
1

Lead Consultant
Capgemini

Detroit, Michigan

SECOND EDITION

Object Oriented
Programming with

C++

Sourav Sahay

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

3
Oxford University Press is a department of the University of Oxford.

It furthers the University’s objective of excellence in research, scholarship,
and education by publishing worldwide. Oxford is a registered trade mark of

Oxford University Press in the UK and in certain other countries.

Published in India by
Oxford University Press

YMCA Library Building, 1 Jai Singh Road, New Delhi 110001, India

© Oxford University Press 2006, 2012

The moral rights of the author/s have been asserted.

First Edition Published in 2006
Second Edition Published in 2012

All rights reserved. No part of this publication may be reproduced, stored in
a retrieval system, or transmitted, in any form or by any means, without the

prior permission in writing of Oxford University Press, or as expressly permitted
by law, by licence, or under terms agreed with the appropriate reprographics

rights organization. Enquiries concerning reproduction outside the scope of the
above should be sent to the Rights Department, Oxford University Press, at the

address above.

You must not circulate this work in any other form
and you must impose this same condition on any acquirer.

ISBN-13: 978-0-19-806530-2
ISBN-10: 0-19-806530-2

Typeset in Times New Roman
by Recto Graphics, Delhi 110096

Printed in India by Adage Printers (P) Ltd., Noida 201301 U.P.

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

C++ made its advent in the early 1980s and enabled programmers to write their programs
the object-oriented way. For this reason, the language quickly gained popularity and became
a programming language of choice. Despite the development of a number of competing
object-oriented languages including Java, C++ has successfully maintained its position of
popularity.

C++ starts where C stops. C++ is a superset of C. All the language features of C language
appear in C++ with little or no modi cation. Over and above such features, C++ provides a
number of extra features, which provide the language its object-oriented character.

About the Book

The continued popularity of C++ has led to considerable literature. Innumerable books, journals,
magazines, and articles have been written on C++. So, why another book on C++?

The aim of the book is to thoroughly explain all aspects of the language constructs provided
by C++. While doing full justice to the commonly explained topics of C++, the book does
not neglect the advanced and new concepts of C++ that are not widely taught.

This book is a power-packed instruction guide for Object-Oriented Programming and C++.
The purpose of this book is two-fold:

To clarify the fundamentals of the Object-Oriented Programming System
To provide an in-depth treatment of each feature and language construct of C++

This book emphasizes the Object-Oriented Programming System—its bene ts and its
superiority over the conventional Procedure-Oriented Programming System.

This book starts directly with C++ since the common features of C and C++ are anyway
covered in books on C language. Each feature of C++ is covered from the practical point of
view. Instead of brief introductions, this book gives an in-depth explanation of the rationale
and proper use of each object-oriented feature of C++.

To help the readers assimilate the large volume of knowledge contained in this book, an
adequate number of example programs, well-designed diagrams, and analogies with the real
world have been given. Some program examples given in this book are abstract in nature to
help readers focus on the concept being discussed.

Preface to the First Edition

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

 Preface to the First Edition vii

Acknowledgements

First, I thank my parents for teaching me a number of valuable lessons of life including the
value of hardwork and the value of good education (neither of which I have learnt yet!). I also
thank my wife Madhvi for her patience, her encouragement, and also for having tolerated my
long periods of silence and temper tantrums! Thanks (rather apologies) to my little daughters,
Surabhi and Sakshi, who tolerated Papa’s frequent refusals to take them on outings.

I thank Dr David Mulvaney and Dr Sekharjit Datta of the University of Loughborough for
their valuable guidance, encouragement, and inspiration. My teachers always encouraged me
to think big and to think independently. My sincerest gratitude to each one of them.

The editorial team of Oxford University Press deserves my heartfelt thanks for their
guidance and for their timely reminders about the deadlines I would have de nitely missed
otherwise!

Feedback about the book is most welcome. Readers are requested and encouraged to send
their feedback to the author’s mail id sourav1903@yahoo.com.

Sourav Sahay

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

The object-oriented programming system (OOPS) enables a programmer to model real-world
objects. It allows the programmer to add characteristics like data security, data encapsulation,
etc.

In the procedure-oriented programming system, procedures are dissociated from data and
are not a part of it. Instead, they receive structure variables, or their addresses, and then work
upon them. The code design is centered around procedures. While this may sound obvious,
this programming pattern has its drawbacks, a major one being that the data is not secure. It
can be manipulated by any procedure.

It is the lack of data security of the procedure-oriented programming system that led to
OOPS, in which, with the help of a new programming construct and new keywords, associated
functions of the data structure can be given exclusive rights to work upon its variables.

There is another characteristic of real-world objects—a guaranteed initialization of data.
Programming languages that implement OOPS enable library programmers to incorporate this
characteristic of real-world objects into structure variables. Library programmers can ensure
a guaranteed initialization of data members of structure variables to the desired values. For
this, application programmers do not need to write code explicitly.

OOPS further supports the following concepts:
Inheritance This feature allows a class to inherit the data and function members of an
existing class.
Data abstraction Data abstraction is a virtue by which an object hides its internal
operations from the rest of the program.
Modularity This feature supports dividing a program into small segments and implement
those segments using different functions.
Polymorphism Through polymorphism, functions with different set of formal arguments
can have the same name.

The rst edition had covered the fundamentals of the object oriented programming system
in depth. These explanations in the rst edition hold true for any programming language that
supports OOPS. This second edition enhances coverage, as listed below.

New to this Edition

New chapter on data structures containing new and original algorithms, especially an
elegant and simple recursive algorithm for inserting nodes into trees. The explanations
are elaborate and full of diagrams.
New sections on explicit constructors, command line arguments, and re-throwing
exceptions.

Preface to the Second Edition

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

iv Preface to the Second Edition

Expanded glossary.
Accompanying CD contains all the program codes given in the text.

Key Features

Simple and concise language eases the understanding of complex concepts that have
made C++ powerful but enigmatic.
Plenty of solved examples with complete program listings and test cases to reinforce
learning.
Review questions and program writing exercises at the end of each chapter to provide
additional practice.
Self-tests at the end of the book to prepare the students for examinations.

Organization of the Book

A brief knowledge of C language is a prerequisite for this book. The readers need to know
how programs are written in C, data types, decision-making and looping constructs, operators,
functions, header les, pointers, and structures.

Chapter 1 contains an explanation of the procedure-oriented programming system, the
role played by structures in this system, its drawbacks and how these drawbacks led to the
creation of OOPS. The meaning and method of modelling real-world objects by the object-
oriented programming system have been clearly explained. The chapter includes a study of
the non-object-oriented features of C++.

