that you have done something that is not, technical-
ly speaking, a violation of the programming language syntax rules, but that is
unusual enough to indicate a likely mistake. When you get a warning message,
the compiler is saying, “Are you sure you mean this?” At this stage of your
development, you should treat every warning as if it were an error until your
instructor approves ignoring the warning.

 There are certain kinds of errors that the computer system can detect only
when a program is run. Appropriately enough, these are called run-time
errors. Most computer systems will detect certain run-time errors and output
an appropriate error message. Many run-time errors have to do with numeric
calculations. For example, if the computer attempts to divide a number by
zero, that is normally a run-time error.

 If the compiler approved of your program and the program ran once with
no run-time error messages, this does not guarantee that your program is
correct. Remember, the compiler will only tell you if you wrote a syntactically
(that is, grammatically) correct C++ program. It will not tell you whether the
program does what you want it to do. Mistakes in the underlying algorithm or
in translating the algorithm into the C++ language are called logic errors. For
example, if you were to mistakenly use the addition sign + instead of the
multiplication sign * in the program in Display 1.8, that would be a logic
error. The program would compile and run normally, but would give the
wrong answer. If the compiler approves of your program and there are no run-
time errors, but the program does not perform properly, then undoubtedly
your program contains a logic error. Logic errors are the hardest kind to
diagnose, because the computer gives you no error messages to help find the
error. It cannot reasonably be expected to give any error messages. For all the
computer knows, you may have meant what you wrote.

■ PITFALL Assuming Your Program Is Correct

In order to test a new program for logic errors, you should run the program
on several representative data sets and check its performance on those
inputs. If the program passes those tests, you can have more confidence in it,
but this is still not an absolute guarantee that the program is correct. It still

error messages
versus
warning
messages

run-time error

logic error

32 CHAPTER 1 / Introduction to Computers and C++ Programming

may not do what you want it to do when it is run on some other data. The
only way to justify confidence in a program is to program carefully and so
avoid most errors. ■

SELF -TEST EXERC ISES

22. What are the three main kinds of program errors?

23. What kinds of errors are discovered by the compiler?

24. If you omit a punctuation symbol (such as a semicolon) from a program,
an error is produced. What kind of error?

25. Omitting the final brace } from a program produces an error. What kind
of error?

26. Suppose your program has a situation about which the compiler reports a
warning. What should you do about it? Give the text’s answer, and your
local answer if it is different from the text’s. Identify your answers as the
text’s or as based on your local rules.

27. Suppose you write a program that is supposed to compute the interest on
a bank account at a bank that computes interest on a daily basis, and sup-
pose you incorrectly write your program so that it computes interest on an
annual basis. What kind of program error is this?

CHAPTER SUMMARY

■ The collection of programs used by a computer is referred to as the
software for that computer. The actual physical machines that make up
a computer installation are referred to as hardware.

■ The five main components of a computer are the input device(s), the out-
put device(s), the processor (CPU), the main memory, and the secondary
memory.

■ A computer has two kinds of memory: main memory and secondary mem-
ory. Main memory is used only while the program is running. Secondary
memory is used to hold data that will stay in the computer before and/or
after the program is run.

■ A computer’s main memory is divided into a series of numbered locations
called bytes. The number associated with one of these bytes is called the
address of the byte. Often several of these bytes are grouped together to

Answers to Self-Test Exercises 33

form a larger memory location. In that case, the address of the first byte is
used as the address of this larger memory location.

■ A byte consists of eight binary digits, each either zero or one. A digit that
can only be zero or one is called a bit.

■ A compiler is a program that translates a program written in a high-level
language like C++ into a program written in the machine language that the
computer can directly understand and execute.

■ A sequence of precise instructions that leads to a solution is called an algo-
rithm. Algorithms can be written in English or in a programming language,
like C++. However, the word algorithm is usually used to mean a sequence
of instructions written in English (or some other human language, such as
Spanish or Arabic).

■ Before writing a C++ program, you should design the algorithm (method of
solution) that the program will use.

■ Programming errors can be classified into three groups: syntax errors, run-
time errors, and logic errors. The computer will usually tell you about errors
in the first two categories. You must discover logic errors yourself.

■ The individual instructions in a C++ program are called statements.

■ A variable in a C++ program can be used to name a number. (Variables are
explained more fully in the next chapter.)

■ A statement in a C++ program that begins with cout << is an output state-
ment, which tells the computer to output to the screen whatever follows the <<.

■ A statement in a C++ program that begins with cin >> is an input statement.

Answers to Self-Test Exercises

1. The five main components of a computer are the input device(s), the out-
put device(s), the processor (CPU), the main memory, and the secondary
memory.

2. The two numbers to be added.

3. The grades for each student on each test and each assignment.

4. A machine-language program is a low-level language consisting of zeros
and ones that the computer can directly execute. A high-level language is

34 CHAPTER 1 / Introduction to Computers and C++ Programming

written in a more English-like format and is translated by a compiler into
a machine-language program that the computer can directly understand
and execute.

5. A compiler translates a high-level language program into a machine-
language program.

6. The high-level language program that is input to a compiler is called the
source program. The translated machine-language program that is output
by the compiler is called the object program.

7. An operating system is a program, or several cooperating programs, but is
best thought of as the user’s chief servant.

8. An operating system’s purpose is to allocate the computer’s resources to
different tasks the computer must accomplish.

9. Among the possibilities are the Macintosh operating system Mac OS, Win-
dows 2000, Windows XP, VMS, Solaris, SunOS, UNIX (or perhaps one of
the UNIX-like operating systems such as Linux). There are many others.

10. The object code for your C++ program must be combined with the object
code for routines (such as input and output routines) that your program
uses. This process of combining object code is called linking. For simple
programs this linking may be done for you automatically.

11. The answer varies, depending on the compiler you use. Most UNIX and
UNIX-like compilers link automatically, as do the compilers in most inte-
grated development environments for Windows and Macintosh operating
systems.

12. The following instructions are too vague for use in an algorithm:

Add vanilla extract to taste.

Beat until smooth.

Pour into a pretty glass.

Sprinkle with nutmeg.

The notions of “to taste,” “smooth,” and “pretty” are not precise. The
instruction “sprinkle” is too vague, since it does not specify how much
nutmeg to sprinkle. The other instructions are reasonable to use in an
algorithm.

13. The first step you should take when creating a program is to be certain
that the task to be accomplished by the program is completely and pre-
cisely specified.

Answers to Self-Test Exercises 35

14. The problem-solving phase and the implementation phase.

15. Experience has shown that the two-phase process produces a correctly
working program faster.

16.

17. The symbols \n tell the computer to start a new line in the output so that
the next item output will be on the next line.

18. This statement tells the computer to read the next number that is typed
in at the keyboard and to send that number to the variable named
peas_per_pod.

19. This statement says to multiply the two numbers in the variables
number_of_pods and peas_per_pod, and to place the result in the variable
named total_peas.

20. The #include <iostream> directive tells the compiler to fetch the file
iostream. This file contains declarations of cin, cout, the insertion (<<)
and extraction (>>) operators for I/O (input and output). This enables
correct linking of the object code from the iostream library with the I/O
statements in the program.

21. a. The extra space after the iostream file name causes a file-not-found
error message.

b. The extra space before the iostream file name causes a file-not-found
error message.

c. This one is correct.

22. The three main kinds of program errors are syntax errors, run-time errors,
and logic errors.

23. The compiler detects syntax errors. There are other errors that are not tech-
nically syntax errors that we are lumping with syntax errors. You will learn
about these later.

24. A syntax error.

25. A syntax error.

26. The text states that you should take warnings as if they had been reported
as errors. You should ask your instructor for the local rules on how to han-
dle warnings.

27. A logic error.

C++ is easy to understand.

36 CHAPTER 1 / Introduction to Computers and C++ Programming

PROGRAMMING PROJECTS

1. Using your text editor, enter (that is, type in) the C++ program shown in
Display 1.8. Be certain to type the first line exactly as shown in Display
1.8. In particular, be sure that the first line begins at the left-hand end of
the line with no space before or after the # symbol. Compile and run the
program. If the compiler gives you an error message, correct the program
and recompile the program. Do this until the compiler gives no error mes-
sages. Then run your program.

2. Modify the C++ program you entered in Programming Project 1. Change
the program so that it first writes the word Hello to the screen and then
goes on to do the same things that the program in Display 1.8 does. You
will only have to add one line to the program to make this happen. Recom-
pile the changed program and run the changed program. Then change the
program even more. Add one more line that will make the program write
the word Good-bye to the screen at the end of the program. Be certain to
add the symbols \n to the last output statement so that it reads as follows:

cout << "Good-bye\n";

(Some systems require that final \n, and your system may be one of the
systems that requires a final \n.) Recompile and run the changed program.

3. Further modify the C++ program that you already have modified in Pro-
gramming Project 2. Change the multiplication sign * in your C++ program
to a division sign /. Recompile the changed program. Run the program.
Enter a zero input for “number of peas in a pod.” Notice the run time error
message due to division by zero.

4. Modify the C++ program that you entered in Programming Project 1.
Change the multiplication sign * in your C++ program to an addition sign +.
Recompile and run the changed program. Notice that the program compiles
and runs perfectly fine, but the output is incorrect. That is because this mod-
ification is a logic error.

5. Write a C++ program that reads in two integers and then outputs both
their sum and their product. One way to proceed is to start with the pro-
gram in Display 1.8 and to then modify that program to produce the pro-
gram for this project. Be certain to type the first line of your program
exactly the same as the first line in Display 1.8. In particular, be sure that
the first line begins at the left-hand end of the line with no space before or
after the # symbol. Also, be certain to add the symbols \n to the last out-
put statement in your program. For example, the last output statement
might be the following:

cout << "This is the end of the program.\n";

Programming Projects 37

(Some systems require that final \n, and your system may be one of
these.)

6. The purpose of this exercise is to produce a catalog of typical syntax errors
and error messages that will be encountered by a beginner, and to con-
tinue acquainting you with the programming environment. This exercise
should leave you with a knowledge of what error to look for when given
any of a number of common error messages.

Your instructor may have a program for you to use for this exercise. If not,
you should use a program from one of the previous Programming
Projects.

Deliberately introduce errors to the program, compile, record the error and the
error message, fix the error, compile again (to be sure you have the program
corrected), then introduce another error. Keep the catalog of errors and add
program errors and messages to it as you continue through this course.

The sequence of suggested errors to introduce is:

a. Put an extra space between the < and the iostream file name.

b. Omit one of the < or > symbols in the include directive.

c. Omit the int from int main().

d. Omit or misspell the word main.

e. Omit one of the (), then omit both the ().

f. Continue in this fashion, deliberately misspelling identifiers (cout,
cin, and so on). Omit one or both of the << in the cout statement;
leave off the ending curly brace }.

7. Write a program that prints out C S ! in large block letters inside a border
of *s followed by two blank lines then the message Computer Science is
Cool Stuff. The output should look as follows:

 C C C S S S S !!
 C C S S !!
 C S !!
 C S !!
 C S S S S !!
 C S !!
 C S !!
 C C S S
 C C C S S S S OO

Computer Science is Cool Stuff!!!

Video Note
Solution to
Programming
Project 1.6

38 CHAPTER 1 / Introduction to Computers and C++ Programming

8. Write a program that allows the user to enter a number of quarters, dimes,
and nickels and then outputs the monetary value of the coins in cents. For
example, if the user enters 2 for the number of quarters, 3 for the number
of dimes, and 1 for the number of nickels, then the program should out-
put that the coins are worth 85 cents.

9. Write a program that allows the user to enter a time in seconds and then
outputs how far an object would drop if it is in freefall for that length of
time. Assume that the object starts at rest, there is no friction or resistance
from air, and there is a constant acceleration of 32 feet per second due to
gravity. Use the equation:

You should first compute the product and then divide the result by 2
(The reason for this will be discussed later in the book).

distance acceleration time
2

�
2

---�

2C++ Basics

2.1 VARIABLES AND ASSIGNMENTS 40
Variables 40
Names: Identifiers 42
Variable Declarations 44
Assignment Statements 45
Pitfall: Uninitialized Variables 47
Programming Tip: Use Meaningful Names 49

2.2 INPUT AND OUTPUT 50
Output Using cout 50
Include Directives and Namespaces 52
Escape Sequences 53
Programming Tip: End Each Program with a \n

or endl 55
Formatting for Numbers with a Decimal Point 55
Input Using cin 56
Designing Input and Output 58
Programming Tip: Line Breaks in I/O 58

2.3 DATA TYPES AND EXPRESSIONS 60
The Types int and double 60
Other Number Types 62
The Type char 63
The Type bool 64
Introduction to the Class string 65
Type Compatibilities 66
Arithmetic Operators and Expressions 69
Pitfall: Whole Numbers in Division 71
More Assignment Statements 73

2.4 SIMPLE FLOW OF CONTROL 74
A Simple Branching Mechanism 74
Pitfall: Strings of Inequalities 80
Pitfall: Using = in place of == 81
Compound Statements 82
Simple Loop Mechanisms 84
Increment and Decrement Operators 87
Programming Example: Charge Card Balance 89
Pitfall: Infinite Loops 90

2.5 PROGRAM STYLE 93
Indenting 93
Comments 94
Naming Constants 96

Chapter Summary 98
Answers to Self-Test Exercises 99
Programming Projects 104

40

Don’t imagine you know what a computer terminal is. A computer
terminal is not some clunky old television with a typewriter in front of
it. It is an interface where the mind and the body can connect with the
universe and move bits of it about.
DOUGLAS ADAMS, Mostly Harmless
(THE FIFTH VOLUME IN THE HITCHHIKER’S TRILOGY)

INTRODUCTION
In this chapter we explain some additional sample C++ programs and present
enough details of the C++ language to allow you to write simple C++
programs.

PREREQUISITES
In Chapter 1 we gave a brief description of one sample C++ program. (If you
have not read the description of that program, you may find it helpful to do
so before reading this chapter.)

2.1 VARIABLES AND ASSIGNMENTS

Once a person has understood the way variables are used in programming, he
has understood the quintessence of programming.

E. W. DIJKSTRA, Notes on Structured Programming

Programs manipulate data such as numbers and letters. C++ and most other
common programming languages use programming constructs known as vari-
ables to name and store data. Variables are at the very heart of a programming
language like C++, so that is where we start our description of C++. We will use
the program in Display 2.1 for our discussion and will explain all the items in
that program. While the general idea of that program should be clear, some of
the details are new and will require some explanation.

Variables

A C++ variable can hold a number or data of other types. For the moment, we
will confine our attention to variables that hold only numbers. These variables
are like small blackboards on which the numbers can be written. Just as the
numbers written on a blackboard can be changed, so too can the number held
by a C++ variable be changed. Unlike a blackboard that might possibly
contain no number at all, a C++ variable is guaranteed to have some value in
it, if only a garbage number left in the computer’s memory by some previously
run program. The number or other type of data held in a variable is called its
value; that is, the value of a variable is the item written on the figurative

value of
a variable

2.1 Variables and Assignments 41

blackboard. In the program in Display 2.1, number_of_bars, one_weight, and
total_weight are variables. For example, when this program is run with the
input shown in the sample dialogue, number_of_bars has its value set equal to
the number 11 with the statement

cin >> number_of_bars;

Later, the value of the variable number_of_bars is changed to 12 when a
second copy of the same statement is executed. We will discuss exactly how
this happens a little later in this chapter.

 Of course, variables are not blackboards. In programming languages,
variables are implemented as memory locations. The compiler assigns a
memory location (of the kind discussed in Chapter 1) to each variable name
in the program. The value of the variable, in a coded form consisting of zeros
and ones, is kept in the memory location assigned to that variable. For
example, the three variables in the program shown in Display 2.1 might be
assigned the memory locations with addresses 1001, 1003, and 1007. The
exact numbers will depend on your computer, your compiler, and a number

variables are
memory
locations

DISPLAY 2.1 A C++ Program (part 1 of 2)

1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 int number_of_bars;
6 double one_weight, total_weight;
7
8 cout << "Enter the number of candy bars in a package\n";
9 cout << "and the weight in ounces of one candy bar.\n";

10 cout << "Then press return.\n";
11 cin >> number_of_bars;
12 cin >> one_weight;
13
14 total_weight = one_weight * number_of_bars;
15
16 cout << number_of_bars << " candy bars\n";
17 cout << one_weight << " ounces each\n";
18 cout << "Total weight is " << total_weight << " ounces.\n";
19
20 cout << "Try another brand.\n";
21 cout << "Enter the number of candy bars in a package\n";
22 cout << "and the weight in ounces of one candy bar.\n";
23 cout << "Then press return.\n";
24 cin >> number_of_bars;
25 cin >> one_weight;
26

(continued)

42 CHAPTER 2 / C++ Basics

of other factors. We do not know, or even care, what addresses the compiler
will choose for the variables in our program. We can think as though the
memory locations were actually labeled with the variable names.

Names: Identifiers

The first thing you might notice about the names of the variables in our
sample programs is that they are longer than the names normally used for
variables in mathematics classes. To make your program easy to understand,
you should always use meaningful names for variables. The name of a variable
(or other item you might define in a program) is called an identifier. An

DISPLAY 2.1 A C++ Program (part 2 of 2)

27 total_weight = one_weight * number_of_bars;
28
29 cout << number_of_bars << " candy bars\n";
30 cout << one_weight << " ounces each\n";
31 cout << "Total weight is " << total_weight << " ounces.\n";
32
33 cout << "Perhaps an apple would be healthier.\n";
34
35 return 0;
36 }

Sample Dialogue

Enter the number of candy bars in a package

and the weight in ounces of one candy bar.

Then press return.

11 2.1

11 candy bars

2.1 ounces each

Total weight is 23.1 ounces.

Try another brand.

Enter the number of candy bars in a package

and the weight in ounces of one candy bar.

Then press return.

12 1.8

12 candy bars

1.8 ounces each

Total weight is 21.6 ounces.

Perhaps an apple would be healthier.

identifier

2.1 Variables and Assignments 43

identifier must start with either a letter or the underscore symbol, and all the
rest of the characters must be letters, digits, or the underscore symbol. For
example, the following are all valid identifiers:

x x1 x_1 _abc ABC123z7 sum RATE count data2 Big_Bonus

All of the previously mentioned names are legal and would be accepted by the
compiler, but the first five are poor choices for identifiers, since they are not
descriptive of the identifier’s use. None of the following are legal identifiers
and all would be rejected by the compiler:

12 3X %change data-1 myfirst.c PROG.CPP

The first three are not allowed because they do not start with a letter or an
underscore. The remaining three are not identifiers because they contain
symbols other than letters, digits, and the underscore symbol.

C++ is a case-sensitive language; that is, it distinguishes between upper-
case and lowercase letters in the spelling of identifiers. Hence the following are
three distinct identifiers and could be used to name three distinct variables:

rate RATE Rate

However, it is not a good idea to use two such variants in the same program,
since that might be confusing. Although it is not required by C++, variables are
often spelled with all lowercase letters. The predefined identifiers, such as
main, cin, cout, and so forth, must be spelled in all lowercase letters. We will
see uses for identifiers spelled with uppercase letters later in this chapter.

 A C++ identifier can be of any length, although some compilers will ignore
all characters after some specified and typically large number of initial characters.

Cannot Get Programs to Run?

If you cannot get your C++ programs to compile and run, read the
Programming Tip in Chapter 1 entitled “Getting Your Program to Run.”
That section has tips for dealing with variations in C++ compilers and C++
environments.

Identifiers

Identifiers are used as names for variables and other items in a C++
program. An identifier must start with either a letter or the underscore
symbol, and the remaining characters must all be letters, digits, or the
underscore symbol.

case sensitive

44 CHAPTER 2 / C++ Basics

There is a special class of identifiers, called keywords or reserved words,
that have a predefined meaning in C++ and that you cannot use as names for
variables or anything else. In this book keywords are written in a different type
font like so: int, double. (And now you know why those words were written
in a funny way.) A complete list of keywords is given in Appendix 1.

You may wonder why the other words that we defined as part of the C++
language are not on the list of keywords. What about words like cin and cout?
The answer is that you are allowed to redefine these words, although it would be
confusing to do so. These predefined words are not keywords; however, they are
defined in libraries required by the C++ language standard. We will discuss
libraries later in this book. For now, you need not worry about libraries. Needless
to say, using a predefined identifier for anything other than its standard meaning
can be confusing and dangerous, and thus should be avoided. The safest and
easiest practice is to treat all predefined identifiers as if they were keywords.

Variable Declarations

Every variable in a C++ program must be declared. When you declare a variable
you are telling the compiler—and, ultimately, the computer—what kind of
data you will be storing in the variable. For example, the following two
declarations from the program in Display 2.1 declare the three variables used
in that program:

int number_of_bars;
double one_weight, total_weight;

When there is more than one variable in a declaration, the variables are
separated by commas. Also, note that each declaration ends with a semicolon.

The word int in the first of these two declarations is an abbreviation of
the word integer. (But in a C++ program you must use the abbreviated form
int. Do not write out the entire word integer.) This line declares the identifier
number_of_bars to be a variable of type int. This means that the value of
number_of_bars must be a whole number, such as 1, 2, –1, 0, 37, or –288.

The word double in the second of these two lines declares the two
identifiers one_weight and total_weight to be variables of type double. A
variable of type double can hold numbers with a fractional part, such as 1.75
or –0.55. The kind of data that is held in a variable is called its type and the
name for the type, such as int or double, is called a type name.

Every variable in a C++ program must be declared before the variable can
be used. There are two natural places to declare a variable: either just before it
is used or at the start of the main part of your program right after the lines

int main()
{

Do whatever makes your program clearer.

keywords

declare

type

where to place
variable

declarations

2.1 Variables and Assignments 45

Variable declarations provide information the compiler needs in order to
implement the variables. Recall that the compiler implements variables as
memory locations and that the value of a variable is stored in the memory
location assigned to that variable. The value is coded as a string of zeros and
ones. Different types of variables require different sizes of memory locations
and different methods for coding their values as a string of zeros and ones. The
computer uses one code to encode integers as a string of zeros and ones. It uses
a different code to encode numbers that have a fractional part. It uses yet
another code to encode letters as strings of zeros and ones. The variable
declaration tells the compiler—and, ultimately, the computer—what size mem-
ory location to use for the variable and which code to use when representing
the variable’s value as a string of zeros and ones.

Assignment Statements

The most direct way to change the value of a variable is to use an assignment
statement. An assignment statement is an order to the computer saying, “set
the value of this variable to what I have written down.” The following line
from the program in Display 2.1 is an example of an assignment statement:

total_weight = one_weight * number_of_bars;

Variable Declarations

All variables must be declared before they are used. The syntax for variable
declarations is as follows:

SYNTAX Type_Name Variable_Name_1, Variable_Name_2, . . .;

EXAMPLES int count, number_of_dragons, number_of_trolls;
double distance;

Syntax

The syntax for a programming language (or any other kind of language) is
the set of grammar rules for that language. For example, when we talk
about the syntax for a variable declaration (as in the box labeled “Variable
Declarations”), we are talking about the rules for writing down a well-
formed variable declaration. If you follow all the syntax rules for C++, then
the compiler will accept your program. Of course, this only guarantees that
what you write is legal. It guarantees that your program will do something,
but it does not guarantee that your program will do what you want it to do.

assignment
statement

46 CHAPTER 2 / C++ Basics

This assignment statement tells the computer to set the value of total_weight
equal to the number in the variable one_weight multiplied by the number in
number_of_bars. (As we noted in Chapter 1, * is the sign used for multiplica-
tion in C++.)

An assignment statement always consists of a variable on the left-hand
side of the equal sign and an expression on the right-hand side. An assignment
statement ends with a semicolon. The expression on the right-hand side of the
equal sign may be a variable, a number, or a more complicated expression
made up of variables, numbers, and arithmetic operators such as * and +. An
assignment statement instructs the computer to evaluate (that is, to compute
the value of) the expression on the right-hand side of the equal sign and to set
the value of the variable on the left-hand side equal to the value of that
expression. A few more examples may help to clarify the way these assignment
statements work.

You may use any arithmetic operator in place of the multiplication sign.
The following, for example, is also a valid assignment statement:

total_weight = one_weight + number_of_bars;

This statement is just like the assignment statements in our sample program,
except that it performs addition rather than multiplication. This statement
changes the value of total_weight to the sum of the values of one_weight and
number_of_bars. Of course, if you made this change in the program in Display
2.1, the program would give incorrect output, but it would still run.

In an assignment statement, the expression on the right-hand side of the
equal sign can simply be another variable. The statement

total_weight = one_weight;

changes the value of the variable total_weight so that it is the same as that of
the variable one_weight. If you were to use this in the program in Display 2.1,
it would give out incorrectly low values for the total weight of a package
(assuming there is more than one candy bar in a package), but it might make
sense in some other program.

As another example, the following assignment statement changes the
value of number_of_bars to 37:

number_of_bars = 37;

A number, like the 37 in this example, is called a constant, because unlike a
variable, its value cannot change.

Since variables can change value over time and since the assignment
operator is one vehicle for changing their values, there is an element of time
involved in the meaning of an assignment statement. First, the expression on
the right-hand side of the equal sign is evaluated. After that, the value of the
variable on the left side of the equal sign is changed to the value that was
obtained from that expression. This means that a variable can meaningfully

constant

same variable on
both sides of =

2.1 Variables and Assignments 47

occur on both sides of an assignment operator. For example, consider the
assignment statement

number_of_bars = number_of_bars + 3;

This assignment statement may look strange at first. If you read it as an English
sentence, it seems to say “the number_of_bars is equal to the number_of_bars
plus three.” It may seem to say that, but what it really says is, “Make the new
value of number_of_bars equal to the old value of number_of_bars plus three.”
The equal sign in C++ is not used the same way that it is used in English or in
simple mathematics.

■ PITFALL Uninitialized Variables

A variable has no meaningful value until a program gives it one. For example,
if the variable minimum_number has not been given a value either as the left-
hand side of an assignment statement or by some other means (such as being
given an input value with a cin statement), then the following is an error:

desired_number = minimum_number + 10;

This is because minimum_number has no meaningful value, so the entire
expression on the right-hand side of the equal sign has no meaningful value.
A variable like minimum_number that has not been given a value is said to be
uninitialized. This situation is, in fact, worse than it would be if
minimum_number had no value at all. An uninitialized variable, like
minimum_number, will simply have some “garbage value.” The value of an
uninitialized variable is determined by whatever pattern of zeros and ones was
left in its memory location by the last program that used that portion of
memory. Thus if the program is run twice, an uninitialized variable may
receive a different value each time the program is run. Whenever a program
gives different output on exactly the same input data and without any changes
in the program itself, you should suspect an uninitialized variable.

Assignment Statements

In an assignment statement, first the expression on the right-hand side of
the equal sign is evaluated, and then the variable on the left-hand side of
the equal sign is set equal to this value.

SYNTAX Variable = Expression;

EXAMPLES distance = rate * time;
count = count + 2;

uninitialized
variable

48 CHAPTER 2 / C++ Basics

One way to avoid an uninitialized variable is to initialize variables at the
same time they are declared. This can be done by adding an equal sign and a
value, as follows:

int minimum_number = 3;

This both declares minimum_number to be a variable of type int and sets the
value of the variable minimum_number equal to 3. You can use a more
complicated expression involving operations such as addition or multiplica-
tion when you initialize a variable inside the declaration in this way. However,
a simple constant is what is most often used. You can initialize some, all, or
none of the variables in a declaration that lists more than one variable. For
example, the following declares three variables and initializes two of them:

double rate = 0.07, time, balance = 0.0;

C++ allows an alternative notation for initializing variables when they are
declared. This alternative notation is illustrated by the following, which is
equivalent to the preceding declaration:

double rate(0.07), time, balance(0.0);

Whether you initialize a variable when it is declared or at some later point in
the program depends on the circumstances. Do whatever makes your program
the easiest to understand. ■

Initializing Variables in Declarations

You can initialize a variable (that is, give it a value) at the time that you
declare the variable.

SYNTAX

Type_Name Variable_Name_1 = Expression_ for_Value_1,
Variable_Name_2 = Expresssion_ for_Value_2, . . .;

EXAMPLES

int count = 0, limit = 10, fudge_factor = 2;
double distance = 999.99;

Alternative Syntax for Initializing in Declarations

Type_Name Variable_Name_1 (Expression_ for_Value_1),
Variable_Name_2 (Expression_ for_Value_2), . . .;

2.1 Variables and Assignments 49

■ PROGRAMMING TIP Use Meaningful Names

Variable names and other names in a program should at least hint at the
meaning or use of the thing they are naming. It is much easier to understand
a program if the variables have meaningful names. Contrast the following:

x = y * z;

with the more suggestive:

distance = speed * time;

The two statements accomplish the same thing, but the second is easier to
understand. ■

SELF -TEST EXERC ISES

1. Give the declaration for two variables called feet and inches. Both vari-
ables are of type int and both are to be initialized to zero in the declara-
tion. Use both initialization alternatives.

2. Give the declaration for two variables called count and distance. count is
of type int and is initialized to zero. distance is of type double and is ini-
tialized to 1.5.

3. Give a C++ statement that will change the value of the variable sum to the
sum of the values in the variables n1 and n2. The variables are all of type int.

4. Give a C++ statement that will increase the value of the variable length by
8.3. The variable length is of type double.

5. Give a C++ statement that will change the value of the variable product to
its old value multiplied by the value of the variable n. The variables are all
of type int.

6. Write a program that contains statements that output the value of five or
six variables that have been declared, but not initialized. Compile and run
the program. What is the output? Explain.

EXAMPLES

int count(0), limit(10), fudge_factor(2);
double distance(999.99);

50 CHAPTER 2 / C++ Basics

7. Give good variable names for each of the following:

a. A variable to hold the speed of an automobile

b. A variable to hold the pay rate for an hourly employee

c. A variable to hold the highest score in an exam

2.2 INPUT AND OUTPUT

Garbage in means garbage out.

PROGRAMMERS’ SAYING

There are several different ways that a C++ program can perform input and
output. We will describe what are called streams. An input stream is simply the
stream of input that is being fed into the computer for the program to use. The
word stream suggests that the program processes the input in the same way no
matter where the input comes from. The intuition for the word stream is that
the program sees only the stream of input and not the source of the stream,
like a mountain stream whose water flows past you but whose source is
unknown to you. In this section we will assume that the input comes from the
keyboard. In Chapter 6 we will discuss how a program can read its input from
a file; as you will see there, you can use the same kinds of input statements to
read input from a file as those that you use for reading input from the
keyboard. Similarly, an output stream is the stream of output generated by the
program. In this section we will assume the output is going to a terminal
screen; in Chapter 6 we will discuss output that goes to a file.

Output Using cout

The values of variables as well as strings of text may be output to the screen using
cout. There may be any combination of variables and strings to be output. For
example, consider the following line from the program in Display 2.1:

cout << number_of_bars << " candy bars\n";

This statement tells the computer to output two items: the value of the variable
number_of_bars and the quoted string " candy bars\n". Notice that you do
not need a separate copy of the word cout for each item output. You can
simply list all the items to be output preceding each item to be output with
the arrow symbols <<. The above single cout statement is equivalent to the
following two cout statements:

cout << number_of_bars;
cout << " candy bars\n";

input stream

output stream

2.2 Input and Output 51

You can include arithmetic expressions in a cout statement as shown by
the following example, where price and tax are variables:

cout << "The total cost is $" << (price + tax);

The parentheses around arithmetic expressions, like price + tax, are required
by some compilers, so it is best to include them.

The symbol < is the same as the “less than” symbol. The two < symbols
should be typed without any space between them. The arrow notation << is
often called the insertion operator. The entire cout statement ends with a
semicolon.

Whenever you have two cout statements in a row, you can combine them
into a single long cout statement. For example, consider the following lines
from Display 2.1:

 cout << number_of_bars << " candy bars\n";
 cout << one_weight << " ounces each\n";

These two statements can be rewritten as the single following statement, and
the program will perform exactly the same:

If you want to keep your program lines from running off the screen, you will
have to place such a long cout statement on two or more lines. A better way
to write the previous long cout statement is:

cout << number_of_bars << " candy bars\n"
 << one_weight << " ounces each\n";

You should not break a quoted string across two lines, but otherwise you can
start a new line anywhere you can insert a space. Any reasonable pattern of
spaces and line breaks will be acceptable to the computer, but the previous
example and the sample programs are good models to follow. A good policy
is to use one cout for each group of output that is intuitively considered a unit.
Notice that there is just one semicolon for each cout, even if the cout
statement spans several lines.

Pay particular attention to the quoted strings that are output in the program
in Display 2.1. Notice that the strings must be included in double quotes. The
double quote symbol used is a single key on your keyboard; do not type two
single quotes. Also, notice that the same double quote symbol is used at each
end of the string; there are not separate left and right quote symbols.

Also, notice the spaces inside the quotes. The computer does not insert
any extra space before or after the items output by a cout statement. That is
why the quoted strings in the samples often start and/or end with a blank. The
blanks keep the various strings and numbers from running together. If all you

expression in a
cout statement

insertion
operator

cout << number_of_bars << " candy bars\n" << one_weight << " ounces each\n";

spaces in output

52 CHAPTER 2 / C++ Basics

need is a space and there is no quoted string where you want to insert the
space, then use a string that contains only a space, as in the following:

cout << first_number << " " << second_number;

As we noted in Chapter 1, \n tells the computer to start a new line of
output. Unless you tell the computer to go to the next line, it will put all the
output on the same line. Depending on how your screen is set up, this can
produce anything from arbitrary line breaks to output that runs off the screen.
Notice that the \n goes inside of the quotes. In C++, going to the next line is
considered to be a special character (special symbol) and the way you spell
this special character inside a quoted string is \n, with no space between the
two symbols in \n. Although it is typed as two symbols, C++ considers \n to
be a single character that is called the new-line character.

Include Directives and Namespaces

We have started all of our programs with the following two lines:

#include <iostream>
using namespace std;

These two lines make the library iostream available. This is the library that
includes, among other things, the definitions of cin and cout. So if your
program uses either cin or cout, you should have these two lines at the start
of the file that contains your program.

The following line is known as an include directive. It “includes” the
library iostream in your program so that you have cin and cout available:

#include <iostream>

The operators cin and cout are defined in a file named iostream and the
above include directive is equivalent to copying that named file into your
program. The second line is a bit more complicated to explain.

C++ divides names into namespaces. A namespace is a collection of
names, such as the names cin and cout. A statement that specifies a
namespace in the way illustrated by the following is called a using directive.

using namespace std;

This particular using directive says that your program is using the std
(“standard”) namespace. This means that the names you use will have the
meaning defined for them in the std namespace. In this case, the important
thing is that when names such as cin and cout were defined in iostream, their
definitions said they were in the std namespace. So to use names like cin and
cout, you need to tell the compiler you are using namespace std;.

That is all you need to know (for now) about namespaces, but a brief
clarifying remark will remove some of the mystery that might surround the use

new lines
in output

new-line
character

include
directive

namespace

using directive

2.2 Input and Output 53

of namespace. The reason that C++ has namespaces at all is because there are
so many things to name. As a result, sometimes two or more items receive the
same name; that is, a single name can get two different definitions. To
eliminate these ambiguities, C++ divides items into collections so that no two
items in the same collection (the same namespace) have the same name.

Note that a namespace is not simply a collection of names. It is a body of C++
code that specifies the meaning of some names, such as some definitions and/or
declarations. The function of namespaces is to divide all the C++ name specifica-
tions into collections (called namespaces) such that each name in a namespace has
only one specification (one “definition”) in that namespace. A namespace divides
up the names, but it takes a lot of C++ code along with the names.

What if you want to use two items in two different namespaces, such that
both items have the same name? It can be done and is not too complicated,
but that is a topic for later in the book. For now, we do not need to do this.

Some versions of C++ use the following, older form of the include
directive (without any using namespace):

#include <iostream.h>

If your programs do not compile or do not run with

#include <iostream>
using namespace std;

then try using the following line instead of the previous two lines:

#include <iostream.h>

If your program requires iostream.h instead of iostream, then you have
an old C++ compiler and should obtain a more recent compiler.

Escape Sequences

The backslash, \, preceding a character tells the compiler that the character
following the \ does not have the same meaning as the character appearing
by itself. Such a sequence is called an escape sequence. The sequence is typed
in as two characters with no space between the symbols. Several escape
sequences are defined in C++.

If you want to put a \ or a " into a string constant, you must escape the
ability of the " to terminate a string constant by using \", or the ability of the
\ to escape, by using \\. The \\ tells the compiler you mean a real backslash,
\, not an escape sequence backslash, and \" means a real quote, not a string
constant end.

A stray \, say \z, in a string constant will on one compiler simply give back
a z; on another it will produce an error. The ANSI Standard provides that the
unspecified escape sequences have undefined behavior. This means a compiler
can do anything its author finds convenient. The consequence is that code that

alternative form
of include
directive

escape sequence

54 CHAPTER 2 / C++ Basics

uses undefined escape sequences is not portable. You should not use any
escape sequences other than those provided. We list a few here.

new-line \n
horizontal tab \t
alert \a
backslash \\
double quote \"

If you wish to insert a blank line in the output, you can output the new-
line character \n by itself:

cout << "\n";

Another way to output a blank line is to use endl, which means essentially the
same thing as "\n". So you can also output a blank line as follows:

cout << endl;

Although "\n" and endl mean the same thing, they are used slightly
differently; \n must always be inside of quotes and endl should not be placed
in quotes.

A good rule for deciding whether to use \n or endl is the following: If
you can include the \n at the end of a longer string, then use \n as in the
following:

cout << "Fuel efficiency is "
 << mpg << " miles per gallon\n";

On the other hand, if the \n would appear by itself as the short string "\n",
then use endl instead:

cout << "You entered " << number << endl;

Starting New Lines in Output

To start a new output line, you can include \n in a quoted string, as in the
following example:

cout << "You have definitely won\n"
<< "one of the following prizes:\n";

Recall that \n is typed as two symbols with no space in-between the two
symbols.

deciding
between

\n and endl

2.2 Input and Output 55

■ PROGRAMMING TIP End Each Program with a \n or endl

It is a good idea to output a new-line instruction at the end of every program.
If the last item to be output is a string, then include a \n at the end of the
string; if not, output an endl as the last action in your program. This serves
two purposes. Some compilers will not output the last line of your program
unless you include a new-line instruction at the end. On other systems, your
program may work fine without this final new-line instruction, but the next
program that is run will have its first line of output mixed with the last line
of the previous program. Even if neither of these problems occurs on your
system, putting a new-line instruction at the end will make your programs
more portable. ■

Formatting for Numbers with a Decimal Point

When the computer outputs a value of type double, the format may not be
what you would like. For example, the following simple cout statement can
produce any of a wide range of outputs:

cout << "The price is $" << price << endl;

If price has the value 78.5, the output might be

The price is $78.500000

or it might be

The price is $78.5

or it might be output in the following notation (which we will explain in
Section 2.3):

The price is $7.850000e01

But it is extremely unlikely that the output will be the following, even though
this is the format that makes the most sense:

The price is $78.50

Alternatively, you can start a new line by outputting endl. An
equivalent way to write the above cout statement is as follows:

cout << "You have definitely won" << endl
<< "one of the following prizes:" << endl;

format for
double values

56 CHAPTER 2 / C++ Basics

To ensure that the output is in the form you want, your program should
contain some sort of instructions that tell the computer how to output the
numbers.

There is a “magic formula” that you can insert in your program to cause
numbers that contain a decimal point, such as numbers of type double, to be
output in everyday notation with the exact number of digits after the decimal
point that you specify. If you want two digits after the decimal point, use the
following magic formula:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

If you insert the preceding three statements in your program, then any cout
statement that follows these three statements will output values of type double
in ordinary notation, with exactly two digits after the decimal point. For
example, suppose the following cout statement appears somewhere after this
magic formula and suppose the value of price is 78.5:

cout << "The price is $" << price << endl;

The output will then be as follows:

The price is $78.50

You may use any other nonnegative whole number in place of 2 to specify a
different number of digits after the decimal point. You can even use a variable
of type int in place of the 2.

We will explain this magic formula in detail in Chapter 6. For now you
should think of this magic formula as one long instruction that tells the
computer how you want it to output numbers that contain a decimal point.

If you wish to change the number of digits after the decimal point so that
different values in your program are output with different numbers of digits,
you can repeat the magic formula with some other number in place of 2.
However, when you repeat the magic formula, you only need to repeat the last
line of the formula. If the magic formula has already occurred once in your
program, then the following line will change the number of digits after the
decimal point to 5 for all subsequent values of type double that are output:

cout.precision(5);

Input Using cin

You use cin for input more or less the same way you use cout for output. The
syntax is similar, except that cin is used in place of cout and the arrows point
in the opposite direction. For example, in the program in Display 2.1, the
variables number_of_bars and one_weight were filled by the following cin
statements (shown along with the cout statements that tell the user what to do):

magic formula

outputting
money amounts

2.2 Input and Output 57

cout << "Enter the number of candy bars in a package\n";
cout << "and the weight in ounces of one candy bar.\n";
cout << "Then press return.\n";
cin >> number_of_bars;
cin >> one_weight;

You can list more than one variable in a single cin statement. So the preceding
lines could be rewritten to the following:

cout << "Enter the number of candy bars in a package\n";
cout << "and the weight in ounces of one candy bar.\n";
cout << "Then press return.\n";
cin >> number_of_bars >> one_weight;

If you prefer, the cin statement can be written on two lines as follows:

cin >> number_of_bars
 >> one_weight;

Notice that, as with the cout statement, there is just one semicolon for each
occurrence of cin.

When a program reaches a cin statement, it waits for input to be entered
from the keyboard. It sets the first variable equal to the first value typed at the
keyboard, the second variable equal to the second value typed, and so forth.
However, the program does not read the input until the user presses the
Return key. This allows the user to backspace and correct mistakes when
entering a line of input.

Numbers in the input must be separated by one or more spaces or by a line
break. If, for instance, you want to enter the two numbers 12 and 5 and instead
you enter the numbers without any space between them, then the computer will

Outputting Values of Type double

If you insert the following “magic formula” in your program, then all
numbers of type double (or any other type that allows for digits after the
decimal point) will be output in ordinary everyday notation with two digits
after the decimal point:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

You can use any other nonnegative whole number in place of the 2 to
specify a different number of digits after the decimal point. You can even
use a variable of type int in place of the 2.

how cin works

separate
numbers
with spaces

58 CHAPTER 2 / C++ Basics

think you have entered the single number 125. When you use cin statements,
the computer will skip over any number of blanks or line breaks until it finds
the next input value. Thus, it does not matter whether input numbers are
separated by one space or several spaces or even a line break.

Designing Input and Output

Input and output, or, as it is often called, I/O, is the part of the program that
the user sees, so the user will not be happy with a program unless the program
has well-designed I/O.

When the computer executes a cin statement, it expects some data to be
typed in at the keyboard. If none is typed in, the computer simply waits for it.
The program must tell the user when to type in a number (or other data item).
The computer will not automatically ask the user to enter data. That is why the
sample programs contain output statements like the following:

cout << "Enter the number of candy bars in a package\n";
cout << "and the weight in ounces of one candy bar.\n";
cout << "Then press return.\n";

These output statements prompt the user to enter the input. Your programs
should always prompt for input.

When entering input from a terminal, the input appears on the screen as
it is typed in. Nonetheless, the program should always write out the input
values some time before it ends. This is called echoing the input, and it serves
as a check to see that the input was read in correctly. Just because the input
looks good on the screen when it is typed in does not mean that it was read
correctly by the computer. There could be an unnoticed typing mistake or
other problem. Echoing input serves as a test of the integrity of the input data.

■ PROGRAMMING TIP Line Breaks in I/O

It is possible to keep output and input on the same line, and sometimes it can
produce a nicer interface for the user. If you simply omit a \n or endl at the

cin Statements

A cin statement sets variables equal to values typed in at the keyboard.

SYNTAX cin >> Variable_1 >> Variable_2 >> . . . ;

EXAMPLE cin >> number >> size;
cin >> time_to_go
 >> points_needed;

I/O

prompt lines

echoing the
input

2.2 Input and Output 59

end of the last prompt line, then the user’s input will appear on the same line
as the prompt. For example, suppose you use the following prompt and input
statements:

cout << "Enter the cost per person: $";
cin >> cost_per_person;

When the cout statement is executed, the following will appear on the screen:

When the user types in the input, it will appear on the same line, like this:

SELF -TEST EXERC ISES

8. Give an output statement that will produce the following message on the
screen:

9. Give an input statement that will fill the variable the_number (of type int)
with a number typed in at the keyboard. Precede the input statement with
a prompt statement asking the user to enter a whole number.

10. What statements should you include in your program to ensure that,
when a number of type double is output, it will be output in ordinary
notation with three digits after the decimal point?

11. Write a complete C++ program that writes the phrase Hello world to the
screen. The program does nothing else.

12. Write a complete C++ program that reads in two whole numbers and out-
puts their sum. Be sure to prompt for input, echo input, and label all output.

13. Give an output statement that produces the new-line character and a tab
character.

14. Write a short program that declares and initializes double variables one,
two, three, four, and five to the values 1.000, 1.414, 1.732, 2.000, and
2.236, respectively. Then write output statements to generate the following
legend and table. Use the tab escape sequence \t to line up the columns. If

Enter the cost per person: $

Enter the cost per person: $1.25 ■

The answer to the question of
Life, the Universe, and Everything is 42.

60 CHAPTER 2 / C++ Basics

you are unfamiliar with the tab character, you should experiment with it
while doing this exercise. A tab works like a mechanical stop on a type-
writer. A tab causes output to begin in a next column, usually a multiple of
eight spaces away. Many editors and most word processors will have adjust-
able tab stops. Our output does not.

The output should be:

N Square Root

1 1.000

2 1.414

3 1.732

4 2.000

5 2.236

2.3 DATA TYPES AND EXPRESSIONS

They’ll never be happy together. He’s not her type.

OVERHEARD AT A COCKTAIL PARTY

The Types int and double

Conceptually the numbers 2 and 2.0 are the same number. But C++ considers
them to be of different types. The whole number 2 is of type int; the number
2.0 is of type double, because it contains a fraction part (even though the
fraction is 0). Once again, the mathematics of computer programming is a bit
different from what you may have learned in mathematics classes. Something
about the practicalities of computers makes a computer’s numbers differ from
the abstract definitions of these numbers. The whole numbers in C++ behave
as you would expect them to. The type int holds no surprises. But values of
type double are more troublesome. Because it can store only a limited
number of significant digits, the computer stores numbers of type double as
approximate values. Numbers of type int are stored as exact values. The
precision with which double values are stored varies from one computer to
another, but you can expect them to be stored with 14 or more digits of
accuracy. For most applications this is likely to be sufficient, though subtle
problems can occur even in simple cases. Thus, if you know that the values in
some variable will always be whole numbers in the range allowed by your
computer, it is best to declare the variable to be of type int.

Number constants of type double are written differently from those of
type int. Constants of type int must not contain a decimal point. Constants of
type double may be written in either of two forms. The simple form for double
constants is like the everyday way of writing decimal fractions. When written

2.3 Data Types and Expressions 61

in this form a double constant must contain a decimal point. There is,
however, one thing that constants of type double and constants of type int
have in common: No number in C++ may contain a comma.

The more complicated notation for constants of type double is frequently
called scientific notation or floating-point notation and is particularly handy
for writing very large numbers and very small fractions. For instance,

3.67 � 1017

which is the same as

367000000000000000.0

is best expressed in C++ by the constant 3.67e17. The number

5.89 � 10–6

which is the same as

0.00000589

is best expressed in C++ by the constant 5.89e−6. The e stands for exponent and
means “multiply by 10 to the power that follows.”

This e notation is used because keyboards normally have no way to write
exponents as superscripts. Think of the number after the e as telling you the
direction and number of digits to move the decimal point. For example, to
change 3.49e4 to a numeral without an e, you move the decimal point four

What Is Doubled?

Why is the type for numbers with a fraction part called double? Is there a
type called “single” that is half as big? No, but something like that is true.
Many programming languages traditionally used two types for numbers
with a fractional part. One type used less storage and was very imprecise
(that is, it did not allow very many significant digits). The second type used
double the amount of storage and was therefore much more precise; it
also allowed numbers that were larger (although programmers tend to
care more about precision than about size). The kind of numbers that used
twice as much storage were called double-precision numbers; those that
used less storage were called single-precision. Following this tradition, the
type that (more or less) corresponds to this double-precision type was
named double in C++. The type that corresponds to single-precision in C++
was called float. C++ also has a third type for numbers with a fractional
part, which is called long double. These types are described in the
subsection entitled “Other Number Types.” However, we will have no
occasion to use the types float and long double in this book.

scientific
notation

floating-point
notation

e notation

62 CHAPTER 2 / C++ Basics

places to the right to obtain 34900.0, which is another way of writing the same
number. If the number after the e is negative, you move the decimal point the
indicated number of spaces to the left, inserting extra zeros if need be. So,
3.49e−2 is the same as 0.0349.

The number before the e may contain a decimal point, although it is not
required. However, the exponent after the e definitely must not contain a
decimal point.

Since computers have size limitations on their memory, numbers are
typically stored in a limited number of bytes (that is, a limited amount of
storage). Hence, there is a limit to how large the magnitude of a number can
be, and this limit is different for different number types. The largest allowable
number of type double is always much larger than the largest allowable
number of type int. Just about any implementation of C++ will allow values
of type int as large as 32767 and values of type double up to about 10308.

Other Number Types

C++ has other numeric types besides int and double. Some are described in
Display 2.2. The various number types allow for different size numbers and
for more or less precision (that is, more or fewer digits after the decimal
point). In Display 2.2, the values given for memory used, size range, and
precision are only one sample set of values, intended to give you a general feel
for how the types differ. The values vary from one system to another, and may
be different on your system.

Although some of these other numeric types are spelled as two words, you
declare variables of these other types just as you declare variables of types int
and double. For example, the following declares one variable of type long
double:

 long double big_number;

The type names long and long int are two names for the same type. Thus,
the following two declarations are equivalent:

long big_total;
and the equivalent

long int big_total;

Of course, in any one program, you should use only one of the above two
declarations for the variable big_total, but it does not matter which one you
use. Also, remember that the type name long by itself means the same thing
as long int, not the same thing as long double.

The types for whole numbers, such an int and similar types, are called
integer types. The type for numbers with a decimal point—such as the type
double and similar types—are called floating-point types. They are called
floating-point because when the computer stores a number written in the usual

long double

long

integer types
floating-point

types

2.3 Data Types and Expressions 63

way, like 392.123, it first converts the number to something like e notation; in
this case something like 3.92123e2. When the computer performs this conver-
sion, the decimal point floats (that is, moves) to a new position.

You should be aware that there are other numeric types in C++. However,
in this book, we will use only the types int, double, and occasionally long. For
most simple applications, you should not need any types except int and
double. However, if you are writing a program that uses very large whole
numbers, then you might need to use the type long.

The Type char

We do not want to give you the impression that computers and C++ are used
only for numeric calculations, so we will introduce one nonnumeric type now,
though eventually we will see other more complicated nonnumeric types.
Values of the type char, which is short for character, are single symbols such as

DISPLAY 2.2 Some Number Types

Type Name Memory Used Size Range Precision

short
(also called
short int)

2 bytes −32,768 to 32,767 (not applicable)

int 4 bytes −2,147,483,648 to
2,147,483,647

(not applicable)

long
(also called
long int)

4 bytes −2,147,483,648 to
2,147,483,647

(not applicable)

float 4 bytes approximately
10–38 to 1038

7 digits

double 8 bytes approximately
10–308 to 10308

15 digits

long double 10 bytes approximately
10–4932 to 104932

19 digits

These are only sample values to give you a general idea of how the types differ. The values
for any of these entries may be different on your system. Precision refers to the number of
meaningful digits, including digits in front of the decimal point. The ranges for the types float,
double, and long double are the ranges for positive numbers. Negative numbers have a similar
range, but with a negative sign in front of each number.

64 CHAPTER 2 / C++ Basics

a letter, digit, or punctuation mark. Values of this type are frequently called
characters in books and in conversation, but in a C++ program this type must
always be spelled in the abbreviated fashion char. For example, the variables
symbol and letter of type char are declared as follows:

char symbol, letter;

A variable of type char can hold any single character on the keyboard. So,
for example, the variable symbol could hold an 'A' or a '+' or an 'a'. Note
that uppercase and lowercase versions of a letter are considered different
characters.

The text in double quotes that are output using cout are called string
values. For example, the following, which occurs in the program in Display
2.1, is a string:

"Enter the number of candy bars in a package\n"

Be sure to notice that string constants are placed inside of double quotes,
while constants of type char are placed inside of single quotes. The two kinds
of quotes mean different things. In particular, 'A' and "A" mean different
things. 'A' is a value of type char and can be stored in a variable of type char.
"A" is string of characters. The fact that the string happens to contain only one
character does not make "A" a value of type char. Also notice that, for both
strings and characters, the left and right quotes are the same.

The use of the type char is illustrated in the program shown in Display 2.3.
Notice that the user types a space between the first and second initials. Yet the
program skips over the blank and reads the letter B as the second input
character. When you use cin to read input into a variable of type char, the
computer skips over all blanks and line breaks until it gets to the first nonblank
character and reads that nonblank character into the variable. It makes no
difference whether there are blanks in the input or not. The program in Display
2.3 will give the same output whether the user types in a blank between initials,
as shown in the sample dialogue, or the user types in the two initials without
a blank, like so:

JB

The Type bool

The next type we discuss here is the type bool. This type was recently added to
the C++ language by the ISO/ANSI (International Standards Organization/
American National Standards Organization) committee. Expressions of type
bool are called Boolean after the English mathematician George Boole (1815–
1864) who formulated rules for mathematical logic.

Boolean expressions evaluate to one of the two values, true or false.
Boolean expressions are used in branching and looping statements that we

strings and
characters

quotes

2.3 Data Types and Expressions 65

study in Section 2.4. We will say more about Boolean expressions and the type
bool in that section.

Introduction to the Class string

Although C++ lacks a native data type to directly manipulate strings, there is
a string class that may be used to process strings in a manner similar to the
data types we have seen thus far. The distinction between a class and a
native data type is discussed in Chapter 10. Further details about the string
class are discussed in Chapter 8.

To use the string class we must first include the string library:

#include <string>

DISPLAY 2.3 The type char

1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 char symbol1, symbol2, symbol3;

6 cout << "Enter two initials, without any periods:\n";
7 cin >> symbol1 >> symbol2;

8 cout << "The two initials are:\n";
9 cout << symbol1 << symbol2 << endl;

10 cout << "Once more with a space:\n";
11 symbol3 = ' ';
12 cout << symbol1 << symbol3 << symbol2 << endl;

13 cout << "That's all.";

14 return 0;
15 }

Sample Dialogue

Enter two initials, without any periods:

J B

The two initials are:

JB

Once more with a space:

J B

That's all.

66 CHAPTER 2 / C++ Basics

Your program must also contain the following line of code, normally placed
at the start of the file:

using namespace std;

You declare variables of type string just as you declare variables of types int
or double. For example, the following declares one variable of type string and
stores the text "Monday" in it:

string day;
day = "Monday";

You may use cin and cout to read data into strings as shown in Display 2.4.
If you place the ‘+’ symbol between two strings then this operator concatenates
the two strings together to create one longer string. For example, the code:

"Monday" + "Tuesday"

Results in the concatenated string of:

"MondayTuesday"

Note that a space is not automatically added between the strings. If you
wanted a space between the two days then a space must be added explicitly:

"Monday " + "Tuesday"

When you use cin to read input into a string variable the computer only
reads until it encounters a whitespace character. Whitespace characters are all
the characters that are displayed as blank spaces on the screen, including the
blank or space character, the tab character, and the new-line character '\n'.
This means that you cannot input a string that contains spaces. This may
sometimes cause errors, as indicated in Display 2.4, Sample Dialogue 2. In this
case, the user intends to enter "Mr. Bojangles" as the name of the pet, but the
string is only read up to "Mr." since the next character is a space. The
"Bojangles" string is ignored by this program but would be read next if there
was another cin statement. Chapter 8 describes a technique to input a string
that may include spaces.

Type Compatibilities

As a general rule, you cannot store a value of one type in a variable of another
type. For example, most compilers will object to the following:

int int_variable;
int_variable = 2.99;

The problem is a type mismatch. The constant 2.99 is of type double and the
variable int_variable is of type int. Unfortunately, not all compilers will

whitespace

2.3 Data Types and Expressions 67

react the same way to the above assignment statement. Some will issue an
error message, some will give only a warning message, and some compilers
will not object at all. But even if the compiler does allow you to use this
assignment, it will probably give int_variable the int value 2, not the value 3.
Since you cannot count on your compiler accepting this assignment, you
should not assign a double value to a variable of type int.

DISPLAY 2.4 The string class

1 #include <iostream>
2 #include <string>
3 using namespace std;
4 int main()
5 {
6 string middle_name, pet_name;
7 string alter_ego_name;
8
9 cout << "Enter your middle name and the name of your pet.\n";

10 cin >> middle_name;
11 cin >> pet_name;
12
13 alter_ego_name = pet_name + " " + middle_name;
14
15 cout << "The name of your alter ego is ";
16 cout << alter_ego_name << "." << endl;
17
18 return 0;
19
20 }

Sample Dialogue 1

Enter your middle name and the name of your pet.

Parker Pippen

The name of your alter ego is Pippen Parker.

Sample Dialogue 2

Enter your middle name and the name of your pet.

Parker

Mr. Bojangles

The name of your alter ego is Mr. Parker.

68 CHAPTER 2 / C++ Basics

The same problem arises if you use a variable of type double instead of the
constant 2.99. Most compilers will also object to the following:

int int_variable;
double double_variable;
double_variable = 2.00;
int_variable = double_variable;

The fact that the value 2.00 “comes out even” makes no difference. The value
2.00 is of type double, not of type int. As you will see shortly, you can replace
2.00 with 2 in the preceding assignment to the variable double_variable, but
even that is not enough to make the assignment acceptable. The variables
int_variable and double_variable are of different types, and that is the
cause of the problem.

Even if the compiler will allow you to mix types in an assignment
statement, in most cases you should not. Doing so makes your program less
portable, and it can be confusing. For example, if your compiler lets you assign
2.99 to a variable of type int, the variable will receive the value 2, rather than
2.99, which can be confusing since the program seems to say the value will be
2.99.

There are some special cases where it is permitted to assign a value of one
type to a variable of another type. It is acceptable to assign a value of type int
to a variable of type double. For example, the following is both legal and
acceptable style:

double double_variable;
double_variable = 2;

The above will set the value of the variable named double_variable equal
to 2.0.

Although it is usually a bad idea to do so, you can store an int value such
as 65 in a variable of type char and you can store a letter such as 'Z' in a
variable of type int. For many purposes, the C language considers the
characters to be small integers, and perhaps unfortunately, C++ inherited this
from C. The reason for allowing this is that variables of type char consume less
memory than variables of type int and so doing arithmetic with variables of
type char can save some memory. However, it is clearer to use the type int
when you are dealing with integers and to use the type char when you are
dealing with characters.

The general rule is that you cannot place a value of one type in a variable
of another type—though it may seem that there are more exceptions to the
rule than there are cases that follow the rule. Even if the compiler does not
enforce this rule very strictly, it is a good rule to follow. Placing data of one
type in a variable of another type can cause problems, since the value must be
changed to a value of the appropriate type and that value may not be what you
would expect.

assigning int
values to
double

variables

mixing types

2.3 Data Types and Expressions 69

Values of type bool can be assigned to variables of an integer type (short,
int, long) and integers can be assigned to variables of type bool. However, it
is poor style to do this and you should not use these features. For complete-
ness and to help you read other people’s code, we do give the details: When
assigned to a variable of type bool, any nonzero integer will be stored as the
value true. Zero will be stored as the value false. When assigning a bool value
to an integer variable, true will be stored as 1 and false will be stored as 0.

Arithmetic Operators and Expressions

In a C++ program, you can combine variables and/or numbers using the
arithmetic operators + for addition, − for subtraction, * for multiplication, and
/ for division. For example, the following assignment statement, which
appears in the program in Display 2.1, uses the * operator to multiply the
numbers in two variables. (The result is then placed in the variable on the left-
hand side of the equal sign.)

total_weight = one_weight * number_of_bars;

All of the arithmetic operators can be used with numbers of type int,
numbers of type double, and even with one number of each type. However,
the type of the value produced and the exact value of the result depends on the
types of the numbers being combined. If both operands (that is, both
numbers) are of type int, then the result of combining them with an
arithmetic operator is of type int. If one, or both, of the operands is of type
double, then the result is of type double. For example, if the variables
base_amount and increase are of type int, then the number produced by the
following expression is of type int:

base_amount + increase

However, if one or both of the two variables is of type double, then the result
is of type double. This is also true if you replace the operator + with any of the
operators −, *, or /.

The type of the result can be more significant than you might suspect. For
example, 7.0/2 has one operand of type double, namely 7.0. Hence, the result
is the type double number 3.5. However, 7/2 has two operands of type int and
so it yields the type int result 3. Even if the result “comes out even,” there is a
difference. For example, 6.0/2 has one operand of type double, namely 6.0.
Hence, the result is the type double number 3.0, which is only an approximate
quantity. However, 6/2 has two operands of type int; so it yields the result 3,
which is of type int and so is an exact quantity. The division operator is the
operator that is affected most severely by the type of its arguments.

When used with one or both operands of type double, the division
operator, /, behaves as you might expect. However, when used with two
operands of type int, the division operator, /, yields the integer part resulting

division

integer division

70 CHAPTER 2 / C++ Basics

from division. In other words, integer division discards the part after the
decimal point. So, 10/3 is 3 (not 3.3333), 5/2 is 2 (not 2.5), and 11/3 is 3
(not 3.6666). Notice that the number is not rounded; the part after the decimal
point is discarded no matter how large it is.

The operator % can be used with operands of type int to recover the
information lost when you use / to do division with numbers of type int. When
used with values of type int, the two operators / and % yield the two numbers
produced when you perform the long division algorithm you learned in grade
school. For example, 17 divided by 5 yields 3 with a remainder of 2. The /
operation yields the number of times one number “goes into” another. The %
operation gives the remainder. For example, the statements

cout << "17 divided by 5 is " << (17/5) << endl;
cout << "with a remainder of " << (17%5) << endl;

yield the following output:

Display 2.5 illustrates how / and % work with values of type int.

When used with negative values of type int, the result of the operators /
and % can be different for different implementations of C++. Thus, you should
use / and % with int values only when you know that both values are
nonnegative.

Any reasonable spacing will do in arithmetic expressions. You can insert
spaces before and after operations and parentheses, or you can omit them. Do
whatever produces a result that is easy to read.

You can specify the order of operations by inserting parentheses, as
illustrated in the following two expressions:

(x + y) * z
x + (y * z)

the % operator

17 divided by 5 is 3
with a remainder of 2

DISPLAY 2.5 Integer Division

4
3 12

12
0

12/3

12%3

4
3 14

12
2

14/3

14%3

negative
integers in

division

spacing

parentheses

2.3 Data Types and Expressions 71

To evaluate the first expression, the computer first adds x and y and then
multiplies the result by z. To evaluate the second expression, it multiplies y
and z and then adds the result to x. Although you may be used to using
mathematical formulas that contain square brackets and various other forms
of parentheses, that is not allowed in C++. C++ allows only one kind of
parentheses in arithmetic expressions. The other varieties are reserved for other
purposes.

 If you omit parentheses, the computer will follow rules called precedence
rules that determine the order in which the operators, such as + and *, are
performed. These precedence rules are similar to rules used in algebra and other
mathematics classes. For example,

x + y * z

is evaluated by first doing the multiplication and then the addition. Except in
some standard cases, such as a string of additions or a simple multiplication
embedded inside an addition, it is usually best to include the parentheses,
even if the intended order of operations is the one dictated by the precedence
rules. The parentheses make the expression easier to read and less prone to
programmer error. A complete set of C++ precedence rules is given in
Appendix 2.

Display 2.6 shows some examples of common kinds of arithmetic
expressions and how they are expressed in C++.

■ PITFALL Whole Numbers in Division

When you use the division operator / on two whole numbers, the result is a
whole number. This can be a problem if you expect a fraction. Moreover, the
problem can easily go unnoticed, resulting in a program that looks fine but is
producing incorrect output without your even being aware of the problem. For

precedence rules

Video Note
Precedence and
Arithmetic
Operators

DISPLAY 2.6 Arithmetic Expressions

Mathematical Formula C++ Expression

b*b − 4*a*c

x*(y + z)

1/(x*x + x + 3)

(a + b)/(c − d)

b2 4ac–

x y z+()

1

x2 x 3+ +

a b+
c d–

72 CHAPTER 2 / C++ Basics

example, suppose you are a landscape architect who charges $5,000 per mile
to landscape a highway, and suppose you know the length of the highway you
are working on in feet. The price you charge can easily be calculated by the
following C++ statement:

total_price = 5000 * (feet/5280.0);

This works because there are 5,280 feet in a mile. If the stretch of highway you
are landscaping is 15,000 feet long, this formula will tell you that the total
price is

5000 * (15000/5280.0)

Your C++ program obtains the final value as follows: 15000/5280.0 is
computed as 2.84. Then the program multiplies 5000 by 2.84 to produce the
value 14200.00. With the aid of your C++ program, you know that you should
charge $14,200 for the project.

Now suppose the variable feet is of type int, and you forget to put in the
decimal point and the zero, so that the assignment statement in your program
reads:

total_price = 5000 * (feet/5280);

It still looks fine, but will cause serious problems. If you use this second form
of the assignment statement, you are dividing two values of type int, so the
result of the division feet/5280 is 15000/5280, which is the int value 2
(instead of the value 2.84, which you think you are getting). So the value
assigned to total_cost is 5000*2, or 10000.00. If you forget the decimal point,
you will charge $10,000. However, as we have already seen, the correct value
is $14,200. A missing decimal point has cost you $4,200. Note that this will
be true whether the type of total_price is int or double; the damage is done
before the value is assigned to total_price. ■

SELF -TEST EXERC ISES

15. Convert each of the following mathematical formulas to a C++ expression:

16. What is the output of the following program lines, when embedded in a
correct program that declares all variables to be of type char?

a = 'b';
b = 'c';

3x 3x y+ x y+
7

3x y+
z 2+

2.3 Data Types and Expressions 73

c = a;
cout << a << b << c << 'c';

17. What is the output of the following program lines (when embedded in a
correct program that declares number to be of type int)?

number = (1/3) * 3;
cout << "(1/3) * 3 is equal to " << number;

18. Write a complete C++ program that reads two whole numbers into two
variables of type int, and then outputs both the whole number part and
the remainder when the first number is divided by the second. This can be
done using the operators / and %.

19. Given the following fragment that purports to convert from degrees Cel-
sius to degrees Fahrenheit, answer the following questions:

double c = 20;
double f;
f = (9/5) * c + 32.0;

a. What value is assigned to f?
b. Explain what is actually happening, and what the programmer likely

wanted.

c. Rewrite the code as the programmer intended.

20. What is the output of the following program lines (when embedded in a
correct program that declares month, day, year, and date to be of type
string)?

month = "03";

day = "04";

year = "06";

date = month + day + year;

cout << date << endl;

More Assignment Statements

There is a shorthand notation that combines the assignment operator (=) and
an arithmetic operator so that a given variable can have its value changed by
adding, subtracting, multiplying by, or dividing by a specified value. The
general form is

Variable Op = Expression

74 CHAPTER 2 / C++ Basics

which is equivalent to

Variable = Variable Op (Expression)

Op is an operator such as +, −, or *. The Expression can be another variable, a
constant, or a more complicated arithmetic expression. Following are examples:

2.4 SIMPLE FLOW OF CONTROL

“If you think we’re wax-works,” he said, “you ought to pay, you know. Wax-
works weren’t made to be looked at for nothing. Nohow!”

“Contrariwise,” added the one marked “DEE,” “if you think we’re alive, you
ought to speak.”

LEWIS CARROLL, Through the Looking-Glass

The programs you have seen thus far each consist of a simple list of statements
to be executed in the order given. However, to write more sophisticated
programs, you will also need some way to vary the order in which statements
are executed. The order in which statements are executed is often referred to as
flow of control. In this section we will present two simple ways to add some
flow of control to your programs. We will discuss a branching mechanism that
lets your program choose between two alternative actions, choosing one or the
other depending on the values of variables. We will also present a looping
mechanism that lets your program repeat an action a number of times.

A Simple Branching Mechanism

Sometimes it is necessary to have a program choose one of two alternatives,
depending on the input. For example, suppose you want to design a program
to compute a week’s salary for an hourly employee. Assume the firm pays an
overtime rate of one-and-one-half times the regular rate for all hours after the

Example: Equivalent to:

count += 2; count = count + 2;

total -= discount; total = total - discount;

bonus *= 2; bonus = bonus * 2;

time /= rush_factor; time = time/rush_factor;

change %= 100; change = change % 100;

amount *= cnt1 + cnt2; amount = amount * (cnt1 + cnt2);

flow of control

2.4 Simple Flow of Control 75

first 40 hours worked. As long as the employee works 40 or more hours, the
pay is then equal to

rate*40 + 1.5*rate*(hours - 40)

However, if there is a possibility that the employee will work less than 40
hours, this formula will unfairly pay a negative amount of overtime. (To see
this, just substitute 10 for hours, 1 for rate, and do the arithmetic. The poor
employee will get a negative paycheck.) The correct pay formula for an
employee who works less than 40 hours is simply:

rate*hours

If both more than 40 hours and less than 40 hours of work are possible, then
the program will need to choose between the two formulas. In order to
compute the employee’s pay, the program action should be

Decide whether or not (hours > 40) is true.

If it is, do the following assignment statement:
 gross_pay = rate*40 + 1.5*rate*(hours - 40);

If it is not, do the following:
 gross_pay = rate*hours;

There is a C++ statement that does exactly this kind of branching action.
The if-else statement chooses between two alternative actions. For example,
the wage calculation we have been discussing can be accomplished with the
following C++ statement:

if (hours > 40)

 gross_pay = rate*40 + 1.5*rate*(hours - 40);
else

 gross_pay = rate*hours;

A complete program that uses this statement is given in Display 2.7.
Two forms of an if-else statement are described in Display 2.8. The

first is the simple form of an if-else statement; the second form will be
discussed in the subsection entitled “Compound Statements.” In the first
form shown, the two statements may be any executable statements. The
Boolean_Expression is a test that can be checked to see if it is true or false,
that is, to see if it is satisfied or not. For example, the Boolean_Expression in
the earlier if-else statement is

hours > 40

When the program reaches the if-else statement, exactly one of the two
embedded statements is executed. If the Boolean_Expression is true (that is, if
it is satisfied), then the Yes_Statement is executed; if the Boolean_Expression
is false (that is, if it is not satisfied), then the No_Statement is executed. Notice

if-else
statements

76 CHAPTER 2 / C++ Basics

DISPLAY 2.7 An if-else Statement

1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 int hours;
6 double gross_pay, rate;

7 cout << "Enter the hourly rate of pay: $";
8 cin >> rate;
9 cout << "Enter the number of hours worked,\n"

10 << "rounded to a whole number of hours: ";
11 cin >> hours;

12 if (hours > 40)
13 gross_pay = rate*40 + 1.5*rate*(hours - 40);
14 else
15 gross_pay = rate*hours;

16 cout.setf(ios::fixed);
17 cout.setf(ios::showpoint);
18 cout.precision(2);
19 cout << "Hours = " << hours << endl;
20 cout << "Hourly pay rate = $" << rate << endl;
21 cout << "Gross pay = $" << gross_pay << endl;

22 return 0;
23 }

Sample Dialogue 1

Enter the hourly rate of pay: $20.00
Enter the number of hours worked,
rounded to a whole number of hours: 30
Hours = 30
Hourly pay rate = $20.00
Gross pay = $600.00

Sample Dialogue 2

Enter the hourly rate of pay: $10.00
Enter the number of hours worked,
rounded to a whole number of hours: 41
Hours = 41
Hourly pay rate = $10.00
Gross pay = $415.00

2.4 Simple Flow of Control 77

that the Boolean_Expression must be enclosed in parentheses. (This is required
by the syntax rules for if-else statements in C++.) Also notice that an if-else
statement has two smaller statements embedded in it.

A Boolean expression is any expression that is either true or false. An
if-else statement always contains a Boolean_Expression. The simplest
form for a Boolean_Expression consists of two expressions, such as num-
bers or variables, that are compared with one of the comparison operators
shown in Display 2.9. Notice that some of the operators are spelled with
two symbols: for example, ==, !=, <=, >=. Be sure to notice that you use a
double equal == for the equal sign, and you use the two symbols != for not
equal. Such two-symbol operators should not have any space between the
two symbols. The part of the compiler that separates the characters into C++
names and symbols will see the !=, for example, and tell the rest of the
compiler that the programmer meant to test for INEQUALITY. When an if-
else statement is executed, the two expressions being compared are
evaluated and compared using the operator. If the comparison turns out to
be true, then the first statement is performed. If the comparison fails, then
the second statement is executed.

DISPLAY 2.8 Syntax for an if-else Statement

A Single Statement for Each Alternative:

1 if (Boolean_Expression)
2 Yes_Statement
3 else
4 No_Statement

A Sequence of Statements for Each Alternative:

5 if (Boolean_Expression)
6 {
7 Yes_Statement_1
8 Yes_Statement_2
9 ...

10 Yes_Statement_Last
11 }
12 else
13 {
14 No_Statement_1
15 No_Statement_2
16 ...
17 No_Statement_Last
18 }

Boolean
expression

78 CHAPTER 2 / C++ Basics

You can combine two comparisons using the “and” operator, which is
spelled && in C++. For example, the following Boolean expression is true (that
is, is satisfied) provided x is greater than 2 and x is less than 7:

(2 < x) && (x < 7)

When two comparisons are connected using a &&, the entire expression is true,
provided both of the comparisons are true (that is, provided both are
satisfied); otherwise, the entire expression is false.

You can also combine two comparisons using the “or” operator, which is
spelled || in C++. For example, the following is true provided y is less than 0
or y is greater than 12:

(y < 0) || (y > 12)

When two comparisons are connected using a ||, the entire expression is true
provided that one or both of the comparisons are true (that is, satisfied);
otherwise, the entire expression is false.

Remember that when you use a Boolean expression in an if-else
statement, the Boolean expression must be enclosed in parentheses. Therefore,
an if-else statement that uses the && operator and two comparisons is
parenthesized as follows:

if ((temperature >= 95) && (humidity >= 90))
...

The inner parentheses around the comparisons are not required, but they do
make the meaning clearer, and we will normally include them.

You can negate any Boolean expression using the ! operator. If you want to
negate a Boolean expression, place the expression in parentheses and place the
! operator in front of it. For example, !(x < y) means “x is not less than y.”

DISPLAY 2.9 Comparison Operators

Math Symbol English C++ Notation C++ Sample Math Equivalent

= equal to == x + 7 == 2*y x + 7 = 2y

≠ not equal to != ans != 'n' ans ≠ 'n'

< less than < count < m + 3 count < m + 3

≤ less than or equal to <= time <= limit time ≤ limit

> greater than > time > limit time > limit

≥ greater than or
equal to

 >= age >= 21 age ≥ 21

&& means “and”

|| means “or”

parentheses

2.4 Simple Flow of Control 79

Since the Boolean expression in an if-else statement must be enclosed in
parentheses, you should place a second pair of parentheses around the negated
expression when the negated expression is used in an if-else statement. For
example, an if-else statement might begin as follows:

if (!(x < y))
...

The ! operator can usually be avoided. For example, our hypothetical if-else
statement can instead begin with the following, which is equivalent and easier
to read:

if (x >= y)
...

We will not have much call to use the ! operator until later in this book, so we
will postpone any detailed discussion of the ! operator until then.

Sometimes you want one of the two alternatives in an if-else statement
to do nothing at all. In C++ this can be accomplished by omitting the else
part. These sorts of statements are referred to as if statements to distinguish
them from if-else statements. For example, the first of the following two
statements is an if statement:

if (sales >= minimum)
 salary = salary + bonus;
cout << "salary = $" << salary;

The “and” Operator &&

You can form a more elaborate Boolean expression by combining two
simple tests using the “and” operator &&.

SYNTAX (FOR A BOOLEAN EXPRESSION USING &&)

(Comparison_1) && (Comparison_2)

EXAMPLE (WITHIN AN if-else STATEMENT)

if ((score > 0) && (score < 10))
 cout << "score is between 0 and 10\n";
else
 cout << "score is not between 0 and 10.\n";

If the value of score is greater than 0 and the value of score is also less
than 10, then the first cout statement will be executed; otherwise, the
second cout statement will be executed.

omitting else
if statements

80 CHAPTER 2 / C++ Basics

If the value of sales is greater than or equal to the value of minimum, the
assignment statement is executed and then the following cout statement is
executed. On the other hand, if the value of sales is less than minimum, then
the embedded assignment statement is not executed, so the if statement
causes no change (that is, no bonus is added to the base salary), and the
program proceeds directly to the cout statement.

■ PITFALL Strings of Inequalities

Do not use a string of inequalities such as the following in your program:

If you do use this type of expression, your program will probably compile and
run, but it will undoubtedly give incorrect output. We will explain why this
happens after we learn more details about the C++ language. The same
problem will occur with a string of comparisons using any of the comparison
operators; the problem is not limited to < comparisons. The correct way to
express a string of inequalities is to use the “and” operator && as follows:

The “or” Operator ||

You can form a more elaborate Boolean expression by combining two
simple tests using the “or” operator ||.

SYNTAX (FOR A BOOLEAN EXPRESSION USING ||)

(Comparison_1) || (Comparison_2)

EXAMPLE (WITHIN AN if-else STATEMENT)

if ((x == 1) || (x == y))
 cout << "x is 1 or x equals y.\n";
else
 cout << "x is neither 1 nor equal to y.\n";

If the value of x is equal to 1 or the value of x is equal to the value of y (or
both), then the first cout statement will be executed; otherwise, the
second cout statement will be executed.

if (x < z < y)
 cout << "z is between x and y.";

Do not do this!

if ((x < z) && (z < y))
 cout << "z is between x and y."; ■

correct form

2.4 Simple Flow of Control 81

■ PITFALL Using = in place of ==

Unfortunately, you can write many things in C++ that you would think are
incorrectly formed C++ statements but turn out to have some obscure
meaning. This means that if you mistakenly write something that you would
expect to produce an error message, you may find out that the program
compiles and runs with no error messages, but gives incorrect output. Since
you may not realize you wrote something incorrectly, this can cause serious
problems. By the time you realize something is wrong, the mistake may be
very hard to find. One common mistake is to use the symbol = when you mean
==. For example, consider an if-else statement that begins as follows:

if (x = 12)
 Do_Something

else
 Do_Something_Else

Suppose you wanted to test to see if the value of x is equal to 12 so that you
really meant to use == rather than =. You might think the compiler will catch
your mistake. The expression

x = 12

is not something that is satisfied or not. It is an assignment statement, so surely
the compiler will give an error message. Unfortunately, that is not the case. In
C++ the expression x = 12 is an expression that returns (or has) a value, just
like x + 12 or 2 + 3. An assignment expression’s value is the value transferred
to the variable on the left. For example, the value of x = 12 is 12. We saw in our
discussion of Boolean value compatibility that int values may be converted to
true or false. Since 12 is not zero, it is converted to true. If you use x = 12 as
the Boolean expression in an if statement, the Boolean expression is always
true, so the first branch (Do_Something) is always executed.

This error is very hard to find, because it looks correct! The compiler can
find the error without any special instructions if you put the 12 on the left side
of the comparison, as in:

if (12 == x)
 Do_Something;

else
 Do_Something_Else;

Then, the compiler will give an error message if you mistakenly use = instead
of ==.

Remember that dropping one of the = in an == is a common error that is
not caught by many compilers, is very hard to see, and is almost certainly not
what you wanted. In C++, many executable statements can also be used as

Video Note
Common Bugs
with = and ==

82 CHAPTER 2 / C++ Basics

almost any kind of expression, including as a Boolean expression for an if-else
statement. If you put an assignment statement where a Boolean expression is
expected, the assignment statement will be interpreted as a Boolean expression.
Of course the result of the “test” will undoubtedly not be what you intended as
the Boolean expression. The above if-else statement looks fine at a quick
glance and it will compile and run. But, in all likelihood, it will produce
puzzling results when it is run. ■

Compound Statements

You will often want the branches of an if-else statement to execute more than
one statement each. To accomplish this, enclose the statements for each branch
between a pair of braces, { and }, as indicated in the second syntax template in
Display 2.8. This is illustrated in Display 2.10. A list of statements enclosed in a
pair of braces is called a compound statement. A compound statement is treated
as a single statement by C++ and may be used anywhere that a single statement
may be used. (Thus, the second syntax template in Display 2.8 is really just a
special case of the first one.) Display 2.10 contains two compound statements,
embedded in an if-else statement. The compound statements are in color.

Syntax rules for if-else demand that the Yes Statement and No State-
ment be exactly one statement. If more statements are desired for a branch, the
statements must be enclosed in braces to convert them to one compound
statement. If two or more statements not enclosed by braces are placed
between the if and the else, then the compiler will give an error message.

SELF -TEST EXERC ISES

21. Write an if-else statement that outputs the word High if the value of
the variable score is greater than 100 and Low if the value of score is at
most 100. The variable score is of type int.

if-else with
multiple

statements

compound
statement

DISPLAY 2.10 Compound Statements Used with if-else

1 if (my_score > your_score)
2 {
3 cout << "I win!\n";
4 wager = wager + 100;
5 }
6 else
7 {
8 cout << "I wish these were golf scores.\n";
9 wager = 0;

10 }

2.4 Simple Flow of Control 83

22. Suppose savings and expenses are variables of type double that have been
given values. Write an if-else statement that outputs the word Solvent,
decreases the value of savings by the value of expenses, and sets the value
of expenses to 0, provided that savings is at least as large as expenses. If,
however, savings is less than expenses, the if-else statement simply out-
puts the word Bankrupt, and does not change the value of any variables.

23. Write an if-else statement that outputs the word Passed provided the
value of the variable exam is greater than or equal to 60 and the value of
the variable programs_done is greater than or equal to 10. Otherwise, the
if-else statement outputs the word Failed. The variables exam and
programs_done are both of type int.

24. Write an if-else statement that outputs the word Warning provided that
either the value of the variable temperature is greater than or equal to
100, or the value of the variable pressure is greater than or equal to 200,
or both. Otherwise, the if-else statement outputs the word OK. The vari-
ables temperature and pressure are both of type int.

25. Consider a quadratic expression, say

x2 − x − 2

Describing where this quadratic is positive (that is, greater than 0),
involves describing a set of numbers that are either less than the smaller
root (which is −1) or greater than the larger root (which is +2). Write a
C++ Boolean expression that is true when this formula has positive values.

26. Consider the quadratic expression

x2 − 4x + 3

Describing where this quadratic is negative involves describing a set of
numbers that are simultaneously greater than the smaller root (+1) and
less than the larger root (+3). Write a C++ Boolean expression that is true
when the value of this quadratic is negative.

27. What is the output of the following cout statements embedded in these
if-else statements? You are to assume that these are embedded in a com-
plete correct program. Explain your answer.

a. if(0)
cout << "0 is true";

else
cout << "0 is false";

cout << endl;

b. if(1)
cout << "1 is true";

84 CHAPTER 2 / C++ Basics

else
cout << "1 is false";

cout << endl;

c. if(-1)
cout << "-1 is true";

else
cout << "-1 is false";

cout << endl;

Note: This is an exercise only. This is not intended to illustrate programming
style you should follow.

Simple Loop Mechanisms

Most programs include some action that is repeated a number of times. For
example, the program in Display 2.7 computes the gross pay for one worker. If
the company employs 100 workers, then a more complete payroll program
would repeat this calculation 100 times. A portion of a program that repeats a
statement or group of statements is called a loop. The C++ language has a
number of ways to create loops. One of these constructions is called a while
statement or while loop. We will first illustrate its use with a short toy
example and then do a more realistic example.

The program in Display 2.11 contains a simple while statement shown in
color. The portion between the braces, { and }, is called the body of the while
loop; it is the action that is repeated. The statements inside the braces are
executed in order, then they are executed again, then again, and so forth until
the while loop ends. In the first sample dialogue, the body is executed three
times before the loop ends, so the program outputs Hello three times. Each
repetition of the loop body is called an iteration of the loop, and so the first
sample dialogue shows three iterations of the loop.

The meaning of a while statement is suggested by the English word while.
The loop is repeated while the Boolean expression in the parentheses is satisfied. In
Display 2.11 this means that the loop body is repeated as long as the value of
the variable count_down is greater than 0. Let’s consider the first sample
dialogue and see how the while loop performs. The user types in 3 so the cin
statement sets the value of count_down to 3. Thus, in this case, when the
program reaches the while statement, it is certainly true that count_down is
greater than 0, so the statements in the loop body are executed. Every time the
loop body is repeated, the following two statements are executed:

cout << "Hello ";
count_down = count_down − 1;

Therefore, every time the loop body is repeated, "Hello " is output and the
value of the variable count_down is decreased by one. After the computer
repeats the loop body three times, the value of count_down is decreased to 0

while
statement or
while loop

loop body

iteration

2.4 Simple Flow of Control 85

and the Boolean expression in parentheses is no longer satisfied. So, this while
statement ends after repeating the loop body three times.

The syntax for a while statement is given in Display 2.12. The
Boolean_Expressions allowed are exactly the same as the Boolean expressions

DISPLAY 2.11 A while Loop

1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 int count_down;

6 cout << "How many greetings do you want? ";
7 cin >> count_down;

8 while (count_down > 0)
9 {

10 cout << "Hello ";
11 count_down = count_down - 1;
12 }

13 cout << endl;
14 cout << "That's all!\n";

15 return 0;
16 }
17

Sample Dialogue 1

How many greetings do you want? 3

Hello Hello Hello

That's all!

Sample Dialogue 2

How many greetings do you want? 1

Hello

That's all!

Sample Dialogue 3

How many greetings do you want? 0

That's all!

The loop body
is executed
zero times.

86 CHAPTER 2 / C++ Basics

allowed in an if-else statement. Just as in if-else statements, the Boolean
expression in a while statement must be enclosed in parentheses. In Display
2.12 we have given the syntax templates for two cases: the case when there is
more than one statement in the loop body and the case when there is just a
single statement in the loop body. Note that when there is only a single
statement in the loop body, you need not include the braces { and }.

Let’s go over the actions performed by a while statement in greater detail.
When the while statement is executed, the first thing that happens is that the
Boolean expression following the word while is checked. It is either true or
false. For example, the comparison

count_down > 0

is true if the value of count_down is positive. If it is false, then no action is
taken and the program proceeds to the next statement after the while
statement. If the comparison is true, then the entire body of the loop is
executed. At least one of the expressions being compared typically contains
something that might be changed by the loop body, such as the value of
count_down in the while statement in Display 2.11. After the body of the loop
is executed, the comparison is again checked. This process is repeated again
and again as long as the comparison continues to be true. After each iteration
of the loop body, the comparison is again checked and if it is true, then the
entire loop body is executed again. When the comparison is no longer true,
the while statement ends.

The first thing that happens when a while statement is executed is that the
Boolean expression is checked. If the Boolean expression is not true when the
while statement begins, then the loop body is never executed. That is exactly

DISPLAY 2.12 Syntax of the while Statement

A Loop Body with Several Statements:

1 while (Boolean_Expression)
2 {
3 Statement_1
4 Statement_2
5 ...
6 Statement_Last
7 }

A Loop Body with a Single Statement:

8 while (Boolean_Expression)
9 Statement

Do NOT put a
semicolon here.

body

body

executing the
loop body
zero times

2.4 Simple Flow of Control 87

what happens in Sample Dialogue 3 of Display 2.11. In many programming
situations you want the possibility of executing the loop body zero times. For
example, if your while loop is reading a list consisting of all the failing scores
on an exam and nobody failed the exam, then you want the loop body to be
executed zero times.

 As we just noted, a while loop might execute its loop body zero times,
which is often what you want. If on the other hand you know that under all
circumstances your loop body should be executed at least one time, then you
can use a do-while statement. A do-while statement is similar to a while
statement except that the loop body is always executed at least once. The
syntax for a do-while statement is given in Display 2.13. A program with a
sample do-while loop is given in Display 2.14. In that do-while loop, as in
any do-while loop, the first thing that happens is that the statements in the
loop body are executed. After that first iteration of the loop body, the do-
while statement behaves the same as a while loop. The Boolean expression is
checked. If the Boolean expression is true, the loop body is executed again; the
Boolean expression is checked again, and so forth.

Increment and Decrement Operators

We discussed binary operators in the section entitled “Arithmetic Operators
and Expressions.” Binary operators have two operands. Unary operators have
only one operand. You already know of two unary operators, + and –, as used
in the expressions +7 and −7. The C++ language has two other very common
unary operators, ++ and --. The ++ operator is called the increment operator

do-while
statement

DISPLAY 2.13 Syntax of the do-while Statement

A Loop Body with Several Statements:

1 do
2 {
3 Statement_1
4 Statement_2
5 ...
6 Statement_Last
7 } while (Boolean_Expression);

A Loop Body with a Single Statement:

8 do
9 Statement

10 while (Boolean_Expression);

body

body

Do not forget the
final semicolon.

++ and --

88 CHAPTER 2 / C++ Basics

and the -- operator is called the decrement operator. They are usually used
with variables of type int. If n is a variable of type int, then n++ increases the
value of n by one and n-- decreases the value of n by one. So n++ and n--
(when followed by a semicolon) are executable statements. For example, the
statements

DISPLAY 2.14 A do-while Loop

1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 char ans;

6 do
7 {
8 cout << "Hello\n";
9 cout << "Do you want another greeting?\n"

10 << "Press y for yes, n for no,\n"
11 << "and then press return: ";
12 cin >> ans;
13 } while (ans == 'y' || ans == 'Y');

14 cout << "Good-Bye\n";

15 return 0;
16 }

Sample Dialogue

Hello

Do you want another greeting?

Press y for yes, n for no,

and then press return: y

Hello

Do you want another greeting?

Press y for yes, n for no,

and then press return: Y

Hello

Do you want another greeting?

Press y for yes, n for no,

and then press return: n

Good-Bye

2.4 Simple Flow of Control 89

int n = 1, m = 7;
n++;
cout << "The value of n is changed to " << n << endl;
m--;
cout << "The value of m is changed to " << m << endl;

yield the following output:

And now you know where the “++” came from in the name “C++.”
Increment and decrement statements are often used in loops. For exam-

ple, we used the following statement in the while loop in Display 2.11:

count_down = count_down − 1;

However, most experienced C++ programmers would use the decrement
operator rather than the assignment statement, so that the entire while loop
would read as follows:

while (count_down > 0)
{
 cout << "Hello ";
 count_down--;
}

■ PROGRAMMING EXAMPLE Charge Card Balance

Suppose you have a bank charge card with a balance owed of $50 and suppose
the bank charges you 2% per month interest. How many months can you let
pass without making any payments before your balance owed will exceed
$100? One way to solve this problem is to simply read each monthly
statement and count the number of months that go by until your balance
reaches $100 or more. Better still, you can calculate the monthly balances with
a program rather than waiting for the statements to arrive. In this way you will
obtain an answer without having to wait so long (and without endangering
your credit rating).

After one month the balance would be $50 plus 2% of $50, which is $51.
After two months the balance would be $51 plus 2% of $51, which is $52.02.
After three months the balance would be $52.02 plus 2% of $52.02, and so
on. In general, each month increases the balance by 2%. The program could
keep track of the balance by storing it in a variable called balance. The change
in the value of balance for one month can be calculated as follows:

balance = balance + 0.02*balance;

The value of n is changed to 2
The value of m is changed to 6

90 CHAPTER 2 / C++ Basics

If we repeat this action until the value of balance reaches (or exceeds) 100.00
and we count the number of repetitions, then we will know the number of
months it will take for the balance to reach 100.00. To do this we need another
variable to count the number of times the balance is changed. Let us call this
new variable count. The final body of our while loop will thus contain the
following statements:

balance = balance + 0.02*balance;
count++;

In order to make this loop perform correctly, we must give appropriate values
to the variables balance and count before the loop is executed. In this case, we
can initialize the variables when they are declared. The complete program is
shown in Display 2.15. ■

■ PITFALL Infinite Loops

A while loop or do-while loop does not terminate as long as the Boolean
expression after the word while is true. This Boolean expression normally
contains a variable that will be changed by the loop body, and usually the
value of this variable eventually is changed in a way that makes the Boolean
expression false and therefore terminates the loop. However, if you make a
mistake and write your program so that the Boolean expression is always
true, then the loop will run forever. A loop that runs forever is called an
infinite loop.

First let’s describe a loop that does terminate. The following C++ code will
write out the positive even numbers less than 12. That is, it will output the
numbers 2, 4, 6, 8, and 10, one per line, and then the loop will end.

x = 2;
while (x != 12)
{
 cout << x << endl;
 x = x + 2;
}

The value of x is increased by 2 on each loop iteration until it reaches 12. At
that point, the Boolean expression after the word while is no longer true, so
the loop ends.

Now suppose you want to write out the odd numbers less than 12, rather
than the even numbers. You might mistakenly think that all you need do is
change the initializing statement to

x = 1;

infinite loop

2.4 Simple Flow of Control 91

but this mistake will create an infinite loop. Because the value of x goes from
11 to 13, the value of x is never equal to 12, so the loop will never terminate.

This sort of problem is common when loops are terminated by checking
a numeric quantity using == or !=. When dealing with numbers, it is always
safer to test for passing a value. For example, the following will work fine as
the first line of our while loop:

while (x < 12)

With this change, x can be initialized to any number and the loop will still
terminate.

A program that is in an infinite loop will run forever unless some external
force stops it. Since you can now write programs that contain an infinite loop,
it is a good idea to learn how to force a program to terminate. The method for
forcing a program to stop varies from system to system. The keystrokes
Control-C will terminate a program on many systems. (To type a Control-C
hold down the Control key while pressing the C key.) ■

DISPLAY 2.15 Charge Card Program (part 1 of 2)

1 #include <iostream>
2 using namespace std;
3 int main()
4 {
5 double balance = 50.00;
6 int count = 0;

7 cout << "This program tells you how long it takes\n"
8 << "to accumulate a debt of $100, starting with\n"
9 << "an initial balance of $50 owed.\n"

10 << "The interest rate is 2% per month.\n";

11 while (balance < 100.00)
12 {
13 balance = balance + 0.02 * balance;
14 count++;
15 }

16 cout << "After " << count << " months,\n";
17 cout.setf(ios::fixed);
18 cout.setf(ios::showpoint);
19 cout.precision(2);
20 cout << "your balance due will be $" << balance << endl;

21 return 0;
22 }
23

(continued)

92 CHAPTER 2 / C++ Basics

SELF -TEST EXERC ISES

28. What is the output produced by the following (when embedded in a cor-
rect program with x declared to be of type int)?

x = 10;
while (x > 0)
{

 cout << x << endl;

 x = x - 3;

}

29. What output would be produced in the previous exercise if the > sign were
replaced with <?

30. What is the output produced by the following (when embedded in a cor-
rect program with x declared to be of type int)?

x = 10;
do
{
 cout << x << endl;
 x = x - 3;
} while (x > 0);

31. What is the output produced by the following (when embedded in a cor-
rect program with x declared to be of type int)?

x = -42;

do

{

DISPLAY 2.15 Charge Card Program (part 2 of 2)

Sample Dialogue

This program tells you how long it takes

to accumulate a debt of $100, starting with

an initial balance of $50 owed.

The interest rate is 2% per month.

After 36 months,

your balance due will be $101.99

2.5 Program Style 93

 cout << x << endl;

 x = x - 3;

} while (x > 0);

32. What is the most important difference between a while statement and a
do-while statement?

33. What is the output produced by the following (when embedded in a cor-
rect program with x declared to be of type int)?

x = 10;

while (x > 0)

{

 cout << x << endl;

 x = x + 3;

}

34. Write a complete C++ program that outputs the numbers 1 to 20, one per
line. The program does nothing else.

2.5 PROGRAM STYLE

In matters of grave importance, style, not sincerity, is the vital thing.

OSCAR WILDE, The Importance of Being Earnest

All the variable names in our sample programs were chosen to suggest their
use. Our sample programs were laid out in a particular format. For example,
the declarations and statements were all indented the same amount. These
and other matters of style are of more than aesthetic interest. A program that
is written with careful attention to style is easier to read, easier to correct, and
easier to change.

Indenting

A program should be laid out so that elements that are naturally considered a
group are made to look like a group. One way to do this is to skip a line
between parts that are logically considered separate. Indenting can also help
to make the structure of the program clearer. A statement within a statement
should be indented. In particular, if-else statements, while loops, and do-
while loops should be indented either as in our sample programs or in some
similar manner.

The braces { } determine a large part of the structure of a program. Placing
each brace on a line by itself, as we have been doing, makes it easy to find the
matching pairs. Notice that we have indented some pairs of braces. When one

where to place
braces {}

94 CHAPTER 2 / C++ Basics

pair of braces is embedded in another pair, the embedded braces are indented
more than the outer braces. Look back at the program in Display 2.15. The
braces for the body of the while loop are indented more than the braces for
the main part of the program.

There are at least two schools of thought on where you should place braces.
The first, which we use in this book, is to reserve a separate line for each brace.
This form is easiest to read. The second school of thought holds that the
opening brace for a pair need not be on a line by itself. If used with care, this
second method can be effective, and it does save space. The important point is
to use a style that shows the structure of the program. The exact layout is not
precisely dictated, but you should be consistent within any one program.

Comments

In order to make a program understandable, you should include some explana-
tory notes at key places in the program. Such notes are called comments. C++ and
most other programming languages have provisions for including such comments
within the text of a program. In C++ the symbols // are used to indicate the start
of a comment. All of the text between the // and the end of the line is a comment.
The compiler simply ignores anything that follows // on a line. If you want a
comment that covers more than one line, place a // on each line of the comment.
The symbols // are two slashes (without a space between them).

In this book, comments will always be written in italic so they stand out
from the program text. Some text editors indicate comments by showing them
in a different color from the rest of the program text.

There is another way to insert comments in a C++ program. Anything
between the symbol pair /* and the symbol pair */ is considered a comment
and is ignored by the compiler. Unlike the // comments, which require an
additional // on each line, the /* to */ comments can span several lines like so:

/*This is a comment that spans
three lines. Note that there is no comment
symbol of any kind on the second line.*/

Comments of the /* */ type may be inserted anywhere in a program that
a space or line break is allowed. However, they should not be inserted
anywhere except where they are easy to read and do not distract from the
layout of the program. Usually comments are only placed at the ends of lines
or on separate lines by themselves.

There are differing opinions on which kind of comment is best to use.
Either variety (the // kind or the /* */ kind) can be effective if used with care.
We will use the // kind in this book.

It is difficult to say just how many comments a program should contain. The
only correct answer is “just enough,” which of course conveys little to the novice
programmer. It will take some experience to get a feel for when it is best to include
a comment. Whenever something is important and not obvious, it merits a

//comments

/*comments*/

when to
comment

2.5 Program Style 95

comment. However, too many comments are as bad as too few. A program that has
a comment on each line will be so buried in comments that the structure of the
program is hidden in a sea of obvious observations. Comments like the following
contribute nothing to understanding and should not appear in a program:

 distance = speed * time; //Computes the distance traveled

Notice the comment given at the start of the program in Display 2.16. All
programs should begin with a comment similar to the one shown there. It
gives all the essential information about the program: what file the program is
in, who wrote the program, how to contact the person who wrote the
program, what the program does, the date that the program was last modified,
and any other particulars that are appropriate, such as the assignment number,

DISPLAY 2.16 Comments and Named Constants (part 1 of 2)

1 //File Name: health.cpp (Your system may require some suffix other than cpp.)
2 //Author: Your Name Goes Here.
3 //Email Address: you@yourmachine.bla.bla
4 //Assignment Number: 2
5 //Description: Program to determine if the user is ill.
6 //Last Changed: September 23, 2006
7
8 #include <iostream>
9 using namespace std;

10 int main()
11 {
12 const double NORMAL = 98.6;//degrees Fahrenheit
13 double temperature;
14
15 cout << "Enter your temperature: ";
16 cin >> temperature;
17
18 if (temperature > NORMAL)
19 {
20 cout << "You have a fever.\n";
21 cout << "Drink lots of liquids and get to bed.\n";
22 }
23 else
24 {
25 cout << "You don't have a fever.\n";
26 cout << "Go study.\n";
27 }
28
29 return 0;
30 }

(continued)

Your programs should always
begin with a comment
similar to this one.

96 CHAPTER 2 / C++ Basics

if the program is a class assignment. Exactly what you include in this comment
will depend on your particular situation. We will not include such long
comments in the programs in the rest of this book, but you should always
begin your programs with such a comment.

Naming Constants

There are two problems with numbers in a computer program. The first is that
they carry no mnemonic value. For example, when the number 10 is encoun-
tered in a program, it gives no hint of its significance. If the program is a banking
program, it might be the number of branch offices or the number of teller
windows at the main office. In order to understand the program, you need to
know the significance of each constant. The second problem is that when a
program needs to have some numbers changed, the changing tends to introduce
errors. Suppose that 10 occurs twelve times in a banking program, that four of
the times it represents the number of branch offices, and that eight of the times
it represents the number of teller windows at the main office. When the bank
opens a new branch and the program needs to be updated, there is a good
chance that some of the 10s that should be changed to 11 will not be, or some
that should not be changed will be. The way to avoid these problems is to name
each number and use the name instead of the number within your program. For
example, a banking program might have two constants with the names
BRANCH_COUNT and WINDOW_COUNT. Both these numbers might have a value of 10,
but when the bank opens a new branch, all you need do in order to update the
program is to change the definition of BRANCH_COUNT.

How do you name a number in a C++ program? One way to name a number
is to initialize a variable to that number value, as in the following example:

int BRANCH_COUNT = 10;
int WINDOW_COUNT = 10;

There is, however, one problem with this method of naming number
constants: You might inadvertently change the value of one of these variables.
C++ provides a way of marking an initialized variable so that it cannot be

DISPLAY 2.16 Comments and Named Constants (part 2 of 2)

Sample Dialogue

Enter your temperature: 98.6

You don't have a fever.

Go study.

2.5 Program Style 97

changed. If your program tries to change one of these variables it produces an
error condition. To mark a variable declaration so that the value of the variable
cannot be changed, precede the declaration with the word const (which is an
abbreviation of constant). For example:

const int BRANCH_COUNT = 10;
const int WINDOW_COUNT = 10;

If the variables are of the same type, it is possible to combine the previous
lines into one declaration, as follows:

const int BRANCH_COUNT = 10, WINDOW_COUNT = 10;

However, most programmers find that placing each name definition on a
separate line is clearer. The word const is often called a modifier, because it
modifies (restricts) the variables being declared.

A variable declared using the const modifier is often called a declared
constant. Writing declared constants in all uppercase letters is not required by
the C++ language, but it is standard practice among C++ programmers.

Once a number has been named in this way, the name can then be used
anywhere the number is allowed, and it will have exactly the same meaning as
the number it names. To change a named constant, you need change only the
initializing value in the const variable declaration. The meaning of all occur-
rences of BRANCH_COUNT, for instance, can be changed from 10 to 11 simply by
changing the initializing value of 10 in the declaration of BRANCH_COUNT.

Although unnamed numeric constants are allowed in a program, you
should seldom use them. It often makes sense to use unnamed number
constants for well-known, easily recognizable, and unchangeable quantities,
such as 100 for the number of centimeters in a meter. However, all other
numeric constants should be given names in the fashion we just described.
This will make your programs easier to read and easier to change.

Display 2.16 contains a simple program that illustrates the use of the
declaration modifier const.

Naming Constants with the const Modifier

When you initialize a variable inside a declaration, you can mark the
variable so that the program is not allowed to change its value. To do this
place the word const in front of the declaration, as described below:

SYNTAX const Type_Name Variable_Name = Constant;

EXAMPLES const int MAX_TRIES = 3;
const double PI = 3.14159;

const

declared
constants

98 CHAPTER 2 / C++ Basics

SELF -TEST EXERC ISES

35. The following if-else statement will compile and run without any prob-
lems. However, it is not laid out in a way that is consistent with the other
if-else statements we have used in our programs. Rewrite it so that the lay-
out (indenting and line breaks) matches the style we used in this chapter.

if (x < 0) {x = 7; cout << "x is now positive.";} else
{x = -7; cout << "x is now negative.";}

36. What output would be produced by the following two lines (when
embedded in a complete and correct program)?

 //cout << "Hello from";
 cout << "Self-Test Exercise";

37. Write a complete C++ program that asks the user for a number of gallons
and then outputs the equivalent number of liters. There are 3.78533 liters
in a gallon. Use a declared constant. Since this is just an exercise, you need
not have any comments in your program.

CHAPTER SUMMARY

■ Use meaningful names for variables.

■ Be sure to check that variables are declared to be of the correct data type.

■ Be sure that variables are initialized before the program attempts to use
their value. This can be done when the variable is declared or with an
assignment statement before the variable is first used.

■ Use enough parentheses in arithmetic expressions to make the order of
operations clear.

■ Always include a prompt line in a program whenever the user is expected to
enter data from the keyboard, and always echo the user’s input.

■ An if-else statement allows your program to choose one of two alterna-
tive actions. An if statement allows your program to decide whether to
perform some one particular action.

■ A do-while loop always executes its loop body at least once. In some situa-
tions a while loop might not execute the body of the loop at all.

■ Almost all number constants in a program should be given meaningful
names that can be used in place of the numbers. This can be done by using
the modifier const in a variable declaration.

Answers to Self-Test Exercises 99

■ Use an indenting, spacing, and line-break pattern similar to the sample
programs.

■ Insert comments to explain major subsections or any unclear part of a
program.

Answers to Self-Test Exercises

1. int feet = 0, inches = 0;
int feet(0), inches(0);

2. int count = 0;
double distance = 1.5;

Alternatively, you could use

int count(0);
double distance(1.5);

3. sum = n1 + n2;

4. length = length + 8.3;

5. product = product*n;

6. The actual output from a program such as this is dependent on the system
and the history of the use of the system.

#include <iostream>
using namespace std;
int main()
{
int first, second, third, fourth, fifth;
cout << first << " " << second << " " << third
 << " " << fourth << " " << fifth << endl;
return 0;

}

7. There is no unique right answer for this one. Below are possible answers:

a. speed

b. pay_rate

c. highest or max_score

8. cout << "The answer to the question of\n"
 << "Life, the Universe, and Everything is 42.\n";

100 CHAPTER 2 / C++ Basics

9. cout << "Enter a whole number and press return: ";
cin >> the_number;

10. cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(3);

11. #include <iostream>
using namespace std;
int main()
{
 cout << "Hello world\n";
 return 0;
}

12. #include <iostream>
using namespace std;

int main()
{
 int n1, n2, sum;
 cout << "Enter two whole numbers\n";
 cin >> n1 >> n2;
 sum = n1 + n2;
 cout << "The sum of " << n1 << " and "
 << n2 << " is " << sum << endl;
 return 0;
}

13. cout << endl << "\t";

14. #include <iostream>
using namespace std;

int main()
{
double one(1.0), two(1.414), three(1.732), four(2.0),
 five(2.236);
cout << "\tN\tSquare Root\n";
cout << "\t1\t" << one << endl
 << "\t2\t" << two << endl
 << "\t3\t" << three << endl
 << "\t4\t" << four << endl
 << "\t5\t" << five << endl;
return 0;

}

Answers to Self-Test Exercises 101

15. 3*x
3*x + y
(x + y)/7 Note that x + y/7 is not correct.
(3*x + y)/(z + 2)

16.

17.

Since 1 and 3 are of type int, the / operator performs integer division,
which discards the remainder, so the value of 1/3 is 0, not 0.3333. This
makes the value of the entire expression 0 * 3, which of course is 0.

18. #include <iostream>
using namespace std;

int main()
{
 int number1, number2;

 cout << "Enter two whole numbers: ";
 cin >> number1 >> number2;
 cout << number1 << " divided by " << number2
 << " equals " << (number1/number2) << endl
 << "with a remainder of " << (number1%number2)
 << endl;
 return 0;
}

19. a. 52.0

b. 9/5 has int value 1, since numerator and denominator are both int,
integer division is done; the fractional part is discarded.

 f = (9.0/5) * c + 32.0;
 or this
 f = 1.8 * c + 32.0;

20. 030406

The strings are concatenated with the + operator

21. if (score > 100)
 cout << "High";
else
 cout << "Low";

You may want to add \n to the end of these quoted strings depending on
the other details of the program.

bcbc

(1/3) * 3 is equal to 0

102 CHAPTER 2 / C++ Basics

22. if (savings >= expenses)
{
 savings = savings - expenses;
 expenses = 0;
 cout << "Solvent";
}
else
{
 cout << "Bankrupt";
}

You may want to add \n to the end of these quoted strings depending on
the other details of the program.

23. if ((exam >= 60) && (programs_done >= 10))
 cout << "Passed";
else
 cout << "Failed";

You may want to add \n to the end of these quoted strings depending on
the other details of the program.

24. if ((temperature >= 100) || (pressure >= 200))
 cout << "Warning";
else
 cout << "OK";

You may want to add \n to the end of these quoted strings depending on
the other details of the program.

25. (x < -1) || (x > 2)

26. (1 < x) && (x < 3)

27. a. 0 is false.
In the section on type compatibility, it is noted that the int value 0
converts to false.

b. 1 is true.

In the section on type compatibility, it is noted that a nonzero int value
converts to true.

c. -1 is true.

In the section on type compatibility, it is noted that a nonzero int value
converts to true.

Answers to Self-Test Exercises 103

28. 10
7
4
1

29. There would be no output, since the Boolean expression (x < 0) is not
satisfied and so the while statement ends without executing the loop
body.

30. The output is exactly the same as it was for Self-Test Exercise 27.

31. The body of the loop is executed before the Boolean expression is
checked, the Boolean expression is false, and so the output is

−42

32. With a do-while statement the loop body is always executed at least once.
With a while statement there can be conditions under which the loop
body is not executed at all.

33. This is an infinite loop. The output would begin with the following and
conceptually go on forever:

10
13
16
19

(Once the value of x becomes larger than the largest integer allowed on
your computer, the program may stop or exhibit other strange behavior,
but the loop is conceptually an infinite loop.)

34. #include <iostream>
using namespace std;

int main()
{
 int n = 1;
 while (n <= 20)
 {
 cout << n << endl;
 n++;
 }
 return 0;
}

104 CHAPTER 2 / C++ Basics

35. if (x < 0)
{
 x = 7;
 cout << "x is now positive.";
}
else
{
 x = -7;
 cout << "x is now negative.";
}

36. The first line is a comment and is not executed. So the entire output is just
the following line:

Self-Test Exercise

37. #include <iostream>
using namespace std;

int main()
{
 const double LITERS_PER_GALLON = 3.78533;
 double gallons, liters;

 cout << "Enter the number of gallons:\n";
 cin >> gallons;

 liters = gallons*LITERS_PER_GALLON;
 cout << "There are " << liters << " in "
 << gallons << " gallons.\n";

 return 0;
}

PROGRAMMING PROJECTS

1. A metric ton is 35,273.92 ounces. Write a program that will read the
weight of a package of breakfast cereal in ounces and output the weight in
metric tons as well as the number of boxes needed to yield one metric ton
of cereal. Your program should allow the user to repeat this calculation as
often as the user wishes.

2. A government research lab has concluded that an artificial sweetener com-
monly used in diet soda pop will cause death in laboratory mice. A friend
of yours is desperate to lose weight but cannot give up soda pop. Your
friend wants to know how much diet soda pop it is possible to drink with-
out dying as a result. Write a program to supply the answer. The input to

Programming Projects 105

the program is the amount of artificial sweetener needed to kill a mouse,
the weight of the mouse, and the weight of the dieter. To ensure the safety
of your friend, be sure the program requests the weight at which the dieter
will stop dieting, rather than the dieter’s current weight. Assume that diet
soda contains 1/10th of 1% artificial sweetener. Use a variable declaration
with the modifier const to give a name to this fraction. You may want to
express the percent as the double value 0.001. Your program should allow
the calculation to be repeated as often as the user wishes.

3. Workers at a particular company have won a 7.6% pay increase retroactive
for six months. Write a program that takes an employee’s previous annual
salary as input, and outputs the amount of retroactive pay due the employee,
the new annual salary, and the new monthly salary. Use a variable declara-
tion with the modifier const to express the pay increase. Your program
should allow the calculation to be repeated as often as the user wishes.

4. Modify your program from Programming Project 3 so that it calculates the
retroactive salary for a worker for any number of months, instead of just
six months. The number of months is entered by the user.

5. Negotiating a consumer loan is not always straightforward. One form of
loan is the discount installment loan, which works as follows. Suppose a
loan has a face value of $1,000, the interest rate is 15%, and the duration
is 18 months. The interest is computed by multiplying the face value of
$1,000 by 0.15, to yield $150. That figure is then multiplied by the loan
period of 1.5 years to yield $225 as the total interest owed. That amount is
immediately deducted from the face value, leaving the consumer with only
$775. Repayment is made in equal monthly installments based on the
face value. So the monthly loan payment will be $1,000 divided by 18,
which is $55.56. This method of calculation may not be too bad if the
consumer needs $775 dollars, but the calculation is a bit more compli-
cated if the consumer needs $1,000. Write a program that will take three
inputs: the amount the consumer needs to receive, the interest rate, and
the duration of the loan in months. The program should then calculate
the face value required in order for the consumer to receive the amount
needed. It should also calculate the monthly payment. Your program
should allow the calculations to be repeated as often as the user wishes.

6. Write a program that determines whether a meeting room is in violation
of fire law regulations regarding the maximum room capacity. The pro-
gram will read in the maximum room capacity and the number of peo-
ple to attend the meeting. If the number of people is less than or equal
to the maximum room capacity, the program announces that it is legal
to hold the meeting and tells how many additional people may legally
attend. If the number of people exceeds the maximum room capacity,
the program announces that the meeting cannot be held as planned due

106 CHAPTER 2 / C++ Basics

to fire regulations and tells how many people must be excluded in order
to meet the fire regulations. For a harder version, write your program
so that it allows the calculation to be repeated as often as the user
wishes. If this is a class exercise, ask your instructor whether you should
do this harder version.

7. An employee is paid at a rate of $16.78 per hour for the first 40 hours
worked in a week. Any hours over that are paid at the overtime rate of one
and one half times that. From the worker’s gross pay, 6% is withheld for
social security tax, 14% is withheld for federal income tax, 5% is withheld
for state income tax, and $10 per week is withheld for union dues. If the
worker has three or more dependents, then an additional $35 is withheld
to cover the extra cost of health insurance beyond what the employer
pays. Write a program that will read in the number of hours worked in a
week and the number of dependents as input, and will then output the
worker’s gross pay, each withholding amount, and the net take-home pay
for the week. For a harder version, write your program so that it allows the
calculation to be repeated as often as the user wishes. If this is a class exer-
cise, ask your instructor whether you should do this harder version.

8. It is difficult to make a budget that spans several years, because prices are
not stable. If your company needs 200 pencils per year, you cannot simply
use this year’s price as the cost of pencils two years from now. Because of
inflation the cost is likely to be higher than it is today. Write a program to
gauge the expected cost of an item in a specified number of years. The pro-
gram asks for the cost of the item, the number of years from now that the
item will be purchased, and the rate of inflation. The program then outputs
the estimated cost of the item after the specified period. Have the user enter
the inflation rate as a percentage, like 5.6 (percent). Your program should
then convert the percent to a fraction, like 0.056, and should use a loop to
estimate the price adjusted for inflation. (Hint: This is similar to computing
interest on a charge card account, which was discussed in this chapter.)

9. You have just purchased a stereo system that cost $1,000 on the following
credit plan: no down payment, an interest rate of 18% per year (and
hence 1.5% per month), and monthly payments of $50. The monthly
payment of $50 is used to pay the interest and whatever is left is used to
pay part of the remaining debt. Hence, the first month you pay 1.5% of
$1,000 in interest. That is $15 in interest. So, the remaining $35 is
deducted from your debt, which leaves you with a debt of $965.00. The
next month you pay interest of 1.5% of $965.00, which is $14.48. Hence,
you can deduct $35.52 (which is $50 − $14.48) from the amount you
owe. Write a program that will tell you how many months it will take you
to pay off the loan, as well as the total amount of interest paid over the
life of the loan. Use a loop to calculate the amount of interest and the size

Programming Projects 107

of the debt after each month. (Your final program need not output the
monthly amount of interest paid and remaining debt, but you may want
to write a preliminary version of the program that does output these val-
ues.) Use a variable to count the number of loop iterations and hence the
number of months until the debt is zero. You may want to use other vari-
ables as well. The last payment may be less than $50. Do not forget the
interest on the last payment. If you owe $50, then your monthly payment
of $50 will not pay off your debt, although it will come close. One
month’s interest on $50 is only 75 cents.

10. Write a program that reads in ten whole numbers and that outputs the
sum of all the numbers greater than zero, the sum of all the numbers less
than zero (which will be a negative number or zero), and the sum of all
the numbers, whether positive, negative, or zero. The user enters the ten
numbers just once each and the user can enter them in any order. Your
program should not ask the user to enter the positive numbers and the
negative numbers separately.

11. Modify your program from Programming Project 10 so that it outputs the
sum of all positive numbers, the average of all positive number, the sum
of all non-positive numbers, the average of all non-positive numbers, the
sum of all positive and non-positive numbers, and the average of all num-
bers entered.

12. The Babylonian algorithm to compute the square root of a number n is as
follows:

1. Make a guess at the answer (you can pick n/2 as your initial guess).

2. Compute r = n / guess

3. Set guess = (guess + r) / 2

4. Go back to step 2 for as many iterations as necessary. The more that
steps 2 and 3 are repeated, the closer guess will become to the square
root of n.

Write a program that inputs an integer for n, iterates through the
Babylonian algorithm until guess is within 1% of the previous guess and
outputs the answer as a double.

13. Many treadmills output the speed of the treadmill in miles per hour
(mph) on the console, but most runners think of speed in terms of a pace.
A common pace is the number of minutes and seconds per mile instead
of mph.

Write a program that starts with a quantity in mph and converts the quantity
into minutes and seconds per mile. As an example, the proper output for an
input of 6.5 mph should be 9 minutes and 13.8 seconds per mile. (Continued)

Video Note
Solution to
Programming
Project 2.13

108 CHAPTER 2 / C++ Basics

If you need to convert a double to an int, which will discard any value after
the decimal point, then you may use:

intValue=static_cast<int>(dblVal);

14. Write a program that plays the game of Mad Lib. Your program should
prompt the user to enter the following strings:

■ The first or last name of your instructor

■ Your name

■ A food

■ A number between 100 and 120

■ An adjective

■ A color

■ An animal

After the strings are input, they should be substituted into the story below
and output to the console.

Dear Instructor [Instructor Name],

I am sorry that I am unable to turn in my homework at this time.
First, I ate a rotten [Food], which made me turn [Color] and
extremely ill. I came down with a fever of [Number 100-120].
Next, my [Adjective] pet [Animal] must have smelled the remains
of the [Food] on my homework, because he ate it. I am currently
rewriting my homework and hope you will accept it late.

Sincerely,
[Your Name]

15. Sound travels through air as a result of collisions between the molecules
in the air. The temperature of the air affects the speed of the molecules,
which in turn affects the speed of sound. The velocity of sound in dry air
can be approximated by the formula:

velocity � 331.3 � 0.61 � Tc

Where Tc is the temperature of the air in degrees Celsius and the velocity
is in meters/second.

Write a program that allows the user to input a starting and an ending
temperature. Within this temperature range, the program should output
the temperature and the corresponding velocity in one-degree increments.
For example, if the user entered 0 as the start temperature and 2 as the end
temperature then the program should output:

Programming Projects 109

At 0 degrees Celsius the velocity of sound is 331.3 m/s
At 1 degrees Celsius the velocity of sound is 331.9 m/s
At 2 degrees Celsius the velocity of sound is 332.5 m/s

16. The following is a short program that computes the volume of a sphere
given the radius. It will compile and run, but it does not adhere to the
program style recommended in Section 2.5. Rewrite the program using
the style described in the chapter for indentation, adding comments, and
appropriately naming constants.

#include <iostream>
using namespace std;
int main() {
 double radius, vm;
 cout << "Enter radius of a sphere." << endl; cin >> radius;
 vm = (4.0 / 3.0) * 3.1415 * radius * radius * radius;
 cout << " The volume is " << vm << endl;
 return 0;
}

This page intentionally left blank

3More Flow of Control

3.1 USING BOOLEAN EXPRESSIONS 112
Evaluating Boolean Expressions 112
Pitfall: Boolean Expressions Convert to int

Values 116
Enumeration Types (Optional) 119

3.2 MULTIWAY BRANCHES 120
Nested Statements 120
Programming Tip: Use Braces in Nested

Statements 121
Multiway if-else Statements 123
Programming Example: State Income Tax 125
The switch Statement 129
Pitfall: Forgetting a break in a switch

Statement 133
Using switch Statements for Menus 134
Blocks 134
Pitfall: Inadvertent Local Variables 139

3.3 MORE ABOUT C++ LOOP
STATEMENTS 140
The while Statements Reviewed 141
Increment and Decrement Operators Revisited 142
The for Statement 145
Pitfall: Extra Semicolon in a for Statement 150
What Kind of Loop to Use 151
Pitfall: Uninitialized Variables and

Infinite Loops 153
The break Statement 153
Pitfall: The break Statement in Nested Loops 155

3.4 DESIGNING LOOPS 156
Loops for Sums and Products 156
Ending a Loop 157
Nested Loops 161
Debugging Loops 163

Chapter Summary 166
Answers to Self-Test Exercises 167
Programming Projects 173

112

When you come to a fork in the road, take it.
ATTRIBUTED TO YOGI BERRA

INTRODUCTION
The order in which the statements in your program are performed is called
flow of control. The if-else statement, the while statement, and the do-
while statement are three ways to specify flow of control. This chapter
explores some new ways to use these statements and introduces two new
statements called the switch statement and the for statement, which are also
used for flow of control. The actions of an if-else statement, a while
statement, or a do-while statement are controlled by Boolean expressions.
We begin by discussing Boolean expressions in more detail.

PREREQUISITES
This chapter uses material from Chapter 2.

3.1 USING BOOLEAN EXPRESSIONS

“Contrariwise,” continued Tweedledee. “If it was so, it might be; and if it were
so, it would be; but as it isn’t, it ain’t. That’s logic.”

LEWIS CARROLL, Through the Looking-Glass

Evaluating Boolean Expressions

A Boolean expression is an expression that can be thought of as being true or
false (that is, true if satisfied or false if not satisfied). Thus far you have used
Boolean expressions as the test condition in if-else statements and as the
controlling expression in loops, such as a while loop. However, a Boolean
expression has an independent identity apart from any if-else statement or
loop statement you might use it in. The C++ type bool provides you the ability
to declare variables that can carry the values true and false.

A Boolean expression can be evaluated in the same way that an arithmetic
expression is evaluated. The only difference is that an arithmetic expression
uses operations such as +, *, and / and produces a number as the final result,
while a Boolean expression uses relational operations such as == and < and
Boolean operations such as &&, ||, and ! and produces one of the two values
true and false as the final result. Note that ==, !=, <, <=, and so forth operate
on pairs of any built-in type to produce a Boolean value true or false. If you

Boolean
expression

bool

3.1 Using Boolean Expressions 113

understand the way Boolean expressions are evaluated, you will be able to
write and understand complex Boolean expressions and be able to use
Boolean expressions for the value returned by a function.

First let’s review evaluating an arithmetic expression. The same technique
will work to evaluate Boolean expressions. Consider the following arithmetic
expression:

(x + 1) * (x + 3)

Assume that the variable x has the value 2. To evaluate this arithmetic expression,
you evaluate the two sums to obtain the numbers 3 and 5, then you combine
these two numbers 3 and 5 using the * operator to obtain 15 as the final value.
Notice that in performing this evaluation, you do not multiply the expressions
(x + 1) and (x + 3). Instead, you multiply the values of these expressions. You
use 3; you do not use (x + 1). You use 5; you do not use (x + 3).

The computer evaluates Boolean expressions the same way. Subexpres-
sions are evaluated to obtain values, each of which is either true or false.
These individual values of true or false are then combined according to the
rules in the tables shown in Display 3.1. For example, consider the Boolean
expression

!((y < 3) || (y > 7))

which might be the controlling expression for an if-else statement or a while
statement. Suppose the value of y is 8. In this case (y < 3) evaluates to false
and (y > 7) evaluates to true, so the above Boolean expression is equivalent to

!(false || true)

Consulting the tables for || (which is labeled OR in Display 3.1), the
computer sees that the expression inside the parentheses evaluates to true.
Thus, the computer sees that the entire expression is equivalent to

!(true)

Consulting the tables again, the computer sees that !(true) evaluates to
false, and so it concludes that false is the value of the original Boolean
expression.

Almost all the examples we have constructed thus far have been fully
parenthesized to show exactly what expressions each &&, ||, and ! applies to.
This is not always required. If you omit parentheses, the default precedence is
as follows: perform ! first, then evaluate relational operators such as <, then
evaluate &&, and then evaluate ||. However, it is a good practice to include
most parentheses in order to make the expression easier to understand. One
place where parentheses can safely be omitted is a simple string of &&’s or ||’s
(but not a mixture of the two). The following expression is acceptable in terms
of both the C++ compiler and readability:

(temperature > 90) && (humidity > 0.90) && (pool_gate == OPEN)

parentheses

114 CHAPTER 3 / More Flow of Control

Since the relational operations > and == are evaluated before the &&
operation, you could omit the parentheses in the above expression and it
would have the same meaning, but including some parentheses makes the
expression easier to read.

When parentheses are omitted from an expression, the computer groups
items according to rules known as precedence rules. Some of the precedence
rules for C++ are given in Display 3.2. If one operation is evaluated before
another, the operation that is evaluated first is said to have higher precedence.
Binary operations of equal precedence are evaluated in left-to-right order.
Unary operations of equal precedence are evaluated in right-to-left order. A
complete set of precedence rules is given in Appendix 2.

Notice that the precedence rules include both arithmetic operators such as
+ and * as well as Boolean operators such as && and ||. This is because many
expressions combine arithmetic and Boolean operations, as in the following
simple example:

(x + 1) > 2 || (x + 1) < −3

If you check the precedence rules given in Display 3.2, you will see that this
expression is equivalent to

((x + 1) > 2) || ((x + 1) < −3)

DISPLAY 3.1 Truth Tables

AND

Exp_1 Exp_2 Exp_1 && Exp_2

true true true

true false false

false true false

false false false

OR

Exp_1 Exp_2 Exp_1 | | Exp_2

true true true

true false true

false true true

false false false

NOT

Exp !(Exp)

true false

false true

precedence rules

3.1 Using Boolean Expressions 115

because > and < have higher precedence than ||. In fact, you could omit all the
parentheses in the above expression and it would have the same meaning,
although it would be harder to read. Although we do not advocate omitting all the
parentheses, it might be instructive to see how such an expression is interpreted
using the precedence rules. Here is the expression without any parentheses:

x + 1 > 2 || x + 1 < −3

The precedence rules say first apply the unary −, then apply the + signs, then do
the > and the <, and finally do the ||, which is exactly what the fully
parenthesized version says to do.

The preceding description of how a Boolean expression is evaluated is
basically correct, but in C++, the computer actually takes an occasional
shortcut when evaluating a Boolean expression. Notice that in many cases you
need to evaluate only the first of two subexpressions in a Boolean expression.
For example, consider the following:

(x >= 0) && (y > 1)

If x is negative, then (x >= 0) is false, and as you can see in the tables in
Display 3.1, when one subexpression in an && expression is false, then the
whole expression is false, no matter whether the other expression is true or
false. Thus, if we know that the first expression is false, there is no need to
evaluate the second expression. A similar thing happens with || expressions.
If the first of two expressions joined with the || operator is true, then you
know the entire expression is true, no matter whether the second expression
is true or false. The C++ language uses this fact to sometimes save itself the
trouble of evaluating the second subexpression in a logical expression con-
nected with an && or an ||. C++ first evaluates the leftmost of the two
expressions joined by an && or an ||. If that gives it enough information to
determine the final value of the expression (independent of the value of the

DISPLAY 3.2 Precedence Rules

The unary operators +, −, ++, --, and !

The binary arithmetic operations *, /, %

The binary arithmetic operations +, −

The Boolean operations <, >, <=, >=

The Boolean operations ==, !=

The Boolean operations &&

The Boolean operations ||

Highest precedence
(done first)

Lowest precedence
(done last)

116 CHAPTER 3 / More Flow of Control

second expression), then C++ does not bother to evaluate the second
expression. This method of evaluation is called short-circuit evaluation.

Some languages, other than C++, use complete evaluation. In complete
evaluation, when two expressions are joined by an && or an ||, both
subexpressions are always evaluated and then the truth tables are used to
obtain the value of the final expression.

Both short-circuit evaluation and complete evaluation give the same
answer, so why should you care that C++ uses short-circuit evaluation? Most
of the time you need not care. As long as both subexpressions joined by the
&& or the || have a value, the two methods yield the same result. However, if
the second subexpression is undefined, you might be happy to know that C++
uses short-circuit evaluation. Let’s look at an example that illustrates this
point. Consider the following statement:

if ((kids != 0) && ((pieces/kids) >= 2))
 cout << "Each child may have two pieces!";

If the value of kids is not zero, this statement involves no subtleties. However,
suppose the value of kids is zero and consider how short-circuit evaluation
handles this case. The expression (kids != 0) evaluates to false, so there
would be no need to evaluate the second expression. Using short-circuit
evaluation, C++ says that the entire expression is false, without bothering to
evaluate the second expression. This prevents a run-time error, since evaluating
the second expression would involve dividing by zero.

C++ sometimes uses integers as if they were Boolean values. In particular,
C++ converts the integer 1 to true and converts the integer 0 to false. The
situation is even a bit more complicated than simply using 1 for true and 0
for false. The compiler will treat any nonzero number as if it were the value
true and will treat 0 as if it were the value false. As long as you make no
mistakes in writing Boolean expressions, this conversion causes no problems
and you usually need not even be aware of it. However, when you are
debugging, it might help to know that the compiler is happy to combine
integers using the Boolean operators &&, ||, and !.

■ PITFALL Boolean Expressions Convert to int Values

Suppose you want to use a Boolean expression in an if-else statement, and
you want it to be true provided that time has not yet run out (in some game

Boolean (bool) values are true and false

In C++, a Boolean expression evaluates to the bool value true when it is
satisfied and to the bool value false when it is not satisfied.

short-circuit
evaluation

complete
evaluation

3.1 Using Boolean Expressions 117

or process). To phrase it a bit more precisely, suppose you want to use a
Boolean expression in an if-else statement and you want it to be true
provided the value of a variable time of type int is not greater than the value
of a variable called limit. You might write the following (where Something and
Something_Else are some C++ statements):

This sounds right if you read it out loud: “not time greater than limit.” The
Boolean expression is wrong, however, and unfortunately, the compiler will
not give you an error message. We have been bitten by the precedence rules of
C++. The compiler will instead apply the precedence rules from Display 3.2
and interpret your Boolean expression as the following:

(!time) > limit

This looks like nonsense, and intuitively it is nonsense. If the value of time
is, for example, 36, what could possibly be the meaning of (!time)? After all,
that is equivalent to “not 36.” But in C++, any nonzero integer converts to
true and 0 is converted to false. Thus, !36 is interpreted as “not true” and
so it evaluates to false, which is in turn converted back to 0 because we are
comparing to an int.

What we want as the value of this Boolean expression and what C++ gives
us are not the same. If time has a value of 36 and limit has a value of 60, you
want the above displayed Boolean expression to evaluate to true (because it
is not true that time > limit). Unfortunately, the Boolean expression instead
evaluates as follows: (!time) evaluates to false, which is converted to 0, so
the entire Boolean expression is equivalent to

0 > limit

That in turn is equivalent to 0 > 60, because 60 is the value of limit. This
evaluates to false. Thus, the above logical expression evaluates to false,
when you want it to evaluate to true.

There are two ways to correct this problem. One way is to use the !
operator correctly. When using the operator !, be sure to include parentheses
around the argument. The correct way to write the preceding Boolean
expression is as follows:

if (!(time > limit))
Something

else
Something_Else

if (!time > limit)
 Something
else
 Something_Else

Wrong for what we want

118 CHAPTER 3 / More Flow of Control

Another way to correct this problem is to completely avoid using the !
operator. For example, the following is also correct and easier to read:

if (time <= limit)
Something

else
Something_Else

You can almost always avoid using the ! operator, and some programmers
advocate avoiding it as much as possible. They say that just as not in English
can make things not undifficult to read, so too can the “not” operator ! make
C++ programs difficult to read. There is no need to be obsessive in avoiding
the ! operator, but before using it, you should see if you can express the same
thing more clearly without using the ! operator. ■

SELF -TEST EXERC ISES

1. Determine the value, true or false, of each of the following Boolean
expressions, assuming that the value of the variable count is 0 and the
value of the variable limit is 10. Give your answer as one of the values
true or false.

a. (count == 0) && (limit < 20)

b. count == 0 && limit < 20

c. (limit > 20) || (count < 5)

d. !(count == 12)

e. (count == 1) && (x < y)

f. (count < 10) || (x < y)

g. !(((count < 10) || (x < y)) && (count >= 0))

h. ((limit/count) > 7) || (limit < 20)

i. (limit < 20) || ((limit/count) > 7)

j. ((limit/count) > 7) && (limit < 0)

k. (limit < 0) && ((limit/count) > 7)

l. (5 && 7) + (!6)

The Type bool Is New

Older versions of C++ have no type bool, but instead use the integers 1 and
0 for true and false. If you have an older version of C++ that does not
have the type bool, you should obtain a new compiler.

Avoid using
“not”

3.1 Using Boolean Expressions 119

2. Name two kinds of statements in C++ that alter the order in which actions
are performed. Give some examples.

3. In college algebra we see numeric intervals given as

2 < x < 3

In C++ this interval does not have the meaning you may expect. Explain
and give the correct C++ Boolean expression that specifies that x lies
between 2 and 3.

4. Does the following sequence produce division by zero?

j = −1;
if ((j > 0) && (1/(j+1) > 10))
 cout << i << endl;

Enumeration Types (Optional)

An enumeration type is a type whose values are defined by a list of constants of
type int. An enumeration type is very much like a list of declared constants.

When defining an enumeration type, you can use any int values and can
have any number of constants defined in an enumeration type. For example,
the following enumeration type defines a constant for the length of each
month:

enum MonthLength { JAN_LENGTH = 31, FEB_LENGTH = 28,
MAR_LENGTH = 31, APR_LENGTH = 30, MAY_LENGTH = 31,
JUN_LENGTH = 30, JUL_LENGTH = 31, AUG_LENGTH = 31,
SEP_LENGTH = 30, OCT_LENGTH = 31, NOV_LENGTH = 30,
DEC_LENGTH = 31 };

As this example shows, two or more named constants in an enumeration type
can receive the same int value.

If you do not specify any numeric values, the identifiers in an enumera-
tion type definition are assigned consecutive values beginning with 0. For
example, the type definition

enum Direction { NORTH = 0, SOUTH = 1, EAST = 2, WEST = 3 };

is equivalent to

enum Direction { NORTH, SOUTH, EAST, WEST };

The form that does not explicitly list the int values is normally used when you
just want a list of names and do not care about what values they have.

If you initialize only some enumeration constant to some values, say

enum MyEnum { ONE = 17, TWO, THREE, FOUR = -3, FIVE };

enumeration
type

120 CHAPTER 3 / More Flow of Control

then ONE takes the value 17, TWO takes the next int value 18, THREE takes the
next value 19, FOUR takes -3, and FIVE takes the next value, -2.

In short, the default for the first enumeration constant is 0. The rest
increase by 1 unless you set one or more of the enumeration constants.

3.2 MULTIWAY BRANCHES

“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.

LEWIS CARROLL, Alice in Wonderland

Any programming construct that chooses one from a number of alternative
actions is called a branching mechanism. The if-else statement chooses
between two alternatives. In this section we will discuss methods for choosing
from among more than two alternatives.

Nested Statements

As you have seen, if-else statements and if statements contain smaller
statements within them. Thus far we have used compound statements and
simple statements such as assignment statements as these smaller substatements,
but there are other possibilities. In fact, any statement at all can be used as a
subpart of an if-else statement, of an if statement, of a while statement, or
of a do-while statement. This is illustrated in Display 3.3. The statement in
that display has three levels of nesting, as indicated by the boxes. Two cout
statements are nested within an if-else statement, and that if-else state-
ment is nested within an if statement.

When nesting statements, you normally indent each level of nested sub-
statements. In Display 3.3 there are three levels of nesting, so there are three

branching
mechanism

DISPLAY 3.3 An if-else Statement Within an if Statement

1 if (count > 0)

2 if (score > 5)

3 cout << "count > 0 and score > 5\n";

4 else

5 cout << "count > 0 and score <= 5\n";

indenting

3.2 Multiway Branches 121

levels of indenting. Both cout statements are indented the same amount
because they are both at the same level of nesting. Later in this chapter, you
will see some specific cases where it makes sense to use other indenting
patterns, but unless there is some rule to the contrary, you should indent each
level of nesting as illustrated in Display 3.3.

■ PROGRAMMING TIP Use Braces in Nested Statements

Suppose we want to write an if-else statement to use in an onboard
computer monitoring system for a racing car. This part of the program warns
the driver when fuel is low, but tells the driver to bypass pit stops if the fuel
tank is close to full. In all other situations the program gives no output so as
not to distract the driver. We design the following pseudocode:

If the fuel gauge is below 3/4 full, then:
 Check whether the fuel gauge is below 1/4 full and issue a low fuel

warning if it is.
Otherwise (that is, if fuel gauge is over 3/4 full):
 Output a statement telling the driver not to stop.

If we are not being too careful, we might implement the pseudocode as
follows:

This implementation looks fine, and it is indeed a correctly formed C++
statement that the compiler will accept and that will run with no error
messages. However, it does not implement the pseudocode. Notice that this
statement has two occurrences of if and only one else. The compiler must
decide which if gets paired with the one else. We have nicely indented this
nested statement to show that the else should be paired with the first if, but
the compiler does not care about indenting. To the compiler, the preceding
nested statement is the same as the following version, which differs only in
how it is indented:

if (fuel_gauge_reading < 0.75)
if (fuel_gauge_reading < 0.25)

cout << "Fuel very low. Caution!\n";
else

cout << "Fuel over 3/4. Don’t stop now!\n";

Unfortunately for us, the compiler will use the second interpretation and will
pair the one else with the second if rather than the first if. This is sometimes

if (fuel_gauge_reading < 0.75)
 if (fuel_gauge_reading < 0.25)
 cout << "Fuel very low. Caution!\n";
else
 cout << "Fuel over 3/4. Don't stop now!\n";

Read text to see what
is wrong with this.

122 CHAPTER 3 / More Flow of Control

called the dangling else problem, and is illustrated by the program in
Display 3.4.

The compiler always pairs an else with the nearest previous if that is not
already paired with some else. But, do not try to work within this rule. Ignore
the rule! Change the rules! You are the boss! Always tell the compiler what
you want it to do and the compiler will then do what you want. How do you
tell the compiler what you want? You use braces. Braces in nested statements
are like parentheses in arithmetic expressions. The braces tell the compiler
how to group things, rather than leaving them to be grouped according to
default conventions, which may or may not be what you want. To avoid
problems and to make your programs easier to read, place braces, { and },

dangling else

DISPLAY 3.4 The Importance of Braces (part 1 of 2)

1 //Illustrates the importance of using braces in if-else statements.
2 #include <iostream>
3 using namespace std;
4 int main()
5 {
6 double fuel_gauge_reading;
7
8 cout << "Enter fuel gauge reading: ";
9 cin >> fuel_gauge_reading;
10
11 cout << "First with braces:\n";
12 if (fuel_gauge_reading < 0.75)
13 {
14 if (fuel_gauge_reading < 0.25)
15 cout << "Fuel very low. Caution!\n";
16 }
17 else
18 {
19 cout << "Fuel over 3/4. Don't stop now!\n";
20 }
21
22 cout << "Now without braces:\n";
23 if (fuel_gauge_reading < 0.75)
24 if (fuel_gauge_reading < 0.25)
25 cout << "Fuel very low. Caution!\n";
26 else
27 cout << "Fuel over 3/4. Don't stop now!\n";
28
29 return 0;
30 }

(continued)

This indenting is nice,
but is not what the
computer follows.

rule for
pairing else ’s

with if ’s

3.2 Multiway Branches 123

around substatements in if-else statements, as we have done in the first if-
else statement in Display 3.4.

For very simple substatements, such as a single assignment statement or a
single cout statement, you can safely omit the braces. In Display 3.4, the
braces around the following substatement (within the first if-else statement)
are not needed:

cout << "Fuel over 3/4. Don't stop now!\n";

However, even in these simple cases, the braces can sometimes aid readability.
Some programmers advocate using braces around even the simplest substate-
ments when they occur within if-else statements, which is what we have
done in the first if-else statement in Display 3.4. ■

Multiway if-else Statements

An if-else statement is a two-way branch. It allows a program to choose one
of two possible actions. Often you will want to have a three- or four-way
branch so that your program can choose between more than two alternative
actions. You can implement such multiway branches by nesting if-else
statements. By way of example, suppose you are designing a game-playing
program in which the user must guess the value of some number. The number
can be in a variable named number, and the guess can be in a variable named

DISPLAY 3.4 The Importance of Braces (part 2 of 2)

Sample Dialogue 1

Enter fuel gauge reading: 0.1

First with braces:

Fuel very low. Caution!

Now without braces:

Fuel very low. Caution!

Sample Dialogue 2

Enter fuel gauge reading: 0.5

First with braces:

Now without braces:

Fuel over 3/4. Don't stop now!

Braces make no difference in
this case, but see Dialogue 2.

There should be no output here,
and thanks to braces, there is none.

Incorrect output from the
version without braces.

124 CHAPTER 3 / More Flow of Control

guess. If you wish to give a hint after each guess, you might design the
following pseudocode:

Output "Too high." when guess > number.
Output "Too low." when guess < number.
Output "Correct!" when guess == number.

Any time a branching action is described as a list of mutually exclusive
conditions and corresponding actions, as in this example, it can be imple-
mented by using a nested if-else statement. For example, this pseudocode
translates to the following code:

if (guess > number)
cout << "Too high.";

else if (guess < number)
cout << "Too low.";

else if (guess == number)
cout << "Correct!";

The indenting pattern used here is slightly different from what we have
advocated previously. If we followed our indenting rules, we would produce
something like the following:

if (guess > number)
 cout << "Too high.";
else
 if (guess < number)
 cout << "Too low.";

 else
 if (guess == number)
 cout << "Correct!";

This is one of those rare cases in which you should not follow our general
guidelines for indenting nested statements. The reason is that by lining up all the
elses, you also line up all the condition/action pairs and so make the layout of
the program reflect your reasoning. Another reason is that, even for not-too-
deeply nested if-else statements, you can quickly run out of space on your page!

Since the conditions are mutually exclusive, the last if in the above nested
if-else statement is superfluous and can be omitted, but it is sometimes best
to include it in a comment as follows:

if (guess > number)
cout << "Too high.";

else if (guess < number)
cout << "Too low.";

else // (guess == number)
cout << "Correct!";

indenting

Use the previous
indenting pattern
rather than this one.

3.2 Multiway Branches 125

You can use this form of multiple-branch if-else statement even if the
conditions are not mutually exclusive. Whether the conditions are mutually
exclusive or not, the computer will evaluate the conditions in the order in
which they appear until it finds the first condition that is true and then it will
execute the action corresponding to this condition. If no condition is true, no
action is taken. If the statement ends with a plain else without any if, then
the last statement is executed when all the conditions are false.

■ PROGRAMMING EXAMPLE State Income Tax

Display 3.5 contains a program that uses a multiway if-else statement. The
program takes the taxpayer’s net income rounded to a whole number of

Multiway if-else Statement

SYNTAX

if (Boolean_Expression_1)
 Statement_1
else if (Boolean_Expression_2)
 Statement_2

 .
 .
 .

else if (Boolean_Expression_n)
 Statement_n
else
 Statement_For_All_Other_Possibilities

EXAMPLE

if ((temperature < −10) && (day == SUNDAY))
 cout << "Stay home.";
else if (temperature < −10) //and day != SUNDAY
 cout << "Stay home, but call work.";
else if (temperature <= 0) //and temperature >= −10
 cout << "Dress warm.";
else //temperature > 0
 cout << "Work hard and play hard.";

The Boolean expressions are checked in order until the first true Boolean
expression is encountered, and then the corresponding statement is
executed. If none of the Boolean expressions is true, then the
Statement_For_All_Other_Possibilities is executed.

126 CHAPTER 3 / More Flow of Control

dollars, and computes the state income tax due on this net income. This state
computes tax according to the following rate schedule:

1. No tax is paid on the first $15,000 of net income.

2. A tax of 5% is assessed on each dollar of net income from $15,001
to $25,000.

3. A tax of 10% is assessed on each dollar of net income over $25,000.

The program defined in Display 3.5 uses a multiway if-else statement
with one action for each of these three cases. The condition for the second case
is actually more complicated than it needs to be. The computer will not get to
the second condition unless it has already tried the first condition and found
it to be false. Thus, you know that whenever the computer tries the second
condition, it will know that net_income is greater than 15000. Hence, you can
replace the line

else if ((net_income > 15000) && (net_income <= 25000))

with the following, and the program will perform exactly the same:

else if (net_income <= 25000) ■

DISPLAY 3.5 Multiway if-else Statement (part 1 of 2)

1 //Program to compute state income tax.
2 #include <iostream>
3 using namespace std;
4

5 //This program outputs the amount of state income tax due computed
6 //as follows: no tax on income up to $15,000; 5% on income between
7 //$15,001 and $25,000; 10% on income over $25,000.
8

9 int main()
10 {
11 int net_income;
12 double tax_bill;
13 double five_percent_tax, ten_percent_tax;
14
15
16 cout << "Enter net income (rounded to whole dollars) $";
17 cin >> net_income;
18
19 if (net_income <= 15000)
20 tax_bill = 0;
21 else if ((net_income > 15000) && (net_income <= 25000))

(continued)

3.2 Multiway Branches 127

SELF -TEST EXERC ISES

5. What output will be produced by the following code, when embedded in
a complete program?

int x = 2;
cout << "Start\n";
if (x <= 3)
 if (x != 0)
 cout << "Hello from the second if.\n";
 else
 cout << "Hello from the else.\n";
cout << "End\n";

cout << "Start again\n";

DISPLAY 3.5 Multiway if-else Statement (part 2 of 2)

22 //5% of amount over $15,000
23 tax_bill = (0.05*(net_income − 15000));
24 else //net_income > $25,000
25 {
26 //five_percent_tax = 5% of income from $15,000 to $25,000.
27 five_percent_tax = 0.05*10000;
28 //ten_percent_tax = 10% of income over $25,000.
29 ten_percent_tax = 0.10*(net_income − 25000);
30 tax_bill = (five_percent_tax + ten_percent_tax);
31 }
32
33 cout.setf(ios::fixed);
34 cout.setf(ios::showpoint);
35 cout.precision(2);
36 cout << "Net income = $" << net_income << endl
37 << "Tax bill = $" << tax_bill << endl;
38
39 return 0;
40 }

Sample Dialogue

Enter net income (rounded to whole dollars) $25100

Net income = $25100.00

Tax bill = $510.00

128 CHAPTER 3 / More Flow of Control

if (x > 3)
 if (x != 0)
 cout << "Hello from the second if.\n";
 else
 cout << "Hello from the else.\n";
cout << "End again\n";

6. What output will be produced by the following code, when embedded in
a complete program?

int extra = 2;
if (extra < 0)

cout << "small";
else if (extra == 0)

cout << "medium";
else

cout << "large";

7. What would be the output in Self-Test Exercise 6 if the assignment were
changed to the following?

int extra = -37;

8. What would be the output in Self-Test Exercise 6 if the assignment were
changed to the following?

int extra = 0;

9. What output will be produced by the following code, when embedded in
a complete program?

int x = 200;
cout << "Start\n";
if (x < 100)
 cout << "First Output.\n";
else if (x > 10)
 cout << "Second Output.\n";
else
 cout << "Third Output.\n";
cout << "End\n";

10. What would be the output in Self-Test Exercise 9 if the Boolean expression
(x > 10) were changed to (x > 100)?

11. What output will be produced by the following code, when embedded in
a complete program?

int x = SOME_CONSTANT;
cout << "Start\n";

3.2 Multiway Branches 129

if (x < 100)
 cout << "First Output.\n";
else if (x > 100)
 cout << "Second Output.\n";
else
 cout << x << endl;
cout << "End\n";

SOME_CONSTANT is a constant of type int. Assume that neither
"First Output" nor "Second Output" is output. So, you know the value
of x is output.

12. Write a multiway if-else statement that classifies the value of an int vari-
able n into one of the following categories and writes out an appropriate
message:

n < 0 or 0 ≤ n ≤ 100 or n > 100

13. Given the following declaration and output statement, assume that this
has been embedded in a correct program and is run. What is the output?

enum Direction { N, S, E, W };
//...
cout << W << " " << E << " " << S << " " << N << endl;

14. Given the following declaration and output statement, assume that this
has been embedded in a correct program and is run. What is the output?

enum Direction { N = 5, S = 7, E = 1, W };
// ...
cout << W << " " << E << " " << S << " " N << endl;

The switch Statement

You have seen if-else statements used to construct multiway branches. The
switch statement is another kind of C++ statement that also implements
multiway branches. A sample switch statement is shown in Display 3.6.
This particular switch statement has four regular branches and a fifth
branch for illegal input. The variable grade determines which branch is
executed. There is one branch for each of the grades 'A', 'B', and 'C'. The
grades 'D' and 'F' cause the same branch to be taken, rather than having a
separate action for each of 'D' and 'F'. If the value of grade is any character
other than 'A', 'B', 'C', 'D', or 'F', then the cout statement after the
identifier default is executed.

The syntax and preferred indenting pattern for the switch statement are
shown in the sample switch statement in Display 3.6 and in the box entitled
“switch Statement.”

switch
statement

Video Note
switch Statement
Example

130 CHAPTER 3 / More Flow of Control

DISPLAY 3.6 A switch Statement (part 1 of 2)

1 //Program to illustrate the switch statement.
2 #include <iostream>
3 using namespace std;

4 int main()
5 {
6 char grade;

7 cout << "Enter your midterm grade and press Return: ";
8 cin >> grade;

9 switch (grade)
10 {
11 case 'A':
12 cout << "Excellent. "
13 << "You need not take the final.\n";
14 break;
15 case 'B':
16 cout << "Very good. ";
17 grade = 'A';
18 cout << "Your midterm grade is now "
19 << grade << endl;
20 break;
21 case 'C':
22 cout << "Passing.\n";
23 break;
24 case 'D':
25 case 'F':
26 cout << "Not good. "
27 << "Go study.\n";
28 break;
29 default:
30 cout << "That is not a possible grade.\n";
31 }

32 cout << "End of program.\n";
33 return 0;
34 }

Sample Dialogue 1

Enter your midterm grade and press Return: A

Excellent. You need not take the final.

End of program.

(continued)

3.2 Multiway Branches 131

When a switch statement is executed, one of a number of different
branches is executed. The choice of which branch to execute is determined by
a controlling expression given in parentheses after the keyword switch. The
controlling expression in the sample switch statement shown in Display 3.6
is of type char. The controlling expression for a switch statement must always
return either a bool value, an enum constant, one of the integer types, or a
character. When the switch statement is executed, this controlling expression
is evaluated and the computer looks at the constant values given after the
various occurrences of the case identifiers. If it finds a constant that equals the
value of the controlling expression, it executes the code for that case. For
example, if the expression evaluates to 'B', then it looks for the following and
executes the statements that follow this line:

case 'B':

Notice that the constant is followed by a colon. Also note that you cannot
have two occurrences of case with the same constant value after them, since
that would be an ambiguous instruction.

DISPLAY 3.6 A switch Statement (part 2 of 2)

Sample Dialogue 2

Enter your midterm grade and press Return: B

Very good. Your midterm grade is now A.

End of program.

Sample Dialogue 3

Enter your midterm grade and press Return: D

Not good. Go study.

End of program.

Sample Dialogue 4

Enter your midterm grade and press Return: E

That is not a possible grade.

End of program.

controlling
expression

132 CHAPTER 3 / More Flow of Control

 A break statement consists of the keyword break followed by a
semicolon. When the computer executes the statements after a case label, it
continues until it reaches a break statement. When the computer encounters
a break statement, the switch statement ends. If you omit the break
statements, then after executing the code for one case, the computer will go
on to execute the code for the next case.

Note that you can have two case labels for the same section of code. In
the switch statement in Display 3.6, the same action is taken for the values
'D' and 'F'. This technique can also be used to allow for both upper- and
lowercase letters. For example, to allow both lowercase 'a' and uppercase 'A'
in the program in Display 3.6, you can replace

case 'A':
 cout << "Excellent. "
 << "You need not take the final.\n";
 break;

with the following:

case 'A':
case 'a':
 cout << "Excellent. "
 << "You need not take the final.\n";
 break;

Of course, the same can be done for all the other letters.
If no case label has a constant that matches the value of the controlling

expression, then the statements following the default label are executed. You
need not have a default section. If there is no default section and no match is
found for the value of the controlling expression, then nothing happens when
the switch statement is executed. However, it is safest to always have a default
section. If you think your case labels list all possible outcomes, then you can
put an error message in the default section. This is what we did in Display 3.6.

switch Statement

SYNTAX

switch (Controlling_Expression)
{
 case Constant_1:
 Statement_Sequence_1
 break;
 case Constant_2:
 Statement_Sequence_2
 break;

break
statement

default

3.2 Multiway Branches 133

■ PITFALL Forgetting a break in a switch Statement

If you forget a break in a switch statement, the compiler will not issue an error
message. You will have written a syntactically correct switch statement, but it
will not do what you intended it to do. Consider the switch statement in the
box entitled “switch Statement.” If a break statement were omitted, as
indicated by the arrow, then when the variable vehicle_class has the value 1,
the case labeled

case 1:

would be executed as desired, but then the computer would go on to also
execute the next case. This would produce a puzzling output that says the
vehicle is a passenger car and then later says it is a bus; moreover, the final

 .
 .
 .

 case Constant_n:
 Statement_Sequence_n
 break;

 default:
 Default_Statement_Sequence

}

EXAMPLE

int vehicle_class;
cout << "Enter vehicle class: ";
cin >> vehicle_class;

switch (vehicle_class)
{
 case 1:
 cout << "Passenger car.";
 toll = 0.50;
 break;
 case 2:
 cout << "Bus.";
 toll = 1.50;
 break;
 case 3:
 cout << "Truck.";
 toll = 2.00;
 break;
 default:
 cout << "Unknown vehicle class!";
}

If you forget this break,
then passenger cars will
pay $1.50.

134 CHAPTER 3 / More Flow of Control

value of toll would be 1.50, not 0.50 as it should be. When the computer
starts to execute a case, it does not stop until it encounters either a break or
the end of the switch statement. ■

Using switch Statements for Menus

The multiway if-else statement is more versatile than the switch statement,
and you can use a multiway if-else statement anywhere you can use a switch
statement. However, sometimes the switch statement is clearer. For example, the
switch statement is perfect for implementing menus.

A menu in a restaurant presents a list of alternatives for a customer to
choose from. A menu in a computer program does the same thing: It presents
a list of alternatives on the screen for the user to choose from. Display 3.7
shows the outline of a program designed to give students information on
homework assignments. The program uses a menu to let the student choose
which information she or he wants. A more readable way to implement the
menu actions is through functions. Functions are discussed in Chapter 4.

Blocks

Each branch of a switch statement or of an if-else statement is a separate
subtask. As indicated in the previous Programming Tip, it is often best to make
the action of each branch a function call. That way the subtask for each branch
can be designed, written, and tested separately. On the other hand, sometimes
the action of one branch is so simple that you can just make it a compound
statement. Occasionally, you may want to give this compound statement its
own local variables. For example, consider the program in Display 3.8. It
calculates the final bill for a specified number of items at a given price. If the
sale is a wholesale transaction, then no sales tax is charged (presumably
because the tax will be paid when the items are resold to retail buyers). If,
however, the sale is a retail transaction, then sales tax must be added. An if-
else statement is used to produce different calculations for wholesale and
retail purchases. For the retail purchase, the calculation uses a temporary
variable called subtotal, and so that variable is declared within the com-
pound statement for that branch of the if-else statement.

As shown in Display 3.8, the variable subtotal is declared within a
compound statement. If we wanted to, we could have used the variable name
subtotal for something else outside of the compound statement in which it
is declared. A variable that is declared inside a compound statement is local to
the compound statement. Local variables are created when the compound
statement is executed and are destroyed when the compound statement is
completed. In other words, local variables exist only within the compound
statement in which it is declared. Within a compound statement, you can use
all the variables declared outside of the compound statement, as well as the
local variables declared inside the compound statement.

menu

local variables

3.2 Multiway Branches 135

DISPLAY 3.7 A Menu (part 1 of 2)

1 //Program to give out homework assignment information.
2 #include <iostream>
3 using namespace std;
4
5
6 int main()
7 {
8 int choice;
9

10 do
11 {
12 cout << endl
13 << "Choose 1 to see the next homework assignment.\n"
14 << "Choose 2 for your grade on the last assignment.\n"
15 << "Choose 3 for assignment hints.\n"
16 << "Choose 4 to exit this program.\n"
17 << "Enter your choice and press Return: ";
18 cin >> choice;
19
20 switch (choice)
21 {
22 case 1:
23 //code to display the next assignment on screen would go here.
24 break;
25 case 2:
26 //code to ask for a student number and give the corresponding
27 //grade would go here.
28 break;
29 case 3:
30 //code to display a hint for the current assignment would go
31 //here.
32 break;
33 case 4:
34 cout << "End of Program.\n";
35 break;
36 default:
37 cout << "Not a valid choice.\n"
38 << "Choose again.\n";
39 }
40 }while (choice != 4);
41
42 return 0;
43 }

(continued)

136 CHAPTER 3 / More Flow of Control

DISPLAY 3.7 A Menu (part 2 of 2)

Sample Dialogue

Choose 1 to see the next homework assignment.

Choose 2 for your grade on the last assignment.

Choose 3 for assignment hints.

Choose 4 to exit this program.

Enter your choice and press Return: 3

Assignment hints:

Analyze the problem.

Write an algorithm in pseudocode.

Translate the pseudocode into a C++ program.

Choose 1 to see the next homework assignment.

Choose 2 for your grade on the last assignment.

Choose 3 for assignment hints.

Choose 4 to exit this program.

Enter your choice and press Return: 4

End of Program.

The exact
output will
depend on the
code inserted
into the switch
statement.

DISPLAY 3.8 Block with a Local Variable (part 1 of 2)

1 //Program to compute bill for either a wholesale or a retail purchase.
2 #include <iostream>
3 using namespace std;
4 const double TAX_RATE = 0.05; //5% sales tax.
5
6
7 int main()
8 {
9 char sale_type;

10 int number;
11 double price, total;
12
13 cout << "Enter price $";
14 cin >> price;

(continued)

3.2 Multiway Branches 137

DISPLAY 3.8 Block with a Local Variable (part 2 of 2)

15 cout << "Enter number purchased: ";
16 cin >> number;
17 cout << "Type W if this is a wholesale purchase.\n"
18 << "Type R if this is a retail purchase.\n"
19 << "Then press Return.\n";
20 cin >> sale_type;
21
22 if ((sale_type == 'W') || (sale_type == 'w'))
23 {
24 total = price * number;
25 }
26 else if ((sale_type == 'R') || (sale_type == 'r'))
27 {
28 double subtotal;
29 subtotal = price * number;
30 total = subtotal + subtotal * TAX_RATE;
31 }
32 else
33 {
34 cout << "Error in input.\n";
35 }
36 cout.setf(ios::fixed);
37 cout.setf(ios::showpoint);
38 cout.precision(2);
39 cout << number << " items at $" << price << endl;
40 cout << "Total Bill = $" << total;
41 if ((sale_type == 'R') || (sale_type == 'r'))
42 cout << " including sales tax.\n";
43
44 return 0;
45 }

Sample Dialogue

Enter price: $10.00

Enter number purchased: 2

Type W if this is a wholesale purchase.

Type R if this is a retail purchase.

Then press Return.

R

2 items at $10.00

Total Bill = $21.00 including sales tax.

Local to the block

138 CHAPTER 3 / More Flow of Control

A compound statement with declarations is more than a simple compound
statement, so it has a special name. A compound statement that contains
variable declarations is usually called a block, and the variables declared within
the block are said to be local to the block or to have the block as their scope.
(A plain old compound statement that does not contain any variable declara-
tions is also called a block. Any code enclosed in braces is called a block.)

In Chapter 4 we will show how to define functions. The body of a function
definition is also a block. There is no standard name for a block that is not the
body of a function. However, we want to talk about these kinds of blocks, so let
us create a name for them. Let’s call a block a statement block when it is not
the body of a function (and not the body of the main part of a program).

Statement blocks can be nested within other statement blocks, and
basically the same rules about local variable names apply to these nested
statement blocks as what we have already discussed, but applying the rules can
be tricky when statement blocks are nested. A better rule is to not nest
statement blocks. Nested statement blocks make a program hard to read. If
you feel the need to nest statement blocks, instead make some of the
statement blocks into function definitions and use function calls rather than
nested statement blocks. In fact, statement blocks of any kind should be used
sparingly. In most situations, a function call is preferable to a statement block.
For completeness, we include the scope rule for nested blocks in the
accompanying summary box below.

Blocks

A block is some C++ code enclosed in braces. The variables declared in a
block are local to the block and so the variable names can be used outside
of the block for something else (such as being reused as the name for a
different variable).

Scope Rule for Nested Blocks

If an identifier is declared as a variable in each of two blocks, one within
the other, then these are two different variables with the same name. One
variable exists only within the inner block and cannot be accessed outside
of the inner block. The other variable exists only in the outer block and
cannot be accessed in the inner block. The two variables are distinct, so
changes made to one of these variables will have no effect on the other of
these two variables.

block

scope

statement block

nested blocks

3.2 Multiway Branches 139

■ PITFALL Inadvertent Local Variables

When you declare a variable within a pair of braces, { }, that variable becomes
a local variable for the block enclosed in the pair. This is true whether you
wanted the variable to be local or not. If you want a variable to be available
outside of the braces, then you must declare it outside of the braces. ■

SELF -TEST EXERC ISES

15. What output will be produced by the following code, when embedded in
a complete program?

int first_choice = 1;
switch (first_choice + 1)
{
 case 1:
 cout << "Roast beef\n";
 break;
 case 2:
 cout << "Roast worms\n";
 break;
 case 3:
 cout << "Chocolate ice cream\n";
 case 4:
 cout << "Onion ice cream\n";
 break;
 default:
 cout << "Bon appetit!\n";
}

16. What would be the output in Self-Test Exercise 15 if the first line were
changed to the following?

int first_choice = 3;

17. What would be the output in Self-Test Exercise 15 if the first line were
changed to the following?

int first_choice = 2;

18. What would be the output in Self-Test Exercise 15 if the first line were
changed to the following?

int first_choice = 4;

140 CHAPTER 3 / More Flow of Control

19. What output is produced by the following code, when embedded in a
complete program?

int number = 22;
{

int number = 42;
cout << number << " ";

}
cout << number;

20. Though we urge you not to program using this style, we are providing an
exercise that uses nested blocks to help you understand the scope rules.
Give the output that this code fragment would produce if embedded in an
otherwise complete, correct program.

{
 int x = 1;
 cout << x << endl;
 {
 cout << x << endl;
 int x = 2;
 cout << x << endl;
 {
 cout << x << endl;
 int x = 3;
 cout << x << endl;
 }
 cout << x << endl;
 }
 cout << x << endl;
}

3.3 MORE ABOUT C++ LOOP STATEMENTS

It is not true that life is one damn thing after another—
It’s one damn thing over and over.

EDNA ST. VINCENT MILLAY, Letter to Arthur Darison Ficke, October 24, 1930

A loop is any program construction that repeats a statement or sequence of
statements a number of times. The simple while loops and do-while loops
that we have already seen are examples of loops. The statement (or group of
statements) to be repeated in a loop is called the body of the loop, and each
repetition of the loop body is called an iteration of the loop. The two main
design questions when constructing loops are: What should the loop body be?
How many times should the loop body be iterated?

loop

loop body
loop iteration

3.3 More About C++ Loop Statements 141

The while Statements Reviewed

The syntax for the while statement and its variant, the do-while statement, is
reviewed in Display 3.9. The important difference between the two types of
loops involves when the controlling Boolean expression is checked. When a
while statement is executed, the Boolean expression is checked before the loop
body is executed. If the Boolean expression evaluates to false, then the body
is not executed at all. With a do-while statement, the body of the loop is
executed first and the Boolean expression is checked after the loop body is

while and
do-while
compared

DISPLAY 3.9 Syntax of the while Statement and do-while Statement

A while Statement with a Single Statement Body

while (Boolean_Expression)
 Statement

A while Statement with a Multistatement Body

while (Boolean_Expression)
{
 Statement_1
 Statement_2

 .
 .
 .

 Statement_Last
}

A do-while Statement with a Single Statement Body

do
 Statement
while (Boolean_Expression);

A do-while Statement with a Multistatement Body

do
{
 Statement_1
 Statement_2

 .
 .
 .

 Statement_Last
}while (Boolean_Expression);

Body

Body

Body

Body

142 CHAPTER 3 / More Flow of Control

executed. Thus, the do-while statement always executes the loop body at least
once. After this start-up, the while loop and the do-while loop behave very
much the same. After each iteration of the loop body, the Boolean expression
is again checked; if it is true, then the loop is iterated again. If it has changed
from true to false, then the loop statement ends.

The first thing that happens when a while loop is executed is that the
controlling Boolean expression is evaluated. If the Boolean expression evalu-
ates to false at that point, then the body of the loop is never executed. It may
seem pointless to execute the body of a loop zero times, but that is sometimes
the desired action. For example, a while loop is often used to sum a list of
numbers, but the list could be empty. To be more specific, a checkbook
balancing program might use a while loop to sum the values of all the checks
you have written in a month—but you might take a month’s vacation and
write no checks at all. In that case, there are zero numbers to sum and so the
loop is iterated zero times.

Increment and Decrement Operators Revisited

You have used the increment operator as a statement that increments the value
of a variable by 1. For example, the following will output 42 to the screen:

int number = 41;
number++;
cout << number;

Thus far we have always used the increment operator as a statement. But the
increment operator is also an operator, just like the + and − operators. An
expression like number++ also returns a value, so number++ can be used in an
arithmetic expression such as

2*(number++)

The expression number++ first returns the value of the variable number, and then
the value of number is increased by 1. For example, consider the following code:

int number = 2;
int value_produced = 2*(number++);
cout << value_produced << endl;
cout << number << endl;

This code will produce the following output:

4
3

Notice the expression 2*(number++). When C++ evaluates this expression,
it uses the value that number has before it is incremented, not the value that it
has after it is incremented. Thus, the value produced by the expression
number++ is 2, even though the increment operator changes the value of

executing the
body zero times

increment
operator

in expressions

3.3 More About C++ Loop Statements 143

number to 3. This may seem strange, but sometimes it is just what you want.
And, as you are about to see, if you want an expression that behaves
differently, you can have it.

The expression v++ evaluates to the value of the variable v, and then the
value of the variable v is incremented by 1. If you reverse the order and place
the ++ in front of the variable, the order of these two actions is reversed. The
expression ++v first increments the value of the variable v and then returns this
increased value of v. For example, consider the following code:

int number = 2;
int value_produced = 2*(++number);
cout << value_produced << endl;
cout << number << endl;

This code is the same as the previous piece of code except that the ++ is before
the variable, so this code produces the following output:

6
3

Notice that the two increment operators number++ and ++number have the
same effect on a variable number: They both increase the value of number by 1.
But the two expressions evaluate to different values. Remember, if the ++ is
before the variable, then the incrementing is done before the value is returned;
if the ++ is after the variable, then the incrementing is done after the value is
returned.

The program in Display 3.10 uses the increment operator in a while loop
to count the number of times the loop body is repeated. One of the main uses
of the increment operator is to control the iteration of loops in ways similar
to what is done in Display 3.10.

Everything we said about the increment operator applies to the decrement
operator as well, except that the value of the variable is decreased by 1 rather
than increased by 1. For example, consider the following code:

int number = 8;
int value_produced = number--;
cout << value_produced << endl;
cout << number << endl;

This produces the output

8
7

On the other hand, the code

int number = 8;
int value_produced = --number;
cout << value_produced << endl;
cout << number << endl;

v++ versus
++v

decrement
operator

144 CHAPTER 3 / More Flow of Control

produces the output

7
7

number-- returns the value of number and then decrements number; on the other
hand, --number first decrements number and then returns the value of number.

DISPLAY 3.10 The Increment Operator as an Expression

1 //Calorie-counting program.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int number_of_items, count,
8 calories_for_item, total_calories;
9

10 cout << "How many items did you eat today? ";
11 cin >> number_of_items;
12
13 total_calories = 0;
14 count = 1;
15 cout << "Enter the number of calories in each of the\n"
16 << number_of_items << " items eaten:\n";
17
18 while (count++ <= number_of_items)
19 {
20 cin >> calories_for_item;
21 total_calories = total_calories
22 + calories_for_item;
23 }
24
25 cout << "Total calories eaten today = "
26 << total_calories << endl;
27 return 0;
28 }
29

Sample Dialogue

How many items did you eat today? 7

Enter the number of calories in each of the

7 items eaten:

300 60 1200 600 150 1 120

Total calories eaten today = 2431

3.3 More About C++ Loop Statements 145

You cannot apply the increment and decrement operators to anything
other than a single variable. Expressions such as (x + y)++, --(x + y), 5++,
and so forth are all illegal in C++.

SELF -TEST EXERC ISES

21. What is the output of the following (when embedded in a complete
program)?

int count = 3;
while (count-- > 0)
 cout << count << " ";

22. What is the output of the following (when embedded in a complete
program)?

int count = 3;
while (--count > 0)
 cout << count << " ";

23. What is the output of the following (when embedded in a complete
program)?

int n = 1;
do
 cout << n << " ";
while (n++ <= 3);

24. What is the output of the following (when embedded in a complete
program)?

int n = 1;
do
 cout << n << " ";
while (++n <= 3);

The for Statement

The while statement and the do-while statement are all the loop mechanisms
you absolutely need. In fact, the while statement alone is enough. However,
there is one sort of loop that is so common that C++ includes a special
statement for this. In performing numeric calculations, it is common to do a
calculation with the number 1, then with the number 2, then with 3, and so
forth, until some last value is reached. For example, to add 1 through 10, you
want the computer to perform the following statement ten times, with the

++ and -- can
only be used
with variables

146 CHAPTER 3 / More Flow of Control

value of n equal to 1 the first time and with n increased by 1 each subsequent
time:

sum = sum + n;

The following is one way to accomplish this with a while statement:

sum = 0;
n = 1;
while (n <= 10)
{

sum = sum + n;
n++;

}

Although a while loop will do here, this sort of situation is just what the
for statement (also called the for loop) was designed for. The following for
statement will neatly accomplish the same task:

sum = 0;
for (n = 1; n <= 10; n++)

sum = sum + n;

Let’s look at this for statement piece by piece.
First, notice that the while loop version and the for loop version are made

by putting together the same pieces: They both start with an assignment
statement that sets the variable sum equal to 0. In both cases this assignment
statement for sum is placed before the loop statement itself begins. The loop
statements themselves are both made from the pieces

n = 1; n <= 10; n++ and sum = sum + n;

These pieces serve the same function in the for statement as they do in the
while statement. The for statement is simply a more compact way of saying
the same thing. Although other things are possible, we will only use for
statements to perform loops controlled by one variable. In our example, that
would be the variable n. With the equivalence of the previous two loops to
guide us, let’s go over the rules for writing a for statement.

A for statement begins with the keyword for followed by three things in
parentheses that tell the computer what to do with the controlling variable.
The beginning of a for statement looks like the following:

for (Initialization_Action; Boolean_Expression; Update_Action)

The first expression tells how the variable is initialized, the second gives a
Boolean expression that is used to check for when the loop should end, and
the last expression tells how the loop control variable is updated after each
iteration of the loop body. For example, the above for loop begins

for statement

3.3 More About C++ Loop Statements 147

for (n = 1; n <= 10; n++)

The n = 1 says that n is initialized to 1. The n <= 10 says the loop will continue
to iterate the body as long as n is less than or equal to 10. The last expression, n++,
says that n is incremented by 1 after each time the loop body is executed.

The three expressions at the start of a for statement are separated by two,
and only two, semicolons. Do not succumb to the temptation to place a
semicolon after the third expression. (The technical explanation is that these
three things are expressions, not statements, and so do not require a
semicolon at the end.)

Display 3.11 shows the syntax of a for statement and also describes the
action of the for statement by showing how it translates into an equivalent
while statement. Notice that in a for statement, as in the corresponding while
statement, the stopping condition is tested before the first loop iteration. Thus,
it is possible to have a for loop whose body is executed zero times.

Display 3.12 shows a sample for statement embedded in a complete
(although very simple) program. The for statement in Display 3.12 is similar to
the one discussed above, but it has one new feature. The variable n is declared
when it is initialized to 1. So, the declaration of n is inside the for statement.
The initializing action in a for statement can include a variable declaration.
When a variable is used only within the for statement, this can be the best place
to declare the variable. However, if the variable is also used outside of the for
statement, then it is best to declare the variable outside of the for statement.

The ANSI C++ standard requires that a C++ compiler that claims compli-
ance with the standard treat any declaration in a for loop initializer as if it
were local to the body of the loop. Earlier C++ compilers did not do this. You
should determine how your compiler treats variables declared in a for loop
initializer. In the interests of portability, you should not write code that
depends on this behavior. The ANSI C++ standard requires that variables
declared in the initialization expression of a for loop be local to the block of
the for loop. The next generation of C++ compilers will likely comply with
this rule, but compilers presently available may or may not comply.

Our description of a for statement was a bit less general than what is
allowed. The three expressions at the start of a for statement may be any C++
expressions and therefore they may involve more (or even fewer!) than one
variable. However, our for statements will always use only a single variable in
these expressions.

In the for statement in Display 3.12, the body was the simple assignment
statement

sum = sum + n;

The body may be any statement at all. In particular, the body may be a
compound statement. This allows us to place several statements in the body
of a for loop, as shown in Display 3.13.

declaring
variables
within a for
statement

148 CHAPTER 3 / More Flow of Control

DISPLAY 3.11 The for Statement

for Statement

SYNTAX
1 for (Initialization_Action; Boolean_Expression; Update_Action)
2 Body_Statement

EXAMPLE
1 for (number = 100; number >= 0; number--)
2 cout << number
3 << " bottles of beer on the shelf.\n";

Equivalent while loop

EQUIVALENT SYNTAX

1 Initialization_Action;
2 while (Boolean_Expression)
3 {
4 Body_Statement
5 Update_Action;
6 }

EQUIVALENT EXAMPLE

1 number = 100;
2 while (number >= 0)
3 {
4 cout << number
5 << " bottles of beer on the shelf.\n";
6 number--;
7 }

Output

100 bottles of beer on the shelf.

99 bottles of beer on the shelf.

 .
 .
 .

0 bottles of beer on the shelf.

3.3 More About C++ Loop Statements 149

DISPLAY 3.12 A for Statement

1 //Illustrates a for loop.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int sum = 0;
8
9 for (int n = 1; n <= 10; n++) //Note that the variable n is a local

10 sum = sum + n; //variable of the body of the for loop!
11
12 cout << "The sum of the numbers 1 to 10 is "
13 << sum << endl;
14 return 0;
15 }

Output

The sum of the numbers 1 to 10 is 55

Initializing
action

Repeat the loop as
long as this is true.

Done after each
loop body iteration

DISPLAY 3.13 for Loop with a Multistatement Body

SYNTAX

for (Initialization_Action; Boolean_Expression; Update_Action)
{
 Statement_1
 Statement_2

 .
 .
 .

 Statement_Last
}

EXAMPLE

for (int number = 100; number >= 0; number--)
{
 cout << number
 << " bottles of beer on the shelf.\n";
 if (number > 0)
 cout << "Take one down and pass it around.\n";
}

Body

150 CHAPTER 3 / More Flow of Control

Thus far, you have seen for loops that increase the loop control variable
by 1 after each loop iteration, and you have seen for loops that decrease the
loop control variable by 1 after each loop iteration. There are many more
possible kinds of variable updates. The variable can be incremented or
decremented by 2 or 3 or any number. If the variable is of type double, it can
be incremented or decremented by a fractional amount. All of the following
are legitimate for loops:

int n;
for (n = 1; n <= 10; n = n + 2)

cout << "n is now equal to " << n << endl;

for (n = 0; n > −100; n = n − 7)
cout << "n is now equal to " << n << endl;

for (double size = 0.75; size <= 5; size = size + 0.05)
cout << "size is now equal to " << size << endl;

The update need not even be an addition or subtraction. Moreover, the
initialization need not simply set a variable equal to a constant. You can
initialize and change a loop control variable in just about any way you
wish. For example, the following demonstrates one more way to start a for
loop:

for (double x = pow(y, 3.0); x > 2.0; x = sqrt(x))

cout << "x is now equal to " << x << endl;

■ PITFALL Extra Semicolon in a for Statement

Do not place a semicolon after the closing parentheses at the beginning of a
for loop. To see what can happen, consider the following for loop:

If you did not notice the extra semicolon, you might expect this for loop to
write Hello to the screen ten times. If you do notice the semicolon, you
might expect the compiler to issue an error message. Neither of those things
happens. If you embed this for loop in a complete program, the compiler
will not complain. If you run the program, only one Hello will be output
instead of ten Hellos. What is happening? To answer that question, we need
a little background.

One way to create a statement in C++ is to put a semicolon after
something. If you put a semicolon after x++, you change the expression

x++

more possible
update actions

for (int count = 1; count <= 10; count++);
 cout << "Hello\n";

Problem
semicolon

3.3 More About C++ Loop Statements 151

into the statement

x++;

If you place a semicolon after nothing, you still create a statement. Thus, the
semicolon by itself is a statement, which is called the empty statement or the
null statement. The empty statement performs no action, but it is still a
statement. Therefore, the following is a complete and legitimate for loop,
whose body is the empty statement:

for (int count = 1; count <= 10; count++);

This for loop is indeed iterated ten times, but since the body is the empty
statement, nothing happens when the body is iterated. This loop does
nothing, and it does nothing ten times!

Now let’s go back and consider the for loop code labeled Problem
semicolon. Because of the extra semicolon, that code begins with a for loop
that has an empty body, and as we just discussed, that for loop accomplishes
nothing. After the for loop is completed, the following cout statement is
executed and writes Hello to the screen one time:

cout << "Hello\n";

You will eventually see some uses for for loops with empty bodies, but at this
stage, such a for loop is likely to be just a careless mistake. ■

What Kind of Loop to Use

When designing a loop, the choice of which C++ loop statement to use is best
postponed to the end of the design process. First design the loop using
pseudocode, then translate the pseudocode into C++ code. At that point it will
be easy to decide what type of C++ loop statement to use.

If the loop involves a numeric calculation using a variable that is changed
by equal amounts each time through the loop, use a for loop. In fact,
whenever you have a loop for a numeric calculation, you should consider
using a for loop. It will not always be suitable, but it is often the clearest and
easiest loop to use for numeric calculations.

In most other cases, you should use a while loop or a do-while loop; it is
fairly easy to decide which of these two to use. If you want to insist that the
loop body will be executed at least once, you may use a do-while loop. If there
are circumstances for which the loop body should not be executed at all, then
you must use a while loop. A common situation that demands a while loop
is reading input when there is a possibility of no data at all. For example, if the
program reads in a list of exam scores, there may be cases of students who
have taken no exams, and hence the input loop may be faced with an empty
list. This calls for a while loop.

empty
statement

152 CHAPTER 3 / More Flow of Control

SELF -TEST EXERC ISES

25. What is the output of the following (when embedded in a complete
program)?

for (int count = 1; count < 5; count++)
cout << (2 * count) << " ";

26. What is the output of the following (when embedded in a complete
program)?

for (int n = 10; n > 0; n = n − 2)
{
 cout << "Hello ";
 cout << n << endl;
}

27. What is the output of the following (when embedded in a complete
program)?

for (double sample = 2; sample > 0; sample = sample − 0.5)
cout << sample << " ";

28. For each of the following situations, tell which type of loop (while, do-
while, or for) would work best:

a. Summing a series, such as 1/2 + 1/3 + 1/4 + 1/5 + . . . + 1/10.

b. Reading in the list of exam scores for one student.

c. Reading in the number of days of sick leave taken by employees in a
department.

d. Testing a function to see how it performs for different values of its
arguments.

29. Rewrite the following loops as for loops.

a. int i = 1;
while (i <= 10)
{
 if (i < 5 && i != 2)
 cout << 'X';
 i++;
}

b. int i = 1;
while (i <=10)
{
 cout << 'X';
 i = i + 3;
}

3.3 More About C++ Loop Statements 153

c. long m = 100;

do
{
 cout << 'X';
 m = m + 100;
} while (m < 1000);

30. What is the output of this loop? Identify the connection between the
value of n and the value of the variable log.

int n = 1024;
int log = 0;
for (int i = 1; i < n; i = i * 2)
 log++;
cout << n << " " << log << endl;

31. What is the output of this loop? Comment on the code.

int n = 1024;
int log = 0;
for (int i = 1; i < n; i = i * 2);
 log++;
cout << n << " " << log << endl;

32. What is the output of this loop? Comment on the code.

int n = 1024;
int log = 0;
for (int i = 0; i < n; i = i * 2)
 log++;
cout << n << " " << log << endl;

■ PITFALL Uninitialized Variables and Infinite Loops

When we first introduced simple while and do-while loops in Chapter 2, we
warned you of two pitfalls associated with loops. We said that you should be sure
all variables that need to have a value in the loop are initialized (that is, given a
value) before the loop is executed. This seems obvious when stated in the abstract,
but in practice it is easy to become so concerned with designing a loop that you
forget to initialize variables before the loop. We also said that you should be careful
to avoid infinite loops. Both of these cautions apply equally well to for loops. ■

The break Statement

You have already used the break statement as a way of ending a switch
statement. This same break statement can be used to exit a loop. Sometimes
you want to exit a loop before it ends in the normal way. For example, the
loop might contain a check for improper input and if some improper input is

break

154 CHAPTER 3 / More Flow of Control

encountered, then you may want to simply end the loop. The code in Display
3.14 reads a list of negative numbers and computes their sum as the value of
the variable sum. The loop ends normally provided the user types in ten

DISPLAY 3.14 A break Statement in a Loop

1 //Sums a list of ten negative numbers.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int number, sum = 0, count = 0;
8 cout << "Enter 10 negative numbers:\n";
9

10 while (++count <= 10)
11 {
12 cin >> number;
13
14 if (number >= 0)
15 {
16 cout << "ERROR: positive number"
17 << " or zero was entered as the\n"
18 << count << "th number! Input ends "
19 << "with the " << count << "th number.\n"
20 << count << "th number was not added in.\n";
21 break;
22 }
23
24 sum = sum + number;
25 }
26
27 cout << sum << " is the sum of the first "
28 << (count − 1) << " numbers.\n";
29
30 return 0;
31 }

Sample Dialogue

Enter 10 negative numbers:

-1 -2 -3 4 -5 -6 -7 -8 -9 -10

ERROR: positive number or zero was entered as the

4th number! Input ends with the 4th number.

4th number was not added in.

-6 is the sum of the first 3 numbers.

3.3 More About C++ Loop Statements 155

negative numbers. If the user forgets a minus sign, the computation is ruined
and the loop ends immediately when the break statement is executed.

■ PITFALL The break Statement in Nested Loops

A break statement ends only the innermost loop that contains it. If you have
a loop within a loop and a break statement in the inner loop, then the break
statement will end only the inner loop. ■

SELF -TEST EXERC ISES

33. What is the output of the following (when embedded in a complete
program)?

int n = 5;
while (--n > 0)
{

if (n == 2)
break;

cout << n << " ";
}
cout << "End of Loop.";

34. What is the output of the following (when embedded in a complete
program)?

int n = 5;
while (--n > 0)
{

if (n == 2)
exit(0);

cout << n << " ";
}
cout << "End of Loop.";

35. What does a break statement do? Where is it legal to put a break statement?

The break Statement

The break statement can be used to exit a loop statement. When the
break statement is executed, the loop statement ends immediately and
execution continues with the statement following the loop statement. The
break statement may be used in any form of loop, in a while loop, in a do-
while loop, or in a for loop. This is the same break statement that we
have already used in switch statements.

156 CHAPTER 3 / More Flow of Control

3.4 DESIGNING LOOPS

Round and round she goes, and where she stops nobody knows.

TRADITIONAL CARNIVAL BARKER’S CALL

When designing a loop, you need to design three things:

1. The body of the loop

2. The initializing statements

3. The conditions for ending the loop

We begin with a section on two common loop tasks and show how to design
these three elements for each of the two tasks.

Loops for Sums and Products

Many common tasks involve reading in a list of numbers and computing their
sum. If you know how many numbers there will be, such a task can easily be
accomplished by the following pseudocode. The value of the variable
this_many is the number of numbers to be added. The sum is accumulated in
the variable sum.

sum = 0;
repeat the following this_many times:

cin >> next;
sum = sum + next;

end of loop.

This pseudocode is easily implemented as the following for loop:

int sum = 0;
for (int count = 1; count <= this_many; count++)
{

cin >> next;
sum = sum + next;

}

Notice that the variable sum is expected to have a value when the following
loop body statement is executed:

sum = sum + next;

Since sum must have a value the very first time this statement is executed, sum
must be initialized to some value before the loop is executed. In order to
determine the correct initializing value for sum, think about what you want to
happen after one loop iteration. After adding in the first number, the value of
sum should be that number. That is, the first time through the loop the value
of sum + next should equal next. To make this true, the value of sum must be
initialized to 0.

sums

3.4 Designing Loops 157

You can form the product of a list of numbers in a way that is similar to
how we formed the sum of a list of numbers. The technique is illustrated by
the following code:

int product = 1;
for (int count = 1; count <= this_many; count++)
{

cin >> next;
product = product * next;

}

The variable product must be given an initial value. Do not assume that
all variables should be initialized to zero. If product were initialized to 0, then
it would still be zero after the above loop has finished. As indicated in the C++
code shown earlier, the correct initializing value for product is 1. To see that 1
is the correct initial value, notice that the first time through the loop this will
leave product equal to the first number read in, which is what you want.

Ending a Loop

There are four commonly used methods for terminating an input loop. We
will discuss them in order.

1. List headed by size

2. Ask before iterating

3. List ended with a sentinel value

4. Running out of input

Repeat “This Many Times”

A for statement can be used to produce a loop that repeats the loop body
a predetermined number of times.

Pseudocode

Repeat the following This_Many times:
 Loop_Body

Equivalent for Statement

for (int count = 1; count <= This_Many; count++)
 Loop_Body

Example

for (int count = 1; count <= 3; count++)
 cout << "Hip, Hip, Hurray\n";

products

input loops

158 CHAPTER 3 / More Flow of Control

If your program can determine the size of an input list beforehand, either
by asking the user or by some other method, you can use a “repeat n times”
loop to read input exactly n times, where n is the size of the list. This method
is called list headed by size.

The second method for ending an input loop is simply to ask the user,
after each loop iteration, whether or not the loop should be iterated again. For
example:

sum = 0;
cout << "Are there any numbers in the list? (Type\n"

 << "Y and Return for Yes, N and Return for No): ";
char ans;
cin >> ans;
while ((ans == 'Y') || (ans == 'y'))
{
 cout << "Enter number: ";
 cin >> number;
 sum = sum + number;
 cout << "Are there any more numbers? (Type\n"
 << "Y for Yes, N for No. End with Return.): ";
 cin >> ans;
}

However, for reading in a long list, this is very tiresome to the user. Imagine
typing in a list of 100 numbers this way. The user is likely to progress from
happy to sarcastic and then to angry and frustrated. When reading in a long
list, it is preferable to include only one stopping signal, which is the method
we discuss next.

Perhaps the nicest way to terminate a loop that reads a list of values from
the keyboard is with a sentinel value. A sentinel value is one that is somehow
distinct from all the possible values on the list being read in and so can be
used to signal the end of the list. For example, if the loop reads in a list of
positive numbers, then a negative number can be used as a sentinel value to
indicate the end of the list. A loop such as the following can be used to add a
list of nonnegative numbers:

cout << "Enter a list of nonnegative integers.\n"
 << "Place a negative integer after the list.\n";
sum = 0;
cin >> number;
while (number >= 0)
{
 sum = sum + number;
 cin >> number;
}

list headed
by size

ask before
iterating

sentinel value

3.4 Designing Loops 159

Notice that the last number in the list is read but is not added into sum. To add
the numbers 1, 2, and 3, the user appends a negative number to the end of the
list like so:

 1 2 3 -1

The final -1 is read in but not added into the sum.
To use a sentinel value this way, you must be certain there is at least one

value of the data type in question that definitely will not appear on the list of
input values and thus can be used as the sentinel value. If the list consists of
integers that might be any value whatsoever, then there is no value left to serve
as the sentinel value. In this situation, you must use some other method to
terminate the loop.

When reading input from a file, you can use a sentinel value, but a more
common method is to simply check to see if all the input in the file has been
read and to end the loop when there is no more input left to be read. This
method of ending an input loop is discussed in Chapter 6 in the Programming
Tip section entitled “Checking for the End of a File” and in the section entitled
“The eof Member Function.”

The techniques we gave for ending an input loop are all special cases of
more general techniques that can be used to end loops of any kind. The more
general techniques are as follows:

■ Count-controlled loops

■ Ask before iterating

■ Exit on a flag condition

A count-controlled loop is any loop that determines the number of
iterations before the loop begins and then iterates the loop body that many
times. The list-headed-by-size technique that we discussed for input loops is
an example of a count-controlled loop. All of our “repeat this many times”
loops are count-controlled loops.

We already discussed the ask-before-iterating technique. You can use it
for loops other than input loops, but the most common use for this
technique is for processing input.

Earlier in this section we discussed input loops that end when a
sentinel value is read. In our example, the program read nonnegative
integers into a variable called number. When number received a negative
value, that indicated the end of the input; the negative value was the
sentinel value. This is an example of a more general technique known as
exit on a flag condition. A variable that changes value to indicate that some
event has taken place is often called a flag. In our example input loop, the
flag was the variable number; when it becomes negative, that indicates that
the input list has ended.

running out of
input

count-controlled
loop

ask before
iterating

exit on a flag

160 CHAPTER 3 / More Flow of Control

Ending a file input loop by running out of input is another example of the
exit-on-a-flag technique. In this case the flag condition is determined by the
system. The system keeps track of whether or not input reading has reached
the end of a file.

A flag can also be used to terminate loops other than input loops. For
example, the following sample loop can be used to find a tutor for a student.
Students in the class are numbered starting with 1. The loop checks each
student number to see if that student received a high grade and stops the loop
as soon as a student with a high grade is found. For this example, a grade of
90 or more is considered high. The code compute_grade(n) is a call to a user-
defined function. In this case, the function will execute some code that will
compute a numeric value from 0 to 100 that corresponds to student n’s grade.
The numeric value then is copied into the variable grade. Chapter 4 discusses
functions in more detail.

int n = 1;
grade = compute_grade(n);
while (grade < 90)
{

n++;
grade = compute_grade(n);

}
cout << "Student number " << n << " may be a tutor.\n"

<< "This student has a score of " << grade << endl;

In this example, the variable grade serves as the flag.
The previous loop indicates a problem that can arise when designing

loops. What happens if no student has a score of 90 or better? The answer
depends on the definition for the function compute_grade. If grade is defined
for all positive integers, it could be an infinite loop. Even worse, if grade is
defined to be, say, 100 for all arguments n that are not students, then it may
try to make a tutor out of a nonexistent student. In any event, something will
go wrong. If there is a danger of a loop turning into an infinite loop or even a
danger of it iterating more times than is sensible, then you should include a
check to see that the loop is not iterated too many times. For example, a better
condition for our example loop is the following, where the variable
number_of_students has been set equal to the number of students in the class:

int n = 1;
grade = compute_grade(n);
while ((grade < 90) && (n < number_of_students))
{

n++;
grade = compute_grade(n);

}
if (grade >= 90)
 cout << "Student number " << n << " may be a tutor.\n"
 << "This student has a score of " << grade << endl;
else
 cout << "No student has a high score.";

runaway loops

3.4 Designing Loops 161

Nested Loops

The program in Display 3.15 was designed to help track the reproduction
rate of the green-necked vulture, an endangered species. In the district where
this vulture survives, conservationists annually perform a count of the
number of eggs in green-necked vulture nests. The program in Display 3.15
takes the reports of each of the conservations in the district and calculates
the total number of eggs contained in all the nests observed by all the
conservationists.

Each conservationist’s report consists of a list of numbers. Each number is
the count of the number of eggs observed in one green-necked vulture nest.
The void function named get_one_total reads in the report of one conserva-
tionist and calculates the total number of eggs found by this conservationist.
The list of numbers for each conservationist has a negative number added to
the end of the list. This serves as a sentinel value. The function call to
get_one_total is included in a for loop so that this function is called once for
each conservationist report.

The body of a loop may contain any kind of statement, so it is possible to
have loops nested within loops (as well as eggs nested within nests). The
program in Display 3.15 contains a loop within a loop. The nested loop in
Display 3.15 is executed once for each value of count from 1 to
number_of_reports. For each such iteration of the outer for loop there is one
complete execution of the inner while loop. In Chapter 4 we’ll use subrou-
tines to make the program in Display 3.15 more readable.

SELF -TEST EXERC ISES

36. Write a loop that will write the word Hello to the screen ten times (when
embedded in a complete program).

37. Write a loop that will read in a list of even numbers (such as 2, 24, 8, 6)
and compute the total of the numbers on the list. The list is ended with a
sentinel value. Among other things, you must decide what would be a
good sentinel value to use.

38. Predict the output of the following nested loops:

int n, m;
for (n = 1; n <= 10; n++)

for (m = 10; m >= 1; m--)
 cout << n << " times " << m
 << " = " << n*m << endl;

Video Note
Nested Loop
Example

162 CHAPTER 3 / More Flow of Control

DISPLAY 3.15 Explicitly Nested Loops (part 1 of 2)

1 //Determines the total number of green-necked vulture eggs
2 //counted by all conservationists in the conservation district.
3 #include <iostream>
4 using namespace std;
5
6 int main()
7 {
8 cout << "This program tallies conservationist reports\n"
9 << "on the green-necked vulture.\n"

10 << "Each conservationist's report consists of\n"
11 << "a list of numbers. Each number is the count of\n"
12 << "the eggs observed in one”
13 << "green-necked vulture nest.\n"
14 << "This program then tallies
15 << "the total number of eggs.\n";
16
17 int number_of_reports;
18 cout << "How many conservationist reports are there? ";
19 cin >> number_of_reports;
20
21 int grand_total = 0, subtotal, count;
22 for (count = 1; count <= number_of_reports; count++)
23 {
24 cout << endl << "Enter the report of "
25 << "conservationist number " << count << endl;
26 cout << "Enter the number of eggs in each nest.\n"
27 << "Place a negative integer at the end of your list.\n”;”
28 subtotal = 0;
29 int next;
30 cin >> next;
31 while (next >=0)
32 {
33 subtotal = subtotal + next;
34 cin >> next;
35 }
36 cout << "Total egg count for conservationist "
37 << " number " << count << " is "
38 << subtotal << endl;
39 grand_total = grand_total + subtotal;
40 }
41

(continued)

3.4 Designing Loops 163

Debugging Loops

No matter how carefully a program is designed, mistakes will still sometimes
occur. In the case of loops, there is a pattern to the kinds of mistakes
programmers most often make. Most loop errors involve the first or last
iteration of the loop. If you find that your loop does not perform as expected,
check to see if the loop is iterated one too many or one too few times. Loops
that iterate one too many or one too few times are said to have an off-by-one
error; these errors are among the most common loop bugs. Be sure you are
not confusing less-than with less-than-or-equal-to. Be sure you have initialized
the loop correctly. Remember that a loop may sometimes need to be iterated
zero times and check that your loop handles that possibility correctly.

Infinite loops usually result from a mistake in the Boolean expression that
controls the stopping of the loop. Check to see that you have not reversed an
inequality, confusing less-than with greater-than. Another common source of
infinite loops is terminating a loop with a test for equality, rather than
something involving greater-than or less-than. With values of type double,
testing for equality does not give meaningful answers, since the quantities
being compared are only approximate values. Even for values of type int,
equality can be a dangerous test to use for ending a loop, since there is only
one way that it can be satisfied.

If you check and recheck your loop and can find no error, but your
program still misbehaves, then you will need to do some more sophisticated
testing. First, make sure that the mistake is indeed in the loop. Just because the
program is performing incorrectly does not mean the bug is where you think
it is. If your program is divided into functions, it should be easy to determine
the approximate location of the bug or bugs.

Once you have decided that the bug is in a particular loop, you should
watch the loop change the value of variables while the program is running. This
way you can see what the loop is doing and thus see what it is doing wrong.
Watching the value of a variable change while the program is running is called
tracing the variable. Many systems have debugging utilities that allow you to
easily trace variables without making any changes to your program. If your
system has such a debugging utility, it would be well worth your effort to learn

DISPLAY 3.15 Explicitly Nested Loops (part 2 of 2)

42 cout << endl << "Total egg count for all reports = "
43 << grand_total << endl;
44
45 return 0;
46 }

off-by-one
errors

infinite loops

First, localize
the problem

tracing variables

164 CHAPTER 3 / More Flow of Control

how to use it. If your system does not have a debugging utility, you can trace a
variable by placing a temporary cout statement in the loop body; that way the
value of the variable will be written to the screen on each loop iteration.

For example, consider the following piece of program code, which needs
to be debugged:

int next = 2, product = 1;
while (next < 5)
{
 next++;
 product = product * next;
}
//The variable product contains
//the product of the numbers 2 through 5.

The comment at the end of the loop tells what the loop is supposed to do, but
we have tested it and know that it gives the variable product an incorrect
value. We need to find out what is wrong. To help us debug this loop, we trace
the variables next and product. If you have a debugging utility, you could use
it. If you do not have a debugging facility, you can trace the variables by
inserting a cout statement as follows:

int next = 2, product = 1;
while (next < 5)
{
 next++;
 product = product * next;
 cout << "next = " << next
 << " product = " << product << endl;
}

When we trace the variables product and next, we find that after the first
loop iteration, the values of product and next are both 3. It is then clear to us
that we have multiplied only the numbers 3 through 5 and have missed
multiplying by 2.

There are at least two good ways to fix this bug. The easiest fix is to
initialize the variable next to 1, rather than 2. That way, when next is
incremented the first time through the loop, it will receive the value 2 rather
than 3. Another way to fix the loop is to place the increment after the
multiplication, as follows:

int next = 2, product = 1;
while (next < 5)
{
 product = product * next;
 next++;
}

code with a bug

second try

fresher

3.4 Designing Loops 165

Let’s assume we fix the bug by moving the statement next++ as indicated
above. After we add this fix, we are not yet done. We must test this revised
code. When we test this revised code, we will see that it still gives an incorrect
result. If we again trace variables, we will discover that the loop stops after
multiplying by 4, and never multiplies by 5. This tells us that the Boolean
expression should now use a less-than-or-equal sign, rather than a less-than
sign. Thus, the correct code is

int next = 2, product = 1;
while (next <= 5)
{
 product = product * next;
 next++;
}

Every time you change a program, you should retest the program. Never assume
that your change will make the program correct. Just because you found one
thing to correct does not mean you have found all the things that need to be
corrected. Also, as illustrated by this example, when you change one part of
your program to make it correct, that change may require you to change some
other part of the program as well.

The techniques we have developed will help you find the few bugs that
may find their way into a well-designed program. However, no amount of
debugging can convert a poorly designed program into a reliable and readable
one. If a program or algorithm is very difficult to understand or performs very
poorly, do not try to fix it. Instead, throw it away and start over. This will result
in a program that is easier to read and that is less likely to contain hidden
errors. What may not be so obvious is that by throwing out the poorly
designed code and starting over, you will produce a working program faster
than if you try to repair the old code. It may seem like wasted effort to throw
out all the code that you worked so hard on, but that is the most efficient way
to proceed. The work that went into the discarded code is not wasted. The

Testing a Loop

Every loop should be tested with inputs that cause each of the following
loop behaviors (or as many as are possible): zero iterations of the loop
body, one iteration of the loop body, the maximum number of iterations
of the loop body, and one less than the maximum number of iterations of
the loop body. (This is only a minimal set of test situations. You should also
conduct other tests that are particular to the loop you are testing.)

Every change
requires
retesting

166 CHAPTER 3 / More Flow of Control

lessons you learned by writing it will help you to design a better program
faster than if you started with no experience. The bad code itself is unlikely to
help at all.

SELF -TEST EXERC ISES

39. What does it mean to trace a variable? How do you trace a variable?

40. What is an off-by-one loop error?

41. You have a fence that is to be 100 meters long. Your fence posts are to be
placed every 10 feet. How many fence posts do you need? Why is the pres-
ence of this problem in a programming book not as silly as it might seem?
What problem that programmers have does this question address?

CHAPTER SUMMARY

■ Boolean expressions are evaluated similar to the way arithmetic expressions
are evaluated.

■ Most modern compilers have a bool type having the values true and false.

■ You can write a function so that it returns a value of true or false. A call to
such a function can be used as a Boolean expression in an if-else state-
ment or anywhere else that a Boolean expression is permitted.

■ One approach to solving a task or subtask is to write down conditions and
corresponding actions that need to be taken under each condition. This can
be implemented in C++ as a multiway if-else statement.

■ A switch statement is a good way to implement a menu for the user of your
program.

■ A block is a compound statement that contains variable declarations. The
variables declared in a block are local to the block. Among other uses,
blocks can be used for the action in one branch of a multiway branch state-
ment, such as a multiway if-else statement.

Debugging a Very Bad Program

If your program is very bad, do not try to debug it. Instead, throw it out
and start over.

Answers to Self-Test Exercises 167

■ A for loop can be used to obtain the equivalent of the instruction “repeat
the loop body n times.”

■ There are four commonly used methods for terminating an input loop: list
headed by size, ask before iterating, list ended with a sentinel value, and
running out of input.

■ It is usually best to design loops in pseudocode that does not specify a
choice of C++ looping mechanism. Once the algorithm has been designed,
the choice of which C++ loop statement to use is usually clear.

■ One way to simplify your reasoning about nested loops is to make the loop
body a function call.

■ Always check loops to be sure that the variables used by the loop are prop-
erly initialized before the loop begins.

■ Always check loops to be certain they are not iterated one too many or one
too few times.

■ When debugging loops, it helps to trace key variables in the loop body.

■ If a program or algorithm is very difficult to understand or performs very
poorly, do not try to fix it. Instead, throw it away and start over.

Answers to Self-Test Exercises

1. a. true.

b. true. Note that expressions (a) and (b) mean exactly the same thing.
Because the operators == and < have higher precedence than &&, you
do not need to include the parentheses. The parentheses do, however,
make it easier to read. Most people find the expression in (a) easier to
read than the expression in (b), even though they mean the same
thing.

c. true.

d. true.

e. false. Since the value of the first subexpression (count == 1) is
false, you know that the entire expression is false without bothering
to evaluate the second subexpression. Thus, it does not matter what
the values of x and y are. This is called short-circuit evaluation, which is
what C++ does.

f. true. Since the value of the first subexpression (count < 10) is true,
you know that the entire expression is true without bothering to
evaluate the second subexpression. Thus, it does not matter what the
values of x and y are. This is called short-circuit evaluation, which is
what C++ does.

168 CHAPTER 3 / More Flow of Control

g. false. Notice that the expression in (g) includes the expression in (f)
as a subexpression. This subexpression is evaluated using short-circuit
evaluation as we described for (f). The entire expression in (g) is
equivalent to

!((true || (x < y)) && true)

which in turn is equivalent to !(true && true), and that is
equivalent to !(true), which is equivalent to the final value of false.

h. This expression produces an error when it is evaluated because the first
subexpression ((limit/count) > 7) involves a division by zero.

i. true. Since the value of the first subexpression (limit < 20) is true,
you know that the entire expression is true without bothering to
evaluate the second subexpression. Thus, the second subexpression

((limit/count) > 7)

is never evaluated and so the fact that it involves a division by zero is
never noticed by the computer. This is short-circuit evaluation, which
is what C++ does.

j. This expression produces an error when it is evaluated because the first
subexpression ((limit/count) > 7) involves a division by zero.

k. false. Since the value of the first subexpression (limit < 0) is false,
you know that the entire expression is false without bothering to
evaluate the second subexpression. Thus, the second subexpression

((limit/count) > 7)

is never evaluated and so the fact that it involves a division by zero is
never noticed by the computer. This is short-circuit evaluation, which
is what C++ does.

l. If you think this expression is nonsense, you are correct. The
expression has no intuitive meaning, but C++ converts the int values
to bool values and then evaluates the && and ! operations. Thus, C++
will evaluate this mess. Recall that in C++, any nonzero integer
converts to true, and 0 converts to false. C++ will evaluate

(5 && 7) + (!6)

as follows: In the expression (5 && 7), the 5 and 7 convert to true.
true&&true evaluates to true, which C++ converts to 1. In (!6), the 6 is
converted to true, so !(true) evaluates to false, which C++ converts
to 0. The entire expression thus evaluates to 1 + 0, which is 1. The final

Answers to Self-Test Exercises 169

value is thus 1. C++ will convert the number 1 to true, but the answer
has little intuitive meaning as true; it is perhaps better to just say the
answer is 1.

There is no need to become proficient at evaluating these nonsense
expressions, but doing a few will help you to understand why the
compiler does not give you an error message when you make the
mistake of incorrectly mixing numeric and Boolean operators in a
single expression.

2. To this point we have studied branching statements, iteration statements,
and function call statements.

Examples of branching statements we have studied are if and if-else
statements. Examples of iteration statements are while and do-while
statements.

3. The expression 2 < x < 3 is legal. It does not mean (2 < x)&&(x < 3) as
many would wish. It means (2 < x) < 3. Since (2 < x) is a Boolean expres-
sion, its value is either true or false, which converts to 1 or 0, so that
2 < x < 3 is always true. The output is “true” regardless of the value of x.

4. No. The Boolean expression j > 0 is false (j was just assigned -1). The
&& uses short-circuit evaluation, which does not evaluate the second
expression if the truth value can be determined from the first expression.
The first expression is false, so the entire expression evaluates to false
without evaluating the second expression. So, there is no division by zero.

5.

6.

7.

8.

9. Start
Second Output
End

Start
Hello from the second if.
End
Start again
End again

large

small

medium

170 CHAPTER 3 / More Flow of Control

10. The statements are the same whether the second Boolean expression is
(x > 10) or (x > 100). So, the output is the same as in Self-Test
Exercise 9.

11. Start
100
End

12. Both of the following are correct:

if (n < 0)
 cout << n << " is less than zero.\n";
else if ((0 <= n) && (n <= 100))
 cout << n << " is between 0 and 100 (inclusive).\n";
else if (n >100)
 cout << n << " is larger than 100.\n";

and

if (n < 0)
 cout << n << " is less than zero.\n";
else if (n <= 100)
 cout << n << " is between 0 and 100 (inclusive).\n";
else
 cout << n << " is larger than 100.\n";

13. enum constants are given default values starting at 0, unless otherwise
assigned. The constants increment by 1. The output is 3 2 1 0.

14. enum constants are given values as assigned. Unassigned constants incre-
ment the previous value by 1. The output is 2 1 7 5.

15.

16.

17.

(This is because there is no break statement in case 3.)

18.

19.

Roast worms

Onion ice cream

Chocolate ice cream
Onion ice cream

Bon appetit!

42 22

Answers to Self-Test Exercises 171

20. It helps to slightly change the code fragment to understand to which dec-
laration each usage resolves.

{
 int x1 = 1;// output in this column
 cout << x1 << endl;// 1<cr>
 {
 cout << x1 << endl;// 1<cr>
 int x2 = 2;
 cout << x2 << endl;// 2<cr>
 {
 cout << x2 << endl;// 2<cr>
 int x3 = 3;
 cout << x3 << endl;// 3<cr>
 }
 cout << x2 << endl;// 2<cr>
 }
 cout << x1 << endl;// 1<cr>
}

Here <cr > indicates that the output starts a new line.

21.

22.

23.

24.

25.

26.

27.

28. a. A for loop

b. and c. Both require a while loop since the input list might be empty.

c. A do-while loop can be used since at least one test will be performed.

2 1 0

2 1

1 2 3 4

1 2 3

2 4 6 8

Hello 10
Hello 8
Hello 6
Hello 4
Hello 2

2.000000 1.500000 1.000000 0.500000

172 CHAPTER 3 / More Flow of Control

29. a. for (int i = 1; i <= 10; i++)

 if (i < 5 && i != 2)

 cout << 'X';

b. for (i = 1; i <= 10; i = i + 3)

 cout << 'X';

c. cout << 'X'// necessary to keep output the same. Note

// also the change in initialization of m

for (long m = 200; m < 1000; m = m + 100)

 cout << 'X';

30. The output is 1024 10. The second number is the base 2 log of the first
number.

31. The output is: 1024 1. The ';' after the for is probably a pitfall error.

32. This is an infinite loop. Consider the update expression, i = i * 2. It
cannot change i because its initial value is 0, so it leaves i at its initial
value, 0.

33.

34.

Notice that since the exit statement ends the program, the phrase
End of Loop is not output.

35. A break statement is used to exit a loop (a while, do-while, or for state-
ment) or to terminate a case in a switch statement. A break is not legal
anywhere else in a C++ program. Note that if the loops are nested, a break
statement only terminates one level of the loop.

36. for (int count = 1; count <= 10; count++)
cout << "Hello\n";

37. You can use any odd number as a sentinel value.

int sum = 0, next;
cout << "Enter a list of even numbers. Place an\n"

<< "odd number at the end of the list.\n";
cin >> next;
while ((next % 2) == 0)
{

sum = sum + next;
cin >> next;

}

4 3 End of Loop

4 3

Programming Projects 173

38. The output is too long to reproduce here. The pattern is as follows:

1 times 10 = 10
1 times 9 = 9

.

.

.
1 times 1 = 1
2 times 10 = 20
2 times 9 = 18

.

.

.
2 times 1 = 2
3 times 10 = 30

.

.

.

39. Tracing a variable means watching a program variable change value while
the program is running. This can be done with special debugging facilities
or by inserting temporary output statements in the program.

40. Loops that iterate the loop body one too many or one too few times are
said to have an off-by-one error.

41. Off-by-one errors abound in problem solving, not just writing loops. Typ-
ical reasoning from those who do not think carefully is

10 posts = 100 feet of fence / 10 feet between posts

This, of course, will leave the last 10 feet of fence without a post. You need
11 posts to provide 10 between-the-post 10-foot intervals to get 100 feet
of fence.

PROGRAMMING PROJECTS

1. Write a program to score the paper-rock-scissor game. Each of two users types
in either P, R, or S. The program then announces the winner as well as the basis
for determining the winner: Paper covers rock, Rock breaks scissors,
Scissors cut paper, or Nobody wins. Be sure to allow the users to use lower-
case as well as uppercase letters. Your program should include a loop that lets
the user play again until the user says she or he is done.

2. Write a program to compute the interest due, total amount due, and the
minimum payment for a revolving credit account. The program accepts
the account balance as input, then adds on the interest to get the total

174 CHAPTER 3 / More Flow of Control

amount due. The rate schedules are the following: The interest is 1.5% on
the first $1,000 and 1% on any amount over that. The minimum payment
is the total amount due if that is $10 or less; otherwise, it is $10 or 10% of
the total amount owed, whichever is larger. Your program should include
a loop that lets the user repeat this calculation until the user says she or he
is done.

3. Write an astrology program. The user types in a birthday, and the program
responds with the sign and horoscope for that birthday. The month may
be entered as a number from 1 to 12. Then enhance your program so that
if the birthday is only one or two days away from an adjacent sign, the
program announces that the birthday is on a “cusp” and also outputs the
horoscope for that nearest adjacent sign. This program will have a long
multiway branch. Make up a horoscope for each sign. Your program
should include a loop that lets the user repeat this calculation until the
user says she or he is done.

The horoscope signs and dates are:

Aries March 21–April 19

Taurus April 20–May 20

Gemini May 21–June 21

Cancer June 22–July 22

Leo July 23–August 22

Virgo August 23–September 22

Libra September 23–October 22

Scorpio October 23–November 21

Sagittarius November 22–December 21

Capricorn December 22–January 19

Aquarius January 20–February 18

Pisces February 19–March 20

4. Horoscope Signs of the same Element are most compatible. There are 4
Elements in astrology, and 3 Signs in each: FIRE (Aries, Leo, Sagittarius)
EARTH (Taurus, Virgo, Capricorn) AIR (Gemini, Libra, Aquarius) WATER
(Cancer, Scorpio, Pisces)

According to some astrologers, you are most comfortable with your own
sign and the other two signs in your Element. For example, Aries would
be most comfortable with other Aries and the two other FIRE signs, Leo
and Sagittarius.

Modify your program from Programming Project 3 to also display the
name of the signs that will be compatible for the birthday.

Programming Projects 175

5. Write a program that computes the cost of a long-distance call. The cost of
the call is determined according to the following rate schedule:

a. Any call started between 8:00 A.M. and 6:00 P.M., Monday through
Friday, is billed at a rate of $0.40 per minute.

b. Any call starting before 8:00 A.M. or after 6:00 P.M., Monday through
Friday, is charged at a rate of $0.25 per minute.

c. Any call started on a Saturday or Sunday is charged at a rate of $0.15
per minute.

The input will consist of the day of the week, the time the call started,
and the length of the call in minutes. The output will be the cost of the
call. The time is to be input in 24-hour notation, so the time 1:30 P.M. is
input as

13:30

The day of the week will be read as one of the following pairs of character
values, which are stored in two variables of type char:

Mo Tu We Th Fr Sa Su

Be sure to allow the user to use either uppercase or lowercase letters or a
combination of the two. The number of minutes will be input as a value
of type int. (You can assume that the user rounds the input to a whole
number of minutes.) Your program should include a loop that lets the
user repeat this calculation until the user says she or he is done.

6. (This Project requires that you know some basic facts about complex
numbers; so, it is only appropriate if you have studied complex numbers
in some mathematics class.)

Write a C++ program that solves quadratic equation to find its roots. The
roots of a quadratic equation

ax2 + bx + c = 0

(where a is not zero) are given by the formula:

(–b ± sqrt(b2 – 4ac)) / 2a

The value of the discriminant (b2 – 4ac) determines the nature of roots. If
the value of the discriminant is zero then the equation has a single real
root. If the value of the discriminant is positive then the equation has two
real roots. If the value of the discriminant is negative, then the equation
has two complex roots.

The program takes values of a, b, and c as input and outputs the roots. Be
creative in how you output complex roots. Include a loop that allows the

176 CHAPTER 3 / More Flow of Control

user to repeat this calculation for new input values until the user says she
or he wants to end the program.

7. Write a program that accepts a year written as a four-digit Arabic (ordi-
nary) numeral and outputs the year written in Roman numerals. Impor-
tant Roman numerals are V for 5, X for 10, L for 50, C for 100, D for 500,
and M for 1,000. Recall that some numbers are formed by using a kind of
subtraction of one Roman “digit”; for example, IV is 4 produced as V
minus I, XL is 40, CM is 900, and so on. A few sample years: MCM is
1900, MCML is 1950, MCMLX is 1960, MCMXL is 1940, MCMLXXXIX is
1989. Assume the year is between 1000 and 3000. Your program should
include a loop that lets the user repeat this calculation until the user says
she or he is done.

8. Write a program that scores a blackjack hand. In blackjack, a player
receives from two to five cards. The cards 2 through 10 are scored as 2
through 10 points each. The face cards—jack, queen, and king—are
scored as 10 points. The goal is to come as close to a score of 21 as possi-
ble without going over 21. Hence, any score over 21 is called “busted.”
The ace can count as either 1 or 11, whichever is better for the user. For
example, an ace and a 10 can be scored as either 11 or 21. Since 21 is a
better score, this hand is scored as 21. An ace and two 8s can be scored as
either 17 or 27. Since 27 is a “busted” score, this hand is scored as 17.

The user is asked how many cards she or he has, and the user responds
with one of the integers 2, 3, 4, or 5. The user is then asked for the card
values. Card values are 2 through 10, jack, queen, king, and ace. A good
way to handle input is to use the type char so that the card input 2, for
example, is read as the character '2', rather than as the number 2. Input
the values 2 through 9 as the characters '2' through '9'. Input the values
10, jack, queen, king, and ace as the characters 't', 'j', 'q', 'k', and 'a'.
(Of course, the user does not type in the single quotes.) Be sure to allow
upper- as well as lowercase letters as input.

After reading in the values, the program should convert them from
character values to numeric card scores, taking special care for aces. The
output is either a number between 2 and 21 (inclusive) or the word Busted.
You are likely to have one or more long multiway branches that uses a
switch statement or nested if-else statement. Your program should
include a loop that lets the user repeat this calculation until the user says
she or he is done.

9. Interest on a loan is paid on a declining balance, and hence a loan with an
interest rate of, say, 14% can cost significantly less than 14% of the bal-
ance. Write a program that takes a loan amount and interest rate as input
and then outputs the monthly payments and balance of the loan until the
loan is paid off. Assume that the monthly payments are one-twentieth of

Programming Projects 177

the original loan amount, and that any amount in excess of the interest is
credited toward decreasing the balance due. Thus, on a loan of $20,000,
the payments would be $1,000 a month. If the interest rate is 10%, then
each month the interest is one-twelfth of 10% of the remaining balance.
The first month, (10% of $20,000)/12, or $166.67, would be paid in
interest, and the remaining $833.33 would decrease the balance to
$19,166.67. The following month the interest would be (10% of
$19,166.67)/12, and so forth. Also have the program output the total
interest paid over the life of the loan.

Finally, determine what simple annualized percentage of the original loan
balance was paid in interest. For example, if $1,000 was paid in interest
on a $10,000 loan and it took two years to pay off, then the annualized
interest is $500, which is 5% of the $10,000 loan amount. Your program
should allow the user to repeat this calculation as often as desired.

10. The Fibonacci numbers Fn are defined as follows. F0 is 1, F1 is 1, and

Fi+2 = Fi + Fi + 1

i = 0, 1, 2, … . In other words, each number is the sum of the previous two
numbers. The first few Fibonacci numbers are 1, 1, 2, 3, 5, and 8. One
place that these numbers occur is as certain population growth rates. If a
population has no deaths, then the series shows the size of the
population after each time period. It takes an organism two time periods
to mature to reproducing age, and then the organism reproduces once
every time period. The formula applies most straightforwardly to asexual
reproduction at a rate of one offspring per time period.

Assume that the green crud population grows at this rate and has a time
period of 5 days. Hence, if a green crud population starts out as 10
pounds of crud, then in 5 days there is still 10 pounds of crud; in 10 days
there is 20 pounds of crud, in 15 days 30 pounds, in 20 days 50 pounds,
and so forth. Write a program that takes both the initial size of a green
crud population (in pounds) and a number of days as input, and that
outputs the number of pounds of green crud after that many days.
Assume that the population size is the same for four days and then
increases every fifth day. Your program should allow the user to repeat
this calculation as often as desired.

11. The value ex can be approximated by the sum

1 + x + x2/2! + x3/3! + ... + xn/n!

Write a program that takes a value x as input and outputs this sum for n
taken to be each of the values 1 to 100. The program should also output ex

calculated using the predefined function exp. The function exp is a

178 CHAPTER 3 / More Flow of Control

predefined function such that exp(x) returns an approximation to the
value ex. The function exp is in the library with the header file cmath. Your
program should repeat the calculation for new values of x until the user
says she or he is through.

Use variables of type double to store the factorials or you are likely to
produce integer overflow (or arrange your calculation to avoid any direct
calculation of factorials). 100 lines of output might not fit comfortably on
your screen. Output the 100 output values in a format that will fit all 100
values on the screen. For example, you might output 10 lines with 10
values on each line.

12. An approximate value of pi can be calculated using the series given below:

pi = 4 [1 − 1/3 + 1/5 − 1/7 + 1/9 ... + ((−1)n)/(2n+1)]
Write a C++ program to calculate the approximate value of pi using this
series. The program takes an input n that determines the number of terms
in the approximation of the value of pi and outputs the approximation.
Include a loop that allows the user to repeat this calculation for new
values n until the user says she or he wants to end the program.

13. The following problem is sometimes called “The Monty Hall Game Show
Problem.” You are a contestant on a game show and have won a shot at
the grand prize. Before you are three closed doors. Behind one door is a
brand new car. Behind the other two doors are consolation prizes. The
location of the prizes is randomly selected. The game show host asks you
to select a door, and you pick one. However, before revealing the contents
behind your door, the game show host reveals one of the other doors
with a consolation prize. At this point, the game show host asks if you
would like to stick with your original choice or switch your choice to the
other closed door. What choice should you make to optimize your
chances of winning the car? Does it matter whether you stick with your
original choice or switch doors?

Write a simulation program to solve the game show problem. Your
program should make 10,000 simulated runs through the problem,
randomly selecting locations for the prize, and then counting the number
times the car was won when sticking with the original choice, and
counting the number of times the car was won when switching doors.
Output the estimated probability of winning for both strategies. Be sure
that your program exactly simulates the process of selecting the door,
revealing one, and then switching. Do not make assumptions about the
actual solution (for example, simply assuming that there is a 1/3 or 1/2
chance of getting the prize).

Appendix 4 gives library functions for generating random numbers.

Video Note
Solution to
Programming
Project 3.13

Programming Projects 179

14. Write a program that finds and prints all of the prime numbers between 3
and 100. A prime number is a number such that one and itself are the
only numbers that evenly divide it (e.g., 3, 5, 7, 11, 13, 17, …).

One way to solve this problem is to use a doubly nested loop. The outer
loop can iterate from 3 to 100 while the inner loop checks to see if the
counter value for the outer loop is prime. One way to see if number n is
prime is to loop from 2 to n−1 and if any of these numbers evenly divides
n, then n cannot be prime. If none of the values from 2 to n−1 evenly
divide n, then n must be prime. (Note that there are several easy ways to
make this algorithm more efficient.)

15. Buoyancy is the ability of an object to float. Archimedes’ principle states
that the buoyant force is equal to the weight of the fluid that is displaced
by the submerged object. The buoyant force can be computed by:

Fb = V � y

Where Fb is the buoyant force, V is the volume of the submerged object,
and y is the specific weight of the fluid. If Fb is greater than or equal to the
weight of the object, then it will float, otherwise it will sink.

Write a program that inputs the weight (in pounds) and radius (in feet)
of a sphere and outputs whether the sphere will sink or float in water.
Use y = 62.4 lb/ft3 as the specific weight of water. The volume of a sphere
is computed by (4/3)πr3.

16. Write a program that finds the temperature that is the same in both
Celsius and Fahrenheit. The formula to convert from Celsius to Fahren-
heit is:

Your program should create two integer variables for the temperature in
Celsius and Fahrenheit. Initialize the temperature to 100 degrees Celsius.
In a loop, decrement the Celsius value and compute the corresponding
temperature in Fahrenheit until the two values are the same.

Since you are working with integer values, the formula may not give an
exact result for every possible Celsius temperature. This will not affect
your solution to this particular problem.

Fahrenheit 9 Celsius�()
5

--- 32��

This page intentionally left blank

4
 Procedural Abstraction

and Functions
That Return a Value

4.1 TOP-DOWN DESIGN 182

4.2 PREDEFINED FUNCTIONS 183
Using Predefined Functions 183
Type Casting 188
Older Form of Type Casting 190
Pitfall: Integer Division Drops the

Fractional Part 191

4.3 PROGRAMMER-DEFINED FUNCTIONS 192
Function Definitions 192
Functions That Return a Boolean Value 196
Alternate Form for Function Declarations 199
Pitfall: Arguments in the Wrong Order 199
Function Definition–Syntax Summary 201
More About Placement of Function Definitions 202
Programming Tip: Use Function Calls in Branching

Statements 202

4.4 PROCEDURAL ABSTRACTION 204
The Black Box Analogy 204
Programming Tip: Choosing Formal Parameter

Names 206
Programming Tip: Nested Loops 208
Case Study: Buying Pizza 211

Algorithm Design 212
Algorithm Outline for the Function
unitprice 212

Pseudocode for the Function unitprice 213
Coding 213
Program Testing 214

Programming Tip: Use Pseudocode 217

4.5 LOCAL VARIABLES 218
The Small Program Analogy 218
Programming Example: Experimental Pea

Patch 220
Global Constants and Global Variables 221
Call-by-Value Formal Parameters Are Local

Variables 224
Namespaces Revisited 226
Programming Example: The Factorial Function 229

4.6 OVERLOADING FUNCTION NAMES 230
Introduction to Overloading 231
Programming Example: Revised Pizza-Buying

Program 233
Automatic Type Conversion 236

Chapter Summary 239
Answers to Self-Test Exercises 239
Programming Projects 244

182

There was a most ingenious Architect who had contrived a new method
for building Houses, by beginning at the Roof, and working downward
to the Foundation.
JONATHAN SWIFT, Gulliver’s Travels

INTRODUCTION
A program can be thought of as consisting of subparts, such as obtaining the
input data, calculating the output data, and displaying the output data. C++,
like most programming languages, has facilities to name and code each of
these subparts separately. In C++ these subparts are called functions. In this
chapter we present the basic syntax for one of the two main kinds of C++
functions—namely those designed to compute a single value. We also discuss
how these functions can aid in program design. We begin with a discussion
of a fundamental design principle.

PREREQUISITES
You should read Chapter 2 and at least look through Chapter 1 before reading
this chapter.

4.1 TOP-DOWN DESIGN

Remember that the way to write a program is to first design the method that the
program will use and to write out this method in English, as if the instructions
were to be followed by a human clerk. As we noted in Chapter 1, this set of
instructions is called an algorithm. A good plan of attack for designing the
algorithm is to break down the task to be accomplished into a few subtasks,
decompose each of these subtasks into smaller subtasks, and so forth. Eventual-
ly the subtasks become so small that they are trivial to implement in C++. This
method is called top-down design. (The method is also sometimes called
stepwise refinement, or more graphically, divide and conquer.)

Using the top-down method, you design a program by breaking the
program’s task into subtasks and solving these subtasks by subalgorithms.
Preserving this top-down structure in your C++ program would make the
program easier to understand, easier to change if need be, and as will become
apparent, easier to write, test, and debug. C++, like most programming
languages, has facilities to include separate subparts inside of a program. In
other programming languages these subparts are called subprograms, procedures,
or methods. In C++ these subparts are called functions.

One of the advantages of using functions to divide a programming task
into subtasks is that different people can work on the different subtasks. When

top-down
design

functions for
teamwork

4.2 Predefined Functions 183

producing a very large program, such as a compiler or office-management
system, this sort of teamwork is needed if the program is to be produced in a
reasonable amount of time. We will begin our discussion of functions by
showing you how to use functions that were written by somebody else.

4.2 PREDEFINED FUNCTIONS

C++ comes with libraries of predefined functions that you can use in your
programs. Before we show you how to define functions, we will first show you
how to use these functions that are already defined for you.

Using Predefined Functions

We will use the sqrt function to illustrate how you use predefined functions. The
sqrt function calculates the square root of a number. (The square root of a
number is that number that, when multiplied by itself, will produce the number
you started out with. For example, the square root of 9 is 3 because 32 is equal to
9.) The function sqrt starts with a number, such as 9.0, and computes its square
root, in this case 3.0. The value the function starts out with is called its argument.
The value it computes is called the value returned. Some functions may have
more than one argument, but no function has more than one value returned. If
you think of the function as being similar to a small program, then the
arguments are analogous to the input and the value returned is analogous to the
output.

The syntax for using functions in your program is simple. To set a variable
named the_root equal to the square root of 9.0, you can use the following
assignment statement:

the_root = sqrt(9.0);

The expression sqrt(9.0) is called a function call (or if you want to be
fancy you can also call it a function invocation). An argument in a function
call can be a constant, such as 9.0, or a variable, or a more complicated
expression. A function call is an expression that can be used like any other
expression. You can use a function call wherever it is legal to use an expression
of the type specified for the value returned by the function. For example, the
value returned by sqrt is of type double. Thus, the following is legal (although
perhaps stingy):

bonus = sqrt(sales)/10;

sales and bonus are variables that would normally be of type double. The
function call sqrt(sales) is a single item, just as if it were enclosed in
parentheses. Thus, this assignment statement is equivalent to:

bonus = (sqrt(sales))/10;

argument

value returned

function call

184 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

You can also use a function call directly in a cout statement, as in the
following:

cout << "The side of a square with area " << area
 << " is " << sqrt(area);

Display 4.1 contains a complete program that uses the predefined
function sqrt. The program computes the size of the largest square dog house
that can be built for the amount of money the user is willing to spend. The
program asks the user for an amount of money, and then determines how
many square feet of floor space can be purchased for that amount of money.
That calculation yields an area in square feet for the floor area of the dog
house. The function sqrt yields the length of one side of the dog house floor.

Notice that there is another new element in the program in Display 4.1:

#include <cmath>

That line looks very much like the line

#include <iostream>

and, in fact, these two lines are the same sort of thing. As we noted in Chapter
2, such lines are called include directives. The name inside the angular
brackets < > is the name of a file known as a header file. A header file for a
library provides the compiler with certain basic information about the library,
and an include directive delivers this information to the compiler. This enables

Function Call

A function call is an expression consisting of the function name followed
by arguments enclosed in parentheses. If there is more than one argument,
the arguments are separated by commas. A function call is an expression
that can be used like any other expression of the type specified for the
value returned by the function.

SYNTAX

Function_Name(Argument_List)

where the Argument_List is a comma-separated list of arguments:

Argument_1, Argument_2, . . . , Argument_Last

EXAMPLES

side = sqrt(area);
cout << "2.5 to the power 3.0 is "
 << pow(2.5, 3.0);

#include
directive

and header file

4.2 Predefined Functions 185

the linker to find object code for the functions in the library so that it can
correctly link the library to your program. For example, the library iostream
contains the definitions of cin and cout, and the header file for the iostream
library is called iostream. The math library contains the definition of the
function sqrt and a number of other mathematical functions, and the header
file for this library is cmath. If your program uses a predefined function from

DISPLAY 4.1 A Function Call

1 //Computes the size of a dog house that can be purchased
2 //given the user's budget.
3 #include <iostream>
4 #include <cmath>
5 using namespace std;
6
7 int main()
8 {
9 const double COST_PER_SQ_FT = 10.50;

10 double budget, area, length_side;
11
12 cout << "Enter the amount budgeted for your dog house $";
13 cin >> budget;
14
15 area = budget/COST_PER_SQ_FT;
16 length_side = sqrt(area);
17
18 cout.setf(ios::fixed);
19 cout.setf(ios::showpoint);
20 cout.precision(2);
21 cout << "For a price of $" << budget << endl
22 << "I can build you a luxurious square dog house\n"
23 << "that is " << length_side
24 << " feet on each side.\n";
25
26 return 0;
27 }

Sample Dialogue

Enter the amount budgeted for your dog house: $25.00

For a price of $25.00

I can build you a luxurious square dog house

that is 1.54 feet on each side.

186 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

some library, then it must contain a directive that names the header file for
that library, such as the following:

#include <cmath>

Be sure to follow the syntax illustrated in our examples. Do not forget the
symbols < and >; they are the same symbols as the less-than and greater-than
symbols. There should be no space between the < and the filename, nor
between the filename and the >. Also, some compilers require that directives
have no spaces around the #, so it is always safest to place the # at the very start
of the line and not to put any space between the # and the word include.
These #include directives are normally placed at the beginning of the file
containing your program.

As we noted before, the directive

#include <iostream>

requires that you also use the following using directive:

using namespace std;

This is because the definitions of names like cin and cout, which are given in
iostream, define those names to be part of the std namespace. This is true of
most standard libraries. If you have an include directive for a standard library
such as

#include <cmath>

then you probably need the using directive:

using namespace std;

There is no need to use multiple copies of this using directive when you have
multiple include directives.

Usually, all you need to do to use a library is to place an include directive
and a using directive for that library in the file with your program. If things
work with just the include directive and the using directive, you need not
worry about doing anything else. However, for some libraries on some
systems you may need to give additional instructions to the compiler or to
explicitly run a linker program to link in the library. Early C and C++
compilers did not automatically search all libraries for linking. The details vary
from one system to another, so you will have to check your manual or a local
expert to see exactly what is necessary.

Some people will tell you that include directives are not processed by
the compiler but are processed by a preprocessor. They’re right, but the
difference is more of a word game than anything that need concern you. On
almost all compilers the preprocessor is called automatically when you
compile your program.

#include may
not be enough

preprocessor

4.2 Predefined Functions 187

A few predefined functions are described in Display 4.2. More predefined
functions are described in Appendix 4. Notice that the absolute value functions
abs and labs are in the library with header file cstdlib, so any program that
uses either of these functions must contain the following directive:

#include <cstdlib>

All the other functions listed are in the library with header file cmath, just like
sqrt.

Also notice that there are three absolute value functions. If you want to
produce the absolute value of a number of type int, you use abs; if you want
to produce the absolute value of a number of type long, you use labs; and if
you want to produce the absolute value of a number of type double, you use
fabs. To complicate things even more, abs and labs are in the library with
header file cstdlib, while fabs is in the library with header file cmath. fabs is
an abbreviation for floating-point absolute value. Recall that numbers with a
fraction after the decimal point, such as numbers of type double, are often
called floating-point numbers.

Another example of a predefined function is pow, which is in the library
with header file cmath. The function pow can be used to do exponentiation in

DISPLAY 4.2 Some Predefined Functions

Name Description Type of
Arguments

Type of
Value
Returned

Example Value Library
Header

sqrt square root double double sqrt(4.0) 2.0 cmath

pow powers double double pow(2.0,3.0) 8.0 cmath

abs absolute value
for int

int int abs(-7)
abs(7)

7
7

cstdlib

labs absolute value
for long

long long labs(-70000)
labs(70000)

70000
70000

cstdlib

fabs absolute value
for double

double double fabs(-7.5)
fabs(7.5)

7.5
7.5

cmath

ceil ceiling
(round up)

double double ceil(3.2)
ceil(3.9)

4.0
4.0

cmath

floor floor
(round down)

double double floor(3.2)
floor(3.9)

3.0
3.0

cmath

abs and labs

fabs

pow

188 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

C++. For example, if you want to set a variable result equal to xy, you can use
the following:

result = pow(x, y);

Hence, the following three lines of program code will output the number 9.0
to the screen, because (3.0)2.0 is 9.0:

double result, x = 3.0, y = 2.0;
result = pow(x, y);
cout << result;

Notice that the above call to pow returns 9.0, not 9. The function pow always
returns a value of type double, not of type int. Also notice that the function pow
requires two arguments. A function can have any number of arguments.
Moreover, every argument position has a specified type and the argument used
in a function call should be of that type. In many cases, if you use an argument
of the wrong type, then some automatic type conversion will be done for you by
C++. However, the results may not be what you intended. When you call a
function, you should use arguments of the type specified for that function. One
exception to this caution is the automatic conversion of arguments from type int
to type double. In many situations, including calls to the function pow, you can
safely use an argument of type int when an argument of type double is specified.

Many implementations of pow have a restriction on what arguments can
be used. In these implementations, if the first argument to pow is negative,
then the second argument must be a whole number. Since you probably have
enough other things to worry about when learning to program, it might be
easiest and safest to use pow only when the first argument is nonnegative.

Type Casting

Recall that 9/2 is integer division, and evaluates to 4, not 4.5. If you want
division to produce an answer of type double (that is, including the fractional
part after the decimal point), then at least one of the two numbers in the
division must be of type double. For example, 9/2.0 evaluates to 4.5. If one
of the two numbers is given as a constant, you can simply add a decimal point
and a zero to one (or both) numbers, and the division will then produce a
value that includes the digits after the decimal point.

But what if both of the operands in a division are variables, as in the
following?

int total_candy, number_of_people;
double candy_per_person;
<The program somehow sets the value of total_candy to 9

and the value of number_of_people to 2.
It does not matter how the program does this.>

candy_per_person = total_candy/number_of_people;

arguments have
a type

restrictions
on pow

Division may
require the

type double

4.2 Predefined Functions 189

Unless you convert the value in one of the variables total_candy or
number_of_people to a value of type double, then the result of the division
will be 4, not 4.5 as it should be. The fact that the variable candy_per_person
is of type double does not help. The value of 4 obtained by division will be
converted to a value of type double before it is stored in the variable
candy_per_person, but that will be too late. The 4 will be converted to 4.0 and
the final value of candy_per_person will be 4.0, not 4.5. If one of the
quantities in the division were a constant, you could add a decimal point and
a zero to convert the constant to type double, but in this case both quantities
are variables. Fortunately, there is a way to convert from type int to type
double that you can use with either a constant or a variable.

In C++ you can tell the computer to convert a value of type int to a value
of type double. The way that you write “Convert the value 9 to a value of type
double” is

static_cast<double>(9)

The notation static_cast<double> is a kind of predefined function that
converts a value of some other type, such as 9, to a value of type double, in this
case 9.0. An expression such as static_cast<double>(9) is called a type cast.
You can use a variable or other expression in place of the 9. You can use other
type names besides double to obtain a type cast to some type other than
double, but we will postpone that topic until later.

For example, in the following we use a type cast to change the type of 9
from int to double and so the value of answer is set to 4.5:

double answer;
answer = static_cast<double>(9)/2;

Type casting applied to a constant, such as 9, can make your code easier to
read, since it makes your intended meaning clearer. But type casting applied to
constants of type int does not give you any additional power. You can use 9.0
instead of static_cast<double>(9) when you want to convert 9 to a value of
type double. However, if the division involves only variables, then type casting
may be your only sensible alternative. Using type casting, we can rewrite our
earlier example so that the variable candy_per_person receives the correct value
of 4.5, instead of 4.0; in order to do this, the only change we need is the
replacement of total_candy with static_cast<double>(total_candy), as
shown in what follows:

int total_candy, number_of_people;
double candy_per_person;
<The program somehow sets the value of total_candy to 9

and the value of number_of_people to 2.
It does not matter how the program does this.>

candy_per_person =
 static_cast<double>(total_candy)/number_of_people;

type casting

190 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

Notice the placement of parentheses in the type casting used in the code.
You want to do the type casting before the division so that the division
operator is working on a value of type double. If you wait until after the
division is completed, then the digits after the decimal point are already lost.
If you mistakenly use the following for the last line of the previous code, then
the value of candy_per_person will be 4.0, not 4.5.

candy_per_person =
static_cast<double>(total_candy/number_of_people); //WRONG!

Older Form of Type Casting

The use of static_cast<double>, as we discussed in the previous section, is
the preferred way to perform a type cast. However, older versions of C++ used
a different notation for type casting. This older notation simply uses the type
name as if it were a function name, so double(9) returns 9.0. Thus, if
candy_per_person is a variable of type double, and if both total_candy and
number_of_people are variables of type int, then the following two assign-
ment statements are equivalent:

candy_per_person =
 static_cast<double>(total_candy)/number_of_people;

and

candy_per_person =
 double(total_candy)/number_of_people;

A Function to Convert from int to double

The notation static_cast<double> can be used as a predefined function
and will convert a value of some other type to a value of type double. For
example, static_cast<double>(2) returns 2.0. This is called type casting.
(Type casting can be done with types other than double, but until later in
this book, we will do type casting only with the type double.)

SYNTAX

static_cast<double>(Expression_of_Type_int)

EXAMPLE

int total_pot, number_of_winners;
double your_winnings;
. . .

your_winnings =
 static_cast<double>(total_pot)/number_of_winners;

Warning!

double used
as a function

4.2 Predefined Functions 191

Although static_cast<double>(total_candy) and double(total_candy)
are more or less equivalent, you should use the static_cast<double> form,
since the form double(total_candy) may be discontinued in later versions of
C++.

■ PITFALL Integer Division Drops the Fractional Part

In integer division, such as computing 11/2, it is easy to forget that 11/2 gives
5, not 5.5. The result is the next lower integer. For example,

double d;
d = 11/2;

Here, the division is done using integer divide; the result of the division is 5,
which is converted to double, then assigned to d. The fractional part is not
generated. Observe that the fact that d is of type double does not change the
division result. The variable d receives the value 5.0, not 5.5. ■

SELF -TEST EXERC ISES

1. Determine the value of each of the following arithmetic expressions:

2. Convert each of the following mathematical expressions to a C++ arith-
metic expression:

3. Write a complete C++ program to compute and output the square root of PI;
PI is approximately 3.14159. The const double PI is predefined in cmath.
You are encouraged to use this predefined constant.

sqrt(16.0) sqrt(16) pow(2.0, 3.0)

pow(2, 3) pow(2.0, 3) pow(1.1, 2)

abs(3) abs(−3) abs(0)

fabs(−3.0) fabs(−3.5) fabs(3.5)

ceil(5.1) ceil(5.8) floor(5.1)

floor(5.8) pow(3.0, 2)/2.0 pow(3.0, 2)/2

7/abs(−2) (7 + sqrt(4.0))/3.0 sqrt(pow(3, 2))

x y+ x y 7+ area fudge+

time tide+
nobody

b b2 4ac–+–

2a
--------------------------------------- x y–

192 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

4. Write and compile short programs to test the following issues:

a. Determine whether your compiler will allow the #include <iostream>
anywhere on the line, or if the # needs to be flush with the left margin.

b. Determine whether your compiler will allow space between the # and
the include.

4.3 PROGRAMMER-DEFINED FUNCTIONS

A custom-tailored suit always fits better than one off the rack.

MY UNCLE, THE TAILOR

In the previous section we told you how to use predefined functions. In this
section we tell you how to define your own functions.

Function Definitions

You can define your own functions, either in the same file as the main part of
your program or in a separate file so that the functions can be used by several
different programs. The definition is the same in either case, but for now, we
will assume that the function definition will be in the same file as the main
part of your program.

Display 4.3 contains a sample function definition in a complete program
that demonstrates a call to the function. The function is called total_cost.
The function takes two arguments—the price for one item and number of
items for a purchase. The function returns the total cost, including sales tax,
for that many items at the specified price. The function is called in the same
way a predefined function is called. The description of the function, which the
programmer must write, is a bit more complicated.

The description of the function is given in two parts that are called the
function declaration and the function definition. The function declaration (also
known as the function prototype) describes how the function is called. C++
requires that either the complete function definition or the function declara-
tion appears in the code before the function is called. The function declaration
for the function total_cost is in color at the top of Display 4.3 and is
reproduced here:

double total_cost(int number_par, double price_par);

The function declaration tells you everything you need to know in order to
write a call to the function. It tells you the name of the function, in this case
total_cost. It tells you how many arguments the function needs and what
type the arguments should be; in this case, the function total_cost takes
two arguments, the first one of type int and the second one of type double.
The identifiers number_par and price_par are called formal parameters. A

function
declaration

4.3 Programmer-Defined Functions 193

DISPLAY 4.3 A Function Definition

1 #include <iostream>
2 using namespace std;
3
4 double total_cost(int number_par, double price_par);
5 //Computes the total cost, including 5% sales tax,
6 //on number_par items at a cost of price_par each.
7
8 int main()
9 {

10 double price, bill;
11 int number;
12
13 cout << "Enter the number of items purchased: ";
14 cin >> number;
15 cout << "Enter the price per item $";
16 cin >> price;
17
18 bill = total_cost(number, price);
19
20 cout.setf(ios::fixed);
21 cout.setf(ios::showpoint);
22 cout.precision(2);
23 cout << number << " items at "
24 << "$" << price << " each.\n"
25 << "Final bill, including tax, is $" << bill
26 << endl;
27
28 return 0;
29 }
30
31 double total_cost(int number_par, double price_par)
32 {
33 const double TAX_RATE = 0.05; //5% sales tax
34 double subtotal;
35
36 subtotal = price_par * number_par;
37 return (subtotal + subtotal*TAX_RATE);
38 }

Sample Dialogue

Enter the number of items purchased: 2

Enter the price per item: $10.10

2 items at $10.10 each.

Final bill, including tax, is $21.21

function declaration

function call

function
body

function
definition

function heading

194 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

formal parameter is used as a kind of blank, or placeholder, to stand in for
the argument. When you write a function declaration, you do not know what
the arguments will be, so you use the formal parameters in place of the
arguments. The names of the formal parameters can be any valid identifiers,
but for a while we will end our formal parameter names with _par so that it
will be easier for us to distinguish them from other items in a program.
Notice that a function declaration ends with a semicolon.

The first word in a function declaration specifies the type of the value
returned by the function. Thus, for the function total_cost, the type of the
value returned is double.

As you can see, the function call in Display 4.3 satisfies all the require-
ments given by its function declaration. Let’s take a look. The function call is
in the following line:

bill = total_cost(number, price);

The function call is the expression on the right-hand side of the equal sign.
The function name is total_cost, and there are two arguments: The first
argument is of type int, the second argument is of type double, and since the
variable bill is of type double, it looks like the function returns a value of type
double (which it does). All that detail is determined by the function declaration.

The compiler does not care whether there’s a comment along with the
function declaration, but you should always include a comment that explains
what value is returned by the function.

In Display 4.3 the function definition is in color at the bottom of the
display. A function definition describes how the function computes the value
it returns. If you think of a function as a small program within your program,
then the function definition is like the code for this small program. In fact, the
syntax for the definition of a function is very much like the syntax for the main
part of a program. A function definition consists of a function header followed
by a function body. The function header is written the same way as the function
declaration, except that the header does not have a semicolon at the end. This
makes the header a bit repetitious, but that’s OK.

Although the function declaration tells you all you need to know to write a
function call, it does not tell you what value will be returned. The value returned
is determined by the statements in the function body. The function body follows
the function header and completes the function definition. The function body
consists of declarations and executable statements enclosed within a pair of
braces. Thus, the function body is just like the body of the main part of a
program. When the function is called, the argument values are plugged in for the
formal parameters and then the statements in the body are executed. The value
returned by the function is determined when the function executes a return
statement. (The details of this “plugging in” will be discussed in a later section.)

A return statement consists of the keyword return followed by an
expression. The function definition in Display 4.3 contains the following
return statement:

formal
parameter

type of
value returned

function
definition

function header

function body

return
statement

4.3 Programmer-Defined Functions 195

return (subtotal + subtotal*TAX_RATE);

When this return statement is executed, the value of the following expression
is returned as the value of the function call:

(subtotal + subtotal*TAX_RATE)

The parentheses are not needed. The program will run exactly the same if the
return statement is written as follows:

return subtotal + subtotal*TAX_RATE;

However, on larger expressions, the parentheses make the return statement
easier to read. For consistency, some programmers advocate using these paren-
theses even on simple expressions. In the function definition in Display 4.3
there are no statements after the return statement, but if there were, they would
not be executed. When a return statement is executed, the function call ends.

Let’s see exactly what happens when the following function call is
executed in the program shown in Display 4.3:

bill = total_cost(number, price);

First, the values of the arguments number and price are plugged in for the formal
parameters; that is, the values of the arguments number and price are substituted
in for number_par and price_par. In the Sample Dialogue, number receives the
value 2 and price receives the value 10.10. So 2 and 10.10 are substituted for

Function Declaration

A function declaration tells you all you need to know to write a call to the
function. A function declaration is required to appear in your code prior to
a call to a function whose definition has not yet appeared. Function
declarations are normally placed before the main part of your program.

SYNTAX

Type_Returned Function_Name(Parameter_List);
Function_Declaration_Comment

where the Parameter_List is a comma-separated list of parameters:

 Type_1 Formal_Parameter_1, Type_2 Formal_Parameter_2,...
 ..., Type_Last Formal_Parameter_Last

Example

double total_weight(int number, double weight_of_one);
//Returns the total weight of number items that
//each weigh weight_of_one.

Do not forget
this semicolon.

anatomy of a
function call

196 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

number_par and price_par, respectively. This substitution process is known as
the call-by-value mechanism, and the formal parameters are often referred to
as call-by-value formal parameters, or simply as call-by-value parameters.
There are three things that you should note about this substitution process:

1. It is the values of the arguments that are plugged in for the formal param-
eters. If the arguments are variables, the values of the variables, not the
variables themselves, are plugged in.

2. The first argument is plugged in for the first formal parameter in the
parameter list, the second argument is plugged in for the second formal
parameter in the list, and so forth.

3. When an argument is plugged in for a formal parameter (for instance
when 2 is plugged in for number_par), the argument is plugged in for all
instances of the formal parameter that occur in the function body (for
instance 2 is plugged in for number_par each time it appears in the func-
tion body).

The entire process involved in the function call shown in Display 4.3 is
described in detail in Display 4.4.

Functions That Return a Boolean Value

A function may return a bool value. Such a function can be used in a Boolean
expression to control an if-else statement, to control a loop statement, or
can be used anywhere else that a Boolean expression is allowed. The returned
type for such a function should be the type bool.

A call to a function that returns a Boolean value of true or false can be
used anywhere that a Boolean expression is allowed. This can often make a
program easier to read. By means of a function declaration, you can associate
a complex Boolean expression with a meaningful name and use the name as

A Function Is Like a Small Program

To understand functions, keep the following three points in mind:

■ A function definition is like a small program and calling the function is the
same thing as running this “small program.”

■ A function uses formal parameters, rather than cin, for input. The arguments to
the function are the input and they are plugged in for the formal parameters.

■ A function (of the kind discussed in this chapter) does not normally send any out-
put to the screen, but it does send a kind of “output” back to the program. The
function returns a value, which is like the “output” for the function. The func-
tion uses a return statement instead of a cout statement for this “output.”

call-by-value

4.3 Programmer-Defined Functions 197

DISPLAY 4.4 Details of a Function Call (part 1 of 2)

Anatomy of the Function Call in Display 4.3

0 Before the function is called, the values of the variables number and price
 are set to 2 and 10.10, by cin statements (as you can see in the Sample
 Dialogue in Display 4.3).

1 The following statement, which includes a function call, begins executing:

bill = total_cost(number, price);

2 The value of number (which is 2) is plugged in for number_par and the value
 of price (which is 10.10) is plugged in for price_par:

double total_cost(int number_par, double price_par)
{
 const double TAX_RATE = 0.05; //5% sales tax
 double subtotal;

 subtotal = price_par * number_par;
 return (subtotal + subtotal*TAX_RATE);
}

 producing the following:

double total_cost(int 2, double 10.10)
{
 const double TAX_RATE = 0.05; //5% sales tax
 double subtotal;

 subtotal = 10.10 * 2;
 return (subtotal + subtotal*TAX_RATE);
}

(continued)

plug in
value of
price

plug in
value of
number

198 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

a Boolean expression in an if-else statement or anywhere else that a Boolean
expression is allowed. For example, the statement

if (((rate >= 10) && (rate < 20)) || (rate == 0))
{

...
}

can be made to read

if (appropriate(rate))
{

...
}

provided that the following function has been defined:

DISPLAY 4.4 Details of a Function Call (part 2 of 2)

Anatomy of the Function Call in Display 4.3 (concluded)

3 The body of the function is executed, that is, the following is executed:

{
 const double TAX_RATE = 0.05; //5% sales tax
 double subtotal;

 subtotal = 10.10 * 2;
 return (subtotal + subtotal*TAX_RATE);
}

4 When the return statement is executed, the value of the expression after
 return is the value returned by the function. In this case, when

 return (subtotal + subtotal*TAX_RATE);

 is executed, the value of (subtotal + subtotal*TAX_RATE), which is
21.21, is returned by the function call

 total_cost(number, price)

 and so the value of bill (on the left-hand side of the equal sign) is set equal to
21.21 when the following statement finally ends:

 bill = total_cost(number, price);

4.3 Programmer-Defined Functions 199

bool appropriate(int rate)
{
 return (((rate >= 10) && (rate < 20)) || (rate == 0));
}

Alternate Form for Function Declarations

You are not required to list formal parameter names in a function declaration.
The following two function declarations are equivalent:

double total_cost(int number_par, double price_par);

and

double total_cost(int, double);

We will always use the first form so that we can refer to the formal
parameters in the comment that accompanies the function declaration.
However, you will often see the second form in manuals that describe
functions.1

This alternate form applies only to function declarations. Function headers
must always list the formal parameter names.

■ PITFALL Arguments in the Wrong Order

When a function is called, the computer substitutes the first argument for the
first formal parameter, the second argument for the second formal parameter,
and so forth. It does not check for reasonableness. If you confuse the order of
the arguments in a function call, the program will not do what you want it to
do. In order to see what can go wrong, consider the program in Display 4.5. The
programmer who wrote that program carelessly reversed the order of the
arguments in the call to the function grade. The function call should have been

letter_grade = grade(score, need_to_pass);

This is the only mistake in the program. Yet, some poor student has been
mistakenly failed in a course because of this careless mistake. The function
grade is so simple that you might expect this mistake to be discovered by the
programmer when the program is tested. However, if grade were a more
complicated function, the mistake might easily go unnoticed. ■

1 All C++ needs to link to your program to the library for your function is the function
name and sequence of types of the formal parameters. The formal parameter names are
important only to the function definition. However, programs should communicate to
programmers as well as to compilers. It is frequently very helpful in understanding a
function to use the name that the programmer attaches to the function’s data.

200 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

If the type of an argument does not match the formal parameter, then the
compiler may give you a warning message. Unfortunately, not all compilers
will give such warning messages. Moreover, in a situation like the one in

DISPLAY 4.5 Incorrectly Ordered Arguments (part 1 of 2)

1 //Determines user's grade. Grades are Pass or Fail.
2 #include <iostream>
3 using namespace std;
4
5 char grade(int received_par, int min_score_par);
6 //Returns 'P' for passing, if received_par is
7 //min_score_par or higher. Otherwise returns 'F' for failing.
8
9 int main()
10 {
11 int score, need_to_pass;
12 char letter_grade;
13
14 cout << "Enter your score"
15 << " and the minimum needed to pass:\n";
16 cin >> score >> need_to_pass;
17
18 letter_grade = grade(need_to_pass, score);
19
20 cout << "You received a score of " << score << endl
21 << "Minimum to pass is " << need_to_pass << endl;
22
23 if (letter_grade == 'P')
24 cout << "You Passed. Congratulations!\n";
25 else
26 cout << "Sorry. You failed.\n";
27
28 cout << letter_grade
29 << " will be entered in your record.\n";
30
31 return 0;
32 }
33
34 char grade(int received_par, int min_score_par)
35 {
36 if (received_par >= min_score_par)
37 return 'P';
38 else
39 return 'F';
40 }

(continued)

4.3 Programmer-Defined Functions 201

Display 4.5, no compiler will complain about the ordering of the arguments,
because the function argument types will match the formal parameter types no
matter what order the arguments are in.

Function Definition–Syntax Summary

Function declarations are normally placed before the main part of your
program and function definitions are normally placed after the main part of
your program (or, as we will see later in this book, in a separate file). Display
4.6 gives a summary of the syntax for a function declaration and definition.
There is actually a bit more freedom than that display indicates. The declara-
tions and executable statements in the function definition can be intermixed,
as long as each variable is declared before it is used. The rules about
intermixing declarations and executable statements in a function definition
are the same as they are for the main part of a program. However, unless you
have reason to do otherwise, it is best to place the declarations first, as
indicated in Display 4.6.

Since a function does not return a value until it executes a return
statement, a function must contain one or more return statements in the
body of the function. A function definition may contain more than one
return statement. For example, the body of the code might contain an if-
else statement, and each branch of the if-else statement might contain a
different return statement, as illustrated in Display 4.5.

Any reasonable pattern of spaces and line breaks in a function definition
will be accepted by the compiler. However, you should use the same rules for
indenting and laying out a function definition as you use for the main part of
a program. In particular, notice the placement of braces {} in our function
definitions and in Display 4.6. The opening and closing braces that mark the
ends of the function body are each placed on a line by themselves. This sets
off the function body.

DISPLAY 4.5 Incorrectly Ordered Arguments (part 2 of 2)

Sample Dialogue

Enter your score and the minimum needed to pass:

98 60

You received a score of 98

Minimum to pass is 60

Sorry. You failed.

F will be entered in your record.

Video Note
Programmer-
Defined Function
Example

return
statement

spacing and
line breaks

202 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

More About Placement of Function Definitions

We have discussed where function definitions and function declarations are
normally placed. Under normal circumstances these are the best locations for
the function declarations and function definitions. However, the compiler will
accept programs with the function definitions and function declarations in
certain other locations. A more precise statement of the rules is as follows:
Each function call must be preceded by either a function declaration for that
function or the definition of the function. For example, if you place all of your
function definitions before the main part of the program, then you need not
include any function declarations. Knowing this more general rule will help
you to understand C++ programs you see in some other books, but you should
follow the example of the programs in this book. The style we are using sets
the stage for learning how to build your own libraries of functions, which is
the style that most C++ programmers use.

■ PROGRAMMING TIP Use Function Calls in Branching Statements

The switch statement and the multiway if-else statement allow you to place
several different statements in each branch. However, doing so can make the
switch statement or if-else statement difficult to read. Look at the switch

DISPLAY 4.6 Syntax for a Function That Returns a Value

Function Declaration

Type_Returned Function_Name(Parameter_List);
Function_Declaration_Comment

Function Definition

Type_Returned Function_Name(Parameter_List)
{
 Declaration_1
 Declaration_2
 . . .
 Declaration_Last
 Executable_Statement_1
 Executable_Statement_2
 . . .
 Executable_Statement_Last
}

Must include
one or more
return statements.

function
header

body

4.3 Programmer-Defined Functions 203

statement in Display 3.7. Each of the branches for choices 1, 2, and 3 could be
a single function call. This makes the layout of the switch statement and the
overall structure of the program clear. If we had instead placed all the code for
each branch in the switch statement, instead of in the function definitions, then
the switch statement would be an incomprehensible sea of C++ statements. In
fact, the switch statement would not even fit on one screen. ■

SELF -TEST EXERC ISES

5. What is the output produced by the following program?

#include <iostream>
using namespace std;
char mystery(int first_par, int second_par);
int main()
{
 cout << mystery(10, 9) << "ow\n";
 return 0;
}

char mystery(int first_par, int second_par)
{
 if (first_par >= second_par)
 return 'W';
 else
 return 'H';
}

6. Write a function declaration and a function definition for a function that
takes three arguments, all of type int, and that returns the sum of its three
arguments.

7. Write a function declaration and a function definition for a function that
takes one argument of type int and one argument of type double, and that
returns a value of type double that is the average of the two arguments.

8. Write a function declaration and a function definition for a function that
takes one argument of type double. The function returns the character
value 'P' if its argument is positive and returns 'N' if its argument is zero
or negative.

9. Carefully describe the call-by-value parameter mechanism.

10. List the similarities and differences between use of a predefined (that is,
library) function and a user-defined function.

204 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

11. Write a function definition for a function called in_order that takes three
arguments of type int. The function returns true if the three arguments
are in ascending order; otherwise, it returns false. For example,
in_order(1, 2, 3) and in_order(1, 2, 2) both return true, while
in_order(1, 3, 2) returns false.

12. Write a function definition for a function called even that takes one argu-
ment of type int and returns a bool value. The function returns true if its
one argument is an even number; otherwise, it returns false.

13. Write a function definition for a function is_digit that takes one argu-
ment of type char and returns a bool value. The function returns true if
the argument is a decimal digit; otherwise, it returns false.

14. Write a function definition for a function is_root_of that takes two argu-
ment of type int and returns a bool value. The function returns true if the
first argument is the square root of the second; otherwise, it returns false.

4.4 PROCEDURAL ABSTRACTION

The cause is hidden, but the result is well known.

OVID, Metamorphoses IV

The Black Box Analogy

A person who uses a program should not need to know the details of how the
program is coded. Imagine how miserable your life would be if you had to know
and remember the code for the compiler you use. A program has a job to do, such
as compile your program or check the spelling of words in your paper. You need
to know what the program’s job is so that you can use the program, but you do
not (or at least should not) need to know how the program does its job. A function
is like a small program and should be used in a similar way. A programmer who
uses a function in a program needs to know what the function does (such as
calculate a square root or convert a temperature from degrees Fahrenheit to
degrees Celsius), but should not need to know how the function accomplishes its
task. This is often referred to as treating the function like a black box.

Calling something a black box is a figure of speech intended to convey the
image of a physical device that you know how to use but whose method of
operation is a mystery, because it is enclosed in a black box and you cannot
see inside the box (and cannot pry it open!). If a function is well designed, the
programmer can use the function as if it were a black box. All the programmer
needs to know is that if he or she puts appropriate arguments into the black
box, then an appropriate returned value will come out of the black box.
Designing a function so that it can be used as a black box is sometimes called

black box

4.4 Procedural Abstraction 205

information hiding to emphasize that the programmer acts as if the body of
the function were hidden from view.

Display 4.7 contains the function declaration and two different definitions for
a function named new_balance. As the function declaration comment explains,
the function new_balance calculates the new balance in a bank account when
simple interest is added. For instance, if an account starts with $100, and 4.5%
interest is posted to the account, then the new balance is $104.50. Hence, the
following code will change the value of vacation_fund from 100.00 to 104.50:

vacation_fund = 100.00;
vacation_fund = new_balance(vacation_fund, 4.5);

information
hiding

DISPLAY 4.7 Definitions That Are Black-Box Equivalent

Function Declaration

1 double new_balance(double balance_par, double rate_par);
2 //Returns the balance in a bank account after
3 //posting simple interest. The formal parameter balance_par is
4 //the old balance. The formal parameter rate_par is the interest rate.
5 //For example, if rate_par is 5.0, then the interest rate is 5%
6 //and so new_balance(100, 5.0) returns 105.00.

Definition 1

double new_balance(double balance_par, double rate_par)

{

 double interest_fraction, interest;

 interest_fraction = rate_par/100;

 interest = interest_fraction*balance_par;

 return (balance_par + interest);

}

Definition 2

double new_balance(double balance_par, double rate_par)

{

 double interest_fraction, updated_balance;

 interest_fraction = rate_par/100;

 updated_balance = balance_par*(1 + interest_fraction);

 return updated_balance;

}

206 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

It does not matter which of the implementations of new_balance shown in
Display 4.7 that a programmer uses. The two definitions produce functions that
return exactly the same values. We may as well place a black box over the body of
the function definition so that the programmer does not know which implemen-
tation is being used. In order to use the function new_balance, all the program-
mer needs to read is the function declaration and the accompanying comment.

Writing and using functions as if they were black boxes is also called
procedural abstraction. When programming in C++ it might make more
sense to call it functional abstraction. However, procedure is a more general term
than function. Computer scientists use the term procedure for all “function-like”
sets of instructions, and so they use the term procedural abstraction. The term
abstraction is intended to convey the idea that, when you use a function as a
black box, you are abstracting away the details of the code contained in the
function body. You can call this technique the black box principle or the principle
of procedural abstraction or information hiding. The three terms mean the same
thing. Whatever you call this principle, the important point is that you should
use it when designing and writing your function definitions.

■ PROGRAMMING TIP Choosing Formal Parameter Names

The principle of procedural abstraction says that functions should be self-
contained modules that are designed separately from the rest of the program. On

Procedural Abstraction

When applied to a function definition, the principle of procedural
abstraction means that your function should be written so that it can be
used like a black box. This means that the programmer who uses the
function should not need to look at the body of the function definition to
see how the function works. The function declaration and the accompany-
ing comment should be all the programmer needs to know in order to use
the function. To ensure that your function definitions have this important
property, you should strictly adhere to the following rules:

HOW TO WRITE A BLACK-BOX FUNCTION DEFINITION (THAT RETURNS
A VALUE)

■ The function declaration comment should tell the programmer any and all con-
ditions that are required of the arguments to the function and should describe
the value that is returned by the function when called with these arguments.

■ All variables used in the function body should be declared in the function body.
(The formal parameters do not need to be declared, because they are listed in
the function declaration.)

procedural
abstraction

4.4 Procedural Abstraction 207

large programming projects a different programmer may be assigned to write
each function. The programmer should choose the most meaningful names he
or she can find for formal parameters. The arguments that will be substituted
for the formal parameters may well be variables in the main part of the
program. These variables should also be given meaningful names, often
chosen by someone other than the programmer who writes the function
definition. This makes it likely that some or all arguments will have the same
names as some of the formal parameters. This is perfectly acceptable. No matter
what names are chosen for the variables that will be used as arguments, these
names will not produce any confusion with the names used for formal
parameters. After all, the functions will use only the values of the arguments.
When you use a variable as a function argument, the function takes only the
value of the variable and disregards the variable name.

Now that you know you have complete freedom in choosing formal
parameter names, we will stop placing a "_par" at the end of each formal
parameter name. For example, in Display 4.8 we have rewritten the definition
for the function total_cost from Display 4.3 so that the formal parameters
are named number and price rather than number_par and price_par. If you
replace the function declaration and definition of the function total_cost
that appear in Display 4.3 with the versions in Display 4.8, then the program
will perform in exactly the same way, even though there will be formal
parameters named number and price and there will be variables in the main
part of the program that are also named number and price. ■

DISPLAY 4.8 Simpler Formal Parameter Names

Function Declaration

1 double total_cost(int number, double price);
2 //Computes the total cost, including 5% sales tax,
3 //on number items at a cost of price each.
4

Function Definition

1 double total_cost(int number, double price)
2 {
3 const double TAX_RATE = 0.05; //5% sales tax
4 double subtotal;

5 subtotal = price * number;
6 return (subtotal + subtotal*TAX_RATE);
7 }

208 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

■ PROGRAMMING TIP Nested Loops

When you see nested loops in your code then you should consider whether or
not to apply the principle of procedural abstraction. Consider the explicitly
nested loops in Display 3.15 that computed the total number of green-necked
vulture eggs counted by all conservationists. We can make this code more
readable by moving the loops into procedure calls as shown in Display 4.9.

The two versions of our program for totalling green-necked vulture eggs
are equivalent. Both programs produce the same dialogue with the user.
However, most people find the version in Display 4.9 easier to understand
because the loop body is a function call. When considering the outer loop, you
should think of computing the subtotal for one conservationist’s report as a
single operation and not think of it as a loop. ■

Make a Loop Body a Function Call

Whenever you have a loop nested within a loop, or any other complex
computation included in a loop body, make the loop body a function call.
This way you can separate the design of the loop body from the design of
the rest of the program. This divides your programming task into two
smaller subtasks.

DISPLAY 4.9 Nicely Nested Loops (part 1 of 3)

1 //Determines the total number of green-necked vulture eggs
2 //counted by all conservationists in the conservation district.
3 #include <iostream>
4 using namespace std;
5
6
7 int get_one_total();
8 //Precondition: User will enter a list of egg counts
9 //followed by a negative number.

10 //Postcondition:returns a number equal to the sum of all the egg counts.
11
12 int main()
13 {
14 cout << "This program tallies conservationist reports\n"

(continued)

4.4 Procedural Abstraction 209

DISPLAY 4.9 Nicely Nested Loops (part 2 of 3)

15 << "on the green-necked vulture.\n"
16 << "Each conservationist's report consists of\n"
17 << "a list of numbers. Each number is the count of\n"
18 << "the eggs observed in one"
19 << " green-necked vulture nest.\n"
20 << "This program then tallies"
21 << " the total number of eggs.\n";
22
23 int number_of_reports;
24 cout << "How many conservationist reports are there? ";
25 cin >> number_of_reports;
26
27 int grand_total = 0, subtotal, count;
28 for (count = 1; count <= number_of_reports; count++)
29 {
30 cout << endl << "Enter the report of "
31 << "conservationist number " << count << endl;
32 subtotal = get_one_total ();
33 cout << "Total egg count for conservationist "
34 << " number " << count << " is "
35 << subtotal << endl;
36 grand_total = grand_total + subtotal;
37 }
38
39 cout << endl << "Total egg count for all reports = "
40 << grand_total << endl;
41
42 return 0;
43 }
44
45
46 //Uses iostream:
47 int get_one_total()
48 {
49 int total;
50 cout << "Enter the number of eggs in each nest.\n"
51 << "Place a negative integer"
52 << " at the end of your list.\n";
53
54 total = 0;
55 int next;
56 cin >> next;

(continued)

210 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

DISPLAY 4.9 Nicely Nested Loops (part 3 of 3)

57 while (next >= 0)
58 {
59 total = total + next;
60 cin >> next;
61 }
62 return total;
63 }

Sample Dialogue

This program tallies conservationist reports

on the green-necked vulture.

Each conservationist's report consists of

a list of numbers. Each number is the count of

the eggs observed in one green-necked vulture nest.

This program then tallies the total number of eggs.

How many conservationist reports are there? 3

Enter the report of conservationist number 1

Enter the number of eggs in each nest.

Place a negative integer at the end of your list.

1 0 0 2 -1

Total egg count for conservationist number 1 is 3

Enter the report of conservationist number 2

Enter the number of eggs in each nest.

Place a negative integer at the end of your list.

0 3 1 -1

Total egg count for conservationist number 2 is 4

Enter the report of conservationist number 3

Enter the number of eggs in each nest.

Place a negative integer at the end of your list.

-1

Total egg count for conservationist number 3 is 0

Total egg count for all reports = 7

4.4 Procedural Abstraction 211

CASE STUDY Buying Pizza

The large “economy” size of an item is not always a better buy than the smaller
size. This is particularly true when buying pizzas. Pizza sizes are given as the
diameter of the pizza in inches. However, the quantity of pizza is determined
by the area of the pizza and the area is not proportional to the diameter. Most
people cannot easily estimate the difference in area between a ten-inch pizza
and a twelve-inch pizza, and so cannot easily determine which size is the best
buy—that is, which size has the lowest price per square inch. In this case study
we will design a program that compares two sizes of pizza to determine which
is the better buy.

Problem Definition
The precise specification of the program input and output are as follows:

Input

The input will consist of the diameter in inches and the price for each of two
sizes of pizza.

Output

The output will give the cost per square inch for each of the two sizes of pizza
and will tell which is the better buy, that is, which has the lowest cost per
square inch. (If they are the same cost per square inch, we will consider the
smaller one to be the better buy.)

Analysis of the Problem
We will use top-down design to divide the task to be solved by our program
into the following subtasks:

Subtask 1: Get the input data for both the small and large pizzas.

Subtask 2: Compute the price per square inch for the small pizza.

Subtask 3: Compute the price per square inch for the large pizza.

Subtask 4: Determine which is the better buy.

Subtask 5: Output the results.

Notice subtasks 2 and 3. They have two important properties:

1. They are exactly the same task. The only difference is that they use differ-
ent data to do the computation. The only things that change between sub-
task 2 and subtask 3 are the size of the pizza and its price.

2. The result of subtask 2 and the result of subtask 3 are each a single value,
the price per square inch of the pizza.

subtasks 2 and 3

212 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

Whenever a subtask takes some values, such as some numbers, and
returns a single value, it is natural to implement the subtask as a function.
Whenever two or more such subtasks perform the same computation, they can
be implemented as the same function called with different arguments each
time it is used. We therefore decide to use a function called unitprice to
compute the price per square inch of a pizza. The function declaration and
explanatory comment for this function will be as follows:

double unitprice(int diameter, double price);
//Returns the price per square inch of a pizza. The formal
//parameter named diameter is the diameter of the pizza in
//inches. The formal parameter named price is the price of
//the pizza.

Algorithm Design
Subtask 1 is straightforward. The program will simply ask for the input values
and store them in four variables, which we will call diameter_small,
diameter_large, price_small, and price_large.

Subtask 4 is routine. To determine which pizza is the best buy, we just
compare the cost per square inch of the two pizzas using the less-than
operator. Subtask 5 is a routine output of the results.

Subtasks 2 and 3 are implemented as calls to the function unitprice.
Next, we design the algorithm for this function. The hard part of the algorithm
is determining the area of the pizza. Once we know the area, we can easily
determine the price per square inch using division, as follows:

price/area

where area is a variable that holds the area of the pizza. This expression will
be the value returned by the function unitprice. But we still need to
formulate a method for computing the area of the pizza.

A pizza is basically a circle (made up of bread, cheese, sauce, and so forth).
The area of a circle (and hence of a pizza) is πr2, where r is the radius of the
circle, and π is the number called “pi,” which is approximately equal to
3.14159. The radius is one half of the diameter.

The algorithm for the function unitprice can be outlined as follows:

Algorithm Outline for the Function unitprice

1. Compute the radius of the pizza.

2. Compute the area of the pizza using the formula πr2.

3. Return the value of the expression (price/area).

We will give this outline a bit more detail before translating it into C++
code. We will express this more detailed version of our algorithm in
pseudocode. Pseudocode is a mixture of C++ and ordinary English. Pseudocode
allows us to make our algorithm precise without worrying about the details of

when to define
a function

subtask 1

subtasks 4 and 5

subtasks 2 and 3

pseudocode

4.4 Procedural Abstraction 213

C++ syntax. We can then easily translate our pseudocode into C++ code. In our
pseudocode, radius and area will be variables for holding the values
indicated by their names.

Pseudocode for the Function unitprice

radius = one half of diameter;
area = π * radius * radius;
return (price/area);

That completes our algorithm for unitprice. We are now ready to convert
our solutions to subtasks 1 through 5 into a complete C++ program.

Coding
Coding subtask 1 is routine, so we next consider subtasks 2 and 3. Our
program can implement subtasks 2 and 3 by the following two calls to the
function unitprice:

unitprice_small = unitprice(diameter_small, price_small);
unitprice_large = unitprice(diameter_large, price_large);

where unitprice_small and unitprice_large are two variables of type
double. One of the benefits of a function definition is that you can have
multiple calls to the function in your program. This saves you the trouble of
repeating the same (or almost the same) code. But we still must write the code
for the function unitprice.

When we translate our pseudocode into C++ code, we obtain the
following for the body of the function unitprice:

{//First draft of the function body for unitprice
 const double PI = 3.14159;
 double radius, area;

 radius = diameter/2;
 area = PI * radius * radius;
 return (price/area);
}

Notice that we made PI a named constant using the modifier const. Also,
notice the following line from the code:

radius = diameter/2;

This is just a simple division by two, and you might think that nothing could
be more routine. Yet, as written, this line contains a serious mistake. We want
the division to produce the radius of the pizza including any fraction. For
example, if we are considering buying the “bad luck special,” which is a
13-inch pizza, then the radius is 6.5 inches. But the variable diameter is of type
int. The constant 2 is also of type int. Thus, as we saw in Chapter 2, this line
would perform integer division and would compute the radius 13/2 to be 6

214 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

instead of the correct value of 6.5, and we would have disregarded a half inch
of pizza radius. In all likelihood this would go unnoticed, but the result could
be that millions of subscribers to the Pizza Consumers Union could be
wasting their money by buying the wrong size pizza. This is not likely to
produce a major worldwide recession, but the program would be failing to
accomplish its goal of helping consumers find the best buy. In a more
important program, the result of such a simple mistake could be disastrous.

How do we fix this mistake? We want the division by two to be regular
division that includes any fractional part in the answer. That form of division
requires that at least one of the arguments to the division operator / must be
of type double. We can use type casting to convert the constant 2 to a value of
type double. Recall that static_cast<double>(2), which is called a type
casting, converts the int value 2 to a value of type double. Thus, if we replace
2 by static_cast<double>(2), that will change the second argument in the
division from type int to type double and the division will then produce the
result we want. The rewritten assignment statement is:

radius = diameter/static_cast<double>(2);

The complete corrected code for the function definition of unitprice, along
with the rest of the program, is shown in Display 4.10.

The type cast static_cast<double>(2) returns the value 2.0 so we could
have used the constant 2.0 in place of static_cast<double>(2). Either way, the
function unitprice will return the same value. However, by using
static_cast<double>(2) we make it conspicuously obvious that we want to
do the version of division that includes the fractional part in its answer. If we
instead used 2.0, then when revising or copying the code, we can easily make
the mistake of changing 2.0 to 2, and that would produce a subtle problem.

We need to make one more remark about the coding of our program. As
you can see in Display 4.10, when we coded tasks 4 and 5, we combined these
two tasks into a single section of code consisting of a sequence of cout
statements followed by an if-else statement. When two tasks are very simple
and are closely related, it sometimes makes sense to combine them into a
single task.

Program Testing
Just because a program compiles and produces answers that look right does not
mean the program is correct. In order to increase your confidence in your
program you should test it on some input values for which you know the
correct answer by some other means, such as working out the answer with
paper and pencil or by using a handheld calculator. For example, it does not
make sense to buy a two-inch pizza, but it can still be used as an easy test case
for this program. It is an easy test case because it is easy to compute the answer
by hand. Let’s calculate the cost per square inch of a two-inch pizza that sells
for $3.14. Since the diameter is two inches, the radius is one inch. The area of

static_cast
<double>

4.4 Procedural Abstraction 215

DISPLAY 4.10 Buying Pizza (part 1 of 2)

1 //Determines which of two pizza sizes is the best buy.
2 #include <iostream>
3 using namespace std;
4
5 double unitprice(int diameter, double price);
6 //Returns the price per square inch of a pizza. The formal
7 //parameter named diameter is the diameter of the pizza in inches.
8 //The formal parameter named price is the price of the pizza.
9

10 int main()
11 {
12 int diameter_small, diameter_large;
13 double price_small, unitprice_small,
14 price_large, unitprice_large;
15
16 cout << "Welcome to the Pizza Consumers Union.\n";
17 cout << "Enter diameter of a small pizza (in inches): ";
18 cin >> diameter_small;
19 cout << "Enter the price of a small pizza: $";
20 cin >> price_small;
21 cout << "Enter diameter of a large pizza (in inches): ";
22 cin >> diameter_large;
23 cout << "Enter the price of a large pizza: $";
24 cin >> price_large;
25
26 unitprice_small = unitprice(diameter_small, price_small);
27 unitprice_large = unitprice(diameter_large, price_large);
28
29 cout.setf(ios::fixed);
30 cout.setf(ios::showpoint);
31 cout.precision(2);
32 cout << "Small pizza:\n"
33 << "Diameter = " << diameter_small << " inches\n"
34 << "Price = $" << price_small
35 << " Per square inch = $" << unitprice_small << endl
36 << "Large pizza:\n"
37 << "Diameter = " << diameter_large << " inches\n"
38 << "Price = $" << price_large
39 << " Per square inch = $" << unitprice_large << endl;
40 if (unitprice_large < unitprice_small)
41 cout << "The large one is the better buy.\n";
42 else
43 cout << "The small one is the better buy.\n";

(continued)

216 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

a pizza with radius one is 3.14159*12 which is 3.14159. If we divide this into
the price of $3.14, we find that the price per square inch is 3.14/3.14159,
which is approximately $1.00. Of course, this is an absurd size for a pizza and
an absurd price for such a small pizza, but it is easy to determine the value that
the function unitprice should return for these arguments.

Having checked your program on this one case, you can have more
confidence in your program, but you still cannot be certain your program is

DISPLAY 4.10 Buying Pizza (part 2 of 2)

44 cout << "Buon Appetito!\n";
45
46 return 0;
47 }
48
49 double unitprice(int diameter, double price)
50 {
51 const double PI = 3.14159;
52 double radius, area;
53
54 radius = diameter/static_cast<double>(2);
55 area = PI * radius * radius;
56 return (price/area);
57 }
58

Sample Dialogue

Welcome to the Pizza Consumers Union.

Enter diameter of a small pizza (in inches): 10

Enter the price of a small pizza: $7.50

Enter diameter of a large pizza (in inches): 13

Enter the price of a large pizza: $14.75

Small pizza:

Diameter = 10 inches

Price = $7.50 Per square inch = $0.10

Large pizza:

Diameter = 13 inches

Price = $14.75 Per square inch = $0.11

The small one is the better buy.

Buon Appetito!

4.4 Procedural Abstraction 217

correct. An incorrect program can sometimes give the correct answer, even
though it will give incorrect answers on some other inputs. You may have
tested an incorrect program on one of the cases for which the program
happens to give the correct output. For example, suppose we had not caught
the mistake we discovered when coding the function unitprice. Suppose we
mistakenly used 2 instead of static_cast<double>(2) in the following line:

radius = diameter/static_cast<double>(2);

So that line reads as follows:

radius = diameter/2;

As long as the pizza diameter is an even number, like 2, 8, 10, or 12, the
program gives the same answer whether we divide by 2 or by
static_cast<double>(2). It is unlikely that it would occur to you to be sure
to check both even and odd size pizzas. However, if you test your program on
several different pizza sizes, then there is a better chance that your test cases
will contain samples of the relevant kinds of data.

■ PROGRAMMING TIP Use Pseudocode

Algorithms are typically expressed in pseudocode. Pseudocode is a mixture of
C++ (or whatever programming language you are using) and ordinary English
(or whatever human language you are using). Pseudocode allows you to state
your algorithm precisely without having to worrying about all the details of
C++ syntax. When the C++ code for a step in your algorithm is obvious, there
is little point in stating it in English. When a step is difficult to express in C++,
the algorithm will be clearer if the step is expressed in English. You can see an
example of pseudocode in the previous case study, where we expressed our
algorithm for the function unitprice in pseudocode. ■

SELF -TEST EXERC ISES

15. What is the purpose of the comment that accompanies a function
declaration?

16. What is the principle of procedural abstraction as applied to function
definitions?

17. What does it mean when we say the programmer who uses a function
should be able to treat the function like a black box? (Hint: This question
is very closely related to the previous question.)

18. Carefully describe the process of program testing.

pseudocode

218 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

19. Consider two possible definitions for the function unitprice. One is the
definition given in Display 4.10. The other definition is the same except
that the type cast static_cast<double>(2) is replaced with the constant
2.0, in other words, the line

radius = diameter/static_cast<double>(2);

is replaced with the line

radius = diameter/2.0;

Are these two possible function definitions black-box equivalent?

4.5 LOCAL VARIABLES

He was a local boy,
not known outside his home town.

COMMON SAYING

In the last section we advocated using functions as if they were black boxes. In
order to define a function so that it can be used as a black box, you often need
to give the function variables of its own that do not interfere with the rest of
your program. These variables that “belong to” a function are called local
variables. In this section we describe local variables and tell you how to use them.

The Small Program Analogy

Look back at the program in Display 4.1. It includes a call to the predefined
function sqrt. We did not need to know anything about the details of the
function definition for sqrt in order to use this function. In particular, we did
not need to know what variables were declared in the definition of sqrt. A
function that you define is no different. Variable declarations in function
definitions that you write are as separate as those in the function definitions
for the predefined functions. Variable declarations within a function defini-
tion are the same as if they were variable declarations in another program. If
you declare a variable in a function definition and then declare another
variable of the same name in the main part of your program (or in the body of
some other function definition), then these two variables are two different
variables, even though they have the same name. Let’s look at a program that
does have a variable in a function definition with the same name as another
variable in the program.

The program in Display 4.11 has two variables named average_pea; one
is declared and used in the function definition for the function est_total, and
the other is declared and used in the main part of the program. The variable

4.5 Local Variables 219

DISPLAY 4.11 Local Variables (part 1 of 2)

1 //Computes the average yield on an experimental pea growing patch.
2 #include <iostream>
3 using namespace std;
4
5 double est_total(int min_peas, int max_peas, int pod_count);
6 //Returns an estimate of the total number of peas harvested.
7 //The formal parameter pod_count is the number of pods.
8 //The formal parameters min_peas and max_peas are the minimum
9 //and maximum number of peas in a pod.

10
11 int main()
12 {
13 int max_count, min_count, pod_count;
14 double average_pea, yield;
15
16 cout << "Enter minimum and maximum number of peas in a pod: ";
17 cin >> min_count >> max_count;
18 cout << "Enter the number of pods: ";
19 cin >> pod_count;
20 cout << "Enter the weight of an average pea (in ounces): ";
21 cin >> average_pea;
22
23 yield =
24 est_total(min_count, max_count, pod_count) * average_pea;
25
26 cout.setf(ios::fixed);
27 cout.setf(ios::showpoint);
28 cout.precision(3);
29 cout << "Min number of peas per pod = " << min_count << endl
30 << "Max number of peas per pod = " << max_count << endl
31 << "Pod count = " << pod_count << endl
32 << "Average pea weight = "
33 << average_pea << " ounces" << endl
34 << "Estimated average yield = " << yield << " ounces"
35 << endl;
36
37 return 0;
38 }
39
40 double est_total(int min_peas, int max_peas, int pod_count)
41 {
42 double average_pea;
43
44 average_pea = (max_peas + min_peas)/2.0;
45 return (pod_count * average_pea);
46 }

(continued)

This variable named
average_pea is local to the
main part of the program.

This variable named
average_pea is local to
the function est_total.

220 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

average_pea in the function definition for est_total and the variable
average_pea in the main part of the program are two different variables. It is
the same as if the function est_total were a predefined function. The two
variables named average_pea will not interfere with each other any more than
two variables in two completely different programs would. When the variable
average_pea is given a value in the function call to est_total, this does not
change the value of the variable in the main part of the program that is also
named average_pea. (The details of the program in Display 4.11, other than
this coincidence of names, are explained in the Programming Example section
that follows this section.)

Variables that are declared within the body of a function definition are said
to be local to that function or to have that function as their scope. Variables
that are defined within the main body of the program are said to be local to the
main part of the program or to have the main part of the program as their
scope. There are other kinds of variables that are not local to any function or to
the main part of the program, but we will have no use for such variables. Every
variable we will use is either local to a function definition or local to the main
part of the program. When we say that a variable is a local variable without any
mention of a function and without any mention of the main part of the
program, we mean that the variable is local to some function definition.

■ PROGRAMMING EXAMPLE Experimental Pea Patch

The program in Display 4.11 gives an estimate for the total yield on a small
garden plot used to raise an experimental variety of peas. The function
est_total returns an estimate of the total number of peas harvested. The
function est_total takes three arguments. One argument is the number of
pea pods that were harvested. The other two arguments are used to estimate
the average number of peas in a pod. Different pea pods contain differing

DISPLAY 4.11 Local Variables (part 2 of 2)

Sample Dialogue

Enter minimum and maximum number of peas in a pod: 4 6

Enter the number of pods: 10

Enter the weight of an average pea (in ounces): 0.5

Min number of peas per pod = 4

Max number of peas per pod = 6

Pod count = 10

Average pea weight = 0.500 ounces

Estimated average yield = 25.000 ounces

local to a
function

scope

local variable

4.5 Local Variables 221

numbers of peas so the other two arguments to the function are the smallest
and the largest number of peas that were found in any one pod. The function
est_total averages these two numbers and uses this average as an estimate for
the average number of peas in a pod. ■

Global Constants and Global Variables

As we noted in Chapter 2, you can and should name constant values using the
const modifier. For example, in Display 4.10 we used the following declara-
tion to give the name PI to the constant 3.14159:

const double PI = 3.14159;

In Display 4.3, we used the const modifier to give a name to the rate of sales
tax with the following declaration:

const double TAX_RATE = 0.05; //5% sales tax

As with our variable declarations, we placed these declarations for naming
constants inside the body of the functions that used them. This worked out
fine because each named constant was used by only one function. However, it
can easily happen that more than one function uses a named constant. In that
case you can place the declaration for naming a constant at the beginning of
your program, outside of the body of all the functions and outside the body
of the main part of your program. The named constant is then said to be a
global named constant and the named constant can be used in any function
definition that follows the constant declaration.

Display 4.12 shows a program with an example of a global named
constant. The program asks for a radius and then computes both the area of a
circle and the volume of a sphere with that radius. The programmer who wrote

Local Variables

Variables that are declared within the body of a function definition are
said to be local to that function or to have that function as their scope.
Variables that are declared within the main part of the program are said to
be local to the main part of the program or to have the main part of the
program as their scope. When we say that a variable is a local variable
without any mention of a function and without any mention of the main
part of the program, we mean that the variable is local to some function
definition. If a variable is local to a function, then you can have another
variable with the same name that is declared in the main part of the
program or in another function definition, and these will be two different
variables, even though they have the same name.

global named
constant

222 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

DISPLAY 4.12 A Global Named Constant (part 1 of 2)

1 //Computes the area of a circle and the volume of a sphere.
2 //Uses the same radius for both calculations.
3 #include <iostream>
4 #include <cmath>
5 using namespace std;
6
7 const double PI = 3.14159;
8
9 double area(double radius);

10 //Returns the area of a circle with the specified radius.
11
12 double volume(double radius);
13 //Returns the volume of a sphere with the specified radius.
14
15 int main()
16 {
17 double radius_of_both, area_of_circle, volume_of_sphere;
18
19 cout << "Enter a radius to use for both a circle\n"
20 << "and a sphere (in inches): ";
21 cin >> radius_of_both;
22
23 area_of_circle = area(radius_of_both);
24 volume_of_sphere = volume(radius_of_both);
25
26 cout << "Radius = " << radius_of_both << " inches\n"
27 << "Area of circle = " << area_of_circle
28 << " square inches\n"
29 << "Volume of sphere = " << volume_of_sphere
30 << " cubic inches\n";
31
32 return 0;
33 }
34
35 double area(double radius)
36 {
37 return (PI * pow(radius, 2));
38 }
39
40 double volume(double radius)
41 {
42 return ((4.0/3.0) * PI * pow(radius, 3));
43 }

(continued)

4.5 Local Variables 223

that program looked up the formulas for computing those quantities and
found the following:

area = π � (radius)2
volume = (4/3) � π � (radius)3

Both formulas include the constant π, which is approximately equal to
3.14159. The symbol π is the Greek letter called “pi.” In previous programs we
have used the following declaration to produce a named constant called PI to
use when we convert such formulas to C++ code:

const double PI = 3.14159;

In the program in Display 4.12 we use the same declaration but place it near
the beginning of the file, so that it defines a global named constant that can
be used in all the function bodies.

The compiler allows you wide latitude with regard to where you place the
declarations for your global named constants, but to aid readability you
should place all your include directives together, all your global named
constant declarations together in another group, and all your function
declarations together. We will follow standard practice and place all our global
named constant declarations after our include directives and before our
function declarations.

Placing all named constant declarations at the start of your program can
aid readability even if the named constant is used by only one function. If the
named constant might need to be changed in a future version of your
program, it will be easier to find if it is at the beginning of your program. For
example, placing the constant declaration for the sales tax rate at the
beginning of an accounting program will make it easy to revise the program
should the tax rate increase.

It is possible to declare ordinary variables, without the const modifier, as
global variables, which are accessible to all function definitions in the file.
This is done the same way that it is done for global named constants, except
that the modifier const is not used in the variable declaration. However, there

DISPLAY 4.12 A Global Named Constant (part 2 of 2)

Sample Dialogue

Enter a radius to use for both a circle

and a sphere (in inches): 2

Radius = 2 inches

Area of circle = 12.5664 square inches

Volume of sphere = 33.5103 cubic inches

Video Note
Walkthrough of
Functions and
Local Variables

global variables

224 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

is seldom any need to use such global variables. Moreover, global variables
can make a program harder to understand and maintain, so we will not use
any global variables. Once you have had more experience designing programs,
you may choose to occasionally use global variables.

Call-by-Value Formal Parameters Are Local Variables

Formal parameters are more than just blanks that are filled in with the argument
values for the function. Formal parameters are actually variables that are local to
the function definition, so they can be used just like a local variable that is
declared in the function definition. Earlier in this chapter we described the call-
by-value mechanism which handles the arguments in a function call. We can
now define this mechanism for “plugging in arguments” in more detail. When
a function is called, the formal parameters for the function (which are local
variables) are initialized to the values of the arguments. This is the precise
meaning of the phrase “plugged in for the formal parameters” which we have
been using. Typically, a formal parameter is used only as a kind of blank, or
placeholder, that is filled in by the value of its corresponding argument;
occasionally, however, a formal parameter is used as a variable whose value is
changed. In this section we will give one example of a formal parameter used as
a local variable.

The program in Display 4.13 is the billing program for the law offices of
Dewey, Cheatham, and Howe. Notice that, unlike other law firms, the firm
of Dewey, Cheatham, and Howe does not charge for any time less than a quarter
of an hour. That is why it’s called “the law office with a heart.” If they work for one

DISPLAY 4.13 Formal Parameter Used as a Local Variable (part 1 of 2)

1 //Law office billing program.
2 #include <iostream>
3 using namespace std;
4
5 const double RATE = 150.00; //Dollars per quarter hour.
6
7 double fee(int hours_worked, int minutes_worked);
8 //Returns the charges for hours_worked hours and
9 //minutes_worked minutes of legal services.

10
11 int main()
12 {
13 int hours, minutes;
14 double bill;
15

(continued)

4.5 Local Variables 225

hour and fourteen minutes, they only charge for four quarter hours, not five
quarter hours as other firms do; so you would pay only $600 for the consultation.

Notice the formal parameter minutes_worked in the definition of the
function fee. It is used as a variable and has its value changed by the following
line, which occurs within the function definition:

minutes_worked = hours_worked*60 + minutes_worked;

DISPLAY 4.13 Formal Parameter Used as a Local Variable (part 2 of 2)

16 cout << "Welcome to the offices of\n"
17 << "Dewey, Cheatham, and Howe.\n"
18 << "The law office with a heart.\n"
19 << "Enter the hours and minutes"
20 << " of your consultation:\n";
21 cin >> hours >> minutes;
22
23 bill = fee(hours, minutes);
24
25 cout.setf(ios::fixed);
26 cout.setf(ios::showpoint);
27 cout.precision(2);
28 cout << "For " << hours << " hours and " << minutes
29 << " minutes, your bill is $" << bill << endl;
30
31 return 0;
32 }
33
34 double fee(int hours_worked, int minutes_worked)
35 {
36 int quarter_hours;
37
38 minutes_worked = hours_worked*60 + minutes_worked;
39 quarter_hours = minutes_worked/15;
40 return (quarter_hours*RATE);
41 }

Sample Dialogue

Welcome to the offices of

Dewey, Cheatham, and Howe.

The law office with a heart.

Enter the hours and minutes of your consultation:

2 45

For 2 hours and 45 minutes, your bill is $1650.00

The value of minutes
is not changed by the
call to fee.

minutes_worked is
a local variable
initialized to the
value of minutes.

226 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

Formal parameters are local variables just like the variables you declare
within the body of a function. However, you should not add a variable
declaration for the formal parameters. Listing the formal parameter
minutes_worked in the function declaration also serves as the variable declara-
tion. The following is the wrong way to start the function definition for fee as
it declares minutes_worked twice:

Namespaces Revisited

Thus far, we have started all of our programs with the following two lines:

#include <iostream>
using namespace std;

However, the start of the file is not always the best location for the line

using namespace std;

We will eventually be using more namespaces than just std. In fact, we
may be using different namespaces in different function definitions. If you
place the directive

using namespace std;

inside the brace { that starts the body of a function definition, then the using
directive applies to only that function definition. This will allow you to use
two different namespaces in two different function definitions, even if the two
function definitions are in the same file and even if the two namespaces have
some name(s) with different meanings in the two different namespaces.

Placing a using directive inside a function definition is analogous to
placing a variable declaration inside a function definition. If you place a
variable definition inside a function definition, the variable is local to the
function; that is, the meaning of the variable declaration is confined to the
function definition. If you place a using directive inside a function definition,
the using directive is local to the function definition; in other words, the
meaning of the using directive is confined to the function definition.

It will be some time before we use any namespace other than std in a
using directive, but it will be good practice to start placing these using
directives where they should go.

In Display 4.14 we have rewritten the program in Display 4.12 with the
using directives where they should be placed. The program in Display 4.14

Do not add
a declaration
for a formal

parameter

double fee(int hours_worked, int minutes_worked)
{
 int quarter_hours;
 int minutes_worked;

. . .

Do NOT do this!

4.5 Local Variables 227

DISPLAY 4.14 Using Namespaces (part 1 of 2)

1 //Computes the area of a circle and the volume of a sphere.
2 //Uses the same radius for both calculations.
3 #include <iostream>
4 #include <cmath>
5
6 const double PI = 3.14159;
7
8 double area(double radius);
9 //Returns the area of a circle with the specified radius.

10
11 double volume(double radius);
12 //Returns the volume of a sphere with the specified radius.
13
14 int main()
15 {
16 using namespace std;
17
18 double radius_of_both, area_of_circle, volume_of_sphere;
19
20 cout << "Enter a radius to use for both a circle\n"
21 << "and a sphere (in inches): ";
22 cin >> radius_of_both;
23
24 area_of_circle = area(radius_of_both);
25 volume_of_sphere = volume(radius_of_both);
26
27 cout << "Radius = " << radius_of_both << " inches\n"
28 << "Area of circle = " << area_of_circle
29 << " square inches\n"
30 << "Volume of sphere = " << volume_of_sphere
31 << " cubic inches\n";
32
33 return 0;
34 }
35
36
37 double area(double radius)
38 {
39 using namespace std;
40
41 return (PI * pow(radius, 2));
42 }
43

(continued)

The sample dialogue for this program would
be the same as the one for the program in
Display 4.12.

228 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

will behave exactly the same as the one in Display 4.12. In this particular case,
the difference is only one of style, but when you start to use more namespaces,
the difference will affect how your programs perform.

SELF -TEST EXERC ISES

20. If you use a variable in a function definition, where should you declare
the variable? In the function definition? In the main part of the program?
Anyplace that is convenient?

21. Suppose a function named Function1 has a variable named sam declared
within the definition of Function1, and a function named Function2 also
has a variable named sam declared within the definition of Function2.
Will the program compile (assuming everything else is correct)? If the
program will compile, will it run (assuming that everything else is cor-
rect)? If it runs, will it generate an error message when run (assuming
everything else is correct)? If it runs and does not produce an error mes-
sage when run, will it give the correct output (assuming everything else is
correct)?

22. The following function is supposed to take as arguments a length
expressed in feet and inches and return the total number of inches in that
many feet and inches. For example, total_inches(1, 2) is supposed to
return 14, because 1 foot and 2 inches is the same as 14 inches. Will the
following function perform correctly? If not, why not?

double total_inches(int feet, int inches)
{
 inches = 12*feet + inches;
 return inches;
}

23. Write a function declaration and function definition for a function called
read_filter that has no parameters and that returns a value of type double.

DISPLAY 4.14 Using Namespaces (part 2 of 2)

44 double volume(double radius)
45 {
46 using namespace std;
47
48 return ((4.0/3.0) * PI * pow(radius, 3));
49 }

4.5 Local Variables 229

The function read_filter prompts the user for a value of type double and
reads the value into a local variable. The function returns the value read pro-
vided this value is greater than or equal to zero and returns zero if the value
read is negative.

■ PROGRAMMING EXAMPLE The Factorial Function

Display 4.15 contains the function declaration and definition for a commonly
used mathematical function known as the factorial function. In mathematics
texts, the factorial function is usually written n! and is defined to be the
product of all the integers from 1 to n. In traditional mathematical notation,
you can define n! as follows:

n! = 1 � 2 � 3 �...� n

In the function definition we perform the multiplication with a while loop.
Note that the multiplication is performed in the reverse order to what you
might expect. The program multiplies by n, then n−1, then n−2, and so forth.

The function definition for factorial uses two local variables: product,
which is declared at the start of the function body, and the formal parameter
n. Since a formal parameter is a local variable, we can change its value. In this
case we change the value of the formal parameter n with the decrement
operator n--. (The decrement operator was discussed in Chapter 2.)

DISPLAY 4.15 Factorial Function

Function Declaration

1 int factorial(int n);
2 //Returns factorial of n.
3 //The argument n should be nonnegative.

Function Definition

1 int factorial(int n)
2 {
3 int product = 1;
4 while (n > 0)
5 {
6 product = n * product;
7 n--;
8 }
9

10 return product;
11 }

formal parameter n
used as a local variable

formal
parameter
used as a
local variable

230 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

Each time the body of the loop is executed, the value of the variable
product is multiplied by the value of n, and then the value of n is decreased by
one using n--. If the function factorial is called with 3 as its argument, then
the first time the loop body is executed the value of product is 3, the next time
the loop body is executed the value of product is 3*2, the next time the value
of product is 3*2*1, and then the while loop ends. Thus, the following will set
the variable x equal to 6 which is 3*2*1:

x = factorial(3);

Notice that the local variable product is initialized to the value 1 when the
variable is declared. (This way of initializing a variable when it is declared was
introduced in Chapter 2.) It is easy to see that 1 is the correct initial value for
the variable product. To see that this is the correct initial value for product
note that, after executing the body of the while loop the first time, we want
the value of product to be equal to the (original) value of the formal
parameter n; if product is initialized to 1, then this will be what happens.

4.6 OVERLOADING FUNCTION NAMES

“...—and that shows that there are three hundred and sixty-four days when
you might get un-birthday presents—”
“Certainly,” said Alice.
“And only one for birthday presents, you know. There’s glory for you!”
“I don’t know what you mean by ‘glory,’” Alice said.
Humpty Dumpty smiled contemptuously, “Of course you don’t—till I tell you.
I mean ‘there’s a nice knock-down argument for you!’”
“But ‘glory’ doesn’t mean ‘a nice knock-down argument,’” Alice objected.
“When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it
means just what I choose it to mean—neither more nor less.”
“The question is,” said Alice, “whether you can make words mean so many
different things.”
“The question is,” said Humpty Dumpty, “which is to be master—that’s all.”

LEWIS CARROLL, Through the Looking-Glass

C++ allows you to give two or more different definitions to the same function
name, which means you can reuse names that have strong intuitive appeal
across a variety of situations. For example, you could have three functions
called max: one that computes the largest of two numbers, another that
computes the largest of three numbers, and yet another that computes the
largest of four numbers. When you give two (or more) function definitions for
the same function name, that is called overloading the function name.
Overloading does require some extra care in defining your functions, and

overloading

4.6 Overloading Function Names 231

should not be used unless it will add greatly to your program’s readability. But
when it is appropriate, overloading can be very effective.

Introduction to Overloading

Suppose you are writing a program that requires you to compute the average
of two numbers. You might use the following function definition:

double ave(double n1, double n2)
{
 return ((n1 + n2)/2.0);
}

Now suppose your program also requires a function to compute the
average of three numbers. You might define a new function called ave3 as
follows:

double ave3(double n1, double n2, double n3)
{
 return ((n1 + n2 + n3)/3.0);
}

This will work, and in many programming languages you have no choice but
to do something like this. Fortunately, C++ allows for a more elegant solution.
In C++ you can simply use the same function name ave for both functions. In
C++ you can use the following function definition in place of the function
definition ave3:

double ave(double n1, double n2, double n3)
{
 return ((n1 + n2 + n3)/3.0);
}

so that the function name ave then has two definitions. This is an example of
overloading. In this case we have overloaded the function name ave. In
Display 4.16 we have embedded these two function definitions for ave into a
complete sample program. Be sure to notice that each function definition has
its own function declaration.

Overloading is a great idea. It makes a program easier to read. It saves you
from going crazy trying to think up a new name for a function just because
you already used the most natural name in some other function definition.
But how does the compiler know which function definition to use when it
encounters a call to a function name that has two or more definitions? The
compiler cannot read a programmer’s mind. In order to tell which function
definition to use, the compiler checks the number of arguments and the types
of the arguments in the function call. In the program in Display 4.16, one of
the functions called ave has two arguments and the other has three arguments.

232 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

To tell which definition to use, the compiler simply counts the number of
arguments in the function call. If there are two arguments, it uses the first
definition. If there are three arguments, it uses the second definition.

Whenever you give two or more definitions to the same function name,
the various function definitions must have different specifications for their
arguments; that is, any two function definitions that have the same function

DISPLAY 4.16 Overloading a Function Name

1 //Illustrates overloading the function name ave.
2 #include <iostream>
3
4 double ave(double n1, double n2);
5 //Returns the average of the two numbers n1 and n2.
6
7 double ave(double n1, double n2, double n3);
8 //Returns the average of the three numbers n1, n2, and n3.
9
10 int main()
11 {
12 using namespace std;
13 cout << "The average of 2.0, 2.5, and 3.0 is "
14 << ave(2.0, 2.5, 3.0) << endl;
15
16 cout << "The average of 4.5 and 5.5 is "
17 << ave(4.5, 5.5) << endl;
18
19 return 0;
20 }
21
22 double ave(double n1, double n2)
23 {
24 return ((n1 + n2)/2.0);
25 }
26
27 double ave(double n1, double n2, double n3)
28 {
29 return ((n1 + n2 + n3)/3.0);
30 }
31
32

Output

The average of 2.0, 2.5, and 3.0 is 2.50000

The average of 4.5 and 5.5 is 5.00000

two arguments

three arguments

determining
which

definition
applies

4.6 Overloading Function Names 233

name must use different numbers of formal parameters or use formal
parameters of different types (or both). Notice that when you overload a
function name, the function declarations for the two different definitions
must differ in their formal parameters. You cannot overload a function name by
giving two definitions that differ only in the type of the value returned.

Overloading is not really new to you. You saw a kind of overloading in
Chapter 2 with the division operator /. If both operands are of type int, as in
13/2, then the value returned is the result of integer division, in this case 6. On
the other hand, if one or both operands are of type double, then the value
returned is the result of regular division; for example, 13/2.0 returned the
value 6.5. There are two definitions for the division operator /, and the two
definitions are distinguished not by having different numbers of operands,
but rather by requiring operands of different types. The difference between
overloading of / and overloading function names is that the compiler has
already done the overloading of / but you program the overloading of the
function name. We will see in a later chapter how to overload operators such
as +, –, and so on.

■ PROGRAMMING EXAMPLE Revised Pizza-Buying Program

The Pizza Consumers Union has been very successful with the program that
we wrote for it in Display 4.10. In fact, now everybody always buys the pizza
that is the best buy. One disreputable pizza parlor used to make money by
fooling consumers into buying the more expensive pizza, but our program has
put an end to their evil practices. However, the owners wish to continue their
despicable behavior and have come up with a new way to fool consumers.
They now offer both round pizzas and rectangular pizzas. They know that the
program we wrote cannot deal with rectangularly shaped pizzas, so they hope
they can again confuse consumers. We need to update our program so that we
can foil their nefarious scheme. We want to change the program so that it can
compare a round pizza and a rectangular pizza.

Overloading a Function Name

If you have two or more function definitions for the same function name,
that is called overloading. When you overload a function name, the
function definitions must have different numbers of formal parameters or
some formal parameters of different types. When there is a function call,
the compiler uses the function definition whose number of formal
parameters and types of formal parameters match the arguments in the
function call.

234 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

The changes we need to make to our pizza evaluation program are clear:
We need to change the input and output a bit so that it deals with two
different shapes of pizzas. We also need to add a new function that can
compute the cost per square inch of a rectangular pizza. We could use the
following function definition in our program so that we can compute the unit
price for a rectangular pizza:

double unitprice_rectangular
(int length, int width, double price)

{
 double area = length * width;
 return (price/area);
}

However, this is a rather long name for a function; in fact, it’s so long that we
needed to put the function heading on two lines. That is legal, but it would be
nicer to use the same name, unitprice, for both the function that computes the
unit price for a round pizza and for the function that computes the unit price for
a rectangular pizza. Since C++ allows overloading of function names, we can do
this. Having two definitions for the function unitprice will pose no problems to
the compiler because the two functions will have different numbers of arguments.
Display 4.17 shows the program we obtained when we modified our pizza
evaluation program to allow us to compare round pizzas with rectangular pizzas.

■

DISPLAY 4.17 Overloading a Function Name (part 1 of 3)

1 //Determines whether a round pizza or a rectangular pizza is the best buy.
2 #include <iostream>
3
4 double unitprice(int diameter, double price);
5 //Returns the price per square inch of a round pizza.
6 //The formal parameter named diameter is the diameter of the pizza
7 //in inches. The formal parameter named price is the price of the pizza.
8
9 double unitprice(int length, int width, double price);

10 //Returns the price per square inch of a rectangular pizza
11 //with dimensions length by width inches.
12 //The formal parameter price is the price of the pizza.
13
14 int main()
15 {
16 using namespace std;
17 int diameter, length, width;

(continued)

4.6 Overloading Function Names 235

DISPLAY 4.17 Overloading a Function Name (part 2 of 3)

18 double price_round, unit_price_round,
19 price_rectangular, unitprice_rectangular;
20
21 cout << "Welcome to the Pizza Consumers Union.\n";
22 cout << "Enter the diameter in inches"
23 << " of a round pizza: ";
24 cin >> diameter;
25 cout << "Enter the price of a round pizza: $";
26 cin >> price_round;
27 cout << "Enter length and width in inches\n"
28 << "of a rectangular pizza: ";
29 cin >> length >> width;
30 cout << "Enter the price of a rectangular pizza: $";
31 cin >> price_rectangular;
32
33 unitprice_rectangular =
34 unitprice(length, width, price_rectangular);
35 unit_price_round = unitprice(diameter, price_round);
36
37 cout.setf(ios::fixed);
38 cout.setf(ios::showpoint);
39 cout.precision(2);
40 cout << endl
41 << "Round pizza: Diameter = "
42 << diameter << " inches\n"
43 << "Price = $" << price_round
44 << " Per square inch = $" << unit_price_round
45 << endl
46 << "Rectangular pizza: Length = "
47 << length << " inches\n"
48 << "Rectangular pizza: Width = "
49 << width << " inches\n"
50 << "Price = $" << price_rectangular
51 << " Per square inch = $" << unitprice_rectangular
52 << endl;
53
54 if (unit_price_round < unitprice_rectangular)
55 cout << "The round one is the better buy.\n";
56 else
57 cout << "The rectangular one is the better buy.\n";
58 cout << "Buon Appetito!\n";
59
60 return 0;
61 }
62

(continued)

236 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

Automatic Type Conversion

Suppose that the following function definition occurs in your program, and
that you have not overloaded the function name mpg (so this is the only
definition of a function called mpg).

DISPLAY 4.17 Overloading a Function Name (part 3 of 3)

63 double unitprice(int diameter, double price)
64 {
65 const double PI = 3.14159;
66 double radius, area;
67
68 radius = diameter/static_cast<double>(2);
69 area = PI * radius * radius;
70 return (price/area);
71 }
72
73 double unitprice(int length, int width, double price)
74 {
75 double area = length * width;
76 return (price/area);
77 }

Sample Dialogue

Welcome to the Pizza Consumers Union.

Enter the diameter in inches of a round pizza: 10

Enter the price of a round pizza: $8.50

Enter length and width in inches

of a rectangular pizza: 6 4

Enter the price of a rectangular pizza: $7.55

Round pizza: Diameter = 10 inches

Price = $8.50 Per square inch = $0.11

Rectangular pizza: Length = 6 inches

Rectangular pizza: Width = 4 inches

Price = $7.55 Per square inch = $0.31

The round one is the better buy.

Buon Appetito!

4.6 Overloading Function Names 237

double mpg(double miles, double gallons)
//Returns miles per gallon.
{
 return (miles/gallons);
}

If you call the function mpg with arguments of type int, then C++ will
automatically convert any argument of type int to a value of type double.
Hence, the following will output 22.5 miles per gallon to the screen:

cout << mpg(45, 2) << " miles per gallon";

C++ converts the 45 to 45.0 and the 2 to 2.0, then performs the division 45.0/
2.0 to obtain the value returned, which is 22.5.

If a function requires an argument of type double and you give it an
argument of type int, C++ will automatically convert the int argument to a
value of type double. This is so useful and natural that we hardly give it a
thought. However, overloading can interfere with this automatic type conver-
sion. Let’s look at an example.

Now, suppose you had (foolishly) overloaded the function name mpg so
that your program also contained the following definition of mpg (as well as
the previous one):

int mpg(int goals, int misses)
//Returns the Measure of Perfect Goals
//which is computed as (goals - misses).
{
 return (goals − misses);
}

In a program that contains both of these definitions for the function name
mpg, the following will (unfortunately) output 43 miles per gallon (since 43
is 45 – 2):

cout << mpg(45, 2) << " miles per gallon";

When C++ sees the function call mpg(45, 2), which has two arguments of
type int, C++ first looks for a function definition of mpg that has two
formal parameters of type int. If it finds such a function definition, C++
uses that function definition. C++ does not convert an int argument to a
value of type double unless that is the only way it can find a matching
function definition.

The mpg example illustrates one more point about overloading. You
should not use the same function name for two unrelated functions. Such
careless use of function names is certain to eventually produce confusion.

interaction of
overloading and
type conversion

238 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

SELF -TEST EXERC ISES

24. Suppose you have two function definitions with the following function
declarations:

double score(double time, double distance);
int score(double points);

Which function definition would be used in the following function call
and why would it be the one used? (x is of type double.)

final_score = score(x);

25. Suppose you have two function definitions with the following function
declarations:

double the_answer(double data1, double data2);
double the_answer(double time, int count);

Which function definition would be used in the following function call
and why would it be the one used? (x and y are of type double.)

x = the_answer(y, 6.0);

26. Suppose you have two function definitions with the function declarations
given in Self-Test Exercise 25. Which function definition would be used in
the following function call and why would it be the one used?

x = the_answer(5, 6);

27. Suppose you have two function definitions with the function declarations
given in Self-Test Exercise 25. Which function definition would be used in
the following function call and why would it be the one used?

x = the_answer(5, 6.0);

28. This question has to do with the Programming Example “Revised Pizza-Buy-
ing Program.” Suppose the evil pizza parlor that is always trying to fool
customers introduces a square pizza. Can you overload the function unit-
price so that it can compute the price per square inch of a square pizza as
well as the price per square inch of a round pizza? Why or why not?

29. Look at the program in Display 4.17. The main function contains the
using directive:

using namespace std;

Why doesn’t the method unitprice contain this using directive?

Answers to Self-Test Exercises 239

CHAPTER SUMMARY

■ A good plan of attack for designing the algorithm for a program is to
break down the task to be accomplished into a few subtasks, then decom-
pose each subtask into smaller subtasks, and so forth until the subtasks
are simple enough that they can easily be implemented as C++ code. This
approach is called top-down design.

■ A function that returns a value is like a small program. The arguments to
the function serve as the input to this “small program” and the value
returned is like the output of the “small program.”

■ When a subtask for a program takes some values as input and produces a
single value as its only result, then that subtask can be implemented as a
function.

■ A function should be defined so that it can be used as a black box. The
programmer who uses the function should not need to know any details
about how the function is coded. All the programmer should need to
know is the function declaration and the accompanying comment that
describes the value returned. This rule is sometimes called the principle of
procedural abstraction.

■ A variable that is declared in a function definition is said to be local to the
function.

■ Global named constants are declared using the const modifier. Declara-
tions for global named constants are normally placed at the start of a pro-
gram after the include directives and before the function declarations.

■ Call-by-value formal parameters (which are the only kind of formal
parameter discussed in this chapter) are variables that are local to the
function. Occasionally, it is useful to use a formal parameter as a local
variable.

■ When you have two or more function definitions for the same function
name, that is called overloading the function name. When you overload a
function name, the function definitions must have different numbers of
formal parameters or some formal parameters of different types.

Answers to Self-Test Exercises

1. 4.0 4.0 8.0
8.0 8.0 1.21
3 3 0
3.0 3.5 3.5
6.0 6.0 5.0
5.0 4.5 4.5
3 3.0 3.0

240 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

2. sqrt(x + y)
pow(x, y + 7)
sqrt(area + fudge)
sqrt(time+tide)/nobody
(−b + sqrt(b*b − 4*a*c))/(2*a)
abs(x − y) or labs(x − y) or fabs(x − y)

3. //Computes the square root of 3.14159.
#include <iostream>
#include <cmath>//provides sqrt and PI.
using namespace std;
int main()
{
 cout << "The square root of " >> PI
 << sqrt(PI) << endl;
 return 0;
}

4. a. //To determine whether the compiler will tolerate
//spaces before the # in the #include:
 #include <iostream>
int main()
{

cout << "hello world" << endl;
 return 0;
}

b. //To determine if the compiler will allow spaces
//between the # and include in the #include:
include<iostream>
using namespace std;
//The rest of the program can be identical to the above.

5.

6. The function declaration is:

int sum(int n1, int n2, int n3);
//Returns the sum of n1, n2, and n3.

The function definition is:

int sum(int n1, int n2, int n3)
{
 return (n1 + n2 + n3);
}

7. The function declaration is:

double ave(int n1, double n2);
//Returns the average of n1 and n2.

Wow

Answers to Self-Test Exercises 241

The function definition is:

double ave(int n1, double n2)
{
 return ((n1 + n2)/2.0);
}

8. The function declaration is:

char positive_test(double number);
//Returns 'P' if number is positive.
//Returns 'N' if number is negative or zero.

The function definition is:

char positive_test(double number)
{
 if (number > 0)
 return 'P';
 else
 return 'N';
}

9. Suppose the function is defined with arguments, say param1 and param2.
The function is then called with corresponding arguments arg1 and arg2.
The values of the arguments are “plugged in” for the corresponding for-
mal parameters, arg1 into param1, arg2 into param2. The formal parame-
ters are then used in the function.

10. Predefined (library) functions usually require that you #include a header
file. For a programmer-defined function, the programmer puts the code
for the function either into the file with the main part of the program or
in another file to be compiled and linked to the main program.

11. bool in_order(int n1, int n2, int n3)

{
 return ((n1 <= n2) && (n2 <= n3));
}

12. bool even(int n)
{
 return ((n % 2) == 0);
}

13. bool is_digit(char ch)
{
 return ('0' <= ch) && (ch <= '9');
}

242 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

14. bool is_root_of(int root_candidate, int number)
{
 return (number == root_candidate*root_candidate);
}

15. The comment explains what value the function returns and gives any
other information that you need to know in order to use the function.

16. The principle of procedural abstraction says that a function should be
written so that it can be used like a black box. This means that the pro-
grammer who uses the function need not look at the body of the function
definition to see how the function works. The function declaration and
accompanying comment should be all the programmer needs to know in
order to use the function.

17. When we say that the programmer who uses a function should be able to
treat the function like a black box, we mean the programmer should not
need to look at the body of the function definition to see how the func-
tion works. The function declaration and accompanying comment should
be all the programmer needs to know in order to use the function.

18. In order to increase your confidence in your program, you should test it
on input values for which you know the correct answers. Perhaps you can
calculate the answers by some other means, such as pencil and paper or
hand calculator.

19. Yes, the function would return the same value in either case, so the two
definitions are black-box equivalent.

20. If you use a variable in a function definition, you should declare the vari-
able in the body of the function definition.

21. Everything will be fine. The program will compile (assuming everything
else is correct). The program will run (assuming that everything else is cor-
rect). The program will not generate an error message when run (assum-
ing everything else is correct). The program will give the correct output
(assuming everything else is correct).

22. The function will work fine. That is the entire answer, but here is some
additional information: The formal parameter inches is a call-by-value
parameter and, as discussed in the text, it is therefore a local variable.
Thus, the value of the argument will not be changed.

23. The function declaration is:

double read_filter();
//Reads a number from the keyboard. Returns the number
//read provided it is >= 0; otherwise returns zero.

Answers to Self-Test Exercises 243

The function definition is:

//uses iostream
double read_filter()
{
 using namespace std;
 double value_read;
 cout << "Enter a number:\n";
 cin >> value_read;

 if (value_read >= 0)
 return value_read;
 else
 return 0.0;
}

24. The function call has only one argument, so it would use the function def-
inition that has only one formal parameter.

25. The function call has two arguments of type double, so it would use the
function corresponding to the function declaration with two arguments of
type double (that is, the first function declaration).

26. The second argument is of type int and the first argument would be auto-
matically converted to type double by C++ if needed, so it would use the
function corresponding to the function declaration with the first argu-
ment of type double and the second argument of type int (that is, the sec-
ond function declaration).

27. The second argument is of type double and the first argument would be
automatically converted to type double by C++ if needed, so it would use
the function corresponding to the function declaration with two argu-
ments of type double (that is, the first function declaration).

28. This cannot be done (at least not in any nice way). The natural ways to
represent a square and a round pizza are the same. Each is naturally repre-
sented as one number, which is the diameter for a round pizza and the
length of a side for a square pizza. In either case the function unitprice
would need to have one formal parameter of type double for the price and
one formal parameter of type int for the size (either radius or side). Thus,
the two function declarations would have the same number and types of
formal parameters. (Specifically, they would both have one formal param-
eter of type double and one formal parameter of type int.) Thus, the com-
piler would not be able to decide which definition to use. You can still
defeat this evil pizza parlor’s strategy by defining two functions, but they
will need to have different names.

244 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

29. The definition of unitprice does not do any input or output and so does
not use the library iostream. In main we needed the using directive
because cin and cout are defined in iostream and those definitions place
cin and cout in the std namespace.

PROGRAMMING PROJECTS

1. A liter is 0.264179 gallons. Write a program that will read in the number
of liters of gasoline consumed by the user’s car and the number of miles
traveled by the car, and will then output the number of miles per gallon
the car delivered. Your program should allow the user to repeat this calcu-
lation as often as the user wishes. Define a function to compute the num-
ber of miles per gallon. Your program should use a globally defined
constant for the number of liters per gallon.

2. Modify your program from Programming Project 1 so that it will take
input data for two cars and output the number of miles per gallon deliv-
ered by each car. Your program will also announce which car has the best
fuel efficiency (highest number of miles per gallon).

3. The price of stocks is sometimes given to the nearest eighth of a dollar; for
example, 29 7/8 or 89 1/2. Write a program that computes the value of
the user’s holding of one stock. The program asks for the number of
shares of stock owned, the whole dollar portion of the price and the frac-
tion portion. The fraction portion is to be input as two int values, one for
the numerator and one for the denominator. The program then outputs
the value of the user’s holdings. Your program should allow the user to
repeat this calculation as often as the user wishes. Your program will
include a function definition that has three int arguments consisting of
the whole dollar portion of the price and the two integers that make up
the fraction part. The function returns the price of one share of stock as a
single number of type double.

4. Write a program to gauge the rate of inflation for the past year. The pro-
gram asks for the price of an item (such as a hot dog or a one carat dia-
mond) both one year ago and today. It estimates the inflation rate as the
difference in price divided by the year ago price. Your program should
allow the user to repeat this calculation as often as the user wishes.
Define a function to compute the rate of inflation. The inflation rate
should be a value of type double giving the rate as a percent, for example
5.3 for 5.3%.

5. Enhance your program from the previous programming project by having
it also print out the estimated price of the item in one and in two years

Programming Projects 245

from the time of the calculation. The increase in cost over one year is esti-
mated as the inflation rate times the price at the start of the year. Define a
second function to determine the estimated cost of an item in one year,
given the current price of the item and the inflation rate as arguments.

6. Write a function declaration for a function that computes interest on a
credit card account balance. The function takes arguments for the initial
balance, the monthly interest rate, and the number of months for which
interest must be paid. The value returned is the interest due. Do not forget
to compound the interest—that is, to charge interest on the interest due.
The interest due is added into the balance due, and the interest for the
next month is computed using this larger balance. Use a while loop that
is similar to (but need not be identical to) the one shown in Display 2.14.
Embed the function in a program that reads the values for the interest
rate, initial account balance, and number of months, then outputs the
interest due. Embed your function definition in a program that lets the
user compute interest due on a credit account balance. The program
should allow the user to repeat the calculation until the user said he or
she wants to end the program.

7. The gravitational attractive force between two bodies with masses m1 and
m2 separated by a distance d is given by:

where G is the universal gravitational constant:

Write a function definition that takes arguments for the masses of two
bodies and the distance between them, and that returns the gravitational
force between them. Since you will use the preceding formula, the
gravitational force will be in dynes. One dyne equals a

You should use a globally defined constant for the universal gravitational
constant. Embed your function definition in a complete program that
computes the gravitational force between two objects given suitable
inputs. Your program should allow the user to repeat this calculation as
often as the user wishes.

8. Write a program that computes the annual after-tax cost of a new house
for the first year of ownership. The cost is computed as the annual mort-
gage cost minus the tax savings. The input should be the price of the
house and the down payment. The annual mortgage cost can be esti-
mated as 3% of the initial loan balance credited toward paying off the

Video Note
Solution to
Programming
Project 4.7F

Gm1m2

d2
-------------------=

G 6.673 10
8– cm

3

g sec2×

⎝ ⎠
⎜ ⎟
⎛ ⎞

×=

g cm×

sec2
----------------⎝ ⎠

⎛ ⎞

246 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

loan principal plus 6% of the initial loan balance in interest. The initial
loan balance is the price minus the down payment. Assume a 35% mar-
ginal tax rate and assume that interest payments are tax deductible. So, the
tax savings is 35% of the interest payment. Your program should use at
least two function definitions. Your program should allow the user to
repeat this calculation as often as the user wishes.

9. Write a program that asks for the user’s height, weight, and age, and then
computes clothing sizes according to the formulas:

■ Hat size = weight in pounds divided by height in inches and all that
multiplied by 2.9.

■ Jacket size (chest in inches) = height times weight divided by 288 and
then adjusted by adding 1/8 of an inch for each 10 years over age 30.
(Note that the adjustment only takes place after a full 10 years. So, there
is no adjustment for ages 30 through 39, but 1/8 of an inch is added for
age 40.)

■ Waist in inches = weight divided by 5.7 and then adjusted by adding 1/10
of an inch for each 2 years over age 28. (Note that the adjustment only
takes place after a full 2 years. So, there is no adjustment for age 29, but
1/10 of an inch is added for age 30.)

Use functions for each calculation. Your program should allow the user to
repeat this calculation as often as the user wishes.

10. Modify your program from Programming Project 9 so that it also calcu-
lates the user’s jacket and waist sizes after 10 years.

11. That we are “blessed” with several absolute value functions is an accident
of history. C libraries were already available when C++ arrived; they
could be easily used, so they were not rewritten using function overload-
ing. You are to find all the absolute value functions you can, and rewrite
all of them overloading the abs function name. At a minimum you
should have the int, long, float, and double types represented.

12. Write an overloaded function max that takes either two or three parame-
ters of type double and returns the largest of them.

13. Write a program that outputs the lyrics for the song “Ninety-Nine Bottles
of Beer on the Wall.” Your program should print the number of bottles in
English, not as a number. For example:

Ninety-nine bottles of beer on the wall,

Ninety-nine bottles of beer,

Take one down, pass it around,

Ninety-eight bottles of beer on the wall.

Programming Projects 247

…

One bottle of beer on the wall,

One bottle of beer,

Take one down, pass it around,

Zero bottles of beer on the wall.

Design your program with a function that takes as an argument an
integer between 0 and 99 and returns a string that contains the integer
value in English. Your function should not have 100 different if-else
statements! Instead, use % and / to extract the tens and ones digits to
construct the English string. You may need to test specifically for values
such as 0, 10–19, etc.

14. To maintain one’s body weight, an adult human needs to consume
enough calories daily to (1) meet the basal metabolic rate (energy
required to breath, maintain body temperature, etc.), (2) account for
physical activity such as exercise, and (3) account for the energy required
to digest the food that is being eaten. For an adult that weighs P pounds
we can estimate these caloric requirements using the following formulas:

1. Basal metabolic rate: Calories required = 70 * (P / 2.2)0.756

2. Physical activity: Calories required = 0.0385 * Intensity * P * Minutes

Here, Minutes is the number of minutes spent during the physical
activity, and Intensity is a number that estimates the intensity of the
activity. Here are some sample numbers for the range of values:

Activity Intensity__________________________________

Running 10 mph: 17

Running 6 mph: 10

Basketball: 8

Walking 1 mph: 1

3. Energy to digest food: calories required = TotalCaloriesConsumed * 0.1
In other words, 10% of the calories we consume goes towards digestion.

Write a function that computes the calories required for the basal
metabolic rate, taking as input a parameter for the person’s weight. Write
another function that computes the calories required for physical activity,
taking as input parameters for the intensity, weight, and minutes spent
exercising.

Use these functions in a program that inputs a person’s weight, an
estimate for the intensity of physical activity, the number of minutes
spent performing the physical activity, and the number of calories in one

248 CHAPTER 4 / Procedural Abstraction and Functions That Return a Value

serving of your favorite food. The program should then calculate and
output how many servings of that food should be eaten per day to
maintain the person’s current weight at the specified activity level. The
computation should include the energy that is required to digest food.

You can find estimates of the caloric content of many foods on the web.
For example, a double cheeseburger has approximately 1000 calories.

15. You have invented a vending machine capable of deep frying twinkies.
Write a program to simulate the vending machine. It costs $3.50 to buy a
deep-fried twinkie, and the machine only takes coins in denominations
of a dollar, quarter, dime, or nickel. Write code to simulate a person
putting money into the vending machine by repeatedly prompting the
user for the next coin to be inserted. Output the total entered so far when
each coin is inserted. When $3.50 or more is added, the program should
output “Enjoy your deep-fried twinkie” along with any change that should
be returned. Use top-down design to determine appropriate functions for
the program.

16. Your time machine is capable of going forward in time up to 24 hours.
The machine is configured to jump ahead in minutes. To enter the proper
number of minutes into your machine, you would like a program that
can take a start time (in hours, minutes, and a Boolean indicating AM or
PM) and a future time (in hours, minutes, and a Boolean indicating AM
or PM) and calculate the difference in minutes between the start and
future time.

A time is specified in your program with three variables:

int hours, minutes;

bool isAM;

For example, to represent 11:50 PM, you would store:

hours = 11
minutes = 50
isAM = false;

This means that you need six variables to store a start and future time.

Write a program that allows the user to enter a start time and a future
time. Include a function named computeDifference that takes the six
variables as parameters that represent the start time and future time.
Your function should return, as an int, the time difference in minutes.

For example, given a start time of 11:59 AM and a future time of 12:01 PM,
your program should compute 2 minutes as the time difference. Given a
start time of 11:59 AM and a future time of 11:58 AM, your program
should compute 1439 minutes as the time difference (23 hours and
59 minutes).

Programming Projects 249

You may need “AM” or “PM” from the user’s input by reading in two
character values. (Display 2.3 illustrates character input.) Characters can
be compared just like numbers. For example, if the variables a_char is of
type char, then (a_char=='A') is a Boolean expression that evaluates to
true if a_char contains the letter A.

This page intentionally left blank

5 Functions for
All Subtasks

5.1 void FUNCTIONS 252
Definitions of void Functions 252
Programming Example: Converting

Temperatures 255
return Statements in void Functions 255

5.2 CALL-BY-REFERENCE PARAMETERS 259
A First View of Call-by-Reference 259
Call-by-Reference in Detail 262
Programming Example: The swap_values

Function 266
Mixed Parameter Lists 268
Programming Tip: What Kind of Parameter

to Use 268
Pitfall: Inadvertent Local Variables 270

5.3 USING PROCEDURAL ABSTRACTION 272
Functions Calling Functions 273
Preconditions and Postconditions 273
Case Study: Supermarket Pricing 276

5.4 TESTING AND DEBUGGING
FUNCTIONS 282
Stubs and Drivers 282

5.5 GENERAL DEBUGGING TECHNIQUES 287
Keep an Open Mind 287
Check Common Errors 288
Localize the Error 288
The assert Macro 291

Chapter Summary 292
Answers to Self-Test Exercises 293
Programming Projects 297

252

Everything is possible.
COMMON MAXIM

INTRODUCTION
The top-down design strategy discussed in Chapter 4 is an effective way to
design an algorithm for a program. You divide the program’s task into subtasks
and then implement the algorithms for these subtasks as functions. Thus far,
we have seen how to define functions that start with the values of some
arguments and return a single value as the result of the function call. A subtask
that computes a single value is a very important kind of subtask, but it is not
the only kind. In this chapter we will complete our description of C++
functions and present techniques for designing functions that perform other
kinds of subtasks.

PREREQUISITES
You should read Chapters 2 through 4 before reading this chapter.

5.1 void FUNCTIONS

Subtasks are implemented as functions in C++. The functions discussed in
Chapter 4 always return a single value, but there are other forms of subtasks.
A subtask might produce several values or it might produce no values at all. In
C++, a function must either return a single value or return no values at all. As
we will see later in this chapter, a subtask that produces several different values
is usually (and perhaps paradoxically) implemented as a function that returns
no value. For the moment, however, let us avoid that complication and focus
on subtasks that intuitively produce no values at all and let us see how these
subtasks are implemented. A function that returns no value is called a void
function. For example, one typical subtask for a program is to output the
results of some calculation. This subtask produces output on the screen, but it
produces no values for the rest of the program to use. This kind of subtask
would be implemented as a void function.

Definitions of void Functions

In C++ a void function is defined in a way similar to the way that functions
that return a value are defined. For example, the following is a void function

void functions
return no value

5.1 void Functions 253

that outputs the result of a calculation that converts a temperature expressed
in Fahrenheit degrees to a temperature expressed in Celsius degrees. The actual
calculation would be done elsewhere in the program. This void function
implements only the subtask for outputting the results of the calculation. For
now, we do not need to worry about how the calculation will be performed.

void show_results(double f_degrees, double c_degrees)
{
 using namespace std;
 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(1);
 cout << f_degrees
 << " degrees Fahrenheit is equivalent to\n"
 << c_degrees << " degrees Celsius.\n";
 return;
}

As this function definition illustrates, there are only two differences
between a function definition for a void function and the function definitions
we discussed in Chapter 4. One difference is that we use the keyword void
where we would normally specify the type of the value to be returned. This
tells the compiler that this function will not return any value. The name void
is used as a way of saying “no value is returned by this function.” The second
difference is that the return statement does not contain an expression for a
value to be returned, because, after all, there is no value returned. The syntax
is summarized in Display 5.1.

A void function call is an executable statement. For example, our function
show_results might be called as follows:

show_results(32.5, 0.3);

If this statement were executed in a program, it would cause the following to
appear on the screen:

Notice that the function call ends with a semicolon, which tells the compiler
that the function call is an executable statement.

When a void function is called, the arguments are substituted for the
formal parameters and the statements in the function body are executed. For
example, a call to the void function show_results, which we gave earlier in
this section, will cause some output to be written to the screen. One way to
think of a call to a void function is to imagine that the body of the function
definition is copied into the program in place of the function call. When the

function
definition

function call

32.5 degrees Fahrenheit is equivalent to
0.3 degrees Celsius.

void Functions

254 CHAPTER 5 / Functions for All Subtasks

function is called, the arguments are substituted for the formal parameters,
and then it is just as if the body of the function were lines in the program.

It is perfectly legal, and sometimes useful, to have a function with no
arguments. In that case there simply are no formal parameters listed in the
function declaration and no arguments are used when the function is called.
For example, the void function initialize_screen, defined next, simply
sends a new line command to the screen:

void initialize_screen()
{
 using namespace std;
 cout << endl;
 return;

}

If your program includes the following call to this function as its first
executable statement, then the output from the previously run program will be
separated from the output for your program:

initialize_screen();

DISPLAY 5.1 Syntax for a void Function Definition

void Function Declaration

void Function_Name(Parameter_List);
Function_Declaration_Comment

void Function Definition

void Function_Name(Parameter_List)
{
 Declaration_1
 Declaration_2
 . . .
 Declaration_Last
 Executable_Statement_1
 Executable_Statement_2
 . . .

 Executable_Statement_Last
}

body

function
header

May (or may not)
include one or more
return statements.

You may intermix the
declarations with the
executable statements.

functions with
no arguments

5.1 void Functions 255

Be sure to notice that even when there are no parameters to a function, you
still must include the parentheses in the function declaration and in a call to
the function. The next programming example shows these two sample void
functions in a complete program.

■ PROGRAMMING EXAMPLE Converting Temperatures

The program in Display 5.2 takes a Fahrenheit temperature as input and
outputs the equivalent Celsius temperature. A Fahrenheit temperature F can be
converted to an equivalent Celsius temperature C as follows:

C = (5/9)(F − 32)

The function celsius shown in Display 5.2 uses this formula to do the
temperature conversion. ■

return Statements in void Functions

Both void functions and functions that return a value can have return
statements. In the case of a function that returns a value, the return statement
specifies the value returned. In the case of a void function, the return
statement simply ends the function call. As we saw in the previous chapter,
every function that returns a value must end by executing a return statement.
However, a void function need not contain a return statement. If it does not
contain a return statement, it will end after executing the code in the function
body. It is as if there were an implicit return statement just before the final
closing brace } at the end of the function body. For example, the functions
initialize_screen and show_results in Display 5.2 would perform exactly
the same if we omitted the return statements from their function definitions.

The fact that there is an implicit return statement before the final closing
brace in a function body does not mean that you never need a return statement
in a void function. For example, the function definition in Display 5.3 might
be used as part of a restaurant-management program. That function outputs
instructions for dividing a given amount of ice cream among the people at a
table. If there are no people at the table (that is, if number equals 0), then the
return statement within the if statement terminates the function call and
avoids a division by zero. If number is not 0, then the function call ends when
the last cout statement is executed at the end of the function body.

By now you may have guessed that the main part of a program is actually
the definition of a function called main. When the program is run, the function
main is automatically called and it, in turn, may call other functions. Although
it may seem that the return statement in the main part of a program should
be optional, officially it is not. Technically, the main part of a program is a
function that returns a value of type int, so it requires a return statement.
However, the function main is used as if it were a void function. Treating the
main part of your program as a function that returns an integer may sound

void functions
and return
statements

The main part
of a program is
a function

void Functions

256 CHAPTER 5 / Functions for All Subtasks

DISPLAY 5.2 void Functions (part 1 of 2)

1 //Program to convert a Fahrenheit temperature to a Celsius temperature.
2 #include <iostream>
3
4 void initialize_screen();
5 //Separates current output from
6 //the output of the previously run program.
7
8 double celsius(double fahrenheit);
9 //Converts a Fahrenheit temperature

10 //to a Celsius temperature.
11
12 void show_results(double f_degrees, double c_degrees);
13 //Displays output. Assumes that c_degrees
14 //Celsius is equivalent to f_degrees Fahrenheit.
15
16 int main()
17 {
18 using namespace std;
19 double f_temperature, c_temperature;
20
21 initialize_screen();
22 cout << "I will convert a Fahrenheit temperature"
23 << " to Celsius.\n"
24 << "Enter a temperature in Fahrenheit: ";
25 cin >> f_temperature;
26
27 c_temperature = celsius(f_temperature);
28
29 show_results(f_temperature, c_temperature);
30 return 0;
31 }
32
33 //Definition uses iostream:
34 void initialize_screen()
35 {
36 using namespace std;
37 cout << endl;
38 return;
39 }
40 double celsius(double fahrenheit)
41 {
42 return ((5.0/9.0)*(fahrenheit − 32));
43 }
44 //Definition uses iostream:
45 void show_results(double f_degrees, double c_degrees)
46 {

(continued)

This return is optional.

5.1 void Functions 257

DISPLAY 5.2 void Functions (part 2 of 2)

47 using namespace std;
48 cout.setf(ios::fixed);
49 cout.setf(ios::showpoint);
50 cout.precision(1);
51 cout << f_degrees
52 << " degrees Fahrenheit is equivalent to\n"
53 << c_degrees << " degrees Celsius.\n";
54 return;
55 }

Sample Dialogue

I will convert a Fahrenheit temperature to Celsius.

Enter a temperature in Fahrenheit: 32.5

32.5 degrees Fahrenheit is equivalent to

0.3 degrees Celsius.

This return is optional.

DISPLAY 5.3 Use of return in a void Function

Function Declaration

1 void ice_cream_division(int number, double total_weight);
2 //Outputs instructions for dividing total_weight ounces of
3 //ice cream among number customers.
4 //If number is 0, nothing is done.

Function Definition

1 //Definition uses iostream:
2 void ice_cream_division(int number, double total_weight)
3 {
4 using namespace std;
5 double portion;
6
7 if (number == 0)
8 return;
9 portion = total_weight/number;

10 cout.setf(ios::fixed);
11 cout.setf(ios::showpoint);
12 cout.precision(2);
13 cout << "Each one receives "
14 << portion << " ounces of ice cream." << endl;
15 }

If number is 0, then the
function execution ends here.

void Functions

258 CHAPTER 5 / Functions for All Subtasks

crazy, but that’s the tradition. It might be best to continue to think of the main
part of the program as just “the main part of the program” and not worry about
this minor detail.1

SELF -TEST EXERC ISES

1. What is the output of the following program?

#include <iostream>

void friendly();

void shy(int audience_count);

int main()
{
 using namespace std;
 friendly();
 shy(6);
 cout << "One more time:\n";
 shy(2);
 friendly();
 cout << "End of program.\n";
 return 0;
}

void friendly()
{

 using namespace std;
 cout << "Hello\n";

}

void shy(int audience_count)

{

 using namespace std;
 if (audience_count < 5)

 return;

 cout << "Goodbye\n";

}

1 The C++ Standard says that you can omit the return 0 in the main part, but many
compilers still require it.

5.2 Call-by-Reference Parameters 259

2. Are you required to have a return statement in a void function definition?

3. Suppose you omitted the return statement in the function definition
for initialize_screen in Display 5.2. What effect would it have on the
program? Would the program compile? Would it run? Would the pro-
gram behave any differently? What about the return statement in the
function definition for show_results in that same program? What effect
would it have on the program if you omitted the return statement in
the definition of show_results? What about the return statement in the
function definition for celsius in that same program? What effect
would it have on the program if you omitted the return statement in
the definition of celsius?

4. Write a definition for a void function that has three arguments of type int
and that outputs to the screen the product of these three arguments. Put
the definition in a complete program that reads in three numbers and
then calls this function.

5. Does your compiler allow void main() and int main()? What warnings
are issued if you have int main() and do not supply a return 0;
statement? To find out, write several small test programs and perhaps ask
your instructor or a local guru.

6. Is a call to a void function used as a statement or is it used as an expression?

5.2 CALL-BY-REFERENCE PARAMETERS

When a function is called, its arguments are substituted for the formal
parameters in the function definition, or to state it less formally, the
arguments are “plugged in” for the formal parameters. There are different
mechanisms used for this substitution process. The mechanism we used in
Chapter 4, and thus far in this chapter, is known as the call-by-value mecha-
nism. The second main mechanism for substituting arguments is known as the
call-by-reference mechanism.

A First View of Call-by-Reference

The call-by-value mechanism that we used until now is not sufficient for
certain subtasks. For example, one common subtask is to obtain one or more
input values from the user. Look back at the program in Display 5.2. Its tasks
are divided into four subtasks: initialize the screen, obtain the Fahrenheit
temperature, compute the corresponding Celsius temperature, and output the
results. Three of these four subtasks are implemented as the functions
initialize_screen, celsius, and show_results. However, the subtask of

260 CHAPTER 5 / Functions for All Subtasks

obtaining the input is implemented as the following four lines of code (rather
than as a function call):

cout << "I will convert a Fahrenheit temperature"
 << " to Celsius.\n"
 << "Enter a temperature in Fahrenheit: ";
cin >> f_temperature;

The subtask of obtaining the input should be accomplished by a function call.
To do this with a function call, we will use a call-by-reference parameter.

A function for obtaining input should set the values of one or more
variables to values typed in at the keyboard, so the function call should have one
or more variables as arguments and should change the values of these argument
variables. With the call-by-value formal parameters that we have used until
now, an argument in a function call can be a variable, but the function takes
only the value of the variable and does not change the variable in any way.
With a call-by-value formal parameter only the value of the argument is
substituted for the formal parameter. For an input function, we want the variable
(not the value of the variable) to be substituted for the formal parameter. The
call-by-reference mechanism works in just this way. With a call-by-reference
formal parameter (also called simply a reference parameter), the correspond-
ing argument in a function call must be a variable and this argument variable is
substituted for the formal parameter. It is as if the argument variable were
literally copied into the body of the function definition in place of the formal
parameter. After the argument is substituted in, the code in the function body is
executed and this code can change the value of the argument variable.

A call-by-reference parameter must be marked in some way so that the
compiler will know it from a call-by-value parameter. The way that you
indicate a call-by-reference parameter is to attach the ampersand sign, &, to
the end of the type name in the formal parameter list in both the function
declaration and the header of the function definition. For example, the
following function definition has one formal parameter, f_variable, and that
formal parameter is a call-by-reference parameter:

void get_input(double& f_variable)
{
 using namespace std;
 cout << "I will convert a Fahrenheit temperature"
 << " to Celsius.\n"
 << "Enter a temperature in Fahrenheit: ";
 cin >> f_variable;
}

In a program that contains this function definition, the following function call
sets the variable f_temperature equal to a value read from the keyboard:

get_input(f_temperature);

reference
parameter

&

5.2 Call-by-Reference Parameters 261

Using this function definition, we could easily rewrite the program shown in
Display 5.2 so that the subtask of reading the input is accomplished by this
function call. However, rather than rewrite an old program, let’s look at a
completely new program.

Display 5.4 demonstrates call-by-reference parameters. The program
doesn’t do very much. It just reads in two numbers and writes the same
numbers out, but in the reverse order. The parameters in the functions
get_numbers and swap_values are call-by-reference parameters. The input is
performed by the function call

get_numbers(first_num, second_num);

DISPLAY 5.4 Call-by-Reference Parameters (part 1 of 2)

1 //Program to demonstrate call-by-reference parameters.
2 #include <iostream>

3 void get_numbers(int& input1, int& input2);
4 //Reads two integers from the keyboard.

5 void swap_values(int& variable1, int& variable2);
6 //Interchanges the values of variable1 and variable2.

7 void show_results(int output1, int output2);
8 //Shows the values of variable1 and variable2, in that order.

9 int main()
10 {
11 int first_num, second_num;
12
13 get_numbers(first_num, second_num);
14 swap_values(first_num, second_num);
15 show_results(first_num, second_num);
16 return 0;
17 }

18 //Uses iostream:
19 void get_numbers(int& input1, int& input2)
20 {
21 using namespace std;
22 cout << "Enter two integers: ";
23 cin >> input1
24 >> input2;
25 }
26 void swap_values(int& variable1, int& variable2)
27 {
28 int temp;

(continued)

262 CHAPTER 5 / Functions for All Subtasks

The values of the variables first_num and second_num are set by this function
call. After that, the following function call reverses the values in the two
variables first_num and second_num:

swap_values(first_num, second_num);

In the next few subsections we describe the call-by-reference mechanism in
more detail and also explain the particular functions used in Display 5.4.

Call-by-Reference in Detail

In most situations, the call-by-reference mechanism works as if the name of
the variable given as the function argument were literally substituted for the
call-by-reference formal parameter. However, the process is a bit more subtle
than that. In some situations, this subtlety is important, so we need to
examine more details of this call-by-reference substitution process.

Recall that program variables are implemented as memory locations. The
compiler assigns one memory location to each variable. For example, when
the program in Display 5.4 is compiled, the variable first_num might be
assigned location 1010, and the variable second_num might be assigned 1012.
For all practical purposes, these memory locations are the variables.

For example, consider the following function declaration from Display 5.4:

void get_numbers(int& input1, int& input2);

DISPLAY 5.4 Call-by-Reference Parameters (part 2 of 2)

29 temp = variable1;
30 variable1 = variable2;
31 variable2 = temp;
32 }

33 //Uses iostream:
34 void show_results(int output1, int output2)
35 {
36 using namespace std;
37 cout << "In reverse order the numbers are: "
38 << output1 << " " << output2 << endl;
39 }

Sample Dialogue

Enter two integers: 5 10

In reverse order the numbers are: 10 5

5.2 Call-by-Reference Parameters 263

The call-by-reference formal parameters input1 and input2 are placeholders
for the actual arguments used in a function call.

Now consider a function call like the following from the same display:

get_numbers(first_num, second_num);

When the function call is executed, the function is not given the argument
names first_num and second_num. Instead, it is given a list of the memory
locations associated with each name. In this example, the list consists of the
locations

1010
1012

which are the locations assigned to the argument variables first_num and
second_num, in that order. It is these memory locations that are associated with the
formal parameters. The first memory location is associated with the first formal
parameter, the second memory location is associated with the second formal
parameter, and so forth. Diagrammatically, in this case the correspondence is

When the function statements are executed, whatever the function body says
to do to a formal parameter is actually done to the variable in the memory
location associated with that formal parameter. In this case, the instructions in
the body of the function get_numbers say that a value should be stored in the
formal parameter input1 using a cin statement, and so that value is stored in
the variable in memory location 1010 (which happens to be the variable

Call-by-Reference

To make a formal parameter a call-by-reference parameter, append the
ampersand sign & to its type name. The corresponding argument in a call
to the function should then be a variable, not a constant or other
expression. When the function is called, the corresponding variable argu-
ment (not its value) will be substituted for the formal parameter. Any
change made to the formal parameter in the function body will be made
to the argument variable when the function is called. The exact details of
the substitution mechanisms are given in the text of this chapter.

EXAMPLE (OF CALL-BY-REFERENCE PARAMETERS IN A FUNCTION
DECLARATION):

void get_data(int& first_in, double& second_in);

first_num 1010 input1
second_num 1012 input2

264 CHAPTER 5 / Functions for All Subtasks

first_num). Similarly, the instructions in the body of the function
get_numbers say that a value should then be stored in the formal parameter
input2 using a cin statement, and so that value is stored in the variable in
memory location 1012 (which happens to be the variable second_num). Thus,
whatever the function instructs the computer to do to input1 and input2 is
actually done to the variables first_num and second_num. These details of how
the call-by-reference mechanism works in this function call to get_numbers are
described in Display 5.5.

It may seem that there is an extra level of detail, or at least an extra level of
verbiage. If first_num is the variable with memory location 1010, why do we
insist on saying “the variable at memory location 1010” instead of simply saying

DISPLAY 5.5 Behavior of Call-by-Reference Arguments (part 1 of 2)

Anatomy of a Function Call from Display 5.4
Using Call-by-Reference Arguments

0 Assume the variables first_num and second_num have been assigned the
 following memory address by the compiler:

first_num 1010
second_num 1012

 (We do not know what addresses are assigned and the results will not depend
 on the actual addresses, but this will make the process very concrete and
 thus perhaps easier to follow.)

1 In the program in Display 5.4, the following function call begins executing:

get_numbers(first_num, second_num);

2 The function is told to use the memory location of the variable first_num
 in place of the formal parameter input1 and the memory location of the
 second_num in place of the formal parameter input2. The effect is the
 same as if the function definition were rewritten to the following (which is
 not legal C++ code, but does have a clear meaning to us):

void get_numbers(int& <the variable at memory location 1010>,
int& <the variable at memory location 1012>)

{
 using namespace std;
 cout << "Enter two integers: ";
 cin >> <the variable at memory location 1010>
 >> <the variable at memory location 1012>;

}

(continued)

5.2 Call-by-Reference Parameters 265

“first_num”? This extra level of detail is needed if the arguments and formal
parameters contain some confusing coincidence of names. For example, the
function get_numbers has formal parameters named input1 and input2.
Suppose you want to change the program in Display 5.4 so that it uses the
function get_numbers with arguments that are also named input1 and input2,
and suppose that you want to do something less than obvious. Suppose you
want the first number typed in to be stored in a variable named input2, and the
second number typed in to be stored in the variable named input1—perhaps
because the second number will be processed first, or because it is the more
important number. Now, let’s suppose that the variables input1 and input2,

DISPLAY 5.5 Behavior of Call-by-Reference Arguments (part 2 of 2)

Anatomy of the Function Call in Display 5.4 (concluded)

 Since the variables in locations 1010 and 1012 are first_num and
 second_num, the effect is thus the same as if the function definition were
 rewritten to the following:

void get_numbers(int& first_num, int& second_num)
{
 using namespace std;
 cout << "Enter two integers: ";
 cin >> first_num
 >> second_num;
}

3 The body of the function is executed. The effect is the same as if the following
 were executed:

{
 using namespace std;
 cout << "Enter two integers: ";
 cin >> first_num
 >> second_num;
}

4 When the cin statement is executed, the values of the variables first_num
 and second_num are set to the values typed in at the keyboard. (If the dialogue
 is as shown in Display 5.4, then the value of first_num is set to 5 and the value
 of second_num is set to 10.)

5 When the function call ends, the variables first_num and second_num retain
 the values that they were given by the cin statement in the function body. (If the
 dialogue is as shown in Display 5.4, then the value of first_num is 5 and the
 value of second_num is 10 at the end of the function call.)

266 CHAPTER 5 / Functions for All Subtasks

which are declared in the main part of your program, have been assigned
memory locations 1014 and 1016. The function call could be as follows:

In this case if you say “input1,” we do not know whether you mean the
variable named input1 that is declared in the main part of your program or the
formal parameter input1. However, if the variable input1 declared in the main
part of your program is assigned memory location 1014, the phrase “the
variable at memory location 1014” is unambiguous. Let’s go over the details
of the substitution mechanisms in this case.

In this call the argument corresponding to the formal parameter input1 is
the variable input2, and the argument corresponding to the formal parame-
ter input2 is the variable input1. This can be confusing to us, but it produces
no problem at all for the computer, since the computer never does actually
“substitute input2 for input1” or “substitute input1 for input2.” The comput-
er simply deals with memory locations. The computer substitutes “the variable
at memory location 1016” for the formal parameter input1, and “the variable
at memory location 1014” for the formal parameter input2.

■ PROGRAMMING EXAMPLE The swap_values Function

The function swap_values defined in Display 5.4 interchanges the values
stored in two variables. The description of the function is given by the
following function declaration and accompanying comment:

void swap_values(int& variable1, int& variable2);
//Interchanges the values of variable1 and variable2.

To see how the function is supposed to work, assume that the variable
first_num has the value 5 and the variable second_num has the value 10 and
consider the function call:

swap_values(first_num, second_num);

After this function call, the value of first_num will be 10 and the value of
second_num will be 5.

As shown in Display 5.4, the definition of the function swap_values uses
a local variable called temp. This local variable is needed. You might be
tempted to think the function definition could be simplified to the following:

int input1, input 2;
get_numbers(input2, input1);

Notice the order
of the arguments

void swap_values(int& variable1, int& variable2)
{
 variable1 = variable2;
 variable2 = variable1;
}

This does not work!

5.2 Call-by-Reference Parameters 267

To see that this alternative definition cannot work, consider what would happen
with this definition and the function call

swap_values(first_num, second_num);

The variables first_num and second_num are substituted for the formal
parameters variable1 and variable2 so that, with this incorrect function
definition, the function call is equivalent to the following:

first_num = second_num;
second_num = first_num;

This code does not produce the desired result. The value of first_num is set
equal to the value of second_num, just as it should be. But then, the value of
second_num is set equal to the changed value of first_num, which is now the
original value of second_num. Thus the value of second_num is not changed at
all. (If this is unclear, go through the steps with specific values for the variables
first_num and second_num.) What the function needs to do is to save the
original value of first_num so that value is not lost. This is what the local
variable temp in the correct function definition is used for. That correct
definition is the one in Display 5.4. When that correct version is used and the
function is called with the arguments first_num and second_num, the function
call is equivalent to the following code, which works correctly:

temp = first_num;
first_num = second_num;
second_num = temp; ■

(continues)

Parameters and Arguments

All the different terms that have to do with parameters and arguments can
be confusing. However, if you keep a few simple points in mind, you will
be able to easily handle these terms.

1. The formal parameters for a function are listed in the function declaration
and are used in the body of the function definition. A formal parameter (of
any sort) is a kind of blank or placeholder that is filled in with something
when the function is called.

2. An argument is something that is used to fill in a formal parameter. When
you write down a function call, the arguments are listed in parentheses after
the function name. When the function call is executed, the arguments are
“plugged in” for the formal parameters.

3. The terms call-by-value and call-by-reference refer to the mechanism that is
used in the “plugging in” process. In the call-by-value method only the value
of the argument is used. In this call-by-value mechanism, the formal parameter

268 CHAPTER 5 / Functions for All Subtasks

Mixed Parameter Lists

Whether a formal parameter is a call-by-value parameter or a call-by-reference
parameter is determined by whether there is an ampersand attached to its type
specification. If the ampersand is present, then the formal parameter is a call-
by-reference parameter. If there is no ampersand associated with the formal
parameter, then it is a call-by-value parameter.

It is perfectly legitimate to mix call-by-value and call-by-reference formal
parameters in the same function. For example, the first and last of the
formal parameters in the following function declaration are call-by-reference
formal parameters and the middle one is a call-by-value parameter:

void good_stuff(int& par1, int par2, double& par3);

Call-by-reference parameters are not restricted to void functions. You can
also use them in functions that return a value. Thus, a function with a call-by-
reference parameter could both change the value of a variable given as an
argument and return a value.

■ PROGRAMMING TIP What Kind of Parameter to Use

Display 5.6 illustrates the differences between how the compiler treats call-by-
value and call-by-reference formal parameters. The parameters par1_value
and par2_ref are both assigned a value inside the body of the function
definition. But since they are different kinds of parameters, the effect is
different in the two cases.

par1_value is a call-by-value parameter, so it is a local variable. When the
function is called as follows

do_stuff(n1, n2);

the local variable par1_value is initialized to the value of n1. That is, the
local variable par1_value is initialized to 1 and the variable n1 is then
ignored by the function. As you can see from the sample dialogue, the
formal parameter par1_value (which is a local variable) is set to 111 in the
function body and this value is output to the screen. However, the value of
the argument n1 is not changed. As shown in the sample dialogue, n1 has
retained its value of 1.

is a local variable that is initialized to the value of the corresponding argument.
In the call-by-reference mechanism the argument is a variable and the entire
variable is used. In the call-by-reference mechanism, the argument variable is
substituted for the formal parameter so that any change that is made to the
formal parameter is actually made to the argument variable.

mixing call-by-
reference and

call-by-value

Video Note
Call by Reference
and Call by Value

5.2 Call-by-Reference Parameters 269

On the other hand, par2_ref is a call-by-reference parameter. When the
function is called, the variable argument n2 (not just its value) is substituted for
the formal parameter par2_ref. So that when the following code is executed:

par2_ref = 222;

DISPLAY 5.6 Comparing Argument Mechanisms

1 //Illustrates the difference between a call-by-value
2 //parameter and a call-by-reference parameter.
3 #include <iostream>

4 void do_stuff(int par1_value, int& par2_ref);
5 //par1_value is a call-by-value formal parameter and
6 //par2_ref is a call-by-reference formal parameter.

7 int main()
8 {
9 using namespace std;

10 int n1, n2;
11
12 n1 = 1;
13 n2 = 2;
14 do_stuff(n1, n2);
15 cout << "n1 after function call = " << n1 << endl;
16 cout << "n2 after function call = " << n2 << endl;
17 return 0;
18 }

19 void do_stuff(int par1_value, int& par2_ref)
20 {
21 using namespace std;
22 par1_value = 111;
23 cout << "par1_value in function call = "
24 << par1_value << endl;
25 par2_ref = 222;
26 cout << "par2_ref in function call = "
27 << par2_ref << endl;
28 }

Sample Dialogue

par1_value in function call = 111

par2_ref in function call = 222

n1 after function call = 1

n2 after function call = 222

270 CHAPTER 5 / Functions for All Subtasks

it is the same as if the following were executed:

n2 = 222;

Thus, the value of the variable n2 is changed when the function body is
executed, so as the dialogue shows, the value of n2 is changed from 2 to 222
by the function call.

If you keep in mind the lesson of Display 5.6, it is easy to decide which
parameter mechanism to use. If you want a function to change the value of a
variable, then the corresponding formal parameter must be a call-by-reference
formal parameter and must be marked with the ampersand sign, &. In all other
cases, you can use a call-by-value formal parameter. ■

■ PITFALL Inadvertent Local Variables

If you want a function to change the value of a variable, the corresponding
formal parameter must be a call-by-reference parameter and must have the
ampersand, &, attached to its type. If you carelessly omit the ampersand, the
function will have a call-by-value parameter where you meant to have a call-
by-reference parameter, and when the program is run, you will discover that
the function call does not change the value of the corresponding argument.
This is because a formal call-by-value parameter is a local variable, so if it has
its value changed in the function, then as with any local variable, that change
has no effect outside of the function body. This is a logic error that can be very
difficult to see because it looks right.

For example, the program in Display 5.7 is identical to the program in
Display 5.4, except that the ampersands were mistakenly omitted from the
function swap_values. As a result, the formal parameters variable1 and
variable2 are local variables. The argument variables first_num and second_num
are never substituted in for variable1 and variable2; variable1 and variable2

DISPLAY 5.7 Inadvertent Local Variable (part 1 of 2)

1 //Program to demonstrate call-by-reference parameters.
2 #include <iostream>

3 void get_numbers(int& input1, int& input2);
4 //Reads two integers from the keyboard.

5 void swap_values(int variable1, int variable2);
6 //Interchanges the values of variable1 and variable2.

7 void show_results(int output1, int output2);
8 //Shows the values of variable1 and variable2, in that order.

9 int main()

(continued)

forgot the & here

5.2 Call-by-Reference Parameters 271

are instead initialized to the values of first_num and second_num. Then, the values
of variable1 and variable2 are interchanged, but the values of first_num and
second_num are left unchanged. The omission of two ampersands has made the
program completely wrong, yet it looks almost identical to the correct program
and will compile and run without any error messages. ■

SELF -TEST EXERC ISES

7. What is the output of the following program?

#include <iostream>
void figure_me_out(int& x, int y, int& z);
int main()
{
 using namespace std;
 int a, b, c;
 a = 10;
 b = 20;

DISPLAY 5.7 Inadvertent Local Variable (part 2 of 2)

10 {
11 int first_num, second_num;

12 get_numbers(first_num, second_num);
13 swap_values(first_num, second_num);
14 show_results(first_num, second_num);
15 return 0;
16 }

17 void swap_values(int variable1, int variable2)
18 {
19 int temp;

20 temp = variable1;
21 variable1 = variable2;
22 variable2 = temp;
23 }

24 <The definitions of get_numbers and
25 show_results are the same as in Display 5.4.>

Sample Dialogue

Enter two integers: 5 10

In reverse order the numbers are: 5 10

forgot the & here

inadvertent
local variables

272 CHAPTER 5 / Functions for All Subtasks

 c = 30;
 figure_me_out(a, b, c);
 cout << a << " " << b << " " << c;
 return 0;
}

void figure_me_out(int& x, int y, int& z)
{
 using namespace std;
 cout << x << " " << y << " " << z << endl;
 x = 1;
 y = 2;
 z = 3;
 cout << x << " " << y << " " << z << endl;
}

8. What would be the output of the program in Display 5.4 if you omit the
ampersands, &, from the first parameter in the function declaration and
function heading of swap_values? The ampersand is not removed from
the second parameter.

9. What would be the output of the program in Display 5.6 if you change the
function declaration for the function do_stuff to the following and you
change the function header to match, so that the formal parameter
par2_ref is changed to a call-by-value parameter:

void do_stuff(int par1_value, int par2_ref);

10. Write a void function definition for a function called zero_both that has
two reference parameters, both of which are variables of type int, and sets
the values of both variables to 0.

11. Write a void function definition for a function called add_tax. The func-
tion add_tax has two formal parameters: tax_rate, which is the amount
of sales tax expressed as a percentage, and cost, which is the cost of an
item before tax. The function changes the value of cost so that it includes
sales tax.

12. Can a function that returns a value have a call-by-reference parameter? May
a function have both call-by-value and a call-by-reference parameters?

5.3 USING PROCEDURAL ABSTRACTION

My memory is so bad,
that many times I forget my own name!

MIGUEL DE CERVANTES SAAVEDRA, Don Quixote

5.3 Using Procedural Abstraction 273

Recall that the principle of procedural abstraction says that functions should
be designed so that they can be used as black boxes. For a programmer to use
a function effectively, all the programmer should need to know is the function
declaration and the accompanying comment that says what the function
accomplishes. The programmer should not need to know any of the details
contained in the function body. In this section we discuss a number of topics
that deal with this principle in more detail.

Functions Calling Functions

A function body may contain a call to another function. The situation for these
sorts of function calls is exactly the same as it would be if the function call had
occurred in the main function of the program; the only restriction is that the
function declaration should appear before the function is used. If you set up
your programs as we have been doing, this will happen automatically, since
all function declarations come before the main function and all function
definitions come after the main function. Although you may include a
function call within the definition of another function, you cannot place the
definition of one function within the body of another function definition.

Display 5.8 shows an enhanced version of the program shown in Display
5.4. The program in Display 5.4 always reversed the values of the variables
first_num and second_num. The program in Display 5.8 reverses these
variables only some of the time. The program in Display 5.8 uses the function
order to reorder the values in these variables so as to ensure that

first_num <= second_num

If this condition is already true, then nothing is done to the variables
first_num and second_num. If, however, first_num is greater than second_num,
then the function swap_values is called to interchange the values of these two
variables. This testing for order and exchanging of variable values all takes
place within the body of the function order. Thus, the function swap_values
is called within the body of the function order. This presents no special
problems. Using the principle of procedural abstraction, we think of the
function swap_values as performing an action (namely, interchanging the
values of two variables); this action is the same no matter where it occurs.

Preconditions and Postconditions

One good way to write a function declaration comment is to break it down
into two kinds of information, called a precondition and a postcondition. The
precondition states what is assumed to be true when the function is called.
The function should not be used and cannot be expected to perform correctly
unless the precondition holds. The postcondition describes the effect of the
function call; that is, the postcondition tells what will be true after the

precondition

postcondition

274 CHAPTER 5 / Functions for All Subtasks

DISPLAY 5.8 Function Calling Another Function (part 1 of 2)

1 //Program to demonstrate a function calling another function.
2 #include <iostream>
3
4 void get_input(int& input1, int& input2);
5 //Reads two integers from the keyboard.
6
7 void swap_values(int& variable1, int& variable2);
8 //Interchanges the values of variable1 and variable2.
9

10 void order(int& n1, int& n2);
11 //Orders the numbers in the variables n1 and n2
12 //so that after the function call n1 <= n2.
13
14 void give_results(int output1, int output2);
15 //Outputs the values in output1 and output2.
16 //Assumes that output1 <= output2
17

18 int main()
19 {
20 int first_num, second_num;
21
22 get_input(first_num, second_num);
23 order(first_num, second_num);
24 give_results(first_num, second_num);
25 return 0;
26 }
27

28 //Uses iostream:
29 void get_input(int& input1, int& input2)
30 {
31 using namespace std;
32 cout << "Enter two integers: ";
33 cin >> input1 >> input2;
34 }
35
36 void swap_values(int& variable1, int& variable2)
37 {
38 int temp;
39
40 temp = variable1;
41 variable1 = variable2;
42 variable2 = temp;
43 }
44

(continued)

5.3 Using Procedural Abstraction 275

function is executed in a situation in which the precondition holds. For a
function that returns a value, the postcondition will describe the value
returned by the function. For a function that changes the value of some
argument variables, the postcondition will describe all the changes made to
the values of the arguments.

For example, the function declaration comment for the function
swap_values shown in Display 5.8 can be put into this format as follows:

void swap_values(int& variable1, int& variable2);
//Precondition: variable1 and variable2 have been given
//values.
//Postcondition: The values of variable1 and variable2
//have been interchanged.

The comment for the function celsius from Display 5.2 can be put into
this format as follows:

double celsius(double fahrenheit);
//Precondition: fahrenheit is a temperature expressed
//in degrees Fahrenheit.
//Postcondition: Returns the equivalent temperature
//expressed in degrees Celsius.

DISPLAY 5.8 Function Calling Another Function (part 2 of 2)

45 void order(int& n1, int& n2)
46 {
47 if (n1 > n2)
48 swap_values(n1, n2);
49 }
50
51 //Uses iostream:
52 void give_results(int output1, int output2)
53 {
54 using namespace std;
55 cout << "In increasing order the numbers are: "
56 << output1 << " " << output2 << endl;
57 }

Sample Dialogue

Enter two integers: 10 5

In increasing order the numbers are: 5 10

These function
definitions can
be in any order.

276 CHAPTER 5 / Functions for All Subtasks

When the only postcondition is a description of the value returned, program-
mers often omit the word postcondition. A common and acceptable alternative
form for the previous function declaration comments is the following:

//Precondition: fahrenheit is a temperature expressed
//in degrees Fahrenheit.
//Returns the equivalent temperature expressed in
//degrees Celsius.

Another example of preconditions and postconditions is given by the
following function declaration:

void post_interest(double& balance, double rate);
//Precondition: balance is a nonnegative savings
//account balance. rate is the interest rate
//expressed as a percent, such as 5 for 5%.
//Postcondition: The value of balance has been
//increased by rate percent.

You do not need to know the definition of the function post_interest in
order to use this function, so we have given only the function declaration and
accompanying comment.

Preconditions and postconditions are more than a way to summarize a
function’s actions. They should be the first step in designing and writing a
function. When you design a program, you should specify what each function
does before you start designing how the function will do it. In particular, the
function declaration comments and the function declaration should be
designed and written down before starting to design the function body. If you
later discover that your specification cannot be realized in a reasonable way, you
may need to back up and rethink what the function should do, but by clearly
specifying what you think the function should do, you will minimize both
design errors and wasted time writing code that does not fit the task at hand.

Some programmers prefer not to use the words precondition and postcondi-
tion in their function comments. However, whether you use the words or not,
your function comment should always contain the precondition and postcon-
dition information.

CASE STUDY Supermarket Pricing

This case study solves a very simple programming task. It may seem that it
contains more detail than is needed for such a simple task. However, if you
see the design elements in the context of a simple task, you can concentrate on
learning them without the distraction of any side issues. Once you learn the
techniques that are illustrated in this simple case study, you can apply these
same techniques to much more complicated programming tasks.

5.3 Using Procedural Abstraction 277

Problem Definition
We have been commissioned by the Quick-Shop supermarket chain to
write a program that will determine the retail price of an item given suitable
input. Their pricing policy is that any item that is expected to sell in one week
or less is marked up 5%, and any item that is expected to stay on the shelf
for more than one week is marked up 10% over the wholesale price. Be
sure to notice that the low markup of 5% is used for up to 7 days and that
at 8 days the markup changes to 10%. It is important to be precise about
exactly when a program should change from one form of calculation to a
different one.

As always, we should be sure we have a clear statement of the input
required and the output produced by the program.

Input

The input will consist of the wholesale price of an item and the expected
number of days until the item is sold.

Output

The output will give the retail price of the item.

Analysis of the Problem
Like many simple programming tasks, this one breaks down into three main
subtasks:

1. Input the data.

2. Compute the retail price of the item.

3. Output the results.

These three subtasks will be implemented by three functions. The three
functions are described by their function declarations and accompanying
comments, which are given below. Note that only those items that are
changed by the functions are call-by-reference parameters. The remaining
formal parameters are call-by-value parameters.

void get_input(double& cost, int& turnover);
//Precondition: User is ready to enter values correctly.
//Postcondition: The value of cost has been set to the

//set to the expected number of days until the item is sold.

double price(double cost, int turnover);
//Precondition: cost is the wholesale cost of one item.
//turnover is the expected number of days
//until sale of the item.
//Returns the retail price of the item.

//wholesale cost of one item. The value of turnover has been

278 CHAPTER 5 / Functions for All Subtasks

void give_output(double cost, int turnover, double price);
//Precondition: cost is the wholesale cost of one item;
//turnover is the expected time until sale of the item;
//price is the retail price of the item.

//been written to the screen.

Now that we have the function headings, it is trivial to write the main part
of our program:

int main()
{
 double wholesale_cost, retail_price;
 int shelf_time;

 get_input(wholesale_cost, shelf_time);
 retail_price = price(wholesale_cost, shelf_time);
 give_output(wholesale_cost, shelf_time, retail_price);
 return 0;
}

Even though we have not yet written the function bodies and have no idea of
how the functions work, we can write the above code which uses the
functions. That is what is meant by the principle of procedural abstraction.
The functions are treated like black boxes.

Algorithm Design
The implementations of the functions get_input and give_output are
straight-forward. They simply consist of a few cin and cout statements. The
algorithm for the function price is given by the following pseudocode:

if turnover ≤ 7 days then
 return (cost + 5% of cost);
else
 return (cost + 10% of cost);

Coding
There are three constants used in this program: a low markup figure of 5%, a
high markup figure of 10%, and an expected shelf stay of 7 days as the
threshold above which the high markup is used. Since these constants might
need to be changed to update the program should the company decide to
change its pricing policy, we declare global named constants at the start of our
program for each of these three numbers. The declarations with the const
modifier are the following:

const double LOW_MARKUP = 0.05; //5%
const double HIGH_MARKUP = 0.10; //10%
const int THRESHOLD = 7; //Use HIGH_MARKUP if do not

//Postcondition: The values of cost, turnover, and price have

 //expect to sell in 7 days or less.

5.3 Using Procedural Abstraction 279

The body of the function price is a straightforward translation of our
algorithm from pseudocode to C++ code:

{
 if (turnover <= THRESHOLD)
 return (cost + (LOW_MARKUP * cost));
 else
 return (cost + (HIGH_MARKUP * cost));
}

The complete program is shown in Display 5.9.

DISPLAY 5.9 Supermarket Pricing (part 1 of 3)

1 //Determines the retail price of an item according to
2 //the pricing policies of the Quick-Shop supermarket chain.
3 #include <iostream>

4 const double LOW_MARKUP = 0.05; //5%
5 const double HIGH_MARKUP = 0.10; //10%
6 const int THRESHOLD = 7; //Use HIGH_MARKUP if not expected
7 //to sell in 7 days or less.

8 void introduction();
9 //Postcondition: Description of program is written on the screen.

10 void get_input(double& cost, int& turnover);
11 //Precondition: User is ready to enter values correctly.
12 //Postcondition: The value of cost has been set to the
13 //wholesale cost of one item. The value of turnover has been
14 //set to the expected number of days until the item is sold.

15 double price(double cost, int turnover);
16 //Precondition: cost is the wholesale cost of one item.
17 //turnover is the expected number of days until sale of the item.
18 //Returns the retail price of the item.

19 void give_output(double cost, int turnover, double price);
20 //Precondition: cost is the wholesale cost of one item; turnover is the
21 //expected time until sale of the item; price is the retail price of the

item.
22 //Postcondition: The values of cost, turnover, and price have been
23 //written to the screen.

24 int main()
25 {
26 double wholesale_cost, retail_price;
27 int shelf_time;

(continued)

280 CHAPTER 5 / Functions for All Subtasks

DISPLAY 5.9 Supermarket Pricing (part 2 of 3)

28 introduction();
29 get_input(wholesale_cost, shelf_time);
30 retail_price = price(wholesale_cost, shelf_time);
31 give_output(wholesale_cost, shelf_time, retail_price);
32 return 0;
33 }

34 //Uses iostream:
35 void introduction()
36 {
37 using namespace std;
38 cout << "This program determines the retail price for\n"
39 << "an item at a Quick-Shop supermarket store.\n";
40 }

41 //Uses iostream:
42 void get_input(double& cost, int& turnover)
43 {
44 using namespace std;
45 cout << "Enter the wholesale cost of item: $";
46 cin >> cost;
47 cout << "Enter the expected number of days until sold: ";
48 cin >> turnover;
49 }

50 //Uses iostream:
51 void give_output(double cost, int turnover, double price)
52 {
53 using namespace std;
54 cout.setf(ios::fixed);
55 cout.setf(ios::showpoint);
56 cout.precision(2);
57 cout << "Wholesale cost = $" << cost << endl
58 << "Expected time until sold = "
59 << turnover << " days" << endl
60 << "Retail price = $" << price << endl;
61 }

62 //Uses defined constants LOW_MARKUP, HIGH_MARKUP, and THRESHOLD:
63 double price(double cost, int turnover)
64 {
65 if (turnover <= THRESHOLD)
66 return (cost + (LOW_MARKUP * cost));
67 else
68 return (cost + (HIGH_MARKUP * cost));
69
70 }

(continued)

5.3 Using Procedural Abstraction 281

Program Testing
An important technique in testing a program is to test all kinds of input. There
is no precise definition of what we mean by a “kind” of input, but in practice,
it is often easy to decide what kinds of input data a program deals with. In the
case of our supermarket program, there are two main kinds of input: input
that uses the low markup of 5% and input that uses the high markup of 10%.
Thus, we should test at least one case in which the item is expected to remain
on the shelf for less than 7 days and at least one case in which the item is
expected to remain on the shelf for more than 7 days.

Another testing strategy is to test boundary values. Unfortunately, bound-
ary value is another vague concept. An input (test) value is a boundary value
if it is a value at which the program changes behavior. For example, in our
supermarket program, the program’s behavior changes at an expected shelf
stay of 7 days. Thus, 7 is a boundary value; the program behaves differently for
a number of days that is less than or equal to 7 than it does for a number of
days that is greater than 7. Hence, we should test the program on at least one
case in which the item is expected to remain on the shelf for exactly 7 days.
Normally, you should also test input that is one step away from the boundary
value as well, since you can easily be off by one in deciding where the
boundary is. Hence, we should test our program on input for an item that is
expected to remain on the shelf for 6 days, an item that is expected to remain
on the shelf for 7 days, and an item that is expected to remain on the shelf for
8 days. (This is in addition to the test inputs described in the previous
paragraph, which should be well below and well above 7 days.)

SELF -TEST EXERC ISES

13. Can a function definition appear inside the body of another function
definition?

test all kinds
of input

test boundary
values

DISPLAY 5.9 Supermarket Pricing (part 3 of 3)

Sample Dialogue

This program determines the retail price for

an item at a Quick-Shop supermarket store.

Enter the wholesale cost of item: $1.21

Enter the expected number of days until sold: 5

Wholesale cost = $1.21

Expected time until sold = 5 days

Retail price = $1.27

282 CHAPTER 5 / Functions for All Subtasks

14. Can a function definition contain a call to another function?

15. Rewrite the function declaration comment for the function order shown
in Display 5.8 so that it is expressed in terms of preconditions and post-
conditions.

16. Give a precondition and a postcondition for the predefined function
sqrt, which returns the square root of its argument.

5.4 TESTING AND DEBUGGING FUNCTIONS

“I beheld the wretch—the miserable monster
whom I had created.”

MARY WOLLSTONECRAFT SHELLEY, Frankenstein

Stubs and Drivers

Each function should be designed, coded, and tested as a separate unit from
the rest of the program. This is the essence of the top-down design strategy.
When you treat each function as a separate unit, you transform one big task
into a series of smaller, more manageable tasks. But how do you test a
function outside of the program for which it is intended? You write a special
program to do the testing. For example, Display 5.10 shows a program to test
the function get_input, which was used in the program in Display 5.9.

DISPLAY 5.10 Driver Program (part 1 of 2)

1 //Driver program for the function get_input.
2 #include <iostream>
3
4 void get_input(double& cost, int& turnover);
5 //Precondition: User is ready to enter values correctly.
6 //Postcondition: The value of cost has been set to the
7 //wholesale cost of one item. The value of turnover has been
8 //set to the expected number of days until the item is sold.
9

10 int main()
11 {
12 using namespace std;
13 double wholesale_cost;
14 int shelf_time;
15 char ans;
16

(continued)

5.4 Testing and Debugging Functions 283

DISPLAY 5.10 Driver Program (part 2 of 2)

17 cout.setf(ios::fixed);
18 cout.setf(ios::showpoint);
19 cout.precision(2);
20 do
21 {
22 get_input(wholesale_cost, shelf_time);
23
24 cout << "Wholesale cost is now $"
25 << wholesale_cost << endl;
26 cout << "Days until sold is now "
27 << shelf_time << endl;
28
29 cout << "Test again?"
30 << " (Type y for yes or n for no): ";
31 cin >> ans;
32 cout << endl;
33 } while (ans == 'y' || ans == 'Y');
34
35 return 0;
36 }
37 //Uses iostream:
38 void get_input(double& cost, int& turnover)
39 {
40 using namespace std;
41 cout << "Enter the wholesale cost of item: $";
42 cin >> cost;
43 cout << "Enter the expected number of days until sold: ";
44 cin >> turnover;
45 }

Sample Dialogue

Enter the wholesale cost of item: $123.45

Enter the expected number of days until sold: 67 Wholesale cost is now $123.45

Days until sold is now 67

Test again? (Type y for yes or n for no): y

Enter the wholesale cost of item: $9.05

Enter the expected number of days until sold: 3 Wholesale cost is now $9.05

Days until sold is now 3

Test again? (Type y for yes or n for no): n

284 CHAPTER 5 / Functions for All Subtasks

Programs like this one are called driver programs. These driver programs are
temporary tools, and can be quite minimal. They need not have fancy input
routines. They need not perform all the calculations the final program will
perform. All they need do is obtain reasonable values for the function
arguments in as simple a way as possible—typically from the user—then
execute the function and show the result. A loop, as in the program shown in
Display 5.10, will allow you to retest the function on different arguments
without having to rerun the program.

If you test each function separately, you will find most of the mistakes in
your program. Moreover, you will find out which functions contain the
mistakes. If you were to test only the entire program, you would probably find
out if there were a mistake, but may have no idea where the mistake is. Even
worse, you may think you know where the mistake is, but be wrong.

Once you have fully tested a function, you can use it in the driver program
for some other function. Each function should be tested in a program in which
it is the only untested function. However, it’s fine to use a fully tested function
when testing some other function. If a bug is found, you know the bug is in
the untested function. For example, after fully testing the function get_input
with the driver program in Display 5.10, you can use get_input as the input
routine in driver programs to test the remaining functions.

It is sometimes impossible or inconvenient to test a function without
using some other function that has not yet been written or has not yet been
tested. In this case, you can use a simplified version of the missing or untested
function. These simplified functions are called stubs. These stubs will not
necessarily perform the correct calculation, but they will deliver values that
suffice for testing, and they are simple enough that you can have confidence
in their performance. For example, the program in Display 5.11 is designed to
test the function give_output from Display 5.9 as well as the basic layout of
the program. This program uses the function get_input, which we already
fully tested using the driver program shown in Display 5.10. This program also
includes the function initialize_screen, which we assume has been tested
in a driver program of its own, even though we have not bothered to show that
simple driver program. Since we have not yet tested the function price, we
have used a stub to stand in for it. Notice that we could use this program
before we have even written the function price. This way we can test the basic
program layout before we fill in the details of all the function definitions.

Using a program outline with stubs allows you to test and then “flesh out”
the basic program outline, rather than write a completely new program to test
each function. For this reason, a program outline with stubs is usually the
most efficient method of testing. A common approach is to use driver
programs to test some basic functions, like the input and output functions,
and then use a program with stubs to test the remaining functions. The stubs
are replaced by functions one at a time: One stub is replaced by a complete
function and tested; once that function is fully tested, another stub is replaced
by a full function definition, and so forth until the final program is produced.

drivers

stubs

5.4 Testing and Debugging Functions 285

DISPLAY 5.11 Program with a Stub (part 1 of 2)

1 //Determines the retail price of an item according to
2 //the pricing policies of the Quick-Shop supermarket chain.
3 #include <iostream>

4 void introduction();
5 //Postcondition: Description of program is written on the screen.

6 void get_input(double& cost, int& turnover);
7 //Precondition: User is ready to enter values correctly.
8 //Postcondition: The value of cost has been set to the
9 //wholesale cost of one item. The value of turnover has been

10 //set to the expected number of days until the item is sold.

11 double price(double cost, int turnover);
12 //Precondition: cost is the wholesale cost of one item.
13 //turnover is the expected number of days until sale of the item.
14 //Returns the retail price of the item.

15 void give_output(double cost, int turnover, double price);
16 //Precondition: cost is the wholesale cost of one item; turnover is the
17 //expected time until sale of the item; price is the retail price of the

item.
18 //Postcondition: The values of cost, turnover, and price have been
19 //written to the screen.

20 int main()
21 {
22 double wholesale_cost, retail_price;
23 int shelf_time;

24 introduction();
25 get_input(wholesale_cost, shelf_time);
26 retail_price = price(wholesale_cost, shelf_time);
27 give_output(wholesale_cost, shelf_time, retail_price);
28 return 0;
29 }

30 //Uses iostream:
31 void introduction()
32 {
33 using namespace std;
34 cout << "This program determines the retail price for\n"
35 << "an item at a Quick-Shop supermarket store.\n";
36 }
37 //Uses iostream:
38 void get_input(double& cost, int& turnover)
39 {
40 using namespace std;
41 cout << "Enter the wholesale cost of item: $";

(continued)

fully tested
function

fully tested
function

286 CHAPTER 5 / Functions for All Subtasks

The Fundamental Rule for Testing Functions

Every function should be tested in a program in which every other function
in that program has already been fully tested and debugged.

DISPLAY 5.11 Program with a Stub (part 2 of 2)

42 cin >> cost;
43 cout << "Enter the expected number of days until sold: ";
44 cin >> turnover;
45 }

46 //Uses iostream:
47 void give_output(double cost, int turnover, double price)
48 {
49 using namespace std;
50 cout.setf(ios::fixed);
51 cout.setf(ios::showpoint);
52 cout.precision(2);
53 cout << "Wholesale cost = $" << cost << endl
54 << "Expected time until sold = "
55 << turnover << " days" << endl
56 << "Retail price= $" << price << endl;
57 }

58 //This is only a stub:
59 double price(double cost, int turnover)
60 {
61 return 9.99; //Not correct, but good enough for some testing.
62 }

Sample Dialogue

This program determines the retail price for

an item at a Quick-Shop supermarket store.