Chapter 2 is devoted to the study of objects and classes. It gives a thorough explanation
of the class construct of C++. Superiority of the class construct of C++ over the structure
construct of C language is explained. A description of the various types and features of member
functions and member data is included. Other concepts included are namespaces, arrays of
objects, arrays in objects, and nested classes.

Chapter 3 deals with dynamic memory management. It explains the use of the new and the
delete operators. It also explains the method of specifying our own new handler for handling
out-of-memory conditions.

Chapter 4 explains constructors and destructors. It discusses their importance, their features,
and the method of de ning them.

Chapter 5 is devoted to inheritance. Concepts like base class, derived class, base class
pointer, and derived class pointer are covered. The protected keyword and the implications
of deriving by different access speci ers are explained. This chapter describes various types
of inheritance.

Chapter 6 gives a detailed explanation of one of the most striking features of C++—
dynamic polymorphism. This chapter describes the virtual functions and how it enables C++
programmers to extend class libraries. The importance of pure virtual functions and clone
functions is also explained.

Chapter 7 describes the standard C++ library for handling streams. It explains the two
types of input and output—text mode and binary mode. Input and output from disk les are
explained. The chapter also describes the use of error-handling routines of the standard C++
stream library and manipulators.

Chapter 8 is devoted to operator overloading, type conversion, new style casts, and RTTI.
This chapter explains the various intricacies and the proper use of operator overloading.
This chapter also explains how a C++ programmer can implement conventional style type

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

 Preface to the Second Edition v

conversions. New style casts for implementing type conversions are explained next. This
chapter ends with a treatment of run time type information (RTTI).

Chapter 9 explains and illustrates the most important data structures—linked lists and trees.
It includes full- edged programs that can be used to create various data structures.

Chapter 10 contains a detailed description of templates. The importance of function
templates and class templates and their utilization in code reuse is explained. This chapter
also provides an overview of the Standard Template Library (STL) of C++.

Chapter 11 explains the concept of exception handling. It begins with a section on
conventional methods and their drawbacks. This is followed by an explanation of the try-catch-
throw mechanism provided by C++ and its superiority over the conventional methods.

The appendices in the book include a case study, comparison of C++ with C, comparison
of C++ with Java, an overview of object-oriented analysis and design, and self tests.

Acknowledgements

The blessings of my parents continue to give me the courage I need to overcome the obstacles
that are associated with dif cult ventures like writing books. Every achievement of my life,
including this book, is because of the valuable education they gave me early in my life. Thanks
to my wife Madhvi against whose wishes I decided to spend most of the weekends over the
last 2 years on my laptop writing this edition. My daughters Surabhi and Sakshi continue to
inspire and motivate me.

Thanks to Professor Shanmuka Swamy, Assistant Professor in the Sridevi Institute of
Engineering and Technology, Tumkur, for pointing out a couple of printing mistakes in the
 rst edition. These have been corrected.

The editorial staff members of the Oxford University Press deserve a special mention for
its support and prompt responses.

Please continue to send your valuable feedback and questions to my e-mail id
sourav1903@yahoo.com.

Sourav Sahay

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Brief Contents

Preface to the Second Edition iii

Preface to the First Edition vi

Detailed Contents xi

 1. Introduction to C++ 1
 2. Classes and Objects 31
 3. Dynamic Memory Management 78
 4. Constructors and Destructors 92
 5. Inheritance 117
 6. Virtual Functions and Dynamic Polymorphism 153
 7. Stream and File Handling 172
 8. Operator Overloading, Type Conversion, New Style Casts, and RTTI 211
 9. Data Structures 283
 10. Templates 372
 11. Exception Handling 393

Appendix A: Case Study—A Word Query System 417
Appendix B: Comparison of C++ with C 425
Appendix C: Comparison of C++ with Java 427
Appendix D: Object-Oriented Analysis and Design 437
Appendix E: Glossary 449
Appendix F: Self Tests 454

Bibliography 460

Index 461

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

Detailed Contents

Preface to the Second Edition iii

Preface to the First Edition vi

Brief Contents ix

1. Introduction to C++ 1
 1.1 A Review of Structures 1

 1.1.1 The Need for Structures 1
 1.1.2 Creating a New Data Type Using Structures 4
 1.1.3 Using Structures in Application Programs 5

 1.2 Procedure-Oriented Programming Systems 5
 1.3 Object-Oriented Programming Systems 7
 1.4 Comparison of C++ with C 8
 1.5 Console Input/Output in C++ 9

 1.5.1 Console Output 9
 1.5.2 Console Input 12

 1.6 Variables in C++ 13
 1.7 Reference Variables in C++ 14
 1.8 Function Prototyping 19
 1.9 Function Overloading 21
 1.10 Default Values for Formal Arguments of Functions 23
 1.11 Inline Functions 25

2. Classes and Objects 31
 2.1 Introduction to Classes and Objects 31

 2.1.1 Private and Public Members 33
 2.1.2 Objects 36
 2.1.3 Scope Resolution Operator 37
 2.1.4 Creating Libraries Using the Scope Resolution Operator 38
 2.1.5 Using Classes in Application Programs 39
 2.1.6 this Pointer 40
 2.1.7 Data Abstraction 45
 2.1.8 Explicit Address Manipulation 47
 2.1.9 Arrow Operator 47
 2.1.10 Calling One Member Function from Another 48

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

xii Detailed Contents

 2.2 Member Functions and Member Data 49
 2.2.1 Overloaded Member Functions 49
 2.2.2 Default Values for Formal Arguments of Member Functions 51
 2.2.3 Inline Member Functions 52
 2.2.4 Constant Member Functions 52
 2.2.5 Mutable Data Members 54
 2.2.6 Friends 54
 2.2.7 Static Members 59

 2.3 Objects and Functions 65
 2.4 Objects and Arrays 66

 2.4.1 Arrays of Objects 67
 2.4.2 Arrays Inside Objects 67

 2.5 Namespaces 68
 2.6 Nested Inner Classes 71

3. Dynamic Memory Management 78
 3.1 Introduction 78
 3.2 Dynamic Memory Allocation 79
 3.3 Dynamic Memory Deallocation 84
 3.4 set_new_handler() function 88

4. Constructors and Destructors 92
 4.1 Constructors 92

 4.1.1 Zero-argument Constructor 94
 4.1.2 Parameterized Constructors 97
 4.1.3 Explicit Constructors 103
 4.1.4 Copy Constructor 105

 4.2 Destructors 109
 4.3 Philosophy of OOPS 112

5. Inheritance 117
 5.1 Introduction 117

 5.1.1 Effects of Inheritance 118
 5.1.2 Bene ts of Inheritance 120
 5.1.3 Inheritance in Actual Practice 120
 5.1.4 Base Class and Derived Class Objects 121
 5.1.5 Accessing Members of the Base Class in the Derived Class 121