Enter the wholesale cost of item: $1.21

Enter the expected number of days until sold: 5

Wholesale cost = $1.21

Expected time until sold = 5 days

Retail price = $9.99

function
being tested

stub

5.5 General Debugging Techniques 287

SELF -TEST EXERC ISES

17. What is the fundamental rule for testing functions? Why is this a good
way to test functions?

18. What is a driver program?

19. Write a driver program for the function introduction shown in Display
5.11.

20. Write a driver program for the function add_tax from Self-Test Exercise 11.

21. What is a stub?

22. Write a stub for the function whose function declaration is given next. Do
not write a whole program, only the stub that would go in a program.
Hint: It will be very short.

//humidity is the relative humidity as a percent, and
//temp is the temperature in degrees Fahrenheit.

//0 means no chance of rain. 1 means rain is 100% certain.

5.5 GENERAL DEBUGGING TECHNIQUES

Careful testing through the use of stubs and drivers can detect a large number
of bugs that may exist in a program. However, examination of the code and
the output of test cases may be insufficient to track down many logic errors.
In this case, there are a number of general debugging techniques that you may
employ.

Keep an Open Mind

Examine the system as a whole and don’t assume that the bug occurs in one
particular place. If the program is giving incorrect output values then you
should examine the source code, different test cases for the input and output
values, and the logic behind the algorithm itself. For example, consider the
code to determine price for the supermarket example in Display 5.9. If the
wrong price is displayed, the error might simply be that the input values were
different from those you were expecting in the test case, leading to an
apparently incorrect program.

double rain_prob(double pressure, double humidity, double temp);
//Precondition: pressure is the barometric pressure in inches of mercury,

//Returns the probability of rain, which is a number between 0 and 1.

Video Note
Debugging

288 CHAPTER 5 / Functions for All Subtasks

Some novice programmers will “randomly” change portions of the code
hoping that it will fix the error. Avoid this technique at all costs! Sometimes
this approach will work for the first few simple programs that you write.
However, it will almost certainly fail for larger programs and will often
introduce new errors to the program. Make sure that you understand what
logical impact a change to the code will make before committing the
modification.

Finally, if allowed by your instructor, you could show the program to
someone else. A fresh set of eyes can sometimes quickly pinpoint an error that
you have been missing. Taking a break and returning to the problem a few
hours later or the next day can also sometimes help in discovering an error.

Check Common Errors

One of the first mistakes you should look for are common errors that are easy
to make, as described throughout the textbook in the Pitfall and Programming
Tip sections. Examples of sources for common errors include (1) uninitialized
variables, (2) off-by-one errors, (3) exceeding a data boundary, (4) automatic
type conversion, and (5) using = instead of ==.

Localize the Error

Determining the precise cause and location of a bug is one of the first steps to
fixing the error. Examining the input and output behavior for different test
cases is one way to localize the error. A related technique is to add cout
statements to strategic locations in the program that print out the values for
critical variables. The cout statements also serve to show what code the
program is executing. This is the strategy of tracing variables that was described
in Chapter 3 for loops, but it can be used even when there are no loops present
in the code.

For example, consider the code in Display 5.12 that is intended to convert
a temperature from Fahrenheit to Celsius using the formula:

When this program is executed with an input of 100 degrees Fahrenheit, the
output is “Temperature in Celsius is 0”. This is obviously incorrect, as the
correct answer is 37.8 degrees Celsius.

To track down the error we can print out the value of critical variables. In
this case, something appears to be wrong with the conversion formula, so we try
a two-step approach. In the first step we compute (Fahrenheit – 32) and in the
second step we compute (5 / 9) and then output both values. This is illustrated
in Display 5.13. We have also commented out the original line of code by placing
// at the beginning of the line. This tells the compiler to ignore the original line

C 5 F 32–()
9

------------------------=

5.5 General Debugging Techniques 289

of code but still leave it in the program for our reference. If we ever wish to
restore the code, we simply remove the // instead of having to type the line in
again if it was deleted.

By examining the result of the cout statements we have now identified the
precise location of the bug. In this case, the conversion factor is not computed
correctly. Since we are setting the conversion factor to 5 / 9, this instructs the
compiler to compute the division of two integers, which results in zero. The
simple fix is to perform floating-point division instead of integer division by
changing one of the operands to a floating-point type, for example:

double conversionFactor = 5.0 / 9;

Once the bug has been identified we can now remove or comment out the
debug code and return to a corrected version of the original program by
modifying the line that computes the formula to the following:

celsius = (5.0 / 9) * (fahrenheit - 32);

Adding debugging code and introducing cout statements is a simple
technique that works in almost any programming environment. However, it
can sometimes be tedious to add a large number of cout statements to a

DISPLAY 5.12 Temperature conversion program with a bug

1 #include <iostream>
2 using namespace std;
3
4 int main()
5 {
6 double fahrenheit;
7 double celsius;
8
9 cout << "Enter temperature in Fahrenheit." << endl;

10 cin >> fahrenheit;
11 celsius = (5 / 9) * (fahrenheit - 32);
12 cout << "Temperature in Celsius is " << celsius << endl;
13
14 return 0;
15 }

Sample Dialogue

Enter temperature in Fahrenheit.

100

Temperature in Celsius is 0

290 CHAPTER 5 / Functions for All Subtasks

program. Moreover, the output of the cout statements may be long or difficult
to interpret, and the introduction of debugging code might even introduce
new errors. Many compilers and integrated developing environments include
a separate program, a debugger, that allows the programmer to stop execution
of the program at a specific line of code called a breakpoint and step through
the execution of the code one line at a time. As the debugger steps through the
code, the programmer can inspect the contents of variables and even manually
change the values stored in those variables. No cout statements are necessary

DISPLAY 5.13 Debugging with cout statements

1 #include <iostream>
2 using namespace std;
3
4 int main()
5 {
6 double fahrenheit;
7 double celsius;
8
9 cout << "Enter temperature in Fahrenheit." << endl;

10 cin >> fahrenheit;
11
12 // Comment out original line of code but leave it
13 // in the program for our reference
14 // celsius = (5 / 9) * (fahrenheit - 32);
15
16 // Add cout statements to verify (5 / 9) and (fahrenheit - 32)
17 // are computed correctly
18 double conversionFactor = 5 / 9;
19 double tempFahrenheit = (fahrenheit - 32);
20
21 cout << "fahrenheit - 32 = " << tempFahrenheit << endl;
22 cout << "conversionFactor = " << conversionFactor << endl;
23 celsius = conversionFactor * tempFahrenheit;
24 cout << "Temperature in Celsius is " << celsius << endl;
25
26 return 0;
27 }

Sample Dialogue

Enter temperature in Fahrenheit.

100

fahrenheit - 32 = 68

conversionFactor = 0

Temperature in Celsius is 0

code that is
commented out

debugging
with cout
statements

debugger

5.5 General Debugging Techniques 291

to view the values of critical variables. The interface, commands, and capabil-
ities of debuggers vary among C++ compilers, so check your user manual or
check with your instructor for help on how to use these features.

The assert Macro

In Section 5.3 we discussed the concept of preconditions and postconditions
for subroutines. The assert macro is a tool to ensure that the expected
conditions are true at the location of the assert statement. If the condition is
not met then the program will display an error message and abort. To use
assert, first include the definition of assert in your program with the
following include statement:

#include <cassert>

To use assert add the following line of code at the location where you
would like to enforce the assertion with a boolean expression that should
evaluate to true:

assert(boolean_expression);

The assert statement is a macro, which is a construct similar to a
function. As an example, consider a subroutine that uses Newton’s method to
calculate the square root of a number n:

Here sqrt0 = 1 and sqrti approaches the square root of n as i approaches
infinity. A subroutine that implements this algorithm requires that n be a
positive number and that the number of iterations we will repeat the
calculation is also a positive number. We can guarantee this condition by
adding assert to the subroutine as shown below:

// Approximates the square root of n using Newton's Iteration.
// Precondition: n is positive, num_iterations is positive
// Postcondition: returns the square root of n
double newton_sqroot(double n, int num_iterations)
{
 double answer = 1;
 int i = 0;

 assert((n > 0) && (num_iterations > 0));
 while (i < num_iterations)
 {
 answer = 0.5 * (answer + n / answer);
 i++;
 }
 return answer;
}

sqrti 1+
1
2
--- sqrti

n
sqrti
-----------+⎝ ⎠

⎛ ⎞=

292 CHAPTER 5 / Functions for All Subtasks

If we try to execute this subroutine with any negative parameters then the
program will abort and display the assertion that failed. The assert statement
can be used in a similar manner for any assertion that you would like to
enforce and is an excellent technique for defensive programming.

If you are going to distribute your program, you might not want the
executable program to include the assert statements since users could then
get error messages that they might not understand. If you have added many
assert statements to your code, it can be tedious to remove them all.
Fortunately, you can disable all assert macros by adding the following line to
the beginning of your program, before the include statement for <cassert>
as follows:

#define NDEBUG

#include <cassert>

If you later change your program and need to debug it again, you can turn
the assert statements back on by deleting the line #define NDEBUG (or
commenting it out).

SELF -TEST EXERC ISES

23. If computing the statement: x = (x * y / z); how can you use the assert
macro to avoid division by zero?

24. What is a debugger?

25. What general techniques can you use to determine the source of an error?

CHAPTER SUMMARY

■ All subtasks in a program can be implemented as functions, either as func-
tions that return a value or as void functions.

■ A formal parameter is a kind of placeholder that is filled in with a function
argument when the function is called. There are two methods of perform-
ing this substitution, call-by-value and call-by-reference.

■ In the call-by-value substitution mechanism, the value of an argument is
substituted for its corresponding formal parameter. In the call-by-reference
substitution mechanism, the argument should be a variable and the entire
variable is substituted for the corresponding argument.

■ The way to indicate a call-by-reference parameter in a function definition is
to attach the ampersand sign, &, to the type of the formal parameter.

Answers to Self-Test Exercises 293

■ An argument corresponding to a call-by-value parameter cannot be changed
by a function call. An argument corresponding to a call-by-reference parame-
ter can be changed by a function call. If you want a function to change the
value of a variable, then you must use a call-by-reference parameter.

■ A good way to write a function declaration comment is to use a precondi-
tion and a postcondition. The precondition states what is assumed to be
true when the function is called. The postcondition describes the effect of
the function call; that is, the postcondition tells what will be true after the
function is executed in a situation in which the precondition holds.

■ Every function should be tested in a program in which every other function
in that program has already been fully tested and debugged.

■ A driver program is a program that does nothing but test a function.

■ A simplified version of a function is called a stub. A stub is used in place of
a function definition that has not yet been tested (or possibly not even writ-
ten) so that the rest of the program can be tested.

■ A debugger, strategic placement of cout statements, and the assert macro
are tools that can help you debug a program.

Answers to Self-Test Exercises

1.

2. No, a void function definition need not contain a return statement. A
void function definition may contain a return statement, but one is not
required.

3. Omitting the return statement in the function definition for
initialize_screen in Display 5.2 would have absolutely no effect on
how the program behaves. The program will compile, run, and behave
exactly the same. Similarly, omitting the return statement in the function
definition for show_results also will have no effect on how the program
behaves. However, if you omit the return statement in the function defini-
tion for celsius, that will be a serious error that will keep the program
from running. The difference is that the functions initialize_screen and
show_results are void functions, but celsius is not a void function.

Hello
Goodbye
One more time:
Hello
End of program.

294 CHAPTER 5 / Functions for All Subtasks

4. #include <iostream>
void product_out(int n1, int n2, int n3);
int main()
{
 using namespace std;
 int num1, num2, num3;
 cout << "Enter three integers: ";
 cin >> num1 >> num2 >> num3;
 product_out(num1, num2, num3);
 return 0;
}

void product_out(int n1, int n2, int n3)
{
 using namespace std;
 cout << "The product of the three numbers "
 << n1 << ", " << n2 << ", and "
 << n3 << " is " << (n1*n2*n3) << endl;
}

5. These answers are system-dependent.

6. A call to a void function followed by a semicolon is a statement. A call to
a function that returns a value is an expression.

7.

8.

9.

10. void zero_both(int& n1, int& n2)

{
 n1 = 0;
 n2 = 0;
}

10 20 30
1 2 3
1 20 3

Enter two integers: 5 10
In reverse order the numbers are: 5 5 different

par1_value in function call = 111
par2_ref in function call = 222
n1 after function call = 1
n2 after function call = 2 different

Answers to Self-Test Exercises 295

11. void add_tax(double tax_rate, double& cost)

{
 cost = cost + (tax_rate/100.0)*cost;
}

The division by 100 is to convert a percent to a fraction. For example, 10%
is 10/100.0 or 1/10th of the cost.

12. Yes, a function that returns a value can have a call-by-reference parame-
ter. Yes, a function can have a combination of call-by-value and a call-
by-reference parameters.

13. No, a function definition cannot appear inside the body of another func-
tion definition.

14. Yes, a function definition can contain a call to another function.

15. void order(int& n1, int& n2);
//Precondition: The variables n1 and n2 have values.
//Postcondition: The values in n1 and n2 have been ordered
//so that n1 <= n2.

16. double sqrt(double n);
//Precondition: n >= 0.
//Returns the squareroot of n.

You can rewrite the second comment line to the following if you prefer,
but the previous version is the usual form used for a function that returns
a value:

//Postcondition: Returns the squareroot of n.

17. The fundamental rule for testing functions is that every function should
be tested in a program in which every other function in that program has
already been fully tested and debugged. This is a good way to test a func-
tion because if you follow this rule, then when you find a bug, you will
know which function contains the bug.

18. A driver program is a program written for the sole purpose of testing a
function.

19. #include <iostream>

void introduction();
//Postcondition: Description of program is written on
//the screen.

296 CHAPTER 5 / Functions for All Subtasks

int main()
{
 using namespace std;
 introduction();
 cout << "End of test.\n";
 return 0;
}
//Uses iostream:
void introduction()
{
 using namespace std;
 cout << "This program determines the retail price for\n"
 << "an item at a Quick-Shop supermarket store.\n";
}

20. //Driver program for the function add_tax.
#include <iostream>

void add_tax(double tax_rate, double& cost);
//Preconditon: tax_rate is the amount of sales tax as a
//percentage and cost is the cost of an item before tax.
//Postcondition: cost has been changed to the cost of the
//item after adding sales tax.

int main()
{
 using namespace std;
 double cost, tax_rate;
 char ans;

 cout.setf(ios::fixed);
 cout.setf(ios::showpoint);
 cout.precision(2);
 do
 {
 cout << "Enter cost and tax rate:\n";
 cin >> cost >> tax_rate;
 add_tax(tax_rate, cost);

 cout << "After call to add_tax\n"
 << "tax_rate is " << tax_rate << endl
 << "cost is " << cost << endl;

 cout << "Test again?"
 << " (Type y for yes or n for no): ";
 cin >> ans;
 cout << endl;

Programming Projects 297

 } while (ans == 'y' || ans == 'Y');

 return 0;
}

void add_tax(double tax_rate, double& cost)
{
 cost = cost + (tax_rate/100.0)*cost;
}

21. A stub is a simplified version of a function that is used in place of the
function so that other functions can be tested.

22. //THIS IS JUST A STUB.
double rain_prob(double pressure, double humidity, double temp)
{

}

23. assert (z ! = 0).

24. A debugger is a tool that allows the programmer to set breakpoints, step
through the code line by line, and inspect or modify the value of variables.

25. Keeping an open mind, adding cout statements to narrow down the cause
of the error, using a debugger, searching for common errors, and devising a
variety of tests are a few techniques that you can use to debug a program.

PROGRAMMING PROJECTS

1. Write a program that converts from 24-hour notation to 12-hour nota-
tion. For example, it should convert 14:25 to 2:25 PM. The input is given
as two integers. There should be at least three functions, one for input,
one to do the conversion, and one for output. Record the AM/PM infor-
mation as a value of type char, 'A' for AM and 'P' for PM. Thus, the
function for doing the conversions will have a call-by-reference formal
parameter of type char to record whether it is AM or PM. (The function
will have other parameters as well.) Include a loop that lets the user repeat
this computation for new input values again and again until the user says
he or she wants to end the program.

2. Write a program that requests the current time and a waiting time as two
integers for the number of hours and the number of minutes to wait. The
program then outputs what the time will be after the waiting period. Use
24 hour notation for the times. Include a loop that lets the user repeat this

 return 0.25; //Not correct, but good enough for some testing.

298 CHAPTER 5 / Functions for All Subtasks

calculation for additional input values until the user says she or he wants
to end the program.

3. Modify your program for Programming Project 2 so that it uses 12 hour
notation, such as 3:45 PM.

4. Write a function that computes the average and standard deviation of four
scores. The standard deviation is defined to be the square root of the aver-
age of the four values: (si − a)2 where a is average of the four scores s1, s2,
s3, and s4. The function will have six parameters and will call two other
functions. Embed the function in a driver program that allows you to test
the function again and again until you tell the program you are finished.

5. Write a program that tells what coins to give out for any amount of
change from 1 cent to 99 cents. For example, if the amount is 86 cents, the
output would be something like the following:

86 cents can be given as
3 quarter(s) 1 dime(s) and 1 penny(pennies)

Use coin denominations of 25 cents (quarters), 10 cents (dimes), and 1
cent (pennies). Do not use nickel and half-dollar coins. Your program
will use the following function (among others):

For example, suppose the value of the variable amount_left is 86. Then,
after the following call, the value of number will be 3 and the value of
amount_left will be 11 (because if you take 3 quarters from 86 cents, that
leaves 11 cents):

compute_coins(25, number, amount_left);

Include a loop that lets the user repeat this computation for new input
values until the user says he or she wants to end the program. Hint: Use
integer division and the % operator to implement this function.

6. Write a program that reads in a length in feet and inches and outputs the
equivalent length in meters and centimeters. Use at least three functions:
one for input, one or more for calculating, and one for output. Include a
loop that lets the user repeat this computation for new input values until
the user says he or she wants to end the program. There are 0.3048 meters
in a foot, 100 centimeters in a meter, and 12 inches in a foot.

void compute_coin(int coin_value, int& number, int& amount_left);
//Precondition: 0 < coin_value < 100; 0 <= amount_left < 100.
//Postcondition: number has been set equal to the maximum number of coins
//denomination coin_value cents that can be obtained from amount_left
//amount_left has been decreased by the value of the coins, that is,
//decreased by number*coin_value.

Programming Projects 299

7. Write a program like that of the previous exercise that converts from
meters and centimeters into feet and inches. Use functions for the
subtasks.

8. (You should do the previous two programming projects before doing
this one.) Write a program that combines the functions in the previous
two programming projects. The program asks the user if he or she wants
to convert from feet and inches to meters and centimeters or from
meters and centimeters to feet and inches. The program then performs
the desired conversion. Have the user respond by typing the integer 1 for
one type of conversion and 2 for the other conversion. The program
reads the user’s answer and then executes an if-else statement. Each
branch of the if-else statement will be a function call. The two func-
tions called in the if-else statement will have function definitions that
are very similar to the programs for the previous two programming
projects. Thus, they will be fairly complicated function definitions that
call other functions in their function bodies. Include a loop that lets the
user repeat this computation for new input values until the user says he
or she wants to end the program.

9. Write a program that reads in a weight in pounds and ounces and outputs
the equivalent weight in kilograms and grams. Use at least three func-
tions: one for input, one or more for calculating, and one for output.
Include a loop that lets the user repeat this computation for new input
values until the user says he or she wants to end the program. There are
2.2046 pounds in a kilogram, 1,000 grams in a kilogram, and 16 ounces
in a pound.

10. Write a program like that of the previous exercise that converts from kilo-
grams and grams into pounds and ounces. Use functions for the subtasks.

11. (You should do the previous two programming projects before doing this
one.) Write a program that combines the functions of the previous two pro-
gramming projects. The program asks the user if he or she wants to convert
from pounds and ounces to kilograms and grams or from kilograms and
grams to pounds and ounces. The program then performs the desired con-
version. Have the user respond by typing the integer 1 for one type of con-
version and 2 for the other. The program reads the user’s answer and then
executes an if-else statement. Each branch of the if-else statement will
be a function call. The two functions called in the if-else statement will
have function definitions that are very similar to the programs for the previ-
ous two programming projects. Thus, they will be fairly complicated func-
tion definitions that call other functions in their function bodies. Include a
loop that lets the user repeat this computation for new input values until
the user says he or she wants to end the program.

Video Note
Solution to
Programming
Project 5.9

300 CHAPTER 5 / Functions for All Subtasks

12. (You need to do Programming Projects 8 and 11 before doing this pro-
gramming project.) Write a program that combines the functions of Pro-
gramming Projects 8 and 11. The program asks the user if he or she wants
to convert lengths or weights. If the user chooses lengths, then the program
asks the user if he or she wants to convert from feet and inches to meters
and centimeters or from meters and centimeters to feet and inches. If the
user chooses weights, a similar question about pounds, ounces, kilograms,
and grams is asked. The program then performs the desired conversion.
Have the user respond by typing the integer 1 for one type of conversion
and 2 for the other. The program reads the user’s answer and then exe-
cutes an if-else statement. Each branch of the if-else statement will be
a function call. The two functions called in the if-else statement will
have function definitions that are very similar to the programs for Pro-
gramming Projects 8 and 11. Thus, these functions will be fairly compli-
cated function definitions that call other functions in their function
bodies; however, they will be very easy to write by adapting the programs
you wrote for Programming Projects 8 and 11. Notice that your program
will have if-else statements embedded inside of if-else statements, but
only in an indirect way. The outer if-else statement will include two
function calls as its two branches. These two function calls will each in
turn include an if-else statement, but you need not think about that.
They are just function calls and the details are in a black box that you cre-
ate when you define these functions. If you try to create a four-way
branch, you are probably on the wrong track. You should only need to
think about two-way branches (even though the entire program does ulti-
mately branch into four cases). Include a loop that lets the user repeat this
computation for new input values until the user says he or she wants to
end the program.

13. The area of an arbitrary triangle can be computed using the formula

where a, b, and c are the lengths of the sides, and s is the semiperimeter.

Write a void function that uses five parameters: three value parameters
that provide the lengths of the edges, and computes the area and
perimeter (not the semiperimeter) via reference parameters. Make your
function robust. Note that not all combinations of a, b, and c produce a
triangle. Your function should produce correct results for legal data and
reasonable results for illegal combinations.

14. In cold weather, meteorologists report an index called the windchill factor,
that takes into account the wind speed and the temperature. The index

area s s a–() s b–() s c–()=

s a b c+ +() 2⁄=

Programming Projects 301

provides a measure of the chilling effect of wind at a given air tempera-
ture. Windchill may be approximated by the formula:

W = 13.12 + 0.6215 *t - 11.37*v0.16 + 0.3965*t*v0.016

where

v = wind speed in m/sec

t = temperature in degrees Celsius: t <= 10

W = windchill index (in degrees Celsius)

Write a function that returns the windchill index. Your code should
ensure that the restriction on the temperature is not violated. Look up
some weather reports in back issues of a newspaper in your university
library and compare the windchill index you calculate with the result
reported in the newspaper.

15. In the land of Puzzlevania, Aaron, Bob, and Charlie had an argument over
which one of them was the greatest puzzler of all time. To end the argument
once and for all, they agreed on a duel to the death. Aaron is a poor shooter
and only hits his target with a probability of 1/3. Bob is a bit better and hits
his target with a probability of 1/2. Charlie is an expert marksman and never
misses. A hit means a kill and the person hit drops out of the duel.

To compensate for the inequities in their marksmanship skills, it is
decided that the contestants would fire in turns starting with Aaron,
followed by Bob, and then by Charlie. The cycle would repeat until there
was one man standing. And that man would be remembered as the
greatest puzzler of all time.

a. Write a function to simulate a single shot. It should use the following
declaration:

void shoot(bool& targetAlive, double accuracy);

This would simulate someone shooting at targetAlive with the given
accuracy by generating a random number between 0 and 1. If the
random number is less than accuracy, then the target is hit and
targetAlive should be set to false. Appendix 4 illustrates how to
generate random numbers.

For example, if Bob is shooting at Charlie, this could be invoked as:

shoot(charlieAlive, 0.5);

Here, charlieAlive is a Boolean variable that indicates if Charlie is
alive. Test your function using a driver program before moving on to
step b.

302 CHAPTER 5 / Functions for All Subtasks

b. An obvious strategy is for each man to shoot at the most accurate
shooter still alive on the grounds that this shooter is the deadliest and
has the best chance of hitting back. Write a second function named
startDuel that uses the shoot function to simulate an entire duel
using this strategy. It should loop until only one contestant is left,
invoking the shoot function with the proper target and probability of
hitting the target according to who is shooting. The function should
return a variable that indicates who won the duel.

c. In your main function, invoke the startDuel function 1,000 times in a
loop, keeping track of how many times each contestant wins. Output
the probability that each contestant will win when everyone uses the
strategy of shooting at the most accurate shooter left alive.

d. A counterintuitive strategy is for Aaron to intentionally miss on his
first shot. Thereafter, everyone uses the strategy of shooting at the most
accurate shooter left alive. This strategy means that Aaron is
guaranteed to live past the first round, since Bob and Charlie will fire
at each other. Modify the program to accommodate this new strategy
and output the probability of winning for each contestant.

16. Write a program that inputs a date (e.g., July 4, 2008) and outputs the day
of the week that corresponds to that date. The following algorithm is
from http://en.wikipedia.org/wiki/Calculating_the_day_of_the_week. The
implementation will require several functions.

bool isLeapYear(int year);

This function should return true if year is a leap year and false if it is
not. Here is pseudocode to determine a leap year:

 leap_year � ((year divisible by 400) or (year divisible by 4
and year not divisible by 100))

int getCenturyValue(int year);

This function should take the first two digits of the year (i.e., the century),
divide by 4, and save the remainder. Subtract the remainder from 3 and
return this value multiplied by 2. For example, the year 2008 becomes:
(20/4) � 5 with a remainder of 0. 3 � 0 � 3. Return 3 * 2 � 6.

int getYearValue(int year);

This function computes a value based on the years since the beginning of
the century. First, extract the last two digits of the year. For example, 08 is
extracted for 2008. Next, factor in leap years. Divide the value from the
previous step by 4 and discard the remainder. Add the two results
together and return this value. For example, from 2008 we extract 08.
Then (8/4) � 2 with a remainder of 0. Return 2 � 8 = 10.

http://en.wikipedia.org/wiki/Calculating_the_day_of_the_week

Programming Projects 303

int getMonthValue(int month, int year);

This function should return a value based on the table below and will
require invoking the isLeapYear function.

Finally, to compute the day of the week, compute the sum of the date’s
day plus the values returned by getMonthValue, getYearValue, and
getCenturyValue. Divide the sum by 7 and compute the remainder. A
remainder of 0 corresponds to Sunday, 1 corresponds to Monday, etc., up
to 6 which corresponds to Saturday. For example, the date July 4, 2008
should be computed as (day of month) � (getMonthValue) �
(getYearValue) � (getCenturyValue) � 4 � 6 � 10 � 6 � 26. 26/7 � 3
with a remainder of 5. The fifth day of the week corresponds to Friday.

Your program should allow the user to enter any date and output the
corresponding day of the week in English.

This program should include a void function named getInput that
prompts the user for the date and returns the month, day, and year using
pass-by-reference parameters. You may choose to have the user enter the
date’s month as either a number (1–12) or a month name.

Month Return Value

January 0 (6 if year is a leap year)

February 3 (2 if year is a leap year)

March 3

April 6

May 1

June 4

July 6

August 2

September 5

October 0

November 3

December 5

This page intentionally left blank

6
I/O Streams as an

Introduction to
Objects and Classes

6.1 STREAMS AND BASIC FILE I/O 306
Why Use Files for I/O? 307
File I/O 308
Introduction to Classes and Objects 312
Programming Tip: Check Whether a File Was

Opened Successfully 313
Techniques for File I/O 316
Appending to a File (Optional) 320
File Names as Input (Optional) 320

6.2 TOOLS FOR STREAM I/O 323
Formatting Output with Stream Functions 323
Manipulators 328
Streams as Arguments to Functions 332
Programming Tip: Checking for the End of

a File 332
A Note on Namespaces 336
Programming Example: Cleaning Up a File

Format 337

6.3 CHARACTER I/O 338
The Member Functions get and put 339
The putback Member Function (Optional) 342
Programming Example: Checking Input 343
Pitfall: Unexpected '\n' in Input 346
The eof Member Function 349
Programming Example: Editing a Text File 352
Predefined Character Functions 352
Pitfall: toupper and tolower Return Values 355

Chapter Summary 357
Answers to Self-Test Exercises 359
Programming Projects 364

306

Fish say, they have their stream and pond;
But is there anything beyond?

RUPERT BROOKE, “Heaven” (1913)

As a leaf is carried by a stream, whether the stream ends in a lake or in the
sea, so too is the output of your program carried by a stream not knowing if
the stream goes to the screen or to a file.

WASHROOM WALL OF A COMPUTER SCIENCE DEPARTMENT (1995)

INTRODUCTION
I/O refers to program input and output. Input can be taken from the keyboard
or from a file. Similarly, output can be sent to the screen or to a file. This
chapter explains how you can write your programs to take input from a file
and send output to another file.

Input is delivered to your program via a C++ construct known as a stream,
and output from your program is delivered to the output device via a stream.
Streams are our first examples of objects. An object is a special kind of variable
that has its own special-purpose functions that are, in a sense, attached to the
variable. The ability to handle objects is one of the language features that sets
C++ apart from earlier programming languages. In this chapter we tell you
what streams are and explain how to use them for program I/O. In the process
of explaining streams we will introduce you to the basic ideas about what
objects are and about how objects are used in a program.

PREREQUISITES
This chapter uses the material from Chapters 2 through 5.

6.1 STREAMS AND BASIC FILE I/O

Good Heavens! For more than forty years I have been speaking prose without
knowing it.

MOLIÈRE, Le Bourgeois Gentilhomme

You are already using files to store your programs. You can also use files to
store input for a program or to receive output from a program. The files used
for program I/O are the same kind of files as you use to store your programs.
Streams, which we discuss next, allow you to write programs that handle file
input and keyboard input in a unified way and that handle file output and
screen output in a unified way.

A stream is a flow of characters (or other kind of data). If the flow is into
your program, the stream is called an input stream. If the flow is out of your
program, the stream is called an output stream. If the input stream flows from
the keyboard, then your program will take input from the keyboard. If the

files

stream
input stream

output stream

6.1 Streams and Basic File I/O 307

input stream flows from a file, then your program will take its input from that
file. Similarly, an output stream can go to the screen or to a file.

Although you may not realize it, you have already been using streams in
your programs. The cin that you have already used is an input stream connected
to the keyboard, and cout is an output stream connected to the screen. These
two streams are automatically available to your program, as long as it has an
include directive that names the header file iostream. You can define other
streams that come from or go to files; once you have defined them, you can use
them in your program in the same way you use the streams cin and cout.

For example, suppose your program defines a stream called in_stream
that comes from some file. (We’ll tell you how to define it shortly.) You can
then fill an int variable named the_number with a number from this file by
using the following in your program:

int the_number;
in_stream >> the_number;

Similarly, if your program defines an output stream, named out_stream, that
goes to another file, then you can output the value of this variable to this other
file. The following will output the string "the_number is " followed by the
contents of the variable the_number to the output file that is connected to the
stream out_stream.

out_stream << "the_number is " << the_number << endl;

Once the streams are connected to the desired files, your program can do file
I/O the same way it does I/O using the keyboard and screen.

Why Use Files for I/O?

The keyboard input and screen output we have used so far deal with
temporary data. When the program ends, the data typed in at the keyboard
and the data left on the screen go away. Files provide you with a way to store
data permanently. The contents of a file remain until a person or program
changes the file. If your program sends its output to a file, the output file will
remain after the program has finished running. An input file can be used over
and over again by many programs without the need to type in the data
separately for each program.

The input and output files used by your program are the same kind of files
that you read and write with an editor, such as the editor you use to write your
programs. This means you can create an input file for your program or read
an output file produced by your program whenever it’s convenient for you,
as opposed to having to do all your reading and writing while the program
is running.

Files also provide you with a convenient way to deal with large quantities
of data. When your program takes its input from a large input file, your
program receives a lot of data without making the user do a lot of typing.

cin and cout
are streams

permanent
storage

308 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

File I/O

When your program takes input from a file, it is said to be reading from the
file; when your program sends output to a file, it is said to be writing to the
file. There are other ways of reading input from a file, but the method we will
use reads the file from the beginning to the end (or as far as the program gets
before ending). Using this method, your program is not allowed to back up
and read anything in the file a second time. This is exactly what happens when
your program takes input from the keyboard, so this should not seem new or
strange. (As we will see, your program can reread a file starting from the
beginning of the file, but this is “starting over,” not “backing up.”) Similarly,
for the method we present here, your program writes output into a file starting
at the beginning of the file and proceeding forward. Your program is not
allowed to back up and change any output that it has previously written to the
file. This is exactly what happens when your program sends output to the
screen. You can send more output to the screen, but you cannot back up and
change the screen output. The way that you get input from a file into your
program or send output from your program into a file is to connect your
program to the file by means of a stream.

In C++, a stream is a special kind of variable known as an object. We will
discuss objects in the next section, but we will first describe how your program
can use stream objects to do simple file I/O. If you want to use a stream to get
input from a file (or give output to a file), you must declare the stream and
you must connect the stream to the file.

You can think of the file that a stream is connected to as the value of the
stream. You can disconnect a stream from one file and connect it to another
file, so you can change the value of these stream variables. However, you must
use special functions that apply only to streams in order to perform these
changes. You cannot use a stream variable in an assignment statement the way
that you can use a variable of type int or char. Although streams are variables,
they are unusual sorts of variables.

The streams cin and cout are already declared for you, but if you want a
stream to connect to a file, you must declare it just as you would declare any
other variable. The type for input-file stream variables is named ifstream (for
“input-file stream”). The type for output-file stream variables is named
ofstream (for “output-file stream”). Thus, you can declare in_stream to be an
input stream for a file and out_stream to be an output stream for another file
as follows:

ifstream in_stream;
ofstream out_stream;

The types ifstream and ofstream are defined in the library with the
header file fstream, and so any program that declares stream variables in this
way must contain the following directive (normally near the beginning of
the file):

reading and
writing

A stream is
a variable

declaring
streams

ifstream and
ofstream

fstream

6.1 Streams and Basic File I/O 309

#include <fstream>

When using the types ifstream and ofstream, your program must also
contain the following, normally either at the start of the file or at the start of
the function body that uses the types ifstream or ofstream:

using namespace std;

Stream variables, such as in_stream and out_stream declared earlier, must
each be connected to a file. This is called opening the file and is done with a
function named open. For example, suppose you want the input stream
in_stream connected to the file named infile.dat. Your program must then
contain the following before it reads any input from this file:

in_stream.open("infile.dat");

This may seem like rather strange syntax for a function call. We will have
more to say about this peculiar syntax in the next section. For now, just notice
a couple of details about how this call to open is written. First, the stream
variable name and a dot (that is, a period) is placed before the function named
open, and the file name is given as an argument to open. Also notice that the
file name is given in quotes. The file name that is given as an argument is the
same as the name you would use for the file if you wanted to write in it using
the editor. If the input file is in the same directory as your program, you
probably can simply give the name of the file in the manner just described. In
some situations you might also need to specify the directory that contains the
file. The details about specifying directories varies from one system to another.
If you need to specify a directory, ask your instructor or some other local
expert to explain the details.

Once you have declared an input stream variable and connected it to a
file using the open function, your program can take input from the file using
the extraction operator >>. For example, the following reads two input
numbers from the file connected to in_stream and places them in the
variables one_number and another_number:

int one_number, another_number;
in_stream >> one_number >> another_number;

An output stream is opened (that is, connected to a file) in the same way
as just described for input streams. For example, the following declares the
output stream out_stream and connects it to the file named outfile.dat:

ofstream out_stream;
out_stream.open("outfile.dat");

When used with a stream of type ofstream, the member function open
will create the output file if it does not already exist. If the output file does
already exist, the member function open will discard the contents of the file,
so that the output file is empty after the call to open.

connecting a
stream to a file

open

file name

310 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

After a file is connected to the stream out_stream with a call to open, the
program can send output to that file using the insertion operator <<. For
example, the following writes two strings and the contents of the variables
one_number and another_number to the file that is connected to the stream
out_stream (which in this example is the file named outfile.dat):

out_stream << "one_number = " << one_number
 << " another_number = " << another_number;

Notice that when your program is dealing with a file, it is as if the file had
two names. One is the usual name for the file that is used by the operating
system. This name is called the external file name. In our sample code the
external file names were infile.dat and outfile.dat. The external file name
is in some sense the “real name” for the file. It is the name used by the
operating system. The conventions for spelling these external file names vary
from one system to another; you will need to learn these conventions from
your instructor or from some other local expert. The names infile.dat and
outfile.dat that we used in our examples might or might not look like file
names on your system. You should name your files following whatever
conventions are used on your system. Although the external file name is the real
name for the file, it is typically used only once in a program. The external file
name is given as an argument to the function open, but after the file is opened, the
file is always referred to by naming the stream that is connected to the file. Thus,
within your program, the stream name serves as a second name for the file.

The sample program in Display 6.1 reads three numbers from one file and
writes their sum, as well as some text, to another file.

Every file should be closed when your program is finished getting input
from the file or sending output to the file. Closing a file disconnects the stream
from the file. A file is closed with a call to the function close. The following
lines from the program in Display 6.1 illustrate how to use the function close:

in_stream.close();
out_stream.close();

Notice that the function close takes no arguments. If your program ends
normally but without closing a file, the system will automatically close the file

A File Has Two Names

Every input and every output file used by your program has two names.
The external file name is the real name of the file, but it is used only in
the call to the function open, which connects the file to a stream. After the
call to open, you always use the stream name as the name of the file.

external file
name

close

6.1 Streams and Basic File I/O 311

for you. However, it is good to get in the habit of closing files for at least two
reasons. First, the system will only close files for you if your program ends in
a normal fashion. If your program ends abnormally due to an error, the file
will not be closed and may be left in a corrupted state. If your program closes
files as soon as it is finished with them, file corruption is less likely. A second
reason for closing a file is that you may want your program to send output to
a file and later read that output back into the program. To do this, your
program should close the file after it is finished writing to the file, and then

DISPLAY 6.1 Simple File Input/Output

1 //Reads three numbers from the file infile.dat, sums the numbers,
2 //and writes the sum to the file outfile.dat.
3 //(A better version of this program will be given in Display 6.2.)
4 #include <fstream>

5 int main()
6 {
7 using namespace std;
8 ifstream in_stream;
9 ofstream out_stream;

10
11 in_stream.open("infile.dat");
12 out_stream.open("outfile.dat");

13 int first, second, third;
14 in_stream >> first >> second >> third;
15 out_stream << "The sum of the first 3\n"
16 << "numbers in infile.dat\n"
17 << "is " << (first + second + third)
18 << endl;

19 in_stream.close();
20 out_stream.close();

21 return 0;
22 }

There is no output to the screen and no input from the keyboard.

infile.dat
(Not changed by program.)

outfile.dat
(After program is run.)

1
2
3
4

The sum of the first 3

numbers in infile.dat

is 6

312 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

your program should connect the file to an input stream using the function
open. (It is possible to open a file for both input and output, but this is done
in a slightly different way and we will not be discussing this alternative.)

Introduction to Classes and Objects

The streams in_stream and out_stream discussed in the last section and the
predefined streams cin and cout are objects. An object is a variable that has
functions as well as data associated with it. For example, the streams
in_stream and out_stream both have a function named open associated with
them. Two sample calls of these functions, along with the declarations of the
objects in_stream and out_stream, are given below:

ifstream in_stream;
ofstream out_stream;
in_stream.open("infile.dat");
out_stream.open("outfile.dat");

There is a reason for this peculiar notation. The function named open that is
associated with the object in_stream is a different function from the function
named open that is associated with the object out_stream. One function opens
a file for input, and the other opens a file for output. Of course these two
functions are similar. They both “open files.” When we give two functions the
same name, it is because the two functions have some intuitive similarity.
However, these two functions named open are different functions, even if they
may be only slightly different. When the compiler sees a call to a function named
open, it must decide which of these two functions named open you mean. The
compiler determines which of these two functions you mean by looking at the
name of the object that precedes the dot, in this case, either in_stream or
out_stream. A function that is associated with an object is called a member
function. So, for example, open is a member function of the object in_stream,
and another function named open is a member of the object out_stream.

As we have just seen, different objects can have different member functions.
These functions may have the same names, as was true of the functions named
open, or they may have completely different names. The type of an object
determines which member functions the object has. If two objects are of the
same type, they may have different values, but they will have the same member
functions. For example, suppose you declare the following stream objects:

ifstream in_stream, in_stream2;
ofstream out_stream, out_stream2;

The functions in_stream.open and in_stream2.open are the same function.
Similarly, out_stream.open and out_stream2.open are the same function (but
they are different from the functions in_stream.open and in_stream2.open).

A type whose variables are objects—such as ifstream and ofstream—is
called a class. Since the member functions for an object are completely

object

member
function

class

6.1 Streams and Basic File I/O 313

determined by its class (that is, by its type), these functions are called member
functions of the class (as well as being called members of the object). For
example, the class ifstream has a member function called open, and the class
ofstream has a different member function called open. The class ofstream
also has a member function named precision, but the class ifstream has no
member function named precision. You have already been using the
member function precision with the stream cout, but we will discuss it in
more detail later.

When you call a member function in a program, you always specify an
object, usually by writing the object name and a dot before the function
name, as in the following example:

in_stream.open("infile.dat");

One reason for naming the object is that the function can have some effect on the
object. In the preceding example, the call to the function open connects the file
infile.dat to the stream in_stream, so it needs to know the name of this stream.

In a function call, such as

in_stream.open("infile.dat");

the dot is called the dot operator and the object named before the dot is
referred to as the calling object. In some ways the calling object is like an
additional argument to the function—the function can change the calling object
as if it were an argument—but the calling object plays an even larger role in the
function call. The calling object determines the meaning of the function name.
The compiler uses the type of the calling object to determine the meaning of
the function name. For example, in the earlier call to open, the type of the
object in_stream determines the meaning of the function name open.

The function name close is analogous to open. The classes ifstream and
ofstream each have a member function named close. They both “close files,”
but they close them in different ways because the files were opened in different
ways and because the files were manipulated in different ways. We will be
discussing more member functions for the classes ifstream and ofstream later
in this chapter.

■ PROGRAMMING TIP Check Whether a File Was Opened
Successfully

A call to open can be unsuccessful for a number of reasons. For example, if you
open an input file and there is no file with the external name that you specify,
then the call to open will fail. When this happens, you might not receive an
error message and your program might simply proceed to do something
unexpected. Thus, you should always follow a call to open with a test to see
whether the call to open was successful and to end the program (or take some
other appropriate action) if the call to open was unsuccessful.

calling a
member
function

dot operator

calling object

314 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

You can use the member function named fail to test whether a stream
operation has failed. There is a member function named fail for each of the
classes ifstream and ofstream. The fail function takes no arguments and
returns a bool value. A call to the function fail for a stream named in_stream
would be as follows:

in_stream.fail()

This is a Boolean expression that can be used to control a while loop or an if-
else statement.

You should place a call to fail immediately after each call to open; if the
call to open fails, the function fail will return true (that is, the Boolean
expression will be satisfied). For example, if the following call to open fails,
then the program will output an error message and end; if the call succeeds,
the fail function returns false, so the program will continue.

in_stream.open("stuff.dat");
if (in_stream.fail())
{
 cout << "Input file opening failed.\n";
 exit(1);
}

Calling a Member Function

SYNTAX

Calling _Object.Member_Function_Name(Argument_List);

EXAMPLES

in_stream.open("infile.dat");
out_stream.open("outfile.dat");
out_stream.precision(2);

The meaning of the Member_Function_Name is determined by the class of
(that is, the type of) the Calling _Object.

Classes and Objects

An object is a variable that has functions associated with it. These
functions are called member functions. A class is a type whose variables
are objects. The object’s class (that is, the type of the object) determines
which member functions the object has.

Dot operator

the member
function fail

Ends the program

6.1 Streams and Basic File I/O 315

fail is a member function, so it is called using the stream name and a dot.
Of course, the call to in_stream.fail refers only to a call to open of the form
in_stream.open, and not to any call to the function open made with any other
stream as the calling object.

The exit statement shown ealier has nothing to do with classes and has
nothing directly to do with streams, but it is often used in this context. The
exit statement causes your program to end immediately. The exit function
returns its argument to the operating system. To use the exit statement, your
program must contain the following include directive:

#include <cstdlib>

When using exit, your program must also contain the following, normally
either at the start of the file or at the start of the function body that uses exit:

using namespace std; ■

The function exit is a predefined function that takes a single integer
argument. By convention, 1 is used as the argument if the call to exit was due
to an error, and 0 is used otherwise.1 For our purposes, it makes no difference
what integer you use, but it pays to follow this convention since it is important
in more advanced programming.

1 UNIX and Windows use 1 for error and 0 for success, whereas VMS reverses this con-
vention. You should ask your instructor what values to use.

The exit Statement

The exit statement is written

exit(Integer_Value);

When the exit statement is executed, the program ends immediately. Any
Integer_Value may be used, but by convention, 1 is used for a call to
exit that is caused by an error, and 0 is used in other cases. The exit
statement is a call to the function exit, which is in the library with header
file named cstdlib. Therefore, any program that uses the exit statement
must contain the following directives:

#include <cstdlib>
using namespace std;

(These directives need not be given one immediately after the other. They
are placed in the same locations as similar directives we have seen.)

exit

316 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

Display 6.2 contains the program from Display 6.1 rewritten to include
tests to see if the input and output files were opened successfully. It processes
files in exactly the same way as the program in Display 6.1. In particular,
assuming that the file infile.dat exists and has the contents shown in
Display 6.1, the program in Display 6.2 will create the file outfile.dat that is
shown in Display 6.1. However, if there were something wrong and one of the
calls to open failed, then the program in Display 6.2 would end and send an
appropriate error message to the screen. For example, if there were no file
named infile.dat, then the call to in_stream.open would fail, the program
would end, and an error message would be written to the screen.

Notice that we used cout to output the error message; this is because we
want the error message to go to the screen, as opposed to going to a file. Since
this program uses cout to output to the screen (as well as doing file I/O), we
have added an include directive for the header file iostream. (Actually, your
program does not need to have #include <iostream> when your program has
#include <fstream>, but it causes no problems to include it, and it reminds
you that the program is using screen output in addition to file I/O.)

Techniques for File I/O

As we already noted, the operators >> and << work the same for streams
connected to files as they do for cin and cout. However, the programming
style for file I/O is different from that for I/O using the screen and keyboard.
When reading input from the keyboard, you should prompt for input and
echo the input, like this:

cout << "Enter the number: ";
cin >> the_number;
cout << "The number you entered is " << the_number;

When your program takes its input from a file, you should not include such
prompt lines or echoing of input, because there is nobody there to read and
respond to the prompt and echo. When reading input from a file, you must be
certain the data in the file is exactly the kind of data the program expects. Your
program then simply reads the input file assuming that the data it needs will
be there when it is requested. If in_file is a stream variable that is connected
to an input file and you wish to replace the previous keyboard/screen I/O
shown with input from the file connected to in_file, then you would replace
those three lines with the following line:

in_file >> the_number;

You may have any number of streams opened for input or for output.
Thus, a single program can take input from the keyboard and also take input
from one or more files. The same program could send output to the screen and
to one or more files. Alternatively, a program could take all of its input from
the keyboard and send output to both the screen and a file. Any combination

6.1 Streams and Basic File I/O 317

of input and output streams is allowed. Most of the examples in this book will
use cin and cout to do I/O using the keyboard and screen, but it is easy to
modify these programs so that the program takes its input from a file and/or
sends its output to a file.

DISPLAY 6.2 File I/O with Checks on open

1 //Reads three numbers from the file infile.dat, sums the numbers,
2 //and writes the sum to the file outfile.dat.
3 #include <fstream>
4 #include <iostream>
5 #include <cstdlib>

6 int main()
7 {
8 using namespace std;
9 ifstream in_stream;

10 ofstream out_stream;

11 in_stream.open("infile.dat");
12 if (in_stream.fail())
13 {
14 cout << "Input file opening failed.\n";
15 exit(1);
16 }

17 out_stream.open("outfile.dat");
18 if (out_stream.fail())
19 {
20 cout << "Output file opening failed.\n";
21 exit(1);
22 }

23 int first, second, third;
24 in_stream >> first >> second >> third;
25 out_stream << "The sum of the first 3\n"
26 << "numbers in infile.dat\n"
27 << "is " << (first + second + third)
28 << endl;

29 in_stream.close();
30 out_stream.close();

31 return 0;
32 }

Screen Output (If the file infile.dat does not exist)

Input file opening failed.

318 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

Summary of File I/O Statements

In this sample the input comes from a file with the directory name infile.dat, and the output
goes to a file with the directory name outfile.dat.

■ Place the following include directives in your program file:

#include <fstream>
#include <iostream>

#include <cstdlib>

■ Choose a stream name for the input stream (for example, in_stream), and declare it to be a variable
of type ifstream. Choose a stream name for the output file (for example, out_stream), and declare
it to be of type ofstream:

 using namespace std;
 ifstream in_stream;

 ofstream out_stream;

■ Connect each stream to a file using the member function open with the external file name as an argu-
ment. Remember to use the member function fail to test that the call to open was successful:

 in_stream.open("infile.dat");
 if (in_stream.fail())
 {
 cout << "Input file opening failed.\n";
 exit(1);
 }

 out_stream.open("outfile.dat");
 if (out_stream.fail())
 {
 cout << "Output file opening failed.\n";
 exit(1);

 }

■ Use the stream in_stream to get input from the file infile.dat just like you use cin to get input
from the keyboard. For example:

 in_stream >> some_variable >> some_other_variable;

■ Use the stream out_stream to send output to the file outfile.dat just like you use cout to send
output to the screen. For example:

 out_stream << "some_variable = "

 << some_variable << endl;

■ Close the streams using the function close:

 in_stream.close();

 out_stream.close();

For file I/O
For cout

For exit

6.1 Streams and Basic File I/O 319

SELF -TEST EXERC ISES

1. Suppose you are writing a program that uses a stream called fin that will
be connected to an input file and a stream called fout that will be con-
nected to an output file. How do you declare fin and fout? What include
directive, if any, do you need to place in your program file?

2. Suppose you are continuing to write the program discussed in the previ-
ous exercise and you want your program to take its input from the file
stuff1.dat and send its output to the file stuff2.dat. What statements
do you need to place in your program in order to connect the stream fin
to the file stuff1.dat and to connect the stream fout to the file
stuff2.dat? Be sure to include checks to make sure that the openings
were successful.

3. Suppose that you are still writing the same program that we discussed in
the previous two exercises and you reach the point at which you no longer
need to get input from the file stuff1.dat and no longer need to send
output to the file stuff2.dat. How do you close these files?

4. Suppose you want to change the program in Display 6.1 so that it sends
its output to the screen instead of the file outfile.dat. (The input should
still come from the file infile.dat.) What changes do you need to
make to the program?

5. What include directive do you need to place in your program file if your
program uses the function exit?

6. Continuing Self-Test Exercise 5, what does exit(1) do with its argument?

7. Suppose bla is an object, dobedo is a member function of the object bla,
and dobedo takes one argument of type int. How do you write a call to
the member function dobedo of the object bla using the argument 7?

8. What characteristics of files do ordinary program variables share? What
characteristics of files are different from ordinary variables in a program?

9. Name at least three member functions associated with an iostream
object, and give examples of usage of each.

10. A program has read half of the lines in a file. What must the program do
to the file to enable reading the first line a second time?

11. In the text it says “a file has two names.” What are the two names? When is
each name used?

320 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

Appending to a File (Optional)

When sending output to a file, your code must first use the member function
open to open a file and connect it to a stream of type ofstream. The way we
have done that thus far (with a single argument for the file name) always gives
an empty file. If a file with the specified name already exists, its old contents
are lost. There is an alternative way to open a file so that the output from your
program will be appended to the file after any data already in the file.

To append your output to a file named important.txt, you would use a
two-argument version of open, as illustrated by the following:

ofstream outStream;
outStream.open("important.txt", ios::app);

If the file important.txt does not exist, this will create an empty file with
that name to receive your program’s output, but if the file already exists, then
all the output from your program will be appended to the end of the file, so
that old data in the file is not lost. This is illustrated in Display 6.3.

The second argument ios::app is a special constant that is defined in
iostream and so requires the following include directive:

#include <iostream>

Your program should also include the following, normally either at the start
of the file or at the start of the function body that uses ios::app:

using namespace std;

File Names as Input (Optional)

Thus far, we have written the literal file names for our input and output files
into the code of our programs. We did this by giving the file name as the
argument to a call to the function open, as in the following example:

in_stream.open("infile.dat");

This can sometimes be inconvenient. For example, the program in Display 6.2
reads numbers from the file infile.dat and outputs their sum to the file
outfile.dat. If you want to perform the same calculation on the numbers in
another file named infile2.dat and write the sum of these numbers to
another file named outfile2.dat, then you must change the file names in the
two calls to the member function open and then recompile your program. A
preferable alternative is to write your program so that it asks the user to type
in the names of the input and output files. This way your program can use
different files each time it is run.

 A file name is a string and we will not discuss string handling in detail
until Chapter 8. However, it is easy to learn enough about strings so that you

6.1 Streams and Basic File I/O 321

DISPLAY 6.3 Appending to a File (Optional)

1 //Appends data to the end of the file data.txt.
2 #include <fstream>
3 #include <iostream>
4
5 int main()
6 {
7 using namespace std;
8
9 cout << "Opening data.txt for appending.\n";

10 ofstream fout;
11 fout.open("data.txt", ios::app);
12 if (fout.fail())
13 {
14 cout << "Input file opening failed.\n";
15 exit(1);
16 }
17
18 fout << "5 6 pick up sticks.\n"
19 << "7 8 ain't C++ great!\n";
20
21 fout.close();
22 cout << "End of appending to file.\n";
23
24 return 0;
25 }

Sample Dialogue

 data.txt
(Before program is run.)

 data.txt
(After program is run.)

1 2 buckle my shoe.

3 4 shut the door.

1 2 buckle my shoe.

3 4 shut the door.

5 6 pick up sticks.

7 8 ain't C++ great!

Screen Output

Opening data.txt for appending.

End of appending to file.

322 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

can write programs that accept a file name as input. A string is just a sequence
of characters. We have already used string values in output statements such as
the following:

cout << "This is a string.";

We have also used string values as arguments to the member function open.
Whenever you write a literal string, as in the cout statement shown, you must
place the string in double quotes.

In order to read a file name into your program, you need a variable that is
capable of holding a string. A variable to hold a string value is declared as in
the following example:

char file_name[16];

This declaration is the same as if you had declared the variable to be of type
char, except that the variable name is followed by an integer in square brackets
that specifies the maximum number of characters you can have in a string
stored in the variable. This number must be one greater than the maximum
number of characters in the string value. So, in our example, the variable
file_name can contain any string that contains 15 or fewer characters. The
name file_name can be replaced by any other identifier (that is not a
keyword), and the number 16 can be replaced by any other positive integer.

You can input a string value to a string variable the same way that
you input values of other types. For example, consider the following piece
of code:

cin >> file_name;
cout << "OK, I will edit the file " << file_name << endl;

A possible dialogue for this code is:

Appending to a File

If you want to append data to a file so that it goes after any existing
contents of the file, open the file as follows.

SYNTAX

Output_Stream.open(File_Name, ios::app);

EXAMPLE

ofstream outStream;
outStream.open("important.txt", ios::app);

string

string variable

string input

cout << "Enter the file name (maximum of 15 characters):\n";

6.2 Tools for Stream I/O 323

Once your program has read the name of a file into a string variable,
such as the variable file_name, it can use this string variable as the argument
to the member function open. For example, the following will connect the
input-file stream in_stream to the file whose name is stored in the variable
file_name (and will use the member function fail to check whether the
opening was successful):

ifstream in_stream;
in_stream.open(file_name);
if (in_stream.fail())
{
 cout << "Input file opening failed.\n";
 exit(1);
}

Note that when you use a string variable as an argument to the member
function open, you do not use any quotes.

In Display 6.4 we have rewritten the program in Display 6.2 so that it takes
its input from and sends its output to whatever files the user specifies. The
input and output file names are read into the string variables in_file_name
and out_file_name and then these variables are used as the arguments in calls
to the member function open. Notice the declaration of the string variables.
You must include a number in square brackets after each string variable name,
as we did in Display 6.4.

String variables are not ordinary variables and cannot be used in all the
ways you can use ordinary variables. In particular, you cannot use an
assignment statement to change the value of a string variable.

6.2 TOOLS FOR STREAM I/O

You shall see them on a beautiful quarto page, where a neat rivulet of text
shall meander through a meadow of margin.

RICHARD BRINSLEY SHERIDAN, The School for Scandal

Formatting Output with Stream Functions

The layout of a program’s output is called the format of the output. In C++
you can control the format with commands that determine such details as the

Enter the file name (maximum of 15 characters):
myfile.dat
OK, I will edit the file myfile.dat

string variables
as arguments
to open

Warning!

format

324 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

DISPLAY 6.4 Inputting a File Name (Optional) (part 1 of 2)

1 //Reads three numbers from the file specified by the user, sums the numbers,
2 //and writes the sum to another file specified by the user.
3 #include <fstream>
4 #include <iostream>
5 #include <cstdlib>
6
7 int main()
8 {
9 using namespace std;

10 char in_file_name[16], out_file_name[16];
11 ifstream in_stream;
12 ofstream out_stream;
13
14 cout << "I will sum three numbers taken from an input\n"
15 << "file and write the sum to an output file.\n";
16 cout << "Enter the input file name (maximum of 15 characters):\n";
17 cin >> in_file_name;
18 cout << "Enter the output file name (maximum of 15 characters):\n";
19 cin >> out_file_name;
20 cout << "I will read numbers from the file "
21 << in_file_name << " and\n"
22 << "place the sum in the file "
23 << out_file_name << endl;
24
25 in_stream.open(in_file_name);
26 if (in_stream.fail())
27 {
28 cout << "Input file opening failed.\n";
29 exit(1);
30 }
31
32 out_stream.open(out_file_name);
33 if (out_stream.fail())
34 {
35 cout << "Output file opening failed.\n";
36 exit(1);
37 }
38 int first, second, third;
39 in_stream >> first >> second >> third;
40 out_stream << "The sum of the first 3\n"
41 << "numbers in " << in_file_name << endl
42 << "is " << (first + second + third)
43 << endl;
44

(continued)

6.2 Tools for Stream I/O 325

number of spaces between items and the number of digits after the decimal
point. You already used three output formatting instructions when you learned
the formula for outputting dollar amounts of money in the usual way (not in
e-notation) with two digits after the decimal point. Before outputting amounts
of money, you inserted the following “magic formula” into your program:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout.precision(2);

Now that you’ve learned about object notation for streams, we can explain this
magic formula and a few other formatting commands.

The first thing to note is that you can use these formatting commands
on any output stream. If your program is sending output to a file that is

DISPLAY 6.4 Inputting a File Name (Optional) (part 2 of 2)

45 in_stream.close();
46 out_stream.close();
47
48 cout << "End of Program.\n";
49 return 0;
50 }

Sample Dialogue

I will sum three numbers taken from an input

file and write the sum to an output file.

Enter the input file name (maximum of 15 characters):

numbers.dat

Enter the output file name (maximum of 15 characters):

sum.dat

I will read numbers from the file numbers.dat and

place the sum in the file sum.dat

End of Program.

numbers.dat
(Not changed by program.)

sum.dat
(After program is run.)

1

2
3
4

The sum of the first 3

numbers in numbers.dat

is 6

326 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

connected to an output stream called out_stream, you can use these same
commands to ensure that numbers with a decimal point will be written in
the way we normally write amounts of money. Just insert the following in
your program:

out_stream.setf(ios::fixed);
out_stream.setf(ios::showpoint);
out_stream.precision(2);

To explain this magic formula, we will consider the instructions in reverse
order.

Every output stream has a member function named precision. When
your program executes a call to precision such as the previous one for the
stream out_stream, then from that point on in your program, any number
with a decimal point that is output to that stream will be written with a total
of two significant figures, or with two digits after the decimal point, depending
on when your compiler was written. The following is some possible output
from a compiler that sets two significant digits:

23. 2.2e7 2.2 6.9e-1 0.00069

The following is some possible output from a compiler that sets two digits
after the decimal point:

23.56 2.26e7 2.21 0.69 0.69e-4

In this book, we assume the compiler sets two digits after the decimal point.
A call to precision applies only to the stream named in the call. If your

program has another output stream named out_stream_two, then the call to
out_stream.precision affects the output to the stream out_stream but has no
effect on the stream out_stream_two. Of course, you can also call precision
with the stream out_stream_two; you can even specify a different number of
digits for the numbers output to the stream out_stream_two, as in the
following:

out_stream_two.precision(3);

The other formatting instructions in our magic formula are a bit more
complicated than the member function precision. We now discuss these
other instructions. The following are two calls to the member function setf
with the stream out_stream as the calling object:

out_stream.setf(ios::fixed);
out_stream.setf(ios::showpoint);

setf is an abbreviation for set flags. A flag is an instruction to do something in
one of two possible ways. If a flag is given as an argument to setf, then the
flag tells the computer to write output to that stream in some specific way.
What it causes the stream to do depends on the flag.

precision

setf

flag

6.2 Tools for Stream I/O 327

In the previous example, there are two calls to the function setf, and these
two calls set the two flags ios::fixed and ios::showpoint. The flag ios::fixed
causes the stream to output numbers of type double in what is called fixed-point
notation, which is a fancy phrase for the way we normally write numbers. If the
flag ios::fixed is set (by a call to setf), then all floating-point numbers (such as
numbers of type double) that are output to that stream will be written in ordinary
everyday notation, rather than e-notation.

The flag ios::showpoint tells the stream to always include a decimal
point in floating-point numbers, such as numbers of type double. So if the
number to be output has a value of 2.0, then it will be output as 2.0 and not
simply as 2; that is, the output will include the decimal point even if all the
digits after the decimal point are 0. Some common flags and the actions they
cause are described in Display 6.5.

ios::fixed
fixed-point
notation

ios::
showpoint

DISPLAY 6.5 Formatting Flags for setf

Flag Meaning Default

ios::fixed If this flag is set, floating-point numbers are not written in
e-notation. (Setting this flag automatically unsets the flag
ios::scientific.)

 Not set

ios::scientific If this flag is set, floating-point numbers are written in e-notation.
(Setting this flag automatically unsets the flag ios::fixed.)
If neither ios::fixed nor ios::scientific is set, then the
system decides how to output each number.

 Not set

ios::showpoint If this flag is set, a decimal point and trailing zeros are always
shown for floating-point numbers. If it is not set, a number with
all zeros after the decimal point might be output without the
decimal point and following zeros.

 Not set

ios::showpos If this flag is set, a plus sign is output before positive integer
values.

 Not set

ios::right If this flag is set and some field-width value is given with a call to
the member function width, then the next item output will be at
the right end of the space specified by width. In other words,
any extra blanks are placed before the item output. (Setting this
flag automatically unsets the flag ios::left.)

 Set

ios::left If this flag is set and some field-width value is given with a call to
the member function width, then the next item output will be at
the left end of the space specified by width. In other words, any
extra blanks are placed after the item output. (Setting this flag
automatically unsets the flag ios::right.)

 Not set

328 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

Another useful flag is ios::showpos. If this flag is set for a stream, then
positive numbers output to that stream will be written with the plus sign in
front of them. If you want a plus sign to appear before positive numbers, insert
the following:

cout.setf(ios::showpos);

Minus signs appear before negative numbers without setting any flags.
One very commonly used formatting function is width. For example,

consider the following call to width made by the stream cout:

cout << "Start Now";
cout.width(4);
cout << 7 << endl;

This code causes the following line to appear on the screen:

This output has exactly three spaces between the letter 'w' and the number 7.
The width function tells the stream how many spaces to use when giving an
item as output. In this case the item (namely, the number 7) occupies only one
space, and width said to use four spaces, so three of the spaces are blank. If the
output requires more space than you specified in the argument to width, then
as much additional space as is needed will be used. The entire item is always
output, no matter what argument you give to width.

A call to width applies only to the next item that is output. If you want to
output 12 numbers, using four spaces to output each number, then you must
call width 12 times. If this becomes a nuisance, you may prefer to use the
manipulator setw that is described in the next subsection.

Any flag that is set may be unset. To unset a flag, you use the function
unsetf. For example, the following will cause your program to stop including
plus signs on positive integers that are output to the stream cout:

cout.unsetf(ios::showpos);

Manipulators

A manipulator is a function that is called in a nontraditional way. In turn, the
manipulator function calls a member function. Manipulators are placed after
the insertion operator <<, just as if the manipulator function call were an item
to be output. Like traditional functions, manipulators may or may not have
arguments. We have already seen one manipulator, endl. In this subsection we
will discuss two manipulators called setw and setprecision.

The manipulator setw and the member function width (which you have
already seen) do exactly the same thing. You call the setw manipulator

ios::showpos

width

Start Now 7

unsetf

manipulator

setw

6.2 Tools for Stream I/O 329

by writing it after the insertion operator <<, as if it were to be sent to the
output stream, and this in turn calls the member function width. For
example, the following outputs the numbers 10, 20, and 30, using the field
widths specified:

cout << "Start" << setw(4) << 10
<< setw(4) << 20 << setw(6) << 30;

The preceding statement will produce the following output:

(There are two spaces before the 10, two spaces before the 20, and four spaces
before the 30.)

The manipulator setprecision does exactly the same thing as the
member function precision (which you have already seen). However, a call
to setprecision is written after the insertion operator <<, in a manner similar
to how you call the setw manipulator. For example, the following outputs the

Flag Terminology

Why are the arguments to setf, such as ios::showpoint, called flags? And
what is meant by the strange notation ios::?

The word flag is used for something that can be turned on or off. The
origin of the term apparently comes from some phrase similar to “When the
flag is up, do it.” Or perhaps the term was “when the flag is down, do it.”
Moreover, apparently nobody can recall what the exact originating phrase
was because programmers now say “when the flag is set” and that does not
conjure up any picture. In any event, when the flag ios::showpoint is set
(that is, when it is an argument to setf), the stream that called the setf
function will behave as described in Display 6.5; when any other flag is set
(that is, is given as an argument to setf), that signals the stream to behave
as Display 6.5 specifies for that flag.

The explanation for the notation ios:: is rather mundane for such
exotic notation. The ios indicates that the meaning of terms such as fixed
or showpoint is the meaning that they have when used with an input or
output stream. The notation :: means “use the meaning of what follows
the :: in the context of what comes before the ::.” We will say more about
this :: notation later in this book.

Start 10 20 30

setprecision

330 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

numbers listed using the number of digits after the decimal point that are
indicated by the call to setprecision:

cout.setf(ios::fixed);
cout.setf(ios::showpoint);
cout << "$" << setprecision(2) << 10.3 << endl

<< "$" << 20.5 << endl;

The above statement will produce the following output:

When you set the number of digits after the decimal point using the
manipulator setprecision, then just as was the case with the member
function precision, the setting stays in effect until you reset it to some other
number by another call to either setprecision or precision.

To use either of the manipulators setw or setprecision, you must include
the following directive in your program:

#include <iomanip>

Your program should also include the following:

using namespace std;

SELF -TEST EXERC ISES

12. What output will be produced when the following lines are executed
(assuming the lines are embedded in a complete and correct program
with the proper include directives)?

cout << "*";
cout.width(5);
cout << 123

<< "*" << 123 << "*" << endl;
cout << "*" << setw(5) << 123

<< "*" << 123 << "*" << endl;

13. What output will be produced when the following lines are executed
(assuming the lines are embedded in a complete and correct program
with the proper include directives)?

cout << "*" << setw(5) << 123;
cout.setf(ios::left);
cout << "*" << setw(5) << 123;
cout.setf(ios::right);
cout << "*" << setw(5) << 123 << "*" << endl;

$10.30
$20.50

iomanip

6.2 Tools for Stream I/O 331

14. What output will be produced when the following lines are executed
(assuming the lines are embedded in a complete and correct program
with the proper include directives)?

cout << "*" << setw(5) << 123 << "*"
<< 123 << "*" << endl;

cout.setf(ios::showpos);
cout << "*" << setw(5) << 123 << "*"

<< 123 << "*" << endl;
cout.unsetf(ios::showpos);
cout.setf(ios::left);
cout << "*" << setw(5) << 123 << "*"

 << setw(5) << 123 << "*" << endl;

15. What output will be sent to the file stuff.dat when the following lines
are executed (assuming the lines are embedded in a complete and correct
program with the proper include directives)?

ofstream fout;
fout.open("stuff.dat");
fout << "*" << setw(5) << 123 << "*"

<< 123 << "*" << endl;
fout.setf(ios::showpos);
fout << "*" << setw(5) << 123 << "*"

<< 123 << "*" << endl;
fout.unsetf(ios::showpos);
fout.setf(ios::left);
fout << "*" << setw(5) << 123 << "*"

 << setw(5) << 123 << "*" << endl;

16. What output will be produced when the following line is executed
(assuming the line is embedded in a complete and correct program with
the proper include directives)?

cout << "*" << setw(3) << 12345 << "*" << endl;

17. In formatting output, the following flag constants are used with the
stream member function setf. What effect does each have?

a. ios::fixed

b. ios::scientific

c. ios::showpoint

d. ios::showpos

e. ios::right

f. ios::left

18. Here is a code segment that reads input from infile.dat and sends out-
put to outfile.dat. What changes are necessary to make the output go to
the screen? (The input is still to come from infile.dat.)

332 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

//Problem for Self Test. Copies three int numbers
//between files.
#include <fstream>
int main()
{
 using namespace std;

 ifstream instream;
 ofstream outstream;

 instream.open("infile.dat");
 outstream.open("outfile.dat");
 int first, second, third;
 instream >> first >> second >> third;
 outstream << "The sum of the first 3" << endl
 << "numberss in infile.dat is " << endl
 << (first + second + third) << endl;
 instream.close();
 outstream.close();
 return 0;
}

Streams as Arguments to Functions

A stream can be an argument to a function. The only restriction is that the
function formal parameter must be call-by-reference. A stream parameter
cannot be a call-by-value parameter. For example, the function make_neat in
Display 6.6 has two stream parameters: one is of type ifstream and is for a
stream connected to an input file; another is of type ofstream and is for a
stream connected to an output file. We will discuss the other features of the
program in Display 6.6 in the next two subsections.

■ PROGRAMMING TIP Checking for the End of a File

That’s all there is, there isn’t any more.

ETHEL BARRYMORE (1879–1959)

When you write a program that takes its input from a file, you will often
want the program to read all the data in the file. For example, if the file
contains numbers, you might want your program to calculate the average of
all the numbers in the file. Since you might run the program with different
data files at different times, the program cannot assume it knows how many
numbers are in the file. You would like to write your program so that it keeps
reading numbers from the file until there are no more numbers left to be

Stream
parameters

must be call-
by-reference

6.2 Tools for Stream I/O 333

DISPLAY 6.6 Formatting Output (part 1 of 2)

1 //Illustrates output formatting instructions.
2 //Reads all the numbers in the file rawdata.dat and writes the numbers
3 //to the screen and to the file neat.dat in a neatly formatted way.
4 #include <iostream>
5 #include <fstream>
6 #include <cstdlib>
7 #include <iomanip>
8 using namespace std;

9 void make_neat(ifstream& messy_file, ofstream& neat_file,
10 int number_after_decimalpoint, int field_width);
11 //Precondition: The streams messy_file and neat_file have been connected
12 //to files using the function open.
13 //Postcondition: The numbers in the file connected to messy_file have been
14 //written to the screen and to the file connected to the stream neat_file.
15 //The numbers are written one per line, in fixed-point notation (that is, not in
16 //e-notation), with number_after_decimalpoint digits after the decimal point;
17 //each number is preceded by a plus or minus sign and each number is in a field
18 //of width field_width. (This function does not close the file.)

19 int main()
20 {
21 ifstream fin;
22 ofstream fout;
23
24 fin.open("rawdata.dat");
25 if (fin.fail())
26 {
27 cout << "Input file opening failed.\n";
28 exit(1);
29 }

30 fout.open("neat.dat");
31 if (fout.fail())
32 {
33 cout << "Output file opening failed.\n";
34 exit(1);
35 }
36
37 make_neat(fin, fout, 5, 12);
38
39 fin.close();
40 fout.close();
41
42 cout << "End of program.\n";
43 return 0;
44 }
45

(continued)

Needed for setw
Stream parameters must
be call-by-reference.

334 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

DISPLAY 6.6 Formatting Output (part 2 of 2)

46 //Uses iostream, fstream, and iomanip:
47 void make_neat(ifstream& messy_file, ofstream& neat_file,
48 int number_after_decimalpoint, int field_width)
49 {
50 neat_file.setf(ios::fixed);
51 neat_file.setf(ios::showpoint);
52 neat_file.setf(ios::showpos);
53 neat_file.precision(number_after_decimalpoint);
54 cout.setf(ios::fixed);
55 cout.setf(ios::showpoint);
56 cout.setf(ios::showpos);
57 cout.precision(number_after_decimalpoint);
58
59 double next;
60 while (messy_file >> next)
61 {
62 cout << setw(field_width) << next << endl;
63 neat_file << setw(field_width) << next << endl;
64 }
65 }

rawdata.dat
(Not changed by program.)

10.37 -9.89897

2.313 -8.950 15.0

 7.33333 92.8765
-1.237568432e2

neat.dat
(After program is run.)

Screen Output

 +10.37000

 -9.89897
 +2.31300
 -8.95000
 +15.00000
 +7.33333
 +92.87650
 -123.75684

 +10.37000

 -9.89897
 +2.31300
 -8.95000
 +15.00000
 +7.33333
 +92.87650
 -123.75684
End of program.

Satisfied if there is a
next number to read

Not in e-notation
Show decimal point

Show + sign

6.2 Tools for Stream I/O 335

read. If in_stream is a stream connected to the input file, then the algorithm
for computing this average can be stated as follows:

double next, sum = 0;
int count = 0;
while (There are still numbers to be read)
{
 in_stream >> next;

sum = sum + next;
count++;

}

The average is sum/count.

This algorithm is already almost all C++ code, but we still must express the
following test in C++:

(There are still numbers to be read)

Even though it may not look correct at first, one way to express the
aforementioned test is the following:

(in_stream >> next)

The previous algorithm can thus be rewritten as the following C++ code (plus
one last line in pseudocode that is not the issue here):

double next, sum = 0;
int count = 0;
while (in_stream >> next)
{
 sum = sum + next;

count++;
}
The average is sum/count.

Notice that the loop body is not identical to what it was in our pseudocode.
Since in_stream >> next is now in the Boolean expression, it is no longer in
the loop body.

This loop may look a bit peculiar, because in_stream >> next is both
the way you input a number from the stream in_stream and the controlling
Boolean expression for the while loop. An expression involving the extrac-
tion operator >> is simultaneously both an action and a Boolean condition.2

2 Technically, the Boolean condition works this way: The overloading of operator>> for the
input stream classes is done with functions associated with the stream. This function is
named operator>>. The return value of this operator function is an input stream refer-
ence (istream& or ifstream&). A function is provided that automatically converts the
stream reference to a bool value. The resulting value is true if the stream is able to extract
data, and false otherwise.

336 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

It is an instruction to take one input number from the input stream, and it is
also a Boolean expression that is either satisfied or not. If there is another
number to be input, then the number is read and the Boolean expression is
satisfied, so the body of the loop is executed one more time. If there are no
more numbers to be read in, then nothing is input and the Boolean expression
is not satisfied, so the loop ends. In this example the type of the input variable
next was double, but this method of checking for the end of the file works the
same way for other data types, such as int and char. ■

A Note on Namespaces

We have tried to keep our using directives local to a function definition. This
is an admirable goal, but now we have a problem—functions whose parame-
ter type is in a namespace. In our immediate examples we need the stream
type names that are in the namespace std. Thus, we need a using directive (or
something) outside of the function definition body so that C++ will under-
stand the parameter type names, such as ifstream. The easiest fix is to simply
place one using directive at the start of the file (after the include directives).
We have done this in Display 6.6.

Placing a single using directive at the start of a file is the easiest solution
to our problem, but many experts would not consider it the best solution,
since it would not allow the use of two namespaces that have names in
common, and that is the whole purpose of namespaces. At this point we are
only using the namespace std,3 so there is no problem. In Chapter 12, we will
teach you another way around this problem with parameters and namespaces.
This other approach will allow you to use any kinds of multiple namespaces.

Many programmers prefer to place using directives at the start of the
program file. For example, consider the following using directive:

using namespace std;

Many of the programs in this book do not place this using directive at the
start of the program file. Instead, this using directive is placed at the start of each
function definition that needs the namespace std (immediately after the
opening brace). An example of this is shown in Display 6.3. An even better
example is shown in Display 5.11. All of the programs that have appeared so far
in this book, and almost all programs that follow, would behave exactly the
same if there were just one using directive for the namespace std and that one
using directive were placed immediately after the include directives, as in
Display 6.6. For the namespace std, the using directive can safely be placed at

3 We are actually using two namespaces: the namespace std and a namespace called the
global namespace, which is a namespace that consists of all names that are not in some
other namespace. But this technical detail is not a big issue to us now.

6.2 Tools for Stream I/O 337

the start of the file (in almost all cases). For some other namespaces, a single
using directive will not always suffice, but you will not see any of these cases for
some time.

We advocate placing the using directives inside function definitions (or
inside some other small units of code) so that it does not interfere with any
other possible using directives. This trains you to use namespaces correctly in
preparation for when you write more complicated code later in your program-
ming career. In the meantime, we sometimes violate this rule ourselves when
following the rule becomes too burdensome to the other issues we are
discussing. If you are taking a course, do whatever your instructor requires.
Otherwise, you have some latitude in where you place your using directives.

■ PROGRAMMING EXAMPLE Cleaning Up a File Format

The program in Display 6.6 takes its input from the file rawdata.dat and writes
its output, in a neat format, both to the screen and to the file neat.dat. The
program copies numbers from the file rawdata.dat to the file neat.dat, but it
uses formatting instructions to write them in a neat way. The numbers are written
one per line in a field of width 12, which means that each number is preceded
by enough blanks so that the blanks plus the number occupy 12 spaces. The
numbers are written in ordinary notation; that is, they are not written in e-
notation. Each number is written with five digits after the decimal point and with
a plus or minus sign. The output to the screen is the same as the output to the file
neat.dat, except that the screen output has one extra line that announces that
the program is ending. The program uses a function, named make_neat, that has
formal parameters for the input-file stream and the output-file stream. ■

SELF -TEST EXERC ISES

19. What output will be produced when the following lines are executed,
assuming the file list.dat contains the data shown (and assuming the
lines are embedded in a complete and correct program with the proper
include directives)?

ifstream ins;
ins.open("list.dat");
int count = 0, next;
while (ins >> next)
{

count++;
cout << next << endl;

}
ins.close();
cout << count;

338 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

The file list.dat contains the following three numbers (and nothing
more):

20. Write the definition for a void function called to_screen. The function
to_screen has one formal parameter called file_stream, which is of
type ifstream. The precondition and postcondition for the function are
as follows:

//Precondition: The stream file_stream has been connected
//to a file with a call to the member function open. The
//file contains a list of integers (and nothing else).
//Postcondition: The numbers in the file connected to
//file_stream have been written to the screen one per line.

//(This function does not close the file.)

21. (This exercise is for those who have studied the optional section entitled
“File Names as Input.”) Suppose you are given the following string vari-
able declaration and input statement.

#include <iostream>
using namespace std;
// ...
char name[21];
cout >> name;

Suppose this code segment is embedded in a correct program. What is the
longest name that can be entered into the string variable name?

6.3 CHARACTER I/O

Polonius: What do you read, my lord?

Hamlet: Words, words, words.

WILLIAM SHAKESPEARE, Hamlet

All data is input and output as character data. When your program outputs the
number 10, it is really the two characters '1' and '0' that are output.
Similarly, when the user wants to type in the number 10, he or she types in the
character '1' followed by the character '0'. Whether the computer interprets
this 10 as two characters or as the number 10 depends on how your program
is written. But, however your program is written, the computer hardware is
always reading the characters '1' and '0', not the number 10. This conversion

1 2
3

6.3 Character I/O 339

between characters and numbers is usually done automatically so that you
need not think about such detail. Sometimes, however, all this automatic help
gets in the way. Therefore, C++ provides some low-level facilities for input and
output of character data. These low-level facilities include no automatic
conversions. This allows you to bypass the automatic facilities and do input/
output in absolutely any way you want. You could even write input and
output functions that read and write numbers in Roman numeral notation, if
you wanted to be so perverse.

The Member Functions get and put

The function get allows your program to read in one character of input and
store it in a variable of type char. Every input stream, whether it is an input-
file stream or the stream cin, has get as a member function. We will describe
get as a member function of the stream cin, but it behaves in exactly the same
way for input-file streams as it does for cin, so you can apply all that we say
about get to input-file streams, as well as to the stream cin.

Before now, we have used cin with the extraction operator >> in order to
read a character of input (or any other input, for that matter). When you use
the extraction operator >>, as we have been doing, some things are done for
you automatically, such as skipping blanks. With the member function get,
nothing is done automatically. If you want, for example, to skip over blanks
using cin.get, you must write code to read and discard the blanks.

The member function get takes one argument, which should be a variable
of type char. That argument receives the input character that is read from the
input stream. For example, the following reads in the next input character
from the keyboard and stores it in the variable next_symbol:

char next_symbol;
cin.get(next_symbol);

It is important to note that your program can read any character in this way. If
the next input character is a blank, this code will not skip over the blank, but
will read the blank and set the value of next_symbol equal to the blank
character. If the next character is the new-line character '\n', that is, if the
program has just reached the end of an input line, then the call to cin.get
shown earlier sets the value of next_symbol equal to '\n'.

Although we write it as two symbols, '\n' is just a single character in C++.
With the member function get, the character '\n' can be input and output
just like any other character. For example, suppose your program contains the
following code:

char c1, c2, c3;
cin.get(c1);
cin.get(c2);
cin.get(c3);

Stream_Name.
get

reading blanks
and '\n'

340 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

and suppose you type in the following two lines of input to be read by this
code:

AB
CD

That is, suppose you type AB followed by Return and then CD followed by
Return. As you would expect, the value of c1 is set to 'A' and the value of c2 is
set to 'B'. That’s nothing new. But when this code fills the variable c3, things
are different from what they would be if you had used the extraction operator
>> instead of the member function get. When this code is executed on the
input we showed, the value of c3 is set to '\n'; that is, the value of c3 is set
equal to the new-line character. The variable c3 is not set equal to 'C'.

One thing you can do with the member function get is to have your
program detect the end of a line. The following loop will read a line of input
and stop after passing the new-line character '\n'. Then, any subsequent input
will be read from the beginning of the next line. For this first example, we have
simply echoed the input, but the same technique would allow you to do
whatever you want with the input:

cout << "Enter a line of input and I will echo it:\n";
char symbol;
do
{

cin.get(symbol);
cout << symbol;

} while (symbol != '\n');
cout << "That's all for this demonstration.";

This loop will read any line of input and echo it exactly, including blanks. The
following is a sample dialogue produced by this code:

Notice that the new-line character '\n' is both read and output. Since '\n' is
output, the string that begins with the word "That's" is on a new line.

The member function put is analogous to the member function get except
that it is used for output rather than input. put allows your program to output
one character. The member function put takes one argument, which should be
an expression of type char, such as a constant or a variable of type char. The
value of the argument is output to the stream when the function is called. For
example, the following outputs the letter 'a' to the screen:

detecting the
end of an
input line

Enter a line of input and I will echo it:
Do Be Do 1 2 34
Do Be Do 1 2 34
That's all for this demonstration.

Stream_Name.
put

6.3 Character I/O 341

cout.put('a');

The function cout.put does not allow you to do anything you could not do by
using the methods we discussed previously, but we include it for completeness.

The Member Function get

Every input stream has a member function named get that can be used to
read one character of input. Unlike the extraction operator >>, get reads
the next input character, no matter what that character is. In particular,
get reads a blank or the new-line character '\n' if either of these is the
next input character. The function get takes one argument, which should
be a variable of type char. When get is called, the next input character is
read and the argument variable (called Char_Variable below) has its
value set equal to this input character.

SYNTAX

Input_Stream.get(Char_Variable);

EXAMPLE

char next_symbol;
cin.get(next_symbol);

If you wish to use get to read from a file, you use an input-file stream in
place of the stream cin. For example, if in_stream is an input stream for a
file, then the following reads one character from the input file and places
the character in the char variable next_symbol:

in_stream.get(next_symbol);

Before you can use get with an input-file stream such as in_stream, your
program must first connect the stream to the input file with a call to open.

'\n' and "\n"

'\n' and "\n" sometimes seem like the same thing. In a cout statement,
they produce the same effect, but they cannot be used interchangeably in
all situations. '\n' is a value of type char and can be stored in a variable
of type char. On the other hand, "\n" is a string that happens to be made
up of exactly one character. Thus, "\n" is not of type char and cannot be
stored in a variable of type char.

342 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

If your program uses cin.get or cout.put, then just as with other uses of
cin and cout, your program should include the following directive:

#include <iostream>

Similarly, if your program uses get for an input-file stream or put for an
output-file stream, then just as with any other file I/O, your program should
contain the following directive:

#include <fstream>

When using either of these include directives, your program must also include
the following:

using namespace std;

The putback Member Function (Optional)

Sometimes your program needs to know the next character in the input
stream. However, after reading the next character, it might turn out that you

The Member Function put

Every output stream has a member function named put. The member
function put takes one argument which should be an expression of type
char. When the member function put is called, the value of its argument
(called Char_Expression below) is output to the output stream.

SYNTAX

Output_Stream.put(Char_Expression);

EXAMPLES

cout.put(next_symbol);
cout.put('a');

If you wish to use put to output to a file, you use an output-file stream
in place of the stream cout. For example, if out_stream is an output stream
for a file, then the following will output the character 'Z' to the file
connected to out_stream:

out_stream.put('Z');

Before you can use put with an output-file stream, such as out_stream,
your program must first connect the stream to the output file with a call
to the member function open.

6.3 Character I/O 343

do not want to process that character and so you would like to simply put it
back in the input stream. For example, if you want your program to read up
to but not including the first blank it encounters in an input stream, then your
program must read that first blank in order to know when to stop reading—
but then that blank is no longer in the stream. Some other part of your
program might need to read and process this blank. There are a number of
ways to deal with this sort of situation, but the easiest is to use the member
function putback. The function putback is a member of every input stream. It
takes one argument of type char and it places the value of that argument back
in the input stream. The argument can be any expression that evaluates to a
value of type char.

For example, the following code will read characters from the file
connected to the input stream fin and write them to the file connected to the
output stream fout. The code reads characters up to, but not including, the
first blank it encounters.

fin.get(next);
while (next != ' ')
{
 fout.put(next);
 fin.get(next);
}
fin.putback(next);

Notice that after this code is executed, the blank that was read is still in the
input stream fin, because the code puts it back after reading it.

Notice that putback places a character in an input stream, while put places
a character in an output stream.

The character that is put back into the input stream with the member
function putback need not be the last character read; it can be any character
you wish. If you put back a character other than the last character read, the text
in the input file will not be changed by putback, although your program will
behave as if the text in the input file had been changed.

■ PROGRAMMING EXAMPLE Checking Input

If a user enters incorrect input, the entire run of the program can become
worthless. To ensure that your program is not hampered by incorrect input,
you should use input functions that allow the user to reenter input until the
input is correct. The function get_int in Display 6.7 asks the user whether the
input is correct and asks for a new value if the user says the input is incorrect.
The program in Display 6.7 is just a driver program to test the function
get_int, but the function, or one very similar to it, can be used in just about
any kind of program that takes its input from the keyboard.

Notice the call to the function new_line(). The function new_line reads
all the characters on the remainder of the current line but does nothing with

get_int

new_line()

344 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

DISPLAY 6.7 Checking Input (part 1 of 2)

1 //Program to demonstrate the functions new_line and get_input.
2 #include <iostream>
3 using namespace std;
4
5 void new_line();
6 //Discards all the input remaining on the current input line.
7 //Also discards the '\n' at the end of the line.
8 //This version works only for input from the keyboard.
9

10 void get_int(int& number);
11 //Postcondition: The variable number has been
12 //given a value that the user approves of.
13
14
15 int main()
16 {
17 int n;
18
19 get_int(n);
20 cout << "Final value read in = " << n << endl
21 << "End of demonstration.\n";
22 return 0;
23 }
24
25
26 //Uses iostream:
27 void new_line()
28 {
29 char symbol;
30 do
31 {
32 cin.get(symbol);
33 } while (symbol != '\n');
34 }
35 //Uses iostream:
36 void get_int(int& number)
37 {
38 char ans;
39 do
40 {
41 cout << "Enter input number: ";
42 cin >> number;

(continued)

6.3 Character I/O 345

them. This amounts to discarding the remainder of the line. Thus, if the user
types in No, then the program reads the first letter, which is N, and then calls
the function new_line, which discards the rest of the input line. This means
that if the user types 75 on the next input line, as shown in the sample
dialogue, the program will read the number 75 and will not attempt to read
the letter o in the word No. If the program did not include a call to the function
new_line, then the next item read would be the o in the line containing No
instead of the number 75 on the following line.

Notice the Boolean expression that ends the do-while loop in the function
get_int. If the input is not correct, the user is supposed to type No (or some
variant such as no), which will cause one more iteration of the loop. However,
rather than checking to see if the user types a word that starts with 'N', the do-
while loop checks to see if the first letter of the user’s response is not equal to
'Y' (and not equal to the lowercase version of 'Y'). As long as the user makes
no mistakes and responds with some form of Yes or No, but never with anything
else, then checking for No or checking for not being Yes are the same thing.
However, since the user might respond in some other way, checking for not
being Yes is safer. To see why this is safer, suppose the user makes a mistake in
entering the input number. The computer echoes the number and asks if it is
correct. The user should type in No, but suppose the user makes a mistake and
types in Bo, which is not unlikely since 'B' is right next to 'N' on the keyboard.
Since 'B' is not equal to 'Y', the body of the do-while loop will be executed,
and the user will be given a chance to reenter the input.

But, what happens if the correct response is Yes and the user mistakenly
enters something that begins with a letter other than 'Y' or 'y'? In that case,
the loop should not iterate, but it does iterate one extra time. This is a mistake,

DISPLAY 6.7 Checking Input (part 2 of 2)

43 cout << "You entered " << number
44 << " Is that correct? (yes/no): ";
45 cin >> ans;
46 new_line();
47 } while ((ans != 'Y') && (ans != 'y'));
48 }

Sample Dialogue

Enter input number: 57

You entered 57 Is that correct? (yes/no): No

Enter input number: 75

You entered 75 Is that correct? (yes/no): yes

Final value read in = 75

End of demonstration.

When in doubt,
enter the input
again

346 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

but not nearly as bad a mistake as the one discussed in the last paragraph. It
means the user must type in the input number one extra time, but it does not
waste the entire run of the program. When checking input, it is better to risk
an extra loop iteration than to risk proceeding with incorrect input. ■

■ PITFALL Unexpected '\n' in Input

When using the member function get, you must account for every character of
input, even the characters you do not think of as being symbols, such as blanks
and the new-line character '\n'. A common problem when using get is
forgetting to dispose of the '\n' that ends every input line. If there is a new-
line character in the input stream that is not read (and usually discarded), then
when your program next expects to read a “real” symbol using the member
function get, it will instead read the character '\n'. To clear the input stream
of any leftover '\n'characters, you can use the function new_line, which we
defined in Display 6.7. Let’s look at a concrete example.

It is legal to mix the different forms of cin. For example, the following is legal:

cout << "Enter a number:\n";
int number;
cin >> number;
cout << "Now enter a letter:\n";
char symbol;
cin.get(symbol);

However, this mixing can produce problems, as illustrated by the following
dialogue:

With this dialogue, the value of number will be 21, as you expect. However, if
you expect the value of the variable symbol to be 'A', you will be disap-
pointed. The value given to symbol is '\n'. After reading the number 21, the
next character in the input stream is the new-line character, '\n', and so that
is read next. Remember, get does not skip over line breaks and spaces. (In fact,
depending on what is in the rest of the program, you may not even get a
chance to type in the A. Once the variable symbol is filled with the character
'\n', the program proceeds to whatever statement is next in the program. If
the next statement sends output to the screen, the screen will be filled with
output before you get a chance to type in the A.)

Either of the following rewritings of the previous code will cause the previous
dialogue to fill the variable number with 21 and fill the variable symbol with 'A':

Enter a number:
21
Now enter a letter:
A

6.3 Character I/O 347

cout << "Enter a number:\n";
int number;
cin >> number;
cout << "Now enter a letter:\n";
char symbol;
cin >> symbol;

Alternatively, you can use the function new_line, defined in Display 6.7, as
follows:

cout << "Enter a number:\n";
int number;
cin >> number;
new_line();
cout << "Now enter a letter:\n";
char symbol;
cin.get(symbol);

As this second rewrite indicates, you can mix the two forms of cin and have
your program work correctly, but it does require some extra care. ■

SELF -TEST EXERC ISES

22. Suppose c is a variable of type char. What is the difference between the
following two statements?

cin >> c;

and

cin.get(c);

23. Suppose c is a variable of type char. What is the difference between the
following two statements?

cout << c;

and

cout.put(c);

24. (This question is for those who have read the optional section “The putback
Member Function.”) The putback member function “puts back” a symbol
into an input stream. Does the symbol that is put back have to be the last
symbol input from the stream? For example, if your program reads an 'a'
from the input stream, can it use the putback function to put back a 'b',
or can it only put back an 'a'?

348 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

25. Consider the following code (and assume that it is embedded in a com-
plete and correct program and then run):

char c1, c2, c3, c4;
cout << "Enter a line of input:\n";
cin.get(c1);
cin.get(c2);
cin.get(c3);
cin.get(c4);
cout << c1 << c2 << c3 << c4 << "END OF OUTPUT";

If the dialogue begins as follows, what will be the next line of output?

26. Consider the following code (and assume that it is embedded in a com-
plete and correct program and then run):

char next;
int count = 0;
cout << "Enter a line of input:\n";
cin.get(next);
while (next != '\n')
{
 if ((count%2) == 0)
 cout << next;
 count++;
 cin.get(next);
}

If the dialogue begins as follows, what will be the next line of output?

27. Suppose that the program described in Self-Test Exercise 26 is run and the
dialogue begins as follows (instead of beginning as shown in Self-Test
Exercise 26). What will be the next line of output?

Enter a line of input:
a b c d e f g

True if count is even

Enter a line of input:
abcdef gh

Enter a line of input:
0 1 2 3 4 5 6 7 8 9 10 11

6.3 Character I/O 349

28. Consider the following code (and assume that it is embedded in a com-
plete and correct program and then run):

char next;
int count = 0;
cout << "Enter a line of input:\n";
cin >> next;
while (next != '\n')
{
 if ((count%2) == 0)
 cout << next;
 count++;
 cin >> next;
}

If the dialogue begins as follows, what will be the next line of output?

The eof Member Function

Every input-file stream has a member function called eof that can be used to
determine when all of the file has been read and there is no more input left
for the program. This is the second technique we have presented for determin-
ing when a program has read everything in a file.

The letters eof stand for end of file, and eof is normally pronounced by
saying the three letters e-o-f. The function eof takes no arguments, so if the
input stream is called fin, then a call to the function eof is written

fin.eof()

This is a Boolean expression that can be used to control a while loop, a do-
while loop, or an if-else statement. This expression is satisfied (that is, is
true), if the program has read past the end of the input file; otherwise, the
above expression is not satisfied (that is, is false).

Since we usually want to test that we are not at the end of a file, a call to
the member function eof is typically used with a not in front of it. Recall that
in C++ the symbol ! is used to express not. For example, consider the following
statement:

if (! fin.eof())
cout << "Not done yet.";

else
cout << "End of the file.";

Enter a line of input:
0 1 2 3 4 5 6 7 8 9 10 11

eof is usually
used with “not”

350 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

The Boolean expression after the if means “not at the end of the file
connected to fin.” Thus, the above if-else statement will output the
following to the screen:

provided the program has not yet read past the end of the file that is connected
to the stream fin. The if-else statement will output the following, if the
program has read beyond the end of the file:

As another example of using the eof member function, suppose that the
input stream in_stream has been connected to an input file with a call to open.
Then the entire contents of the file can be written to the screen with the
following while loop:

in_stream.get(next);
while (! in_stream.eof())
{

cout << next;
in_stream.get(next);

}

This while loop reads each character from the input file into the char variable
next using the member function get, and then writes the character to the
screen. After the program has passed the end of the file, the value of
in_stream.eof() changes from false to true. So,

(! in_stream.eof())

changes from true to false and the loop ends.
Notice that in_stream.eof() does not become true until the program

attempts to read one character beyond the end of the file. For example,
suppose the file contains the following (without any new-line after the c):

ab
c

This is actually the following list of four characters:

ab<the new-line character '\n'>c

This loop reads an 'a' and writes it to the screen, then reads a 'b' and writes
it to the screen, then reads the new-line character '\n' and writes it to the
screen, and then reads a 'c' and writes it to the screen. At that point the loop
will have read all the characters in the file. However, in_stream.eof() will still

Not done yet.

End of the file.

ending an
input loop

with the eof
function

If you prefer, you can
use cout.put(next) here.

6.3 Character I/O 351

be false. The value of in_stream.eof() will not change from false to true until
the program tries to read one more character. That is why the while loop ends
with in_stream.get(next). The loop needs to read one extra character in
order to end the loop.

There is a special end-of-file marker at the end of a file. The member
function eof does not change from false to true until this end-of-file marker is
read. That’s why the example while loop could read one character beyond
what you think of as the last character in the file. However, this end-of-file
marker is not an ordinary character and should not be manipulated like an
ordinary character. You can read this end-of-file marker, but you should not
write it out again. If you write out the end-of-file marker, the result is
unpredictable. The system automatically places this end-of-file marker at the
end of each file for you.

The next Programming Example uses the eof member function to
determine when the program has read the entire input file.

You now have two methods for detecting the end of a file. You can use the
eof member function or you can use the method we described in the
Programming Tip entitled “Checking for the End of a File.” In most situations
you can use either method, but many programmers use the two different
methods in different situations. If you do not have any other reason to prefer
one of these two methods, then use the following general rule: Use the eof
member function when you are treating the input as text and reading the input
with the get member function; use the other method when you are processing
numeric data.

SELF -TEST EXERC ISES

29. Suppose ins is a file input stream that has been connected to a file
with the member function open. Suppose your program has just read
the last character in the file. At this point, would ins.eof() evaluate to
true or false?

30. Write the definition for a void function called text_to_screen that has
one formal parameter called file_stream that is of type ifstream. The
precondition and postcondition for the function are as follows:

//Precondition: The stream file_stream has been connected
//to a file with a call to the member function open.
//Postcondition: The contents of the file connected to
//file_stream have been copied to the screen character by
//character, so that the screen output is the same as the
//contents of the text in the file.
//(This function does not close the file.)

deciding how to
test for the end
of an input file

352 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

■ PROGRAMMING EXAMPLE Editing a Text File

The program discussed here is a very simple example of text editing applied to
files. It might be used by a software firm to update its advertising literature.
The firm has been marketing compilers for the C programming language and
has recently introduced a line of C++ compilers. This program can be used to
automatically generate C++ advertising material from the existing C advertising
material. The program takes its input from a file that contains advertising copy
that says good things about C and writes similar advertising copy about C++ in
another file. The file that contains the C advertising copy is called cad.dat, and
the new file that receives the C++ advertising copy is called cplusad.dat. The
program is shown in Display 6.8.

The program simply reads every character in the file cad.dat and copies
the characters to the file cplusad.dat. Every character is copied unchanged,
except that when the uppercase letter 'C' is read from the input file, the
program writes the string "C++" to the output file. This program assumes that
whenever the letter 'C' occurs in the input file, it names the C programming
language; thus, this change is exactly what is needed to produce the updated
advertising copy.

Notice that the line breaks are preserved when the program reads
characters from the input file and writes the characters to the output file. The
new-line character '\n' is treated just like any other character. It is read from
the input file with the member function get, and it is written to the output file
using the insertion operator <<. We must use the member function get to read
the input. If we instead use the extraction operator >> to read the input, the
program would skip over all the whitespace, which means that none of the
blanks and none of the new-line characters '\n' would be read from the
input file, so they would not be copied to the output file.

Also notice that the member function eof is used to detect the end of the
input file and end the while loop. ■

Predefined Character Functions

In text processing, you often want to convert lowercase letters to uppercase or
vice versa. The predefined function toupper can be used to convert a lowercase
letter to an uppercase letter. For example, toupper('a') returns 'A'. If the
argument to the function toupper is anything other than a lowercase letter,
then toupper simply returns the argument unchanged. So toupper('A') also
returns 'A'. The function tolower is similar except that it converts an
uppercase letter to its lowercase version.

The functions toupper and tolower are in the library with the header file
cctype, so any program that uses these functions, or any other functions in
this library, must contain the following include directive:

#include <cctype>

6.3 Character I/O 353

DISPLAY 6.8 Editing a File of Text (part 1 of 2)

1 //Program to create a file called cplusad.dat that is identical to the file
2 //cad.dat, except that all occurrences of 'C' are replaced by "C++".
3 //Assumes that the uppercase letter 'C' does not occur in cad.dat except
4 //as the name of the C programming language.

5 #include <fstream>
6 #include <iostream>
7 #include <cstdlib>
8 using namespace std;

9 void add_plus_plus(ifstream& in_stream, ofstream& out_stream);
10 //Precondition: in_stream has been connected to an input file with open.
11 //out_stream has been connected to an output file with open.
12 //Postcondition: The contents of the file connected to in_stream have been
13 //copied into the file connected to out_stream, but with each 'C' replaced
14 //by "C++". (The files are not closed by this function.)

15 int main()
16 {
17 ifstream fin;
18 ofstream fout;

19 cout << "Begin editing files.\n";

20 fin.open("cad.dat");
21 if (fin.fail())
22 {
23 cout << "Input file opening failed.\n";
24 exit(1);
25 }

26 fout.open("cplusad.dat");
27 if (fout.fail())
28 {
29 cout << "Output file opening failed.\n";
30 exit(1);
31 }

32 add_plus_plus(fin, fout);
33 fin.close();
34 fout.close();

35 cout << "End of editing files.\n";
36 return 0;
37 }
38
39 void add_plus_plus(ifstream& in_stream, ofstream& out_stream)
40 {
41 char next;

(continued)

354 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

Display 6.9 contains descriptions of some of the most commonly used
functions in the library cctype.

The function isspace returns true if its argument is a whitespace character.
If the argument to isspace is not a whitespace character, then isspace returns
false. Thus, isspace(' ') returns true and isspace('a') returns false.

For example, the following code reads a sentence terminated with a period
and echoes the string with all whitespace characters replaced with the symbol
'-':

char next;
do
{
 cin.get(next);

DISPLAY 6.8 Editing a File of Text (part 2 of 2)

42 in_stream.get(next);
43 while (! in_stream.eof())
44 {
45 if (next == 'C')
46 out_stream << "C++";
47 else
48 out_stream << next;

49 in_stream.get(next);
50 }
51 }

cad.dat
(Not changed by program.)

C is one of the world's most modern programming languages.

There is no language as versatile as C, and C is fun to use.

cplusad.dat
(After program is run.)

C++ is one of the world's most modern programming languages.

There is no language as versatile as C++, and C++ is fun to

use.

Screen Output

Begin editing files.

End of editing files.

6.3 Character I/O 355

 if (isspace(next))
 cout << '-';
 else
 cout << next;
} while (next != '.');

For example, if the above code is given the following input:

Ahh do be do.

then it will produce the following output:

Ahh---do-be-do.

■ PITFALL toupper and tolower Return Values

In many ways, C++ considers characters to be whole numbers, similar to the
numbers of type int. Each character is assigned a number, and when the
character is stored in a variable of type char, it is this number that is placed in
the computer’s memory. In C++ you can use a value of type char as a
number—for example, by placing it in a variable of type int. You can also
store a number of type int in a variable of type char (provided the number is
not too large). Thus, the type char can be used as the type for characters or as
a type for small whole numbers.

Usually you need not be concerned with this detail and can simply think
of values of type char as being characters and not worry about their use as
numbers. However, when using the functions in cctype, this detail can be
important. The functions toupper and tolower actually return values of type
int rather than values of type char; that is, they return the number corre-
sponding to the character we think of them as returning, rather than the
character itself. Thus, the following will not output the letter 'A', but will
instead output the number that is assigned to 'A'.

cout << toupper('a');

In order to get the computer to treat the value returned by toupper or
tolower as a value of type char (as opposed to a value of type int), you need
to indicate that you want a value of type char. One way to do this is to place
the value returned in a variable of type char. The following will output the
character 'A', which is usually what we want:

char c = toupper('a');
cout << c;

Another way to get the computer to treat the value returned by toupper or
tolower as a value of type char is to use a type cast as follows:

cout << static_cast<char>(toupper('a'));

(Type casts were discussed in Chapter 4 in the section “Type Casting.”) ■

True if the character
in next is whitespace

Places 'A' in the
variable c.

Outputs the
character 'A'.

356 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

DISPLAY 6.9 Some Predefined Character Functions in cctype

Function Description Example

toupper(Char_Exp) Returns the uppercase
version of Char_Exp.

char c = toupper('a');
cout << c;
Outputs: A

tolower(Char_Exp) Returns the lowercase
version of Char_Exp.

char c = tolower('A');
cout << c;
Outputs: a

isupper(Char_Exp) Returns true provided
Char_Exp is an upper-
case letter; otherwise,
returns false.

if (isupper(c))
 cout << c << " is uppercase.";
else
 cout << c
 << " is not uppercase.";

islower(Char_Exp) Returns true provided
Char_Exp is a lowercase
letter; otherwise, returns
false.

char c = 'a';
if (islower(c))
 cout << c << " is lowercase.";
Outputs: a is lowercase.

isalpha(Char_Exp) Returns true provided
Char_Exp is a letter of the
alphabet; otherwise,
returns false.

char c = '$';
if (isalpha(c))
 cout << c << " is a letter.";
else
 cout << c
 << " is not a letter.";
Outputs: $ is not a letter.

isdigit(Char_Exp) Returns true provided
Char_Exp is one of the
digits '0' through '9';
otherwise, returns false.

if (isdigit('3'))
 cout << "It's a digit.";
else
 cout << "It's not a digit.";
Outputs: It's a digit.

isspace(Char_Exp) Returns true provided
Char_Exp is a whitespace
character, such as the
blank or new-line sym-
bol; otherwise, returns
false.

//Skips over one "word" and
//sets c equal to the first
//whitespace character after
//the "word":
do
{
 cin.get(c);
} while (! isspace(c));

Chapter Summary 357

SELF -TEST EXERC ISES

31. Consider the following code (and assume that it is embedded in a com-
plete and correct program and then run):

cout << "Enter a line of input:\n";
char next;
do
{

cin.get(next);
cout << next;

} while ((! isdigit(next)) && (next != '\n'));
cout << "<END OF OUTPUT";

If the dialogue begins as follows, what will be the next line of output?

32. Write some C++ code that will read a line of text and echo the line with all
uppercase letters deleted.

CHAPTER SUMMARY

■ A stream of type ifstream can be connected to a file with a call to the mem-
ber function open. Your program can then take input from that file.

■ A stream of type ofstream can be connected to a file with a call to the mem-
ber function open. Your program can then send output to that file.

■ You should use the member function fail to check whether a call to open
was successful.

■ An object is a variable that has functions associated with it. These functions
are called member functions. A class is a type whose variables are objects.
A stream is an example of an object. The types ifstream and ofstream are
examples of classes.

Enter a line of input:
I'll see you at 10:30 AM.

358 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

■ The following is the syntax you use when you write a call to a member func-
tion of an object:

Calling_Object.Member_Function_Name(Argument_List);

An example with the stream cout as the calling object and precision
as the member function is the following:

cout.precision(2);

■ Stream member functions, such as width, setf, and precision, can be used
to format output. These output functions work the same for the stream
cout, which is connected to the screen, and for output streams connected
to files.

■ Every input stream has a member function named get that can be used to
read one character of input. The member function get does not skip over
whitespace. Every output stream also has a member function named put
that can be used to write one character to the output stream.

■ The member function eof can be used to test for when a program has
reached the end of an input file. The member function eof works well for
text processing. However, when processing numeric data, you might prefer
to test for the end of a file by using the other method we discussed in this
chapter.

■ A function may have formal parameters of a stream type, but they must be
call-by-reference parameters. They cannot be call-by-value parameters. The
type ifstream can be used for an input-file stream, and the type ofstream
can be used for an output-file stream. (See the next summary point for
other type possibilities.)

■ If you use istream (spelled without the f) as the type for an input-stream
parameter, then the argument corresponding to that formal parameter can
be either the stream cin or an input-file stream of type ifstream (spelled
with the f). If you use ostream (spelled without the f) as the type for an
output stream parameter, then the argument corresponding to that formal
parameter can be either the stream cout or an output-file stream of type
ofstream (spelled with the f).

Answers to Self-Test Exercises 359

Answers to Self-Test Exercises

1. The streams fin and fout are declared as follows:

ifstream fin;
ofstream fout;

The include directive that goes at the top of your file is

#include <fstream>

Your code also needs the following:

using namespace std;

2. fin.open("stuff1.dat");
if (fin.fail())
{
 cout << "Input file opening failed.\n";
 exit(1);
}

fout.open("stuff2.dat");
if (fout.fail())
{
 cout << "Output file opening failed.\n";
 exit(1);
}

3. fin.close();
fout.close();

4. You need to replace the stream out_stream with the stream cout. Note
that you do not need to declare cout, you do not need to call open with
cout, and you do not need to close cout.

5. #include <cstdlib>

Your code also needs the following:

using namespace std;

6. The exit(1) function returns the argument to the operating system. By con-
vention the operating system uses a 1 as an indication of error status, and 0
as an indication of success. What is actually done is system-dependent.

7. bla.dobedo(7);

360 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

8. Both files and program variables store values and can have values retrieved
from them. Program variables exist only while the program runs, whereas
files may exist before a program is run, and may continue to exist after a
program stops. In short, files may be permanent; variables are not. Files
provide the ability to store large quantities of data, whereas program vari-
ables do not provide quite so large a store.

9. We have seen the open, close, and fail member functions at this point.
The following illustrate their use.

int c;
ifstream in;
ofstream out;
in.open("in.dat");
if (in.fail())
{
 cout << "Input file opening failed.\n";
 exit(1);
}
in >> c;

out.open("out.dat");
if (out.fail())
{
 cout << "Output file opening failed.\n";
 exit(1);
}
out << c;

out.close();
in.close();

10. This is the “starting over” the text describes at the beginning of this chap-
ter. The file must be closed and opened again. This action puts the read
position at the start of the file, ready to be read again.

11. The two names are the external file name and the stream name. The external
file name is the one used by the operating system. It is the real name of
the file, but it is used only in the call to the function open, which connects
the file to a stream. The stream name is a stream variable (typically of type
ifstream or ofstream). After the call to open, your program always uses
the stream name as the name of the file.

12.

Each of the spaces contains exactly two blank characters. Notice that a call
to width or call to setw only lasts for one output item.

* 123*123*
* 123*123*

Answers to Self-Test Exercises 361

13.

Each of the spaces consists of exactly two blank characters.

14.

There is just one space between the * and the + on the second line. Each of
the other spaces contains exactly two blank characters.

15. The output to the file stuff.dat will be exactly the same as the output
given in the answer to Exercise 14.

16.

Notice that the entire integer is output even though this requires more
space than was specified by setw.

17. a. ios::fixed. Setting this flag causes floating-point numbers not to be
displayed in e-notation; that is, not in scientific notation. Setting this
flag unsets ios::scientific.

b. ios::scientific. Setting this flag causes floating-point numbers to be
displayed in e-notation; that is, in scientific notation. Setting this flag
unsets ios::fixed.

c. ios::showpoint. Setting this flag causes the decimal point and trailing
zeros to be always displayed.

d. ios::showpos. Setting this flag causes a plus sign to be output before
positive integer values.

e. ios::right. Setting this flag causes subsequent output to be placed at
the right end of any field that is set with the width member function.
That is, any extra blanks are put before the output. Setting this flag
unsets ios::left.

f. ios::left. Setting this flag causes subsequent output to be placed at
the left end of any field that is set with the width member function.
That is, any extra blanks are put after the output. Setting this flag
unsets ios::right.

18. You need to replace outstream with cout, and delete the open and close
calls for outstream. You do not need to declare cout, open cout, or close
cout. The #include <fstream> directive has all the iostream members
you need for screen I/O, though it does no harm, and may make the pro-
gram clearer to #include <iostream>.

* 123*123 * 123*

* 123*123*
* +123*+123*
*123 *123 *

12345

362 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

19.

20. void to_screen(ifstream& file_stream)
{
 int next;
 while (file_stream >> next)
 cout << next << endl;
}

21. The maximum number of characters that can be typed in for a string vari-
able is one less than the declared size. Here the value is 20.

22. The statement

cin >> c;

reads the next nonwhite character, whereas

cin.get(c);

reads the next character whether the character is nonwhite or not.

23. The two statements are equivalent. Both of the statements output the
value of the variable c.

24. The character that is “put back” into the input stream with the member
function putback need not be the last character read. If your program reads
an 'a' from the input stream, it can use the putback function to put back a
'b'. (The text in the input file will not be changed by putback, although
your program will behave as if the text in the input file had been changed.)

25. The complete dialogue is

26. The complete dialogue is

1
2
3
3

Enter a line of input:
a b c d e f g
a b END OF OUTPUT

Enter a line of input:
abcdef gh
ace h

Answers to Self-Test Exercises 363

Note that the output is simply every other character of the input, and note
that the blank is treated just like any other character.

27. The complete dialogue is

Be sure to note that only the '1' in the input string 10 is output. This is
because cin.get is reading characters, not numbers, and so it reads the
input 10 as the two characters, '1' and '0'. Since this code is written to
echo only every other character, the '0' is not output. Since the '0' is not
output, the next character, which is a blank, is output, and so there is one
blank in the output. Similarly, only one of the two '1' characters in 11 is
output. If this is unclear, write the input on a sheet of paper and use a
small square for the blank character. Then, cross out every other character;
the output shown above is what is left.

28. This code contains an infinite loop and will continue as long as the user
continues to give it input. The Boolean expression (next != '\n') is
always true because next is filled via the statement

cin >> next;

and this statement always skips the new-line character '\n' (as well as any
blanks). The code will run and if the user gives no additional input, the
dialogue will be as follows:

Notice that the code in Self-Test Exercise 27 used cin.get, so it reads every
character, whether the character is a blank or not, and then it outputs every
other character. So the code in Self-Test Exercise 27 outputs every other
character even if the character is a blank. On the other hand, the code in
this Self-Test Exercise uses cin and >>, so it skips over all blanks and
considers only nonblank characters (which in this case are the digits '0'
through '9'). Thus, this code outputs every other nonblank character. The
two '1' characters in the output are the first character in the input 10 and
the first character in the input 11.

29. It would evaluate to false. Your program must attempt to read one more
character (beyond the last character) before it changes to true.

Enter a line of input:
0 1 2 3 4 5 6 7 8 9 10 11
01234567891 1

Enter a line of input:
0 1 2 3 4 5 6 7 8 9 10 11
0246811

364 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

30. void text_to_screen(ifstream& file_stream)
{
 char next;
 file_stream.get(next);
 while (! file_stream.eof())
 {
 cout << next;
 file_stream.get(next);
 }
}

If you prefer, you can use cout.put(next); instead of cout << next;.

31. The complete dialogue is as follows:

32. cout << "Enter a line of input:\n";
char next;
do
{

cin.get(next);
if (!isupper(next))

cout << next;
} while (next != '\n');

Note that you should use !isupper(next) and not use islower(next).
This is because islower(next) is false if next contains a character that is
not a letter (such as the blank or comma symbol).

PROGRAMMING PROJECTS

1. Write a program that will search a file of numbers of type int and write the
largest and the smallest numbers to the screen. The file contains nothing
but numbers of type int separated by blanks or line breaks. If this is being
done as a class assignment, obtain the file name from your instructor.

2. Write a program that takes its input from a file of numbers of type double
and outputs the average of the numbers in the file to the screen. The file
contains nothing but numbers of type double separated by blanks and/or
line breaks. If this is being done as a class assignment, obtain the file
name from your instructor.

Enter a line of input:
I’ll see you at 10:30 AM.
I'll see you at 1<END OF OUTPUT

Programming Projects 365

3. a. Compute the median of a data file. The median is the number that
has the same number of data elements greater than the number as
there are less than the number. For purposes of this problem, you
are to assume that the data is sorted (that is, is in increasing order).
The median is the middle element of the file if there are an odd
number of elements, or the average of the two middle elements if
the file has an even number of elements. You will need to open the
file, count the members, close the file and calculate the location of
the middle of the file, open the file again (recall the “start over” dis-
cussion in this chapter), count up to the file entries you need, and
calculate the middle.

If your instructor has assigned this problem, ask for a data file to test
your program with. Otherwise, construct several files on your own,
including one with an even number of data points, increasing, and one
with an odd number, also increasing.

b. For a sorted file, a quartile is one of three numbers: The first has one-
fourth the data values less than or equal to it, one-fourth the data values
between the first and second numbers, one-fourth the data points
between the second and the third, and one-fourth above the third
quartile. Find the three quartiles for the data file you used for part (a).

Hint: You should recognize that having done part (a) you have one-
third of your job done. (You have the second quartile already.) You
also should recognize that you have done almost all the work toward
finding the other two quartiles as well.

4. Write a program that takes its input from a file of numbers of type double.
The program outputs to the screen the average and standard deviation of
the numbers in the file. The file contains nothing but numbers of type
double separated by blanks and/or line breaks. The standard deviation of
a list of numbers n1, n2, n3, and so forth is defined as the square root of
the average of the following numbers:

(n1 − a)2, (n2 − a)2, (n3 − a)2, and so forth

The number a is the average of the numbers n1, n2, n3, and so forth. If this
is being done as a class assignment, obtain the file name from your
instructor.

Hint: Write your program so that it first reads the entire file and computes
the average of all the numbers, and then closes the file, then reopens the
file and computes the standard deviation.

366 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

5. Write a program that gives and takes advice on program writing. The pro-
gram starts by writing a piece of advice to the screen and asking the user to
type in a different piece of advice. The program then ends. The next per-
son to run the program receives the advice given by the person who last
ran the program. The advice is kept in a file, and the contents of the file
change after each run of the program. You can use your editor to enter the
initial piece of advice in the file so that the first person who runs the pro-
gram receives some advice. Allow the user to type in advice of any length
so that it can be any number of lines long. The user is told to end his or
her advice by pressing the Return key two times. Your program can then
test to see that it has reached the end of the input by checking to see when
it reads two consecutive occurrences of the character '\n'.

6. Write a program that reads text from one file and writes an edited version of
the same text to another file. The edited version is identical to the unedited
version except that every string of two or more consecutive blanks is
replaced by a single blank. Thus, the text is edited to remove any extra blank
characters. Your program should define a function that is called with the
input- and output-file streams as arguments. If this is being done as a class
assignment, obtain the file names from your instructor.

7. Write a program that merges the numbers in two files and writes all the
numbers into a third file. Your program takes input from two different
files and writes its output to a third file. Each input file contains a list of
numbers of type int in sorted order from the smallest to the largest.
After the program is run, the output file will contain all the numbers in
the two input files in one longer list in sorted order from smallest to
largest. Your program should define a function that is called with the
two input-file streams and the output-file stream as three arguments. If
this is being done as a class assignment, obtain the file names from
your instructor.

8. Write a program to generate personalized junk mail. The program takes
input both from an input file and from the keyboard. The input file con-
tains the text of a letter, except that the name of the recipient is indicated by
the three characters #N#. The program asks the user for a name and then
writes the letter to a second file but with the three letters #N# replaced by the
name. The three-letter string #N# will occur exactly once in the letter.

Hint: Have your program read from the input file until it encounters the
three characters #N#, and have it copy what it reads to the output file as it
goes. When it encounters the three letters #N#, it then sends output to the
screen asking for the name from the keyboard. You should be able to
figure out the rest of the details. Your program should define a function

Programming Projects 367

that is called with the input- and output-file streams as arguments. If this
is being done as a class assignment, obtain the file names from your
instructor.

Harder version (using material in the optional section “File Names as
Input”): Allow the string #N# to occur any number of times in the file.
In this case the name is stored in two string variables. For this version
assume that there is a first name and last name but no middle names
or initials.

9. Write a program to compute numeric grades for a course. The course
records are in a file that will serve as the input file. The input file is in
exactly the following format: Each line contains a student’s last name,
then one space, then the student’s first name, then one space, then ten
quiz scores all on one line. The quiz scores are whole numbers and are
separated by one space. Your program will take its input from this file and
send its output to a second file. The data in the output file will be the same
as the data in the input file except that there will be one additional number
(of type double) at the end of each line. This number will be the average of
the student’s ten quiz scores. If this is being done as a class assignment,
obtain the file names from your instructor. Use at least one function that
has file streams as all or some of its arguments.

10. Enhance the program you wrote for Programming Project 9 in all of the
following ways.

a. The list of quiz scores on each line will contain ten or fewer quiz
scores. (If there are fewer than ten quiz scores, that means that the stu-
dent missed one or more quizzes.) The average score is still the sum of
the quiz scores divided by 10. This amounts to giving the student a 0
for any missed quiz.

b. The output file will contain a line (or lines) at the beginning of the file
explaining the output. Use formatting instructions to make the layout
neat and easy to read.

c. After placing the desired output in an output file, your program will close
all files and then copy the contents of the “output” file to the “input” file
so that the net effect is to change the contents of the input file.

Use at least two functions that have file streams as all or some of their
arguments. If this is being done as a class assignment, obtain the file
names from your instructor.

11. Write a program that will compute the average word length (average
number of characters per word) for a file that contains some text. A
word is defined to be any string of symbols that is preceded and fol-
lowed by one of the following at each end: a blank, a comma, a period,

368 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

the beginning of a line, or the end of a line. Your program should define
a function that is called with the input-file stream as an argument. This
function should also work with the stream cin as the input stream,
although the function will not be called with cin as an argument in this
program. If this is being done as a class assignment, obtain the file
names from your instructor.

12. Write a program that will correct a C++ program that has errors in which
operator, << or >>, it uses with cin and cout. The program replaces each
(incorrect) occurrence of

cin <<

with the corrected version

cin >>

and each (incorrect) occurrence of

cout >>

with the corrected version

cout <<

For an easier version, assume that there is always exactly one blank space
between any occurrence of cin and a following <<, and similarly assume
that there is always exactly one blank space between each occurrence of
cout and a following >>.

For a harder version, allow for the possibility that there may be any
number of blanks, even zero blanks, between cin and << and between
cout and >>. In this harder case, the replacement corrected version has
only one blank between the cin or cout and the following operator. The
program to be corrected is in one file and the corrected version is output
to a second file. Your program should define a function that is called with
the input- and output-file streams as arguments.

If this is being done as a class assignment, obtain the file names from your
instructor and ask your instructor whether you should do the easier
version or the harder version.

Hint: Even if you are doing the harder version, you will probably find it
easier and quicker to first do the easier version and then modify your
program so that it performs the harder task.

13. Write a program that allows the user to type in any one-line question and
then answers that question. The program will not really pay any attention

Programming Projects 369

to the question, but will simply read the question line and discard all that
it reads. It always gives one of the following answers:

These answers are stored in a file (one answer per line), and your program
simply reads the next answer from the file and writes it out as the answer
to the question. After your program has read the entire file, it simply
closes the file, reopens the file, and starts down the list of answers again.

Whenever your program outputs the first answer, it should replace the
two symbols #N with a number between 1 and 18 (including the
possibility of 1 and 18). In order to choose a number between 1 and 18,
your program should initialize a variable to 18 and decrease the variable’s
value by 1 each time it outputs a number so that the chapter numbers
count backward from 18 to 1. When the variable reaches the value 0, your
program should change its value back to 18. Give the number 17 the
name NUMBER_OF_CHAPTERS with a global named constant declaration
using the const modifier.

Hint: Use the function new_line defined in this chapter.

14. This project is the same as Programming Project 13, except that in this
project your program will use a more sophisticated method for choosing
the answer to a question. When your program reads a question, it counts
the number of characters in the question and stores the number in a vari-
able named count. It then responds with answer number count%ANSWERS.
The first answer in the file is answer number 0, the next is answer number
1, then 2, and so forth. ANSWERS is defined in a constant declaration, as
shown next, so that it is equal to the number of answers in the answer file:

const int ANSWERS = 8;

This way you can change the answer file so that it contains more or fewer
answers and you need change only the constant declaration to make your
program work correctly for a different number of possible answers.
Assume that the answer listed first in the file will always be the following,
even if the answer file is changed:

I'm not sure, but I think you will find the answer in Chapter #N.
That's a good question.
If I were you, I would not worry about such things.
That question has puzzled philosophers for centuries.
I don't know. I'm just a machine.
Think about it and the answer will come to you.
I used to know the answer to that question, but I've forgotten it.
The answer can be found in a secret place in the woods.

I'm not sure, but I think you will find the answer in Chapter #N.

370 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

When replacing the two characters #N with a number, use the number
(count%NUMBER_OF_ CHAPTERS + 1), where count is the variable discussed
above, and NUMBER_OF_CHAPTERS is a global named constant defined to be
equal to the number of chapters in this book.

15. This program numbers the lines found in a text file. Write a program that
reads text from a file and outputs each line to the screen and to another
file preceded by a line number. Print the line number at the start of the
line and right-adjusted in a field of three spaces. Follow the line number
with a colon, then one space, then the text of the line. You should get a
character at a time, and write code to ignore leading blanks on each line.
You may assume that the lines are short enough to fit within a line on the
screen. Otherwise, allow default printer or screen output behavior if the
line is too long (that is, wrap or truncate).

A somewhat harder version determines the number of spaces needed in
the field for the line numbers by counting lines before processing the
lines of the file. This version of the program should insert a new line after
the last complete word that will fit within a 72-character line.

16. Write a program that computes all of the following statistics for a file and
outputs the statistics to both the screen and to another file: the total num-
ber of occurrences of characters in the file, the total number of non-
whitespace characters in the file, and the total number of occurrences of
letters in the file.

17. The text file babynames2004.txt, which is included in the source code for
this book and is available online from the book’s Web site, contains a list
of the 1,000 most popular boy and girl names in the United States for the
year 2004 as compiled by the Social Security Administration.

This is a space-delimited file of 1,000 entries in which the rank is listed
first, followed by the corresponding boy name and girl name. The most
popular names are listed first and the least popular names are listed last.
For example, the file begins with

1 Jacob Emily
2 Michael Emma
3 Joshua Madison

This indicates that Jacob is the most popular boy name and Emily is the
most popular girl name. Michael is the second most popular boy name
and Emma is the second most popular girl name.

Write a program that allows the user to input a name. The program
should then read from the file and search for a matching name among the
girls and boys. If a match is found, it should output the rank of the name.
The program should also indicate if there is no match.

Programming Projects 371

For example, if the user enters the name "Justice," then the program
should output:

Justice is ranked 406 in popularity among boys.
Justice is ranked 497 in popularity among girls.

If the user enters the name “Walter,” then the program should output:

Walter is ranked 366 in popularity among boys.
Walter is not ranked among the top 1000 girl names.

18. To complete this problem you must have a computer that is capable of
viewing Scalable Vector Graphics (SVG) files. Your Web browser may
already be able to view these files. To test to see if your browser can dis-
play SVG files, type in the rectline.svg file below and see if you can
open it in your Web browser. If your Web browser cannot view the file,
then you can search on the Web and download a free SVG viewer.

The graphics screen to draw an image uses a coordinate system in which
(0, 0) is located in the upper-left corner. The x coordinate increases to the
right, and the y coordinate increases to the bottom. Consequently,
coordinate (100,0) would be located 100 pixels directly toward the right
from upper-left corner, and coordinate (0,100) would be located 100
pixels directly toward the bottom from the upper-left corner. This is
illustrated in the figure below.

The SVG format defines a graphics image using XML. The specification for
the image is stored in a text file and can be displayed by an SVG viewer.
Here is a sample SVG file that draws two rectangles and a line. To view it,
save it to a text file with the “.svg” extension, such as rectline.svg, and
open it with your SVG viewer. (continued)

Video Note
Solution to
Programming
Project 6.18

(100,0)(0,0)

(0,100)
(100,100)

372 CHAPTER 6 / I/O Streams as an Introduction to Objects and Classes

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="500" height="500"
xmlns="http://www.w3.org/2000/svg">

<rect x="20" y="20" width="50" height="250"
 style="fill:blue;"/>
<rect x="75" y="100" width="150" height="50"
style="fill:rgb(0,255,0);"/>
<line x1="0" y1="0" x2="300" y2="300"
style="stroke:purple;stroke-width:2"/>

</svg>

For purposes of this problem, you can ignore the first five lines and the last
line and consider them “boilerplate” that must be inserted to properly
create the image.

The lines that begins with <rect x="20" … draw a blue rectangle whose
upper-left corner is at coordinate (20, 20) and whose width is 50 pixels and
height is 250 pixels.

The lines that begin with <rect x="75" … draw a green rectangle (RGB
color value of 0,255,0 is all green) whose upper-left corner is at coordinate
(75, 100) and whose width is 150 pixels and height is 50 pixels.

Finally, the <line> tag draws a purple line from (0,0) to (300,300) with a
width of 2.

Based on this example, write a program that inputs four nonnegative
integer values and creates the SVG file that displays a simple bar chart that
depicts the integer values. Your program should scale the values so they are
always drawn with a maximum height of 400 pixels. For example, if your
input values to graph were 20, 40, 60, and 120, you might generate a SVG
file that would display as follows:

Programming Projects 373

19. Refer to Programming Project 18 for information about the SVG format.
Shown below is another example that illustrates how to draw circles,
ellipses, and multiple lines:

<?xml version="1.0" standalone="no"?>
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN"
"http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
<svg width="500" height="500"
xmlns="http://www.w3.org/2000/svg">

<circle cx="100" cy="50" r="30"
 stroke="green" stroke-width="3" fill="gold"/>

<ellipse cx="100" cy="200" rx="50" ry="100"
style="fill:purple;stroke:black;stroke-width:2"/>

<polyline points="10,10 40,40 20,100 120,140"
style="fill-opacity:0;stroke:red;stroke-width:2"/>

</svg>

The <circle> tag draws a circle centered at (100, 50) with radius 30 and
pen width of 3. It is filled in with gold and has a border in green.

The <ellipse> tag draws an ellipse centered at (100, 200) with x radius of
30 and y radius of 100. It is filled using purple with a black border.

The <polyline> tag draws a red line from (10, 10) to (40, 40) to (20, 100)
to (120, 140). The fill-opacity is set to 0, making the fill of the polygon
transparent.

Based on these examples and those presented in Project 18, write a program
that creates an SVG image that draws a picture of your professor. It can be
somewhat abstract and simple. If you wish to draw a fancier image, you can
research the SVG picture format; there are additional tags that can draw
using filters, gradients, and polygons.

20. Write a program that prompts the user to input the name of a text file and
then outputs the number of words in the file. You can consider a “word”
to be any text that is surrounded by whitespace (e.g., a space, carriage
return, newline) or borders the beginning or end of the file.

This page intentionally left blank

7Arrays

7.1 INTRODUCTION TO ARRAYS 376
Declaring and Referencing Arrays 376
Programming Tip: Use for Loops with Arrays 378
Pitfall: Array Indexes Always Start with Zero 378
Programming Tip: Use a Defined Constant for the

Size of an Array 378
Arrays in Memory 380
Pitfall: Array Index Out of Range 381
Initializing Arrays 383

7.2 ARRAYS IN FUNCTIONS 385
Indexed Variables as Function Arguments 385
Entire Arrays as Function Arguments 388
The const Parameter Modifier 391
Pitfall: Inconsistent Use of const Parameters 393
Functions That Return an Array 394
Case Study: Production Graph 394

7.3 PROGRAMMING WITH ARRAYS 408
Partially Filled Arrays 408
Programming Tip: Do Not Skimp on Formal

Parameters 411
Programming Example: Searching an Array 412
Programming Example: Sorting an Array 414

7.4 MULTIDIMENSIONAL ARRAYS 419
Multidimensional Array Basics 420
Multidimensional Array Parameters 420
Programming Example: Two-Dimensional Grading

Program 422
Pitfall: Using Commas Between Array Indexes 427

Chapter Summary 427
Answers to Self-Test Exercises 428
Programming Projects 433

376

It is a capital mistake to theorize before one has data.
SIR ARTHUR CONAN DOYLE, Scandal in Bohemia (Sherlock Holmes)

INTRODUCTION
An array is used to process a collection of data all of which is of the same type,
such as a list of temperatures or a list of names. This chapter introduces the
basics of defining and using arrays in C++ and presents many of the basic
techniques used when designing algorithms and programs that use arrays.

PREREQUISITES
This chapter uses material from Chapters 2 through 6.

7.1 INTRODUCTION TO ARRAYS

Suppose we wish to write a program that reads in five test scores and performs
some manipulations on these scores. For instance, the program might
compute the highest test score and then output the amount by which each
score falls short of the highest. The highest score is not known until all five
scores are read in. Hence, all five scores must be retained in storage so that
after the highest score is computed each score can be compared to it.

To retain the five scores, we will need something equivalent to five
variables of type int. We could use five individual variables of type int, but
five variables are hard to keep track of, and we may later want to change our
program to handle 100 scores; certainly, 100 variables are impractical. An
array is the perfect solution. An array behaves like a list of variables with a
uniform naming mechanism that can be declared in a single line of simple
code. For example, the names for the five individual variables we need might
be score[0], score[1], score[2], score[3], and score[4]. The part that does
not change—in this case, score—is the name of the array. The part that can
change is the integer in the square brackets, [].

Declaring and Referencing Arrays

In C++, an array consisting of five variables of type int can be declared as
follows:

int score[5];

array

7.1 Introduction to Arrays 377

This declaration is like declaring the following five variables to all be of type int:

score[0], score[1], score[2], score[3], score[4]

The individual variables that together make up the array are referred to in a
variety of different ways. We will call them indexed variables, though they are
also sometimes called subscripted variables or elements of the array. The
number in square brackets is called an index or a subscript. In C++, indexes
are numbered starting with 0, not starting with 1 or any other number except 0. The
number of indexed variables in an array is called the declared size of the array,
or sometimes simply the size of the array. When an array is declared, the size
of the array is given in square brackets after the array name. The indexed
variables are then numbered (also using square brackets), starting with 0 and
ending with the integer that is one less than the size of the array.

In our example, the indexed variables were of type int, but an array can
have indexed variables of any type. For example, to declare an array with
indexed variables of type double, simply use the type name double instead of
int in the declaration of the array. All the indexed variables for one array are,
however, of the same type. This type is called the base type of the array. Thus,
in our example of the array score, the base type is int.

You can declare arrays and regular variables together. For example, the
following declares the two int variables next and max in addition to the array
score:

int next, score[5], max;

An indexed variable like score[3] can be used anyplace that an ordinary
variable of type int can be used.

Do not confuse the two ways to use the square brackets [] with an array
name. When used in a declaration, such as

int score[5];

the number enclosed in the square brackets specifies how many indexed
variables the array has. When used anywhere else, the number enclosed in the
square brackets tells which indexed variable is meant. For example, score[0]
through score[4] are indexed variables.

The index inside the square brackets need not be given as an integer
constant. You can use any expression in the square brackets as long as the
expression evaluates to one of the integers 0 through the integer that is one less
than the size of the array. For example, the following will set the value of
score[3] equal to 99:

int n = 2;
score[n + 1] = 99;

Although they may look different, score[n + 1] and score[3] are the same
indexed variable in the above code. That is because n + 1 evaluates to 3.

indexed variable
subscripted
variable
element

index or
subscript

declared size

base type

378 CHAPTER 7 / Arrays

The identity of an indexed variable, such as score[i], is determined by
the value of its index, which in this instance is i. Thus, you can write programs
that say things such as “do such and such to the ith indexed variable,” where
the value of i is computed by the program. For example, the program in
Display 7.1 reads in scores and processes them in the way we described at the
start of this chapter.

■ PROGRAMMING TIP Use for Loops with Arrays

The second for loop in Display 7.1 illustrates a common way to step through
an array using a for loop:

for (i = 0; i < 5; i++)
 cout << score[i] << " off by "
 << (max - score[i]) << endl;

The for statement is ideally suited to array manipulations. ■

■ PITFALL Array Indexes Always Start with Zero

The indexes of an array always start with 0 and end with the integer that is one
less than the size of the array. ■

■ PROGRAMMING TIP Use a Defined Constant for the Size of
an Array

Look again at the program in Display 7.1. It only works for classes that have
exactly five students. Most classes do not have exactly five students. One way
to make a program more versatile is to use a defined constant for the size of
each array. For example, the program in Display 7.1 could be rewritten to use
the following defined constant:

const int NUMBER_OF_STUDENTS = 5;

The line with the array declaration would then be

int i, score[NUMBER_OF_STUDENTS], max;

Of course, all places that have a 5 for the size of the array should also be
changed to have NUMBER_OF_STUDENTS instead of 5. if these changes are made
to the program (or better still, if the program had been written this way in the
first place), then the program can be rewritten to work for any number of
students by simply changing the one line that defines the constant
NUMBER_OF_STUDENTS.

7.1 Introduction to Arrays 379

DISPLAY 7.1 Program Using an Array

1 //Reads in 5 scores and shows how much each
2 //score differs from the highest score.
3 #include <iostream>

4 int main()
5 {
6 using namespace std;
7 int i, score[5], max;

8 cout << "Enter 5 scores:\n";
9 cin >> score[0];

10 max = score[0];
11 for (i = 1; i < 5; i++)
12 {
13 cin >> score[i];
14 if (score[i] > max)
15 max = score[i];
16 //max is the largest of the values score[0],..., score[i].
17 }

18 cout << "The highest score is " << max << endl
19 << "The scores and their\n"
20 << "differences from the highest are:\n";
21 for (i = 0; i < 5; i++)
22 cout << score[i] << " off by "
23 << (max − score[i]) << endl;

24 return 0;
25 }

Sample Dialogue

Enter 5 scores:

5 9 2 10 6

The highest score is 10

The scores and their

differences from the highest are:

5 off by 5

9 off by 1

2 off by 8

10 off by 0

6 off by 4

380 CHAPTER 7 / Arrays

Note that you cannot use a variable for the array size, such as the
following:

cout << "Enter number of students:\n";
cin >> number;
int score[number]; //ILLEGAL ON MANY COMPILERS!

Some but not all compilers will allow you to specify an array size with a
variable in this way. However, for the sake of portability you should not do
so, even if your compiler permits it. (In Chapter 9 we will discuss a different
kind of array whose size can be determined when the program is run.) ■

Arrays in Memory

Before discussing how arrays are represented in a computer’s memory, let’s
first see how a simple variable, such as a variable of type int or double, is
represented in the computer’s memory. A computer’s memory consists of a list
of numbered locations called bytes.1 The number of a byte is known as its
address. A simple variable is implemented as a portion of memory consisting
of some number of consecutive bytes. The number of bytes is determined by
the type of the variable. Thus, a simple variable in memory is described by two
pieces of information: an address in memory (giving the location of the first
byte for that variable) and the type of the variable, which tells how many bytes
of memory the variable requires. When we speak of the address of a variable, it
is this address we are talking about. When your program stores a value in the
variable, what really happens is that the value (coded as zeros and ones) is
placed in those bytes of memory that are assigned to that variable. Similarly,
when a variable is given as a (call-by-reference) argument to a function, it is
the address of the variable that is actually given to the calling function. Now
let’s move on to discuss how arrays are stored in memory.

Array indexed variables are represented in memory the same way as
ordinary variables, but with arrays there is a little more to the story. The
locations of the various array indexed variables are always placed next to one
another in memory. For example, consider the following:

int a[6];

When you declare this array, the computer reserves enough memory to hold six
variables of type int. Moreover, the computer always places these variables one
after the other in memory. The computer then remembers the address of
indexed variable a[0], but it does not remember the address of any other
indexed variable. When your program needs the address of some other indexed
variable, the computer calculates the address for this other indexed variable
from the address of a[0]. For example, if you start at the address of a[0] and

1 A byte consists of eight bits, but the exact size of a byte is not important to this discussion.

address

arrays in
memory

7.1 Introduction to Arrays 381

count past enough memory for three variables of type int, then you will be at
the address of a[3]. To obtain the address of a[3], the computer starts with the
address of a[0] (which is a number). The computer then adds the number of
bytes needed to hold three variables of type int to the number for the address
of a[0]. The result is the address of a[3]. This implementation is diagrammed
in Display 7.2.

Many of the peculiarities of arrays in C++ can be understood only in terms
of these details about memory. For example, in the next Pitfall section, we use
these details to explain what happens when your program uses an illegal array
index.

■ PITFALL Array Index Out of Range

The most common programming error made when using arrays is attempting
to reference a nonexistent array index. For example, consider the following
array declaration:

int a[6];

When using the array a, every index expression must evaluate to one of the
integers 0 through 5. For example, if your program contains the indexed
variable a[i], the i must evaluate to one of the six integers 0, 1, 2, 3, 4, or 5.
If i evaluates to anything else, that is an error. When an index expression

Array Declaration

SYNTAX

Type_Name Array_Name[Declared_Size];

EXAMPLES

int big_array[100];
double a[3];
double b[5];
char grade[10], one_grade;

An array declaration, of the form shown, will define Declared_Size
indexed variables, namely, the indexed variables Array_Name[0] through
Array_Name[Declared_Size-1]. Each indexed variable is a variable of
type Type_Name.

The array a consists of the indexed variables a[0], a[1], and a[2], all of
type double. The array b consists of the indexed variables b[0], b[1], b[2],
b[3], and b[4], also all of type double. You can combine array declara-
tions with the declaration of simple variables such as the variable
one_grade shown above.

Video Note
Array Walkthrough

382 CHAPTER 7 / Arrays

evaluates to some value other than those allowed by the array declaration, the
index is said to be out of range or simply illegal. On most systems, the result
of an illegal array index is that your program will do something wrong,
possibly disastrously wrong, and will do so without giving you any warning.

For example, suppose your system is typical, the array a is declared as
shown, and your program contains the following:

a[i] = 238;

Now, suppose the value of i, unfortunately, happens to be 7. The computer
proceeds as if a[7] were a legal indexed variable. The computer calculates the
address where a[7] would be (if only there were an a[7]), and places the value

DISPLAY 7.2 An Array in Memory

1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034

a[0]

some variable
named stuff

a[1]

a[2]

a[3]

a[5]

a[4]

some variable
named more_stuff

address of a[0]

On this computer each
indexed variable uses
2 bytes, so a[3] begins
2 ×3 = 6 bytes after
the start of a[0].

There is no indexed
variable a[6], but if
there were one, it
would be here.

There is no indexed
variable a[7], but if
there were one, it
would be here.

int a[6];

illegal
array index

7.1 Introduction to Arrays 383

238 in that location in memory. However, there is no indexed variable a[7],
and the memory that receives this 238 probably belongs to some other
variable, maybe a variable named more_stuff. So the value of more_stuff has
been unintentionally changed. The situation is illustrated in Display 7.2.

Array indexes get out of range most commonly at the first or last iteration of
a loop that processes the array. So, it pays to carefully check all array processing
loops to be certain that they begin and end with legal array indexes. ■

Initializing Arrays

An array can be initialized when it is declared. When initializing the array, the
values for the various indexed variables are enclosed in braces and separated
with commas. For example,

int children[3] = {2, 12, 1};

This declaration is equivalent to the following code:

int children[3];
children[0] = 2;
children[1] = 12;
children[2] = 1;

If you list fewer values than there are indexed variables, those values will
be used to initialize the first few indexed variables, and the remaining indexed
variables will be initialized to a zero of the array base type. In this situation,
indexed variables not provided with initializers are initialized to 0. However,
arrays with no initializers and other variables declared within a function
definition, including the main function of a program, are not initialized.
Although array indexed variables (and other variables) may sometimes be
automatically initialized to 0, you cannot and should not count on it.

If you initialize an array when it is declared, you can omit the size of the
array, and the array will automatically be declared to have the minimum size
needed for the initialization values. For example, the following declaration

int b[] = {5, 12, 11};

is equivalent to

int b[3] = {5, 12, 11};

SELF -TEST EXERC ISES

1. Describe the difference in the meaning of int a[5]; and the meaning of
a[4]. What is the meaning of the [5] and [4] in each case?

384 CHAPTER 7 / Arrays

2. In the array declaration

double score[5];

state the following:

a. The array name

b. The base type

c. The declared size of the array

d. The range of values that an index for this array can have

e. One of the indexed variables (or elements) of this array

3. Identify any errors in the following array declarations.

a. int x[4] = { 8, 7, 6, 4, 3 };

b. int x[] = { 8, 7, 6, 4 };

c. const int SIZE = 4;

d. int x[SIZE];

4. What is the output of the following code?

char symbol[3] = {'a', 'b', 'c'};

for (int index = 0; index < 3; index++)
cout << symbol[index];

5. What is the output of the following code?

double a[3] = {1.1, 2.2, 3.3};

cout << a[0] << " " << a[1] << " " << a[2] << endl;

a[1] = a[2];
cout << a[0] << " " << a[1] << " " << a[2] << endl;

6. What is the output of the following code?

int i, temp[10];

for (i = 0; i < 10; i++)

temp[i] = 2*i;

for (i = 0; i < 10; i++)

cout << temp[i] << " ";

cout << endl;

for (i = 0; i < 10; i = i + 2)
cout << temp[i] << " ";

7.2 Arrays in Functions 385

7. What is wrong with the following piece of code?

int sample_array[10];

for (int index = 1; index <= 10; index++)
 sample_array[index] = 3*index;

8. Suppose we expect the elements of the array a to be ordered so that

a[0] ≤ a[1] ≤ a[2]≤ ...

However, to be safe we want our program to test the array and issue a
warning in case it turns out that some elements are out of order. The
following code is supposed to output such a warning, but it contains a
bug. What is it?

double a[10];
 <Some code to fill the array a goes here.>
for (int index = 0; index < 10; index++)
 if (a[index] > a[index + 1])
 cout << "Array elements " << index << " and "
 << (index + 1) << " are out of order.";

9. Write some C++ code that will fill an array a with 20 values of type int read
in from the keyboard. You need not write a full program, just the code to do
this, but do give the declarations for the array and for all variables.

10. Suppose you have the following array declaration in your program:

int your_array[7];

Also, suppose that in your implementation of C++, variables of type int use
two bytes of memory. When you run your program, how much memory will
this array consume? Suppose that when you run your program, the system
assigns the memory address 1000 to the indexed variable your_array[0].
What will be the address of the indexed variable your_array[3]?

7.2 ARRAYS IN FUNCTIONS

You can use both array indexed variables and entire arrays as arguments to
functions. We first discuss array indexed variables as arguments to functions.

Indexed Variables as Function Arguments

An indexed variable can be an argument to a function in exactly the same way
that any variable can be an argument. For example, suppose a program
contains the following declarations:

int i, n, a[10];

386 CHAPTER 7 / Arrays

If my_function takes one argument of type int, then the following is legal:

my_function(n);

Since an indexed variable of the array a is also a variable of type int, just like
n, the following is equally legal:

my_function(a[3]);

There is one subtlety that does apply to indexed variables used as
arguments. For example, consider the following function call:

my_function(a[i]);

If the value of i is 3, then the argument is a[3]. On the other hand, if the value
of i is 0, then this call is equivalent to the following:

my_function(a[0]);

The indexed expression is evaluated in order to determine exactly which
indexed variable is given as the argument.

Display 7.3 contains an example of indexed variables used as function
arguments. The program shown gives five additional vacation days to each of
three employees in a small business. The program is extremely simple, but it
does illustrate how indexed variables are used as arguments to functions.
Notice the function adjust_days. This function has a formal parameter called
old_days that is of type int. In the main body of the program, this function is
called with the argument vacation[number] for various values of number.
Notice that there was nothing special about the formal parameter old_days. It
is just an ordinary formal parameter of type int, which is the base type of the
array vacation. In Display 7.3 the indexed variables are call-by-value argu-
ments. The same remarks apply to call-by-reference arguments. An indexed
variable can be a call-by-value argument or a call-by-reference argument.

DISPLAY 7.3 Indexed Variable as an Argument (part 1 of 2)

1 //Illustrates the use of an indexed variable as an argument.
2 //Adds 5 to each employee's allowed number of vacation days.
3 #include <iostream>

4 const int NUMBER_OF_EMPLOYEES = 3;

5 int adjust_days(int old_days);
6 //Returns old_days plus 5.

7 int main()
8 {
9 using namespace std;

10 int vacation[NUMBER_OF_EMPLOYEES], number;

11 cout << "Enter allowed vacation days for employees 1"

(continued)

7.2 Arrays in Functions 387

SELF -TEST EXERC ISES

11. Consider the following function definition:

void tripler(int& n)
{
 n = 3*n;
}

Which of the following are acceptable function calls?

int a[3] = {4, 5, 6}, number = 2;
tripler(number);
tripler(a[2]);
tripler(a[3]);
tripler(a[number]);
tripler(a);

DISPLAY 7.3 Indexed Variable as an Argument (part 2 of 2)

12 << " through " << NUMBER_OF_EMPLOYEES << ":\n";
13 for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
14 cin >> vacation[number− 1];

15 for (number = 0; number < NUMBER_OF_EMPLOYEES; number++)
16 vacation[number] = adjust_days(vacation[number]);

17 cout << "The revised number of vacation days are:\n";
18 for (number = 1; number <= NUMBER_OF_EMPLOYEES; number++)
19 cout << "Employee number " << number
20 << " vacation days = " << vacation[number-1] << endl;

21 return 0;
22 }

23 int adjust_days(int old_days)
24 {
25 return (old_days + 5);
26 }

Sample Dialogue

Enter allowed vacation days for employees 1 through 3:

10 20 5

The revised number of vacation days are:

Employee number 1 vacation days = 15

Employee number 2 vacation days = 25

Employee number 3 vacation days = 10

388 CHAPTER 7 / Arrays

12. What (if anything) is wrong with the following code? The definition of
tripler is given in Self-Test Exercise 11.

int b[5] = {1, 2, 3, 4, 5};

for (int i = 1; i <= 5; i++)
tripler(b[i]);

Entire Arrays as Function Arguments

A function can have a formal parameter for an entire array so that when the
function is called, the argument that is plugged in for this formal parameter is
an entire array. However, a formal parameter for an entire array is neither a call-
by-value parameter nor a call-by-reference parameter; it is a new kind of formal
parameter referred to as an array parameter. Let’s start with an example.

The function defined in Display 7.4 has one array parameter a, which will
be replaced by an entire array when the function is called. It also has one
ordinary call-by-value parameter (size) that is assumed to be an integer value
equal to the size of the array. This function fills its array argument (that is, fills
all the array’s indexed variables) with values typed in from the keyboard, and
then the function outputs a message to the screen telling the index of the last
array index used.

The formal parameter int a[] is an array parameter. The square brackets,
with no index expression inside, are what C++ uses to indicate an array

Video Note
Passing Arrays to
Functions

array
parameters

DISPLAY 7.4 Function with an Array Parameter

Function Declaration

1 void fill_up(int a[], int size);
2 //Precondition: size is the declared size of the array a.
3 //The user will type in size integers.
4 //Postcondition: The array a is filled with size integers
5 //from the keyboard.

Function Definition

1 //Uses iostream:
2 void fill_up(int a[], int size)
3 {
4 using namespace std;
5 cout << "Enter " << size << " numbers:\n";
6 for (int i = 0; i < size; i++)
7 cin >> a[i];
8 size--;
9 cout << "The last array index used is " << size << endl;

10 }

7.2 Arrays in Functions 389

parameter. An array parameter is not quite a call-by-reference parameter, but
for most practical purposes it behaves very much like a call-by-reference
parameter. Let’s go through this example in detail to see how an array
argument works in this case. (An array argument is, of course, an array that is
plugged in for an array parameter, such as a[].)

When the function fill_up is called it must have two arguments: The first
gives an array of integers, and the second should give the declared size of the
array. For example, the following is an acceptable function call:

int score[5], number_of_scores = 5;
fill_up(score, number_of_scores);

This call to fill_up will fill the array score with five integers typed in at the
keyboard. Notice that the formal parameter a[] (which is used in the function
declaration and the heading of the function definition) is given with square
brackets, but no index expression. (You may insert a number inside the square
brackets for an array parameter, but the compiler will simply ignore the
number, so we do not use such numbers in this book.) On the other hand, the
argument given in the function call (score in this example) is given without
any square brackets or any index expression.

What happens to the array argument score in this function call? Very
loosely speaking, the argument score is plugged in for the formal array
parameter a in the body of the function, and then the function body is
executed. Thus, the function call

fill_up(score, number_of_scores);

is equivalent to the following code:

{
 using namespace std;
 size = 5;
 cout << "Enter " << size << " numbers:\n";
 for (int i = 0; i < size; i++)
 cin >> score[i];
 size--;
 cout << "The last array index used is " << size << endl;
}

The formal parameter a is a different kind of parameter from the ones we
have seen before now. The formal parameter a is merely a placeholder for the
argument score. When the function fill_up is called with score as the array
argument, the computer behaves as if a were replaced with the corresponding
argument score. When an array is used as an argument in a function call, any
action that is performed on the array parameter is performed on the array argument,
so the values of the indexed variables of the array argument can be changed by the
function. If the formal parameter in the function body is changed (for example,
with a cin statement), then the array argument will be changed.

array argument

when to use []

5 is the value of
number_of_scores

390 CHAPTER 7 / Arrays

So far it looks like an array parameter is simply a call-by-reference
parameter for an array. That is close to being true, but an array parameter is
slightly different from a call-by-reference parameter. To help explain the
difference, let’s review some details about arrays.

Recall that an array is stored as a contiguous chunk of memory. For
example, consider the following declaration for the array score:

int score[5];

When you declare this array, the computer reserves enough memory to hold
five variables of type int, which are stored one after the other in the
computer’s memory. The computer does not remember the addresses of each
of these five indexed variables; it remembers only the address of indexed
variable score[0]. For example, when your program needs score[3], the
computer calculates the address of score[3] from the address of score[0].
The computer knows that score[3] is located three int variables past
score[0]. Thus, to obtain the address of score[3], the computer takes the
address of score[0] and adds a number that represents the amount of
memory used by three int variables; the result is the address of score[3].

Viewed this way, an array has three parts: the address (location in
memory) of the first indexed variable, the base type of the array (which
determines how much memory each indexed variable uses), and the size of
the array (that is, the number of indexed variables). When an array is used as
an array argument to a function, only the first of these three parts is given to
the function. When an array argument is plugged in for its corresponding
formal parameter, all that is plugged in is the address of the array’s first
indexed variable. The base type of the array argument must match the base
type of the formal parameter, so the function also knows the base type of the
array. However, the array argument does not tell the function the size of the array.
When the code in the function body is executed, the computer knows where
the array starts in memory and how much memory each indexed variable uses,
but (unless you make special provisions) it does not know how many indexed
variables the array has. That is why it is critical that you always have another int
argument telling the function the size of the array. That is also why an array
parameter is not the same as a call-by-reference parameter. You can think of an
array parameter as a weak form of call-by-reference parameter in which
everything about the array is told to the function except for the size of the array.2

These array parameters may seem a little strange, but they have at least one
very nice property as a direct result of their seemingly strange definition. This
advantage is best illustrated by again looking at our example of the function

2 If you have heard of pointers, this will sound like pointers, and indeed an array argument
is passed by passing a pointer to its first (zeroth) index variable. We will discuss this in
Chapter 9. If you have not yet learned about pointers, you can safely ignore this footnote.

arrays in
memory

array argument

Different size
array arguments
can be plugged
in for the same

array parameter

7.2 Arrays in Functions 391

fill_up given in Display 7.4. That same function can be used to fill an array of
any size, as long as the base type of the array is int. For example, suppose you
have the following array declarations:

int score[5], time[10];

The first of the following calls to fill_up fills the array score with five values
and the second fills the array time with ten values:

fill_up(score, 5);
fill_up(time, 10);

You can use the same function for array arguments of different sizes because
the size is a separate argument.

The const Parameter Modifier

When you use an array argument in a function call, the function can change the
values stored in the array. This is usually fine. However, in a complicated
function definition, you might write code that inadvertently changes one or more
of the values stored in an array, even though the array should not be changed at
all. As a precaution, you can tell the compiler that you do not intend to change
the array argument, and the computer will then check to make sure your code
does not inadvertently change any of the values in the array. To tell the compiler
that an array argument should not be changed by your function, you insert the
modifier const before the array parameter for that argument position. An array
parameter that is modified with a const is called a constant array parameter.

For example, the following function outputs the values in an array but
does not change the values in the array:

void show_the_world(int a[], int size_of_a)
//Precondition: size_of_a is the declared size of the array a.
//All indexed variables of a have been given values.
//Postcondition: The values in a have been written
//to the screen.
{
 cout << "The array contains the following values:\n";
 for (int i = 0; i < size_of_a; i++)
 cout << a[i] << " ";
 cout << endl;
}

This function will work fine. However, as an added safety measure you can
add the modifier const to the function heading as follows:

void show_the_world(const int a[], int size_of_a)

With the addition of this modifier const, the computer will issue an error
message if your function definition contains a mistake that changes any of the

const
constant array
parameter

392 CHAPTER 7 / Arrays

values in the array argument. For example, the following is a version of the
function show_the_world that contains a mistake that inadvertently changes
the value of the array argument. Fortunately, this version of the function
definition includes the modifier const, so that an error message will tell us
that the array a is changed. This error message will help to explain the mistake:

void show_the_world(const int a[], int size_of_a)
//Precondition: size_of_a is the declared size of the array a.
//All indexed variables of a have been given values.
//Postcondition: The values in a have been written
//to the screen.
{
 cout << "The array contains the following values:\n";
 for (int i = 0; i < size_of_a; a[i]++)
 cout << a[i] << " ";
 cout << endl;
}

If we had not used the const modifier in this function definition and if we
made the mistake shown, the function would compile and run with no error

Array Formal Parameters and Arguments

An argument to a function may be an entire array, but an argument for an
entire array is neither a call-by-value argument nor a call-by-reference
argument. It is a new kind of argument known as an array argument. When
an array argument is plugged in for an array parameter, all that is given to
the function is the address in memory of the first indexed variable of the
array argument (the one indexed by 0). The array argument does not tell the
function the size of the array. Therefore, when you have an array parameter
to a function, you normally must also have another formal parameter of type
int that gives the size of the array (as in the example below).

An array argument is like a call-by-reference argument in the following
way: If the function body changes the array parameter, then when the
function is called, that change is actually made to the array argument.
Thus, a function can change the values of an array argument (that is, can
change the values of its indexed variables).

The syntax for a function declaration with an array parameter is as follows:

SYNTAX

Type_Returned Function_Name(..., Base_Type Array_Name[],...);

EXAMPLE

void sum_array(double& sum, double a[], int size);

 Mistake, but the compiler
 will not catch it unless you

use the const modifier.

7.2 Arrays in Functions 393

messages. However, the code would contain an infinite loop that continually
increments a[0] and writes its new value to the screen.

The problem with this incorrect version of show_the_world is that the
wrong item is incremented in the for loop. The indexed variable a[i] is
incremented, but it should be the index i that is incremented. In this incorrect
version, the index i starts with the value 0 and that value is never changed. But
a[i], which is the same as a[0], is incremented. When the indexed variable
a[i] is incremented, that changes a value in the array, and since we included
the modifier const, the computer will issue a warning message. That error
message should serve as a clue to what is wrong.

You normally have a function declaration in your program in addition to
the function definition. When you use the const modifier in a function
definition, you must also use it in the function declaration so that the function
heading and the function declaration are consistent.

The modifier const can be used with any kind of parameter, but it is
normally used only with array parameters and call-by-reference parameters for
classes, which are discussed in Chapter 11.

■ PITFALL Inconsistent Use of const Parameters

The const parameter modifier is an all-or-nothing proposition. If you use it for
one array parameter of a particular type, then you should use it for every other
array parameter that has that type and that is not changed by the function. The
reason has to do with function calls within function calls. Consider the
definition of the function show_difference, which is given below along with
the declaration of a function used in the definition:

double compute_average(int a[], int number_used);
//Returns the average of the elements in the first number_used
//elements of the array a. The array a is unchanged.

void show_difference(const int a[], int number_used)
{
 double average = compute_average(a, number_used);
 cout << "Average of the " << number_used
 << " numbers = " << average << endl
 << "The numbers are:\n";
 for (int index = 0; index < number_used; index++)
 cout << a[index] << " differs from average by "
 << (a[index] – average) << endl;
}

This code will generate an error message or warning message with most
compilers. The function compute_average does not change its parameter a.
However, when the compiler processes the function definition for
show_difference, it will think that compute_average does (or at least might)
change the value of its parameter a. This is because, when it is translating the

394 CHAPTER 7 / Arrays

function definition for show_difference, all the compiler knows about the
function compute_average is the function declaration for compute_average, and
the function declaration does not contain a const to tell the compiler that the
parameter a will not be changed. Thus, if you use const with the parameter a in
the function show_difference, then you should also use the modifier const
with the parameter a in the function compute_average. The function declaration
for compute_average should be as follows:

double compute_average(const int a[], int number_used); ■

Functions That Return an Array

A function may not return an array in the same way that it returns a value of type
int or double. There is a way to obtain something more or less equivalent to a
function that returns an array. The thing to do is to return a pointer to the array.
However, we have not yet covered pointers. We will discuss returning a pointer
to an array when we discuss the interaction of arrays and pointers in Chapter 9.
Until then, you have no way to write a function that returns an array.

CASE STUDY Production Graph

In this case study we use arrays in the top-down design of a program. We use
both indexed variables and entire arrays as arguments to the functions for
subtasks.

Problem Definition
The Apex Plastic Spoon Manufacturing Company has commissioned us to
write a program that will display a bar graph showing the productivity of each
of their four manufacturing plants for any given week. Plants keep separate
production figures for each department, such as the teaspoon department,
soup spoon department, plain cocktail spoon department, colored cocktail
spoon department, and so forth. Moreover, each plant has a different number
of departments. For example, only one plant manufactures colored cocktail
spoons. The input is entered plant-by-plant and consists of a list of numbers
giving the production for each department in that plant. The output will
consist of a bar graph in the following form:

Plant #1 **********
Plant #2 *************
Plant #3 *******************
Plant #4 *****

Each asterisk represents 1,000 units of output.
We decide to read in the input separately for each department in a plant.

Since departments cannot produce a negative number of spoons, we know
that the production figure for each department will be nonnegative. Hence, we

7.2 Arrays in Functions 395

can use a negative number as a sentinel value to mark the end of the
production numbers for each plant.

Since output is in units of 1,000, it must be scaled by dividing it by 1,000.
This presents a problem since the computer must display a whole number of
asterisks. It cannot display 1.6 asterisks for 1,600 units. We will thus round to
the nearest 1,000th. Thus, 1,600 will be the same as 2,000 and will produce two
asterisks. A precise statement of the program’s input and output is as follows.

INPUT

There are four manufacturing plants numbered 1 through 4. The following
input is given for each of the four plants: a list of numbers giving the
production for each department in that plant. The list is terminated with a
negative number that serves as a sentinel value.

OUTPUT

A bar graph showing the total production for each plant. Each asterisk in the
bar graph equals 1,000 units. The production of each plant is rounded to the
nearest 1,000 units.

Analysis of the Problem
We will use an array called production, which will hold the total production
for each of the four plants. In C++, array indexes always start with 0. But since
the plants are numbered 1 through 4, rather than 0 through 3, we will not use
the plant number as the array index. Instead we will place the total production
for plant number n in the indexed variable production[n− 1]. The total
output for plant number 1 will be held in production[0], the figures for
plant 2 will be held in production[1], and so forth.

 Since the output is in thousands of units, the program will scale the values
of the array elements. If the total output for plant number 3 is 4,040 units, then
the value of production[2] will initially be set to 4040. This value of 4040 will
then be scaled to 4 so that the value of production[2] is changed to 4, and four
asterisks will be output in the graph to represent the output for plant number 3.

The task for our program can be divided into the following subtasks:

■ input_data: Read the input data for each plant and set the value of the
indexed variable production[plant_number-1] equal to the total produc-
tion for that plant, where plant_number is the number of the plant.

■ scale: For each plant_number, change the value of the indexed variable
production[plant_number-1] to the correct number of asterisks.

■ graph: Output the bar graph.

The entire array production will be an argument for the functions that
carry out these subtasks. As is usual with an array parameter, this means we
must have an additional formal parameter for the size of the array, which in
this case is the same as the number of plants. We will use a defined constant

subtasks

396 CHAPTER 7 / Arrays

for the number of plants, and this constant will serve as the size of the array
production. The main part of our program, together with the function
declarations for the functions that perform the subtasks and the defined
constant for the number of plants, is shown in Display 7.5. Notice that, since
there is no reason to change the array parameter to the function graph, we
have made that array parameter a constant parameter by adding the const
parameter modifier. The material in Display 7.5 is the outline for our
program, and if it is in a separate file, that file can be compiled so that we can
check for any syntax errors in this outline before we go on to define the
functions corresponding to the function declarations shown.

Having compiled the file shown in Display 7.5, we are ready to design the
implementation of the functions for the three subtasks. For each of these three
functions, we will design an algorithm, write the code for the function, and
test the function before we go on to design the next function.

Algorithm Design for input_data
The function declaration and descriptive comment for the function
input_data is shown in Display 7.5. As indicated in the body of the main part
of our program (also shown in Display 7.5), when input_data is called, the
formal array parameter a will be replaced with the array production, and since
the last plant number is the same as the number of plants, the formal
parameter last_plant_number will be replaced by NUMBER_OF_PLANTS. The
algorithm for input_data is straightforward:

For plant_number equal to each of 1, 2, through last_plant_number do
the following:

Read in all the data for plant whose number is plant_number.

Sum the numbers.

Set production[plant_number− 1] equal to that total.

Coding for input_data
The algorithm for the function input_data translates to the following code:

//Uses iostream:
void input_data(int a[], int last_plant_number)
{
 using namespace std;
 for (int plant_number = 1;
 plant_number <= last_plant_number; plant_number++)
 {
 cout << endl
 << "Enter production data for plant number "
 << plant_number << endl;
 get_total(a[plant_number − 1]);
 }
}

7.2 Arrays in Functions 397

The code is routine since all the work is done by the function get_total,
which we still need to design. But before we move on to discuss the function
get_total, let’s observe a few things about the function input_data. Notice
that we store the figures for plant number plant_number in the indexed
variable with index plant_number− 1; this is because arrays always start with
index 0, while the plant numbers start with 1. Also, notice that we use an

DISPLAY 7.5 Outline of the Graph Program

1 //Reads data and displays a bar graph showing productivity for each plant.
2 #include <iostream>
3 const int NUMBER_OF_PLANTS = 4;
4

5 void input_data(int a[], int last_plant_number);
6 //Precondition: last_plant_number is the declared size of the array a.
7 //Postcondition: For plant_number = 1 through last_plant_number:
8 //a[plant_number− 1] equals the total production for plant number plant_number.
9

10 void scale(int a[], int size);
11 //Precondition: a[0] through a[size− 1] each has a nonnegative value.
12 //Postcondition: a[i] has been changed to the number of 1000s (rounded to
13 //an integer) that were originally in a[i], for all i such that 0 <= i <= size− 1.
14

15 void graph(const int asterisk_count[], int last_plant_number);
16 //Precondition: asterisk_count[0] through asterisk_count[last_plant_number− 1]
17 //have nonnegative values.
18 //Postcondition: A bar graph has been displayed saying that plant
19 //number N has produced asterisk_count[N− 1] 1000s of units, for each N such that
20 //1 <= N <= last_plant_number
21

22 int main()
23 {
24 using namespace std;
25 int production[NUMBER_OF_PLANTS];
26
27 cout << "This program displays a graph showing\n"
28 << "production for each plant in the company.\n";
29
30 input_data(production, NUMBER_OF_PLANTS);
31 scale(production, NUMBER_OF_PLANTS);
32 graph(production, NUMBER_OF_PLANTS);
33
34 return 0;
35 }
36

398 CHAPTER 7 / Arrays

indexed variable for the argument to the function get_total. The function
get_total really does all the work for the function input_data.

The function get_total does all the input work for one plant. It reads the
production figures for that plant, sums the figures, and stores the total in the
indexed variable for that plant. But get_total does not need to know that its
argument is an indexed variable. To a function such as get_total, an indexed
variable is just like any other variable of type int. Thus, get_total will have an
ordinary call-by-reference parameter of type int. That means that get_total is just
an ordinary input function like others that we have seen before we discussed arrays.
The function get_total reads in a list of numbers ended with a sentinel value,
sums the numbers as it reads them in, and sets the value of its argument, which is
a variable of type int, equal to this sum. There is nothing new to us in the function
get_total. Display 7.6 shows the function definitions for both get_total and
input_data. The functions are embedded in a simple test program.

Testing input_data
Every function should be tested in a program in which it is the only untested
function. The function input_data includes a call to the function get_total.
Therefore, we should test get_total in a driver program of its own. Once
get_total has been completely tested, we can use it in a program, like the one
in Display 7.6, to test the function input_data.

When testing the function input_data, we should include tests with all
possible kinds of production figures for a plant. We should include a plant
that has no production figures (as we did for plant 4 in Display 7.6), we
should include a test for a plant with only one production figure (as we did
for plant 3 in Display 7.6), and we should include a test for a plant with more
than one production figure (as we did for plants 1 and 2 in Display 7.6). We
should test for both nonzero and zero production figures, which is why we
included a 0 in the input list for plant 2 in Display 7.6.

Algorithm Design for scale
The function scale changes the value of each indexed variable in the array
production so that it shows the number of asterisks to print out. Since there
should be one asterisk for every 1,000 units of production, the value of each
indexed variable must be divided by 1000.0. Then to get a whole number of
asterisks, this number is rounded to the nearest integer. This method can be
used to scale the values in any array a of any size, so the function declaration
for scale, shown in Display 7.5 and repeated here, is stated in terms of an
arbitrary array a of some arbitrary size:

void scale(int a[], int size);
//Precondition: a[0] through a[size− 1] each has a
//nonnegative value.
//Postcondition: a[i] has been changed to the number of 1000s
//(rounded to an integer) that were originally in a[i], for
//all i such that 0 <= i <= size− 1.

get_total

7.2 Arrays in Functions 399

DISPLAY 7.6 Test of Function input_data (part 1 of 3)

1 //Tests the function input_data.
2 #include <iostream>
3 const int NUMBER_OF_PLANTS = 4;
4
5 void input_data(int a[], int last_plant_number);
6 //Precondition: last_plant_number is the declared size of the array a.
7 //Postcondition: For plant_number = 1 through last_plant_number:
8 //a[plant_number− 1] equals the total production for plant number plant_number.
9

10 void get_total(int& sum);
11 //Reads nonnegative integers from the keyboard and
12 //places their total in sum.
13
14 int main()
15 {
16 using namespace std;
17 int production[NUMBER_OF_PLANTS];
18 char ans;
19
20 do
21 {
22 input_data(production, NUMBER_OF_PLANTS);
23 cout << endl
24 << "Total production for each"
25 << " of plants 1 through 4:\n";
26 for (int number = 1; number <= NUMBER_OF_PLANTS; number++)
27 cout << production[number − 1] << " ";
28
29 cout << endl
30 << "Test Again?(Type y or n and Return): ";
31 cin >> ans;
32 }while ((ans != 'N') && (ans != 'n'));
33
34 cout << endl;
35
36 return 0;
37 }
38 //Uses iostream:
39 void input_data(int a[], int last_plant_number)
40 {
41 using namespace std;
42 for (int plant_number = 1;
43 plant_number <= last_plant_number; plant_number++)

(continued)

400 CHAPTER 7 / Arrays

DISPLAY 7.6 Test of Function input_data (part 2 of 3)

44 {
45 cout << endl
46 << "Enter production data for plant number "
47 << plant_number << endl;
48 get_total(a[plant_number - 1]);
49 }
50 }
51
52
53 //Uses iostream:
54 void get_total(int& sum)
55 {
56 using namespace std;
57 cout << "Enter number of units produced by each department.\n"
58 << "Append a negative number to the end of the list.\n";
59
60 sum = 0;
61 int next;
62 cin >> next;
63 while (next >= 0)
64 {
65 sum = sum + next;
66 cin >> next;
67 }
68
69 cout << "Total = " << sum << endl;
70 }

Sample Dialogue

Enter production data for plant number 1

Enter number of units produced by each department.

Append a negative number to the end of the list.

1 2 3 –1

Total = 6

Enter production data for plant number 2

Enter number of units produced by each department.

Append a negative number to the end of the list.

0 2 3 –1

Total = 5

(continued)

7.2 Arrays in Functions 401

When the function scale is called, the array parameter a will be replaced
by the array production, and the formal parameter size will be replaced by
NUMBER_OF_PLANTS so that the function call looks like the following:

scale(production, NUMBER_OF_PLANTS);

The algorithm for the function scale is as follows:

for (int index = 0; index < size; index++)

Divide the value of a[index] by one thousand and round the result
to the nearest whole number; the result is the new value of a[index].

Coding for scale
The algorithm for scale translates into the C++ code given next, where round
is a function we still need to define. The function round takes one argument of
type double and returns a type int value that is the integer nearest to its
argument; that is, the function round will round its argument to the nearest
whole number.

void scale(int a[], int size)
{
 for (int index = 0; index < size; index++)
 a[index] = round(a[index]/1000.0);
}

DISPLAY 7.6 Test of Function input_data (part 3 of 3)

Enter production data for plant number 3

Enter number of units produced by each department.

Append a negative number to the end of the list.

2 –1

Total = 2

Enter production data for plant number 4

Enter number of units produced by each department.

Append a negative number to the end of the list.

–1

Total = 0

Total production for each of plants 1 through 4:

6 5 2 0
Test Again?(Type y or n and Return): n

402 CHAPTER 7 / Arrays

Notice that we divided by 1000.0, not by 1000 (without the decimal point). If
we had divided by 1000, we would have performed integer division. For
example, 2600/1000 would give the answer 2, but 2600/1000.0 gives the
answer 2.6. It is true that we want an integer for the final answer after
rounding, but we want 2600 divided by 1000 to produce 3, not 2, when it is
rounded to a whole number.

We now turn to the definition of the function round, which rounds its
argument to the nearest integer. For example, round(2.3) returns 2, and
round(2.6) returns 3. The code for the function round, as well as that for
scale, is given in Display 7.7. The code for round may require a bit of
explanation.

The function round uses the predefined function floor from the library
with the header file cmath. The function floor returns the whole number just
below its argument. For example, floor(2.1) and floor(2.9) both return 2.
To see that round works correctly, let’s look at some examples. Consider
round(2.4). The value returned is

floor(2.4 + 0.5)

which is floor(2.9), and that is 2.0. In fact, for any number that is greater
than or equal to 2.0 and strictly less than 2.5, that number plus 0.5 will be
less than 3.0, and so floor applied to that number plus 0.5 will return 2.0.
Thus, round applied to any number that is greater than or equal to 2.0 and
strictly less than 2.5 will return 2. (Since the function declaration for round
specifies that the type for the value returned is int, the computed value of
2.0 is type cast to the integer value 2 without a decimal point using
static_cast<int>.)

Now consider numbers greater than or equal to 2.5; for example, 2.6. The
value returned by the call round(2.6) is

floor(2.6 + 0.5)

which is floor(3.1) and that is 3.0. In fact, for any number that is greater
than or equal to 2.5 and less than or equal to 3.0, that number plus 0.5 will
be greater than 3.0. Thus, round called with any number that is greater than or
equal to 2.5 and less than or equal to 3.0 will return 3.

Thus, round works correctly for all arguments between 2.0 and 3.0.
Clearly, there is nothing special about arguments between 2.0 and 3.0. A
similar argument applies to all nonnegative numbers. So, round works
correctly for all nonnegative arguments.

Testing scale
Display 7.7 contains a demonstration program for the function scale, but the
testing programs for the functions round and scale should be more elaborate
than this simple program. In particular, they should allow you to retest the
tested function several times rather than just once. We will not give the complete

round

7.2 Arrays in Functions 403

DISPLAY 7.7 The Function scale (part 1 of 2)

1 //Demonstration program for the function scale.
2 #include <iostream>
3 #include <cmath>
4
5 void scale(int a[], int size);
6 //Precondition: a[0] through a[size− 1] each has a nonnegative value.
7 //Postcondition: a[i] has been changed to the number of 1000s (rounded to
8 //an integer) that were originally in a[i], for all i such that 0 <= i <= size− 1.
9

10 int round(double number);
11 //Precondition: number >= 0.
12 //Returns number rounded to the nearest integer.
13
14 int main()
15 {
16 using namespace std;
17 int some_array[4], index;

18 cout << "Enter 4 numbers to scale: ";
19 for (index = 0; index < 4; index++)
20 cin >> some_array[index];

21 scale(some_array, 4);

22 cout << "Values scaled to the number of 1000s are: ";
23 for (index = 0; index < 4; index++)
24 cout << some_array[index] << " ";
25 cout << endl;

26 return 0;
27 }
28
29 void scale(int a[], int size)
30 {
31 for (int index = 0; index < size; index++)
32 a[index] = round(a[index]/1000.0);
33 }
34
35 //Uses cmath:
36 int round(double number)
37 {
38 using namespace std;
39 return static_cast<int>(floor(number + 0.5));
40 }

(continued)

404 CHAPTER 7 / Arrays

testing programs, but you should first test round (which is used by scale) in a
driver program of its own, and then test scale in a driver program. The program
to test round should test arguments that are 0, arguments that round up (like
2.6), and arguments that round down like 2.3. The program to test scale
should test a similar variety of values for the elements of the array.

The Function graph
The complete program for producing the desired bar graph is shown in
Display 7.8. We have not taken you step by step through the design of the
function graph because it is quite straightforward.

DISPLAY 7.7 The Function scale (part 2 of 2)

Sample Dialogue

Enter 4 numbers to scale: 2600 999 465 3501

Values scaled to the number of 1000s are: 3 1 0 4

DISPLAY 7.8 Production Graph Program (part 1 of 4)

1 //Reads data and displays a bar graph showing productivity for each plant.
2 #include <iostream>
3 #include <cmath>
4 const int NUMBER_OF_PLANTS = 4;

5 void input_data(int a[], int last_plant_number);
6 //Precondition: last_plant_number is the declared size of the array a.
7 //Postcondition: For plant_number = 1 through last_plant_number:
8 //a[plant_number− 1] equals the total production for plant number plant_number.

9 void scale(int a[], int size);
10 //Precondition: a[0] through a[size− 1] each has a nonnegative value.
11 //Postcondition: a[i] has been changed to the number of 1000s (rounded to
12 //an integer) that were originally in a[i], for all i such that 0 <= i <= size− 1.

13 void graph(const int asterisk_count[], int last_plant_number);
14 //Precondition: asterisk_count[0] through asterisk_count[last_plant_number− 1]
15 //have nonnegative values.
16 //Postcondition: A bar graph has been displayed saying that plant
17 //number N has produced asterisk_count[N− 1] 1000s of units, for each N such that
18 //1 <= N <= last_plant_number

19 void get_total(int& sum);
20 //Reads nonnegative integers from the keyboard and
21 //places their total in sum.

(continued)

7.2 Arrays in Functions 405

DISPLAY 7.8 Production Graph Program (part 2 of 4)

22 int round(double number);
23 //Precondition: number >= 0.
24 //Returns number rounded to the nearest integer.

25 void print_asterisks(int n);
26 //Prints n asterisks to the screen.

27 int main()
28 {
29 using namespace std;
30 int production[NUMBER_OF_PLANTS];

31 cout << "This program displays a graph showing\n"
32 << "production for each plant in the company.\n";

33 input_data(production, NUMBER_OF_PLANTS);
34 scale(production, NUMBER_OF_PLANTS);
35 graph(production, NUMBER_OF_PLANTS);
36 return 0;
37 }

38 //Uses iostream:
39 void input_data(int a[], int last_plant_number)

<The rest of the definition of input_data is given in Display 7.6.>

40 //Uses iostream:
41 void get_total(int& sum)

<The rest of the definition of get_total is given in Display 7.6.>

42 void scale(int a[], int size)

<The rest of the definition of scale is given in Display 7.7.>

43 //Uses cmath:
44 int round(double number)

<The rest of the definition of round is given in Display 7.7.>
45 //Uses iostream:
46 void graph(const int asterisk_count[], int last_plant_number)
47 {
48 using namespace std;
49 cout << "\nUnits produced in thousands of units:\n";
50 for (int plant_number = 1;
51 plant_number <= last_plant_number; plant_number++)
52 {
53 cout << "Plant #" << plant_number << " ";
54 print_asterisks(asterisk_count[plant_number - 1]);
55 cout << endl;
56 }
57 }

(continued)

406 CHAPTER 7 / Arrays

DISPLAY 7.8 Production Graph Program (part 3 of 4)

58 //Uses iostream:
59 void print_asterisks(int n)
60 {
61 using namespace std;
62 for (int count = 1; count <= n; count++)
63 cout << "*";
64 }

Sample Dialogue

This program displays a graph showing

production for each plant in the company.

Enter production data for plant number 1

Enter number of units produced by each department.

Append a negative number to the end of the list.

2000 3000 1000 –1

Total = 6000

Enter production data for plant number 2

Enter number of units produced by each department.

Append a negative number to the end of the list.

2050 3002 1300 –1

Total = 6352

Enter production data for plant number 3

Enter number of units produced by each department.

Append a negative number to the end of the list.

5000 4020 500 4348 –1

Total = 13868

Enter production data for plant number 3

Enter number of units produced by each department.

Append a negative number to the end of the list.

5000 4020 500 4348 –1

Total = 13868

Enter production data for plant number 4

Enter number of units produced by each department.

Append a negative number to the end of the list.

2507 6050 1809 –1

Total = 10366

(continued)

7.2 Arrays in Functions 407

SELF -TEST EXERC ISES

13. Write a function definition for a function called one_more, which has a
formal parameter for an array of integers and increases the value of each
array element by one. Add any other formal parameters that are needed.

14. Consider the following function definition:

void too2(int a[], int how_many)

{

 for (int index = 0; index < how_many; index++)

 a[index] = 2;
}

 Which of the following are acceptable function calls?

int my_array[29];
too2(my_array, 29);
too2(my_array, 10);
too2(my_array, 55);

“Hey too2. Please, come over here.”
int your_array[100];
too2(your_array, 100);
too2(my_array[3], 29);

15. Insert const before any of the following array parameters that can be
changed to constant array parameters:

void output(double a[], int size);
//Precondition: a[0] through a[size - 1] have values.
//Postcondition: a[0] through a[size - 1] have been
//written out.

DISPLAY 7.8 Production Graph Program (part 4 of 4)

Units produced in thousands of units:

Plant #1 ******

Plant #2 ******

Plant #3 **************

Plant #4 **********

408 CHAPTER 7 / Arrays

void drop_odd(int a[], int size);
//Precondition: a[0] through a[size - 1] have values.
//Postcondition: All odd numbers in a[0] through
//a[size - 1] have been changed to 0.

16. Write a function named out_of_order that takes as parameters an array of
doubles and an int parameter named size and returns a value of type
int. This function will test this array for being out of order, meaning that
the array violates the following condition:

a[0] <= a[1] <= a[2] <= ...

The function returns -1 if the elements are not out of order; otherwise, it
will return the index of the first element of the array that is out of order.
For example, consider the declaration

double a[10] = {1.2, 2.1, 3.3, 2.5, 4.5,
 7.9, 5.4, 8.7, 9.9, 1.0};

In this array, a[2] and a[3] are the first pair out of order, and a[3] is the
first element out of order, so the function returns 3. If the array were
sorted, the function would return –1.

7.3 PROGRAMMING WITH ARRAYS

Never trust to general impressions, my boy, but concentrate yourself upon details.

SIR ARTHUR CONAN DOYLE, A Case of Identity (Sherlock Holmes)

In this section we discuss partially filled arrays and give a brief introduction to
sorting and searching of arrays. This section includes no new material about
the C++ language, but does include more practice with C++ array parameters.

Partially Filled Arrays

Often the exact size needed for an array is not known when a program is
written, or the size may vary from one run of the program to another. One
common and easy way to handle this situation is to declare the array to be of
the largest size the program could possibly need. The program is then free to
use as much or as little of the array as is needed.

Partially filled arrays require some care. The program must keep track of
how much of the array is used and must not reference any indexed variable
that has not been given a value. The program in Display 7.9 illustrates this
point. The program reads in a list of golf scores and shows how much each
score differs from the average. This program will work for lists as short as one
score, as long as ten scores, and of any length in between. The scores are stored

partially filled
array

7.3 Programming with Arrays 409

in the array score, which has ten indexed variables, but the program uses only
as much of the array as it needs. The variable number_used keeps track of how
many elements are stored in the array. The elements (that is, the scores) are
stored in positions score[0] through score[number_used - 1].

The details are very similar to what they would be if number_used were the
declared size of the array and the entire array were used. In particular, the
variable number_used usually must be an argument to any function that
manipulates the partially filled array. Since the argument number_used (when
used properly) can often ensure that the function will not reference an illegal
array index, this sometimes (but not always) eliminates the need for an
argument that gives the declared size of the array. For example, the functions

DISPLAY 7.9 Partially Filled Array (part 1 of 3)

1 //Shows the difference between each of a list of golf scores and their average.
2 #include <iostream>
3 const int MAX_NUMBER_SCORES = 10;

4 void fill_array(int a[], int size, int& number_used);
5 //Precondition: size is the declared size of the array a.
6 //Postcondition: number_used is the number of values stored in a.
7 //a[0] through a[number_used− 1] have been filled with
8 //nonnegative integers read from the keyboard.

9 double compute_average(const int a[], int number_used);
10 //Precondition: a[0] through a[number_used− 1] have values; number_used > 0.
11 //Returns the average of numbers a[0] through a[number_used− 1].

12 void show_difference(const int a[], int number_used);
13 //Precondition: The first number_used indexed variables of a have values.
14 //Postcondition: Gives screen output showing how much each of the first
15 //number_used elements of a differs from their average.

16 int main()
17 {
18 using namespace std;
19 int score[MAX_NUMBER_SCORES], number_used;

20 cout << "This program reads golf scores and shows\n"
21 << "how much each differs from the average.\n";
22
23 cout << "Enter golf scores:\n";
24 fill_array(score, MAX_NUMBER_SCORES, number_used);
25 show_difference(score, number_used);

26 return 0;
27 }

(continued)

410 CHAPTER 7 / Arrays

DISPLAY 7.9 Partially Filled Array (part 2 of 3)

28 //Uses iostream:
29 void fill_array(int a[], int size, int& number_used)
30 {
31 using namespace std;
32 cout << "Enter up to " << size << " nonnegative whole numbers.\n"
33 << "Mark the end of the list with a negative number.\n";
34 int next, index = 0;
35 cin >> next;
36 while ((next >= 0) && (index < size))
37 {
38 a[index] = next;
39 index++;
40 cin >> next;
41 }

42 number_used = index;
43 }

44 double compute_average(const int a[], int number_used)
45 {
46 double total = 0;
47 for (int index = 0; index < number_used; index++)
48 total = total + a[index];
49 if (number_used > 0)
50 {
51 return (total/number_used);
52 }
53 else
54 {
55 using namespace std;
56 cout << "ERROR: number of elements is 0 in compute_average.\n"
57 << "compute_average returns 0.\n";
58 return 0;
59 }
60 }

61 void show_difference(const int a[], int number_used)
62 {
63 using namespace std;
64 double average = compute_average(a, number_used);
65 cout << "Average of the " << number_used
66 << " scores = " << average << endl
67 << "The scores are:\n";
68 for (int index = 0; index < number_used; index++)
69 cout << a[index] << " differs from average by "
70 << (a[index] - average) << endl;
71 }

(continued)

7.3 Programming with Arrays 411

show_difference and compute_average use the argument number_used to
ensure that only legal array indexes are used. However, the function fill_array
needs to know the maximum declared size for the array so that it does not
overfill the array.

■ PROGRAMMING TIP Do Not Skimp on Formal Parameters

Notice the function fill_array in Display 7.9. When fill_array is called, the
declared array size MAX_NUMBER_SCORES is given as one of the arguments, as
shown in the following function call from Display 7.9:

fill_array(score, MAX_NUMBER_SCORES, number_used);

You might protest that MAX_NUMBER_SCORES is a globally defined constant and so
could be used in the definition of fill_array without the need to make it an
argument. You would be correct, and if we did not use fill_array in any
program other than the one in Display 7.9, we could get by without making
MAX_NUMBER_SCORES an argument to fill_array. However, fill_array is a
generally useful function that you may want to use in several different
programs. We do in fact also use the function fill_array in the program in
Display 7.10, discussed in the next subsection. In the program in Display 7.10
the argument for the declared array size is a different named global constant.
If we had written the global constant MAX_NUMBER_SCORES into the body of the
function fill_array, we would not have been able to reuse the function in
the program in Display 7.10.

DISPLAY 7.9 Partially Filled Array (part 3 of 3)

Sample Dialogue

This program reads golf scores and shows

how much each differs from the average.

Enter golf scores:

Enter up to 10 nonnegative whole numbers.

Mark the end of the list with a negative number.

69 74 68 –1

Average of the 3 scores = 70.3333

The scores are:

69 differs from average by -1.33333

74 differs from average by 3.66667

68 differs from average by -2.33333

412 CHAPTER 7 / Arrays

Even if we used fill_array in only one program, it can still be a good
idea to make the declared array size an argument to fill_array. Displaying
the declared size of the array as an argument reminds us that the function
needs this information in a critically important way. ■

■ PROGRAMMING EXAMPLE Searching an Array

A common programming task is to search an array for a given value. For
example, the array may contain the student numbers for all students in a given
course. To tell whether a particular student is enrolled, the array is searched to
see if it contains the student’s number. The program in Display 7.10 fills an
array and then searches the array for values specified by the user. A real
application program would be much more elaborate, but this shows all the
essentials of the sequential search algorithm. The sequential search algorithm
is the most straightforward searching algorithm you could imagine: The
program looks at the array elements in the order first to last to see if the target
number is equal to any of the array elements.

In Display 7.10 the function search is used to search the array. When
searching an array, you often want to know more than simply whether or not
the target value is in the array. If the target value is in the array, you often want
to know the index of the indexed variable holding that target value, since the
index may serve as a guide to some additional information about the target
value. Therefore, we designed the function search to return an index giving
the location of the target value in the array, provided the target value is, in fact,
in the array. If the target value is not in the array, search returns -1. Let’s look
at the function search in a little more detail.

The function search uses a while loop to check the array elements one
after the other to see whether any of them equals the target value. The variable
found is used as a flag to record whether or not the target element has been
found. If the target element is found in the array, found is set to true, which
in turn ends the while loop.

DISPLAY 7.10 Searching an Array (part 1 of 3)

1 //Searches a partially filled array of nonnegative integers.
2 #include <iostream>
3 const int DECLARED_SIZE = 20;

4 void fill_array(int a[], int size, int& number_used);
5 //Precondition: size is the declared size of the array a.
6 //Postcondition: number_used is the number of values stored in a.

(continued)

sequential
search

search

7.3 Programming with Arrays 413

DISPLAY 7.10 Searching an Array (part 2 of 3)

7 //a[0] through a[number_used− 1] have been filled with
8 //nonnegative integers read from the keyboard.

9 int search(const int a[], int number_used, int target);
10 //Precondition: number_used is <= the declared size of a.
11 //Also, a[0] through a[number_used −1] have values.
12 //Returns the first index such that a[index] == target,
13 //provided there is such an index; otherwise, returns −1.

14 int main()
15 {
16 using namespace std;
17 int arr[DECLARED_SIZE], list_size, target;

18 fill_array(arr, DECLARED_SIZE, list_size);

19 char ans;
20 int result;
21 do
22 {
23 cout << "Enter a number to search for: ";
24 cin >> target;

25 result = search(arr, list_size, target);
26 if (result == −1)
27 cout << target << " is not on the list.\n";
28 else
29 cout << target << " is stored in array position "
30 << result << endl
31 << "(Remember: The first position is 0.)\n";

32 cout << "Search again?(y/n followed by Return): ";
33 cin >> ans;
34 }while ((ans != 'n') && (ans != 'N'));

35 cout << "End of program.\n";
36 return 0;
37 }
38 //Uses iostream:
39 void fill_array(int a[], int size, int& number_used)

<The rest of the definition of fill_array is given in Display 7.9.>

40
41 int search(const int a[], int number_used, int target)
42 {
43

(continued)

414 CHAPTER 7 / Arrays

■ PROGRAMMING EXAMPLE Sorting an Array

One of the most widely encountered programming tasks, and certainly the
most thoroughly studied, is sorting a list of values, such as a list of sales figures
that must be sorted from lowest to highest or from highest to lowest, or a list
of words that must be sorted into alphabetical order. In this section we
describe a function called sort that sorts a partially filled array of numbers so
that they are ordered from smallest to largest.

DISPLAY 7.10 Searching an Array (part 2 of 2)

44 int index = 0;
45 bool found = false;
46 while ((!found) && (index < number_used))
47 if (target == a[index])
48 found = true;
49 else
50 index++;
51
52 if (found)
53 return index;
54 else
55 return − 1;
56 }

Sample Dialogue

Enter up to 20 nonnegative whole numbers.

Mark the end of the list with a negative number.

10 20 30 40 50 60 70 80 –1

Enter a number to search for: 10
10 is stored in array position 0

(Remember: The first position is 0.)

Search again?(y/n followed by Return): y
Enter a number to search for: 40
40 is stored in array position 3

(Remember: The first position is 0.)

Search again?(y/n followed by Return): y
Enter a number to search for: 42
42 is not on the list.

Search again?(y/n followed by Return): n
End of program.

7.3 Programming with Arrays 415

The procedure sort has one array parameter a. The array a will be partially
filled, so there is an additional formal parameter called number_used, which
tells how many array positions are used. Thus, the declaration and precondi-
tion for the function sort is

void sort(int a[], int number_used);
//Precondition: number_used <= declared size of the array a.
//Array elements a[0] through a[number_used-1] have values.

The function sort rearranges the elements in array a so that after the
function call is completed the elements are sorted as follows:

a[0] ≤ a[1] ≤ a[2] ≤ ... ≤ a[number_used - 1]

The algorithm we use to do the sorting is called selection sort. It is one of the
easiest of the sorting algorithms to understand.

One way to design an algorithm is to rely on the definition of the
problem. In this case the problem is to sort an array a from smallest to
largest. That means rearranging the values so that a[0] is the smallest, a[1]
the next smallest, and so forth. That definition yields an outline for the
selection sort algorithm:

for (int index = 0; index < number_used; index++)
Place the indexth smallest element in a[index]

There are many ways to realize this general approach. The details could be
developed using two arrays and copying the elements from one array to the
other in sorted order, but one array should be both adequate and economical.
Therefore, the function sort uses only the one array containing the values to
be sorted. The function sort rearranges the values in the array a by interchang-
ing pairs of values. Let us go through a concrete example so that you can see
how the algorithm works.

Consider the array shown in Display 7.11. The algorithm will place the
smallest value in a[0]. The smallest value is the value in a[3]. So the algorithm
interchanges the values of a[0] and a[3]. The algorithm then looks for the next
smallest element. The value in a[0] is now the smallest element and so the
next smallest element is the smallest of the remaining elements a[1],
a[2], a[3], … , a[9]. In the example in Display 7.11, the next smallest
element is in a[5], so the algorithm interchanges the values of a[1] and a[5].
This positioning of the second smallest element is illustrated in the fourth and
fifth array pictures in Display 7.11. The algorithm then positions the third
smallest element, and so forth.

As the sorting proceeds, the beginning array elements are set equal to the
correct sorted values. The sorted portion of the array grows by adding elements
one after the other from the elements in the unsorted end of the array. Notice
that the algorithm need not do anything with the value in the last indexed

selection sort

Video Note
Selection Sort
Walkthrough

416 CHAPTER 7 / Arrays

variable, a[9]. That is because once the other elements are positioned
correctly, a[9] must also have the correct value. After all, the correct value for
a[9] is the smallest value left to be moved, and the only value left to be moved
is the value that is already in a[9].

The definition of the function sort, included in a demonstration pro-
gram, is given in Display 7.12. sort uses the function index_of_smallest to
find the index of the smallest element in the unsorted end of the array, and
then it does an interchange to move this element down into the sorted part of
the array.

The function swap_values, shown in Display 7.12, is used to interchange
the values of indexed variables. For example, the following call will inter-
change the values of a[0] and a[3]:

swap_values(a[0], a[3]);

The function swap_values was explained in Chapter 5. ■

DISPLAY 7.11 Selection Sort

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

8 6 10 2 16 4 18 14 12 20

8 6 10 2 16 4 18 14 12 20

2 6 10 8 16 4 18 14 12 20

2 6 10 8 16 4 18 14 12 20

2 4 10 8 16 6 18 14 12 20

index_of_
smallest

swap_values

7.3 Programming with Arrays 417

DISPLAY 7.12 Sorting an Array (part 1 of 2)

1 //Tests the procedure sort.
2 #include <iostream>

3 void fill_array(int a[], int size, int& number_used);
4 //Precondition: size is the declared size of the array a.
5 //Postcondition: number_used is the number of values stored in a.
6 //a[0] through a[number_used − 1] have been filled with
7 //nonnegative integers read from the keyboard.

8 void sort(int a[], int number_used);
9 //Precondition: number_used <= declared size of the array a.

10 //The array elements a[0] through a[number_used − 1] have values.
11 //Postcondition: The values of a[0] through a[number_used − 1] have
12 //been rearranged so that a[0] <= a[1] <= ... <= a[number_used − 1].

13 void swap_values(int& v1, int& v2);
14 //Interchanges the values of v1 and v2.

15 int index_of_smallest(const int a[], int start_index, int number_used);
16 //Precondition: 0 <= start_index < number_used. Referenced array elements have
17 //values.
18 //Returns the index i such that a[i] is the smallest of the values
19 //a[start_index], a[start_index + 1], ..., a[number_used − 1].

20 int main()
21 {
22 using namespace std;
23 cout << "This program sorts numbers from lowest to highest.\n";

24 int sample_array[10], number_used;
25 fill_array(sample_array, 10, number_used);
26 sort(sample_array, number_used);

27 cout << "In sorted order the numbers are:\n";
28 for (int index = 0; index < number_used; index++)
29 cout << sample_array[index] << " ";
30 cout << endl;

31 return 0;
32 }

33 //Uses iostream:
34 void fill_array(int a[], int size, int& number_used)

<The rest of the definition of fill_array is given in Display 7.9.>

35 void sort(int a[], int number_used)
36 {
37 int index_of_next_smallest;

(continued)

418 CHAPTER 7 / Arrays

DISPLAY 7.12 Sorting an Array (part 2 of 2)

38 for (int index = 0; index < number_used − 1; index++)
39 {//Place the correct value in a[index]:
40 index_of_next_smallest =
41 index_of_smallest(a, index, number_used);
42 swap_values(a[index], a[index_of_next_smallest]);
43 //a[0] <= a[1] <=...<= a[index] are the smallest of the original array
44 //elements. The rest of the elements are in the remaining positions.
45 }
46 }
47

48 void swap_values(int& v1, int& v2)
49 {
50 int temp;
51 temp = v1;
52 v1 = v2;
53 v2 = temp;
54 }
55

56 int index_of_smallest(const int a[], int start_index, int number_used)
57 {
58 int min = a[start_index],
59 index_of_min = start_index;
60 for (int index = start_index + 1; index < number_used; index++)
61 if (a[index] < min)
62 {
63 min = a[index];
64 index_of_min = index;
65 //min is the smallest of a[start_index] through a[index]
66 }
67
68 return index_of_min;
69 }

Sample Dialogue

This program sorts numbers from lowest to highest.

Enter up to 10 nonnegative whole numbers.

Mark the end of the list with a negative number.

80 30 50 70 60 90 20 30 40 –1

In sorted order the numbers are:

20 30 30 40 50 60 70 80 90

7.4 Multidimensional Arrays 419

SELF -TEST EXERC ISES

17. Write a program that will read up to 10 nonnegative integers into an array
called number_array and then write the integers back to the screen. For
this exercise you need not use any functions. This is just a toy program
and can be very minimal.

18. Write a program that will read up to ten letters into an array and write the
letters back to the screen in the reverse order. For example, if the input is

abcd.

then the output should be

dcba

Use a period as a sentinel value to mark the end of the input. Call the
array letter_box. For this exercise you need not use any functions. This is
just a toy program and can be very minimal.

19. Following is the declaration for an alternative version of the function
search defined in Display 7.12. In order to use this alternative version of
the search function we would need to rewrite the program slightly, but
for this exercise all you need to do is to write the function definition for
this alternative version of search.

bool search(const int a[], int number_used,
 int target, int& where);
//Precondition: number_used is <= the declared size of the
//array a; a[0] through a[number_used -1] have values.
//Postcondition: If target is one of the elements a[0]
//through a[number_used - 1], then this function returns
//true and sets the value of where so that a[where] ==
//target; otherwise this function returns false and the
//value of where is unchanged.

7.4 MULTIDIMENSIONAL ARRAYS

Two indexes are better than one.

Found on the wall of a Computer Science department restroom

C++ allows you to declare arrays with more than one index. In this section we
describe these multidimensional arrays.

420 CHAPTER 7 / Arrays

Multidimensional Array Basics

It is sometimes useful to have an array with more than one index, and this is
allowed in C++. The following declares an array of characters called page. The
array page has two indexes: The first index ranges from 0 to 29, and the second
from 0 to 99.

char page[30][100];

The indexed variables for this array each have two indexes. For example,
page[0][0], page[15][32], and page[29][99] are three of the indexed vari-
ables for this array. Note that each index must be enclosed in its own set of
square brackets. As was true of the one-dimensional arrays we have already
seen, each indexed variable for a multidimensional array is a variable of the
base type.

An array may have any number of indexes, but perhaps the most common
number of indexes is two. A two-dimensional array can be visualized as a two-
dimensional display with the first index giving the row and the second index
giving the column. For example, the array indexed variables of the two-
dimensional array page can be visualized as follows:

page[0][0], page[0][1], ..., page[0][99]
page[1][0], page[1][1], ..., page[1][99]
page[2][0], page[2][1], ..., page[2][99]

.

.

.
page[29][0], page[29][1], ..., page[29][99]

You might use the array page to store all the characters on a page of text that
has 30 lines (numbered 0 through 29) and 100 characters on each line
(numbered 0 through 99).

In C++, a two-dimensional array, such as page, is actually an array of
arrays. The example array page is actually a one-dimensional array of size 30,
whose base type is a one-dimensional array of characters of size 100.
Normally, this need not concern you, and you can usually act as if the array
page is actually an array with two indexes (rather than an array of arrays,
which is harder to keep track of). There is, however, at least one situation
where a two-dimensional array looks very much like an array of arrays,
namely, when you have a function with an array parameter for a two-
dimensional array, which is discussed in the next subsection.

Multidimensional Array Parameters

The following declaration of a two-dimensional array is actually declaring a one-
dimensional array of size 30, whose base type is a one-dimensional array of
characters of size 100.

array
declarations

 indexed
variables

A multi-
dimensional

array is an
array of arrays

7.4 Multidimensional Arrays 421

 char page[30][100];

Viewing a two-dimensional array as an array of arrays will help you to
understand how C++ handles parameters for multidimensional arrays.

For example, the following function takes an array argument, like page,
and prints it to the screen:

void display_page(const char p[][100], int size_dimension_1)
{
 for (int index1 = 0; index1 < size_dimension_1; index1++)
 {//Printing one line:
 for (int index2 = 0; index2 < 100; index2++)
 cout << p[index1][index2];
 cout << endl;
 }
}

Notice that with a two-dimensional array parameter, the size of the first
dimension is not given, so we must include an int parameter to give the size
of this first dimension. (As with ordinary arrays, the compiler will allow you
to specify the first dimension by placing a number within the first pair of
square brackets. However, such a number is only a comment; the compiler
ignores any such number.) The size of the second dimension (and all other
dimensions if there are more than two) is given after the array parameter, as
shown for the parameter

const char p[][100]

Multidimensional Array Declaration

SYNTAX

Type Array_Name[Size_Dim_1][Size_Dim_2]...[Size_Dim_Last];

EXAMPLES

char page[30][100];
int matrix[2][3];
double three_d_picture[10][20][30];

An array declaration, of the form shown, defines one indexed variable for
each combination of array indexes. For example, the second of the sample
declarations defines the following six indexed variables for the array
matrix:

matrix[0][0], matrix[0][1], matrix[0][2],
matrix[1][0], matrix[1][1], matrix[1][2]

multidimen-
sional array
parameters

422 CHAPTER 7 / Arrays

If you realize that a multidimensional array is an array of arrays, then this rule
begins to make sense. Since the two-dimensional array parameter

const char p[][100]

is a parameter for an array of arrays, the first dimension is really the index of
the array and is treated just like an array index for an ordinary, one-
dimensional array. The second dimension is part of the description of the base
type, which is an array of characters of size 100.

■ PROGRAMMING EXAMPLE Two-Dimensional
Grading Program

Display 7.13 contains a program that uses a two-dimensional array, named
grade, to store and then display the grade records for a small class. The class has
four students and includes three quizzes. Display 7.14 illustrates how the array
grade is used to store data. The first array index is used to designate a student,
and the second array index is used to designate a quiz. Since the students and
quizzes are numbered starting with 1 rather than 0, we must subtract one from
the student number and subtract one from the quiz number to obtain the
indexed variable that stores a particular quiz score. For example, the score that
student number 4 received on quiz number 1 is recorded in grade[3][0].

Our program also uses two ordinary one-dimensional arrays. The array
st_ave will be used to record the average quiz score for each of the students.
For example, the program will set st_ave[0] equal to the average of the quiz
scores received by student 1, st_ave[1] equal to the average of the quiz scores
received by student 2, and so forth. The array quiz_ave will be used to record
the average score for each quiz. For example, the program will set quiz_ave[0]
equal to the average of all the student scores for quiz 1, quiz_ave[1] will
record the average score for quiz 2, and so forth. Display 7.15 illustrates the
relationship between the arrays grade, st_ave, and quiz_ave. In that display,

Multidimensional Array Parameters

When a multidimensional array parameter is given in a function heading
or function declaration, the size of the first dimension is not given, but the
remaining dimension sizes must be given in square brackets. Since the first
dimension size is not given, you usually need an additional parameter of
type int that gives the size of this first dimension. Below is an example of
a function declaration with a two-dimensional array parameter p:

void get_page(char p[][100], int size_dimension_1);

grade

st_ave and
quiz_ave

7.4 Multidimensional Arrays 423

DISPLAY 7.13 Two-Dimensional Array (part 1 of 3)

1 //Reads quiz scores for each student into the two-dimensional array grade (but
2 //the input code is not shown in this display). Computes the average score
3 //for each student and the average score for each quiz. Displays the quiz scores
4 //and the averages.
5 #include <iostream>
6 #include <iomanip>
7 const int NUMBER_STUDENTS = 4, NUMBER_QUIZZES = 3;
8
9 void compute_st_ave(const int grade[][NUMBER_QUIZZES], double st_ave[]);

10 //Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES
11 //are the dimensions of the array grade. Each of the indexed variables
12 //grade[st_num− 1, quiz_num− 1] contains the score for student st_num on quiz
13 //quiz_num.
14 //Postcondition: Each st_ave[st_num− 1] contains the average for student
15 //number stu_num.
16

17 void compute_quiz_ave(const int grade[][NUMBER_QUIZZES], double quiz_ave[]);
18 //Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES
19 //are the dimensions of the array grade. Each of the indexed variables
20 //grade[st_num− 1, quiz_num− 1] contains the score for student st_num on quiz
21 //quiz_num.
22 //Postcondition: Each quiz_ave[quiz_num− 1] contains the average for quiz number
23 //quiz_num.
24

25 void display(const int grade[][NUMBER_QUIZZES],
26 const double st_ave[], const double quiz_ave[]);
27 //Precondition: Global constants NUMBER_STUDENTS and NUMBER_QUIZZES are the
28 //dimensions of the array grade. Each of the indexed variables grade[st_num− 1,
29 //quiz_num− 1] contains the score for student st_num on quiz quiz_num. Each
30 //st_ave[st_num− 1] contains the average for student stu_num. Each
31 //quiz_ave[quiz_num − 1] contains the average for quiz number quiz_num.
32 //Postcondition: All the data in grade, st_ave, and quiz_ave has been output.
33

34 int main()
35 {
36 using namespace std;
37 int grade[NUMBER_STUDENTS][NUMBER_QUIZZES];
38 double st_ave[NUMBER_STUDENTS];
39 double quiz_ave[NUMBER_QUIZZES];
40

<The code for filling the array grade goes here, but is not shown.>

(continued)

424 CHAPTER 7 / Arrays

DISPLAY 7.13 Two-Dimensional Array (part 2 of 3)

41 compute_st_ave(grade, st_ave);
42 compute_quiz_ave(grade, quiz_ave);
43 display(grade, st_ave, quiz_ave);
44 return 0;
45 }

46 void compute_st_ave(const int grade[][NUMBER_QUIZZES], double st_ave[])
47 {
48 for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
49 {//Process one st_num:
50 double sum = 0;
51 for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
52 sum = sum + grade[st_num−1][quiz_num−1];
53 //sum contains the sum of the quiz scores for student number st_num.
54 st_ave[st_num−1] = sum/NUMBER_QUIZZES;
55 //Average for student st_num is the value of st_ave[st_num-1]
56 }
57 }
58
59
60 void compute_quiz_ave(const int grade[][NUMBER_QUIZZES], double quiz_ave[])
61 {
62 for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
63 {//Process one quiz (for all students):
64 double sum = 0;
65 for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
66 sum = sum + grade[st_num−1][quiz_num−1];
67 //sum contains the sum of all student scores on quiz number quiz_num.
68 quiz_ave[quiz_num−1] = sum/NUMBER_STUDENTS;
69 //Average for quiz quiz_num is the value of quiz_ave[quiz_num-1]
70 }
71 }
72
73
74 //Uses iostream and iomanip:
75 void display(const int grade[][NUMBER_QUIZZES],
76 const double st_ave[], const double quiz_ave[])
77 {
78 using namespace std;
79 cout.setf(ios::fixed);
80 cout.setf(ios::showpoint);
81 cout.precision(1);
82 cout << setw(10) << "Student"
83 << setw(5) << "Ave"
84 << setw(15) << "Quizzes\n";

(continued)

7.4 Multidimensional Arrays 425

we have shown some sample data for the array grade. This data, in turn,
determines the values that the program stores in st_ave and in quiz_ave.
Display 7.15 also shows these values, which the program computes for st_ave
and quiz_ave.

The complete program for filling the array grade and then computing and
displaying both the student averages and the quiz averages is shown in
Display 7.13. In that program we have declared array dimensions as global
named constants. Since the procedures are particular to this program and
could not be reused elsewhere, we have used these globally defined constants
in the procedure bodies, rather than having parameters for the size of the array
dimensions. Since it is routine, the display does not show the code that fills
the array. ■

DISPLAY 7.13 Two-Dimensional Array (part 3 of 3)

85 for (int st_num = 1; st_num <= NUMBER_STUDENTS; st_num++)
86 {//Display for one st_num:
87 cout << setw(10) << st_num
88 << setw(5) << st_ave[st_num−1] << " ";
89 for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
90 cout << setw(5) << grade[st_num−1][quiz_num−1];
91 cout << endl;
92 }

93 cout << "Quiz averages = ";
94 for (int quiz_num = 1; quiz_num <= NUMBER_QUIZZES; quiz_num++)
95 cout << setw(5) << quiz_ave[quiz_num−1];
96 cout << endl;
97 }

Sample Dialogue

 <The dialogue for filling the array grade is not shown.>

Student Ave Quizzes

 1 10.0 10 10 10

 2 1.0 2 0 1

 3 7.7 8 6 9

 4 7.3 8 4 10

Quiz averages = 7.0 5.0 7.5

426 CHAPTER 7 / Arrays

DISPLAY 7.14 The Two-Dimensional Array grade

student 1 grade[0][0] grade[0][1] grade[0][2]

student 2 grade[1][0] grade[1][1] grade[1][2]

student 3 grade[2][0] grade[2][1] grade[2][2]

student 4 grade[3][0] grade[3][1] grade[3][2]
qu

iz
 1

qu
iz

 2

qu
iz

 3

grade[3][2] is the
grade that student 4
 received on quiz 3.

grade[3][0] is the
grade that student 4
 received on quiz 1.

grade[3][1] is the
grade that student 4
 received on quiz 2.

qu
iz

 1

qu
iz

 2

qu
iz

 3

DISPLAY 7.15 The Two-Dimensional Array grade (Another View)

student 1 10 10 10 10.0 st_ave[0]

student 2 2 0 1 1.0 st_ave[1]

student 3 8 6 9 7.7 st_ave[2]

student 4 8 4 10 7.3 st_ave[3]

quiz_ave 7.0 5.0 7.5

qu
iz

_a
ve

[0
]

qu
iz

_a
ve

[1
]

qu
iz

_a
ve

[2
]

Chapter Summary 427

PITFALL Using Commas Between Array Indexes

Note that in Display 7.13 we wrote an indexed variable for the two-dimensional
array grade as grade[st_num-1][quiz_num-1] with two pairs of square brackets. In
some other programming languages it would be written with one pair of brackets
and commas as follows: grade[st_num-1, quiz_num-1]; this is incorrect in C++. If
you use grade[st_num-1, quiz_num-1] in C++ you are unlikely to get any error
message, but it is incorrect usage and will cause your program to misbehave. ■

SELF -TEST EXERC ISES

20. What is the output produced by the following code?

int my_array[4][4], index1, index2;
for (index1 = 0; index1 < 4; index1++)
 for (index2 = 0; index2 < 4; index2++)
 my_array[index1][index2] = index2;
for (index1 = 0; index1 < 4; index1++)
{
 for (index2 = 0; index2 < 4; index2++)
 cout << my_array[index1][index2] << " ";
 cout << endl;
}

21. Write code that will fill the array a (declared below) with numbers typed
in at the keyboard. The numbers will be input five per line, on four lines
(although your solution need not depend on how the input numbers are
divided into lines).

int a[4][5];

22. Write a function definition for a void function called echo such that the fol-
lowing function call will echo the input described in Self-Test Exercise 21,
and will echo it in the same format as we specified for the input (that is,
four lines of five numbers per line):

echo(a, 4);

CHAPTER SUMMARY

■ An array can be used to store and manipulate a collection of data that is all
of the same type.

■ The indexed variables of an array can be used just like any other variables of
the base type of the array.

428 CHAPTER 7 / Arrays

■ A for loop is a good way to step through the elements of an array and per-
form some program action on each indexed variable.

■ The most common programming error made when using arrays is attempt-
ing to access a nonexistent array index. Always check the first and last itera-
tions of a loop that manipulates an array to make sure it does not use an
index that is illegally small or illegally large.

■ An array formal parameter is neither a call-by-value parameter nor a call-by-
reference parameter, but a new kind of parameter. An array parameter is
similar to a call-by-reference parameter in that any change that is made to
the formal parameter in the body of the function will be made to the array
argument when the function is called.

■ The indexed variables for an array are stored next to each other in the com-
puter’s memory so that the array occupies a contiguous portion of memory.
When the array is passed as an argument to a function, only the address of
the first indexed variable (the one numbered 0) is given to the calling func-
tion. Therefore, a function with an array parameter usually needs another
formal parameter of type int to give the size of the array.

■ When using a partially filled array, your program needs an additional vari-
able of type int to keep track of how much of the array is being used.

■ To tell the compiler that an array argument should not be changed by your
function, you can insert the modifier const before the array parameter for
that argument position. An array parameter that is modified with a const is
called a constant array parameter.

■ If you need an array with more than one index, you can use a multidimen-
sional array, which is actually an array of arrays.

Answers to Self-Test Exercises

1. The statement int a[5]; is a declaration, where 5 is the number of array
elements. The expression a[4] is an access into the array defined by the
previous statement. The access is to the element having index 4, which is
the fifth (and last) array element.

2. a. score

b. double

c. 5

d. 0 through 4

e. Any of score[0], score[1], score[2], score[3], score[4]

Answers to Self-Test Exercises 429

3. a. One too many initializers

b. Correct. The array size is 4.

c. Correct. The array size is 4.

4. abc

5. 1.1 2.2 3.3
1.1 3.3 3.3

(Remember that the indexes start with 0, not 1.)

6. 2 4 6 8 10 12 14 16 18
0 4 8 12 16

7. The indexed variables of sample_array are sample_array[0] through
sample_array[9], but this piece of code tries to fill sample_array[1]
through sample_array[10]. The index 10 in sample_array[10] is out of
range.

8. There is an index out of range. When index is equal to 9, index + 1 is
equal to 10, so a[index + 1], which is the same as a[10], has an illegal
index. The loop should stop with one fewer iteration. To correct the code,
change the first line of the for loop to

for (int index = 0; index < 9; index++)

9. int i, a[20];

cout << "Enter 20 numbers:\n";

for (i = 0; i < 20; i++)
 cin >> a[i];

10. The array will consume 14 bytes of memory. The address of the indexed
variable your_array[3] is 1006.

11. The following function calls are acceptable:

tripler(number);
tripler(a[2]);
tripler(a[number]);

The following function calls are incorrect:

tripler(a[3]);
tripler(a);

The first one has an illegal index. The second has no indexed expression at
all. You cannot use an entire array as an argument to tripler, as in the

430 CHAPTER 7 / Arrays

second call. The section “Entire Arrays as Function Arguments”
discusses a different situation in which you can use an entire array as
an argument.

12. The loop steps through indexed variables b[1] through b[5], but 5 is an
illegal index for the array b. The indexes are 0, 1, 2, 3, and 4. The correct
version of the code is:

int b[5] = {1, 2, 3, 4, 5};

for (int i = 0; i < 5; i++)
tripler(b[i]);

13. void one_more(int a[], int size)
//Precondition: size is the declared size of the array a.
//a[0] through a[size-1] have been given values.
//Postcondition: a[index] has been increased by 1
//for all indexed variables of a.
{

for (int index = 0; index < size; index++)
a[index] = a[index] + 1;

}

14. The following function calls are all acceptable:

too2(my_array, 29);
too2(my_array, 10);
too2(your_array, 100);

The call

too2(my_array, 10);

is legal, but will fill only the first ten indexed variables of my_array. If that
is what is desired, the call is acceptable.

The following function calls are all incorrect:

too2(my_array, 55);
“Hey too2. Please, come over here.”
too2(my_array[3], 29);

The first of these is incorrect because the second argument is too large.
The second is incorrect because it is missing a final semicolon (and for
other reasons). The third one is incorrect because it uses an indexed
variable for an argument where it should use the entire array.

15. You can make the array parameter in output a constant parameter, since
there is no need to change the values of any indexed variables of the
array parameter. You cannot make the parameter in drop_odd a constant

Answers to Self-Test Exercises 431

parameter because it may have the values of some of its indexed vari-
ables changed.

void output(const double a[], int size);
//Precondition: a[0] through a[size - 1] have values.
//Postcondition: a[0] through a[size - 1] have been
//written out.

void drop_odd(int a[], int size);
//Precondition: a[0] through a[size - 1] have values.
//Postcondition: All odd numbers in a[0] through
//a[size - 1] have been changed to 0.

16. int out_of_order(double array[], int size)
{
 for(int i = 0; i < size - 1; i++)
 if (array[i] > array[i+1])//fetch a[i+1] for each i.
 return i+1;
 return -1;
}

17. #include <iostream>
using namespace std;
const int DECLARED_SIZE = 10;

int main()
{

cout << "Enter up to ten nonnegative integers.\n"
 << "Place a negative number at the end.\n";

int number_array[DECLARED_SIZE], next, index = 0;
cin >> next;
while ((next >= 0) && (index < DECLARED_SIZE))
{

number_array[index] = next;
index++;
cin >> next;

}

int number_used = index;
cout << "Here they are back at you:";
for (index = 0; index < number_used; index++)

 cout << number_array[index] << " ";
cout << endl;
return 0;

}

18. #include <iostream>
using namespace std;
const int DECLARED_SIZE = 10;

int main()

432 CHAPTER 7 / Arrays

{
cout << "Enter up to ten letters"

<< " followed by a period:\n";
char letter_box[DECLARED_SIZE], next;
int index = 0;
cin >> next;
while ((next != '.') && (index < DECLARED_SIZE))
{

letter_box[index] = next;
index++;
cin >> next;

}

 int number_used = index;
cout << "Here they are backwards:\n";
for (index = number_used-1; index >= 0; index--)

cout << letter_box[index];
cout << endl;
return 0;

}

19. bool search(const int a[], int number_used,
 int target, int& where)
{
 int index = 0;
 bool found = false;
 while ((!found) && (index < number_used))
 if (target == a[index])
 found = true;
 else
 index++;
 //If target was found, then
 //found == true and a[index] == target.
 if (found)
 where = index;
 return found;
}

20. 0 1 2 3
0 1 2 3
0 1 2 3
0 1 2 3

21. int a[4][5];
int index1, index2;
for (index1 = 0; index1 < 4; index1++)

for (index2 = 0; index2 < 5; index2++)
 cin >> a[index1][index2];

Programming Projects 433

22. void echo(const int a[][5], int size_of_a)
//Outputs the values in the array a on size_of_a lines
//with 5 numbers per line.
{
 for (int index1 = 0; index1 < size_of_a; index1++)
 {
 for (int index2 = 0; index2 < 5; index2++)
 cout << a[index1][index2] << " ";
 cout << endl;
 }
}

PROGRAMMING PROJECTS

Projects 7 through 11 can be written more elegantly using structures or classes.
Projects 12 through 15 are meant to be written using multidimensional arrays
and do not require structures or classes. See Chapters 10 through 11 for
information on defining classes and structures.

1. There are three versions of this project.

Version 1 (all interactive). Write a program that reads in the average
monthly rainfall for a city for each month of the year and then reads in
the actual monthly rainfall for each of the previous 12 months. The
program then prints out a nicely formatted table showing the rainfall for
each of the previous 12 months as well as how much above or below
average the rainfall was for each month. The average monthly rainfall is
given for the months January, February, and so forth, in order. To obtain
the actual rainfall for the previous 12 months, the program first asks what
the current month is and then asks for the rainfall figures for the previous
12 months. The output should correctly label the months.

There are a variety of ways to deal with the month names. One
straightforward method is to code the months as integers and then do
a conversion before doing the output. A large switch statement is
acceptable in an output function. The month input can be handled in
any manner you wish, as long as it is relatively easy and pleasant for
the user.

After you have completed this program, produce an enhanced version
that also outputs a graph showing the average rainfall and the actual
rainfall for each of the previous 12 months. The graph should be similar
to the one shown in Display 7.8, except that there should be two bar
graphs for each month and they should be labeled as the average rainfall
and the rainfall for the most recent month. Your program should ask the

434 CHAPTER 7 / Arrays

user whether she or he wants to see the table or the bar graph and then
should display whichever format is requested. Include a loop that allows
the user to see either format as often as the user wishes until the user
requests that the program end.

Version 2 (combines interactive and file output). For a more elaborate
version, also allow the user to request that the table and graph be output
to a file. The file name is entered by the user. This program does
everything that the Version 1 program does, but has this added feature. To
read a file name, you must use material presented in the optional section
of Chapter 5 entitled “File Names as Input.”

Version 3 (all I/O with files). This version is like Version 1 except that
input is taken from a file and the output is sent to a file. Since there is
no user to interact with, there is no loop to allow repeating the
display; both the table and the graph are output to the same file. If this
is a class assignment, ask your instructor for instructions on what file
names to use.

2. Hexadecimal numerals are integers written in base 16. The 16 digits
used are '0' through '9' plus 'a' for the “digit 10”, 'b' for the “digit 11”,
'c' for the “digit 12”, 'd' for the “digit 13”, 'e' for the “digit 14”, and
'f' for the “digit 15”. For example, the hexadecimal numeral d is the
same as base 10 numeral 13 and the hexadecimal numeral 1d is the same
as the base 10 numeral 29. Write a C++ Program to perform addition of
two hexadecimal numerals each with up to 10 digits. If the result of the
addition is more than 10 digits long, then simply give the output mes-
sage "Addition Overflow" and not the result of the addition. Use arrays
to store hexadecimal numerals as arrays of characters. Include a loop to
repeat this calculation for new numbers until the user says she or he
wants to end the program.

3. Write a function called delete_repeats that has a partially filled array of
characters as a formal parameter and that deletes all repeated letters from
the array. Since a partially filled array requires two arguments, the function
will actually have two formal parameters: an array parameter and a formal
parameter of type int that gives the number of array positions used. When
a letter is deleted, the remaining letters are moved forward to fill in the gap.
This will create empty positions at the end of the array so that less of the
array is used. Since the formal parameter is a partially filled array, a second
formal parameter of type int will tell how many array positions are filled.
This second formal parameter will be a call-by-reference parameter and will
be changed to show how much of the array is used after the repeated letters
are deleted.

Video Note
Solution to
Programming
Project 7.3

Programming Projects 435

For example, consider the following code:

char a[10];
a[0] = 'a';
a[1] = 'b';
a[2] = 'a';
a[3] = 'c';
int size = 4;
delete_repeats(a, size);

After this code is executed, the value of a[0] is 'a', the value of a[1] is
'b', the value of a[2] is 'c', and the value of size is 3. (The value of a[3]
is no longer of any concern, since the partially filled array no longer uses
this indexed variable.)

You may assume that the partially filled array contains only lowercase
letters. Embed your function in a suitable test program.

4. The standard deviation of a list of numbers is a measure of how much the
numbers deviate from the average. If the standard deviation is small, the
numbers are clustered close to the average. If the standard deviation is
large, the numbers are scattered far from the average. The standard devia-
tion, , of a list of numbers is defined as follows:

where is the average of the numbers , , … . Define a function
that takes a partially filled array of numbers as its arguments and returns the
standard deviation of the numbers in the partially filled array. Since a
partially filled array requires two arguments, the function will actually have
two formal parameters: an array parameter and a formal parameter of type
int that gives the number of array positions used. The numbers in the array
will be of type double. Embed your function in a suitable test program.

5. Write a program that reads in a list of integers into an array with base type
int. Provide the facility to either read this array from the keyboard or
from a file, at the user’s option. If the user chooses file input, the program
should request a file name. You may assume that there are fewer than 50
entries in the array. Your program determines how many entries there are.
The output is to be a two-column list. The first column is a list of the dis-
tinct array elements; the second column is the count of the number of
occurrences of each element. The list should be sorted on entries in the
first column, largest to smallest.

S N xi

S

xi x–()2

i 1=

N

∑
N

----------------------------=

x N x1 x2

436 CHAPTER 7 / Arrays

For example, for the input

-12 3 -12 4 1 1 -12 1 -1 1 2 3 4 2 3 -12

the output should be

 N Count
 4 2
 3 3
 2 2
 1 4
-1 1
-12 4

6. The text discusses the selection sort. We propose a different “sort” routine,
the insertion sort. This routine is in a sense the opposite of the selection
sort in that it picks up successive elements from the array and inserts each
of these into the correct position in an already sorted subarray (at one end
of the array we are sorting).

The array to be sorted is divided into a sorted subarray and an
unexamined subarray. Initially, the sorted subarray is empty. Each
element of the unexamined subarray is picked and inserted into its correct
position in the sorted subarray.

Write a function and a test program to implement the selection sort.
Thoroughly test your program.

Example and hints: The implementation involves an outside loop that
selects successive elements in the unsorted subarray and a nested loop
that inserts each element in its proper position in the sorted subarray.

Initially, the sorted subarray is empty, and the unsorted subarray is all of
the array:

Pick the first element, a[0] (that is, 8), and place it in the first position.
The inside loop has nothing to do in this first case. The array and
subarrays look like this:

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

8 6 10 2 16 4 18 14 12 10

sorted unsorted

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

8 6 10 2 16 4 18 14 12 10

Programming Projects 437

The first element from the unsorted subarray is a[1], which has value 6.
Insert this into the sorted subarray in its proper position. These are out of
order, so the inside loop must swap values in position 0 and position 1.
The result is as follows:

Note that the sorted subarray has grown by one entry.

Repeat the process for the first unsorted subarray entry, a[2], finding a
place where a[2] can be placed so that the subarray remains sorted. Since
a[2] is already in place, that is, it is larger than the largest element in the
sorted subarray, the inside loop has nothing to do. The result is as
follows:

Again, pick the first unsorted array element, a[3]. This time the inside
loop has to swap values until the value of a[3] is in its proper position.
This involves some swapping:

sorted unsorted

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

6 8 10 2 16 4 18 14 10 12

sorted unsorted

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

6 8 10 2 16 4 18 14 10 12

sorted unsorted

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

6 8 10<-->2 16 4 18 14 10 12

sorted unsorted

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

6 8<--->2 10 16 4 18 14 10 12

438 CHAPTER 7 / Arrays

The result of placing the 2 in the sorted subarray is

The algorithm continues in this fashion until the unsorted array is empty
and the sorted array has all the original array’s elements.

7. An array can be used to store large integers one digit at a time. For exam-
ple, the integer 1234 could be stored in the array a by setting a[0] to 1,
a[1] to 2, a[2] to 3, and a[3] to 4. However, for this exercise you might
find it more useful to store the digits backward, that is, place 4 in a[0], 3
in a[1], 2 in a[2], and 1 in a[3].

In this exercise you will write a program that reads in two positive integers
that are 20 or fewer digits in length and then outputs the sum of the two
numbers. Your program will read the digits as values of type char so that
the number 1234 is read as the four characters '1', '2', '3', and '4'. After
they are read into the program, the characters are changed to values of
type int. The digits will be read into a partially filled array, and you might
find it useful to reverse the order of the elements in the array after the
array is filled with data from the keyboard. (Whether or not you reverse
the order of the elements in the array is up to you. It can be done either
way, and each way has its advantages and disadvantages.)

Your program will perform the addition by implementing the usual
paper-and-pencil addition algorithm. The result of the addition is stored
in an array of size 20, and the result is then written to the screen. If the
result of the addition is an integer with more than the maximum number
of digits (that is, more than 20 digits), then your program should issue a
message saying that it has encountered “integer overflow.” You should be
able to change the maximum length of the integers by changing only one
globally defined constant. Include a loop that allows the user to continue
to do more additions until the user says the program should end.

8. Write a program that will read a line of text and output a list of all the let-
ters that occur in the text together with the number of times each letter

sorted unsorted

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

6<--->2 8 10 16 4 18 14 10 12

sorted unsorted

a[0] a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9]

2 6 8 10 16 4 18 14 10 12

Programming Projects 439

occurs in the line. End the line with a period that serves as a sentinel
value. The letters should be listed in the following order: the most fre-
quently occurring letter, the next most frequently occurring letter, and
so forth. Use two arrays, one to hold integers and one to hold letters.
You may assume that the input uses all lowercase letters. For example,
the input

do be do bo.

should produce output similar to the following:

Letter Number of Occurrences
o 3
d 2
b 2
e 1

Your program will need to sort the arrays according to the values in the
integer array. This will require that you modify the function sort given
in Display 7.12. You cannot use sort to solve this problem without
changing the function. If this is a class assignment, ask your instructor if
input/output should be done with the keyboard and screen or if it
should be done with files. If it is to be done with files, ask your
instructor for instructions on file names.

9. Write a program to score five-card poker hands into one of the follow-
ing categories: nothing, one pair, two pairs, three of a kind, straight (in
order with no gaps), flush (all the same suit, for example, all spades),
full house (one pair and three of a kind), four of a kind, straight flush
(both a straight and a flush). Use two arrays, one to hold the value of
the card and one to hold the suit. Include a loop that allows the user
to continue to score more hands until the user says the program
should end.

10. Write a program that will allow two users to play tic-tac-toe. The program
should ask for moves alternately from player X and player O. The pro-
gram displays the game positions as follows:

1 2 3
4 5 6
7 8 9

The players enter their moves by entering the position number they wish
to mark. After each move, the program displays the changed board. A
sample board configuration is as follows:

X X O
4 5 6
O 8 9

440 CHAPTER 7 / Arrays

11. Write a program to assign passengers seats in an airplane. Assume a small
airplane with seat numbering as follows:

1 A B C D
2 A B C D
3 A B C D
4 A B C D
5 A B C D
6 A B C D
7 A B C D

The program should display the seat pattern, with an X marking the seats
already assigned. For example, after seats 1A, 2B, and 4C are taken, the
display should look like this:

1 X B C D
2 A X C D
3 A B C D
4 A B X D
5 A B C D
6 A B C D
7 A B C D

After displaying the seats available, the program prompts for the seat
desired, the user types in a seat, and then the display of available seats is
updated. This continues until all seats are filled or until the user signals
that the program should end. If the user types in a seat that is already
assigned, the program should say that that seat is occupied and ask for
another choice.

12. Write a program that accepts input like the program in Display 7.8 and
that outputs a bar graph like the one in that display except that your pro-
gram will output the bars vertically rather than horizontally. A two-
dimensional array may be useful.

13. The mathematician John Horton Conway invented the “Game of Life.”
Though not a “game” in any traditional sense, it provides interesting behav-
ior that is specified with only a few rules. This Project asks you to write a pro-
gram that allows you to specify an initial configuration. The program follows
the rules of LIFE to show the continuing behavior of the configuration.

LIFE is an organism that lives in a discrete, two-dimensional world. While
this world is actually unlimited, we don’t have that luxury, so we restrict
the array to 80 characters wide by 22 character positions high. If you have
access to a larger screen, by all means use it.

This world is an array with each cell capable of holding one LIFE cell. Gener-
ations mark the passing of time. Each generation brings births and deaths to
the LIFE community. The births and deaths follow the following set of rules.

Programming Projects 441

■ We define each cell to have eight neighbor cells. The neighbors of a cell
are the cells directly above, below, to the right, to the left, diagonally
above to the right and left, and diagonally below to the right and left.

■ If an occupied cell has zero or one neighbors, it dies of loneliness. If an
occupied cell has more than three neighbors, it dies of overcrowding.

■ If an empty cell has exactly three occupied neighbor cells, there is a
birth of a new cell to replace the empty cell.

■ Births and deaths are instantaneous and occur at the changes of genera-
tion. A cell dying for whatever reason may help cause birth, but a new-
born cell cannot resurrect a cell that is dying, nor will a cell’s death
prevent the death of another, say, by reducing the local population.

Notes: Some configurations grow from relatively small starting configurations.
Others move across the region. It is recommended that for text output
you use a rectangular array of char with 80 columns and 22 rows to
store the LIFE world’s successive generations. Use an asterisk * to
indicate a living cell, and use a blank to indicate an empty (or dead)
cell. If you have a screen with more rows than that, by all means make
use of the whole screen.

Examples:

becomes

*
*
*

then becomes

again, and so on.

Suggestions: Look for stable configurations. That is, look for communities
that repeat patterns continually. The number of configurations in the
repetition is called the period. There are configurations that are fixed,
which continue without change. A possible project is to find such
configurations.

Hints: Define a void function named generation that takes the array we call
world, an 80-column by 22-row array of char, which contains the initial
configuration. The function scans the array and modifies the cells, marking
the cells with births and deaths in accord with the rules listed earlier. This
involves examining each cell in turn, either killing the cell, letting it live, or,
if the cell is empty, deciding whether a cell should be born. There should be
a function display that accepts the array world and displays the array on

442 CHAPTER 7 / Arrays

the screen. Some sort of time delay is appropriate between calls to
generation and display. To do this, your program should generate and
display the next generation when you press Return. You are at liberty to
automate this, but automation is not necessary for the program.

14. Redo (or do for the first time) Programming Project 17 from Chapter 6.
Your program should first load all boy names and girl names from the file
into separate arrays. Search for the target name from the arrays, not
directly from the file.

15. Redo (or do for the first time) Programming Project 18 from Chapter 6.
Your program should not be hard-coded to create a bar chart of exactly
four integers, but should be able to graph an array of up to 100 integers.
Scale the graph appropriately in the horizontal and vertical dimensions so
the bar chart fits within a 400 by 400 pixel area. You can impose the con-
straint that all integers in the array are nonnegative. Use the sentinel value
of –1 to indicate the end of the values to draw in the bar chart. For exam-
ple, to create the bar chart with values 20, 40, 60, and 120, your program
would operate on the array:

a[0] = 20
a[1] = 40
a[2] = 60
a[3] = 120
a[4] = -1

Test your program by creating several bar charts with different values and
up to 100 entries and view the resulting SVG files to ensure that they are
drawn correctly.

16. A common memory matching game played by young children is to start
with a deck of cards that contain identical pairs. For example, given six
cards in the deck, two might be labeled “1,” two might be labeled “2,”
and two might be labeled “3.” The cards are shuffled and placed face
down on the table. The player then selects two cards that are face down,
turns them face up, and if they match they are left face up. If the two cards
do not match, they are returned to their original position face down. The
game continues in this fashion until all cards are face up.

Write a program that plays the memory matching game. Use 16 cards that
are laid out in a 4�4 square and are labeled with pairs of numbers from 1
to 8. Your program should allow the player to specify the cards that she
would like to select through a coordinate system.

Programming Projects 443

For example, suppose the cards are in the following layout:

All of the cards are face down except for the pair 8, which has been
located at coordinates (1, 1) and (2, 3). To hide the cards that have been
temporarily placed face up, output a large number of newlines to force
the old board off the screen.

Hint: Use a two-dimensional array for the arrangement of cards and
another two-dimensional array that indicates if a card is face up or face
down. Write a function that “shuffles” the cards in the array by repeatedly
selecting two cards at random and swapping them. Random number
generation is described in Appendix 4.

17. Your swim school has two swimming instructors, Jeff and Anna. Their
current schedules are shown below. An “X” denotes a one-hour time slot
that is occupied with a lesson.

Jeff Monday Tuesday Wednesday Thursday

11-12 X X

12-1 X X X

1-2 X X

2-3 X X X

Anna Monday Tuesday Wednesday Thursday

11-12 X X X

12-1 X X

1-2 X X

2-3 X X X

1 2 3 4

1 | 8 * * *
2 | * * * *
3 | * 8 * *
4 | * * * *

444 CHAPTER 7 / Arrays

Write a program with array(s) capable of storing the schedules. Create a
main menu that allows the user to mark a time slot as busy or free for
either instructor. Also, add an option to output the schedules to the
screen. Next, add an option to output all time slots available for
individual lessons (slots when at least one instructor is free). Finally, add
an option to output all time slots available for group lessons (when both
instructors are free).

18. Modify Programming Project 17 by adding menu options to load and
save the schedules from a file.

8Strings and Vectors

8.1 AN ARRAY TYPE FOR STRINGS 447
C-String Values and C-String Variables 447
Pitfall: Using = and == with C Strings 451
Other Functions in <cstring> 453
C-String Input and Output 457
C-String-to-Number Conversions and

Robust Input 460

8.2 THE STANDARD string CLASS 465
Introduction to the Standard Class string 465
I/O with the Class string 468
Programming Tip: More Versions of getline 472
Pitfall: Mixing cin >> variable; and getline 472
String Processing with the Class string 474
Programming Example: Palindrome Testing 476
Converting between string Objects and

C Strings 481

8.3 VECTORS 482
Vector Basics 482
Pitfall: Using Square Brackets Beyond the

Vector Size 484
Programming Tip: Vector Assignment Is

Well Behaved 486
Efficiency Issues 487

Chapter Summary 488
Answers to Self-Test Exercises 489
Programming Projects 491

446

Polonius: What do you read my lord?
Hamlet: Words, words, words.

WILLIAM SHAKESPEARE, Hamlet

INTRODUCTION
This chapter discusses two topics that use arrays or are related to arrays: strings
and vectors. Although strings and vectors are very closely related, this
relationship is not always obvious, and no one of these topics depends on the
other. The topics of strings and vectors can be covered in either order.

Sections 8.1 and 8.2 present two types whose values represent strings
of characters, such as "Hello". One type, discussed in Section 8.1, is just
an array with base type char that stores strings of characters in the array
and marks the end of the string with the null character '\0'. This is the
older way of representing strings, which C++ inherited from the C
programming language. These sorts of strings are called C strings.
Although C strings are an older way of representing strings, it is difficult
to do any sort of string processing in C++ without at least passing contact
with C strings. For example, quoted strings, such as "Hello", are imple-
mented as C strings in C++.

The ANSI/ISO C++ standard includes a more modern string handling
facility in the form of the class string. The class string is the second string
type that we will discuss in this chapter and is covered in Section 8.2.

Vectors can be thought of as arrays that can grow (and shrink) in length
while your program is running. In C++, once your program creates an array, it
cannot change the length of the array. Vectors serve the same purpose as arrays
except that they can change length while the program is running.

PREREQUISITES
Sections 8.1 and 8.2, which cover strings, and Section 8.3 which covers
vectors, are independent of each other. If you wish to cover vectors before
strings, that is fine.

Section 8.1 on C strings uses material from Chapters 2 through 6, and
Sections 7.1, 7.2, and 7.3 of Chapter 7.

Section 8.2 on the string class uses Section 8.1 and material from
Chapters 2 through 6 and Sections 7.1, 7.2, and 7.3 of Chapter 7.

Section 8.3 on vectors uses material from Chapters 2 through 6 and
Sections 7.1, 7.2, and 7.3 of Chapter 7.

8.1 An Array Type for Strings 447

8.1 AN ARRAY TYPE FOR STRINGS

In everything one must consider the end.

JEAN DE LA FONTAINE, Fables, Book III (1668)

In this section we describe one way to represent strings of characters, which
C++ has inherited from the C language. In Section 8.2 we describe a string
class that is a more modern way to represent strings. Although the string type
described here may be a bit “old-fashioned,” it is still widely used and is an
integral part of the C++ language.

C-String Values and C-String Variables

One way to represent a string is as an array with base type char. If the string is
"Hello", it is handy to represent it as an array of characters with six indexed
variables: five for the five letters in "Hello" plus one for the character '\0', which
serves as an end marker. The character '\0' is called the null character and is
used as an end marker because it is distinct from all the “real” characters. The end
marker allows your program to read the array one character at a time and know
that it should stop reading when it reads the end marker '\0'. A string stored in
this way (as an array of characters terminated with '\0') is called a C string.

We write '\0' with two symbols when we write it in a program, but just
like the new-line character '\n', the character '\0' is really only a single
character value. Like any other character value, '\0' can be stored in one
variable of type char or one indexed variable of an array of characters.

You have already been using C strings. In C++, a literal string, such as "Hello",
is stored as a C string, although you seldom need to be aware of this detail.

A C-string variable is just an array of characters. Thus, the following array
declaration provides us with a C-string variable capable of storing a C-string
value with nine or fewer characters:

char s[10];

The Null Character, '\0'

The null character, '\0', is used to mark the end of a C string that is stored
in an array of characters. When an array of characters is used in this way, the
array is often called a C-string variable. Although the null character '\0' is
written using two symbols, it is a single character that fits in one variable of
type char or one indexed variable of an array of characters.

the null
character '\0'

C string

C-string variable

448 CHAPTER 8 / Strings and Vectors

The 10 is for the nine letters in the string plus the null character '\0' to mark
the end of the string.

A C-string variable is a partially filled array of characters. Like any other
partially filled array, a C-string variable uses positions starting at indexed
variable 0 through as many as are needed. However, a C-string variable does
not use an int variable to keep track of how much of the array is currently
being used. Instead, a string variable places the special symbol '\0' in the array
immediately after the last character of the C string. Thus, if s contains the string
"Hi Mom!", then the array elements are filled as shown here:

The character '\0' is used as a sentinel value to mark the end of the C string.
If you read the characters in the C string starting at indexed variable s[0],
proceed to s[1], and then to s[2], and so forth, you know that when you
encounter the symbol '\0', you have reached the end of the C string. Since
the symbol '\0' always occupies one element of the array, the length of the
longest string that the array can hold is one less than the size of the array.

The thing that distinguishes a C-string variable from an ordinary array of
characters is that a C-string variable must contain the null character '\0' at the
end of the C-string value. This is a distinction in how the array is used rather
than a distinction about what the array is. A C-string variable is an array of
characters, but it is used in a different way.

C-String Variable Declaration

A C-string variable is the same thing as an array of characters, but it is
used differently. A C-string variable is declared to be an array of characters
in the usual way.

SYNTAX

char Array_Name[Maximum_C_string_Size + 1];

EXAMPLE

char my_c_string[11];

The + 1 allows for the null character '\0', which terminates any C string
stored in the array. For example, the C-string variable my_c_string in the
example can hold a C string that is ten or fewer characters long.

H

s[0]

I

s[1] s[2]

M

s[3]

o

s[4]

m

s[5]

!

s[6]

\0

s[7]

?

s[8]

?

s[9]

C-string
variables vs.

arrays of
characters

8.1 An Array Type for Strings 449

You can initialize a C-string variable when you declare it, as illustrated by
the following example:

char my_message[20] = "Hi there.";

Notice that the C string assigned to the C-string variable need not fill the entire
array.

When you initialize a C-string variable, you can omit the array size. C++
will automatically make the size of the C-string variable 1 more than the
length of the quoted string. (The one extra indexed variable is for '\0'.) For
example,

char short_string[] = "abc";

is equivalent to

char short_string[4] = "abc";

Be sure you do not confuse the following initializations:

char short_string[] = "abc";

and

char short_string[] = {'a', 'b', 'c'};

They are not equivalent. The first of these two possible initializations places the
null character '\0' in the array after the characters 'a', 'b', and 'c'. The
second one does not put a '\0' anywhere in the array.

Initializing a C-String Variable

A C-string variable can be initialized when it is declared, as illustrated by
the following example:

char your_string[11] = "Do Be Do";

Initializing in this way automatically places the null character, '\0', in the
array at the end of the C string specified.

If you omit the number inside the square brackets, [], then the C-string
variable will be given a size one character longer than the length of the C
string. For example, the following declares my_string to have nine
indexed variables (eight for the characters of the C string "Do Be Do" and
one for the null character '\0'):

char my_string[] = "Do Be Do";

initializing
C-string
variables

450 CHAPTER 8 / Strings and Vectors

A C-string variable is an array, so it has indexed variables that can be used
just like those of any other array. For example, suppose your program contains
the following C-string variable declaration:

char our_string[5] = "Hi";

With our_string declared as shown previously, your program has the follow-
ing indexed variables: our_string[0], our_string[1], our_string[2],
our_string[3], and our_string[4]. For example, the following will change
the C-string value in our_string to a C string of the same length consisting of
all 'X' characters:

int index = 0;
while (our_string[index] != '\0')
{

our_string[index] = 'X';
index++;

}

When manipulating these indexed variables, you should be very careful
not to replace the null character '\0' with some other value. If the array loses
the value '\0', it will no longer behave like a C-string variable. For example,
the following will change the array happy_string so that it no longer contains
a C string:

char happy_string[7] = "DoBeDo";
happy_string[6] = 'Z';

After this code is executed, the array happy_string will still contain the six
letters in the C-string "DoBeDo", but happy_string will no longer contain the
null character '\0' to mark the end of the C string. Many string-manipulating
functions depend critically on the presence of '\0' to mark the end of the C-
string value.

As another example, consider the previous while loop that changed charac-
ters in the C-string variable our_string. That while loop changes characters until
it encounters a '\0'. If the loop never encounters a '\0', then it could change a
large chunk of memory to some unwanted values, which could make your
program do strange things. As a safety feature, it would be wise to rewrite that
while loop as follows, so that if the null character '\0' is lost, the loop will not
inadvertently change memory locations beyond the end of the array:

int index = 0;
while ((our_string[index] != '\0') && (index < SIZE))
{

our_string[index] = 'X';
index++;

}

SIZE is a defined constant equal to the declared size of the array our_string.

indexed
variables

for C-string
variables

Do not destroy
the '\0'

8.1 An Array Type for Strings 451

■ PITFALL Using = and == with C Strings

C-string values and C-string variables are not like values and variables of other
data types, and many of the usual operations do not work for C strings. You
cannot use a C-string variable in an assignment statement using =. If you use
== to test C strings for equality, you will not get the result you expect. The
reason for these problems is that C strings and C-string variables are arrays.

Assigning a value to a C-string variable is not as simple as it is for other
kinds of variables. The following is illegal:

char a_string[10];
a_string = "Hello";

Although you can use the equal sign to assign a value to a C-string variable
when the variable is declared, you cannot do it anywhere else in your program.
Technically, a use of the equal sign in a declaration, as in

char happy_string[7] = "DoBeDo";

is an initialization, not an assignment. If you want to assign a value to a
C-string variable, you must do something else.

There are a number of different ways to assign a value to a C-string
variable. The easiest way is to use the predefined function strcpy as shown:

strcpy(a_string, "Hello");

This will set the value of a_string equal to "Hello". Unfortunately, this
version of the function strcpy does not check to make sure the copying does
not exceed the size of the string variable that is the first argument.

Many, but not all, versions of C++ also have a safer version of strcpy. This
safer version is spelled strncpy (with an n). The function strncpy takes a third
argument that gives the maximum number of characters to copy. For example:

char another_string[10];
strncpy(another_string, a_string_variable, 9);

With this strncpy function, at most nine characters (leaving room for '\0')
will be copied from the C-string variable a_string_variable, no matter how
long the string in a_string_variable may be.

 You also cannot use the operator == in an expression to test whether two
C strings are the same. (Things are actually much worse than that. You can use
== with C strings, but it does not test for the C strings being equal. So if you
use == to test two C strings for equality, you are likely to get incorrect results,
but no error message!) To test whether two C strings are the same, you can use
the predefined function strcmp. For example:

if (strcmp(c_string1, c_string2))
cout << "The strings are NOT the same.";

else
cout << "The strings are the same.";

assigning a
C-string value

Illegal!

testing C strings
for equality

452 CHAPTER 8 / Strings and Vectors

Note that the function strcmp works differently than you might guess. The
comparison is true if the strings do not match. The function strcmp compares
the characters in the C-string arguments a character at a time. If at any point the
numeric encoding of the character from c_string1 is less than the numeric
encoding of the corresponding character from c_string2, the testing stops, and
a negative number is returned. If the character from c_string1 is greater than
the character from c_string2, then a positive number is returned. (Some
implementations of strcmp return the difference of the character encodings, but
you should not depend on that.) If the C strings are the same, a 0 is returned.
The ordering relationship used for comparing characters is called lexicographic
order. The important point to note is that if both strings are all in uppercase or
all in lowercase, then lexicographic order is just alphabetic order.

We see that strcmp returns a negative value, a positive value, or zero,
depending on whether the C strings compare lexicographically as less, greater,
or equal. If you use strcmp as a Boolean expression in an if or a looping
statement to test C strings for equality, then the nonzero value will be converted
to true if the strings are different, and the zero will be converted to false. Be
sure that you remember this inverted logic in your testing for C string equality.

C++ compilers that are compliant with the standard have a safer version
of strcmp that has a third argument that gives the maximum number of
characters to compare.

The functions strcpy and strcmp are in the library with the header file
<cstring>, so to use them you would insert the following near the top of the file:

#include <cstring>

The functions strcpy and strcmp do not require the following or anything
similar (although other parts of your program are likely to require it):1

using namespace std; ■

1 As you will see in Chapter 12, the definitions of strcpy and strcmp, and all other
string functions in <cstring> are placed in the global namespace, not in the std
namespace, and so no using directive is required.

The <cstring> Library

You do not need any include directive or using directive in order to
declare and initialize C strings. However, when processing C strings, you
inevitably will use some of the predefined string functions in the library
<cstring>. So, when using C strings, you will normally give the following
include directive near the beginning of the file with your code:

#include <cstring>

lexicographic
order

8.1 An Array Type for Strings 453

Other Functions in <cstring>

Display 8.1 contains a few of the most commonly used functions from the
library with the header file <cstring>. To use them you insert the following
near the top of the file:

#include <cstring>

Like the functions strcpy and strcmp, all the other functions in <cstring>
also do not require the following or anything similar (although other parts of
your program are likely to require it):1

using namespace std;

We have already discussed strcpy and strcmp. The function strlen is easy
to understand and use. For example, strlen("dobedo") returns 6 because
there are six characters in "dobedo".

The function strcat is used to concatenate two C strings; that is, to form
a longer string by placing the two shorter C strings end-to-end. The first
argument must be a C-string variable. The second argument can be anything
that evaluates to a C-string value, such as a quoted string. The result is placed
in the C-string variable that is the first argument. For example, consider the
following:

char string_var[20] = "The rain";
strcat(string_var, "in Spain");

This code will change the value of string_var to "The rainin Spain".
As this example illustrates, you need to be careful to account for blanks when
concatenating C strings.

If you look at the table in Display 8.1, you will see that safer, three-
argument versions of the functions strcpy, strcat, and strcmp are available
in many, but not all, versions of C++. Also, note that these three-argument
versions are spelled with an added letter n: strncpy, strncat, and strncmp.

SELF -TEST EXERC ISES

1. Which of the following declarations are equivalent?

char string_var[10] = "Hello";
char string_var[10] = {'H', 'e', 'l', 'l', 'o', '\0'};
char string_var[10] = {'H', 'e', 'l', 'l', 'o'};
char string_var[6] = "Hello";
char string_var[] = "Hello";

(continued)

454 CHAPTER 8 / Strings and Vectors

DISPLAY 8.1 Some Predefined C-String Functions in <cstring>

Function Description Cautions

strcpy(Target_String_Var,
 Src_String)

Copies the C-string value
Src_String into the C-string
variable Target_String_Var.

Does not check to make sure
Target_String_Var is large
enough to hold the value
Src_String.

strncpy(Target_String_Var,
 Src_String, Limit)

The same as the two-argument
strcpy except that at most
Limit characters are copied.

If Limit is chosen carefully, this
is safer than the two-argument
version of strcpy. Not imple-
mented in all versions of C++.

strcat(Target_String_Var,
 Src_String)

Concatenates the C-string
value Src_String onto the
end of the C string in the
C-string variable
Target_String_Var.

Does not check to see that
Target_String_Var is large
enough to hold the result of the
concatenation.

strncat(Target_String_Var,
 Src_String, Limit)

The same as the two-argument
strcat except that at most
Limit characters are appended.

If Limit is chosen carefully, this
is safer than the two-argument
version of strcat. Not imple-
mented in all versions of C++.

strlen(Src_String) Returns an integer equal to the
length of Src_String. (The
null character, '\0', is not
counted in the length.)

strcmp(String_1, String_2) Returns 0 if String_1 and
String_2 are the same.
Returns a value < 0 if
String_1 is less than
String_2. Returns a value > 0
if String_1 is greater than
String_2 (that is, returns a
nonzero value if String_1 and
String_2 are different). The
order is lexicographic.

If String_1 equals String_2,
this function returns 0, which
converts to false. Note that
this is the reverse of what you
might expect it to return when
the strings are equal.

strncmp(String_1, String_2,
 Limit)

The same as the two-argument
strcat except that at most
Limit characters are compared.

If Limit is chosen carefully, this
is safer than the two-argument
version of strcmp. Not imple-
mented in all versions of C++.

8.1 An Array Type for Strings 455

2. What C string will be stored in singing_string after the following code
is run?

char singing_string[20] = "DoBeDo";
strcat(singing_string, " to you");

Assume that the code is embedded in a complete and correct program and
that an include directive for <cstring> is in the program file.

3. What (if anything) is wrong with the following code?

char string_var[] = "Hello";
strcat(string_var, " and Good-bye.");
cout << string_var;

Assume that the code is embedded in a complete program, and that an
include directive for <cstring> is in the program file.

4. Suppose the function strlen (which returns the length of its string argu-
ment) was not already defined for you. Give a function definition for
strlen. Note that strlen has only one argument, which is a C string. Do
not add additional arguments; they are not needed.

5. What is the maximum length of a string that can be placed in the string
variable declared by the following declaration? Explain.

char s[6];

C-String Arguments and Parameters

A C-string variable is an array, so a C-string parameter to a function is
simply an array parameter.

As with any array parameter, whenever a function changes the value of
a C-string parameter, it is safest to include an additional int parameter
giving the declared size of the C-string variable.

On the other hand, if a function only uses the value in a C-string
argument but does not change that value, then there is no need to include
another parameter to give either the declared size of the C-string variable
or the amount of the C-string variable array that is filled. The null
character '\0' can be used to detect the end of the C-string value that is
stored in the C-string variable.

456 CHAPTER 8 / Strings and Vectors

6. How many characters are in each of the following character and string
constants?

a. '\n'

b. 'n'

c. "Mary"

d. "M"

e. "Mary\n"

7. Since character strings are just arrays of char, why does the text caution
you not to confuse the following declaration and initialization?

char short_string[] = "abc";
char short_string[] = { 'a', 'b', 'c'};

8. Given the following declaration and initialization of the string variable,
write a loop to assign 'X' to all positions of this string variable, keeping
the length the same.

char our_string[15] = "Hi there!";

9. Given the declaration of a C-string variable, where SIZE is a defined constant:

char our_string[SIZE];

The C-string variable our_string has been assigned in code not shown
here. For correct C-string variables, the following loop reassigns all
positions of our_string the value 'X', leaving the length the same as
before. Assume this code fragment is embedded in an otherwise complete
and correct program. Answer the questions following this code fragment:

int index = 0;
while (our_string[index] != '\0')
{
 our_string[index] = 'X';
 index++;
}

a. Explain how this code can destroy the contents of memory beyond the
end of the array.

b. Modify this loop to protect against inadvertently changing memory
beyond the end of the array.

10. Write code using a library function to copy the string constant "Hello"
into the string variable declared below. Be sure to #include the necessary
header file to get the declaration of the function you use.

char a_string[10];

8.1 An Array Type for Strings 457

11. What string will be output when this code is run? (Assume, as always, that
this code is embedded in a complete, correct program.)

char song[10] = "I did it ";
char franks_song[20];
strcpy (franks_song, song);
strcat (franks_song, "my way!");
cout << franks_song << endl;

12. What is the problem (if any) with this code?

char a_string[20] = "How are you? ";
strcat(a_string, "Good, I hope.");

C-String Input and Output

C strings can be output using the insertion operator <<. In fact, we have
already been doing so with quoted strings. You can use a C-string variable in
the same way—for example,

cout << news << " Wow.\n";

where news is a C-string variable.
It is possible to fill a C-string variable using the input operator >>, but

there is one thing to keep in mind. As for all other types of data, all whitespace
(blanks, tabs, and line breaks) are skipped when C strings are read this way.
Moreover, each reading of input stops at the next space or line break. For
example, consider the following code:

char a[80], b[80];
cout << "Enter some input:\n";
cin >> a >> b;
cout << a << b << "END OF OUTPUT\n";

When embedded in a complete program, this code produces a dialogue like
the following:

Enter some input:
Do be do to you!
DobeEND OF OUTPUT

The C-string variables a and b each receive only one word of the input: a
receives the C-string value "Do" because the input character following Do is a
blank; b receives "be" because the input character following be is a blank.

If you want your program to read an entire line of input, you can use the
extraction operator >> to read the line one word at a time. This can be tedious
and it still will not read the blanks in the line. There is an easy way to read an
entire line of input and place the resulting C string into a C-string variable: Just
use the predefined member function getline, which is a member function of getline

458 CHAPTER 8 / Strings and Vectors

every input stream (such as cin or a file input stream). The function getline
has two arguments. The first argument is a C-string variable to receive the
input and the second is an integer that typically is the declared size of the
C-string variable. The second argument tells the maximum number of array
elements in the C-string variable that getline will be allowed to fill with
characters. For example, consider the following code:

char a[80];
cout << "Enter some input:\n";
cin.getline(a, 80);
cout << a << "END OF OUTPUT\n";

When embedded in a complete program, this code produces a dialogue like
the following:

Enter some input:
Do be do to you!
Do be do to you!END OF OUTPUT

With the function cin.getline, the entire line is read. The reading ends when
the line ends, even though the resulting C string may be shorter than the
maximum number of characters specified by the second argument.

When getline is executed, the reading stops after the number of charac-
ters given by the second argument have been filled in the C-string array, even
if the end of the line has not been reached. For example, consider the
following code:

char short_string[5];
cout << "Enter some input:\n";
cin.getline(short_string, 5);
cout << short_string << "END OF OUTPUT\n";

When embedded in a complete program, this code produces a dialogue like
the following:

Enter some input:
dobedowap
dobeEND OF OUTPUT

Notice that four, not five, characters are read into the C-string variable
short_string, even though the second argument is 5. This is because the null
character '\0' fills one array position. Every C string is terminated with the null
character when it is stored in a C-string variable, and this always consumes one
array position.

The C-string input and output techniques we illustrated for cout and cin
work the same way for input and output with files. The input stream cin can
be replaced by an input stream that is connected to a file. The output stream
cout can be replaced by an output stream that is connected to a file. (File I/O
is discussed in Chapter 6.)

input/output
with files

8.1 An Array Type for Strings 459

SELF -TEST EXERC ISES

13. Consider the following code (and assume it is embedded in a complete
and correct program and then run):

char a[80], b[80];
cout << "Enter some input:\n";
cin >> a >> b;
cout << a << '-' << b << "END OF OUTPUT\n";

If the dialogue begins as follows, what will be the next line of output?

Enter some input:

The
 time is now.

14. Consider the following code (and assume it is embedded in a complete
and correct program and then run):

char my_string[80];
cout << "Enter a line of input:\n";
cin.getline(my_string, 6);
cout << my_string << "<END OF OUTPUT";

getline

The member function getline can be used to read a line of input and
place the C string of characters on that line into a C-string variable.

SYNTAX

cin.getline(String_Var, Max_Characters + 1);

One line of input is read from the stream Input_Stream, and the resulting
C string is placed in String_Var. If the line is more than Max_Characters
long, then only the first Max_Characters on the line are read. (The +1 is
needed because every C string has the null character '\0' added to the
end of the C string and so the string stored in String_Var is one longer
than the number of characters read in.)

EXAMPLE

char one_line[80];
cin.getline(one_line, 80);

(You can use an input stream connected to a text file in place of cin.)

460 CHAPTER 8 / Strings and Vectors

If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
May the hair on your toes grow long and curly.

C-String-to-Number Conversions and Robust Input

The C string "1234" and the number 1234 are not the same things. The first is
a sequence of characters; the second is a number. In everyday life, we write
them the same way and blur this distinction, but in a C++ program this
distinction cannot be ignored. If you want to do arithmetic, you need 1234,
not "1234". If you want to add a comma to the numeral for one thousand two
hundred thirty four, then you want to change the C string "1234" to the C
string "1,234". When designing numeric input, it is often useful to read the
input as a string of characters, edit the string, and then convert the string to a
number. For example, if you want your program to read an amount of money,
the input may or may not begin with a dollar sign. If your program is reading
percentages, the input may or may not have a percent sign at the end. If your
program reads the input as a string of characters, it can store the string in a C-
string variable and remove any unwanted characters, leaving only a C string of
digits. Your program then needs to convert this C string of digits to a number,
which can easily be done with the predefined function atoi.

The function atoi takes one argument that is a C string and returns the
int value that corresponds to that C string. For example, atoi("1234") returns

C-String-to-Number Functions

The functions atoi, atol, and atof can be used to convert a C string of
digits to the corresponding numeric value. The functions atoi and atol
convert C strings to integers. The only difference between atoi and atol
is that atoi returns a value of type int while atol returns a value of type
long. The function atof converts a C string to a value of type double. If
the C-string argument (to either function) is such that the conversion
cannot be made, then the function returns zero. For example

int x = atoi("657");

sets the value of x to 657, and

double y = atof("12.37");

sets the value of y to 12.37.

Any program that uses atoi or atof must contain the following directive:

#include <cstdlib>

atoi

8.1 An Array Type for Strings 461

the integer 1234. If the argument does not correspond to an int value, then
atoi returns 0. For example, atoi("#37") returns 0, because the character '#'
is not a digit. You pronounce atoi as “A to I,” which is an abbreviation of
“alphabetic to integer.” The function atoi is in the library with header file
cstdlib, so any program that uses it must contain the following directive:

#include <cstdlib>

If your numbers are too large to be values of type int, you can convert them
from C strings to values of type long. The function atol performs the same
conversion as the function atoi except that atol returns values of type long and
thus can accommodate larger integer values (on systems where this is a concern).

Display 8.2 contains the definition of a function called read_and_clean that
reads a line of input and discards all characters other than the digits '0' through
'9'. The function then uses the function atoi to convert the “cleaned-up” C
string of digits to an integer value. As the demonstration program indicates, you
can use this function to read money amounts and it will not matter whether the
user included a dollar sign or not. Similarly, you can read percentages and it will
not matter whether the user types in a percent sign or not. Although the output
makes it look as if the function read_and_clean simply removes some symbols,
more than that is happening. The value produced is a true int value that can be
used in a program as a number; it is not a C string of characters.

The function read_and_clean shown in Display 8.2 will delete any nondig-
its from the string typed in, but it cannot check that the remaining digits will
yield the number the user has in mind. The user should be given a chance to
look at the final value and see whether it is correct. If the value is not correct, the
user should be given a chance to reenter the input. In Display 8.3 we have used
the function read_and_clean in another function called get_int, which will
accept anything the user types and will allow the user to reenter the input until
she or he is satisfied with the number that is computed from the input string. It
is a very robust input procedure. (The function get_int is an improved version
of the function of the same name given in Display 6.7.)

The functions read_and_clean in Display 8.2 and get_int in Display 8.3
are samples of the various input functions you can design by reading numeric
input as a string value. Programming Project 3 at the end of this chapter asks
you to define a function similar to get_int that reads in a number of type
double, as opposed to a number of type int. To write that function, it would
be nice to have a predefined function that converts a string value to a number
of type double. Fortunately, the predefined function atof, which is also in the
library with header file cstdlib, does just that. For example, atof("9.99")
returns the value 9.99 of type double. If the argument does not correspond to
a number of type double, then atof returns 0.0. You pronounce atof as “A to
F,” which is an abbreviation of “alphabetic to floating point.” Recall that
numbers with a decimal point are often called floating-point numbers because
of the way the computer handles the decimal point when storing these
numbers in memory.

atol

read_and_
clean

get_int

atof

462 CHAPTER 8 / Strings and Vectors

DISPLAY 8.2 C Strings to Integers (part 1 of 2)

1 //Demonstrates the function read_and_clean.
2 #include <iostream>
3 #include <cstdlib>
4 #include <cctype>
5
6 void read_and_clean(int& n);
7 //Reads a line of input. Discards all symbols except the digits. Converts
8 //the C string to an integer and sets n equal to the value of this integer.
9

10 void new_line();
11 //Discards all the input remaining on the current input line.
12 //Also discards the '\n' at the end of the line.
13
14 int main()
15 {
16 using namespace std;
17 int n;
18 char ans;
19 do
20 {
21 cout << "Enter an integer and press Return: ";
22 read_and_clean(n);
23 cout << "That string converts to the integer " << n << endl;
24 cout << "Again? (yes/no): ";
25 cin >> ans;
26 new_line();
27 } while ((ans != 'n') && (ans != 'N'));
28 return 0;
29 }
30 //Uses iostream, cstdlib, and cctype:
31 void read_and_clean(int& n)
32 {
33 using namespace std;
34 const int ARRAY_SIZE = 6;
35 char digit_string[ARRAY_SIZE];
36
37 char next;
38 cin.get(next);
39 int index = 0;
40 while (next != '\n')
41 {
42 if ((isdigit(next)) && (index < ARRAY_SIZE - 1))
43 {
44 digit_string[index] = next;

(continued)

8.1 An Array Type for Strings 463

DISPLAY 8.2 C Strings to Integers (part 2 of 2)

45 index++;
46 }
47 cin.get(next);
48 }
49 digit_string[index] = '\0';

50 n = atoi(digit_string);
51 }

52 //Uses iostream:
53 void new_line()
54 {
55 using namespace std;
56 <The rest of the definition of new_line is given in Display 6.7.>

Sample Dialogue

Enter an integer and press Return: $ 100

That string converts to the integer 100

Again? (yes/no): yes

Enter an integer and press Return: 100

That string converts to the integer 100

Again? (yes/no): yes

Enter an integer and press Return: 99%

That string converts to the integer 99

Again? (yes/no): yes

Enter an integer and press Return: 23% &&5 *12

That string converts to the integer 23512

Again? (yes/no): no

DISPLAY 8.3 Robust Input Function (part 1 of 3)

1 //Demonstration program for improved version of get_int.
2 #include <iostream>
3 #include <cstdlib>
4 #include <cctype>

5 void read_and_clean(int& n);
6 //Reads a line of input. Discards all symbols except the digits. Converts
7 //the C string to an integer and sets n equal to the value of this integer.

(continued)

464 CHAPTER 8 / Strings and Vectors

DISPLAY 8.3 Robust Input Function (part 2 of 3)

8 void new_line();
9 //Discards all the input remaining on the current input line.

10 //Also discards the '\n' at the end of the line.

11 void get_int(int& input_number);
12 //Gives input_number a value that the user approves of.

13 int main()
14 {
15 using namespace std;
16 int input_number;
17 get_int(input_number);
18 cout << "Final value read in = " << input_number << endl;
19 return 0;
20 }

21 //Uses iostream and read_and_clean:
22 void get_int(int& input_number)
23 {
24 using namespace std;
25 char ans;
26 do
27 {
28 cout << "Enter input number: ";
29 read_and_clean(input_number);
30 cout << "You entered " << input_number
31 << " Is that correct? (yes/no): ";
32 cin >> ans;
33 new_line();
34 } while ((ans != 'y') && (ans != 'Y'));
35 }
36 //Uses iostream, cstdlib, and cctype:
37 void read_and_clean(int& n)

<The rest of the definition of read_and_clean is given in Display 8.2.>

38 //Uses iostream:
39 void new_line()

<The rest of the definition of new_line is given in Display 8.2.>

Sample Dialogue

Enter input number: $57

You entered 57 Is that correct? (yes/no): no

(continued)

8.2 The Standard string Class 465

8.2 THE STANDARD string CLASS

I try to catch every sentence, every word you and I say, and quickly lock all
these sentences and words away in my literary storehouse because they
might come in handy.

ANTON CHEKHOV, The Seagull

In Section 8.1, we introduced C strings. These C strings were simply arrays of
characters terminated with the null character '\0'. In order to manipulate these
C strings, you needed to worry about all the details of handling arrays. For
example, when you want to add characters to a C string and there is not enough
room in the array, you must create another array to hold this longer string of
characters. In short, C strings require the programmer to keep track of all the
low-level details of how the C strings are stored in memory. This is a lot of extra
work and a source of programmer errors. The latest ANSI/ISO standard for C++
specified that C++ must now also have a class string that allows the program-
mer to treat strings as a basic data type without needing to worry about
implementation details. In this section we introduce you to this string type.

Introduction to the Standard Class string

The class string is defined in the library whose name is also <string>, and
the definitions are placed in the std namespace. So, in order to use the class
string, your code must contain the following (or something more or less
equivalent):

#include <string>
using namespace std;

The class string allows you to treat string values and string expressions
very much like values of a simple type. You can use the = operator to assign
a value to a string variable, and you can use the + sign to concatenate two

DISPLAY 8.3 Robust Input Function (part 3 of 3)

Enter input number: $77*5xa

You entered 775 Is that correct? (yes/no): no

Enter input number: 77

You entered 77 Is that correct? (yes/no): no

Enter input number: $75

You entered 75 Is that correct? (yes/no): yes

Final value read in = 75

466 CHAPTER 8 / Strings and Vectors

strings. For example, suppose s1, s2, and s3 are objects of type string and
both s1 and s2 have string values. Then s3 can be set equal to the concatenation
of the string value in s1 followed by the string value in s2 as follows:

s3 = s1 + s2;

There is no danger of s3 being too small for its new string value. If the sum of
the lengths of s1 and s2 exceeds the capacity of s3, then more space is
automatically allocated for s3.

As we noted earlier in this chapter, quoted strings are really C strings and
so they are not literally of type string. However, C++ provides automatic type
casting of quoted strings to values of type string. So, you can use quoted
strings as if they were literal values of type string, and we (and most others)
will often refer to quoted strings as if they were values of type string. For
example,

s3 = "Hello Mom!";

sets the value of the string variable s3 to a string object with the same
characters as in the C string "Hello Mom!".

The class string has a default constructor that initializes a string object
to the empty string. The class string also has a second constructor that takes
one argument that is a standard C string and so can be a quoted string. This
second constructor initializes the string object to a value that represents the
same string as its C-string argument. For example,

string phrase;
string noun("ants");

The first line declares the string variable phrase and initializes it to the empty
string. The second line declares noun to be of type string and initializes it to a
string value equivalent to the C string "ants". Most programmers when
talking loosely would say that “noun is initialized to "ants",” but there really
is a type conversion here. The quoted string "ants" is a C string, not a value
of type string. The variable noun receives a string value that has the same
characters as "ants" in the same order as "ants", but the string value is not
terminated with the null character '\0'. In fact, in theory at least, you do not
know or care whether the string value of noun is even stored in an array, as
opposed to some other data structure.

There is an alternate notation for declaring a string variable and invoking
a constructor. The following two lines are exactly equivalent:

string noun("ants");
string noun = "ants";

These basic details about the class string are illustrated in Display 8.4. Note
that, as illustrated there, you can output string values using the operator <<.

+ operator does
concatenation

constructors

8.2 The Standard string Class 467

Consider the following line from Display 8.4:

phrase = "I love " + adjective + " " + noun + "!";

C++ must do a lot of work to allow you to concatenate strings in this simple
and natural fashion. The string constant "I love " is not an object of type
string. A string constant like "I love " is stored as a C string (in other words,
as a null-terminated array of characters). When C++ sees "I love " as an
argument to +, it finds the definition (or overloading) of + that applies to a
value such as "I love ". There are overloadings of the + operator that have
a C string on the left and a string on the right, as well as the reverse of this
positioning. There is even a version that has a C string on both sides of the
+ and produces a string object as the value returned. Of course, there is also
the overloading you expect, with the type string for both operands.

C++ did not really need to provide all those overloading cases for +. If
these overloadings were not provided, C++ would look for a constructor that
could perform a type conversion to convert the C string "I love " to a value
for which + did apply. In this case, the constructor with the one C-string
parameter would perform just such a conversion. However, the extra overload-
ings are presumably more efficient.

DISPLAY 8.4 Program Using the Class string

1 //Demonstrates the standard class string.
2 #include <iostream>
3 #include <string>
4 using namespace std;

5 int main()
6 {
7 string phrase;
8 string adjective("fried"), noun("ants");
9 string wish = "Bon appetit!";

10 phrase = "I love " + adjective + " " + noun + "!";
11 cout << phrase << endl
12 << wish << endl;

13 return 0;
14 }

Sample Dialogue

I love fried ants!

Bon appetit!

Initialized to the empty string

Two ways of initializing
a string variable

converting
C-string
constants to the
type string

468 CHAPTER 8 / Strings and Vectors

The class string is often thought of as a modern replacement for C
strings. However, in C++ you cannot easily avoid also using C strings when
you program with the class string.

I/O with the Class string

You can use the insertion operator << and cout to output string objects just
as you do for data of other types. This is illustrated in Display 8.4. Input with
the class string is a bit more subtle.

The extraction operator >> and cin works the same for string objects as
for other data, but remember that the extraction operator ignores initial
whitespace and stops reading when it encounters more whitespace. This is as
true for strings as it is for other data. For example, consider the following code;

string s1, s2;
cin >> s1;
cin >> s2;

If the user types in

May the hair on your toes grow long and curly!

then s1 will receive the value "May" with any leading (or trailing) whitespace
deleted. The variable s2 receives the string "the". Using the extraction operator
>> and cin, you can only read in words; you cannot read in a line or other
string that contains a blank. Sometimes this is exactly what you want, but
sometimes it is not at all what you want.

The Class string

The class string can be used to represents values that are strings of
characters. The class string provides more versatile string representation
than the C strings discussed in Section 8.1.

The class string is defined in the library that is also named <string>, and
its definition is placed in the std namespace. So, programs that use the class
string should contain the following (or something more or less equivalent):

#include <string>
using namespace std;

The class string has a default constructor that initializes the string object
to the empty string and a constructor that takes a C string as an argument
and initializes the string object to a value that represents the string given
as the argument. For example:

string s1, s2("Hello");

8.2 The Standard string Class 469

If you want your program to read an entire line of input into a variable of
type string, you can use the function getline. The syntax for using getline with
string objects is a bit different from what we described for C strings in Section 8.1.
You do not use cin.getline; instead, you make cin the first argument to
getline.2 (Thus, this version of getline is not a member function.)

string line;
cout << "Enter a line of input:\n";
getline(cin, line);
cout << line << "END OF OUTPUT\n";

When embedded in a complete program, this code produces a dialogue like
the following:

Enter some input:
Do be do to you!
Do be do to you!END OF OUTPUT

If there were leading or trailing blanks on the line, then they too would be part
of the string value read by getline. This version of getline is in the library
<string>. You can use a stream object connected to a text file in place of cin
to do input from a file using getline.

You cannot use cin and >> to read in a blank character. If you want to read
one character at a time, you can use cin.get, which we discussed in Chapter 6.
The function cin.get reads values of type char, not of type string, but it
can be helpful when handling string input. 8.5 contains a program that
illustrates both getline and cin.get used for string input. The significance
of the function new_line is explained in the Pitfall subsection entitled “Mixing
cin >> variable; and getline.”

2 This is a bit ironic, since the class string was designed using more modern object-
oriented techniques, and the notation it uses for getline is the old fashioned, less
object-oriented notation. This is an accident of history. This getline function was
defined after the iostream library was already in use, so the designers had little choice
but to make this getline a standalone function.

getline

DISPLAY 8.5 Program Using the Class string (part 1 of 3)

1 //Demonstrates getline and cin.get.
2 #include <iostream>
3 #include <string>

4 void new_line();

5 int main()
6 {

(continued)

470 CHAPTER 8 / Strings and Vectors

DISPLAY 8.5 Program Using the Class string (part 2 of 3)

7 using namespace std;
8
9 string first_name, last_name, record_name;

10 string motto = "Your records are our records.";

11 cout << "Enter your first and last name:\n";
12 cin >> first_name >> last_name;
13 new_line();

14 record_name = last_name + ", " + first_name;
15 cout << "Your name in our records is: ";
16 cout << record_name << endl;

17 cout << "Our motto is\n"
18 << motto << endl;
19 cout << "Please suggest a better (one-line) motto:\n";
20 getline(cin, motto);
21 cout << "Our new motto will be:\n";
22 cout << motto << endl;

23 return 0;
24 }
25
26 //Uses iostream:
27 void new_line()
28 {
29 using namespace std;
30
31 char next_char;
32 do
33 {
34 cin.get(next_char);
35 } while (next_char != '\n');
36 }

Sample Dialogue

Enter your first and last name:

B’Elanna Torres

Your name in our records is: Torres, B'Elanna

Our motto is

Your records are our records.

(continued)

8.2 The Standard string Class 471

SELF -TEST EXERC ISES

15. Consider the following code (and assume that it is embedded in a com-
plete and correct program and then run):

string s1, s2;
cout << "Enter a line of input:\n";
cin >> s1 >> s2;
cout << s1 << "*" << s2 << "<END OF OUTPUT";

If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
A string is a joy forever!

16. Consider the following code (and assume that it is embedded in a com-
plete and correct program and then run):

string s;
cout << "Enter a line of input:\n";
getline(cin, s);
cout << s << "<END OF OUTPUT";

I/O with string Objects

You can use the insertion operator << with cout to output string objects.
You can input a string with the extraction operator >> and cin. When
using >> for input, the code reads in a string delimited with whitespace.
You can use the function getline to input an entire line of text into a
string object.

EXAMPLES

string greeting("Hello"), response, next_word;
cout << greeting << endl;
getline(cin, response);
cin >> next_word;

DISPLAY 8.5 Program Using the Class string (part 3 of 3)

Please suggest a better (one-line) motto:

Our records go where no records dared to go before.

Our new motto will be:

Our records go where no records dared to go before.

472 CHAPTER 8 / Strings and Vectors

If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
A string is a joy forever!

■ PROGRAMMING TIP More Versions of getline

So far, we have described the following way of using getline:

string line;
cout << "Enter a line of input:\n";
getline(cin, line);

This version stops reading when it encounters the end-of-line marker '\n'.
There is a version that allows you to specify a different character to use as a
stopping signal. For example, the following will stop when the first question
mark is encountered:

string line;
cout << "Enter some input:\n";
getline(cin, line, '?');

It makes sense to use getline as if it were a void function, but it actually
returns a reference to its first argument, which is cin in the above code. Thus,
the following will read in a line of text into s1 and a string of nonwhitespace
characters into s2:

string s1, s2;
getline(cin, s1) >> s2;

The invocation getline(cin, s1) returns a reference to cin, so that after the
invocation of getline, the next thing to happen is equivalent to

cin >> s2;

This kind of use of getline seems to have been designed for use in a C++ quiz
show rather than to meet any actual programming need, but it can come in
handy sometimes. ■

■ PITFALL Mixing cin >> variable; and getline

Take care in mixing input using cin >> variable; with input using getline.
For example, consider the following code:

int n;
string line;
cin >> n;
getline(cin, line);

Video Note
Example using cin
and getline with
the string class

8.2 The Standard string Class 473

When this code reads the following input, you might expect the value of n to
be set to 42 and the value of line to be set to a string value representing
"Hello hitchhiker.":

42
Hello hitchhiker.

However, while n is indeed set to the value of 42, line is set equal to the
empty string. What happened?

Using cin >> n skips leading whitespace on the input, but leaves the rest
of the line, in this case just '\n', for the next input. A statement like

cin >> n;

always leaves something on the line for a following getline to read (even if
it is just the '\n'). In this case, the getline see the '\n' and stops reading, so
getline reads an empty string. If you find your program appearing to
mysteriously ignore input data, see if you have mixed these two kinds of
input. You may need to use either the new_line function from Display 8.5 or
the function ignore from the library iostream. For example,

cin.ignore(1000, '\n');

With these arguments, a call to the ignore member function will read and
discard the entire rest of the line up to and including the '\n' (or until it

getline for Objects of the Class string

The getline function for string objects has two versions:

istream& getline(istream& ins, string& str_var,
 char delimiter);

and

istream& getline(istream& ins, string& str_var);

The first version of this function reads characters from the istream object
given as the first argument (always cin in this chapter), inserting the
characters into the string variable str_var until an instance of the
delimiter character is encountered. The delimiter character is removed
from the input and discarded. The second version uses '\n' for the default
value of delimiter; otherwise, it works the same.

These getline functions return their first argument (always cin in this
chapter), but they are usually used as if they were void functions.

474 CHAPTER 8 / Strings and Vectors

discards 1,000 characters if it does not find the end of the line after 1,000
characters).

There can be other baffling problems with programs that use cin with
both >> and getline. Moreover, these problems can come and go as you move
from one C++ compiler to another. When all else fails, or if you want to be
certain of portability, you can resort to character-by-character input using
cin.get.

These problems can occur with any of the versions of getline that we
discuss in this chapter. ■

String Processing with the Class string

The class string allows you to perform the same operations that you can
perform with the C strings we discussed in Section 8.1 and more.

You can access the characters in a string object in the same way that you
access array elements, so string objects have all the advantages of arrays of
characters plus a number of advantages that arrays do not have, such as
automatically increasing their capacity.

If last_name is the name of a string object, then last_name[i] gives
access to the ith character in the string represented by last_name. This use of
array square brackets is illustrated in Display 8.6.

Display 8.6 also illustrates the member function length. Every string
object has a member function named length that takes no arguments and
returns the length of the string represented by the string object. Thus, a
string object not only can be used like an array, but the length member
function makes it behave like a partially filled array that automatically keeps
track of how many positions are occupied.

When used with an object of the class string, the array square brackets
do not check for illegal indexes. If you use an illegal index (that is, an index
that is greater than or equal to the length of the string in the object), then
the results are unpredictable but are bound to be bad. You may just get
strange behavior without any error message that tells you that the problem
is an illegal index value.

There is a member function named at that does check for illegal index
values. The member function named at behaves basically the same as the
square brackets, except for two points: You use function notation with at, so
instead of a[i], you use a.at(i); and the at member function checks to see
if i evaluates to an illegal index. If the value of i in a.at(i) is an illegal
index, then you should get a run-time error message telling you what is wrong.
In the following two example code fragments, the attempted access is out of
range, yet the first of these probably will not produce an error message,
although it will be accessing a nonexistent indexed variable:

string str("Mary");
cout << str[6] << endl;

length

8.2 The Standard string Class 475

The second example, however, will cause the program to terminate abnormally,
so you at least know that something is wrong:

string str("Mary");
cout << str.at(6) << endl;

But be warned that some systems give very poor error messages when a.at(i)
has an illegal index i.

DISPLAY 8.6 A string Object Can Behave Like an Array

1 //Demonstrates using a string object as if it were an array.
2 #include <iostream>
3 #include <string>
4 using namespace std;

5 int main()
6 {
7 string first_name, last_name;

8 cout << "Enter your first and last name:\n";
9 cin >> first_name >> last_name;

10 cout << "Your last name is spelled:\n";
11 int i;
12 for (i = 0; i < last_name.length(); i++)
13 {
14 cout << last_name[i] << " ";
15 last_name[i] = '-';
16 }
17 cout << endl;
18 for (i = 0; i < last_name.length(); i++)
19 cout << last_name[i] << " "; //Places a "-" under each letter.
20 cout << endl;

21 cout << "Good day " << first_name << endl;
22 return 0;
23 }

Sample Dialogue

Enter your first and last name:

John Crichton

Your last name is spelled:

C r i c h t o n

- - - - - - - -

Good day John

476 CHAPTER 8 / Strings and Vectors

You can change a single character in the string by assigning a char value
to the indexed variable, such as str[i]. This may also be done with the
member function at. For example, to change the third character in the string
object str to 'X', you can use either of the following code fragments:

str.at(2)='X';

or

str[2]='X';

As in an ordinary array of characters, character positions for objects of type
string are indexed starting with 0, so the third character in a string is in index
position 2.

Display 8.7 gives a partial list of the member functions of the class string.
In many ways, objects of the class string are better behaved than the C strings
we introduced in Section 8.1. In particular, the == operator on objects of the
string class returns a result that corresponds to our intuitive notion of strings
being equal—namely, it returns true if the two string contain the same
characters in the same order, and returns false otherwise. Similarly, the
comparison operators <, >, <=, >= compare string objects using lexicographic
ordering. (Lexicographic ordering is alphabetic ordering using the order of
symbols given in the ASCII character set in Appendix 3. If the strings consist
of all letters and are both either all uppercase or all lowercase letters, then for
this case lexicographic ordering is the same as everyday alphabetical ordering.)

■ PROGRAMMING EXAMPLE Palindrome Testing

A palindrome is a string that reads the same front to back as it does back to front.
The program in Display 8.8 tests an input string to see if it is a palindrome. Our
palindrome test will disregard all spaces and punctuations and will consider
upper- and lowercase versions of a letter to be the same when deciding if
something is a palindrome. Some palindrome examples are as follows:

Able was I ere I saw Elba.
I Love Me, Vol. I.
Madam, I'm Adam.
A man, a plan, a canal, Panama.
Rats live on no evil star.
radar
deed
mom
racecar

The remove_punct function is of interest in that it uses the string member
functions substr and find. The member function substr extracts a substring
of the calling object, given the position and length of the desired substring.

8.2 The Standard string Class 477

DISPLAY 8.7 Member Functions of the Standard Class string

Example Remarks

Constructors

string str; Default constructor creates empty string object str.

string str("sample"); Creates a string object with data "sample".

string str(a_string); Creates a string object str that is a copy of a_string;
a_string is an object of the class string.

Accessors

str[i] Returns read/write reference to character in str at index i.
Does not check for illegal index.

str.at(i) Returns read/write reference to character in str at index i.
Same as str[i], but this version checks for illegal index.

str.substr(position, length) Returns the substring of the calling object starting at position
and having length characters.

str.length() Returns the length of str.

Assignment/modifiers

str1 = str2; Initializes str1 to str2’s data.

str1 += str2; Character data of str2 is concatenated to the end of str1.

str.empty() Returns true if str is an empty string; false otherwise.

str1 + str2 Returns a string that has str2’s data concatenated to the
end of str1’s data.

str.insert(pos, str2); Inserts str2 into str beginning at position pos.

str.erase(pos, length); Removes substring of size length, starting at position pos.

Comparison

str1 == str2 str1 != str2 Compare for equality or inequality; returns a Boolean
value.

str1 < str2 str1 > str2
str1 <= str2 str1 >= str2

Four comparisons. All are lexicographical comparisons.

Finds

str.find(str1) Returns index of the first occurrence of str1 in str. If str1
is not found then the special value string::npos is
returned.

str.find(str1, pos) Returns index of the first occurrence of string str1 in str;
the search starts at position pos.

str.find_first_of(str1, pos) Returns the index of the first instance in str of any character
in str1, starting the search at position pos.

str.find_first_not_of
 (str1, pos)

Returns the index of the first instance in str of any character
not in str1, starting the search at position pos.

478 CHAPTER 8 / Strings and Vectors

DISPLAY 8.8 Palindrome Testing Program (part 1 of 3)

1 //Test for palindrome property.
2 #include <iostream>
3 #include <string>
4 #include <cctype>
5 using namespace std;

6 void swap(char& v1, char& v2);
7 //Interchanges the values of v1 and v2.

8 string reverse(const string& s);
9 //Returns a copy of s but with characters in reverse order.

10 string remove_punct(const string& s, const string& punct);
11 //Returns a copy of s with any occurrences of characters
12 //in the string punct removed.

13 string make_lower(const string& s);
14 //Returns a copy of s that has all uppercase
15 //characters changed to lowercase, other characters unchanged.

16 bool is_pal(const string& s);
17 //Returns true if s is a palindrome, false otherwise.

18 int main()
19 {
20 string str;
21 cout << "Enter a candidate for palindrome test\n"
22 << "followed by pressing Return.\n";
23 getline(cin, str);

24 if (is_pal(str))
25 cout << "\"" << str + "\" is a palindrome.";
26 else
27 cout << "\"" << str + "\" is not a palindrome.";
28 cout << endl;

29 return 0;
30 }
31
32 void swap(char& v1, char& v2)
33 {
34 char temp = v1;
35 v1 = v2;
36 v2 = temp;
37 }
38

(continued)

8.2 The Standard string Class 479

DISPLAY 8.8 Palindrome Testing Program (part 2 of 3)

39 string reverse(const string& s)
40 {
41 int start = 0;
42 int end = s.length();
43 string temp(s);
44
45 while (start < end)
46 {
47 end--;
48 swap(temp[start], temp[end]);
49 start++;
50 }

51 return temp;
52 }

53 //Uses <cctype> and <string>
54 string make_lower(const string& s)
55 {
56 string temp(s);
57 for (int i = 0; i < s.length(); i++)
58 temp[i] = tolower(s[i]);

59 return temp;
60 }

61 string remove_punct(const string& s, const string& punct)
62 {
63 string no_punct; //initialized to empty string
64 int s_length = s.length();
65 int punct_length = punct.length();

66 for (int i = 0; i < s_length; i++)
67 {
68 string a_char = s.substr(i,1); //A one-character string
69 int location = punct.find(a_char, 0);
70 //Find location of successive characters
71 //of src in punct.

72 if (location < 0 || location >= punct_length)
73 no_punct = no_punct + a_char; //a_char not in punct, so keep it
74 }

75 return no_punct;
76 }
77

(continued)

480 CHAPTER 8 / Strings and Vectors

The first three lines of remove_punct declare variables for use in the function.
The for loop runs through the characters of the parameter s one at a time and
tries to find them in the punct string. To do this, a string that is the substring
of s, of length 1 at each character position, is extracted. The position of this
substring in the punct string is determined using the find member function.
If this one-character string is not in the punct string, then the one-character
string is concatenated to the no_punct string that is to be returned.

DISPLAY 8.8 Palindrome Testing Program (part 3 of 3)

78 //uses functions make_lower, remove_punct
79 bool is_pal(const string& s)
80 {
81 string punct(",;:.?!'\" "); //includes a blank
82 string str(s);
83 str = make_lower(str);
84 string lower_str = remove_punct(str, punct);

85 return (lower_str == reverse(lower_str));
86 }

Sample Dialogue

Enter a candidate for palindrome test

followed by pressing Return.

Madam, I'm Adam.

"Madam, I'm Adam." is a palindrome.

Sample Dialogue

Enter a candidate for palindrome test

followed by pressing Return.

Radar

"Radar" is a palindrome.

Sample Dialogue

Enter a candidate for palindrome test

followed by pressing Return.

Am I a palindrome?

"Am I a palindrome?" is not a palindrome.

8.2 The Standard string Class 481

■

SELF -TEST EXERC ISES

17. Consider the following code:

string s1, s2("Hello");
cout << "Enter a line of input:\n";
cin >> s1;
if (s1 == s2)
 cout << "Equal\n";
else
 cout << "Not equal\n";

If the dialogue begins as follows, what will be the next line of output?

Enter a line of input:
Hello friend!

18. What is the output produced by the following code?

string s1, s2("Hello");
s1 = s2;
s2[0] = 'J';
cout << s1 << " " << s2;

Converting Between string Objects and C Strings

You have already seen that C++ will perform an automatic type conversion to
allow you to store a C string in a variable of type string. For example, the
following will work fine:

char a_c_string[] = "This is my C string.";
string string_variable;
string_variable = a_c_string;

However, the following will produce a compiler error message:

a_c_string = string_variable; //ILLEGAL

= and == Are Different for strings and C Strings

The operators =, ==, !=, <, >, <=, >=, when used with the standard C++ type
string, produce results that correspond to our intuitive notion of how
strings compare. They do not misbehave as they do with the C strings, as
we discussed in Section 8.1

482 CHAPTER 8 / Strings and Vectors

The following is also illegal:

strcpy(a_c_string, string_variable); //ILLEGAL

strcpy cannot take a string object as its second argument, and there is no
automatic conversion of string objects to C strings, which is the problem we
cannot seem to get away from.

To obtain the C string corresponding to a string object, you must
perform an explicit conversion. This can be done with the string member
function c_str(). The correct version of the copying we have been trying to
do is the following:

strcpy(a_c_string, string_variable.c_str()); //Legal;

Note that you need to use the strcpy function to do the copying. The
member function c_str() returns the C string corresponding to the string
calling object. As we noted earlier in this chapter, the assignment operator
does not work with C strings. So, just in case you thought the following might
work, we should point out that it too is illegal.

a_c_string = string_variable.c_str(); //ILLEGAL

8.3 VECTORS

“Well, I’ll eat it,” said Alice, “and if it makes me grow larger, I can reach the
key; and if it makes me grow smaller, I can creep under the door; so either way
I’ll get into the garden. . . .”

LEWIS CARROLL, Alice’s Adventures in Wonderland

Vectors can be thought of as arrays that can grow (and shrink) in length while
your program is running. In C++, once your program creates an array, it
cannot change the length of the array. Vectors serve the same purpose as arrays
except that they can change length while the program is running. Vectors are
part of a standard C++ library known as the STL (Standard Template Library)
which we cover in more detail in Chapter 18.

You need not read the previous sections of this chapter before covering
this section.

Vector Basics

Like an array, a vector has a base type, and like an array, a vector stores a
collection of values of its base type. However, the syntax for a vector type and
a vector variable declaration are different from the syntax for arrays.

You declare a variable v for a vector with base type int as follows:

vector<int> v;

c_str()

declaring a
vector variable

8.3 Vectors 483

The notation vector<Base_Type> is a template class, which means you can
plug in any type for Base_Type and that will produce a class for vectors with
that base type. You can think of this as specifying the base type for a vector in
the same sense as you specify a base type for an array. You can use any type,
including class types, as the base type for a vector. The notation vector<int>
is a class name, and so the previous declaration of v as a vector of type
vector<int> includes a call to the default constructor for the class vec-
tor<int>, which creates a vector object that is empty (has no elements).

Vector elements are indexed starting with 0, the same as arrays. The array
square brackets notation can be used to read or change these elements, just as
with an array. For example, the following changes the value of the ith element
of the vector v and then outputs that changed value. (i is an int variable.)

v[i] = 42;
cout << "The answer is " << v[i];

There is, however, a restriction on this use of the square brackets notation with
vectors that is unlike the same notation used with arrays. You can use v[i] to
change the value of the ith element. However, you cannot initialize the ith
element using v[i]; you can only change an element that has already been
given some value. To add an element to an index position of a vector for the
first time, you would normally use the member function push_back.

You add elements to a vector in order of positions, first at position 0, then
position 1, then 2, and so forth. The member function push_back adds an
element in the next available position. For example, the following gives initial
values to elements 0, 1, and 2 of the vector sample:

vector<double> sample;
sample.push_back(0.0);
sample.push_back(1.1);
sample.push_back(2.2);

The number of elements in a vector is called the size of the vector. The
member function size can be used to determine how many elements are in a
vector. For example, after the previously shown code is executed,
sample.size() returns 3. You can write out all the elements currently in the
vector sample as follows:

for (int i = 0; i < sample.size(); i++)
 cout << sample[i] << endl;

The function size returns a value of type unsigned int, not a value of type
int. (The type unsigned int allows only nonnegative integer values.) This
returned value should be automatically converted to type int when it needs to
be of type int, but some compilers may warn you that you are using an
unsigned int where an int is required. If you want to be very safe, you can
always apply a type cast to convert the returned unsigned int to an int or, in

template class

v[i]

push_back

size

size
unsigned int

484 CHAPTER 8 / Strings and Vectors

cases like this for loop, use a loop control variable of type unsigned int as
follows:

for (unsigned int i = 0; i < sample.size(); i++)
 cout << sample[i] << endl;

A simple demonstration illustrating some basic vector techniques is given
in Display 8.9.

There is a vector constructor that takes one integer argument and will
initialize the number of positions given as the argument. For example, if you
declare v as follows:

vector<int> v(10);

then the first ten elements are initialized to 0, and v.size() would return 10.
You can then set the value of the ith element using v[i] for values of i equal
to 0 through 9. In particular, the following could immediately follow the
declaration:

for (unsigned int i = 0; i < 10; i++)
 v[i] = i;

To set the ith element, for i greater than or equal to 10, you would use
push_back.

When you use the constructor with an integer argument, vectors of
numbers are initialized to the zero of the number type. If the vector base type
is a class type, the default constructor is used for initialization.

The vector definition is given in the library vector, which places it in the
std namespace. Thus, a file that uses vectors would include the following (or
something similar):

#include <vector>
using namespace std;

■ PITFALL Using Square Brackets Beyond the Vector Size

If v is a vector and i is greater than or equal to v.size(), then the element
v[i] does not yet exist and needs to be created by using push_back to add
elements up to and including position i. If you try to set v[i] for i greater
than or equal to v.size(), as in

v[i] = n;

then you may or may not get an error message, but your program will
undoubtedly misbehave at some point. ■

8.3 Vectors 485

DISPLAY 8.9 Using a Vector

1 #include <iostream>
2 #include <vector>
3 using namespace std;

4 int main()
5 {
6 vector<int> v;
7 cout << "Enter a list of positive numbers.\n"
8 << "Place a negative number at the end.\n";

9 int next;
10 cin >> next;
11 while (next > 0)
12 {
13 v.push_back(next);
14 cout << next << " added. ";
15 cout << "v.size() = " << v.size() << endl;
16 cin >> next;
17 }

18 cout << "You entered:\n";
19 for (unsigned int i = 0; i < v.size(); i++)
20 cout << v[i] << " ";
21 cout << endl;

22 return 0;
23 }

Sample Dialogue

Enter a list of positive numbers.

Place a negative number at the end.

2 4 6 8 -1

2 added. v.size() = 1

4 added. v.size() = 2

6 added. v.size() = 3

8 added. v.size() = 4

You entered:

2 4 6 8

486 CHAPTER 8 / Strings and Vectors

■ PROGRAMMING TIP Vector Assignment Is Well Behaved

The assignment operator with vectors does an element-by-element assignment
to the vector on the left-hand side of the assignment operator (increasing
capacity if needed and resetting the size of the vector on the left-hand side of
the assignment operator). Thus, provided the assignment operator on the base
type makes an independent copy of the element of the base type, then the
assignment operator on the vector will make an independent copy.

Note that for the assignment operator to produce a totally independent
copy of the vector on the right-hand side of the assignment operator requires
that the assignment operator on the base type make completely independent
copies. The assignment operator on a vector is only as good (or bad) as the
assignment operator on its base type. (Details on overloading the assignment
operator for classes that need it are given in Chapter 11.) ■

Vectors

Vectors are used very much like arrays are used, but a vector does not have
a fixed size. If it needs more capacity to store another element, its capacity
is automatically increased. Vectors are defined in the library <vector>,
which places them in the std namespace. Thus, a file that uses vectors
would include the following (or something similar):

#include <vector>
using namespace std;

The vector class for a given Base_Type is written vector<Base_Type>. Two
sample vector declarations are

vector<int> v; //default constructor
 //producing an empty vector.
vector<AClass> record(20); //vector constructor
//for AClass to initialize 20 elements.

Elements are added to a vector using the member function push_back, as
illustrated below:

v.push_back(42);

Once an element position has received its first element, either with
push_back or with a constructor initialization, that element position can
then be accessed using square bracket notation, just like an array element.

8.3 Vectors 487

Efficiency Issues

At any point in time a vector has a capacity, which is the number of elements
for which it currently has memory allocated. The member function capacity()
can be used to find out the capacity of a vector. Do not confuse the capacity of
a vector with the size of a vector. The size is the number of elements in a vector,
while the capacity is the number of elements for which there is memory
allocated. Typically the capacity is larger than the size, and the capacity is always
greater than or equal to the size.

Whenever a vector runs out of capacity and needs room for an additional
member, the capacity is automatically increased. The exact amount of the
increase is implementation-dependent, but always allows for more capacity
than is immediately needed. A commonly used implementation scheme is for
the capacity to double whenever it needs to increase. Since increasing capacity
is a complex task, this approach of reallocating capacity in large chunks is
more efficient than allocating numerous small chunks.

You can completely ignore the capacity of a vector and that will have no
effect on what your program does. However, if efficiency is an issue, you might
want to manage capacity yourself and not simply accept the default behavior
of doubling capacity whenever more is needed. You can use the member
function reserve to explicitly increase the capacity of a vector. For example,

v.reserve(32);

sets the capacity to at least 32 elements, and

v.reserve(v.size() + 10);

sets the capacity to at least 10 more than the number of elements currently in
the vector. Note that you can rely on v.reserve to increase the capacity of a
vector, but it does not necessarily decrease the capacity of a vector if the
argument is smaller than the current capacity.

Size and Capacity

The size of a vector is the number of elements in the vector. The capacity
of a vector is the number of elements for which it currently has memory
allocated. For a vector v, the size and capacity can be recovered with the
member functions v.size() and v.capacity().

capacity

488 CHAPTER 8 / Strings and Vectors

You can change the size of a vector using the member function resize. For
example, the following resizes a vector to 24 elements:

v.resize(24);

If the previous size was less than 24, then the new elements are initialized as
we described for the constructor with an integer argument. If the previous size
was greater than 24, then all but the first 24 elements are lost. The capacity is
automatically increased if need be. Using resize and reserve, you can shrink
the size and capacity of a vector when there is no longer any need for some
elements or some capacity.

SELF -TEST EXERC ISES

19. Is the following program legal? If so, what is the output?

#include <iostream>
#include <vector>
using namespace std;

int main()
{
 vector<int> v(10);
 int i;

 for (i = 0; i < v.size(); i++)
 v[i] = i;

 vector<int> copy;
 copy = v;
 v[0] = 42;

 for (i = 0; i < copy.size(); i++)
 cout << copy[i] << " ";
 cout << endl;

 return 0;
}

20. What is the difference between the size and the capacity of a vector?

CHAPTER SUMMARY

■ A C-string variable is the same thing as an array of characters, but it is used
in a slightly different way. A string variable uses the null character '\0' to
mark the end of the string stored in the array.

Answers to Self-Test Exercises 489

■ C-string variables usually must be treated like arrays, rather than simple
variables of the kind we used for numbers and single characters. In particu-
lar, you cannot assign a C-string value to a C-string variable using the equal
sign, =, and you cannot compare the values in two C-string variables using
the == operator. Instead you must use special C-string functions to perform
these tasks.

■ The ANSI/ISO standard <string> library provides a fully featured class
called string that can be used to represent strings of characters.

■ Objects of the class string are better behaved than C strings. In particular,
the assignment and equal operators, = and ==, have their intuitive mean-
ing when used with objects of the class string.

■ Vectors can be thought of as arrays that can grow (and shrink) in length
while your program is running.

Answers to Self-Test Exercises

1. The following two are equivalent to each other (but not equivalent to any
others):

char string_var[10] = "Hello";
char string_var[10] = {'H', 'e', 'l', 'l', 'o', '\0'};

The following two are equivalent to each other (but not equivalent to any
others):

char string_var[6] = "Hello";
char string_var[] = "Hello";

The following is not equivalent to any of the others:

char string_var[10] = {'H', 'e', 'l', 'l', 'o'};

2. "DoBeDo to you"

3. The declaration means that string_var has room for only six characters
(including the null character '\0'). The function strcat does not check
that there is room to add more characters to string_var, so strcat will
write all the characters in the string " and Good-bye." into memory, even
though that requires more memory than has been assigned to
string_var. This means memory that should not be changed will be
changed. The net effect is unpredictable, but bad.

490 CHAPTER 8 / Strings and Vectors

4. If strlen were not already defined for you, you could use the following
definition:

int strlen(const char str[])
//Precondition: str contains a string value terminated
//with '\0'.
//Returns the number of characters in the string str (not
//counting '\0').
{
 int index = 0;
 while (str[index] != '\0')
 index++;
 return index;
}

5. The maximum number of characters is five because the sixth position is
needed for the null terminator ('\0').

6. a. 1

b. 1

c. 5 (including the '\0')

d. 2 (including the '\0')

e. 6 (including the '\0')

7. These are not equivalent. The first of these places the null character '\0' in
the array after the characters 'a', 'b', and 'c'. The second only assigns
the successive positions 'a', 'b', and 'c' but does not put a '\0' anywhere.

8. int index = 0;
while (our_string[index] != '\0')
{
 our_string[index] = 'X';
 index++;
}

9. a. If the C-string variable does not have a null terminator, '\0', the loop
can run beyond memory allocated for the C string, destroying the con-
tents of memory there. To protect memory beyond the end of the array,
change the while condition as shown in (b).

b. while(our_string[index] != '\0' && index < SIZE)

10. #include <cstring>
//needed to get the declaration of strcpy
...
strcpy(a_string, "Hello");

11. I did it my way!

Programming Projects 491

12. The string "good, I hope." is too long for a_string. A chunk of memory
that doesn’t belong to the array a_string will be overwritten.

13. Enter some input:
The
 time is now.
The-timeEND OF OUTPUT

14. The complete dialogue is as follows:

Enter a line of input:
May the hair on your toes grow long and curly.
May t<END OF OUTPUT

15. A*string<END OF OUTPUT

16. A string is a joy forever!<END OF OUTPUT

17. The complete dialogue is

Enter a line of input:
Hello friend!
Equal

Remember, cin stops reading when it reaches a whitespace character such
as a blank.

18. Hello Jello

19. The program is legal. The output is

0 1 2 3 4 5 6 7 8 9

Note that changing v does not change copy. A true independent copy is
made with the assignment

copy = v;

20. The size is the number of elements in a vector, whereas the capacity is the
number of elements for which there is memory allocated. Typically, the
capacity is larger than the size.

PROGRAMMING PROJECTS

1. Write a program that reads in a sentence of up to 100 characters and
outputs the sentence with spacing corrected and with letters corrected
for capitalization. In other words, in the output sentence, all strings of
two or more blanks should be compressed to a single blank. The sen-
tence should start with an uppercase letter but should contain no other

(continued)

Video Note
Solution to
Programming
Project 8.1

492 CHAPTER 8 / Strings and Vectors

uppercase letters. Do not worry about proper names; if their first letters
are changed to lowercase, that is acceptable. Treat a line break as if it were
a blank, in the sense that a line break and any number of blanks are
compressed to a single blank. Assume that the sentence ends with a
period and contains no other periods. For example, the input

the Answer to life, the Universe, and everything
IS 42.

should produce the following output:

The answer to life, the universe, and everything is 42.

2. Write a program that will read in a line of text and output the number of
words in the line and the number of occurrences of each letter. Define a
word to be any string of letters that is delimited at each end by either
whitespace, a period, a comma, or the beginning or end of the line. You
can assume that the input consists entirely of letters, whitespace, commas,
and periods. When outputting the number of letters that occur in a line,
be sure to count upper- and lowercase versions of a letter as the same let-
ter. Output the letters in alphabetical order and list only those letters that
do occur in the input line. For example, the input line

I say Hi.

should produce output similar to the following:

3 words
1 a
1 h
2 i
1 s
1 y

3. Give the function definition for the function with the following function
declaration. Embed your definition in a suitable test program.

void get_double(double& input_number);
//Postcondition:input_number is given a value
//that the user approves of.

You can assume that the user types in the input in normal everyday
notation, such as 23.789, and does not use e-notation to type in the
number. Model your definition after the definition of the function get_int
given in Display 8.3 so that your function reads the input as characters,
edits the string of characters, and converts the resulting string to a number
of type double. You will need to define a function like read_and_clean that
is more sophisticated than the one in Display 8.2, since it must cope with

Programming Projects 493

the decimal point. This is a fairly easy project. For a more difficult project,
allow the user to enter the number in either the normal everyday notation,
as discussed above, or in e-notation. Your function should decide whether
or not the input is in e-notation by reading the input, not by asking the user
whether she or he will use e-notation.

4. Write a program that reads a person’s name in the following format: first
name, then middle name or initial, and then last name. The program then
outputs the name in the following format:

Last_Name, First_Name Middle_Initial.

For example, the input

Mary Average User

should produce the output:

User, Mary A.

The input

Mary A. User

should also produce the output:

User, Mary A.

Your program should work the same and place a period after the middle
initial even if the input did not contain a period. Your program should
allow for users who give no middle name or middle initial. In that case,
the output, of course, contains no middle name or initial. For example,
the input

Mary User

should produce the output

User, Mary

If you are using C strings, assume that each name is at most 20 characters
long. Alternatively, use the class string. Hint: You may want to use three
string variables rather than one large string variable for the input. You
may find it easier to not use getline.

5. Write a program that reads in a line of text and replaces all four-letter
words with the word "love". For example, the input string

I hate you, you dodo!

494 CHAPTER 8 / Strings and Vectors

should produce the output

I love you, you love!

Of course, the output will not always make sense. For example, the input
string

John will run home.

should produce the output

Love love run love.

If the four-letter word starts with a capital letter, it should be replaced by
"Love", not by "love". You need not check capitalization, except for the
first letter of a word. A word is any string consisting of the letters of the
alphabet and delimited at each end by a blank, the end of the line, or any
other character that is not a letter. Your program should repeat this action
until the user says to quit.

6. Write a program that reads in a line of text and outputs the line with all
the digits in all integer numbers replaced with 'x'.

For example,

Input:

My userID is john17 and my 4 digit pin is 1234 which is secret.

Output:

My userID is john17 and my x digit pin is xxxx which is secret.

Note that if a digits is part of a word, then the digit is not changed to an
'x'. For example, note that john17 is NOT changed to johnxx. Include a
loop that allows the user to repeat this calculation again until the user
says she or he wants to end the program.

7. Write a program that can be used to train the user to use less sexist lan-
guage by suggesting alternative versions of sentences given by the user.
The program will ask for a sentence, read the sentence into a string vari-
able, and replace all occurrences of masculine pronouns with gender-neutral
pronouns. For example, it will replace "he" with "she or he". Thus, the
input sentence

See an adviser, talk to him, and listen to him.

should produce the following suggested changed version of the sentence:

See an adviser, talk to her or him, and listen to her or him.

Programming Projects 495

Be sure to preserve uppercase letters for the first word of the sentence. The
pronoun "his" can be replaced by "her(s)"; your program need not
decide between "her" and "hers". Allow the user to repeat this for more
sentences until the user says she or he is done.

This will be a long program that requires a good deal of patience. Your
program should not replace the string "he" when it occurs inside another
word, such as "here". A word is any string consisting of the letters of the
alphabet and delimited at each end by a blank, the end of the line, or any
other character that is not a letter. Allow your sentences to be up to 100
characters long.

8. Write a sorting function that is similar to Display 7.12 in Chapter 7 except
that it has an argument for a vector of ints rather than an array. This func-
tion will not need a parameter like number_used as in Display 7.12, since a
vector can determine the number used with the member function size().
This sort function will have only this one parameter, which will be of a vec-
tor type. Use the selection sort algorithm (which was used in Display 7.12).

9. Redo Programming Project 6 from Chapter 7, but this time use vectors
instead of arrays. (It may help to do the previous Programming Project first.)

10. Redo Programming Project 5 from Chapter 7, but this time use vectors
instead of arrays. You should do either Programming Project 8 or 9 before
doing this one. However, you will need to write your own (similar) sort-
ing code for this project rather than using the sorting function from Pro-
gramming Project 7 or 8 with no changes.

11. Write a program that inputs two string variables, first and last, each of
which the user should enter with his or her name. First, convert both
strings to all lowercase. Your program should then create a new string
that contains the full name in pig latin with the first letter capitalized for
the first and last name. The rules to convert a word into pig latin are as
follows:

If the first letter is a consonant, move it to the end and add “ay” to the end.

If the first letter is a vowel, add “way” to the end.

For example, if the user inputs “Erin” for the first name and “Jones” for
the last name, then the program should create a new string with the text
“Erinway Onesjay” and print it.

12. Your country is at war and your enemies are using a secret code to com-
municate with each other. You have managed to intercept a message that
reads as follows:

:mmZ\dxZmx]Zpgy
(continued)

496 CHAPTER 8 / Strings and Vectors

The message is obviously encrypted using the enemy’s secret code. You
have just learned that their encryption method is based upon the ASCII
code. Appendix 3 shows the ASCII character set. Individual characters in a
string are encoded using this system. For example, the letter “A” is
encoded using the number 65 and “B” is encoded using the number 66.

Your enemy’s secret code takes each letter of the message and encrypts it
as follows:

If (OriginalChar + Key > 126) then
 EncryptedChar = 32 + ((OriginalChar + Key) – 127)

Else
 EncryptedChar = (OriginalChar + Key)

For example, if the enemy uses Key = 10 then the message “Hey” would be
encrypted as:

Character ASCII code______________________
H 72
e 101
y 121

Encrypted H = (72 + 10) = 82 = R in ASCII
Encrypted e = (101 + 10) = 111 = o in ASCII
Encrypted y = 32 + ((121 + 10) – 127) = 36 = $ in ASCII

Consequently, “Hey” would be transmitted as “Ro$.”

Write a program that decrypts the intercepted message. You only know
that the key used is a number between 1 and 100. Your program should
try to decode the message using all possible keys between 1 and 100.
When you try the valid key, the message will make sense. For all other
keys, the message will appear as gibberish.

13. Write a program that inputs a time from the console. The time should be
in the format “HH:MM AM” or “HH:MM PM”. Hours may be one or two
digits, for example, “1:10 AM” or “11:30 PM”. Your program should
include a function that takes a string parameter containing the time. This
function should convert the time into a four digit military time based on a
24-hour clock. For example, “1:10 AM” would output “0110 hours”,
“11:30 PM” would output “2330 hours”, and “12:15 AM” would output
“0015 hours”. The function may either write the time to the console or
return a string to be written to the console by the main function.

14. The XML (eXtensible Markup Language) is a common format used to
structure and store data on the web. The following is a small sample XML
file that could be used to store names in an address book. Type it in using
a text editor and save it to a file named address.xml (or find it on the
accompanying CD). (continued)

Programming Projects 497

<?xml version="1.0"?>
<address_book>
 <contact>
 <name>George Clooney</name>
 <street>1042 El Camino Real</street>
 <city>Beverly Hills</city>
 <state>CA</state>
 <zip>90214</zip>
 </contact>
 <contact>
 <name>Cathy Pearl</name>
 <street>405 A St.</street>
 <city>Palmdale</city>
 <state>CA</state>
 <zip>93352</zip>
 </contact>
 <contact>
 <name>Paris Hilton</name>
 <street>200 S. Elm St.</street>
 <city>Beverly Hills</city>
 <state>CA</state>
 <zip>90212</zip>
 </contact>
 <contact>
 <name>Wendy Jones</name>
 <street>982 Boundary Ave.</street>
 <city>Palmdale</city>
 <state>CA</state>
 <zip>93354</zip>
 </contact>
</address_book>

The sample file contains four contacts. The <> tag denotes the start of a
field and the </> tag denotes the end of the field.

a) You are hosting a party in Palmdale, CA. Write a program that reads in
the address.xml file and outputs the names and addresses of everyone
in Palmdale. Your program shouldn’t output any of the tag informa-
tion, just the address content.

b) You would like to send an advertising flyer to everyone in zip codes
90210 through 90214. Write a program that reads in the address.xml
file and outputs the names and addresses of everyone whose zip code
falls within the specified range.

You may assume that each contact in the address file has the same
structure and the same fields. However, your solution should be able to
handle an input file with any number of contacts and should not assume
that the fields within each contact are in the same order.

This page intentionally left blank

9Pointers and
Dynamic Arrays

9.1 POINTERS 500
Pointer Variables 501
Basic Memory Management 508
Pitfall: Dangling Pointers 509
Static Variables and Automatic Variables 510
Programming Tip: Define Pointer Types 510

9.2 DYNAMIC ARRAYS 513
Array Variables and Pointer Variables 513
Creating and Using Dynamic Arrays 513
Pointer Arithmetic (Optional) 519
Multidimensional Dynamic Arrays (Optional) 521

Chapter Summary 523
Answers to Self-Test Exercises 523
Programming Projects 524

500

Memory is necessary for all the operations of reason.

BLAISE PASCAL, Pensées

INTRODUCTION
A pointer is a construct that gives you more control of the computer’s memory.
This chapter shows how pointers are used with arrays and introduces a new
form of array called a dynamic array. Dynamic arrays are arrays whose size is
determined while the program is running, rather than being fixed when the
program is written.

PREREQUISITES
Section 9.1, which covers the basics of pointers, uses material from Chapters 2
through 6. It does not require any of the material from Chapters 7 or 8.

Section 9.2, which covers dynamic arrays, uses material from Section 9.1,
and Chapters 2 through 7. It does not require any of the material from
Chapter 8.

9.1 POINTERS

Do not mistake the pointing finger for the moon.

ZEN SAYING

A pointer is the memory address of a variable. Recall that the computer’s
memory is divided into numbered memory locations (called bytes), and that
variables are implemented as a sequence of adjacent memory locations. Recall
also that sometimes the C++ system uses these memory addresses as names for
the variables. If a variable is implemented as, say, three memory locations,
then the address of the first of these memory locations is sometimes used as a
name for that variable. For example, when the variable is used as a call-by-
reference argument, it is this address, not the identifier name of the variable,
that is passed to the calling function.

An address that is used to name a variable in this way (by giving the address
in memory where the variable starts) is called a pointer because the address can
be thought of as “pointing” to the variable. The address “points” to the variable
because it identifies the variable by telling where the variable is, rather than
telling what the variable’s name is. A variable that is, say, at location number
1007 can be pointed out by saying “it’s the variable over there at location 1007.”

pointer

9.1 Pointers 501

You have already been using pointers in a number of situations. As we
noted in the previous paragraph, when a variable is a call-by-reference
argument in a function call, the function is given this argument variable in the
form of a pointer to the variable. This is an important and powerful use for
pointers, but it is done automatically for you by the C++ system. In this
chapter we show you how to write programs that manipulate pointers in any
way you want, rather than relying on the system to manipulate the pointers
for you.

Pointer Variables

A pointer can be stored in a variable. However, even though a pointer is a
memory address and a memory address is a number, you cannot store a pointer
in a variable of type int or double. A variable to hold a pointer must be declared
to have a pointer type. For example, the following declares p to be a pointer
variable that can hold one pointer that points to a variable of type double:

double *p;

The variable p can hold pointers to variables of type double, but it cannot
normally contain a pointer to a variable of some other type, such as int or
char. Each variable type requires a different pointer type.

In general, to declare a variable that can hold pointers to other variables
of a specific type, you declare the pointer variable just as you would declare an
ordinary variable of that type, but you place an asterisk in front of the variable
name. For example, the following declares the variables p1 and p2 so that they
can hold pointers to variables of type int; it also declares two ordinary
variables, v1 and v2, of type int:

int *p1, *p2, v1, v2;

There must be an asterisk before each of the pointer variables. If you omit the
second asterisk in the previous declaration, then p2 will not be a pointer
variable; it will instead be an ordinary variable of type int. The asterisk is the
same symbol you have been using for multiplication, but in this context it has
a totally different meaning.

When discussing pointers and pointer variables, we usually speak of
pointing rather than speaking of addresses. When a pointer variable, such as p1,
contains the address of a variable, such as v1, the pointer variable is said to
point to the variable v1 or to be a pointer to the variable v1.

Pointer variables, like p1 and p2 declared earlier, can contain pointers to
variables like v1 and v2. You can use the operator & to determine the address
of a variable, and you can then assign that address to a pointer variable. For
example, the following will set the variable p1 equal to a pointer that points
to the variable v1:

p1 = &v1;

declaring
pointer variables

the & operator

502 CHAPTER 9 / Pointers and Dynamic Arrays

You now have two ways to refer to v1: You can call it v1 or you can call it “the
variable pointed to by p1.” In C++, the way that you say “the variable pointed to
by p1” is *p1. This is the same asterisk that we used when we declared p1, but now
it has yet another meaning. When the asterisk is used in this way, it is often called
the dereferencing operator, and the pointer variable is said to be dereferenced.

Putting these pieces together can produce some surprising results. Consider
the following code:

v1 = 0;
p1 = &v1;
*p1 = 42;
cout << v1 << endl;
cout << *p1 << endl;

This code outputs the following to the screen:

42
42

Pointer Variable Declarations

A variable that can hold pointers to other variables of type Type_Name is
declared similarly to the way you declare a variable of type Type_Name,
except that you place an asterisk at the beginning of the variable name.

SYNTAX

Type_Name *Variable_Name1 , *Variable_Name2 , . . .;

EXAMPLE

double *pointer1, *pointer2;

Addresses and Numbers

A pointer is an address, and an address is an integer, but a pointer is not
an integer. That is not crazy. That is abstraction! C++ insists that you use a
pointer as an address and that you not use it as a number. A pointer is not
a value of type int or of any other numeric type. You normally cannot
store a pointer in a variable of type int. If you try, most C++ compilers will
give you an error message or a warning message. Also, you cannot perform
the normal arithmetic operations on pointers. (You can perform a kind of
addition and a kind of subtraction on pointers, but they are not the usual
integer addition and subtraction.)

the * operator

dereferencing

9.1 Pointers 503

As long as p1 contains a pointer that points to v1, then v1 and *p1 refer to the
same variable. So when you set *p1 equal to 42, you are also setting v1 equal to 42.

The symbol & that is used to obtain the address of a variable is the same
symbol that you use in function declarations to specify a call-by-reference
parameter. This use is not a coincidence. Recall that a call-by-reference
argument is implemented by giving the address of the argument to the calling
function. So, these two uses of the symbol & are very much the same. However,
the usages are slightly different and we will consider them to be two different
(although very closely related) usages of the symbol &.

You can assign the value of one pointer variable to another pointer
variable. This copies an address from one pointer variable to another pointer
variable. For example, if p1 is still pointing to v1, then the following will set
p2 so that it also points to v1:

p2 = p1;

Provided we have not changed v1’s value, the following also outputs a 42 to
the screen:

cout << *p2;

Be sure that you do not confuse

p1 = p2;

The * and & Operators

The * operator in front of a pointer variable produces the variable it points
to. When used this way, the * operator is called the dereferencing
operator.

The operator & in front of an ordinary variable produces the address of
that variable; that is, produces a pointer that points to the variable. The &
operator is called the address-of operator.

For example, consider the declarations

double *p, v;

The following sets the value of p so that p points to the variable v:

p = &v;

*p produces the variable pointed to by p, so after the above assignment,
*p and v refer to the same variable. For example, the following sets the
value of v to 9.99, even though the name v is never explicitly used:

*p = 9.99;

pointers in
assignment
statements

504 CHAPTER 9 / Pointers and Dynamic Arrays

and

*p1 = *p2;

When you add the asterisk, you are not dealing with the pointers p1 and p2,
but with the variables that the pointers are pointing to. This is illustrated in
Display 9.1.

Since a pointer can be used to refer to a variable, your program can
manipulate variables even if the variables have no identifiers to name them.
The operator new can be used to create variables that have no identifiers to
serve as their names. These nameless variables are referred to via pointers. For
example, the following creates a new variable of type int and sets the pointer
variable p1 equal to the address of this new variable (that is, p1 points to this
new, nameless variable):

p1 = new int;

This new, nameless variable can be referred to as *p1 (that is, as the variable
pointed to by p1). You can do anything with this nameless variable that you
can do with any other variable of type int. For example, the following reads a
value of type int from the keyboard into this nameless variable, adds 7 to the
value, then outputs this new value:

cin >> *p1;
*p1 = *p1 + 7;
cout << *p1;

The new operator produces a new nameless variable and returns a pointer
that points to this new variable. You specify the type for this new variable by

DISPLAY 9.1 Uses of the Assignment Operator

 p1 = p2;

 *p1 = *p2;

Before: After:

p1

p2

p1

p2

p1

p2

p1

p2

84

99

84

99

84

Before:

99

99

After:

99

new

9.1 Pointers 505

writing the type name after the new operator. Variables that are created using
the new operator are called dynamic variables because they are created and
destroyed while the program is running. The program in Display 9.2
demonstrates some simple operations on pointers and dynamic variables.
Display 9.3 illustrates the working of the program in Display 9.2. In Display
9.3 variables are represented as boxes and the value of the variable is written
inside the box. We have not shown the actual numeric addresses in the
pointer variables. The actual numbers are not important. What is important
is that the number is the address of some particular variable. So, rather than
use the actual number of the address, we have merely indicated the address
with an arrow that points to the variable with that address. For example, in
illustration (b) in Display 9.3, p1 contains the address of a variable that has
a question mark written in it.

dynamic variable

DISPLAY 9.2 Basic Pointer Manipulations (part 1 of 2)

1 //Program to demonstrate pointers and dynamic variables.
2 #include <iostream>
3 using namespace std;
4
5 int main()
6 {
7 int *p1, *p2;
8
9 p1 = new int;

10 *p1 = 42;
11 p2 = p1;
12 cout << "*p1 == " << *p1 << endl;
13 cout << "*p2 == " << *p2 << endl;

14 *p2 = 53;
15 cout << "*p1 == " << *p1 << endl;
16 cout << "*p2 == " << *p2 << endl;

17 p1 = new int;
18 *p1 = 88;
19 cout << "*p1 == " << *p1 << endl;
20 cout << "*p2 == " << *p2 << endl;
21 cout << "Hope you got the point of this example!\n";
22 return 0;
23 }

(continued)

506 CHAPTER 9 / Pointers and Dynamic Arrays

Pointer Variables Used with =

If p1 and p2 are pointer variables, then the statement

p1 = p2;

changes p1 so that it points to the same thing that p2 is currently pointing to.

The new Operator

The new operator creates a new dynamic variable of a specified type and
returns a pointer that points to this new variable. For example, the
following creates a new dynamic variable of type MyType and leaves the
pointer variable p pointing to this new variable:

MyType *p;
p = new MyType;

If the type is a class with a constructor, the default constructor is called for
the newly created dynamic variable. Initializers can be specified that cause
other constructors to be called:

int *n;
n = new int(17); // initializes n to 17
MyType *mtPtr;
mtPtr = new MyType(32.0, 17); // calls MyType(double, int);

DISPLAY 9.2 Basic Pointer Manipulations (part 2 of 2)

Sample Dialogue

*p1 == 42

*p2 == 42

*p1 == 53

*p2 == 53

*p1 == 88

*p2 == 53

Hope you got the point of this example!

9.1 Pointers 507

1

The C++ standard specifies that if there is not sufficient memory available
to create the new variable, then the new operator, by default, terminates
the program.1

1 Technically, the new operator throws an exception, which, if not caught, terminates the
program. It is possible to “catch” the exception or install a new handler, but these topics
are not covered until Chapter 16.

DISPLAY 9.3 Explanation of Display 9.2

p1

p2

(c)

*p1 = 42;

42

?

p1

p2

(b)

p1 = new int;

?

?

p1

p2

(a)

int *p1, *p2;

?

p1

p2

(d)

p2 = p1;

42

?

p1

p2

(g)

*p1 = 88;
88

53

p1

p2

(e)

*p2 = 53;

53

p1

p2

(f)

p1 = new int;
?

53

508 CHAPTER 9 / Pointers and Dynamic Arrays

SELF -TEST EXERC ISES

1. Explain the concept of a pointer in C++.

2. What unfortunate misinterpretation can occur with the following declaration?

int* int_ptr1, int_ptr2;

3. Give at least two uses of the * operator. State what the * is doing, and
name the use of the * that you present.

4. What is the output produced by the following code?

int *p1, *p2;
p1 = new int;
p2 = new int;
*p1 = 10;
*p2 = 20;
cout << *p1 << " " << *p2 << endl;
p1 = p2;
cout << *p1 << " " << *p2 << endl;
*p1 = 30;
cout << *p1 << " " << *p2 << endl;

How would the output change if you were to replace

*p1 = 30;

with the following?

*p2 = 30;

5. What is the output produced by the following code?

int *p1, *p2;
p1 = new int;
p2 = new int;
*p1 = 10;
*p2 = 20;
cout << *p1 << " " << *p2 << endl;
*p1 = *p2; //This is different from Exercise 4
cout << *p1 << " " << *p2 << endl;
*p1 = 30;
cout << *p1 << " " << *p2 << endl;

Basic Memory Management

A special area of memory, called the freestore, is reserved for dynamic
variables. Any new dynamic variable created by a program consumes some of

freestore

9.1 Pointers 509

the memory in the freestore2. If your program creates too many dynamic
variables, it will consume all of the memory in the freestore. If this happens,
any additional calls to new will fail.

The size of the freestore varies from one implementation of C++ to another.
It is typically large, and a modest program is not likely to use all the memory in
the freestore. However, even on modest programs it is a good practice to recycle
any freestore memory that is no longer needed. If your program no longer needs
a dynamic variable, the memory used by that dynamic variable can be recycled.
The delete operator eliminates a dynamic variable and returns the memory that
the dynamic variable occupied to the freestore so that the memory can be
reused. Suppose that p is a pointer variable that is pointing to a dynamic
variable. The following will destroy the dynamic variable pointed to by p and
return the memory used by the dynamic variable to the freestore:

delete p;

After this call to delete, the value of p is undefined and p should be treated
like an uninitialized variable.

■ PITFALL Dangling Pointers

When you apply delete to a pointer variable, the dynamic variable it is
pointing to is destroyed. At that point, the value of the pointer variable is
undefined, which means that you do not know where it is pointing, nor what
the value is where it is pointing. Moreover, if some other pointer variable was
pointing to the dynamic variable that was destroyed, then this other pointer
variable is also undefined. These undefined pointer variables are called

2 The freestore is also sometimes called the heap .

The delete Operator

The delete operator eliminates a dynamic variable and returns the
memory that the dynamic variable occupied to the freestore. The memory
can then be reused to create new dynamic variables. For example, the
following eliminates the dynamic variable pointed to by the pointer
variable p:

delete p;

After a call to delete, the value of the pointer variable, like p above, is
undefined. (A slightly different version of delete, discussed later in this
chapter, is used when the dynamic variable is an array.)

delete

510 CHAPTER 9 / Pointers and Dynamic Arrays

dangling pointers. If p is a dangling pointer and your program applies the
dereferencing operator * to p (to produce the expression *p), the result is
unpredictable and usually disastrous. Before you apply the dereferencing
operator * to a pointer variable, you should be certain that the pointer variable
points to some variable. ■

Static Variables and Automatic Variables

Variables created with the new operator are called dynamic variables, because
they are created and destroyed while the program is running. When compared
with these dynamic variables, ordinary variables seem static, but the terminol-
ogy used by C++ programmers is a bit more involved than that, and ordinary
variables are not called static variables.

The ordinary variables we have been using in previous chapters are not
really static. If a variable is local to a function, then the variable is created by
the C++ system when the function is called and is destroyed when the function
call is completed. Since the main part of a program is really just a function
called main, this is even true of the variables declared in the main part of your
program. (Since the call to main does not end until the program ends, the
variables declared in main are not destroyed until the program ends, but the
mechanism for handling local variables is the same for main as it is for any
other function.) The ordinary variables that we have been using (that is, the
variables declared within main or within some other function definition) are
called automatic variables, because their dynamic properties are controlled
automatically for you; they are automatically created when the function in
which they are declared is called and automatically destroyed when the
function call ends. We will usually call these variables ordinary variables, but
other books call them automatic variables.

There is one other category of variables, namely, global variables. Global
variables are variables that are declared outside of any function definition (includ-
ing being outside of main). We discussed global variables briefly in Chapter 4. As
it turns out, we have no need for global variables and have not used them.

■ PROGRAMMING TIP Define Pointer Types

You can define a pointer type name so that pointer variables can be declared
like other variables without the need to place an asterisk in front of each
pointer variable. For example, the following defines a type called IntPtr,
which is the type for pointer variables that contain pointers to int variables:

typedef int* IntPtr;

Thus, the following two pointer variable declarations are equivalent:

IntPtr p;

dangling pointer

dynamic
variables

automatic
variables

global variables

typedef

9.1 Pointers 511

and

int *p;

You can use typedef to define an alias for any type name or definition.
For example, the following defines the type name Kilometers to mean the
same thing as the type name double:

typedef double Kilometers;

Once you have given this type definition, you can define a variable of type
double as follows:

Kilometers distance;

Renaming existing types this way can occasionally be useful. However, our
main use of typedef will be to define types for pointer variables.

There are two advantages to using defined pointer type names, such as
IntPtr defined earlier. First, it avoids the mistake of omitting an asterisk.
Remember, if you intend p1 and p2 to be pointers, then the following is a
mistake:

int *p1, p2;

Since the * was omitted from the p2, the variable p2 is just an ordinary int
variable, not a pointer variable. If you get confused and place the * on the int,
the problem is the same but is more difficult to notice. C++ allows you to
place the * on the type name, such as int, so that the following is legal:

int* p1, p2;

Although this line is legal, it is misleading. It looks like both p1 and p2 are
pointer variables, but in fact only p1 is a pointer variable; p2 is an ordinary int
variable. As far as the C++ compiler is concerned, the * that is attached to the
identifier int may as well be attached to the identifier p1. One correct way to
declare both p1 and p2 to be pointer variables is

int *p1, *p2;

An easier and less error-prone way to declare both p1 and p2 to be pointer
variables is to use the defined type name IntPtr as follows:

IntPtr p1, p2;

The second advantage of using a defined pointer type, such as IntPtr, is
seen when you define a function with a call-by-reference parameter for a
pointer variable. Without the defined pointer type name, you would need to
include both an * and an & in the function declaration for the function, and
the details can get confusing. If you use a type name for the pointer type, then
a call-by-reference parameter for a pointer type involves no complications.

512 CHAPTER 9 / Pointers and Dynamic Arrays

You define a call-by-reference parameter for a defined pointer type just like
you define any other call-by-reference parameter. Here’s a sample:

void sample_function(IntPtr& pointer_variable);

■

SELF -TEST EXERC ISES

6. Suppose a dynamic variable were created as follows:

char *p;
p = new char;

Assuming that the value of the pointer variable p has not changed (so it
still points to the same dynamic variable), how can you destroy this new
dynamic variable and return the memory it uses to the freestore so that
the memory can be reused to create new dynamic variables?

7. Write a definition for a type called NumberPtr that will be the type for pointer
variables that hold pointers to dynamic variables of type int. Also, write a
declaration for a pointer variable called my_point that is of type NumberPtr.

8. Describe the action of the new operator. What does the operator new
return?

Type Definitions

You can assign a name to a type definition and then use the type name to
declare variables. This is done with the keyword typedef. These type
definitions are normally placed outside of the body of the main part of
your program (and outside the body of other functions) in the same place
as struct and class definitions. We will use type definitions to define
names for pointer types, as shown in the example below.

SYNTAX

typedef Known_Type_Definition New_Type_Name ;

EXAMPLE

typedef int* IntPtr;

The type name IntPtr can then be used to declare pointers to dynamic
variables of type int, as in the following:

IntPtr pointer1, pointer2;

9.2 Dynamic Arrays 513

9.2 DYNAMIC ARRAYS

In this section you will see that array variables are actually pointer variables.
You will also find out how to write programs with dynamic arrays. A dynamic
array is an array whose size is not specified when you write the program, but
is determined while the program is running.

Array Variables and Pointer Variables

In Chapter 7 we described how arrays are kept in memory. At that point we had
not learned about pointers, so we discussed arrays in terms of memory addresses.
But, a memory address is a pointer. So, in C++ an array variable is actually a
pointer variable that points to the first indexed variable of the array. Given the
following two variable declarations, p and a are the same kind of variable:

int a[10];
typedef int* IntPtr;
IntPtr p;

The fact that a and p are the same kind of variable is illustrated in Display
9.4. Since a is a pointer that points to a variable of type int (namely the
variable a[0]), the value of a can be assigned to the pointer variable p as
follows:

p = a;

After this assignment, p points to the same memory location that a points to. So,
p[0], p[1], … p[9] refer to the indexed variables a[0], a[1], … a[9]. The
square bracket notation you have been using for arrays applies to pointer
variables as long as the pointer variable points to an array in memory. After this
assignment, you can treat the identifier p as if it were an array identifier. You can
also treat the identifier a as if it were a pointer variable, but there is one
important reservation. You cannot change the pointer value in an array variable, such
as a. You might be tempted to think the following is legal, but it is not:

IntPtr p2;
...//p2 is given some pointer value.
a = p2;//ILLEGAL. You cannot assign a different address to a.

Creating and Using Dynamic Arrays

One problem with the kinds of arrays you have used thus far is that you must
specify the size of the array when you write the program—but you may not
know what size array you need until the program is run. For example, an array
might hold a list of student identification numbers, but the size of the class
may be different each time the program is run. With the kinds of arrays you
have used thus far, you must estimate the largest possible size you may need
for the array, and hope that size is large enough. There are two problems with

dynamic array

514 CHAPTER 9 / Pointers and Dynamic Arrays

this. First, you may estimate too low, and then your program will not work in
all situations. Second, since the array might have many unused positions, this
can waste computer memory. Dynamic arrays avoid these problems. If your
program uses a dynamic array for student identification numbers, then the
size of the class can be entered as input to the program and the dynamic array
can be created to be exactly that size.

DISPLAY 9.4 Arrays and Pointer Variables

1 //Program to demonstrate that an array variable is a kind of pointer variable.
2 #include <iostream>
3 using namespace std;
4
5 typedef int* IntPtr;
6
7 int main()
8 {
9 IntPtr p;

10 int a[10];
11 int index;
12
13 for (index = 0; index < 10; index++)
14 a[index] = index;
15
16 p = a;
17
18 for (index = 0; index < 10; index++)
19 cout << p[index] << " ";
20 cout << endl;
21
22 for (index = 0; index < 10; index++)
23 p[index] = p[index] + 1;
24
25 for (index = 0; index < 10; index++)
26 cout << a[index] << " ";
27 cout << endl;
28
29 return 0;
30 }

Output

0 1 2 3 4 5 6 7 8 9

1 2 3 4 5 6 7 8 9 10

Note that changes to the array p
are also changes to the array a.

9.2 Dynamic Arrays 515

Dynamic arrays are created using the new operator. The creation and use
of dynamic arrays is surprisingly simple. Since array variables are pointer
variables, you can use the new operator to create dynamic variables that are
arrays and treat these dynamic array variables as if they were ordinary arrays.
For example, the following creates a dynamic array variable with ten array
elements of type double:

typedef double* DoublePtr;
DoublePtr p;
p = new double[10];

To obtain a dynamic array of elements of any other type, simply replace
double with the desired type. In particular, you can replace the type double
with a struct or class type. To obtain a dynamic array variable of any other
size, simply replace 10 with the desired size.

There are also a number of less obvious things to notice about this example.
First, the pointer type that you use for a pointer to a dynamic array is the same
as the pointer type you would use for a single element of the array. For instance,
the pointer type for an array of elements of type double is the same as the
pointer type you would use for a simple variable of type double. The pointer to
the array is actually a pointer to the first indexed variable of the array. In the
previous example, an entire array with ten indexed variables is created, and the
pointer p is left pointing to the first of these ten indexed variables.

Also notice that when you call new, the size of the dynamic array is given
in square brackets after the type, which in this example is the type double. This
tells the computer how much storage to reserve for the dynamic array. If you
omit the square brackets and the 10, the computer will allocate enough storage
for only one variable of type double, rather than for an array of ten indexed
variables of type double. As illustrated in Display 9.5, you can use an int
variable in place of the constant 10 so that the size of the dynamic array can
be read into the program.

The program in Display 9.5 sorts a list of numbers. This program works for
lists of any size because it uses a dynamic array to hold the numbers. The size of
the array is determined when the program is run. The user is asked how many
numbers there will be, and then the new operator creates a dynamic array of that
size. The size of the dynamic array is given by the variable array_size.

Notice the delete statement, which destroys the dynamic array variable a
in Display 9.5. Since the program is about to end anyway, we did not really
need this delete statement; however, if the program went on to do other
things with dynamic variables, you would want such a delete statement so
that the memory used by this dynamic array is returned to the freestore. The
delete statement for a dynamic array is similar to the delete statement you
saw earlier, except that with a dynamic array you must include an empty pair
of square brackets like so:

delete [] a;

creating a
dynamic array

delete []

516 CHAPTER 9 / Pointers and Dynamic Arrays

DISPLAY 9.5 A Dynamic Array (part 1 of 2)

1 //Sorts a list of numbers entered at the keyboard.
2 #include <iostream>
3 #include <cstdlib>
4 #include <cstddef>
5
6 typedef int* IntArrayPtr;
7
8 void fill_array(int a[], int size);
9 //Precondition: size is the size of the array a.

10 //Postcondition: a[0] through a[size− 1] have been
11 //filled with values read from the keyboard.
12
13 void sort(int a[], int size);
14 //Precondition: size is the size of the array a.
15 //The array elements a[0] through a[size− 1] have values.
16 //Postcondition: The values of a[0] through a[size− 1] have been rearranged
17 //so that a[0] <= a[1] <= ... <= a[size− 1].
18
19 int main()
20 {
21 using namespace std;
22 cout << "This program sorts numbers from lowest to highest.\n";
23
24 int array_size;
25 cout << "How many numbers will be sorted? ";
26 cin >> array_size;
27
28 IntArrayPtr a;
29 a = new int[array_size];
30
31 fill_array(a, array_size);
32 sort(a, array_size);
33
34 cout << "In sorted order the numbers are:\n";
35 for (int index = 0; index < array_size; index++)
36 cout << a[index] << " ";
37 cout << endl;
38
39 delete [] a;
40
41 return 0;
42 }
43

(continued)

Ordinary array
parameters

The dynamic array a is
used like an ordinary array.

9.2 Dynamic Arrays 517

The square brackets tell C++ that a dynamic array variable is being eliminated,
so the system checks the size of the array and removes that many indexed
variables. If you omit the square brackets, you would be telling the computer
to eliminate only one variable of type int. For example:

delete a;

is not legal, but the error is not detected by most compilers. The ANSI C++
standard says that what happens when you do this is “undefined.” That means
the author of the compiler can have this do anything that is convenient—
convenient for the compiler writer, not for us. Even if it does something useful,
you have no guarantee that either the next version of that compiler or any
other compiler you compile this code with will do the same thing. The moral
is simple: Always use the

delete [] array_ptr;

syntax when you are deleting memory that was allocated with something like

array_ptr = new MyType[37];

You create a dynamic array with a call to new using a pointer, such as the
pointer a in Display 9.5. After the call to new, you should not assign any other
pointer value to this pointer variable, because that can confuse the system when the
memory for the dynamic array is returned to the freestore with a call to delete.

DISPLAY 9.5 A Dynamic Array (part 2 of 2)

44 //Uses the library iostream:
45 void fill_array(int a[], int size)
46 {
47 using namespace std;
48 cout << "Enter " << size << " integers.\n";
49 for (int index = 0; index < size; index++)
50 cin >> a[index];
51 }
52
53 void sort(int a[], int size)

 <Any implementation of sort may be used. This may or may not require some
 additional function definitions. The implementation need not even know that
 sort will be called with a dynamic array. For example, you can use the
 implementation in Display 7.12 (with suitable adjustments to parameter names).>

518 CHAPTER 9 / Pointers and Dynamic Arrays

Dynamic arrays are created using new and a pointer variable. When your
program is finished using a dynamic array, you should return the array
memory to the freestore with a call to delete. Other than that, a dynamic array
can be used just like any other array.

SELF -TEST EXERC ISES

9. Write a type definition for pointer variables that will be used to point to
dynamic arrays. The array elements are to be of type char. Call the type
CharArray.

How to Use a Dynamic Array

■ Define a pointer type: Define a type for pointers to variables of the same
type as the elements of the array. For example, if the dynamic array is an array
of double, you might use the following:

typedef double* DoubleArrayPtr;

■ Declare a pointer variable: Declare a pointer variable of this defined type.
The pointer variable will point to the dynamic array in memory and will serve as
the name of the dynamic array.

DoubleArrayPtr a;

■ Call new : Create a dynamic array using the new operator:

a = new double[array_size];

The size of the dynamic array is given in square brackets as in the above exam-
ple. The size can be given using an int variable or other int expression. In the
above example, array_size can be a variable of type int whose value is
determined while the program is running.

■ Use like an ordinary array: The pointer variable, such as a, is used just like an
ordinary array. For example, the indexed variables are written in the usual way:
a[0], a[1], and so forth. The pointer variable should not have any other
pointer value assigned to it, but should be used like an array variable.

■ Call delete []: When your program is finished with the dynamic variable,
use delete and empty square brackets along with the pointer variable to elim-
inate the dynamic array and return the storage that it occupies to the freestore
for reuse. For example:

delete [] a;

9.2 Dynamic Arrays 519

10. Suppose your program contains code to create a dynamic array as follows:

int *entry;
entry = new int[10];

so that the pointer variable entry is pointing to this dynamic array. Write
code to fill this array with ten numbers typed in at the keyboard.

11. Suppose your program contains code to create a dynamic array as in Self-
Test Exercise 10, and suppose the pointer variable entry has not had its
(pointer) value changed. Write code to destroy this new dynamic array
and return the memory it uses to the freestore.

12. What is the output of the following code fragment? The code is assumed
to be embedded in a correct and complete program.

int a[10];
int *p = a;
int i;
for (i = 0; i < 10; i++)
 a[i] = i;

for (i = 0; i < 10; i++)
 cout << p[i] << " ";
cout << endl;

13. What is the output of the following code fragment? The code is assumed
to be embedded in a correct and complete program.

int array_size = 10;
int *a;
a = new int[array_size];
int *p = a;
int i;
for (i = 0; i < array_size; i++)
 a[i] = i;
p[0] = 10;

for (i = 0; i < array_size; i++)
 cout << a[i] << " ";
cout << endl;

Pointer Arithmetic (Optional)

There is a kind of arithmetic you can perform on pointers, but it is an
arithmetic of addresses, not an arithmetic of numbers. For example, suppose
your program contains the following code:

typedef double* DoublePtr;
DoublePtr d;
d = new double[10];

520 CHAPTER 9 / Pointers and Dynamic Arrays

After these statements, d contains the address of the indexed variable d[0]. The
expression d + 1 evaluates to the address of d[1], d + 2 is the address of d[2],
and so forth. Notice that although the value of d is an address and an address
is a number, d + 1 does not simply add 1 to the number in d. If a variable of
type double requires eight bytes (eight memory locations) and d contains the
address 2001, then d + 1 evaluates to the memory address 2009. Of course, the
type double can be replaced by any other type, and then pointer addition
moves in units of variables for that type.

This pointer arithmetic gives you an alternative way to manipulate arrays.
For example, if array_size is the size of the dynamic array pointed to by d,
then the following will output the contents of the dynamic array:

for (int i = 0; i < array_size; i++)
cout << *(d + i)<< " ";

This code is equivalent to the following:

for (int i = 0; i < array_size; i++)
cout << d[i] << " ";

You may not perform multiplication or division of pointers. All you can
do is add an integer to a pointer, subtract an integer from a pointer, or subtract
two pointers of the same type. When you subtract two pointers, the result is
the number of indexed variables between the two addresses. Remember, for
subtraction of two pointer values, these values must point into the same array!
It makes little sense to subtract a pointer that points into one array from
another pointer that points into a different array. You can use the increment
and decrement operators ++ and --. For example, d++ will advance the value
of d so that it contains the address of the next indexed variable, and d-- will
change d so that it contains the address of the previous indexed variable.

SELF -TEST EXERC ISES

These exercises apply to the optional section on pointer arithmetic.

14. What is the output of the following code fragment? The code is assumed
to be embedded in a correct and complete program.

int array_size = 10;
int *a;
a = new int[array_size];
int i;
for (i = 0; i < array_size; i++)
 *(a + i) = i;

for (i = 0; i < array_size; i++)
 cout << a[i] << " ";
cout << endl;

addresses, not
numbers

++ and --

9.2 Dynamic Arrays 521

15. What is the output of the following code fragment? The code is assumed
to be embedded in a correct and complete program.

int array_size = 10;
int *a;
a = new int[array_size];
int i;
for (i = 0; i < array_size; i++)
 a[i] = i;

while (*a < 9)
{
 a++;
 cout << *a << " ";
}
cout << endl;

Multidimensional Dynamic Arrays (Optional)

You can have multidimensional dynamic arrays. You just need to remember
that multidimensional arrays are arrays of arrays, or arrays of arrays of arrays,
or so forth. For example, to create a two-dimensional dynamic array, you
must remember that it is an array of arrays. To create a two-dimensional
array of integers, you first create a one-dimensional dynamic array of
pointers of type int*, which is the type for a one-dimensional array of ints.
Then you create a dynamic array of ints for each indexed variable of the
array of pointers.

A type definition may help to keep things straight. The following is the
variable type for an ordinary one-dimensional dynamic array of ints:

typedef int* IntArrayPtr;

To obtain a 3-by-4 array of ints, you want an array whose base type is
IntArrayPtr. For example:

IntArrayPtr *m = new IntArrayPtr[3];

This is an array of three pointers, each of which can name a dynamic array of
ints, as follows:

for (int i = 0; i < 3; i++)
 m[i] = new int[4];

The resulting array m is a 3-by-4 dynamic array. A simple program to illustrate
this is given in Display 9.6.

Be sure to notice the use of delete in Display 9.6. Since the dynamic array
m is an array of arrays, each of the arrays created with new in the for loop must
be returned to the freestore manager with a call to delete []; then, the array m
itself must be returned to the freestore with another call to delete []. There

delete []

522 CHAPTER 9 / Pointers and Dynamic Arrays

must be one call to delete [] for each call to new that created an array. (Since
the program ends right after the calls to delete [], we could safely omit these
calls, but we wanted to illustrate their usage.)

DISPLAY 9.6 A Two-Dimensional Dynamic Array (part 1 of 2)

1 #include <iostream>
2 using namespace std;
3
4 typedef int* IntArrayPtr;
5
6 int main()
7 {
8 int d1, d2;
9 cout << "Enter the row and column dimensions of the array:\n";

10 cin >> d1 >> d2;
11
12 IntArrayPtr *m = new IntArrayPtr[d1];
13 int i, j;
14 for (i = 0; i < d1; i++)
15 m[i] = new int[d2];
16 //m is now a d1 by d2 array.
17
18 cout << "Enter " << d1 << " rows of "
19 << d2 << " integers each:\n";
20 for (i = 0; i < d1; i++)
21 for (j = 0; j < d2; j++)
22 cin >> m[i][j];
23
24 cout << "Echoing the two-dimensional array:\n";
25 for (i = 0; i < d1; i++)
26 {
27 for (j = 0; j < d2; j++)
28 cout << m[i][j] << " ";
29 cout << endl;
30 }
31 for (i = 0; i < d1; i++)
32 delete[] m[i];
33 delete[] m;
34
35 return 0;
36 }

(continued)

Note that there must be one call to delete[]
for each call to new that created an array.
(These calls to delete[] are not really
needed, since the program is ending, but in
another context it could be important to
include them.)

Answers to Self-Test Exercises 523

CHAPTER SUMMARY

■ A pointer is a memory address, so a pointer provides a way to indirectly
name a variable by naming the address of the variable in the computer’s
memory.

■ Dynamic variables are variables that are created (and destroyed) while a
program is running.

■ Memory for dynamic variables is in a special portion of the computer’s
memory called the freestore. When a program is finished with a dynamic
variable, the memory used by the dynamic variable can be returned to the
freestore for reuse; this is done with a delete statement.

■ A dynamic array is an array whose size is determined when the program is
running. A dynamic array is implemented as a dynamic variable of an
array type.

Answers to Self-Test Exercises

1. A pointer is the memory address of a variable.

2. To the unwary, or to the neophyte, this looks like two objects of type pointer
to int, that is, int*. Unfortunately, the * binds to the identifier, not to the type
(that is, not to the int). The result is that this declaration declares int_ptr1
to be an int pointer, while int_ptr2 is just an ordinary int variable.

DISPLAY 9.6 A Two-Dimensional Dynamic Array (part 2 of 2)

Sample Dialogue

Enter the row and column dimensions of the array:

3 4

Enter 3 rows of 4 integers each:

1 2 3 4

5 6 7 8

9 0 1 2

Echoing the two-dimensional array:

1 2 3 4

5 6 7 8

9 0 1 2

524 CHAPTER 9 / Pointers and Dynamic Arrays

3. int *p; //This declares a pointer variable that can
 //hold a pointer to an int variable.
*p = 17; //Here, * is the dereference operator.
//This assigns 17 to the memory location pointed to by p.

4.

If you replace *p1 = 30; with *p2 = 30;, the output would be the same.

5.

6. delete p;

7. typedef int* NumberPtr;
NumberPtr my_point;

8. The new operator takes a type for its argument. new allocates space on the
freestore of an appropriate size for a variable of the type of the argument.
It returns a pointer to that memory (that is, a pointer to that new dynamic
variable), provided there is enough available memory in the freestore. If
there is not enough memory available in the freestore, your program ends.

9. typedef char* CharArray;

10. cout << "Enter 10 integers:\n";
for (int i = 0; i < 10; i++)

cin >> entry[i];

11. delete [] entry;

12. 0 1 2 3 4 5 6 7 8 9

13. 10 1 2 3 4 5 6 7 8 9

14. 0 1 2 3 4 5 6 7 8 9

15. 1 2 3 4 5 6 7 8 9

PROGRAMMING PROJECTS

1. Do Programming Project 7 in Chapter 7 using a dynamic array. In this
version of the problem use dynamic arrays to store the digits in each large
integer. Allow an arbitrary number of digits instead of capping the num-
ber of digits at 20.

10 20
20 20
30 30

10 20
20 20
30 20

Programming Projects 525

2. Do Programming Project 3 in Chapter 7. In this version of the problem
return a new dynamic array where all repeated letters are deleted instead of
modifying the partially filled array. Don’t forget to free the memory allo-
cated for these returned dynamic arrays when the data is no longer needed.

3. Do Programming Project 11 in Chapter 7 using a dynamic array (or arrays).
In this version, your program will ask the user how many rows the plane
has and will handle that many rows (and so not always assume the plane
has 7 rows as it did in project 13 of Chapter 7).

4. Write a function that takes a C string as an input parameter and reverses the
string. The function should use two pointers, front and rear. The front
pointer should initially reference the first character in the string, and the
rear pointer should initially reference the last character in the string. Reverse
the string by swapping the characters referenced by front and rear, then
increment front to point to the next character and decrement rear to point to
the preceding character, and so on, until the entire string is reversed. Write a
main program to test your function on various strings of both even and odd
length.

5. You run four computer labs. Each lab contains computer stations that are
numbered as shown in the table below:

Each user has a unique five-digit ID number. Whenever a user logs on, the
user’s ID, lab number, and the computer station number are transmitted
to your system. For example, if user 49193 logs onto station 2 in lab 3,
then your system receives (49193, 2, 3) as input data. Similarly, when a
user logs off a station, then your system receives the lab number and
computer station number.

Write a computer program that could be used to track, by lab, which user
is logged onto which computer. For example, if user 49193 is logged into
station 2 in lab 3 and user 99577 is logged into station 1 of lab 4 then
your system might display the following:

Lab Number Computer Stations
1 1: empty 2: empty 3: empty 4: empty 5: empty
2 1: empty 2: empty 3: empty 4: empty 5: empty 6:empty
3 1: empty 2: 49193 3: empty 4: empty
4 1: 99577 2: empty 3: empty

Lab Number Computer Station Numbers

1 1–5

2 1–6

3 1–4

4 1–3

526 CHAPTER 9 / Pointers and Dynamic Arrays

Create a menu that allows the administrator to simulate the transmission
of information by manually typing in the login or logoff data. Whenever
someone logs in or out, the display should be updated. Also write a search
option so that the administrator can type in a user ID and the system will
output what lab and station number that user is logged into, or “None” if
the user ID is not logged into any computer station.

You should use a fixed array of length 4 for the labs. Each array entry
points to a dynamic array that stores the user login information for each
respective computer station.

The structure is shown in the figure below. This structure is sometimes
called a ragged array since the columns are of unequal length.

6. One problem with dynamic arrays is that once the array is created using
the new operator the size cannot be changed. For example, you might
want to add or delete entries from the array as you can with a vector.
This project asks you to create functions that use dynamic arrays to emu-
late the behavior of a vector.

First, write a program that creates a dynamic array of five strings. Store five
names of your choice into the dynamic array. Next, complete the following
two functions:

string* addEntry(string *dynamicArray, int &size, string newEntry);

This function should create a new dynamic array one element larger
than dynamicArray, copy all elements from dynamicArray into the
new array, add the new entry onto the end of the new array, increment
size, delete dynamicArray, and return the new dynamic array.

string* deleteEntry(string *dynamicArray, int &size, string entryToDelete);

This function should search dynamicArray for entryToDelete. If not
found, the request should be ignored and the unmodified
dynamicArray returned. If found, create a new dynamic array one
element smaller than dynamicArray. Copy all elements except
entryToDelete into the new array, delete dynamicArray, decrement
size, and and return the new dynamic array.

Lab Array Dynamic Arrays for Computer Stations

Video Note
Solution to
Programming
Project 9.6

Programming Projects 527

Test your functions by adding and deleting several names to the array
while outputting the contents of the array. You will have to assign the
array returned by addEntry or deleteEntry back to the dynamic array
variable in your main function.

7. What if C++ had no built-in facility for two-dimensional arrays? It is
possible to emulate them yourself with wrapper functions around a one-
dimensional array. The basic idea is shown below. Consider the following
two-dimensional array:

int matrix[2][3];

It can be visualized as a table:

The two-dimensional array can be mapped to storage in a one-dimensional
array where each row is stored in consecutive memory locations (your
compiler actually does something very similar to map two-dimensional
arrays to memory).

int matrix1D[6];

Here, the mapping is as follows:

matrix[0][0] would be stored in matrix1D[0]
matrix[0][1] would be stored in matrix1D[1]
matrix[0][2] would be stored in matrix1D[2]
matrix[1][0] would be stored in matrix1D[3]
matrix[1][1] would be stored in matrix1D[4]
matrix[1][2] would be stored in matrix1D[5]

Based on this idea, complete the definitions for the following functions.

int* create2DArray(int rows, int columns);

This creates a one-dimensional dynamic array to emulate a two-
dimensional array and returns a pointer to the one-dimensional
dynamic array.

rows is the number of rows desired in the two-dimensional array.
columns is the number of columns desired in the two-dimensional array.
Return value: a pointer to a one-dimensional dynamic array large

enough to hold a two-dimensional array of size rows * columns.

matrix[0][0] matrix[0][1] matrix[0][2]

matrix[1][0] matrix[1][1] matrix[1][2]

matrix[0][0] matrix1D[0][1] matrix1D[0][2] matrix1D[1][0] matrix1D[1][1] matrix1D[1][2]

528 CHAPTER 9 / Pointers and Dynamic Arrays

Note that int ptr = create2DArray(2,3); would create an array analogous
to that created by int ptr[2][3];

void set(int *arr, int rows, int columns,
 int desired_row, int desired_column, int val);

This stores val into the emulated two-dimensional array at position
desired_row, desired_column. The function should print an error message
and exit if the desired indices are invalid.

arr is the one-dimensional array used to emulate a two-dimensional array.
rows is the total number of rows in the two-dimensional array.
columns is the total number of columns in the two-dimensional array.
desired_row is the zero-based index of the row the caller would like

to access.
desired_column is the zero-based index of the column the caller

would like to access.
val is the value to store at desired_row and desired_column.

int get(int *arr, int rows, int columns,
 int desired_row, int desired_column);

This returns the value in the emulated two-dimensional array at position
desired_row, desired_column. The function should print an error message
and exit if the desired indices are invalid.

arr is the one-dimensional array used to emulate a two-dimensional array.
rows is the total number of rows in the two-dimensional array.
columns is the total number of columns in the two-dimensional array.
desired_row is the zero-based index of the row the caller would like

to access.
desired_column is the zero-based index of the column the caller

would like to access.

Create a suitable test program that invokes all three functions.

10Defining Classes

10.1 STRUCTURES 530
Structures for Diverse Data 530
Pitfall: Forgetting a Semicolon in a Structure

Definition 535
Structures as Function Arguments 536
Programming Tip: Use Hierarchical Structures 537
Initializing Structures 539

10.2 CLASSES 542
Defining Classes and Member Functions 542
Public and Private Members 547
Programming Tip: Make All Member

Variables Private 555
Programming Tip: Define Accessor and

Mutator Functions 555
Programming Tip: Use the Assignment

Operator with Objects 557
Programming Example: BankAccount Class—

Version 1 557
Summary of Some Properties of Classes 562
Constructors for Initialization 564
Programming Tip: Always Include a Default

Constructor 572
Pitfall: Constructors with No Arguments 573

10.3 ABSTRACT DATA TYPES 575
Classes to Produce Abstract Data Types 576
Programming Example: Alternative Implementation

of a Class 580

10.4 INTRODUCTION TO INHERITANCE 584
Inheritance Among Stream Classes 585
Programming Example: Another new_line

Function 588
Default Arguments for Functions (Optional) 589
Defining Derived Classes 591

Chapter Summary 594
Answers to Self-Test Exercises 595
Programming Projects 603

530

“The time has come,” the Walrus said,
“To talk of many things:
Of shoes—and ships—and sealing wax—
Of cabbages—and kings—”
LEWIS CARROLL, Through the Looking-Glass

INTRODUCTION
In Chapter 6 you learned how to use classes and objects, but not how to define
classes. In this chapter we will show you how to define your own classes. A class
is a data type. You can use the classes you define in the same way you use the
predefined data types, such as int, char, and ifstream. However, unless you
define your classes the right way, they will not be as well behaved as the
predefined data types. Thus, we spend a good deal of time explaining what makes
for a good class definition and give you some techniques to help you define your
classes in a way that is consistent with modern programming practices.

Before we introduce classes, we will first present structures (also known as
structs). When used in the way we present them here, a structure is a kind of
simplified class and structures will prove to be a stepping stone to understand-
ing classes.

PREREQUISITES
This chapter uses material from Chapters 2 through 6.

10.1 STRUCTURES

As we said in Chapter 6, an object is a variable that has member functions, and
a class is a data type whose variables are objects. Thus, the definition of a class
should be a data type definition that describes two things: (1) what kinds of
values the variables can hold and (2) what the member functions are. We will
approach class definitions in two steps. We will first tell you how to give a type
definition for a structure. A structure (of the kind discussed here) can be
thought of as an object without any member functions. After you learn about
structures, it will be a natural extension to define classes.

Structures for Diverse Data

Sometimes it is useful to have a collection of values of different types and to
treat the collection as a single item. For example, consider a bank certificate of
deposit, which is often called a CD. A CD is a bank account that does not
allow withdrawals for a specified number of months. A CD naturally has three

10.1 Structures 531

pieces of data associated with it: the account balance, the interest rate for the
account, and the term, which is the number of months until maturity. The first
two items can be represented as values of type double, and the number of
months can be represented as a value of type int. Display 10.1 shows the
definition of a structure called CDAccount that can be used for this kind of
account. The definition is embedded in a complete program that demonstrates
this structure type definition. As you can see from the sample dialogue, this
particular bank specializes in short-term CDs, so the term will always be 12 or
fewer months. Let’s look at how this sample structure is defined and used.

The structure definition is as follows:

struct CDAccount
{
 double balance;
 double interest_rate;
 int term;//months until maturity
};

The keyword struct announces that this is a structure type definition. The
identifier CDAccount is the name of the structure type. The name of a structure
type is called the structure tag. The structure tag can be any legal identifier (but
not a keyword). Although this convention is not required by the C++ language,
structure tags are usually spelled with a mix of uppercase and lowercase letters,
beginning with an uppercase letter. The identifiers declared inside the braces,
{}, are called member names. As illustrated in this example, a structure type
definition ends with both a brace, }, and a semicolon.

A structure definition is usually placed outside of any function definition
(in the same way that globally defined constant declarations are placed
outside of all function definitions). The structure type is then available to all
the code that follows the structure definition.

Once a structure type definition has been given, the structure type can be
used just like the predefined types int, char, and so forth. For example, the
following will declare two variables, named my_account and your_account,
both of type CDAccount:

CDAccount my_account, your_account;

A structure variable can hold values just like any other variable can hold
values. A structure value is a collection of smaller values called member
values. There is one member value for each member name declared in the
structure definition. For example, a value of the type CDAccount is a collection
of three member values: two of type double and one of type int. The member
values that together make up the structure value are stored in member variables,
which we discuss next.

Each structure type specifies a list of member names. In Display 10.1 the
structure CDAccount has the three member names balance, interest_rate,
and term. Each of these member names can be used to pick out one smaller

struct

structure tag

member names

where to place
a structure
definition

structure
variables

structure value
member values

532 CHAPTER 10 / Defining Classes

DISPLAY 10.1 A Structure Definition (part 1 of 2)

1 //Program to demonstrate the CDAccount structure type.
2 #include <iostream>
3 using namespace std;

4 //Structure for a bank certificate of deposit:
5 struct CDAccount
6 {
7 double balance;
8 double interest_rate;
9 int term;//months until maturity

10 };
11
12
13 void get_data(CDAccount& the_account);
14 //Postcondition: the_account.balance and the_account.interest_rate
15 //have been given values that the user entered at the keyboard.
16
17
18 int main()
19 {
20 CDAccount account;
21 get_data(account);
22
23 double rate_fraction, interest;
24 rate_fraction = account.interest_rate/100.0;
25 interest = account.balance*rate_fraction*(account.term/12.0);
26 account.balance = account.balance + interest;
27
28 cout.setf(ios::fixed);
29 cout.setf(ios::showpoint);
30 cout.precision(2);
31 cout << "When your CD matures in "
32 << account.term << " months,\n"
33 << "it will have a balance of $"
34 << account.balance << endl;
35 return 0;
36 }
37
38 //Uses iostream:
39 void get_data(CDAccount& the_account)
40 {
41 cout << "Enter account balance: $";
42 cin >> the_account.balance;

(continued)

10.1 Structures 533

variable that is a part of the larger structure variable. These smaller variables
are called member variables. Member variables are specified by giving the
name of the structure variable followed by a dot (that is, followed by a period)
and then the member name. For example, if account is a structure variable of
type CDAccount (as declared in Display 10.1), then the structure variable
account has the following three member variables:

account.balance
account.interest_rate
account.term

The first two member variables are of type double, and the last is of type
int. These member variables can be used just like any other variables of those
types. For example, the above member variables can be given values with the
following three assignment statements:

account.balance = 1000.00;
account.interest_rate = 4.7;
account.term = 11;

The result of these three statements is diagrammed in Display 10.2. Member
variables can be used in all the ways that ordinary variables can be used. For
example, the following line from the program in Display 10.1 will add the
value contained in the member variable account.balance and the value
contained in the ordinary variable interest and will then place the result in
the member variable account.balance:

account.balance = account.balance + interest;

DISPLAY 10.1 A Structure Definition (part 2 of 2)

43 cout << "Enter account interest rate: ";
44 cin >> the_account.interest_rate;
45 cout << "Enter the number of months until maturity\n"
46 << "(must be 12 or fewer months): ";
47 cin >> the_account.term;
48 }

Sample Dialogue

Enter account balance: $100.00

Enter account interest rate: 10.0

Enter the number of months until maturity

(must be 12 or fewer months): 6

When your CD matures in 6 months,

it will have a balance of $105.00

member
variables

534 CHAPTER 10 / Defining Classes

Notice that you specify a member variable for a structure variable by using
the dot operator in the same way you used it in Chapter 6, where the dot
operator was used to specify a member function of a class. The only difference
is that in the case of structures, the members are variables rather than functions.

Two or more structure types may use the same member names. For
example, it is perfectly legal to have the following two type definitions in the
same program:

struct FertilizerStock
{
 double quantity;
 double nitrogen_content;
};

and

struct CropYield
{
 int quantity;
 double size;
};

dot operator

reusing
member names

DISPLAY 10.2 Member Values

1 struct CDAccount
2 {
3 double balance;
4 double interest_rate;
5 int term;//months until maturity
6 };
7 int main()
8 {
9 CDAccount account;

10 ...
11
12

13 account.balance = 1000.00;
14
15

16 account.interest_rate = 4.7;
17
18

19 account.term = 11;
20
21
22

1000.00

 4.7

 ?

account

 ?

 ?

 ?

balance

interest_rate

term

account

balance

interest_rate

term

1000.00

 4.7

 11

balance

interest_rate

term

account

1000.00

 ?

 ?

balance

interest_rate

term

account

10.1 Structures 535

This coincidence of names will produce no problems. For example, if you
declare the following two structure variables:

FertilizerStock super_grow;
CropYield apples;

then the quantity of super_grow fertilizer is stored in the member variable
super_grow.quantity and the quantity of apples produced is stored in the
member variable apples.quantity. The dot operator and the structure vari-
able specify which quantity is meant in each instance.

A structure value can be viewed as a collection of member values. Viewed
this way, a structure value is many different values. A structure value can also
be viewed as a single (complex) value (which just happens to be made up of
member values). Since a structure value can be viewed as a single value,
structure values and structure variables can be used in the same ways that you
use simple values and simple variables of the predefined types such as int. In
particular, you can assign structure values using the equal sign. For example,
if apples and oranges are structure variables of the type CropYield defined
earlier, then the following is perfectly legal:

apples = oranges;

This assignment statement is equivalent to:

apples.quantity = oranges.quantity;
apples.size = oranges.size;

■ PITFALL Forgetting a Semicolon in a Structure Definition

When you add the final brace, }, to a structure definition, it feels like the
structure definition is finished, but it is not. You must also place a semicolon
after that final brace. There is a reason for this, even though the reason is a
feature that we will have no occasion to use. A structure definition is more
than a definition. It can also be used to declare structure variables. You are
allowed to list structure variable names between that final brace and that final
semicolon. For example, the following defines a structure called WeatherData
and declares two structure variables, data_point1 and data_point2, both of
type WeatherData:

struct WeatherData
{

double temperature;
double wind_velocity;

} data_point1, data_point2;

However, as we said, we will always separate a structure definition and the
declaration of variables of that structure type, so our structure definitions will
always have a semicolon immediately after the final brace. ■

structure
variables in
assignment
statements

536 CHAPTER 10 / Defining Classes

Structures as Function Arguments

A function can have call-by-value parameters of a structure type and/or call-
by-reference parameters of a structure type. The program in Display 10.1, for
example, includes a function named get_data that has a call-by-reference
parameter with the structure type CDAccount.

A structure type can also be the type for the value returned by a function.
For example, the following defines a function that takes three appropriate
arguments and returns a value of type CDAccount:

CDAccount shrink_wrap(double the_balance,
double the_rate, int the_term)

{
CDAccount temp;
temp.balance = the_balance;

 temp.interest_rate = the_rate;
 temp.term = the_term;

return temp;
}

Notice the local variable temp of type CDAccount; temp is used to build up a
complete structure value, which is then returned by the function. Once you

The Dot Operator

The dot operator is used to specify a member variable of a structure
variable.

SYNTAX

Structure_Variable_Name.Member_Variable_Name

EXAMPLES

struct StudentRecord
{
 int student_number;
 char grade;
};

int main()
{
 StudentRecord your_record;
 your_record.student_number = 2001;
 your_record.grade = 'A';

Some writers call the dot operator the structure member access operator
although we will not use that term.

Dot operator

structure
arguments

Functions
can return
structures

10.1 Structures 537

have defined the function shrink_wrap, you can give a value to a variable of
type CDAccount as illustrated by the following:

CDAccount new_account;
new_account = shrink_wrap(10000.00, 5.1, 11);

■ PROGRAMMING TIP Use Hierarchical Structures

Sometimes it makes sense to have structures whose members are themselves
smaller structures. For example, a structure type called PersonInfo, which can
be used to store a person’s height, weight, and birth date, can be defined as
follows:

struct Date
{

int month;
int day;
int year;

};

struct PersonInfo
{

double height;//in inches
 int weight;//in pounds

Date birthday;
};

A structure variable of type PersonInfo is declared in the usual way:

PersonInfo person1;

If the structure variable person1 has had its value set to record a person’s
birth date, then the year the person was born can be output to the screen as
follows:

cout << person1.birthday.year;

The way to read such expressions is left to right, and very carefully. Starting
at the left end, person1 is a structure variable of type PersonInfo. To obtain
the member variable with the name birthday, use the dot operator as
follows:

person1.birthday

This member variable is itself a structure variable of type Date. Thus, this member
variable has member variables itself. A member variable of the structure variable
person1.birthday is obtained by adding a dot and the member variable name,
such as year, which produces the expression person1.birthday.year shown
previously. ■

structures within
structures

538 CHAPTER 10 / Defining Classes

Simple Structure Types

You define a structure type as shown below. The Structure_Tag is the
name of the structure type.

SYNTAX

struct Structure_Tag
{
 Type_1 Member_Variable_Name_1;
 Type_2 Member_Variable_Name_2;

 .
 .
 .

 Type_Last Member_Variable_Name_Last;
};

Example

struct Automobile
{

int year;
int doors;
double horse_power;
char model;

};

Although we will not use this feature, you can combine member names
of the same type into a single list separated by commas. For example, the
following is equivalent to the previous structure definition:

struct Automobile
{

int year, doors;
double horse_power;
char model;

};

Variables of a structure type can be declared in the same way as
variables of other types. For example:

Automobile my_car, your_car;

The member variables are specified using the dot operator. For example,
my_car.year, my_car.doors, my_car.horse_power, and my_car.model.

Do not forget this semicolon.

10.1 Structures 539

Initializing Structures

You can initialize a structure at the time that it is declared. To give a structure
variable a value, you follow it by an equal sign and a list of the member values
enclosed in braces. For example, the following definition of a structure type
for a date was given in the previous subsection:

struct Date
{

int month;
int day;
int year;

};

Once the type Date is defined, you can declare and initialize a structure
variable called due_date as follows:

Date due_date = {12, 31, 2004};

Be sure to notice that the initializing values must be given in the order that
corresponds to the order of member variables in the structure type definition.
In this example, due_date.month receives the first initializing value of 12,
due_date.day receives the second value of 31, and due_date.year receives the
third value of 2004.

It is an error if there are more initializers than struct members. If there
are fewer initializer values than struct members, the provided values are used
to initialize data members, in order. Each data member without an initializer
is initialized to a zero value of an appropriate type for the variable.

SELF -TEST EXERC ISES

1. Given the following structure and structure variable declaration:

struct TermAccount
{
 double balance;
 double interest_rate;
 int term;
 char initial1;
 char initial2;
};
TermAccount account;

what is the type of each of the following? Mark any that are not correct.

a. account.balance

b. account.interest_rate

540 CHAPTER 10 / Defining Classes

c. TermAccount.term

d. savings_account.initial1

e. account.initial2

f. account

2. Consider the following type definition:

struct ShoeType
{

char style;
double price;

};

Given this structure type definition, what will be the output produced by
the following code?

ShoeType shoe1, shoe2;
shoe1.style ='A';
shoe1.price = 9.99;
cout << shoe1.style << " $" << shoe1.price << endl;
shoe2 = shoe1;

shoe2.price = shoe2.price/9;
cout << shoe2.style << " $" << shoe2.price << endl;

3. What is the error in the following structure definition? What is the mes-
sage your compiler gives for this error? State what the error is, in your own
words.

struct Stuff
{
 int b;
 int c;
}
int main()
{
 Stuff x;
 // other code
}

4. Given the following struct definition:

struct A
{
 int member_b;
 int member_c;
};

10.1 Structures 541

declare x to have this structure type. Initialize the members of x member_b
and member_c, to the values 1 and 2, respectively.

Note: This requests an initialization, not an assignment of the members.
This distinction is important and will be made in the text in a later
chapter.

5. Here is an initialization of a structure type. Tell what happens with each
initialization. Note any problems with these initializations.

struct Date
{
 int month;
 int day;
 int year;
};

a. Date due_date = {12, 21};

b. Date due_date = {12, 21, 2022};

c. Date due_date = {12, 21, 20, 22};

d. Date due_date = {12, 21, 22};

6. Write a definition for a structure type for records consisting of a person’s
wage rate, accrued vacation (which is some whole number of days), and
status (which is either hourly or salaried). Represent the status as one of
the two char values 'H' and 'S'. Call the type EmployeeRecord.

7. Give a function definition corresponding to the following function decla-
ration. (The type ShoeType is given in Self-Test Exercise 2.)

void read_shoe_record(ShoeType& new_shoe);
//Fills new_shoe with values read from the keyboard.

8. Give a function definition corresponding to the following function decla-
ration. (The type ShoeType is given in Self-Test Exercise 2.)

ShoeType discount(ShoeType old_record);
//Returns a structure that is the same as its argument,
//but with the price reduced by 10%.

9. Give the structure definition for a type named StockRecord that has two
member variables, one named shoe_info of the type ShoeType given in
Self-Test Exercise 2 and one named arrival_date of type Date given in
Self-Test Exercise 5.

10. Declare a variable of type StockRecord (given in the previous exercise)
and write a statement that will set the year of the arrival date to 2006.

542 CHAPTER 10 / Defining Classes

10.2 CLASSES

I don’t care to belong to any club that will accept me as a member.

GROUCHO MARX, The Groucho Letters

Defining Classes and Member Functions

A class is a data type whose variables are objects. In Chapter 6 we described
an object as a variable that has member functions as well as the ability to hold
data values.1 Thus, within a C++ program, the definition of a class should be
a data type definition that describes what kinds of values the variables can
hold and also what the member functions are. A structure definition describes
some of these things. A structure is a defined type that allows you to define
values of the structure type by defining member variables. To obtain a class
from a structure, all you need to do is add some member functions.

A sample class definition is given in the program shown in Display 10.3.
The type DayOfYear defined there is a class definition for objects whose values
are dates, such as January 1 or July 4. These values can be used to record
holidays, birthdays, and other special dates. In this definition of DayOfYear,
the month is recorded as an int value, with 1 standing for January, 2 standing
for February, and so forth. The day of the month is recorded in a second int
member variable. The class DayOfYear has one member function called
output, which has no arguments and outputs the month and day values to
the screen. Let’s look at the definition for the class DayOfYear in detail.

The definition of the class DayOfYear is shown near the top of Display
10.3. For the moment, ignore the line that contains the keyword public. This
line simply says that the member variables and functions have no restriction
on them. We will explain this line later in this chapter. The rest of the
definition of the class DayOfYear is very much like a structure definition,
except that it uses the keyword class instead of struct and it lists the member
function output (as well as the member variables month and day). Notice that
the member function output is listed by giving only its function declaration.
The definitions for the member functions are given elsewhere. (In a C++ class
definition, you can intermix the ordering of the member variables and
member functions in any way you wish, but the style we will follow has a
tendency to list the member functions before the member variables.) Objects
(that is, variables) of a class type are declared in the same way as variables of
the predefined types and in the same way as structure variables.

1 The object is actually the value of the variable rather than the variable itself, but since
we use the variable to name the value it holds, we can simplify our discussion by ignor-
ing this nicety and talking as if the variable and its value were the same thing.

class
object

a member
function

10.2 Classes 543

DISPLAY 10.3 Class with a Member Function (part 1 of 2)

1 //Program to demonstrate a very simple example of a class.
2 //A better version of the class DayOfYear will be given in Display 10.4.
3 #include <iostream>
4 using namespace std;

5 class DayOfYear
6 {
7 public:
8 void output();
9 int month;
10 int day;
11 };

12 int main()
13 {
14 DayOfYear today, birthday;

15 cout << "Enter today's date:\n";
16 cout << "Enter month as a number: ";
17 cin >> today.month;
18 cout << "Enter the day of the month: ";
19 cin >> today.day;
20 cout << "Enter your birthday:\n";
21 cout << "Enter month as a number: ";
22 cin >> birthday.month;
23 cout << "Enter the day of the month: ";
24 cin >> birthday.day;

25 cout << "Today's date is ";
26 today.output();
27 cout << "Your birthday is ";
28 birthday.output();

29 if (today.month == birthday.month
30 && today.day == birthday.day)
31 cout << "Happy Birthday!\n";
32 else
33 cout << "Happy Unbirthday!\n";

34 return 0;
35 }
36 //Uses iostream:
37 void DayOfYear::output()
38 {
39 cout << "month = " << month
40 << ", day = " << day << endl;
41 }

(continued)

Member function declaration

Calls to the member
function output

Member function
definition

544 CHAPTER 10 / Defining Classes

Member functions for classes that you define are called in the same way
as we described in Chapter 6 for predefined classes. For example, the program
in Display 10.3 declares two objects of type DayOfYear in the following way:

DayOfYear today, birthday;

The member function output is called with the object today as follows:

today.output();

and the member function output is called with the object birthday as follows:

birthday.output();

When a member function is defined, the definition must include the class
name because there may be two or more classes that have member functions
with the same name. In Display 10.3 there is only one class definition, but in
other situations you may have many class definitions, and each class may have
a member function called output. The definition for the member function
output of the class DayOfYear is shown in Display 10.3. The definition is
similar to an ordinary function definition, but there are some differences.

The heading of the function definition for the member function output is
as follows:

void DayOfYear::output()

Encapsulation

Combining a number of items, such as variables and functions, into a single
package, such as an object of some class, is called encapsulation.

DISPLAY 10.3 Class with a Member Function (part 2 of 2)

Sample Dialogue

Enter today's date:

Enter month as a number: 10

Enter the day of the month: 15

Enter your birthday:

Enter month as a number: 2

Enter the day of the month: 21

Today's date is month = 10, day = 15

Your birthday is month = 2, day = 21

Happy Unbirthday!

calling member
functions

encapsulation

defining
member

functions

10.2 Classes 545

The operator :: is called the scope resolution operator, and it serves a
purpose similar to that of the dot operator. Both the dot operator and the
scope resolution operator are used to tell what a member function is a
member of. However, the scope resolution operator :: is used with a class
name, whereas the dot operator is used with objects (that is, with class
variables). The scope resolution operator consists of two colons with no space
between them. The class name that precedes the scope resolution operator is
often called a type qualifier, because it specializes (“qualifies”) the function
name to one particular type.

Look at the definition of the member function DayOfYear::output given
in Display 10.3. Notice that in the function definition of DayOfYear::output,
we used the member names month and day by themselves without first giving
the object and dot operator. That is not as strange as it may at first appear.
At this point we are simply defining the member function output. This
definition of output will apply to all objects of type DayOfYear, but at this
point we do not know the names of the objects of type DayOfYear that we
will use, so we cannot give their names. When the member function is
called, as in

 today.output();

all the member names in the function definition are specialized to the name
of the calling object. So the above function call is equivalent to the following:

{
 cout << "month = " << today.month
 << ", day = " << today.day << endl;
}

In the function definition for a member function, you can use the names
of all members of that class (both the data members and the function
members) without using the dot operator.

(continued)

Member Function Definition

A member function is defined the same way as any other function except
that the Class_Name and the scope resolution operator :: are given in the
function heading.