 5.2 Base Class and Derived Class Pointers 122
 5.3 Function Overriding 127
 5.4 Base Class Initialization 129
 5.5 Protected Access Speci er 132
 5.6 Deriving by Different Access Speci ers 133

 5.6.1 Deriving by the Public Access Speci er 133
 5.6.2 Deriving by the Protected Access Speci er 135
 5.6.3 Deriving by the Private Access Speci er 136

 5.7 Different Kinds of Inheritance 139
 5.7.1 Multiple Inheritance 139
 5.7.2 Ambiguities in Multiple Inheritance 141

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

 Detailed Contents xiii

 5.7.3 Multi-level Inheritance 145
 5.7.4 Hierarchical Inheritance 147
 5.7.5 Hybrid Inheritance 148

 5.8 Order of Invocation of Constructors and Destructors 149

6. Virtual Functions and Dynamic Polymorphism 153
 6.1 Need for Virtual Functions 153
 6.2 Virtual Functions 156
 6.3 Mechanism of Virtual Functions 160
 6.4 Pure Virtual Functions 162
 6.5 Virtual Destructors and Virtual Constructors 167

 6.5.1 Virtual Destructors 167
 6.5.2 Virtual Constructors 168

7. Stream and File Handling 172
 7.1 Streams 172
 7.2 Class Hierarchy for Handling Streams 172
 7.3 Text and Binary Input/Output 174

 7.3.1 Data Storage in Memory 174
 7.3.2 Input/Output of Character Data 175
 7.3.3 Input/Output of Numeric Data 175
 7.3.4 Note on Opening Disk Files for I/O 176

 7.4 Text Versus Binary Files 176
 7.5 Text Output/Input 177

 7.5.1 Text Output 177
 7.5.2 Text Input 181

 7.6 Binary Output/Input 185
 7.6.1 Binary Output—write() Function 185
 7.6.2 Binary Input—read() Function 189

 7.7 Opening and Closing Files 193
 7.7.1 open() Function 193
 7.7.2 close() Function 194

 7.8 Files as Objects of the fstream Class 194
 7.9 File Pointers 194

 7.9.1 seekp() Function 195
 7.9.2 tellp() Function 196
 7.9.3 seekg() Function 196
 7.9.4 tellg() Function 196

 7.10 Random Access to Files 197
 7.11 Object Input/Output Through Member Functions 197
 7.12 Error Handling 199

 7.12.1 eof() Function 199
 7.12.2 fail() Function 199
 7.12.3 bad() Function 200
 7.12.4 clear() Function 200

 7.13 Manipulators 201
 7.13.1 Pre-de ned Manipulators 201

xiv Detailed Contents

 7.13.2 User-de ned Manipulators 203
 7.14 Command Line Arguments 204

8. Operator Overloading, Type Conversion, New Style Casts, and RTTI 211
 8.1 Operator Overloading 211

 8.1.1 Overloading Operators—The Syntax 212
 8.1.2 Compiler Interpretation of Operator-Overloading Functions 214
 8.1.3 Overview of Overloading Unary and Binary Operators 216
 8.1.4 Operator Overloading 216
 8.1.5 Rules for Operator Overloading 219

 8.2 Overloading Various Operators 221
 8.2.1 Ove rloading Increment and Decrement Operators

(Pre x and Post x) 221
 8.2.2 Overloading Unary Minus and Unary Plus Operator 224
 8.2.3 Overloading Arithmetic Operators 225
 8.2.4 Overloading Relational Operators 230
 8.2.5 Overloading Assignment Operator 234
 8.2.6 Overloading Insertion and Extraction Operators 240
 8.2.7 Overloading new and delete Operators 244
 8.2.8 Overloading Subscript Operator 261
 8.2.9 Overloading Pointer-to-member (->) Operator (Smart Pointer) 265

 8.3 Type Conversion 267
 8.3.1 Basic Type to Class Type 267
 8.3.2 Class Type to Basic Type 268
 8.3.3 Class Type to Class Type 269

 8.4 New Style Casts and the typeid Operator 271
 8.4.1 dynamic_cast Operator 271
 8.4.2 static_cast Operator 275
 8.4.3 reinterpret_cast Operator 276
 8.4.4 const_cast Operator 276
 8.4.5 typeid Operator 277

9. Data Structures 283
 9.1 Introduction 283
 9.2 Linked Lists 284
 9.3 Stacks 336
 9.4 Queues 340
 9.5 Trees 343

 9.5.1 Binary Trees 344
 9.5.2 Binary Search Trees 347

10. Templates 372
 10.1 Introduction 372
 10.2 Function Templates 373
 10.3 Class Templates 378

 10.3.1 Nested Class Templates 382
 10.4 Standard Template Library 382

 10.4.1 list Class 383

 Detailed Contents xv

10.4.2 vector Class 386
10.4.3 pair Class 387
10.4.4 map Class 387
10.4.5 set Class 389
10.4.6 multimap Class 389
10.4.7 multiset Class 390

11. Exception Handling 393
 11.1 Introduction 393
 11.2 C-Style Handling of Error-generating Code 394

 11.2.1 Terminate the Program 394
11.2.2 Check the Parameters before Function Call 395
11.2.3 Return a Value Representing an Error 396

 11.3 C++-Style Solution—the try/throw/catch Construct 397
11.3.1 It is Necessary to Catch Exceptions 400
11.3.2 Unwinding of the Stack 401
11.3.3 Need to Throw Class Objects 404
11.3.4 Accessing the Thrown Object in the Catch Block 406
11.3.5 Throwing Parameterized Objects of a Nested Exception Class 408
11.3.6 Catching Uncaught Exceptions 409
11.3.7 Re-throwing Exceptions 410

 11.4 Limitation of Exception Handling 414

Appendix A: Case Study—A Word Query System 417
Problem Statement 417
A Sample Run 417
The Source Code 418
Explanation of the Code 420

Appendix B: Comparison of C++ with C 425
Non-object-oriented Features Provided in C++ that are Absent in C
Language 425
Object-oriented Features Provided in C++ to make it Comply with the
Requirements of the Object-Oriented Programming System 426

Appendix C: Comparison of C++ with Java 427
 C.1 Similarities between C++ and Java 427
 C.2 Differences between C++ and Java 428

Appendix D: Object-Oriented Analysis and Design 437
 D.1 Introduction 437

Why Build Models? 437
Overview of OOAD 437

 D.2 Object-Oriented Model 438
Object Model 438
Dynamic Model 442
Functional Model 444

 D.3 Analysis 446

xvi Detailed Contents

Overview of Analysis 446
Object Modelling 446
Dynamic Modelling 446
Functional Modelling 447

 D.4 System Design 447
Breaking the System into Sub-systems 447
Layers 447
Partitions 447

 D.5 Object Design 448
Overview of Object Design 448

 D.6 Implementation 448

Appendix E: Glossary 449

Appendix F: Self Tests 454
Test 1 454
Test 2 456
Test 3 458

Bibliography 460

Index 461

Introduction to C++

This chapter introduces the reader to the fundamentals of object-oriented programming systems
(OOPS).

The chapter begins with an overview of structures, the reasons for their inclusion as a
language construct in C language, and their role in procedure-oriented programming systems.
Use of structures for creating new data types is described. Also, the drawbacks of structures
and the development of OOPS are elucidated.

The middle section of the chapter explains OOPS, supplemented with suitable examples
and analogies to help in understanding this tricky subject.

The concluding section of the chapter includes a study of a number of new features that are
implemented by C++ compilers but do not fall under the category of object-oriented features.
(Language constructs of C++ that implement object-oriented features are dealt with in the
next chapter.)

O

V

E

R

V

I

E

W

 1.1 A Review of Structures

In order to understand procedure-oriented programming systems, let us rst recapitulate our
understanding of structures in C. Let us review their necessity and use in creating new data
types.

1.1.1 The Need for Structures

There are cases where the value of one variable depends upon that of another variable.
Take the example of date. A date can be programmatically represented in C by three

different integer variables taken together. Say,
int d,m,y; //three integers for representing dates

Here ‘d’, ‘m’, and ‘y’ represent the day of the month, the month, and the year, respectively.
Observe carefully. Although these three variables are not grouped together in the code, they
actually belong to the same group. The value of one variable may in uence the value of the
other two. In order to understand this clearly, consider a function next_day() that accepts
the addresses of the three integers that represent a date and changes their values to represent
the next day. The prototype of this function will be

void next_day(int *,int *,int *); //function to calculate
 //the next day

1

 Object-Oriented Programming with C++2

Suppose,
d=1;
m=1;
y=2002; //1st January, 2002

Now, if we write
 next_day(&d,&m,&y);

‘d’ will become 2, ‘m’ will remain 1, and ‘y’ will remain 2002.

But if
 d=28;
m=2;
y=1999; //28th February, 1999

and we call the function as
next_day(&d,&m,&y);

‘d’ will become 1, ‘m’ will become 3, and ‘y’ will remain 1999.
Again, if

d=31;
m=12;
y=1999; //31st December, 1999

and we call the function as
next_day(&d,&m,&y);

‘d’ will become 1, ‘m’ will become 1, and ‘y’ will become 2000.
As you can see, ‘d’, ‘m’, and ‘y’ actually belong to the same group. A change in the value

of one may change the value of the other two. But there is no language construct that actually
places them in the same group. Thus, members of the wrong group may be accidentally sent
to the function (Listing 1.1)!

 Listing 1.1 Problem in passing groups of programmatically independent but logically
dependent variable

d1=28; m1=2; y1=1999; //28th February, 1999
d2=19; m2=3; y2=1999; //19th March, 1999
next_day(&d1,&m1,&y1); //OK
next_day(&d1,&m2,&y2); //What? Incorrect set passed!

As can be observed in Listing 1.1, there is nothing in the language itself that prevents the
wrong set of variables from being sent to the function. Moreover, integer-type variables that
are not meant to represent dates might also be sent to the function!

Let us try arrays to solve the problem. Suppose the next_day() function accepts an array
as a parameter. Its prototype will be

void next_day(int *);

 Let us declare date as an array of three integers.
int date[3];
date[0]=28;
date[1]=2;
date[2]=1999; //28th February, 1999

 Introduction to C++ 3

Now, let us call the function as follows:
next_day(date);

The values of ‘date[0]’, ‘date[1]’, and ‘date[2]’ will be correctly set to 1, 3, and 1999,
respectively. Although this method seems to work, it certainly appears unconvincing. After
all any integer array can be passed to the function, even if it does not necessarily represent
a date. There is no data type of date itself. Moreover, this solution of arrays will not work if
the variables are not of the same type. The solution to this problem is to create a data type
called date itself using structures

 struct date //a structure to represent dates
{
 int d, m, y;
};

Now, the next_day() function will accept the address of a variable of the structure date
as a parameter. Accordingly, its prototype will be as follows:

void next_day(struct date *);

Let us now call it as shown in Listing 1.2.

Listing 1.2 The need for structures

struct date d1;
d1.d=28;
d1.m=2;
d1.y=1999;
next_day(&d1);

‘d1.d’, ‘d1.m’, and ‘d1.y’ will be correctly set to 1, 3, and 1999, respectively. Since the
function takes the address of an entire structure variable as a parameter at a time, there is no
chance of variables of the different groups being sent to the function.

 Structure is a programming construct in C that allows us to put together variables that
should be together.

Library programmers use structures to create new data types. Application programs and
other library programs use these new data types by declaring variables of this data type.

struct date d1;

They call the associated functions by passing these variables or their addresses to them.
 d1.d=31;
d1.m=12;
d1.y=2003;
next_day(&d1);

Finally, they use the resultant value of the passed variable further as per requirements.
printf(“The next day is: %d/%d/%d\n”, d1.d, d1.m, d1.y);

Output
The next day is: 01/01/2004

 Object-Oriented Programming with C++4

1.1.2 Creating a New Data Type Using Structures

Creation of a new data type using structures is loosely a three-step process that is executed
by the library programmer.
Step 1: Put the structure de nition and the prototypes of the associated functions in a header
 le, as shown in Listing 1.3.

Listing 1.3 Header fi le containing defi nition of a structure variable and prototypes of its
associated functions

/*Beginning of date.h*/
/*This file contains the structure definition and
prototypes of its associated functions*/

struct date
{
 int d,m,y;
};
void next_day(struct date *); //get the next date
void get_sys_date(struct date *); //get the current
 //system date
/*
 Prototypes of other useful and relevant functions to
 work upon variables of the date structure
*/
/*End of date.h*/

Step 2: As shown in Listing 1.4, put the de nition of the associated functions in a source
code and create a library.

Listing 1.4 Defi ning the associated functions of a structure

/*Beginning of date.c*/
/*This file contains the definitions of the associated
functions*/
#include “date.h”

void next_day(struct date * p)
{
//calculate the date that immediately follows the one
//represented by *p and set it to *p.
}
void get_sys_date(struct date * p)
{
//determine the current system date and set it to *p
}
/*
 Definitions of other useful and relevant functions to work upon variables

of the date structure
*/
/*End of date.c*/

Step 3: Provide the header le and the library, in whatever media, to other programmers who
want to use this new data type.

Creation of a structure and creation of its associated functions are two separate steps that
together constitute one complete process.