SYNTAX

Returned_Type Class_Name::Function_Name(Parameter_List)
{
 Function_Body_Statements
}

scope resolution
operator

type qualifier

member
variables in
function
definitions

546 CHAPTER 10 / Defining Classes

EXAMPLE

//Uses iostream:
void DayOfYear::output()
{
 cout << "month = " << month
 << ", day = " << day << endl;
}

The class definition for the above example class DayOfYear is given in
Display 10.3, where month and day are defined as the names of member
variables for the class DayOfYear. Note that month and day are not
preceded by an object name and dot.

The Dot Operator and the Scope Resolution Operator

Both the dot operator and the scope resolution operator are used with
member names to specify what thing they are members of. For example,
suppose you have declared a class called DayOfYear and you declare an
object called today as follows:

DayOfYear today;

You use the dot operator to specify a member of the object today. For
example, output is a member function for the class DayOfYear (defined in
Display 10.3), and the following function call will output the data values
stored in the object today:

today.output();

You use the scope resolution operator :: to specify the class name when
giving the function definition for a member function. For example, the
heading of the function definition for the member function output would
be as follows:

void DayOfYear::output()

Remember, the scope resolution operator :: is used with a class name,
whereas the dot operator is used with an object of that class.

10.2 Classes 547

SELF -TEST EXERC ISES

11. Below we have redefined the class DayOfYear from Display 10.3 so that it
now has one additional member function called input. Write an appro-
priate definition for the member function input.

class DayOfYear
{
public:

void input();
void output();
int month;
int day;

};

12. Given the following class definition, write an appropriate definition for
the member function set:

class Temperature
{
public:
 void set(double new_degrees, char new_scale);
 //Sets the member variables to the values given as
 //arguments.

double degrees;
char scale; //'F' for Fahrenheit or 'C' for Celsius.

};

13. Carefully distinguish between the meaning and use of the dot operator
and the scope resolution operator ::.

Public and Private Members

The predefined types such as double are not implemented as C++ classes, but
the people who wrote your C++ compiler did design some way to represent
values of type double in your computer. It is possible to implement the type
double in many different ways. In fact, different versions of C++ do implement
the type double in slightly different ways, but if you move your C++ program
from one computer to another with a different implementation of the type
double, your program should still work correctly.2 Classes are types that you
define, and the types that you define should behave as well as the predefined

2 Sometimes this ideal is not quite realized, but in the ideal world it should be realized,
and at least for simple programs, it is realized even in the imperfect world that we live in.

548 CHAPTER 10 / Defining Classes

types. You can build a library of your own class type definitions and use your
types as if they were predefined types. For example, you could place each class
definition in a separate file and copy it into any program that uses the type.

Your class definitions should separate the rules for using the class and the
details of the class implementation in as strong a way as was done for the
predefined types. If you change the implementation of a class (for example, by
changing some details in the definition of a member function in order to
make function calls run faster), then you should not need to change any of the
other parts of your programs. In order to realize this ideal, we need to describe
one more feature of class definitions.

Look back at the definition of the type DayOfYear given in Display 10.3.
The type DayOfYear is designed to hold values that represent dates such as
birthdays and holidays. We chose to represent these dates as two integers, one
for the month and one for the day of the month. We might later decide to
change the representation of the month from one variable of type int to three
variables of type char. In this changed version, the three characters would be
an abbreviation of the month’s name. For example, the three char values 'J',
'a', and 'n' would represent the month January. However, whether you use
a single member variable of type int to record the month or three member
variables of type char is an implementation detail that need not concern a
programmer who uses the type DayOfYear. Of course, if you change the way
the class DayOfYear represents the month, then you must change the imple-
mentation of the member function output—but that is all you should need to
change. You should not need to change any other part of a program that uses
your class definition for DayOfYear. Unfortunately, the program in Display
10.3 does not meet this ideal. For example, if you replace the one member
variable named month with three member variables of type char, then there
will be no member variable named month, so you must change those parts of
the program that perform input and also change the if-else statement.

With an ideal class definition, you should be able to change the details of
how the class is implemented and the only things you should need to change
in any program that uses the class are the definitions of the member functions.
In order to realize this ideal you must have enough member functions so that
you never need to access the member variables directly, but access them only
through the member functions. Then, if you change the member variables,
you need change only the definitions of the member functions to match your
changes to the member variables, and nothing else in your programs need
change. In Display 10.4 we have redefined the class DayOfYear so that it has
enough member functions to do everything we want our programs to do, and
so the program does not need to directly reference any member variables. If you
look carefully at the program in Display 10.4, you will see that the only place
the member variable names month and day are used is in the definitions of the
member functions. There is no reference to today.month, today.day,
bach_birthday.month, nor bach_birthday.day anywhere outside of the defini-
tions of member functions.

10.2 Classes 549

DISPLAY 10.4 Class with Private Members (part 1 of 2)

1 //Program to demonstrate the class DayOfYear.
2 #include <iostream>
3 using namespace std;

4 class DayOfYear
5 {
6 public:
7 void input();
8 void output();

9 void set(int new_month, int new_day);
10 //Precondition: new_month and new_day form a possible date.
11 //Postcondition: The date is reset according to the arguments.

12 int get_month();
13 //Returns the month, 1 for January, 2 for February, etc.

14 int get_day();
15 //Returns the day of the month.
16 private:
17 void check_date();
18 int month;
19 int day;
20 };

21 int main()
22 {
23 DayOfYear today, bach_birthday;
24 cout << "Enter today's date:\n";
25 today.input();
26 cout << "Today's date is ";
27 today.output();

28 bach_birthday.set(3, 21);
29 cout << "J. S. Bach's birthday is ";
30 bach_birthday.output();

31 if (today.get_month() == bach_birthday.get_month() &&
32 today.get_day() == bach_birthday.get_day())
33 cout << "Happy Birthday Johann Sebastian!\n";
34 else
35 cout << "Happy Unbirthday Johann Sebastian!\n";
36 return 0;
37 }
38 //Uses iostream:
39 void DayOfYear::input()
40 {
41 cout << "Enter the month as a number: ";

(continued)

This is an improved version
of the class DayOfYear that
we gave in Display 10.3.

Private member variables

Private member function

550 CHAPTER 10 / Defining Classes

DISPLAY 10.4 Class with Private Members (part 2 of 2)

42 cin >> month;
43 cout << "Enter the day of the month: ";
44 cin >> day;
45 check_date();
46 }
47
48 void DayOfYear::output()

 <The rest of the definition of DayOfYear::output is given in Display 10.3.>
49
50 void DayOfYear::set(int new_month, int new_day)
51 {
52 month = new_month;
53 day = new_day;
54 check_date();
55 }
56
57 void DayOfYear::check_date()
58 {
59 if ((month < 1) || (month > 12) || (day < 1) || (day > 31))
60 {
61 cout << "Illegal date. Aborting program.\n";
62 exit(1);
63 }
64 }
65
66 int DayOfYear::get_month()
67 {
68 return month;
69 }
70
71 int DayOfYear::get_day()
72 {
73 return day;
74 }

Sample Dialogue

Enter today's date:

Enter the month as a number: 3

Enter the day of the month: 21

Today's date is month = 3, day = 21

J. S. Bach's birthday is month = 3, day = 21

Happy Birthday Johann Sebastian!

Private members may
be used in member func-
tion definitions (but not
elsewhere).

The member function check_date does
not check for all illegal dates, but it
would be easy to make the check com-
plete by making it longer. See Self-Test
Exercise 14.

A better definition of
the member function
input would ask the
user to reenter the
date if the user enters
an incorrect date.

The function exit is discussed in Chapter 6.
It ends the program.

10.2 Classes 551

The program in Display 10.4 has one new feature that is designed to
ensure that no programmer who uses the class DayOfYear will ever directly
reference any of its member variables. Notice the line in the definition of the
class DayOfYear that contains the keyword private. All the member variable
names that are listed after this line are private members, which means that
they cannot be directly accessed in the program except within the definition of
a member function. If you try to access one of these member variables in the
main part of your program or in the definition of some function that is not a
member function of this particular class, the compiler will give you an error
message. If you insert the keyword private and a colon in the list of member
variables and member functions, all the members that follow the label
private: will be private members. The variables that follow the label
private: will be private member variables, and the functions that follow it
will be private member functions.

All the member variables for the class DayOfYear defined in Display 10.4
are private members. A private member variable may be used in the definition
of any of the member functions, but nowhere else. For example, with this
changed definition of the class DayOfYear, the following two assignments are
no longer permitted in the main part of the program:

DayOfYear today; //This line is OK.
today.month = 12;//ILLEGAL
today.day = 25;//ILLEGAL

Any reference to these private variables is illegal (except in the definition of
member functions). Since this new definition makes month and day private
member variables, the following are also illegal in the main part of any
program that declares today to be of type DayOfYear:

cout << today.month;//ILLEGAL
cout << today.day;//ILLEGAL
if (today.month == 1) //ILLEGAL

cout << "January";

Once you make a member variable a private member variable, there is
then no way to change its value (or to reference the member variable in any
other way) except by using one of the member functions. This is a severe
restriction, but it is usually a wise restriction to impose. Programmers find that
it usually makes their code easier to understand and easier to update if they
make all member variables private.

It may seem that the program in Display 10.4 does not really disallow
direct access to the private member variables, since they can be changed using
the member function DayOfYear::set, and their values can be discovered
using the member functions DayOfYear::get_month and DayOfYear::get_day.
While that is almost true for the program in Display 10.4, it might not be so
true if we changed the implementation of how we represented the month

private:

private member
variables

552 CHAPTER 10 / Defining Classes

and/or day in our dates. For example, suppose we change the type definition
of DayOfYear to the following:

class DayOfYear
{
public:
 void input();
 void output();

 void set(int new_month, int new_day);
 //Precondition: new_month and new_day form a possible date.
 //Postcondition: The date is reset according to the
 //arguments.

 int get_month();
 //Returns the month, 1 for January, 2 for February, etc.

 int get_day();
 //Returns the day of the month.
private:
 void DayOfYear::check_date();
 char first_letter;//of month
 char second_letter;//of month
 char third_letter;//of month

int day;
};

It would then be slightly more difficult to define the member functions,
but they could be redefined so that they would behave exactly as they did
before. For example, the definition of the function get_month might start as
follows:

int DayOfYear::get_month()
{

if (first_letter == 'J' && second_letter == 'a'
 && third_letter == 'n')

return 1;
if (first_letter == 'F' && second_letter == 'e'

 && third_letter == 'b')
return 2;
. . .

This approach would be rather tedious, but not difficult.
Also notice that the member functions DayOfYear::set and DayOf-

Year::input check to make sure the member variables month and day are set
to legal values. This is done with a call to the member function DayOf-
Year::check_date. If the member variables month and day were public instead
of private, then these member variables could be set to any values, including
illegal values. By making the member variables private and manipulating
them only via member functions, we can ensure that the member variables are
never set to illegal or meaningless values. (In Self-Test Exercise 14, you are asked

10.2 Classes 553

to redefine the member function DayOfYear::check_date so that it does a
complete check for illegal dates.)

It is also possible to make a member function private. Like a private
member variable, a private member function can be used in the definition
of any other member function, but nowhere else, such as in the main part of
a program that uses the class type. For example, the member function
DayOfYear::check_date in Display 10.4 is a private member function. The
normal practice is to make a member function private if you only expect to
use that member function as a helping function in the definitions of the
member functions.

The keyword public is used to indicate public members the same way
that the keyword private is used to indicate private members. For example,
for the class DayOfYear defined in Display 10.4, all the member functions except
DayOfYear::check_date are public members (and all the member variables are
private members). A public member can be used in the main body of your
program or in the definition of any function, even a nonmember function.

You can have any number of occurrences of public and private in a class
definition. Every time you insert the label

public:

the list of members changes from private to public. Every time you insert the
label

private:

the list of members changes back to being private members. For example, the
member function do_something_else and the member variable more_stuff in
the following structure definition are private members, while the other four
members are all public:

class SampleClass
{
public:

void do_something();
int stuff;

private:
void do_something_else();
char more_stuff;

public:
double do_yet_another_thing();
double even_more_stuff;

};

If you list members at the start of your class definition and do not insert
either public: or private: before these first members, then they will be
private members. However, it is a good idea to always explicitly label each
group of members as either public or private.

private member
functions

public:

Video Note
Class Scope, Public
and Private Members

554 CHAPTER 10 / Defining Classes

Classes and Objects

A class is a type whose variables are objects. These objects can have both
member variables and member functions. The syntax for a class definition
is as follows.

SYNTAX

class Class_Name
{
public:

Member_Specification_1
Member_Specification_2

.

.

.

 Member_Specification_n
private:

Member_Specification_n+1
Member_Specification_n+2

.

.

.

};

Each Member_Specification_i is either a member variable declaration or
a member function declaration. (Additional public and private sections
are permitted.)

EXAMPLE

class Bicycle
{
public:

char get_color();
int number_of_speeds();
void set(int the_speeds, char the_color);

private:
int speeds;
char color;

};

Once a class is defined, an object (which is just a variable of the class
type) can be declared in the same way as variables of any other type. For
example, the following declares two objects of type Bicycle:

Bicycle my_bike, your_bike;

Public members

Private members

Do not forget this semicolon.

10.2 Classes 555

■ PROGRAMMING TIP Make All Member Variables Private

When defining a class, the normal practice is to make all member variables
private. This means that the member variables can only be accessed or
changed using the member functions. Much of this chapter is dedicated to
explaining how and why you should define classes in this way. ■

■ PROGRAMMING TIP Define Accessor and Mutator Functions

The operator == can be used to test two values of a simple type to see if they are
equal. Unfortunately, the predefined operator == does not automatically apply
to objects. In Chapter 11 we will show you how you can make the operator ==
apply to the objects of the classes you define. Until then, you will not be able
to use the equality operator == with objects (nor can you use it with
structures). This can produce some complications. When defining a class, the
preferred style is to make all member variables private. Thus, in order to test
two objects to see if they represent the same value, you need some way to access
the values of the member variables (or something equivalent to the values of the
member variables). This allows you to test for equality by testing the values of
each pair of corresponding member variables. To do this in Display 10.4 we used
the member functions get_month and get_day in the if-else statement.

Member functions, such as get_month and get_day, that allow you to find out
the values of the private member variables are called accessor functions. Given the
techniques you have learned to date, it is important to always include a complete set
of accessor functions with each class definition so that you can test objects for
equality. The accessor functions need not literally return the values of each member
variable, but they must return something equivalent to those values. In Chapter 11
we will develop a more elegant method to test two objects for equality, but even
after you learn that technique, it will still be handy to have accessor functions.

Member functions, such as set in Display 10.4, that allow you to change
the values of the private member variables are called mutator functions. It is
important to always include mutator functions with each class definition so
that you can change the data stored in an object. ■

(continued)

Accessor and Mutator Functions
Member functions that allow you to find out the values of the private member
variables of a class are called accessor functions. The accessor functions need
not literally return the values of each member variable, but they must return
something equivalent to those values. Although this is not required by the C++
language, the names of accessor functions normally include the word get.

Member functions that allow you to change the values of the private
member variables of a class are called mutator functions. Although this

accessor
functions

mutator
functions

556 CHAPTER 10 / Defining Classes

SELF -TEST EXERC ISES

14. The private member function DayOfYear::check_date in Display 10.4
allows some illegal dates to get through, such as February 30. Redefine the
member function DayOfYear::check_date so that it ends the program
whenever it finds any illegal date. Allow February to contain 29 days, so
you account for leap years. (Hint: This is a bit tedious and the function
definition is a bit long, but it is not very difficult.)

15. Suppose your program contains the following class definition:

class Automobile
{
public:

void set_price(double new_price);
void set_profit(double new_profit);
double get_price();

private:
double price;
double profit;
double get_profit();

};

and suppose the main part of your program contains the following
declaration and that the program somehow sets the values of all the
member variables to some values:

Automobile hyundai, jaguar;

Which of the following statements are then allowed in the main part of
your program?

hyundai.price = 4999.99;
jaguar.set_price(30000.97);
double a_price, a_profit;
a_price = jaguar.get_price();
a_profit = jaguar.get_profit();
a_profit = hyundai.get_profit();
if (hyundai == jaguar)

cout << "Want to swap cars?";
hyundai = jaguar;

is not required by the C++ language, the names of mutator functions
normally include the word set.

It is important to always include accessor and mutator functions with
each class definition so that you can change the data stored in an object.

10.2 Classes 557

16. Suppose you change Self-Test Exercise 15 so that the definition of the class
Automobile omits the line that contains the keyword private. How would
this change your answer to the question in Self-Test Exercise 15?

17. Explain what public: and private: do in a class definition. In particular,
explain why we do not just make everything public: and save difficulty in
access.

18. a. How many public: sections are required in a class for the class to be
useful?

b. How many private: sections are required in a class?

c. What kind of section do you have between the opening { and the first
public: or private: section label of a class?

d. What kind of section do you have between the opening { and the first
public: or private: section label of a structure?

■ PROGRAMMING TIP Use the Assignment Operator
with Objects

It is perfectly legal to use the assignment operator = with objects or with
structures. For example, suppose the class DayOfYear is defined as shown in
Display 10.4 so that it has two private member variables named month and day,
and suppose that the objects due_date and tomorrow are declared as follows:

DayOfYear due_date, tomorrow;

The following is then perfectly legal (provided the member variables of the
object tomorrow have already been given values):

due_date = tomorrow;

The previous assignment is equivalent to the following:

due_date.month = tomorrow.month;
due_date.day = tomorrow.day;

Moreover, this is true even though the member variables named month and
day are private members of the class DayOfYear.3 ■

■ PROGRAMMING EXAMPLE BankAccount Class—Version 1

Display 10.5 contains a class definition for a bank account that illustrates all
of the points about class definitions you have seen thus far. This type of bank

3 In Chapter 11 we see situations in which the assignment operator = should be rede-
fined (overloaded) for a class.

558 CHAPTER 10 / Defining Classes

DISPLAY 10.5 The BankAccount Class (part 1 of 3)

1 //Program to demonstrate the class BankAccount.
2 #include <iostream>
3 using namespace std;

4 //Class for a bank account:
5 class BankAccount
6 {
7 public:
8 void set(int dollars, int cents, double rate);
9 //Postcondition: The account balance has been set to $dollars.cents;

10 //The interest rate has been set to rate percent.

11 void set(int dollars, double rate);
12 //Postcondition: The account balance has been set to $dollars.00.
13 //The interest rate has been set to rate percent.

14 void update();
15 //Postcondition: One year of simple interest has been
16 //added to the account balance.

17 double get_balance();
18 //Returns the current account balance.

19 double get_rate();
20 //Returns the current account interest rate as a percentage.

21 void output(ostream& outs);
22 //Precondition: If outs is a file output stream, then
23 //outs has already been connected to a file.
24 //Postcondition: Account balance and interest rate have
25 //been written to the stream outs.
26 private:
27 double balance;
28 double interest_rate;
29
30 double fraction(double percent);
31 //Converts a percentage to a fraction. For example, fraction(50.3)
32 //returns 0.503.
33 };

34 int main()
35 {
36 BankAccount account1, account2;
37 cout << "Start of Test:\n";
38 account1.set(123, 99, 3.0);
39 cout << "account1 initial statement:\n";
40 account1.output(cout);
41 account1.set(100, 5.0);

(continued)

The member function
set is overloaded.

Calls to the overloaded
member function set

10.2 Classes 559

DISPLAY 10.5 The BankAccount Class (part 2 of 3)

42 cout << "account1 with new setup:\n";
43 account1.output(cout);

44 account1.update();
45 cout << "account1 after update:\n";
46 account1.output(cout);

47 account2 = account1;
48 cout << "account2:\n";
49 account2.output(cout);
50 return 0;
51 }
52
53 void BankAccount::set(int dollars, int cents, double rate)
54 {
55 if ((dollars < 0) || (cents < 0) || (rate < 0))
56 {
57 cout << "Illegal values for money or interest rate.\n";
58 exit(1);
59 }

60 balance = dollars + 0.01*cents;
61 interest_rate = rate;
62 }
63
64 void BankAccount::set(int dollars, double rate)
65 {
66 if ((dollars < 0) || (rate < 0))
67 {
68 cout << "Illegal values for money or interest rate.\n";
69 exit(1);
70 }

71 balance = dollars;
72 interest_rate = rate;
73 }
74
75 void BankAccount::update()
76 {
77 balance = balance + fraction(interest_rate)*balance;
78 }
79
80 double BankAccount::fraction(double percent_value)
81 {
82 return (percent_value/100.0);
83 }
84

(continued)

Definitions of overloaded
member function set

In the definition of a member
function, you call another
member function like this.

560 CHAPTER 10 / Defining Classes

account allows you to withdraw your money at any time, so it has no term as
did the type CDAccount that you saw earlier. A more important difference is
that the class BankAccount has member functions for all the operations you
would expect to use in a program. Objects of the class BankAccount have two
private member variables: one to record the account balance and one to record
the interest rate. Let’s discuss some of features of the class BankAccount.

DISPLAY 10.5 The BankAccount Class (part 3 of 3)

85 double BankAccount::get_balance()
86 {
87 return balance;
88 }
89
90 double BankAccount::get_rate()
91 {
92 return interest_rate;
93 }
94
95 //Uses iostream:
96 void BankAccount::output(ostream& outs)
97 {
98 outs.setf(ios::fixed);
99 outs.setf(ios::showpoint);
100 outs.precision(2);
101 outs << "Account balance $" << balance << endl;
102 outs << "Interest rate " << interest_rate << "%" << endl;
103 }

Sample Dialogue

Start of Test:

account1 initial statement:

Account balance $123.99

Interest rate 3.00%

account1 with new setup:

Account balance $100.00

Interest rate 5.00%

account1 after update:

Account balance $105.00

Interest rate 5.00%

account2:

Account balance $105.00

Interest rate 5.00%

Stream parameter that can
be replaced either with cout
or with a file output stream

10.2 Classes 561

First, notice that the class BankAccount has a private member function called
fraction. Since fraction is a private member function, it cannot be called in the
body of main or in the body of any function that is not a member function of the
class BankAccount. The function fraction can only be called in the definitions
of other member functions of the class BankAccount. The only reason we have
this (or any) private member function is to aid us in defining other member
functions for the same class. In our definition of the class BankAccount, we
included the member function fraction so that we could use it in the
definition of the function update. The function fraction takes one argument
that is a percentage figure, like 10.0 for 10.0%, and converts it to a fraction, like
0.10. That allows us to compute the amount of interest on the account at the
given percentage. If the account contains $100.00 and the interest rate is 10%,
then the interest is equal to $100 times 0.10, which is $10.00.

When you call a public member function, such as update, in the main
body of your program, you must include an object name and a dot, as in the
following line from Display 10.5:

account1.update();

However, when you call a private member function (or any other member
function) within the definition of another member function, you use only the
member function name without any calling object or dot operator. For
example, the following definition of the member function BankAc-
count::update includes a call to BankAccount::fraction (as shown in
Display 10.5):

void BankAccount::update()
{
 balance = balance + fraction(interest_rate)*balance;
}

The calling object for the member function fraction and for the member
variables balance and interest_rate are determined when the function
update is called. For example, the meaning of

account1.update();

is the following:

Notice that the call to the member function fraction is handled in the same
way in this regard as the references to the member variables.

Like the classes we discussed earlier, the class BankAccount has a member
function that outputs the data information stored in the object. In this
program we are sending output to the screen. However, we want to write this

private member
function

one member
function calling
another

{
 account1.balance = account1.balance +
 account1.fraction(account1.interest_rate)*account1.balance;
}

input/output
stream
arguments

562 CHAPTER 10 / Defining Classes

class definition so that it can be copied into other programs and used
unchanged in those other programs. Since some other program may want to
send output to a file, we have given the member function output a formal
parameter of type ostream so that the function output can be called with an
argument that is either the stream cout or a file output stream. In the sample
program, we want the output to go to the screen, so the first function call to
the member function output has the form

account1.output(cout);

Other calls to output also use cout as the argument, so all output is sent to the
screen. If you want the output to go to a file instead, then you must first
connect the file to an output stream, as we discussed in Chapter 6. If the file
output stream is called fout and is connected to a file, then the following
would write the data information for the object account1 to this file rather
than to the screen:

account1.output(fout);

The value of an object of type BankAccount represents a bank account that
has some balance and pays some interest rate. The balance and interest rate
can be set with the member function set. Notice that we have overloaded the
member function named set so that there are two versions of set. One
version has three formal parameters, and the other has only two formal
parameters. Both versions have a formal parameter of type double for the
interest rate, but the two versions of set use different formal parameters to set
the account balance. One version has two formal parameters to set the
balance, one for the dollars and one for the cents in the account balance. The
other version has only a single formal parameter, which gives the number of
dollars in the account and assumes that the number of cents is zero. This
second version of set is handy, since most people open an account with some
“even” amount of money, such as $1,000 and no cents. Notice that this
overloading is nothing new. A member function is overloaded in the same
way as an ordinary function is overloaded. ■

Summary of Some Properties of Classes

Classes have all of the properties that we described for structures plus all the
properties associated with member functions. The following is a list of some
points to keep in mind when using classes.

■ Classes have both member variables and member functions.

■ A member (either a member variable or a member function) may be either
public or private.

■ Normally, all the member variables of a class are labeled as private members.

■ A private member of a class cannot be used except within the definition of
another member function of the same class.

overloading
member

functions

10.2 Classes 563

■ The name of a member function for a class may be overloaded just like the
name of an ordinary function.

■ A class may use another class as the type for a member variable.

■ A function may have formal parameters whose types are classes. (See Self-
Test Exercises 19 and 20.)

■ A function may return an object; that is, a class may be the type for the
value returned by a function. (See Self-Test Exercise 21.)

SELF -TEST EXERC ISES

19. Give a definition for the function with the following function declaration.
The class BankAccount is defined in Display 10.5.

double difference(BankAccount account1, BankAccount account2);
//Precondition: account1 and account2 have been given values
//(that is, their member variables have been given values).
//Returns the balance in account1 minus the balance in account2.

20. Give a definition for the function with the following function declaration.
The class BankAccount is defined in Display 10.5. (Hint: It’s easy if you use
a member function.)

void double_update(BankAccount& the_account);
//Precondition: the_account has previously been given a value
//(that is, its member variables have been given values).
//Postcondition: The account balance has been changed so that
//two years' interest has been posted to the account.

Structures Versus Classes

Structures are normally used with all member variables being public and
having no member functions. However, in C++ a structure can have
private member variables and both public and private member functions.
Aside from some notational differences, a C++ structure can do anything
a class can do. Having said this and satisfied the “truth in advertising”
requirement, we advocate that you forget this technical detail about
structures. If you take this technical detail seriously and use structures
in the same way that you use classes, then you have two names (with
different syntax rules) for the same concept. On the other hand, if you
use structures as we described them, then you will have a meaningful
difference between structures (as you use them) and classes, and your
usage will be the same as that of most other programmers.

564 CHAPTER 10 / Defining Classes

21. Give a definition for the function with the following function declaration.
The class BankAccount is defined in Display 10.5.

BankAccount new_account(BankAccount old_account);
//Precondition: old_account has previously been given a value
//(that is, its member variables have been given values).
//Returns the value for a new account that has a balance of zero
//and the same interest rate as the old_account.

For example, after this function is defined, a program could contain the
following:

BankAccount account3, account4;
account3.set(999, 99, 5.5);
account4 = new_account(account3);
account4.output(cout);

This would produce the following output:

Constructors for Initialization

You often want to initialize some or all the member variables for an object when
you declare the object. As we will see later in this book, there are other initializing
actions you might also want to take, but initializing member variables is the most
common sort of initialization. C++ includes special provisions for such initializa-
tions. When you define a class, you can define a special kind of member function
known as a constructor. A constructor is a member function that is automatical-
ly called when an object of that class is declared. A constructor is used to initialize
the values of member variables and to do any other sort of initialization that may
be needed. You can define a constructor the same way that you define any other
member function, except for two points:

1. A constructor must have the same name as the class. For example, if the
class is named BankAccount, then any constructor for this class must be
named BankAccount.

2. A constructor definition cannot return a value. Moreover, no return type,
not even void, can be given at the start of the function declaration or in
the function header.

For example, suppose we wanted to add a constructor for initializing the
balance and interest rate for objects of type BankAccount shown in Display
10.5. The class definition could be as follows. (We have omitted some of the
comments to save space, but they should be included.)

Account balance $0.00
Interest rate 5.50%

constructor

10.2 Classes 565

class BankAccount
{
public:

BankAccount(int dollars, int cents, double rate);
//Initializes the account balance to $dollars.cents and
//initializes the interest rate to rate percent.

void set(int dollars, int cents, double rate);
void set(int dollars, double rate);
void update();

 double get_balance();
 double get_rate();

void output(ostream& outs);
private:
 double balance;
 double interest_rate;
 double fraction(double percent);
};

 Notice that the constructor is named BankAccount, which is the name
of the class. Also notice that the function declaration for the constructor
BankAccount does not start with void or with any other type name. Finally,
notice that the constructor is placed in the public section of the class
definition. Normally, you should make your constructors public member
functions. If you were to make all your constructors private members, then
you would not be able to declare any objects of that class type, which would
make the class completely useless.

With the redefined class BankAccount, two objects of type BankAccount
can be declared and initialized as follows:

BankAccount account1(10, 50, 2.0), account2(500, 0, 4.5);

Assuming that the definition of the constructor performs the initializing
action that we promised, the previous declaration will declare the object
account1, set the value of account1.balance to 10.50, and set the value of
account1.interest_rate to 2.0. Thus, the object account1 is initialized so
that it represents a bank account with a balance of $10.50 and an interest rate
of 2.0%. Similarly, account2 is initialized so that it represents a bank account
with a balance of $500.00 and an interest rate of 4.5%. What happens is that
the object account1 is declared and then the constructor BankAccount is called
with the three arguments 10, 50, and 2.0. Similarly, account2 is declared and
then the constructor BankAccount is called with the arguments 500, 0, and 4.5.
The result is conceptually equivalent to the following (although you cannot
write it this way in C++):

BankAccount account1, account2; //PROBLEMS--BUT FIXABLE
account1.BankAccount(10, 50, 2.0); //VERY ILLEGAL
account2.BankAccount(500, 0, 4.5); //VERY ILLEGAL

566 CHAPTER 10 / Defining Classes

As the comments indicate, you cannot place those three lines in your program.
The first line can be made to be acceptable, but the two calls to the constructor
BankAccount are illegal. A constructor cannot be called in the same way as an
ordinary member function is called. Still, it is clear what we want to happen
when we write those three lines, and that happens automatically when you
declare the objects account1 and account2 as follows:

BankAccount account1(10, 50, 2.0), account2(500, 0, 4.5);

The definition of a constructor is given in the same way as any other
member function. For example, if you revise the definition of the class
BankAccount by adding the constructor just described, you need to also add
the following definition of the constructor:

BankAccount::BankAccount(int dollars, int cents, double rate)
{
 if ((dollars < 0) || (cents < 0) || (rate < 0))
 {
 cout << "Illegal values for money or interest rate.\n";
 exit(1);
 }
 balance = dollars + 0.01*cents;

interest_rate = rate;
}

Since the class and the constructor function have the same name, the name
BankAccount occurs twice in the function heading: The BankAccount before the
scope resolution operator :: is the name of the class, and the BankAccount
after the scope resolution operator is the name of the constructor function.
Also notice that no return type is specified in the heading of the constructor
definition, not even the type void. Aside from these points, a constructor can
be defined in the same way as an ordinary member function.

You can overload a constructor name like BankAccount::BankAccount,
just as you can overload any other member function name, such as we did
with BankAccount::set in Display 10.5. In fact, constructors usually are
overloaded so that objects can be initialized in more than one way. For
example, in Display 10.6 we have redefined the class BankAccount so that it has
three versions of its constructor. This redefinition overloads the constructor
name BankAccount so that it may have three arguments (as we just discussed),
two arguments, or no arguments.

For example, suppose you give only two arguments when you declare an
object of type BankAccount, as in the following example:

BankAccount account1(100, 2.3);

Then the object account1 is initialized so that it represents an account with a
balance of $100.00 and an interest rate of 2.3%.

On the other hand, if no arguments are given, as in the following example,

10.2 Classes 567

BankAccount account2;

then the object is initialized to represent an account with a balance of $0.00
and an interest rate of 0.0%. Notice that when the constructor has no
arguments, you do not include any parentheses in the object declaration. The
following is incorrect:

BankAccount account2();//WRONG! DO NOT DO THIS!

We have omitted the (overloaded) member function set from this revised
class definition of BankAccount (given in Display 10.6). Once you have a good
set of constructor definitions, there is no need for any other member functions
to set the member variables of the class. You can use the overloaded
constructor BankAccount in Display 10.6 for the same purposes that you would
use the overloaded member function set (which we included in the old
version of the class shown in Display 10.5).

Constructor

A constructor is a member function of a class that has the same name as
the class. A constructor is called automatically when an object of the class
is declared. Constructors are used to initialize objects. A constructor must
have the same name as the class of which it is a member.

DISPLAY 10.6 Class with Constructors (part 1 of 3)

1 //Program to demonstrate the class BankAccount.
2 #include <iostream>
3 using namespace std;

4 //Class for a bank account:
5 class BankAccount
6 {
7 public:
8 BankAccount(int dollars, int cents, double rate);
9 //Initializes the account balance to $dollars.cents and

10 //initializes the interest rate to rate percent.

11 BankAccount(int dollars, double rate);
12 //Initializes the account balance to $dollars.00 and
13 //initializes the interest rate to rate percent.

14 BankAccount();
15 //Initializes the account balance to $0.00 and the interest rate to 0.0%.

(continued)

This definition of BankAccount
is an improved version of the class
BankAccount given in Display 10.5.

Default constructor

568 CHAPTER 10 / Defining Classes

DISPLAY 10.6 Class with Constructors (part 2 of 3)

16 void update();
17 //Postcondition: One year of simple interest has been added to the account
18 //balance.

19 double get_balance();
20 //Returns the current account balance.

21 double get_rate();
22 //Returns the current account interest rate as a percentage.

23 void output(ostream& outs);
24 //Precondition: If outs is a file output stream, then
25 //outs has already been connected to a file.
26 //Postcondition: Account balance and interest rate have been written to the
27 //stream outs.
28 private:
29 double balance;
30 double interest_rate;

31 double fraction(double percent);
32 //Converts a percentage to a fraction. For example, fraction(50.3)
33 //returns 0.503.
34 };
35
36 int main()
37 {
38 BankAccount account1(100, 2.3), account2;

39 cout << "account1 initialized as follows:\n";
40 account1.output(cout);
41 cout << "account2 initialized as follows:\n";
42 account2.output(cout);

43 account1 = BankAccount(999, 99, 5.5);
44 cout << "account1 reset to the following:\n";
45 account1.output(cout);
46 return 0;
47 }
48
49 BankAccount::BankAccount(int dollars, int cents, double rate)
50 {
51 if ((dollars < 0) || (cents < 0) || (rate < 0))
52 {
53 cout << "Illegal values for money or interest rate.\n";
54 exit(1);
55 }

(continued)

This declaration causes a call
to the default constructor. Notice
that there are no parentheses.

An explicit call to the constructor
BankAccount::BankAccount

10.2 Classes 569

The constructor with no parameters in Display 10.6 deserves some extra
discussion since it contains something we have not seen before. For reference,
we reproduce the defining of the constructor with no parameters:

BankAccount::BankAccount() : balance(0), interest_rate(0.0)
{
 //Body intentionally empty
}

The new element, which is shown on the first line, is the part that starts with
a single colon. This part of the constructor definition is called the initializa-
tion section. As this example shows, the initialization section goes after the

DISPLAY 10.6 Class with Constructors (part 3 of 3)

56 balance = dollars + 0.01*cents;
57 interest_rate = rate;
58 }
59
60 BankAccount::BankAccount(int dollars, double rate)
61 {
62 if ((dollars < 0) || (rate < 0))
63 {
64 cout << "Illegal values for money or interest rate.\n";
65 exit(1);
66 }
67 balance = dollars;
68 interest_rate = rate;
69 }
70
71 BankAccount::BankAccount() : balance(0), interest_rate(0.0)
72 {
73 //Body intentionally empty
74 }

Screen Output

account1 initialized as follows:

Account balance $100.00

Interest rate 2.30%

account2 initialized as follows:

Account balance $0.00

Interest rate 0.00%

account1 reset to the following:

Account balance $999.99

Interest rate 5.50%

<Definitions of the other member functions
are the same as in Display 10.5.>

initialization
section

570 CHAPTER 10 / Defining Classes

parentheses that ends the parameter list and before the opening brace of the
function body. The initialization section consists of a colon followed by a list of
some or all the member variables separated by commas. Each member variable
is followed by its initializing value in parentheses. This constructor definition is
completely equivalent to the following way of writing the definition:

BankAccount::BankAccount()
{
 balance = 0;

interest_rate = 0.0;
}

The function body in a constructor definition with an initialization
section need not be empty. For example, the following definition of the two-
parameter constructor is equivalent to the one given in Display 10.6:

BankAccount::BankAccount(int dollars, double rate)
 : balance(dollars), interest_rate(rate)
{
 if ((dollars < 0) || (rate < 0))
 {
 cout << "Illegal values for money or interest rate.\n";
 exit(1);
 }
}

Notice that the initializing values can be given in terms of the constructor
parameters.

Constructor Initialization Section

Some or all of the member variables in a class can (optionally) be initialized in
the constructor initialization section of a constructor definition. The con-
structor initialization section goes after the parentheses that ends the param-
eter list and before the opening brace of the function body. The initialization
section consists of a colon followed by a list of some or all the member
variables separated by commas. Each member variable is followed by its
initializing value in parentheses. The example given below uses a constructor
initialization section and is equivalent to the three-parameter constructor
given in Display 10.6.

EXAMPLE

BankAccount::BankAccount(int dollars, int cents, double rate)
 : balance(dollars + 0.01*cents), interest_rate(rate)
{
 if ((dollars < 0) || (cents < 0) || (rate < 0))

10.2 Classes 571

A constructor is called automatically whenever you declare an object of
the class type, but it can also be called again after the object has been declared.
This allows you to conveniently set all the members of an object. The technical
details are as follows. Calling the constructor creates an anonymous object
with new values. An anonymous object is an object that is not named (as yet)
by any variable. The anonymous object can be assigned to the named object
(that is, to the class variable). For example, the following line of code is a call
to the constructor BankAccount that creates an anonymous object with a

 {
 cout <<
 "Illegal values for money or interest rate.\n";
 exit(1);
 }
}

Notice that the initializing values can be given in terms of the constructor
parameters.

Calling a Constructor

A constructor is called automatically when an object is declared, but you
must give the arguments for the constructor when you declare the object.
A constructor can also be called explicitly in order to create a new object
for a class variable.

Syntax (for an object declaration when you have constructors)

Class_Name Object_Name(Arguments_for_Constructor);

EXAMPLE

BankAccount account1(100, 2.3);

Syntax (for an explicit constructor call)

Object = Constructor_Name(Arguments_For_Constructor);

EXAMPLE

account1 = BankAccount(200, 3.5);

A constructor must have the same name as the class of which it is a
member. Thus, in the above syntax descriptions, Class_Name and
Constructor_Name are the same identifier.

explicit
constructor call

572 CHAPTER 10 / Defining Classes

balance of $999.99 and interest rate of 5.5%. This anonymous object is
assigned to object account1 so that it too represents an account with a balance
of $999.99 and an interest rate of 5.5%:4

account1 = BankAccount(999, 99, 5.5);

As you might guess from the notation, a constructor behaves like a function
that returns an object of its class type.

■ PROGRAMMING TIP Always Include a Default Constructor

C++ does not always generate a default constructor for the classes you define.
If you give no constructor, the compiler will generate a default constructor that
does nothing. This constructor will be called if class objects are declared. On
the other hand, if you give at least one constructor definition for a class, then
the C++ compiler will generate no other constructors. Every time you declare
an object of that type, C++ will look for an appropriate constructor definition
to use. If you declare an object without using arguments for the constructor,
C++ will look for a default constructor, and if you have not defined a default
constructor, none will be there for it to find.

For example, suppose you define a class as follows:

class SampleClass
{
public:

SampleClass(int parameter1, double parameter2);
void do_stuff();

private:
int data1;

 double data2;
};

You should recognize the following as a legal way to declare an object of type
SampleClass and call the constructor for that class:

SampleClass my_object(7, 7.77);

However, you may be surprised to learn that the following is illegal:

SampleClass your_object;

4 Since a call to a constructor always creates a new object and a call to a set member
function merely changes the values of existing member variables, a call to set may be a
more efficient way to change the values of member variables than a call to a construc-
tor. Thus, for efficiency reasons, you may wish to have both the set member functions
and the constructors in your class definition.

Constructor that requires two arguments

10.2 Classes 573

The compiler interprets this declaration as including a call to a constructor with
no arguments, but there is no definition for a constructor with zero arguments.
You must either add two arguments to the declaration of your_object or add a
constructor definition for a constructor with no arguments.

A constructor that can be called with no arguments is called a default
constructor, since it applies in the default case where you declare an object
without specifying any arguments. Since it is likely that you will sometimes
want to declare an object without giving any constructor arguments, you
should always include a default constructor. The following redefined version
of SampleClass includes a default constructor:

class SampleClass
{
public:

SampleClass(int parameter1, double parameter2);
SampleClass();
void do_stuff();

private:
int data1;
double data2;

};

If you redefine the class SampleClass in this manner, then the previous
declaration of your_object would be legal.

If you do not want the default constructor to initialize any member
variables, you can simply give it an empty body when you implement it. The
following constructor definition is perfectly legal. It does nothing when called
except make the compiler happy:

SampleClass::SampleClass()
{

//Do nothing.
} ■

■ PITFALL Constructors with No Arguments

If a constructor for a class called BankAccount has two formal parameters, you
declare an object and give the arguments to the constructor as follows:

BankAccount account1(100, 2.3);

To call the constructor with no arguments, you would naturally think that you
would declare the object as follows:

BankAccount account2(); //THIS WILL CAUSE PROBLEMS.

After all, when you call a function that has no arguments, you include a pair of
empty parentheses. However, this is wrong for a constructor. Moreover, it may not
produce an error message, since it does have an unintended meaning. The

default
constructor

Default constructor

574 CHAPTER 10 / Defining Classes

compiler will think that this code is the function declaration for a function called
account2 that takes no arguments and returns a value of type BankAccount.

Do not include parentheses when you declare an object and want C++ to
use the constructor with no arguments. The correct way to declare account2
using the constructor with no arguments is as follows:

BankAccount account2;

However, if you explicitly call a constructor in an assignment statement, you
do use the parentheses. If the definitions and declarations are as in Display
10.6, then the following will set the account balance for account1 to $0.00
and set the interest rate to 0.0%:

account1 = BankAccount(); ■

SELF -TEST EXERC ISES

22. Suppose your program contains the following class definition (along with
definitions of the member functions):

class YourClass
{
public:

YourClass(int new_info, char more_new_info);

Constructors with No Arguments

When you declare an object and want the constructor with zero argu-
ments to be called, you do not include any parentheses. For example, to
declare an object and pass two arguments to the constructor, you might do
the following:

BankAccount account1(100, 2.3);

However, if you want the constructor with zero arguments to be used,
declare the object as follows:

BankAccount account1;

You do not declare the object as follows:

BankAccount account1();//INCORRECT DECLARATION

(The problem is that this syntax declares a function named account1 that
returns a BankAccount object and has no parameters.)

10.3 Abstract Data Types 575

YourClass();
void do_stuff();

private:
int information;
char more_information;

};

Which of the following are legal?

YourClass an_object(42, 'A');
YourClass another_object;
YourClass yet_another_object();
an_object = YourClass(99, 'B');
an_object = YourClass();
an_object = YourClass;

23. How would you change the definition of the class DayOfYear in Display
10.4 so that it has two versions of an (overloaded) constructor? One ver-
sion should have two int formal parameters (one for the month and one
for the day) and should set the private member variables to represent that
month and day. The other should have no formal parameters and should
set the date represented to January 1. Do this without using a constructor
initialization section in either constructor.

24. Redo the previous exercise, but this time use a constructor initialization
section to initialize all member functions in each constructor.

10.3 ABSTRACT DATA TYPES

We all know—the Times knows—but we pretend we don’t.

VIRGINIA WOOLF, Monday or Tuesday

A data type, such as the type int, has certain specified values, such as 0, 1, − 1,
2, and so forth. You tend to think of the data type as being these values, but
the operations on these values are just as important as the values. Without the
operations, you could do nothing of interest with the values. The operations
for the type int consist of +, − , *, /, %, and a few other operators and
predefined library functions. You should not think of a data type as being
simply a collection of values. A data type consists of a collection of values
together with a set of basic operations defined on those values.

A data type is called an abstract data type (abbreviated ADT) if the
programmers who use the type do not have access to the details of how the
values and operations are implemented. The predefined types, such as int, are
abstract data types (ADTs). You do not know how the operations, such as +
and *, are implemented for the type int. Even if you did know, you would not
use this information in any C++ program.

data type

abstract data
types (ADT)

576 CHAPTER 10 / Defining Classes

Programmer-defined types, such as the structure types and class types,
are not automatically ADTs. Unless they are defined and used with care,
programmer-defined types can be used in unintuitive ways that make a
program difficult to understand and difficult to modify. The best way to
avoid these problems is to make sure all the data types that you define are
ADTs. The way that you do this in C++ is to use classes, but not every class
is an ADT. To make it an ADT you must define the class in a certain way, and
that is the topic of the next subsection.

Classes to Produce Abstract Data Types

A class is a type that you define, as opposed to the types, such as int and char,
that are already defined for you. A value for a class type is the set of values of
the member variables. For example, a value for the type BankAccount in
Display 10.6 consists of two numbers of type double. For easy reference, we
repeat the class definition (omitting only the comments):

class BankAccount
{
public:

BankAccount(int dollars, int cents, double rate);
BankAccount(int dollars, double rate);
BankAccount();
void update();

 double get_balance();
 double get_rate();

void output(ostream& outs);
private:
 double balance;
 double interest_rate;
 double fraction(double percent);
};

The programmer who uses the type BankAccount need not know how
you implemented the definition of BankAccount::update or any of the other
member functions. The function definition for the member function
BankAccount::update that we used is as follows:

void BankAccount::update()
{
 balance = balance + fraction(interest_rate)*balance;
}

However, we could have dispensed with the private function fraction and
implemented the member function update with the following slightly more
complicated formula:

10.3 Abstract Data Types 577

void BankAccount::update()
{
 balance = balance + (interest_rate/100.0)*balance;
}

The programmer who uses the class BankAccount need not be concerned with
which implementation of update we used, since both implementations have
the same effect.

Similarly, the programmer who uses the class BankAccount need not be
concerned about how the values of the class are implemented. We chose to
implement the values as two values of type double. If vacation_savings is an
object of type BankAccount, the value of vacation_savings consists of the two
values of type double stored in the following two member variables:

vacation_savings.balance
vacation_savings.interest_rate

However, you do not want to think of the value of the object
vacation_savings as two numbers of type double, such as 1.3546e+2 and 4.5.
You want to think of the value of vacation_savings as the single entry

Account balance $135.46
Interest rate 4.50%

That is why our implementation of BankAccount::output writes the class
value in this format.

The fact that we chose to implement this BankAccount value as the two
double values 1.3546e+2 and 4.5 is an implementation detail. We could
instead have implemented this BankAccount value as the two int values 135
and 46 (for the dollars and cents part of the balance) and the single value
0.045 of type double. The value 0.045 is simply 4.5% converted to a fraction,
which might be a more useful way to implement a percentage figure. After all,
in order to compute interest on the account we convert a percentage to just
such a fraction. With this alternative implementation of the class BankAccount,
the public members would remain unchanged but the private members would
change to the following:

class BankAccount
{
public:
 <This part is exactly the same as before>
private:
 int dollars_part;
 int cents_part;
 double interest_rate;
 double fraction(double percent);
};

578 CHAPTER 10 / Defining Classes

We would need to change the member function definitions to match this
change, but that is easy to do. For example, the function definitions for
get_balance and one version of the constructor could be changed to the
following:

double BankAccount::get_balance()
{
 return (dollars_part + 0.01*cents_part);
}

BankAccount::BankAccount(int dollars, int cents, double rate)
{
 if ((dollars < 0) || (cents < 0) || (rate < 0))
 {
 cout << "Illegal values for money or interest rate.\n";
 exit(1);
 }
 dollars_part = dollars;
 cents_part = cents;
 interest_rate = rate;
}

Similarly, each of the other member functions could be redefined to accom-
modate this new way of storing the account balance and the interest rate.

Notice that even though the user may think of the account balance as a
single number, that does not mean the implementation has to be a single
number of type double. You have just seen that it could, for example, be two
numbers of type int. The programmer who uses the type BankAccount need not
know any of this detail about how the values of the type BankAccount are
implemented.

These comments about the type BankAccount illustrate the basic technique
for defining a class so that it will be an abstract data type. In order to define a
class so that it is an abstract data type, you need to separate the specification
of how the type is used by a programmer from the details of how the type is
implemented. The separation should be so complete that you can change the
implementation of the class without needing to make any changes in any
program that uses the class ADT. One way to ensure this separation is to
follow these rules:

1. Make all the member variables private members of the class.

2. Make each of the basic operations that the programmer needs a public
member function of the class, and fully specify how to use each such
public member function.

3. Make any helping functions private member functions.

how to write
an ADT

10.3 Abstract Data Types 579

In Chapters 11 and 12 you will learn some alternative approaches to defining
ADTs, but these three rules are one common way to ensure that a class is an
abstract data type.

The interface of an ADT tells you how to use the ADT in your program.
When you define an ADT as a C++ class, the interface consists of the public
member functions of the class along with the comments that tell you how to
use these public member functions. The interface of the ADT should be all you
need to know in order to use the ADT in your program.

The implementation of the ADT tells how this interface is realized as C++
code. The implementation of the ADT consists of the private members of the
class and the definitions of both the public and private member functions.
Although you need the implementation in order to run a program that uses
the ADT, you should not need to know anything about the implementation in
order to write the rest of a program that uses the ADT; that is, you should not
need to know anything about the implementation in order to write the main
part of the program and to write any nonmember functions used by the main
part of the program. The situation is similar to what we advocated for ordinary
function definitions in Chapters 4 and 5. The implementation of an ADT, like
the implementation of an ordinary function, should be thought of as being in
a black box that you cannot see inside.

In Chapter 12 you will learn how to place the interface and implementa-
tion of an ADT in files separate from each other and separate from the
programs that use the ADT. That way a programmer who uses the ADT literally
does not see the implementation. Until then, we will place all of the details
about our ADT classes in the same file as the main part of our program, but we
still think of the interface (given in the public section of the class definitions)
and the implementation (the private section of the class definition and the
member function definitions) as separate parts of the ADT. We will strive to
write our ADTs so that the user of the ADT need only know about the interface
of the ADT and need not know anything about the implementation. To be
sure you are defining your ADTs this way, simply make sure that if you change
the implementation of your ADT, your program will still work without your
needing to change any other part of the program. This is illustrated in the next
Programming Example.

The most obvious benefit you derive from making your classes ADTs is
that you can change the implementation without needing to change the other
parts of your program. But ADTs provide more benefits than that. If you make
your classes ADTs, you can divide work among different programmers, with
one programmer designing and writing the ADT and other programmers using
the ADT. Even if you are the only programmer working on a project, you have
divided one larger task into two smaller tasks, which makes your program
easier to design and easier to debug.

interface

implementation

separate
interface and
implementation

Video Note
Separate Interface
and Implementation

580 CHAPTER 10 / Defining Classes

■ PROGRAMMING EXAMPLE Alternative Implementation of
a Class

Display 10.7 contains the alternative implementation of the ADT class
BankAccount discussed in the previous subsection. In this version the data for
a bank account is implemented as three member values: one for the dollars
part of the account balance, one for the cents part of the account balance, and
one for the interest rate.

Notice that, although both the implementation in Display 10.6 and the
implementation in Display 10.7 each have a member variable called
interest_rate, the value stored is slightly different in the two implementa-
tions. If the account pays interest at a rate of 4.7%, then in the implementa-
tion in Display 10.6 (which is basically the same as the one in Display 10.5),
the value of interest_rate is 4.7. However, in the implementation in Display
10.7, the value of interest_rate would be 0.047. This alternative implemen-
tation, shown in Display 10.7, stores the interest rate as a fraction rather than
as a percentage figure. The basic difference in this new implementation is that
when an interest rate is set, the function fraction is used to immediately
convert the interest rate to a fraction. Hence, in this new implementation the
private member function fraction is used in the definitions of constructors, but
it is not needed in the definition of the member function update because the
value in the member variable interest_rate has already been converted to a
fraction. In the old implementation (shown in Displays 10.5 and 10.6), the
situation was just the reverse. In the old implementation, the private member
function fraction was not used in the definition of constructors but was used
in the definition of update.

Although we have changed the private members of the class BankAccount,
we have not changed anything in the public section of the class definition. The
public member functions have the same function declarations and they
behave exactly as they did in the old version of the ADT class given in Display
10.6. For example, although this new implementation stores a percentage such
as 4.7% as the fraction 0.047, the member function get_rate still returns the
value 4.7, just as it would for the old implementation in Display 10.5.
Similarly, the member function get_balance returns a single value of type
double, which gives the balance as a number with a decimal point, just as it
did in the old implementation in Display 10.5. This is true even though the
balance is now stored in two member variables of type int, rather than in a
single member variable of type double (as in the old versions).

Notice that there is an important difference between how you treat the
public member functions and how you treat the private member functions. If
you want to preserve the interface of an ADT class so that any programs that
use it need not change (other than changing the definitions of the class and its
member functions), then you must leave the public member function declara-
tions unchanged. However, you are free to add, delete, or change any of the

different
member

variables

The public
interface

is not changed.

changing private
member

functions

10.3 Abstract Data Types 581

DISPLAY 10.7 Alternative BankAccount Class Implementation (part 1 of 3)

1 //Demonstrates an alternative implementation of the class BankAccount.
2 #include <iostream>
3 #include <cmath>
4 using namespace std;

5 //Class for a bank account:
6 class BankAccount
7 {
8 public:
9 BankAccount(int dollars, int cents, double rate);

10 //Initializes the account balance to $dollars.cents and
11 //initializes the interest rate to rate percent.

12 BankAccount(int dollars, double rate);
13 //Initializes the account balance to $dollars.00 and
14 //initializes the interest rate to rate percent.

15 BankAccount();
16 //Initializes the account balance to $0.00 and the interest rate to 0.0%.

17 void update();
18 //Postcondition: One year of simple interest has been added to the account
19 //balance.

20 double get_balance();
21 //Returns the current account balance.

22 double get_rate();
23 //Returns the current account interest rate as a percentage.

24 void output(ostream& outs);
25 //Precondition: If outs is a file output stream, then
26 //outs has already been connected to a file.
27 //Postcondition: Account balance and interest rate
28 //have been written to the stream outs.
29 private:
30 int dollars_part;
31 int cents_part;
32 double interest_rate;//expressed as a fraction, for example, 0.057 for 5.7%

33 double fraction(double percent);
34 //Converts a percentage to a fraction. For example, fraction(50.3)
35 //returns 0.503.

36 double percent(double fraction_value);
37 //Converts a fraction to a percentage. For example, percent(0.503)
38 //returns 50.3.
39 };

(continued)

Notice that the public members of
BankAccount look and behave
exactly the same as in Display 10.6.

New

582 CHAPTER 10 / Defining Classes

DISPLAY 10.7 Alternative BankAccount Class Implementation (part 2 of 3)

40 int main()
41 {
42 BankAccount account1(100, 2.3), account2;
43
44 cout << "account1 initialized as follows:\n";
45 account1.output(cout);
46 cout << "account2 initialized as follows:\n";
47 account2.output(cout);
48
49 account1 = BankAccount(999, 99, 5.5);
50 cout << "account1 reset to the following:\n";
51 account1.output(cout);
52 return 0;
53 }
54
55 BankAccount::BankAccount(int dollars, int cents, double rate)
56 {
57 if ((dollars < 0) || (cents < 0) || (rate < 0))
58 {
59 cout << "Illegal values for money or interest rate.\n";
60 exit(1);
61 }
62 dollars_part = dollars;
63 cents_part = cents;
64 interest_rate = fraction(rate);
65 }
66
67 BankAccount::BankAccount(int dollars, double rate)
68 {
69 if ((dollars < 0) || (rate < 0))
70 {
71 cout << "Illegal values for money or interest rate.\n";
72 exit(1);
73 }
74 dollars_part = dollars;
75 cents_part = 0;
76 interest_rate = fraction(rate);
77 }
78
79 BankAccount::BankAccount() : dollars_part(0), cents_part(0), interest_rate(0.0)
80 {
81 //Body intentionally empty.
82 }
83

(continued)

Since the body of main is identical to that
in Display 10.6, the screen output is also
identical to that in Display 10.6.

In the old implementation of this
ADT, the private member function
fraction was used in the definition
of update. In this implementation,
fraction is instead used in the
definition of constructors.

10.3 Abstract Data Types 583

private member functions. In this example, we have added one additional
private function called percent, which is the inverse of the function fraction.
The function fraction converts a percentage to a fraction, and the function
percent converts a fraction back to a percentage. For example, fraction(4.7)
returns 0.047, and percent(0.047) returns 4.7. ■

DISPLAY 10.7 Alternative BankAccount Class Implementation (part 3 of 3)

84 double BankAccount::fraction(double percent_value)
85 {
86 return (percent_value/100.0);
87 }
88
89 //Uses cmath:
90 void BankAccount::update()
91 {
92 double balance = get_balance();
93 balance = balance + interest_rate*balance;
94 dollars_part = floor(balance);
95 cents_part = floor((balance − dollars_part)*100);
96 }
97
98 double BankAccount::get_balance()
99 {
100 return (dollars_part + 0.01*cents_part);
101 }
102
103 double BankAccount::percent(double fraction_value)
104 {
105 return (fraction_value*100);
106 }
107
108 double BankAccount::get_rate()
109 {
110 return percent(interest_rate);
111 }
112
113 //Uses iostream:
114 void BankAccount::output(ostream& outs)
115 {
116 outs.setf(ios::fixed);
117 outs.setf(ios::showpoint);
118 outs.precision(2);
119 outs << "Account balance $" << get_balance() << endl;
120 outs << "Interest rate " << get_rate() << "%" << endl;
121 }

The new definitions of
get_balance and get_rate
ensure that the output will
still be in the correct units.

584 CHAPTER 10 / Defining Classes

SELF -TEST EXERC ISES

25. When you define an ADT as a C++ class, should you make the member
variables public or private? Should you make the member functions pub-
lic or private?

26. When you define an ADT as a C++ class, what items are considered part of
the interface for the ADT? What items are considered part of the imple-
mentation for the ADT?

27. Suppose your friend defines an ADT as a C++ class in the way we
described in Section 10.3. You are given the task of writing a program that
uses this ADT. That is, you must write the main part of the program as well
as any nonmember functions that are used in the main part of the pro-
gram. The ADT is very long and you do not have a lot of time to write this
program. What parts of the ADT do you need to read and what parts can
you safely ignore?

28. Redo the three- and two-parameter constructors in Display 10.7 so that all
member variables are set using a constructor initialization section.

10.4 INTRODUCTION TO INHERITANCE

One of the most powerful features of C++ is the use of derived classes. The word
inheritance is just another name for the topic of derived classes. When we say
that one class was derived from another class, we mean that the derived class

Information Hiding

We discussed information hiding when we introduced functions in Chapter 3.
We said that information hiding, as applied to functions, means that you
should write your functions so that they could be used as black boxes; that
is, so that the programmer who uses the function need not know any
details about how the function is implemented. This principle means that
all the programmer who uses a function needs to know is the function
declaration and the accompanying comment that explains how to use the
function. The use of private member variables and private member
functions in the definition of an abstract data type is another way to
implement information hiding, but now we apply the principle to data
values as well as to functions.

10.4 Introduction to Inheritance 585

was obtained from the other class by adding features. For example, the class of
input-file streams is derived from the class of all input streams by adding
member functions, such as open and close. The stream cin belongs to the
class of all input streams, but does not belong to the class of input-file streams,
because cin has no member functions named open and close. A stream that
you declared to be of type ifstream is an input-file stream because it has
added member functions, such as open and close.

This section will first introduce the notion of a derived class as it applies
to streams. You have already been using derived classes when declaring
variables of type ifstream and ofstream. Next, we briefly describe how to
create your own derived classes. Details of inheritance are left to Chapter 15.
It may take a while before you are completely comfortable with the idea of a
derived class, but you easily can learn enough about derived classes to start
using them in some simple, and very useful, ways.

Inheritance Among Stream Classes

In order to get some of the simpler terminology straight, recall that an object
is a variable that has member functions, and that a class is a type whose
variables are objects. Streams (such as cin, cout, input-file streams, and
output-file streams) are objects, so stream types, such as ifstream and
ofstream, are classes. With that brief review in mind, let us consider some
examples of streams and stream classes.

Both the predefined stream cin and an input-file stream are input streams,
so in some sense they are similar. For example, you can use the extraction
operator >> with either kind of stream. On the other hand, an input-file stream
can be connected to a file using the member function open, but the stream cin
has no member function named open. An input-file stream is a similar but
different kind of stream than cin. An input-file stream is of type ifstream. As
we will see shortly, cin is of type istream (spelled without the f). The classes
ifstream and istream are different but closely related types. The class
ifstream is a derived class of the class istream. In this subsection we explain
what it means for one class to be a derived class of another class.

Consider the following function, which reads two integers from the input
stream source_file and writes their sum to the screen:

void two_sum(ifstream& source_file)
{

int n1, n2;
source_file >> n1 >> n2;
cout << n1 << " + " << n2 << " = " << (n1 + n2) << endl;

}

Suppose your program contains the previous function definition and the
following stream declaration:

ifstream fin;

586 CHAPTER 10 / Defining Classes

If fin is connected to a file with a call to open, you can use the function
two_sum to read two integers from that file and write their sum to the screen.
The call would be the following:

two_sum(fin);

Now suppose that later on in the same program, you want your program
to read two numbers from the keyboard and write their sum to the screen.
Since all input streams are similar, you might think you can use cin as the
argument in a second call to two_sum, as shown:

two_sum(cin); //WILL NOT WORK

As the comment indicates, this will produce an error message when you
compile your program. cin is not of type ifstream; cin is of type istream
(without an f). If you want to use cin as an argument to a function, then
the corresponding function parameter should be of type istream (not of
type ifstream). The following rewritten version of two_sum will accept cin
as its argument:

void better_two_sum(istream& source_file)
{

int n1, n2;
source_file >> n1 >> n2;
cout << n1 << " + " << n2 << " = " << (n1 + n2) << endl;

}

Aside from changing the types of the parameter, this function
better_two_sum is identical to the function two_sum. Since the parameter in
the function better_two_sum matches the type of cin, the following function
call can be used in place of the previous illegal call to two_sum:

better_two_sum(cin);

Now we have some good, and perhaps surprising, news. The function
better_two_sum can be used with any kind of input stream, not just with the
input stream cin. The following is also legal:

better_two_sum(fin);

This is perhaps surprising because fin is of type ifstream and the argument
to better_two_sum must be of type istream. It appears that the stream fin is
of type ifstream and also of type istream. Not only does this appear to be
true, it is true! The stream fin has two types. How can this be? The types in
questions have a special relationship. The type ifstream is a derived class of
the class istream.

When we say that some class A is a derived class of some other class B, it
means that class A has all the features of class B but it also has added features.
For example, any stream of type istream (without the f) can be used with the
extraction operator >>. The class ifstream (with the f) is a derived class of the

istream and
ifstream

derived class

10.4 Introduction to Inheritance 587

class istream, so an object of type ifstream can be used with the extraction
operator >>. But ifstream has added features so that you can do more with an
object of type ifstream. For example, one added feature is that a stream of
type ifstream can be used with the function open. The stream cin is only of
type istream and not of type ifstream, so you cannot use cin with the
function open.

Any stream that is of type ifstream is also of type istream, so a formal
parameter of type istream can be replaced by an argument of type ifstream
in a function call. If you are defining a function with a formal parameter for
an input stream and you give the input stream parameter the type istream,
then your function will be more versatile. With a formal parameter of type
istream, the argument used in a function call can be either an input stream
connected to a file or the stream cin.

If you define a function with a parameter of type istream, then that
parameter can use only istream member functions. In particular, it cannot use
the functions open and close. Similarly, a parameter of type ostream can only
use ostream member functions. With parameters of type istream or ostream,
all opening of files must be done before the function call and all closing must
be done after the function call.

Inheritance can seem strange at first, but the idea of a derived class is really
quite common. An example from everyday life may help to make the idea
clearer. The class of all convertibles, for instance, is a derived class of the class
of all automobiles. Every convertible is an automobile, but a convertible is not
just an automobile. A convertible is a special kind of automobile with special
properties that other kinds of automobiles do not have. If you have a
convertible, you can lower the top so that the car is open. (You might say that
a convertible has an “open” function as an added feature.) Similarly, the class
ifstream of input-file streams is a derived class of the class istream, which
consists of all input streams. Every input-file stream is an input stream, but an
input-file stream has extra properties (for example, the function open) that
other kinds of input streams (such as cin) do not have.

Derived classes are often discussed using the metaphor of inheritance and
family relationships. If class B is a derived class of class A, then class B is called
a child of class A and class A is called a parent of class B. The derived class is
said to inherit the member functions of its parent class. For example, every
convertible inherits the fact that it has four wheels from the class of all
automobiles, and every input-file stream inherits the extraction operator >>
from the class of all input streams. This is why the topic of derived classes is
often called inheritance.

If you are not yet completely comfortable with the idea of a derived class,
you will become more comfortable with the idea as you use it. The box
entitled “Making Stream Parameters Versatile” tells you all that you absolutely
must know in order to use the derived classes discussed in this subsection.

So far we have discussed two classes for input streams: istream and its
derived class ifstream. The situation with output streams is similar. The class

what type to use
for a stream
parameter

child parent
inheritance

588 CHAPTER 10 / Defining Classes

ostream is the class of all output streams. The stream cout is of type ostream.
In contrast to cout, an output-file stream is declared to be of type ofstream.
The class ofstream of output-file streams is a derived class of the class ostream.
For example, the following function writes the word "Hello" to the output
stream given as its argument.

void say_hello(ostream& any_out_stream)
{

any_out_stream << "Hello";
}

The first of the following calls writes "Hello" to the screen; the second writes
"Hello" to the file with the external file name afile.dat:

ofstream fout;
fout.open("afile.dat");
say_hello(cout);
say_hello(fout);

Note that an output-file stream is of type ofstream and also of type ostream.

■ PROGRAMMING EXAMPLE Another new_line Function

As another example of how you can make a stream function more versatile,
consider the function new_line in Display 6.7. That function works only for
input from the keyboard, which is input from the predefined stream cin. The
function new_line in Display 6.7 has no arguments. Below we have rewritten

Making Stream Parameters Versatile

If you want to define a function that takes an input stream as an argument
and you want that argument to be cin in some cases and an input-file
stream in other cases, then use a formal parameter of type istream
(without an f). However, an input-file stream, even if used as an argument
of type istream, must still be declared to be of type ifstream (with an f).

Similarly, if you want to define a function that takes an output
stream as an argument and you want that argument to be cout in some
cases and an output-file stream in other cases, then use a formal
parameter of type ostream. However, an output-file stream, even if used
as an argument of type ostream, must still be declared to be of type
ofstream. You cannot open or close a stream parameter of type istream
or ostream. Open these objects before passing them to your function
and close them after the call.

ostream and
ofstream

10.4 Introduction to Inheritance 589

the function new_line so that it has a formal parameter of type istream for the
input stream:

//Uses iostream:
void new_line(istream& in_stream)
{
 char symbol;
 do
 {
 in_stream.get(symbol);
 } while (symbol != '\n');
}

Now, suppose your program contains this new version of the function
new_line. If your program is taking input from an input stream called fin
(which is connected to an input file), the following will discard all the input
left on the line currently being read from the input file:

new_line(fin);

On the other hand, if your program is also reading some input from the
keyboard, the following will discard the remainder of the input line that was
typed in at the keyboard:

new_line(cin);

If your program has only the above rewritten version of new_line, which
takes a stream argument such as fin or cin, you must always give the stream
name, even if the stream name is cin. But thanks to overloading, you can have
both versions of the function new_line in the same program: the version with
no arguments that is given in Display 6.7 and the version with one argument
of type istream that we just defined. In a program with both definitions of
new_line, the following two calls are equivalent:

new_line(cin);

and

new_line();

You do not really need two versions of the function new_line. The version
with one argument of type istream can serve all your needs. However, many
programmers find it convenient to have a version with no arguments for
keyboard input, since keyboard input is used so frequently. ■

Default Arguments for Functions (Optional)

An alternative to having two versions of the new_line function is to use
default arguments. In the following code, we have rewritten the new_line
function a third time.

using both
versions of
new_line

default
arguments

590 CHAPTER 10 / Defining Classes

//Uses iostream:
void new_line(istream& in_stream = cin)
{
 char symbol;
 do
 {
 in_stream.get(symbol);
 } while (symbol != '\n');
}

If we call this function as

new_line();

the formal parameter takes the default argument cin. If we call this as

new_line(fin);

the formal parameter takes the argument provided in the call to fin. This
facility is available to us with any argument type and any number of
arguments.

If some parameters are provided default arguments and some are not, the
formal parameters with default arguments must all be together at the end of
the argument list. If you provide several defaults and several nondefault
arguments, the call may provide either as few arguments as there are
nondefault arguments or more arguments, up to the number of parameters.
The arguments will be applied to the parameters without default arguments in
order, and then will be applied to the parameters with default arguments up
to the number of parameters.

Here is an example:

//To test default argument behavior
//Uses iostream
void default_args(int arg1, int arg2, int arg3 = -3,
 int arg4 = -4)
{
 cout << arg1 << ' ' << arg2 << ' ' << arg3 << ' ' << arg4
 << endl;
}

Calls to this may be made with two, three, or four arguments. For example, the
call

default_args(5, 6);

supplies the nondefault arguments and uses the two default arguments. The
output is

5 6 -3 -4

10.4 Introduction to Inheritance 591

Next, consider

default_args(6, 7, 8);

This call supplies the nondefault arguments and the first default argument,
and the last argument uses the default. This call gives the following output:

6 7 8 -4

The call

default_args(5, 6, 7, 8);

assigns all the arguments from the argument list and gives the following
output:

5 6 7 8

Defining Derived Classes

The previous section showed how inheritance allows the stream classes to be
defined efficiently. For example, it let us define a function that accepts input
from the keyboard (cin) or input from a file (ifstream), because both cin and
ifstream are derived from the parent class, istream. You also can define your
own classes that use inheritance. The details of defining derived classes are left
to Chapter 15, but we present a small example here to reinforce the major
concepts of inheritance and to demonstrate its utility.

As an example, consider the BankAccount class defined in Display 10.7.
This class keeps track of an amount and interest rate for a bank account. Now
consider a more specialized account class to track a Certificate of Deposit (CD)
account. A CD account is similar to a regular savings account, except the funds
and any accrued interest must not be withdrawn until after a “maturity” date.
If the funds are withdrawn prior to the maturity date, then there is a penalty.
Due to these restrictions, a CD account normally accrues interest at a higher
rate than a savings account.

If we want to create a class to represent a CD account, we could start by
making a copy of the BankAccount class and renaming it to CDAccount. We
would need to add a new private member variable to store the days until
maturity and define functions to access this variable. While this approach
would work, it would be very inefficient, because the CDAccount class would
duplicate most of the functionality in the BankAccount class. Not only does
this waste memory space, it also becomes more difficult to make
modifications. For example, if we later decide to change the update() function
to accrue interest daily instead of annually, then we would have two places to
make the change: in the CDAccount class and also in the BankAccount class.
These problems can be solved by defining the CDAccount class as a derived
class of the BankAccount class. The CDAccount class then can share member
variables and functions defined in the BankAccount class. We specify this

592 CHAPTER 10 / Defining Classes

relationship when defining the derived class by adding a colon followed by
the keyword public and the name of the parent or base class:

class CDAccount : public BankAccount
{
public:

CDAccount(int dollars, int cents, double rate,
int days_to_maturity);

<Other constructors would normally go here>

int get_days_to_maturity();
 // Returns the number of days until the CD matures

 void decrement_days_to_maturity();
 // Subtracts one from the days_to_maturity variable
private:

int days_to_maturity; //Days until the CD matures
};

Notice that we only defined functions and data that specifically relate to CD
accounts, in this case, storing and manipulating the number of days to
maturity. We don’t need to redefine all of the variables and functions relating
to bank accounts—such as storing the interest rate, dollars, cents, or defining
the update() function—because those members will be inherited from the
BankAccount class and are automatically created when we construct a
CDAccount object. For example, if we create a CDAccount object, we could
invoke the following functions:

CDAccount newCD(1000, 0, 6.0, 180);
// New CD Account with $1000, 6% interest, 180 days to maturity

days_to_maturity = newCD.get_days_to_maturity(); // Returns 180
balance = newCD.get_balance(); // Returns 1000

In this example, inheritance allowed us to reuse code defined in the parent
class from the context of the derived class. Moreover, if we later change one of
BankAccount’s functions—such as update()—then the new code
automatically will be used from the context of its derived classes when the
program is recompiled and linked.

This short example has only scratched the surface of what is possible using
inheritance. Additional details are described in Chapter 15. While it does take
some effort to learn how to effectively design classes using inheritance, the
effort will pay off in the long run. You will end up writing less code that is
easier to understand and maintain than code that does not use inheritance.

The colon separates the derived
class, CDAccount, from the
parent class, BankAccount

Invoking a function defined in the
derived class, CDAccount

Invoking a function defined in the
parent class, BankAccount

10.4 Introduction to Inheritance 593

SELF -TEST EXERC ISES

29. What is the type of the stream cin? What is the type of the stream cout?

30. Define a function called copy_char that takes one argument that is an
input stream. When called, copy_char will read one character of input
from the input stream given as its argument and will write that character
to the screen. You should be able to call your function using either cin or
an input-file stream as the argument to your function copy_char. (If the
argument is an input-file stream, then the stream is connected to a file
before the function is called, so copy_char will not open or close any
files.) For example, the first of the following two calls to copy_char will
copy a character from the file stuff.dat to the screen, and the second will
copy a character from the keyboard to the screen:

ifstream fin;
fin.open("stuff.dat");
copy_char(fin);
copy_char(cin);

31. Define a function called copy_line that takes one argument that is an input
stream. When called, copy_line reads one line of input from the input
stream given as its argument and writes that line to the screen. You should
be able to call your function using either cin or an input-file stream as the
argument to your function copy_line. (If the argument is an input-file
stream, then the stream is connected to a file before the function is called,
so copy_line will not open or close any files.) For example, the first of the
following two calls to copy_line will copy a line from the file stuff.dat to
the screen, and the second will copy a line from the keyboard to the screen:

ifstream fin;
fin.open("stuff.dat");
copy_line(fin);
copy_line(cin);

32. Define a function called send_line that takes one argument that is an out-
put stream. When called, send_line reads one line of input from the key-
board and outputs the line to the output stream given as its argument.
You should be able to call your function using either cout or an output-
file stream as the argument to your function send_line. (If the argument
is an output-file stream, then the stream is connected to a file before the
function is called, so send_line will not open or close any files.) For
example, the first of the following calls to send_line copies a line from

594 CHAPTER 10 / Defining Classes

the keyboard to the file morestuf.dat, and the second copies a line from
the keyboard to the screen:

ofstream fout;
fout.open("morestuf.dat");
cout << "Enter 2 lines of input:\n";
send_line(fout);
send_line(cout);

33. (This exercise is for those who have studied the optional section on
default arguments.) What output does the following function provide in
response to the following calls?

void func(double x, double y = 1.1, double z = 2.3)
{
 cout << x << " " << y << " " << z << endl;
}

Calls:

a. func(2.0);
b. func(2.0, 3.0);
c. func(2.0, 3.0, 4.0);

34. (This exercise is for those who have studied the optional section on
default arguments.) Write several functions that overload the function
name to get the same effect as all the calls in the default function argu-
ments in the previous Self-Test Exercise.

35. Is the following statement true or false? If it is false, correct it. In either
event, explain it carefully.

A function written using a parameter of class ifstream can be called with
istream arguments.

36. What is the relationship between cin and a variable of type ifstream?

37. How does inheritance support code reuse and make code easier to main-
tain?

CHAPTER SUMMARY

■ A structure can be used to combine data of different types into a single
(compound) data value.

■ A class can be used to combine data and functions into a single (com-
pound) object.

Answers to Self-Test Exercises 595

■ A member variable or a member function for a class may be either public or
private. If it is public, it can be used outside of the class. If it is private it can
be used only in the definition of another member function in the class.

■ A function may have formal parameters of a class or structure type. A func-
tion may return values of a class or structure type.

■ A member function for a class can be overloaded in the same way as ordi-
nary functions are overloaded.

■ A constructor is a member function of a class that is called automatically
when an object of the class is declared. A constructor must have the same
name as the class of which it is a member.

■ A data type consists of a collection of values together with a set of basic
operations defined on these values.

■ A data type is called an abstract data type (abbreviated ADT) if a program-
mer who uses the type does not need to know any of the details about how
the values and operations for that type are implemented.

■ One way to implement an abstract data type in C++ is to define a class with
all member variables being private and with the operations implemented
as public member functions.

■ Function parameters can have default arguments that provide values for the
parameters if the corresponding argument is omitted in the call. These
arguments must follow any parameters that are not provided default argu-
ments. Calls to such a function must supply arguments for parameters
without default arguments first. Arguments beyond this are used instead of
defaults, up to the number of parameters the function has.

■ Inheritance refers to a parent/child relationship between classes. The child
or derived class inherits members from the parent class.

Answers to Self-Test Exercises

1. a. double

b. double

c. illegal—cannot use struct tag instead of a structure variable

d. illegal—savings_account undeclared

e. char

f. TermAccount

2. A $9.99
A $1.11

596 CHAPTER 10 / Defining Classes

3. Many compilers give poor error messages. Surprisingly, the error message
from g++ is quite informative.

g++ -fsyntax-only c6testg1.cc
prob1.cc:8: semicolon missing after declaration of
'Stuff'
prob1.cc:8: extraneous 'int' ignored
prob1.cc:8: semicolon missing after declaration of
'struct Stuff'

4. A x = {1,2};

5. a. Too few initializers, not a syntax error. After initialization,
due_date.month==12, due_date.day==21, due_date.year==0. Member
variables not provided an initializer are initialized to a zero of appro-
priate type.

b. Correct after initialization: 12= =due_date.month, 21= =due_date.day,
2022= =due_date.year.

c. Error: too many initializers.

d. May be a design error, that is—an error in intent. The author of the
code provides only two digits for the date initializer. There should be
four digits used for the year because a program using two-digit dates
could fail in ways that vary from amusing to disastrous at the turn of
the century.

6. struct EmployeeRecord
{

double wage_rate;
int vacation;
char status;

};

7. void read_shoe_record(ShoeType& new_shoe)
{

cout << "Enter shoe style (one letter): ";
cin >> new_shoe.style;
cout << "Enter shoe price $";
cin >> new_shoe.price;

}

8. ShoeType discount(ShoeType old_record)
{

ShoeType temp;
temp.style = old_record.style;
temp.price = 0.90*old_record.price;
return temp;

}

Answers to Self-Test Exercises 597

9. struct StockRecord
{

ShoeType shoe_info;
Date arrival_date;

};

10. StockRecord aRecord;
aRecord.arrival_date.year = 2006;

11. void DayOfYear::input()
{

cout << "Enter month as a number: ";
cin >> month;
cout << "Enter the day of the month: ";
cin >> day;

}

12. void Temperature::set(double new_degrees, char new_scale)
{

degrees = new_degrees;
scale = new_scale;

}

13. Both the dot operator and the scope resolution operator are used with
member names to specify the class or struct of which the member name is
a member. If class DayOfYear is as defined in Display 10.3 and today is
an object of the class DayOfYear, then the member month may be accessed
with the dot operator: today.month. When we give the definition of a
member function, the scope resolution operator is used to tell the com-
piler that this function is the one declared in the class whose name is
given before the scope resolution operator.

14. void DayOfYear::check_date()
{
 if ((month < 1) || (month > 12)
 || (day < 1) || (day > 31))
 {
 cout << "Illegal date. Aborting program.\n";
 exit(1);
 }

 if (((month == 4) || (month == 6) || (month == 9)
 || (month == 11))
 && (day == 31))
 {
 cout << "Illegal date. Aborting program.\n";
 exit(1);
 }

598 CHAPTER 10 / Defining Classes

 if ((month == 2) && (day > 29))
 {
 cout << "Illegal date. Aborting program.\n";
 exit(1);
 }
}

15. hyundai.price = 4999.99; //ILLEGAL. price is private.
jaguar.set_price(30000.97); //LEGAL
double a_price, a_profit;//LEGAL
a_price = jaguar.get_price();//LEGAL
a_profit = jaguar.get_profit();//ILLEGAL. get_profit is private.
a_profit = hyundai.get_profit();//ILLEGAL. get_profit is private.
if (hyundai == jaguar) //ILLEGAL. Cannot use == with classes.

cout << "Want to swap cars?";
hyundai = jaguar;//LEGAL

16. After the change, they would all be legal except for the following, which is
still illegal:

if (hyundai == jaguar) //ILLEGAL. Cannot use == with classes.
cout << "Want to swap cars?";

17. private restricts access to function definitions to member functions of the
same class. This restricts any change of private variables to functions pro-
vided by the class author. The class author is then in control of these changes
to the private data, preventing inadvertent corruption of the class data.

18. a. Only one. The compiler warns if you have no public: members in a
class (or struct for that matter).

b. None; we normally expect to find at least one private: section in a
class.

c. In a class, such a section is by default a private: section.

d. In a struct, such a section is by default a public: section.

19. A possible correct answer is as follows:

double difference(BankAccount account1, BankAccount account2)
{

return (account1.get_balance() − account2.get_balance());
}

Note that the following is not correct, because balance is a private
member.

Answers to Self-Test Exercises 599

double difference(BankAccount account1, BankAccount account2)
{

return (account1.balance − account2.balance);//ILLEGAL
}

20. void double_update(BankAccount& the_account)
{

the_account.update();
the_account.update();

}

Note that since this is not a member function, you must give the object
name and dot operator when you call update.

21. BankAccount new_account(BankAccount old_account)

{
BankAccount temp;
temp.set(0, old_account.get_rate());
return temp;

}

22. YourClass an_object(42, 'A'); //LEGAL
YourClass another_object; //LEGAL
YourClass yet_another_object(); //PROBLEM
an_object = YourClass(99, 'B'); //LEGAL
an_object = YourClass(); //LEGAL
an_object = YourClass; //ILLEGAL

The statement marked //PROBLEM is not, strictly speaking, illegal, but it
does not mean what you might think it means. If you mean this to be a
declaration of an object called yet_another_object, then it is wrong. It is
a correct function declaration for a function called yet_another_object
that takes zero arguments and that returns a value of type YourClass, but
that is not the intended meaning. As a practical matter, you can probably
consider it illegal. The correct way to declare an object called
yet_another_object, so that it will be initialized with the default
constructor, is as follows:

YourClass yet_another_object;

23. The modified class definition is as follows:

class DayOfYear
{
public:
 DayOfYear(int the_month, int the_day);
 //Precondition: the_month and the_day form a
 //possible date. Initializes the date according to
 //the arguments.

600 CHAPTER 10 / Defining Classes

 DayOfYear();
//Initializes the date to January first.

 void input();

 void output();

int get_month();
 //Returns the month, 1 for January, 2 for February, etc.

 int get_day();
 //Returns the day of the month.
 private:
 void check_date();
 int month;
 int day;
};

Notice that we have omitted the member function set, since the
constructors make set unnecessary. You must also add the following
function definitions (and delete the function definition for
DayOfYear::set):

DayOfYear::DayOfYear(int the_month, int the_day)
{
 month = the_month;
 day = the_day;
 check_date();
}

DayOfYear::DayOfYear()
{

month = 1;
day = 1;

}

24. The class definition is the same as in the previous exercise. The constructor
definitions would change to the following:

DayOfYear::DayOfYear(int the_month, int the_day)
 : month(the_month), day(the_day)
{
 check_date();
}

DayOfYear::DayOfYear() : month(1), day(1)
{
 //Body intentionally empty.
}

Answers to Self-Test Exercises 601

25. The member variables should all be private. The member functions that
are part of the interface for the ADT (that is, the member functions that
are operations for the ADT) should be public. You may also have auxiliary
helping functions that are used only in the definitions of other member
functions. These auxiliary functions should be private.

26. All the declarations of private member variables are part of the implementa-
tion. (There should be no public member variables.) All the function declara-
tions for public member functions of the class (which are listed in the class
definitions) as well as the explanatory comments for these function declara-
tions are part of the interface. All the function declarations for private member
functions are part of the implementation. All member function definitions
(whether the function is public or private) are part of the implementation.

27. You need to read only the interface parts. That is, you need to read only
the function declarations for public members of the class (which are listed
in the class definitions) as well as the explanatory comments for these
function declarations. You need not read any of the function declarations
of the private member functions, the declarations of the private member
variables, the definitions of the public member functions, or the defini-
tions of the private member functions.

28. BankAccount::BankAccount(int dollars, int cents,
 double rate) : dollars_part(dollars),

{
 if ((dollars < 0) || (cents < 0) || (rate < 0))
 {
 cout <<
 "Illegal values for money or interest rate.\n";
 exit(1);
 }
}

BankAccount::BankAccount(int dollars, double rate)
 : dollars_part(dollars), cents_part(0),
 interest_rate(fraction(rate))
{
 if ((dollars < 0) || (rate < 0))
 {
 cout <<
 "Illegal values for money or interest rate.\n";
 exit(1);
 }

29. cin is of type istream; cout is of type ostream.

 cents_part(cents), interest_rate(fraction(rate))

602 CHAPTER 10 / Defining Classes

30. void copy_char(istream& source_file)
{
 char next;
 source_file.get(next);
 cout << next;
}

31. void copy_line(istream& source_file)
{
 char next;
 do
 {
 source_file.get(next);
 cout << next;
 }while (next != '\n');
}

32. void send_line(ostream& target_stream)
{
 char next;
 do
 {
 cin.get(next);
 target_stream << next;
 }while (next != '\n');
}

33. a. 2.0 1.1 2.3

b. 2.0 3.0 2.3

c. 2.0 3.0 4.0

34. One set of functions follows:

void func(double x)
{
 double y = 1.1;
 double z = 2.3;
 cout << x << " " << y << " " << z << endl;
}
void func(double x, double y)
{
 double z = 2.3;
 cout << x << " " << y << " " << z << endl;
}
void func(double x, double y, double z)
{
 cout << x << " " << y << " " << z << endl;
}

Programming Projects 603

35. False. The situation stated here is the reverse of the correct situation. Any
stream that is of type ifstream is also of type istream, so a formal param-
eter of type istream can be replaced by an argument of type ifstream in a
function call, and similarly for the streams ostream and ofstream.

36. Both cin and ifstream are derived from the istream class.

37. Functions and data defined for the parent class can be made available in
the derived class, eliminating the need to redefine the functions and data
again in the derived class. This enhances maintainability because there is
now no duplication of code among multiple classes and hence only a sin-
gle location in the code that may be subject to change. Additionally,
inheritance provides a clean way to isolate code that is only applicable to
a derived class. Since such code only appears in the definition of the
derived class, it is usually easier to read.

PROGRAMMING PROJECTS

1. Write a grading program for a class with the following grading policies:

a. There are two quizzes, each graded on the basis of 10 points.

b. There is one midterm exam and one final exam, each graded on the
basis of 100 points.

c. The final exam counts for 50% of the grade, the midterm counts for
25%, and the two quizzes together count for a total of 25%. (Do not
forget to normalize the quiz scores. They should be converted to a
percent before they are averaged in.)

Any grade of 90 or more is an A, any grade of 80 or more (but less than
90) is a B, any grade of 70 or more (but less than 80) is a C, any grade of
60 or more (but less than 70) is a D, and any grade below 60 is an F.

The program will read in the student’s scores and output the student’s
record, which consists of two quiz and two exam scores as well as the
student’s average numeric score for the entire course and the final letter
grade. Define and use a structure for the student record. If this is a class
assignment, ask your instructor if input/output should be done with the
keyboard and screen or if it should be done with files. If it is to be done
with files, ask your instructor for instructions on file names.

2. Redo Programming Project 1 (or do it for the first time), but this time
make the student record type a class type rather than a structure type. The
student record class should have member variables for all the input data
described in Programing Project 1 and a member variable for the student’s
weighted average numeric score for the entire course as well as a member
variable for the students final letter grade. Make all member variables

604 CHAPTER 10 / Defining Classes

private. Include member functions for each of the following: member
functions to set each of the member variables to values given as an
argument(s) to the function, member functions to retrieve the data from
each of the member variables, a void function that calculates the student’s
weighted average numeric score for the entire course and sets the
corresponding member variable, and a void function that calculates the
students final letter grade and sets the corresponding member variable.

3. Redefine CDAccount from Display 10.1 so that it is a class rather than a
structure. Use the same member variables as in Display 10.1 but make
them private. Include member functions for each of the following: one
to return the initial balance, one to return the balance at maturity, one
to return the interest rate, and one to return the term. Include a con-
structor that sets all of the member variables to any specified values, as
well as a default constructor. Also, include an input member function
with one formal parameter of type istream and an output member func-
tion with one formal parameter of type ostream. Embed your class defi-
nition in a test program.

4. Redo your definition of the class CDAccount from Programming Project 3
so that it has the same interface but a different implementation. The new
implementation is in many ways similar to the second implementation
for the class BankAccount given in Display 10.7. Your new implementa-
tion for the class CDAccount will record the balance as two values of type
int: one for the dollars and one for the cents. The member variable for
the interest rate will store the interest rate as a fraction rather than as a per-
centage. For example, an interest rate of 4.3% will be stored as the value
0.043 of type double. Store the term in the same way as in Display 10.1.

5. Define a class for a type called CounterType. An object of this type is used
to count things, so it records a count that is a nonnegative whole number.
Include a default constructor that sets the counter to zero and a construc-
tor with one argument that sets the counter to the value specified by its
argument. Include member functions to increase the count by one and to
decrease the count by one. Be sure that no member function allows the
value of the counter to become negative. Also, include a member function
that returns the current count value and one that outputs the count to a
stream. The member function for doing output will have one formal
parameter of type ostream for the output stream that receives the output.
Embed your class definition in a test program.

6. Define a class called Month that is an abstract data type for a month. Your
class will have one member variable of type int to represent a month
(1 for January, 2 for February, and so forth). Include all the following mem-
ber functions: a constructor to set the month using the first three letters in
the name of the month as three arguments, a constructor to set the month

Video Note
Solution to
Programming
Project 10.3

Programming Projects 605

using an integer as an argument (1 for January, 2 for February, and so
forth), a default constructor, an input function that reads the month as an
integer, an input function that reads the month as the first three letters in
the name of the month, an output function that outputs the month as an
integer, an output function that outputs the month as the first three letters
in the name of the month, and a member function that returns the next
month as a value of type Month. The input and output functions will each
have one formal parameter for the stream. Embed your class definition in
a test program.

7. Redefine the implementation of the class Month described in Program-
ming Project 6 (or do the definition for the first time, but do the imple-
mentation as described here). This time the month is implemented as
three member variables of type char that store the first three letters of the
name of the month. Embed your definition in a test program.

8. (In order to do this project you must have first done either Project 6 or
Project 7.) Rewrite the program in Display 10.4, but use the class Month
that you defined in Project 6 or Project 7 as the type for the member vari-
able to record the month. (You may define the class Month either as
described in Project 6 or as described in Project 7.) Redefine the member
function output so that it has one formal parameter of type ostream for
the output stream. Modify the program so that everything that is output
to the screen is also output to a file. This means that all output statements
will occur twice: once with the argument cout and once with an output-
stream argument. If you are in a class, obtain the file name from your
instructor. The input will still come from the keyboard. Only the output
will be sent to a file.

9. My mother always took a little red counter to the grocery store. The
counter was used to keep tally of the amount of money she would have
spent so far on that visit to the store, if she bought all the items in her bas-
ket. There was a four-digit display, increment buttons for each digit, and a
reset button. There was an overflow indicator that came up red if more
money was entered than the $99.99 it would register. (This was a long
time ago.)

Write and implement the member functions of a class Counter that
simulates and slightly generalizes the behavior of this grocery store
counter. The constructor should create a Counter object that can count up
to the constructor’s argument. That is, Counter(9999) should provide a
counter that can count up to 9999. A newly constructed counter displays a
reading of 0. The member function void reset(); sets the counter’s
number to 0. The member functions void incr1(); increments the units
digit by 1, void incr10(); increments the tens digit by 1, and void

606 CHAPTER 10 / Defining Classes

incr100(); and void incr1000(); increment the next two digits,
respectively. Accounting for any carry when you increment should require
no further action than adding an appropriate number to the private data
member. A member function bool overflow(); detects overflow.
(Overflow is the result of incrementing the counter’s private data member
beyond the maximum entered at counter construction.)

Use this class to provide a simulation of my mother’s little red clicker.
Even though the display is an integer, in the simulation, the rightmost
(lower-order) two digits are always thought of as cents, and tens of cents,
the next digit is dollars, and the fourth digit is tens of dollars.

Provide keys for cents, dimes, dollars, and tens of dollars. Unfortunately,
no choice of keys seems particularly mnemonic. One choice is to use the
keys asdfo: a for cents, followed by a digit 1 to 9; s for dimes, followed by
digits 1 to 9; d for dollars, followed by a digit 1 to 9; and f for tens of
dollars, again followed by a digit 1 to 9. Each entry (one of asdf followed
by 1 to 9) is followed by pressing the Return key. Any overflow is reported
after each operation. Overflow can be requested by pressing the o key.

10. Write a rational number class. This problem will be revisited in Chapter
11, where operator overloading will make the problem much easier. For
now we will use member functions add, sub, mul, div, and less that each
carry out the operations +, -, *, /, and <. For example, a + b will be written
a.add(b), and a < b will be written a.less(b).

Define a class for rational numbers. A rational number is a “ratio-nal”
number, composed of two integers with division indicated. The division is
not carried out, it is only indicated, as in 1/2, 2/3, 15/32, 65/4, 16/5. You
should represent rational numbers by two int values, numerator and
denominator.

A principle of abstract data type construction is that constructors must be
present to create objects with any legal values. You should provide
constructors to make objects out of pairs of int values; this is a constructor
with two int parameters. Since every int is also a rational number, as in
2/1 or 17/1, you should provide a constructor with a single int parameter.

Provide member functions input and output that take an istream and
ostream argument, respectively, and fetch or write rational numbers in
the form 2/3 or 37/51 to or from the keyboard (and to or from a file).

Provide member functions add, sub, mul, and div that return a rational value.
Provide a function less that returns a bool value. These functions should do
the operation suggested by the name. Provide a member function neg that
has no parameters and returns the negative of the calling object.

Provide a main function that thoroughly tests your class implementation.
The following formulas will be useful in defining functions.

Programming Projects 607

a/b + c/d = (a*d + b*c) / (b*d)

a/b - c/d = (a*d - b*c) / (b*d)

(a/b) * (c/d) = (a*c) / (b*d)

(a/b) / (c/d) = (a*d) / (c*b)

-(a/b) = (-a/b)

(a/b) < (c/d) means (a*d) < (c*b)

(a/b) == (c/d) means (a*d) == (c*b)

Let any sign be carried by the numerator; keep the denominator positive.

11. Define a class called Odometer that will be used to track fuel and mileage
for an automotive vehicle. Include private member variables to track the
miles driven and the fuel efficiency of the vehicle in miles per gallon. The
class should have a constructor that initializes these values to zero.
Include a member function to reset the odometer to zero miles, a member
function to set the fuel efficiency, a member function that accepts miles
driven for a trip and adds it to the odometer’s total, and a member func-
tion that returns the number of gallons of gasoline that the vehicle has
consumed since the odometer was last reset.

Use your class with a test program that creates several trips with different
fuel efficiencies.

12. Redo Programming Project 16 from Chapter 5 (or do it for the first time),
but this time use a class to encapsulate the date. Use private member vari-
ables to store the day, month, and year along with an appropriate con-
structor and member functions to get and set the data. Create a public
function that returns the day of the week. All helper functions should be
declared private. Embed your class definition in a suitable test program.

13. The U.S. Postal Service prints a bar code on every envelope that represents
a five (or more) digit zip code using a format called POSTNET (this for-
mat is being deprecated in favor of a new system, OneCode, in 2009).
The bar code consists of long and short bars as shown:

For this program, we will represent the bar code as a string of digits.
The digit 1 represents a long bar, and the digit 0 represents a short bar.
Therefore, the bar code would be represented in our program as:

110100101000101011000010011

608 CHAPTER 10 / Defining Classes

The first and last digits of the bar code are always 1. Removing these leave
25 digits. If these 25 digits are split into groups of five digits each, we have:

10100 10100 01010 11000 01001

Next, consider each group of five digits. There will always be exactly two
1’s in each group of digits. Each digit stands for a number. From left to right,
the digits encode the values 7, 4, 2, 1, and 0. Multiply the corresponding
value with the digit and compute the sum to get the final encoded digit
for the zip code. The table below shows the encoding for 10100.

Zip Code Digit � 7 � 0 � 2 � 0 � 0 � 9

Repeat this for each group of five digits and concatenate to get the
complete zip code. There is one special value. If the sum of a group of five
digits is 11, then this represents the digit 0 (this is necessary because with
two digits per group it is not possible to represent zero). The zip code for
the sample bar code decodes to 99504. While the POSTNET scheme may
seem unnecessarily complex, its design allows machines to detect if errors
have been made in scanning the zip code.

Write a zip code class that encodes and decodes five-digit bar codes used
by the U.S. Postal Service on envelopes. The class should have two
constructors. The first constructor should input the zip code as an integer,
and the second constructor should input the zip code as a bar code string
consisting of 0’s and 1’s, as described above. Although you have two ways
to input the zip code, internally, the class should only store the zip code
using one format (you may choose to store it as a bar code string or as a
zip code number.) The class should also have at least two public member
functions, one to return the zip code as an integer, and the other to return
the zip code in bar code format as a string. All helper functions should be
declared private. Embed your class definition in a suitable test program.
Your program should print an error message if an invalid bar code is
passed to the constructor.

Bar Code
Digits

1 0 1 0 0

Value 7 4 2 1 0

Product of
Digit * Value

7 0 2 0 0

11
Friends, Overloaded

 Operators, and
Arrays in Classes

11.1 FRIEND FUNCTIONS 610
Programming Example: An Equality Function 610
Friend Functions 614
Programming Tip: Define Both Accessor Functions

and Friend Functions 616
Programming Tip: Use Both Member and Non-

member Functions 618
Programming Example: Money Class

(Version 1) 618
Implementation of digit_to_int (Optional) 625
Pitfall: Leading Zeros in Number Constants 626
The const Parameter Modifier 628
Pitfall: Inconsistent Use of const 630

11.2 OVERLOADING OPERATORS 633
Overloading Operators 634
Constructors for Automatic Type Conversion 638
Overloading Unary Operators 640
Overloading >> and << 640

11.3 ARRAYS AND CLASSES 651
Arrays of Classes 651
Arrays as Class Members 655
Programming Example: A Class for a Partially

Filled Array 656

11.4 CLASSES AND DYNAMIC ARRAYS 659
Programming Example: A String Variable

Class 659
Destructors 663
Pitfall: Pointers as Call-by-Value Parameters 665
Copy Constructors 667
Overloading the Assignment Operator 672

Chapter Summary 675
Answers to Self-Test Exercises 676
Programming Projects 686

610

Give us the tools, AND WE’LL FINISH THE JOB.

WINSTON CHURCHILL, Radio Broadcast, February 9, 1941

INTRODUCTION
This chapter teaches you more techniques for defining functions and operators for
classes, including overloading common operators such as +, *, and / so that they
can be used with the classes you define in the same way that they are used with
the predefined types such as int and double.

PREREQUISITES
This chapter uses material from Chapters 2 through 10.

11.1 FRIEND FUNCTIONS

Trust your friends.

COMMON ADVICE

Until now we have implemented class operations, such as input, output,
accessor functions, and so forth, as member functions of the class, but for some
operations, it is more natural to implement the operations as ordinary (non-
member) functions. In this section, we discuss techniques for defining opera-
tions on objects as nonmember functions. We begin with a simple example.

■ PROGRAMMING EXAMPLE An Equality Function

In Chapter 10, we developed a class called DayOfYear that records a date, such
as January 1 or July 4, that might be a holiday or birthday or some other
annual event. We gave progressively better versions of the class. The final
version was produced in Self-Test Exercise 23 of Chapter 10. In Display 11.1
we repeat this final version of the class DayOfYear. In Display 11.1 we have
enhanced the class one more time by adding a function called equal that can
test two objects of type DayOfYear to see if their values represent the same date.

11.1 Friend Functions 611

DISPLAY 11.1 Equality Function (part 1 of 3)

1 //Program to demonstrate the function equal. The class DayOfYear
2 //is the same as in Self-Test Exercise 23-24 in Chapter 10.
3 #include <iostream>
4 using namespace std;

5 class DayOfYear
6 {
7 public:
8 DayOfYear(int the_month, int the_day);
9 //Precondition: the_month and the_day form a

10 //possible date. Initializes the date according
11 //to the arguments.

12 DayOfYear();
13 //Initializes the date to January first.

14 void input();

15 void output();

16 int get_month();
17 //Returns the month, 1 for January, 2 for February, etc.

18 int get_day();
19 //Returns the day of the month.
20 private:
21 void check_date();
22 int month;
23 int day;
24 };
25
26 bool equal(DayOfYear date1, DayOfYear date2);
27 //Precondition: date1 and date2 have values.
28 //Returns true if date1 and date2 represent the same date;
29 //otherwise, returns false.
30
31 int main()
32 {
33 DayOfYear today, bach_birthday(3, 21);
34
35 cout << "Enter today's date:\n";
36 today.input();
37 cout << "Today's date is ";
38 today.output();
39
40 cout << "J. S. Bach's birthday is ";
41 bach_birthday.output();
42

(continued)

612 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

DISPLAY 11.1 Equality Function (part 2 of 3)

43 if (equal(today, bach_birthday))
44 cout << "Happy Birthday Johann Sebastian!\n";
45 else
46 cout << "Happy Unbirthday Johann Sebastian!\n";
47 return 0;
48 }
49
50 bool equal(DayOfYear date1, DayOfYear date2)
51 {
52 return (date1.get_month() == date2.get_month() &&
53 date1.get_day() == date2.get_day());
54 }
55
56 DayOfYear::DayOfYear(int the_month, int the_day)
57 : month(the_month), day(the_day)
58 {
59 check_date();
60 }
61
62 int DayOfYear::get_month()
63 {
64 return month;
65 }
66
67 int DayOfYear::get_day()
68 {
69 return day;
70 }
71
72 //Uses iostream:
73 void DayOfYear::input()
74 {
75 cout << "Enter the month as a number: ";
76 cin >> month;
77 cout << "Enter the day of the month: ";
78 cin >> day;
79 }
80
81 //Uses iostream:
82 void DayOfYear::output()
83 {
84 cout << "month = " << month
85 << ", day = " << day << endl;
86 }

(continued)

Omitted function and constructor
definitions are as in Chapter 10,
Self-Test Exercises 14 and 24, but
those details are not needed for
what we are doing here.

11.1 Friend Functions 613

Suppose today and bach_birthday are two objects of type DayOfYear that
have been given values representing some dates. You can test to see if they
represent the same date with the following Boolean expression:

equal(today, bach_birthday)

This call to the function equal returns true if today and bach_birthday
represent the same date. In Display 11.1 this Boolean expression is used to
control an if-else statement.

The definition of the function equal is straightforward. Two dates are
equal if they represent the same month and the same day of the month. The
definition of equal uses accessor functions get_month and get_day to compare
the months and the days represented by the two objects.

Notice that we did not make the function equal a member function. It
would be possible to make equal a member function of the class DayOfYear,
but equal compares two objects of type DayOfYear. If you make equal a
member function, you must decide whether the calling object should be the
first date or the second date. Rather than arbitrarily choosing one of the two
dates as the calling object, we instead treated the two dates in the same way.
We made equal an ordinary (nonmember) function that takes two dates as
its arguments.

SELF -TEST EXERC ISE

1. Write a function definition for a function called before that takes two
arguments of the type DayOfYear, which is defined in Display 11.1. The
function returns a bool value and returns true if the first argument repre-
sents a date that comes before the date represented by the second argu-
ment; otherwise, the function returns false. For example, January 5
comes before February 2.

DISPLAY 11.1 Equality Function (part 3 of 3)

Sample Dialogue

Enter today's date:

Enter the month as a number: 3

Enter the day of the month: 21

Today's date is month = 3, day = 21

J. S. Bach's birthday is month = 3, day = 21

Happy Birthday Johann Sebastian!

614 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

Friend Functions

If your class has a full set of accessor functions, you can use the accessor
functions to define a function to test for equality or to do any other kind of
computing that depends on the private member variables. However, although
this may give you access to the private member variables, it may not give you
efficient access to them. Look again at the definition of the function equal
given in Display 11.1. To read the month, it must make a call to the accessor
function get_month. To read the day it must make a call to the accessor
function get_day. This works, but the code would be simpler and more
efficient if we could just access the member variables.

A simpler and more efficient definition of the function equal given in
Display 11.1 would be as follows:

bool equal(DayOfYear date1, DayOfYear date2)
{
 return (date1.month == date2.month &&
 date1.day == date2.day);
}

There is just one problem with this definition: It’s illegal! It’s illegal because
the member variables month and day are private members of the class
DayOfYear. Private member variables (and private member functions) cannot
normally be referenced in the body of a function unless the function is a
member function, and equal is not a member function of the class DayOfYear.
But there is a way to give a nonmember function the same access privileges as
a member function. If we make the function equal a friend of the class
DayOfYear, then the previous definition of equal will be legal.

A friend function of a class is not a member function of the class, but a
friend function has access to the private members of that class just as a member
function does. A friend function can directly read the value of a member variable
and can even directly change the value of a member variable, for example, with
an assignment statement that has a private member variable on one side of
the assignment operator. To make a function a friend function, you must name
it as a friend in the class definition. For example, in Display 11.2 we have
rewritten the definition of the class DayOfYear so that the function equal is a
friend of the class. You make a function a friend of a class by listing the function
declaration in the definition of the class and placing the keyword friend in front
of the function declaration.

A friend function is added to a class definition by listing its function
declaration, just as you would list the declaration of a member function,
except that you precede the function declaration by the keyword friend.
However, a friend is not a member function; rather, it really is an ordinary
function with extraordinary access to the data members of the class. The
friend is defined and called exactly like the ordinary function it is. In

Friends can
access

private
members

A friend is not
a member

11.1 Friend Functions 615

DISPLAY 11.2 Equality Function as a Friend

1 //Demonstrates the function equal.
2 //In this version equal is a friend of the class DayOfYear.
3 #include <iostream>
4 using namespace std;
5
6 class DayOfYear
7 {
8 public:
9 friend bool equal(DayOfYear date1, DayOfYear date2);

10 //Precondition: date1 and date2 have values.
11 //Returns true if date1 and date2 represent the same date;
12 //otherwise, returns false.

13 DayOfYear(int the_month, int the_day);
14 //Precondition: the_month and the_day form a
15 //possible date. Initializes the date according
16 //to the arguments.

17 DayOfYear();
18 //Initializes the date to January first.

19 void input();

20 void output();

21 int get_month();
22 //Returns the month, 1 for January, 2 for February, etc.

23 int get_day();
24 //Returns the day of the month.
25 private:
26 void check_date();
27 int month;
28 int day;
29 };
30
31 int main()
32 {

<The main part of the program is the same as in Display 11.1.>

33 }
34
35 bool equal(DayOfYear date1, DayOfYear date2)
36 {
37 return (date1.month == date2.month &&
38 date1.day == date2.day);
39 }
40

<The rest of this display, including the Sample Dialogue, is the same as in Display 11.1.>

Note that the private
member variables
month and day can
be accessed by name.

616 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

particular, the function definition for equal shown in Display 11.2 does not
include the qualifier DayOfYear:: in the function heading. Also, the equal
function is not called by using the dot operator. The function equal takes
objects of type DayOfYear as arguments the same way that any other
nonmember function would take arguments of any other type. However, a
friend function definition can access the private member variables and
private member functions of the class by name, so it has the same access
privileges as a member function.

■ PROGRAMMING TIP Define Both Accessor Functions and
Friend Functions

It may seem that if you make all your basic functions friends of a class, then
there is no need to include accessor and mutator functions in the class. After
all, friend functions have access to the private member variables and so do
not need accessor or mutator functions. This is not entirely wrong. It is true
that if you made all the functions in the world friends of a class, you would
not need accessor or mutator functions. However, making all functions
friends is not practical.

In order to see why you still need accessor functions, consider the
example of the class DayOfYear given in Display 11.2. You might use this
class in another program, and that other program might very well want to
do something with the month part of a DayOfYear object. For example, the
program might want to calculate how many months there are remaining
in the year. Specifically, the main part of the program might contain the
following:

DayOfYear today;
cout << "enter today's date: \n";
today.input();
cout << "There are " << (12 − today.get_month())

<< " months left in this year.\n";

You cannot replace today.get_month() with today.month because month is a
private member of the class. You need the accessor function get_month.

You have just seen that you definitely need to include accessor functions in
your class. Other cases require mutator functions. You may think that, because
you usually need accessor and mutator functions, you do not need friends. In a
sense, that is true. Notice that you could define the function equal either as a
friend without using accessor functions (Display 11.2) or not as a friend and use
accessor functions (as in Display 11.1). In most situations, the only reason to
make a function a friend is to make the definition of the function simpler and
more efficient; but sometimes, that is reason enough. ■

11.1 Friend Functions 617

Friend Functions

A friend function of a class is an ordinary function except that it has access
to the private members of objects of that class. To make a function a friend
of a class, you must list the function declaration for the friend function in
the class definition. The function declaration is preceded by the keyword
friend. The function declaration may be placed in either the private
section or the public section, but it will be a public function in either case,
so it is clearer to list it in the public section.

Syntax (of a class definition with friend functions)

class Class_Name
{
public:
 friend Declaration_for_Friend_Function_1
 friend Declaration_for_Friend_Function_2
 .
 .
 .

 Member_Function_Declarations
private:
 Private_Member_Declarations
};

EXAMPLE

class FuelTank
{
public:
 friend double need_to_fill(FuelTank tank);

//Precondition: Member variables of tank have values.
 //Returns the number of liters needed to fill tank.

FuelTank(double the_capacity, double the_level);
FuelTank();
void input();

 void output();
private:

double capacity;//in liters
double level;

};

A friend function is not a member function. A friend function is
defined and called the same way as an ordinary function. You do not use
the dot operator in a call to a friend function and you do not use a type
qualifier in the definition of a friend function.

You need not list the friend
functions first. You can inter-
mix the order of these function
declarations.

618 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

■ PROGRAMMING TIP Use Both Member and
Nonmember Functions

Member functions and friend functions serve a very similar role. In fact,
sometimes it is not clear whether you should make a particular function a
friend of your class or a member function of the class. In most cases, you can
make a function either a member function or a friend and have it perform the
same task in the same way. There are, however, places where it is better to use
a member function and places where it is better to use a friend function (or
even a plain old function that isn’t a friend, like the version of equal in
Display 11.1). A simple rule to help you decide between member functions
and nonmember functions is the following:

■ Use a member function if the task being performed by the function
involves only one object.

■ Use a nonmember function if the task being performed involves more than
one object. For example, the function equal in Display 11.1 (and Display
11.2) involves two objects, so we made it a a nonmember (friend) function.

Whether you make a nonmember function a friend function or use accessor
and mutator functions is a matter of efficiency and personal taste. As long
as you have enough accessor and mutator functions, either approach will
work.

The choice of whether to use a member or nonmember function is not
always as simple as the above two rules. With more experience, you will discover
situations in which it pays to violate those rules. A more accurate but harder to
understand rule is to use member functions if the task is intimately related to a
single object; use a nonmember function when the task involves more than one
object and the objects are used symmetrically. However, this more accurate rule
is not clear-cut, and the two simple rules given above will serve as a reliable
guide until you become more sophisticated in handling objects. ■

■ PROGRAMMING EXAMPLE Money Class (Version 1)

Display 11.3 contains the definition of a class called Money, which represents
amounts of U.S. currency. The value is implemented as a single integer value
that represents the amount of money as if it were converted to all pennies.
For example, $9.95 would be stored as the value 995. Since we use an integer
to represent the amount of money, the amount is represented as an exact
quantity. We did not use a value of type double because values of type
double are stored as approximate values and we want our money amounts
to be exact quantities.

This integer for the amount of money (expressed as all cents) is stored in
a member variable named all_cents. We could use int for the type of the
member variable all_cents, but with some compilers that would severely
limit the amounts of money we could represent. In some implementations of

11.1 Friend Functions 619

C++, only two bytes are used to store the int type.1 The result of the two-byte
implementation is that the largest value of type int is only slightly larger than
32000, but 32000 cents represents only $320, which is a fairly small amount of
money. Since we may want to deal with amounts of money much larger than
$320, we have used long for the type of the member variable all_cents. C++
compilers that implement the int type in two bytes usually implement the
type long in four bytes. Values of type long are integers just like the values of
the type int, except that the four-byte long implementation enables the largest
allowable value of type long to be much larger than the largest allowable value
of type int. On most systems the largest allowable value of type long is 2
billion or larger. (The type long is also called long int. The two names long
and long int refer to the same type.)

The class Money has two operations that are friend functions: equal and
add (which are defined in Display 11.3). The function add returns a Money
object whose value is the sum of the values of its two arguments. A function
call of the form equal(amount1, amount2) returns true if the two objects
amount1 and amount2 have values that represent equal amounts of money.

Notice that the class Money reads and writes amounts of money as we
normally write amounts of money, such as $9.95 or –$9.95. First, consider the
member function input (also defined in Display 11.3). That function first
reads a single character, which should be either the dollar sign (‘$’) or the
minus sign (‘− ’). If this first character is the minus sign, then the function
remembers that the amount is negative by setting the value of the variable
negative to true. It then reads an additional character, which should be the
dollar sign. On the other hand, if the first symbol is not ‘− ’, then negative is
set equal to false. At this point the negative sign (if any) and the dollar sign
have been read. The function input then reads the number of dollars as a
value of type long and places the number of dollars in the local variable
named dollars. After reading the dollars part of the input, the function input
reads the remainder of the input as values of type char; it reads in three
characters, which should be a decimal point and two digits.

(You might be tempted to define the member function input so that it
reads the decimal point as a value of type char and then reads the number of
cents as a value of type int. This is not done because of the way that some C++
compilers treat leading zeros. As explained in the Pitfall section entitled
“Leading Zeros in Number Constants,” many compilers still in use do not read
numbers with leading zeros as you would like them to, so an amount like
$7.09 may be read incorrectly if your C++ code were to read the 09 as a value
of type int.)

1 See Chapter 2 for details. Display 2.2 has a description of data types as most recent
compilers implement them.

long

input

620 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

DISPLAY 11.3 Money Class—Version 1 (part 1 of 4)

1 //Program to demonstrate the class Money.
2 #include <iostream>
3 #include <cstdlib>
4 #include <cctype>
5 using namespace std;

6 //Class for amounts of money in U.S. currency.
7 class Money
8 {
9 public:

10 friend Money add(Money amount1, Money amount2);
11 //Precondition: amount1 and amount2 have been given values.
12 //Returns the sum of the values of amount1 and amount2.

13 friend bool equal(Money amount1, Money amount2);
14 //Precondition: amount1 and amount2 have been given values.
15 //Returns true if the amount1 and amount2 have the same value;
16 //otherwise, returns false.

17 Money(long dollars, int cents);
18 //Initializes the object so its value represents an amount with the
19 //dollars and cents given by the arguments. If the amount is negative,
20 //then both dollars and cents must be negative.

21 Money(long dollars);
22 //Initializes the object so its value represents $dollars.00.

23 Money();
24 //Initializes the object so its value represents $0.00.

25 double get_value();
26 //Precondition: The calling object has been given a value.
27 //Returns the amount of money recorded in the data of the calling object.

28 void input(istream& ins);
29 //Precondition: If ins is a file input stream, then ins has already been
30 //connected to a file. An amount of money, including a dollar sign, has been
31 //entered in the input stream ins. Notation for negative amounts is -$100.00.
32 //Postcondition: The value of the calling object has been set to
33 //the amount of money read from the input stream ins.
34 void output(ostream& outs);
35 //Precondition: If outs is a file output stream, then outs has already been
36 //connected to a file.
37 //Postcondition: A dollar sign and the amount of money recorded
38 //in the calling object have been sent to the output stream outs.
39 private:
40 long all_cents;
41 };

(continued)

11.1 Friend Functions 621

DISPLAY 11.3 Money Class—Version 1 (part 2 of 4)

42 int digit_to_int(char c);
43 //Function declaration for function used in the definition of Money::input:
44 //Precondition: c is one of the digits '0' through '9'.
45 //Returns the integer for the digit; for example, digit_to_int('3') returns 3.

46 int main()
47 {
48 Money your_amount, my_amount(10, 9), our_amount;
49 cout << "Enter an amount of money: ";
50 your_amount.input(cin);
51 cout << "Your amount is ";
52 your_amount.output(cout);
53 cout << endl;
54 cout << "My amount is ";
55 my_amount.output(cout);
56 cout << endl;

57 if (equal(your_amount, my_amount))
58 cout << "We have the same amounts.\n";
59 else
60 cout << "One of us is richer.\n";
61 our_amount = add(your_amount, my_amount);
62 your_amount.output(cout);
63 cout << " + ";
64 my_amount.output(cout);
65 cout << " equals ";
66 our_amount.output(cout);
67 cout << endl;
68 return 0;
69 }
70 Money add(Money amount1, Money amount2)
71 {
72 Money temp;
73
74 temp.all_cents = amount1.all_cents + amount2.all_cents;
75 return temp;
76 }
77
78 bool equal(Money amount1, Money amount2)
79 {
80 return (amount1.all_cents == amount2.all_cents);
81 }
82
83 Money::Money(long dollars, int cents)
84 {
85 if(dollars*cents < 0) //If one is negative and one is positive

(continued)

622 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

DISPLAY 11.3 Money Class—Version 1 (part 3 of 4)

86 {
87 cout << "Illegal values for dollars and cents.\n";
88 exit(1);
89 }
90 all_cents = dollars*100 + cents;
91 }
92
93 Money::Money(long dollars) : all_cents(dollars*100)
94 {
95 //Body intentionally blank.
96 }
97
98 Money::Money() : all_cents(0)
99 {
100 //Body intentionally blank.
101 }
102
103 double Money::get_value()
104 {
105 return (all_cents * 0.01);
106 }
107 //Uses iostream, cctype, cstdlib:
108 void Money::input(istream& ins)
109 {
110 char one_char, decimal_point,
111 digit1, digit2; //digits for the amount of cents
112 long dollars;
113 int cents;
114 bool negative;//set to true if input is negative.
115
116 ins >> one_char;
117 if (one_char == '−')
118 {
119 negative = true;
120 ins >> one_char; //read '$'
121 }
122 else
123 negative = false;
124 //if input is legal, then one_char == '$'
125
126 ins >> dollars >> decimal_point >> digit1 >> digit2;
127
128 if (one_char != '$' || decimal_point != '.'
129 || !isdigit(digit1) || !isdigit(digit2))

(continued)

11.1 Friend Functions 623

DISPLAY 11.3 Money Class—Version 1 (part 4 of 4)

130 {
131 cout << "Error illegal form for money input\n";
132 exit(1);
133 }
134 cents = digit_to_int(digit1)*10 + digit_to_int(digit2);
135
136 all_cents = dollars*100 + cents;
137 if (negative)
138 all_cents = −all_cents;
139 }
140
141 //Uses cstdlib and iostream:
142 void Money::output(ostream& outs)
143 {
144 long positive_cents, dollars, cents;
145 positive_cents = labs(all_cents);
146 dollars = positive_cents/100;
147 cents = positive_cents%100;
148
149 if (all_cents < 0)
150 outs << "− $" << dollars << '.';
151 else
152 outs << "$" << dollars << '.';
153
154 if (cents < 10)
155 outs << '0';
156 outs << cents;
157 }
158
159 int digit_to_int(char c)
160 {
161 return (static_cast<int>(c) − static_cast<int>('0'));
162 }
163

Sample Dialogue

Enter an amount of money: $123.45

Your amount is $123.45

My amount is $10.09

One of us is richer.

$123.45 + $10.09 equals $133.54

624 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

The following assignment statement converts the two digits that make up
the cents part of the input amount to a single integer, which is stored in the
local variable cents:

cents = digit_to_int(digit1)*10 + digit_to_int(digit2);

After this assignment statement is executed, the value of cents is the number
of cents in the input amount.

The helping function digit_to_int takes an argument that is a digit, such as
'3', and converts it to the corresponding int value, such as 3. We need this
helping function because the member function input reads the two digits for the
number of cents as two values of type char, which are stored in the local variables
digit1 and digit2. However, once the digits are read into the computer, we
want to use them as numbers. Therefore, we use the function digit_to_int to
convert a digit such as '3' to a number such as 3. The definition of the function
digit_to_int is given in Display 11.3. You can simply take it on faith that this
definition does what it is supposed to do, and treat the function as a black box.
All you need to know is that digit_to_int('0') returns 0, digit_to_int('1')
returns 1, and so forth. However, it is not too difficult to see how this function
works, so you may want to read the optional section that follows this one. It
explains the implementation of digit_to_int.

Once the local variables dollars and cents are set to the number of
dollars and the number of cents in the input amount, it is easy to set the
member variable all_cents. The following assignment statement sets
all_cents to the correct number of cents:

all_cents = dollars*100 + cents;

However, this always sets all_cents to a positive amount. If the amount of
money is negative, then the value of all_cents must be changed from positive
to negative. This is done with the following statement:

if (negative)
 all_cents = − all_cents;

The member function output (Display 11.3) calculates the number of
dollars and the number of cents from the value of the member variable
all_cents. It computes the number of dollars and the number of cents using
integer division by 100. For example, if all_cents has a value of 995 (cents),
then the number of dollars is 995/100, which is 9, and the number of cents is
995%100, which is 95. Thus, $9.95 would be the value output when the value
of all_cents is 995 (cents).

The definition for the member function output needs to make special
provisions for outputting negative amounts of money. The result of integer
division with negative numbers does not have a standard definition and can
vary from one implementation to another. To avoid this problem, we have

digit_to_int

output

11.1 Friend Functions 625

taken the absolute value of the number in all_cents before performing
division. To compute the absolute value we use the predefined function labs.
The function labs returns the absolute value of its argument, just like the
function abs, but labs takes an argument of type long and returns a value of
type long. The function labs is in the library with header file cstdlib, just like
the function abs. (Some versions of C++ do not include labs. If your
implementation of C++ does not include labs, you can easily define the
function for yourself.)

Implementation of digit_to_int (Optional)

The definition of the function digit_to_int from Display 11.3 is reproduced
here:

int digit_to_int(char c)
{

return (static_cast<int>(c) - static_cast<int>('0'));
}

At first glance the formula for the value returned may seem a bit strange, but
the details are not too complicated. The digit to be converted, for example, '3',
is the parameter c, and the returned value will turn out to be the corresponding
int value, in this example, 3. As we pointed out in Chapters 2 and 6, values of
type char are implemented as numbers. Unfortunately, the number implement-
ing the digit '3', for example, is not the number 3. The type cast
static_cast<int>(c) produces the number that implements the character c
and converts this number to the type int. This changes c from the type char to
a number of type int but, unfortunately, not to the number we want. For
example, static_cast<int>('3') is not 3, but is some other number. We need
to convert static_cast<int>(c) to the number corresponding to c (for
example, '3' to 3). So let’s see how we must adjust static_cast<int>(c) to get
the number we want.

We know that the digits are in order. So static_cast<int>('0') + 1 is
equal to static_cast<int>('1'); static_cast<int>('1') + 1 is equal
to static_cast <int>('2'); static_cast<int>('2') + 1 is equal to
static_cast<int>('3'), and so forth. Knowing that the digits are in this order
is all we need to know in order to see that digit_to_int returns the correct
value. If c is '0', the value returned is

static_cast<int>(c) − static_cast<int>('0')

which is

static_cast<int>('0') − static_cast<int>('0')

So digit_to_int('0') returns 0.

626 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

Now let’s consider what happens when c has the value '1'. The value
returned is then static_cast<int>(c) - static_cast<int>('0'), which is
static_cast <int>('1') - static_cast<int>('0'). That equals
(static_cast<int> ('0') + 1) - static_cast<int>('0'), and that, in turn,
equals static_cast<int>('0') - static_cast<int>('0') + 1. Since
static_cast<int>('0') − static_cast <int>('0') is 0, this result is 0 + 1,
or 1. You can check the other digits, '2' through '9', for yourself; each digit
produces a number that is 1 larger than the previous digit.

■ PITFALL Leading Zeros in Number Constants

The following are the object declarations given in the main part of the program
in Display 11.3:

Money your_amount, my_amount(10, 9), our_amount;

The two arguments in my_amount(10, 9) represent $10.09. Since we normally
write cents in the format “.09”, you might be tempted to write the object
declaration as my_amount(10, 09). However, this will cause problems. In
mathematics the numerals 9 and 09 represent the same number. However,
some C++ compilers use a leading zero to signal a different kind of numeral,
so in C++ the constants 9 and 09 are not necessarily the same number. With
some compilers a leading zero means that the number is written in base 8
rather than base 10. Since base 8 numerals do not use the digit 9, the constant
09 does not make sense in C++. The constants 00 through 07 should work
correctly, since they mean the same thing in base 8 and in base 10, but some
systems in some contexts will have trouble even with 00 through 07.

The ANSI C++ standard provides that input should default to being inter-
preted as decimal, regardless of the leading 0. The GNU project C++ compiler,
g++, and Microsoft’s VC++ compiler do comply with the standard, and so they
do not have a problem with leading zeros. Most compiler vendors track the
ANSI standard and thus should be compliant with the ANSI C++ standard,
and so this problem with leading zeros should eventually go away. You should
write a small program to test this on your compiler. ■

SELF -TEST EXERC ISES

2. What is the difference between a friend function for a class and a member
function for the class?

3. Suppose you wish to add a friend function to the class DayOfYear defined
in Display 11.2. This friend function will be named after and will take
two arguments of the type DayOfYear. The function returns true if the first

11.1 Friend Functions 627

argument represents a date that comes after the date represented by the
second argument; otherwise, the function returns false. For example,
February 2 comes after January 5. What do you need to add to the defini-
tion of the class DayOfYear in Display 11.2?

4. Suppose you wish to add a friend function for subtraction to the class
Money defined in Display 11.3. What do you need to add to the description
of the class Money that we gave in Display 11.3? The subtraction function
should take two arguments of type Money and return a value of type Money
whose value is the value of the first argument minus the value of the sec-
ond argument.

5. Notice the member function output in the class definition of Money given
in Display 11.3. In order to write a value of type Money to the screen, you
call output with cout as an argument. For example, if purse is an object of
type Money, then to output the amount of money in purse to the screen,
you write the following in your program:

purse.output(cout);

It might be nicer not to have to list the stream cout when you send output
to the screen.

Rewrite the class definition for the type Money given in Display 11.3. The
only change is that this rewritten version overloads the function name
output so that there are two versions of output. One version is just like the
one shown in Display 11.3; the other version of output takes no arguments
and sends its output to the screen. With this rewritten version of the type
Money, the following two calls are equivalent:

purse.output(cout);

and

purse.output();

but the second is simpler. Note that since there will be two versions of the
function output, you can still send output to a file. If outs is an output file
stream that is connected to a file, then the following will output the
money in the object purse to the file connected to outs:

purse.output(outs);

6. Notice the definition of the member function input of the class Money given
in Display 11.3. If the user enters certain kinds of incorrect input, the func-
tion issues an error message and ends the program. For example, if the user
omits a dollar sign, the function issues an error message. However, the
checks given there do not catch all kinds of incorrect input. For example,

628 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

negative amounts of money are supposed to be entered in the form − $9.95,
but if the user mistakenly enters the amount in the form $− 9.95, then the
input will not issue an error message and the value of the Money object will
be set to an incorrect value. What amount will the member function input
read if the user mistakenly enters $− 9.95? How might you add additional
checks to catch most errors caused by such a misplaced minus sign?

7. The Pitfall section entitled “Leading Zeros in Number Constants” sug-
gests that you write a short program to test whether a leading 0 will
cause your compiler to interpret input numbers as base-eight numerals.
Write such a program.

The const Parameter Modifier

A call-by-reference parameter is more efficient than a call-by-value parameter.
A call-by-value parameter is a local variable that is initialized to the value of
its argument, so when the function is called there are two copies of the
argument. With a call-by-reference parameter, the parameter is just a place-
holder that is replaced by the argument, so there is only one copy of the
argument. For parameters of simple types, such as int or double, the
difference in efficiency is negligible, but for class parameters the difference in
efficiency can sometimes be important. Thus, it can make sense to use a call-
by-reference parameter rather than a call-by-value parameter for a class, even
if the function does not change the parameter.

If you are using a call-by-reference parameter and your function does not
change the value of the parameter, you can mark the parameter so that the
compiler knows that the parameter should not be changed. To do so, place the
modifier const before the parameter type. The parameter is then called a
constant parameter. For example, consider the class Money defined in Display
11.3. The Money parameters for the friend function add can be made into
constant parameters as follows:

class Money
{
public:

 //Precondition: amount1 and amount2 have been given values.
 //Returns the sum of the values of amount1 and amount2.
 ...

When you use constant parameters, the modifier const must be used in
both the function declaration and in the heading of the function definition,
so with the above change in the class definition, the function definition for
add would begin as follows:

Money add(const Money& amount1, const Money& amount2)
{
 ...

constant
parameter

 friend Money add(const Money& amount1, const Money& amount2);

11.1 Friend Functions 629

The remainder of the function definition would be the same as in Display 11.3.
Constant parameters are a form of automatic error checking. If your

function definition contains a mistake that causes an inadvertent change to
the constant parameter, then the computer will issue an error message.

The parameter modifier const can be used with any kind of parameter;
however, it is normally used only for call-by-reference parameters for classes
(and occasionally for certain other parameters whose corresponding argu-
ments are large).

Call-by-reference parameters are replaced with arguments when a function
is called, and the function call may (or may not) change the value of the
argument. When you have a call to a member function, the calling object
behaves very much like a call-by-reference parameter. When you have a call to a
member function, that function call can change the value of the calling object.
For example, consider the following, where the class Money is as in Display 11.3:

Money m;
m.input(cin);

When the object m is declared, the value of the member variable all_cents is
initialized to 0. The call to the member function input changes the value of
the member variable all_cents to a new value determined by what the user
types in. Thus, the call m.input(cin) changes the value of m, just as if m were a
call-by-reference argument.

The modifier const applies to calling objects in the same way that it
applies to parameters. If you have a member function that should not change
the value of a calling object, you can mark the function with the const
modifier; the computer will then issue an error message if your function code
inadvertently changes the value of the calling object. In the case of a member
function, the const goes at the end of the function declaration, just before the
final semicolon, as shown here:

class Money
{
public:
 ...
 void output(ostream& outs) const;
 ...

The modifier const should be used in both the function declaration and
the function definition, so the function definition for output would begin as
follows:

void Money::output(ostream& outs) const
{
 ...

The remainder of the function definition would be the same as in Display 11.3.

const with
member
functions

630 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

■ PITFALL Inconsistent Use of const

Use of the const modifier is an all-or-nothing proposition. If you use const
for one parameter of a particular type, then you should use it for every other
parameter that has that type and that is not changed by the function call;
moreover, if the type is a class type, then you should also use the const
modifier for every member function that does not change the value of its
calling object. The reason has to do with function calls within function calls.
For example, consider the following definition of the function guarantee:

void guarantee(const Money& price)
{
 cout << "If not satisfied, we will pay you\n"
 << "double your money back.\n"
 << "That's a refund of $"
 << (2*price.get_value()) << endl;
}

If you do not add the const modifier to the function declaration for the
member function get_value, then the function guarantee will give an error
message on most compilers. The member function get_value does not change
the calling object price. However, when the compiler processes the function
definition for guarantee, it will think that get_value does (or at least might)
change the value of price. This is because when it is translating the function
definition for guarantee, all that the compiler knows about the member
function get_value is the function declaration for get_value; if the function
declaration does not contain a const, which tells the compiler that the calling
object will not be changed, then the compiler assumes that the calling object
will be changed. Thus, if you use the modifier const with parameters of type
Money, then you should also use const with all Money member functions that
do not change the value of their calling object. In particular, the function
declaration for the member function get_value should include a const.

In Display 11.4 we have rewritten the definition of the class Money given in
Display 11.3, but this time we have used the const modifier where appropriate. The
definitions of the member and friend functions would be the same as they are in
Display 11.3, except that the modifier const must be used in function headings so
that the headings match the function declarations shown in Display 11.4. ■

const Parameter Modifier

If you place the modifier const before the type for a call-by-reference
parameter, the parameter is called a constant parameter. (The heading of
the function definition should also have a const, so that it matches the
function declaration.) When you add the const, you are telling the
function declaration.) When you add the const, you are telling the compiler

11.1 Friend Functions 631

that this parameter should not be changed. If you make a mistake in your
definition of the function so that it does change the constant parameter,
then the computer will give an error message. Parameters of a class type
that are not changed by the function ordinarily should be constant call-by-
reference parameters, rather than call-by-value parameters.

If a member function does not change the value of its calling object,
then you can mark the function by adding the const modifier to the
function declaration. If you make a mistake in your definition of the
function so that it does change the calling object and the function is
marked with const, then the computer will give an error message. The
const is placed at the end of the function declaration, just before the final
semicolon. The heading of the function definition should also have a
const, so that it matches the function declaration.

EXAMPLE

class Sample
{
public:

Sample();
 friend int compare(const Sample& s1, const Sample& s2);

void input();
 void output() const;
private:

int stuff;
double more_stuff;

};

Use of the const modifier is an all-or-nothing proposition. You should
use the const modifier whenever it is appropriate for a class parameter
and whenever it is appropriate for a member function of the class. If you
do not use const every time that it is appropriate for a class, then you
should never use it for that class.

DISPLAY 11.4 The Class Money with Constant Parameters (part 1 of 2)

1 //Class for amounts of money in U.S. currency.
2 class Money
3 {
4 public:
5 friend Money add(const Money& amount1, const Money& amount2);
6 //Precondition: amount1 and amount2 have been given values.
7 //Returns the sum of the values of amount1 and amount2.

(continued)

632 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

SELF -TEST EXERC ISES

8. Give the complete definition of the member function get_value that you
would use with the definition of Money given in Display 11.4.

9. Why would it be incorrect to add the modifier const, as shown here, to
the function declaration for the member function input of the class Money
given in Display 11.4?

DISPLAY 11.4 The Class Money with Constant Parameters (part 2 of 2)

8 friend bool equal(const Money& amount1, const Money& amount2);
9 //Precondition: amount1 and amount2 have been given values.

10 //Returns true if amount1 and amount2 have the same value;
11 //otherwise, returns false.

12 Money(long dollars, int cents);
13 //Initializes the object so its value represents an amount with the
14 //dollars and cents given by the arguments. If the amount is negative,
15 //then both dollars and cents must be negative.

16 Money(long dollars);
17 //Initializes the object so its value represents $dollars.00.

18 Money();
19 //Initializes the object so its value represents $0.00.

20 double get_value() const;
21 //Precondition: The calling object has been given a value.
22 //Returns the amount of money recorded in the data of the calling object.

23 void input(istream& ins);
24 //Precondition: If ins is a file input stream, then ins has already been
25 //connected to a file. An amount of money, including a dollar sign, has been
26 //entered in the input stream ins. Notation for negative amounts is -$100.00.
27 //Postcondition: The value of the calling object has been set to
28 //the amount of money read from the input stream ins.

29 void output(ostream& outs) const;
30 //Precondition: If outs is a file output stream, then outs has already been
31 //connected to a file.
32 //Postcondition: A dollar sign and the amount of money recorded
33 //in the calling object have been sent to the output stream outs.
34 private:
35 long all_cents;
36 };

11.2 Overloading Operators 633

class Money
{
 ...
public:
 void input(istream& ins) const;
 ...

10. What are the differences and the similarities between a call-by-value
parameter and a call-by-const-reference parameter? Function declarations
that illustrate these are:

void call_by_value(int x);
void call_by_const_reference(const int & x);

11. Given the following definitions:

const int x = 17;
class A
{
public:
 A();
 A(int x);
 int f()const;
 int g(const A& x);
private:
 int i;
};

Each of the three const keywords is a promise to the compiler that the
compiler will enforce. What is the promise in each case?

11.2 OVERLOADING OPERATORS

He’s a smooth operator.

LINE FROM A SONG BY SADE (WRITTEN BY SADE ADU AND RAY ST. JOHN)

Earlier in this chapter, we showed you how to make the function add a friend
of the class Money and use it to add two objects of type Money (Display 11.3).
The function add is adequate for adding objects, but it would be nicer if you
could simply use the usual + operator to add values of type Money, as in the
last line of the following code:

Money total, cost, tax;
cout << "Enter cost and tax: ";
cost.input(cin);
tax.input(cin);
total = cost + tax;

634 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

instead of having to use the slightly more awkward

total = add(cost, tax);

Recall that an operator, such as +, is really just a function except that the
syntax for how it is used is slightly different from that of an ordinary function.
In an ordinary function call the arguments are placed in parentheses after the
function name, as in the following:

add(cost, tax)

With a (binary) operator, the arguments are placed on either side of the
operator, as shown here:

cost + tax

A function can be overloaded to take arguments of different types. An operator
is really a function, so an operator can be overloaded. The way you overload
an operator, such as +, is basically the same as the way you overload a function
name. In this section we show you how to overload operators in C++.

Overloading Operators

You can overload the operator + (and many other operators) so that it will
accept arguments of a class type. The difference between overloading the +
operator and defining the function add (given in Display 11.3) involves only
a slight change in syntax. The definition of the overloaded operator + is
basically the same as the definition of the function add. The only differences
are that you use the name + instead of the name add and you precede the +
with the keyword operator. In Display 11.5 we have rewritten the type Money
to include the overloaded operator + and we have embedded the definition in
a small demonstration program.

The class Money, as defined in Display 11.5, also overloads the == operator
so that == can be used to compare two objects of type Money. If amount1 and
amount2 are two objects of type Money, we want the expression

amount1 == amount2

to return the same value as the following Boolean expression:

amount1.all_cents == amount2.all_cents

As shown in Display 11.5, this is the value returned by the overloaded
operator ==.

 You can overload most, but not all, operators. The operator need not be
a friend of a class, but you will often want it to be a friend. Check the box
entitled “Rules on Overloading Operators” for some technical details on when
and how you can overload an operator.

operators and
functions

11.2 Overloading Operators 635

DISPLAY 11.5 Overloading Operators (part 1 of 2)

1 //Program to demonstrate the class Money. (This is an improved version of
2 //the class Money that we gave in Display 11.3 and rewrote in Display 11.4.)
3 #include <iostream>
4 #include <cstdlib>
5 #include <cctype>
6 using namespace std;
7
8 //Class for amounts of money in U.S. currency.
9 class Money

10 {
11 public:
12 friend Money operator +(const Money& amount1, const Money& amount2);
13 //Precondition: amount1 and amount2 have been given values.
14 //Returns the sum of the values of amount1 and amount2.

15 friend bool operator ==(const Money& amount1, const Money& amount2);
16 //Precondition: amount1 and amount2 have been given values.
17 //Returns true if amount1 and amount2 have the same value;
18 //otherwise, returns false.

19 Money(long dollars, int cents);

20 Money(long dollars);

21 Money();

22 double get_value() const;

23 void input(istream& ins);

24 void output(ostream& outs) const;
25 private:
26 long all_cents;
27 };

<Any extra function declarations from Display 11.3 go here.>

28 int main()
29 {
30 Money cost(1, 50), tax(0, 15), total;
31 total = cost + tax;

32 cout << "cost = ";
33 cost.output(cout);
34 cout << endl;

Some comments from
Display 11.4 have been
omitted to save space
in this book, but they
should be included in
a real program.

636 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

DISPLAY 11.5 Overloading Operators (part 2 of 2)

35 cout << "tax = ";
36 tax.output(cout);
37 cout << endl;
38 cout << "total bill = ";
39 total.output(cout);
40 cout << endl;
41 if (cost == tax)
42 cout << "Move to another state.\n";
43 else
44 cout << "Things seem normal.\n";
45 return 0;
46 }
47
48 Money operator +(const Money& amount1, const Money& amount2)
49 {
50 Money temp;
51 temp.all_cents = amount1.all_cents + amount2.all_cents;
52 return temp;
53 }
54
55 bool operator ==(const Money& amount1, const Money& amount2)
56 {
57 return (amount1.all_cents == amount2.all_cents);
58 }
59

 <The definitions of the member functions are the same as in
Display 11.3 except that const is added to the function headings
in various places so that the function headings match the function
declarations in the preceding class definition. No other changes
are needed in the member function definitions. The bodies of the
member function definitions are identical to those in Display 11.3.>

Output

cost = $1.50

tax = $0.15

total bill = $1.65

Things seem normal.

11.2 Overloading Operators 637

SELF -TEST EXERC ISES

12. What is the difference between a (binary) operator and a function?

13. Suppose you wish to overload the operator < so that it applies to the type
Money defined in Display 11.5. What do you need to add to the description
of Money given in Display 11.5?

14. Suppose you wish to overload the operator <= so that it applies to the type
Money defined in Display 11.5. What do you need to add to the description
of Money given in Display 11.5?

15. Is it possible using operator overloading to change the behavior of + on
integers? Why or why not?

(continued)

Operator Overloading

A (binary) operator, such as +, − , /, %, and so forth, is simply a function that
is called using a different syntax for listing its arguments. With an
operator, the arguments are listed before and after the operator; with a
function, the arguments are listed in parentheses after the function name.
An operator definition is written similarly to a function definition, except
that the operator definition includes the reserved word operator before
the operator name. The predefined operators, such as + and so forth, can
be overloaded by giving them a new definition for a class type.

An operator may be a friend of a class although this is not required. An
example of overloading the + operator as a friend is given in Display 11.5.

Rules on Overloading Operators

■ When overloading an operator, at least one argument of the resulting over-
loaded operator must be of a class type.

■ An overloaded operator can be, but does not have to be, a friend of a class; the
operator function may be a member of the class or an ordinary (nonfriend) func-
tion. (Overloading an operator as a class member is discussed in Appendix 8.)

■ You cannot create a new operator. All you can do is overload existing opera-
tors, such as +, -, *, /, %, and so forth.

638 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

Constructors for Automatic Type Conversion

If your class definition contains the appropriate constructors, the system will
perform certain type conversions automatically. For example, if your program
contains the definition of the class Money given in Display 11.5, you could use
the following in your program:

Money base_amount(100, 60), full_amount;
full_amount = base_amount + 25;
full_amount.output(cout);

The output will be

The code above may look simple and natural enough, but there is one
subtle point. The 25 (in the expression base_amount + 25) is not of the
appropriate type. In Display 11.5 we only overloaded the operator + so that it
could be used with two values of type Money. We did not overload + so that it
could be used with a value of type Money and an integer. The constant 25 is an
integer and is not of type Money. The constant 25 can be considered to be of
type int or of type long, but 25 cannot be used as a value of type Money unless
the class definition somehow tells the system how to convert an integer to a
value of type Money. The only way that the system knows that 25 means $25.00
is that we included a constructor that takes a single argument of type long.
When the system sees the expression

base_amount + 25

■ You cannot change the number of arguments that an operator takes. For exam-
ple, you cannot change % from a binary to a unary operator when you overload %;
you cannot change ++ from a unary to a binary operator when you overload it.

■ You cannot change the precedence of an operator. An overloaded operator
has the same precedence as the ordinary version of the operator. For example,
x*y + z always means (x*y) + z, even if x, y, and z are objects and the oper-
ators + and * have been overloaded for the appropriate classes.

■ The following operators cannot be overloaded: the dot operator (.), the scope
resolution operator (::), and the operators .* and ?:, which are not discussed
in this book.

■ Although the assignment operator = can be overloaded so that the default mean-
ing of = is replaced by a new meaning, this must be done in a different way from
what is described here. Overloading = is discussed in the section “Overloading the
Assignment Operator” later in this chapter. Some other operators, including []
and ->, also must be overloaded in a way that is different from what is described
in this chapter. The operators [] and -> are discussed later in this book.

$125.60

11.2 Overloading Operators 639

the system first checks to see if the operator + has been overloaded for the
combination of a value of type Money and an integer. Since there is no such
overloading, the system next looks to see if there is a constructor that takes a
single argument that is an integer. If it finds a constructor that takes a single
integer argument, it uses that constructor to convert the integer 25 to a value
of type Money. The constructor with one argument of type long tells the system
how to convert an integer, such as 25, to a value of type Money. The one-
argument constructor says that 25 should be converted to an object of type
Money whose member variable all_cents is equal to 2500; in other words, the
constructor converts 25 to an object of type Money that represents $25.00. (The
definition of the constructor is in Display 11.3.)

Note that this type conversion will not work unless there is a suitable
constructor. For example, the type Money (Display 11.5) has no constructor
that takes an argument of type double, so the following is illegal and would
produce an error message if you were to put it in a program that declares
base_amount and full_amount to be of type Money:

full_amount = base_amount + 25.67;

To make this use of + legal, you could change the definition of the class Money
by adding another constructor. The function declaration for the constructor
you need to add is the following:

class Money
{
public:

. . .
Money(double amount);
//Initializes the object so its value represents $amount.

. . .

Writing the definition for this new constructor is Self-Test Exercise 16.
These automatic type conversions (produced by constructors) seem most

common and compelling with overloaded numeric operators such as + and − .
However, these automatic conversions apply in exactly the same way to
arguments for ordinary functions, arguments for member functions, and argu-
ments for other overloaded operators.

SELF -TEST EXERC ISE

16. Give the definition for the constructor discussed at the end of the previous
section. The constructor is to be added to the class Money in Display 11.5.
The definition begins as follows:

Money::Money(double amount)
{

640 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

Overloading Unary Operators

In addition to the binary operators, such as + in x + y, there are also unary
operators, such as the operator − when it is used to mean negation. In the
following statement, the unary operator − is used to set the value of a variable
x equal to the negative of the value of the variable y:

x = − y;

The increment and decrement operators ++ and − − are other examples of
unary operators.

You can overload unary operators as well as binary operators. For
example, you can redefine the type Money given in Display 11.5 so that it has
both a unary and a binary operator version of the subtraction/negation
operator − . The redone class definition is given in Display 11.6. Suppose your
program contains this class definition and the following code:

Money amount1(10), amount2(6), amount3;

Then the following sets the value of amount3 to amount1 minus amount2:

amount3 = amount1 − amount2;

The following will, then, output $4.00 to the screen:

amount3.output(cout);

On the other hand, the following will set amount3 equal to the negative of
amount1:

amount3 = − amount1;

The following will, then, output − $10.00 to the screen:

amount3.output(cout);

You can overload the ++ and − − operators in ways similar to how we
overloaded the negation operator in Display 11.6. The overloading defini-
tion will apply to the operator when it is used in prefix position, as in ++x
and − − x. The postfix versions of ++ and − − , as in x++ and x− − , are handled
in a different manner, but we will not discuss these postfix versions. (Hey, you
can’t learn everything in a first course!)

Overloading >> and <<

The insertion operator << that we used with cout is a binary operator like the
binary operators + or − . For example, consider the following:

cout << "Hello out there.\n";

++ and --

<< is an operator

11.2 Overloading Operators 641

DISPLAY 11.6 Overloading a Unary Operator

1 //Class for amounts of money in U.S. currency.
2 class Money
3 {
4 public:
5 friend Money operator +(const Money& amount1, const Money& amount2);

6 friend Money operator −(const Money& amount1, const Money& amount2);
7 //Precondition: amount1 and amount2 have been given values.
8 //Returns amount 1 minus amount2.

9 friend Money operator −(const Money& amount);
10 //Precondition: amount has been given a value.
11 //Returns the negative of the value of amount.

12 friend bool operator ==(const Money& amount1, const Money& amount2);

13 Money(long dollars, int cents);

14 Money(long dollars);

15 Money();

16 double get_value() const;

17 void input(istream& ins);
18 void output(ostream& outs) const;
19 private:
20 long all_cents;
21 };

 <Any additional function declarations as well as the main part of the program go here.>

22 Money operator − (const Money& amount1, const Money& amount2)
23 {
24 Money temp;
25 temp.all_cents = amount1.all_cents − amount2.all_cents;
26 return temp;
27 }

28 Money operator −(const Money& amount)
29 {
30 Money temp;
31 temp.all_cents = −amount.all_cents;
32 return temp;
33 }

 <The other function definitions are the same as in Display 11.5.>

We have omitted the include
directives and some of the
comments, but you should include
them in your programs.

This is an improved version
of the class Money given in
Display 11.5.

642 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

The operator is <<, the first operand is the output stream cout, and the second
operand is the string value "Hello out there.\n". You can change either of
these operands. If fout is an output stream of type ofstream and fout has
been connected to a file with a call to open, then you can replace cout with
fout and the string will instead be written to the file connected to fout. Of
course, you can also replace the string "Hello out there.\n" with another
string, a variable, or a number. Since the insertion operator << is an operator, you
should be able to overload it just as you overload operators such as + and −. This
is true, but there are a few more details to worry about when you overload the
input and output operators >> and <<.

In our previous definitions of the class Money, we used the member
function output to output values of type Money (Display 11.3 through 11.6).
This is adequate, but it would be nicer if we could simply use the insertion
operator << to output values of type Money as in the following:

Money amount(100);
cout << "I have " << amount << " in my purse.\n";

instead of having to use the member function output as shown here:

Money amount(100);
cout << "I have ";
amount.output(cout);
cout << " in my purse.\n";

One problem in overloading the operator << is deciding what value
should be returned when << is used in an expression like the following:

cout << amount

The two operands in this expression are cout and amount, and evaluating the
expression should cause the value of amount to be written to the screen. But if
<< is an operator like + or *, then the above expression should also return
some value. After all, expressions with other operands, such as n1 + n2, return
values. But what does cout << amount return? To obtain the answer to that
question, we need to look at a more complicated expression involving <<.

Let’s consider the following expression, which involves evaluating a chain
of expressions using <<:

cout << "I have " << amount << " in my purse.\n";

If you think of the operator << as being analogous to other operators, such as
+, then the above should be (and in fact is) equivalent to the following:

((cout << "I have ") << amount) << " in my purse.\n";

What value should << return in order to make sense of this expression? The
first thing evaluated is the subexpression:

(cout << "I have ")

overloading <<

chains of <<

11.2 Overloading Operators 643

If things are to work out, then the subexpression had better return cout so that
the computation can continue as follows:

(cout << amount) << " in my purse.\n";

And if things are to continue to work out, (cout << amount) had better also
return cout so that the computation can continue as follows:

cout << " in my purse.\n";

This is illustrated in Display 11.7. The operator << should return its first
argument, which is a stream of type ostream.

Thus, the declaration for the overloaded operator << (to use with the class
Money) should be as follows:

class Money
{
public:

. . .

 //Precondition: If outs is a file output stream, then outs
//has already been connected to a file.

. . .

Once we have overloaded the insertion (output) operator <<, we will no
longer need the member function output and thus can delete output from our
definition of the class Money. The definition of the overloaded operator << is
very similar to the member function output. In outline form, the definition
for the overloaded operator is as follows:

ostream& operator <<(ostream& outs, const Money& amount)
{

<This part is the same as the body of Money::output
that is given in Display 11.3 (except that all_cents
is replaced with amount.all_cents).>

return outs;

}

There is one thing left to explain in the previous function declaration and
definition for the overloaded operator <<. What is the meaning of the & in the
returned type ostream&? The easiest answer is that whenever an operator (or a
function) returns a stream, you must add an & to the end of the name for the returned
type. That simple rule will allow you to overload the operators << and >>. However,
although that is a good working rule that will allow you to write your class
definitions and programs, it is not very satisfying. You do not need to know

<< returns a
stream

friend ostream& operator <<(ostream& outs, const Money& amount);

//Postcondition: A dollar sign and the amount of money recorded
//in the calling object have been sent to the output stream outs.

<< and >> return
a reference

644 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

what that & really means, but if we explain it, that will remove some of the
mystery from the rule that tells you to add an &.

When you add an & to the name of a returned type, you are saying that the
operator (or function) returns a reference. All the functions and operators we
have seen thus far return values. However, if the returned type is a stream, you
cannot simply return the value of the stream. In the case of a stream, the value
of the stream is an entire file or the keyboard or the screen, and it may not
make sense to return those things. Thus, you want to return only the stream
itself rather than the value of the stream. When you add an & to the name of a

DISPLAY 11.7 << as an Operator

1 cout << "I have " << amount << " in my purse.\n";
2
3 means the same as
4
5 ((cout << "I have ") << amount) << " in my purse.\n";
6
7 and is evaluated as follows:
8
9 First evaluate (cout << "I have "), which returns cout:

10 ((cout << "I have ") << amount) << " in my purse.\n";
11
12
13
14 (cout << amount) << " in my purse.\n";
15
16
17 Then evaluate (cout << amount), which returns cout:
18
19 (cout << amount) << " in my purse.\n";
20
21
22
23 cout << " in my purse.\n";
24
25
26 Then evaluate cout << " in my purse.\n", which returns cout:
27
28 cout << " in my purse.\n";
29
30
31
32 cout;

and the string “I have” is output.

and the string “in my purse.\n” is output.

and the value of amount is output.

Since there are no more <<
operators, the process ends.

returning
a reference

11.2 Overloading Operators 645

returned type, you are saying that the operator (or function) returns a
reference, which means that you are returning the object itself, as opposed to
the value of the object.

The extraction operator >> is overloaded in a way that is analogous to
what we described for the insertion operator <<. However, with the extraction
(input) operator >>, the second argument will be the object that receives the
input value, so the second parameter must be an ordinary call-by-reference
parameter. In outline form the definition for the overloaded extraction
operator >> is as follows:

istream& operator >>(istream& ins, Money& amount)
{

<This part is the same as the body of
Money::input given in Display 11.3 (except that

 all_cents is replaced with amount.all_cents).>

return ins;
}

The complete definitions of the overloaded operators << and >> are given
in Display 11.8, where we have rewritten the class Money yet again. This time
we have rewritten the class so that the operators << and >> are overloaded to
allow us to use these operators with values of type Money.

reference

DISPLAY 11.8 Overloading << and >> (part 1 of 4)

1 //Program to demonstrate the class Money.
2 #include <iostream>
3 #include <fstream>
4 #include <cstdlib>
5 #include <cctype>
6 using namespace std;
7
8 //Class for amounts of money in U.S. currency.
9 class Money

10 {
11 public:
12 friend Money operator +(const Money& amount1, const Money& amount2);

13 friend Money operator − (const Money& amount1, const Money& amount2);

14 friend Money operator − (const Money& amount);

15 friend bool operator ==(const Money& amount1, const Money& amount2);

(continued)

This is an improved version
of the class Money that we
gave in Display 11.6.

Although we have omitted
some of the comments from
Displays 11.5 and 11.6, you
should include them.

646 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

DISPLAY 11.8 Overloading << and >> (part 2 of 4)

16 Money(long dollars, int cents);

17 Money(long dollars);

18 Money();

19 double get_value() const;

20 friend istream& operator >>(istream& ins, Money& amount);
21 //Overloads the >> operator so it can be used to input values of type Money.
22 //Notation for inputting negative amounts is as in −$100.00.
23 //Precondition: If ins is a file input stream, then ins has already been
24 //connected to a file.

25 friend ostream& operator <<(ostream& outs, const Money& amount);
26 //Overloads the << operator so it can be used to output values of type Money.
27 //Precedes each output value of type Money with a dollar sign.
28 //Precondition: If outs is a file output stream,
29 //then outs has already been connected to a file.
30 private:
31 long all_cents;
32 };
33 int digit_to_int(char c);
34 //Used in the definition of the overloaded input operator >>.
35 //Precondition: c is one of the digits '0' through '9'.
36 //Returns the integer for the digit; for example, digit_to_int('3') returns 3.
37
38 int main()
39 {
40 Money amount;
41 ifstream in_stream;
42 ofstream out_stream;
43
44 in_stream.open("infile.dat");
45 if (in_stream.fail())
46 {
47 cout << "Input file opening failed.\n";
48 exit(1);
49 }
50
51 out_stream.open("outfile.dat");
52 if (out_stream.fail())
53 {
54 cout << "Output file opening failed.\n";
55 exit(1);
56 }
57

(continued)

11.2 Overloading Operators 647

DISPLAY 11.8 Overloading << and >> (part 3 of 4)

58 in_stream >> amount;
59 out_stream << amount
60 << " copied from the file infile.dat.\n";
61 cout << amount
62 << " copied from the file infile.dat.\n";
63
64 in_stream.close();
65 out_stream.close();
66
67 return 0;
68 }
69 //Uses iostream, cctype, cstdlib:
70 istream& operator >>(istream& ins, Money& amount)
71 {
72 char one_char, decimal_point,
73 digit1, digit2; //digits for the amount of cents
74 long dollars;
75 int cents;
76 bool negative;//set to true if input is negative.

77 ins >> one_char;
78 if (one_char == '− ')
79 {
80 negative = true;
81 ins >> one_char; //read '$'
82 }
83 else
84 negative = false;
85 //if input is legal, then one_char == '$'

86 ins >> dollars >> decimal_point >> digit1 >> digit2;

87 if (one_char != '$' || decimal_point != '.'
88 || !isdigit(digit1) || !isdigit(digit2))
89 {
90 cout << "Error illegal form for money input\n";
91 exit(1);
92 }

93 cents = digit_to_int(digit1)*10 + digit_to_int(digit2);

94 amount.all_cents = dollars*100 + cents;
95 if (negative)
96 amount.all_cents = − amount.all_cents;

(continued)

648 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

DISPLAY 11.8 Overloading << and >> (part 4 of 4)

97 return ins;
98 }
99
100 int digit_to_int(char c)
101 {
102 return (static_cast<int>(c) − static_cast<int>('0'));
103 }

104 //Uses cstdlib and iostream:
105 ostream& operator <<(ostream& outs, const Money& amount)
106 {
107 long positive_cents, dollars, cents;
108 positive_cents = labs(amount.all_cents);
109 dollars = positive_cents/100;
110 cents = positive_cents%100;
111
112 if (amount.all_cents < 0)
113 outs << "− $" << dollars << '.';
114 else
115 outs << "$" << dollars << '.';
116
117 if (cents < 10)
118 outs << '0';
119 outs << cents;
120
121 return outs;
122 }
123

 <The definitions of the member functions and other overloaded operators go here.
 See Display 11.3, 11.4, 11.5, and 11.6 for the definitions.>

Screen Output

$1.11 copied from the file infile.dat.

infile.dat
(Not changed by program.)

outfile.dat
(After program is run.)

$1.11 $2.22

$3.33

$1.11 copied from the file infile.dat.

11.2 Overloading Operators 649

SELF -TEST EXERC ISES

17. Here is a definition of a class called Pairs. Objects of type Pairs can be
used in any situation where ordered pairs are needed. Your task is to write
implementations of the overloaded operator >> and the overloaded opera-
tor << so that objects of class Pairs are to be input and output in the form

Overloading >> and <<

The input and output operators >> and << can be overloaded just like any
other operators. The value returned must be the stream. The type for the
value returned must have the & symbol added to the end of the type name.
The function declarations and beginnings of the function definitions are as
shown below. See Display 11.8 for an example.

FUNCTION DECLARATIONS

class Class_Name
{
public:

. . .

friend istream& operator >>(istream& Parameter_1,
Class_Name& Parameter_2);

 friend ostream& operator <<(ostream& Parameter_3,
 const Class_Name& Parameter_4);

. . .

DEFINITIONS

istream& operator >>(istream& Parameter_1,
Class_Name& Parameter_2)

{
. . .

}

ostream& operator <<(ostream& Parameter_3,
const Class_Name& Parameter_4)

{
. . .

Parameter for
the stream

Parameter for
the object to
receive the input

650 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

(5,6) (5,-4) (-5,4) or (-5,-6). You need not implement any constructor
or other member, and you need not do any input format checking.

#include <iostream>
using namespace std;
class Pairs
{
public:
 Pairs();
 Pairs(int first, int second);
 //other members and friends
 friend istream& operator>> (istream& ins, Pairs& second);
 friend ostream& operator<< (ostream& outs,
const Pairs& second);
private:
 int f;
 int s;
};

18. Following is the definition for a class called Percent. Objects of type
Percent represent percentages such as 10% or 99%. Give the definitions
of the overloaded operators >> and << so that they can be used for input
and output with objects of the class Percent. Assume that input always
consists of an integer followed by the character ‘%’, such as 25%. All per-
centages are whole numbers and are stored in the int member variable
named value. You do not need to define the other overloaded operators
and do not need to define the constructor. You only have to define the
overloaded operators >> and <<.

#include <iostream>
using namespace std;

class Percent
{
public:

friend bool operator ==(const Percent& first,
 const Percent& second);

 friend bool operator <(const Percent& first,
 const Percent& second);

Percent();

Percent(int percent_value);

 friend istream& operator >>(istream& ins,
 Percent& the_object);

11.3 Arrays and Classes 651

 //Overloads the >> operator to input values of type
 //Percent.
 //Precondition: If ins is a file input stream, then ins
 //has already been connected to a file.

 friend ostream& operator <<(ostream& outs,
 const Percent& a_percent);
 //Overloads the << operator for output values of type
 //Percent.
 //Precondition: If outs is a file output stream, then
 //outs has already been connected to a file.
private:
 int value;
};

11.3 ARRAYS AND CLASSES

You can combine arrays, structures, and classes to form intricately structured
types such as arrays of structures, arrays of classes, and classes with arrays as
member variables. In this section we discuss a few simple examples to give you
an idea of the possibilities.

Arrays of Classes

The base type of an array may be any type, including types that you define,
such as structure and class types. If you want each indexed variable to contain
items of different types, make the array an array of structures. For example,
suppose you want an array to hold ten weather data points, where each data
point is a wind velocity and a wind direction (north, south, east, or west). You
might use the following type definition and array declaration:

struct WindInfo
{

double velocity; //in miles per hour
char direction; //'N', 'S', 'E', or 'W'

};

WindInfo data_point[10];

To fill the array data_point, you could use the following for loop:

int i;
for (i = 0; i < 10; i++)
{
 cout << "Enter velocity for "

652 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

 << i << " numbered data point: ";
 cin >> data_point[i].velocity;
 cout << "Enter direction for that data point"
 << " (N, S, E, or W): ";
 cin >> data_point[i].direction;
}

The way to read an expression such as data_point[i].velocity is left to right
and very carefully. First, data_point is an array. So, data_point[i] is the ith
indexed variable of this array. An indexed variable of this array is of type

WindInfo, which is a structure with two member variables named velocity
and direction. So, data_point[i].velocity is the member variable named
velocity for the ith array element. Less formally, data_point[i].velocity is
the wind velocity for the ith data point. Similarly, data_point[i].direction
is the wind direction for the ith data point.

The ten data points in the array data_point can be written to the screen
with the following for loop:

for (i = 0; i < 10; i++)
cout << "Wind data point number " << i << ": \n"

 << data_point[i].velocity
 << " miles per hour\n"
 << "direction " << data_point[i].direction
 << endl;

Display 11.9 contains the definition for a class called Money. Objects of the
class Money are used to represent amounts of money in U.S. currency. The
definitions of the member functions, member operations, and friend func-
tions for this class can be found in Displays 11.3 through 11.8 and in the
answer to Self-Test Exercise 13.

You can have arrays whose base type is the type Money. A simple example
is given in Display 11.9. That program reads in a list of five amounts of money
and computes how much each amount differs from the largest of the five
amounts. Notice that an array whose base type is a class is treated basically the
same as any other array. In fact, the program in Display 11.9 is very similar to
the program in Display 7.1 except that in Display 11.9 the base type is a class.

When an array of classes is declared, the default constructor is called to
initialize the indexed variables, so it is important to have a default constructor
for any class that will be the base type of an array.

An array of classes is manipulated just like an array with a simple base
type like int or double. For example, the difference between each amount and
the largest amount is stored in an array named difference, as follows:

Money difference[5];
for (i = 0; i < 5; i++)
 difference[i] = max − amount[i];

constructor call

11.3 Arrays and Classes 653

DISPLAY 11.9 Program Using an Array of Money Objects (part 1 of 3)

1 //This is the definition for the class Money.
2 //Values of this type are amounts of money in U.S. currency.
3 #include <iostream>
4 using namespace std;

5 class Money
6 {
7 public:
8 friend Money operator +(const Money& amount1, const Money& amount2);
9 //Returns the sum of the values of amount1 and amount2.

10 friend Money operator −(const Money& amount1, const Money& amount2);
11 //Returns amount1 minus amount2.

12 friend Money operator −(const Money& amount);
13 //Returns the negative of the value of amount.

14 friend bool operator ==(const Money& amount1, const Money& amount2);
15 //Returns true if amount1 and amount2 have the same value; false otherwise.

16 friend bool operator < (const Money& amount1, const Money& amount2);
17 //Returns true if amount1 is less than amount2; false otherwise.

18 Money(long dollars, int cents);
19 //Initializes the object so its value represents an amount with
20 //the dollars and cents given by the arguments. If the amount
21 //is negative, then both dollars and cents should be negative.

22 Money(long dollars);
23 //Initializes the object so its value represents $dollars.00.

24 Money();
25 //Initializes the object so its value represents $0.00.

26 double get_value() const;
27 //Returns the amount of money recorded in the data portion of the calling
28 //object.

29 friend istream& operator >>(istream& ins, Money& amount);
30 //Overloads the >> operator so it can be used to input values of type
31 //Money. Notation for inputting negative amounts is as in − $100.00.
32 //Precondition: If ins is a file input stream, then ins has already been
33 //connected to a file.
34
35 friend ostream& operator <<(ostream& outs, const Money& amount);
36 //Overloads the << operator so it can be used to output values of type
37 //Money. Precedes each output value of type Money with a dollar sign.
38 //Precondition: If outs is a file output stream, then outs has already been
39 //connected to a file.

(continued)

654 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

DISPLAY 11.9 Program Using an Array of Money Objects (part 2 of 3)

40 private:
41 long all_cents;
42 };
43

<The definitions of the member functions and the overloaded operators goes here.>

44 //Reads in 5 amounts of money and shows how much each
45 //amount differs from the largest amount.

46 int main()
47 {
48 Money amount[5], max;
49 int i;

50 cout << "Enter 5 amounts of money:\n";
51 cin >> amount[0];
52 max = amount[0];
53 for (i = 1; i < 5; i++)
54 {
55 cin >> amount[i];
56 if (max < amount[i])
57 max = amount[i];
58 //max is the largest of amount[0],..., amount[i].
59 }

60 Money difference[5];
61 for (i = 0; i < 5; i++)
62 difference[i] = max − amount[i];

63 cout << "The highest amount is " << max << endl;
64 cout << "The amounts and their\n"
65 << "differences from the largest are:\n";
66 for (i = 0; i < 5; i++)
67 {
68 cout << amount[i] << " off by "
69 << difference[i] << endl;
70 }

71 return 0;
72 }

Sample Dialogue

Enter 5 amounts of money:

$5.00 $10.00 $19.99 $20.00 $12.79

The highest amount is $20.00

The amounts and their

(continued)

11.3 Arrays and Classes 655

SELF -TEST EXERC ISES

19. Give a type definition for a structure called Score that has two member
variables called home_team and opponent. Both member variables are of
type int. Declare an array called game that is an array with ten elements
of type Score. The array game might be used to record the scores of each
of ten games for a sports team.

20. Write a program that reads in five amounts of money, doubles each
amount, and then writes out the doubled values to the screen. Use one
array with Money as the base type. Hint: Use Display 11.9 as a guide, but
this program will be simpler than the one in Display 11.9.

Arrays as Class Members

You can have a structure or class that has an array as a member variable. For
example, suppose you are a speed swimmer and want a program to keep track
of your practice times for various distances. You can use the structure my_best
(of the type Data given next) to record a distance (in meters) and the times (in
seconds) for each of ten practice tries swimming that distance:

struct Data
{

double time[10];
int distance;

};

Data my_best;

The structure my_best, declared above, has two member variables: One,
named distance, is a variable of type int (to record a distance); the other,
named time, is an array of ten values of type double (to hold times for ten

DISPLAY 11.9 Program Using an Array of Money Objects (part 3 of 3)

differences from the largest are:

$5.00 off by $15.00

$10.00 off by $10.00

$19.99 off by $0.01

$20.00 off by $0.00

$12.79 off by $7.21

656 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

practice tries at the specified distance). To set the distance equal to 20 (meters),
you can use the following:

my_best.distance = 20;

You can set the ten array elements with values from the keyboard as follows:

cout << "Enter ten times (in seconds):\n";
for (int i = 0; i < 10; i++)

cin >> my_best.time[i];

The expression my_best.time[i] is read left to right: my_best is a structure.
my_best.time is the member variable named time. Since my_best.time is an
array, it makes sense to add an index. So, the expression my_best.time[i] is
the ith indexed variable of the array my_best.time. If you use a class rather than
a structure type, then you can do all your array manipulations with member
functions and avoid such confusing expressions. This is illustrated in the
following Programming Example.

■ PROGRAMMING EXAMPLE A Class for a Partially
Filled Array

Display 11.10 shows the definition for a class called TemperatureList, whose
objects are lists of temperatures. You might use an object of type Temperature-
List in a program that does weather analysis. The list of temperatures is kept in
the member variable list, which is an array. Since this array will typically be
only partially filled, a second member variable, called size, is used to keep track
of how much of the array is used. The value of size is the number of indexed
variables of the array list that are being used to store values.

An object of type TemperatureList is declared like an object of any other
type. For example, the following declares my_data to be an object of type
TemperatureList:

TemperatureList my_data;

This declaration calls the default constructor with the new object my_data, and
so the object my_data is initialized so that the member variable size has the
value 0, indicating an empty list.

Once you have declared an object such as my_data, you can add an item
to the list of temperatures (that is, to the member array list) with a call to the
member function add_temperature as follows:

my_data.add_temperature(77);

In fact, this is the only way you can add a temperature to the list my_data, since
the array list is a private member variable. Notice that when you add an item
with a call to the member function add_temperature, the function call first
tests to see if the array list is full and adds the value only if the array is not full.

11.3 Arrays and Classes 657

DISPLAY 11.10 Program for a Class with an Array Member (part 1 of 2)

1 //This is a definition for the class
2 //TemperatureList. Values of this type are lists of Fahrenheit temperatures.
3
4 #include <iostream>
5 #include <cstdlib>
6 using namespace std;
7
8 const int MAX_LIST_SIZE = 50;
9

10 class TemperatureList
11 {
12 public:
13 TemperatureList();
14 //Initializes the object to an empty list.
15
16 void add_temperature(double temperature);
17 //Precondition: The list is not full.
18 //Postcondition: The temperature has been added to the list.
19
20 bool full() const;
21 //Returns true if the list is full; false otherwise.
22
23 friend ostream& operator <<(ostream& outs,
24 const TemperatureList& the_object);
25 //Overloads the << operator so it can be used to output values of
26 //type TemperatureList. Temperatures are output one per line.
27 //Precondition: If outs is a file output stream, then outs
28 //has already been connected to a file.

29 private:
30 double list[MAX_LIST_SIZE]; //of temperatures in Fahrenheit
31 int size; //number of array positions filled
32 };
33
34 //This is the implementation for the class TemperatureList.
35
36 TemperatureList::TemperatureList() : size(0)
37 {
38 //Body intentionally empty.
39 }

(continued)

658 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

The class TemperatureList is very specialized. The only things you can do
with an object of the class TemperatureList are to initialize the list so it is
empty, add items to the list, check if the list is full, and output the list. To
output the temperatures stored in the object my_data (declared previously),
the call would be as follows:

cout << my_data;

With the class TemperatureList you cannot delete a temperature from the
list (array) of temperatures. You can, however, erase the entire list and start
over with an empty list by calling the default constructor, as follows:

my_data = TemperatureList();

The type TemperatureList uses almost no properties of temperatures. You
could define a similar class for lists of pressures or lists of distances or lists of
any other data expressed as values of type double. To save yourself the trouble
of defining all these different classes, you could define a single class that
represents an arbitrary list of values of type double without specifying what the
values represent. ■

DISPLAY 11.10 Program for a Class with an Array Member (part 2 of 2)

40 void TemperatureList::add_temperature(double temperature)
41 {//Uses iostream and cstdlib:
42 if (full())
43 {
44 cout << "Error: adding to a full list.\n";
45 exit(1);
46 }
47 else
48 {
49 list[size] = temperature;
50 size = size + 1;
51 }
52 }

53 bool TemperatureList::full() const
54 {
55 return (size == MAX_LIST_SIZE);
56 }

57 //Uses iostream:
58 ostream& operator <<(ostream& outs, const TemperatureList& the_object)
59 {
60 for (int i = 0; i < the_object.size; i++)
61 outs << the_object.list[i] << " F\n";
62 return outs;
63 }

11.4 Classes and Dynamic Arrays 659

SELF -TEST EXERC ISES

21. Change the class TemperatureList given in Display 11.10 by adding a
member function called get_size, which takes no arguments and returns
the number of temperatures on the list.

22. Change the type TemperatureList given in Display 11.10 by adding a
member function called get_temperature, which takes one int argu-
ment that is an integer greater than or equal to 0 and strictly less
than MAX_LIST_SIZE. The function returns a value of type double, which
is the temperature in that position on the list. So, with an argument of
0, get_temperature returns the first temperature; with an argument
of 1, it returns the second temperature, and so forth. Assume that
get_temperature will not be called with an argument that specifies a
location on the list that does not currently contain a temperature.

11.4 CLASSES AND DYNAMIC ARRAYS

With all appliances and means to boot.

WILLIAM SHAKESPEARE, King Henry IV, Part III

A dynamic array can have a base type that is a class. A class can have a member
variable that is a dynamic array. You can combine the techniques you learned
about classes and the techniques you learned about dynamic arrays in just about
any way. There are a few more things to worry about when using classes and
dynamic arrays, but the basic techniques are the ones that you have already
used. Let’s start with an example.

■ PROGRAMMING EXAMPLE A String Variable Class

In Chapter 8 we showed you how to define array variables to hold C strings.
In the previous section you learned how to define dynamic arrays so that the
size of the array can be determined when your program is run. In this example,
we will define a class called StringVar whose objects are string variables. An
object of the class StringVar will be implemented using a dynamic array
whose size is determined when your program is run. So objects of type
StringVar will have all the advantages of dynamic arrays, but they will also
have some additional features. We will define StringVar’s member functions
so that if you try to assign a string that is too long to an object of type
StringVar, you will get an error message. The version we define here provides
only a small collection of operations for manipulating string objects. In
Programming Project 1 you are asked to enhance the class definition by adding
more member functions and overloaded operators.

660 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

Since you could use the standard class string, as discussed in Chapter 8,
you do not really need the class StringVar, but it will be a good exercise to
design and code it.

The definition for the type StringVar is given in Display 11.11. One
constructor for the class StringVar takes a single argument of type int. This
argument determines the maximum allowable length for a string value stored in
the object. A default constructor creates an object with a maximum allowable
length of 100. Another constructor takes an array argument that contains a
C string of the kind discussed in Chapter 8. Note that this means the argument
to this constructor can be a quoted string. This constructor initializes the object
so that it can hold any string whose length is less than or equal to the length of
its argument, and it initializes the object’s string value to a copy of the value of
its argument. For the moment, ignore the constructor that is labeled Copy
constructor. Also ignore the member function named ~StringVar. Although it
may look like a constructor, ~StringVar is not a constructor. We will discuss
these two new kinds of member functions in later subsections. The meanings of
the remaining member functions for the class StringVar are straightforward.

A simple demonstration program is given in Display 11.11. Two
objects, your_name and our_name, are declared within the definition of the
function conversation. The object your_name can contain any string that is
max_name_size or fewer characters long. The object our_name is initialized to
the string value "Borg" and can have its value changed to any other string
of length 4 or less.

DISPLAY 11.11 Program Using the StringVar Class (part 1 of 3)

1 //This is the definition for the class StringVar
2 //whose values are strings. An object is declared as follows.
3 //Note that you use (max_size), not [max_size]
4 // StringVar the_object(max_size);
5 //where max_size is the longest string length allowed.
6 #include <iostream>
7 using namespace std;
8
9 class StringVar

10 {
11 public:
12 StringVar(int size);
13 //Initializes the object so it can accept string values up to size
14 //in length. Sets the value of the object equal to the empty string.
15

(continued)

constructors

size of string
value

11.4 Classes and Dynamic Arrays 661

DISPLAY 11.11 Program Using the StringVar Class (part 2 of 3)

16 StringVar();
17 //Initializes the object so it can accept string values of length 100
18 //or less. Sets the value of the object equal to the empty string.
19
20 StringVar(const char a[]);
21 //Precondition: The array a contains characters terminated with '\0'.
22 //Initializes the object so its value is the string stored in a and
23 //so that it can later be set to string values up to strlen(a) in length
24
25 StringVar(const StringVar& string_object);
26 //Copy constructor.
27
28 ~StringVar();
29 //Returns all the dynamic memory used by the object to the freestore.
30
31 int length() const;
32 //Returns the length of the current string value.

33 void input_line(istream& ins);
34 //Precondition: If ins is a file input stream, then ins has been
35 //connected to a file.
36 //Action: The next text in the input stream ins, up to '\n', is copied
37 //to the calling object. If there is not sufficient room, then
38 //only as much as will fit is copied.
39 friend ostream& operator <<(ostream& outs, const StringVar& the_string);
40 //Overloads the << operator so it can be used to output values
41 //of type StringVar
42 //Precondition: If outs is a file output stream, then outs
43 //has already been connected to a file.
44
45 private:
46 char *value; //pointer to dynamic array that holds the string value.
47 int max_length; //declared max length of any string value.
48 };
49
50
51 <The definitions of the member functions and overloaded operators go here>
52
53 //Program to demonstrate use of the class StringVar.
54

55 void conversation(int max_name_size);
56 //Carries on a conversation with the user.
57

(continued)

662 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

As we indicated at the beginning of this subsection, the class StringVar is
implemented using a dynamic array. The implementation is shown in Display
11.12. When an object of type StringVar is declared, a constructor is called to
initialize the object. The constructor uses the new operator to create a new
dynamic array of characters for the member variable value. The string value is
stored in the array value as an ordinary string value, with '\0' used to mark
the end of the string. Notice that the size of this array is not determined until
the object is declared, at which point the constructor is called and the
argument to the constructor determines the size of the dynamic array. As
illustrated in Display 11.11, this argument can be a variable of type int. Look
at the declaration of the object your_name in the definition of the function
conversation. The argument to the constructor is the call-by-value parameter
max_name_size. Recall that a call-by-value parameter is a local variable, so

DISPLAY 11.11 Program Using the StringVar Class (part 3 of 3)

58 int main()
59 {
60 using namespace std;
61 conversation(30);
62 cout << "End of demonstration.\n";
63 return 0;
64 }
65
66 // This is only a demonstration function:
67 void conversation(int max_name_size)
68 {
69 using namespace std;
70
71 StringVar your_name(max_name_size), our_name("Borg");
72
73 cout << "What is your name?\n";
74 your_name.input_line(cin);
75 cout << "We are " << our_name << endl;
76 cout << "We will meet again " << your_name << endl;
77 }

Sample Dialogue

What is your name?

Kathryn Janeway

We are Borg

We will meet again Kathryn Janeway

End of demonstration

Memory is returned to the freestore
when the function call ends.

Determines the size of the
dynamic array

implementation

11.4 Classes and Dynamic Arrays 663

max_name_size is a variable. Any int variable may be used as the argument to
the constructor in this way.

The implementation of the member functions length, input_line, and
the overloaded output operator << are all straightforward. In the next few
subsections we discuss the function ~StringVar and the constructor labeled
Copy constructor. ■

Destructors

There is one problem with dynamic variables. They do not go away unless
your program makes a suitable call to delete. Even if the dynamic variable
was created using a local pointer variable and the local pointer variable goes
away at the end of a function call, the dynamic variable will remain unless
there is a call to delete. If you do not eliminate dynamic variables with calls
to delete, the dynamic variables will continue to occupy memory space,
which may cause your program to abort because it used up all the memory in
the freestore. Moreover, if the dynamic variable is embedded in the implemen-
tation of a class, the programmer who uses the class does not know about the
dynamic variable and cannot be expected to perform the call to delete. In fact,
since the data members are normally private members, the programmer
normally cannot access the needed pointer variables and so cannot call delete
with these pointer variables. To handle this problem, C++ has a special kind
of member function called a destructor.

A destructor is a member function that is called automatically when an
object of the class passes out of scope. This means that if your program
contains a local variable that is an object with a destructor, then when the
function call ends, the destructor is called automatically. If the destructor is
defined correctly, the destructor calls delete to eliminate all the dynamic
variables created by the object. This may be done with a single call to delete
or it may require several calls to delete. You might also want your destructor
to perform some other cleanup details as well, but returning memory to the
freestore is the main job of the destructor.

The member function ~StringVar is the destructor for the class StringVar
shown in Display 11.11. Like a constructor, a destructor always has the same
name as the class it is a member of, but the destructor has the tilde symbol ~
at the beginning of its name (so you can tell that it is a destructor and not a
constructor). Like a constructor, a destructor has no type for the value
returned, not even the type void. A destructor has no parameters. Thus, a class
can have only one destructor; you cannot overload the destructor for a class.
Otherwise, a destructor is defined just like any other member function.

Notice the definition of the destructor ~StringVar given in Display 11.12.
~StringVar calls delete to eliminate the dynamic array pointed to by the
member pointer variable value. Look again at the function conversation in the
sample program shown in Display 11.11. The local variables your_name and
our_name both create dynamic arrays. If this class did not have a destructor, then

Video Note
Arrays of Classes
using Dynamic
Arrays

destructor

destructor name

~StringVar

664 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

DISPLAY 11.12 Implementation of StringVar (part 1 of 2)

1 //This is the implementation of the class StringVar.
2 //The definition for the class StringVar is in Display 11.11.
3 #include <cstdlib>
4 #include <cstddef>
5 #include <cstring>
6
7 //Uses cstddef and cstdlib:
8 StringVar::StringVar(int size) : max_length(size)
9 {

10 value = new char[max_length + 1];//+1 is for '\0'.
11 value[0] = '\0';
12 }
13
14 //Uses cstddef and cstdlib:
15 StringVar::StringVar() : max_length(100)
16 {
17 value = new char[max_length + 1];//+1 is for '\0'.
18 value[0] = '\0';
19 }
20
21 //Uses cstring, cstddef, and cstdlib:
22 StringVar::StringVar(const char a[]) : max_length(strlen(a))
23 {
24 value = new char[max_length + 1];//+1 is for '\0'.
25 strcpy(value, a);
26 }
27 //Uses cstring, cstddef, and cstdlib:
28 StringVar::StringVar(const StringVar& string_object)
29 : max_length(string_object.length())
30 {
31 value = new char[max_length + 1];//+1 is for '\0'.
32 strcpy(value, string_object.value);
33 }
34 StringVar::~StringVar()
35 {
36 delete [] value;
37 }
38
39 //Uses cstring:
40 int StringVar::length() const
41 {
42 return strlen(value);
43 }
44
45 //Uses iostream:

(continued)

Copy constructor
(discussed later in
this chapter)

Destructor

11.4 Classes and Dynamic Arrays 665

after the call to conversation has ended, these dynamic arrays would still be
occupying memory, even though they are useless to the program. This would
not be a problem here because the sample program ends soon after the call to
conversation is completed; but if you wrote a program that made repeated
calls to functions like conversation, and if the class StringVar did not have a
suitable destructor, then the function calls could consume all the memory in the
freestore and your program would then end abnormally.

■ PITFALL Pointers as Call-by-Value Parameters

When a call-by-value parameter is of a pointer type, its behavior can be subtle
and troublesome. Consider the function call shown in Display 11.13. The
parameter temp in the function sneaky is a call-by-value parameter, and hence

Destructor

A destructor is a member function of a class that is called automatically
when an object of the class goes out of scope. Among other things, this
means that if an object of the class type is a local variable for a function,
then the destructor is automatically called as the last action before the
function call ends. Destructors are used to eliminate any dynamic variables
that have been created by the object so that the memory occupied by
these dynamic variables is returned to the freestore. Destructors may
perform other cleanup tasks as well. The name of a destructor must consist
of the tilde symbol ~ followed by the name of the class.

DISPLAY 11.12 Implementation of StringVar (part 2 of 2)

46 void StringVar::input_line(istream& ins)
47 {
48 ins.getline(value, max_length + 1);
49 }
50
51 //Uses iostream:
52 ostream& operator <<(ostream& outs, const StringVar& the_string)
53 {
54 outs << the_string.value;
55 return outs;
56 }

666 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

it is a local variable. When the function is called, the value of temp is set to the
value of the argument p and the function body is executed. Since temp is a
local variable, no changes to temp should go outside of the function sneaky.

DISPLAY 11.13 A Call-by-Value Pointer Parameter

1 //Program to demonstrate the way call-by-value parameters
2 //behave with pointer arguments.
3 #include <iostream>
4 using namespace std;
5
6 typedef int* IntPointer;
7
8 void sneaky(IntPointer temp);
9

10 int main()
11 {
12 IntPointer p;
13
14 p = new int;
15 *p = 77;
16 cout << "Before call to function *p == "
17 << *p << endl;

18 sneaky(p);

19 cout << "After call to function *p == "
20 << *p << endl;
21
22 return 0;
23 }
24
25 void sneaky(IntPointer temp)
26 {
27 *temp = 99;
28 cout << "Inside function call *temp == "
29 << *temp << endl;
30 }
31

Sample Dialogue

Before call to function *p == 77

Inside function call *temp == 99

After call to function *p == 99

11.4 Classes and Dynamic Arrays 667

In particular, the value of the pointer variable p should not be changed. Yet
the sample dialogue makes it look as if the value of the pointer variable p had
changed. Before the call to the function sneaky, the value of *p was 77, and
after the call to sneaky the value of *p is 99. What has happened?

The situation is diagrammed in Display 11.14. Although the sample
dialogue may make it look as if p were changed, the value of p was not
changed by the function call to sneaky. Pointer p has two things associated
with it: p’s pointer value and the value stored where p points. Now, the value
of p is a pointer (that is, a memory address). After the call to sneaky, the
variable p contains the same pointer value (that is, the same memory address).
The call to sneaky has changed the value of the variable pointed to by p, but
it has not changed the value of p itself.

If the parameter type is a class or structure type that has member variables
of a pointer type, the same kind of surprising changes can occur with call-by-
value arguments of the class type. However, for class types, you can avoid (and
control) these surprise changes by defining a copy constructor, as described in
the next subsection. ■

Copy Constructors

A copy constructor is a constructor that has one parameter that is of the same
type as the class. The one parameter must be a call-by-reference parameter, and
normally the parameter is preceded by the const parameter modifier, so it is
a constant parameter. In all other respects a copy constructor is defined in the
same way as any other constructor and can be used just like other constructors.

DISPLAY 11.14 The Function Call sneaky(p);

1. Before call to sneaky:

p 77

2. Value of p is plugged in for temp:

p

temp

77

4. After call to sneaky:3. Change made to *temp:

p

temp

99 p 99

copy constructor

668 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

For example, a program that uses the class StringVar defined in Display
11.11 might contain the following:

StringVar line(20), motto("Constructors can help.");
cout << "Enter a string of length 20 or less:\n";
line.input_line(cin);
StringVar temp(line);//Initialized by the copy constructor.

The constructor used to initialize each of the three objects of type StringVar is
determined by the type of the argument given in parentheses after the object’s
name. The object line is initialized with the constructor that has a parameter
of type int; the object motto is initialized by the constructor that has a
parameter of type const char a[]. Similarly, the object temp is initialized by
the constructor that has one argument of type const StringVar&. When used
in this way, a copy constructor is being used just like any other constructor.

A copy constructor should be defined so that the object being initialized
becomes a complete, independent copy of its argument. So, in the declaration

StringVar temp(line);

the member variable temp.value is not simply set to the same value as
line.value; that would produce two pointers pointing to the same dynamic
array. The definition of the copy constructor is shown in Display 11.12. Note
that in the definition of the copy constructor, a new dynamic array is created
and the contents of one dynamic array are copied to the other dynamic array.
Thus, in the previous declaration, temp is initialized so that its string value is
equal to the string value of line, but temp has a separate dynamic array. Thus,
any change that is made to temp has no effect on line.

As you have seen, a copy constructor can be used just like any other
constructor. A copy constructor is also called automatically in certain other
situations. Roughly speaking, whenever C++ needs to make a copy of an
object, it automatically calls the copy constructor. In particular, the copy
constructor is called automatically in three circumstances: (1) when a class
object is declared and is initialized by another object of the same type, (2)
when a function returns a value of the class type, and (3) whenever an
argument of the class type is “plugged in” for a call-by-value parameter. In this
case, the copy constructor defines what is meant by “plugging in.”

To see why you need a copy constructor, let’s see what would happen if
we did not define a copy constructor for the class StringVar. Suppose we did
not include the copy constructor in the definition of the class StringVar and
suppose we used a call-by-value parameter in a function definition, for
example:

void show_string(StringVar the_string)
{
 cout << "The string is: "
 << the_string << endl;
}

called when
an object

is declared

call-by-value
parameters

why a copy
constructor

is needed

11.4 Classes and Dynamic Arrays 669

Consider the following code, which includes a function call:

StringVar greeting("Hello");
show_string(greeting);
cout << "After call: " << greeting << endl;

Assuming there is no copy constructor, things proceed as follows: When the
function call is executed, the value of greeting is copied to the local variable
the_string, so the_string.value is set equal to greeting.value. But these are
pointer variables, so during the function call, the_string.value and greet-
ing.value point to the same dynamic array, as follows:

When the function call ends, the destructor for StringVar is called to
return the memory used by the_string to the freestore. The definition of the
destructor contains the following statement:

delete [] value;

Since the destructor is called with the object the_string, this statement is
equivalent to:

delete [] the_string.value;

which changes the picture to the following:

Since greeting.value and the_string.value point to the same dynamic
array, deleting the_string.value is the same as deleting greeting.value.
Thus, greeting.value is undefined when the program reaches the statement

cout << "After call: " << greeting << endl;

This cout statement is therefore undefined. The cout statement may by chance
give you the output you want, but sooner or later the fact that greeting.value
is undefined will produce problems. One major problem occurs when the
object greeting is a local variable in some function. In this case the destructor

"Hello"

greeting.value the_string.value

Undefined

greeting.value the_string.value

670 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

will be called with greeting when the function call ends. That destructor call
will be equivalent to

delete [] greeting.value;

But, as we just saw, the dynamic array pointed to by greeting.value has already
been deleted once, and now the system is trying to delete it a second time. Calling
delete twice to delete the same dynamic array (or other variable created with new)
can produce a serious system error that can cause your program to crash.

That was what would happen if there were no copy constructor. Fortunate-
ly, we included a copy constructor in our definition of the class StringVar, so
the copy constructor is called automatically when the following function call
is executed:

StringVar greeting("Hello");
show_string(greeting);

The copy constructor defines what it means to “plug in” the argument
greeting for the call-by-value parameter the_string, so that now the picture
is as follows:

Thus, any change that is made to the_string.value has no effect on the
argument greeting, and there are no problems with the destructor. If the
destructor is called for the_string and then called for greeting, each call to
the destructor deletes a different dynamic array.

When a function returns a value of a class type, the copy constructor is
called automatically to copy the value specified by the return statement. If
there is no copy constructor, then problems similar to what we described for
value parameters will occur.

If a class definition involves pointers and dynamically allocated memory using
the new operator, then you need to include a copy constructor. Classes that do not
involve pointers or dynamically allocated memory do not need a copy constructor.

Contrary to what you might expect, the copy constructor is not called
when you set one object equal to another using the assignment operator.2

2 C++ makes a careful distinction between initialization (the three cases where the copy
constructor is called) and assignment. Initialization uses the copy constructor to create
a new object; the assignment operator takes an existing object and modifies it so that it
is an identical copy (in all but location) of the right-hand side of the assignment.