 Introduction to C++ 5

1.1.3 Using Structures in Application Programs

The steps to use this new data type are as follows:
Step 1: Include the header le provided by the library programmer in the source code.

/*Beginning of dateUser.c*/
#include“date.h”
void main()
{

}
/*End of dateUser.c*/

Step 2: Declare variables of the new data type in the source code.
/*Beginning of dateUser.c*/
#include“date.h”
void main()
{
 struct date d;

}
/*End of dateUser.c*/

Step 3: As shown in Listing 1.5, embed calls to the associated functions by passing these
variables in the source code.

Listing 1.5 Using a structure in an application program

 /*Beginning of dateUser.c*/
#include“date.h”
void main()
{
 struct date d;
 d.d=28;
 d.m=2;
 d.y=1999;
 next_day(&d);

}
/*End of dateUser.c*/

 Step 4: Compile the source code to get the object le.
Step 5: Link the object le with the library provided by the library programmer to get the
executable or another library.

 1.2 Procedure-Oriented Programming Systems

In light of the previous discussion, let us understand the procedure-oriented programming
system. The foregoing pattern of programming divides the code into functions. Data (contained
in structure variables) is passed from one function to another to be read from or written into.
The focus is on procedures. This programming pattern is, therefore, a feature of the procedure-
oriented programming system.

 Object-Oriented Programming with C++6

In the procedure-oriented programming system, procedures are dissociated from data and
are not a part of it. Instead, they receive structure variables or their addresses and work upon
them. The code design is centered around procedures. While this may sound obvious, this
programming pattern has its drawbacks.

The drawback with this programming pattern is that the data is not secure. It can be
manipulated by any procedure. Associated functions that were designed by the library
programmer do not have the exclusive rights to work upon the data. They are not a part of
the structure de nition itself. Let us see why this is a problem.

Suppose the library programmer has de ned a structure and its associated functions as
described above. Further, in order to perfect his/her creation, he/she has rigorously tested
the associated functions by calling them from small test applications. Despite his/her best
efforts, he/she cannot be sure that an application that uses the structure will be bug free. The
application program might modify the structure variables, not by the associated function he/
she has created, but by some code inadvertently written in the application program itself.
Compilers that implement the procedure-oriented programming system do not prevent
unauthorized functions from accessing/manipulating structure variables.

Now, let us look at the situation from the application programmer’s point of view. Consider
an application of around 25,000 lines (quite common in the real programming world), in
which variables of this structure have been used quite extensively. During testing, it is found
that the date being represented by one of these variables has become 29th February 1999!
The faulty piece of code that is causing this bug can be anywhere in the program. Therefore,
debugging will involve a visual inspection of the entire code (of 25000 lines!) and will not
be limited to the associated functions only.

The situation becomes especially grave if the execution of the code that is likely to corrupt
the data is conditional. For example,

if(<some condition>)
 d.m++; //d is a variable of date structure… d.m may
 //become 13!

The condition under which the bug-infested code executes may not arise during testing.
While distributing his/her application, the application programmer cannot be sure that it would
run successfully. Moreover, every new piece of code that accesses structure variables will
have to be visually inspected and tested again to ensure that it does not corrupt the members
of the structure. After all, compilers that implement procedure-oriented programming systems
do not prevent unauthorized functions from accessing/manipulating structure variables.

Let us think of a compiler that enables the library programmer to assign exclusive rights to
the associated functions for accessing the data members of the corresponding structure. If this
happens, then our problem is solved. If a function which is not one of the intended associated
functions accesses the data members of a structure variable, a compile-time error will result.
To ensure a successful compile of his/her application code, the application programmer will
be forced to remove those statements that access data members of structure variables. Thus,
the application that arises out of a successful compile will be the outcome of a piece of code
that is free of any unauthorized access to the data members of the structure variables used
therein. Consequently, if a run-time error arises, attention can be focused on the associated
library functions.

It is the lack of data security of procedure-oriented programming systems that led to object-
oriented programming systems (OOPS). This new system of programming is the subject of
our next discussion.

 Introduction to C++ 7

 1.3 Object-Oriented Programming Systems

In OOPS, we try to model real-world objects. But, what are real-world objects? Most real-
world objects have internal parts and interfaces that enable us to operate them. These interfaces
perfectly manipulate the internal parts of the objects. They also have the exclusive rights to
do so.

Let us understand this concept with the help of an example. Take the case of a simple
LCD projector (a real-world object). It has a fan and a lamp. There are two switches—one to
operate the fan and the other to operate the lamp. However, the operation of these switches is
necessarily governed by rules. If the lamp is switched on, the fan should automatically switch
itself on. Otherwise, the LCD projector will get damaged. For the same reason, the lamp should
automatically get switched off if the fan is switched off. In order to cater to these conditions,
the switches are suitably linked with each other. The interface to the LCD projector is perfect.
Further, this interface has the exclusive rights to operate the lamp and fan.

This, in fact, is a common characteristic of all real-world objects. If a perfect interface is
required to work on an object, it will also have exclusive rights to do so.

Coming back to C++ programming, we notice a resemblance between the observed
behaviour of the LCD projector and the desired behaviour of data structure’s variables. In
OOPS, with the help of a new programming construct and new keywords, associated functions
of the data structure can be given exclusive rights to work upon its variables. In other words,
all other pieces of code can be prevented from accessing the data members of the variables
of this structure.

Compilers that implement OOPS enable data security by diligently enforcing this
prohibition. They do this by throwing compile-time errors against pieces of code that violate
the prohibition. This prohibition, if enforced, will make structure variables behave like real-
world objects. Associated functions that are de ned to perfectly manipulate structure variables
can be given exclusive rights to do so.

There is still another characteristic of real-world objects—a guaranteed initialization of
data. After all, when you connect the LCD projector to the mains, it does not start up in an
invalid state (fan off and lamp on). By default, either both the lamp and the fan are off or
both are on. Users of the LCD projector need not do this explicitly. The same characteristic
is found in all real-world objects.

Programming languages that implement OOPS enable library programmers to incorporate
this characteristic of real-world objects into structure variables. Library programmers can
ensure a guaranteed initialization of data members of structure variables to the desired values.
For this, application programmers do not need to write code explicitly.

Two more features are incidental to OOPS. They are:
 Inherit ance
 Polymor phism

Inheritance allows one structure to inherit the characteristics of an existing structure.
As we know from our knowledge of structures, a variable of the new structure will contain

data members mentioned in the new structure’s de nition. However, because of inheritance,
it will also contain data members mentioned in the existing structure’s de nition from which
the new structure has inherited.

Further, associated functions of the new structure can work upon a variable of the new
structure. For this, the address/name of a variable of the new structure is passed to the associated
functions of the new structure. Again, as a result of inheritance, associated functions of the
existing structure from which the new structure has inherited will also be able to work upon

 Object-Oriented Programming with C++8

a variable of the new structure. For this, the address/name of a variable of the new structure
is passed to the associated functions of the existing structure.

In inheritance, data and interface may both be inherited. This is expected as data and
interface complement each other. The parent structure can be given the general common
characteristics while its child structures can be given the more speci c characteristics. This
allows code reusability by keeping the common code in a common place—the base structure.
Otherwise, the code would have to be replicated in all of the child structures, which will
lead to maintenance nightmares. Inheritance also enables code extensibility by allowing
the creation of new structures that are better suited to our requirements as compared to the
existing structures.

Polymorphism, as the name suggests, is the phenomena by virtue of which the same entity
can exist in two or more forms. In OOPS, functions can be made to exhibit polymorphic
behaviour. Functions with different set of formal arguments can have the same name.
Polymorphism is of two types: static and dynamic. We will understand how this feature enables
C++ programmers to reuse and extend existing code in the subsequent chapters.

 1.4 Comparison of C++ with C
C++ is an extension of C language. It is a proper superset of C language. This means that
a C++ compiler can compile programs written in C language. However, the reverse is not
true. A C++ compiler can understand all the keywords that a C compiler can understand.
Again, the reverse is not true. Decision-making constructs, looping constructs, structures,
functions, etc. are written in exactly the same way in C++ as they are in C language. Apart
from the keywords that implement these common programming constructs, C++ provides
a number of additional keywords and language constructs that enable it to implement the
object-oriented paradigm.

The header le given in Listing 1.6 shows how the structure Date, which has been our
running example so far, can be rewritten in C++.

Listing 1.6 Redefi ning the Date structure in C++

/*Beginning of Date.h*/
class Date //class instead of structure
{
 private:
 int d,m,y;
 public:
 Date();
 void get_sys_date(); //associated functions appear
 //within the class definition
 void next_day();
};
/*End of Date.h*/

The following differences can be noticed between Date structure in C (Listing 1.3) and C++
(Listing 1.6):

The keyword class has been used instead of struct.
Two new keywords— private and public—appear in the code.
Apart from data members, the class constructor also has member functions.
A function that has the same name as the class itself is also present in the class. Incidentally,
it has no return type specified. This is the class constructor and is discussed in Chapter 4
of this book.

 Introduction to C++ 9

The next chapter contains an in-depth study of the above class construct. It explains the
meaning and implications of this new feature. It also explains how this and many more
new features implement the features of OOPS, such as data hiding, data encapsulation, data
abstraction, and a guaranteed initialization of data. However, before proceeding to Chapter
2, let us digress slightly and study the following:

Console input/output in C++
Some non-object-oriented features provided exclusively in C++ (reference variables,
function overloading, default arguments, inline functions)
Remember that C++ program les have the extension ‘.cpp’ or ‘.C’. The former extension

is normally used for Windows or DOS-based compilers while the latter is normally used
for UNIX-based compilers. The compiler’s manual can be consulted to nd out the exact
extension.

 1.5 Console Input/Output in C++
This section discusses console input and output in C++.

1.5.1 Console Output
The output functions in C language, such as printf(), can be included in C++ programs
because they are anyway de ned in the standard library. However, there are some more ways
of outputting to the console in C++. Let us consider an example (see Listing 1.7).

Listing 1.7 Outputting in C++

 /*Beginning of cout.cpp*/
#include<iostream.h>
void main()
{
 int x;
 x=10;
 cout<<x; //outputting to the console
}
/*End of cout.cpp*/

Output
10

The third statement in the main() function (Listing 1.7) needs to be understood.
 cout (pronounce see-out) is actually an object of the class ostream_withassign (you can

think of it as a variable of the structure ostream_withassign). It stands as an alias for the
console output device, that is, the monitor (hence the name).

The << symbol, originally the left shift operator, has had its de nition extended in C++.
In the given context, it operates as the insertion operator. It is a binary operator. It takes
two operands. The operand on its left must be some object of the ostream class. The operand
on its right must be a value of some fundamental data type. The value on the right side of
the insertion operator is ‘inserted’ (hence the name) into the stream headed towards the
device associated with the object on the left. Consequently, the value of ‘x’ is displayed on
the monitor.

The le iostream.h needs to be included in the source code to ensure successful compilation
because the object cout and the insertion operator have been declared in that le.

 Object-Oriented Programming with C++10

Another object endl allows us to insert a new line into the output stream. Listing 1.8
illustrates this.

Listing 1.8 Inserting new line by ‘endl’

/*Beginning of endl.cpp*/
#include<iostream.h>
void main()
{
 int x,y;
 x=10;
 y=20;
 cout<<x;
 cout<<endl; //inserting a new line by endl
 cout<<y;
}
/*End of endl.cpp*/

Output
10
20

One striking feature of the insertion operator is that it works equally well with values of
all fundamental types as its right-hand operand. It does not need the format speci ers that are
needed in the printf() family of functions. Listing 1.9 exempli es this.

Listing 1.9 Outputting data with the insertion operator

 /*Beginning of cout.cpp*/
#include<iostream.h>
void main()
{
 int iVar;
 char cVar;
 float fVar;
 double dVar;
 char * cPtr;
 iVar=10;
 cVar=‘x’;
 fVar=2.3;
 dVar=3.14159;
 cPtr=“Hello World”;
 cout<<iVar;
 cout<<endl;
 cout<<cVar;
 cout<<endl;
 cout<<fVar;
 cout<<endl;
 cout<<dVar;
 cout<<endl;
 cout<<cPtr;
 cout<<endl;
}
/*End of cout.cpp*/

 Introduction to C++ 11

Output
10
x
2.3
3.14159
Hello World

Just like the arithmetic addition operator, it is possible to cascade the insertion operator.
Listing 1.10 is a case in point.

Listing 1.10 Cascading the insertion operator

 /*Beginning of coutCascade.cpp*/
#include<iostream.h>
void main()
{
 int x;
 float y;
 x=10;
 y=2.2;
 cout<<x<<endl<<y; //cascading the insertion operator
}
/*End of coutCascade.cpp*/

Output
10
2.2

It is needless to say that we can pass constants instead of variables as operands to the insertion
operator, as shown in Listing 1.11.

Listing 1.11 Outputting constants using the insertion operator

 /*Beginning of coutMixed.cpp*/
#include<iostream.h>
void main()
{
 cout<<10<<endl<<“Hello World\n”<<3.4;
}
/*End of coutMixed.cpp*/

Ouput
10
Hello World
3.4

In Listing 1.11, note the use of the new line character in the string that is passed as one of the
operands to the insertion operator.