"Hello"

greeting.value the_string.value

"Hello"

returned value

when you
need a copy
constructor

assignment
statements

11.4 Classes and Dynamic Arrays 671

However, if you do not like what the default assignment operator does, you
can redefine the assignment operator in the way described in the subsection
entitled “Overloading the Assignment Operator.”

SELF -TEST EXERC ISES

23. If a class is named MyClass and it has a constructor, what is the construc-
tor named? If MyClass has a destructor, what is the destructor named?

24. Suppose you change the definition of the destructor in Display 11.12 to
the following. How would the sample dialogue in Display 11.11 change?

Copy Constructor

A copy constructor is a constructor that has one call-by-reference parameter
that is of the same type as the class. The one parameter must be a call-by-
reference parameter. Normally, the parameter is also a constant parameter,
that is, preceded by the const parameter modifier. The copy constructor for
a class is called automatically whenever a function returns a value of the
class type. The copy constructor is also called automatically whenever an
argument is “plugged in” for a call-by-value parameter of the class type. A
copy constructor can also be used in the same ways as other constructors.

Any class that uses pointers and the new operator should have a copy
constructor.

The Big Three

The copy constructor, the = operator, and the destructor are called the
big three because experts say that if you need to define any of them, then
you need to define all three. If any of these is missing, the compiler will
create it, but it may not behave as you want. So it pays to define them
yourself. The copy constructor and overloaded = operator that the
compiler generates for you will work fine if all member variables are of
predefined types such as int and double, but they may misbehave on
classes that have class or pointer member variables. For any class that uses
pointers and the new operator, it is safest to define your own copy
constructor, overloaded =, and destructor.

= must be a
member

672 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

StringVar::~StringVar()
{

cout << endl
 << "Good-bye cruel world! The short life of\n"

<< "this dynamic array is about to end.\n";
 delete [] value;
}

25. The following is the first line of the copy constructor definition for the
class StringVar. The identifier StringVar occurs three times and means
something slightly different each time. What does it mean in each of the
three cases?

StringVar::StringVar(const StringVar& string_object)

26. Answer these questions about destructors.

a. What is a destructor and what must the name of a destructor be?

b. When is a destructor called?

c. What does a destructor actually do?

d. What should a destructor do?

Overloading the Assignment Operator

Suppose string1 and string2 are declared as follows:

StringVar string1(10), string2(20);

The class StringVar was defined in Displays 11.11 and 11.12. If string2 has
somehow been given a value, then the following assignment statement is
defined, but its meaning may not be what you would like it to be:

string1 = string2;

As usual, this predefined version of the assignment statement copies the value
of each of the member variables of string2 to the corresponding member
variables of string1, so the value of string1.max_length is changed to be the
same as string2.max_length and the value of string1.value is changed to be
the same as string2.value. But this can cause problems with string1 and
probably even cause problems for string2.

The member variable string1.value contains a pointer, and the assign-
ment statement sets this pointer equal to the same value as string2.value.
Thus, both string1.value and string2.value point to the same place in
memory. If you change the string value in string1, you will therefore also
change the string value in string2. If you change the string value in string2,
you will change the string value in string1.

Video Note
Overloading = and
== for a Class

11.4 Classes and Dynamic Arrays 673

In short, the predefined assignment statement does not do what we would
like an assignment statement to do with objects of type StringVar. Using the
predefined version of the assignment operator with the class StringVar can
only cause problems. The way to fix this is to overload the assignment operator
= so that it does what we want it to do with objects of the class StringVar.

The assignment operator cannot be overloaded in the way we have
overloaded other operators, such as << and +. When you overload the
assignment operator, it must be a member of the class; it cannot be a friend of
the class. To add an overloaded version of the assignment operator to the class
StringVar, the definition of StringVar should be changed to the following:

class StringVar
{
public:
 void operator =(const StringVar& right_side);
 //Overloads the assignment operator = to copy a string
 //from one object to another.
 <The rest of the definition of the class can be the same as in

 Display 11.11.>

The assignment operator is then used just as you always use the assignment
operator. For example, consider the following:

string1 = string2;

In this call, string1 is the calling object and string2 is the argument to the
member operator =.

The definition of the assignment operator can be as follows:

//The following is acceptable, but
//we will give a better definition:
void StringVar::operator =(const StringVar& right_side)
{
 int new_length = strlen(right_side.value);
 if ((new_length) > max_length)
 new_length = max_length;

 for (int i = 0; i < new_length; i++)
 value[i] = right_side.value[i];
 value[new_length] = '\0';
}

Notice that the length of the string in the object on the right side of the
assignment operator is checked. If it is too long to fit in the object on the left
side of the assignment operator (which is the calling object), then only as
many characters as will fit are copied to the object receiving the string. But
suppose you do not want to lose any characters in the copying process. To fit
in all the characters, you can create a new, larger dynamic array for the object

calling object
for =

674 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

on the left-hand side of the assignment operator. You might try to redefine the
assignment operator as follows:

//This version has a bug:
void StringVar::operator =(const StringVar& right_side)
{
 delete [] value;
 int new_length = strlen(right_side.value);
 max_length = new_length;

 value = new char[max_length + 1];

 for (int i = 0; i < new_length; i++)
 value[i] = right_side.value[i];
 value[new_length] = '\0';
}

This version has a problem when used in an assignment with the same
object on both sides of the assignment operator, like the following:

my_string = my_string;

When this assignment is executed, the first statement executed is

delete [] value;

But the calling object is my_string, so this means

delete [] my_string.value;

So, the string value in my_string is deleted and the pointer my_string.value
is undefined. The assignment operator has corrupted the object my_string,
and this run of the program is probably ruined.

One way to fix this bug is to first check whether there is sufficient room in
the dynamic array member of the object on the left-hand side of the
assignment operator and to delete the array only if extra space is needed. Our
final definition of the overloaded assignment operator does just such a check:

//This is our final version:
void StringVar::operator =(const StringVar& right_side)
{
 int new_length = strlen(right_side.value);
 if (new_length > max_length)
 {
 delete [] value;
 max_length = new_length;
 value = new char[max_length + 1];
 }

 for (int i = 0; i < new_length; i++)
 value[i] = right_side.value[i];
 value[new_length] = '\0';
}

Chapter Summary 675

For many classes, the obvious definition for overloading the assignment
operator does not work correctly when the same object is on both sides of the
assignment operator. You should always check this case, and be careful to
write your definition of the overloaded assignment operator so that it also
works in this case.

SELF -TEST EXERC ISE

27. a. Explain carefully why no overloaded assignment operator is needed
when the only data consists of built-in types.

b. Same as part (a) for a copy constructor.

c. Same as part (a) for a destructor.

CHAPTER SUMMARY

■ A friend function of a class is an ordinary function except that it has access
to the private members of the class, just like the member functions do.

■ If your classes each have a full set of accessor and mutator functions, then
the only reason to make a function a friend is to make the definition of
the friend function simpler and more efficient, but that is often reason
enough.

■ A parameter of a class type that is not changed by the function should nor-
mally be a constant parameter.

■ Operators, such as + and ==, can be overloaded so they can be used with
objects of a class type that you define.

■ When overloading the >> or << operators, the type returned should be a
stream type and the type returned must be a reference, which is indicated
by appending an & to the name of the returned type.

■ The base type of an array can be a structure or class type. A structure or class
can have an array as a member variable.

■ A destructor is a special kind of member function for a class. A destructor is
called automatically when an object of the class passes out of scope. The
main reason for destructors is to return memory to the freestore so the
memory can be reused.

■ A copy constructor is a constructor that has a single argument that is of the
same type as the class. If you define a copy constructor, it will be called auto-
matically whenever a function returns a value of the class type and whenever
an argument is “plugged in” for a call-by-value parameter of the class type. Any
class that uses pointers and the operator new should have a copy constructor.

676 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

■ The assignment operator = can be overloaded for a class so that it behaves as
you wish for that class. However, it must be overloaded as a member of the
class. It cannot be overloaded as a friend. Any class that uses pointers and the
operator new should overload the assignment operator for use with that class.

Answers to Self-Test Exercises

1. bool before(DayOfYear date1, DayOfYear date2)
{
 return ((date1.get_month() < date2.get_month())

 || (date1.get_month() == date2.get_month()

}

The previous Boolean expression says that date1 is before date2, provided
the month of date1 is before the month of date2 or that the months are
the same and the day of date1 is before the day of date2.

2. A friend function and a member function are alike in that they both can
use any member of the class (either public or private) in their function
definition. However, a friend function is defined and used just like an
ordinary function; the dot operator is not used when you call a friend
function, and no type qualifier is used when you define a friend function.
A member function, on the other hand, is called using an object name
and the dot operator. Also, a member function definition includes a type
qualifier consisting of the class name and the scope resolution operator::.

3. The modified definition of the class DayOfYear is shown below. The part
in color is new. We have omitted some comments to save space, but all the
comments shown in Display 11.2 should be included in this definition.

class DayOfYear
{
public:
 friend bool equal(DayOfYear date1, DayOfYear date2);

 friend bool after(DayOfYear date1, DayOfYear date2);
 //Precondition: date1 and date2 have values.
 //Returns true if date1 follows date2 on the calendar;
 //otherwise, returns false.

DayOfYear(int the_month, int the_day);
DayOfYear();
void input();
void output();

&& date1.get_day() < date2.get_day()));h

Answers to Self-Test Exercises 677

int get_month();
int get_day();

private:
void check_date();
int month;
int day;

};

You also must add the following definition of the function after:

4. The modified definition of the class Money is shown here. The part in color
is new. We have omitted some comments to save space, but all the com-
ments shown in Display 11.3 should be included in this definition.

class Money
{
public:
 friend Money add(Money amount1, Money amount2);

friend Money subtract(Money amount1, Money amount2);
//Precondition: amount1 and amount2 have values.
//Returns amount1 minus amount2.

friend bool equal(Money amount1, Money amount2);
Money(long dollars, int cents);

 Money(long dollars);
Money();

 double get_value();
 void input(istream& ins);
 void output(ostream& outs);
private:
 long all_cents;
};

You also must add the following definition of the function subtract:

Money subtract(Money amount1, Money amount2)
{
 Money temp;
 temp.all_cents = amount1.all_cents
 − amount2.all_cents;
 return temp;
}

bool after(DayOfYear date1, DayOfYear date2)
{
 return ((date1.month > date2.month) ||
 ((date1.month == date2.month) && (date1.day > date2.day)));
}

678 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

5. The modified definition of the class Money is shown here. The part in color
is new. We have omitted some comments to save space, but all the com-
ments shown in Display 11.3 should be included in this definition.

class Money
{
public:
 friend Money add(Money amount1, Money amount2);
 friend bool equal(Money amount1, Money amount2);

Money(long dollars, int cents);
Money(long dollars);

 Money();
 double get_value();
 void input(istream& ins);

 void output(ostream& outs);
 //Precondition: If outs is a file output stream, then
 //outs has already been connected to a file.
 //Postcondition: A dollar sign and the amount of money
 //recorded in the calling object has been sent to the
 //output stream outs.

void output();
//Postcondition: A dollar sign and the amount of money
//recorded in the calling object has been output to the
//screen.

private:
 long all_cents;
};

You also must add the following definition of the function name output.
(The old definition of output stays, so that there are two definitions
of output.)

void Money::output()
{

output(cout);
}

The following longer version of the function definition also works:

//Uses cstdlib and iostream
void Money::output()
{
 long positive_cents, dollars, cents;
 positive_cents = labs(all_cents);
 dollars = positive_cents/100;
 cents = positive_cents%100;

 if (all_cents < 0)

Answers to Self-Test Exercises 679

cout << "− $" << dollars << '.';
 else
 cout << "$" << dollars << '.';

 if (cents < 10)
 cout << '0';
 cout << cents;
}

You can also overload the member function input so that a call like

purse.input();

means the same as

purse.input(cin);

And, of course, you can combine this enhancement with the enhancements
from previous Self-Test Exercises to produce one highly improved class
Money.

6. If the user enters $− 9.95 (instead of − $9.95), the function input will read
the ‘$’ as the value of one_char, the − 9 as the value of dollars, the ‘.’ as
the value of decimal_point, and the ‘9’ and ‘5’ as the values of digit1 and
digit2. That means it will set dollars equal to − 9 and cents equal to 95
and so set the amount equal to a value that represents − $9.00 plus 0.95
which is − $8.05. One way to catch this problem is to test if the value of
dollars is negative (since the value of dollars should be an absolute
value). To do this, rewrite the error message portion as follows:

if (one_char != '$' || decimal_point != '.'
 || !isdigit(digit1) || !isdigit(digit2)
 || dollars < 0)
{
 cout << "Error illegal form for money input\n";
 exit(1);
}

This code still will not give an error message for incorrect input with zero
dollars as in $− 0.95. However, with the material we have learned thus far,
a test for this case, while certainly possible, would significantly complicate
the code and make it harder to read.

7. #include <iostream>
using namespace std;
int main()
{
 int x;
 cin >> x;

New

680 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

 cout << x << endl;
 return 0;
}

If the compiler interprets input with a leading 0 as a base-eight numeral,
then with input data 077, the output should be 63. The output should be
77 if the compiler does not interpret data with a leading 0 as indicating
base eight.

8. The only change from the version given in Display 11.3 is that the modi-
fier const is added to the function heading, so the definition is

double Money::get_value() const
{
 return (all_cents * 0.01);
}

9. The member function input changes the value of its calling object, and so
the compiler will issue an error message if you add the const modifier.

10. Similarities: Each parameter call method protects the caller’s argument
from change. Differences: The call-by-value makes a copy of the caller’s
argument, so it uses more memory than a call-by-constant-reference.

11. In the const int x = 17; declaration, the const keyword promises the
compiler that code written by the author will not change the value of x.

In the int f() const; declaration, the const keyword is a promise to the
compiler that code written by the author to implement function f will not
change anything in the calling object.

In the int g(const A& x); declaration, the const keyword is a promise to
the compiler that code written by the class author will not change the
argument plugged in for x.

12. The difference between a (binary) operator (such as +, *, /, and so forth)
and a function involves the syntax of how they are called. In a function
call, the arguments are given in parentheses after the function name. With
an operator, the arguments are given before and after the operator. Also,
you must use the reserved word operator in the declaration and in the
definition of an overloaded operator.

13. The modified definition of the class Money is shown here. The part in color
is new. We have omitted some comments to save space, but all the com-
ments shown in Display 11.5 should be included in this definition.

class Money
{
public:

Answers to Self-Test Exercises 681

 friend Money operator +(const Money& amount1,
 const Money& amount2);
 friend bool operator ==(const Money& amount1,
 const Money& amount2);

 friend bool operator < (const Money& amount1,
 const Money& amount2);
 //Precondition: amount1 and amount2 have been given

 //values.
 //Returns true if amount1 is less than amount2;
 //otherwise, returns false.

 Money(long dollars, int cents);
 Money(long dollars);
 Money();
 double get_value() const;
 void input(istream& ins);
 void output(ostream& outs) const;
private:
 long all_cents;
};

You also must add the following definition of the overloaded operator <:

bool operator < (const Money& amount1,
 const Money& amount2)
{
 return (amount1.all_cents < amount2.all_cents);
}

14. The modified definition of the class Money is shown here. The part in color
is new. We have omitted some comments to save space, but all the com-
ments shown in Display 11.5 should be included in this definition. We
have included the changes from the previous exercises in this answer,
since it is natural to use the overloaded < operator in the definition of the
overloaded <= operator.

class Money
{
public:
 friend Money operator +(const Money& amount1,
 const Money& amount2);
 friend bool operator ==(const Money& amount1,
 const Money& amount2);

 friend bool operator < (const Money& amount1,
 const Money& amount2);
 //Precondition: amount1 and amount2 have been given

 //values.
 //Returns true if amount1 is less than amount2;
 //otherwise, returns false.

682 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

 friend bool operator <= (const Money& amount1,
 const Money& amount2);
 //Precondition: amount1 and amount2 have been given

 //values.
 //Returns true if amount1 is less than or equal to
 //amount2; otherwise, returns false.

 Money(long dollars, int cents);
 Money(long dollars);
 Money();
 double get_value() const;
 void input(istream& ins);
 void output(ostream& outs) const;
private:
 long all_cents;
};

You also must add the following definition of the overloaded operator <=
(as well as the definition of the overloaded operator < given in the
previous exercise):

bool operator <= (const Money& amount1,
 const Money& amount2)
{
 return ((amount1.all_cents < amount2.all_cents)
 ||(amount1.all_cents == amount2.all_cents));
}

15. When overloading an operator, at least one of the arguments to the opera-
tor must be of a class type. This prevents changing the behavior of + for
integers. Actually, this requirement prevents changing the effect of any
operator on any built-in type.

16. //Uses cmath (for floor):
Money::Money(double amount)
{
 all_cents = floor(amount*100);
}

This definition simply discards any amount that is less than one cent. For
example, it converts 12.34999 to the integer 1234, which represents the
amount $12.34. It is possible to define the constructor to instead do other
things with any fraction of a cent.

17. istream& operator>>(istream& ins, Pairs& second)
{
 char ch;
 ins >> ch; //discard initial '('

Answers to Self-Test Exercises 683

 ins >> second.f;
 ins >> ch; //discard comma ','
 ins >> second.s;
 ins >> ch; //discard final ')'
 return ins;
}
ostream& operator<<(ostream& outs, const Pairs& second)
{
 outs << '(';
 outs << second.f;
 outs << ','; //You might prefer ", "
 //to get an extra space
 outs << second.s;
 outs << ')';
 return outs;
}

18. //Uses iostream:
istream& operator >>(istream& ins, Percent& the_object)
{
 char percent_sign;
 ins >> the_object.value;
 ins >> percent_sign;//Discards the % sign.
 return ins;
}

//Uses iostream:
ostream& operator <<(ostream& outs,
 const Percent& a_percent)
{
 outs << a_percent.value << '%';
 return outs;
}

struct Score
{

int home_team;
int opponent;

};
Score game[10];

19. struct Score
{

int home_team;
int opponent;

};
Score game[10];

20. //Reads in 5 amounts of money, doubles each amount,
//and outputs the results.

684 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

#include <iostream>
<The definitions for the Money class goes here>

int main()
{
 using namespace std;
 Money amount[5];
 int i;
 cout << "Enter 5 amounts of money:\n";
 for (i = 0; i < 5; i++)
 cin >> amount[i];
 for (i = 0; i < 5; i++)
 amount[i] = amount[i] + amount[i];
 cout << "After doubling, the amounts are:\n";
 for (i = 0; i < 5; i++)
 cout << amount[i] << " ";
 cout << endl;

 return 0;
}

(You cannot use 2*amount[i], since * has not been overloaded for
operands of type Money.)

21. See answer 22.

22. This answer combines the answers to this and the previous Self-Test Exer-
cise. The class definition would change to the following. (We have deleted
some comments from Display 11.10 to save space, but you should include
them in your answer.)

class TemperatureList
{
public:
 TemperatureList();

 int get_size() const;
 //Returns the number of temperatures on the list.

 void add_temperature(double temperature);

 double get_temperature(int position) const;
 //Precondition: 0 <= position < get_size().
 //Returns the temperature that was added in position
 //specified. The first temperature that was added is
 //in position 0.

 bool full() const;

 friend ostream& operator <<(ostream& outs,

Answers to Self-Test Exercises 685

const TemperatureList& the_object);
private:
 double list[MAX_LIST_SIZE];//of temperatures in
 //Fahrenheit
 int size; //number of array positions filled
};

You also need to add the following member function definitions:

int TemperatureList::get_size() const
{
 return size;
}

//Uses iostream and cstdlib:
double TemperatureList::get_temperature (int position) const
 {
 if ((position >= size) || (position < 0))
 {
 cout << "Error:"
 << " reading an empty list position.\n";
 exit(1);
 }
 else
 {
 return (list[position]);

}

23. The constructor is named MyClass, the same name as the name of the class.
The destructor is named ~MyClass.

24. The dialogue would change to the following:

What is your name?

Kathryn Janeway

We are Borg

We will meet again Kathryn Janeway

Good-bye cruel world! The short life of

this dynamic array is about to end.

Good-bye cruel world! The short life of

this dynamic array is about to end.

End of demonstration

686 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

25. The StringVar before the :: is the name of the class. The StringVar right
after the :: is the name of the member function. (Remember, a constructor
is a member function that has the same name as the class.) The StringVar
inside the parentheses is the type for the parameter string_object.

26. a. A destructor is a member function of a class. A destructor’s name
always begins with a tilde, ~, followed by the class name.

b. A destructor is called when a class object goes out of scope.

c. A destructor actually does whatever the class author programs it to do!

d. A destructor is supposed to delete dynamic variables that have been
allocated by constructors for the class. Destructors may also do other
cleanup tasks.

27. In the case of the assignment operator = and the copy constructor, if there
are only built-in types for data, the default copy mechanism is exactly
what you want, so the default works fine. In the case of the destructor, no
dynamic memory allocation is done (no pointers), so the default do-
nothing action is again what you want.

PROGRAMMING PROJECTS

1. Modify the definition of the class Money shown in Display 11.8 so that all
of the following are added:

a. The operators <, <=, >, and >= have each been overloaded to apply to
the type Money. (Hint: See Self-Test Exercise 13.)

b. The following member function has been added to the class definition.
(We show the function declaration as it should appear in the class
definition. The definition of the function itself will include the
qualifier Money::.)

Money percent(int percent_figure) const;
//Returns a percentage of the money amount in the
//calling object. For example, if percent_figure is 10,
//then the value returned is 10% of the amount of
//money represented by the calling object.

For example, if purse is an object of type Money whose value represents
the amount $100.10, then the call

purse.percent(10);

returns 10% of $100.10; that is, it returns a value of type Money that
represents the amount $10.01.

Programming Projects 687

2. Self-Test Exercise 17 asked you to overload the operator >> and the opera-
tor << for a class Pairs. Complete and test this exercise. Implement the
default constructor, and the constructors with one and two int parame-
ters. The one-parameter constructor should initialize the first member of
the pair; the second member of the pair is to be 0.

Overload binary operator + to add pairs according to the rule

(a, b) + (c, d) = (a + c, b + d)

Overload operator - analogously.

Overload operator* on Pairs and int according to the rule

(a, b) * c = (a * c, b * c)

Write a program to test all the member functions and overloaded
operators in your class definition.

3. In Chapter 8 we discussed vectors, which are like arrays that can grow in
size. Suppose that vectors were not defined in C++. Define a class called
VectorDouble that is like a class for a vector with base type double. Your
class VectorDouble will have a private member variable for a dynamic
array of doubles. It will also have two member variables of type int; one
called max_count for the size of the dynamic array of doubles, and one
called count for the number of array positions currently holding values.
(max_count is the same as the capacity of a vector; count is the same as the
size of a vector.)

If you attempt to add an element (a value of type double) to the vector
object of the class VectorDouble and there is no more room, then a new
dynamic array with twice the capacity of the old dynamic array is created and
the values of the old dynamic array are copied to the new dynamic array.

Your class should have all of the following:

■ Three constructors: a default constructor that creates a dynamic array
for 50 elements, a constructor with one int argument for the number
of elements in the initial dynamic array, and a copy constructor.

■ A destructor.

■ A suitable overloading of the assignment operator =.

■ A suitable overloading of the equality operator ==. To be equal, the val-
ues of count and the count array elements must be equal, but the val-
ues of max_count need not be equal.

■ Member functions push_back, capacity, size, reserve, and resize
that behave the same as the member functions of the same names for
vectors. (continued)

688 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

■ Two member functions to give your class the same utility as the square
brackets: value_at(i), which returns the value of the ith element in
the dynamic array; and change_value_at(d, i), which changes the
double value at the ith element of the dynamic array to d. Enforce suit-
able restrictions on the arguments to value_at and change_value_at.
(Your class will not work with the square brackets. It can be made to
work with square brackets, but we have not covered the material
which tells you how to do that.)

4. Self-Test Exercise 18 asked you to overload the operator >> and the opera-
tor << for a class Percent. Complete and test this exercise. Implement the
default constructor and the constructor with one int parameter. Overload
the + and - operators to add and subtract percents. Also, overload the *
operator to allow multiplication of a percent by an integer.

Write a program to test all the member functions and overloaded
operators in your class definition.

5. Define a class for rational numbers. A rational number is a number that
can be represented as the quotient of two integers. For example, 1/2, 3/4,
64/2, and so forth are all rational numbers. (By 1/2, etc., we mean the
everyday meaning of the fraction, not the integer division this expression
would produce in a C++ program.) Represent rational numbers as two val-
ues of type int, one for the numerator and one for the denominator. Call
the class Rational.

Include a constructor with two arguments that can be used to set the
member variables of an object to any legitimate values. Also include a
constructor that has only a single parameter of type int; call this single
parameter whole_number and define the constructor so that the object will
be initialized to the rational number whole_number/1. Also include a
default constructor that initializes an object to 0 (that is, to 0/1).

Overload the input and output operators >> and <<. Numbers are to be
input and output in the form 1/2, 15/32, 300/401, and so forth. Note
that the numerator, the denominator, or both may contain a minus sign,
so − 1/2, 15/− 32, and − 300/− 401 are also possible inputs. Overload all of
the following operators so that they correctly apply to the type Rational:
==, <, <=, >, >=, +, − , *, and /. Also write a test program to test your class.

Hints: Two rational numbers a/b and c/d are equal if a*d equals c*b. If b
and d are positive rational numbers, a/b is less than c/d provided a*d is less
than c*b. You should include a function to normalize the values stored so
that, after normalization, the denominator is positive and the numerator
and denominator are as small as possible. For example, after
normalization 4/− 8 would be represented the same as − 1/2. You should
also write a test program to test your class.

Programming Projects 689

6. Define a class for complex numbers. A complex number is a number of
the form

a + b*i

where, for our purposes, a and b are numbers of type double, and i is a
number that represents the quantity . Represent a complex number
as two values of type double. Name the member variables real and
imaginary. (The variable for the number that is multiplied by i is the one
called imaginary.) Call the class Complex.

Include a constructor with two parameters of type double that can be used
to set the member variables of an object to any values. Also include a
constructor that has only a single parameter of type double; call this
parameter real_part and define the constructor so that the object will be
initialized to real_part + 0*i. Also include a default constructor that
initializes an object to 0 (that is, to 0 + 0*i). Overload all of the following
operators so that they correctly apply to the type Complex: ==, +, − , *, >>,
and <<. You should write a test program to test your class.

Hints: To add or subtract two complex numbers, you add or subtract the
two member variables of type double. The product of two complex
numbers is given by the following formula:

(a + b*i)*(c + d*i) == (a*c − b*d) + (a*d + b*c)*i

In the interface file, you should define a constant i as follows:

const Complex i(0, 1);

This defined constant i will be the same as the i discussed earlier.

delete p;

7. Enhance the definition of the class StringVar given in Displays 11.11 and
11.12 by adding all of the following:

■ Member function copy_piece, which returns a specified substring;
member function one_char, which returns a specified single character;
and member function set_char, which changes a specified character.

■ An overloaded version of the == operator (note that only the string val-
ues have to be equal; the values of max_length need not be the same).

■ An overloaded version of + that performs concatenation of strings of
type StringVar.

■ An overloaded version of the extraction operator >> that reads one
word (as opposed to input_line, which reads a whole line). (continued)

1–

690 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

If you did the section on overloading the assignment operator, then add it
as well. Also write a suitable test program and thoroughly test your class
definition.

8. Define a class called Text whose objects store lists of words. The class Text
will be just like the class StringVar except that the class Text will use a
dynamic array with base type StringVar rather than base type char and
will mark the end of the array with a StringVar object consisting of a single
blank, rather than using '\0' as the end marker. Intuitively, an object of the
class Text represents some text consisting of words separated by blanks.
Enforce the restriction that the array elements of type StringVar contain no
blanks (except for the end marker elements of type StringVar).

Your class Text will have member functions corresponding to all the member
functions of StringVar. The constructor with an argument of type const
char a[] will initialize the Text object in the same way as described below
for input_line. If the C-string argument contains the new-line symbol '\n',
that is considered an error and ends the program with an error message.

The member function input_line will read blank separated strings and store
each string in one element of the dynamic array with base type StringVar.
Multiple blank spaces are treated the same as a single blank space. When
outputting an object of the class Text, insert one blank between each value of
type StringVar. You may either assume that no tab symbols are used or you
can treat the tab symbols the same as a blank; if this is a class assignment, ask
your instructor how you should treat the tab symbol.

Add the enhancements described in Programming Project 6. The
overloaded version of the extraction operator >> will fill only one element
of the dynamic array.

9. Using dynamic arrays, implement a polynomial class with polynomial
addition, subtraction, and multiplication.

Discussion: A variable in a polynomial does very little other than act as a
placeholder for the coefficients. Hence, the only interesting thing about
polynomials is the array of coefficients and the corresponding exponent.
Think about the polynomial

x*x*x + x + 1

One simple way to implement the polynomial class is to use an array of
doubles to store the coefficients. The index of the array is the exponent of
the corresponding term. Where is the term in x*x in the previous
example? If a term is missing, then it simply has a zero coefficient.

There are techniques for representing polynomials of high degree with
many missing terms. These use so-called sparse polynomial techniques.
Unless you already know these techniques, or learn very quickly, don’t
use these techniques.

Programming Projects 691

Provide a default constructor, a copy constructor, and a parameterized
constructor that enables an arbitrary polynomial to be constructed. Also
supply an overloaded operator = and a destructor.

Provide these operations:

■ polynomial + polynomial

■ constant + polynomial

■ polynomial + constant

■ polynomial - polynomial

■ constant - polynomial

■ polynomial - constant

■ polynomial * polynomial

■ constant * polynomial

■ polynomial * constant

Supply functions to assign and extract coefficients, indexed by exponent.

Supply a function to evaluate the polynomial at a value of type double.

You should decide whether to implement these functions as members,
friends, or standalone functions.

10. Write a checkbook balancing program. The program will read in the fol-
lowing for all checks that were not cashed as of the last time you balanced
your checkbook: the number of each check, the amount of the check, and
whether or not it has been cashed yet. Use an array with a class base type.
The class should be a class for a check. There should be three member
variables to record the check number, the check amount, and whether or
not the check was cashed. The class for a check will have a member vari-
able of type Money (as defined in Display 11.9) to record the check
amount. So, you will have a class used within a class. The class for a check
should have accessor and mutator functions as well as constructors and
functions for both input and output of a check.

In addition to the checks, the program also reads all the deposits, as well
as the old and the new account balance. You may want another array to
hold the deposits. The new account balance should be the old balance
plus all deposits, minus all checks that have been cashed.

The program outputs the total of the checks cashed, the total of the
deposits, what the new balance should be, and how much this figure
differs from what the bank says the new balance is. It also outputs two
lists of checks: the checks cashed since the last time you balanced your
checkbook and the checks still not cashed. Display both lists of checks in
sorted order from lowest to highest check number. (continued)

692 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

If this is a class assignment, ask your instructor if input/output should be
done with the keyboard and screen or if it should be done with files. If it
is to be done with files, ask your instructor for instructions on file names.

11. Define a class called List that can hold a list of values of type double.
Model your class definition after the class TemperatureList given in Dis-
play 11.10, but your class List will make no reference to temperatures
when it outputs values. The values may represent any sort of data items as
long as they are of type double. Include the additional features specified
in Self-Test Exercises 21 and 22. Change the member function names so
that they do not refer to temperature.

Add a member function called get_last that takes no arguments and
returns the last item on the list. The member function get_last does not
change the list. The member function get_last should not be called if the
list is empty. Add another member function called delete_last that
deletes the last element on the list. The member function delete_last is a
void function. Note that when the last element is deleted, the member
variable size must be adjusted. If delete_last is called with an empty list
as the calling object, the function call has no effect. Design a program to
thoroughly test your definition for the class List.

12. Define a class called StringSet that will be used to store a set of STL
strings. Use an array or a vector to store the strings. Create a constructor
that takes as an input parameter an array of strings for the initial values
in the set. Then write member functions to add a string to the set,
remove a string from the set, clear the entire set, return the number of
strings in the set, and output all strings in the set. Overload the + opera-
tor so that it returns the union of two StringSet objects. Also overload
the * operator so that it returns the intersection of two StringSet
objects. Write a program to test all member functions and overloaded
operators in your class.

13. This programming project requires you to complete Programming Project
12 first.

The field of information retrieval is concerned with finding relevant
electronic documents based upon a query. For example, given a group of
keywords (the query), a search engine retrieves Web pages (documents)
and displays them sorted by relevance to the query. This technology
requires a way to compare a document with the query to see which is
most relevant to the query.

A simple way to make this comparison is to compute the binary cosine
coefficient. The coefficient is a value between 0 and 1, where 1 indicates
that the query is very similar to the document and 0 indicates that the
query has no keywords in common with the document. This approach

Programming Projects 693

treats each document as a set of words. For example, given the following
sample document:

“Chocolate ice cream, chocolate milk, and chocolate bars are delicious.”

This document would be parsed into keywords where case is ignored,
punctuation discarded, and turned into the set containing the words
{chocolate, ice, cream, milk, and, bars, are, delicious}. An identical
process is performed on the query to turn it into a set of strings.

Once we have a query Q represented as a set of words and a document D
represented as a set of words, the similarity between Q and D is computed by:

Modify the StringSet from Programming Project 12 by adding an
additional member function that computes the similarity between the
current StringSet and an input parameter of type StringSet. The sqrt
function is in the cmath library.

Create two text files on your disk named Document1.txt and Document2.txt.
Write some text content of your choice in each file, but make sure that
each file contains different content. Next, write a program that allows the
user to input from the keyboard a set of strings that represents a query.
The program should then compare the query to both text files on the disk
and output the similarity to each one using the binary cosine coefficient.
Test your program with different queries to see if the similarity metric is
working correctly.

14. Redo Programming Project 6 from Chapter 9 (or do it for the first time),
but this time encapsulate the dynamic array and array size within a
class. The class should have public member functions addEntry and
deleteEntry. Make the array and size variables private. This will require
adding functions for getting and setting specific items in the array as well
as returning the current size of the array. Add a destructor that frees up the
memory allocated to the dynamic array. Also, add a copy constructor and
overload the assignment operator so that the dynamic array is properly
copied from the object on the right-hand side of the assignment to the
object on the left-hand side. Embed your class in a suitable test program.

15. To combat election fraud, your city is instituting a new voting procedure.
The ballot has a letter associated with every selection a voter may make. A
sample ballot is shown.

1. VOTE FOR MAYOR
A. Pincher, Penny
B. Dover, Skip
C. Perman, Sue

Sim Q D∩
Q D

------------------------=

Video Note
Solution to
Programming
Project 11.15

694 CHAPTER 11 / Friends, Overloaded Operators, and Arrays in Classes

2. PROPOSITION 17
D. YES
E. NO

3. MEASURE 1
F. YES
G. NO

4. MEASURE 2
H. YES
I. NO

After submitting their ballot, every voter receives a receipt that has a
unique ID number and a record of their voting selections. For example, a
voter that submits a ballot for Sue Perman, Yes on Proposition 17, No on
Measure 1, and Yes on Measure 2 might receive a receipt with

ID 4925 : CDGH

The next day the city posts all votes on their web page sorted by ID
number. This allows a voter to confirm their submission and allows
anyone to count the vote totals for themselves. A sample list for the
sample ballot is shown.

ID VOTES
4925 CDGH
4926 AEGH
4927 CDGI
4928 BEGI
4929 ADFH

Write a program that reads the posted voting list from a file and outputs
the percent of votes cast for each ballot item. You may assume that the file
does not have any header lines. The first line will contain a voter ID and a
string representing votes. Define a class named Voter that stores an
individual’s voting record. The class should have a constructor that takes
as input a string of votes (e.g., “CDGH”), a voter ID, and accessor
function(s) that return the person’s ID and vote for a specific question.
Store each Voter instance in an array or vector. Your program should
iterate over the array to compute and output the percent of votes cast for
each candidate, proposition, and measure. It should then prompt the user
to enter a voter ID, iterate over the list again to find the object with that
ID, and print his or her votes.

12
Separate

Compilation and
Namespaces

12.1 SEPARATE COMPILATION 696
ADTs Reviewed 697
Case Study: DigitalTime—A Class Compiled

Separately 698
Using #ifndef 707
Programming Tip: Defining Other Libraries 710

12.2 NAMESPACES 712
Namespaces and using Directives 712
Creating a Namespace 714
Qualifying Names 717
A Subtle Point About Namespaces (Optional) 718
Unnamed Namespaces 719
Programming Tip: Choosing a Name for a

Namespace 722
Pitfall: Confusing the Global Namespace and the

Unnamed Namespace 724

Chapter Summary 727
Answers to Self-Test Exercises 727
Programming Projects 729

696

From mine own library with volumes that
I prize above my dukedom.

WILLIAM SHAKESPEARE, The Tempest

INTRODUCTION
This chapter covers two topics that have to do with how you organize a C++
program into separate parts. Section 12.1 on separate compilation discusses how
a C++ program can be distributed across a number of files so that when some
parts of the program change, only those parts need to be recompiled. The separate
parts can also be more easily reused in other applications.

Section 12.2 discusses namespaces, which we introduced briefly in Chapter
2. Namespaces are a way of allowing you to reuse the names of classes,
functions, and other items by qualifying the names to indicate different uses.
Namespaces divide your code into sections so that the different sections may
reuse the same names with differing meanings. Namespaces allow a kind of
local meaning for names that is more general than local variables.

PREREQUISITES
This chapter uses material from Chapters 2 through 6 and 10 through 11.

12.1 SEPARATE COMPILATION

Your “if” is the only peacemaker;
much virtue in “if.”

WILLIAM SHAKESPEARE, As You Like It

C++ has facilities for dividing a program into parts that are kept in separate
files, compiled separately, and then linked together when (or just before) the
program is run. You can place the definition for a class (and its associated
function definitions) in files that are separate from the programs that use the
class. That way you can build up a library of classes so that many programs can
use the same class. You can compile the class once and then use it in many
different programs, just like you use the predefined libraries (such as those
with header files iostream and cstdlib). Moreover, you can define the class
itself in two files so that the specification of what the class does is separate
from how the class is implemented. If your class is defined following the
guidelines we have been giving you and you change only the implementation

12.1 Separate Compilation 697

of the class, then you need only recompile the file with the class implementa-
tion. The other files, including the files with the programs that use the class,
need not be changed or even recompiled. In this section we tell you how to
carry out this separate compilation of classes.

ADTs Reviewed

Recall that an ADT (abstract data type) is a class that has been defined so as to
separate the interface and the implementation of the class. All your class
definitions should be ADTs. In order to define a class so that it is an ADT, you
need to separate the specification of how the class is used by a programmer
from the details of how the class is implemented. The separation should be so
complete that you can change the implementation without needing to change
any program that uses the class in any way. The way to ensure this separation
can be summarized in three rules:

1. Make all the member variables private members of the class.

2. Make each of the basic operations for the ADT (the class) either a public
member function of the class, a friend function, an ordinary function, or
an overloaded operator. Group the class definition and the function and
operator declarations together. This group, along with its accompanying
comments, is called the interface for the ADT. Fully specify how to use
each such function or operator in a comment given with the class or with
the function or operator declaration.

3. Make the implementation of the basic operations unavailable to the pro-
grammer who uses the abstract data type. The implementation consists of
the function definitions and overloaded operator definitions (along with
any helping functions or other additional items these definitions require).

In C++, the best way to ensure that you follow these rules is to place the
interface and the implementation of the ADT class in separate files. As you
might guess, the file that contains the interface is often called the interface file,
and the file that contains the implementation is called the implementation
file. The exact details of how to set up, compile, and use these files will vary
slightly from one version of C++ to another, but the basic scheme is the same
in all versions of C++. In particular, the details of what goes into the files are
the same in all systems. The only things that vary are what commands you use
to compile and link these files. The details about what goes into these files are
illustrated in the next Case Study.

An ADT class has private member variables. Private member variables
(and private member functions) present a problem to our basic philosophy of
placing the interface and the implementation of an ADT in separate files. The
public part of the class definition for an ADT is part of the interface for the
ADT, but the private part is part of the implementation. This is a problem
because C++ will not allow you to split the class definition across two files.

interface

implementation

interface file and
implementation
files

Private members
are part of the
implementation.

698 CHAPTER 12 / Separate Compilation and Namespaces

Thus, some sort of compromise is needed. The only sensible compromise, and
the one we use, is to place the entire class definition in the interface file. Since
a programmer who is using the ADT class cannot use any of the private
members of the class, the private members will, in effect, still be hidden from
the programmer.

CASE STUDY DigitalTime—A Class Compiled Separately

Display 12.1 contains the interface file for an ADT class called DigitalTime.
DigitalTime is a class whose values are times of day, such as 9:30. Only the
public members of the class are part of the interface. The private members are
part of the implementation, even though they are in the interface file. The
label private: warns you that these private members are not part of the public
interface. Everything that a programmer needs to know in order to use the ADT
DigitalTime is explained in the comment at the start of the file and in the
comments in the public section of the class definition. This interface tells the
programmer how to use the two versions of the member function named
advance, the constructors, and the overloaded operators ==, >>, and <<. The
member function named advance, the overloaded operators, and the assign-
ment statement are the only ways that a programmer can manipulate objects
and values of this class. As noted in the comment at the top of the interface file,
this ADT class uses 24-hour notation, so, for instance, 1:30 PM is input and
output as 13:30. This and the other details you must know in order to
effectively use the class DigitalTime are included in the comments given with
the member functions.

We have placed the interface in a file named dtime.h. The suffix .h indicates
that this is a header file. An interface file is always a header file and therefore
always ends with the suffix .h. Any program that uses the class DigitalTime
must contain an include directive like the following, which names this file:

#include "dtime.h"

ADT

A data type is called an abstract data type (abbreviated ADT) if the
programmers who use the type do not have access to the details of how
the values and operations are implemented. All the classes that you define
should be ADTs. An ADT class is a class that is defined following good
programming practices that separate the interface and implementation of
the class. (Any nonmember basic operations for the class such as overload-
ed operators are considered part of the ADT, even though they may not be
officially part of the class definition.)

interface file

header files

12.1 Separate Compilation 699

When you write an include directive, you must indicate whether the header
file is a predefined header file that is provided for you or is a header file that
you wrote. If the header file is predefined, write the header file name in
angular brackets, like <iostream>. If the header file is one that you wrote, then

DISPLAY 12.1 Interface File for DigitalTime

1 //Header file dtime.h: This is the INTERFACE for the class DigitalTime.
2 //Values of this type are times of day. The values are input and output in
3 //24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.
4 #include <iostream>
5 using namespace std;

6 class DigitalTime
7 {
8 public:
9 friend bool operator ==(const DigitalTime& time1, const DigitalTime& time2);

10 //Returns true if time1 and time2 represent the same time;
11 //otherwise, returns false.

12 DigitalTime(int the_hour, int the_minute);
13 //Precondition: 0 <= the_hour <= 23 and 0 <= the_minute <= 59.
14 //Initializes the time value to the_hour and the_minute.

15 DigitalTime();
16 //Initializes the time value to 0:00 (which is midnight).

17 void advance(int minutes_added);
18 //Precondition: The object has a time value.
19 //Postcondition: The time has been changed to minutes_added minutes later.

20 void advance(int hours_added, int minutes_added);
21 //Precondition: The object has a time value.
22 //Postcondition: The time value has been advanced
23 //hours_added hours plus minutes_added minutes.

24 friend istream& operator >>(istream& ins, DigitalTime& the_object);
25 //Overloads the >> operator for input values of type DigitalTime.
26 //Precondition: If ins is a file input stream, then ins has already been
27 //connected to a file.

28 friend ostream& operator <<(ostream& outs, const DigitalTime& the_object);
29 //Overloads the << operator for output values of type DigitalTime.
30 //Precondition: If outs is a file output stream, then outs has already been
31 //connected to a file.
32 private:
33 int hour;
34 int minute;
35 };

This is part of the implementation.
It is not part of the interface.
The word private indicates that
this is not part of the public interface.

For the definition of the types
istream and ostream, which
are used as parameter types

include

700 CHAPTER 12 / Separate Compilation and Namespaces

write the header file name in quotes, like "dtime.h". This distinction tells the
compiler where to look for the header file. If the header file name is in angular
brackets, the compiler looks wherever the predefined header files are kept in
your implementation of C++. If the header file name is in quotes, the compiler
looks in the current directory or wherever programmer-defined header files are
kept on your system.

Any program that uses our DigitalTime class must contain the previous
include directive that names the header file dtime.h. That is enough to allow
you to compile the program, but is not enough to allow you to run the
program. In order to run the program you must write (and compile) the
definitions of the member functions and the overloaded operators. We have
placed these function and operator definitions in another file, which is called
the implementation file. Although it is not required by most compilers, it is
traditional to give the interface file and the implementation file the same
name. The two files do, however, end in different suffixes. We have placed the
interface for our ADT class in the file named dtime.h and the implementation
for our ADT class in a file named dtime.cpp. The suffix you use for the
implementation file depends on your version of C++. Use the same suffix for
the implementation file as you normally use for files that contain C++
programs. If your program files end in .cxx, then you would use .cxx in place
of .cpp. If your program files end in .CPP, then your implementation files will
end in .CPP instead of .cpp. We are using .cpp since most compilers accept
.cpp as the suffix for a C++ source code file. The implementation file for our
DigitalTime ADT class is given in Display 12.2. After we explain how the
various files for our ADT interact with each other, we will return to Display
12.2 and discuss the details of the definitions in this implementation file.

In order to use the ADT class DigitalTime in a program, the program must
contain the include directive

#include "dtime.h"

Notice that both the implementation file and the program file must contain
this include directive that names the interface file. The file that contains the
program (that is, the file that contains the main part of the program) is often
called the application file or driver file. Display 12.3 contains an application
file with a very simple program that uses and demonstrates the DigitalTime
ADT class.

The exact details on how you run this complete program, which is
contained in three files, depend on what system you are using. However, the
basic details are the same for all systems. You must compile the implementation
file, and you must compile the application file that contains the main part of
your program. You do not compile the interface file, which in this example is
the file dtime.h given in Display 12.1. You do not need to compile the
interface file because the compiler thinks the contents of this interface file are

implementation
file

file names

application file

compiling and
running

the program

12.1 Separate Compilation 701

DISPLAY 12.2 Implementation File for DigitalTime (part 1 of 3)

1 //Implementation file dtime.cpp (Your system may require some
2 //suffix other than .cpp): This is the IMPLEMENTATION of the ADT DigitalTime.
3 //The interface for the class DigitalTime is in the header file dtime.h.
4 #include <iostream>
5 #include <cctype>
6 #include <cstdlib>
7 #include "dtime.h"
8 using namespace std;

9 //These FUNCTION DECLARATIONS are for use in the definition of
10 //the overloaded input operator >>:

11 void read_hour(istream& ins, int& the_hour);
12 //Precondition: Next input in the stream ins is a time in 24-hour notation,
13 //like 9:45 or 14:45.
14 //Postcondition: the_hour has been set to the hour part of the time.
15 //The colon has been discarded and the next input to be read is the minute.

16 void read_minute(istream& ins, int& the_minute);
17 //Reads the minute from the stream ins after read_hour has read the hour.

18 int digit_to_int(char c);
19 //Precondition: c is one of the digits '0' through '9'.
20 //Returns the integer for the digit; for example, digit_to_int('3') returns 3.

21 bool operator ==(const DigitalTime& time1, const DigitalTime& time2)
22 {
23 return (time1.hour == time2.hour && time1.minute == time2.minute);
24 }

25 //Uses iostream and cstdlib:
26 DigitalTime::DigitalTime(int the_hour, int the_minute)
27 {
28 if (the_hour < 0 || the_hour > 23 || the_minute < 0 || the_minute > 59)
29 {
30 cout << "Illegal argument to DigitalTime constructor.";
31 exit(1);
32 }
33
34 else
35 {
36 hour = the_hour;
37 minute = the_minute;
38 }
39 }
40 DigitalTime::DigitalTime() : hour(0), minute(0)
41 {
42 //Body intentionally empty.
43 }
44

(continued)

702 CHAPTER 12 / Separate Compilation and Namespaces

DISPLAY 12.2 Implementation File for DigitalTime (part 2 of 3)

45 void DigitalTime::advance(int minutes_added)
46 {
47 int gross_minutes = minute + minutes_added;
48 minute = gross_minutes%60;
49
50 int hour_adjustment = gross_minutes/60;
51 hour = (hour + hour_adjustment)%24;
52 }
53
54 void DigitalTime::advance(int hours_added, int minutes_added)
55 {
56 hour = (hour + hours_added)%24;
57 advance(minutes_added);
58 }
59
60 //Uses iostream:
61 ostream& operator <<(ostream& outs, const DigitalTime& the_object)
62 {
63 outs << the_object.hour << ':';
64 if (the_object.minute < 10)
65 outs << '0';
66 outs << the_object.minute;
67 return outs;
68 }
69
70 //Uses iostream:
71 istream& operator >>(istream& ins, DigitalTime& the_object)
72 {
73 read_hour(ins, the_object.hour);
74 read_minute(ins, the_object.minute);
75 return ins;
76 }
77
78 int digit_to_int(char c)
79 {
80 return (static_cast<int>(c) − static_cast<int>('0'));
81 }
82
83 //Uses iostream, cctype, and cstdlib:
84 void read_minute(istream& ins, int& the_minute)
85 {
86 char c1, c2;
87 ins >> c1 >> c2;
88
89 if (!(isdigit(c1) && isdigit(c2)))

(continued)

12.1 Separate Compilation 703

DISPLAY 12.2 Implementation File for DigitalTime (part 3 of 3)

90 {
91 cout << "Error illegal input to read_minute\n";
92 exit(1);
93 }
94
95 the_minute = digit_to_int(c1)*10 + digit_to_int(c2);
96
97 if (the_minute < 0 || the_minute > 59)
98 {
99 cout << "Error illegal input to read_minute\n";
100 exit(1);
101 }
102 }
103
104 //Uses iostream, cctype, and cstdlib:
105 void read_hour(istream& ins, int& the_hour)
106 {
107 char c1, c2;
108 ins >> c1 >> c2;
109 if (!(isdigit(c1) && (isdigit(c2) || c2 == ':')))
110 {
111 cout << "Error illegal input to read_hour\n";
112 exit(1);
113 }
114
115 if (isdigit(c1) && c2 == ':')
116 {
117 the_hour = digit_to_int(c1);
118 }
119 else //(isdigit(c1) && isdigit(c2))
120 {
121 the_hour = digit_to_int(c1)*10 + digit_to_int(c2);
122 ins >> c2;//discard ':'
123 if (c2 != ':')
124 {
125 cout << "Error illegal input to read_hour\n";
126 exit(1);
127 }
128 }
129 if (the_hour < 0 || the_hour > 23)
130 {
131 cout << "Error illegal input to read_hour\n";
132 exit(1);
133 }
134 }

704 CHAPTER 12 / Separate Compilation and Namespaces

already contained in each of the other two files. Recall that both the
implementation file and the application file contain the directive

#include "dtime.h"

Compiling your program automatically invokes a preprocessor that reads this
include directive and replaces this include directive with the text in the file
dtime.h. Thus, the compiler sees the contents of dtime.h, and so the file

DISPLAY 12.3 Application File Using DigitalTime

1 //Application file timedemo.cpp (your system may require some suffix
2 //other than .cpp): This program demonstrates use of the class DigitalTime.
3 #include <iostream>
4 #include "dtime.h"
5 using namespace std;
6
7 int main()
8 {
9 DigitalTime clock, old_clock;

10
11 cout << "Enter the time in 24-hour notation: ";
12 cin >> clock;
13
14 old_clock = clock;
15 clock.advance(15);
16 if (clock == old_clock)
17 cout << "Something is wrong.";
18 cout << "You entered " << old_clock << endl;
19 cout << "15 minutes later the time will be "
20 << clock << endl;
21
22 clock.advance(2, 15);
23 cout << "2 hours and 15 minutes after that\n"
24 << "the time will be "
25 << clock << endl;
26
27 return 0;
28 }

Sample Dialogue

Enter the time in 24-hour notation: 11:15

You entered 11:15

15 minutes later the time will be 11:30

2 hours and 15 minutes after that

the time will be 13:45

12.1 Separate Compilation 705

dtime.h does not need to be compiled separately. (In fact, the compiler sees
the contents of dtime.h twice: once when you compile the implementation
file and once when you compile the application file.) This copying of the file
dtime.h is only a conceptual copying. The compiler acts as if the contents of
dtime.h were copied into each file that has the include directive. However, if
you look in that file after it is compiled, you will only find the include
directive; you will not find the contents of the file dtime.h.

Once the implementation file and the application file are compiled, you
still need to connect these files so that they can work together. This is called
linking the files and is done by a separate utility called a linker. The details for
how you call the linker depend on what system you are using. After the files
are linked, you can run your program. (Often the linking is done automatical-
ly as part of the process of running the program.)

This process sounds complicated, but many systems have facilities that
manage much of this detail for you automatically or semiautomatically. On
any system, the details quickly become routine.

Displays 12.1, 12.2, and 12.3 contain one complete program divided into
pieces and placed in three different files. You could instead combine the
contents of these three files into one file, and then compile and run this one
file without all this fuss about include directives and linking separate files.
Why bother with three separate files? There are several advantages to dividing
your program into separate files. Since you have the definition and the
implementation of the class DigitalTime in files separate from the application
file, you can use this class in many different programs without needing to
rewrite the definition of the class in each of the programs. Moreover, you need
to compile the implementation file only once, no matter how many programs
use the class DigitalTime. But there are more advantages than that. Since you
have separated the interface from the implementation of your DigitalTime
ADT class, you can change the implementation file and will not need to
change any program that uses the ADT. In fact, you will not even need to
recompile the program. If you change the implementation file, you only need
to recompile the implementation file and to relink the files. Saving a bit of
recompiling time is nice, but the big advantage is not having to rewrite code.
You can use the ADT class in many programs without writing the class code
into each program. You can change the implementation of the ADT class and
you need not rewrite any part of any program that uses the class.

Now that we have explained how the various files in our ADT class and
program are used, let’s discuss the implementation of our ADT class (Display
12.2) in more detail. Most of the implementation details are straightforward,
but there are two things that merit comment. Notice that the member
function name advance is overloaded so that it has two function definitions.
Also notice that the definition for the overloaded extraction (input) operator
>> uses two “helping functions” called read_hour and read_minute and these
two helping functions themselves use a third helping function called
digit_to_int. Let’s discuss these points.

linking

Why separate
files?

implementation
details

706 CHAPTER 12 / Separate Compilation and Namespaces

The class DigitalTime (Displays 12.1 and 12.2) has two member func-
tions called advance. One version takes a single argument, which is an integer
giving the number of minutes to advance the time. The other version takes two
arguments, one for a number of hours and one for a number of minutes, and
advances the time by that number of hours plus that number of minutes.

Defining a Class in Separate Files: A Summary

You can define a class and place the definition of the class and the
implementation of its member functions in separate files. You can then
compile the class separately from any program that uses the class, and you
can use this same class in any number of different programs. The class and
the program that uses the class are placed in three files as follows:

1. Put the definition of the class in a header file called the interface file. The
name of this header file ends in .h. The interface file also contains the decla-
rations for any functions and overloaded operators that define basic opera-
tions for the class but that are not listed in the class definition. Include
comments that explain how all these functions and operators are used.

2. The definitions of all the functions and overloaded operators mentioned in
step 1 (whether they are members or friends or neither) are placed in another
file called the implementation file. This file must contain an include direc-
tive that names the interface file described above. This include directive
uses quotes around the file name, as in the following example:

#include "dtime.h"

The interface file and the implementation file traditionally have the same
name, but end in different suffixes. The interface file ends in .h. The
implementation file ends in the same suffix that you use for files that contain
a complete C++ program. The implementation file is compiled separately
before it is used in any program.

3. When you want to use the class in a program, place the main part of the pro-
gram (and any additional function definitions, constant declarations, and so
on) in another file called an application file. This file also must contain an
include directive naming the interface file, as in the following example:

#include "dtime.h"

The application file is compiled separately from the implementation file. You
can write any number of these application files to use with one pair of
interface and implementation files. To run an entire program, you must first
link the object code that is produced by compiling the application file and
the object code that is produced by compiling the implementation file. (On
some systems the linking may be done automatically or semiautomatically.)

advance

12.1 Separate Compilation 707

Notice that the definition of the two-argument version of advance includes a
call to the one-argument version of advance. Look at the definition of the two-
argument version that is given in Display 12.2. First the time is advanced by
hours_added hours, and then the single-argument version of advance is used
to advance the time by an additional minutes_added minutes. At first this may
seem strange, but it is perfectly legal. The two functions named advance are two
different functions that, as far as the compiler is concerned, coincidentally
happen to have the same name. The situation is no different in this regard than
it would be if one of the two versions of the overloaded function advance had
been called another_advance.

Now let’s discuss the helping functions. The helping functions read_hour
and read_minute read the input one character at a time and then convert the
input to integer values that are placed in the member variables hour and minute.
The functions read_hour and read_minute read the hour and minute one digit
at a time, so they are reading values of type char. This is more complicated than
reading the input as int values, but it allows us to perform error checking to see
whether the input is correctly formed and to issue an error message if the input
is not well formed. These helping functions read_hour and read_minute use
another helping function named digit_to_int, which is the same as the
digit_to_int function we used in our definition of the class Money in Display
11.3. The function digit_to_int converts a digit, such as '3', to a number,
such as 3.

Using #ifndef

We have given you a method for placing a program in three files: two for the
interface and implementation of a class, and one for the application part of

Reusable Components

An ADT class developed and coded into separate files is a software
component that can be used again and again in a number of different
programs. Reusability, such as the reusability of these ADT classes, is an
important goal to strive for when designing software components. A
reusable component saves effort because it does not need to be rede-
signed, recoded, and retested for every application. A reusable component
is also likely to be more reliable than a component that is used only once,
for two reasons. First, you can afford to spend more time and effort on a
component if it will be used many times. Second, if the component is used
again and again, it is tested again and again. Every use of a software
component is a test of that component. Using a software component many
times in a variety of contexts is one of the best ways to discover any
remaining bugs in the software.

708 CHAPTER 12 / Separate Compilation and Namespaces

the program. A program can be kept in more than three files. For example, a
program might use several classes, and each class might be kept in a separate
pair of files. Suppose you have a program spread across a number of files and
more than one file has an include directive for a class interface file such as
the following:

#include "dtime.h"

Under these circumstances, you can have files that include other files, and
these other files may in turn include yet other files. This can easily lead to a
situation in which a file, in effect, contains the definitions in dtime.h more
than once. C++ does not allow you to define a class more than once, even if
the repeated definitions are identical. Moreover, if you are using the same
header file in many different projects, it becomes close to impossible to keep
track of whether you included the class definition more than once. To avoid
this problem, C++ provides a way of marking a section of code to say “if you
have already included this stuff once before, do not include it again.” The
way this is done is quite intuitive, although the notation may look a bit
weird until you get used to it. We will go through an example, explaining the
details as we go.

The following directive “defines” DTIME_H:

#define DTIME_H

What this means is that the compiler’s preprocessor puts DTIME_H on a list to
indicate that DTIME_H has been seen. Defines is perhaps not the best word for
this, since DTIME_H is not defined to mean anything but is merely put on a list.
The important point is that you can use another directive to test whether or
not DTIME_H has been defined and so test whether or not a section of code has
already been processed. You can use any (nonkeyword) identifier in place of
DTIME_H, but you will see that there are standard conventions for which
identifier you should use.

The following directive tests to see whether or not DTIME_H has been
defined:

#ifndef DTIME_H

If DTIME_H has already been defined, then everything between this directive
and the first occurrence of the following directive is skipped:

#endif

(An equivalent way to state this, which may clarify the way the directives
are spelled, is the following: If DTIME_H is not defined, then the compiler
processes everything up to the next #endif. That not is why there is an n in
#ifndef. This may lead you to wonder whether there is a #ifdef directive as
well as a #ifndef directive. There is, and it has the obvious meaning, but we
will have no occasion to use #ifdef.)

12.1 Separate Compilation 709

Now consider the following code:

#ifndef DTIME_H
#define DTIME_H
<a class definition>
#endif

If this code is in a file named dtime.h, then no matter how many times your
program contains

#include "dtime.h"

the class will be defined only one time.
The first time

#include "dtime.h"

is processed, the flag DTIME_H is defined and the class is defined. Now, suppose
the compiler again encounters

#include "dtime.h"

When the include directive is processed this second time, the directive

#ifndef DTIME_H

says to skip everything up to

#endif

and so the class is not defined again.
In Display 12.4 we have rewritten the header file dtime.h shown in Display

12.1, but this time we used these directives to prevent multiple definitions. With
the version of dtime.h shown in Display 12.4, if a file contains the following
include directive more than once, the class DigitalTime will still be defined
only once:

#include "dtime.h"

You may use some other identifier in place of DTIME_H, but the normal
convention is to use the name of the file written in all uppercase letters with
the underscore used in place of the period. You should follow this convention
so that others can more easily read your code and so that you do not have to
remember the flag name. This way the flag name is determined automatically
and there is nothing arbitrary to remember.

These same directives can be used to skip over code in files other than
header files, but we will not have occasion to use these directives except in
header files.

710 CHAPTER 12 / Separate Compilation and Namespaces

■ PROGRAMMING TIP Defining Other Libraries

You need not define a class in order to use separate compilation. If you have
a collection of related functions that you want to make into a library of your
own design, you can place the function declarations and accompanying
comments in a header file and the function definitions in an implementa-
tion file, just as we outlined for ADT classes. After that, you can use this
library in your programs the same way you would use a class that you placed
in separate files. ■

SELF -TEST EXERC ISES

1. Suppose that you are defining an ADT class and that you then use this
class in a program. You want to separate the class and program parts into
separate files as described in this chapter. Specify whether each of the fol-
lowing should be placed in the interface file, implementation file, or
application file:

a. The class definition

b. The declaration for a function that is to serve as an ADT operation, but
that is neither a member nor a friend of the class

DISPLAY 12.4 Avoiding Multiple Definitions of a Class

1 //Header file dtime.h: This is the INTERFACE for the class DigitalTime.
2 //Values of this type are times of day. The values are input and output in
3 //24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.

4 #ifndef DTIME_H
5 #define DTIME_H

6 #include <iostream>
7 using namespace std;

8 class DigitalTime
9 {

10
<The definition of the class DigitalTime is the same as in Display 12.1.>

11
12 };
13
14 #endif //DTIME_H

12.1 Separate Compilation 711

c. The declaration for an overloaded operator that is to serve as an ADT
operation, but that is neither a member nor a friend of the class

d. The definition for a function that is to serve as an ADT operation, but
that is neither a member nor a friend of the class

e. The definition for a friend function that is to serve as an ADT
operation

f. The definition for a member function

g. The definition for an overloaded operator that is to serve as an ADT
operation, but that is neither a member nor a friend of the class

h. The definition for an overloaded operator that is to serve as an ADT
operation and that is a friend of the class

i. The main part of your program

2. Which of the following files has a name that ends in .h: the interface file
for a class, the implementation file for the class, or the application file that
uses the class?

3. When you define a class in separate files, there is an interface file and an
implementation file. Which of these files needs to be compiled? (Both?
Neither? Only one? If so, which one?)

4. Suppose you define a class in separate files and use the class in a program.
Now suppose you change the class implementation file. Which of the fol-
lowing files, if any, need to be recompiled: the interface file, the imple-
mentation file, or the application file?

5. Suppose you want to change the implementation of the class Digital-
Time given in Displays 12.1 and 12.2. Specifically, you want to change
the way the time is recorded. Instead of using the two private variables
hour and minute, you want to use a single (private) int variable, which
will be called minutes. In this new implementation the private variable
minutes will record the time as the number of minutes since the time
0:00 (that is, since midnight). So 1:30 is recorded as 90 minutes, since it
is 90 minutes past midnight. Describe how you need to change the
interface and implementation files shown in Displays 12.1 and 12.2.
You need not write out the files in their entirety; just indicate what
items you need to change and how, in a very general way, you would
change them.

6. What is the difference between an ADT you define in C++ and a class you
define in C++?

712 CHAPTER 12 / Separate Compilation and Namespaces

12.2 NAMESPACES

What’s in a name? That which we call a rose
By any other name would smell as sweet.

WILLIAM SHAKESPEARE, Romeo and Juliet

When a program uses different classes and functions written by different
programmers there is a possibility that two programmers will use the same
name for two different things. Namespaces are a way to deal with this
problem. A namespace is a collection of name definitions, such as class
definitions and variable declarations.

Namespaces and using Directives

We have already been using the namespace that is named std. The std
namespace contains all the names defined in the standard library files (such
as iostream and cstdlib) that you use. For example, when you place the
following at the start of a file,

#include <iostream>

that places all of the name definitions (for names like cin and cout) into the
std namespace. Your program does not know about names in the std
namespace unless you specify that it is using the std namespace. So far, the
only way we know how to specify the std namespace (or any namespace) is
with the following sort of using directive:

using namespace std;

A good way to see why you might want to include this using directives is
to think about why you might want to not include it. If you do not include this
using directive for the namespace std, then you can define cin and cout to
have some meaning other than their standard meaning. (Perhaps you want to
redefine cin and cout because you want them to behave a bit differently from
the standard versions.) Their standard meaning is in the std namespace, and
without the using directive (or something like it), your code knows nothing
about the std namespace, and therefore, as far as your code is concerned, the
only definitions of cin and cout are whatever definitions you give them.

Every bit of code you write is in some namespace. If you do not place the
code in some specific namespace, then the code is in a namespace known as
the global namespace. So far we have not placed any code we wrote in any
namespace, so all of our code has been in the global namespace. The global
namespace does not have a using directive because you are always using the
global namespace. You could say that there is always an implicit automatic
using directive that says you are using the global namespace.

Note that you can be using more than one namespace at the same time.
For example, we are always using the global namespace and we are usually

namespace

global
namespace

12.2 Namespaces 713

using the std namespace. What happens if a name is defined in two
namespaces and you are using both namespaces? This results in an error
(either a compiler error or a run-time error, depending on the exact details).
You can have the same name defined in two different namespaces, but if that
is true, then you can only use one of those namespaces at a time.1 However,
this does not mean you cannot use the two namespaces in the same program.
You can use them each at different times in the same program.

For example, suppose ns1 and ns2 are two namespaces, and suppose
my_function is a void function with no arguments that is defined in both
namespaces but defined in different ways in the two namespaces. The
following is then legal:

{
 using namespace ns1;
 my_function();
}
{
 using namespace ns2;
 my_function();
}

The first invocation would use the definition of my_function given in the
namespace ns1, and the second invocation would use the definition of
my_function given in the namespace ns2.

Recall that a block is a list of statements, declarations, and possibly other
code, enclosed in braces {}. A using directive at the start of a block applies
only to that block. So the first using directive applies only in the first block,
and the second using directive applies only in the second block. The usual
way of phrasing this is to say that the scope of the ns1 namespace is the first
block, while the scope of the ns2 namespace is the second block. Note that
because of this scope rule, we are able to use two conflicting namespaces in
the same program (such as in a program that contains the two blocks we
discussed in the previous paragraph).

When you use a using directive in a block, it is typically the block
consisting of the body of a function definition. If you place a using directive
at the start of a file (as we have usually done so far), then the using directive
applies to the entire file. A using directive should normally be placed near the
start of a file or the start of a block.

1 As you will see later in this chapter, there are ways to use two namespaces at the same
time even if they contain the same name, but that is a subtle point that does not yet
concern us.

scope

714 CHAPTER 12 / Separate Compilation and Namespaces

Creating a Namespace

In order to place some code in a namespace, you simply place it in a
namespace grouping of the following form:

namespace Name_Space_Name
{
 Some_Code
}

When you include one of these groupings in your code, you are said to place
the names defined in Some_Code into the namespace Name_Space_Name. These
names (really the definitions of these names) can be made available with the
using directive

using namespace Name_Space_Name;

For example, the following, taken from Display 12.5, places a function
declaration in the namespace savitch1:

namespace savitch1
{
 void greeting();
}

If you look again at Display 12.5, you see that the definition of the function
greeting is also placed in namespace savitch1. That is done with the
following additional namespace grouping:

namespace savitch1
{
 void greeting()
 {
 cout << "Hello from namespace savitch1.\n";
 }
}

Note that you can have any number of these namespace groupings for a
single namespace. In Display 12.5, we used two namespace groupings for
namespace savitch1 and two other groupings for namespace savitch2.

Scope Rule for using Directives

The scope of a using directive is the block in which it appears (more
precisely, from the location of the using directives to the end of the block).
If the using directive is outside of all blocks, then it applies to all of the file
that follows the using directive.

namespace
grouping

12.2 Namespaces 715

DISPLAY 12.5 Namespace Demonstration (part 1 of 2)

1 #include <iostream>
2 using namespace std;
3
4 namespace savitch1
5 {
6 void greeting();
7 }
8
9 namespace savitch2

10 {
11 void greeting();
12 }
13
14 void big_greeting();
15
16 int main()
17 {
18 {
19 using namespace savitch2;
20 greeting();
21 }
22
23 {
24 using namespace savitch1;
25 greeting();
26 }
27
28 big_greeting();
29
30 return 0;
31 }
32
33 namespace savitch1
34 {
35 void greeting()
36 {
37 cout << "Hello from namespace savitch1.\n";
38 }
39 }
40
41 namespace savitch2

(continued)

Names in this block use
definitions in namespaces
savitch2, std, and the
global namespace.

Names in this block use
definitions in namespaces
savitch1, std, and the
global namespace.

Names out here use only defini-
tions in namespace std and the
global namespace.

716 CHAPTER 12 / Separate Compilation and Namespaces

Every name defined in a namespace is available inside the namespace
grouping, but the names can be also be made available to code outside of the
namespace. That function declaration and function definition in the
namespace savitch1 can be made available with the using directive

using namespace savitch1

as illustrated in Display 12.5.

SELF -TEST EXERC ISES

7. Consider the program shown in Display 12.5. Could we use the name
greeting in place of big_greeting?

8. In Self-Test Exercise 7, we saw that you could not add a definition for the
following function (to the global namespace):

void greeting();

Can you add a definition for the following function declaration to the
global namespace?

void greeting(int how_many);

9. Can a namespace have more than one namespace grouping?

DISPLAY 12.5 Namespace Demonstration (part 2 of 2)

42 {
43 void greeting()
44 {
45 cout << "Greetings from namespace savitch2.\n";
46 }
47 }
48
49 void big_greeting()
50 {
51 cout << "A Big Global Hello!\n";
52 }

Sample Dialogue

Greetings from namespace savitch2.

Hello from namespace savitch1.

A Big Global Hello!

12.2 Namespaces 717

Qualifying Names

Suppose you are faced with the following situation: You have two namespaces,
ns1 and ns2. You want to use the function fun1 defined in ns1 and the
function fun2 defined in namespace ns2. The complication is that both ns1
and ns2 define a function my_function. (Assume all functions in this
discussion take no arguments, so overloading does not apply.) It would not be
a good idea to use the following:

using namespace ns1;
using namespace ns2;

This would provide conflicting definitions for my_function.
What you need is a way to say you are using fun1 in namespace ns1 and

fun2 in namespace ns2 and nothing else in the namespaces ns1 and ns2. The
following are called using declarations, and they are your answer:

using ns1::fun1;
using ns2::fun2;

A using declaration of the form

using Name_Space::One_Name

makes (the definition of) the name One_Name from the namespace
Name_Space available, but does not make any other names in Name_Space
available.

Note that you have seen the scope resolution operator, ::, before. For
example, in Display 12.2 we had the following function definition:

void DigitalTime::advance(int hours_added, int minutes_added)
{

hour = (hour + hours_added)%24;
advance(minutes_added);

}

In this case the :: means that we are defining the function advance for the
class DigitalTime, as opposed to any other function named advance in any
other class. Similarly,

using ns1::fun1;

means we are using the function named fun1 as defined in the namespace ns1,
as opposed to any other definition of fun1 in any other namespace.

Now suppose that you intend to use the name fun1 as defined in the
namespace ns1, but you intend to use it only one time (or a small number of
times). You can then name the function (or other item) using the name of the
namespace and the scope resolution operator, as in the following:

ns1::fun1();

using
declaration

718 CHAPTER 12 / Separate Compilation and Namespaces

This form is often used when specifying a parameter type. For example,
consider

int get_number(std::istream input_stream)
. . .

In the function get_number, the parameter input_stream is of type istream,
where istream is defined as in the std namespace. If this use of the type name
istream is the only name you need from the std namespace (or if all the
names you need are similarly qualified with std::), then you do not need

using namespace std;

A Subtle Point About Namespaces (Optional)

There are two differences between a using declaration, such as

using std::cout;

and a using directive, such as

using namespace std;

The differences are as follows:

1. A using declaration (like using std::cout;) makes only one name in the
namespace available to your code, while a using directive (like using
namespace std;) makes all the names in a namespace available.

2. A using declaration introduces a name (like cout) into your code so that
no other use of the name can be made. However, a using directive only
potentially introduces the names in the namespace.

Point 1 is pretty obvious. Point 2 has some subtleties. For example,
suppose the namespaces ns1 and ns2 both provide definitions for
my_function, but have no other name conflicts. Then the following will
produce no problems:

using namespace ns1;
using namespace ns2;

provided that (within the scope of these directives) the conflicting name
my_function is never used in your code.

On the other hand, the following is illegal, even if the function
my_function is never used:

using ns1::my_function;
using ns2::my_function;

Sometimes this subtle point can be important, but it does not impinge on
most routine code.

12.2 Namespaces 719

SELF -TEST EXERC ISES

10. Write the function declaration for a void function named wow. The func-
tion wow has two parameters, the first of type speed as defined in the
speedway namespace and the second of type speed as defined in the
indy500 namespace.

11. Consider the following function declarations from the definition of the
class Money in Display 11.4.

void input(istream& ins);
void output(ostream& outs) const;

Rewrite these function declarations so that they do not need to be
preceded by

using namespace std;

(You do not need to look back at Display 11.4 to do this.)

Unnamed Namespaces

Our definition of the class DigitalTime in Displays 12.1 and 12.2 used three
helping functions: digit_to_int, read_hour, and read_minute. These helping
functions are part of the implementation for the ADT class DigitalTime, so we
placed their definitions in the implementation file (Display 12.2). However,
this does not really hide these three functions. We would like these functions to
be local to the implementation file for the class DigitalTime. However, as we
have done it, they are not local to the implementation file for the class
DigitalTime. In particular, we cannot define another function with the name
digit_to_int (or read_hour or read_minute) in an application program that
uses the class DigitalTime. This violates the principle of information hiding.
To truly hide these helping functions and make them local to the implemen-
tation file for DigitalTime, we need to place these helping functions in a
special namespace called the unnamed namespace.

A compilation unit is a file, such as a class implementation file, along
with all the files that are #included in the file, such as the interface header file
for the class. Every compilation unit has an unnamed namespace. A
namespace grouping for the unnamed namespace is written in the same way
as any other namespace, but no name is given, as in the following example:

namespace
{
 void sample_function()
 .
 .
 .
} //unnamed namespace

compilation unit

unnamed
namespace

720 CHAPTER 12 / Separate Compilation and Namespaces

All the names defined in the unnamed namespace are local to the
compilation unit, and thus the names can be reused for something else
outside the compilation unit. For example, Displays 12.6 and 12.7 show a
rewritten (and our final) version of the interface and implementation file for
the class DigitalTime. Note that the helping functions (read_hour,
read_minute, and digit_to_int) are all in the unnamed namespace and
therefore are local to the compilation unit. As illustrated in Display 12.8, the
names in the unnamed namespace can be reused for something else outside
the compilation unit. In Display 12.8 the function name read_hour is reused
for another different function in the application program.

If you look again at the implementation file in Display 12.8, you will see
that the helping functions digit_to_int, read_hour, and read_minute are
used outside the unnamed namespace without any namespace qualifier. Any
name defined in the unnamed namespace can be used without qualification
anywhere in the compilation unit. (Of course, this needed to be so, since the
unnamed namespace has no name to use for qualifying its names.)

It is interesting to note how unnamed namespaces interact with the C++
rule that you cannot have two definitions of a name (in the same namespace).
There is one unnamed namespace in each compilation unit. It is easily

DISPLAY 12.6 Placing a Class in a Namespace—Header File

1 //Header file dtime.h: This is the interface for the class DigitalTime.
2 //Values of this type are times of day. The values are input and output in
3 //24-hour notation, as in 9:30 for 9:30 AM and 14:45 for 2:45 PM.
4
5 #ifndef DTIME_H
6 #define DTIME_H
7
8 #include <iostream>
9 using namespace std;

10
11 namespace dtimesavitch
12 {
13
14 class DigitalTime
15 {
16

 <The definition of the class DigitalTime is the same as in Display 12.1.>
17 };
18 }//end dtimesavitch
19
20 #endif //DTIME_H

One grouping for the namespace dtimesavitch.
Another grouping for the namespace dtimesavitch
is in the implementation file dtime.cpp.

12.2 Namespaces 721

DISPLAY 12.7 Placing a Class in a Namespace—Implementation File (part 1 of 2)

1 //Implementation file dtime.cpp (your system may require some
2 //suffix other than .cpp): This is the IMPLEMENTATION of the ADT DigitalTime.
3 //The interface for the class DigitalTime is in the header file dtime.h.
4 #include <iostream>
5 #include <cctype>
6 #include <cstdlib>
7 #include "dtime.h"
8 using namespace std;
9

10 namespace
11 {
12 //These function declarations are for use in the definition of
13 //the overloaded input operator >>:
14
15 void read_hour(istream& ins, int& the_hour);
16 //Precondition: Next input in the stream ins is a time in 24-hour notation,
17 //like 9:45 or 14:45.
18 //Postcondition: the_hour has been set to the hour part of the time.
19 //The colon has been discarded and the next input to be read is the minute.
20
21 void read_minute(istream& ins, int& the_minute);
22 //Reads the minute from the stream ins after read_hour has read the hour.
23
24 int digit_to_int(char c);
25 //Precondition: c is one of the digits '0' through '9'.
26 //Returns the integer for the digit; for example, digit_to_int('3')
27 //returns 3.
28 }//unnamed namespace
29
30
31 namespace dtimesavitch
32 {
33 bool operator ==(const DigitalTime& time1, const DigitalTime& time2)

 <The rest of the definition of == is the same as in Display 12.2.>
34
35 DigitalTime::DigitalTime()

 <The rest of the definition of this constructor is the same as in Display 12.2.>
36
37 DigitalTime::DigitalTime(int the_hour, int the_minute)

 <The rest of the definition of this constructor is the same as in Display 12.2.>
38 void DigitalTime::advance(int minutes_added)

 <The rest of the definition of this advance function is the same as in Display 12.2.>
39
40 void DigitalTime::advance(int hours_added, int minutes_added)

 <The rest of the definition of this advance function is the same as in Display 12.2.>
41

(continued)

One grouping for the unnamed
namespace

One grouping for the namespace dtimesavitch.
Another grouping is in the file dtime.h.

722 CHAPTER 12 / Separate Compilation and Namespaces

possible for compilation units to overlap. For example, both the implementa-
tion file for a class and an application program using the class would normally
include the header file (interface file) for the class. Thus, the header file is in
two compilation units and hence participates in two unnamed namespaces. As
dangerous as this sounds, it will normally produce no problems as long as
each compilation unit’s namespace makes sense when considered by itself. For
example, if a name is defined in the unnamed namespace in the header file, it
cannot be defined again in the unnamed namespace in either the implemen-
tation file or the application file. So, a name conflict is avoided.

■ PROGRAMMING TIP Choosing a Name for a Namespace

It is a good idea to include your last name or some other unique string in the
names of your namespaces, so as to reduce the chance that somebody else will
use the same namespace name as you do. With multiple programmers writing

DISPLAY 12.7 Placing a Class in a Namespace—Implementation File (part 2 of 2)

42 ostream& operator <<(ostream& outs, const DigitalTime& the_object)
 <The rest of the definition of << is the same as in Display 12.2.>

43
44 //Uses iostream and functions in the unnamed namespace:
45 istream& operator >>(istream& ins, DigitalTime& the_object)
46 {
47 read_hour(ins, the_object.hour);
48 read_minute(ins, the_object.minute);
49 return ins;
50 }
51 } //dtimesavitch
52
53
54 namespace
55 {
56 int digit_to_int(char c)

 <The rest of the definition of digit_to_int is the same as in Display 12.2.>
57
58 void read_minute(istream& ins, int& the_minute)

 <The rest of the definition of read_minute is the same as in Display 12.2.>
59
60 void read_hour(istream& ins, int& the_hour)

 <The rest of the definition of read_hour is the same as in Display 12.2.>
61
62 }//unnamed namespace

Another grouping for the
unnamed namespace.

Functions defined in the unnamed
namespace are local to this com-
pilation unit (this file and included
files). They can be used anywhere
in this file, but have no meaning
outside this compilation unit.

12.2 Namespaces 723

DISPLAY 12.8 Placing a Class in a Namespace—Application Program (part 1 of 2)

1 //This is the application file: timedemo.cpp. This program
2 //demonstrates hiding the helping functions in an unnamed namespace.
3
4 #include <iostream>
5 #include "dtime.h"
6
7 void read_hour(int& the_hour);
8
9 int main()

10 {
11 using namespace std;
12
13 using namespace dtimesavitch;
14
15 int the_hour;
16 read_hour(the_hour);
17
18 DigitalTime clock(the_hour, 0), old_clock;
19
20 old_clock = clock;
21 clock.advance(15);
22 if (clock == old_clock)
23 cout << "Something is wrong.";
24 cout << "You entered " << old_clock << endl;
25 cout << "15 minutes later the time will be "
26 << clock << endl;
27
28 clock.advance(2, 15);
29 cout << "2 hours and 15 minutes after that\n"
30 << "the time will be "
31 << clock << endl;
32
33 return 0;
34 }
35 void read_hour(int& the_hour)
36 {
37 using namespace std;
38
39 cout << "Let's play a time game.\n"
40 << "Let's pretend the hour has just changed.\n"

(continued)

If you place the using directives here,
then the program behavior will be the
same.

This is a different function
read_hour than the one in the
implementation file dtime.cpp
(shown in Display 12.7).

724 CHAPTER 12 / Separate Compilation and Namespaces

code for the same project, it is important that namespaces that are meant to be
distinct really do have distinct names. Otherwise, you can easily have multiple
definitions of the same names in the same scope. That is why we included the
name savitch in the namespace dtimesavitch in Display 12.7. ■

■ PITFALL Confusing the Global Namespace and the
Unnamed Namespace

Do not confuse the global namespace with the unnamed namespace. If you do
not put a name definition in a namespace grouping, then it is in the global
namespace. To put a name definition in the unnamed namespace, you must
put it in a namespace grouping that starts as follows, without a name:

namespace
{

Both names in the global namespace and names in the unnamed namespace
may be accessed without a qualifier. However, names in the global namespace

DISPLAY 12.8 Placing a Class in a Namespace—Application Program (part 2 of 2)

41 << "You may write midnight as either 0 or 24,\n"
42 << "but I will always write it as 0.\n"
43 << "Enter the hour as a number (0 to 24): ";
44 cin >> the_hour;
45 if (the_hour == 24)
46 the_hour = 0;
47 }

Sample Dialogue

Let's play a time game.

Let's pretend the hour has just changed.

You may write midnight as either 0 or 24,

but I will always write it as 0.

Enter the hour as a number (0 to 24): 11

You entered 11:00

15 minutes later the time will be 11:15

2 hours and 15 minutes after that

the time will be 13:30

12.2 Namespaces 725

have global scope (all the program files), while names in an unnamed
namespace are local to a compilation unit.

This confusion between the global namespace and the unnamed
namespace does not arise very much in writing code, since there is a tendency
to think of names in the global namespace as being “in no namespace,” even
though that is not technically correct. However, the confusion can easily arise
when discussing code. ■

SELF -TEST EXERC ISES

12. Would the program in Display 12.8 behave any differently if you replaced
the using directive

using namespace dtimesavitch;

with the following using declaration?

using dtimesavitch::DigitalTime;

Unnamed Namespace

You can use the unnamed namespace to make a definition local to a
compilation unit (that is, to a file and its included files). Each compilation
unit has one unnamed namespace. All the identifiers defined in the
unnamed namespace are local to the compilation unit. You place a
definition in the unnamed namespace by placing the definition in a
namespace grouping with no namespace name, as shown in the following:

namespace
{
 Definition_1
 Definition_2
 .
 .
 .
 Definition_Last
}

You can use any name in the unnamed namespace without a qualifier
anyplace in the compilation unit. See Displays 12.6 and 12.7 for a complete
example.

726 CHAPTER 12 / Separate Compilation and Namespaces

13. What is the output produced by the following program?

#include <iostream>
using namespace std;

namespace sally
{
 void message();
}

namespace
{
 void message();
}

int main()
{
 {
 message();
 using sally::message;
 message();
 }

 message();

 return 0;
}

namespace sally
{
 void message()

 {
 cout << "Hello from Sally.\n";
 }
}

namespace
{
 void message()

 {
 cout << "Hello from unnamed.\n";
 }
}

Answers to Self-Test Exercises 727

14. In Display 12.7 there are two groupings for the unnamed namespace: one
for the helping function declarations and one for the helping function
definitions. Can we eliminate the grouping for the helping function decla-
rations? If so, how can we do it?

CHAPTER SUMMARY

■ In C++, abstract data types (ADTs) are implemented as classes with all
member variables private, and with the operations implemented as public
member and nonmember functions and overloaded operators.

■ You can define an ADT as a class and place the definition of the class and
the implementation of its member functions in separate files. You can then
compile the ADT class separately from any program that uses it and you can
use this same ADT class in any number of different programs.

■ A namespace is a collection of name definitions, such as class definitions
and variable declarations.

■ There are three ways to use a name from a namespace: by making all the
names in the namespace available with a using directive, by making the sin-
gle name available by a using declaration for the one name, or by qualifying
the name with the name of the namespace and the scope resolution operator.

■ You place a definition in a namespace by placing the definition in a
namespace grouping for that namespace.

■ The unnamed namespace can be used to make a name definition local to a
compilation unit.

Answers to Self-Test Exercises

1. Parts (a), (b), and (c) go in the interface file; parts (d) through (h) go in
the implementation file. (All the definitions of ADT operations of any sort
go in the implementation file.) Part (i) (that is, the main part of your pro-
gram) goes in the application file.

2. The name of the interface file ends in .h.

3. Only the implementation file needs to be compiled. The interface file
does not need to be compiled.

4. Only the implementation file needs to be recompiled. You do, however,
need to relink the files.

728 CHAPTER 12 / Separate Compilation and Namespaces

5. You need to delete the private member variables hour and minute from
the interface file shown in Display 12.1 and replace them with the mem-
ber variable minutes (with an s). You do not need to make any other
changes in the interface file. In the implementation file, you need to
change the definitions of all the constructors and other member func-
tions, as well as the definitions of the overloaded operators, so that they
work for this new way of recording time. (In this case, you do not need to
change any of the helping functions read_hour, read_minute, or
digit_to_int, but that might not be true for some other class or even
some other reimplementation of this class.) For example, the definition of
the overloaded operator >> could be changed to the following:

istream& operator >>(istream& ins, DigitalTime& the_object)
{
 int input_hour, input_minute;
 read_hour(ins, input_hour);
 read_minute(ins, input_minute);
 the_object.minutes = input_minute + 60*input_hour;
 return ins;
}

You need not change any application files for programs that use the class.
However, since the interface file is changed (as well as the implementation
file), you will need to recompile any application files, and of course you
will need to recompile the implementation file.

6. The short answer is that an ADT is simply a class that you defined following
good programming practices of separating the interface from the imple-
mentation. Also, when we describe a class as an ADT, we consider the non-
member basic operations such as overloaded operators to be part of the
ADT, even though they are not technically speaking part of the C++ class.

7. No. If you replace big_greeting with greeting, then you will have a defini-
tion for the name greeting in the global namespace. There are parts of the
program where all the name definitions in the namespace savitch1 and all
the name definitions in the global namespace are simultaneously available.
In those parts of the program, there would be two distinct definitions for

void greeting();

8. Yes, the additional definition would cause no problems. This is because
overloading is always allowed. When, for example, the namespaces
savitch1 and the global namespace are available, the function name
greeting would be overloaded. The problem in Self-Test Exercise 7 was
that there would sometimes be two definitions of the function name
greeting with the same parameter lists.

Programming Projects 729

9. Yes, a namespace can have any number of groupings. For example, the fol-
lowing are two groupings for the namespace savitch1 that appear in Dis-
play 12.5:

namespace savitch1
{
 void greeting();
}

namespace savitch1
{
 void greeting()
 {
 cout << "Hello from namespace savitch1.\n";
 }
}

10. void wow(speedway::speed s1, indy500::speed s2);

11. void input(std::istream& ins);
void output(std::ostream& outs) const;

12. The program would behave exactly the same.

13. Hello from unnamed.
Hello from Sally.
Hello from unnamed.

14. Yes, you can eliminate the grouping for the helping function declarations,
as long as the grouping with the helping function definitions occurs
before the helping functions are used. For example, you could remove the
namespace with the helping function declarations and move the grouping
with the helping function definitions to just before the namespace group-
ing for the namespace dtimesavitch.

PROGRAMMING PROJECTS

1. Add the following member function to the ADT class DigitalTime
defined in Displays 12.1 and 12.2:

This function computes the time interval between two values of type
DigitalTime. One of the values of type DigitalTime is the object that
calls the member function interval_since, and the other value of type

void DigitalTime::interval_since(const DigitalTime& a_previous_time,
 int& hours_in_interval, int& minutes_in_interval) const

730 CHAPTER 12 / Separate Compilation and Namespaces

DigitalTime is given as the first argument. For example, consider the
following code:

DigitalTime current(5, 45), previous(2, 30);
int hours, minutes;
current.interval_since(previous, hours, minutes);
cout << "The time interval between " << previous
 << " and " << current << endl
 << "is " << hours << " hours and "

<< minutes << " minutes.\n";

In a program that uses your revised version of the DigitalTime ADT, this
code should produce the following output:

Allow the time given by the first argument to be later in the day than the
time of the calling object. In this case, the time given as the first argument
is assumed to be on the previous day. You should also write a program to
test this revised ADT class.

2. Do Self-Test Exercise 5 in full detail. Write out the complete ADT class,
including interface and implementation files. Also write a program to test
your ADT class.

3. Redo Programming Project 1 from Chapter 11, but this time define the
Money ADT class in separate files for the interface and implementation so
that the implementation can be compiled separately from any application
program.

4. Redo Programming Project 2 from Chapter 11, but this time define the
Pairs ADT class in separate files for the interface and implementation so
that the implementation can be compiled separately from any application
program.

5. Redo (or do for the first time) Programming Project 4 from Chapter 11.
Define your ADT class in separate files so that it can be compiled separately.

6. Redo (or do for the first time) Programming Project 5 from Chapter 11.
Define your ADT class in separate files so that it can be compiled separately.

7. Redo (or do for the first time) Programming Project 12 from Chapter 11.
Define your ADT class in separate files so that it can be compiled sepa-
rately. Put the main function in its own file separate from the ADT files.

The time interval between 2:30 and 5:45
is 3 hours and 15 minutes.

Video Note
Solution to
Programming
Project 12.3

Programming Projects 731

8. Listed below are snippets from a program to perform input validation for
a username and password. The code to input and validate the username is
in a separate file than the code to input and validate the password.

Partial code from user.cpp:

namespace Authenticate
{
 void inputUserName()
 {
 do
 {
 cout << "Enter your username (8 letters only)" << endl;
 cin >> username;
 } while (!isValid());
 }
 string getUserName()
 {
 return username;
 }
}

Define the username variable and the isValid() function in the
unnamed namespace so the code will compile. The isValid() function
should return true if username contains exactly eight letters. Generate an
appropriate header file for this code.

Repeat the same steps for the file password.cpp, placing the password
variable and the isValid() function in the unnamed namespace:

namespace Authenticate
{
 void inputPassword()
 {
 do
 {
 cout << "Enter your password (at least 8 characters " <<

"and at least one non-letter)" << endl;
 cin >> password ;
 } while (!isValid());
 }
 string getPassword()
 {
 return password;
 }
}

For passwords, isValid() should require the password to have eight or
more letters and at least one non-letter. Generate an appropriate header
file for this code as well. (continued)

732 CHAPTER 12 / Separate Compilation and Namespaces

At this point, you should have two functions named isValid(), each in
different unnamed namespaces. Place the following main function in an
appropriate place. The program should compile and run.

int main()
{
 inputUserName();
 inputPassword();
 cout << "Your username is " << getUserName() <<
 "and your password is: " <<
 getPassword() << endl;
 return 0;
}

13Pointers and
Linked Lists

13.1 NODES AND LINKED LISTS 734
Nodes 734
Linked Lists 740
Inserting a Node at the Head of a List 741
Pitfall: Losing Nodes 744
Searching a Linked List 745
Pointers as Iterators 749
Inserting and Removing Nodes Inside a List 749
Pitfall: Using the Assignment Operator

with Dynamic Data Structures 752
Variations on Linked Lists 754
Linked Lists of Classes 756

13.2 STACKS AND QUEUES 760
Stacks 760
Programming Example: A Stack Class 761
Queues 766
Programming Example: A Queue Class 767

Chapter Summary 771
Answers to Self-Test Exercises 772
Programming Projects 775

734

If somebody there chanced to be
Who loved me in a manner true
My heart would point him out to me
And I would point him out to you.
GILBERT AND SULLIVAN, Ruddigore

INTRODUCTION
A linked list is a list constructed using pointers. A linked list is not fixed in
size but can grow and shrink while your program is running. This chapter
shows you how to define and manipulate linked lists, which will serve to
introduce you to a new way of using pointers.

PREREQUISITES
This chapter uses material from Chapters 2 through 12.

13.1 NODES AND LINKED LISTS

Useful dynamic variables are seldom of a simple type such as int or double,
but are normally of some complex type such as an array, struct, or class type.
You saw that dynamic variables of an array type can be useful. Dynamic
variables of a struct or class type can also be useful, but in a different way.
Dynamic variables that are either structs or classes normally have one or
more member variables that are pointer variables that connect them to other
dynamic variables. For example, one such structure, which happens to contain
a shopping list, is diagrammed in Display 13.1.

Nodes

A structure like the one shown in Display 13.1 consists of items that we have
drawn as boxes connected by arrows. The boxes are called nodes and the
arrows represent pointers. Each of the nodes in Display 13.1 contains a string,
an integer, and a pointer that can point to other nodes of the same type. Note
that pointers point to the entire node, not to the individual items (such as 10
or "rolls") that are inside the node.

Nodes are implemented in C++ as structs or classes. For example, the
struct type definitions for a node of the type shown in Display 13.1, along
with the type definition for a pointer to such nodes, can be as follows:

struct ListNode
{

string item;

node structures

node type
definition

13.1 Nodes and Linked Lists 735

 int count;
ListNode *link;

};

typedef ListNode* ListNodePtr;

The order of the type definitions is important. The definition of ListNode
must come first, since it is used in the definition of ListNodePtr.

The box labeled head in Display 13.1 is not a node but is a pointer
variable that can point to a node. The pointer variable head is declared as
follows:

ListNodePtr head;

Even though we have ordered the type definitions to avoid some illegal
forms of circularity, the definition of the struct type ListNode is still blatantly
circular. The definition of the type ListNode uses the type name ListNode to
define the member variable link. There is nothing wrong with this particular
circularity, and it is allowed in C++. One indication that this definition is not
logically inconsistent is the fact that you can draw pictures, like Display 13.1,
that represent such structures.

We now have pointers inside of structs and have these pointers pointing
to structs that contain pointers, and so forth. In such situations the syntax
can sometimes get involved, but in all cases the syntax follows those few rules
we have described for pointers and structs. As an illustration, suppose the
declarations are as above, the situation is as diagrammed in Display 13.1, and

DISPLAY 13.1 Nodes and Pointers

head
"rolls"

10

"jam "

3

"tea"

2

end marker

changing node
data

736 CHAPTER 13 / Pointers and Linked Lists

you want to change the number in the first node from 10 to 12. One way to
accomplish this is with the following statement:

(*head).count = 12;

The expression on the left side of the assignment operator may require a bit of
explanation. The variable head is a pointer variable. So, the expression *head
is the thing it points to, namely the node (dynamic variable) containing
"rolls" and the integer 10. This node, referred to by *head, is a struct, and
the member variable of this struct, which contains a value of type int, is
called count, and so (*head).count is the name of the int variable in the first
node. The parentheses around *head are not optional. You want the derefer-
encing operator * to be performed before the dot operator. However, the dot
operator has higher precedence than the dereferencing operator *, and so
without the parentheses, the dot operator would be performed first (and that
would produce an error). In the next paragraph, we will describe a shortcut
notation that can avoid this worry about parentheses.

C++ has an operator that can be used with a pointer to simplify the
notation for specifying the members of a struct or a class. The arrow
operator -> combines the actions of a dereferencing operator * and a dot
operator to specify a member of a dynamic struct or object that is pointed to
by a given pointer. For example, the above assignment statement for changing
the number in the first node can be written more simply as

head->count = 12;

This assignment statement and the previous one mean the same thing, but this
one is the form normally used.

The string in the first node can be changed from "rolls" to "bagels"
with the following statement:

head->item = "bagels";

The result of these changes to the first node in the list is diagrammed in
Display 13.2.

Look at the pointer member in the last node in the lists shown in Display
13.2. This last node has the word NULL written where there should be a
pointer. In Display 13.1 we filled this position with the phrase “end marker,”
but “end marker” is not a C++ expression. In C++ programs we use the
constant NULL as an end marker to signal the end of a linked list. NULL is a
special defined constant that is part of the C++ language (provided as part of
the required C++ libraries).

NULL is typically used for two different (but often coinciding) purposes. It
is used to give a value to a pointer variable that otherwise would not have any
value. This prevents an inadvertent reference to memory, since NULL is not the
address of any memory location. The second category of use is that of an end

the -> operator

NULL

13.1 Nodes and Linked Lists 737

marker. A program can step through the list of nodes as shown in Display 13.2,
and when the program reaches the node that contains NULL, it knows that it has
come to the end of the list.

The constant NULL is actually the number 0, but we prefer to think of it and
spell it as NULL. That makes it clear that you mean this special-purpose value
that you can assign to pointer variables. The definition of the identifier NULL
is in a number of the standard libraries, such as <iostream> and <cstddef>,
so you should use an include directive with either <iostream>, or <cstddef>
(or other suitable library) when you use NULL. No using directive is needed in
order to make NULL available to your program code. In particular, it does not
require using namespace std;, although other things in your code are likely to
require something like using namespace std;.1

1 The details are as follows: The definition of NULL is handled by the C++ preprocessor,
which replaces NULL with 0. Thus, the compiler never actually sees “NULL” and so there
are no namespace issues, and no using directive is needed.

DISPLAY 13.2 Accessing Node Data

head->count = 12;
head->item = "bagels";

 Before After

head
"rolls"

10

"jam"

3

"tea"

2

NULL

head
"bagels"

12

"jam"

3

"tea"

2

NULL

NULL is 0

738 CHAPTER 13 / Pointers and Linked Lists

A pointer can be set to NULL using the assignment operator, as in the
following, which declares a pointer variable called there and initializes it to
NULL:

double *there = NULL;

The constant NULL can be assigned to a pointer variable of any pointer type.

The Arrow Operator ->

The arrow operator -> specifies a member of a struct (or a member of a
class object) that is pointed to by a pointer variable. The syntax is as
follows:

Pointer_Variable->Member_Name

The above refers to a member of the struct or object pointed to by the
Pointer_Variable. Which member it refers to is given by the Member_Name.
For example, suppose you have the following definition:

struct Record
{

int number;
char grade;

};

The following creates a dynamic variable of type Record and sets the
member variables of the dynamic struct variable to 2001 and 'A':

Record *p;
p = new Record;
p->number = 2001;
p->grade = 'A';

NULL

NULL is a special constant value that is used to give a value to a pointer
variable that would not otherwise have a value. NULL can be assigned to a
pointer variable of any type. The identifier NULL is defined in a number of
libraries, including the library with header file <cstddef> and the library
with header file <iostream>. The constant NULL is actually the number 0,
but we prefer to think of it and spell it as NULL.

13.1 Nodes and Linked Lists 739

SELF -TEST EXERC ISES

1. Suppose your program contains the following type definitions:

struct Box
{

string name;
int number;
Box *next;

};

typedef Box* BoxPtr;

What is the output produced by the following code?

BoxPtr head;
head = new Box;
head->name = "Sally";
head->number = 18;
cout << (*head).name << endl;
cout << head->name << endl;
cout << (*head).number << endl;
cout << head->number << endl;

2. Suppose that your program contains the type definitions and code given
in Self-Test Exercise 1. That code creates a node that contains the string
"Sally" and the number 18. What code would you add in order to set the
value of the member variable next of this node equal to NULL?

3. Suppose that your program contains the type definitions and code given
in Self-Test Exercise 1. Assuming that the value of the pointer variable
head has not been changed, how can you destroy the dynamic variable
pointed to by head and return the memory it uses to the freestore so that it
can be reused to create new dynamic variables?

4. Given the following structure definition:

struct ListNode
{
 string item;
 int count;
 ListNode *link;
};
ListNode *head = new ListNode;

Write code to assign the string “Wilbur’s brother Orville” to the member
item of the node pointed to by head.

740 CHAPTER 13 / Pointers and Linked Lists

Linked Lists

Lists such as those shown in Display 13.2 are called linked lists. A linked list is
a list of nodes in which each node has a member variable that is a pointer that
points to the next node in the list. The first node in a linked list is called the
head, which is why the pointer variable that points to the first node is named
head. Note that the pointer named head is not itself the head of the list but
only points to the head of the list. The last node has no special name, but it
does have a special property. The last node has NULL as the value of its member
pointer variable. To test to see whether a node is the last node, you need only
test to see if the pointer variable in the node is equal to NULL.

Our goal in this section is to write some basic functions for manipulating
linked lists. For variety, and to simplify the notation, we will use a simpler type
of node than that used in Display 13.2. These nodes will contain only an
integer and a pointer. The node and pointer type definitions that we will use
are as follows:

struct Node
{

int data;
Node *link;

};

typedef Node* NodePtr;

As a warm-up exercise, let’s see how we might construct the start of a
linked list with nodes of this type. We first declare a pointer variable, called
head, that will point to the head of our linked list:

NodePtr head;

To create our first node, we use the operator new to create a new dynamic
variable that will become the first node in our linked list.

head = new Node;

We then give values to the member variables of this new node:

head->data = 3;
head->link = NULL;

Notice that the pointer member of this node is set equal to NULL. That is
because this node is the last node in the list (as well as the first node in the
list). At this stage our linked list looks like this:

linked list

head

node type
definition

a one-node
linked list

3

NULL

head

13.1 Nodes and Linked Lists 741

Our one-node list was built in a purely ad hoc way. To have a larger linked
list, your program must be able to add nodes in a systematic way. We next
describe one simple way to insert nodes in a linked list.

Inserting a Node at the Head of a List

In this subsection we assume that our linked list already contains one or more
nodes, and we develop a function to add another node. The first parameter for
the insertion function will be a call-by-reference parameter for a pointer
variable that points to the head of the linked list, that is, a pointer variable that
points to the first node in the linked list. The other parameter will give the
number to be stored in the new node. The function declaration for our
insertion function is as follows:

void head_insert(NodePtr& head, int the_number);

To insert a new node into the linked list, our function will use the new
operator to create a new node. The data is then copied into the new node, and
the new node is inserted at the head of the list. When we insert nodes this way,
the new node will be the first node in the list (that is, the head node) rather
than the last node. Since dynamic variables have no names, we must use a
local pointer variable to point to this node. If we call the local pointer variable
temp_ptr, the new node can be referred to as *temp_ptr. The complete process
can be summarized as follows:

Pseudocode for head_insert Function

1. Create a new dynamic variable pointed to by temp_ptr. (This new
dynamic variable is the new node. This new node can be referred to as
*temp_ptr.)

2. Place the data in this new node.

3. Make the link member of this new node point to the head node (first
node) of the original linked list.

4. Make the pointer variable named head point to the new node.

Linked Lists as Arguments

You should always keep one pointer variable pointing to the head of a
linked list. This pointer variable is a way to name the linked list. When you
write a function that takes a linked list as an argument, this pointer (which
points to the head of the linked list) can be used as the linked list
argument.

algorithm

742 CHAPTER 13 / Pointers and Linked Lists

Display 13.3 contains a diagram of this algorithm. Steps 2 and 3 in the
diagram can be expressed by these C++ assignment statements:

temp_ptr->link = head;
head = temp_ptr;

The complete function definition is given in Display 13.4.
You will want to allow for the possibility that a list contains nothing. For

example, a shopping list might have nothing in it because there is nothing
to buy this week. A list with nothing in it is called an empty list. A linked list
is named by naming a pointer that points to the head of the list, but an
empty list has no head node. To specify an empty list, you use the pointer
NULL. If the pointer variable head is supposed to point to the head node of a
linked list and you want to indicate that the list is empty, then you set the
value of head as follows:

head = NULL;

Whenever you design a function for manipulating a linked list, you
should always check to see if it works on the empty list. If it does not, you
may be able to add a special case for the empty list. If you cannot design
the function to apply to the empty list, then your program must be
designed to handle empty lists some other way or to avoid them
completely. Fortunately, the empty list can often be treated just like any
other list. For example, the function head_insert in Display 13.4 was
designed with nonempty lists as the model, but a check will show that it
works for the empty list as well.

DISPLAY 13.3 Adding a Node to a Linked List (part 1 of 2)

(continued)

head

temp_ptr
12

?

3

NULL

15

1. Set up new node

head

temp_ptr
12

3

NULL

15

2. temp_ptr->link = head;

Added

empty list

13.1 Nodes and Linked Lists 743

head

DISPLAY 13.3 Adding a Node to a Linked List (part 2 of 2)

head

temp_ptr
12

3

NULL

15

3. head = temp_ptr;

12

3

NULL

15

4. After function call

Changed

DISPLAY 13.4 Function to Add a Node at the Head of a Linked List

Function Declaration

1 struct Node
2 {
3 int data;
4 Node *link;
5 };
6
7 typedef Node* NodePtr;
8
9 void head_insert(NodePtr& head, int the_number);

10 //Precondition: The pointer variable head points to
11 //the head of a linked list.
12 //Postcondition: A new node containing the_number
13 //has been added at the head of the linked list.

Function Definition

1 void head_insert(NodePtr& head, int the_number)
2 {
3 NodePtr temp_ptr;
4 temp_ptr = new Node;
5
6 temp_ptr->data = the_number;
7
8 temp_ptr->link = head;
9 head = temp_ptr;

10 }

744 CHAPTER 13 / Pointers and Linked Lists

■ PITFALL Losing Nodes

You might be tempted to write the function definition for head_insert
(Display 13.4) using the pointer variable head to construct the new node,
instead of using the local pointer variable temp_ptr. If you were to try, you
might start the function as follows:

head = new Node;
head->data = the_number;

At this point the new node is constructed, contains the correct data, and is
pointed to by the pointer head, all as it is supposed to be. All that is left to do
is to attach the rest of the list to this node by setting the pointer member given
below so that it points to what was formerly the first node of the list:

head->link

Display 13.5 shows the situation when the new data value is 12. That
illustration reveals the problem. If you were to proceed in this way, there
would be nothing pointing to the node containing 15. Since there is no named
pointer pointing to it (or to a chain of pointers ending with that node), there
is no way the program can reference this node. The node below this node is
also lost. A program cannot make a pointer point to either of these nodes, nor
can it access the data in these nodes, nor can it do anything else to the nodes.
It simply has no way to refer to the nodes.

Such a situation ties up memory for the duration of the program. A
program that loses nodes is sometimes said to have a “memory leak.” A
significant memory leak can result in the program running out of memory,

DISPLAY 13.5 Lost Nodes

head
12

?

3

NULL

15

Lost nodes

13.1 Nodes and Linked Lists 745

causing abnormal termination. Worse, a memory leak (lost nodes) in an
ordinary user’s program can cause the operating system to crash. To avoid such
lost nodes, the program must always keep some pointer pointing to the head
of the list, usually the pointer in a pointer variable like head. ■

Searching a Linked List

Next we will design a function to search a linked list in order to locate a
particular node. We will use the same node type, called Node, that we used in
the previous subsections. (The definition of the node and pointer types are
given in Display 13.4.) The function we design will have two arguments: the
linked list and the integer we want to locate. The function will return a pointer
that points to the first node that contains that integer. If no node contains the
integer, the function will return the pointer NULL. This way our program can
test to see whether the integer is on the list by checking to see if the function
returns a pointer value that is not equal to NULL. The function declaration and
header comment for our function is as follows:

NodePtr search(NodePtr head, int target);
//Precondition: The pointer head points to the head of
//a linked list. The pointer variable in the last node
//is NULL. If the list is empty, then head is NULL.
//Returns a pointer that points to the first node that
//contains the target. If no node contains the target,
//the function returns NULL.

We will use a local pointer variable, called here, to move through the list
looking for the target. The only way to move around a linked list, or any
other data structure made up of nodes and pointers, is to follow the pointers.
So we will start with here pointing to the first node and move the pointer from
node to node following the pointer out of each node. This technique is
diagrammed in Display 13.6. Since empty lists present some minor problems
that would clutter our discussion, we will at first assume that the linked list
contains at least one node. Later we will come back and make sure the
algorithm works for the empty list as well. This search technique yields the
following algorithm:

Pseudocode for search Function

1. Make the pointer variable here point to the head node (that is, first node)
of the linked list.

while (here is not pointing to a node containing target
and here is not pointing to the last node)

{
Make here point to the next node in the list.

}

algorithm

746 CHAPTER 13 / Pointers and Linked Lists

DISPLAY 13.6 Searching a Linked List

target is 6

here

?

head
2

6

1

3

NULL

head
2

6

1

3

NULL

here

head
2

6

1

3

NULL

head
2

6

1

3

NULL

here

Not here

Found

Not here

1. 2.

3. 4.

here

13.1 Nodes and Linked Lists 747

if (the node pointed to by here contains target)
return here;

else
return NULL;

In order to move the pointer here to the next node, we must think in
terms of the named pointers we have available. The next node is the one
pointed to by the pointer member of the node currently pointed to by here.
The pointer member of the node currently pointed to by here is given by the
expression

here->link

To move here to the next node, we want to change here so that it points
to the node that is pointed to by the above-named pointer (member) variable.
Hence, the following will move the pointer here to the next node in the list:

here = here->link;

Putting these pieces together yields the following refinement of the
algorithm pseudocode:

Preliminary Version of the Code for the search Function

here = head;

while (here->data != target &&
 here->link != NULL)

here = here->link;

if (here->data == target)
return here;

else
return NULL;

Notice the Boolean expression in the while statement. We test to see if here is
not pointing to the last node by testing to see if the member variable here->link
is not equal to NULL.

We still must go back and take care of the empty list. If we check our code
we find that there is a problem with the empty list. If the list is empty, then
here is equal to NULL and hence the following expressions are undefined:

here->data
here->link

When here is NULL, it is not pointing to any node, so there is no member
named data nor any member named link. Hence, we make a special case of
the empty list. The complete function definition is given in Display 13.7.

algorithm
refinement

empty list

748 CHAPTER 13 / Pointers and Linked Lists

DISPLAY 13.7 Function to Locate a Node in a Linked List

Function Declaration

1 struct Node
2 {
3 int data;
4 Node *link;
5 };
6
7 typedef Node* NodePtr;
8
9 NodePtr search(NodePtr head, int target);

10 //Precondition: The pointer head points to the head of
11 //a linked list. The pointer variable in the last node
12 //is NULL. If the list is empty, then head is NULL.
13 //Returns a pointer that points to the first node that
14 //contains the target. If no node contains the target,
15 //the function returns NULL.

Function Definition

1 //Uses cstddef:
2 NodePtr search(NodePtr head, int target)
3 {
4 NodePtr here = head;
5
6 if (here == NULL)
7 {
8 return NULL;
9 }

10 else
11 {
12 while (here->data != target &&
13 here->link != NULL)
14 here = here->link;
15
16 if (here->data == target)
17 return here;
18 else
19 return NULL;
20 }
21 }

Empty list case

13.1 Nodes and Linked Lists 749

Pointers as Iterators

An iterator is a construct that allows you to cycle through the data items stored
in a data structure so that you can perform whatever action you want on each
data item. An iterator can be an object of some iterator class or something
simpler, such as an array index or a pointer. Pointers provide a simple example
of an iterator. In fact, a pointer is the prototypical example of an iterator. The
basic ideas can be easily seen in the context of linked lists. You can use a
pointer as an iterator by moving through the linked list one node at a time
starting at the head of the list and cycling through all the nodes in the list. The
general outline is as follows:

Node_Type *iter;
for (iter = Head; iter != NULL; iter = iter->link)
 Do whatever you want with the node pointed to by iter;

where Head is a pointer to the head node of the linked list and link is the
name of the member variable of a node that points to the next node in the list.

For example, to output the data in all the nodes in a linked list of the kind
we have been discussing, you could use

NodePtr iter; //Equivalent to: Node *iter;
for (iter = head; iter != NULL; iter = iter->link)
 cout << (iter->data);

The definition of Node and NodePtr are given in Display 13.7.

Inserting and Removing Nodes Inside a List

We next design a function to insert a node at a specified place in a linked list.
If you want the nodes in some particular order, such as numeric order or
alphabetical order, you cannot simply insert the node at the beginning or end
of the list. We will therefore design a function to insert a node after a specified
node in the linked list. We assume that some other function or program part
has correctly placed a pointer called after_me pointing to some node in the
linked list. We want the new node to be placed after the node pointed to by
after_me, as illustrated in Display 13.8. The same technique works for nodes
with any kind of data, but to be concrete, we are using the same type of nodes
as in previous subsections. The type definitions are given in Display 13.7. The
function declaration for the function we want to define is:

void insert(NodePtr after_me, int the_number);
//Precondition: after_me points to a node in a linked list.
//Postcondition: A new node containing the_number
//has been added after the node pointed to by after_me.

iterator

inserting in the
middle of a list

750 CHAPTER 13 / Pointers and Linked Lists

A new node is set up the same way it was in the function head_insert in
Display 13.4. The difference between this function and that one is that we now
wish to insert the node not at the head of the list but after the node pointed
to by after_me. The way to do the insertion is shown in Display 13.8 and is
expressed as follows in C++ code:

//add a link from the new node to the list:
temp_ptr->link = after_me->link;
//add a link from the list to the new node:
after_me->link = temp_ptr;

The order of these two assignment statements is critical. In the first assignment
we want the pointer value after_me->link before it is changed. The complete
function is given in Display 13.9.

If you go through the code for the function insert, you will see that it
works correctly even if the node pointed to by after_me is the last node in the
list. However, insert will not work for inserting a node at the beginning of a
linked list. The function head_insert given in Display 13.4 can be used to
insert a node at the beginning of a list.

By using the function insert you can maintain a linked list in numerical
order or alphabetical order or other ordering. You can “squeeze” a new node
into the correct position by simply adjusting two pointers. This is true no matter
how long the linked list is or where in the list you want the new data to go. If
you instead used an array, much, and in extreme cases all, of the array would

DISPLAY 13.8 Inserting in the Middle of a Linked List

after_me

head
2

9

3

18

NULL

5
temp_ptr

insertion at
the ends

comparison
to arrays

13.1 Nodes and Linked Lists 751

have to be copied in order to make room for a new value in the correct spot.
Despite the overhead involved in positioning the pointer after_me, inserting
into a linked list is frequently more efficient than inserting into an array.

Removing a node from a linked list is also quite easy. Display 13.10
illustrates the method. Once the pointers before and discard have been
positioned, all that is required to remove the node is the following statement:

before->link = discard->link;

This is sufficient to remove the node from the linked list. However, if you are
not using this node for something else, you should destroy the node and
return the memory it uses to the freestore; you can do this with a call to delete
as follows:

delete discard;

DISPLAY 13.9 Function to Add a Node in the Middle of a Linked List

Function Declaration

1 struct Node
2 {
3 int data;
4 Node *link;
5 };
6
7 typedef Node* NodePtr;
8
9 void insert(NodePtr after_me, int the_number);

10 //Precondition: after_me points to a node in a linked
11 //list.
12 //Postcondition: A new node containing the_number
13 //has been added after the node pointed to by after_me.

Function Definition

1 void insert(NodePtr after_me, int the_number)
2 {
3 NodePtr temp_ptr;
4 temp_ptr = new Node;
5
6 temp_ptr->data = the_number;
7
8 temp_ptr->link = after_me->link;
9 after_me->link = temp_ptr;

10 }

removing a node

752 CHAPTER 13 / Pointers and Linked Lists

■ PITFALL Using the Assignment Operator with Dynamic
Data Structures

If head1 and head2 are pointer variables and head1 points to the head node of
a linked list, the following will make head2 point to the same head node and
hence the same linked list:

head2 = head1;

DISPLAY 13.10 Removing a Node

1. Position the pointer discard so that it points to the node to be deleted, and position the
pointer before so that it points to the node before the one to be deleted.

2. before->link = discard->link;

head

discard

before

2

6

1

5

NULL

head

discard

before

2

6

1

3

5

NULL

Recycled

3. delete discard;

13.1 Nodes and Linked Lists 753

However, you must remember that there is only one linked list, not two. If you
change the linked list pointed to by head1, then you will also change the
linked list pointed to by head2, because they are the same linked list.

If head1 points to a linked list and you want head2 to point to a second,
identical copy of this linked list, the above assignment statement will not work.
Instead, you must copy the entire linked list node by node. Alternatively, you
can overload the assignment operator = so that it means whatever you want it
to mean. Overloading = is discussed in the subsection of Chapter 11 entitled
“Overloading the Assignment Operator.” ■

SELF -TEST EXERC ISES

5. Write type definitions for the nodes and pointers in a linked list. Call the
node type NodeType and call the pointer type PointerType. The linked
lists will be lists of letters.

6. A linked list is normally given by giving a pointer that points to the first
node in the list, but an empty list has no first node. What pointer value is
normally used to represent an empty list?

7. Suppose your program contains the following type definitions and
pointer variable declarations:

struct Node
{
 double data;
 Node *next;
};

typedef Node* Pointer;
Pointer p1, p2;

Suppose p1 points to a node of this type that is on a linked list. Write code
that will make p1 point to the next node on this linked list. (The pointer
p2 is for the next exercise and has nothing to do with this exercise.)

8. Suppose your program contains type definitions and pointer variable dec-
larations as in Self-Test Exercise 7. Suppose further that p2 points to a
node of type Node that is on a linked list and is not the last node on the
list. Write code that will delete the node after the node pointed to by p2.
After this code is executed, the linked list should be the same, except that
there will be one less node on the linked list. Hint: You might want to
declare another pointer variable to use.

754 CHAPTER 13 / Pointers and Linked Lists

9. Choose an answer and explain it.

For a large array and large list holding the same type objects, inserting a
new object at a known location into the middle of a linked list compared
with insertion in an array is

a. More efficient

b. Less efficient

c. About the same

d. Dependent on the size of the two lists

Variations on Linked Lists

In this subsection we give you a hint of the many data structures that can be
created using nodes and pointers. We briefly describe two additional data
structures, the doubly linked list and the binary tree.

An ordinary linked list allows you to move down the list in only one
direction (following the links). A node in a doubly linked list has two links,
one link that points to the next node and one that points to the previous
node. Diagrammatically, a doubly linked list looks like the sample list in
Display 13.11.

The node class for a doubly linked list could be as follows:

doubly linked
list

DISPLAY 13.11 A Doubly Linked List

1

2

front

back

3

13.1 Nodes and Linked Lists 755

struct Node
{

int data;
Node *forward_link;
Node *back_link;

};

Rather than a single pointer to the head node, a doubly linked list
normally has a pointer to each of the two end nodes. You can calls these
pointers front and back, although the choice of which is front and which is
back is arbitrary.

The definitions of constructors and some of the functions in the doubly
linked list class will have to change (from the singly linked case) to accommo-
date the extra link.

A tree is a data structure that is structured as shown in Display 13.12. In
particular, in a tree you can reach any node from the top (root) node by
some path that follows the links. Note that there are no cycles in a tree. If
you follow the links you eventually get to an “end.” Note that each node has
two links that point to other nodes (or the value NULL). This sort of tree is
called a binary tree, because each node has exactly two links. There are other
kinds of trees with different numbers of links in the nodes, but the binary
tree is the most common case.

tree

DISPLAY 13.12 A Binary Tree

root

20

10

NULL

NULL

30

NULL

NULL

50

NULL

60

NULL

NULL

40

binary tree

756 CHAPTER 13 / Pointers and Linked Lists

A tree is not a form of linked list, but does use links (pointers) in ways that
are similar to how they are used in linked lists. The definition of the node type
for a binary tree is essentially the same as what it is for a doubly linked list, but
the two links are usually named using some form of the words left and right. The
following is a node type that can be used for constructing a binary tree:

struct TreeNode
{

int data;
TreeNode *left_link;
TreeNode *right_link;

};

In Display 13.12, the pointer named root points to the root node (“top
node”). The root node serves a purpose similar to that of the head node in an
ordinary linked list (Display 13.10). Any node in the tree can be reached from
the root node by following the links.

The term tree may seem like a misnomer. The root is at the top of the tree
and the branching structure looks more like a root branching structure than a
tree branching structure. The secret to the terminology is to turn the picture
(Display 13.12) upsidedown. The picture then does resemble the branching
structure of a tree and the root node is where the tree’s root would begin. The
nodes at the ends of the branches with both link instance variables set to NULL
are known as leaf nodes, a terminology that may now make some sense.

Although we do not have room to pursue the topic in this book, binary
trees can be used to efficiently store and retrieve data.

Linked Lists of Classes

In the preceding examples we created linked lists by using a struct to hold the
contents of a node within the list. It is possible to create the same data structures
using a class instead of a struct. The logic is identical except the syntax of using
and defining a class should be substituted in place of that for a struct.

Displays 13.13 and 13.14 illustrate how to define a Node class. The data
variables are declared private using the principle of information hiding, and
public methods have been created to access the data value and next node in
the link. Display 13.15 creates a short list of five nodes by inserting new nodes
onto the front of the list. The head_insert function is logically identical to
the same function defined in Display 13.4 except the constructor defined for
the Node class is used to set the data.

root node

leaf node

13.1 Nodes and Linked Lists 757

DISPLAY 13.13 Interface File for a Node Class

1 // This is the header file for Node.h. This is the interface for
2 // a node class that behaves similarly to the struct defined
3 // in Display 13.4
4 namespace linkedlistofclasses
5 {
6 class Node
7 {
8 public:
9 Node();

10 Node(int value, Node *next);
11 // Constructors to initialize a node
12
13 int getData() const;
14 // Retrieve value for this node
15
16 Node *getLink() const;
17 // Retrieve next Node in the list
18
19 void setData(int value);
20 // Use to modify the value stored in the list
21
22 void setLink(Node *next);
23 // Use to change the reference to the next node
24
25 private:
26 int data;
27 Node *link;
28 };
29 typedef Node* NodePtr;
30 } // linkedlistofclasses
31 // Node.h

DISPLAY 13.14 Implementation File for a Node Class (part 1 of 2)

1 // This is the implementation file Node.cpp.
2 // It implements logic for the Node class. The interface
3 // file is in the header file Node.h
4 #include <iostream>
5 #include "Node.h"
6
7 namespace linkedlistofclasses

(continued)

758 CHAPTER 13 / Pointers and Linked Lists

DISPLAY 13.14 Implementation File for a Node Class (part 2 of 2)

8 {
9 Node::Node() : data(0), link(NULL)

10 {
11 // deliberately empty
12 }
13
14 Node::Node(int value, Node *next) : data(value), link(next)
15 {
16 // deliberately empty
17 }
18
19 // Accessor and Mutator methods follow
20
21 int Node::getData() const
22 {
23 return data;
24 }
25
26 Node* Node::getLink() const
27 {
28 return link;
29 }
30
31 void Node::setData(int value)
32 {
33 data = value;
34 }
35
36 void Node::setLink(Node *next)
37 {
38 link = next;
39 }
40 } // linkedlistofclasses
41 // Node.cpp

DISPLAY 13.15 Program Using the Node Class (part 1 of 3)

1 // This program demonstrates the creation of a linked list
2 // using the Node class. Five nodes are created, output, then
3 // destroyed.
4 #include <iostream>
5 #include "Node.h"
6

(continued)

13.1 Nodes and Linked Lists 759

DISPLAY 13.15 Program Using the Node Class (part 2 of 3)

7 using namespace std;
8 using namespace linkedlistofclasses;
9

10 // This function inserts a new node onto the head of the list
11 // and is a class-based version of the same function defined
12 // in Display 13.4.
13 void head_insert(NodePtr &head, int the_number)
14 {
15 NodePtr temp_ptr;
16 // The constructor sets temp_ptr->link to head and
17 // sets the data value to the_number
18 temp_ptr = new Node(the_number, head);
19 head = temp_ptr;
20 }
21
22 int main()
23 {
24 NodePtr head, tmp;
25
26 // Create a list of nodes 4->3->2->1->0
27 head = new Node(0, NULL);
28 for (int i=1; i<5; i++)
29 {
30 head_insert(head, i);
31 }
32 // Iterate through the list and display each value
33 tmp = head;
34 while (tmp != NULL)
35 {
36 cout << tmp->getData() << endl;
37 tmp = tmp->getLink();
38 }
39 // Delete all nodes in the list before exiting
40 // the program.
41 tmp = head;
42 while (tmp != NULL)
43 {
44 NodePtr nodeToDelete = tmp;
45 tmp = tmp->getLink();
46 delete nodeToDelete;
47 }
48 return 0;
49 }

(continued)

760 CHAPTER 13 / Pointers and Linked Lists

13.2 STACKS AND QUEUES

But many who are first now will be last, and many who are last now will be first.

MATTHEW 19:30

Linked lists have many applications. In this section we give two samples of what
they can be used for. We use linked lists to give implementations of two data
structures known as a stack and a queue. In this section we always use regular
linked list and not doubly linked lists.

Stacks

A stack is a data structure that retrieves data in the reverse of the order in which the
data is stored. Suppose you place the letters 'A', 'B', and then 'C' in a stack.
When you take these letters out of the stack, they will be removed in the order 'C',
'B', and then 'A'. This use of a stack is diagrammed in Display 13.16. As shown

DISPLAY 13.15 Program Using the Node Class (part 3 of 3)

Sample Dialogue

4

3

2

1

0

DISPLAY 13.16 A Stack

A

B

A

C

A

B

C

B

A

A

B

A

C

A

B

13.2 Stacks and Queues 761

there, you can think of a stack as a hole in the ground. In order to get something
out of the stack, you must first remove the items on top of the one you want. For
this reason a stack is often called a last-in/first-out (LIFO) data structure.

Stacks are used for many language processing tasks. In Chapter 14 we will
discuss how the computer system uses a stack to keep track of C++ function calls.
However, here we will do only one very simple application. Our goal in this
example is to show you how you can use the linked list techniques to implement
specific data structures; a stack is one simple example of the use of linked lists. You
need not read Chapter 14 to understand this example.

■ PROGRAMMING EXAMPLE A Stack Class

The interface for our stack class is given in Display 13.17. This particular stack is
used to store data of type char. You can define a similar stack to store data of any
other type. There are two basic operations you can perform on a stack: adding an
item to the stack and removing an item from the stack. Adding an item is called
pushing the item onto the stack, and so we called the member function that does
this push. Removing an item from a stack is called popping the item off the stack,
and so we called the member function that does this pop.

The names push and pop derive from another way of visualizing a stack.
A stack is analogous to a mechanism that is sometimes used to hold plates
in a cafeteria. The mechanism stores plates in a hole in the countertop. There

last-in/first-out

interface

DISPLAY 13.17 Interface File for a Stack Class (part 1 of 2)

1 //This is the header file stack.h. This is the interface for the class Stack,
2 //which is a class for a stack of symbols.
3 #ifndef STACK_H
4 #define STACK_H
5 namespace stacksavitch
6 {
7 struct StackFrame
8 {
9 char data;

10 StackFrame *link;
11 };

12 typedef StackFrame* StackFramePtr;

13 class Stack
14 {
15 public:
16 Stack();
17 //Initializes the object to an empty stack.

(continued)

push and pop

762 CHAPTER 13 / Pointers and Linked Lists

is a spring underneath the plates with its tension adjusted so that only the
top plate protrudes above the countertop. If this sort of mechanism were
used as a stack data structure, the data would be written on plates (which
might violate some health laws, but still makes a good analogy). To add a
plate to the stack, you put it on top of the other plates, and the weight of this
new plate pushes down the spring. When you remove a plate, the plate below
it pops into view.

Display 13.18 shows a simple program that illustrates how the stack class
is used. This program reads a word one letter at a time and places the letters
in a stack. The program then removes the letters one by one and writes them
to the screen. Because data is removed from a stack in the reverse of the order
in which it enters the stack, the output shows the word written backward.

As shown in Display 13.19, our stack class is implemented as a linked list
in which the head of the list serves as the top of the stack. The member
variable top is a pointer that points to the head of the linked list.

Writing the definition of the member function push is Self-Test Exercise 10.
However, we have already given the algorithm for this task. The code for the
push member function is essentially the same as the function head_insert
shown in Display 13.4, except that in the member function push we use a
pointer named top in place of a pointer named head.

An empty stack is just an empty linked list, so an empty stack is
implemented by setting the pointer top equal to NULL. Once you realize that
NULL represents the empty stack, the implementations of the default construc-
tor and of the member function empty are obvious.

DISPLAY 13.17 Interface File for a Stack Class (part 2 of 2)

18 Stack(const Stack& a_stack);
19 //Copy constructor.

20 ~Stack();
21 //Destroys the stack and returns all the memory to the freestore.

22 void push(char the_symbol);
23 //Postcondition: the_symbol has been added to the stack.

24 char pop();
25 //Precondition: The stack is not empty.
26 //Returns the top symbol on the stack and removes that
27 //top symbol from the stack.

28 bool empty() const;
29 //Returns true if the stack is empty. Returns false otherwise.
30 private:
31 StackFramePtr top;
32 };
33 }//stacksavitch

34 #endif //STACK_H

application
program

implementation

default
constructor

13.2 Stacks and Queues 763

DISPLAY 13.18 Program Using the Stack Class

1 //Program to demonstrate use of the Stack class.
2 #include <iostream>
3 #include "stack.h"
4 using namespace std;
5 using namespace stacksavitch;
6
7 int main()
8 {
9 Stack s;

10 char next, ans;
11
12 do
13 {
14 cout << "Enter a word: ";
15 cin.get(next);
16 while (next != '\n')
17 {
18 s.push(next);
19 cin.get(next);
20 }
21
22 cout << "Written backward that is: ";
23 while (! s.empty())
24 cout << s.pop();
25 cout << endl;
26
27 cout << "Again?(y/n): ";
28 cin >> ans;
29 cin.ignore(10000, '\n');
30 }while (ans != 'n' && ans != 'N');
31
32 return 0;
33 }

Sample Dialogue

Enter a word: straw

Written backward that is: warts

Again?(y/n): y

Enter a word: C++

Written backward that is: ++C

Again?(y/n): n

The ignore member of cin is discussed in Chapter 8. It discards input remaining
on the current input line up to 10,000 characters or until a return is entered. It
also discards the return ('\n') at the end of the line.

764 CHAPTER 13 / Pointers and Linked Lists

DISPLAY 13.19 Implementation of the Stack Class (part 1 of 2)

1 //This is the implementation file stack.cpp.
2 //This is the implementation of the class Stack.
3 //The interface for the class Stack is in the header file stack.h.
4 #include <iostream>
5 #include <cstddef>
6 #include "stack.h"
7 using namespace std;
8
9 namespace stacksavitch

10 {
11 //Uses cstddef:
12 Stack::Stack() : top(NULL)
13 {
14 //Body intentionally empty.
15 }
16
17 Stack::Stack(const Stack& a_stack)

 <The definition of the copy constructor is Self-Test Exercise 11.>

18 Stack::~Stack()
19 {
20 char next;
21 while (! empty())
22 next = pop();//pop calls delete.
23 }
24

25 //Uses cstddef:
26 bool Stack::empty() const
27 {
28 return (top == NULL);
29 }
30

31 void Stack::push(char the_symbol)

 <The rest of the definition is Self-Test Exercise 10.>

32 //Uses iostream:
33 char Stack::pop()
34 {
35 if (empty())
36 {
37 cout << "Error: popping an empty stack.\n";

(continued)

13.2 Stacks and Queues 765

The definition of the copy constructor is a bit complicated but does not
use any techniques we have not already discussed. The details are left to Self-
Test Exercise 11.

The pop member function first checks to see if the stack is empty. If the
stack is not empty, it proceeds to remove the top character in the stack. It sets
the local variable result equal to the top symbol on the stack. That is done
as follows:

char result = top->data;

After the symbol in the top node is saved in the variable result, the pointer
top is moved to the next node on the linked list, effectively removing the top
node from the list. The pointer top is moved with the following statement:

top = top->link;

However, before the pointer top is moved, a temporary pointer, called
temp_ptr, is positioned so that it points to the node that is about to be
removed from the list. The node can then be removed with the following call
to delete:

delete temp_ptr;

Each node that is removed from the linked list by the member function
pop is destroyed with a call to delete. Thus, all that the destructor needs to do
is remove each item from the stack with a call to pop. Each node will then have
its memory returned to the freestore. ■

DISPLAY 13.19 Implementation of the Stack Class (part 2 of 2)

38 exit(1);
39 }
40
41 char result = top->data;
42
43 StackFramePtr temp_ptr;
44 temp_ptr = top;
45 top = top->link;
46
47 delete temp_ptr;
48
49 return result;
50 }
51 }//stacksavitch

copy constructor

pop

destructor

766 CHAPTER 13 / Pointers and Linked Lists

SELF -TEST EXERC ISES

10. Give the definition of the member function push of the class Stack
described in Display 13.17.

11. Give the definition of the copy constructor for the class Stack described in
Display 13.17.

Queues

A stack is a last-in/first-out data structure. Another common data structure is a
queue which handles data in a first-in/first-out (FIFO) fashion. A queue
behaves exactly the same as a line of people waiting for a bank teller or other
service. The people are served in the order they enter the line (the queue). The
operation of a queue is diagrammed in Display 13.20. A queue can be
implemented with a linked list in a manner that is similar to our implemen-
tation of the Stack class. However, a queue needs a pointer at both the head
of the list and at the other the end of the linked list, since action takes place
in both locations. It is easier to remove a node from the head of a linked list
than from the other end of the linked list. So, our implementation will remove
a node from the head of the list (which we will now call the front of the list)
and we will add nodes to the other end of the list, which we will now call the
back of the list (or the back of the queue).

queue
first-in/first-out

DISPLAY 13.20 A Queue

A

B

A

C

A

B

C

B

A

A

C

C

B

CB

front

back

13.2 Stacks and Queues 767

■ PROGRAMMING EXAMPLE A Queue Class

The interface for our queue class is given in Display 13.21. This particular
queue is used to store data of type char. You can define a similar queue to store
data of any other type. There are two basic operations you can perform on a
queue: adding an item to the end of the queue and removing an item from the
front of the queue.

 Display 13.22 shows a simple program that illustrates how the queue
class is used. This program reads a word one letter at a time and places the
letters in a queue. The program then removes the letters one by one and writes
them to the screen. Because data is removed from a queue in the order in

Queue

A queue is a first-in/first-out data structure; that is, the data items are
removed from the queue in the same order that they were added to the
queue.

interface

DISPLAY 13.21 Interface File for a Queue Class (part 1 of 2)

1 //This is the header file queue.h. This is the interface for the class Queue,
2 //which is a class for a queue of symbols.
3 #ifndef QUEUE_H
4 #define QUEUE_H
5 namespace queuesavitch
6 {
7 struct QueueNode
8 {
9 char data;

10 QueueNode *link;
11 };

12 typedef QueueNode* QueueNodePtr;
13
14 class Queue
15 {
16 public:
17 Queue();
18 //Initializes the object to an empty queue.

19 Queue(const Queue& aQueue);

20 ~Queue();

(continued)

application
program

768 CHAPTER 13 / Pointers and Linked Lists

DISPLAY 13.21 Interface File for a Queue Class (part 2 of 2)

21 void add(char item);
22 //Postcondition: item has been added to the back of the queue.

23 char remove();
24 //Precondition: The queue is not empty.
25 //Returns the item at the front of the queue and
26 //removes that item from the queue.

27 bool empty() const;
28 //Returns true if the queue is empty. Returns false otherwise.
29 private:
30 QueueNodePtr front;//Points to the head of a linked list.
31 //Items are removed at the head
32 QueueNodePtr back;//Points to the node at the other end of the
33 //linked list. Items are added at this end.
34 };
35 }//queuesavitch
36 #endif //QUEUE_H

DISPLAY 13.22 Program Using the Queue Class (part 1 of 2)

1 //Program to demonstrate use of the Queue class.
2 #include <iostream>
3 #include "queue.h"
4 using namespace std;
5 using namespace queuesavitch;
6
7 int main()
8 {
9 Queue q;

10 char next, ans;
11
12 do
13 {
14 cout << "Enter a word: ";
15 cin.get(next);
16 while (next != '\n')
17 {
18 q.add(next);
19 cin.get(next);
20 }
21

(continued)

13.2 Stacks and Queues 769

which it enters the queue, the output shows the letters in the word in the same
order that the user entered them. It is good to contrast this application of a
queue with a similar application using a stack which we gave in Display 13.18.

As shown in Displays 13.21 and 13.23, our queue class is implemented as
a linked list in which the head of the list serves as the front of the queue. The
member variable front is a pointer that points to the head of the linked list.
Nodes are removed at the head of the linked list. The member variable back is
a pointer that points to the node at the other end of the linked list. Nodes are
added at this end of the linked list.

An empty queue is just an empty linked list, so an empty queue is
implemented by setting the pointers front and back equal to NULL.

The rest of the details of the implementation are similar to things we have
seen before.

DISPLAY 13.22 Program Using the Queue Class (part 2 of 2)

22 cout << "You entered:: ";
23 while (! q.empty())
24 cout << q.remove();
25 cout << endl;
26
27 cout << "Again?(y/n): ";
28 cin >> ans;
29 cin.ignore(10000, '\n');
30 }while (ans !='n' && ans != 'N');
31
32 return 0;
33 }

Sample Dialogue

Enter a word: straw

You entered: straw

Again?(y/n): y

Enter a word: C++

You entered: C++

Again?(y/n): n

The ignore member of cin is discussed in Chapter 8. It discards input remaining
on the current input line up to 10,000 characters or until a return is entered. It
also discards the return ('\n') at the end of the line.

implementation

770 CHAPTER 13 / Pointers and Linked Lists

DISPLAY 13.23 Implementation of the Queue Class (part 1 of 2)

1 //This is the implementation file queue.cpp.
2 //This is the implementation of the class Queue.
3 //The interface for the class Queue is in the header file queue.h.
4 #include <iostream>
5 #include <cstdlib>
6 #include <cstddef>
7 #include "queue.h"
8 using namespace std;
9

10 namespace queuesavitch
11 {
12 //Uses cstddef:
13 Queue::Queue() : front(NULL), back(NULL)
14 {
15 //Intentionally empty.
16 }
17
18 Queue::Queue(const Queue& aQueue)
19 <The definition of the copy constructor is Self-Test Exercise 12.>
20
21 Queue::~Queue()
22 <The definition of the destructor is Self-Test Exercise 13.>
23
24 //Uses cstddef:
25 bool Queue::empty() const
26 {
27 return (back == NULL);//front == NULL would also work
28 }
29
30 //Uses cstddef:
31 void Queue::add(char item)
32 {
33 if (empty())
34 {
35 front = new QueueNode;
36 front->data = item;
37 front->link = NULL;
38 back = front;
39 }
40
41 else
42 {
43 QueueNodePtr temp_ptr;
44 temp_ptr = new QueueNode;

(continued)

Chapter Summary 771

SELF -TEST EXERC ISES

12. Give the definition of the copy constructor for the class Queue described in
Display 13.21.

13. Give the definition of the destructor for the class Queue described in Dis-
play 13.21.

CHAPTER SUMMARY

■ A node is a struct or class object that has one or more member variables
that are pointer variables. These nodes can be connected by their member
pointer variables to produce data structures that can grow and shrink in size
while your program is running.

DISPLAY 13.23 Implementation of the Queue Class (part 2 of 2)

45 temp_ptr->data = item;
46 temp_ptr->link = NULL;
47 back->link = temp_ptr;
48 back = temp_ptr;
49 }
50 }
51
52 //Uses cstdlib and iostream:
53 char Queue::remove()
54 {
55 if (empty())
56 {
57 cout << "Error: Removing an item from an empty queue.\n";
58 exit(1);
59 }
60
61 char result = front->data;
62
63 QueueNodePtr discard;
64 discard = front;
65 front = front->link;
66 if (front == NULL) //if you removed the last node
67 back = NULL;
68
69 delete discard;
70
71 return result;
72 }
73 }//queuesavitch

772 CHAPTER 13 / Pointers and Linked Lists

■ A linked list is a list of nodes in which each node contains a pointer to the
next node in the list.

■ The end of a linked list (or other linked data structure) is indicated by set-
ting the pointer member variable equal to NULL.

■ A stack is a first-in/last-out data structure. A stack can be implemented
using a linked list.

■ A queue is a first-in/first-out data structure. A queue can be implemented
using a linked list.

Answers to Self-Test Exercises

1.

Note that (*head).name and head->name mean the same thing. Similarly,
(*head).number and head->number mean the same thing.

2. The best answer is

head->next = NULL;

However, the following is also correct:

(*head).next = NULL;

3. delete head;

4. head->item = "Wilbur's brother Orville";

5. struct NodeType
{
 char data;
 NodeType *link;
};

typedef NodeType* PointerType;

6. The pointer value NULL is used to indicate an empty list.

7. p1 = p1-> next;

8. Pointer discard;
discard = p2->next;

Sally
Sally
18
18

Answers to Self-Test Exercises 773

//discard now points to the node to be deleted.
p2->next = discard->next;

This is sufficient to delete the node from the linked list. However, if you
are not using this node for something else, you should destroy the node
with a call to delete as follows:

delete discard;

9. a. Inserting a new item at a known location into a large linked list is
more efficient than inserting into a large array. If you are inserting into a
list, you have about five operations, most of which are pointer assign-
ments, regardless of the list size. If you insert into an array, on the average
you have to move about half the array entries to insert a data item.

For small lists, the answer is (c), about the same.

10. //Uses cstddef:
void Stack::push(char the_symbol)
{
 StackFramePtr temp_ptr;
 temp_ptr = new StackFrame;

 temp_ptr->data = the_symbol;

 temp_ptr->link = top;
 top = temp_ptr;
}

11. //Uses cstddef:
Stack::Stack(const Stack& a_stack)
{
 if (a_stack.top == NULL)
 top = NULL;
 else
 {
 StackFramePtr temp = a_stack.top;//temp moves
 //through the nodes from top to bottom of
 //a_stack.
 StackFramePtr end;//Points to end of the new stack.

 end = new StackFrame;
 end->data = temp->data;
 top = end;
 //First node created and filled with data.
 //New nodes are now added AFTER this first node.

 temp = temp->link;
 while (temp != NULL)

774 CHAPTER 13 / Pointers and Linked Lists

 {
 end->link = new StackFrame;
 end = end->link;
 end->data = temp->data;
 temp = temp->link;
 }
 end->link = NULL;
 }
}

12. //Uses cstddef:
Queue::Queue(const Queue& aQueue)
{
 if (aQueue.empty())
 front = back = NULL;
 else
 {
 QueueNodePtr temp_ptr_old = aQueue.front;
 //temp_ptr_old moves through the nodes
 //from front to back of aQueue.
 QueueNodePtr temp_ptr_new;
 //temp_ptr_new is used to create new nodes.

 back = new QueueNode;
 back->data = temp_ptr_old->data;
 back->link = NULL;
 front = back;
 //First node created and filled with data.
 //New nodes are now added AFTER this first node.

 temp_ptr_old = temp_ptr_old->link;
 //temp_ptr_old now points to second
 //node or NULL if there is no second node.

 while (temp_ptr_old != NULL)
 {
 temp_ptr_new = new QueueNode;
 temp_ptr_new->data = temp_ptr_old->data;
 temp_ptr_new->link = NULL;
 back->link = temp_ptr_new;
 back = temp_ptr_new;
 temp_ptr_old = temp_ptr_old->link;
 }
 }
}

Programming Projects 775

13. Queue::~Queue()
{
 char next;
 while (! empty())
 next = remove();//remove calls delete.
}

PROGRAMMING PROJECTS

1. Write a void function that takes a linked list of integers and reverses the
order of its nodes. The function will have one call-by-reference parameter
that is a pointer to the head of the list. After the function is called, this
pointer will point to the head of a linked list that has the same nodes as
the original list, but in the reverse of the order they had in the original list.
Note that your function will neither create nor destroy any nodes. It will
simply rearrange nodes. Place your function in a suitable test program.

2. Write a function called merge_lists that takes two call-by-reference argu-
ments that are pointer variables that point to the heads of linked lists of
values of type int. The two linked lists are assumed to be sorted so that
the number at the head is the smallest number, the number in the next
node is the next smallest, and so forth. The function returns a pointer to
the head of a new linked list that contains all of the nodes in the original
two lists. The nodes in this longer list are also sorted from smallest to larg-
est values. Note that your function will neither create nor destroy any
nodes. When the function call ends, the two pointer variable arguments
should have the value NULL.

3. Design and implement a class whose objects represent polynomials. The
polynomial

an x n + an–1x n–1 + . . . + a0

will be implemented as a linked list. Each node will contain an int value
for the power of x and an int value for the corresponding coefficient. The
class operations should include addition, subtraction, multiplication, and
evaluation of a polynomial. Overload the operators +, − , and * for
addition, subtraction, and multiplication.

Evaluation of a polynomial is implemented as a member function with
one argument of type int. The evaluation member function returns the
value obtained by plugging in its argument for x and performing the
indicated operations. Include four constructors: a default constructor, a
copy constructor, a constructor with a single argument of type int that

776 CHAPTER 13 / Pointers and Linked Lists

produces the polynomial that has only one constant term that is equal to the
constructor argument, and a constructor with two arguments of type int
that produces the one-term polynomial whose coefficient and exponent are
given by the two arguments. (In the above notation, the polynomial
produced by the one-argument constructor is of the simple form consisting
of only a0. The polynomial produced by the two-argument constructor is of
the slightly more complicated form anx n.) Include a suitable destructor.
Include member functions to input and output polynomials.

When the user inputs a polynomial, the user types in the following:

anx ^n + an–1x ^n–1 + . . . + a0

However, if a coefficient ai is zero, the user may omit the term aix^i. For
example, the polynomial

3x4 + 7x2 + 5

can be input as

3x^4 + 7x^2 + 5

It could also be input as

3x^4 + 0x^3 + 7x^2 + 0x^1 + 5

If a coefficient is negative, a minus sign is used in place of a plus sign, as
in the following examples:

3x^5 – 7x^3 + 2x^1 – 8
–7x^4 + 5x^2 + 9

A minus sign at the front of the polynomial, as in the second of the two
examples, applies only to the first coefficient; it does not negate the entire
polynomial. Polynomials are output in the same format. In the case of
output, the terms with zero coefficients are not output.

To simplify input, you can assume that polynomials are always entered
one per line and that there will always be a constant term a0. If there is no
constant term, the user enters zero for the constant term, as in the
following:

12x^8 + 3x^2 + 0

4. In this project you will redo Programming Project 10 from Chapter 7
using a linked list instead of an array. As noted there, this is a linked list
of double items. This fact may imply changes in some of the member
functions. The members are as follows: a default constructor; a member
function named add_item to add a double to the list; a test for a full list

Programming Projects 777

that is a Boolean-valued function named full(); and a friend function
overloading the insertion operator <<.

5. A harder version of Programming Project 4 would be to write a class named
List, similar to Project 4, but with all the following member functions:

■ Default constructor, List();

■ double List::front();, which returns the first item in the list

■ double List::back();, which returns the last item in the list

■ double List::current();, which returns the “current” item

■ void List::advance();, which advances the item that current() returns

■ void List::reset(); to make current() return the first item in the list

■ void List::insert(double after_me, double insert_me);, which inserts
insert_me into the list after after_me and increments the private: vari-
able count.

■ int size();, which returns the number of items in the list

■ friend istream& operator<< (istream& ins, double write_me);

The private data members should include the following:

node* head;
node* current;
int count;

and possibly one more pointer.

You will need the following struct (outside the list class) for the linked
list nodes:

struct node
{
 double item;
 node *next;
};

Incremental development is essential to all projects of any size, and this
is no exception. Write the definition for the List class, but do not
implement any members yet. Place this class definition in a file list.h.
Then #include "list.h" in a file that contains int main(){}. Compile
your file. This will find syntax errors and many typographical errors that
would cause untold difficulty if you attempted to implement members
without this check. Then you should implement and compile one
member at a time, until you have enough to write test code in your
main function.

778 CHAPTER 13 / Pointers and Linked Lists

6. In an ancient land, the beautiful princess Eve had many suitors. She
decided on the following procedure to determine which suitor she would
marry. First, all of the suitors would be lined up one after the other and
assigned numbers. The first suitor would be number 1, the second number
2, and so on up to the last suitor, number n. Starting at the first suitor she
would then count three suitors down the line (because of the three letters in
her name) and the third suitor would be eliminated from winning her
hand and removed from the line. Eve would then continue, counting three
more suitors, and eliminate every third suitor. When she reached the end of
the line she would continue counting from the beginning.

For example, if there were six suitors then the elimination process would
proceed as follows:

123456 initial list of suitors, start counting from 1

12456 suitor 3 eliminated, continue counting from 4

1245 suitor 6 eliminated, continue counting from 1

125 suitor 4 eliminated, continue counting from 5

15 suitor 2 eliminated, continue counting from 5

1 suitor 5 eliminated, 1 is the lucky winner

Write a program that creates a circular linked list of nodes to determine which
position you should stand in to marry the princess if there are n suitors. A
circular linked list is a linked list where the link field of the last node in the
list refers to the node that is the head of the list. Your program should
simulate the elimination process by deleting the node that corresponds to the
suitor that is eliminated for each step in the process. Consider the possibility
that you may need to delete the “head” node in the list.

7. Redo (or do for the first time) Programming Project 5 from Chapter 9.
However, instead of a dynamic array to store the list of user IDs for each
computer station, use a linked list. The node for the lists should contain
the station number and user ID of the person logged in on that station. If
nobody is logged onto a computer station then no entry should exists in
the linked list for that computer station.

8. Modify or rewrite the Queue class (Display 13.21 through 13.23) to
simulate customer arrivals at the Department of Motor Vehicles (DMV)
counter. As customers arrive, they are given a ticket number starting at 1
and incrementing with each new customer. When a customer service
agent is free, the customer with the next ticket number is called. This
system results in a FIFO queue of customers ordered by ticket number.
Write a program that implements the queue and simulates customers
entering and leaving the queue. Input into the queue should be the ticket
number and a timestamp when the ticket was entered into the queue. A
ticket and its corresponding timestamp is removed when a customer

Video Note
Solution to
Programming
Project 13.6

Programming Projects 779

service agent handles the next customer. Your program should save the
length of time the last three customers spent waiting in the queue. Every
time a ticket is removed from the queue, update these times and output
the average of the last three customers as an estimate of how long it will
take until the next customer is handled. If nobody is in the queue, output
that the line is empty.

Code to compute a timestamp based on the computer’s clock is given
below. The time(NULL) function returns the number of seconds since
January 1, 1970, on most implementations of C++:

#include <ctime>
...

int main()
{
 long seconds;

 seconds = static_cast<long>(time(NULL));
 cout << "Seconds since 1/1/1970: " << seconds << endl;
 return 0;
}

Sample execution is shown here:

The line is empty.
Enter '1' to simulate a customer’s arrival, '2' to help the next
customer, or '3' to quit.
1
Customer 1 entered the queue at time 100000044.
Enter '1' to simulate a customer’s arrival, '2' to help the next
customer, or '3' to quit.
1
Customer 2 entered the queue at time 100000049.
Enter '1' to simulate a customer’s arrival, '2' to help the next
customer, or '3' to quit.
1
Customer 3 entered the queue at time 100000055.
Enter '1' to simulate a customer’s arrival, '2' to help the next
customer, or '3' to quit.
2
Customer 1 is being helped at time 100000069. Wait time = 25 seconds.
The estimated wait time for customer 2 is 25 seconds.
Enter '1' to simulate a customer’s arrival, '2' to help the next
customer, or '3' to quit.
2
Customer 2 is being helped at time 100000076. Wait time = 27 seconds.
The estimated wait time for customer 3 is 26 seconds.
Enter '1' to simulate a customer’s arrival, '2' to help the next
customer, or '3' to quit.
1
Customer 4 entered the queue at time 100000080.

780 CHAPTER 13 / Pointers and Linked Lists

Enter '1' to simulate a customer’s arrival, '2' to help the next
customer, or '3' to quit.
2
Customer 3 is being helped at time 100000099. Wait time = 44 seconds.
The estimated wait time for customer 4 is 32 seconds.

9. The following figure is called a graph. The circles are called nodes , and the
lines are called edges. An edge connects two nodes. You can interpret the
graph as a maze of rooms and passages. The nodes can be thought of as
rooms, and an edge connects one room to another. Note that each node
has at most four edges in the graph.

Write a program that implements the maze using nodes and pointers.
Each node in the graph will correspond to a node in your code that
is implemented in the form of a class or struct. The edges correspond to
bi-directional links that point from one node to another. Start the user in
node A. The user’s goal is to reach the finish in node L. The program
should output possible moves in the north, south, east, or west direction.
Sample execution is shown here.

You are in room A of a maze of twisty little passages, all alike.
You can go (E)ast, (S)outh, or (Q)uit.
E
You are in room B of a maze of twisty little passages, all alike.
You can go (W)est, (S)outh, or (Q)uit.
S
You are in room F of a maze of twisty little passages, all alike.
You can go (E)ast, (N)orth, or (Q)uit.
E

Video Note
Solution to
Programming
Project 13.9

Start
North

Finish

D

F G H

I J K L

CBA

E

14Recursion

14.1 RECURSIVE FUNCTIONS FOR TASKS 783
Case Study: Vertical Numbers 783
A Closer Look at Recursion 790
Pitfall: Infinite Recursion 791
Stacks for Recursion 793
Pitfall: Stack Overflow 794
Recursion Versus Iteration 795

14.2 RECURSIVE FUNCTIONS FOR
VALUES 796
General Form for a Recursive Function

That Returns a Value 796
Programming Example: Another Powers

Function 797

14.3 THINKING RECURSIVELY 801
Recursive Design Techniques 801
Case Study: Binary Search—An Example of

Recursive Thinking 803
Programming Example: A Recursive Member

Function 810

Chapter Summary 815
Answers to Self-Test Exercises 815
Programming Projects 820

782

After a lecture on cosmology and the structure of the solar system, William
James was accosted by a little old lady.

“Your theory that the sun is the center of the solar system, and the earth is a
ball which rotates around it has a very convincing ring to it, Mr. James, but it’s
wrong. I’ve got a better theory,” said the little old lady.

“And what is that, madam?” inquired James politely.

“That we live on a crust of earth which is on the back of a giant turtle.”

Not wishing to demolish this absurd little theory by bringing to bear the masses
of scientific evidence he had at his command, James decided to gently dissuade
his opponent by making her see some of the inadequacies of her position.

“If your theory is correct, madam,” he asked, “what does this turtle stand on?”
“You’re a very clever man, Mr. James, and that’s a very good question,” replied
the little old lady, “but I have an answer to it. And it is this: the first turtle stands
on the back of a second, far larger, turtle, who stands directly under him.”

“But what does this second turtle stand on?” persisted James patiently.

To this the little old lady crowed triumphantly. “It’s no use, Mr. James—it’s
turtles all the way down.”

J. R. ROSS, Constraints on Variables in Syntax

INTRODUCTION
You have encountered a few cases of circular definitions that worked out
satisfactorily. The most prominent examples are the definitions of certain C++
statements. For example, the definition of a while statement says that it can
contain other (smaller) statements. Since one of the possibilities for these
smaller statements is another while statement, there is a kind of circularity in
that definition. The definition of the while statement, if written out in complete
detail, will contain a reference to while statements. In mathematics, this kind of
circular definition is called a recursive definition. In C++ a function may be
defined in terms of itself in the same way. To put it more precisely, a function
definition may contain a call to itself. In such cases the function is said to be
recursive. This chapter discusses recursion in C++ and more generally discusses
recursion as a programming and problem-solving technique.

PREREQUISITES
Sections 14.1 and 14.2 use material from only Chapters 2 through 5. Section
14.3 uses material from Chapters 2 through 7 and 10.

14.1 Recursive Functions for Tasks 783

14.1 RECURSIVE FUNCTIONS FOR TASKS

 I remembered too that night which is at the middle of the Thousand and One
Nights when Scheherazade (through a magical oversight of the copyist) begins
to relate word for word the story of the Thousand and One Nights, establishing
the risk of coming once again to the night when she must repeat it, and thus
to infinity.

JORGE LUIS BORGES, The Garden of Forking Paths

When you are writing a function to solve a task, one basic design technique
is to break the task into subtasks. Sometimes it turns out that at least one
of the subtasks is a smaller example of the same task. For example, if the
task is to search an array for a particular value, you might divide this into
the subtask of searching the first half of the array and the subtask of
searching the second half of the array. The subtasks of searching the halves
of the array are “smaller” versions of the original task. Whenever one
subtask is a smaller version of the original task to be accomplished, you
can solve the original task using a recursive function. It takes a little
training to easily decompose problems this way, but once you learn the
technique, it can be one of the quickest ways to design an algorithm, and
ultimately a C++ function. We begin with a simple case study to illustrate
this technique.

CASE STUDY Vertical Numbers

In this case study we design a recursive void function that writes numbers to
the screen with the digits written vertically, so that, for example, 1984 would
be written as

Recursion

In C++ a function definition may contain a call to the function being
defined. In such cases the function is said to be recursive.

1
9
8
4

784 CHAPTER 14 / Recursion

Problem Definition
The declaration and header comment for our function is as follows:

void write_vertical(int n);
//Precondition: n >= 0.
//Postcondition: The number n is written to the screen
//vertically with each digit on a separate line.

Algorithm Design
One case is very simple. If n, the number to be written out, is only one digit
long, then just write out the number. As simple as it is, this case is still
important, so let’s keep track of this case.

Simple Case: If n < 10, then write the number n to the screen.

Now let’s consider the more typical case in which the number to be
written out consists of more than one digit. Suppose you want to write the
number 1234 vertically so that the result is

One way to decompose this task into two subtasks is the following:

1. Output all the digits except the last digit like so:

2. Output the last digit, which in this example is 4.

Subtask 1 is a smaller version of the original task, so we can implement this
subtask with a recursive call. Subtask 2 is just the simple case we listed earlier.
Thus, an outline of our algorithm for the function write_vertical with
parameter n is given by the following pseudocode:

if (n < 10)
{
 cout << n << endl;
}
else //n is two or more digits long:
{
 write_vertical(the number n with the last digit removed);
 cout << the last digit of n << endl;
}

1
2
3
4

1
2
3

Recursive subtask

14.1 Recursive Functions for Tasks 785

In order to convert this pseudocode into the code for a C++ function, all
we need to do is translate the following two pieces of pseudocode into C++
expressions:

the number n with the last digit removed

and

the last digit of n

These expressions can easily be translated into C++ expressions using the
integer division operators / and % as follows:

n / 10 //the number n with the last digit removed
n % 10 //the last digit of n

For example, 1234 / 10 evaluates to 123, and 1234 % 10 evaluates to 4.
Several factors influenced our selection of the two subtasks we used in this

algorithm. One was that we could easily compute the argument for the
recursive call to write_vertical (shown in color) that we used in the
pseudocode. The number n with the last digit removed is easily computed as
n/10. As an alternative, you might have been tempted to divide the subtasks
as follows:

1. Output the first digit of n.

2. Output the number n with the first digit removed.

This is a perfectly valid decomposition of the task into subtasks, and it can be
implemented recursively. However, it is difficult to calculate the result of
removing the first digit from a number, while it is easy to calculate the result
of removing the last digit from a number.

Another reason for choosing these sorts of decompositions is that one of the
subcases does not involve a recursive call. A successful definition of a recursive
function always includes at least one case that does not involve a recursive call
(as well as one or more cases that do involve at least one recursive call). This
aspect of the recursive algorithm is discussed in the subsections that follow this
case study.

Coding
We can now put all the pieces together to produce the recursive function
write_vertical shown in Display 14.1. In the next subsection we will explain
more details of how recursion works in this example.

Tracing a Recursive Call
Let’s see exactly what happens when the following function call is made:

write_vertical(123);

786 CHAPTER 14 / Recursion

DISPLAY 14.1 A Recursive Output Function (part 1 of 2)

1 //Program to demonstrate the recursive function write_vertical.
2 #include <iostream>
3 using namespace std;
4
5 void write_vertical(int n);
6 //Precondition: n >= 0.
7 //Postcondition: The number n is written to the screen vertically
8 //with each digit on a separate line.
9

10 int main()
11 {
12 cout << "write_vertical(3):" << endl;
13 write_vertical(3);
14
15 cout << "write_vertical(12):" << endl;
16 write_vertical(12);
17
18 cout << "write_vertical(123):" << endl;
19 write_vertical(123);
20
21 return 0;
22 }
23
24 //uses iostream:
25 void write_vertical(int n)
26 {
27 if (n < 10)
28 {
29 cout << n << endl;
30 }
31 else //n is two or more digits long:
32 {
33 write_vertical(n / 10);
34 cout << (n % 10) << endl;
35 }
36 }

Sample Dialogue

write_vertical(3):

3

(continued)

14.1 Recursive Functions for Tasks 787

When this function call is executed the computer proceeds just as it would
with any function call. The argument 123 is substituted for the parameter n in
the function definition, and the body of the function is executed. After the
substitution of 123 for n, the code to be executed is as follows:

if (123 < 10)
{
 cout << 123 << endl;
}
else //n is two or more digits long:
{
 write_vertical(123 / 10);
 cout << (123 % 10) << endl;
}

Since 123 is not less than 10, the logical expression in the if-else statement is
false, so the else part is executed. However, the else part begins with the
following function call:

write_vertical(n / 10);

which (since n is equal to 123) is the call

write_vertical(123 / 10);

which is equivalent to

write_vertical(12);

When execution reaches this recursive call, the current function computa-
tion is placed in suspended animation and this recursive call is executed.
When this recursive call is finished, the execution of the suspended
computation will return to this point and the suspended computation will
continue from this point.

The recursive call

write_vertical(12);

DISPLAY 14.1 A Recursive Output Function (part 2 of 2)

write_vertical(12):

1

2

write_vertical(123):

1

2

3

Computation will
stop here until the
recursive call returns.

788 CHAPTER 14 / Recursion

is handled just like any other function call. The argument 12 is substituted for
the parameter n and the body of the function is executed. After substituting 12
for n, there are two computations, one suspended and one active, as follows:

Since 12 is not less than 10, the Boolean expression in the if-else
statement is false and so the else part is executed. However, as you already
saw, the else part begins with a recursive call. The argument for the recursive
call is n / 10 which in this case is equivalent to 12 / 10. So this second
computation of the function write_vertical is suspended and the following
recursive call is executed:

write_vertical(12 / 10);

which is equivalent to

write_vertical(1);

At this point there are two suspended computations waiting to resume
and the computer begins to execute this new recursive call, which is handled
just like all the previous recursive calls. The argument 1 is substituted for the
parameter n, and the body of the function is executed. At this point, the
computation looks like the following:

if (123 < 10)
{
 cout << 123 << endl;
}
else //n is two or more digits long:
{
 write_vertical(123/10);
 cout << 123%10 << endl;
}

if (12 < 10)
{
 cout << 12 << endl;
}
else //n is two or more digits long:
{
 write_vertical(12 / 10);
 cout << (12 % 10) << endl;
}

Computation will stop
here until the recursive
call returns.

if (123 < 10)
{
 cout << 123 << endl;
}
else //n is two or more digits long:
{
 write_vertical(123/10);
 cout << 123%10 << endl;
}

if (12 < 10)
{
 cout << 12 << endl;
}
else //n is two or more digits long:
{
 write_vertical(12/10);
 cout << 12%10 << endl;
}

if (1 < 10)
{
 cout << 1 << endl;
}
else //n is two or more digits long:
{
 write_vertical(1 / 10);
 cout << (1 % 10) << endl;
}

No recursive call
this time

14.1 Recursive Functions for Tasks 789

When the body of the function is executed this time something different
happens. Since 1 is less than 10, the Boolean expression in the if-else
statement is true, so the statement before the else is executed. That
statement is simply a cout statement that writes the argument 1 to the
screen, and so the call write_vertical(1) writes 1 to the screen and ends
without any recursive call.

When the call write_vertical(1) ends, the suspended computation that is
waiting for it to end resumes where that suspended computation left off, as
shown by the following:

When this suspended computation resumes, it executes a cout statement that
outputs the value 12%10, which is 2. That ends that computation, but there is
yet another suspended computation waiting to resume. When this last
suspended computation resumes, the situation is as follows:

When this last suspended computation resumes, it outputs the value 123 % 10,
which is 3, and the execution of the original function call ends. And, sure
enough, the digits 1, 2, and 3 have been written to the screen one per line, in
that order.

output the
digit 1

if (123 < 10)
{
 cout << 123 << endl;
}
else //n is two or more digits long:
{
 write_vertical(123/10);
 cout << 123%10 << endl;
}

if (12 < 10)
{
 cout << 12 << endl;
}
else //n is two or more digits long:
{
 write_vertical(12 / 10);
 cout << (12 % 10) << endl;
}

Computation
resumes here.

output the
digit 2

if (123 < 10)
{
 cout << 123 << endl;
}
else //n is two or more digits long:
{
 write_vertical(123 / 10);
 cout << (123 % 10) << endl;
}

Computation
resumes here.

output the
digit 3

790 CHAPTER 14 / Recursion

A Closer Look at Recursion

The definition of the function write_vertical uses recursion. Yet we did
nothing new or different in evaluating the function call write_vertical(123).
We treated it just like any of the function calls we saw in previous chapters. We
just substituted the argument 123 for the parameter n and then executed the
code in the body of the function definition. When we reached the recursive call

write_vertical(123 / 10);

we simply repeated this process one more time.
 The computer keeps track of recursive calls in the following way. When a

function is called, the computer plugs in the arguments for the parameter(s)
and begins to execute the code. If it should encounter a recursive call, then it
temporarily stops its computation. This is because it must know the result of
the recursive call before it can proceed. It saves all the information it needs to
continue the computation later on, and proceeds to evaluate the recursive call.
When the recursive call is completed, the computer returns to finish the outer
computation.

The C++ language places no restrictions on how recursive calls are used in
function definitions. However, in order for a recursive function definition to
be useful, it must be designed so that any call of the function must ultimately
terminate with some piece of code that does not depend on recursion. The
function may call itself, and that recursive call may call the function again. The
process may be repeated any number of times. However, the process will not
terminate unless eventually one of the recursive calls does not depend on
recursion. The general outline of a successful recursive function definition is
as follows:

■ One or more cases in which the function accomplishes its task by using
recursive calls to accomplish one or more smaller versions of the task.

■ One or more cases in which the function accomplishes its task without
the use of any recursive calls. These cases without any recursive calls are
called base cases or stopping cases.

Often an if-else statement determines which of the cases will be
executed. A typical scenario is for the original function call to execute a case
that includes a recursive call. That recursive call may in turn execute a case that
requires another recursive call. For some number of times each recursive call
produces another recursive call, but eventually one of the stopping cases
should apply. Every call of the function must eventually lead to a stopping case, or
else the function call will never end because of an infinite chain of recursive calls. (In
practice, a call that includes an infinite chain of recursive calls will usually
terminate abnormally rather than actually running forever.)

The most common way to ensure that a stopping case is eventually reached
is to write the function so that some (positive) numeric quantity is decreased on
each recursive call and to provide a stopping case for some “small” value. This

how recursion
works

how recursion
ends

base case
stopping case

14.1 Recursive Functions for Tasks 791

is how we designed the function write_vertical in Display 14.1. When the
function write_vertical is called, that call produces a recursive call with a
smaller argument. This continues with each recursive call producing another
recursive call until the argument is less than 10. When the argument is less than
10, the function call ends without producing any more recursive calls and the
process works its way back to the original call and then ends.

■ PITFALL Infinite Recursion

In the example of the function write_vertical discussed in the previous
subsections, the series of recursive calls eventually reached a call of the function
that did not involve recursion (that is, a stopping case was reached). If, on the
other hand, every recursive call produces another recursive call, then a call to the
function will, in theory, run forever. This is called infinite recursion. In
practice, such a function will typically run until the computer runs out of
resources and the program terminates abnormally. Phrased another way, a
recursive definition should not be “recursive all the way down.” Otherwise, like
the lady’s explanation of the universe given at the start of this chapter, a call to
the function will never end, except perhaps in frustration.

Examples of infinite recursion are not hard to come by. The following is a
syntactically correct C++ function definition, which might result from an
attempt to define an alternative version of the function write_vertical:

void new_write_vertical(int n)
{

new_write_vertical(n / 10);
cout << (n % 10) << endl;

}

If you embed this definition in a program that calls this function, the
compiler will translate the function definition to machine code and you can
execute the machine code. Moreover, the definition even has a certain reason-
ableness to it. It says that to output the argument to new_write_vertical, first

General Form of a Recursive Function Definition

The general outline of a successful recursive function definition is as follows:

■ One or more cases that include one or more recursive calls to the function
being defined. These recursive calls should solve “smaller” versions of the task
performed by the function being defined.

■ One or more cases that include no recursive calls. These cases without any
recursive calls are called base cases or stopping cases.

infinite recursion

792 CHAPTER 14 / Recursion

output all but the last digit and then output the last digit. However, when called,
this function will produce an infinite sequence of recursive calls. If you call
new_write_vertical(12), that execution will stop to execute the recursive call
new_write_vertical (12/10), which is equivalent to new_write_vertical(1).
The execution of that recursive call will, in turn, stop to execute the recursive call

new_write_vertical(1/10);

which is equivalent to

new_write_vertical(0);

That, in turn, will stop to execute the recursive call new_write_vertical (0/
10); which is also equivalent to

new_write_vertical(0);

and that will produce another recursive call to again execute the same recursive
function call new_write_vertical(0); and so on, forever. Since the definition
of new_write_vertical has no stopping case, the process will proceed forever
(or until the computer runs out of resources). ■

SELF -TEST EXERC ISES

1. What is the output of the following program?

#include <iostream>
using namespace std;
void cheers(int n);

int main()
{
 cheers(3);
 return 0;
}

void cheers(int n)
{
if (n == 1)
{
 cout << "Hurray\n";
}
else
{
 cout << "Hip ";
 cheers(n − 1);
 }
}

14.1 Recursive Functions for Tasks 793

2. Write a recursive void function that has one parameter which is a positive
integer and that writes out that number of asterisks '*' to the screen all
on one line.

3. Write a recursive void function that has one parameter, which is a positive
integer. When called, the function writes its argument to the screen back-
ward. That is, if the argument is 1234, it outputs the following to the screen:

4321

4. Write a recursive void function that takes a single int argument n and
writes the integers 1, 2, …, n.

5. Write a recursive void function that takes a single int argument n and
writes integers n, n-1, … , 3, 2, 1. Hint: Notice that you can get from the
code for Self-Test Exercise 4 to that for Self-Test Exercise 5 (or vice versa)
by an exchange of as little as two lines.

Stacks for Recursion

In order to keep track of recursion, and a number of other things, most
computer systems make use of a structure called a stack. A stack is a very
specialized kind of memory structure that is analogous to a stack of paper. In
this analogy there is an inexhaustible supply of extra blank sheets of paper. To
place some information in the stack, it is written on one of these sheets of
paper and placed on top of the stack of papers. To place more information in
the stack, a clean sheet of paper is taken, the information is written on it, and
this new sheet of paper is placed on top of the stack. In this straightforward
way more and more information may be placed on the stack.

 Getting information out of the stack is also accomplished by a very
simple procedure. The top sheet of paper can be read, and when it is no longer
needed, it is thrown away. There is one complication: Only the top sheet of
paper is accessible. In order to read, say, the third sheet from the top, the top
two sheets must be thrown away. Since the last sheet that is put on the stack
is the first sheet taken off the stack, a stack is often called a last-in/first-out
(LIFO) memory structure.

 Using a stack, the computer can easily keep track of recursion. Whenever a
function is called, a new sheet of paper is taken. The function definition is copied
onto this sheet of paper, and the arguments are plugged in for the function
parameters. Then the computer starts to execute the body of the function
definition. When it encounters a recursive call, it stops the computation it is doing
on that sheet in order to compute the recursive call. But before computing the
recursive call, it saves enough information so that, when it does finally complete
the recursive call, it can continue the stopped computation. This saved informa-
tion is written on a sheet of paper and placed on the stack. A new sheet of paper
is used for the recursive call. The computer writes a second copy of the function

stack

last-in/first-out

recursion

794 CHAPTER 14 / Recursion

definition on this new sheet of paper, plugs in the arguments for the function
parameters, and starts to execute the recursive call. When it gets to a recursive call
within the recursively called copy, it repeats the process of saving information on
the stack and using a new sheet of paper for the new recursive call. This process
is illustrated in the earlier subsection entitled “Tracing a Recursive Call.” Even
though we did not call it a stack in that section, the illustrations of computa-
tions placed one on top of the other illustrate the actions of the stack.

 This process continues until some recursive call to the function completes
its computation without producing any more recursive calls. When that
happens, the computer turns its attention to the top sheet of paper on the stack.
This sheet contains the partially completed computation that is waiting for the
recursive computation that just ended. So, it is possible to proceed with that
suspended computation. When that suspended computation ends, the com-
puter discards that sheet of paper, and the suspended computation that is
below it on the stack becomes the computation on top of the stack. The
computer turns its attention to the suspended computation that is now on the
top of the stack, and so forth. The process continues until the computation on
the bottom sheet is completed. Depending on how many recursive calls are
made and how the function definition is written, the stack may grow and
shrink in any fashion. Notice that the sheets in the stack can only be accessed
in a last-in/first-out fashion, but that is exactly what is needed to keep track of
recursive calls. Each suspended version is waiting for the completion of the
version directly above it on the stack.

Needless to say, computers do not have stacks of paper of this kind. This
is just an analogy. The computer uses portions of memory rather than pieces
of paper. The contents of one of these portions of memory (“sheets of paper”)
is called an activation frame. These activation frames are handled in the last-
in/first-out manner we just discussed. (These activation frames do not contain
a complete copy of the function definition, but merely reference a single copy
of the function definition. However, an activation frame contains enough
information to allow the computer to act as if the activation frame contained
a complete copy of the function definition.)

■ PITFALL Stack Overflow

There is always some limit to the size of the stack. If there is a long chain in
which a function makes a recursive call to itself, and that call results in another

Stack

A stack is a last-in/first-out memory structure. The first item referenced or
removed from a stack is always the last item entered into the stack. Stacks
are used by computers to keep track of recursion (and for other purposes).

Video Note
Recursion and
the Stack

activation frame

14.1 Recursive Functions for Tasks 795

recursive call, and that call produces yet another recursive call, and so forth, then
each recursive call in this chain will cause another activation frame to be placed
on the stack. If this chain is too long, then the stack will attempt to grow beyond
its limit. This is an error condition known as a stack overflow. If you receive an
error message that says stack overflow, it is likely that some function call has
produced an excessively long chain of recursive calls. One common cause of
stack overflow is infinite recursion. If a function is recursing infinitely, then it
will eventually try to make the stack exceed any stack size limit. ■

Recursion Versus Iteration

Recursion is not absolutely necessary. In fact, some programming languages do
not allow it. Any task that can be accomplished using recursion can also be done
in some other way without using recursion. For example, Display 14.2 contains
a nonrecursive version of the function given in Display 14.1. The nonrecursive
version of a function typically uses a loop (or loops) of some sort in place of
recursion. For that reason, the nonrecursive version is usually referred to as an
iterative version. If the definition of the function write_vertical given in
Display 14.1 is replaced by the version given in Display 14.2, then the output
will be the same. As is true in this case, a recursive version of a function can
sometimes be much simpler than an iterative version.

stack overflow

DISPLAY 14.2 Iterative Version of the Function in Display 14.1

1 //Uses iostream:
2 void write_vertical(int n)
3 {
4 int tens_in_n = 1;
5 int left_end_piece = n;
6 while (left_end_piece > 9)
7 {
8 left_end_piece = left_end_piece/10;
9 tens_in_n = tens_in_n*10;

10 }
11 //tens_in_n is a power of ten that has the same number
12 //of digits as n. For example, if n is 2345, then
13 //tens_in_n is 1000.
14
15 for (int power_of_10 = tens_in_n;
16 power_of_10 > 0; power_of_10 = power_of_10/10)
17 {
18 cout << (n/power_of_10) << endl;
19 n = n % power_of_10;
20 }
21 }

iterative version

796 CHAPTER 14 / Recursion

A recursively written function will usually run slower and use more storage
than an equivalent iterative version. Although the iterative version of
write_vertical given in Display 14.2 looks like it uses more storage and does
more computing than the recursive version in Display 14.1, the two versions of
write_vertical actually use comparable storage and do comparable amounts
of computing. In fact, the recursive version may use more storage and run
somewhat slower, because the computer must do a good deal of work manipu-
lating the stack in order to keep track of the recursion. However, since the
system does all this for you automatically, using recursion can sometimes make
your job as a programmer easier, and can sometimes produce code that is easier
to understand. As you will see in the examples in this chapter and in the Self-
Test Exercises and Programming Projects, sometimes a recursive definition is
simpler and clearer; other times an iterative definition is simpler and clearer.

SELF -TEST EXERC ISES

6. If your program produces an error message that says stack overflow, what is
a likely source of the error?

7. Write an iterative version of the function cheers defined in Self-Test Exer-
cise 1.

8. Write an iterative version of the function defined in Self-Test Exercise 2.

9. Write an iterative version of the function defined in Self-Test Exercise 3.

10. Trace the recursive solution you made to Self-Test Exercise 4.

11. Trace the recursive solution you made to Self-Test Exercise 5.

14.2 RECURSIVE FUNCTIONS FOR VALUES

 To iterate is human, to recurse divine.

ANONYMOUS

General Form for a Recursive Function That Returns a Value

The recursive functions you have seen thus far are all void functions, but
recursion is not limited to void functions. A recursive function can return a
value of any type. The technique for designing recursive functions that return a
value is basically the same as what you learned for void functions. An outline
for a successful recursive function definition that returns a value is as follows.

efficiency

14.2 Recursive Functions for Values 797

■ One or more cases in which the value returned is computed in terms of
calls to the same function (that is, using recursive calls). As was the case
with void functions, the arguments for the recursive calls should intu-
itively be “smaller.”

■ One or more cases in which the value returned is computed without the
use of any recursive calls. These cases without any recursive calls are called
base cases or stopping cases (just as they were with void functions).

This technique is illustrated in the next Programming Example.

■ PROGRAMMING EXAMPLE Another Powers Function

In Chapter 4 we introduced the predefined function pow that computes
powers. For example, pow(2.0, 3.0) returns 2.03.0, so the following sets the
variable x equal to 8.0:

double x = pow(2.0, 3.0);

The function pow takes two arguments of type double and returns a value of type
double. Display 14.3 contains a recursive definition for a function that is similar
but that works with the type int rather than double. This new function is called
power. For example, the following will set the value of y equal to 8, since 23 is 8:

int y = power(2, 3);

Our main reason for defining the function power is to have a simple
example of a recursive function, but there are situations in which the function
power would be preferable to the function pow. The function pow returns values
of type double, which are only approximate quantities. The function power
returns values of type int, which are exact quantities. In some situations, you
might need the additional accuracy provided by the function power.

The definition of the function power is based on the following formula:

xn is equal to xn-1 * x

Translating this formula into C++ says that the value returned by power(x, n)
should be the same as the value of the expression

power(x, n − 1)*x

The definition of the function power given in Display 14.3 does return this
value for power(x, n), provided n > 0.

The case where n is equal to 0 is the stopping case. If n is 0, then power(x, n)
simply returns 1 (since x0 is 1).

Let’s see what happens when the function power is called with some
sample values. First consider the following simple expression:

 power(2, 0)

base cases
stopping cases

798 CHAPTER 14 / Recursion

When the function is called, the value of x is set equal to 2, the value of n is set
equal to 0, and the code in the body of the function definition is executed. Since
the value of n is a legal value, the if-else statement is executed. Since this value
of n is not greater than 0, the return statement after the else is used, so the
function call returns 1. Thus, the following would set the value of y equal to 1:

 int y = power(2, 0);

DISPLAY 14.3 The Recursive Function power

1 //Program to demonstrate the recursive function power.
2 #include <iostream>
3 #include <cstdlib>
4 using namespace std;

5 int power(int x, int n);
6 //Precondition: n >= 0.
7 //Returns x to the power n.

8 int main()
9 {

10 for (int n = 0; n < 4; n++)
11 cout << "3 to the power " << n
12 << " is " << power(3, n) << endl;

13 return 0;
14 }

15 //uses iostream and cstdlib:
16 int power(int x, int n)
17 {
18 if (n < 0)
19 {
20 cout << "Illegal argument to power.\n";
21 exit(1);
22 }

23 if (n > 0)
24 return (power(x, n − 1)*x);
25 else // n == 0
26 return (1);
27 }

Sample Dialogue

3 to the power 0 is 1

3 to the power 1 is 3

3 to the power 2 is 9

3 to the power 3 is 27

14.2 Recursive Functions for Values 799

Now let’s look at an example that involves a recursive call. Consider the
expression

 power(2, 1)

When the function is called, the value of x is set equal to 2, the value of n is
set equal to 1, and the code in the body of the function definition is executed.
Since this value of n is greater than 0, the following return statement is used
to determine the value returned:

return (power(x, n − 1)*x);

which in this case is equivalent to

return (power(2, 0)*2);

At this point the computation of power(2, 1) is suspended, a copy of this
suspended computation is placed on the stack, and the computer then starts a
new function call to compute the value of power(2, 0). As you have already
seen, the value of power(2, 0) is 1. After determining the value of power(2, 0),
the computer replaces the expression power(2, 0) with its value of 1 and
resumes the suspended computation. The resumed computation determines
the final value for power(2, 1) from the above return statement as follows:

power(2, 0)*2 is 1*2, which is 2.

Thus, the final value returned for power(2, 1) is 2. The following would
therefore set the value of z equal to 2:

 int z = power(2, 1);

Larger numbers for the second argument will produce longer chains of
recursive calls. For example, consider the statement

cout << power(2, 3);

The value of power(2, 3) is calculated as follows:

power(2, 3) is power(2, 2)*2
power(2, 2) is power(2, 1)*2
power(2, 1) is power(2, 0)*2

power(2, 0) is 1 (stopping case)

When the computer reaches the stopping case, power(2, 0), there are three
suspended computations. After calculating the value returned for the stopping
case, it resumes the most recently suspended computation to determine the
value of power(2, 1). After that, the computer completes each of the other
suspended computations, using each value computed as a value to plug into
another suspended computation, until it reaches and completes the computa-
tion for the original call, power(2, 3). The details of the entire computation
are illustrated in Display 14.4.

800 CHAPTER 14 / Recursion

SELF -TEST EXERC ISES

12. What is the output of the following program?

#include <iostream>
using namespace std;
int mystery(int n);
//Precondition n >= 1.

int main()
{

cout << mystery(3);
return 0;

}
int mystery(int n)
{
 if (n <= 1)

DISPLAY 14.4 Evaluating the Recursive Function Call Power(2, 3)

Sequence of recursive calls

1

power(2, 0) *2

power(2, 1) *2

power(2, 2) *2

power(2, 3)

 Start Here

How the final value is computed

1

1 *2

1*2 is 2

2 *2

2*2 is 4

4 *2

4*2 is 8

8

 power(2, 3) is 8

14.3 Thinking Recursively 801

 return 1;
 else
 return (mystery(n − 1) + n);
}

13. What is the output of the following program? What well-known mathe-
matical function is rose?

#include <iostream>
using namespace std;
int rose(int n);
//Precondition: n >= 0.

int main()
{

cout << rose(4);
return 0;

}

int rose(int n)
{
 if (n <= 0)
 return 1;
 else
 return (rose(n − 1) * n);
}

14. Redefine the function power so that it also works for negative exponents.
In order to do this you will also have to change the type of the value
returned to double. The function declaration and header comment for the
redefined version of power is as follows:

double power(int x, int n);
//Precondition: If n < 0, then x is not 0.
//Returns x to the power n.

Hint: x –n is equal to 1/(xn).

14.3 THINKING RECURSIVELY

There are two kinds of people in the world: those who divide the world into
two kinds of people and those who do not.

ANONYMOUS

Recursive Design Techniques

When defining and using recursive functions you do not want to be continually
aware of the stack and the suspended computations. The power of recursion

802 CHAPTER 14 / Recursion

comes from the fact that you can ignore that detail and let the computer do
the bookkeeping for you. Consider the example of the function power in
Display 14.3. The way to think of the definition of power is as follows:

power(x, n) returns power(x, n − 1)*x

Since xn is equal to xn–1*x, this is the correct value to return, provided that the
computation will always reach a stopping case and will correctly compute the
stopping case. So, after checking that the recursive part of the definition is
correct, all you need check is that the chain of recursive calls will always reach
a stopping case and that the stopping case always returns the correct value.

When you design a recursive function, you need not trace out the entire
sequence of recursive calls for the instances of that function in your program.
If the function returns a value, all that you need do is confirm that the
following three properties are satisfied:

1. There is no infinite recursion. (A recursive call may lead to another recur-
sive call and that may lead to another and so forth, but every such chain
of recursive calls eventually reaches a stopping case.)

2. Each stopping case returns the correct value for that case.

3. For the cases that involve recursion: If all recursive calls return the correct
value, then the final value returned by the function is the correct value.

For example, consider the function power in Display 14.3:

1. There is no infinite recursion: The second argument to power(x, n) is
decreased by 1 in each recursive call, so any chain of recursive calls must
eventually reach the case power(x, 0), which is the stopping case. Thus,
there is no infinite recursion.

2. Each stopping case returns the correct value for that case: The only stopping
case is power(x, 0). A call of the form power(x, 0) always returns 1, and
the correct value for x0 is 1. So the stopping case returns the correct value.

3. For the cases that involve recursion—if all recursive calls return the correct
value, then the final value returned by the function is the correct value: The only
case that involves recursion is when n > 1. When n > 1, power(x, n) returns

power(x, n – 1)*x

To see that this is the correct value to return, note that: if power(x, n − 1)
returns the correct value, then power(x, n − 1) returns xn-1 and so
power(x, n) returns

xn–1*x, which is xn

and that is the correct value for power(x, n).

criteria for
functions that
return a value

14.3 Thinking Recursively 803

That’s all you need to check in order to be sure that the definition of power is
correct. (This technique is known as mathematical induction, a concept that you
may have heard about in a mathematics class. However, you do not need to be
familiar with the term mathematical induction in order to use this technique.)

We gave you three criteria to use in checking the correctness of a recursive
function that returns a value. Basically the same rules can be applied to a
recursive void function. If you show that your recursive void function definition
satisfies the following three criteria, then you will know that your void function
performs correctly:

1. There is no infinite recursion.

2. Each stopping case performs the correct action for that case.

3. For each of the cases that involve recursion: If all recursive calls perform
their actions correctly, then the entire case performs correctly.

CASE STUDY Binary Search—An Example of
Recursive Thinking

In this case study we develop a recursive function that searches an array to find
out whether it contains a specified value. For example, the array may contain
a list of numbers for credit cards that are no longer valid. A store clerk needs
to search the list to see if a customer’s card is valid or invalid. In Chapter 7
(Display 7.10) we discussed a simple method for searching an array by simply
checking every array element. In this section we will develop a method for
searching a sorted array that is much faster.

The indexes of the array a are the integers 0 through final_index. In order
to make the task of searching the array easier, we assume that the array is
sorted. Hence, we know the following:

 a[0] <= a[1] <= a[2] <= ... <= a[final_index]

When searching an array, you are likely to want to know both whether the
value is in the list and, if it is, where it is in the list. For example, if we are
searching for a credit card number, then the array index may serve as a record
number. Another array indexed by these same indexes may hold a phone
number or other information to use for reporting the suspicious card. Hence,
if the sought-after value is in the array, we will want our function to tell where
that value is in the array.

Problem Definition
We will design our function to use two call-by-reference parameters to return
the outcome of the search. One parameter, called found, will be of type bool.
If the value is found, then found will be set to true. If the value is found, then
another parameter, called location, will be set to the index of the value found.

criteria for
void functions

804 CHAPTER 14 / Recursion

If we use key to denote the value being searched for, the task to be
accomplished can be formulated precisely as follows:

Precondition: a[0] through a[final_index]
are sorted in increasing order.

Postcondition: if key is not one of the values a[0] through
a[final_index], then found == false; otherwise,
a[location] == key and found == true.

Algorithm Design
Now let us proceed to produce an algorithm to solve this task. It will help to
visualize the problem in very concrete terms. Suppose the list of numbers is so
long that it takes a book to list them all. This is in fact how invalid credit card
numbers are distributed to stores that do not have access to computers. If you
are a clerk and are handed a credit card, you must check to see if it is on the list
and hence invalid. How would you proceed? Open the book to the middle and
see if the number is there. If it is not and it is smaller than the middle number,
then work backward toward the beginning of the book. If the number is larger
than the middle number, you work your way toward the end of the book. This
idea produces our first draft of an algorithm:

found = false;//so far.
mid = approximate midpoint between 0 and final_index;
if (key == a[mid])
{
 found = true;
 location = mid;
}
else if (key < a[mid])
 search a[0] through a[mid - 1];
else if (key > a[mid])
 search a[mid + 1] through a[final_index];

 Since the searchings of the shorter lists are smaller versions of the very
task we are designing the algorithm to perform, this algorithm naturally lends
itself to the use of recursion. The smaller lists can be searched with recursive
calls to the algorithm itself.

 Our pseudocode is a bit too imprecise to be easily translated into C++
code. The problem has to do with the recursive calls. There are two recursive
calls shown:

search a[0] through a[mid - 1];

and

search a[mid + 1] through a[final_index];

algorithm—first
version

14.3 Thinking Recursively 805

To implement these recursive calls, we need two more parameters. A
recursive call specifies that a subrange of the array is to be searched. In one case
it is the elements indexed by 0 through mid − 1. In the other case it is the
elements indexed by mid + 1 through final_index. The two extra parameters
will specify the first and last indexes of the search, so we will call them first
and last. Using these parameters for the lowest and highest indexes, instead of
0 and final_index, we can express the pseudocode more precisely as follows:

To search a[first] through a[last] do the following:
found = false;//so far.
mid = approximate midpoint between first and last;
if (key == a[mid])
{
 found = true;
 location = mid;
}
else if (key < a[mid])
 search a[first] through a[mid - 1];
else if (key > a[mid])
 search a[mid + 1] through a[last];

To search the entire array, the algorithm would be executed with first set
equal to 0 and last set equal to final_index. The recursive calls will use other
values for first and last. For example, the first recursive call would set first
equal to 0 and last equal to the calculated value mid − 1.

 As with any recursive algorithm, we must ensure that our algorithm ends rather
than producing infinite recursion. If the sought-after number is found on the list,
then there is no recursive call and the process terminates, but we need some way to
detect when the number is not on the list. On each recursive call, the value of first
is increased or the value of last is decreased. If they ever pass each other and first
actually becomes larger than last, then we will know that there are no more
indexes left to check and that the number key is not in the array. If we add this test
to our pseudocode, we obtain a complete solution as shown in Display 14.5.

Coding
Now we can routinely translate the pseudocode into C++ code. The result is
shown in Display 14.6. The function search is an implementation of the
recursive algorithm given in Display 14.5. A diagram of how the function
performs on a sample array is given in Display 14.7.