It was mentioned in the beginning of this section that cout is an object that is associated
with the console. Hence, if it is the left-hand side operand of the insertion operator, the
value on the right is displayed on the monitor. You will learn in the chapter on stream handling
that it is possible to pass objects of some other classes that are similarly associated with disk

 Object-Oriented Programming with C++12

 les as the left-hand side operand to the insertion operator. In such cases, the values on
the right get stored in the associated les.

1.5.2 Console Input

The input functions in C language, such as scanf(), can be included in C++ programs because
they are anyway de ned in the standard library. However, we do have some more ways of
inputting from the console in C++. Let us consider an example.

Listing 1.12 Inputting in C++

 /*Beginning of cin.cpp*/
#include<iostream.h>
void main()
{
 int x;
 cout<<“Enter a number: ”;
 cin>>x; //console input in C++
 cout<<“You entered: ”<<x;
}
/*End of cin.cpp*/

 Output
Enter a number: 10<enter>
You entered: 10

The third statement in the main() function of Listing 1.12 needs to be understood.
cin (pronounce see-in) is actually an object of the class istream_withassign (you can

think of it as a variable of the structure istream_withassign). It stands as an alias for the
console input device, that is, the keyboard (hence the name).

The >> symbol, originally the right-shift operator, has had its de nition extended in C++.
In the given context, it operates as the extraction operator. It is a binary operator and takes
two operands. The operand on its left must be some object of the istream_withassign class.
The operand on its right must be a variable of some fundamental data type. The value for the
variable on the right side of the extraction operator is extracted (hence the name) from the
stream originating from the device associated with the object on the left. Consequently, the
value of ‘x’ is obtained from the keyboard.

The le iostream.h needs to be included in the source code to ensure successful compilation
because the object cin and the extraction operator have been declared in that le.

Again, just like the insertion operator, the extraction operator works equally well
with variables of all fundamental types as its right-hand operand. It does not need the format
speci ers that are needed in the scanf() family of functions. Listing 1.13 exempli es this.

Listing 1.13 Inputting data with the extraction operator

/*Beginning of cin.cpp*/
#include<iostream.h>
void main()
{
 int iVar;

 Introduction to C++ 13

 char cVar;
 float fVar;
 cout<<“Enter a whole number: ”;
 cin>>iVar;
 cout<<“Enter a character: ”;
 cin>>cVar;
 cout<<“Enter a real number: ”;
 cin>>fVar;
 cout<<“You entered: ”<<iVar<<“ ”<<cVar<<“ ”<<fVar;
}
/*End of cin.cpp*/

Output
Enter a whole number: 10<enter>
Enter a character: x<enter>
Enter a real number: 2.3<enter>
You entered: 10 x 2.3

Just like the insertion operator, it is possible to cascade the extraction operator. Listing
1.14 is a case in point.

Listing 1.14 Cascading the extraction operator

/*Beginning of cinCascade.cpp*/
#include<iostream.h>
void main()
{
 int x,y;
 cout<<“Enter two numbers\n”;
 cin>>x>>y; //cascading the extraction operator
 cout<<“You entered ”<<x<<“ and ”<<y;
}
/*End of cinCascade.cpp*/

Output
Enter two numbers
10<enter>
20<enter>
You entered 10 and 20

It was mentioned in the beginning of this section that cin is an object that is associated with
the console. Hence, if it is the left-hand side operand of the extraction operator, the variable
on the right gets its value from the keyboard. You will learn in the chapter on stream handling
that it is possible to pass objects of some other classes that are similarly associated with disk
 les as the left-hand side operand to the extraction operator. In such cases, the variable on

the right gets its value from the associated les.

 1.6 Variables in C++

Variables in C++ can be declared anywhere inside a function and not necessarily at its very
beginning. For example, see Listing 1.15.

 Object-Oriented Programming with C++14

Listing 1.15 Declaring variables in C++

#include<iostream.h>
void main()
{
 int x;
 x=10;
 cout<<“Value of x= ”<<x<<endl;
 int * iPtr; //declaring a variable in the middle of a
 //function
 iPtr=&x;
 cout<<“Address of x= ”<<iPtr<<endl;
}

Output
Value of x=10
Address of x= 0x21878163

 1.7 Reference Variables in C++

First, let us understand the basics. How does the operating system (OS) display the value of
variables? How are assignment operations such as ‘x=y’ executed during run time? A detailed
answer to these questions is beyond the scope of this book. A brief study is, nevertheless,
possible and necessary for a good understanding of reference variables. What follows is a
simpli ed and tailored explanation.

The OS maintains the addresses of each variable as it allocates memory for them during run
time. In order to access the value of a variable, the OS rst nds the address of the variable
and then transfers control to the byte whose address matches that of the variable.

Suppose the following statement is executed (‘x’ and ‘y’ are integer type variables).
 x=y;

The steps followed are:
1. The OS first finds the address of ‘y’.
2. The OS transfers control to the byte whose address matches this address.
3. The OS reads the value from the block of four bytes that starts with this byte (most C++

compilers cause integer-type variables to occupy four bytes during run time and we will
accept this value for our purpose).

4. The OS pushes the read value into a temporary stack.
5. The OS finds the address of ‘x’.
6. The OS transfers control to the byte whose address matches this address.
7. The OS copies the value from the stack, where it had put it earlier, into the block of four

bytes that starts with the byte whose address it has found above (address of ‘x’).
Notice that addresses of the variables on the left as well as on the right of the assignment

operator are determined. However, the value of the right-hand operand is also determined. The
expression on the right must be capable of being evaluated to a value. This is an important
point and must be borne in mind. It will enable us to understand a number of concepts later.

 Introduction to C++ 15

Especially, you must remember that the expression on the left of the assignment operator
must be capable of being evaluated to a valid address at which data can be written.

Now, let us study reference variables. A reference variable is nothing but a reference for
an existing variable. It shares the memory location with an existing variable. The syntax for
declaring a reference variable is as follows:

<data-type> & <ref-var-name>=<existing-var-name>;

For example, if ‘x’ is an existing integer-type variable and we want to declare iRef as a
reference to it the statement is as follows:

 int & iRef=x;

iRef is a reference to ‘x’. This means that although iRef and ‘x’ have separate entries in the
OS, their addresses are actually the same!

Thus, a change in the value of ‘x’ will naturally reflect in iRef and vice versa.
Listing 1.16 illustrates this.

Listing 1.16 Reference variables

/*Beginning of reference01.cpp*/
#include<iostream.h>
void main()
{
 int x;
 x=10;
 cout<<x<<endl;
 int & iRef=x; //iRef is a reference to x
 iRef=20; //same as x=10;
 cout<<x<<endl;
 x++; //same as iRef++;
 cout<<iRef<<endl;
}
/*End of reference01.cpp*/

Output
10
20
21

Reference variables must be initialized at the time of declaration (otherwise the compiler will
not know what address it has to record for the reference variable).