 Notice that the function search solves a more general problem than the
original task. Our goal was to design a function to search an entire array. Yet
the function will let us search any interval of the array by specifying the index
bounds first and last. This is common when designing recursive functions.
Frequently, it is necessary to solve a more general problem in order to be able
to express the recursive algorithm. In this case, we only wanted the answer in the
case where first and last are set equal to 0 and final_index. However, the
recursive calls will set them to values other than 0 and final_index.

more
parameters

algorithm—
first refinement

stopping case

algorithm—
final version

solve a more
general problem

806 CHAPTER 14 / Recursion

DISPLAY 14.5 Pseudocode for Binary Search

int a[Some_Size_Value];

Algorithm to search a[first] through a[last]

1 //Precondition:
2 //a[first]<= a[first + 1] <= a[first + 2] <= ... <= a[last]

To locate the value key:

1 if (first > last) //A stopping case
2 found = false;
3 else
4 {
5 mid = approximate midpoint between first and last;
6 if (key == a[mid]) //A stopping case
7 {
8 found = true;
9 location = mid;

10 }
11 else if key < a[mid] //A case with recursion
12 search a[first] through a[mid - 1];
13 else if key > a[mid] //A case with recursion
14 search a[mid + 1] through a[last];
15 }

DISPLAY 14.6 Recursive Function for Binary Search (part 1 of 2)

1 //Program to demonstrate the recursive function for binary search.
2 #include <iostream>
3 using namespace std;
4 const int ARRAY_SIZE = 10;
5
6
7 void search(const int a[], int first, int last,
8 int key, bool& found, int& location);
9 //Precondition: a[first] through a[last] are sorted in increasing order.

10 //Postcondition: if key is not one of the values a[first] through a[last],
11 //then found == false; otherwise, a[location] == key and found == true.
12
13
14 int main()
15 {
16 int a[ARRAY_SIZE];
17 const int final_index = ARRAY_SIZE − 1;
18

(continued)

14.3 Thinking Recursively 807

DISPLAY 14.6 Recursive Function for Binary Search (part 2 of 2)

 <This portion of the program contains some code to fill and sort
 the array a. The exact details are irrelevant to this example.>

19 int key, location;
20 bool found;
21 cout << "Enter number to be located: ";
22 cin >> key;
23 search(a, 0, final_index, key, found, location);
24
25 if (found)
26 cout << key << " is in index location "
27 << location << endl;
28 else
29 cout << key << " is not in the array." << endl;
30
31 return 0;
32 }
33 void search(const int a[], int first, int last,
34 int key, bool& found, int& location)
35 {
36 int mid;
37 if (first > last)
38 {
39 found = false;
40 }
41 else
42 {
43 mid = (first + last)/2;
44
45 if (key == a[mid])
46 {
47 found = true;
48 location = mid;
49 }
50 else if (key < a[mid])
51 {
52 search(a, first, mid − 1, key, found, location);
53 }
54 else if (key > a[mid])
55 {
56 search(a, mid + 1, last, key, found, location);
57 }
58 }
59 }

808 CHAPTER 14 / Recursion

DISPLAY 14.7 Execution of the Function search

 key is 63

a[0] 15

a[1] 20

a[2] 35

a[3] 41

a[4] 57

a[5] 63

a[6] 75

a[7] 80

a[8] 85

a[9] 90

a[0] 15

a[1] 20

a[2] 35

a[3] 41

a[4] 57

a[5] 63

a[6] 75

a[7] 80

a[8] 85

a[9] 90

a[0] 15

a[1] 20

a[2] 35

a[3] 41

a[4] 57

a[5] 63

a[6] 75

a[7] 80

a[8] 85

a[9] 90

 first == 0

mid =
(0 + 9)/2

last == 9

mid =
(5 + 9)/2

first == 5

last == 9

last == 6

mid = (5 + 6)/2 which is 5
a[mid] is a[5] == 63
found = true;
location = mid;

first == 5

Next

Next

Not in
this half

Not here

14.3 Thinking Recursively 809

Checking the Recursion
In the subsection entitled “Recursive Design Techniques,” we gave three
criteria that you should check to ensure that a recursive void function
definition is correct. Let’s check these three things for the function search
given in Display 14.6.

1. There is no infinite recursion: On each recursive call, the value of first is
increased or the value of last is decreased. If the chain of recursive calls
does not end in some other way, then eventually the function will be
called with first larger than last, and that is a stopping case.

2. Each stopping case performs the correct action for that case: There are two stopping
cases: when first > last and when key == a[mid]. Let’s consider each case.

If first > last, there are no array elements between a[first] and
a[last], and so key is not in this segment of the array. (Nothing is in this
segment of the array!) So, if first > last, the function search correctly
sets found equal to false.

If key == a[mid], the algorithm correctly sets found equal to true and
location equal to mid. Thus, both stopping cases are correct.

3. For each of the cases that involve recursion, if all recursive calls perform their
actions correctly, then the entire case performs correctly: There are two cases in
which there are recursive calls: when key < a[mid] and when key > a[mid].
We need to check each of these two cases.

First suppose key < a[mid]. In this case, since the array is sorted, we know
that if key is anywhere in the array, then key is one of the elements
a[first] through a[mid − 1]. Thus, the function need only search these
elements, which is exactly what the recursive call

search(a, first, mid − 1, key, found, location);

does. So if the recursive call is correct, then the entire action is correct.

Next, suppose key > a[mid]. In this case, since the array is sorted, we
know that if key is anywhere in the array, then key is one of the elements
a[mid + 1] through a[last]. Thus, the function need search only these
elements, which is exactly what the recursive call

search(a, mid + 1, last, key, found, location);

does. So if the recursive call is correct, then the entire action is correct.
Thus, in both cases the function performs the correct action (assuming
that the recursive calls perform the correct action).

The function search passes all three of our tests, so it is a good recursive function
definition.

810 CHAPTER 14 / Recursion

Efficiency
The binary search algorithm is extremely fast compared to an algorithm that
simply tries all array elements in order. In the binary search, you eliminate
about half the array from consideration right at the start. You then eliminate
a quarter, then an eighth of the array, and so forth. These savings add up to a
dramatically fast algorithm. For an array of 100 elements, the binary search will
never need to compare more than seven array elements to the key. A simple
serial search could compare as many as 100 array elements to the key and on
the average will compare about 50 array elements to the key. Moreover, the
larger the array is, the more dramatic the savings will be. On an array with
1,000 elements, the binary search will only need to compare about 10 array
elements to the key value, as compared to an average of 500 for the simple
serial search algorithm.

An iterative version of the function search is given in Display 14.8. On
some systems the iterative version will run more efficiently than the
recursive version. The algorithm for the iterative version was derived by
mirroring the recursive version. In the iterative version, the local variables
first and last mirror the roles of the parameters in the recursive version,
which are also named first and last. As this example illustrates, it often
makes sense to derive a recursive algorithm even if you expect to later
convert it to an iterative algorithm.

■ PROGRAMMING EXAMPLE A Recursive Member Function

A member function of a class can be recursive. Member functions can use
recursion in the same way that ordinary functions do. Display 14.9
contains an example of a recursive member function. The class BankAccount
used in that display is the same as the class named BankAccount that was
defined in Display 10.6, except that we have overloaded the member
function name update. The first version of update has no arguments and
posts one year of simple interest to the bank account balance. The other
(new) version of update takes an int argument that is some number
of years. This member function updates the account by posting the
interest for that many years. The new version of update is recursive. This
new function update has one parameter, called years, and uses the
following algorithm:

If the number of years is 1, then //Stopping case:
call the other function named update (the one with no arguments).

If the number of years is greater than 1, then //Recursive case:
make a recursive call to post years − 1 worth of interest, and then
call the other function called update (the one with no arguments)
to post one more year’s worth of interest.

iterative version

14.3 Thinking Recursively 811

It is easy to see that this algorithm produces the desired result by checking the
three points given in the subsection entitled “Recursive Design Techniques.”

1. There is no infinite recursion: Each recursive call reduces the number of
years by 1 until the number of years eventually becomes 1, which is the
stopping case. So there is no infinite recursion.

DISPLAY 14.8 Iterative Version of Binary Search

Function Declaration

1 void search(const int a[], int low_end, int high_end,
2 int key, bool& found, int& location);
3 //Precondition: a[low_end] through a[high_end] are sorted in increasing
4 //order.
5 //Postcondition: If key is not one of the values a[low_end] through
6 //a[high_end], then found == false; otherwise, a[location] == key and
7 //found == true.

Function Definition

1 void search(const int a[], int low_end, int high_end,
2 int key, bool& found, int& location)
3 {
4 int first = low_end;
5 int last = high_end;
6 int mid;
7
8 found = false;//so far
9 while ((first <= last) && !(found))

10 {
11 mid = (first + last)/2;
12 if (key == a[mid])
13 {
14 found = true;
15 location = mid;
16 }
17 else if (key < a[mid])
18 {
19 last = mid − 1;
20 }
21 else if (key > a[mid])
22 {
23 first = mid + 1;
24 }
25 }
26 }

812 CHAPTER 14 / Recursion

DISPLAY 14.9 A Recursive Member Function (part 1 of 2)

1 //Program to demonstrate the recursive member function update(years).
2 #include <iostream>
3 using namespace std;
4
5 //Class for a bank account:
6 class BankAccount
7 {
8 public:
9 BankAccount(int dollars, int cents, double rate);

10 //Initializes the account balance to $dollars.cents and
11 //initializes the interest rate to rate percent.

12 BankAccount(int dollars, double rate);
13 //Initializes the account balance to $dollars.00 and
14 //initializes the interest rate to rate percent.

15 BankAccount();
16 //Initializes the account balance to $0.00 and
17 //initializes the interest rate to 0.0%.

18 void update();
19 //Postcondition: One year of simple interest
20 //has been added to the account balance.

21 void update(int years);
22 //Postcondition: Interest for the number of years given has been added to the
23 //account balance. Interest is compounded annually.

24 double get_balance();
25 //Returns the current account balance.

26 double get_rate();
27 //Returns the current account interest rate as a percentage.

28 void output(ostream& outs);
29 //Precondition: If outs is a file output stream, then outs has already
30 //been connected to a file.
31 //Postcondition: Balance & interest rate have been written to the stream

outs.
32 private:
33 double balance;
34 double interest_rate;
35 double fraction(double percent); //Converts a percentage to a fraction.
36 };
37 int main()
38 {
39 BankAccount your_account(100, 5);
40 your_account.update(10);
41 cout.setf(ios::fixed);

(continued)

Two different functions
with the same name

The class BankAccount in this program is an
improved version of the class BankAccount
given in Display 10.6.

14.3 Thinking Recursively 813

2. Each stopping case performs the correct action for that case: The one stopping
case is when years == 1. This case produces the correct action, since it sim-
ply calls the other overloaded member function called update, and we
checked the correctness of that function in Chapter 10.

3. For the cases that involve recursion, if all recursive calls perform correctly, then
the entire case performs correctly: The recursive case—that is, years > 1—
works correctly, because if the recursive call correctly posts years − 1

DISPLAY 14.9 A Recursive Member Function (part 2 of 2)

42 cout.setf(ios::showpoint);
43 cout.precision(2);
44 cout << "If you deposit $100.00 at 5% interest, then\n"
45 << "in ten years your account will be worth $"
46 << your_account.get_balance() << endl;
47 return 0;
48 }
49
50 void BankAccount::update()
51 {
52 balance = balance + fraction(interest_rate)*balance;
53 }
54
55 void BankAccount::update(int years)
56 {
57 if (years == 1)
58 {
59 update();
60 }
61 else if (years > 1)
62 {
63 update(years − 1);
64 update();
65 }
66 }

 <Definitions of the other member functions are given in Display 10.5 and Display 10.6,
 but you need not read those definitions in order to understand this example.>

Sample Dialogue

If you deposit $100.00 at 5% interest, then

in ten years your account will be worth $162.89

Recursive function call

Overloading (that is, calls
to another function with
the same name)

814 CHAPTER 14 / Recursion

worth of interest, then all that is needed is to post one additional year’s
worth of interest, and the call to the overloaded zero-argument version of
update will correctly post one year’s worth of interest. Thus, if the recur-
sive call performs the correct action, then the entire action for the case of
years > 1 will be correct.

In this example, we have overloaded update so that there are two
different functions named update: one that takes no arguments and one that
takes a single argument. Do not confuse the calls to the two functions named
update. These are two different functions that, as far as the compiler is
concerned, just coincidentally happen to have the same name. When the
definition of the function update with one argument includes a call to the
version of update that takes no arguments, that is not a recursive call. Only
the call to the version of update with the exact same function declaration is
a recursive call. To see what is involved here, note that we could have named
the version of update that takes no argument post_one_year(), instead of
naming it update(), and then the definition of the recursive version of
update would read as follows:

void BankAccount::update(int years)
{
 if (years == 1)
 {
 post_one_year();
 }
 else if (years > 1)
 {
 update(years − 1);
 post_one_year();
 }
}

Recursion and Overloading

Do not confuse recursion and overloading. When you overload a function
name, you are giving two different functions the same name. If the
definition of one of these two functions includes a call to the other, that is
not recursion. In a recursive function definition, the definition of the
function includes a call to the exact same function with the exact same
definition, not to some other function that coincidentally uses the same
name. It is not too serious an error if you confuse overloading and
recursion, since they are both legal. It is simply a question of getting the
terminology straight so that you can communicate clearly with other
programmers, and so that you understand the underlying processes.

overloading

Answers to Self-Test Exercises 815

SELF -TEST EXERC ISES

15. Write a recursive function definition for the following function:

int squares(int n);
//Precondition: n >= 1
//Returns the sum of the squares of numbers 1 through n.

For example, squares(3) returns 14 because 12 + 22 + 32 is 14.

16. Write an iterative version of the one-argument member function
BankAccount::update(int years) that is described in Display 14.9.

CHAPTER SUMMARY

■ If a problem can be reduced to smaller instances of the same problem, then
a recursive solution is likely to be easy to find and implement.

■ A recursive algorithm for a function definition normally contains two kinds
of cases: one or more cases that include at least one recursive call and one
or more stopping cases in which the problem is solved without any recur-
sive calls.

■ When writing a recursive function definition, always confirm that the func-
tion will not produce infinite recursion.

■ When you define a recursive function, use the three criteria given in the sub-
section “Recursive Design Techniques” to confirm that the function is correct.

■ When you design a recursive function to solve a task, it is often necessary to
solve a more general problem than the given task. This may be required to
allow for the proper recursive calls, since the smaller problems may not be
exactly the same problem as the given task. For example, in the binary search
problem, the task was to search an entire array, but the recursive solution is
an algorithm to search any portion of the array (either all of it or a part of it).

Answers to Self-Test Exercises

1. Hip Hip Hurray

2. void stars(int n)
{

cout << '*';
if (n > 1)

stars(n − 1);
}

816 CHAPTER 14 / Recursion

The following is also correct, but is more complicated:

void stars(int n)
{
 if (n <= 1)
 {
 cout << '*';
 }
 else
 {
 stars(n − 1);
 cout << '*';
 }
}

3. void backward(int n)
{

if (n < 10)
{

cout << n;
}
else
{

cout << (n % 10);//write last digit
backward(n / 10);//write the other digits backward

}
}

4. and 5. The answer to 4 is write_up(int n);. The answer to 5 is
write_down(int n);

#include <iostream>
using namespace std;
void write_down(int n)
{
 if (n >= 1)
 {
 cout << n << " ";
 write_down(n - 1);
 }
}

void write_up(int n)
{
 if (n >= 1)
 {
 write_up(n - 1);
 cout << n << " ";
 }

Answers to Self-Test Exercises 817

}
//testing code for both #4 and #5
int main()
{
 cout << "calling write_up(" << 10 << ")\n";
 write_up(10);
 cout << endl;
 cout << "calling write_down(" << 10 << ")\n";
 write_down(10);
 cout << endl;
 return 0;
}
/* Test results
calling write_up(10)
1 2 3 4 5 6 7 8 9 10
calling write_down(10)
10 9 8 7 6 5 4 3 2 1
*/

6. An error message that says stack overflow is telling you that the computer has
attempted to place more activation frames on the stack than are allowed on
your system. A likely cause of this error message is infinite recursion.

7. void cheers(int n)
{

while (n > 1)
{

 cout << "Hip ";
n--;

}
 cout << "Hurray\n";
}

8. void stars(int n)
{

for (int count = 1; count <= n; count++)
cout << '*';

}

9. void backward(int n)
{

while (n >= 10)
{

cout << (n%10);//write last digit
n = n/10;//discard the last digit

}
cout << n;

}

818 CHAPTER 14 / Recursion

10. Trace for Exercise 4: If n = 3, the code to be executed is

if (3 >= 1)
{
 write_up(3 - 1);
 cout << 3 << " ";
}

On the next recursion, n = 2; the code to be executed is

if (2 >= 1)
{
 write_up(2 - 1);
 cout << 2 << " ";
}

On the next recursion, n = 1 and the code to be executed is

if (1 >= 1)
{
 write_up(1 - 1);
 cout << 1 << " ";
}

On the final recursion, n = 0 and the code to be executed is

if (0 >= 1) // condition false, body skipped
{
 // skipped
}

The recursions unwind; the output (obtained while recursion was
winding up) is 1 2 3.

11. Trace for Exercise 5: If n = 3, the code to be executed is

if (3 >= 1)
{
 cout << 3 << " ";
 write_down(3 - 1);
}

Next recursion, n = 2, the code to be executed is

if (2 >= 1)
{
 cout << 2 << " ";
 write_down(2 - 1)
}

Answers to Self-Test Exercises 819

Next recursion, n = 1, the code to be executed is

if (1 >= 1)
{
 cout << 1 << " ";
 write_down(1 - 1)
}

Final recursion, n = 0, and the “true” clause is not executed:

if (0 >= 1) // condition false
{
 // this clause is skipped
}

The output is 3 2 1.

12. 6

13. The output is 24. The function is the factorial function, usually written n!
and defined as follows:

n! is equal to n*(n - 1)*(n - 2)*...*1

14. //Uses iostream and cstdlib:
double power(int x, int n)
{
 if (n < 0 && x == 0)
 {
 cout << "Illegal argument to power.\n";
 exit(1);
 }

 if (n < 0)
 return (1/power(x, − n));
 else if (n > 0)
 return (power(x, n − 1)*x);
 else // n == 0
 return (1.0);
}

15. int squares(int n)
{
 if (n <= 1)
 return 1;
 else
 return (squares(n − 1) + n*n);
}

820 CHAPTER 14 / Recursion

16. void BankAccount::update(int years)
{
 for (int count = 1; count <= years; count++)
 update();
}

PROGRAMMING PROJECTS

1. Write a recursive function definition for a function that has one parameter
n of type int and that returns the nth Fibonacci number. See Programming
Project 10 in Chapter 3 for the definition of Fibonacci numbers. Embed
the function in a program and test it.

2. Write a recursive version of the function index_of_smallest that was
used in the sorting program in Display 7.12 of Chapter 7. Embed the
function in a program and test it.

3. Write a recursive version of the search function in Display 7.10 of Chapter 7.

4. The formula for computing the number of ways of choosing r different
things from a set of n things is the following:

C(n, r) = n!/(r!*(n – r)!)

The factorial function n! is defined by

n! = n*(n – 1)*(n – 2)*. . .*1

Discover a recursive version of this formula and write a recursive function
that computes the value of the formula. Embed the function in a program
and test it.

5. Write a recursive function that has an argument that is an array of charac-
ters and two arguments that are bounds on array indexes. The function
should reverse the order of those entries in the array whose indexes are
between the two bounds. For example, if the array is

a[1] == 'A' a[2] == 'B' a[3] == 'C' a[4] == 'D' a[5] == 'E'

and the bounds are 2 and 5, then after the function is run the array
elements should be

a[1] == 'A' a[2] == 'E' a[3] == 'D' a[4] == 'C' a[5] == 'B'

Embed the function in a program and test it. After you have fully debugged
this function, define another function that takes a single argument which is
an array that contains a string value and that reverses the spelling of the

Programming Projects 821

string value in the array argument. This function will include a call to the
recursive definition you did for the first part of this project. Embed this
second function in a program and test it.

6. Write an iterative version of the recursive function in Programming
Project 4. Embed it in a program and test it.

7. Write a recursive function to sort an array of integers into ascending order
using the following idea: Place the smallest element in the first position,
then sort the rest of the array by a recursive call. This is a recursive version
of the selection sort algorithm discussed in Chapter 7. (Note: Simply tak-
ing the program from Chapter 7 and plugging in a recursive version of
index_of_smallest will not suffice. The function to do the sorting must
itself be recursive and not merely use a recursive function.)

8. Towers of Hanoi: There is a story about Buddhist monks who are playing
this puzzle with 64 stone disks. The story claims that when the monks fin-
ish moving the disks from one post to a second via the third post, time
will end.

A stack of n disks of decreasing size is placed on one of three posts. The
task is to move the disks one at a time from the first post to the second. To
do this, any disk can be moved from any post to any other post, subject to
the rule that you can never place a larger disk over a smaller disk. The
(spare) third post is provided to make the solution possible. Your task is
to write a recursive function that describes instructions for a solution to
this problem. We don’t have graphics available, so you should output a
sequence of instructions that will solve the problem.

Hint: If you could move up n-1 of the disks from the first post to the third
post using the second post as a spare, the last disk could be moved from
the first post to the second post. Then by using the same technique
(whatever that may be) you can move the n-1 disks from the third post to
the second post, using the first disk as a spare. There! You have the puzzle
solved. You only have to decide what the nonrecursive case is, what the
recursive case is, and when to output instructions to move the disks.

9. The game of “Jump It” consists of a board with n positive integers in a
row, except for the first column, which always contains zero. These num-
bers represent the cost to enter each column. Here is a sample game board
where n is 6:

The object of the game is to move from the first column to the last column
with the lowest total cost. The number in each column represents the cost

0 3 80 6 57 10

Video Note
Solution to
Programming
Project 14.7

822 CHAPTER 14 / Recursion

to enter that column. You always start the game in the first column and
have two types of moves. You can either move to the adjacent column or
jump over the adjacent column to land two columns over. The cost of a
game is the sum of the costs of the visited columns.

In the board shown above, there are several ways to get to the end.
Starting in the first column, our cost so far is 0. We could jump to 80, then
jump to 57, then move to 10 for a total cost of 80 + 57 + 10 = 147.
However, a cheaper path would be to move to 3, jump to 6, then jump to
10, for a total cost of 3 + 6 + 10 = 19.

Write a recursive solution to this problem that computes the lowest cost
of the game and outputs this value for an arbitrarily large game board
represented as an array. Your program doesn’t have to output the actual
sequence of jumps, only the lowest cost of this sequence. After making
sure that your solution works on small arrays, Test your solution on
boards of larger and larger values of n to get a feel for the scalability and
efficiency of your solution.

10. Suppose we can buy chocolate bars from the vending machine for $1
each. Inside every chocolate bar is a coupon. We can redeem 7 coupons
for 1 chocolate bar from the machine. We would like to know how many
chocolate bars can be eaten, including those redeemed via coupon, if we
have n dollars.

For example, if we have $20 then we can initially buy 20 chocolate bars.
This gives us 20 coupons. We can redeem 14 coupons for 2 additional
chocolate bars. These two additional chocolate bars have 2 more coupons,
so we now have a total of 8 coupons when added to the 6 left over from the
original purchase. This gives us enough to redeem for 1 final chocolate bar.
As a result we now have 23 chocolate bars and 2 leftover coupons.

Write a recursive solution to this problem that inputs from the user the
number of dollars to spend on chocolate bars and outputs how many
chocolate bars you can collect after spending all your money and
redeeming as many coupons as possible. Your recursive function will be
based upon the number of coupons owned.

11. Some problems require finding all permutations (different orderings) of
a set of items. For a set of n items { a1, a2, a3, . . . an } there are
n! permutations. For example, given the set {1, 2, 3} there are six
permutations:

{3, 2, 1} {2, 3, 1} {2, 1, 3} {3, 1, 2} {1, 3, 2} {1, 2, 3}

Write a recursive function that generates all the permutations of a set of
numbers. The general outline of a solution is given here, but the
implementation is up to you. The program will require storing a set of
permutations of numbers that you can implement in many ways (e.g.,

Programming Projects 823

linked lists of nodes, linked lists of vectors, arrays, etc.) Your program
should call the recursive function with sets of several different sizes,
printing the resulting set of permutations for each.

One solution is to first leave out the nth item in the set. Recursively find
all permutations using the set of (n�1) items. If we insert the nth item
into each position for all of these permutations, then we get a new set of
permutations that includes the nth item. The base case is when there is
only one item in the set, in which case the solution is simply the
permutation with the single item.

For example, consider finding all permutations of {1, 2, 3}. We leave the
3 out and recursively find all permutations of the set {1, 2}. This consists
of the permutations:

{1, 2} {2, 1}

Next we insert the 3 into every position for these permutations. For the
first permutation, we insert the 3 in the front, between 1 and 2, and after
2. For the second permutation, we insert the 3 in the front, between 2
and 1, and after 1:

{3, 1, 2} {1, 3, 2} {1, 2, 3} {3, 2, 1} {2, 3, 1} {2, 1, 3}

The resulting six permutations comprise all permutations of the set
{1, 2, 3}.

This page intentionally left blank

15Inheritance

15.1 INHERITANCE BASICS 826
Derived Classes 827
Constructors in Derived Classes 835
Pitfall: Use of Private Member Variables from the

Base Class 838
Pitfall: Private Member Functions Are Effectively

Not Inherited 840
The protected Qualifier 840
Redefinition of Member Functions 843
Redefining Versus Overloading 847
Access to a Redefined Base Function 848

15.2 INHERITANCE DETAILS 849
Functions That Are Not Inherited 850
Assignment Operators and Copy Constructors

in Derived Classes 850
Destructors in Derived Classes 851

15.3 POLYMORPHISM 853
Late Binding 853
Virtual Functions in C++ 854
Virtual Functions and Extended Type

Compatibility 860
Pitfall: The Slicing Problem 864
Pitfall: Not Using Virtual Member Functions 864
Pitfall: Attempting to Compile Class Definitions

Without Definitions for Every Virtual Member
Function 865

Programming Tip: Make Destructors Virtual 866

Chapter Summary 867
Answers to Self-Test Exercises 868
Programming Projects 872

826

With all appliances and means to boot.
WILLIAM SHAKESPEARE, King Henry IV, Part III

Introduction
Object-oriented programming is a popular and powerful programming tech-
nique. Among other things, it provides for a new dimension of abstraction
known as inheritance. This means that a very general form of a class can be
defined and compiled. Later, more specialized versions of that class can be
defined and can inherit all the properties of the previous class. Facilities for
inheritance are available in all versions of C++.

PREREQUISITES
Section 15.1 uses material from Chapters 2 to 8 and 10 to 12. Sections 15.2
and 15.3 use material from Chapters 9 and 13 in addition to Chapters 2 to 8,
10 to 12 and Section 15.1.

15.1 INHERITANCE BASICS

If there is anything that we wish to change in the child, we should first
examine it and see whether it is not something that could better be changed
in ourselves.

CARL GUSTAV JUNG, The Integration of the Personality

One of the most powerful features of C++ is the use of inheritance to derive
one class from another. Inheritance is the process by which a new class—
known as a derived class—is created from another class, called the base class.
A derived class automatically has all the member variables and functions that
the base class has, and can have additional member functions and/or
additional member variables.

In Chapter 10, we noted that saying that class D is derived from another class
B means that class D has all the features of class B and some extra, added features as
well. When a class D is derived from a class B, we say that B is the base class and D
is the derived class. We also say that D is the child class and B is the parent class.1

1 Some authors speak of a subclass D and superclass B instead of derived class D and base
class B. However we have found the terms derived class and base class to be less confus-
ing. We only mention this in an effort to help you to read other texts.

inheritance
derived class

base class

child class

15.1 Inheritance Basics 827

For example, we discussed the fact that the predefined class ifstream is
derived from the (predefined) class istream by adding member functions such
as open and close. The stream cin belongs to the class of all input streams
(that is, the class istream), but it does not belong to the class of input-file
streams (that is, does not belong to ifstream), partly because it lacks the
member functions open and close of the derived class ifstream.

Derived Classes

Suppose we are designing a record-keeping program that has records for
salaried employees and hourly employees. There is a natural hierarchy for
grouping these classes. These are all classes of people who share the property
of being employees.

Employees who are paid an hourly wage are one subset of employees.
Another subset consists of employees who are paid a fixed wage each month
or each week. Although the program may not need any type corresponding
to the set of all employees, thinking in terms of the more general concept
of employees can be useful. For example, all employees have names
and social security numbers, and the member functions for setting and
changing names and social security numbers will be the same for salaried
and hourly employees.

Within C++ you can define a class called Employee that includes all
employees, whether salaried or hourly, and then use this class to define classes
for hourly employees and salaried employees. Displays 15.1 and 15.2 show
one possible definition for the class Employee.

You can have an (undifferentiated) Employee object, but our reason for
defining the class Employee is so that we can define derived classes for
different kinds of employees. In particular, the function print_check
will always have its definition changed in derived classes so that different
kinds of employees can have different kinds of checks. This is reflected
in the definition of the function print_check for the class Employee
(Display 15.2). It makes little sense to print a check for such an (undiffer-
entiated) Employee. We know nothing about this employee’s salary details.
Consequently we implemented the function print_check of the class
Employee so that the program stops with an error message if print_check is
called for a base class Employee object. As you will see, derived classes will
have enough information to redefine the function print_check to produce
meaningful employee checks.

A class that is derived from the class Employee will automatically have all
the member variables of the class Employee (name, ssn, and net_pay). A class
that is derived from the class Employee will also have all the member
functions of the class Employee, such as print_check, get_name, set_name,
and the other member functions listed in Display 15.1. This is usually
expressed by saying that the derived class inherits the member variables and
member functions.

parent class

inheritance

828 CHAPTER 15 / Inheritance

The interface files with the class definitions of two derived classes of the class
Employee are given in Displays 15.3 (HourlyEmployee) and 15.4 (Salaried-
Employee). We have placed the class Employee and the two derived classes in the
same namespace. C++ does not require that they be in the same namespace, but
since they are related classes, it makes sense to put them in the same namespace.
We will first discuss the derived class HourlyEmployee given in Display 15.3.

Note that the definition of a derived class begins like any other class
definition but adds a colon, the reserved word public, and the name of the

DISPLAY 15.1 Interface for the Base Class Employee

1 //This is the header file employee.h.
2 //This is the interface for the class Employee.
3 //This is primarily intended to be used as a base class to derive
4 //classes for different kinds of employees.
5 #ifndef EMPLOYEE_H
6 #define EMPLOYEE_H

7 #include <string>
8 using namespace std;

9 namespace employeessavitch
10 {

11 class Employee
12 {
13 public:
14 Employee();
15 Employee(string the_name, string the_ssn);
16 string get_name() const;
17 string get_ssn() const;
18 double get_net_pay() const;
19 void set_name(string new_name);
20 void set_ssn(string new_ssn);
21 void set_net_pay(double new_net_pay);
22 void print_check() const;
23 private:
24 string name;
25 string ssn;
26 double net_pay;
27 };

28 }//employeessavitch

29 #endif //EMPLOYEE_H

15.1 Inheritance Basics 829

DISPLAY 15.2 Implementation for the Base Class Employee (part 1 of 2)

1 //This is the file: employee.cpp.
2 //This is the implementation for the class Employee.
3 //The interface for the class Employee is in the header file employee.h.
4 #include <string>
5 #include <cstdlib>
6 #include <iostream>
7 #include "employee.h"
8 using namespace std;

9 namespace employeessavitch
10 {
11 Employee::Employee() : name("No name yet"), ssn("No number yet"), net_pay(0)
12 {
13 //deliberately empty
14 }

15 Employee::Employee(string the_name, string the_number)
16 : name(the_name), ssn(the_number), net_pay(0)
17 {
18 //deliberately empty
19 }

20 string Employee::get_name() const
21 {
22 return name;
23 }

24 string Employee::get_ssn() const
25 {
26 return ssn;
27 }
28
29 double Employee::get_net_pay() const
30 {
31 return net_pay;
32 }

33 void Employee::set_name(string new_name)
34 {
35 name = new_name;
36 }
37 void Employee::set_ssn(string new_ssn)
38 {
39 ssn = new_ssn;
40 }

(continued)

830 CHAPTER 15 / Inheritance

DISPLAY 15.2 Implementation for the Base Class Employee (part 2 of 2)

41 void Employee::set_net_pay (double new_net_pay)
42 {
43 net_pay = new_net_pay;
44 }

45 void Employee::print_check() const
46 {
47 cout << "\nERROR: print_check FUNCTION CALLED FOR AN \n"
48 << "UNDIFFERENTIATED EMPLOYEE. Aborting the program.\n"
49 << "Check with the author of the program about this bug.\n";
50 exit(1);
51 }

52 }//employeessavitch

DISPLAY 15.3 Interface for the Derived Class HourlyEmployee (part 1 of 2)

1 //This is the header file hourlyemployee.h.
2 //This is the interface for the class HourlyEmployee.
3 #ifndef HOURLYEMPLOYEE_H
4 #define HOURLYEMPLOYEE_H

5 #include <string>
6 #include "employee.h"

7 using namespace std;

8 namespace employeessavitch
9 {

10 class HourlyEmployee : public Employee
11 {
12 public:
13 HourlyEmployee();
14 HourlyEmployee(string the_name, string the_ssn,
15 double the_wage_rate, double the_hours);
16 void set_rate(double new_wage_rate);
17 double get_rate() const;
18 void set_hours(double hours_worked);
19 double get_hours() const;

(continued)

15.1 Inheritance Basics 831

DISPLAY 15.3 Interface for the Derived Class HourlyEmployee (part 2 of 2)

20 void print_check() ;
21 private:
22 double wage_rate;
23 double hours;
24 };

25 }//employeessavitch

26 #endif //HOURLYMPLOYEE_H

You only list the declaration of an
inherited member function if you
want to change the definition of
the function.

DISPLAY 15.4 Interface for the Derived Class SalariedEmployee

1 //This is the header file salariedemployee.h.
2 //This is the interface for the class SalariedEmployee.
3 #ifndef SALARIEDEMPLOYEE_H
4 #define SALARIEDEMPLOYEE_H

5 #include <string>
6 #include "employee.h"

7 using namespace std;

8 namespace employeessavitch
9 {

10 class SalariedEmployee : public Employee
11 {
12 public:
13 SalariedEmployee();
14 SalariedEmployee (string the_name, string the_ssn,
15 double the_weekly_salary);
16 double get_salary() const;
17 void set_salary(double new_salary);
18 void print_check();
19 private:
20 double salary;//weekly
21 };

22 }//employeessavitch

23 #endif //SALARIEDEMPLOYEE_H

832 CHAPTER 15 / Inheritance

base class to the first line of the class definition, as in the following (from
Display 15.3):

class HourlyEmployee : public Employee
{

The derived class (such as HourlyEmployee) automatically receives all the
member variables and member functions of the base class (such as Employee)
and can add additional member variables and member functions.

The definition of the class HourlyEmployee does not mention the member
variables name, ssn, and net_pay, but every object of the class HourlyEmployee
has member variables named name, ssn, and net_pay. The member variables
name, ssn, and net_pay are inherited from the class Employee. The class
HourlyEmployee declares two additional member variables named wage_rate
and hours. Thus, every object of the class HourlyEmployee has five member
variables named name, ssn, net_pay, wage_rate, and hours. Note that the
definition of a derived class (such as HourlyEmployee) only lists the added
member variables. The member variables defined in the base class are not
mentioned. They are provided automatically to the derived class.

Just as it inherits the member variables of the class Employee, the class
Hourly-Employee inherits all the member functions from the class Employee.
So, the class HourlyEmployee inherits the member functions get_name, get_ssn,
get_net_pay, set_name, set_ssn, set_net_pay, and print_check from the
class Employee.

In addition to the inherited member variables and member functions, a
derived class can add new member variables and new member functions. The
new member variables and the declarations for the new member functions are
listed in the class definition. For example, the derived class HourlyEmployee
adds the two member variables wage_rate and hours, and it adds the new
member functions named set_rate, get_rate, set_hours, and get_hours.
This is shown in Display 15.3. Note that you do not give the declarations of
the inherited member functions except for those whose definitions you want
to change, which is the reason we list only the member function print_check
from the base class Employee. For now, do not worry about the details of the
constructor definition for the derived class. We will discuss constructors in the
next subsection.

In the implementation file for the derived class, such as the implementa-
tion of HourlyEmployee in Display 15.5, you give the definitions of all the
added member functions. Note that you do not give definitions for the
inherited member functions unless the definition of the member function is
changed in the derived class, a point we discuss next.

The definition of an inherited member function can be changed in the
definition of a derived class so that it has a meaning in the derived class that is
different from what it is in the base class. This is called redefining the inherited
member function. For example, the member function print_check() is
redefined in the definition of the derived class HourlyEmployee. To redefine a

redefining

15.1 Inheritance Basics 833

DISPLAY 15.5 Implementation for the Derived Class HourlyEmployee
(part 1 of 2)

1 //This is the file: hourlyemployee.cpp
2 //This is the implementation for the class HourlyEmployee.
3 //The interface for the class HourlyEmployee is in
4 //the header file hourlyemployee.h.
5 #include <string>
6 #include <iostream>
7 #include "hourlyemployee.h"
8 using namespace std;

9 namespace employeessavitch
10 {

11 HourlyEmployee::HourlyEmployee() : Employee(), wage_rate(0), hours(0)
12 {
13 //deliberately empty
14 }

15 HourlyEmployee::HourlyEmployee(string the_name, string the_number,
16 double the_wage_rate, double the_hours)
17 : Employee(the_name, the_number), wage_rate(the_wage_rate), hours(the_hours)
18 {
19 //deliberately empty
20 }

21 void HourlyEmployee::set_rate(double new_wage_rate)
22 {
23 wage_rate = new_wage_rate;
24 }

25 double HourlyEmployee::get_rate() const
26 {
27 return wage_rate;
28 }

29 void HourlyEmployee::set_hours(double hours_worked)
30 {
31 hours = hours_worked;
32 }

33 double HourlyEmployee::get_hours() const
34 {
35 return hours;
36 }

(continued)

834 CHAPTER 15 / Inheritance

member function definition, simply list it in the class definition and give it a
new definition, just as you would do with a member function that is added in
the derived class. This is illustrated by the redefined function print_check()
of the class HourlyEmployee (Displays 15.3 and 15.5).

Parent and Child Classes

When discussing derived classes, it is common to use terminology derived
from family relationships. A base class is often called a parent class. A
derived class is then called a child class. This makes the language of
inheritance very smooth. For example, we can say that a child class inherits
member variables and member functions from its parent class. This
analogy is often carried one step further. A class that is a parent of a
parent of a parent of another class (or some other number of “parent of”
iterations) is often called an ancestor class. If class A is an ancestor of class
B, then class B is often called a descendant of class A.

DISPLAY 15.5 Implementation for the Derived Class HourlyEmployee
(part 2 of 2)

37 void HourlyEmployee::print_check()
38 {
39 set_net_pay(hours * wage_rate);

40 cout << "\n__\n";
41 cout << "Pay to the order of " << get_name() << endl;
42 cout << "The sum of " << get_net_pay() << " Dollars\n";
43 cout << "__\n";
44 cout << "Check Stub: NOT NEGOTIABLE\n";
45 cout << "Employee Number: " << get_ssn() << endl;
46 cout << "Hourly Employee. \nHours worked: " << hours
47 << " Rate: " << wage_rate << " Pay: " << get_net_pay() << endl;
48 cout << "___\n";
49 }

50 }//employeessavitch

We have chosen to set net_pay as part of
the print_check function since that is
when it is used, but in any event, this is an
accounting question, not a programming
question. But note that C++ allows us to
drop the const in the function print_check
when we redefine it in a derived class.

15.1 Inheritance Basics 835

SalariedEmployee is another example of a derived class of the class
Employee. The interface for the class SalariedEmployee is given in Display
15.4. An object declared to be of type SalariedEmployee has all the member
functions and member variables of Employee and the new members given in
the definition of the class SalariedEmployee. This is true even though the class
SalariedEmployee lists none of the inherited variables and only lists one
function from the class Employee, namely, the function print_check, which will
have its definition changed in SalariedEmployee. The class SalariedEmployee,
nonetheless, has the three member variables name, ssn, and net_pay, as well
as the member variable salary. Notice that you do not have to declare the
member variables and member functions of the class Employee, such as name
and set_name, in order for a SalariedEmployee to have these members. The
class SalariedEmployee gets these inherited members automatically without
the programmer doing anything.

Note that the class Employee has all the code that is common to the two
classes HourlyEmployee and SalariedEmployee. This saves you the trouble of
writing identical code two times, once for the class HourlyEmployee and once
for the class SalariedEmployee. Inheritance allows you to reuse the code in the
class Employee.

Constructors in Derived Classes

A constructor in a base class is not inherited in the derived class, but you can
invoke a constructor of the base class within the definition of a derived class
constructor, and that is all you need or normally want. A constructor for a
derived class uses a constructor from the base class in a special way. A
constructor for the base class initializes all the data inherited from the base
class. Thus, a constructor for a derived class begins with an invocation of a
constructor for the base class.

Inherited Members

A derived class automatically has all the member variables and all the
ordinary member functions of the base class. (As discussed later in this
chapter, there are some specialized member functions, such as construc-
tors, that are not automatically inherited.) These members from the base
class are said to be inherited. These inherited member functions and
inherited member variables are, with one exception, not mentioned in the
definition of the derived class, but they are automatically members of the
derived class. As explained in the text, you do mention an inherited
member function in the definition of the derived class if you want to
change the definition of the inherited member function.

836 CHAPTER 15 / Inheritance

There is a special syntax for invoking the base class constructor that is
illustrated by the constructor definitions for the class HourlyEmployee given in
Display 15.5. In what follows we have reproduced (with minor changes in the
line breaks to make it fit the text column) one of the constructor definitions for
the class HourlyEmployee taken from that display:

HourlyEmployee::HourlyEmployee(string the_name,
 string the_number, double the_wage_rate,
 double the_hours)
 : Employee(the_name, the_number),
 wage_rate(the_wage_rate), hours(the_hours)
{
 //deliberately empty
}

The portion after the colon is the initialization section of the constructor
definition for the constructor HourlyEmployee::HourlyEmployee. The part
Employee(the_name, the_number) is an invocation of the two-argument con-
structor for the base class Employee. Note that the syntax for invoking the base
class constructor is analogous to the syntax used to set member variables:
The entry wage_rate(the_wage_rate) sets the value of the member variable
wage_rate to the_wage_rate; the entry Employee(the_name, the_number)
invokes the base class constructor Employee with the arguments the_name and
the_number. Since all the work is done in the initialization section, the body of the
constructor definition is empty.

Here we reproduce the other constructor for the class HourlyEmployee
from Display 15.5:

HourlyEmployee::HourlyEmployee() : Employee(), wage_rate(0),
 hours(0)
{
 //deliberately empty
}

In this constructor definition the default (zero-argument) version of the base
class constructor is called to initialize the inherited member variables. You
should always include an invocation of one of the base class constructors in
the initialization section of a derived class constructor.

If a constructor definition for a derived class does not include an
invocation of a constructor for the base class, then the default (zero-argument)
version of the base class constructor will be invoked automatically. So, the
following definition of the default constructor for the class HourlyEmployee
(with Employee() omitted) is equivalent to the version we just discussed:

HourlyEmployee::HourlyEmployee() : wage_rate(0), hours(0)
{
 //deliberately empty
}

15.1 Inheritance Basics 837

However, we prefer to always explicitly include a call to a base class
constructor, even if it would be invoked automatically.

A derived class object has all the member variables of the base class.
When a derived class constructor is called, these member variables need
to be allocated memory and should be initialized. This allocation of
memory for the inherited member variables must be done by a construc-
tor for the base class, and the base class constructor is the most convenient
place to initialize these inherited member variables. That is why you
should always include a call to one of the base class constructors when
you define a constructor for a derived class. If you do not include a call to
a base class constructor (in the initialization section of the definition of a
derived class constructor), then the default (zero-argument) constructor of
the base class is called automatically. (If there is no default constructor for
the base class, that is an error condition.)

The call to the base class constructor is the first action taken by a derived
class constructor. Thus, if class B is derived from class A and class C is derived
from class B, then when an object of the class C is created, first a constructor
for the class A is called, then a constructor for B is called, and finally the
remaining actions of the C constructor are taken.

An Object of a Derived Class Has More Than One Type

In everyday experience an hourly employee is an employee. In C++ the
same sort of thing holds. Since HourlyEmployee is a derived class of the
class Employee, every object of the class HourlyEmployee can be used
anywhere an object of the class Employee can be used. In particular,
you can use an argument of type HourlyEmployee when a function
requires an argument of type Employee. You can assign an object of
the class HourlyEmployee to a variable of type Employee. (But be
warned: You cannot assign a plain old Employee object to a variable
of type HourlyEmployee. After all, an Employee is not necessarily an
HourlyEmployee.) Of course, the same remarks apply to any base class
and its derived class. You can use an object of a derived class anywhere
that an object of its base class is allowed.

More generally, an object of a class type can be used anywhere
that an object of any of its ancestor classes can be used. If class
Child is derived from class Ancestor and class Grandchild is derived
from class Child, then an object of class Grandchild can be used
anywhere an object of class Child can be used, and the object of class
Grandchild can also be used anywhere that an object of class Ancestor
can be used.

order of
constructor calls

838 CHAPTER 15 / Inheritance

■ PITFALL Use of Private Member Variables from the Base Class

An object of the class HourlyEmployee (Displays 15.3 and 15.5) inherits a
member variable called name from the class Employee (Displays 15.1 and 15.2).
For example, the following code would set the value of the member variable
name of the object joe to "Josephine". (This code also sets the member variable
ssn to "123-45-6789" and both the wage_rate and hours to 0.)

HourlyEmployee joe("Josephine", "123-45-6789", 0, 0);

If you want to change joe.name to "Mighty-Joe" you can do so as follows:

joe.set_name("Mighty-Joe");

But you must be a bit careful about how you manipulate inherited member
variables such as name. The member variable name of the class HourlyEmployee
was inherited from the class Employee, but the member variable name is a
private member variable in the definition of the class Employee. That means that
name can be directly accessed only within the definition of a member function in the
class Employee. A member variable (or member function) that is private in a base
class is not accessible by name in the definition of a member function for any
other class, not even in a member function definition of a derived class. Thus, although the
class HourlyEmployee does have a member variable named name (inherited from
the base class Employee), it is illegal to directly access the member variable name in
the definition of any member function in the class definition of HourlyEmployee.

For example, the following are the first few lines from the body of the
member function HourlyEmployee::print_check (taken from Display 15.5):

void HourlyEmployee::print_check()
{
 set_net_pay(hours * wage_rate);

 cout << "\n__\n";
 cout << "Pay to the order of " << get_name() << endl;
 cout << "The sum of " << get_net_pay() << " Dollars\n";

Constructors in Derived Classes

A derived class does not inherit the constructors of its base class. However,
when defining a constructor for the derived class, you can and should
include a call to a constructor of the base class (within the initialization
section of the constructor definition).

If you do not include a call to a constructor of the base class, then the
default (zero-argument) constructor of the base class will automatically be
called when the derived class constructor is called.

15.1 Inheritance Basics 839

You might have wondered why we needed to use the member function
set_net_pay to set the value of the net_pay member variable. You might be
tempted to rewrite the start of the member function definition as follows:

void HourlyEmployee::print_check()
{
 net_pay = hours * wage_rate;

As the comment indicates, this will not work. The member variable net_pay is
a private member variable in the class Employee, and although a derived class
like HourlyEmployee inherits the variable net_pay, it cannot access it directly.
It must use some public member function to access the member variable
net_pay. The correct way to accomplish the definition of print_check in the
class HourlyEmployee is the way we did it in Display 15.5 (and part of which
was displayed earlier).

The fact that name and net_pay are inherited variables that are private in the
base class also explains why we needed to use the accessor functions get_name
and get_net_pay in the definition of HourlyEmployee::print_check instead of
simply using the variable names name and net_pay. You cannot mention a
private inherited member variable by name. You must instead use public
accessor and mutator member functions (such as get_name and set_name) that
were defined in the base class. (Recall that an accessor function is a function that
allows you to access member variables of a class, and a mutator function is one
that allows you to change member variables of a class. Accessor and mutator
functions were covered in Chapter 10.)

The fact that a private member variable of a base class cannot be
accessed in the definition of a member function of a derived class often
seems wrong to people. After all, if you are an hourly employee and you
want to change your name, nobody says, “Sorry name is a private member
variable of the class Employee.” After all, if you are an hourly employee, you
are also an employee. In Java, this is also true; an object of the class
HourlyEmployee is also an object of the class Employee. However, the laws
on the use of private member variables and member functions must be as
we described, or else their privacy would be compromised. If private
member variables of a class were accessible in member function definitions
of a derived class, then anytime you wanted to access a private member
variable, you could simply create a derived class and access it in a member
function of that class, which would mean that all private member variables
would be accessible to anybody who wanted to put in a little extra effort. This
adversarial scenario illustrates the problem, but the big problem is unintention-
al errors, not intentional subversion. If private member variables of a class were
accessible in member function definitions of a derived class, then the member
variables might be changed by mistake or in inappropriate ways. (Remember,
accessor and mutator functions can guard against inappropriate changes to
member variables.)

Illegal use of net_pay

840 CHAPTER 15 / Inheritance

We will discuss one possible way to get around this restriction on private
member variables of the base class in the subsection entitled “The protected
Qualifier” a bit later in this chapter. ■

■ PITFALL Private Member Functions Are Effectively Not Inherited

As we noted in the previous Pitfall section, a member variable (or member
function) that is private in a base class is not directly accessible outside of the
interface and implementation of the base class, not even in a member function
definition for a derived class. Note that private member functions are just like
private variables in terms of not being directly available. But in the case of
member functions, the restriction is more dramatic. A private variable can be
accessed indirectly via an accessor or mutator member function. A private
member function is simply not available. It is just as if the private member
function were not inherited.

This should not be a problem. Private member functions should just be
used as helping functions, and so their use should be limited to the class in
which they are defined. If you want a member function to be used as a helping
member function in a number of inherited classes, then it is not just a helping
function, and you should make the member function public. ■

The protected Qualifier

As you have seen, you cannot access a private member variable or private
member function in the definition or implementation of a derived class. There
is a classification of member variables and functions that allows them to be
accessed by name in a derived class but not anyplace else, such as in some class
that is not a derived class. If you use the qualifier protected, rather than
private or public, before a member variable or member function of a class,
then for any class or function other than a derived class, the effect is the same
as if the member variable were labeled private; however, in a derived class the
variable can be accessed by name.

For example, consider the class HourlyEmployee that was derived from
the base class Employee. We were required to use accessor and mutator
member functions to manipulate the inherited member variables in the
definition of HourlyEmployee::print_check. If all the private member vari-
ables in the class Employee were labeled with the keyword protected instead
of private, the definition of HourlyEmployee::print_check in the derived
class Employee could be simplified to the following:

void HourlyEmployee::print_check()
//Only works if the member variables of Employee are marked
//protected instead of private.

protected

15.1 Inheritance Basics 841

{
 net_pay = hours * wage_rate;

 cout << "\n__\n";
 cout << "Pay to the order of " << name << endl;
 cout << "The sum of " << net_pay << " Dollars\n";
 cout << "__\n";
 cout << "Check Stub: NOT NEGOTIABLE\n";
 cout << "Employee Number: " << ssn << endl;
 cout << "Hourly Employee. \nHours worked: " << hours
 << " Rate: " << wage_rate << " Pay: " << net_pay
 << endl;
 cout << "__\n";
}

In the derived class HourlyEmployee, the inherited member variables name,
net_pay, and ssn can be accessed by name, provided they are marked as
protected (as opposed to private) in the base class Employee. However, in
any class that is not derived from the class Employee, these member variables
are treated as if they were marked private.

Member variables that are protected in the base class act as though they were
also marked protected in any derived class. For example, suppose you define a
derived class PartTimeHourlyEmployee of the class HourlyEmployee. The class
PartTimeHourlyEmployee inherits all the member variables of the class Hourly-
Employee, including the member variables that HourlyEmployee inherits from
the class Employee. So, the class PartTimeHourlyEmployee will have the
member variables net_pay, name, and ssn. If these member variables were
marked protected in the class Employee, then they can be used by name in the
definitions of functions of the class PartTimeHourlyEmployee.

Except for derived classes (and derived classes of derived classes, etc.) a
member variable that is marked protected is treated the same as if it were
marked private.

We include a discussion of protected member variables primarily because
you will see them used and should be familiar with them. Many, but not all,
programming authorities say it is bad style to use protected member
variables. They say it compromises the principle of hiding the class implemen-
tation. They say that all member variables should be marked private. If all
member variables are marked private, the inherited member variables cannot
be accessed by name in derived class function definitions. However, this is not
as bad as its sounds. The inherited private member variables can be accessed
indirectly by invoking inherited functions that either read or change the
private inherited variables. Since authorities differ on whether or not you
should use protected members, you will have to make your own decision on
whether or not to use them.

842 CHAPTER 15 / Inheritance

SELF -TEST EXERC ISES

1. Is the following program legal (assuming appropriate #include and using
directives are added)?

void show_employee_data(const Employee object);

int main()
{
 HourlyEmployee joe("Mighty Joe",
 "123-45-6789", 20.50, 40);
 SalariedEmployee boss("Mr. Big Shot",
 "987-65-4321", 10500.50);
 show_employee_data(joe);
 show_employee_data(boss);

 return 0;
}

void show_employee_data(const Employee object)
{
 cout << "Name: " << object.get_name() << endl;
 cout << "Social Security Number: "
 << object.get_ssn() << endl;
}

Protected Members

If you use the qualifier protected, rather than private or public, before a
member variable of a class, then for any class or function other than a
derived class (or a derived class of a derived class, etc.), the situation is the
same as if the member variable were labeled private. However, in the
definition of a member function of a derived class, the variable can be
accessed by name. Similarly, if you use the qualifier protected before a
member function of a class, then for any class or function other than a
derived class (or a derived class of a derived class, etc.), that is the same as if
the member function were labeled private. However, in the definition of a
member function of a derived class the protected function can be used.

Inherited protected members are inherited in the derived class as if
they were marked protected in the derived class. In other words, if a
member is marked as protected in a base class, then it can be accessed by
name in the definitions of all descendant classes, not just in those classes
directly derived from the base class.

15.1 Inheritance Basics 843

2. Give a definition for a class SmartBut that is a derived class of the base
class Smart, which we reproduce for you here. Do not bother with
#include directives or namespace details.

class Smart
{
public:
 Smart();
 void print_answer() const;
protected:
 int a;
 int b;
};

This class should have an additional data field, crazy, that is of type bool,
one additional member function that takes no arguments and returns a
value of type bool, and suitable constructors. The new function is named
is_crazy. You do not need to give any implementations, just the class
definition.

3. Is the following a legal definition of the member function is_crazy in the
derived class SmartBut discussed in Self-Test Exercise 2? Explain your
answer. (Remember, the question asks if it is legal, not if it is a sensible
definition.)

bool SmartBut::is_crazy() const
{
 if (a > b)
 return crazy;
 else
 return true;
}

Redefinition of Member Functions

In the definition of the derived class HourlyEmployee (Display 15.3), we gave
the declarations for the new member functions set_rate, get_rate,
set_hours, and get_hours. We also gave the function declaration for only
one of the member functions inherited from the class Employee. The
inherited member functions whose function declarations were not given
(such as set_name and set_ssn) are inherited unchanged. They have the
same definition in the class HourlyEmployee as they do in the base class
Employee. When you define a derived class like HourlyEmployee, you list only
the function declarations for the inherited member functions whose defini-
tions you want to change to have a different definition in the derived class.
If you look at the implementation of the class HourlyEmployee, given in

844 CHAPTER 15 / Inheritance

Display 15.5, you will see that we have redefined the inherited member function
print_check. The class SalariedEmployee also gives a new definition to the
member function print_check, as shown in Display 15.6. Moreover, the two
classes give different definitions from each other. The function print_check is
redefined in the derived classes.

Display 15.7 gives a demonstration program that illustrates the use of the
derived classes HourlyEmployee and SalariedEmployee.

Redefining an Inherited Function

A derived class inherits all the member functions (and member variables as
well) that belong to the base class. However, if a derived class requires a
different implementation for an inherited member function, the function
may be redefined in the derived class. When a member function is
redefined, you must list its declaration in the definition of the derived class
even though the declaration is the same as in the base class. If you do not
wish to redefine a member function that is inherited from the base class,
then it is not listed in the definition of the derived class.

DISPLAY 15.6 Implementation for the Derived Class SalariedEmployee
(part 1 of 2)

1 //This is the file salariedemployee.cpp.
2 //This is the implementation for the class SalariedEmployee.
3 //The interface for the class SalariedEmployee is in
4 //the header file salariedemployee.h.
5 #include <iostream>
6 #include <string>
7 #include "salariedemployee.h"
8 using namespace std;

9 namespace employeessavitch
10 {
11 SalariedEmployee::SalariedEmployee() : Employee(), salary(0)
12 {
13 //deliberately empty
14 }

(continued)

redefined
function

15.1 Inheritance Basics 845

DISPLAY 15.6 Implementation for the Derived Class SalariedEmployee
(part 2 of 2)

15 SalariedEmployee::SalariedEmployee(string the_name, string the_number,
16 double the_weekly_salary)
17 : Employee(the_name, the_number), salary(the_weekly_salary)
18 {
19 //deliberately empty
20 }

21 double SalariedEmployee::get_salary() const
22 {
23 return salary;
24 }

25 void SalariedEmployee::set_salary(double new_salary)
26 {
27 salary = new_salary;
28 }

29 void SalariedEmployee::print_check()
30 {
31 set_net_pay(salary);
32 cout << "\n__\n";
33 cout << "Pay to the order of " << get_name() << endl;
34 cout << "The sum of " << get_net_pay() << " Dollars\n";
35 cout << "___\n";
36 cout << "Check Stub NOT NEGOTIABLE \n";

37 void SalariedEmployee::print_check()
38 {
39 set_net_pay(salary);
40 cout << "\n__\n";
41 cout << "Pay to the order of " << get_name() << endl;
42 cout << "The sum of " << get_net_pay() << " Dollars\n";
43 cout << "___\n";
44 cout << "Check Stub NOT NEGOTIABLE \n";
45 cout << "Employee Number: " << get_ssn() << endl;
46 cout << "Salaried Employee. Regular Pay: "
47 << salary << endl;
48 cout << "___\n";
49 }
50 }//employeessavitch

846 CHAPTER 15 / Inheritance

DISPLAY 15.7 Using Derived Classes (part 1 of 2)

1 #include <iostream>
2 #include "hourlyemployee.h"
3 #include "salariedemployee.h"
4 using std::cout;
5 using std::endl;
6 using namespace employeessavitch;

7 int main()
8 {
9 HourlyEmployee joe;

10 joe.set_name("Mighty Joe");
11 joe.set_ssn("123-45-6789");
12 joe.set_rate(20.50);
13 joe.set_hours(40);
14 cout << "Check for " << joe.get_name()
15 << " for " << joe.get_hours() << " hours.\n";
16 joe.print_check();
17 cout << endl;

18 SalariedEmployee boss("Mr. Big Shot", "987-65-4321", 10500.50);
19 cout << "Check for " << boss.get_name() << endl;
20 boss.print_check();

21 return 0;
22 }

Sample Dialogue

Check for Mighty Joe for 40 hours.

__

Pay to the order of Mighty Joe

The sum of 820 Dollars

__

Check Stub: NOT NEGOTIABLE

Employee Number: 123-45-6789

Hourly Employee.

Hours worked: 40 Rate: 20.5 Pay: 820

(continued)

The functions set_name, set_ssn, set_rate, set_hours, and
get_name are inherited unchanged from the class Employee.
The function print_check is redefined. The function
get_hours was added to the derived class HourlyEmployee.

15.1 Inheritance Basics 847

Redefining Versus Overloading

Do not confuse redefining a function definition in a derived class with
overloading a function name. When you redefine a function definition, the new
function definition given in the derived class has the same number and types
of parameters. On the other hand, if the function in the derived class were to
have a different number of parameters or a parameter of a different type from
the function in the base class, then the derived class would have both
functions. That would be overloading. For example, suppose we added a
function with the following function declaration to the definition of the class
HourlyEmployee:

void set_name(string first_name, string last_name);

The class HourlyEmployee would have this two-argument function set_name,
and it would also inherit the following one-argument function set_name:

void set_name(string new_name);

The class HourlyEmployee would have two functions named set_name. This
would be overloading the function name set_name.

On the other hand, both the class Employee and the class HourlyEmployee
define a function with the following function declaration:

void print_check();

In this case, the class HourlyEmployee has only one function named
print_check, but the definition of the function print_check for the class
HourlyEmployee is different from its definition for the class Employee. In this
case, the function print_check has been redefined.

DISPLAY 15.7 Using Derived Classes (part 2 of 2)

Check for Mr. Big Shot

__

Pay to the order of Mr. Big Shot

The sum of 10500.5 Dollars

Check Stub NOT NEGOTIABLE

Employee Number: 987-65-4321

Salaried Employee. Regular Pay: 10500.5

848 CHAPTER 15 / Inheritance

If you get redefining and overloading confused, you do have one
consolation. They are both legal. So, it is more important to learn how to use
them than it is to learn to distinguish between them. Nonetheless, you should
learn the difference between them.

Access to a Redefined Base Function

Suppose you redefine a function so that it has a different definition in the
derived class from what it had in the base class. The definition that was given
in the base class is not completely lost to the derived class objects. However,
if you want to invoke the version of the function given in the base class with
an object in the derived class, you need some way to say “use the definition of
this function as given in the base class (even though I am an object of the
derived class).” The way you say this is to use the scope resolution operator
with the name of the base class. An example should clarify the details.2

Consider the base class Employee (Display 15.1) and the derived class
HourlyEmployee (Display 15.3). The function print_check() is defined in
both classes. Now suppose you have an object of each class, as in

Employee jane_e;
HourlyEmployee sally_h;

Then

jane_e.print_check();

uses the definition of print_check given in the class Employee, and

sally_h.print_check();

Signature

A function’s signature is the function’s name with the sequence of types
in the parameter list, not including the const keyword and not including
the ampersand (&). When you overload a function name, the two
definitions of the function name must have different signatures using this
definition of signature.2

If a function has the same name in a derived class as in the base class
but has a different signature, that is overloading, not redefinition.

2 Some compilers may allow overloading on the basis of const versus no const, but you
cannot count on this and so should not do it. For this reason some definitions of signa-
ture include the const modifier, but this is a cloudy issue that is best avoided until you
become an expert.

Video Note
Inheritance Example

15.2 Inheritance Details 849

uses the definition of print_check given in the class HourlyEmployee.
But, suppose you want to invoke the version of print_check given in the

definition of the base class Employee with the derived class object sally_h as
the calling object for print_check. You do that as follows:

sally_h.Employee::print_check();

Of course, you are unlikely to want to use the version of print_check
given in the particular class Employee, but with other classes and other
functions, you may occasionally want to use a function definition from a base
class with a derived class object. An example is given in Self-Test Exercise 6.

SELF -TEST EXERC ISES

4. The class SalariedEmployee inherits both of the functions get_name and
print_check (among other things) from the base class Employee, yet only
the function declaration for the function print_check is given in the defi-
nition of the class SalariedEmployee. Why isn’t the function declaration
for the function get_name given in the definition of SalariedEmployee?

5. Give a definition for a class TitledEmployee that is a derived class of the base
class SalariedEmployee given in Display 15.4. The class TitledEmployee
has one additional member variable of type string called title. It also has
two additional member functions: get_title, which takes no arguments and
returns a string; and set_title, which is a void function that takes one
argument of type string. It also redefines the member function set_name.
You do not need to give any implementations, just the class definition. How-
ever, do give all needed #include directives and all using namespace direc-
tives. Place the class TitledEmployee in the namespace employeessavitch.

6. Give the definitions of the constructors for the class TitledEmployee that you
gave as the answer to Self-Test Exercise 5. Also, give the redefinition of the
member function set_name. The function set_name should insert the title
into the name. Do not bother with #include directives or namespace details.

15.2 INHERITANCE DETAILS

The devil is in the details.

COMMON SAYING

This section presents some of the more subtle details about inheritance. Most of
the topics are relevant only to classes that use dynamic arrays or pointers and
other dynamic data.

850 CHAPTER 15 / Inheritance

Functions That Are Not Inherited

As a general rule if Derived is a derived class with base class Base, then all
“normal” functions in the class Base are inherited members of the class
Derived. However, there are some special functions that are, for all practical
purposes, not inherited. We have already seen that, as a practical matter,
constructors are not inherited and that private member functions are not
inherited. Destructors are also effectively not inherited.

In the case of the copy constructor, it is not inherited, but if you do not
define a copy constructor in a derived class (or any class for that matter),
C++ will automatically generate a copy constructor for you. However, this
default copy constructor simply copies the contents of member variables
and does not work correctly for classes with pointers or dynamic data in
their member variables. Thus, if your class member variables involve
pointers, dynamic arrays, or other dynamic data, then you should define a
copy constructor for the class. This applies whether or not the class is a
derived class.

The assignment operator = is also not inherited. If the base class Base
defines the assignment operator, but the derived class Derived does not define
the assignment operator, then the class Derived will have an assignment
operator, but it will be the default assignment operator that C++ creates (when
you do not define =); it will not have anything to do with the base class
assignment operator defined in Base.

It is natural that constructors, destructors, and the assignment operator
are not inherited. To correctly perform their tasks they need information
that the base class does not possess. To correctly perform their functions,
they need to know about the new member variables introduced in the
derived class.

Assignment Operators and Copy Constructors in
Derived Classes

Overloaded assignment operators and constructors are not inherited.
However, they can be, and in almost all cases must be, used in the
definitions of overloaded assignment operators and copy constructors in
derived classes.

When overloading the assignment operator in a derived class, you
normally use the overloaded assignment operator from the base class. We will
present an outline of how the code for doing this is written. To help
understand the code outline, remember that an overloaded assignment
operator must be defined as a member function of the class.

If Derived is a class derived from Base, then the definition of the
overloaded assignment operator for the class Derived would typically begin
with something like the following:

15.2 Inheritance Details 851

Derived& Derived::operator =(const Derived& right_side)
{
 Base::operator =(right_side);

The first line of code in the body of the definition is a call to the overloaded
assignment operator of the Base class. This takes care of the inherited member
variables and their data. The definition of the overloaded assignment operator
would then go on to set the new member variables that were introduced in the
definition of the class Derived.

A similar situation holds for defining the copy constructor in a derived
class. If Derived is a class derived from Base, then the definition of the copy
constructor for the class Derived would typically use the copy constructor for
the class Base to set up the inherited member variables and their data. The
code would typically begin with something like the following:

Derived::Derived(const Derived& object)
 : Base(object), <probably more initializations>
{

The invocation of the base class copy constructor Base(object) sets up the
inherited member variables of the Derived class object being created. Note
that since object is of type Derived, it is also of type Base; therefore, object
is a legal argument to the copy constructor for the class Base.

Of course, these techniques do not work unless you have a correctly
functioning assignment operator and a correctly functioning copy constructor
for the base class. This means that the base class definition must include a
copy constructor and that either the default automatically created assignment
operator must work correctly for the base class or the base class must have a
suitable overloaded definition of the assignment operator.

Destructors in Derived Classes

If a base class has a correctly functioning destructor, then it is relatively easy to
define a correctly functioning destructor in a class derived from the base class.
When the destructor for the derived class is invoked, it automatically invokes
the destructor of the base class, so there is no need for the explicit writing of
a call to the base class destructor; it always happens automatically. The
derived class destructor therefore need only worry about using delete on the
member variables (and any data they point to) that are added in the derived
class. It is the job of the base class destructor to invoke delete on the
inherited member variables.

If class B is derived from class A and class C is derived from class B, then when
an object of the class C goes out of scope, first the destructor for the class C is called,
then the destructor for class B is called, and finally the destructor for class A is
called. Note that the order in which destructors are called is the reverse of the order
in which constructors are called.

852 CHAPTER 15 / Inheritance

SELF -TEST EXERC ISES

7. You know that an overloaded assignment operator and a copy constructor
are not inherited. Does this mean that if you do not define an overloaded
assignment operator or a copy constructor for a derived class, then that
derived class will have no assignment operator and no copy constructor?

8. Suppose Child is a class derived from the class Parent, and the class
Grandchild is a class derived from the class Child. This question is con-
cerned with the constructors and destructors for the three classes Parent,
Child, and Grandchild. When a constructor for the class Grandchild is
invoked, what constructors are invoked and in what order? When the
destructor for the class Grandchild is invoked, what destructors are
invoked and in what order?

9. Give the definitions for the member function add_value, the copy con-
structor, the overloaded assignment operator, and the destructor for the
following class. This class is intended to be a class for a partially filled
array. The member variable number_used contains the number of array
positions currently filled. The other constructor definition is given to help
you get started.

#include <iostream>
#include <cstdlib>
using namespace std;

class PartFilledArray
{
public:
 PartFilledArray(int array_size);
 PartFilledArray(const PartFilledArray& object);
 ~PartFilledArray();
 void operator = (const PartFilledArray& right_side);
 void add_value(double new_entry);
 //There would probably be more member functions
 //but they are irrelevant to this exercise.
protected:
 double *a;
 int max_number;
 int number_used;
};

PartFilledArray::PartFilledArray(int array_size)
 : max_number(array_size), number_used(0)
{
 a = new double[max_number];
}

15.3 Polymorphism 853

(Many authorities would say that the member variables should be private
rather than protected. We tend to agree. However, using protected makes
for a better practice assignment, and you should have some experience
with protected variables because some programmers do use them.)

10. Define a class called PartFilledArrayWMax that is a derived class of the class
PartFilledArray. The class PartFilledArrayWMax has one additional
member variable named max_value that holds the maximum value stored
in the array. Define a member accessor function named get_max that
returns the maximum value stored in the array. Redefine the member func-
tion add_value and define two constructors, one of which has an int argu-
ment for the maximum number of entries in the array. Also define a copy
constructor, an overloaded assignment operator, and a destructor. (A real
class would have more member functions, but these will do for an exercise.)

15.3 POLYMORPHISM

I did it my way.

FRANK SINATRA

Polymorphism refers to the ability to associate multiple meanings to one
function name. As it has come to be used today polymorphism refers to a very
particular way of associating multiple meanings to a single function name.
That is, polymorphism refers to the ability to associate multiple meanings to
one function name by means of a special mechanism known as late binding.
Polymorphism is one of the key components of a programming philosophy
known as object-oriented programming. Late binding, and therefore polymor-
phism, is the topic of this section.

Late Binding

A virtual function is one that, in some sense, may be used before it is defined.
For example, a graphics program may have several kinds of figures, such as
rectangles, circles, ovals, and so forth. Each figure might be an object of a
different class. For example, the Rectangle class might have member variables
for a height, width, and center point, while the Circle class might have
member variables for a center point and a radius. In a well-designed
programming project, all of them would probably be descendants of a single
parent class called, for example, Figure. Now, suppose you want a function to
draw a figure on the screen. To draw a circle, you need different instructions
from those you need to draw a rectangle. So, each class needs to have a different
function to draw its kind of figure. However, because the functions belong to
the classes, they can all be called draw. If r is a Rectangle object and c is a
Circle object, then r.draw() and c.draw() can be functions implemented

polymorphism
function

854 CHAPTER 15 / Inheritance

with different code. All this is not news, but now we move on to something
new: virtual functions defined in the parent class Figure.

Now, the parent class Figure may have functions that apply to all figures.
For example, it might have a function called center that moves a figure to the
center of the screen by erasing it and then redrawing it in the center of the screen.
Figure::center might use the function draw to redraw the figure in the center
of the screen. When you think of using the inherited function center with
figures of the classes Rectangle and Circle, you begin to see that there are
complications here.

To make the point clear and more dramatic, let’s suppose the class Figure
is already written and in use and at some later time we add a class for a brand-
new kind of figure, say, the class Triangle. Now, Triangle can be a derived
class of the class Figure, and so the function center will be inherited from the
class Figure; thus, the function center should apply to (and perform correctly
for!) all Triangles. But there is a complication. The function center uses draw,
and the function draw is different for each type of figure. The inherited
function center (if nothing special is done) will use the definition of the
function draw given in the class Figure, and that function draw does not work
correctly for Triangles. We want the inherited function center to use the
function Triangle::draw rather than the function Figure::draw. But the class
Triangle, and therefore the function Triangle::draw, was not even written when
the function center (defined in the class Figure) was written and compiled! How
can the function center possibly work correctly for Triangles? The compiler did
not know anything about Triangle::draw at the time that center was compiled.
The answer is that it can apply provided draw is a virtual function.

When you make a function virtual, you are telling the compiler “I do
not know how this function is implemented. Wait until it is used in a
program, and then get the implementation from the object instance.” The
technique of waiting until run-time to determine the implementation of a
procedure is called late binding or dynamic binding. Virtual functions are
the way C++ provides late binding. But enough introduction. We need an
example to make this come alive (and to teach you how to use virtual
functions in your programs). In order to explain the details of virtual
functions in C++, we will use a simplified example from an application area
other than drawing figures.

Virtual Functions in C++

Suppose you are designing a record-keeping program for an automobile parts
store. You want to make the program versatile, but you are not sure you can
account for all possible situations. For example, you want to keep track of
sales, but you cannot anticipate all types of sales. At first, there will be only
regular sales to retail customers who go to the store to buy one particular part.
However, later you may want to add sales with discounts, or mail-order sales

virtual function

late binding
dynamic binding

15.3 Polymorphism 855

with a shipping charge. All these sales will be for an item with a basic price and
ultimately will produce some bill. For a simple sale, the bill is just the basic
price, but if you later add discounts, then some kinds of bills will also depend
on the size of the discount. Your program will need to compute daily gross
sales, which intuitively should just be the sum of all the individual sales bills.
You may also want to calculate the largest and smallest sales of the day or the
average sale for the day. All these can be calculated from the individual bills,
but the functions for computing the bills will not be added until later, when
you decide what types of sales you will be dealing with. To accommodate this,
we make the function for computing the bill a virtual function. (For simplicity
in this first example, we assume that each sale is for just one item, although
with derived classes and virtual functions we could, but will not here, account
for sales of multiple items.)

Displays 15.8 and 15.9 contain the interface and implementation for the
class Sale. All types of sales will be derived classes of the class Sale. The class
Sale corresponds to simple sales of a single item with no added discounts or
charges. Notice the reserved word virtual in the function declaration for the
function bill (Display 15.8). Notice (Display 15.9) that the member function
savings and the overloaded operator < both use the function bill. Since bill
is declared to be a virtual function, we can later define derived classes of the
class Sale and define their versions of the function bill, and the definitions

DISPLAY 15.8 Interface for the Base Class Sale (part 1 of 2)

1 //This is the header file sale.h.
2 //This is the interface for the class Sale.
3 //Sale is a class for simple sales.
4 #ifndef SALE_H
5 #define SALE_H
6
7 #include <iostream>
8 using namespace std;
9

10 namespace salesavitch
11 {
12
13 class Sale
14 {
15 public:
16 Sale();
17 Sale(double the_price);
18 virtual double bill() const;
19 double savings(const Sale& other) const;
20 //Returns the savings if you buy other instead of the calling object.

(continued)

856 CHAPTER 15 / Inheritance

DISPLAY 15.8 Interface for the Base Class Sale (part 2 of 2)

21 protected:
22 double price;
23 };
24
25 bool operator < (const Sale& first, const Sale& second);
26 //Compares two sales to see which is larger.
27
28 }//salesavitch
29
30 #endif // SALE_H

DISPLAY 15.9 Implementation of the Base Class Sale

1 //This is the implementation file: sale.cpp
2 //This is the implementation for the class Sale.
3 //The interface for the class Sale is in
4 //the header file sale.h.
5 #include "sale.h"
6
7 namespace salesavitch
8 {
9

10 Sale::Sale() : price(0)
11 {}
12
13 Sale::Sale(double the_price) : price(the_price)
14 {}
15
16 double Sale::bill() const
17 {
18 return price;
19 }
20
21 double Sale::savings(const Sale& other) const
22 {
23 return (bill() − other.bill());
24 }
25
26 bool operator < (const Sale& first, const Sale& second)
27 {
28 return (first.bill() < second.bill());
29 }
30
31 }//salesavitch

15.3 Polymorphism 857

of the member function savings and the overloaded operator <, which we
gave with the class Sale, will use the version of the function bill that
corresponds to the object of the derived class.

For example, Display 15.10 shows the derived class DiscountSale. Notice
that the class DiscountSale requires a different definition for its version of the
function bill. Nonetheless, when the member function savings and the over-
loaded operator < are used with an object of the class DiscountSale, they will use
the version of the function definition for bill that was given with the class
DiscountSale. This is indeed a pretty fancy trick for C++ to pull off. Consider the
function call d1.savings(d2) for objects d1 and d2 of the class DiscountSale.
The definition of the function savings (even for an object of the class Discount-
Sale) is given in the implementation file for the base class Sale, which was
compiled before we ever even thought of the class DiscountSale. Yet, in the
function call d1.savings(d2), the line that calls the function bill knows enough
to use the definition of the function bill given for the class DiscountSale.

How does this work? In order to write C++ programs you can just assume
it happens by magic, but the real explanation was given in the introduction to
this section. When you label a function virtual, you are telling the C++
environment “Wait until this function is used in a program, and then get the
implementation corresponding to the calling object.”

Display 15.11 gives a sample program that illustrates how the virtual
function bill and the functions that use bill work in a complete program.

DISPLAY 15.10 The Derived Class DiscountSale (part 1 of 2)

1 //This is the interface for the class DiscountSale.
2 #ifndef DISCOUNTSALE_H
3 #define DISCOUNTSALE_H
4 #include "sale.h"
5
6 namespace salesavitch
7 {
8 class DiscountSale : public Sale
9 {

10 public:
11 DiscountSale();
12 DiscountSale(double the_price, double the_discount);
13 //Discount is expressed as a percent of the price.
14 virtual double bill() const;
15 protected:
16 double discount;
17 };
18 }//salesavitch
19 #endif //DISCOUNTSALE_H

(continued)

This is the file discountsale.h.

The keyword virtual is not
required here, but it is good
style to include it.

858 CHAPTER 15 / Inheritance

DISPLAY 15.10 The Derived Class DiscountSale (part 2 of 2)

1 //This is the implementation for the class DiscountSale.
2 #include "discountsale.h"
3
4 namespace salesavitch
5 {
6 DiscountSale::DiscountSale() : Sale(), discount(0)
7 {}

8 DiscountSale::DiscountSale(double the_price, double the_discount)
9 : Sale(the_price), discount(the_discount)

10 {}

11 double DiscountSale::bill() const
12 {
13 double fraction = discount/100;
14 return (1 − fraction)*price;
15 }
16 }//salesavitch

This is the file discountsale.cpp.

DISPLAY 15.11 Use of a Virtual Function (part 1 of 2)

1 //Demonstrates the performance of the virtual function bill.
2 #include <iostream>
3 #include "sale.h" //Not really needed, but safe due to ifndef.
4 #include "discountsale.h"
5 using namespace std;
6 using namespace salesavitch;
7
8 int main()
9 {

10 Sale simple(10.00);//One item at $10.00.
11 DiscountSale discount(11.00, 10);//One item at $11.00 with a 10% discount.
12
13 cout.setf(ios::fixed);
14 cout.setf(ios::showpoint);
15 cout.precision(2);
16
17 if (discount < simple)
18 {
19 cout << "Discounted item is cheaper.\n";
20 cout << "Savings is $" << simple.savings(discount) << endl;
21 }
22 else

(continued)

15.3 Polymorphism 859

There are a number of technical details you need to know in order to use
virtual functions in C++. We list them in what follows:

■ If a function will have a different definition in a derived class than in the
base class and you want it to be a virtual function, you add the keyword
virtual to the function declaration in the base class. You do not need to
add the reserved word virtual to the function declaration in the derived
class. If a function is virtual in the base class, then it is automatically vir-
tual in the derived class. (However, it is a good idea to label the function
declaration in the derived class virtual, even though it is not required.)

■ The reserved word virtual is added to the function declaration and not to
the function definition.

■ You do not get a virtual function and the benefits of virtual functions
unless you use the keyword virtual.

Since virtual functions are so great, why not make all member functions
virtual? Almost the only reason for not always using virtual functions is
efficiency. The compiler and the run-time environment need to do much more
work for virtual functions, and so if you label more member functions
virtual than you need to, your programs will be less efficient.

Overriding

When a virtual function definition is changed in a derived class, program-
mers often say the function definition is overridden. In the C++ literature,
a distinction is sometimes made between the terms redefined and overrid-
den. Both terms refer to changing the definition of the function in a
derived class. If the function is a virtual function, it’s called overriding. If
the function is not a virtual function, it’s called redefining. This may seem
like a silly distinction to you, the programmer, since you do the same thing
in both cases, but the two cases are treated differently by the compiler.

DISPLAY 15.11 Use of a Virtual Function (part 2 of 2)

23 cout << "Discounted item is not cheaper.\n";
24
25 return 0;
26 }

Sample Dialogue

Discounted item is cheaper.

Savings is $0.10

860 CHAPTER 15 / Inheritance

 SELF - TEST EXERC ISE

11. Suppose you modify the definitions of the class Sale (Display 15.8) by
deleting the reserved word virtual. How would that change the output
of the program in Display 15.11?

Virtual Functions and Extended Type Compatibility

We will discuss some of the further consequences of declaring a class member
function to be virtual and do one example that uses some of these features.

C++ is a fairly strongly typed language. This means that the types of items are
always checked and an error message is issued if there is a type mismatch, such as
a type mismatch between an argument and a formal parameter when there is no
conversion that can be automatically invoked. This also means that normally the
value assigned to a variable must match the type of the variable, although in a few
well-defined cases C++ will perform an automatic type cast (called a coercion) so
that it appears that you can assign a value of one type to a variable of another type.

For example, C++ allows you to assign a value of type char or int to a
variable of type double. However, C++ does not allow you to assign a value of
type double or float to a variable of any integer type (char, short, int, long).

However, as important as strong typing is, this strong type checking
interferes with the very idea of inheritance in object-oriented programming.
Suppose you have defined class A and class B and have defined objects of type
class A and class B. You cannot always assign between objects of these types. For
example, suppose a program or unit contains the following type declarations:

class Pet
{
public:
 virtual void print();
 string name;
};

class Dog : public Pet
{
public:

Polymorphism

The term polymorphism refers to the ability to associate multiple mean-
ings to one function name by means of late binding. Thus, polymorphism,
late binding, and virtual functions are really all the same topic.

15.3 Polymorphism 861

 virtual void print(); //Keyword virtual not needed, but is
 //put here for clarity. (It is also good style!)

 string breed;
};

Dog vdog;
Pet vpet;

Now concentrate on the data members, name and breed. (To keep this example
simple, we have made the member variables public. In a real application, they
should be private and have functions to manipulate them.)

Anything that is a Dog is also a Pet. It would seem to make sense to allow
programs to consider values of type Dog to also be values of type Pet, and
hence the following should be allowed:

vdog.name = "Tiny";
vdog.breed = "Great Dane";
vpet = vdog;

C++ does allow this sort of assignment. You may assign a value, such as the value
of vdog, to a variable of a parent type, such as vpet, but you are not allowed to
perform the reverse assignment. Although the above assignment is allowed, the
value that is assigned to the variable vpet loses its breed field. This is called the
slicing problem. The following attempted access will produce an error message:

cout << vpet.breed;
 //Illegal: class Pet has no member named breed

You can argue that this makes sense, since once a Dog is moved to a variable of
type Pet it should be treated like any other Pet and not have properties peculiar
to Dogs. This makes for a lively philosophical debate, but it usually just makes
for a nuisance when programming. The dog named Tiny is still a Great Dane
and we would like to refer to its breed, even if we treated it as a Pet someplace
along the line.

Fortunately, C++ does offer us a way to treat a Dog as a Pet without
throwing away the name of the breed. To do this, we use pointers to dynamic
object instances.

Suppose we add the following declarations:

Pet *ppet;
Dog *pdog;

If we use pointers and dynamic variables, we can treat Tiny as a Pet without
losing his breed. The following is allowed:

pdog = new Dog;
pdog->name = "Tiny";
pdog->breed = "Great Dane";
ppet = pdog;

slicing problem

862 CHAPTER 15 / Inheritance

Moreover, we can still access the breed field of the node pointed to by ppet.
Suppose that

Dog::print();

has been defined as follows:

//uses iostream
void Dog::print()
{
 cout << "name: " << name << endl;
 cout << "breed: " << breed << endl;
}

The statement

ppet->print();

will cause the following to be printed on the screen:

name: Tiny
breed: Great Dane

This is by virtue of the fact that print() is a virtual member function. (No
pun intended.) We have included test code in Display 15.12.

DISPLAY 15.12 More Inheritance with Virtual Functions (part 1 of 3)

1 //Program to illustrate use of a virtual function
2 //to defeat the slicing problem.

3 #include <string>
4 #include <iostream>
5 using namespace std;
6
7 class Pet
8 {
9 public:

10 virtual void print();
11 string name;
12 };
13
14 class Dog : public Pet
15 {
16 public:
17 virtual void print(); //Keyword virtual not needed, but put
18 //here for clarity. (It is also good style!)

(continued)

15.3 Polymorphism 863

DISPLAY 15.12 More Inheritance with Virtual Functions (part 2 of 3)

19 string breed;
20 };
21
22 int main()
23 {
24 Dog vdog;
25 Pet vpet;
26
27 vdog.name = "Tiny";
28 vdog.breed = "Great Dane";
29 vpet = vdog;
30
31 //vpet.breed; is illegal since class Pet has no member named breed
32
33 Dog *pdog;
34 pdog = new Dog;
35 pdog->name = "Tiny";
36 pdog->breed = "Great Dane";
37
38 Pet *ppet;
39 ppet = pdog;
40 ppet->print(); // These two print the same output:
41 pdog->print(); // name: Tiny breed: Great Dane
42
43 //The following, which accesses member variables directly
44 //rather than via virtual functions, would produce an error:
45 //cout << "name: " << ppet->name << " breed: "
46 // << ppet->breed << endl;
47 //generates an error message: 'class Pet' has no member
48 //named 'breed' .
49 //See Pitfall section "Not Using Virtual Member Functions"
50 //for more discussion on this.
51
52 return 0;
53 }
54
55 void Dog::print()
56 {
57 cout << "name: " << name << endl;
58 cout << "breed: " << breed << endl;
59 }
60
61 void Pet::print()

(continued)

864 CHAPTER 15 / Inheritance

■ PITFALL The Slicing Problem

Although it is legal to assign a derived class object into a base class variable,
assigning a derived class object to a base class object slices off data. Any data
members in the derived class object that are not also in the base class will be
lost in the assignment, and any member functions that are not defined in the
base class are similarly unavailable to the resulting base class object.

If we make the following declarations and assignments:

Dog vdog;
Pet vpet;
vdog.name = "Tiny";
vdog.breed = "Great Dane";
vpet = vdog;

then vpet cannot be a calling object for a member function introduced in Dog,
and the data member, Dog::breed, is lost. ■

■ PITFALL Not Using Virtual Member Functions

In order to get the benefit of the extended type compatibility we discussed
earlier, you must use virtual member functions. For example, suppose we
had not used member functions in the example in Display 15.12. Suppose
that in place of

ppet->print();

we had used the following:

cout << "name: " << ppet->name
 << " breed: " << ppet->breed << endl;

DISPLAY 15.12 More Inheritance with Virtual Functions (part 3 of 3)

62 {
63 cout << "name: " << endl;//Note no breed mentioned
64 }

Sample Dialogue

name: Tiny

breed: Great Dane

name: Tiny

breed: Great Dane

15.3 Polymorphism 865

This code would have precipitated an error message. The reason for this is that
the expression

*ppet

has its type determined by the pointer type of ppet. It is a pointer type for the
type Pet, and the type Pet has no field named breed.

But print() was declared virtual by the base class, Pet. So, when the
compiler sees the call

ppet->print();

it checks the virtual table for classes Pet and Dog and sees that ppet points to
an object of type Dog. It therefore uses the code generated for

Dog::print(),

rather than the code for

Pet::print().

Object-oriented programming with dynamic variables is a very different way
of viewing programming. This can all be bewildering at first. It will help if you
keep two simple rules in mind:

1. If the domain type of the pointer p_ancestor is a base class for the
domain type of the pointer p_descendant, then the following assignment
of pointers is allowed:

p_ancestor = p_descendant;

Moreover, none of the data members or member functions of the
dynamic variable being pointed to by p_descendant will be lost.

2. Although all the extra fields of the dynamic variable are there, you will
need virtual member functions to access them. ■

■ PITFALL Attempting to Compile Class Definitions Without
Definitions for Every Virtual Member Function

It is wise to develop incrementally. This means code a little, then test a little,
then code a little more and test a little more, and so forth. However, if you try
to compile classes with virtual member functions but do not implement
each member, you may run into some very-hard-to-understand error mes-
sages, even if you do not call the undefined member functions!

If any virtual member functions are not implemented before compiling,
then the compilation fails with error messages similar to this: “undefined
reference to Class_Name virtual table”. Even if there is no derived class and there
is only one virtual member, this kind of message still occurs if that function
does not have a definition.

866 CHAPTER 15 / Inheritance

What makes the error messages very hard to decipher is that without
definitions for the functions declared virtual, there may be further error
messages complaining about an undefined reference to default constructors,
even if these constructors really are already defined. ■

■ PROGRAMMING TIP Make Destructors Virtual

It is a good policy to always make destructors virtual, but before we explain
why this is a good policy, we need to say a word or two about how destructors
and pointers interact and about what it means for a destructor to be virtual.

Consider the following code, where SomeClass is a class with a destructor
that is not virtual:

SomeClass *p = new SomeClass;
 . . .
delete p;

When delete is invoked with p, the destructor of the class SomeClass is
automatically invoked. Now, let’s see what happens when a destructor is
marked as virtual.

The easiest way to describe how destructors interact with the virtual
function mechanism is that destructors are treated as if all destructors had the
same name (even though they do not really have the same name). For example,
suppose Derived is a derived class of the class Base and suppose the destructor
in the class Base is marked virtual. Now consider the following code:

Base *pBase = new Derived;
 . . .
delete pBase;

When delete is invoked with pBase, a destructor is called. Since the destructor
in the class Base was marked virtual and the object pointed to is of type
Derived, the destructor for the class Derived is called (and it in turn calls the
destructor for the class Base). If the destructor in the class Base had not been
declared as virtual, then only the destructor in the class Base would be called.

Another point to keep in mind is that when a destructor is marked as
virtual, then all destructors of derived classes are automatically virtual
(whether or not they are marked virtual). Again, this behavior is as if all
destructors had the same name (even though they do not).

Now we are ready to explain why all destructors should be virtual.
Suppose the class Base has a member variable pB of a pointer type, the
constructor for the class Base creates a dynamic variable pointed to by pB, and
the destructor for the class Base deletes the dynamic variable pointed to by pB.
And suppose the destructor for the class Base is not marked virtual. Also
suppose that the class Derived (which is derived from Base) has a member
variable pD of a pointer type, the constructor for the class Derived creates a

Chapter Summary 867

dynamic variable pointed to by pD, and the destructor for the class Derived
deletes the dynamic variable pointed to by pD. Consider the following code:

Base *pBase = new Derived;
 . . .
delete pBase;

Since the destructor in the base class is not marked virtual, only the
destructor for the class Base will be invoked. This will return to the freestore
the memory for the dynamic variable pointed to by pB, but the memory for
the dynamic variable pointed to by pD will never be returned to the freestore
(until the program ends).

On the other hand, if the destructor for the base class Base were marked
virtual, then when delete is applied to pBase, the destructor for the class
Derived would be invoked (since the object pointed to is of type Derived).
The destructor for the class Derive would delete the dynamic variable pointed
to by pD and then automatically invoke the destructor for the base class Base,
and that would delete the dynamic variable pointed to by pB. So, with the base
class destructor marked as virtual, all the memory is returned to the freestore.
To prepare for eventualities such as these, it is best to always mark destructors
as virtual. ■

SELF -TEST EXERC ISES

12. Why can’t we assign a base class object to a derived class variable?

13. What is the problem with the (legal) assignment of a derived class object
to a base class variable?

14. Suppose the base class and the derived class each have a member function
with the same signature. When you have a pointer to a base class object
and call a function member through the pointer, discuss what determines
which function is actually called—the base class member function or the
derived-class function.

CHAPTER SUMMARY

■ Inheritance provides a tool for code reuse by deriving one class from
another by adding features to the derived class.

■ Derived class objects inherit all the members of the base class, and may add
members.

■ Late binding means that the decision of which version of a member func-
tion is appropriate is decided at run-time. Virtual functions are what C++

868 CHAPTER 15 / Inheritance

uses to achieve late binding. Polymorphism, late binding, and virtual func-
tions are really all the same topic.

■ A protected member in the base class is directly available to a publicly
derived class’s member functions.

Answers to Self-Test Exercises

1. Yes. You can plug in an object of a derived class for a parameter of the base
class type. An HourlyEmployee is an Employee. A SalariedEmployee is an
Employee.

2. class SmartBut : public Smart
{
public:
 SmartBut();
 SmartBut(int new_a, int new_b, bool new_crazy);
 bool is_crazy() const;
private:
 bool crazy;
};

3. It is legal because a and b are marked protected in the base class Smart
and so they can be accessed by name in a derived class. If a and b had
instead been marked private, then this would be illegal.

4. The declaration for the function get_name is not given in the definition of
SalariedEmployee because it is not redefined in the class SalariedEmployee.
It is inherited unchanged from the base class Employee.

5. #include <iostream>
#include "salariedemployee.h"
using namespace std;
namespace employeessavitch
{
 class TitledEmployee : public SalariedEmployee
 {
 public:
 TitledEmployee();
 TitledEmployee(string the_name, string the_title,
 string the_ssn, double the_salary);
 string get_title() const;
 void set_title(string the_title);
 void set_name(string the_name);
 private:
 string title;
 };
}//employeessavitch

Answers to Self-Test Exercises 869

6. namespace employeessavitch
{
 TitledEmployee::TitledEmployee()
 : SalariedEmployee(), title("No title yet")
 {
 //deliberately empty
 }

 TitledEmployee::TitledEmployee(string the_name,
 string the_title,
 string the_ssn, double the_salary)
 : SalariedEmployee(the_name, the_ssn, the_salary),
 title(the_title)
 {
 //deliberately empty
 }

 void TitledEmployee::set_name(string the_name)
 {
 Employee::set_name(title + the_name);
 }
}//employeessavitch

7. No. If you do not define an overloaded assignment operator or a copy
constructor for a derived class, then a default assignment operator and a
default copy constructor will be defined for the derived class. However, if
the class involves pointers, dynamic arrays, or other dynamic data, then it
is almost certain that neither the default assignment operator nor the
default copy constructor will behave as you want them to.

8. The constructors are called in the following order: first Parent, then
Child, and finally Grandchild. The destructors are called in the reverse
order: first Grandchild, then Child, and finally Parent.

9. //Uses iostream and cstdlib:
void PartFilledArray::add_value(double new_entry)
{
 if (number_used == max_number)
 {
 cout << "Adding to a full array.\n";
 exit(1);
 }
 else
 {
 a[number_used] = new_entry;
 number_used++;
 }
}

870 CHAPTER 15 / Inheritance

PartFilledArray::PartFilledArray
 (const PartFilledArray& object)
 : max_number(object.max_number),
 number_used(object.number_used)
{
 a = new double[max_number];

 for (int i = 0; i < number_used; i++)
 a[i] = object.a[i];
}

void PartFilledArray::operator =
 (const PartFilledArray& right_side)
{
 if (right_side.max_number > max_number)
 {
 delete [] a;
 max_number = right_side.max_number;
 a = new double[max_number];
 }
 number_used = right_side.number_used;

 for (int i = 0; i < number_used; i++)
 a[i] = right_side.a[i];
}

PartFilledArray::~PartFilledArray()
{
 delete [] a;
}

10. class PartFilledArrayWMax : public PartFilledArray
{
public:
 PartFilledArrayWMax(int array_size);
 PartFilledArrayWMax(const PartFilledArrayWMax& object);
 ~PartFilledArrayWMax();
 void operator= (const PartFilledArrayWMax& right_side);
 void add_value(double new_entry);
 double get_max();
private:
 double max_value;
};

PartFilledArrayWMax::PartFilledArrayWMax(int array_size)
 : PartFilledArray(array_size)
{
 //Body intentionally empty.

Answers to Self-Test Exercises 871

 //Max_value uninitialized, since there
 //is no suitable default value.
}

/*
Note that the following does not work, because it calls the
default constructor for PartFilledArray, but PartFilledArray has
no default constructor:
PartFilledArrayWMax::PartFilledArrayWMax(int array_size)
 : max_number(array_size), number_used(0)
{
 a = new double[max_number];
}
*/

PartFilledArrayWMax::PartFilledArrayWMax
 (const PartFilledArrayWMax& object)
 : PartFilledArray(object)
{
 if (object.number_used > 0)
 {
 max_value = a[0];

 for (int i = 1; i < number_used; i++)
 if (a[i] > max_value)
 max_value = a[i];
 }//else leave max_value uninitialized
}

//This is equivalent to the default destructor supplied
//by C++, and so this definition can be omitted.
//But, if you omit it, you must also omit the destructor
//declaration from the class definition.
PartFilledArrayWMax::~PartFilledArrayWMax()
{
 //Intentionally empty.
}

void PartFilledArrayWMax::operator =
 (const PartFilledArrayWMax& right_side)
{
 PartFilledArray::operator = (right_side);
 max_value = right_side.max_value;
}

//Uses iostream and cstdlib:
void PartFilledArrayWMax::add_value(double new_entry)
{

872 CHAPTER 15 / Inheritance

 if (number_used == max_number)
 {
 cout << "Adding to a full array.\n";
 exit(1);
 }

 if ((number_used == 0) || (new_entry > max_value))
 max_value = new_entry;

 a[number_used] = new_entry;
 number_used++;
}

double PartFilledArrayWMax::get_max()
{
 return max_value;
}

11. The output would change to

Discounted item is not cheaper.

12. There would be no member to assign to the derived class’s added members.

13. Although it is legal to assign a derived class object to a base class variable,
this discards the parts of the derived class object that are not members of
the base class. This situation is known as the slicing problem.

14. If the base class function carries the virtual modifier, then the type of the
object to which the pointer was initialized determines whose member
function is called. If the base class member function does not have the
virtual modifier, then the type of the pointer determines whose member
function is called.

PROGRAMMING PROJECTS

1. Write a program that uses the class SalariedEmployee in Display 15.4. Your
program is to define a class called Administrator, which is to be derived
from the class SalariedEmployee. You are allowed to change private in the
base class to protected. You are to supply the following additional data
and function members:

A member variable of type string that contains the administrator’s
title (such as Director or Vice President).

A member variable of type string that contains the company area of
responsibility (such as Production, Accounting, or Personnel).

A member variable of type string that contains the name of this
administrator’s immediate supervisor.

Programming Projects 873

A protected: member variable of type double that holds the admin-
istrator’s annual salary. It is possible for you to use the existing sal-
ary member if you did the change recommended earlier.

A member function called set_supervisor, which changes the
supervisor name.

A member function for reading in an administrator’s data from the
keyboard.

A member function called print, which outputs the object’s data to
the screen.

An overloading of the member function print_check() with appro-
priate notations on the check.

2. Add temporary, administrative, permanent, and other classifications of
employee to the hierarchy from Displays 15.1, 15.3, and 15.4. Implement
and test this hierarchy. Test all member functions. A user interface with a
menu would be a nice touch for your test program.

3. Give the definition of a class named Doctor whose objects are records for a
clinic’s doctors. This class will be a derived class of the class SalariedEmployee
given in Display 15.4. A Doctor record has the doctor’s specialty (such as
“Pediatrician,” “Obstetrician,” “General Practitioner,” etc., so use type
string) and office visit fee (use type double). Be sure your class has a rea-
sonable complement of constructors, accessor, and mutator member
functions, an overloaded assignment operator, and a copy constructor.
Write a driver program to test all your functions.

4. Create a base class called Vehicle that has the manufacturer’s name (type
string), number of cylinders in the engine (type int), and owner (type
Person, given below). Then create a class called Truck that is derived from
Vehicle and has additional properties: the load capacity in tons (type double
since it may contain a fractional part) and towing capacity in pounds (type
int). Be sure your classes have a reasonable complement of constructors, acces-
sor, and mutator member functions, an overloaded assignment operator, and a
copy constructor. Write a driver program that tests all your member functions.

The definition of the class Person follows. The implementation of the
class is part of this Programming Project.

class Person
{
public:
 Person();
 Person(string the_name);
 Person(const Person& the_object);
 string get_name() const;
 Person& operator=(const Person& rt_side);

friend istream& operator >>(istream& in_stream,

874 CHAPTER 15 / Inheritance

 Person& person_object);
 friend ostream& operator <<(ostream& out_stream,

 const Person& person_object);
private:
 string name;
};

5. Define a Car class that is derived from the Vehicle class given in Program-
ming Project 4. Define a class called SportsCar that is derived from Car
class. Be creative in choosing member variables and functions. Write a
driver programs to test the Car and SportsCar classes. (No pun intended.)

6. Give the definition of two classes, Patient and Billing, whose objects are
records for a clinic. Patient will be derived from the class Person given in Pro-
gramming Project 4. A Patient record has the patient’s name (inherited from
the class Person) and primary physician, of type Doctor defined in Pro-
gramming Project 3. A Billing object will contain a Patient object, a Doctor
object, and an amount due of type double. Be sure your classes have a reason-
able complement of constructors, accessor, and mutator member functions,
an overloaded assignment operator, and a copy constructor. First write a driver
program to test all your member functions, and then write a test program
that creates at least two patients, at least two doctors, and at least two Billing
records, then prints out the total income from the Billing records.

7. Consider a graphics system that has classes for various figures—rectangles,
squares, triangles, circles, and so on. For example, a rectangle might have
data members for height, width, and center point, while a square and cir-
cle might have only a center point and an edge length or radius, respec-
tively. In a well-designed system, these would be derived from a common
class, Figure. You are to implement such a system.

The class Figure is the base class. You should add only Rectangle and
Triangle classes derived from Figure. Each class has stubs for member
functions erase and draw. Each of these member functions outputs a
message telling what function has been called and what the class of the
calling object is. Since these are just stubs, they do nothing more than
output this message. The member function center calls the erase and
draw functions to erase and redraw the figure at the center. Since you have
only stubs for erase and draw, center will not do any “centering” but will
call the member functions erase and draw. Also add an output message in
the member function center that announces that center is being called.
The member functions should take no arguments.

There are three parts to this project:

a. Write the class definitions using no virtual functions. Compile and test.

b. Make the base class member functions virtual. Compile and test.

c. Explain the difference in results.

Programming Projects 875

For a real example, you would have to replace the definition of each of
these member functions with code to do the actual drawing. You will be
asked to do this in Programming Project 8.

Use the following main function for all testing:

//This program tests Programming Project 6.
#include <iostream>
#include "figure.h"
#include "rectangle.h"
#include "triangle.h"
using std::cout;

int main()
{
 Triangle tri;
 tri.draw();
 cout <<
 "\nDerived class Triangle object calling center().\n";
 tri.center(); //Calls draw and center

 Rectangle rect;
 rect.draw();
 cout <<
 "\nDerived class Rectangle object calling center().\n";
 rect.center(); //Calls draw and center
 return 0;
}

8. Flesh out Programming Project 7. Give new definitions for the various
constructors and the member functions Figure::center, Figure::draw,
Figure::erase, Triangle::draw, Triangle::erase, Rectangle::draw,
and Rectangle::erase so that the draw functions actually draw figures on
the screen by placing the character '*' at suitable locations. For the erase
functions, you can simply clear the screen (by outputting blank lines or by
doing something more sophisticated). There are a lot of details in this prob-
lem, and you will have to make decisions about some of them on your own.

9. Banks have many different types of accounts often with different rules for
fees associated with transactions such as withdrawals. Customers are
allowed to transfer funds between accounts incurring the appropriate fees
associated with withdrawal of funds from one account.

Write a program with a base class for a bank account and two derived
classes (as described below) representing accounts with different rules for
withdrawing funds. Also write a function that transfers funds from one
account (of any type) to another. A transfer is a withdrawal from one
account and a deposit into the other. Since the transfer can be done at any
time with any type of account the withdraw function in the classes must

876 CHAPTER 15 / Inheritance

be virtual. Write a main program that creates three accounts (one from
each class) and tests the transfer function.

For the classes, create a base class called BankAccount that has the name of
the owner of the account (a string) and the balance in the account (double)
as data members. Include member functions deposit and withdraw (each
with a double for the amount as an argument) and accessor functions
getName and getBalance. Deposit will add the amount to the balance
(assuming the amount is nonnegative) and withdraw will subtract the
amount from the balance (assuming the amount is nonnegative and less
than or equal to the balance). Also create a class called MoneyMarketAccount
that is derived from BankAccount. In a MoneyMarketAccount the user gets 2
free withdrawals in a given period of time (don’t worry about the time for this
problem). After the free withdrawals have been used, a withdrawal fee of
$1.50 is deducted from the balance per withdrawal. Hence, the class must
have a data member to keep track of the number of withdrawals. It also
must override the withdraw definition. Finally, create a CDAccount class (to
model a Certificate of Deposit) derived from BankAccount which in
addition to having the name and balance also has an interest rate. CDs
incur penalties for early withdrawal of funds. Assume that a withdrawal of
funds (any amount) incurs a penalty of 25% of the annual interest earned
on the account. Assume the amount withdrawn plus the penalty are
deducted from the account balance. Again the withdraw function must
override the one in the base class. For all three classes, the withdraw
function should return an integer indicating the status (either ok or
insufficient funds for the withdrawal to take place). For the purposes of
this exercise do not worry about other functions and properties of these
accounts (such as when and how interest is paid).

10. Radio Frequency IDentification (RFID) chips are small tags that can be
placed on a product. They behave like wireless barcodes and can wire-
lessly broadcast an identification number to a receiver. One application of
RFID chips is to use them to aid in the logistics of shipping freight. Con-
sider a shipping container full of items. Without RFID chips a human has
to manually inventory all of the items in the container to verify the con-
tents. With an RFID chip attached to the shipping container, the RFID
chip can electronically broadcast to a human the exact contents of the
shipping container without human intervention.

To model this application, write a base class called ShippingContainer that
has a container ID number as an integer. Include member functions to
set and access the ID number. Add a virtual function called getManifest
that returns an empty string. The purpose of this function is to return the
contents of the shipping container.

Create a derived class called ManualShippingContainer that represents the
manual method of inventorying the container. In this method, a human

Programming Projects 877

simply attaches a textual description of all contents of the container. For
example, the description might be “4 crates of apples. 10 crates of pears.”
Add a new class variable of type string to store the manifest. Add a function
called setManifest that sets this string. Override the getManifest function
so that it returns this string.

Create a second derived class called RFIDShippingContainer that represents
the RFID method of inventorying the container. To simulate what the RFID
chips would compute, create an add function to simulate adding an item to
the container. The class should store a list of all added items (as a string) and
their quantity using the data structures of your choice. For example, if the
add function were invoked three times as follows:

rfidContainer.add("crate of pears"); // Add one crate of pears
rfidContainer.add("crate of apples"); // Add one crate of apples
rfidContainer.add("crate of pears"); // Add one crate of pears

At this point, the data structure should be storing a list of two items:
crate of apples and crate of pears. The quantity of apples is one and the
quantity of pears is two. Override the getManifest function so that
it returns a string of all items that is built by traversing the list of
items. In the above example, the return string would be “2 crate of
pears. 1 crate of apples.”

Finally, write a main program that creates an array of pointers
to 6 ShippingContainer objects. Instantiate the array with 3
ManualShippingContainer objects and 3 RFIDShippingContainer objects.
For the ManualShippingContainer objects you will have to invoke
setManifest to set the contents. For the RFIDShippingContainer objects
you will have to invoke add to set the contents (although, if this were real,
the contents of the container would “add” themselves via the RFID chips
instead of requiring a human to type them in). Finally, write a loop that
iterates through all ShippingContainer pointers and outputs each object’s
manifest along with the shipping container ID. This is the output that the
receiver of the shipping containers would like to see.

You may need to convert an integer into a string. A simple way to do this
is illustrated below:

#include <sstream>

string intToString(int i)
{
 stringstream converter;
 converter << i;
 return converter.str();
}

878 CHAPTER 15 / Inheritance

11. The goal for this programming project is to create a simple two-dimensional
predator-prey simulation. In this simulation the prey are ants and the preda-
tors are doodlebugs. These critters live in a world composed of a 20�20 grid
of cells. Only one critter may occupy a cell at a time. The grid is enclosed, so
a critter is not allowed to move off the edges of the world. Time is simulated
in time steps. Each critter performs some action every time step.

The ants behave according to the following model:

■ Move. Every time step, randomly try to move up, down, left, or right. If
the neighboring cell in the selected direction is occupied or would
move the ant off the grid, then the ant stays in the current cell.

■ Breed. If an ant survives for three time steps, then at the end of the time
step (that is; after moving) the ant will breed. This is simulated by cre-
ating a new ant in an adjacent (up, down, left, or right) cell that is
empty. If there is no empty cell available, then no breeding occurs.
Once an offspring is produced an ant cannot produce an offspring
until three more time steps have elapsed.

The doodlebugs behave according to the following model:

■ Move. Every time step, if there is an adjacent ant (up, down, left, or
right), then the doodlebug will move to that cell and eat the ant. Other-
wise, the doodlebug moves according to the same rules as the ant. Note
that a doodlebug cannot eat other doodlebugs.

■ Breed. If a doodlebug survives for eight time steps, then at the end of the
time step it will spawn off a new doodlebug in the same manner as the ant.

■ Starve. If a doodlebug has not eaten an ant within the last three time
steps, then at the end of the third time step it will starve and die. The
doodlebug should then be removed from the grid of cells.

During one turn, all the doodlebugs should move before the ants do.

Write a program to implement this simulation and draw the world using
ASCII characters of “o” for an ant and “X” for a doodlebug. Create a class
named Organism that encapsulates basic data common to both ants and
doodlebugs. This class should have a virtual function named move that is
defined in the derived classes of Ant and Doodlebug. You may need
additional data structures to keep track of which critters have moved.

Initialize the world with 5 doodlebugs and 100 ants. After each time step,
prompt the user to press Enter to move to the next time step. You should see
a cyclical pattern between the population of predators and prey, although
random perturbations may lead to the elimination of one or both species.

Programming Projects 879

12. Listed here is a code to play a guessing game in which two players attempt
to guess a number. Your task is to extend the program with objects that
represent either a human player or a computer player. The rand()
function requires you include cstdlib (see Appendix 4):

bool checkForWin(int guess, int answer)
{
 cout << "You guessed" << guess << ".";
 if (answer == guess)
 {
 cout << "You're right! You win!" << endl;
 return true;
 }
 else if (answer < guess)
 cout << "Your guess is too high." << endl;
 else
 cout << "Your guess is too low." << endl;
 return false;
}

void play(Player &player1, Player &player2)
{
 int answer = 0, guess = 0;
 answer = rand() % 100;
 bool win = false;

 while (!win)
 {
 cout << "Player 1's turn to guess." << endl;
 guess = player1.getGuess();
 win = checkForWin(guess, answer);
 if (win) return;

 cout << "Player 2's turn to guess." << endl;
 guess = player2.getGuess();
 win = checkForWin(guess, answer);
 }
}

The play function takes as input two Player objects. Define the Player
class with a virtual function named getGuess(). The implementation
of Player::getGuess() can simply return 0. Next, define a class
named HumanPlayer derived from Player. The implementation of
HumanPlayer::getGuess() should prompt the user to enter a number
and return the value entered from the keyboard. Next, define a class
named ComputerPlayer derived from Player. The implementation of
ComputerPlayer::getGuess() should randomly select a number between
0 and 99 (see Appendix 4 for information on random number generation).
Finally, construct a main function that invokes play (Player &player1,
Player &player2) with two instances of a HumanPlayer (human versus
human), an instance of a HumanPlayer and ComputerPlayer (human
versus computer), and two instances of ComputerPlayer (computer versus
computer).

Video Note
Solution to
Programming
Project 15.12

880 CHAPTER 15 / Inheritance

13. The computer player in Programming Project 12 does not play very well
in the number guessing game, since it only makes random guesses. Mod-
ify the program so that the computer plays a more informed game. The
specific strategy is up to you, but you must add function(s) to the Player
and ComputerPlayer classes so that the play (Player &player1, Player
&player2) function can send the results of a guess back to the computer
player. In other words, the computer must be told if its last guess was too
high or too low, and it also must be told if its opponent’s last guess was
too high or too low. The computer then can use this information to revise
its next guess. Also, add any necessary functions to allow the computer
player to play multiple consecutive games.

16Exception Handling

16.1 EXCEPTION-HANDLING BASICS 883
A Toy Example of Exception Handling 883
Defining Your Own Exception Classes 892
Multiple Throws and Catches 892
Pitfall: Catch the More Specific Exception

First 896
Programming Tip: Exception Classes Can

Be Trivial 897
Throwing an Exception in a Function 898
Exception Specification 898
Pitfall: Exception Specification in Derived

Classes 902

16.2 PROGRAMMING TECHNIQUES FOR
EXCEPTION HANDLING 903
When to Throw an Exception 903
Pitfall: Uncaught Exceptions 905
Pitfall: Nested try-catch Blocks 905
Pitfall: Overuse of Exceptions 905
Exception Class Hierarchies 906
Testing for Available Memory 906
Rethrowing an Exception 907

Chapter Summary 907
Answers to Self-Test Exercises 907
Programming Projects 909

882

It’s the exception that proves the rule.
COMMON MAXIM (possibly a corruption of something like: It’s the exception that tests the rule.)

INTRODUCTION
One way to write a program is to first assume that nothing unusual or
incorrect will happen. For example, if the program takes an entry off a list,
you might assume that the list is not empty. Once you have the program
working for the core situation where things always go as planned, you can
then add code to take care of the exceptional cases. In C++, there is a way to
reflect this approach in your code. Basically, you write your code as if
nothing very unusual happens. After that, you use the C++ exception
handling facilities to add code for those unusual cases.

Exception handling is commonly used to handle error situations, but
perhaps a better way to view exceptions is as a way to handle “exceptional
situations.” After all, if your code correctly handles an “error,” then it no
longer is an error.

Perhaps the most important use of exceptions is to deal with functions
that have some special case that is handled differently depending on how the
function is used. Perhaps the function will be used in many programs, some
of which will handle the special case in one way and some of which will
handle it in some other way. For example, if there is a division by zero in the
function, then it may turn out that for some invocations of the function, the
program should end, but for other invocations of the function something else
should happen. You will see that such a function can be defined to throw an
exception if the special case occurs, and that exception will allow the special
case to be handled outside of the function. That way, the special case can be
handled differently for different invocations of the function.

In C++, exception handling proceeds as follows: Either some library
software or your code provides a mechanism that signals when something
unusual happens. This is called throwing an exception. At another place in your
program, you place the code that deals with the exceptional case. This is called
handling the exception. This method of programming makes for cleaner code.
Of course, we still need to explain the details of how you do this in C++.

PREREQUISITES
With the exception of one subsection that can be skipped, Section 16.1 uses
material only from Chapters 2 to 6 and 10 to 11. The Pitfall subsection of

16.1 Exception-Handling Basics 883

Section 16.1 entitled “Exception Specification in Derived Classes” uses
material from Chapter 15. This Pitfall subsection can be skipped without
loss of continuity.

With the exception of one subsection that can be skipped, Section 16.2
uses material only from Chapters 2 to 8 and 10 to 12 and Section 15.1 of
Chapter 15 in addition to Section 16.1. The subsection of Section 16.2 entitled
“Testing for Available Memory” uses material from Chapter 15. This subsec-
tion can be skipped without loss of continuity.

16.1 EXCEPTION-HANDLING BASICS

Well, the program works for most cases. I didn’t know it had to work for that case.

COMPUTER SCIENCE STUDENT, APPEALING A GRADE

Exception handling is meant to be used sparingly and in situations that are
more involved than what is reasonable to include in a simple introductory
example. So, we will teach you the exception handling details of C++ by
means of simple examples that would not normally use exception handling.
This makes a lot of sense for learning about exception handling, but do not
forget that these first examples are toy examples, and in practice, you would
not use exception handling for anything that simple.

A Toy Example of Exception Handling

For this example, suppose that milk is such an important food in our culture
that people almost never run out of it, but still we would like our programs to
accommodate the very unlikely situation of running out of milk. The basic
code, which assumes we do not run out of milk, might be as follows:

cout << "Enter number of donuts:\n";
cin >> donuts;
cout << "Enter number of glasses of milk:\n";
cin >> milk;
dpg = donuts/static_cast<double>(milk);
cout << donuts << " donuts.\n"
 << milk << " glasses of milk.\n"
 << "You have " << dpg
 << " donuts for each glass of milk.\n";

If there is no milk, then this code will include a division by zero, which is
an error. To take care of the special situation in which we run out of milk, we
can add a test for this unusual situation. The complete program with this
added test for the special situation is shown in Display 16.1. The program in
Display 16.1 does not use exception handling. Now, let’s see how this
program can be rewritten using the C++ exception handling facilities.

884 CHAPTER 16 / Exception Handling

In Display 16.2, we have rewritten the program from Display 16.1 using
an exception. This is only a toy example, and you would probably not use an
exception in this case. However, it does give us a simple example. Although the
program as a whole is not simpler, at least the part between the words try and
catch is cleaner, and this hints at the advantage of using exceptions. Look

DISPLAY 16.1 Handling a Special Case Without Exception Handling

1 #include <iostream>
2 using namespace std;

3 int main()
4 {
5 int donuts, milk;
6 double dpg;
7 cout << "Enter number of donuts:\n";
8 cin >> donuts;
9 cout << "Enter number of glasses of milk:\n";

10 cin >> milk;

11 if (milk <= 0)
12 {
13 cout << donuts << " donuts, and No Milk!\n"
14 << "Go buy some milk.\n";
15 }
16 else
17 {
18 dpg = donuts/static_cast<double>(milk);
19 cout << donuts << " donuts.\n"
20 << milk << " glasses of milk.\n"
21 << "You have " << dpg
22 << " donuts for each glass of milk.\n";
23 }

24 cout << "End of program.\n";
25 return 0;
26 }

Sample Dialogue

Enter number of donuts:

12

Enter number of glasses of milk:

0

12 donuts, and No Milk!

Go buy some milk.

End of program.

16.1 Exception-Handling Basics 885

DISPLAY 16.2 Same Thing Using Exception Handling (part 1 of 2)

1 #include <iostream>
2 using namespace std;
3
4 int main()
5 {
6 int donuts, milk;
7 double dpg;
8
9 try

10 {
11 cout << "Enter number of donuts:\n";
12 cin >> donuts;
13 cout << "Enter number of glasses of milk:\n";
14 cin >> milk;
15
16 if (milk <= 0)
17 throw donuts;
18
19 dpg = donuts/static_cast<double>(milk);
20 cout << donuts << " donuts.\n"
21 << milk << " glasses of milk.\n"
22 << "You have " << dpg
23 << " donuts for each glass of milk.\n";
24 }
25 catch(int e)
26 {
27 cout << e << " donuts, and No Milk!\n"
28 << "Go buy some milk.\n";
29 }
30
31 cout << "End of program.\n";
32 return 0;
33 }

Sample Dialogue 1

Enter number of donuts:

12

Enter number of glasses of milk:

6

12 donuts.

6 glasses of milk.

You have 2 donuts for each glass of milk.

(continued)

886 CHAPTER 16 / Exception Handling

at the code between the words try and catch. That code is basically the same
as the code in Display 16.1, but rather than the big if-else statement (shown
in color in Display 16.1) this new program has the following smaller if
statement (plus some simple nonbranching statements):

if (milk <=0)
 throw donuts;

This if statement says that if there is no milk, then do something
exceptional. That something exceptional is given after the word catch. The
idea is that the normal situation is handled by the code following the word
try, and that the code following the word catch is used only in exceptional
circumstances. We have thus separated the normal case from the exceptional
case. In this toy example, this separation does not really buy us too much, but
in other situations it will prove to be very helpful. Let’s look at the details.

The basic way of handling exceptions in C++ consists of the try-throw-
catch threesome. A try block has the syntax

try
{
 Some_Code
}

This try block contains the code for the basic algorithm that tells the
computer what to do when everything goes smoothly. It is called a try block
because you are not 100% sure that all will go smoothly, but you want to “give
it a try.”

Now if something does go wrong, you want to throw an exception, which is a
way of indicating that something went wrong. The basic outline, when we add a
throw, is as follows:

try
{

DISPLAY 16.2 Same Thing Using Exception Handling (part 2 of 2)

Sample Dialogue 2

Enter number of donuts:

12

Enter number of glasses of milk:

0

12 donuts, and No Milk!

Go buy some milk.

End of program.

try block

16.1 Exception-Handling Basics 887

 Code_To_Try
 Possibly_Throw_An_Exception
 More_Code
}

The following is an example of a try block with a throw statement included
(copied from Display 16.2):

try
{
 cout << "Enter number of donuts:\n";
 cin >> donuts;
 cout << "Enter number of glasses of milk:\n";
 cin >> milk;

 if (milk <= 0)
 throw donuts;

 dpg = donuts/static_cast<double>(milk);
 cout << donuts << " donuts.\n"
 << milk << " glasses of milk.\n"
 << "You have " << dpg
 << " donuts for each glass of milk.\n";
}

The following statement throws the int value donuts:

throw donuts;

The value thrown, in this case donuts, is sometimes called an exception, and
the execution of a throw statement is called throwing an exception. You can
throw a value of any type. In this case an int value is thrown.

throw Statement

SYNTAX

throw Expression_for_Value_to_Be_Thrown;

When the throw statement is executed, the execution of the enclosing try
block is stopped. If the try block is followed by a suitable catch block,
then flow of control is transferred to the catch block. A throw statement
is almost always embedded in a branching statement, such as an if
statement. The value thrown can be of any type.

EXAMPLE

if (milk <= 0)
 throw donuts;

throw statement

exception
throwing

888 CHAPTER 16 / Exception Handling

As the name suggests, when something is “thrown,” something goes from
one place to another place. In C++ what goes from one place to another is the
flow of control (as well as the value thrown). When an exception is thrown,
the code in the surrounding try block stops executing and another portion of
code, known as a catch block, begins execution. This executing of the catch
block is called catching the exception or handling the exception. When an
exception is thrown, it should ultimately be handled by (caught by) some
catch block. In Display 16.2, the appropriate catch block immediately
follows the try block. We repeat the catch block here:

catch(int e)
{
 cout << e << " donuts, and No Milk!\n"
 << "Go buy some milk.\n";
}

This catch block looks very much like a function definition that has a
parameter of a type int. It is not a function definition, but in some ways, a
catch block is like a function. It is a separate piece of code that is executed
when your program encounters (and executes) the following (within the
preceding try block):

throw Some_int;

So, this throw statement is similar to a function call, but instead of calling
a function, it calls the catch block and says to execute the code in the catch
block. A catch block is often referred to as an exception handler, which is a
term that suggests that a catch block has a function-like nature.

What is that identifier e in the following line from a catch block?

catch(int e)

That identifier e looks like a parameter, and acts very much like a parameter.
So, we will call this e the catch-block parameter. (But remember, this does
not mean that the catch block is a function.) The catch-block parameter does
two things:

1. The catch-block parameter is preceded by a type name that specifies what
kind of thrown value the catch block can catch.

2. The catch-block parameter gives you a name for the thrown value that is
caught, so you can write code in the catch block that does things with the
thrown value that is caught.

We will discuss these two functions of the catch-block parameter in reverse
order. In this subsection, we will discuss using the catch-block parameter as a
name for the value that was thrown and is caught. In the subsection entitled
“Multiple Throws and Catches,” later in this chapter, we will discuss which
catch block (which exception handler) will process a value that is thrown. Our

catch block

exception
handler

catch-block
parameter

16.1 Exception-Handling Basics 889

current example has only one catch block. A common name for a catch-block
parameter is e, but you can use any legal identifier in place of e.

Let’s see how the catch block in Display 16.2 works. When a value is
thrown, execution of the code in the try block ends and control passes to the
catch block (or blocks) that are placed right after the try block. The catch
block from Display 16.2 is reproduced here:

catch(int e)
{
 cout << e << " donuts, and No Milk!\n"
 << "Go buy some milk.\n";
}

When a value is thrown, the thrown value must be of type int in order for this
particular catch block to apply. In Display 16.2, the value thrown is given by
the variable donuts, and since donuts is of type int, this catch block can catch
the value thrown.

Suppose the value of donuts is 12 and the value of milk is 0, as in the
second sample dialogue in Display 16.2. Since the value of milk is not
positive, the throw statement within the if statement is executed. In that case
the value of the variable donuts is thrown. When the catch block in Display
16.2 catches the value of donuts, the value of donuts is plugged in for the
catch-block parameter e and the code in the catch block is executed,
producing the following output:

12 donuts, and No Milk!
Go buy some milk.

If the value of donuts is positive, the throw statement is not executed. In
this case the entire try block is executed. After the last statement in the try
block is executed, the statement after the catch block is executed. Note that if
no exception is thrown, then the catch block is ignored.

This makes it sound like a try-throw-catch setup is equivalent to an if-
else statement. It almost is equivalent, except for the value thrown. A try-
throw-catch setup is similar to an if-else statement with the added ability to
send a message to one of the branches. This does not sound much different from
an if-else statement, but it turns out to be a big difference in practice.

To summarize in a more formal tone, a try block contains some code that
we are assuming includes a throw statement. The throw statement is normally
executed only in exceptional circumstances, but when it is executed, it throws
a value of some type. When an exception (a value like donuts in Display 16.2)
is thrown, that is the end of the try block. All the rest of the code in the try
block is ignored and control passes to a suitable catch block. A catch block
applies only to an immediately preceding try block. If the exception is
thrown, then that exception object is plugged in for the catch-block parame-
ter, and the statements in the catch block are executed. For example, if you
look at the dialogues in Display 16.2, you will see that as soon as the user

890 CHAPTER 16 / Exception Handling

enters a nonpositive number, the try block stops and the catch block is
executed. For now, we will assume that every try block is followed by an
appropriate catch block. We will later discuss what happens when there is
no appropriate catch block.

Next, we summarize what happens when no exception is thrown in a try
block. If no exception (no value) is thrown in the try block, then after the
try block is completed, program execution continues with the code after the
catch block. In other words, if no exception is thrown, then the catch block is
ignored. Most of the time when the program is executed, the throw statement
will not be executed, and so in most cases, the code in the try block will run to
completion and the code in the catch block will be ignored completely.

catch-Block Parameter

The catch-block parameter is an identifier in the heading of a catch block
that serves as a placeholder for an exception (a value) that might be
thrown. When a (suitable) value is thrown in the preceding try block, that
value is plugged in for the catch-block parameter. You can use any legal
(nonreserved word) identifier for a catch-block parameter.

EXAMPLE

catch(int e)
{
 cout << e << " donuts, and No Milk!\n"
 << "Go buy some milk.\n";
}

e is the catch-block parameter.

try-throw-catch

This is the basic mechanism for throwing and catching exceptions. The
throw statement throws the exception (a value). The catch block catches
the exception (the value). When an exception is thrown, the try block
ends and then the code in the catch block is executed. After the catch
block is completed, the code after the catch block(s) is executed
(provided the catch block has not ended the program or performed
some other special action).

If no exception is thrown in the try block, then after the try block is
completed, program execution continues with the code after the catch
block(s). (In other words, if no exception is thrown, then the catch block(s)
are ignored.)

16.1 Exception-Handling Basics 891

SELF -TEST EXERC ISES

1. What output is produced by the following code?

int wait_time = 46;

try
{
 cout << "Try block entered.\n";
 if (wait_time > 30)
 throw wait_time;
 cout << "Leaving try block.\n";
}

catch(int thrown_value)
{
 cout << "Exception thrown with\n"
 << "wait_time equal to " << thrown_value << endl;
}
cout << "After catch block." << endl;

2. What would be the output produced by the code in Self-Test Exercise 1 if
we make the following change? Change the line

int wait_time = 46;

SYNTAX

try
{
 Some_Statements

 < Either some code with a throw statement or
 a function invocation that might throw an exception>

 Some_More_Statements
 }
 catch(Type_Name e)
 {

 < Code to be performed if a value of the
 catch-block parameter type is thrown in the try block>

 }

EXAMPLE

See Display 16.2.

892 CHAPTER 16 / Exception Handling

to

int wait_time = 12;

3. In the code given in Self-Test Exercise 1, what is the throw statement?

4. What happens when a throw statement is executed? This is a general ques-
tion. Tell what happens in general, not simply what happens in the code
in Self-Test Question 1 or some other sample code.

5. In the code given in Self-Test Exercise 1, what is the try block?

6. In the code given in Self-Test Exercise 1, what is the catch block?

7. In the code given in Self-Test Exercise 1, what is the catch-block parameter?

Defining Your Own Exception Classes

A throw statement can throw a value of any type. A common thing to do is to
define a class whose objects can carry the precise kind of information you
want thrown to the catch block. An even more important reason for defining
a specialized exception class is so that you can have a different type to identify
each possible kind of exceptional situation.

An exception class is just a class. What makes it an exception class is how
it’s used. Still, it pays to take some care in choosing an exception class’s name
and other details.

Display 16.3 contains an example of a program with a programmer-
defined exception class. This is just a toy program to illustrate some C++
details about exception handling. It uses much too much machinery for such
a simple task, but it is an otherwise uncluttered example of some C++ details.

Notice the throw statement, reproduced in what follows:

throw NoMilk(donuts);

The part NoMilk(donuts) is an invocation of a constructor for the class NoMilk.
The constructor takes one int argument (in this case donuts) and creates an
object of the class NoMilk. That object is then “thrown.”

Multiple Throws and Catches

A try block can potentially throw any number of exception values, and they
can be of differing types. In any one execution of the try block, only one
exception will be thrown (since a thrown exception ends the execution of the
try block), but different types of exception values can be thrown on different
occasions when the try block is executed. Each catch block can only catch
values of one type, but you can catch exception values of differing types by

16.1 Exception-Handling Basics 893

DISPLAY 16.3 Defining Your Own Exception Class (part 1 of 2)

1 #include <iostream>
2 using namespace std;

3 class NoMilk
4 {
5 public:
6 NoMilk();
7 NoMilk(int how_many);
8 int get_donuts();
9 private:

10 int count;
11 };

12 int main()
13 {
14 int donuts, milk;
15 double dpg;

16 try
17 {
18 cout << "Enter number of donuts:\n";
19 cin >> donuts;
20 cout << "Enter number of glasses of milk:\n";
21 cin >> milk;

22 if (milk <= 0)
23 throw NoMilk(donuts);

24 dpg = donuts/static_cast<double>(milk);
25 cout << donuts << " donuts.\n"
26 << milk << " glasses of milk.\n"
27 << "You have " << dpg
28 << " donuts for each glass of milk.\n";
29 }
30 catch(NoMilk e)
31 {
32 cout << e.get_donuts() << " donuts, and No Milk!\n"
33 << "Go buy some milk.\n";
34 }
35 cout << "End of program.";
36 return 0;
37 }
38
39 NoMilk::NoMilk()
40 {}

(continued)

This is just a toy example to learn C++
syntax. Do not take it as an example of
good typical use of exception handling.

894 CHAPTER 16 / Exception Handling

placing more than one catch block after a try block. For example, the
program in Display 16.4 has two catch blocks after its try block.

Note that there is no parameter in the catch block for DivideByZero. If
you do not need a parameter, you can simply list the type with no parameter.
This case is discussed a bit more in the Programming Tip section entitled
“Exception Classes Can Be Trivial.”

DISPLAY 16.3 Defining Your Own Exception Class (part 2 of 2)

41 NoMilk::NoMilk(int how_many) : count(how_many)
42 {}
43
44 int NoMilk::get_donuts()
45 {
46 return count;
47 }

The sample dialogues are the
same as in Display 16.2 .

DISPLAY 16.4 Catching Multiple Exceptions (part 1 of 3)

1 #include <iostream>
2 #include <string>
3 using namespace std;
4
5 class NegativeNumber
6 {
7 public:
8 NegativeNumber();
9 NegativeNumber(string take_me_to_your_catch_block);

10 string get_message();
11 private:
12 string message;
13 };
14
15 class DivideByZero
16 {};
17
18 int main()
19 {
20 int jem_hadar, klingons;
21 double portion;
22

(continued)

Although not done here, exception classes
can have their own interface and implemen-
tation files and can be put in a namespace.

This is another toy example.

16.1 Exception-Handling Basics 895

DISPLAY 16.4 Catching Multiple Exceptions (part 2 of 3)

23 try
24 {
25 cout << "Enter number of Jem Hadar warriors:\n";
26 cin >> jem_hadar;
27 if (jem_hadar < 0)
28 throw NegativeNumber("Jem Hadar");
29
30 cout << "How many Klingon warriors do you have?\n";
31 cin >> klingons;
32 if (klingons < 0)
33 throw NegativeNumber("Klingons");
34 if (klingons != 0)
35 portion = jem_hadar/static_cast<double>(klingons);
36 else
37 throw DivideByZero();
38 cout << "Each Klingon must fight "
39 << portion << " Jem Hadar.\n";
40 }
41 catch(NegativeNumber e)
42 {
43 cout << "Cannot have a negative number of "
44 << e.get_message() << endl;
45 }
46 catch(DivideByZero)
47 {
48 cout << "Send for help.\n";
49 }
50
51 cout << "End of program.\n";
52 return 0;
53 }
54
55
56 NegativeNumber::NegativeNumber()
57 {}
58
59 NegativeNumber::NegativeNumber(string take_me_to_your_catch_block)
60 : message(take_me_to_your_catch_block)
61 {}
62
63 string NegativeNumber::get_message()
64 {
65 return message;
66 }

(continued)

896 CHAPTER 16 / Exception Handling

■ PITFALL Catch the More Specific Exception First

When catching multiple exceptions, the order of the catch blocks can be
important. When an exception value is thrown in a try block, the following
catch blocks are tried in order, and the first one that matches the type of the
exception thrown is the one that is executed.

For example, the following is a special kind of catch block that will catch
a thrown value of any type:

catch (...)
{

 <Place whatever you want in here>

}

DISPLAY 16.4 Catching Multiple Exceptions (part 3 of 3)

Sample Dialogue 1

Enter number of Jem Hadar warriors:

1000

How many Klingon warriors do you have?

500

Each Klingon must fight 2.0 Jem Hadar.

End of program

Sample Dialogue 2

Enter number of Jem Hadar warriors:

–10
Cannot have a negative number of Jem Hadar

End of program.

Sample Dialogue 3

Enter number of Jem Hadar warriors:

1000

How many Klingon warriors do you have?

0

Send for help.

End of program.

16.1 Exception-Handling Basics 897

The three dots do not stand for something omitted. You actually type in those
three dots in your program. This makes a good default catch block to place
after all other catch blocks. For example, we could add it to the catch blocks
in Display 16.4 as follows:

catch(NegativeNumber e)
{
 cout << "Cannot have a negative number of "
 << e.get_message() << endl;
}
catch(DivideByZero)
{
 cout << "Send for help.\n";
}
catch (...)
{
 cout << "Unexplained exception.\n";
}

However, it only makes sense to place this default catch block at the end of a
list of catch blocks. For example, suppose we instead used:

catch(NegativeNumber e)
{
 cout << "Cannot have a negative number of "
 << e.get_message() << endl;
}
catch (...)
{
 cout << "Unexplained exception.\n";
}
catch(DivideByZero)
{
 cout << "Send for help.\n";
}

With this second ordering, an exception (a thrown value) of type NegativeNumber
will be caught by the NegativeNumber catch block as it should be.
However, if a value of type DivideByZero were thrown, it would be caught
by the block that starts catch(...). So, the DivideByZero catch block
could never be reached. Fortunately, most compilers tell you if you make
this sort of mistake. ■

■ PROGRAMMING TIP Exception Classes Can Be Trivial

Here we reproduce the definition of the exception class DivideByZero from
Display 16.4:

class DivideByZero
{};

898 CHAPTER 16 / Exception Handling

This exception class has no member variables and no member functions
(other than the default constructor). It has nothing but its name, but that is
useful enough. Throwing an object of the class DivideByZero can activate the
appropriate catch block, as it does in Display 16.4.

When using a trivial exception class, you normally do not have anything you
can do with the exception (the thrown value) once it gets to the catch block. The
exception is just being used to get you to the catch block. Thus, you can omit the
catch-block parameter. (You can omit the catch-block parameter anytime you
do not need it, whether the exception type is trivial or not.) ■

Throwing an Exception in a Function

Sometimes it makes sense to delay handling an exception. For example, you
might have a function with code that throws an exception if there is an
attempt to divide by zero, but you may not want to catch the exception in that
function. Perhaps some programs that use that function should simply end if
the exception is thrown, and other programs that use the function should do
something else. So you would not know what to do with the exception if you
caught it inside the function. In these cases, it makes sense to not catch the
exception in the function definition, but instead to have any program (or
other code) that uses the function place the function invocation in a try block
and catch the exception in a catch block that follows that try block.

Look at the program in Display 16.5. It has a try block, but there is no
throw statement visible in the try block. The statement that does the
throwing in that program is

if (bottom == 0)
 throw DivideByZero();

This statement is not visible in the try block. However, it is in the try block
in terms of program execution, because it is in the definition of the function
safe_divide and there is an invocation of safe_divide in the try block.

Exception Specification

If a function does not catch an exception, it should at least warn programmers
that any invocation of the function might possibly throw an exception. If there
are exceptions that might be thrown, but not caught, in the function
definition, then those exception types should be listed in an exception
specification, which is illustrated by the following function declaration from
Display 16.5:

double safe_divide(int top, int bottom) throw (DivideByZero);

As illustrated in Display 16.5, the exception specification should appear in
both the function declaration and the function definition. If a function has
more than one function declaration, then all the function declarations must

exception
specification

16.1 Exception-Handling Basics 899

DISPLAY 16.5 Throwing an Exception Inside a Function (part 1 of 2)

1 #include <iostream>
2 #include <cstdlib>
3 using namespace std;
4
5 class DivideByZero
6 {};
7
8 double safe_divide(int top, int bottom) throw (DivideByZero);
9

10 int main()
11 {
12 int numerator;
13 int denominator;
14 double quotient;
15 cout << "Enter numerator:\n";
16 cin >> numerator;
17 cout << "Enter denominator:\n";
18 cin >> denominator;
19
20 try
21 {
22 quotient = safe_divide(numerator, denominator);
23 }
24 catch(DivideByZero)
25 {
26 cout << "Error: Division by zero!\n"
27 << "Program aborting.\n";
28 exit(0);
29 }
30
31 cout << numerator << "/" << denominator
32 << " = " << quotient << endl;
33
34 cout << "End of program.\n";
35 return 0;
36 }
37
38
39 double safe_divide(int top, int bottom) throw (DivideByZero)
40 {
41 if (bottom == 0)
42 throw DivideByZero();
43
44 return top/static_cast<double>(bottom);
45 }

(continued)

900 CHAPTER 16 / Exception Handling

have identical exception specifications. The exception specification for a
function is also sometimes called the throw list.

If there is more than one possible exception that can be thrown in the
function definition, then the exception types are separated by commas, as
illustrated here:

void some_function() throw (DivideByZero, OtherException);

All exception types listed in the exception specification are treated
normally. When we say the exception is treated normally, we mean it is treated
as we have described before this subsection. In particular, you can place the
function invocation in a try block followed by a catch block to catch that type
of exception, and if the function throws the exception (and does not catch it
inside the function) then the catch block following the try block will catch
the exception.

If there is no exception specification (no throw list) at all (not even an
empty one), then it is the same as if all possible exception types were listed in
the exception specification; that is, any exception that is thrown is treated
normally.

What happens when an exception is thrown in a function but is not listed
in the exception specification (and not caught inside the function)? In that
case, the program ends. In particular, notice that if an exception is thrown in
a function but is not listed in the exception specification (and not caught

DISPLAY 16.5 Throwing an Exception Inside a Function (part 2 of 2)

Sample Dialogue 1

Enter numerator:

5

Enter denominator:

10

5/10 = 0.5

End of Program.

Sample Dialogue 2

Enter numerator:

5

Enter denominator:

0

Error: Division by zero!

Program aborting.

throw list

16.1 Exception-Handling Basics 901

inside the function), then it will not be caught by any catch block, but instead
your program will end. Remember, if there is no specification list at all, not
even an empty one, then it is the same as if all exceptions were listed in the
specification list, and so throwing an exception will not end the program in
the way described in this paragraph.

Keep in mind that the exception specification is for exceptions that “get
outside” the function. If they do not get outside the function, they do not
belong in the exception specification. If they get outside the function, they
belong in the exception specification no matter where they originate. If an
exception is thrown in a try block that is inside a function definition and is
caught in a catch block inside the function definition, then its type need not
be listed in the exception specification. If a function definition includes an
invocation of another function and that other function can throw an excep-
tion that is not caught, then the type of the exception should be placed in the
exception specification.

To say that a function should not throw any exceptions that are not caught
inside the function, you use an empty exception specification like so:

void some_function() throw ();

By way of summary:

void some_function() throw (DivideByZero, OtherException);
//Exceptions of type DivideByZero or OtherException are
//treated normally. All other exceptions end the program
//if not caught in the function body.

void some_function() throw ();
//Empty exception list; all exceptions end the
//program if thrown but not caught in the function body.

void some_function();
//All exceptions of all types treated normally.

Keep in mind that an object of a derived class1 is also an object of its base
class. So, if D is a derived class of class B and B is in the exception specification,
then a thrown object of class D will be treated normally, since it is an object of
class B and B is in the exception specification. However, no automatic type
conversions are done. If double is in the exception specification, that does not
account for throwing an int value. You would need to include both int and
double in the exception specification.

One final warning: Not all compilers treat the exception specification as
they are supposed to. Some compilers essentially treat the exception specifica-
tion as a comment, and so with those compilers, the exception specification

1 If you have not yet learned about derived classes, you can safely ignore the remarks
about them.

Warning!

902 CHAPTER 16 / Exception Handling

has no effect on your code. This is another reason to place all exceptions that
might be thrown by your functions in the exception specification. This way all
compilers will treat your exceptions the same way. Of course, you could get the
same compiler consistency by not having any exception specification at all,
but then your program would not be as well documented and you would not
get the extra error checking provided by compilers that do use the exception
specification. With a compiler that does process the exception specification,
your program will terminate as soon as it throws an exception that you did not
anticipate. (Note that this is a run-time behavior, but which run-time behavior
you get depends on your compiler.)

■ PITFALL Exception Specification in Derived Classes

When you redefine or override a function definition in a derived class, it
should have the same exception specification as it had in the base class, or it
should have a exception specification whose exceptions are a subset of those
in the base class exception specification. Put another way, when you redefine
or override a function definition, you cannot add any exceptions to the
exception specification (but you can delete some exceptions if you want). This
makes sense, since an object of the derived class can be used anyplace an
object of the base class can be used, and so a redefined or overwritten function
must fit any code written for an object of the base class. ■

SELF -TEST EXERC ISES

8. What is the output produced by the following program?

#include <iostream>
using namespace std;

void sample_function(double test) throw (int);

int main()
{
 try
 {
 cout << "Trying.\n";
 sample_function(98.6);
 cout << "Trying after call.\n";
 }
 catch(int)
 {
 cout << "Catching.\n";

16.2 Programming Techniques for Exception Handling 903

 }

 cout << "End of program.\n";
 return 0;
}
void sample_function(double test) throw (int)
{
 cout << "Starting sample_function.\n";
 if (test < 100)
 throw 42;
}

9. What is the output produced by the program in Self-Test Exercise 8 if the
following change were made to the program? Change

sample_function(98.6);

in the try block to

sample_function(212);

16.2 PROGRAMMING TECHNIQUES FOR
EXCEPTION HANDLING

Only use this in exceptional circumstances.

WARREN PEACE, The Lieutenant’s Tools

So far we have shown you lots of code that explains how exception handling
works in C++, but we have not yet shown even one example of a program that
makes good and realistic use of exception handling. However, now that you
know the mechanics of exception handling, this section can go on to explain
exception handling techniques.

When to Throw an Exception

We have given some very simple code in order to illustrate the basic concepts
of exception handling. However, our examples were unrealistically simple. A
more complicated but better guideline is to separate throwing an exception
and catching the exception into separate functions. In most cases, you should
include any throw statement within a function definition, list the exception in
the exception specification for that function, and place the catch clause in a
different function. Thus, the preferred use of the try-throw-catch triad is as
illustrated here:

void functionA() throw (MyException)
{

904 CHAPTER 16 / Exception Handling

 .
 .
 .
 throw MyException(<Maybe an argument>);
 .
 .
 .
}

Then, in some other function (perhaps even some other function in some other
file), you have

void functionB()
{
 .
 .
 .
 try
 {
 .
 .
 .
 functionA();
 .
 .
 .
 }
 catch(MyException e)
 {

<Handle exception.>

 }
 .
 .
 .
}

Moreover, even this kind of use of a throw statement should be reserved
for cases in which it is unavoidable. If you can easily handle a problem in
some other way, do not throw an exception. Reserve throw statements for
situations in which the way the exceptional condition is handled depends on
how and where the function is used. If the way that the exceptional condition
is handled depends on how and where the function is invoked, then the best
thing to do is to let the programmer who invokes the function handle the
exception. In all other situations, it is almost always preferable to avoid
throwing exceptions.

16.2 Programming Techniques for Exception Handling 905

■ PITFALL Uncaught Exceptions

Every exception that is thrown by your code should be caught someplace in
your code. If an exception is thrown but not caught anywhere, your program
will end. ■

■ PITFALL Nested try-catch Blocks

You can place a try block and following catch blocks inside a larger try block
or inside a larger catch block. In rare cases this may be useful, but if you are
tempted to do this, you should suspect that there is a nicer way to organize your
program. It is almost always better to place the inner try-catch blocks inside
a function definition and place an invocation of the function in the outer try
or catch block (or maybe just eliminate one or more try blocks completely).

If you place a try block and following catch blocks inside a larger try
block, and an exception is thrown in the inner try block but not caught in the
inner try-catch blocks, then the exception is thrown to the outer try block for
processing and might be caught there. ■

■ PITFALL Overuse of Exceptions

Exceptions allow you to write programs whose flow of control is so involved
that it is almost impossible to understand the program. Moreover, this is not
hard to do. Throwing an exception allows you to transfer flow of control from
anyplace in your program to almost anyplace else in your program. In the early
days of programming, this sort of unrestricted flow of control was allowed via
a construct known as a goto. Programming experts now agree that such
unrestricted flow of control is very poor programming style. Exceptions allow
you to revert to these bad old days of unrestricted flow of control. Exceptions
should be used sparingly and only in certain ways. A good rule is the

When to Throw an Exception

For the most part, throw statements should be used within functions and
listed in a exception specification for the function. Moreover, they should
be reserved for situations in which the way the exceptional condition is
handled depends on how and where the function is used. If the way that
the exceptional condition is handled depends on how and where the
function is invoked, then the best thing to do is to let the programmer
who invokes the function handle the exception. In all other situations, it is
almost always preferable to avoid throwing an exception.

906 CHAPTER 16 / Exception Handling

following: If you are tempted to include a throw statement, then think about
how you might write your program or class definition without this throw
statement. If you think of an alternative that produces reasonable code, then
you probably do not want to include the throw statement. ■

Exception Class Hierarchies

It can be very useful to define a hierarchy of exception classes. For example, you
might have an ArithmeticError exception class and then define an exception
class DivideByZeroError that is a derived class of ArithmeticError. Since a
DivideByZeroError is an ArithmeticError, every catch block for an Arithmet-
icError will catch a DivideByZeroError. If you list ArithmeticError in an
exception specification, then you have, in effect, also added DivideByZeroEr-
ror to the exception specification, whether or not you list DivideByZeroError
by name in the exception specification.

Testing for Available Memory

In Chapter 13, we created new dynamic variables with code such as the
following:

struct Node
{
 int data;

Node *link;
};
typedef Node* NodePtr;
 ...
NodePtr pointer = new Node;

This works fine as long as there is sufficient memory available to create the
new node. But, what happens if there is not sufficient memory? If there is not
sufficient memory to create the node, then a bad_alloc exception is thrown.
The type bad_alloc is part of the C++ language. You do not need to define it.

Since new will throw a bad_alloc exception when there is not enough
memory to create the node, you can check for running out of memory as
follows:

try
{
 NodePtr pointer = new Node;
}
catch (bad_alloc)
{
 cout << "Ran out of memory!";
}

Video Note
The STL exception
class

Answers to Self-Test Exercises 907

Of course, you can do other things besides simply giving a warning message, but
the details of what you do will depend on your particular programming task.

Rethrowing an Exception

It is legal to throw an exception within a catch block. In rare cases you may
want to catch an exception and then, depending on the details, decide to
throw the same or a different exception for handling farther up the chain of
exception handling blocks.

SELF -TEST EXERC ISES

10. What happens when an exception is never caught?

11. Can you nest a try block inside another try block?

CHAPTER SUMMARY

■ Exception handling allows you to design and code the normal case for your
program separately from the code that handles exceptional situations.

■ An exception can be thrown in a try block. Alternatively, an exception can
be thrown in a function definition that does not include a try block (or
does not include a catch block to catch that type of exception). In this case,
an invocation of the function can be placed in a try block.

■ An exception is caught in a catch block.

■ A try block may be followed by more than one catch block. In this case,
always list the catch block for a more specific exception class before the
catch block for a more general exception class.

■ Do not overuse exceptions.

Answers to Self-Test Exercises

1. Try block entered.
Exception thrown with
wait_time equal to 46
After catch block.

2. Try block entered.
Leaving try block.
After catch block.

908 CHAPTER 16 / Exception Handling

3. throw wait_time;

Note that the following is an if statement, not a throw statement, even
though it contains a throw statement:

if (wait_time > 30)
 throw wait_time;

4. When a throw statement is executed, that is the end of the enclosing try
block. No other statements in the try block are executed, and control
passes to the following catch block(s). When we say control passes to the
following catch block, we mean that the value thrown is plugged in for
the catch-block parameter (if any), and the code in the catch block is
executed.

5. try
{
 cout << "Try block entered.";
 if (wait_time > 30)
 throw wait_time);
 cout << "Leaving try block.";
}

6. catch(int thrown_value)
{
 cout << "Exception thrown with\n”
 << “wait_time equal to" << thrown_value << endl;

}

7. thrown_value is the catch-block parameter.

8. Trying.
Starting sample_function.
Catching.
End of program.

9. Trying.
Starting sample_function.
Trying after call.
End of program.

10. If an exception is not caught anywhere, then your program ends.

11. Yes, you can have a try block and corresponding catch blocks inside
another larger try block. However, it would probably be better to place
the inner try and catch blocks in a function definition and place an invo-
cation of the function in the larger try block.

Programming Projects 909

PROGRAMMING PROJECTS

1. Write a program that converts 24-hour time to 12-hour time. The follow-
ing is a sample dialogue:

Enter time in 24-hour notation:
13:07
That is the same as
1:07 PM
Again?(y/n)
y
Enter time in 24-hour notation:
10:15
That is the same as
10:15 AM
Again?(y/n)
y
Enter time in 24-hour notation:
10:65
There is no such time as 10:65
Try Again:
Enter time in 24-hour notation:
16:05
That is the same as
4:05 PM
Again?(y/n)
n
End of program

You will define an exception class called TimeFormatMistake. If the user
enters an illegal time, like 10:65 or even gibberish like 8&*68, then your
program will throw and catch a TimeFormatMistake.

2. Write a program that converts dates from numerical month/day format to
alphabetic month/day (for example 1/31 or 01/31 corresponds to January 31).
The dialogue should be similar to that in Programming Project 1.
You will define two exception classes, one called MonthError and another
called DayError. If the user enters anything other than a legal month
number (integers from 1 to 12), then your program will throw and catch a
MonthError. Similarly, if the user enters anything other than a valid day
number (integers from 1 to either 29, 30, or 31, depending on the month),
then your program will throw and catch a DayError. To keep things sim-
ple, always allow 29 days for February.

3. Write a program that inputs numeric values from 1 through 10 and outputs
a textual histogram of the values using *’s to count the number of occur-
rences of each value. The program should first ask the user how many

Video Note
Solution to
Programming
Project 16.3

910 CHAPTER 16 / Exception Handling

numbers to enter. If the user enters a value that does not consist of all digits
or a number outside the range 1 to 10, then an exception should be
caught. Hint: Input each number as a string, and then scan through the
string to see if it contains all digits. If not, throw an exception. To convert
a string str to an integer, use the following code:

atoi(str.c_str());

The atoi function is described in Chapter 8. Here is a sample dialogue:

How many numbers to enter?
5
Enter number 1L
one
Please enter your number using digits only. Try again.
Enter number 1:
9
Enter number 2:
3
Enter number 3:
3
Enter number 4:
33
The number must be between 1-10. Try again.
Enter number 4:
3
Enter number 5:
7

Here is the histogram of values:
1 :
2 :
3 : ***
4 :
5 :
6 :
7 : *
8 :
9 : *
10:

4. Define a class named CheckedArray. The objects of this class are like regu-
lar arrays but have range checking. If a is an object of the class CheckedArray
and i is an illegal index then use of a[i] will cause your program to throw
an exception (an object) of the class ArrayOutOfRangeError. Defining the
class ArrayOutOfRangeError is part of this project. Note that, among

Programming Projects 911

other things, your CheckedArray class must have a suitable overloading of
the [] operators as discussed in Appendix 6.

5. Stacks were introduced in Chapters 13 and 14. Define a stack class for stor-
ing a stack of elements of type char. A stack object should of fixed size; the
size is a parameter to the constructor that creates the stack object. When
used in a program an object of the stack class will throw exceptions in the
following situations:

■ Throw a StackOverflowException if the application program tries to
push data onto a stack that is already full.

■ Throw a StackEmptyException if the application program tries to pop
data off an empty stack.

Defining the classes StackOverflowException and StackEmptyException
is part of this project. Write a suitable test program.

6. (Based on a problem in Stroustrup, The C++ Programming Language, 3rd edi-
tion) Write a program consisting of functions calling one another to a call-
ing depth of 10. Give each function an argument that specifies the level at
which it is to throw an exception. The main function prompts for an
receives input that specifies the calling depth (level) at which an exception
will be thrown. The main function then calls the first function. The main
function catches the exception and displays the level at which the exception
was thrown. Don't forget the case where the depth is 0, where main must
both throw and catch the exception.

Hints: You could use 10 different functions or 10 copies of the same
function that call one another, but don’t. Rather, for compact code, use
a main function that calls another function that calls itself recursively.
Suppose you do this; is the restriction on the calling depth necessary?
This can be done without giving the function any additional arguments,
but if you cannot do it that way, try adding an additional argument to
the function.

7. Programming Project 7 in Chapter 9 described a technique to emulate a
two-dimensional array with wrapper functions around a one-dimensional
array. If the indices of a desired entry in the two-dimensional array
were invalid (e.g., out of range), you were asked to print an error message
and exit the program. Modify this program (or do it for the first time)
to instead throw an ArrayOutOfRangeError exception if either the row
or column indices are invalid. Your program should define the
ArrayOutOfRangeError exception class.

This page intentionally left blank

17 Templates

17.1 TEMPLATES FOR ALGORITHM
ABSTRACTION 914
Templates for Functions 915
Pitfall: Compiler Complications 919
Programming Example: A Generic Sorting

Function 921
Programming Tip: How to Define Templates 925
Pitfall: Using a Template with an Inappropriate

Type 926

17.2 TEMPLATES FOR DATA
ABSTRACTION 927
Syntax for Class Templates 927
Programming Example: An Array Class 930

Chapter Summary 936
Answers to Self-Test Exercises 936
Programming Projects 939

914

All men are mortal.
Aristotle is a man.
Therefore, Aristotle is mortal.
All X’s are Y.
Z is an X.
Therefore, Z is Y.
All cats are mischievous.
Garfield is a cat.
Therefore, Garfield is mischievous.
A SHORT LESSON ON SYLLOGISMS

INTRODUCTION
This chapter discusses C++ templates. Templates allow you to define functions
and classes that have parameters for type names. This will allow you to design
functions that can be used with arguments of different types and to define
classes that are much more general than those you have seen before this chapter.

PREREQUISITES
Section 17.1 uses material from Chapters 2 through 5 and Sections 7.1, 7.2,
and 7.3 of Chapter 7. It does not use any material on classes. Section 17.2 uses
material from Chapters 2 through 7 and 10 through 12.

17.1 TEMPLATES FOR ALGORITHM ABSTRACTION

Many of our previous C++ function definitions have an underlying algorithm
that is much more general than the algorithm we gave in the function
definition. For example, consider the function swap_values, which we first
discussed in Chapter 5. For reference, we now repeat the function definition:

void swap_values(int& variable1, int& variable2)
{
 int temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

Notice that the function swap_values applies only to variables of type int.
Yet the algorithm given in the function body could just as well be used to swap
the values in two variables of type char. If we want to also use the function

17.1 Templates for Algorithm Abstraction 915

swap_values with variables of type char, we can overload the function name
swap_values by adding the following definition:

void swap_values(char& variable1, char& variable2)
{

char temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

But there is something inefficient and unsatisfying about these two
definitions of the swap_values function: They are almost identical. The only
difference is that one definition uses the type int in three places and the other
uses the type char in the same three places. Proceeding in this way, if we
wanted to have the function swap_values apply to pairs of variables of type
double, we would have to write a third almost identical function definition. If
we wanted to apply swap_values to still more types, the number of almost
identical function definitions would be even larger. This would require a good
deal of typing and would clutter up our code with lots of definitions that look
identical. We should be able to say that the following function definition
applies to variables of any type:

void swap_values(Type_Of_The_Variables& variable1,
 Type_Of_The_Variables& variable2)
{
 Type_Of_The_Variables temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

As we will see, something like this is possible. We can define one function that
applies to all types of variables, although the syntax is a bit different from what
we have shown above. That syntax is described in the next subsection.

Templates for Functions

Display 17.1 shows a C++ template for the function swap_values. This
function template allows you to swap the values of any two variables, of any
type, as long as the two variables have the same type. The definition and the
function declaration begin with the line

template<class T>

This is often called the template prefix, and it tells the compiler that the
definition or function declaration that follows is a template and that T is a

template prefix
template

916 CHAPTER 17 / Templates

type parameter. In this context the word class actually means type.1 As we
will see, the type parameter T can be replaced by any type, whether the type is
a class or not. Within the body of the function definition, the type parameter
T is used just like any other type.

The function template definition is, in effect, a large collection of function
definitions. For the function template for swap_values shown in Display 17.1,
there is, in effect, one function definition for each possible type name. Each of
these definitions is obtained by replacing the type parameter T with a type
name. For example, the function definition that follows is obtained by
replacing T with the type name double:

void swap_values(double& variable1, double& variable2)
{

double temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

Another definition for swap_values is obtained by replacing the type
parameter T in the function template with the type name int. Yet another
definition is obtained by replacing the type parameter T with char. The one
function template shown in Display 17.1 overloads the function name
swap_values so that there is a slightly different function definition for every
possible type.

The compiler will not literally produce definitions for every possible type
for the function name swap_values, but it will behave exactly as if it had
produced all those function definitions. A separate definition will be pro-
duced for each different type for which you use the template, but not for any
types you do not use. Only one definition is generated for a single type
regardless of the number of times you use the template for that type. Notice
that the function swap_values is called twice in Display 17.1: One time the
arguments are of type int and the other time the arguments are of type char.

Consider the following function call from Display 17.1:

swap_values(integer1, integer2);

When the C++ compiler gets to this function call, it notices the types of the
arguments—in this case int—and then it uses the template to produce a

1 In fact, the ANSI standard provides that you may use the keyword typename instead of
class in the template prefix. Although we agree that using typename makes more sense
than using class, the use of class is a firmly established tradition, and so we use class
for the sake of consistency with most other programmers and authors.

type parameter

A template
overloads the

function name

17.1 Templates for Algorithm Abstraction 917

function definition with the type parameter T replaced with the type name
int. Similarly, when the compiler sees the function call

swap_values(symbol1, symbol2);

DISPLAY 17.1 A Function Template

1 //Program to demonstrate a function template.
2 #include <iostream>
3 using namespace std;

4 //Interchanges the values of variable1 and variable2.
5 template<class T>
6 void swap_values(T& variable1, T& variable2)
7 {
8 T temp;
9

10 temp = variable1;
11 variable1 = variable2;
12 variable2 = temp;
13 }

14 int main()
15 {
16 int integer1 = 1, integer2 = 2;
17 cout << "Original integer values are "
18 << integer1 << " " << integer2 << endl;
19 swap_values(integer1, integer2);
20 cout << "Swapped integer values are "
21 << integer1 << " " << integer2 << endl;

22 char symbol1 = 'A', symbol2 = 'B';
23 cout << "Original character values are "
24 << symbol1 << " " << symbol2 << endl;
25 swap_values(symbol1, symbol2);
26 cout << "Swapped character values are "
27 << symbol1 << " " << symbol2 << endl;

28 return 0;
29 }

Output

Original integer values are 1 2

Swapped integer values are 2 1

Original character values are A B

Swapped character values are B A

918 CHAPTER 17 / Templates

it notices the types of the arguments—in this case char—and then it uses the
template to produce a function definition with the type parameter T replaced
with the type name char.

Notice that you need not do anything special when you call a function
that is defined with a function template; you call it just as you would any other
function. The compiler does all the work of producing the function definition
from the function template.

Notice that in Display 17.1 we place the function template definition before
the main part of the program, and we used no template function declaration. A
function template may have a function declaration, just like an ordinary
function. You may (or may not) be able to place the function declaration and
definition for a function template in the same locations that you place
function declarations and definitions for ordinary functions. However, many
compilers do not support template function declarations and do not support
separate compilation of template functions. When these are supported, the
details can be messy and can vary from one compiler to another. Your safest
strategy is to not use template function declarations and to be sure the function
template definition appears in the same file in which it is used and appears
before the function template is used.

We said that a function template definition should appear in the same file
as the file that uses the template function (that is, the same file as the file that
has an invocation of the template function). However, the function template
definition can appear via a #include directive. You can give the function
template definition in one file, and then #include that file in a file that uses the
template function. That is the cleanest and safest general strategy. However, even
that may not work on some compilers. If it does not work, consult a local expert.

Although we will not be using template function declarations in our code,
we will describe them and give examples of them for the benefit of readers
whose compilers support the use of these function declarations.

In the function template in Display 17.1, we used the letter T as the
parameter for the type. This is traditional, but is not required by the C++
language. The type parameter can be any identifier (other than a keyword). T
is a good name for the type parameter, but sometimes other names may work
better. For example, the function template for swap_values given in Display
17.1 is equivalent to the following:

template<class VariableType>
void swap_values(VariableType& variable1,
 VariableType& variable2)
{
 VariableType temp;

 temp = variable1;
 variable1 = variable2;
 variable2 = temp;
}

calling a
function

template

17.1 Templates for Algorithm Abstraction 919

It is possible to have function templates that have more than one type
parameter. For example, a function template with two type parameters named
T1 and T2 would begin as follows:

template<class T1, class T2>

However, most function templates require only one type parameter. You
cannot have unused template parameters; that is, each template parameter
must be used in your template function.

■ PITFALL Compiler Complications

Many compilers do not allow separate compilation of templates, so you may
need to include your template definition with your code that uses it. As usual, at
least the function declaration must precede any use of the template function.

Your safest strategy is not to use template function declarations, and to be
sure the function template definition appears in the same file in which it is
used and appears before the function template is called. However, the
function template definition can appear via a #include directive. You can give
the function template definition in one file and then #include that file in a
file that uses the template function.

Some C++ compilers have additional special requirements for using tem-
plates. If you have trouble compiling your templates, check your manuals or check
with a local expert. You may need to set special options or rearrange the way you
order the template definitions and the other items in your files. ■

SELF -TEST EXERC ISES

1. Write a function template named maximum. The function takes two values of the
same type as its arguments and returns the larger of the two arguments (or
either value if they are equal). Give both the function declaration and the func-
tion definition for the template. You will use the operator < in your definition.
Therefore, this function template will apply only to types for which < is defined.
Write a comment for the function declaration that explains this restriction.

2. We have used three kinds of absolute value function: abs, labs, and fabs.
These functions differ only in the type of their argument. It might be better to
have a function template for the absolute value function. Give a function
template for an absolute value function called absolute. The template will
apply only to types for which < is defined, for which the unary negation oper-
ator is defined, and for which the constant 0 can be used in a comparison
with a value of that type. Thus, the function absolute can be called with any
of the number types, such as int, long, and double. Give both the function
declaration and the function definition for the template.

more than one
type parameter

920 CHAPTER 17 / Templates

3. Define or characterize the template facility for C++.

4. In the template prefix

template <class T>

what kind of variable is the parameter T?

Function Template

The function definition and the function declaration for a function
template are each prefaced with the following:

template<class Type_Parameter>

The function declaration (if used) and definition are the same as any
ordinary function declaration and definition, except that the
Type_Parameter can be used in place of a type.

For example, the following is a function declaration for a function
template:

template<class T>
void show_stuff(int stuff1, T stuff2, T stuff3);

The definition for this function template might be as follows:

template<class T>
void show_stuff(int stuff1, T stuff2, T stuff3)
{
 cout << stuff1 << endl
 << stuff2 << endl
 << stuff3 << endl;
}

The function template given in this example is equivalent to having
one function declaration and one function definition for each possible
type name. The type name is substituted for the type parameter (which is
T in the example above). For instance, consider the following function call:

show_stuff(2, 3.3, 4.4);

When this function call is executed, the compiler uses the function
definition obtained by replacing T with the type name double. A
separate definition will be produced for each different type for which you
use the template, but not for any types you do not use. Only one definition
is generated for a specific type regardless of the number of times you use
the template.

17.1 Templates for Algorithm Abstraction 921

a. T must be a class.

b. T must not be a class.

c. T can be only types built into the C++ language.

d. T can be any type, whether built into C++ or defined by the
programmer.

■ PROGRAMMING EXAMPLE A Generic Sorting Function

In Chapter 7 we gave a simple sorting algorithm to sort an array of values of
type int. The algorithm was realized in C++ code as the function sort, which
we gave in Display 7.12. Here we repeat the definition of this function sort:

void sort(int a[], int number_used)
{
 int index_of_next_smallest;
 for (int index = 0; index < number_used − 1; index++)
 {//Place the correct value in a[index]:
 index_of_next_smallest =

index_of_smallest(a, index, number_used);
 swap_values(a[index], a[index_of_next_smallest]);
 //a[0] <= a[1] <=...<= a[index] are the smallest of
 //the original array elements. The rest of the
 //elements are in the remaining positions.
 }
}

If you study this definition of the function sort, you will see that the base
type of the array is never used in any significant way. If we replace the base
type of the array in the function header with the type double, then we would
obtain a sorting function that applies to arrays of values of type double. Of

Algorithm Abstraction

As we saw in our discussion of the swap_values function, there is a very
general algorithm for interchanging the value of two variables, and this
more general algorithm applies to variables of any type. Using a function
template, we were able to express this more general algorithm in C++. This
is a very simple example of algorithm abstraction. When we say we are
using algorithm abstraction, we mean that we are expressing our
algorithms in a very general way so that we can ignore incidental detail
and concentrate on the substantive part of the algorithm. Function
templates are one feature of C++ that supports algorithm abstraction.

922 CHAPTER 17 / Templates

course, we also must adjust the helping functions so they apply to arrays of
elements of type double. So let’s consider the helping functions that are called
inside the body of the function sort. The two helping functions are
swap_values and index_of_smallest.

We already saw that swap_values can apply to variables of any type,
provided we define it as a function template (as in Display 17.1). Let’s see if
index_of_smallest depends in any significant way on the base type of the
array being sorted. The definition of index_of_smallest is repeated next so
you can study its details.

int index_of_smallest(const int a[], int start_index,
 int number_used)
{
 int min = a[start_index];
 int index_of_min = start_index;
 for (int index = start_index + 1;
 index < number_used; index++)
 if (a[index] < min)
 {
 min = a[index];
 index_of_min = index;
 //min is the smallest of a[start_index] through
 //a[index]
 }

 return index_of_min;
}

The function index_of_smallest also does not depend in any significant
way on the base type of the array. If we replaced the two highlighted instances
of the type int with the type double, then we will have changed the function
index_of_smallest so that it applies to arrays whose base type is double.

To change the function sort so that it can be used to sort arrays with the
base type double, we only needed to replace a few instances of the type name
int with the type name double. Moreover, there is nothing special about
the type double. We can do a similar replacement for many other types. The
only thing we need to know about the type is that the operator < is defined for
that type. This is the perfect situation for function templates. If we replace a few
instances of the type name int (in the functions sort and index_of_smallest)
with a type parameter, then the function sort can sort an array of values of any
type provided that the values of that type can be compared using the < operator.
In Display 17.2 we have written just such a function template.

Notice that the function template sort shown in Display 17.2 can be used
with arrays of values that are not numbers. In the demonstration program in
Display 17.3, the function template sort is called to sort an array of characters.
Characters can be compared using the < operator. Although the exact meaning
of the < operator applied to character values may vary somewhat from one

helping
functions

17.1 Templates for Algorithm Abstraction 923

implementation to another, some things are always true about how < orders
the letters of the alphabet. When applied to two uppercase letters, the operator
< tests to see if the first comes before the second in alphabetic order. Also,
when applied to two lowercase letters, the operator < tests to see if the first
comes before the second in alphabetic order. When you mix uppercase and
lowercase letters, the situation is not so well behaved, but the program shown
in Display 17.3 deals only with uppercase letters. In that program an array of

DISPLAY 17.2 A Generic Sorting Function

1 // This is file sortfunc.cpp

2 template<class T>
3 void swap_values(T& variable1, T& variable2)

 <The rest of the definition of swap_values is given in Display 17.1.>
4
5 template<class BaseType>
6 int index_of_smallest(const BaseType a[], int start_index, int number_used)
7 {
8 BaseType min = a[start_index];
9 int index_of_min = start_index;

10
11 for (int index = start_index + 1; index < number_used; index++)
12 if (a[index] < min)
13 {
14 min = a[index];
15 index_of_min = index;
16 //min is the smallest of a[start_index] through a[index]
17 }
18
19 return index_of_min;
20 }
21
22 template<class BaseType>
23 void sort(BaseType a[], int number_used)
24 {
25 int index_of_next_smallest;
26 for(int index = 0; index < number_used - 1; index++)
27 {//Place the correct value in a[index]:
28 index_of_next_smallest =
29 index_of_smallest(a, index, number_used);
30 swap_values(a[index], a[index_of_next_smallest]);
31 //a[0] <= a[1] <=...<= a[index] are the smallest of the original array
32 //elements. The rest of the elements are in the remaining positions.
33 }
34 }

924 CHAPTER 17 / Templates

DISPLAY 17.3 Using a Generic Sorting Function (part 1 of 2)

1 //Demonstrates a generic sorting function.
2 #include <iostream>
3 using namespace std;
4
5 //The file sortfunc.cpp defines the following function:
6 //template<class BaseType>
7 //void sort(BaseType a[], int number_used);
8 //Precondition: number_used <= declared size of the array a.
9 //The array elements a[0] through a[number_used - 1] have values.

10 //Postcondition: The values of a[0] through a[number_used - 1] have
11 //been rearranged so that a[0] <= a[1] <= ... <= a[number_used - 1].
12
13 #include "sortfunc.cpp"
14
15 int main()
16 {
17 int i;
18 int a[10] = {9, 8, 7, 6, 5, 1, 2, 3, 0, 4};
19 cout << "Unsorted integers:\n";
20 for (i = 0; i < 10; i++)
21 cout << a[i] << " ";
22 cout << endl;
23 sort(a, 10);
24 cout << "In sorted order the integers are:\n";
25 for (i = 0; i < 10; i++)
26 cout << a[i] << " ";
27 cout << endl;

28 double b[5] = {5.5, 4.4, 1.1, 3.3, 2.2};
29 cout << "Unsorted doubles:\n";
30 for (i = 0; i < 5; i++)
31 cout << b[i] << " ";
32 cout << endl;
33 sort(b, 5);
34 cout << "In sorted order the doubles are:\n";
35 for (i = 0; i < 5; i++)
36 cout << b[i] << " ";
37 cout << endl;

38 char c[7] = {'G', 'E', 'N', 'E', 'R', 'I', 'C'};
39 cout << "Unsorted characters:\n";
40 for (i = 0; i < 7; i++)
41 cout << c[i] << " ";
42 cout << endl;

(continued)

Many compilers will allow this function
declaration to appear as a function
declaration and not merely as a com-
ment. However, including the function
declaration is not needed, since the
definition of the function is in the file
sortfunc.cpp, and so the definition
effectively appears before main.

17.1 Templates for Algorithm Abstraction 925

uppercase letters is sorted into alphabetical order with a call to the function
template sort. (The function template sort will even sort an array of objects
of a class that you define, provided you overload the < operator to apply to
objects of that class.) ■

■ PROGRAMMING TIP How to Define Templates

When we defined the function template in Display 17.2, we started with a
function that sorts an array of elements of type int. We then created a
template by replacing the base type of the array with the type parameter T. This
is a good general strategy for writing templates. If you want to write a function
template, first write a version that is not a template at all but is just an ordinary
function. Completely debug the ordinary function, and then convert the ordinary

DISPLAY 17.3 Using a Generic Sorting Function (part 2 of 2)

43 sort(c, 7);
44 cout << "In sorted order the characters are:\n";
45 for (i = 0; i < 7; i++)
46 cout << c[i] << " ";
47 cout << endl;

48 return 0;
49 }

Output

Unsorted integers:

9 8 7 6 5 1 2 3 0 4

In sorted order the integers are:

0 1 2 3 4 5 6 7 8 9

Unsorted doubles:

5.5 4.4 1.1 3.3 2.2

In sorted order the doubles are:

1.1 2.2 3.3 4.4 5.5

Unsorted characters:

G E N E R I C

In sorted order the characters are:

C E E G I N R

926 CHAPTER 17 / Templates

function to a template by replacing some type names with a type parameter.
There are two advantages to this method. First, when you are defining the
ordinary function you are dealing with a much more concrete case, which makes
the problem easier to visualize. Second, you have fewer details to check at each
stage; when worrying about the algorithm itself, you need not concern yourself
with template syntax rules. ■

■ PITFALL Using a Template with an Inappropriate Type2

You can use a template function with any type for which the code in the
function definition makes sense. However, all the code in the template
function must make sense and must behave in an appropriate way. For
example, you cannot use the swap_values template (Display 17.1) with the
type parameter replaced by a type for which the assignment operator does not
work at all, or does not work “correctly.”

As a more concrete example, suppose that your program defines the
template function swap_values as in Display 17.1. You cannot add the
following to your program.

int a[10], b[10];
 <some code to fill arrays>
swap_values(a, b);

This code will not work, because assignment does not work with array types. ■

SELF -TEST EXERC ISES

5. Display 7.10 shows a function called search, which searches an array for a
specified integer. Give a function template version of search that can be
used to search an array of elements of any type. Give both the function
declaration and the function definition for the template. Hint: It is almost
identical to the function given in Display 7.10.

6. In Programming Project 11 of Chapter 4 you were asked to overload the
abs function so that the name abs would work with several of the built-in
types that had been studied at the time. Compare and contrast function
overloading of the abs function with the use of templates for this purpose
in Self-Test Exercise 2.

2 The example in this Pitfall section uses arrays. If you have not yet covered arrays
(Chapter 7), you should skip this Pitfall section and return after covering arrays.

17.2 Templates for Data Abstraction 927

17.2 TEMPLATES FOR DATA ABSTRACTION

Equal wealth and equal opportunities of culture … have simply made us all
members of one class.

EDWARD BELLAMY, Looking Backward, 2000–1887

As you saw in the previous section, function definitions can be made more
general by using templates. In this section you will see that templates can also
make class definitions more general.

Syntax for Class Templates

The syntax for class templates is basically the same as that for function
templates. The following is placed before the template definition:

template<class T>

The type parameter T is used in the class definition just like any other type. As
with function templates, the type parameter T represents a type that can be any
type at all; the type parameter does not have to be replaced with a class type.
As with function templates, you may use any (nonkeyword) identifier instead
of T.

For example, the following is a class template. An object of this class
contains a pair of values of type T; if T is int, the object values are pairs of
integers, if T is char, the object values are pairs of characters, and so on.

//Class for a pair of values of type T:
template<class T>
class Pair
{
public:
 Pair();

 Pair(T first_value, T second_value);

 void set_element(int position, T value);
 //Precondition: position is 1 or 2.
 //Postcondition:
 //The position indicated has been set to value.

 T get_element(int position) const;
 //Precondition: position is 1 or 2.
 //Returns the value in the position indicated.
private:
 T first;
 T second;
};

Once the class template is defined, you can declare objects of this class.
The declaration must specify what type is to be filled in for T. For example, the

type parameter

declaring objects

928 CHAPTER 17 / Templates

following code declares the object score so it can record a pair of integers and
declares the object seats so it can record a pair of characters:

Pair<int> score;
Pair<char> seats;

The objects are then used just like any other objects. For example, the
following sets the score to be 3 for the first team and 0 for the second team:

score.set_element(1, 3);
score.set_element(2, 0);

The member functions for a class template are defined the same way as
member functions for ordinary classes. The only difference is that the member
function definitions are themselves templates. For example, the following are
appropriate definitions for the member function set_element and for the
constructor with two arguments:

//Uses iostream and cstdlib:
template<class T>
void Pair<T>::set_element(int position, T value)
{
 if (position == 1)
 first = value;
 else if (position == 2)
 second = value;
 else
 {
 cout << "Error: Illegal pair position.\n";
 exit(1);
 }
}

template<class T>
Pair<T>::Pair(T first_value, T second_value)
 : first(first_value), second(second_value)
{
 //Body intentionally empty.
}

Notice that the class name before the scope resolution operator is Pair<T>, not
simply Pair.

The name of a class template may be used as the type for a function
parameter. For example, the following is a possible declaration for a function
with a parameter for a pair of integers:

int add_up(const Pair<int>& the_pair);
//Returns the sum of the two integers in the_pair.

defining
member

functions

17.2 Templates for Data Abstraction 929

Note that we specified the type, in this case int, that is to be filled in for the
type parameter T.

You can even use a class template within a function template. For
example, rather than defining the specialized function add_up given above,
you could instead define a function template as follows so that the function
applies to all kinds of numbers:

template<class T>
T add_up(const Pair<T>& the_pair);
//Precondition: The operator + is defined for values of type T.
//Returns the sum of the two values in the_pair.

Class Template Syntax

The class definition and the definitions of the member functions are
prefaced with the following:

template<class Type_Parameter>

The class and member function definitions are then the same as for any
ordinary class, except that the Type_Parameter can be used in place of
a type.

For example, the following is the beginning of a class template
definition:

template<class T>
class Pair
{
public:
 Pair();
 Pair(T first_value, T second_value);
 void set_element(int position, T value);
 . . .

Member functions and overloaded operators are then defined as
function templates. For example, the definition of a method definition for
the above sample class template could begin as follows:

template<class T>
void Pair<T>::set_element(int position, T value)
{
 . . .

930 CHAPTER 17 / Templates

■ PROGRAMMING EXAMPLE An Array Class

Display 17.4 contains the interface for a class template whose objects are lists.
Since this class definition is a class template, the lists can be lists of items of
any type whatsoever. You can have objects that are lists of values of type int,
or lists of values of type double, or lists of objects of type string, or lists of
items of any other type.

Display 17.5 contains a demonstration program that uses this class
template. Although this program does not really do anything much, it
does illustrate how the class template is used. Once you understand
the syntax details, you can use the class template in any program that
needs a list of values. The implementation of the class template is given
in Display 17.6.

Type Definitions

You can specialize a class template by giving a type argument to the class
name, as in the following example:

Pair<int>

The specialized class name, like Pair<int>, can then be used just like any
class name. It can be used to declare objects or to specify the type of a
formal parameter.

You can define a new class type name that has the same meaning as a
specialized class template name, such as Pair<int>. The syntax for such a
defined class type name is as follows:

typedef Class_Name<Type_Argument> New_Type_Name;

For example:

typedef Pair<int> PairOfInt;

The type name PairOfInt can then be used to declare objects of type
Pair<int>, as in the following example:

PairOfInt pair1, pair2;

The type name PairOfInt can also be used to specify the type of a formal
parameter.

17.2 Templates for Data Abstraction 931

Notice that we have overloaded the insertion operator << so it can be used
to output an object of the class template GenericList. To do this, we made the
operator << a friend of the class. In order to have a parameter that is of the
same type as the class, we used the expression GenericList<ItemType> for
the parameter type. When the type parameter is replaced by, for example, the
type int, this list parameter will be of type GenericList<int>. ■

DISPLAY 17.4 Interface for the Class Template GenericList (part 1 of 2)

1 //This is the header file genericlist.h. This is the interface for the
2 //class GenericList. Objects of type GenericList can be a list of items
3 //of any type for which the operators << and = are defined.
4 //All the items on any one list must be of the same type. A list that
5 //can hold up to max items all of type Type_Name is declared as follows:
6 // GenericList<Type_Name> the_object(max);
7 #ifndef GENERICLIST_H
8 #define GENERICLIST_H
9 #include <iostream>

10 using namespace std;
11
12 namespace listsavitch
13 {
14 template<class ItemType>
15 class GenericList
16 {
17 public:
18 GenericList(int max);
19 //Initializes the object to an empty list that can hold up to
20 //max items of type ItemType.
21
22 ~GenericList();
23 //Returns all the dynamic memory used by the object to the freestore.
24
25 int length() const;
26 //Returns the number of items on the list.
27
28 void add(ItemType new_item);
29 //Precondition: The list is not full.
30 //Postcondition: The new_item has been added to the list.
31
32 bool full() const;
33 //Returns true if the list is full.
34

(continued)

a friend

932 CHAPTER 17 / Templates

DISPLAY 17.4 Interface for the Class Template GenericList (part 2 of 2)

35 void erase();
36 //Removes all items from the list so that the list is empty.
37
38 friend ostream& operator <<(ostream& outs,
39 const GenericList<ItemType>& the_list);
40 //Overloads the << operator so it can be used to output the
41 //contents of the list. The items are output one per line.
42 //Precondition: If outs is a file output stream, then outs has
43 //already been connected to a file.
44 private:
45 ItemType *item; //pointer to the dynamic array that holds the list.
46 int max_length; //max number of items allowed on the list.
47 int current_length; //number of items currently on the list.
48 };
49 }//listsavitch
50 #endif //GENERICLIST_H

DISPLAY 17.5 Program Using the GenericList Class Template (part 1 of 2)

1 //Program to demonstrate use of the class template GenericList.
2 #include <iostream>
3 #include "genericlist.h"
4 #include "genericlist.cpp"
5 using namespace std;
6 using namespace listsavitch;

7 int main()
8 {
9 GenericList<int> first_list(2);

10 first_list.add(1);
11 first_list.add(2);
12 cout << "first_list = \n"
13 << first_list;

14 GenericList<char> second_list(10);
15 second_list.add('A');
16 second_list.add('B');
17 second_list.add('C');
18 cout << "second_list = \n"
19 << second_list;

20 return 0;
21 }

(continued)

Since genericlist.cpp is
included, you need compile only this
one file (the one with the main).

17.2 Templates for Data Abstraction 933

DISPLAY 17.5 Program Using the GenericList Class Template (part 2 of 2)

Output

first_list =

1

2

second_list =

A

B

C

DISPLAY 17.6 Implementation of GenericList (part 1 of 3)

1 //This is the implementation file: genericlist.cpp
2 //This is the implementation of the class template named GenericList.
3 //The interface for the class template GenericList is in the
4 //header file genericlist.h.
5 #ifndef GENERICLIST_CPP
6 #define GENERICLIST_CPP
7 #include <iostream>
8 #include <cstdlib>
9 #include "genericlist.h"//This is not needed when used as we are using this file,

10 //but the #ifndef in genericlist.h makes it safe.
11 using namespace std;
12
13 namespace listsavitch
14 {
15 //Uses cstdlib:
16 template<class ItemType>
17 GenericList<ItemType>::GenericList(int max) : max_length(max),

 current_length(0)
18
19 {
20 item = new ItemType[max];
21 }
22
23 template<class ItemType>
24 GenericList<ItemType>::~GenericList()

(continued)

934 CHAPTER 17 / Templates

DISPLAY 17.6 Implementation of GenericList (part 2 of 3)

25 {
26 delete [] item;
27 }
28
29 template<class ItemType>
30 int GenericList<ItemType>::length() const
31 {
32 return (current_length);
33 }
34
35 //Uses iostream and cstdlib:
36 template<class ItemType>
37 void GenericList<ItemType>::add(ItemType new_item)
38 {
39 if (full())
40 {
41 cout << "Error: adding to a full list.\n";
42 exit(1);
43 }
44 else
45 {
46 item[current_length] = new_item;
47 current_length = current_length + 1;
48 }
49 }
50
51 template<class ItemType>
52 bool GenericList<ItemType>::full() const
53 {
54 return (current_length == max_length);
55 }
56
57 template<class ItemType>
58 void GenericList<ItemType>::erase()
59 {
60 current_length = 0;
61 }
62
63 //Uses iostream:
64 template<class ItemType>
65 ostream& operator <<(ostream& outs, const GenericList<ItemType>& the_list)

(continued)

17.2 Templates for Data Abstraction 935

SELF -TEST EXERC ISES

7. Give the definition for the member function get_element for the class
template Pair discussed in the section “Syntax for Class Templates.”

8. Give the definition for the constructor with zero arguments for the class
template Pair discussed in the section “Syntax for Class Templates.”

9. Give the definition of a template class called HeterogeneousPair that is
like the class template Pair discussed in the section “Syntax for Class
Templates,” except that with HeterogeneousPair the first and second posi-
tions may store values of different types. Use two type parameters T1 and
T2; all items in the first position will be of type T1, and all items in the sec-
ond position will be of type T2. The single mutator method set_element
in the template class Pair should be replaced by two mutator methods
called set_first and set_second in the template class Heterogeneous-
Pair. Similarly, the single accessor method get_element in the template
class Pair should be replaced by two accessor methods called get_first
and get_second in the template class HeterogeneousPair.

10. Is the following true or false?

Friends are used exactly the same for template and nontemplate classes.

DISPLAY 17.6 Implementation of GenericList (part 3 of 3)

66 {
67 for (int i = 0; i < the_list.current_length; i++)
68 outs << the_list.item[i] << endl;
69
70 return outs;
71 }
72 }//listsavitch
73 #endif // GENERICLIST_CPP Notice that we have enclosed all the template
74 // definitions in #ifndef... #endif.

A note is in order about compiling the code from Displays 17.4, 17.5, and 17.6. A
safe solution to the compilation of this code is to #include the template class definition
and the template function definitions before use, as we did. In that case only the file in
Display 17.5 needs to be compiled. Be sure that you use the #ifndef #define #endif
mechanism to prevent multiple file inclusion of all the files you are going to #include.

936 CHAPTER 17 / Templates

CHAPTER SUMMARY

■ Using function templates, you can define functions that have a parameter
for a type.

■ Using class templates, you can define a class with a type parameter for sub-
parts of the class.

Answers to Self-Test Exercises

1. Function Declaration:

template<class T>
T maximum(T first, T second);
//Precondition: The operator < is defined for the type T.
//Returns the maximum of first and second.

Definition:

template<class T>
T maximum(T first, T second)
{

if (first < second)
return second;

else
return first;

}

2. Function Declaration:

template<class T>
T absolute(T value);
//Precondition: The expressions x < 0 and − x are defined
//whenever x is of type T.
//Returns the absolute value of its argument.

Definition:

template<class T>
T absolute(T value)
{

if (value < 0)
return − value;

else
return value;

}

Answers to Self-Test Exercises 937

3. Templates provide a facility to allow the definition of functions and
classes that have parameters for type names.

4. d. Any type, whether a primitive type (provided by C++) or a type defined
by the user (a class or struct type, an enum type, or a defined array type,
or int, float, double, etc.).

5. The function declaration and function definition are given here. They are
basically identical to those for the versions given in Display 7.10 except
that two instances of int are changed to BaseType in the parameter list.

Function Declaration:

template<class BaseType>
int search(const BaseType a[],
 int number_used, BaseType target);
//Precondition: number_used is <= the declared size of a.
//Also, a[0] through a[number_used − 1] have values.
//Returns the first index such that a[index] == target,
//provided there is such an index; otherwise, returns − 1.

Definition:

template<class BaseType>
int search(const BaseType a[], int number_used,
 BaseType target)
{

 int index = 0, found = false;
 while ((!found) && (index < number_used))
 if (target == a[index])
 found = true;
 else
 index++;

 if (found)
 return index;
 else
 return − 1;
}

6. Function overloading only works for types for which an overloading is
provided. Overloading may work for types that automatically convert to
some type for which an overloading is provided, but may not do what you
expect. The template solution will work for any type that is defined at the
time of invocation, provided that the requirements for a definition of <
are satisfied.

938 CHAPTER 17 / Templates

7. //Uses iostream and cstdlib:
template<class T>
T Pair<T>::get_element(int position) const
{
 if (position == 1)
 return first;
 else if (position == 2)
 return second;
 else
 {
 cout << "Error: Illegal pair position.\n";
 exit(1);
 }
}

8. There are no natural candidates for the default initialization values, so this
constructor does nothing, but it does allow you to declare (uninitialized)
objects without giving any constructor arguments.

template<class T>
Pair<T>::Pair()
{
//Do nothing.
}

9. //Class for a pair of values, the first of type T1
//and the second of type T2:
template<class T1, class T2>
class HeterogeneousPair
{
public:
 HeterogeneousPair();

 HeterogeneousPair(T1 first_value, T2 second_value);

 void set_first(T1 value);

 void set_second(T2 value);

 T1 get_first() const;

 T2 get_second() const;

private:
 T1 first;
 T2 second;
};

The member function definitions are as follows:

template<class T1, class T2>
HeterogeneousPair<T1, T2>::HeterogeneousPair()

Programming Projects 939

{
//Do nothing.
}

template<class T1, class T2>
HeterogeneousPair<T1, T2>::HeterogeneousPair
 (T1 first_value, T2 second_value)
 : first(first_value), second(second_value)
{
 //Body intentionally empty.
}

template<class T1, class T2>
T1 HeterogeneousPair<T1, T2>::get_first() const
{
 return first;
}

template<class T1, class T2>
T2 HeterogeneousPair<T1, T2>::get_second() const
{
 return second;
}

template<class T1, class T2>
void HeterogeneousPair<T1, T2>::set_first(T1 value)
{
 first = value;
}

template<class T1, class T2>
void HeterogeneousPair<T1, T2>::set_second(T2 value)
{
 second = value;
}

10. True.

PROGRAMMING PROJECTS

1. Write a function template for a function that has parameters for a partially
filled array and for a value of the base type of the array. If the value is in
the partially filled array, then the function returns the index of the first
indexed variable that contains the value. If the value is not in the array,

940 CHAPTER 17 / Templates

the function returns − 1. The base type of the array is a type parameter.
Notice that you need two parameters to give the partially filled array: one
for the array and one for the number of indexed variables used. Also,
write a suitable test program to test this function template.

2. Rewrite the definition of the class template GenericList given in Display
17.4 and Display 17.6 so that it is more general. This more general version
has the added feature that you can step through the items on the list in
order. One item is always the current item. You can ask for the current item,
change the current item to the next item, change the current item to the pre-
vious item, start at the beginning of the list by making the first item on the
list the current item, and ask for the nth item on the list. To do this, you will
add the following members: an additional member variable that records
the position on the list of the current item, a member function that returns
the current item as a value, a member function that makes the next item the
current item, a member function that makes the previous item the current
item, a member function that makes the first item on the list the current
item, and a member function that returns the nth item on the list given n as
an argument. (Number items as in arrays, so that the first item is the 0th
item, the next is item number 1, and so forth.)

Note that there are situations in which some of these function actions are
not possible. For example, an empty list has no first item, and there is no
item after the last item in any list. Be sure to test for the empty list and
handle it appropriately. Be sure to test for the beginning and end of the
list and handle these cases appropriately. Write a suitable test program to
test this class template.

3. Write a template for a function that has parameters for a list of items and
for a possible item on the list. If the item is on the list, then the function
returns the position of the first occurrence of that item. If the item is not on
the list, the function returns − 1. The first position on the list is position 0,
the next is position 1, and so forth. The type of the items on the list is a
type parameter. Use the class template GenericList that you defined in
Project 2. Write a suitable program to test this function template.

4. Redo Programming Project 3 in Chapter 7, but this time make the func-
tion delete_repeats a template function with a type parameter for the
base type of the array. It would help if you first did the nontemplate ver-
sion; in other words, it would help if you first did Programming Project 3
in Chapter 7, if you have not already done it.

5. Display 17.3 gives a template function for sorting an array using the selec-
tion sort algorithm. Write a similar template function for sorting an array,
but this time use the insertion sort algorithm as described in Program-
ming Project 6 of Chapter 7. If you have not already done it, it would be a

Programming Projects 941

good idea to first do the nontemplate version; in other words, it would be
a good idea to first do Programming Project 6 from Chapter 7.

6. Write a template version of the iterative binary search from Display 14.8.
Specify requirements on the template parameter type. Discuss the require-
ments on the template parameter type.

7. Write a template version of the recursive binary search from Display 14.6.
Specify requirements on the template parameter type. Discuss the require-
ments on the template parameter type.

8. (This project requires that you know what a stack is and know how to use
dynamic arrays. Stacks are covered in Chapter 14. Dynamic arrays are cov-
ered in Chapter 9. This is only an appropriate project if you have covered
Chapters 9 and 14.)

Write a template version of a stack class. Use a type parameter for the type
of data that is stored in the stack. Use dynamic arrays to allow the stack to
grow to hold any number of items.

9. Write a template version of a class that implements a priority queue.
Queues are discussed in Chapter 13 and priority queues are discussed in
Chapter 18. To summarize, a priority queue is essentially a list of items
that is always ordered by priority. Each item that is added to the list
requires an associated priority value. For this problem, make the priority
an integer where 0 is the highest priority and larger values are lower in pri-
ority. Removing an item from the queue removes the item with the high-
est priority.

The add function of the priority queue should take a generic type and then
an integer priority. In the example below, the generic type is a char and
we have added three items to the queue:

q.add('X', 10);
q.add('Y', 1);
q.add('Z', 3);

The remove function should return and remove from the priority queue
the item that has the highest priority. Given the example above we would
expect the following:

cout << q.remove(); // Outputs Y (priority 1)
cout << q.remove(); // Returns Z (priority 3)
cout << q.remove(); // Returns X (priority 10)

Test your queue on data with priorities in various orders (e.g., ascending,
descending, mixed). You can implement the priority queue by storing the
items using a list(s) of your choice (e.g., vector, array, linked list, or

942 CHAPTER 17 / Templates

GenericList described in this chapter) and then performing a linear
search for the item with the lowest integer value in the remove function. In
future courses you may study a data structure called a heap that affords a
more efficient way to implement a priority queue.

10. Write a template-based class that implements a set of items. A set is a
collection of items in which no item occurs more than once. Internally,
you may represent the set using the data structure of your choice (e.g., list,
vector, arrays, etc.) However, the class should externally support the
following functions:

a. Add a new item to the set. If the item is already in the set then nothing
happens.

b. Remove an item from the set.
c. Return the number of items in the set.
d. Determine if an item is a member of the set.
e. Return a pointer to a dynamically created array containing each item

in the set. The caller of this function is responsible for deallocating the
memory.

Test your class by creating different sets of different data types (e.g.,
strings, integers, or other classes). If you add objects to your set, then you
may need to overload the == and != operators for the object’s class so your
template-based set class can properly determine membership.

11. This project requires that you complete Programming Project 10 from this
chapter and Programming Project 11 from Chapter 14. Programming
Project 11 asked you to write a program to find all permutations of a set.
Modify the program so that it generates permutations given an instance of
the template-based set class defined in Programming Project 10. You may
wish to also use your template-based set class to help simplify the imple-
mentation of the permutation algorithm itself.

The algorithm requires that you store a set of lists. C++ allows you to
create a set of lists with your template-based set class. For example,
myset<vector<T> > will define a set containing a vector of type T. Be
careful to place a space between the last two >’s, or the compiler may get
confused. The code myset<vector<T>> without a space will likely produce
a compiler error.

Your program should print all permutations of sets of several different
sizes and comprised of several different types of data (e.g., a set of three
integers, a set of four strings, or a set of five doubles).

Video Note
Solution to
Programming
Project 17.10

18Standard
Template Library

18.1 ITERATORS 945
using Declarations 945
Iterator Basics 946
Pitfall: Compiler Problems 951
Kinds of Iterators 952
Constant and Mutable Iterators 956
Reverse Iterators 957
Other Kinds of Iterators 959

18.2 CONTAINERS 960
Sequential Containers 960
Pitfall: Iterators and Removing Elements 965
Programming Tip: Type Definitions in

Containers 965
Container Adapters stack and queue 966
Associative Containers set and map 970
Efficiency 976

18.3 GENERIC ALGORITHMS 977
Running Times and Big-O Notation 978
Container Access Running Times 982
Nonmodifying Sequence Algorithms 983
Container Modifying Algorithms 989
Set Algorithms 989
Sorting Algorithms 991

Chapter Summary 991
Answers to Self-Test Exercises 992
Programming Projects 994

944

Libraries are not made; they grow.
AUGUSTINE BIRRELL

INTRODUCTION
There is a large collection of standard data structures for holding data. Since they
are so standard it makes sense to have standard portable implementations of
these data structures. The Standard Template Library (STL) includes libraries for
such data structures. Included in the STL are implementations of the stack,
queue, and many other standard data structures. When discussed in the context
of the STL these data structures are usually called container classes because they
are used to hold collections of data. In Chapter 8 we presented a preview of the
STL by describing the vector template class which is one of the container classes
in the STL. In this chapter we will present an overview of some of the basic
classes included in the STL. We do not have room to give a comprehensive
treatment of the STL here, but we will present enough to get you started using
some basic STL container classes.

The STL was developed by Alexander Stepanov and Meng Lee at Hewlett-
Packard and was based on research by Stepanov, Lee, and David Musser. It is
a collection of libraries written in the C++ language. Although the STL is not
part of the core C++ language, it is part of the C++ standard and so any
implementation of C++ that conforms to the standard would include the STL.
As a practical matter, you can consider the STL to be part of the C++ language.

As its name suggest, the classes in the STL are template classes. A typical
container class in the STL has a type parameter for the type of data to be stored
in the container class.

The STL container classes make extensive use of iterators, which are
objects that facilitate cycling through the data in a container. An introduction
to the concept of an iterator was given in Section 13.1 where we discussed
pointers used as iterators. You will find it helpful to read that section before
reading this chapter. If you have not already done so, you should also read
Section 8.3, which covers the vector template class of the STL.

The STL also includes implementations of many important generic
algorithms, such as searching and sorting algorithms. The algorithms are
implemented as template functions. After discussing the container classes, we
will describe some of these algorithm implementations.

The STL differs from other C++ libraries, such as <iostream> for example,
in that the classes and algorithms are generic, which is another way of saying
they are template classes and template functions.

generic

18.1 Iterators 945

PREREQUISITES
This chapter uses the material from Chapters 2 through 13, 15, and Chapter 17.

18.1 ITERATORS

The White Rabbit put on his spectacles. “Where shall I begin, please your
Majesty?” he asked.

“Begin at the beginning,” the King said, very gravely, “And go on till you come
to the end: then stop.”

LEWIS CARROLL, ALICE IN WONDERLAND

Vectors, introduced in Chapter 8, are one of the container template classes in the
STL. Iterators are a generalization of pointers. (Chapter 13 includes an introduc-
tion to pointers used as iterators.) This section shows you how to use iterators
with vectors. Other container template classes, which we introduce in Section
18.2, use iterators in the same way. So, all you learn about iterators in this section
will apply across a wide range of containers and does not apply solely to vectors.
This reflects one of the basic tenets of the STL philosophy: The semantics,
naming, and syntax for iterator usage should be (and are) uniform across
different container types. We begin with a review and discussion of the using
declarations, which we will use extensively when discussing iterators and the STL.

using Declarations

It may help to review the subsection entitled “Qualifying Names” in Chapter 12
before you continue with this subsection and this chapter.

Suppose my_function is a function defined in the namespace my_space.
The following using declaration allows you to use the identifier my_function
and have it mean the versions of my_function defined in the namespace
my_space:

using my_space::my_function;

Within the scope of this using declaration an expression such as
my_function(1,2) means the same thing as my_space::my_function(1,2);
that is, within the scope of this using declaration the identifier my_function
always indicates the version of my_function defined in my_space, as opposed
to any definition of my_function defined in any other namespace.

When discussing iterators we will often apply the :: operator to another
level. You will often see expressions such as the following:

using std::vector<int>::iterator;

946 CHAPTER 18 / Standard Template Library

In this case the identifier iterator names a type. So within the scope of this
using directive, the following would be allowed:

 iterator p;

This declares p to be of the type iterator. What is the type iterator? The type
iterator is defined in the definition of the class vector<int>. Which class
vector<int>? The one defined in the namespace std. (We will fully explain
the type iterator later. At this point we are concerned only with explaining
using directives.)

You may object that this is all a big to-do about nothing. There is no class
vector<int> defined in any namespace other than the namespace std. That
may or may not be true, but there could be a class named vector<int> defined
in some other namespace either now or in the future. You may object further
that you never heard of defining a type within a class. We have not covered
such definitions, but they are possible and they are common in the STL. So,
you must know how to use such types, even if you do not define such types.

In summary, consider the using directive

using std::vector<int>::iterator;

Within the scope of this using directive the identifier iterator means the type
named iterator that is defined in the class vector<int>, which in turn is
defined in the std namespace.

Iterator Basics

An iterator is a generalization of a pointer, and in fact is typically even
implemented using a pointer, but the abstraction of an iterator is designed to
spare you the details of the implementation and give you a uniform interface
to iterators that is the same across different container classes. Each container
class has its own iterator types, just like each data type has its own pointer
type. But just as all pointer types behave essentially the same for dynamic
variables of their particular data type, so too does each iterator type behave the
same, but each iterator is used only with its own container class.

An iterator is not a pointer, but you will not go far wrong if you think of it
and use it as if it were a pointer. Like a pointer variable, an iterator variable is
located at (“points to”) one data entry in the container. You manipulate
iterators using the following overloaded operators that apply to iterator objects:

■ Prefix and postfix increment operators ++ for advancing the iterator to the
next data item.

■ Prefix and postfix decrement operators -- for moving the iterator to the
previous data item.

■ Equal and unequal operators, == and !=, to test whether two iterators
point to the same data location.

iterator

++ and --

18.1 Iterators 947

■ A dereferencing operator *, so that if p is an iterator variable, then *p gives
access to the data located at (“pointed to by”) p. This access may be read-
only, write-only, or allow both reading and changing of the data, depend-
ing on the particular container class.

Not all iterators have all of these operators. However, the vector template class
is an example of a container whose iterators have all these operators and more.

A container class has member functions that get the iterator process
started. After all, a new iterator variable is not located at (“pointing to”) any
data in the container. Many container classes, including the vector template
class, have the following member functions that return iterator objects
(iterator values) that point to special data elements in the data structure:

■ c.begin() returns an iterator for the container c that points to the “first”
data item in the container c.

■ c.end() returns something that can be used to test when an iterator has
passed beyond the last data item in a container c. The iterator c.end() is
completely analogous to NULL used to test when a pointer has passed the
last node in a linked list of the kind discussed in Chapter 13. The iterator
c.end() is thus an iterator that is located at no data item but that is a kind
of end marker or sentinel.

For many container classes, these tools allow you to write for loops that
cycle through all the elements in a container object c, as follows:

for (p = c.begin(); p != c.end(); p++)
 process *p //*p is the current data item.

That’s the big picture. Now let’s look at the details in the concrete setting
of the vector template container class.

Display 18.1 illustrates the use of iterators with the vector template class.
Keep in mind that each container type in the STL has its own iterator types,
although they are all used in the same basic ways. The iterators we want for a
vector of ints are of type

std::vector<int>::iterator

Another container class is the list template class. Iterators for lists of ints
are of type

std::list<int>::iterator

In the program in Display 18.1 we specialize the type name iterator so
it applies to iterators for vectors of ints. The type name iterator that we want
in Display 18.1 is defined in the template class vector and so if we specialize

dereferencing

begin()

end()

//p is an iterator variable of the type for the container object c.

948 CHAPTER 18 / Standard Template Library

the template class vector to ints and want the iterator type for vector<int>,
we want the type

std::vector<int>::iterator;

DISPLAY 18.1 Iterators Used with a Vector

1 //Program to demonstrate STL iterators.
2 #include <iostream>
3 #include <vector>
4 using std::cout;
5 using std::endl;
6 using std::vector;
7 int main()
8 {
9 vector<int> container;

10 for (int i = 1; i <= 4; i++)
11 container.push_back(i);

12 cout << "Here is what is in the container:\n";
13 vector<int>::iterator p;
14 for (p = container.begin(); p != container.end(); p++)
15 cout << *p << " ";
16 cout << endl;

17 cout << "Setting entries to 0:\n";
18 for (p = container.begin(); p != container.end(); p++)
19 *p = 0;
20
21 cout << "Container now contains:\n";
22 for (p = container.begin(); p != container.end(); p++)
23 cout << *p << " ";
24 cout << endl;

25 return 0;
26 }

Sample Dialogue

Here is what is in the container:

1 2 3 4

Setting entries to 0:

Container now contains:

0 0 0 0

18.1 Iterators 949

Since the vector definition places the name vector in the std namespace, the
entire using declaration is

using std::vector<int>::iterator;

The basic use of iterators with the vector (or any container class) is
illustrated by the following lines from Display 18.1:

vector<int>::iterator p;
for (p = container.begin(); p != container.end(); p++)
 cout << *p << " ";

Recall that container is of type vector<int>.
A vector v can be thought of as a linear arrangement of its data elements.

There is a first data element v[0], a second data element v[1], and so forth.
An iterator p is an object that can be located at one of these elements. (Think
of p as pointing to one of these elements.) An iterator can move its location
from one element to another element. If p is located at, say, v[7], then p++
moves p so it is located at v[8]. This allows an iterator to move through the
vector from the first element to the last element, but it needs to find the first
element and needs to know when it has seen the last element.

You can tell if an iterator is at the same location as another iterator using
the operator ==. Thus, if you have an iterator pointing to the first, last, or other
element, you could test another iterator to see if it is located at the first, last,
or other element.

If p1 and p2 are two iterators, then the comparison

p1 == p2

is true when and only when p1 and p2 are located at the same element. (This
is analogous to pointers. If p1 and p2 were pointers, this would be true if they
pointed to the same thing.) As usual, != is just the negation of == and so

p1!= p2

is true when p1 and p2 are not located at the same element.
The member function begin() is used to position an iterator at the first

element in a container. For vectors, and many other container classes, the
member function begin() returns an iterator located at the first element. (For
a vector v the first element is v[0].) Thus,

vector<int>::iterator p = v.begin();

initializes the iterator variable p to an iterator located at the first element. So,
the basic for loop for visiting all elements of the vector v is

vector<int>::iterator p;
for (p = v.begin(); Boolean_Expression; p++)
 Action_At_Location p;

located at

begin()

950 CHAPTER 18 / Standard Template Library

The desired Boolean_Expression for a stopping condition is

p == v.end()

The member function end() returns a sentinel value that can be checked to see
if an iterator has passed the last element. If p is located at the last element, then
after p++, the test p = v.end() changes from false to true. So the for loop
with the correct Boolean_Expression is

vector<int>::iterator p;
for (p = v.begin(); p != v.end(); p++)
 Action_At_Location p;

Note that p != v.end() does not change from true to false until after p’s
location has advanced past the last element. So, v.end() is not located at any
element. The value v.end() is a special value that serves as a sentinel value. It
is not an ordinary iterator, but you can compare v.end() to an iterator using
== and !=. The value v.end() is analogous to the value NULL used to mark the
end of a linked list of the kind discussed in Chapter 13.

The following for loop from Display 18.1 uses this exact technique with
the vector named container:

vector<int>::iterator p;
for (p = container.begin(); p != container.end(); p++)
 cout << *p << " ";

The action taken at the location of the iterator p is

cout << *p << " ";

The dereferencing operator * is overloaded for STL container iterators so that
*p produces the element at location p. In particular, for a vector container, *p
produces the element located at the iterator p. So, the above cout statement
outputs the element located at the iterator p, and so the entire for loop
outputs all the elements in the vector container.

The dereferencing operator *p always produces the element located at the
iterator p. In some situations *p produces read-only access, which does not
allow you to change the element. In other situations it gives you access to the
element and will let you change the element. For vectors *p will allow you to
change the element located at p, as illustrated by the following for loop from
Display 18.1:

for (p = container.begin(); p != container.end(); p++)
 *p = 0;

This for loop cycles through all the elements in the vector container and
changes all the elements to 0.

end()

dereferencing
operator

18.1 Iterators 951

■ PITFALL Compiler Problems

Some compilers have problems with iterator declarations. You can declare an
iterator in different ways. For example, we have been using the following:

using std::vector;
 . . .

vector<char>::iterator p;

Alternatively, if your code only uses a single type of iterator, you could use the
following:

using std::vector<char>::iterator;
 . . .

iterator p;

You also could use the following, which is not quite as nice, because it
introduces all names from the std namespace to the current declarative region,
increasing the likelihood of a name conflict.

using namespace std;
 . . .
vector<char>::iterator p;

There are other, similar variations.

Your compiler should accept any of these alternatives. However, we have found
that some compilers will accept only certain of these alternatives. If one form
does not work with your compiler, try another. ■

Iterator

An iterator is an object that can be used with a container to gain access to
elements in the container. An iterator is a generalization of the notion of
a pointer and the operators, ==, !=, ++, and -- behave the same for
iterators as they do for pointers. The basic outline of how an iterator can
cycle through all the elements in a container is:

STL_Container<type>::iterator p;
for (p = container.begin(); p != container.end(); p++)
 Process_Element_At_Location p;

STL_Container is the name of the container class (e.g., vector) and
type is the data type of the item to be stored. The member function
begin() returns an iterator located at the first element. The member
function end() returns a value that serves as a sentinel value one location
past the last element in the container.

952 CHAPTER 18 / Standard Template Library

SELF -TEST EXERC ISES

1. If v is a vector, what does v.begin() return? What does v.end() return?

2. If p is an iterator for a vector object v, what is *p?

3. Suppose v is a vector of ints. Write a for loop that outputs all the ele-
ments of v, except for the first element.

Kinds of Iterators

Different containers have different kinds of iterators. Iterators are classified
according to the kinds of operations that work on them. Vector iterators are of the
most general form; that is, all the operations work with vector iterators. So, we will
again use the vector container to illustrate iterators. In this case we use a vector to
illustrate the iterator operators of decrement and random access. Display 18.2 shows
another program using a vector object named container and an iterator p.

The decrement operator is used in Display 18.2. The line with the
decrement operator is shown in color. As you would expect, p-- moves the
iterator p to the previous location. The decrement operator -- is the same as
the increment operator ++, but it moves the iterator in the opposite direction.

The increment and decrement operators can be used in either prefix (++p)
or postfix (p++) notation. In addition to changing p, they also return a value.
The details of the value returned are completely analogous to what happens
with the increment and decrement operators on int variables. In prefix
notation, first the variable is changed and the changed value is returned. In
postfix notation, the value is returned before the variable is changed. We prefer
not to use the increment and decrement operators as expressions that return a
value and use them only to change the variable value.

The following lines from Display 18.2 illustrate that with vector iterators
you have random access to the elements of a vector, such as container:

vector<char>::iterator p = container.begin();
cout << "The third entry is " << container[2] << endl;

Dereferencing

The dereferencing operator *p when applied to an iterator p produces
the element located at the iterator p. For some STL container classes *p
produces read-only access, which does not allow you to change the
element. For other STL container classes it gives you access to the element
and will let you change the element.

dereferencing
operator

decrement
operator

18.1 Iterators 953

cout << "The third entry is " << p[2] << endl;
cout << "The third entry is " << *(p + 2) << endl;

Random access means you can go in one step directly to any particular
element. We have already used container[2] as a form of random access to a
vector. It is simply the square bracket operator that is standard with arrays and
vectors. What is new is that you can use this same square bracket notation with
an iterator. The expression p[2] is a way to obtain access to the element
indexed by 2.

The expressions p[2] and *(p + 2) are completely equivalent. By analogy
to pointer arithmetic (see Chapter 9), (p + 2) names the location two places
beyond p. Since p is at the first (index 0) location in the above code, (p + 2)
is at the third (index 2) location. The expression (p + 2) returns an iterator.
The expression *(p + 2) dereferences that iterator. Of course, you can replace
2 with a different nonnegative integer to obtain a pointer pointing to a
different element.

DISPLAY 18.2 Bidirectional and Random Access Iterator Use (part 1 of 2)

1 //Program to demonstrate bidirectional and random access iterators.
2 #include <iostream>
3 #include <vector>
4 using std::cout;
5 using std::endl;
6 using std::vector;
7
8 int main()
9 {

10 vector<char> container;

11 container.push_back('A');
12 container.push_back('B');
13 container.push_back('C');
14 container.push_back('D');

15 for (int i = 0; i < 4; i++)
16 cout << "container[" << i << "] == "
17 << container[i] << endl;

18 vector<char>::iterator p = container.begin();
19 cout << "The third entry is " << container[2] << endl;
20 cout << "The third entry is " << p[2] << endl;
21 cout << "The third entry is " << *(p + 2) << endl;

22 cout << "Back to container[0].\n";
23 p = container.begin();
24 cout << "which has value " << *p << endl;

(continued)

Three different notations
for the same thing.

This notation is specialized
to vectors and arrays.

These two work for
any random access
iterator.

random access

954 CHAPTER 18 / Standard Template Library

Be sure to note that neither p[2] nor (p + 2) changes the value of the
iterator in the iterator variable p. The expression (p + 2) returns another
iterator at another location, but it leaves p where it was. The same thing
happens with p[2]. Also note that the meaning of p[2] and (p + 2) depends
on the location of the iterator in p. For example, (p + 2) means two locations
beyond the location of p, wherever that may be.

For example, suppose the previously discussed code from Display 18.2
were replaced with the following (note the added p++):

vector<char>::iterator p = container.begin();
p++;
cout << "The third entry is " << container[2] << endl;
cout << "The third entry is " << p[2] << endl;
cout << "The third entry is " << *(p + 2) << endl;

DISPLAY 18.2 Bidirectional and Random Access Iterator Use (part 2 of 2)

25 cout << "Two steps forward and one step back:\n";
26 p++;
27 cout << *p << endl;
28 p++;
29 cout << *p << endl;
30 p--;
31 cout << *p << endl;

32 return 0;
33 }

Sample Dialogue

container[0] == A

container[1] == B

container[2] == C

container[3] == D

The third entry is C

The third entry is C

The third entry is C

Back to container[0].

which has value A

Two steps forward and one step back:

B

C

B

This is the decrement operator. It
works for any bidirectional iterator.

18.1 Iterators 955

The output of these three couts would no longer be

The third entry is C
The third entry is C
The third entry is C

but would instead be

The third entry is C
The third entry is D
The third entry is D

The p++ moves p from location 0 to location 1 and so (p + 2) is now an iterator
at location 3, not location 2. So, *(p + 2) and p[2] are equivalent to
container[3], not container[2].

We now know enough about iterators to make sense of how iterators are
classified. The main kinds of iterators are

Forward iterators: ++ works on the iterator.

Bidirectional iterators: both ++ and -- work on the iterator.

Random access iterators : ++, --, and random access all work with the
iterator.

Note that these are increasingly strong categories: Every random access
iterator is also a bidirectional iterator, and every bidirectional iterator is also a
forward iterator.

As we will see, different template container classes have different kinds of
iterators. The iterators for the vector template class are random access iterators.

Note that the names forward iterator, bidirectional iterator, and random access
iterator refer to kinds of iterators, not type names. The actual type names will
be something like std::vector<int>::iterator, which in this case happens
to be a random access iterator.

Kinds of Iterators

Different containers have different kinds of iterators. The following are
the main kinds of iterators:

Forward iterators: ++ works on the iterator.

Bidirectional iterators: both ++ and -- work on the iterator.

Random access iterators: ++, --, and random access all work with the
iterator.

forward iterator
bidirectional
iterator
random access
iterator

956 CHAPTER 18 / Standard Template Library

SELF -TEST EXERC ISE

4. Suppose the vector v contains the letters 'A', 'B', 'C', and 'D' in that order.
What is the output of the following code?

vector<char>::iterator i = v.begin();
i++;
cout << *(i + 2) << " ";
i--;
cout << i[2] << " ";
cout << *(i + 2) << " ";

Constant and Mutable Iterators

The categories forward iterator, bidirectional iterator, and random access
iterator each subdivide into two categories: constant and mutable, depending
on how the dereferencing operator behaves with the iterator. With a constant
iterator the dereferencing operator produces a read-only version of the
element. With a constant iterator p, you can use *p, for example to assign it to
a variable or output it to the screen, but you cannot change the element in the
container by, for example, assigning to *p. With a mutable iterator p, *p can
be assigned a value and that will change the corresponding element in the
container. The vector iterators are mutable, as shown by the following lines
from Display 18.1:

cout << "Setting entries to 0:\n";
for (p = container.begin(); p != container.end(); p++)
 *p = 0;

If a container has only constant iterators, you cannot obtain a mutable
iterator for the container. However, if a container has mutable iterators and
you want a constant iterator for the container, you can have it. You might want
a constant iterator as a kind of error checking if you intend that your code not
change the elements in the container. For example, the following will produce
a constant iterator for a vector container named container:

std::vector<char>::const_iterator p = container.begin();

or equivalently

using std::vector<char>::const_iterator;
const_iterator p = container.begin();

With p declared in this way, the following would produce an error message:

*p = 'Z';

constant iterator

mutable iterator

18.1 Iterators 957

For example, Display 18.2 would behave exactly the same if you change

vector<int>::iterator p;

to

vector<int>::const_iterator p;

However, a similar change would not work in Display 18.1 because of the
following line from the program in Display 18.1:

*p = 0;

Note that const_iterator is a type name, while constant iterator is the name
of a kind of iterator. However, every iterator of a type named const_iterator
will be a constant iterator.

Reverse Iterators

Sometimes you want to cycle through the elements in a container in reverse
order. If you have a container with bidirectional iterators, you might be
tempted to try:

vector<int>::iterator p;
for (p = container.end(); p != container.begin(); p--)
 cout << *p << " ";

This code will compile, and you may be able to get something like this to
work on some systems, but there is something fundamentally wrong with
this: container.end() is not a regular iterator but only a sentinel, and
container.begin() is not a sentinel.

Fortunately, there is an easy way to do what you want. For a container
with bidirectional iterators, there is a way to reverse everything using a kind of
iterator known as a reverse iterator. The following will work fine:

vector<int>::reverse_iterator rp;
for (rp = container.rbegin(); rp != container.rend(); rp++)
 cout << *rp << " ";

Constant Iterator

A constant iterator is an iterator that does not allow you to change the
element at its location.

reverse iterator

958 CHAPTER 18 / Standard Template Library

The member function rbegin() returns an iterator located at the last element.
The member function rend() returns a sentinel that marks the “end” of the
elements in the reverse order. Note that for an iterator of type
reverse_iterator, the increment operator ++ moves backward through the
elements. In other words, the meanings of -- and ++ are interchanged. The
program in Display 18.3 demonstrates a reverse iterator.

Reverse Iterators

A reverse iterator can be used to cycle through all elements of a container,
provided that the container has bidirectional iterators. The general scheme
is as follows:

STL_Container<type>::reverse_iterator rp;
for (rp = c.rbegin(); rp != c.rend(); rp++)
 Process_At_Location p;

The object c is a container class with bidirectional iterators.

rbegin()

rend()

DISPLAY 18.3 Reverse Iterator (part 1 of 2)

1 //Program to demonstrate a reverse iterator.
2 #include <iostream>
3 #include <vector>
4 using std::cout;
5 using std::endl;
6 using std::vector;

7 int main()
8 {
9 vector<char> container;

10 container.push_back('A');
11 container.push_back('B');
12 container.push_back('C');

13 cout << "Forward:\n";
14 vector<char>::iterator p;
15 for (p = container.begin(); p != container.end(); p++)
16 cout << *p << " ";
17 cout << endl;
18

(continued)

18.1 Iterators 959

The reverse_iterator type also has a constant version, which is named
const_reverse_iterator.

Other Kinds of Iterators

There are other kinds of iterators which we will not cover in this book. We will
briefly mention two kinds of iterators whose names you may encounter. An
input iterator is essentially a forward iterator that can be used with input
streams. An output iterator is essentially a forward iterator that can be used
with output streams. For more details you will need to consult a more
advanced reference.

SELF -TEST EXERC ISES

5. Suppose the vector v contains the letters 'A', 'B', 'C', and 'D' in that
order. What is the output of the following code?

vector<char>::reverse_iterator i = v.rbegin();
i++; i++;
cout << *i << " ";
i--;
cout << *i << " ";

DISPLAY 18.3 Reverse Iterator (part 2 of 2)

19 cout << "Reverse:\n";
20 vector<char>::reverse_iterator rp;
21 for (rp = container.rbegin(); rp != container.rend(); rp++)
22 cout << *rp << " ";
23 cout << endl;

24 return 0;
25 }

Sample Dialogue

Forward:

A B C

Reverse:

C B A

input iterator
output iterator

960 CHAPTER 18 / Standard Template Library

6. Suppose you want to run the following code, where v is a vector of ints:

for (p = v.begin(); p != v.end(); p++)
 cout << *p << " ";

Which of the following are possible ways to declare p?

std::vector<int>::iterator p;
std::vector<int>::const_iterator p;

18.2 CONTAINERS

Put all your eggs in one basket and
—WATCH THAT BASKET.

MARK TWAIN, Pudd’nhead Wilson

The container classes of the STL are different kinds of data structures for
holding data, such as lists, queues, and stacks. Each is a template class with a
parameter for the particular type of data to be stored. So, for example, you can
specify a list to be a list of ints, or doubles, or strings, or any class or struct
type you wish. Each container template class may have its own specialized
accessor and mutator functions for adding data and removing data from the
container. Different container classes may have different kinds of iterators. For
example, one container class may have bidirectional iterators while another
container class may have only forward iterators. However, whenever they are
defined the iterator operators and the member functions begin() and end()
have the same meaning for all STL container classes.

Sequential Containers
A sequential container arranges its data items into a list so there is a first
element, a next element, and so forth up to a last element. The linked lists we
discussed in Chapter 13 are examples of a kind of list. The lists we discussed
in Chapter 13 are sometimes called singly linked lists because there is only
one link from one location to another. The STL has no container correspond-
ing to such singly linked list, although some implementations do offer an
implementation of a singly linked lists, typically under the name slist. The
simplest list that is part of the STL is the doubly linked list, which is the
template class named list. The difference between these two kinds of lists is
illustrated in Display 18.4.

The lists in Display 18.4 contain the three integer values 1, 2, and 3 in that
order. The types for the two lists are slist<int> and list<int>. That display
also indicates the location of the iterators begin() and end(). We have not
yet told you how you can enter the integers into the lists.

container class

singly linked list

doubly linked
list

slist and list

18.2 Containers 961

In Display 18.4 we have drawn our singly and doubly linked lists as nodes
and pointers of the form discussed in Chapter 14. The STL class list and the
nonstandard class slist might (or might not) be implemented in this way.
However, when using the STL template classes, you are shielded from these
implementation details. So, you simply think in terms of locations for the data
(which may or may not be nodes) and iterators (not pointers). You can think
of the arrows in Display 18.4 as indicating the directions for ++ (which is
down) and -- (which is up in Display 18.4).

We wanted to present the template class slist to help give a context for the
sequential containers. It corresponds to what we discussed most in Chapter 13
and it is the first thing that comes to the mind of most programmers when you
mention linked lists. However, since the template class slist is not standard
we will discuss it no more. If your implementation offers the template class
slist and you want to use it, the details are similar to those we will describe
for list, except that the decrement operators -- (prefix and postfix) are not
defined for slist.

A simple program using the STL template class list is given in Display
18.5. the function push_back adds an element to the end of the list. Notice

DISPLAY 18.4 Two Kinds of Lists

slist: a singly linked list.
++ defined -- not defined

list: a doubly linked list.
Both ++ and -- defined

slist is not part of
the STL and may not
always be implemented.
list is part of the STL.

begin()

end()

begin()

end()

1

2

3

1

2

3

push_back

962 CHAPTER 18 / Standard Template Library

that for the list template class, the dereferencing operator gives you access to
the data for reading and for changing the data. Also notice that with the list

DISPLAY 18.5 Using the list Template Class

1 //Program to demonstrate the STL template class list.
2 #include <iostream>
3 #include <list>
4 using std::cout;
5 using std::endl;
6 using std::list;
7
8 int main()
9 {

10 list<int> list_object;
11
12 for (int i = 1; i <= 3; i++)
13 list_object.push_back(i);
14
15 cout << "List contains:\n";
16 list<int>::iterator iter;
17 for (iter = list_object.begin(); iter != list_object.end(); iter++)
18 cout << *iter << " ";
19 cout << endl;
20
21 cout << "Setting all entries to 0:\n";
22 for (iter = list_object.begin(); iter != list_object.end(); iter++)
23 *iter = 0;
24
25 cout << "List now contains:\n";
26 for (iter = list_object.begin(); iter != list_object.end(); iter++)
27 cout << *iter << " ";
28 cout << endl;
29
30 return 0;
31 }

Sample Dialogue

List contains:

1 2 3

Setting all entries to 0:

List now contains:

0 0 0

18.2 Containers 963

template class and all the template classes and iterators of the STL, all
definitions are placed in the std namespace.

Note that Display 18.5 would compile and run exactly the same if we
replace list and list<int> with vector and vector<int> respectively. This
uniformity of usage is a key part of the STL syntax.

There are, however, differences between a vector and a list container. One
of the main differences is that a vector container has random access iterators
while a list has only bidirectional iterators. For example, if you start with
Display 18.2, which uses random access, and replace all occurrences of vector
and vector<char> with list and list<char> respectively and then compile
the program, you will get a compiler error. (You will get an error message even
if you delete the statements containing container[i] or container[2].)

The basic sequential container template classes of the STL are given in Display
18.6. A sample of some member functions is given in Display 18.7. Other
containers, such as stacks and queues can be obtained from these using techniques
discussed in the subsection entitled “Container Adapters stack and queue.”

All these sequence template classes have a destructor that returns storage
for recycling.

namespace

DISPLAY 18.6 STL Basic Sequential Containers

Template
Class Name

Iterator Type Names Kind of Iterators Library Header
File

slist
Warning:
slist is not
part of the
STL.

slist<T>::iterator
slist<T>::const_iterator

mutable forward
constant forward

<slist>
Depends on
implementation
and may not be
available.

list list<T>::iterator
list<T>::const_iterator
list<T>::reverse_iterator
list<T>::const_reverse_iterator

mutable bidirectional
constant bidirectional
mutable bidirectional
constant bidirectional

<list>

vector vector<T>::iterator
vector<T>::const_iterator
vector<T>::reverse_iterator
vector<T>::const_reverse_iterator

mutable random access
constant random access
mutable random access
constant random access

<vector>

deque deque<T>::iterator
deque<T>::const_iterator
deque<T>::reverse_iterator
deque<T>::const_reverse_iterator

mutable random access
constant random access
mutable random access
constant random access

<deque>

destructors

964 CHAPTER 18 / Standard Template Library

Deque is pronounced “d-queue” or “deck” and stands for “doubly ended
queue.” A deque is a kind of super queue. With a queue you add data at one end
of the data sequence and remove data from the other end. With a deque you can
add data at either end and remove data from either end. The template class
deque is a template class for a deque with a parameter for the type of data stored.

DISPLAY 18.7 Some Sequential Container Member Functions

Member Function
(c is a Container Object)

Meaning

c.size() Returns the number of elements in the container.

c.begin() Returns an iterator located at the first element in the container.

c.end() Returns an iterator located one beyond the last element in the container.

c.rbegin() Returns an iterator located at the last element in the container. Used
with reverse_iterator. Not a member of slist.

c.rend() Returns an iterator located one beyond the first element in the con-
tainer. Used with reverse_iterator. Not a member of slist.

c.push_back(Element) Insert the Element at the end of the sequence. Not a member of slist.

c.push_front(Element) Insert the Element at the front of the sequence. Not a member of vector.

c.insert(Iterator,
Element)

Insert a copy of Element before the location of Iterator.

c.erase(Iterator) Removes the element at location Iterator. Returns an iterator at the
location immediately following. Returns c.end() if the last element is
removed.

c.clear() A void function that removes all the elements in the container.

c.front() Returns a reference to the element in the front of the sequence. Equiv-
alent to *(c.begin()).

c1 == c2 True if c1.size() == c2.size() and each element of c1 is equal to
the corresponding element of c2.

c1 != c2 !(c1 == c2)

All the sequential containers discussed in this section also have a default constructor, a copy
constructor, and various other constructors for initializing the container to default or speci-
fied elements. Each also has a destructor that returns all storage for recycling and a well-
behaved assignment operator.

deque

18.2 Containers 965

■ PITFALL Iterators and Removing Elements

When you add or remove an element to or from a container, that can affect other
iterators. In general, there is no guarantee that the iterators will be located at the
same element after an addition or deletion. Some containers do, however,
guarantee that the iterators will not be moved by additions or deletions, except
of course if the iterator is located at an element that is removed.

Of the template classes we have seen so far, list and slist guarantee that
their iterators will not be moved by additions or deletions, except of course if
the iterator is located at an element that is removed. The template classes
vector and deque make no such guarantee. ■

■ PROGRAMMING TIP Type Definitions in Containers

The STL container classes contain type definitions that can be handy when
programming with these classes. We have already seen that STL container classes
may contain the type names: iterator, const_iterator, reverse_iterator,
and const_reverse_ iterator (and hence must contain their type definitions
behind the scenes). There are typically other type definitions as well.

All the template classes we have discussed so far have the defined types
value_type and size_type. The type value_type is the type of the elements
stored in the container. For example, list<int>::value_type is another
name for int. Another defined type is size_type which is an unsigned
integer type that is the return type for the member function size. As we
noted in Chapter 8, the size_type for the vector template class is unsigned
int, although most compilers will be happy if you think of the type as just
plain int. ■

SELF -TEST EXERC ISES

7. What is a major difference between a vector and a list?

8. Which of the template classes slist, list, vector, and deque have the
member function push_back?

Sequential Containers

A sequential container arranges its data items into a list so that there is
a first element, a next element, and so forth up to a last element. The
sequential container template classes that we have discussed are slist,
list, vector, and deque.

966 CHAPTER 18 / Standard Template Library

9. Which of the template classes slist, list, vector, and deque have ran-
dom access iterators?

10. Which of the template classes slist, list, vector, and deque can have
mutable iterators?

Container Adapters stack and queue

Container adapters are template classes that are implemented on top of
other classes. For example, the stack template class is by default implement-
ed on top of the deque template class, which means that buried in the
implementation of the stack is a deque which is where all the data resides.
However, you are shielded from this implementation detail and see a stack
as a simple last-in/first-out data structure.

Other container adapter classes are the queue and priority_queue template
classes. Stacks and queues were discussed in Chapter 13. A priority queue is like
a queue with the additional property that each entry is given a priority when it
is added to the queue. If all entries have the same priority, then entries are
removed from a priority queue in the same manner as they are removed from a
queue. If items have different priorities, the higher priority items are removed
before lower priority items. We will not be discussing priority queues in any
detail, but mention it for those who may be familiar with the concept.

Although an adapter template class has a default container class on top of
which it is built, you may choose to specify a different underlying container,
for efficiency or other reasons depending on your application. For example,
any sequential container may serve as the underlying container for a stack
and any sequential container other than vector may serve as the underlying
container for a queue. The default underlying data structure is the deque for
both the stack and the queue. For a priority_queue the default underlying
container is a vector. If you are happy with the default underlying container
type, then a container adapter looks like any other template container class
to you. For example, the type name for the stack template class using the
default underlying container is stack<int> for a stack of ints. If you wish to
specify that the underlying container is instead the vector template class, you
would use stack<int, vector<int> > as the type name. We will always use
the default underlying container.

If you do specify an underlying container, be warned that you should not
place two > symbols in the type expression without a space in between them,
or the compiler can be confused. Use stack<int, vector<int> >, with a space
between the last two >’s. Do not use stack<int, vector<int>>.

The member functions and other details about the stack template class
are given in Display 18.8. For the queue template class these details are given
in Display 18.9. A simple example of using the stack template class is given
in Display 18.10.

priority queue

Warning

stack
queue

18.2 Containers 967

DISPLAY 18.8 Stack Template Class

Stack Adapter Template Class Details

Type name stack<T> or stack<T, Underlying_Container> for a stack of elements of
type T.

Library header: <stack> which places the definition in the std namespace.

Defined types: value_type, size_type.

There are no iterators.

Sample Member Functions

Member Function
(s is a Stack Object.)

Meaning

s.size() Returns the number of elements in the stack.

s.empty() Returns true if the stack is empty; otherwise returns false.

s.top() Returns a mutable reference to the top member of the stack.

s.push(Element) Insert a copy of Element at the top of the stack.

s.pop() Removes the top element of the stack. Note that pop is a void func-
tion. It does not return the element removed.

s1 == s2 True if s1.size() == s2.size() and each element of s1 is equal
to the corresponding element of s2; otherwise returns false.

The stack template class also has a default constructor, a copy constructor, as well as a con-
structor that takes an object of any sequential container class and initializes the stack to the
elements in the sequence. It also has a destructor that returns all storage for recycling and a
well-behaved assignment operator.

DISPLAY 18.9 Queue Template Class (part 1 of 2)

Queue Adapter Template Class Details

Type name queue<T> or queue<T, Underlying_Container> for a queue of elements of
type T.
For efficiency reasons, the Underlying_Container cannot be a vector type.

Library header: <queue> which places the definition in the std namespace.

(continued)

968 CHAPTER 18 / Standard Template Library

DISPLAY 18.9 Queue Template Class (part 2 of 2)

Defined types: value_type, size_type.

There are no iterators.

Sample Member Functions

Member Function
(q is a Queue Object)

meaning

q.size() Returns the number of elements in the queue.

q.empty() Returns true if the queue is empty; otherwise returns false.

q.front() Returns a mutable reference to the front member of the queue.

q.back() Returns a mutable reference to the last member of the queue.

q.push(Element) Adds Element to the back of the queue.

q.pop() Removes the front element of the queue. Note that pop is a
void
function. It does not return the element removed.

q1 == q2 True if q1.size() == q2.size() and each element of q1 is
equal to the corresponding element of q2; otherwise returns
false.

The queue template class also has a default constructor, a copy constructor, as well as a con-
structor that takes an object of any sequential container class and initializes the stack to the
elements in the sequence. It also has a destructor that returns all storage for recycling and a
well-behaved assignment operator.

DISPLAY 18.10 Program Using the Stack Template Class (part 1 of 2)

1 //Program to demonstrate use of the stack template class from the STL.
2 #include <iostream>
3 #include <stack>
4 using std::cin;
5 using std::cout;
6 using std::endl;
7 using std::stack;
8

(continued)

18.2 Containers 969

SELF -TEST EXERC ISES

11. What kind of iterators (forward, bidirectional, or random access) does the
stack template adapter class have?

12. What kind of iterators (forward, bidirectional, or random access) does the
queue template adapter class have?

13. If s is a stack<char>, what is the type of the returned value of s.pop()?

DISPLAY 18.10 Program Using the Stack Template Class (part 2 of 2)

9 int main()
10 {
11 stack<char> s;
12
13 cout << "Enter a line of text:\n";
14 char next;
15 cin.get(next);
16 while (next != '\n')
17 {
18 s.push(next);
19 cin.get(next);
20 }
21
22 cout << "Written backward that is:\n";
23 while (! s.empty())
24 {
25 cout << s.top();
26 s.pop();
27 }
28 cout << endl;
29
30 return 0;
31 }

Sample Dialogue

Enter a line of text:

straw

Written backward that is:

warts

The member function pop removes one element,
but does not return that element. pop is a
void function. So, we needed to use top to
read the element we remove.

970 CHAPTER 18 / Standard Template Library

Associative Containers set and map

Associative containers are basically very simple databases. They store data, such as
structs or any other type of data. Each data item has an associated value known as
its key. For example, if the data is a struct with an employees record, the key might
be the employees social security number. Items are retrieved on the basis of the key.
The key type and the type for data to be stored need not have any relationship to
one another, although they often are related. A very simple case is when the each
data item is its own key. For example, in a set every element is its own key.

The set template class is, in some sense, the simplest container you can
imagine. It stores elements without repetition. The first insertion places an
element in the set. Additional insertions after the first have no effect, so that
no element appears more than once. Each element is its own key; basically,
you just add or delete elements and ask if an element is in the set or not. Like
all STL classes, the set template class was written with efficiency as a goal. In
order to work efficiently, a set object stores its values in sorted order. You can
specify the order used for storing elements as follows:

set<T, Ordering> s;

Ordering should be a well-behaved ordering relation that takes two arguments of
type T and returns a bool value.1 T is the type of elements stored. If no ordering
is specified, then the ordering is assumed to be the < relational operator. Some
basic details about the set template class are given in Display 18.11. A simple
example that shows how to use some of the member functions of the template
class set is given in Display 18.12.

A map is essentially a function given as a set of ordered pairs. For each
value first that appears in a pair, there is at most one value second, such that
the pair (first, second) is in the map. The template class map implements
map objects in the STL. For example, if you want to assign a unique number
to each string name, you could declare a map object as follows:

map<string, int> number_map;

For string values known as keys, the number_map object can associate a unique
int value.

1 The ordering must be a strict weak ordering. Most typical orderings used to implement
the < operator is strict weak ordering. For those who want the details: A strict weak
ordering must be: (irreflexive) Ordering(x, x) is always false; (antisymmetric)
Ordering(x, y) implies !Ordering(y, x); (transitive) Ordering(x, y) and
Ordering(y, z) implies Ordering(x, z); and (transitivity of equivalence) if x is
equivalent to y and y is equivalent to z, then x is equivalent to z. Two elements x and
y are equivalent if Ordering(x, y) and Ordering(y, x) are both false.

associative
containers

key

set

map

18.2 Containers 971

DISPLAY 18.11 set Template Class

set Template Class Details

Type name set<T> or set<T, Ordering> for a set of elements of type T.
The Ordering is used to sort elements for storage. If no Ordering is given, the ordering
used is the binary operator <.

Library header: <set>, which places the definition in the std namespace.

Defined types include: value_type, size_type.

Iterators: iterator, const_iterator, reverse_iterator, and const_reverse_iterator.
All iterators are bidirectional and those not including const_ are mutable.
begin(), end(), rbegin(), and rend() have the expected behavior.
Adding or deleting elements does not affect iterators, except for an iterator located at the
element removed.

Sample Member Functions

Member Function
(s is a Set Object)

Meaning

s.insert(Element) Insert a copy of Element in the set. If Element is already in the set, this
has no effect.

s.erase(Element) Removes Element from the set. If Element is not in the set, this has no
effect.

s.find(Element) Returns a mutable iterator located at the copy of Element in the set. If
Element is not in the set, s.end() is returned.

s.erase(Iterator) Erases the element at the location of the Iterator.

s.size() Returns the number of elements in the set.

s.empty() Returns true if the set is empty; otherwise returns false.

s1 == s2 Returns true if the sets contains the same elements; otherwise returns
false.

The set template class also has a default constructor, a copy constructor, as well as other
specialized constructors not mentioned here. It also has a destructor that returns all storage
for recycling and a well-behaved assignment operator.

972 CHAPTER 18 / Standard Template Library

DISPLAY 18.12 Program Using the set Template Class

1 //Program to demonstrate use of the set template class.
2 #include <iostream>
3 #include <set>
4 using std::cout;
5 using std::endl;
6 using std::set;

7 int main()
8 {
9 set<char> s;

10
11 s.insert('A');
12 s.insert('D');
13 s.insert('D');
14 s.insert('C');
15 s.insert('C');
16 s.insert('B');
17
18 cout << "The set contains:\n";
19 set<char>::const_iterator p;
20 for (p = s.begin(); p != s.end(); p++)
21 cout << *p << " ";
22 cout << endl;
23
24 cout << "Removing C.\n";
25 s.erase('C');
26 for (p = s.begin(); p != s.end(); p++)
27 cout << *p << " ";
28 cout << endl;
29
30 return 0;
31 }

Sample Dialogue

The set contains:

A B C D

Removing C.

A B D

No matter how many times you add an
element to a set, the set contains
only one copy of that element.

18.2 Containers 973

An alternate way to think of a map is as an associative array. A traditional
array maps from a numerical index to a value. For example, a[10] = 5 would
store the number 5 at index 10. An associative array allows you to define
your own indices using the data type of your choice. For example,
numberMap[“c++”] = 5 would associate the integer 5 with the string “c++”. For
convenience, the [] square bracket operator is defined to allow you to use an
array-like notation to access a map, although you also can use the insert or
find methods if you want.

Like a set object, a map object stores its elements in sorted order by its key
values. You can specify the ordering on keys as a third entry in the angular
brackets < >. If you do not specify an ordering, a default ordering is used. The
restrictions on orderings you can use is the same as those on the orderings
allowed for the set template class. Note that the ordering is on key values
only. The second type can be any type and need not have anything to do with
any ordering. As with the set object, the sorting of the stored entries in a map
object is done for reasons of efficiency.

The easiest way to add and retrieve data from a map is to use the []
operator. Given a map object m, the expression m[key] will return a reference
to the data element associated with key. If no entry exists in the map for key,
then a new entry will be created with the default value for the data element.
For numeric data types, the default value is 0. For objects of type string, the
default value is an empty string.

The [] operator can be used to add a new item to the map or to replace
an existing entry. For example, the statement m[key] = newData; will create a
new association between key and newData. Note that care must be taken to
ensure that map entries are not created by mistake. For example, if you execute
the statement val = m[key]; with the intention of retrieving the value
associated with key but mistakenly enter a value for key that is not already in
the map, then a new entry will be made for key with the default value and
assigned into val.

Some basic details about the map template class are given in Display 18.13.
In order to understand these details, you first need to know something about
the pair template class.

The STL template class pair<T1, T2> has objects that are pairs of values
such that the first element is of type T1 and the second is of type T2. If aPair
is an object of type pair<T1, T2>, then aPair.first is the first element which
is of type T1 and aPier.second is the second element which is of type T2. The
member variables first and second are public member variables, so no
accessor or mutator functions are needed.

The header file for the pair template is <utility>. So, to use the pair
template class, you need the following, or something like it, in your file:

#include<utility>
using std::pair;

associative array

pair

974 CHAPTER 18 / Standard Template Library

DISPLAY 18.13 map Template Class

map Template Class Details

Type name map<KeyType, T> or map<KeyType, T, Ordering> for a map that associates
(“maps”) elements of type KeyType to elements of type T.
The Ordering is used to sort elements by key value for efficient storage. If no Ordering is
given the ordering used is the binary operator <.

Library header: <map>, which places the definition in the std namespace.

Defined types include: key_type for the type of the key values, mapped_type for the type of
the values mapped to, and size_type. (So, the defined type key_type is simply what we called
KeyType earlier.)

Iterators: iterator, const_iterator, reverse_iterator, and const_reverse_iterator.
All iterators are bidirectional. Those iterators not including const_ are neither constant nor
mutable but something in between. For example if p is of type iterator, then you change the
key value but not the value of type T. Perhaps it is best, at least at first, to treat all iterators
as if they were constant.
begin(), end(), rbegin(), and rend() have the expected behavior.
Adding or deleting elements does not affect iterators, except for an iterator located at the
element removed.

Sample Member Functions

Member Function
(m is a Map Object.)

Meaning

m.insert(Element) Inserts Element in the map. Element is of type pair<KeyType, T>.
Returns a value of type pair<iterator, bool>. If the insertion is
successful, the second part of the returned pair is true and the iter-
ator is located at the inserted element.

m.erase(Target_Key) Removes the element with the key Target_Key.

m.find(Target_Key) Returns an iterator located at the element with key value
Target_Key. Returns m.end() if there is no such element.

m[Target_Key] Returns a reference to the object associated with the key
Target_Key. If the map does not already contain such an object
then a default object of type T is inserted and returned.

m.size() Returns the number of pairs in the map.

m.empty() Returns true if the map is empty; otherwise returns false.

m1 == m2 Returns true if the maps contains the same pairs; otherwise
returns false.

The map template class also has a default constructor, a copy constructor, as well as other
specialized constructors not mentioned here. It also has a destructor that returns all storage
for recycling and a well-behaved assignment operator.

18.2 Containers 975

The map template class uses the pair template class to store the association
between the key and a data item. For example, given the definition

map<string, int> numberMap;

we can add a mapping from “c++” to the number 10 by using a pair object:

pair<string, int> toInsert(“c++”, 10);
numberMap.insert(toInsert);

or by using the [] operator:

numberMap["c++"] = 10;

DISPLAY 18.14 Program Using the map Template Class (part 1 of 2)

1 //Program to demonstrate use of the map template class.
2 #include <iostream>
3 #include <map>
4 #include <string>
5 using std::cout;
6 using std::endl;
7 using std::map;
8 using std::string;

9 int main()
10 {
11 map<string, string> planets;

12 planets["Mercury"] = "Hot planet";
13 planets["Venus"] = "Atmosphere of sulfuric acid";
14 planets["Earth"] = "Home";
15 planets["Mars"] = "The Red Planet";
16 planets["Jupiter"] = "Largest planet in our solar system";
17 planets["Saturn"] = "Has rings";
18 planets["Uranus"] = "Tilts on its side";
19 planets["Neptune"] = "1500 mile-per-hour winds";
20 planets["Pluto"] = "Dwarf planet";

21 cout << "Entry for Mercury - " << planets["Mercury"]
22 << endl << endl;

23 if (planets.find("Mercury") != planets.end())
24 cout << "Mercury is in the map." << endl;
25 if (planets.find("Ceres") == planets.end())
26 cout << "Ceres is not in the map." << endl << endl;

27 cout << "Iterating through all planets: " << endl;
28 map<string, string>::const_iterator iter;

(continued)

976 CHAPTER 18 / Standard Template Library

In either case, when we access this pair using an iterator, iterator->first will
refer to the key "c++" while iterator->second will refer to the data value 10.

A simple example that shows how to use some of the member functions
of the template class map is given in Display 18.14.

We will mention two other associative containers, although we will not
give any details about them. The template classes multiset and multimap are
essentially the same as set and map, respectively, except that a multiset allows
repetition of elements and a multimap allows multiple values to be associated
with each key value.

Efficiency

The STL was designed with efficiency as an important consideration. In fact,
the STL implementations strive to be optimally efficient. For example, the set
and map elements are stored in sorted order so that algorithms that search for
the elements can be more efficient.

DISPLAY 18.14 Program Using the map Template Class (part 2 of 2)

29 for (iter = planets.begin(); iter != planets.end(); iter++)
30 {
31 cout << iter->first << " - " << iter->second << endl;
32 }
33 return 0;
34 }

Sample Dialogue

Entry for Mercury - Hot planet

Mercury is in the map.

Ceres is not in the map.

Iterating through all planets:

Earth - Home

Jupiter - Largest planet in our solar system

Mars - The Red Planet

Mercury - Hot planet

Neptune - 1500 mile-per-hour winds

Pluto - Dwarf planet

Saturn - Has rings

Uranus - Tilts on its side

Venus - Atmosphere of sulfuric acid

The iterator will output the map in order sorted
by the key. In this case the output will be listed
alphabetically by planet.

18.3 Generic Algorithms 977

Each of the member functions for each of the template classes has a
guaranteed maximum running time. These maximum running times are
expressed using what is called big-O notation, which we discuss in Section
18.3. (Section 18.3 also gives some guaranteed running times for some of the
container member functions we have already discussed. These are given in the
subsection entitled “Container Access Running Times.”) When using more
advanced references or even later in this chapter, you will be told the
guaranteed maximum running times for certain functions.

SELF -TEST EXERC ISES

14. How many elements will be in the map mymap after the following code is
executed?

map<int, string> mymap;
mymap[5] = "c++";
cout << mymap[4] << endl;

15. Can a set have elements of a class type?

16. Suppose s is of the type set<char>, what value is returned by s.find('A')
if 'A' is in s? What value is returned if 'A' is not in s?

18.3 GENERIC ALGORITHMS

“Cures consumption, anemia, sexual dysfunction, and all other diseases.”

TYPICAL CLAIM BY A TRAVELING SALESMAN OF “SNAKE OIL”

This section covers some basic function templates in the STL. We cannot here
give you a comprehensive description of them all, but will present a large
enough sample to give you a good feel for what is contained in the STL and to
give you sufficient detail to start using these template functions.

These template functions are sometimes called generic algorithms. The
term algorithm is used for a reason. Recall that an algorithm is just a set of
instructions for performing a task. An algorithm can be presented in any
language, including a programming language like C++. But, when using the
word algorithm programmers typically have in mind a less formal presentation
given in English or pseudocode. As such it is often thought of as an abstraction
of the code defining a function. It gives the important details but not the fine
details of the coding. The STL specifies certain details about the algorithms
underlying the STL template functions and that is why they are sometimes
called generic algorithms. These STL function templates do more than just
deliver a value in anyway that the implementers wish. The function
templates in the STL come with minimum requirements that must be

generic
algorithm

978 CHAPTER 18 / Standard Template Library

satisfied by their implementations if they are to satisfy the standard. In most
cases they must be implemented with a guaranteed running time. This adds
an entirely new dimension to the idea of a function interface. In the STL the
interface not only tells a programmer what the function does and how to use
the functions. The interface also tells how rapidly the task will be done. In
some cases the standard even specifies the particular algorithm that is used,
although not the exact detail of the coding. Moreover, when it does specify
the particular algorithm, it does so because of the known efficiency of the
algorithm. The key new point is a specification of an efficiency guarantee for
the code. In this chapter we will use the terms generic algorithm, generic
function, and STL function template to all mean the same thing.

In order to have some terminology to discuss the efficiency of these
template functions or generic algorithms, we first present some background
on how the efficiency of algorithms is usually measured.

Running Times and Big-O Notation

If you ask a programmer how fast his or her program is, you might expect an
answer like “two seconds.” However, the speed of a program cannot be given
by a single number. A program will typically take a longer amount of time on
larger inputs than it will on smaller inputs. You would expect that a program
to sort numbers would take less time to sort ten numbers than it would to sort
one thousand numbers. Perhaps it takes two seconds to sort ten numbers, but
ten seconds to sort one thousand numbers. How then should the programmer
answer the questions, “How fast is your program?”

The programmer would have to give a table of values showing how long
the program took for different sizes of input. For example, the table might be
as shown in Display 18.15. This table does not give a single time, but instead
gives different times for a variety of different input sizes. The table is a
description of what is called a function in mathematics. Just as a (non-void)
C++ function takes an argument and returns a value, so too does this function
take an argument which is an input size and returns a number which is the
time the program takes on an input of that size. If we call this function T, then

DISPLAY 18.15 Some Values of a Running Time Function

Input Size Running Time

10 numbers 2 seconds

100 numbers 2.1 seconds

1,000 numbers 10 seconds

10,000 numbers 2.5 minutes

mathematical
function

18.3 Generic Algorithms 979

T(10) is 2 seconds, T(100) is 2.1 seconds, T(1,000) is 10 seconds, and
T(10,000) is 2.5 minutes. The table is just a sample of some of the values of
this function T. The program will take some amount of time on inputs of every
size. So although they are not shown in the table, there are also values for
T(1), T(2), ..., T(101), T(102), and so forth. For any positive integer N, T(N)
is the amount of time it takes for the program to sort N numbers. The function
T is called the running time of the program.

So far we have been assuming that this sorting program will take the same
amount of time on any list of N numbers. That need not be true. Perhaps, it
takes much less time if the list is already sorted or almost sorted. In that case,
T(N) is defined to be the time taken by the “hardest” list; that is, the time taken
on that list of N numbers which makes the program run the longest. This is
called the worst case running time. In this chapter we will always mean worst case
running time when we give a running time for an algorithm or for some code.

The time taken by a program or algorithm is often given by a formula,
such as 4N + 3, 5N + 4, or N2. If the running time T(N) is 5N + 5, then on
inputs of size N the program will run for 5N + 5 time units.

Following is some code to search an array a with N elements to determine
whether a particular value target is in the array:

int i = 0;
bool found = false;
while ((i < N) && !(found))
 if (a[i] == target)
 found = true;
 else
 i++;

We want to compute some estimate of how long it will take a computer
to execute this code. We would like an estimate that does not depend on
which computer we use, either because we do not know which computer we
will use or because we might use several different computers to run the
program at different times. One possibility is to count the number of “steps,”
but it is not easy to decide what a step is. In this situation the normal thing to
do is to count the number of operations. The term operations is almost as
vague as the term step, but there is at least some agreement in practice about
what qualifies as an operation. Let us say that, for this C++ code, each
application of any of the following will count as an operation: =, <, &&, !, [],
==, and ++. The computer must do other things besides carry out these
operations, but these seem to be the main things that it is doing and we will
assume that they account for the bulk of the time needed to run this code. In
fact, our analysis of time will assume that everything else takes no time at all
and that the total time for our program to run is equal to the time needed to
perform these operations. Although this is an idealization that clearly is not
completely true, it turns out that this simplifying assumption works well in
practice and so is often made when analyzing a program or algorithm.

running time

worst case
running time

operations

980 CHAPTER 18 / Standard Template Library

Even with our simplifying assumption, we still must consider two cases:
either the value target is in the array or it is not. Let us first consider the case
when target is not in the array. The number of operations performed will
depend on the number of array elements searched. The operation = is performed
two times before the loop is executed. Since we are assuming that target is not
in the array, the loop will be executed N times, one for each element of the array.
Each time the loop is executed, the following operations are performed: <, &&, !,
[], ==, and ++ This adds 6 operators for each of N loop iterations. Finally, after
N iterations, the Boolean expression is again checked and found to be false. This
adds a final three operations (<, &&, !).2 If we tally all these operations, we get a
total of 6N + 5 operations when the target is not in the array. We will leave it
as an exercise for the reader to confirm that if the target is in the array, then the
number of operations will be 6N + 5 or less. Thus, the worst case running time
is T(N) = 6N + 5 operations for any array of N elements and any value of target.

We just determined that the worst case running time for our search code is
6N + 5 operations. But operations is not a traditional unit of time, like
nanoseconds, seconds, or minutes. If we want to know how long the algorithm
will take on some particular computer, we must know how long it takes that
computer to perform one operation. If an operation can be performed in one
nanosecond, then the time will be 6N + 5 nanoseconds. If an operation can be
performed in one second, the time will be 6N + 5 seconds. If we use a slow
computer that takes ten seconds to perform an operation, the time will be 60N
+ 50 seconds. In general if it takes the computer c nanoseconds to perform one
operation, then the actual running time will be approximately c(6N + 5)
nanoseconds. (We say approximately, since we are making some simplifying
assumptions and so the result may not be the absolutely exact running time.)
This means that our running time of 6N + 5 is a very crude estimate. To get the
running time expressed in nanoseconds, you must multiply by some constant
which depends on the particular computer you are using. Our estimate of 6N +
5 is only accurate to “within a constant multiple.” There is a standard notation
for these sorts of estimates and we next discuss this notation.

Estimates on running time, such as the one we just went through, are
normally expressed in something called big-O notation. (The O is the letter
“Oh,” not the digit zero.) Suppose we estimate the running time to be, say, 6N
+ 5 operations and suppose we know that no matter what the exact running
time of each different operation may turn out to be, there will always be some
constant factor c such that the real running time is less than or equal to

c(6N + 5)

Under these circumstances, we say the code (or program or algorithm) runs in
time O(6N + 5). This is usually read as “big-O of 6N + 5.” We need not know

2 Because of short circuit evaluation, !(found) is not evaluated, so we actually get 2,
not 3 operations. However, the important thing is to obtain a good upper bound. If we
add in one extra operation that is not significant.

big-O notation

18.3 Generic Algorithms 981

what the constant c will be. In fact it will undoubtedly be different for different
computers, but we must know that there is one such c for any reasonable
computer system. If the computer is very fast, then the c might be less than one,
say 0.001. If the computer is very slow, the c might be very large, say 1000.
Moreover, since changing the units, say from nanosecond to second, only
involves a constant multiple, there is no need to give any units of time.

Be sure to notice that a big-O estimate is an upper bound estimate. We
always approximate by taking numbers on the high side, rather than the low
side of the true count. Also notice that, when performing a big-O estimate, we
need not determine a very exact count of the number of operations performed.
We need only an estimate that is correct “up to a constant multiple.” If our
estimate is twice as large as the true number, that is good enough.

An order of magnitude estimate, such as the previous 6N + 5, contains a
parameter for the size of the task solved by the algorithm (or program or piece
of code). In our sample case, this parameter N was the number of array elements
to be searched. Not surprisingly, it takes longer to search a larger number of
array elements than it does to search a smaller number of array elements. Big-O
running time estimates are always expressed as a function of the size of the
problem. In this chapter all our algorithms will involve a range of values in
some container. In all cases N will be the number of elements in that range.

The following is an alternative, pragmatic way to think about big-O
estimates:

Look only at the term with the highest exponent and do not pay
attention to constant multiples.

For example, all of the following are O(N2):

N2 + 2N + 1, 3N2 + 7, 100N2 + N

All of the following are O(N3):

N3 + 5N2 + N + 1, 8N3 + 7, 100N3 + 4N + 1

Big-O running time estimates are admittedly crude, but they do contain
some information. They will not distinguish between a running time of 5N + 5
and a running time of 100N, but they do let us distinguish between some
running times and so determine that some algorithms are faster than others.
Look at the graphs in Display 18.16, notice that all the graphs for functions that
are O(N) eventually fall below the graph for the function 0.5N2. The result is
inevitable: an O(N) algorithm will always run faster than any O(N2) algorithm,
provided we use large enough values of N. Although an O(N2) algorithm could
be faster than an O(N) algorithm for the problem size you are handling,
programmers have found that in practice O(N) algorithms perform better than
O(N2) algorithms for most practical applications that are intuitively “large.”
Similar remarks apply to any other two different big-O running times.

Some terminology will help with our descriptions of generic algorithm
running times. Linear running time means a running time of T(N) = aN + b. A

size of task

linear

982 CHAPTER 18 / Standard Template Library

linear running time is always an O(N) running time. Quadratic running time
means a running time with highest term N2. A quadratic running time is always an
O(N2) running time. We will also occasionally have logarithms in running time
formulas. Those normally are given without any base, since changing the base is
just a constant multiple. If you see log N, think log base 2 of N, but it would not
be wrong to think log base 10 of N. Logarithms are very slow-growing functions.
So, a O(log N) running time is very fast. Sometimes log2N is written as lgN.

Container Access Running Times

Now that we know about big-O notation, we can express the efficiency of some
of the accessing functions for container classes that we discussed in Section 18.2.
Insertions at the back of a vector (push_back), the front or back of a deque
(push_back and push_front), and anywhere in a list (insert) are all O(1)
(that is, a constant upper bound on the running time that is independent of the
size of the container.) Insertion or deletion of an arbitrary element for a

DISPLAY 18.16 Comparison of Running Times

T(
N) =

 0
.5

N
2

T(
N) =

 N
 +

 2

T(
N

)
(r

u
n

n
in

g
ti

m
e)

N (the problem size)

T(
N) =

 N

T(
N) =

 1
.5

 N

quadratic

18.3 Generic Algorithms 983

vector or deque is O(N) where N is the number of elements in the container.
For a set or map finding (find) is O(log N) where N is the number of elements
in the container.

SELF -TEST EXERC ISES

17. Show that a running time T(N) = aN + b is an O(N) running time. Hint:
The only issue is the + b. Assume N is always at least 1.

18. Show that for any two bases a and b for logarithms, if a and b are both
greater than 1, then there is a constant c such that loga N ≤ c(logb N).
Thus, there is no need to specify a base in O(log N). That is, O(loga N)
and O(logb N) mean the same thing.

Nonmodifying Sequence Algorithms

This sections describes template functions that operate on containers but do
not modify the contents of the container in any way. A good simple and
typical example is the generic find function.

The generic find function is similar to the find member function of the set
template class but is a different find function; in particular, the generic find
function takes more arguments than the find function we discussed when we
presented the set template class. The generic find function searches a container
to locate a particular element, but the generic find can be used with any of the
STL sequential container classes. Display 18.17 shows a sample use of the generic
find function used with the class vector<char>. The function in Display 18.17

DISPLAY 18.17 The Generic find Function (part 1 of 2)

1 //Program to demonstrate use of the generic find function.
2 #include <iostream>
3 #include <vector>
4 #include <algorithm>
5 using std::cin;
6 using std::cout;
7 using std::endl;
8 using std::vector;
9 using std::find;

10 int main()
11 {
12 vector<char> line;

13 cout << "Enter a line of text:\n";
14 char next;

(continued)

984 CHAPTER 18 / Standard Template Library

DISPLAY 18.17 The Generic find Function (part 2 of 2)

15 cin.get(next);
16 while (next != '\n')
17 {
18 line.push_back(next);
19 cin.get(next);
20 }

21 vector<char>::const_iterator where;
22 where = find(line.begin(), line.end(), 'e');
23 //where is located at the first occurrence of 'e' in line.

24 vector<char>::const_iterator p;
25 cout << "You entered the following before you entered your first e:\n";
26 for (p = line.begin(); p != where; p++)
27 cout << *p;
28 cout << endl;

29 cout << "You entered the following after that:\n";
30 for (p = where; p != line.end(); p++)
31 cout << *p;
32 cout << endl;

33 cout << "End of demonstration.\n";
34 return 0;
35 }

Sample Dialogue 1

Enter a line of text

A line of text.

You entered the following before you entered your first e:

A lin

You entered the following after that:

e of text.

End of demonstration.

Sample Dialogue 2

Enter a line of text

I will not!

You entered the following before you entered your first e:

I will not!

You entered the following after that:

End of demonstration.

If find does not find what it is looking for,
it returns its second argument.

If find does not find
what it is looking for, it
returns line.end().

18.3 Generic Algorithms 985

would behave exactly the same if we replaced vector<char> with list<char>
throughout, or if we replaced vector<char> with any other sequential container
class. That is one of the reasons why the functions are called generic. One
definition of the find function works for a wide selection of containers.

If the find function does not find the element it is looking for, it returns
its second iterator argument, which need not be equal to some end() as it is
in Display 18.17. Sample Dialogue 2 shows the situation when find does not
find what it is looking for.

Does find work with absolutely any container classes? No, not quite. To
start with, it takes iterators as arguments and some container, such as stack,
do not have iterators. To use the find function, the container must have
iterators, the elements must be stored in a linear sequence so that the ++
operator moves iterators through the container, and the elements must be
comparable using ==. In other words, the container must have forward
iterators (or some stronger kind of iterators, such as bidirectional iterators).

When presenting generic function templates, we will describe the iterator
type parameter by using the name of the required kind of iterator as the type
parameter name. So ForwardIterator should be replaced by a type that is a
type for some kind of forward iterator, such as the iterator type in a list,
vector, or other container template class. Remember, a bidirectional iterator
is also a forward iterator, and a random access iterator is also a bidirectional
iterator. So the type name ForwardIterator can be used with any iterator type
that is a bidirectional or random access iterator type as well as a plain old
forward iterator type. In some cases, when we specify ForwardIterator you
can use an even simpler iterator kind; namely, an input iterator or output
iterator, but since we have not discussed input and output iterators, we do not
mention them in our function template declarations.

Remember the names forward iterator, bidirectional iterator, and random
access iterator refer to kinds of iterators, not type names. The actual type names
will be something like std::vector<int>::iterator, which in this case
happens to be a random access iterator.

Display 18.18 gives a sample of some nonmodifying generic functions in
the STL. Display 18.18 uses a notation that is common when discussing
container iterators. The iterator locations encountered in moving from an
iterator first to, but not equal to, an iterator last is called the range [first,
last). For example, the following for loop outputs all the elements in the
range [first, last):

for (iterator p = first; p != last; p++)
 cout << *p << endl;

Note that when two ranges are given they need not be in the same
container or even the same type of container. For example, for the search
function, the ranges [first1, last1) and [first2, last2) may be in the
same or different containers.

[first, last)

986 CHAPTER 18 / Standard Template Library

DISPLAY 18.18 Some Nonmodifying Generic Functions

1 template <class ForwardIterator, class T>
2 ForwardIterator find(ForwardIterator first,
3 ForwardIterator last, const T& target);
4 //Traverses the range [first, last) and returns an iterator located at
5 //the first occurrence of target. Returns second if target is not found.
6 //Time complexity: linear in the size of the range [first, last).

7 template <class ForwardIterator, class T>
8 int3 count(ForwardIterator first, ForwardIterator last, const T& target);
9 //Traverses the range [first, last) and returns the number

10 //of elements equal to target.
11 //Time complexity: linear in the size of the range [first, last).

12 template <class ForwardIterator1, class ForwardIterator2>
13 bool equal(ForwardIterator1 first1, ForwardIterator1 last1,
14 ForwardIterator2 first2);
15 //Returns true if [first1, last1) contains the same elements in the same order as
16 //the first last1-first1 elements starting at first2. Otherwise, returns false.
17 //Time complexity: linear in the size of the range [first, last).
18
19 template <class ForwardIterator1, class ForwardIterator2>
20 ForwardIterator1 search(ForwardIterator1 first1, ForwardIterator1 last1,
21 ForwardIterator2 first2, ForwardIterator2 last2);
22 //Checks to see if [first2, last2) is a subrange of [first1, last1).
23 //If so, it returns an iterator located in [first1, last1) at the start of
24 //the first match. Returns last1 if a match is not found.
25 //Time complexity: quadratic in the size of the range [first1, last1).

26 template <class ForwardIterator, class T>
27 bool binary_search(ForwardIterator first, ForwardIterator last,
28 //const T& target);
29 //Precondition: The range [first, last) is sorted into ascending order using <.
30 //Uses the binary search algorithm to determine if target is in the range
31 //[first, last).
32 //Time complexity: For random access iterators O(log N). For non-random-access
33 //iterators
34 //linear is N, where N is the size of the range [first, last).

These all work for forward iterators, which means they also work for bidirectional and random
access iterators. (In some cases they even work for other kinds of iterators, which we have not
covered in any detail.)

3 The actual return type is an integer type that we have not discussed, but the returned value should be
assignable to a variable of type int.

18.3 Generic Algorithms 987

Notice that there are three search functions in Display 18.18—find,
search, and binary_search. The function search searches for a subsequence,
while the find and binary_search functions search for a single value. How do
you decide whether to use find or binary_search when searching for a single
element? One returns an iterator while the other returns just a Boolean value,
but that is not the biggest difference. The binary_search function requires that
the range being searched be sorted (into ascending order using <) and runs in
time O(log N) while the find function does not require that the range be
sorted but it guarantees only linear time. If you have or can have the elements
in sorted order, you can search for them much more quickly by using
binary_search.

Note that with the binary_search function you are guaranteed that the
implementation will use the binary search algorithm, which was discussed in
Chapter 14. The importance of using the binary search algorithm is that it
guarantees a very fast running time, O(log N). If you have not read Chapter 14
and have not otherwise heard of binary search, just think of it as a very efficient
search algorithm that requires that the elements be sorted. Those are the only
two points about binary search that are relevant to the material in this chapter.

SELF -TEST EXERC ISES

19. Replace all occurrences of the identifier vector with the identifier list in
Display 18.17. Compile and run the program.

20. Suppose v is an object of the class vector<int>. Use the search generic
function (Display 18.18) to write some code to determine whether or not
v contains the number 42 immediately followed by 43. You need not give
a complete program, but do give all necessary include and using direc-
tives. Hint: It may help to use a second vector.

Range [first, last)

The movement from some iterator first, often container.begin(),
up to but not including some location last, often container.end(), is
so common it has come to have a special name, range [first, last). For
example, the following outputs all elements in the range [c.begin(),
c.end()), where c is some container object, such as a vector:

for (iterator p = c.begin(); p != c.end(); p++)
 cout << *p << endl;

988 CHAPTER 18 / Standard Template Library

DISPLAY 18.19 Some Modifying Generic Functions

1 template <class T>
2 void swap(T& variable1, T& variable2);
3 //Interchanges the values of variable1 and variable2

4 template <class ForwardIterator1, class ForwardIterator2>
5 ForwardIterator2 copy(ForwardIterator1 first1, ForwardIterator1 last1,
6 ForwardIterator2 first2, ForwardIterator2 last2);
7 //Precondition: The ranges [first1, last1) and [first2, last2) are the same size.
8 //Action: Copies the elements at locations [first1, last1) to locations
9 //[first2, last2).

10 //Returns last2.
11 //Time complexity: linear in the size of the range [first1, last1).

12 template <class ForwardIterator, class T>
13 ForwardIterator remove(ForwardIterator first, ForwardIterator last,
14 const T& target);
15 //Removes those elements equal to target from the range [first, last).
16 //The size of
17 //the container is not changed. The removed values equal to target are
18 //moved to the
19 //end of the range [first, last). There is then an iterator i in this
20 //range, such that
21 //all the values not equal to target are in [first, i). This i is returned.
22 //Time complexity: linear in the size of the range [first, last).

23 template <class BidirectionalIterator>
24 void reverse(BidirectionalIterator first, BidirectionalIterator last);
25 //Reverses the order of the elements in the range [first, last).
26 //Time complexity: linear in the size of the range [first, last).

27 template <class RandomAccessIterator>
28 void random_shuffle(RandomAccessIterator first, RandomAccessIterator last);
29 //Uses a pseudorandom number generator to randomly reorder the elements
30 //in the range [first, last).
31 //Time complexity: linear in the size of the range [first, last).

The name of the iterator type parameter tells the kind of iterator for which the function works.
Remember that these are minimum iterator requirements. For example, ForwardIterator
works for forward iterators, bidirectional iterators, and random access iterators.

18.3 Generic Algorithms 989

Container Modifying Algorithms

Display 18.19 contains descriptions of some of the generic functions in the
STL which change the contents of a container in some way.

Remember that when you add or remove an element to or from a
container, that can affect any of the other iterators. There is no guarantee that
the iterators will be located at the same element after an addition or deletion
unless the container template class makes such a guarantee. Of the template
classes we have seen, list and slist guarantee that their iterators will not be
moved by additions or deletions, except of course if the iterator is located at
an element that is removed. The template classes vector and deque make no
such guarantee. Some of the function templates in Display 18.19 guarantee
the values of some specific iterators and those guarantees you can, of course,
count on, no matter what the container is.

SELF -TEST EXERC ISES

21. Can you use the random_shuffle template function with a list container?

22. Can you use the copy template function with vector containers, even though
copy requires forward iterators and vector has random access iterators?

Set Algorithms

Display 18.20 shows a sample of the generic set operation functions defined
in the STL. Note that these generic algorithms assume the containers store

DISPLAY 18.20 Set Operations (part 1 of 2)

1 template <class ForwardIterator1, class ForwardIterator2>
2 bool includes(ForwardIterator1 first1, ForwardIterator1 last1,
3 ForwardIterator2 first2, ForwardIterator2 last2);
4 //Returns true if every element in the range [first2, last2) also occurs in the
5 //range [first1, last1). Otherwise, returns false.
6 //Time complexity: linear in the size of [first1, last1) plus [first2, last2).
7

(continued)

These operations work for sets, maps, multisets, multimaps (and other containers) but do
not work for all containers. For example, they do not work for vectors, lists, or deques
unless their contents are sorted. For these containers to work, the elements in the container
must be stored in sorted order. These operators all work for forward iterators, which means
they also work for bidirectional and random access iterators. (In some cases they even work
for other kinds of iterators, which we have not covered in any detail.)

990 CHAPTER 18 / Standard Template Library

their elements in sorted order. The containers set, map, multiset, and
multimap do store their elements in sorted order; so, all the functions in
Display 18.20 apply to these four template class containers. Other containers,
such as vector, do not store their elements in sorted order and these functions
should not be used with such containers. The reason for requiring that the
elements be sorted is so that the algorithms can be more efficient.

SELF -TEST EXERC ISE

23. The mathematics course version of a set does not keep its elements in sorted
order and it has a union operator. Why does the set_union template func-
tion require that the containers keep their elements in sorted order?

DISPLAY 18.20 Set Operations (part 2 of 2)

8 template <class ForwardIterator1, class ForwardIterator2,
9 //class ForwardIterator3>

10 void set_union(ForwardIterator1 first1, ForwardIterator1 last1,
11 ForwardIterator2 first2, ForwardIterator2 last2,
12 ForwardIterator3 result);
13 //Creates a sorted union of the two ranges [first1, last1) and [first2, last2).
14 //The union is stored starting at result.
15 //Time complexity: linear in the size of [first1, last1) plus [first2, last2).

16 template <class ForwardIterator1, class ForwardIterator2,
17 //class ForwardIterator3>
18 void set_intersection(ForwardIterator1 first1, ForwardIterator1 last1,
19 ForwardIterator2 first2, ForwardIterator2 last2,
20 ForwardIterator3 result);
21 //Creates a sorted intersection of the two ranges [first1, last1) and
22 //[first2, last2).
23 //The intersection is stored starting at result.
24 //Time complexity: linear in the size of [first1, last1) plus [first2, last2).
25
26 template <class ForwardIterator1, class ForwardIterator2,
27 //class ForwardIterator3>
28 void set_difference(ForwardIterator1 first1, ForwardIterator1 last1,
29 ForwardIterator2 first2, ForwardIterator2 last2,
30 ForwardIterator3 result);
31 //Creates a sorted set difference of the two ranges [first1, last1) and
32 //[first2, last2).
33 //The difference consists of the elements in the first range that are not in the
34 //second.
35 //The result is stored starting at result.
36 //Time complexity: linear in the size of [first1, last1) plus [first2, last2).

Chapter Summary 991

Sorting Algorithms

Display 18.21 gives the declarations and documentation for two template
functions, one to sort a range of elements and one to merge two sorted
ranges of elements. Note that the sorting function sort guarantees a run time
of O(N log N). Although it is beyond the scope of this book, it can be shown
that you cannot write a comparison-based sorting algorithm that is faster
than O(N log N). So, this guarantees that the sorting algorithm is as fast as
is possible, up to a constant multiple.

CHAPTER SUMMARY

■ An iterator is a generalization of a pointer. Iterators are used to move
through the elements in some range of a container. The operations ++, --,
and dereferencing * are usually defined for an iterator.

■ Container classes with iterators have member functions end() and begin()
that return iterator values such that you can process all the data in the con-
tainer as follows:

for (p = c.begin(); p != c.end(); p++)
 process *p //*p is the current data item.

DISPLAY 18.21 Some Generic Sorting Algorithms

1 template <class RandomAccessIterator>
2 void sort(RandomAccessIterator first, RandomAccessIterator last);
3 //Sorts the elements in the range [first, last) into ascending order.
4 //Time complexity: O(N log N) where N is the size of the range [first, last).
5
6 template <class ForwardIterator1, class ForwardIterator2,
7 //class ForwardIterator3>
8 void merge(ForwardIterator1 first1, ForwardIterator1 last1,
9 ForwardIterator2 first2, ForwardIterator2 last2,

10 ForwardIterator3 result);
11 //Precondition: The ranges [first1, last1) and [first2, last2) are sorted.
12 //Action: Merges the two ranges into a sorted range [result, last3) where
13 //last3 = result + (last1 - first1) + (last2 - first2).
14 //Time complexity: linear in the size of the range [first1, last1)
15 //plus the size of [first2, last2).

Sorting uses the < operator, and so the < operator must be defined.
There are other versions, not given here, that allow you to provide the
ordering relation. Sorted means sorted into ascending order.

992 CHAPTER 18 / Standard Template Library

■ The main kinds of iterators are

Forward iterators: ++ works on the iterator.

Bidirectional iterators: both ++ and -- work on the iterator.

Random access iterators: ++, --, and random access all work with the iterator.

■ With a constant iterator p, the dereferencing operator *p produces a read-only
version of the element. With a mutable iterator p, *p can be assigned a value.

■ A bidirectional container has reverse iterators that allow your code to cycle
through the elements in the container in reverse order.

■ The main container template classes in the STL are list, which has muta-
ble bidirectional iterators, and the template classes vector and deque, both
of which have mutable random access iterators.

■ stack and queue are container adaptor classes, which means they are built
on top of other container classes. A stack is a last-in/first-out container. A
queue is a first-in/first-out container.

■ The set, map, multiset, and multimap container template classes store their
elements in sorted order for efficiency of search algorithms. A set is a sim-
ple collection of elements. A map allows storing and retrieving by key values.
The multiset class allows repetitions of entries. The multimap class allows a
single key to be associated with multiple data items.

■ The STL includes template functions to implement generic algorithms with
guarantees on their maximum running time.

Answers to Self-Test Exercises

1. v.begin() returns an iterator located at the first element of v. v.end() returns
a value that serves as a sentinel value at the end of all the elements of v.

2. *p is the dereferencing operator applied to p. *p is a reference to the ele-
ment at location p.

3. vector<int>::iterator p;
for (p = v.begin(), p++; p != v.end(); p++)
 cout << *p << " ";

4. D C C

5. B C

6. Either would work.

Answers to Self-Test Exercises 993

7. A major difference is that a vector container has random access iterators
while a list has only bidirectional iterators.

8. All except slist.

9. vector and deque.

10. They all can have mutable iterators.

11. The stack template adapter class has no iterators.

12. The queue template adapter class has no iterators.

13. No value is returned; pop is a void function.

14. mymap will contain two entries. One is a mapping from 5 to "c++" and the
other is a mapping from 4 to the default string, which is blank.

15. Yes they can be of any type, although there is only one type for each set
object. The type parameter in the template class is the type of elements
stored.

16. If 'A' is in s, then s.find('A') returns an iterator located at the element
'A'. If 'A' is not in s, then s.find('A') returns s.end().

17. Just note that aN + b ≤ (a + b)N, as long as 1 ≤ N.

18. This is mathematics, not C++. So, = will mean equals not assignment.

First note that loga N = (loga b)(logb N).

To see this first identity just note that if you raise a to the power loga N
you get N and if you raise a to the power (loga b)(logb N) you also get N.

If you set c = (log a b) you get log a N = c(log b N).

19. The programs should run exactly the same.

20. #include <iostream>
#include <vector>
#include <algorithm>
using std::cout;
using std::vector;
using std::search;
 ...
vector<int> target;
target.push_back(42);
target.push_back(43);
vector<int>::const_iterator result = search(v.begin(), v.end(),
 target.begin(), target.end());

994 CHAPTER 18 / Standard Template Library

if (result != v.end())
 cout << "Found 42, 43.\n";
else
 cout << "42, 43 not there.\n";

21. No, you must have random access iterators and the list template class
has only bidirectional iterators.

22. Yes, a random access iterator is also a forward iterator.

23. The set_union template function requires that the containers keep their
elements in sorted order to allow the function template to be imple-
mented in a more efficient way.

PROGRAMMING PROJECTS

1. Write a program in which you declare a deque to store values of type double,
read in 10 double numbers and store them in the deque. Then call the generic
sort function to sort the numbers in the deque and display the results.

2. Write a program that allows the user to enter any number of student names
and their scores. The program should then display the student names and
scores according to the ascending order of scores. Use the template class
vector and the generic sort function from the STL. Note that you will need
to define a structure or class type for data consisting of one student name and
score. You will also need to overload the < operator for this structure or class.

3. A prime number is an integer greater than 1 and divisible only by itself and 1.
An integer x is divisible by an integer y if there is another integer z such
x = y*z. The Greek mathematician Erathosthenes (pronounced: Er-ah-tos-
thin-eeze) gave an algorithm for finding all prime numbers less than some
integer N. This algorithm is call the Sieve of Erathosthenes. It works like this:
Begin with a list of integers 2 through N. The number 2 is the first prime. (It is
instructive to consider why this is true.) The multiples of 2 , that is, 4, 6, 8, etc.,
are not prime. We cross these off the list. Then the first number after 2 that was
not crossed off is the next prime. This number is 3. The multiples of 3 are not
primes. Cross the multiples of 3 off the list. Note that 6 is already gone, cross
off 9, 12 is already gone, cross off 15, etc. The first number not crossed off is
the next prime. The algorithm continues on this fashion until we reach N. All
the numbers not crossed off the list are primes.

a. Write a program using this algorithm to find all primes less than a user
supplied number N. Use a vector container for the integers. Use an
array of bool initially set to all true to keep track of crossed off inte-
gers. Change the entry to false for integers that are crossed off the list.

b. Test for N = 10, 30, 100, and 300.

Programming Projects 995

Improvements:

c. Actually, we don’t need to go all the way to N. You can stop at N/2. Try
this and test your program. N/2 works and is better, but is not the
smallest number we could use. Argue that to get all the primes
between 1 and N the minimum limit is the square root of N.

d. Modify your code from part (a) to use the square root of N as an upper
limit.

4. Suppose you have a collection of student records. The records are struc-
tures of the following type:

struct StudentInfo
{
 string name;
 int grade;
};

The records are maintained in a vector<StudentInfo>. Write a program
that prompts for and fetches data and builds a vector of student records,
then sorts the vector by name, calculates the maximum and minimum
grades, and the class average, then prints this summarizing data along with
a class roll with grades. (We aren’t interested in who had the maximum and
minimum grade, though, just the maximum, minimum, and average
statistics.) Test your program.

5. Continuing Programming Project 4, write a function that separates the
students in the vector of StudentInfo records into two vectors, one con-
taining records of passing students and one containing records of failing
students. (Use a grade of 60 or better for passing.)

You are asked to do this in two ways, and to give some run-time estimates.

a. Consider continuing to use a vector. You could generate a second vec-
tor of passing students and a third vector of failing students. This keeps
duplicate records for at least some of the time, so don’t do it that way.
You could create a vector of failing students and a test-for-failing func-
tion. Then you push_back failing student records, then erase (which is
a member function) the failing student records from the original vec-
tor. Write the program this way.

b. Consider the efficiency of this solution. You are potentially erasing
O(N) members from the middle of a vector. You have to move a lot
of members in this case. Erase from the middle of a vector is an
O(N) operation. Give a big O estimate of the running time for this
program.

c. If you used a list<StudentInfo>, what are the run-times for the erase
and insert functions? Consider how the time efficiency of erase for a
list effects the runtime for the program. Rewrite this program using a

996 CHAPTER 18 / Standard Template Library

list instead of a vector. Remember that a list provides neither
indexing nor random access, and its iterators are only bidirectional,
not random access.

6. Redo (or do for the first time) Programming Project 12 from Chapter 11,
except use the STL set template class instead of your own set class. Use
the generic set_intersection function to compute the intersection of Q
and D.

Here is an example of set_intersection to intersect set A with B and
store the result in C, where all sets are sets of strings:

#include <iterator>
#include <set>
#include <string>
...

set<string> C;
// Note space between > > in line below
insert_iterator<set<string> > cIterator(C, C.begin());
set_intersection(A.begin(), A.end(),

B.begin(),B.end(),
cIter);

// set C now contains the intersection of A and B

7. In this project you are to create a database of books that are stored using a
vector. Keep track of the author, title, and publication date of each book.
Your program should have a main menu that allows the user to select
from the following: (1) Add a book’s author, title, and date, (2) Print an
alphabetical list of the books sorted by author, and (3) Quit.

You must use a class to hold the data for each book. This class must hold
three string fields, one to hold the author’s name, one for the publication
date, and another to hold the book’s title. Store the entire database of
books in a vector in which each vector element is a book class object.

To sort the data, use the generic sort function from the <algorithm>
library. Note that this requires you to define the < operator to compare
two objects of type Book so that the author field from the two books are
compared.

A sample of the input/output behavior might look as follows. Your I/O
need not look identical, this is just to give you an idea of the functionality.

Select from the following choices:
1. Add new book
2. Print listing sorted by author
3. Quit
1

Video Note:

Solution to
Programming
Project 18.7

Programming Projects 997

Enter title:
More Than Human
Enter author:
Sturgeon, Theodore
Enter date:
1953

Select from the following choices:
1. Add new book
2. Print listing sorted by author
3. Quit
1

Enter title:
Problem Solving with C++
Enter author:
Savitch, Walter
Enter date:
2006

Select from the following choices:
1. Add new book
2. Print listing sorted by author
3. Quit
2

The books entered so far, sorted alphabetically by author are:
 Savitch, Walter. Problem Solving with C++. 2006.
 Sturgeon, Theodore. More Than Human. 1953.

Select from the following choices:
1. Add new book
2. Print listing sorted by author
3. Quit
1

Enter title:
At Home in the Universe
Enter author:
Kauffman
Enter date:
1996

Select from the following choices:
1. Add new book
2. Print listing sorted by author
3. Quit
2

998 CHAPTER 18 / Standard Template Library

The books entered so far, sorted alphabetically by artist are:
 Kauffman, At Home in the Universe, 1996
 Savitch, Walter. Problem Solving with C++. 2006.
 Sturgeon, Theodore. More Than Human. 1953.

8. Redo or do for the first time Programming Project 11 from Chapter 14,
except use the STL set class for all set operations and the STL linked list
class to store and manipulate each individual permutation. When creating
a set containing lists, make sure to place a space between the last two >’s
or the compiler may get confused. For example, set<list<int> > defines
a set where elements are linked lists containing elements of type int. The
code set<list<int>> without a space will likely produce a compiler error.

9. You have collected a file of movie ratings where each movie is rated from
1 (bad) to 5 (excellent). The first line of the file is a number that identifies
how many ratings are in the file. Each rating then consists of two lines:
the name of the movie followed by the numeric rating from 1 to 5. Here is
a sample rating file with four unique movies and seven ratings:

7
Harry Potter and the Order of the Phoenix
4
Harry Potter and the Order of the Phoenix
5
The Bourne Ultimatum
3
Harry Potter and the Order of the Phoenix
4
The Bourne Ultimatum
4
Wall-E
4
Glitter
1

Write a program that reads a file in this format, calculates the average
rating for each movie, and outputs the average along with the number of
reviews. Here is the desired output for the sample data:

Glitter: 1 review, average of 1 / 5
Harry Potter and the Order of the Phoenix: 3 reviews, average
of 4.3 / 5
The Bourne Ultimatum: 2 reviews, average of 3.5 / 5
Wall-E: 1 review, average of 4 / 5

Use a map or multiple maps to calculate the output. Your map(s) should
index from a string representing each movie’s name to integers that store
the number of reviews for the movie and the sum of the ratings for the
movie.

999

C++ Keywords

APPENDIX

1
The following keywords should not be used for anything other than their
predefined purposes in the C++ language. In particular, do not use them for
variable names or for programmer-defined functions. In addition to the key-
words listed below, identifiers containing a double underscore (_ _) are reserved
for use by C++ implementations and standard libraries and should not be used
in your programs.

These alternative representations for operators and punctuation are reserved
and also should not be used otherwise.

asm

auto

bool

break

case

catch

char

class

const

const_cast

continue

default

delete

do

double

dynamic_cast

else

enum

explicit

extern

false

float

for

friend

goto

if

inline

int

log

long

mutable

namespace

new

operator

private

protected

public

register

reinterpret_cast

return

short

signed

sizeof

static

static_cast

struct

switch

template

this

throw

true

try

typedef

typeid

typename

union

unsigned

using

virtual

void

volatile

wchar_t

while

and &&

not_eq !=

and_eq &=

or ||

bitand &

or_eq |=

bitor |

xor ^

compl ~

xor_eq ^=

not !

1000

Precedence of Operators

APPENDIX

2
All the operators in a given box have the same precedence. Operators in higher
boxes have higher precedence than operators in lower boxes. Unary operators
and the assignment operator are executed right to left when operators have the
same precedence. For example, x = y = z means x = (y = z). Other operators that
have the same precedences are executed left to right. For example, x + y + z
means (x + y) + z.

Appendix 2 1001

:: scope resolution operator Highest precedence
(done first)

. dot operator
-> member selection
[] array indexing
() function call
++ postfix increment operator (placed after the variable)
-- postfix decrement operator (placed after the variable)

++ prefix increment operator (placed before the variable)
-- prefix decrement operator (placed before the variable)
! not
- unary minus
+ unary plus
* dereference
& address of
new
delete
delete[]
sizeof

* multiplication
/ division
% remainder (modulo)

+ addition
- subtraction

<< insertion operator (output)
>> extraction operator (input)

< less than <= less than or equal
> greater than >= greater than or equal

== equal
!= not equal

&& and

|| or

= assignment
+= add and assign -= subtract and assign
*= multiply and assign
/= divide and assign %= modulo and assign

 Lowest precedence
(done last)

1002

The ASCII Character Set

APPENDIX

3
Only the printable characters are shown. Character number 32 is the blank.

32 56 8 80 P 104 h

33 ! 57 9 81 Q 105 i

34 " 58 : 82 R 106 j

35 # 59 ; 83 S 107 k

36 $ 60 < 84 T 108 l

37 % 61 = 85 U 109 m

38 & 62 > 86 V 110 n

39 ' 63 ? 87 W 111 o

40 (64 @ 88 X 112 p

41) 65 A 89 Y 113 q

42 * 66 B 90 Z 114 r

43 + 67 C 91 [115 s

44 , 68 D 92 \ 116 t

45 – 69 E 93] 117 u

46 . 70 F 94 ^ 118 v

47 / 71 G 95 _ 119 w

48 0 72 H 96 ‘ 120 x

49 1 73 I 97 a 121 y

50 2 74 J 98 b 122 z

51 3 75 K 99 c 123 {

52 4 76 L 100 d 124 |

53 5 77 M 101 e 125 }

54 6 78 N 102 f 126 ~

55 7 79 O 103 g

1003

Some Library Functions

APPENDIX

4
The following lists are organized according to what the function is used for,
rather than what library it is in. The function declaration gives the number and
types of arguments as well as the type of the value returned. In most cases, the
function declarations give only the type of the parameter and do not give a
parameter name. (See the section ‘‘Alternate Form for Function Declarations’’ in
Chapter 4 for an explanation of this kind of function declaration.)

Arithmetic Functions

Function Declaration Description Header File

int abs(int); Absolute value cstdlib

long labs(long); Absolute value cstdlib

double fabs(double); Absolute value cmath

double sqrt(double); Square root cmath

double pow(double, double); Returns the first argument raised to the
power of the second argument

cmath

double exp(double); Returns e (base of the natural logarithm)
to the power of its argument

cmath

double log(double); Natural logarithm (ln) cmath

double log10(double); Base 10 logarithm cmath

double ceil(double); Returns the smallest integer that is
greater than or equal to its argument

cmath

double floor(double); Returns the largest integer that is less
than or equal to its argument

cmath

1004 APPENDIX 4 / Some Library Functions

Input and Output Member Functions

Form of a Function Call Description Header File

Stream_Var.open
(External_File_Name);

Connects the file with the
External_File_Name to the stream named
by the Stream_Var. The
External_File_Name is a string value.

fstream

Stream_Var.fail(); Returns true if the previous operation
(such as open) on the stream Stream_Var
has failed.

fstream
 or
iostream

Stream_Var.close(); Disconnects the stream Stream_Var from
the file it is connected to.

fstream

Stream_Var.bad(); Returns true if the stream Stream_Var is
corrupted.

fstream or
iostream

Stream_Var.eof(); Returns true if the program has attempted
to read beyond the last character in the file
connected to the input stream Stream_Var.
Otherwise, it returns false.

fstream or
iostream

Stream_Var.get(Char_Variable); Reads one character from the input stream
Stream_Var and sets the Char_Variable
equal to this character. Does not skip over
whitespace.

fstream or
iostream

Stream_Var.getline(String_Var,
 Max_Characters +1);

One line of input from the stream
Stream_Var is read, and the resulting
string is placed in String_Var. If the line is
more than Max_Characters long, only the
first Max_Characters are read. The
declared size of the String_Var should be
Max_Characters +1 or larger.

fstream or
iostream

Stream_Var.peek(); Reads one character from the input stream
Stream_Var and returns that character. But
the character read is not removed from the
input stream; the next read will read the
same character.

fstream or
iostream

Appendix 4 1005

Stream_Var.put(Char_Exp); Writes the value of the Char_Exp to the
output stream Stream_Var.

fstream or
iostream

Stream_Var.putback(Char_Exp); Places the value of Char_Exp in the input
stream Stream_Var so that that value is
the next input value read from the stream.
The file connected to the stream is not
changed.

fstream or
iostream

Stream_Var.precision(Int_Exp); Specifies the number of digits output after
the decimal point for floating-point values
sent to the output stream Stream_Var.

fstream or
iostream

Stream_Var.width(Int_Exp); Sets the field width for the next value out-
put to the stream Stream_Var.

fstream or
iostream

Stream_Var.setf(Flag); Sets flags for formatting output to the
stream Stream_Var. See Display 6.5 for the
list of possible flags.

fstream or
iostream

Stream_Var.unsetf(Flag); Unsets flags for formatting output to the
stream Stream_Var. See Display 6.5 for the
list of possible flags.

fstream or
iostream

Form of a Function Call Description Header File

Input and Output Member Functions (continued)

1006 APPENDIX 4 / Some Library Functions

Character Functions

For all of these the actual type of the argument is int, but for most purposes you can think of the
argument type as char. If the value returned is a value of type int, you must perform an explicit or
implicit typecast to obtain a char.

Function Declaration Description Header File

bool isalnum(char); Returns true if its argument satisfies
either isalpha or isdigit. Otherwise,
returns false.

cctype

bool isalpha(char); Returns true if its argument is an upper-
or lowercase letter. It may also return true
for other arguments. The details are imple-
mentation dependent. Otherwise, returns
false.

cctype

bool isdigit(char); Returns true if its argument is a digit.
Otherwise, returns false.

cctype

bool ispunct(char); Returns true if its argument is a printable
character that does not satisfy isalnum
and is not whitespace. (These characters
are considered punctuation characters.)
Otherwise, returns false.

cctype

bool isspace(char); Returns true if its argument is a
whitespace character (such as blank, tab,
or new line). Otherwise, returns false.

cctype

bool iscntrl(char); Returns true if its argument is a control
character. Otherwise, returns false.

cctype

bool islower(char); Returns true if its argument is a lowercase
letter. Otherwise, returns false.

cctype

bool isupper(char); Returns true if its argument is an upper-
case letter. Otherwise, returns false.

cctype

Appendix 4 1007

String Functions

int tolower(char); Returns the lowercase version of its
argument. If there is no lowercase version,
returns its argument unchanged.

cctype

int toupper(char); Returns the uppercase version of its
argument. If there is no uppercase version,
returns its argument unchanged.

cctype

Function Declaration Description Header File

int atoi(const char a[]); Converts a string of characters to an
integer.

cstdlib

long atol(const char a[]); Converts a string of characters to a
long integer.

cstdlib

double atof(const char a[]); Converts a string of characters to a
double.

cstdlib*

strcat(String_Variable,
String_Expression);

Appends the value of the String_Expression
to the end of the string in the
String_Variable.

cstring

strcmp(String_Exp1, String_Exp2) Returns true if the values of the two string
expressions are different; otherwise,
returns false.†

cstring

strcpy(String_Variable,
 String_Expression);

Changes the value of the String_Variable
to the value of the String_Expression.

cstring

strlen(String_Expression) Returns the length of the
String_Expression.

cstring

Function Declaration Description Header File

Character Functions (continued)

1008 APPENDIX 4 / Some Library Functions

strncat(String_Variable,
 String_Expression, Limit);

Same as strcat except that at most Limit
characters are appended.

cstring

strncmp(String_Exp1, String_Exp2,
Limit)

Same as strcmp except that at most Limit
characters are compared.

cstring

strncpy(String_Variable,
 String_Expression, Limit);

Same as strcpy except that at most Limit
characters are copied.

cstring

strstr(String_Expression, Pattern) Returns a pointer to the first occurrence
of the string Pattern in String_Expression.
Returns the NULL pointer if the Pattern is
not found.

cstring

strchr(String_Expression,
Character)

Returns a pointer to the first occurrence
of the Character in String_Expression.
Returns the NULL pointer if Character is
not found.

cstring

strrchr(String_Expression,
Character)

Returns a pointer to the last occurrence
of the Character in String_Expression.
Returns the NULL pointer if Character is
not found.

cstring

* Some implementations place it in cmath.
†Returns an integer that is less than zero, zero, or greater than zero according to whether String_Exp1 is
less than, equal to, or greater than String_Exp2 , respectively. The ordering is lexicographic ordering.

Function Declaration Description Header File

String Functions (continued)

Appendix 4 1009

Random Number Generator

Function Declaration Description Header File

int random(int); The call random(n) returns a pseudoran-
dom integer greater than or equal to 0 and
less than or equal to n-1. (Not available in
all implementations. If not available, then
you must use rand.)

cstdlib

int rand(); The call rand() returns a pseudorandom
integer greater than or equal to 0 and less
than or equal to RAND_MAX. RAND_MAX is a
predefined integer constant that is defined
in cstdlib. The value of RAND_MAX is
implementation dependent but will be at
least 32767.

cstdlib

void srand(unsigned int);

(The type unsigned int is an integer
type that only allows nonnegative
values. You can think of the argu-
ment type as int with the restriction
that it must be nonnegative.)

Reinitializes the random number genera-
tor. The argument is the seed. Calling
srand multiple times with the same argu-
ment will cause rand or random (whichever
you use) to produce the same sequence of
pseudorandom numbers. If rand or random
is called without any previous call to
srand, the sequence of numbers produced
is the same as if there had been a call to
srand with an argument of 1.

cstdlib

1010 APPENDIX 4 / Some Library Functions

Trigonometric Functions

These functions use radians, not degrees.

Function Declaration Description Header File

double acos(double); Arc cosine cmath

double asin(double); Arc sine cmath

double atan(double); Arc tangent cmath

double cos(double); Cosine cmath

double cosh(double); Hyperbolic cosine cmath

double sin(double); Sine cmath

double sinh(double); Hyperbolic sine cmath

double tan(double); Tangent cmath

double tanh(double); Hyperbolic tangent cmath

1011

Inline Functions

APPENDIX

5
When a member function definition is short, you can give the function definition
within the definition of the class. You simply replace the member function
declaration with the member function definition; however, since the definition
is within the class definition, you do not include the class name and scope
resolution operator. For example, the class Pair defined below has inline
function definitions for its two constructors and for the member function
get_first:

class Pair
{
public:
 Pair()
 {}
 Pair(char first_value, char second_value)
 : first(first_value), second(second_value) {}
 char get_first()
 { return first;}
 ...
private:
 char first;
 char second;
};

Note that there is no semicolon needed after the closing brace in an inline
function definition, though it is not incorrect to have a semicolon there.

Inline function definitions are treated differently by the compiler and so they
usually run more efficiently, although they consume more storage. With an inline
function, each function call in your program is replaced by a compiled version
of the function definition, so calls to inline functions do not have the overhead
of a normal function call.

1012

Overloading the Array
Index Square Brackets

APPENDIX

6
You can overload the square brackets, [], for a class so that they can be used with
objects of the class. If you want to use [] in an expression on the left-hand side of
an assignment operator, then the operator must be defined to return a reference,
which is indicated by adding & to the returned type. (This has some similarity to
what we discussed for overloading the I/O operators << and >>.) When overloading
[], the operator [] must be a member function; the overloaded [] cannot be a
friend operator. (In this regard [] is overloaded in a way similar to the way in
which the assignment operator = is overloaded; overloading = is discussed in the
section of Chapter 11 entitled “Overloading the Assignment Operator.”)

For example, the following defines a class called Pair whose objects behave
like arrays of characters with the two indexes 1 and 2 (not 0 and 1):

class Pair
{
public:
 Pair();
 Pair(char first_value, char second_value);
 char& operator[](int index);
private:
 char first;
 char second;
};

The definition of the member function [] can be as follows:

char& Pair::operator[](int index)
{
 if (index == 1)
 return first;
 else if (index == 2)
 return second;
 else
 {
 cout << "Illegal index value.\n";
 exit(1);
 }
}

Appendix 6 1013

Objects are declared and used as follows:

Pair a;
a[1] = ’A’;
a[2] = ’B’;
cout << a[1] << a[2] << endl;

Note that in a[1], a is the calling object and 1 is the argument to the member
function [].

1014

The this Pointer

APPENDIX

7
When defining member functions for a class, you sometimes want to refer to the
calling object. The this pointer is a predefined pointer that points to the calling
object. For example, consider a class like the following:

class Sample
{
public:
 ...
 void show_stuff();
 ...
private:
 int stuff;
 ...
};

The following two ways of defining the member function show_stuff are
equivalent:

void Sample::show_stuff()
{
 cout << stuff;
}
//Not good style, but this illustrates the this pointer:
void Sample::show_stuff()
{
 cout << (this->stuff);
}

Notice that this is not the name of the calling object, but is the name of a pointer
that points to the calling object. The this pointer cannot have its value changed;
it always points to the calling object.

As the comment before the previous sample use of this indicates, you
normally have no need for the pointer this. However, in a few situations it is
handy.

One place where the this pointer is commonly used is in overloading the
assignment operator =. For example, consider the following class:

overloading
the assignment

operator

Appendix 7 1015

class StringClass
{
public:
 ...
 StringClass& operator=(const StringClass& right_side);
 ...
private:
 char *a;//Dynamic array for a string value ended with ’\0.’
};

The following definition of the overloaded assignment operator can be used
in chains of assignments like

s1 = s2 = s3;

This chain of assignments means

s1 = (s2 = s3);

The definition of the overloaded assignment operator uses the this pointer to
return the object on the left side of the = sign (which is the calling object):

//This version does not work in all cases. Also see the next version.
StringClass& StringClass::operator=(const StringClass& right_side)
{
 delete [] a;
 a = new char[strlen(right_side.a) + 1];
 strcpy(a, right_side.a);
 return *this;
}

The above definition does have a problem in one case: If the same object
occurs on both sides of the assignment operator (like s = s;), then the array
member will be deleted. To avoid this problem, you can use the this pointer
to test this special case as follows:

//Final version with bug fixed:
StringClass& StringClass::operator=(
 const StringClass& right_side)
{
 if (this == &right_side)
 {
 return *this;
 }
 else
 {

1016 APPENDIX 7 / The this Pointer

 delete [] a;
 a = new char[strlen(right_side.a) + 1];
 strcpy(a, right_side.a);
 return *this;
 }
}

In the section of Chapter 11 entitled “Overloading the Assignment
Operator,” we overloaded the assignment operator for a string class called
StringVar. In that section, we did not need the this pointer because we had
a member variable called max_length which we could use to test whether or
not the same object was used on both sides of the assignment operator =. With
the class StringClass discussed above, we have no such alternative because
there is only one member variable. In this case we have essentially no
alternative but to use the this pointer.

The this Pointer

1017

Overloading Operators
 as Member Operators

APPENDIX

8
In this book we have normally overloaded operators by treating them as friends
of the class. For example, in Display 11.5 of Chapter 11 we overloaded the +
operator as a friend. We did this by labeling the operator a friend inside the class
definition, as follows:

//Class for amounts of money in U.S. currency.
class Money
{
public:
 friend Money operator +(const Money& amount1,
 const Money& amount2);
 . . .

We then defined the overloaded operator + outside the class definition (as shown
in Display 8.5).

It is also possible to overload the operator + (and other operators) as
member operators. To overload the + operator as a member operator, the class
definition would instead begin as follows:

//Class for amounts of money in U.S. currency.
class Money
{
public:
 Money operator +(const Money& amount2);

Note that when a binary operator is overloaded as a member operator, there
is only one (not two) parameters. The calling object serves as the first parameter.
For example, consider the following code:

Money cost(1, 50), tax(0, 15), total;
total = cost + tax;

When + is overloaded as a member operator, then in the expression cost + tax,
the variable cost is the calling object and tax is the one argument to +.

1018 APPENDIX 8 / Overloading Operators as Member Operators

The definition of the member operator + would be as follows:

Money Money::operator +(const Money& amount2)
{
 Money temp;
 temp.all_cents = all_cents + amount2.all_cents;
 return temp;
}

Notice the following line from this member operator definition:

temp.all_cents = all_cents + amount2.all_cents;

The first argument to + is an unqualified all_cents, and so it is the member
variable all_cents of the calling object.

Overloading an operator as a member variable can seem strange at first, but
it is easy to get used to the new details. Many experts advocate always overloading
operators as member operators rather than as friends. That is more in the spirit
of object-oriented programming. However, there is a big disadvantage to
overloading a binary operator as a member operator. When you overload a
binary operator as a member operator, the two arguments are no longer
symmetric. One is a calling object and only the second “argument” is a true
argument. This is unaesthetic, but it also has a very practical shortcoming. Any
automatic type conversion will only apply to the second argument. So, for
example, the following would be legal:

Money base_amount(100, 60), full_amount;
full_amount = base_amount + 25;

This is because Money has a constructor with one argument of type long, and
so the value 25 will be considered a long value that is automatically converted
to a value of type Money.

However, if you overload + as a member operator, then you cannot reverse
the two arguments to +. The following is illegal:

full_amount = 25 + base_amount;

This is because 25 cannot be a calling object. Conversion of long values to type
Money works for arguments but not for calling objects.

On the other hand, if you overload + as a friend, then the following is
perfectly legal:

full_amount = 25 + base_amount;

1019

Index

SYMBOLS
' ' single quotes for data

types, 64
-- decrement operator, 87–89,

142–145, 520, 640, 946,
952–954
iterators, used for, 946,

952–954
loops, flow of control

using, 87–89, 142–145
overloading, 640
pointer arithmetic using,

520
- subtraction operator, 69
! not operator, 78–79, 118
" " double quotes for data

types, 64
#ifndef directive, separate

compilation using,
707–710

#include directive, 25–26
% division operator with

remainder, 69–70
& ampersand symbol, 260,

263, 501, 503, 644–645
parameters and, 260, 263
pointers and, 501, 503
returning a reference

using, 644–645
&& and operator, 78, 79
() parentheses, 51, 70–71,

78–79, 113–114, 190
arithmetic expressions

and, 51, 70–71

Boolean expressions and,
78–79, 113–114

type casting use of, 190
* asterisk symbol, 23, 69,

502–503, 947, 950
deferencing operator, as,

502–503, 947, 950
iterators and, 947, 950
multiplication operator,

as, 23, 69
, commas used between array

indexes, 427
. decimal point, 55–56
. dot operator, 313, 534, 536,

546
member functions and,

313, 546
objects and, 313, 534, 546
structure variables and,

534, 536
/ backslash, use of, 22, 24,

53–54
/ division operator, 69–72
/* comments */, 94–95
// comments, 94–95
:: scope resolution operator,

545–546
; semicolon symbol, 25,

150–151, 535
for loops (statements)

and, 150–151
statements and, 25
structure definition and,

535

[] square brackets, 377, 389,
483–484, 513, 515–517,
1012–1013
arrays and, 377, 389
delete statement and,

515–517
dynamic arrays and,

515–517
overloading, 1012–1013
pointers and, 513
vectors and, 483–484

{ } braces, 82, 93–94,
121–123, 138–139,
531–535
blocks and, 138–139
compound statements

and, 82
local variables and, 139
member names as

identifiers for
structures, 531–535

nested blocks and, 138
nested statements and,

121–123
program placement of,

93–94
|| or operator, 78, 80
~ tilde symbol used in

destructor names, 663, 665
+ addition operator, 69,

465–466
arithmetic using, 69
concatenation in string

class using, 465–466

1020 INDEX

++ increment operator, 87–89,
142–145, 520, 640, 946
iterators, used for, 946
loops, flow of control

using, 87–89, 142–145
overloading, 640
pointer arithmetic using,

520
< > angular brackets for

header files, 184–186
<< insertion operator, 24,

50–51, 328–329, 457,
468–469, 640, 642–649
C-string output, 457
cout used with 24, 50–51,

468–469
manipulator functions and,

328–329
overloading, 640,

642–649
string class output using,

468–469
= assignment operator, 46–47,

73–74, 451–452, 481, 486,
503–504, 506, 557,
670–675, 752–753,
850–851
arithmetic operators and,

73–74
C strings, used for, 451–452
copy constructors and, 370,

670–671, 851
derived classes, used for,

850–851
dynamic data structures,

used with, 752–753
inheritance and, 850–851
linked lists, used with,

752–753
objects used with, 557
overloading, 672–675
pointers and, 503–504,

506

string class and, 481
variables and, 46–47
vectors and, 486

== equal to operator, 78,
81–82, 451–452, 465–466,
481, 555
C strings, used for, 451–452
comparison operator, as a,

78, 81–82
objects and, 555
string class and, 465–466,

481
-> arrow operator used in

nodes, 736, 738
>> extraction operators, 24,

56–58, 457–458, 468–469,
640, 642–649
C-string input, 457–458
cin used with 24, 56–58,

468–469
overloading, 640, 642–649
string class input using,

468–469

A
abs function, 187
Absolute values, 187
Abstract data types (ADT),

575–584, 697–707
application (driver) file,

700, 704–706
case study: DigitalTime—

a Class Compiled
Separately, 697–707

class types for, 576–580,
698

compiling programs using,
697–707

header files for, 698–700
implementation of,

579–583, 697–698,
700–707

information hiding, 584

interface of, 579, 580,
697–700, 705–706

linking files in, 705
private member functions

and, 580, 583, 697–698,
705–707

reusable components of, 707
writing, rules for, 578–579

Accessor functions, 555, 616
Activation frames, 794
Addresses, 4–5, 380, 500–502,

519–520
arrays and, 380
memory location and, 4–5
numbers and, 502
pointer arithmetic using,

519–520
pointers as, 500–502

ADT, see Abstract data types
(ADT)

advance function, 706–707
Algorithms, 12–15, 212–213,

217, 914–926, 977–991
abstraction, templates for,

914–926
C++ programming and

problem-solving using,
12–15

container modifying,
988–989

generic, 977–991
history of, 14–15
nonmodifying sequence,

983–987
procedural abstraction,

design for, 212–213
pseudocode and, 212–213,

217
set, 989–990
sorting, 991
Standard Template Library

(STL) and, 977–991
Ancestor class, 834

INDEX 1021

Appending to a file, 320–322
Application (driver) file, 700,

704–706
abstract data types (ADT)

and, 700, 704–706
linking with other files, 705
separate compilation of files

and, 700, 704–706
suffix .h for names of,

704–706
Arguments, 183, 188,

199–201, 254–255,
267–268, 385–394, 455,
536–537, 561–562,
573–574, 589–591, 741
array, 388–391
array parameters and,

388–394
C string, 455
const array parameter

modifier, 391–394
constructors with no,

573–574
default, 589–591
formal parameters and,

267–268
functions and, 254–255,

385–391, 589–591
indexed variables as,

385–388
linked lists as, 741
member functions using

stream I/O, 561–562
order of, 199–201
predefined functions and,

183, 188
programmer-defined

functions and, 199–201
structures as, 536–537

Arithmetic, 69–74, 519–520,
1003
addition (+), 69
addresses and, 519–520

assignment operator (=)
and, 73–74

C++ library functions, 1003
division (/), 69–72
expressions and, 51, 69–74
multiplication (*), 69
negative integers in, 70
operators, 69–72, 73–74
parentheses () in, 51,

70–71
pointers, performed on,

519–520
precedence rules for, 71
remainder (%), division

with, 69–70
spacing in, 70
subtraction (-), 69

Arrays, 375–444, 447–465,
482–483, 486, 512–523,
651–659, 750–751
arguments in functions,

385–394
base type, 377
C strings versus characters,

448
case study: Production

Graph, 394–407
classes and, 651–659
const parameter modifier,

391–394
constructor calls for, 652
declaring, 376–381
dynamic, 512–523
for loops used with, 378
functions, in, 385–408
indexed variables and,

377–378, 385–388,
420–421

indexes, 378, 381–383,
420, 427

initializing, 383
linked lists compared to,

750–751

member variables, as,
655–658

memory, in, 380–383, 390
multidimensional, 419–427
parameters, 388–394,

411–412, 420–422, 455
partially filled, 408–412,

448, 656, 658
programming with, 408–419
referencing, 376–380
searching, 412–414
size of, 377–378, 380,

390–391
sorting, 414–418
square brackets [] used for,

377, 389
strings as types of, 447–465
subtasks for functions of,

395–396
variables in, 377–378
vectors compared to,

482–483, 486
ASCII character set, 1002
Assembly language, 8
assert statement, 291–292
Assignment statements,

45–49, 73–74, 503–504,
535. See also = assignment
operators
arithmetic operators and,

73–74
pointers in, 503–504
structure variables in, 535
variables and, 45–49

Associative containers,
970–976

atof function, 461
atoi function, 460–461
atol function, 461
Augusta, Ada, 12–13
Automatic type conversion,

236–237, 638–639
Automatic variables, 510

1022 INDEX

B
Babbage, Charles, 12–13
Base (stopping) case,

recursion, 790–791, 797
Base classes, 826, 828–830,

834–835, 838–840,
848–849, 855–856, 859
access to redefined

functions in, 848–849
implementation of,

829–830
inheritance and, 826,

828–830, 834–835,
838–840, 848–849

interface for, 828
private member variables

used in, 838–840
redefining functions for,

832, 834–835, 848–849
virtual functions used in,

855–856, 859
Base type arrays, 377
begin() function for

iteration, 947, 949, 958
Bidirectional iterators, 955
Big-O notation, 980–982
Binary search, recursive

thinking for, 803–810
Binary trees, 755–756
Bits (binary digits), 4
Black box analogy, 204–218
Blocks, 134, 136–139

branching mechanisms
and, 134, 136–139

local variables and, 134,
136–139

nested, 138
scope rule, 138

bool, 64–65, 69, 112, 116–118,
196, 198–199
data type, 64–65, 69
int values, converting to,

116–118

programmer-defined
function calls returning,
196, 198–199

Boolean expressions, 75,
76–80, 84–86, 112–120
and (&&) operator used in,

78–79
comparison operators for,

78–79
evaluation of, 112–116
flow of control and, 75–80,

84–86, 112–120
if-else statements, 75–80
int values, converting to,

116–118
not (!) operator, 78–79,

118
or (||) operator, 78, 80
parentheses () for, 78–79,

113–114
precedence rules and,

114–116
truth tables and, 113–114
while loops, 84–86

Boundary value testing, 281
Branching mechanisms,

74–82, 120–140, 202–203
blocks and, 134, 136–139
braces { } used for, 121–123,

138–139
break statements, 132–134
dangling else problem,

121–122
if statements, 79–80
if-else statements, 75–82,

120–129, 134–139
multiway if-else

statements, 123–127
nested statements, 120–123,

138
programmer-defined

function calls in,
202–203

switch statements, 129–140

break statements, 132–134,
153–155
loop mechanisms and,

153–155
nested loops, in, 155
switch statements and,

132–134
Bugs, debugging and, 30,

164–165
Bytes, memory locations and,

4–5

C
C strings, 446–465, 481–482

arguments, 455
arrays of characters versus,

448
<cstring> library,

452–454
declaration of, 448
equality, testing for, 451–452
extraction (>>) operator

used for, 457–458
getline function, 457–459
indexed variables and,

450
initializing, 449
input/output (I/O), 457–459
insertion (<<) operator

used for, 457
lexicographic order of

characters in, 452
null ('/0') character and,

447, 450
number conversions, to,

460–465
operators = and == used for,

451–452
parameters, 455
robust input, 460–465
string objects, converting

between, 481–482
values, 447–452
variables, 447–452

INDEX 1023

C++ library, 25–26, 184–186,
352, 354–356, 452–454,
710, 1003–1010. See also
Standard Template Library
(STL)
cctype header file, 352,

354–356
character I/O functions,

352, 354–356
<cstring> , 452–454
directives and, 25–26,

52–53, 184–186
functions in, 1003–1010
header files (< >) and,

184–186
include directive, 25–26,

52–53, 184–186
<iostream>, 25–26, 52
separate compilation and,

710
C++ programming, 1–109,

204–218, 272–282,
394–419, 854–864,
903–907. See also Programs
algorithms for, 12–15
arithmetic operators, 69–73
arrays and, 394–419
assignment statements,

45–49, 73–74
case study: Buying Pizza,

211–217
case study: Production

Graph, 394–408
case study: Supermarket

Pricing, 276–281
classes used in, 17
comments, 94–96
compiling and running

programs, 7–11, 27–29
computer systems, 2–12
data types, 60–74
debugging, 30–32
design of, 15–17
errors in, 30–32

exception handling
techniques for, 903–907

flow of control for, 74–93
history of, 12–13
indenting, 93–94
input, 50–60
languages, 8–9, 19–20
layout of, 24–27
naming constants, 96–97
nested try-catch blocks,

905
object-oriented (OOP), 17
output, 50–60
overuse of exceptions in,

905–906
partially filled arrays,

408–412
problem solving and,

12–19
procedural abstraction for,

204–218, 272–282
programmer, 20
sample of, 20–24
searching arrays, 412–414
slicing problem, 861–864
software lifecycle, 17–18
sorting arrays, 414–418
statements in, 22–23, 25–27,

45–49, 73–74, 82–84
style, 93–97
throw statements,

techniques for, 903–905
top-down design of,

394–408
type capability, extending,

860–864
user, 20
variables in, 22, 40–50
virtual functions used in,

854–864
Calling object, 313
Calls (invocations), 183–186,

194–203, 208, 253–254,
259–272, 332, 544,

571–574, 652, 662–663,
665–667
argument order and,

199–201
Boolean values, returning,

196, 198–199
branching statements, use

of in, 202–203
call-by-reference, 259–272,

332, 667–671
call-by-value, 195–198,

662–663, 665–667
constructors, 571–574, 652,

662–663
copy constructors,

667–671
default constructors,

572–573
dynamic arrays and,

662–663, 665–671
loop body as, 208
member functions, 544
no arguments, constructors

with, 573–574
predefined functions,

183–186
programmer-defined

functions, 194–203
stream parameters and, 332
void functions, 253–254

capacity() function, 487
case labels, 132–134
catch blocks, 888–890, 892,

894–897
exception handling using,

888–890, 896–897
multiple, 892, 894–897
parameter, 888, 890
specific exceptions,

catching with, 896–897
cctype character functions,

352, 354–356
Central processing unit

(CPU), 3, 6–7

1024 INDEX

char data type, 63–65, 68
Character functions in the

C++ library, 1006–1007
Character I/O, 338–358

blank spaces and,
339–340

cctype character functions
for, 352, 354–356

checking program input
using, 343–346

eof function, 349–351
get function, 339–342,

346–347
isspace function,

354–355
member functions and,

339–351
new-line character (/n)

and, 339–341, 346–347
predefined functions and,

352, 354–357
put function, 339–342
putback function, 342–343
tolower function, 355
toupper function, 352, 355

Child class, inheritance and,
587, 826, 834

cin, 22–24, 56–58, 307,
468–469, 472–475
C++ programming using,

22–23
extraction (>>) operator

used with, 24, 56–58,
468–469

getline function input
and, 472–475

I/O streams, as, 307
input statements using, 24,

56–58
string class input using,

468–469, 472–475
Classes, 17, 65–67, 312–316,

468–474, 529–607,
659–675, 756–760,
826–840, 843–851,

892–894, 897–898, 902,
906–907, 960–977
abstract data types (ADT)

and, 575–584
ancestor, 834
arrays and, 651–659
base, 826, 828–830,

834–835, 838–840,
848–849

C++ programming and, 17
child, 587, 826, 834
class members, as,

655–658
constructors for, 564–575,

652, 660
container, 960–977
copy constructors for,

667–671
default arguments, 589–591
defining, 529–607, 892,

893–894
derived, 584–588, 591–592,

826–828, 830–838,
843–848, 850–851, 902

destructors for, 663–665
dynamic arrays and,

659–675
encapsulation, 544
exception, 892–894,

906–907
exception specification for,

902
hierarchies of exceptions,

906–907
inheritance and, 584–594,

826–840, 843–851
initialization of, 564–575
linked lists of, 756–760
member functions for,

312–313, 542–562,
564–575

objects and, 312–313, 542
parent, 287, 826–827, 834
private members used in,

547–557

properties of, 562–563
public members used in,

547–557
redefining functions in

inheritance, 832,
834–835, 843–849

Standard Template Library
(STL), 960–977

streams and, 312–316,
585–589

string, 65–67, 468–474
stringvar, 659–665
structures compared to,

530–541, 563
trivial exception, 897–898

close function, 310–313
Comments in C++ programs,

94–96
Compact disk (CDs) storage, 6
Comparison operators,

78–82
and (&&) operator,

78–79
equal to (==) operator, 78,

81–82
not (!) operator, 78–79
or (||) operator, 78, 80

Compilers, 9–11, 700,
704–705, 919, 951
code and, 9
iteration, problems with,

951
linkers and, 9–10, 705
object program (code), 9
running programs using,

9–11, 700, 704–705
separate programs, used for,

700, 704–705
source program (code), 9
templates, complications

from, 919
Compiling programs, 7–11,

27–29, 695–732, 865–866
abstract data types (ADT)

and, 697–707

INDEX 1025

application (driver) file,
700, 704–706

C++ layout for, 27–29
C++ libraries and, 710
case study: DigitalTime—

a Class Compiled
Separately, 697–707

compiler use for, 9–11
computer software and, 7–8
header files for, 698–700
#ifndef directive, use of

for, 707–710
implementation files,

697–698, 700–707
interface files, 697–700,

705–706
linking files in 9–11, 705
namespaces and, 712–727
running and, 700, 704–705
separate files and, 696–711
virtual member functions

and, 865–866
Complete evaluation, 116
Computer systems, 2–12

compilers, 9–11
devices, 3
hardware, 2–7
languages for, 8–9
linkers, 9–10
mainframe, 2
memory, 3–7
network, 2
personal (PC), 2
processor (CPU), 3, 6–7
software, 2, 7–8

Concatenation using +
operator, 465–466

const modifier, 97, 391–394,
628–632
array parameters, 391–394
C++ programming using, 97
friend functions and,

628–632
inconsistent use of,

393–394

Constant iterators, 956–957
Constants, 46, 96–97,

221–223, 467, 626,
628–630
converting between C-string

and string type, 467
declared, 97
friend functions and, 626,

628–629
global named, 221–223
naming, 96–97
numbers as, zeros leading

in, 626
parameters, 628–630

Constructors, 466, 564–575,
639, 652, 660, 667–671,
835–838
arrays of classes, 652
automatic type conversion,

used for, 638–639
calling, 571–574, 837
classes and, 564–575, 652,

660
copy, 667–671
default, 572–573
derived classes, used in,

835–838
dynamic arrays and, 660
inheritance and, 835–838
initialization and, 564–575
initialization section,

569–570
member functions as,

564–575
no arguments, with,

573–574
objects and, 564–575
string class, 466

Container modifying
algorithms, 988–989

Containers, 960–977,
982–983
adapters, 966–969
associative, 970–976
classes , 960–977

efficiency of, 976–977
iterators, affect on, 965
map template class, 970,

973–976
queue template class,

966–968
running times, accessing,

982–983
sequential, 960–966
set template class,

970–972
stack template class,

966–969
Standard Template Library

(STL), 960–977,
982–983

type definitions in, 965
Controlling expression, 131
Copy constructors, 667–671,

765, 850–851
assignment (=) operator

and, 670–671, 851
call-by-reference parameters

and, 667–671
derived classes, used in,

850–851
inheritance and, 850–851
dynamic arrays and classes,

667–671
need for, 668–670
returned value and, 670
stacks, 765

Count-controlled loops, 159
cout, 22–24, 50–52, 307,

468–469
C++ programming using,

22–23
I/O streams, as, 307
insertion operator (<<)

used with, 24, 50–51,
468–469

output statements using,
24, 50–52

string class output using,
468–469

1026 INDEX

D
Dangling pointers, 509–510
Data abstraction, templates

for, 927–935
Data structures, 752–753,

755–756, 760–761,
766–767
binary tree, 755–756
dynamic , 752–753
first-in/first-out (FIFO),

766–767
last-in/first-out (LIFO), 761
leaf node for, 756
linked lists as, 752–753
queues as, 766–767
root node for, 756
stacks as, 760–761
trees, 755–756

Data types, 60–74, 119–120,
338–357, 530–541,
575–584
abstract (ADT), 575–584
arithmetic operators and

expressions, 69–72,
73–74

bool, 64–65, 69
char, 63–65, 68
character I/O, 338–357
compatibilities of, 66–69
double, 60–62, 68
double quotes (" ") and, 64
e notation, 61–62
enumeration, 119–120
float, 63
floating-point, 61–62
int, 60–62, 68
integer, 62
long double, 62
long, 62–63
member functions and,

339–351
mixing, 68–69
scientific notation, 61
short, 63
single quotes (' ') and, 64

string class, 65–67
string values, as, 64
structures for, 530–541

Debugging, 30–32, 163–166,
282–292
assert statement and,

291–292
bugs and, 30, 164–165
debugger programs, 290–291
errors, checking and

localizing, 288–291
functions, 287–292
loops, 163–166
off-by-one errors, 163
programming errors and,

30–32
testing and, 30, 165–166,

282–287
tracing variables, 163–164

Declaration, 22, 40–50, 147,
308–309, 376–381,
420–421, 448
arrays, 376–381
C strings, 448
for loops used for, 147
indexed variables, 377–378,

420–421
multidimensional arrays,

420–421
placement of, 44–45
size of arrays, 377–379
streams, 308–309
variables, 22, 44–45, 147

Default constructors, 572–573
default labels, 132
delete operator, 509–510,

515–517, 521–522, 663,
851, 866–867
dangling pointers and,

509–510
destructors and, 663, 851
freestore memory and,

509–510
pointers and, 509–510,

515–517, 521–522

square brackets ([]) used
with, 515–517, 521–522

virtual destructors and,
866–867

deque sequential container
class, 963–964

Derived classes, 584–588,
591–592, 826–828,
830–838, 843–848,
850–851, 855, 857–859, 902
assignment (=) operators

used for, 850–851
constructors used in,

835–838
copy constructors used in,

850–851
defining, 591–592
destructors used in, 851
exception specification in,

902
implementation of, 832–834
inheritance and, 584–588,

591–592, 826–828,
830–838, 843–848,
850–851

interface for, 828, 830–832
protected qualifier used

in, 840–842
redefining, 832, 834–835
stream classes as, 585–589
virtual functions used in,

855, 857–859
Descendants, inheritance and,

834
Destructors, 663–665, 671,

765, 851, 866–867
delete operator used for,

663, 851, 866–867
derived classes, used in, 851
dynamic arrays, used in,

663–665, 671
inheritance and, 851,

866–867
stacks, used in, 765
virtual, 866–867

INDEX 1027

digit_to_int function,
624–626

Digital video disk (DVDs)
storage, 6

DigitalTime class, 697–707
Directives, 25–26, 52–53,

184–186, 336–337,
699–700, 707–710
C++ programming using,

25–26
compiling separate files

using, 699–700, 707–710
#ifndef, 707–710
include, 52–53, 184–186,

699–700
#include, 25–26
using, 52–53, 186, 336–337

Diskettes, memory storage
and, 6

Division, 69–72, 188–189,
191
backslash (/) operator used

for, 69–72
double value and, 188–189,

191
integers in, 69–70, 188–189,

191
negative integers in, 70
remainder (%) operator

used for, 69–70
type casting and, 188–189
whole numbers in, 71–72

do-while loops, 87–88
double, 55–56, 60–62, 68,

188–191
data type, 60–62
e notation and, 61–62
floating-point notation

and, 61
function, used as a, 190–191
int values assigned to, 68
integer division and,

188–189, 191
scientific notation and, 61

type casting and, 188–191
values, output and, 55–56

Doubly linked lists, 754–755,
960–961

Driver programs, 282–284
Dynamic arrays, 512–523,

659–675
array variables and, 513–514
assignment operator (=)

and, 670–675
call-by-value pointer

parameters and,
665–667

classes and, 659–675
copy constructors for,

667–671
creating and using, 513–519
delete statement, 515–517,

521–522
destructors and, 663–665,

671
implementation using,

662–663
multidimensional, 521–523
new operator, 517–518
pointer arithmetic and,

519–520
pointer variables and,

513–514
square brackets ([]) used

for, 515–517, 521–522
stringvar class, 659–665
variables, 515–517

Dynamic data structures in
linked lists, 752–753

Dynamic variables, 505–506,
510, 515–517

E
e notation, 61–62
Echoing the input, 58
Empty lists, 742, 747
Empty (null) statements, 151
Encapsulation, 544

end() function for iteration,
947, 950, 958

endl used as new-line
character, 54–55

Enumeration types, 119–120
eof function, 349–351
equal function, 610–613, 615
Equality, testing for in C

strings, 451–452
Errors, 30–32, 163, 288–291

checking and localizing,
288–291

debugging for, 30–32,
288–291

logic, 31
messages, 31
off-by-one, 163
run-time, 31
syntax, 30–31
testing for, 31–32
warnings, 31

Escape sequences, output and
53–55

Exceptions, 880–911
C++ programming

techniques for, 903–907
catch-block parameter,

888, 890
catch block used for,

888–890, 896–897
class hierarchies, 906–907
classes defined for,

892–894
derived classes and, 902
function, throwing in a,

898–900
handler, 888
handling, 883–911
memory, testing for,

906–907
multiple, 892, 894–897
nested try-catch blocks,

905
overuse of, 905–906

1028 INDEX

rethrowing, 907
specification, 898, 900–902
throw list, 900–902
throw statement used for,

886–887, 889, 903–905
trivial, 897–898
try block used for, 886–887,

889
try-throw-catch

mechanism in, 889–891
uncaught, 905

exit statement, 315
Expressions, see Arithmetic

F
fabs function, 187
factorial (n!) function,

229–230
fail function, 314–315
Files, 6, 306–323, 332,

335–358, 458, 696–711
appending, 320–322
application (driver), 700,

704–706
C-string I/O using, 458
character I/O data,

338–358
checking end of files, 332,

335–336, 352–354
checking program input,

343–346
cleaning up formats, 337
close function used for,

310–313
computer memory and, 6
end of, 332, 335–336,

349–354
eof function used for,

349–351
exit statement used for,

315
external names, 310
fail function used for,

314–315
header, 698–700

implementation, 697–698,
700–706

input/output (I/O) and,
306–325, 332, 335–337

interface, 697–700,
705–706

linking, 700, 705
names and, 308–310, 320,

322–325
open function used for,

309–310, 313–315, 317,
320

opening successfully,
313–315, 317

permanent storage, as, 307
reading, 308
separate compilation and,

696–711
streams and, 306–323
strings and file names, 320,

322–325
text editing, 352–354
writing, 308

fill_array function,
411–412

find function, 983–985
First-in/first-out (FIFO) data

structure, 766–767
Fixed-point notation, 327
Flags, 159–160, 326–329

formatting stream
functions and,
326–327

loops and, 159–160
setf, 326–328
stream I/O and, 326–329
types of, 327–328

float data type, 63
Floating-point numbers,

61–63, 327
Flow of control, 74–93,

111–179
Boolean expressions,

75–80, 84–86,
112–120

branching mechanisms,
74–82, 120–140

break statements, 132–134,
153–155

C++ programming and,
74–93

comparison operators,
78–79

decrement (--) operator,
87–89, 142–145

do-while loops, 87–88,
141–142

for loops (statements),
145–151

if statements, 79–80
if-else statements, 75–82,

120–129
increment (++) operator,

87–89, 142–145
inequalities, strings of, 80
infinite loops, 90–92
loop mechanisms, 84–92,

140–166
switch statements, 129–140
using = and == symbols,

81–82
while loops, 84–87,

141–142
for loops (statements),

145–151, 378
arrays, used with, 378
declaring variables using,

147
empty (null) statements, as,

151
loop mechanisms, as,

145–151
semicolons (;) in, 150–151

Formal parameters, see
Parameters

Formatting functions, 323,
325–334
flags and, 326–329
manipulator functions for,

328–330

INDEX 1029

output and, 323,
325–334

Forward iterators, 955
Freestore memory, 508–510
Friend functions, 610–633

const parameter modifier,
628–632

constant parameters,
628–630

definition of, 616
digit_to_int, 624–626
equal, 610–613, 615
member functions and,

618
Money class, example of for,

618–626
private members, access to,

614
fstream, 308–309
Functions, 181–249, 251–303,

312–315, 323, 325–351,
385–408, 536–537,
542–562, 589–591,
610–633, 783–801, 832,
834–835, 843–850,
853–867, 898–900,
915–920, 1003–1011.
See also Calls (invocations);
Private member functions;
Public member functions
accessor, 555–556, 616
arguments and, 385–391
arithmetic, 1003
array parameters,

388–394
arrays in, 385–408
C++ library, 1003–1010
call-by-reference,

259–272
call-by-value, 195–201
calls (invocations), 183–186,

194–203, 259–272
case study: Production

Graph, 394–407
character, 1006–1007

const parameter modifier,
391–394, 628–632

debugging, 282–292
default arguments for,

589–591
definition, 192–196,

201–202, 232–233,
253–254, 544–546,
616, 791

digit_to_int, 624,
625–626

driver programs for,
282–284

equal, 610–613, 615
factorial (n!), 229–230
flags and, 326–329
formatting output using,

323, 325–338
friend, 610–633
I/O streams and, 323,

325–338, 1004–1005
indexed variables as

arguments, 385–388
inheritance and, 832,

834–835, 843–849
inline, 1011
local variables and, 218–230,

270–271
manipulators, 328–330
member, 312–315, 339–351,

542–562, 843–850,
1004–1005

mutator, 555–556
nonmember, 610–633
not inherited, 850
overloading names,

230–238, 848, 916
parameters, 192–194, 196,

206–207, 229–230,
259–272, 388–394

polymorphism and,
853–867

predefined, 183–192
procedural abstraction,

204–218, 272–282

programmer-defined,
192–204

random number generator,
1009

recursive, 783–801
redefining in inheritance,

832, 834–835, 843–849
return statements, 194–195,

201, 255–258
returning an array, 394
returning values, 181–241,

536–537
signature, 848
streams, 323, 325–328,

332–336
string, 1007–1008
structures and, 536–537
stub, 284–287
subtasks, for, 251–303,

395–396
templates for, 915–920
testing, 282–287
throwing an exception in,

898–900
top-down design and,

182–183
trigonometric, 1010
type casting, 188–191
virtual, 853–867
void, 252–259
testing, 282–287

G
Generic algorithms, 977–991

big-O notation, 980–982
container modifying

algorithms, 988–989
find function, 983–985
nonmodifying sequence

algorithms, 983–987
range [first, last)

iterators, 985–987
running times, 978–983
set algorithms, 989–990
sorting algorithms, 991

1030 INDEX

get function, 339–342,
346–347

get_int function, 461
get_numbers function, 261–266
get_total function, 397–398
getline function, 457–459,

469, 472–474
C strings using, 457–459
cin mixing input using,

472–475
string class using, 469,

472–475
Global named constants,

221–223
Global namespaces, 712–713,

724–725
Global variables, 223–224,

510
grade array, 422–426
graph function, 395,

404–407

H
Hard disk storage, 6
Hardware, computer systems

and, 2–7
Head of linked lists, 740,

741–743
Header files, 184–186,

698–700
angular brackets (< >) used

for, 184–186
include directive and,

184–186, 699–700
compiling separate

programs and, 698–700
Heaps, see Freestore
Hierarchical structures, 537
High-level languages, 8–9

I
Identifiers, variables, 42–44
if statements, 79–80

if-else statements, 75–82,
120–129, 134–139
blocks and, 134–139
Boolean expression and,

75–79
braces { } used with, 82,

121–123
branching mechanism, as a,

75–82, 120–129
comparison operators,

78–80
compound statements and,

82
indenting, 124
multiway, 123–127
nested, 120–123

ifstream, 308–309, 312–313,
585–588

Implementation, 15–17,
579–583, 662–663,
697–698, 700–707, 762,
764–765, 769–771,
829–830,

 832–834
abstract data types (ADT),

579–583, 697–698,
700–707

base classes, 829–830
classes, of, 579–583,

662–663, 829–830
derived classes, 832–834
dynamic arrays, using,

662–663
files, 697–698, 700–707
functions in, 705, 707
inheritance and, 829–830,

832–834
linking with other files,

705
member functions in,

705–707
names of, 700, 706
phase, 15–17
queues, 769–771

separate compilation of
files and, 697–698,
700–707

stacks, 762, 764–765
in_stream, 309–310, 312–313
include directive, 25–26,

52–53, 184–186, 699–700
C++ programming and,

25–26
header files and, 184–186,

699–700
output and, 52–53
predefined functions and,

184–186
preprocessors and, 186

Indenting statements, 93–94,
124

index_of_smallest function,
416

Indexed variables, 377–378,
385–388, 420–421, 450
arrays declared using,

377–378
C strings and, 450
function arguments, as,

385–388
multidimensional arrays

declared using, 420–421
Indexes, 378, 381–383, 420,

427
arrays and, 378, 381–383
commas (,) used between,

427
multidimensional arrays

and, 420, 427
out of range, 381–383
zero, beginning with, 378

Infinite loops, 90–92, 153
Infinite recursion, 791–792
Information hiding, 205, 584
Inheritance, 584–594, 825–880

ancestor class, 834
assignment (=) operators

used for, 850–851

INDEX 1031

base classes, 826, 828–830,
835, 838–840, 848–849,
855–856, 859

child class, 587, 826, 834
constructors used in,

835–838
copy constructors used in,

850–851
default arguments, 589–591
derived classes and, 584–588,

591–592, 826–828,
830–838, 843–848,
850–851, 855, 857–859

descendants, 834
destructors used in, 851,

866–867
functions not inherited,

850
new_line function and,

588–589
parent class, 287, 826–827,

834
polymorphism and,

853–867
private member variables

used in, 838–840
protected qualifier used

in, 840–842
redefining functions, 832,

834–835, 843–849
stream classes and, 585–589
stream parameters and,

587–588
virtual functions and,

853–867
Initialization, 383, 449, 539,

564–575
arrays, 383
C strings, 449
classes, 564–575
constructors for, 564–575
section, 569–570
structures, 539

Inline functions, 1011

input function, 619
Input, 3, 24, 50–60, 306–307,

320, 322–325, 343–346,
457–465, 959
C strings, 457–465
character I/O and, 343–346
checking programs for,

343–346
cin, using, 24, 56–58
device, computers, 3
echoing, 58
extraction operator (>>),

24, 56–58, 457–458
file names as, 320,

322–325
getline function,

457–459
iterators, 959
number conversions in,

460–465
output and, 50–60, 306–307
robust, 460–465
spaces, separating numbers

with, 57–58
streams, 50, 306–307
strings and, 320, 322–325

Input/output (I/O), 58–59,
305–373, 457–459,
468–474, 561–562,
1004–1005
arguments using member

functions for, 561–562
C-string techniques for,

457–459
C++ library member

functions, 1004–1005
character data, 338–358
checking program input,

343–346
checking program output,

332, 335–336
echoing the input, 58
files, 306–323, 332,

335–336, 458

flags and, 326–328, 329
formatting functions, 323,

325–334
line breaks in, 58–59
manipulator functions,

328–330
member functions and,

312–315, 339–351,
457–459, 561–562

namespaces and, 336–337
predefined character

functions for, 352–356
prompt lines, 58–59
streams, 305–373, 561–562
string class and, 468–474

input_data function,
395–401

insert function, 741, 750–751
int, 22, 60–62, 68, 116–118

Boolean expressions
converting to, 116–118

C++ programming and, 22
data type, 60–62, 68
double variables and, 68

int main() function, 26
Integers, 22, 62
Interfacing, 579–580, 697–700,

705–706, 761–762,
767–768, 828, 830–832
abstract data types (ADT)

and, 579, 580
base classes, 828
compilation of, 697–700,

705–706
derived classes, 828,

830–832
files, 697–700, 705–706
inheritance and, 828,

830–832
linking with other files, 705
queues, 767–768
stacks, 761–762
suffix .h for names of, 700,

706

1032 INDEX

iomanip function, 330
ios::fixed flag, 327
ios::scientific flag, 328
ios::showpoint flag, 327
ios::showpos flag, 328
iostream file name, 25–27,

52
isspace function, 354–355
istream, 585–588
Iteration, 84, 140, 158–159,

749, 795–796, 810,
945–960, 965, 985–987
ask-before technique,

158–159
begin() function for, 947,

949, 958
bidirectional, 955
compiler problems with, 951
constant, 956–957
container elements affect

on, 965
decrement (--) operator

used for, 946, 952–954
dereferencing (*) operator

used for, 947, 950
end() function for, 947,

950, 958
forward, 955
increment (++) operator

used for, 946
input, 959
loops and, 84, 140, 158–159
mutable, 956
output, 959
pointers used for, 749
random access, 953–955
range [first, last),

985–987
recursion versus, 795–796,

810
reverse, 957–959
Standard Template Library

(STL) and, 945–960,
965, 985–987

using declarations,
945–946

vectors and, 947–949

K
Keywords, 44, 999

L
labs function, 187
Languages, 8–9, 19–20

assembly, 8
C++ programming, 19–20
computer systems and, 8–9
high-level, 8–9
low-level, 8
machine, 8–9

Last-in/first-out (LIFO) data
structure, 761

Late (dynamic) binding,
853–854

Leaf node, 756
length function, 474
Lexicographic order, 452
Line breaks, 24, 58–59, 201

C++ programming using, 24
function definitions, 201
I/O and, 58–59

Linear running time, 981–982
Linked lists, 733–780, 960–963

algorithms for, 741–743,
754–760

arguments, as, 741
arrays compared to, 750–751
assignment (=) operators

used with, 752–753
binary trees, 755–756
classes and, 756–760
data structures, as, 752–753,

755–756
doubly, 754–755, 960–961
dynamic data structures in,

752–753
empty, 742, 747
end, inserting nodes in, 750

head, inserting nodes at,
740–743

lost nodes in, 744–745
middle, inserting nodes in,

749–750
nodes and, 734–790
one-node, 740–741
pointers and, 733–780
queues and, 766–771
removing nodes, 751–752
searching, 745–748
sequential containers and,

960–963
stacks and, 760–766
Standard Template Library

(STL) and, 960–963
Linkers, computer

programming and, 9–10
Linking files in ADT, 705
list sequential container

class, 960–961
Lists of array objects,

templates for, 930–935
Local variables, 134, 136–137,

139, 218–230, 270–271
blocks and, 134, 136–138,

139
call-by-reference parameters

and, 270–271
call-by-value formal

parameters as, 224–226
factorial function (n!),

229–230
formal parameters and,

229–230
functions and, 218–230
inadvertent, 139, 270–271
namespaces and, 226–228
scope, 220

Logic errors, 31
long data type, 62–63, 619
long double data type, 62
Loop mechanisms, 84–92,

140–166

INDEX 1033

body, 84, 140
Boolean expressions, 84–86
break statements and,

153–155
count-controlled, 159
debugging, 163–166
decrement (--) operator

used for, 87–89, 142–145
design of, 156–166
do-while, 87–88, 141–142
ending, 157–160
executing zero times, 86–87
flags and, 159–160
for (statements), 145–151
increment (++) operator

used for, 87–89, 142–145
infinite, 90–92, 153
input and, 159
iteration, 84, 140, 158–159
lists headed by size, 158
nested, 155, 161–163
products, used for, 157
runaway, 160
sentinel values, 158–159
sums, used for, 156
testing, 165–166
uninitialized variables and,

153
while, 84–87, 141–142

Lost nodes, 744–745
Low-level language, 8

M
Machine language, 8–9
Main memory, 3–4
Mainframe computer systems,

2
Manipulator functions,

328–330
formatting I/O streams

using, 328–330
iomanip, 330
setprecision, 329–330
setw, 328–329

map template class, 970,
973–976

Member functions, 312–315,
339–351, 474–482,
542–562, 564–575, 618,
663–665, 671, 810–814,
928–929, 964, 1004–1005
accessor functions and,

555–556
BankAccount class

examples of, 557–562,
567–569

blank spaces and, 339–340
c_str(), 482
C++ library input and

output, 1004–1005
calling, 544
character I/O and, 338–358
classes and, 312–313,

542–562
constructors, as, 564–575
definition, 544–546
destructors, 663–665, 671
dot (.) operator used for,

313, 546
end of line detection using,

340
eof, 349–351
fail, 314–315
get, 339–342, 346–347
length, 474
member variables in, 545
mutator functions and,

555–556
new-line character ('/n')

and, 339–341, 346–347
nonmember functions and,

618
objects and, 312–313, 542,

546, 557
overloading, 562
private, 547–557, 561
public, 547–557
put, 339–342

putback, 342–343
recursion and, 810–814
scope resolution (: :)

operator used for,
545–546

sequential containers, for,
964

stream I/O arguments
using, 561–562

string class use of, 474–482
templates and, 928–929

Member names and values in
structures, 531–535

Member variables, 531,
533–535, 545, 655–658
arrays as, 655–658
member functions, in, 545
structures, in, 531, 533–535

Memory, 3–7, 41–42, 380–383,
390, 508–510, 794, 906–907
activation frames, 794
addresses, 4–5, 380
arrays in, 380–383, 390
bits (binary digits), 4
bytes, 4–5
computer systems and, 3–7
exception handling and,

906–907
files and, 6
freestore, 508–510
indexes and, 381–383
location, 4–5
location, 4–5, 41–42
main, 3–4
pointers, management for,

508–510
processor (CPU) and, 6–7
random access (RAM) of, 6
secondary, 3, 6
sequential access of, 6
storage of, 6
sufficient, testing for,

906–907
variables, 41–42

1034 INDEX

Messages, errors versus
warnings, 31

Money amounts, output and,
56

Multidimensional arrays,
419–427, 521–523
commas (,) used between

indexes, 427
declarations for,

420–421
delete [] operator and,

521–522
dynamic, 521–523
indexed variables and, 420,

427
parameters, 420–422
two-dimensional example

of, 422–426
Mutable iterators, 956
Mutator functions, 555

N
Names, 42–44, 49, 192–194,

206–207, 230–238,
308–310, 320, 322–325,
531–535, 700, 704–706
application files, 704–706
destructors, 663, 665
external file, 310
file, 308–310, 320, 322–325,

706
formal parameters, 192–194,

206–207
function declarations and,

192–194
implementation files, 700,

706
input, file names as, 320,

322–325
interface files, 700,

705–706
member, identifiers for

structures, 531–535
overloading, 230–238

procedural abstractions
and, 206–207

strings and, 320, 322–325
suffix .h for, 700, 704–706
tilde (~) symbol used for,

663, 665
variables, 42–44, 49,

322–323
Namespaces, 52–53, 186,

226–228, 336–337,
712–727
choosing names for,

722–723
compiling separate

programs and, 712–727
creating, 714–716
global, 712–713, 724–725
grouping, 714–716
I/O streams and, 336–337
local variables and,

226–228
output and, 52–53
scope of, 713
unnamed, 719–722,

724–725
using declarations and,

717–718
using directives and, 52–53,

186, 336–337, 712–714
Nesting, 120–123, 138–139,

155, 161–163, 208–210, 905
blocks, 138–139, 905
braces { } used for, 121–123,

138–139
break statement in, 155
function calls and, 208
if-else statements,

120–123
loops, 155, 161–163,

208–210
procedural abstraction for,

208–210
statements, 120–123
try-catch blocks, 905

Network computer systems, 2
new operator, 504–507, 510,

517–518
dynamic arrays and,

517–518
dynamic variables created

using, 505–506, 510
pointers and, 504–507

New-line character (/n), 22,
24, 52, 54–55, 339–341,
346–347
C++ programming and, 22,

24
endl used as, 54–55
input and, 346–347
member functions and,

339–341, 346–347
output and, 52–54

new_line function, 588–591
Nodes, 734–790

arrow (->) operator used
for, 736, 738

binary trees and, 755–756
changing data in, 735–736
end (back) of lists, inserting

in, 750
head (front) of lists,

inserting at, 740–743
insert function for, 741,

750–751
leaf , 756
linked lists and, 734–790
lost, 744–745
middle of lists, inserting in,

749–750
NULL constant used in,

736–738
pointers and, 734–790
queues and, 766, 769
removing from lists,

751–752
root, 756
searching linked lists using,

745–748

INDEX 1035

structures, 734–736
type definition, 734–735,

740
Nonmember functions, see

Friend functions
Nonmodifying sequence

algorithms, 983–987
Null ('/0') character, 447, 450
NULL constant, 736–738, 762
Numbers, 55–58, 70–72,

460–465, 502, 783–789.
See also Arithmetic
addresses and, 502
C-string-to, conversion of,

460–465
decimal point (.),

formatting with, 55–56
input and output of, 55–58
money amounts, 56
negative, division and, 70
recursion and, 783–789
robust input for, 460–465
spaces, separating numbers

with, 57–58
vertical output of, 783–789
whole, division and, 71–72

O
Object-oriented programming

(OOP), 17. See also
Polymorphism

Object program (code), 9
Objects, 312–316, 471,

481–482, 542, 546, 555,
557, 564–575, 927–928
assignment (=) operator

used with, 557
classes and, 312–313, 542,

546
constructors for, 564–575
converting between C string

and string, 481–482
dot (.) operator used for,

313, 546

equal to (==) operator used
with, 555

initialization and,
564–575

member functions for,
312–313, 546, 557,
564–575

streams and, 312–316
string class, 471, 481–482
templates, declared in,

927–928
Off-by-one errors, 163
ofstream, 308–309, 312–313,

588
open function, 309–310,

313–315, 317, 320–323
appending files using,

320–322
fail function, 314–315
stream variables and,

309–310
string variables as

arguments to, 323
testing file call to, 313–315,

317
Operating system (OS), 7
Operators, 24, 46–47, 50–51,

56–58, 69–74, 78–82,
87–89, 142–145, 633–651,
672–675,
1000–1001, 1017–1018
arithmetic, 69–74
assignment (=), 46–47,

73–74, 672–675
automatic type conversion,

638–639
comparison, 78–82
decrement (--), 87–89,

142–145, 520, 640
extraction (>>), 24, 56–58,

640, 642–649
functions and, 634
increment (++), 87–89,

142–145, 520

insertion (<<), 24, 50–51,
640, 642–649

member, 1017–1018
overloading, 633–651,

672–675, 1017–1018
precedence of, 1000–1001
unary, 640–641

ostream, 587–588
out_stream, 309–310,

312–313
Output, 3, 24, 50–60,

306–307, 323, 325–334,
959. See also Input/output
(I/O)
arithmetic expressions, 51
cout, using, 24, 50–52
decimal point (.) for

formatting numbers,
55–56

device, computers, 3
double values, 55–56
endl, using, 54–55
escape sequences, 53–55
flags and, 326–329
formatting functions for,

323, 325–334
formatting numbers for,

55–56
include directives and,

52–53
input and, 50–60,

306–307
insertion operator (<<), 24,

50–51, 328–329, 457
iterators, 959
manipulator functions for,

328–330
money amounts, 56
namespace and, 52–53
new-line (/n) character, 52,

54–55
parentheses () and

arithmetic expressions,
51

1036 INDEX

streams and, 50, 306–307,
323, 325–334

using directive and, 52–53
output function, 624–625
Overflow, stacks, 794–795
Overloading, 230–238, 562,

633–651, 672–675, 814,
847–848, 916, 1012–1013,
1017–1018
assignment (=) operator

and, 672–675
automatic type conversion

and, 236–237
decrement (--) operator, 640
extraction (>>) operators,

640, 642–649
function definitions,

determination of for
avoidance of, 232–233

function names, 230–238,
847–848, 916

function signatures and,
848

increment (++) operator,
640

insertion (<<) operators,
640, 642–649

member functions, 562
operators, 633–651,

1017–1018
recursion versus, 814
redefining functions versus,

847–848
square brackets [],

1012–1013
templates and, 916

Overriding virtual functions,
859

P
Parameters, 192–194, 196,

206–207, 229–230,
259–272, 388–394,
411–412, 420–422, 455,
586–588, 628–632,

665–667, 888, 890,
915–919, 927
ampersand (&) symbol

used for, 260, 263
arguments and, 267–268,

390–392
array, 388–394, 411–412
C string, 455
call-by-reference, 259–272
call-by-value, 196,

267–271, 665–667
catch-block parameter,

888, 890
const modifier, 391–394,

628–632
constant, 628–629, 630
determining type of,

268–271
formal names, 192–194,

206–207
friend functions and,

628–632
function declarations and,

192–194
inheritance and, 586–588
local variables and,

229–230, 270–271
mixing call-by-reference

and call-by-value,
263–271

multidimensional array,
420–422

pointers as, 665–667
procedural abstraction and,

206–207
programmer-defined

functions and, 192–194,
196

square brackets [] used
for, 389

stream, 587–588
templates and, 915–919, 927
type (T), 915–919, 927

Parent class, inheritance and,
287, 826–827, 834

Partially filled arrays,
408–412, 448, 656, 658
C-string variables as, 448
C++ programming and,

408–412
classes for, 656, 658

Personal computers (PC), 2
Pointers, 499–528, 663–667,

733–780, 1014–1016
addresses as, 500–501
ampersand (&) symbol and,

501, 503
arithmetic performed on,

519–520
arrow (->) operator used

with, 736, 738
assignment statements, in,

503–504, 506
call-by-value parameters,

as, 665–667
dangling, 509–510
decrement (--) and

increment (++)
operators in, 520

deferencing (*) operator
for, 502–503, 510–511

delete operator, 509–510,
515–517, 521–522, 663

destructors and,
663–665

dynamic arrays and,
512–523, 663–667

freestore, 508–510
iterators, used as, 749
linked lists and,

733–780
memory management for,

508–510
multidimensional dynamic

arrays and, 521–523
new operator, 504–507,

517–518
nodes and, 734–790
NULL constant assigned to,

736–738

INDEX 1037

queues and, 766–771
stacks and, 760–766
this, 1014–1016
typedef, 510–512
variables, 501–507, 510, 513

Polymorphism, 853–867
late (dynamic) binding,

853–854
virtual functions and,

853–867
pop function, 761–762, 765
pow function, 187–188
Precedence rules, 71, 114–116

arithmetic operators, 71
Boolean expressions,

114–116
precision function, 326
Predefined functions,

183–192, 352, 354–356,
453–454
abs, 187
absolute values, 187
arguments, 183, 188
C string, 453–454
calls (invocations),

183–186
cctype header file for, 352,

354–356
character I/O data, 352,

354–357
fabs, 187
header files (< >) and,

184–186
include directives, 184–186
isspace, 354–355
pow, 187–188
return values, toupper and

tolower, 355
tolower, 355
toupper, 352, 355
type casting, 188–191
value returned, 183

Priority queues, 966
Private member functions,

547–557, 561, 580, 583,

614, 697–698, 705–707,
838–840
abstract data types (ADT)

and, 580, 583, 697–698,
705–707

accessor functions and,
555–556

base class use of, 838–840
class example using, 551,

554
friend function access to, 614
implementation and,

697–698, 705–707
inheritance and, 838–840
members, as, 553, 561
mutator functions and,

555–556
public members and,

547–557
variables, 551–553, 555,

838–840
Procedural abstraction,

204–218, 272–282
algorithm design for,

212–213, 278
black box analogy, 204–218
case study: Buying Pizza,

211–217
case study: Supermarket

Pricing, 276–281
coding, 213–216, 278–281,
functions calling functions,

273–275
functions returning values,

204–218
information hiding, 205
nested loops and, 208–210
parameter names and,

206–207
postconditions, 273,

275–276
preconditions, 273,

275–276
problem analysis, 211–212,

277–278

program testing, 214,
216–217, 281

pseudocode for, 212–213,
217

Processor (CPU), computer
system hardware, 3, 6–7

Products, loops used for,
157

Programmer-defined
functions, 192–204
arguments and, 199–201
Boolean values, returning,

196, 198–199
branching statements and,

202–203
call-by-value, 195–201
calls, 194–198, 202–203
function body, 194
function declarations, 192,

199, 201–202
function definitions,

192–196, 201–202
function headers, 194
parameters, 194, 196
return statement, 194–195,

201
spacing and line breaks in,

201
syntax of, 201–204
value returned, 194

Programs, 7–11, 15–17,
24–29, 93–97. See also
C++ programming
C++ sample of, 20–24
comments in, 94–96
compiling and running,

7–11, 27–29
computer software and,

7–8
data in, 7–8
design of, 15–17
implementation phase,

15–17
indenting, 93–94
layout of, 24–27

1038 INDEX

naming constants, 96–97
object code, 9
problem-solving phase,

15–16
source code, 9
statements in, 22–23, 25–27
style of, 93–97

Prompt lines, 58–59
protected qualifier, 840–842
Pseudocode, 212–213, 217
Public member functions,

547–557
push function, 761–762
push_back function, 483,

961–962
put function, 339–342
putback function, 342–343

Q
Quadratic running time, 982
Queues, 766–771, 966–968

application program for,
767–769

containers, as, 966
first-in/first-out (FIFO) data

structure of, 766–767
implementation of, 769–771
interface for, 767–768
linked lists, as, 766–771
pointers and, 766–771
priority, 966
queue template class,

966–968
Standard Template Library

(STL) for, 966–968

R
Random access iterators,

953–955
Random access memory

(RAM), 6
Random number generator

functions in C++ library,
1009

range [first, last)
iterators, 985–987

read_and_clean function, 461
Recursion, 781–823

activation frames, 794
base (stopping) case and,

790–791, 797
case study: Binary Search

and Recursive Thinking,
803–810

case study: Vertical
numbers, 783–789

definition, 791
design techniques, 801–815
ending, 790
functions, 783–801
infinite, 791–792
iteration versus, 795–796,

810
member functions, as,

810–814
overloading versus, 814
returning values, criteria

for, 802
stacks for, 793–795
tasks, functions for, 783–796
values, functions for,

796–801
void functions and, 803

Redefining functions, 832,
834–835, 843–849
access to, 848–849
base classes, 832, 834–835,

848–849
derived classes, 832,

834–835
inheritance and, 832,

834–835, 843–849
members, 843–847
overloading versus,

847–848
reserve function, 487
Reserved words, 44
resize function, 488

Rethrowing exceptions, 907
Return (Enter) key, 23
return 0; program line, 20, 26
return statements, 194–195,

201, 255–258
programmer-defined

functions, 194–195, 201
void functions and,

255–258
Returning values, see

Predefined functions;
Programmer-defined
functions; Recursion

Reusable components of ADT,
707

Reverse iterators, 957–959
Robust input, 460–465
Root node, 756
round function, 402
Runaway loops, 160
Running programs, 7–11,

27–29
C++ layout for, 27–29
compiler use for, 9–11
computer software and, 7–8
linker use for, 9–11

Running times, 978–983
big-O notation for, 980–982
container access of, 982–983
function, 978–979
linear, 981–982
operations, 979–980
quadratic, 982
worst case, 979

Run-time errors, 31

S
scale function, 395, 398,

401–404
Scientific notation, 61
Scope rule, 138, 713
search function, 412, 745,

747–748

INDEX 1039

Searching, 412–414, 745–748
arrays, 412–414
linked lists, 745–748
sequential, 412

Secondary memory, 3, 6
Sentinel values, 158–159
Sequential containers, 960–966

iterators, effect from
elements in, 965

linked lists and, 960–963
member functions for, 964
template classes for, 963
type definitions in, 965

Set algorithms, 989–990
set template class, 970–972
setf function, 326–328
setprecision function,

329–330
setw function, 328–329
short data type, 63
Short-circuit evaluation, 116
Signatures, overloading

function and, 848
Size, 377–378, 380, 390–391,

483–484, 487–488,
660–662
array arguments and

parameters, 390–391
arrays and, 377–378, 397
capacity and, 487–488
constants used for, 378, 380
declared, 377
square brackets [] used

for, 377, 389, 483–484
string values, 660–662
unsigned int value and,

483–484
vectors and, 483–484,

487–488
Slicing problem, 861–864
slist sequential container

class, 960–961
Software, 2, 7–8, 17–18

compilers, 9–11
computer systems and, 2,

7–8
data, 7–8
high-level languages of, 8–9
lifecycle, 17–18
linkers, 9–11
operating system, 7
program, 7–8

sort function, 414–415,
921–925

Sorting, 414–418, 991
algorithms, 991
arrays, 414–418
selection, 415–418

Source program (code), 9
Spaces, 57–58, 339–340

member functions and,
339–340

separating numbers with,
57–58

Spacing, 24, 26–27, 70, 201
arithmetic expressions, 70
C++ programming using,

24, 26–27
function definitions, 201

stack template class,
966–969

Stacks, 760–766, 793–795
activation frames, 794
application program for,

762–763
copy constructors used in,

765
destructors used in, 765
implementation of, 762,

764–765
interface for, 761–762
last-in/first-out (LIFO) data

structure of, 761,
793–794

linked lists, as, 760–766
overflow, 794–795
pointers and, 760–766

pop function, 761–762, 765
push function, 761–762
recursion and, 793–795

Standard Template Library
(STL), 943–998
C++ libraries compared to,

944
containers, 960–977,

982–983
generic algorithms,

977–991
iterators, 945–960, 965,

985–987
pairs of values in, 973–976
sequential containers,

960–966
template classes, 966–976
using declarations, 945–946

Statements, 22–27, 45–49,
73–74, 82, 93–94
#include directive, 25–26
assignment, 45–49, 73–74
braces { } used with, 82,

93–94
C++ programming using,

22–27
cin (input), 22–23
compound, 82
constants, 46
cout (output), 22–23
direction arrows (<< and >>),

24
executable, 22, 25
indenting, 93–94
int main() function, 26
iostream file name, 2–27
return 0; line, 26
return, 26
semicolon (;) in, 25
spacing in, 26–27
variables and, 45–49

static_cast<double>,
189–191, 214

strcat function, 453

1040 INDEX

strcmp function, 451–453
strcpy function, 451–453
Streams, 50, 305–373, 561–562,

585–589
arguments to functions, as,

332
cin as, 307
classes, 312–316, 585–589
cout as, 307
declaring, 308
external file names, 310
fail function, 314–315
file names and, 308–310
files and, 306–323
flags and, 326–329
formatting functions, 323,

325–334
fstream, 308–309
ifstream, 308–309,

312–313, 585–588
in_stream, 309–310,

312–313
inheritance and, 585–589
input and output (I/O), 50,

306–307
istream, 585–588
manipulator functions for,

328–330
member functions using

I/O arguments,
561–562

namespaces and, 336–337
new_line function in,

588–589
objects and, 312–316
ofstream, 308–309,

312–313, 588
ostream, 587–588
out_stream, 309–310,

312–313
output, formatting using,

323–334
parameters, 587–588
tools for I/O, 323–338

using directives and,
336–337

variables as, 308
string class, 65–67,

465–482
C strings, converting

between objects and,
481–482

c_str() function, 482
concatenation using

+ operator, 465–466
constants, converting

between C-strings and,
467

constructors, 466
data types, as, 65–67,

465–468
getline function in, 469,

472–475
input/output (I/O) for,

468–475
length function in, 474
member functions and,

474–480
objects, 471, 481–482
operators = and == used in,

481
string processing with,

474–481
whitespace characters and,

66
String values, 64, 320, 322–325,

445–497, 660–662,
1007–1008
array types for, 447–465
C strings, 446–465, 481–482
C++ library functions,

1007–1008
data types as, 64
dynamic array class and,

660–662
file names and, 320,

322–325
input, 322–325

open function and, 323
size of, 660–662
string class, 465–482
variables and, 322–323
vectors and, 482–488

stringvar class, 659–665
struct keyword, 531
Structures, 530–541, 563,

734–736, 752–753,
755–756
assignment statements and,

535
braces { } used for member

names, 531–535
classes versus, 563
data, 752–753, 755–756
data diversity and, 530–535
dot operator (.) used for,

534, 536
function arguments, as,

536–537
hierarchical, 537
initializing, 539
linked lists and, 734–736,

752–753, 755–756
member names as

identifiers for, 531–535
member values, 531–535
member variables,

533–535
nodes as, 734–736
semicolons (;) in, 535
tags, 531
types, 531–532, 538
variables, 531, 533–535

Stub functions, 284–287
Subscripted variables, see

Indexed variables
Subtasks, functions for,

251–303, 395–396
Sums, loops used for, 156
swap_values function,

261–262, 266–267, 416
switch statements, 129–140

INDEX 1041

branching mechanisms, as,
129–140

blocks and, 134–139
break statements and,

132–134
case labels, 132–134
controlling expression for,

131
default labels, 132

Syntax, variable declarations
and, 45

Syntax errors, 30–31

T
Tasks, recursive functions for,

783–796
Template class, 483
Templates, 913–942. See also

Standard Template Library
(STL)
algorithm abstraction,

914–926
compiler complications

from, 919
data abstraction, 927–935
defining, 925–926
functions, 915–920
inappropriate type in, 926
lists, examples of using,

930–935
member functions in,

928–929
objects declared in,

927–928
prefix, 915
sort function example for,

921–925
type definitions in, 930
type parameter (T),

915–919, 927
Testing, 30, 165–166, 214,

216–217, 281–287. See also
Debugging; Errors
boundary values

debugging and, 30,
165–166, 282–287

driver programs used for,
282–284

functions, 282–287
procedural abstraction

programs, 214, 216–217,
281

stub functions used for,
284–287

Text editing, 352–354
this pointer, 1014–1016
throw statements, 886–889,

892, 894–905
C++ programming

techniques for, 903–905
exception handling using,

886–887, 889, 899–900,
903–905

exception specification and,
900–902

functions, throwing an
exception in a,
898–900

multiple, 892, 894–897
tolower function, 355
Top-down design, 182–183,

394–408
toupper function, 352, 355
Tracing variables, 163–164
Trees, linking data using,

755–756
Trigonometric functions in

C++ library, 1010
Trivial exception class,

897–898
Truth tables, 113–114
try blocks, exception handling

using, 886–887, 889
try-throw-catch mechanism

in exception handling,
889–891

Type casting, 188–191, 214

double and, 188–191
integer division and,

188–189, 191
parentheses () and, 190
static_cast<double>,

189–191, 214
Type parameter (T) for

templates, 915–919, 927
typedef, 510–512

U
Unary operators, 640–641
Uninitialized variables, 47–49
Unnamed namespaces,

719–722, 724–725
compilation unit and, 719
compiling separate

programs and, 719–722,
724–725

functions and, 719–722
global namespaces,

confusing with, 724–725
unsetf function, 328
unsigned int value, 483–484
using declarations, 717–718,

945–946
iterators and, 945–946
namespaces and, 717–718
Standard Template Library

(STL), 945–946
using directives, 52–53, 186,

336–337, 712–714, 717–718
C++ programming and,

52–53
compiling separate

programs using, 712–714,
717–718

functions and, 186
I/O streams and, 336–337
namespaces and, 336–337,

712–714, 717–718
output and, 52–53
using declarations versus,

717–718

1042 INDEX

V
Values, 55–56, 183, 187, 194,

447–452, 796–801,
943–998. See also String
values
absolute, 187
C string, 447–452
double output, 55–56
recursive functions for,

796–801
returned, 183, 194
STL pairs, 973–976

Variables, 22, 40–50, 134,
136–139, 147, 153,
163–164, 218–230,
270–271, 377–378,
385–388, 447–452,
501–507, 510–517, 531,
533–535, 551–553, 555,
838–840
arrays and, 377–378,

513–514
assignment operator (=),

46–47
assignment statements,

45–49
automatic, 510
blocks and, 134, 136–139
braces { } for, 138–139
C string, 447–452
C++ programming using,

22, 40–50
declaration of, 22, 44–45,

147, 501–502
deferencing (*) operator

for, 502–503, 510–511
dynamic, 505–506, 510,

515–517
dynamic arrays and,

513–517
for loops, declaring using,

147

function arguments, as,
385–388

global, 223–224, 510
identifiers, 42–44
indexed, 377–378, 385–388
infinite loops and, 153
inheritance and, 838–840
integers as, 22
keywords, 44
local, 134, 136–137, 139,

218–230, 270–271
member, 533–535
memory locations, 41–42
names, 42–44, 49
placement of declarations,

44–45
pointers, 501–507, 510–513
private member, 551–553,

555, 838–840
reserved words, 44
square brackets [] for,

377, 513, 515–517
structure, 531, 533–535
subscripted, 377–378
syntax of, 45
tracing, 163–164
type, 44, 377
typedef used for, 510–512
uninitialized, 47–49, 153
value of, 40–42

Vectors, 482–488, 947–949
arrays compared to,

482–483, 486
assignment operator (=)

and, 486
capacity() function, 487
efficiency of, 487–488
iterators used with,

947–949
push_back function, 483
reserve function, 487
resize function, 488

size, 483–484, 487–488
square brackets [] used

for, 483–484
template class, 483
unsigned int value,

483–484
variables, 482

Virtual functions, 853–867
base class, used for,

855–856, 859
C++ programming using,

854–864
compiling class definitions

and, 865–866
derived class, used for, 855,

857–859
destructors and, 866–867
extended type capability of,

860–864
inheritance and, 853–867
not using, 864–865
overriding, 859
polymorphism and,

853–867
slicing problem, 861–864

void functions, 252–259, 803
call, 253–254
definition, 253–254
recursion and, 803
return statements in,

255–258

W
Warning messages, 31
while loops, 84–87
Whitespace characters, 66
width function, 328
Worst case running time, 979

Z
Zeros leading in number

constants, 626

	Cover������������
	Title Page�����������������
	Copyright����������������
	CONTENTS
	TABLE OF LOCATION OF VIDEO NOTES: Inside front cover
	Chapter 1 Introduction to Computers and C++ Programming
	1.1 COMPUTER SYSTEMS
	Hardware
	Software
	High-Level Languages
	Compilers
	History Note

	1.2 PROGRAMMING AND PROBLEM-SOLVING
	Algorithms
	Program Design
	Object-Oriented Programming
	The Software Life Cycle

	1.3 INTRODUCTION TO C++
	Origins of the C++ Language
	A Sample C++ Program
	Pitfall: Using the Wrong Slash in \n
	Programming Tip: Input and Output Syntax
	Layout of a Simple C++ Program
	Pitfall: Putting a Space before the include File Name
	Compiling and Running a C++ Program
	Programming Tip: Getting Your Program to Run

	1.4 TESTING AND DEBUGGING
	Kinds of Program Errors
	Pitfall: Assuming Your Program Is Correct
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 2 C++ Basics
	2.1 VARIABLES AND ASSIGNMENTS
	Variables
	Names: Identifiers
	Variable Declarations
	Assignment Statements
	Pitfall: Uninitialized Variables
	Programming Tip: Use Meaningful Names

	2.2 INPUT AND OUTPUT
	Output Using cout
	Include Directives and Namespaces
	Escape Sequences
	Programming Tip: End Each Program with a \n or endl
	Formatting for Numbers with a Decimal Point
	Input Using cin
	Designing Input and Output
	Programming Tip: Line Breaks in I/O

	2.3 DATA TYPES AND EXPRESSIONS
	The Types int and double
	Other Number Types
	The Type char
	The Type bool
	Introduction to the Class string
	Type Compatibilities
	Arithmetic Operators and Expressions
	Pitfall: Whole Numbers in Division
	More Assignment Statements

	2.4 SIMPLE FLOW OF CONTROL
	A Simple Branching Mechanism
	Pitfall: Strings of Inequalities
	Pitfall: Using = in place of ==
	Compound Statements
	Simple Loop Mechanisms
	Increment and Decrement Operators
	Programming Example: Charge Card Balance
	Pitfall: Infinite Loops

	2.5 PROGRAM STYLE
	Indenting
	Comments
	Naming Constants
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 3 More Flow of Control
	3.1 USING BOOLEAN EXPRESSIONS
	Evaluating Boolean Expressions
	Pitfall: Boolean Expressions Convert to int Values
	Enumeration Types (Optional)

	3.2 MULTIWAY BRANCHES
	Nested Statements
	Programming Tip: Use Braces in Nested Statements
	Multiway if-else Statements
	Programming Example: State Income Tax
	The switch Statement
	Pitfall: Forgetting a break in a switch Statement
	Using switch Statements for Menus
	Blocks
	Pitfall: Inadvertent Local Variables

	3.3 MORE ABOUT C++ LOOP STATEMENTS
	The while Statements Reviewed
	Increment and Decrement Operators Revisited
	The for Statement
	Pitfall: Extra Semicolon in a for Statement
	What Kind of Loop to Use
	Pitfall: Uninitialized Variables and Infinite Loops
	The break Statement
	Pitfall: The break Statement in Nested Loops

	3.4 DESIGNING LOOPS
	Loops for Sums and Products
	Ending a Loop
	Nested Loops
	Debugging Loops
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 4 Procedural Abstraction and Functions That Return a Value
	4.1 TOP-DOWN DESIGN
	4.2 PREDEFINED FUNCTIONS
	Using Predefined Functions
	Type Casting
	Older Form of Type Casting
	Pitfall: Integer Division Drops the Fractional Part

	4.3 PROGRAMMER-DEFINED FUNCTIONS
	Function Definitions
	Functions That Return a Boolean Value
	Alternate Form for Function Declarations
	Pitfall: Arguments in the Wrong Order
	Function Definition–Syntax Summary
	More About Placement of Function Definitions
	Programming Tip: Use Function Calls in Branching Statements

	4.4 PROCEDURAL ABSTRACTION
	The Black Box Analogy
	Programming Tip: Choosing Formal Parameter Names
	Programming Tip: Nested Loops
	Case Study: Buying Pizza
	Programming Tip: Use Pseudocode

	4.5 LOCAL VARIABLES
	The Small Program Analogy
	Programming Example: Experimental Pea Patch
	Global Constants and Global Variables
	Call-by-Value Formal Parameters Are Local Variables
	Namespaces Revisited
	Programming Example: The Factorial Function

	4.6 OVERLOADING FUNCTION NAMES
	Introduction to Overloading
	Programming Example: Revised Pizza-Buying Program
	Automatic Type Conversion
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 5 Functions for All Subtasks
	5.1 void FUNCTIONS
	Definitions of void Functions
	Programming Example: Converting Temperatures
	return Statements in void Functions

	5.2 CALL-BY-REFERENCE PARAMETERS
	A First View of Call-by-Reference
	Call-by-Reference in Detail
	Programming Example: The swap_values Function
	Mixed Parameter Lists
	Programming Tip: What Kind of Parameter to Use
	Pitfall: Inadvertent Local Variables

	5.3 USING PROCEDURAL ABSTRACTION
	Functions Calling Functions
	Preconditions and Postconditions
	Case Study: Supermarket Pricing

	5.4 TESTING AND DEBUGGING FUNCTIONS
	Stubs and Drivers

	5.5 GENERAL DEBUGGING TECHNIQUES
	Keep an Open Mind
	Check Common Errors
	Localize the Error
	The assert macro
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 6 I/O Streams as an Introduction to Objects and Classes
	6.1 STREAMS AND BASIC FILE I/O
	Why Use Files for I/O?
	File I/O
	Introduction to Classes and Objects
	Programming Tip: Check Whether a File Was Opened Successfully
	Techniques for File I/O
	Appending to a File (Optional)
	File Names as Input (Optional)

	6.2 TOOLS FOR STREAM I/O
	Formatting Output with Stream Functions
	Manipulators
	Streams as Arguments to Functions
	Programming Tip: Checking for the End of a File
	A Note on Namespaces
	Programming Example: Cleaning Up a File Format

	6.3 CHARACTER I/O
	The Member Functions get and put
	The putback Member Function (Optional)
	Programming Example: Checking Input
	Pitfall: Unexpected '\n' in Input
	The eof Member Function
	Programming Example: Editing a Text File
	Predefined Character Functions
	Pitfall: toupper and tolower Return Values

	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 7 Arrays
	7.1 INTRODUCTION TO ARRAYS
	Declaring and Referencing Arrays
	Programming Tip: Use for Loops with Arrays
	Pitfall: Array Indexes Always Start with Zero
	Programming Tip: Use a Defined Constant for the Size of an Array
	Arrays in Memory
	Pitfall: Array Index Out of Range
	Initializing Arrays

	7.2 ARRAYS IN FUNCTIONS
	Indexed Variables as Function Arguments
	Entire Arrays as Function Arguments
	The const Parameter Modifier
	Pitfall: Inconsistent Use of const Parameters
	Functions That Return an Array
	Case Study: Production Graph

	7.3 PROGRAMMING WITH ARRAYS
	Partially Filled Arrays
	Programming Tip: Do Not Skimp on Formal Parameters
	Programming Example: Searching an Array
	Programming Example: Sorting an Array

	7.4 MULTIDIMENSIONAL ARRAYS
	Multidimensional Array Basics
	Multidimensional Array Parameters
	Programming Example: Two-Dimensional Grading Program
	Pitfall: Using Commas Between Array Indexes

	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 8 Strings and Vectors
	8.1 AN ARRAY TYPE FOR STRINGS
	C-String Values and C-String Variables
	Pitfall: Using = and == with C Strings
	Other Functions in <cstring>
	C-String Input and Output
	C-String-to-Number Conversions and Robust Input

	8.2 THE STANDARD string CLASS
	Introduction to the Standard Class string
	I/O with the Class string
	Programming Tip: More Versions of getline
	Pitfall: Mixing cin >> variable; and getline
	String Processing with the Class string
	Programming Example: Palindrome Testing
	Converting between string Objects and C Strings

	8.3 VECTORS
	Vector Basics
	Pitfall: Using Square Brackets Beyond the Vector Size
	Programming Tip: Vector Assignment Is Well Behaved
	Efficiency Issues
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 9 Pointers and Dynamic Arrays
	9.1 POINTERS
	Pointer Variables
	Basic Memory Management
	Pitfall: Dangling Pointers
	Static Variables and Automatic Variables
	Programming Tip: Define Pointer Types

	9.2 DYNAMIC ARRAYS
	Array Variables and Pointer Variables
	Creating and Using Dynamic Arrays
	Pointer Arithmetic (Optional)
	Multidimensional Dynamic Arrays (Optional)
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 10 Defining Classes
	10.1 STRUCTURES
	Structures for Diverse Data
	Pitfall: Forgetting a Semicolon in a Structure Definition
	Structures as Function Arguments
	Programming Tip: Use Hierarchical Structures
	Initializing Structures

	10.2 CLASSES
	Defining Classes and Member Functions
	Public and Private Members
	Programming Tip: Make All Member Variables Private
	Programming Tip: Define Accessor and Mutator Functions
	Programming Tip: Use the Assignment Operator with Objects
	Programming Example: BankAccount Class—Version 1
	Summary of Some Properties of Classes
	Constructors for Initialization
	Programming Tip: Always Include a Default Constructor
	Pitfall: Constructors with No Arguments

	10.3 ABSTRACT DATA TYPES
	Classes to Produce Abstract Data Types
	Programming Example: Alternative Implementation of a Class

	10.4 INTRODUCTION TO INHERITANCE
	Inheritance Among Stream Classes
	Programming Example: Another new_line Function
	Default Arguments for Functions (Optional)
	Defining Derived Classes
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 11 Friends, Overloaded Operators, and Arrays in Classes
	11.1 FRIEND FUNCTIONS
	Programming Example: An Equality Function
	Friend Functions
	Programming Tip: Define Both Accessor Functions and Friend Functions
	Programming Tip: Use Both Member and Nonmember Functions
	Programming Example: Money Class (Version 1)
	Implementation of digit_to_int (Optional)
	Pitfall: Leading Zeros in Number Constants
	The const Parameter Modifier
	Pitfall: Inconsistent Use of const

	11.2 OVERLOADING OPERATORS
	Overloading Operators
	Constructors for Automatic Type Conversion
	Overloading Unary Operators
	Overloading >> and <<

	11.3 ARRAYS AND CLASSES
	Arrays of Classes
	Arrays as Class Members
	Programming Example: A Class for a Partially Filled Array

	11.4 CLASSES AND DYNAMIC ARRAYS
	Programming Example: A String Variable Class
	Destructors
	Pitfall: Pointers as Call-by-Value Parameters
	Copy Constructors
	Overloading the Assignment Operator
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 12 Separate Compilation and Namespaces
	12.1 SEPARATE COMPILATION
	ADTs Reviewed
	Case Study: DigitalTime—A Class Compiled Separately
	Using #i fndef
	Programming Tip: Defining Other Libraries

	12.2 NAMESPACES
	Namespaces and using Directives
	Creating a Namespace
	Qualifying Names
	A Subtle Point About Namespaces (Optional)
	Unnamed Namespaces
	Programming Tip: Choosing a Name for a Namespace
	Pitfall: Confusing the Global Namespace and the Unnamed Namespace
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 13 Pointers and Linked Lists
	13.1 NODES AND LINKED LISTS
	Nodes
	Linked Lists
	Inserting a Node at the Head of a List
	Pitfall: Losing Nodes
	Searching a Linked List
	Pointers as Iterators
	Inserting and Removing Nodes Inside a List
	Pitfall: Using the Assignment Operator with Dynamic Data Structures
	Variations on Linked Lists
	Linked Lists of Classes

	13.2 STACKS AND QUEUES
	Stacks
	Programming Example: A Stack Class
	Queues
	Programming Example: A Queue Class
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 14 Recursion
	14.1 RECURSIVE FUNCTIONS FOR TASKS
	Case Study: Vertical Numbers
	A Closer Look at Recursion
	Pitfall: Infinite Recursion
	Stacks for Recursion
	Pitfall: Stack Overflow
	Recursion Versus Iteration

	14.2 RECURSIVE FUNCTIONS FOR VALUES
	General Form for a Recursive Function That Returns a Value
	Programming Example: Another Powers Function

	14.3 THINKING RECURSIVELY
	Recursive Design Techniques
	Case Study: Binary Search—An Example of Recursive Thinking
	Programming Example: A Recursive Member Function
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 15 Inheritance
	15.1 INHERITANCE BASICS
	Derived Classes
	Constructors in Derived Classes
	Pitfall: Use of Private Member Variables from the Base Class
	Pitfall: Private Member Functions Are Effectively Not Inherited
	The protected Qualifier
	Redefinition of Member Functions
	Redefining Versus Overloading
	Access to a Redefined Base Function

	15.2 INHERITANCE DETAILS
	Functions That Are Not Inherited
	Assignment Operators and Copy Constructors in Derived Classes
	Destructors in Derived Classes

	15.3 POLYMORPHISM
	Late Binding
	Virtual Functions in C++
	Virtual Functions and Extended Type Compatibility
	Pitfall: The Slicing Problem
	Pitfall: Not Using Virtual Member Functions
	Pitfall: Attempting to Compile Class Definitions Without Definitions for Every Virtual Member Function
	Programming Tip: Make Destructors Virtual
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 16 Exception Handling
	16.1 EXCEPTION-HANDLING BASICS
	A Toy Example of Exception Handling
	Defining Your Own Exception Classes
	Multiple Throws and Catches
	Pitfall: Catch the More Specific Exception First
	Programming Tip: Exception Classes Can Be Trivial
	Throwing an Exception in a Function
	Exception Specification
	Pitfall: Exception Specification in Derived Classes

	16.2 PROGRAMMING TECHNIQUES FOR EXCEPTION HANDLING
	When to Throw an Exception
	Pitfall: Uncaught Exceptions
	Pitfall: Nested try-catch Blocks
	Pitfall: Overuse of Exceptions
	Exception Class Hierarchies
	Testing for Available Memory
	Rethrowing an Exception
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 17 Templates
	17.1 TEMPLATES FOR ALGORITHM ABSTRACTION
	Templates for Functions
	Pitfall: Compiler Complications
	Programming Example: A Generic Sorting Function
	Programming Tip: How to Define Templates
	Pitfall: Using a Template with an Inappropriate Type

	17.2 TEMPLATES FOR DATA ABSTRACTION
	Syntax for Class Templates
	Programming Example: An Array Class
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	Chapter 18 Standard Template Library
	18.1 ITERATORS
	using Declarations
	Iterator Basics
	Pitfall: Compiler Problems
	Kinds of Iterators
	Constant and Mutable Iterators
	Reverse Iterators
	Other Kinds of Iterators

	18.2 CONTAINERS
	Sequential Containers
	Pitfall: Iterators and Removing Elements
	Programming Tip: Type Definitions in Containers
	Container Adapters stack and queue
	Associative Containers set and map
	Efficiency

	18.3 GENERIC ALGORITHMS
	Running Times and Big-O Notation
	Container Access Running Times
	Nonmodifying Sequence Algorithms
	Container Modifying Algorithms
	Set Algorithms
	Sorting Algorithms
	Chapter Summary
	Answers to Self-Test Exercises
	Programming Projects

	APPENDICES
	1 C++ Keywords
	2 Precedence of Operators
	3 The ASCII Character Set
	4 Some Library Functions
	5 Inline Functions
	6 Overloading the Array Index Square Brackets
	7 The this Pointer
	8 Overloading Operators as Member Operators

	INDEX
	A
	B
	C
	D
	E
	F
	G
	H
	I
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Z