Reference variables are variables in their own right. They just happen to have the address
of another variable. After their creation, they function just like any other variable.

We have just seen what happens when a value is written into a reference variable. The
value of a reference variable can be read in the same way as the value of an ordinary variable
is read. Listing 1.17 illustrates this.

Listing 1.17 Reading the value of a reference variable

/*Beginning of reference02.cpp*/
#include<iostream.h>
void main()
{

 Object-Oriented Programming with C++16

 int x,y;
 x=10;
 int & iRef=x;
 y=iRef; //same as y=x;
 cout<<y<<endl;
 y++; //x and iRef unchanged
 cout<<x<<endl<<iRef<<endl<<y<<endl;
}
/*End of reference02.cpp*/

Output
10
10
10
11

 A reference variable can be a function argument and thus change the value of the parameter
that is passed to it in the function call. Listing 1.18 is an illustrative example.

Listing 1.18 Passing by reference

 /*Beginning of reference03.cpp*/
#include<iostream.h>
void increment(int &); //formal argument is a reference
 //to the passed parameter
void main()
{
 int x;
 x=10;
 increment(x);
 cout<<x<<endl;
}
void increment(int & r)
{
 r++; //same as x++;
}
/*End of reference03.cpp*/

Output
11

Functions can return by reference also. See Listing 1.19.

Listing 1.19 Returning by reference

/*Beginning of reference04.cpp*/
#include<iostream.h>
int & larger(int &, int &);
int main()
{
 int x,y;
 x=10;
 y=20;
 int & r=larger(x,y);
 r=-1;
 cout<<x<<endl<<y<<endl;
}

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

 Introduction to C++ 17

int & larger(int & a, int & b)
{
 if(a>b) //return a reference to the larger parameter
 return a;
 else
 return b;
}
/*End of reference04.cpp*/

Output
10
–1

In the foregoing listing, ‘a’ and ‘x’ refer to the same memory location while ‘b’ and ‘y’
refer to the same memory location. From the larger() function, a reference to ‘b’, that is,
reference to ‘y’ is returned and stored in a reference variable ‘r’. The larger() function does
not return the value ‘b’ because the return type is int& and not int. Thus, the address of ‘r’
becomes equal to the address of ‘y’. Consequently, any change in the value of ‘r’ also changes
the value of ‘y’. Listing 1.19 can be shortened as illustrated in Listing 1.20.

Listing 1.20 Returning by reference

/*Beginning of reference05.cpp*/
#include<iostream.h>
int & larger(int &, int &);
int main()
{
 int x,y;
 x=10;
 y=20;
 larger(x,y)=-1;
 cout<<x<<endl<<y<<endl;
}
int & larger(int & a, int & b)
{
 if(a>b) //return a reference to the larger parameter
 return a;
 else
 return b;
}
/*End of reference05.cpp*/

Output
10
–1

The name of a non-constant variable can be placed on the left of the assignment operator
because a valid address—the address of the variable—can be determined from it. A call to
a function that returns by reference can be placed on the left of the assignment operator for
the same reason.

If the compiler nds the name of a non-constant variable on the left of the assignment
operator in the source code, it writes instructions in the executable to

determine the address of the variable,
transfer control to the byte that has that address, and

 Object-Oriented Programming with C++18

write the value on the right of the assignment operator into the block that begins with
the byte found above.
A function that returns by reference primarily returns the address of the returned variable.

If the call is found on the left of the assignment operator, the compiler writes necessary
instructions in the executable to

transfer control to the byte whose address is returned by the function and
write the value on the right of the assignment operator into the block that begins with
the byte found above.
The name of a variable can be placed on the right of the assignment operator. A call to

a function that returns by reference can be placed on the right of the assignment operator
for the same reason.

If the compiler nds the name of a variable on the right of the assignment operator in the
source code, it writes instructions in the executable to

determine the address of the variable,
transfer control to the byte that has that address,
read the value from the block that begins with the byte found above, and
push the read value into the stack.
A function that returns by reference primarily returns the address of the returned variable.

If the call is found on the right of the assignment operator, the compiler writes necessary
instructions in the executable to

transfer control to the byte whose address is returned by the function,
read the value from the block that begins with the byte found above, and
push the read value into the stack.
A constant cannot be placed on the left of the assignment operator. This is because

constants do not have a valid address. Moreover, how can a constant be changed? Functions
that return by value, return the value of the returned variable, which is a constant. Therefore,
a call to a function that returns by value cannot be placed on the left of the assignment
operator.

You may notice that the formal arguments of the larger() function in the foregoing listing
have been declared as constant references because they are not supposed to change the values
of the passed parameters even accidentally.

We must avoid returning a reference to a local variable. For example, see Listing 1.21.

Listing 1.21 Returning the reference of a local variable

 /*Beginning of reference06.cpp*/
#include<iostream.h>
int & abc();
void main()
{
 abc()=-1;
}

int & abc()
{
 int x;
 return x; //returning reference of a local variable
}
/*End of reference06.cpp*/

 Introduction to C++ 19

The problem with the above program is that when the abc() function terminates, ‘x’ will
go out of scope. Consequently, the statement

 abc()=-1;

in the main() function will write ‘–1’ in an unallocated block of memory. This can lead to
run-time errors.

 1.8 Function Prototyping

Function prototyping is necessary in C++. A prototype describes the function’s interface to
the compiler. It tells the compiler the return type of the function as well as the number, type,
and sequence of its formal arguments.

The general syntax of function prototype is as follows:

return_type function_name(argument_list);

For example,
 int add(int, int);

This prototype indicates that the add() function returns a value of integer type and takes two
parameters both of integer type.

Since a function prototype is also a statement, a semicolon must follow it.
Providing names to the formal arguments in function prototypes is optional. Even if

such names are provided, they need not match those provided in the function de nition. For
example, see Listing 1.22.

 Listing 1.22 Function prototyping

/*Beginning of funcProto.cpp*/
#include<iostream.h>
int add(int,int); //function prototype

void main()
{
 int x,y,z;
 cout<<“Enter a number: ”;
 cin>>x;
 cout<<“Enter another number: ”;
 cin>>y;
 z=add(x,y); //function call
 cout<<z<<endl;
}
int add(int a,int b) //function definition
{
 return (a+b);
}
/*End of funcProto.cpp*/

Output
Enter a number: 10<enter>
Enter another number: 20<enter>
30

 Why is prototyping important? By making prototyping necessary, the compiler ensures
the following:

 Object-Oriented Programming with C++20

The return value of a function is handled correctly.
Correct number and type of arguments are passed to a function.

Let us discuss these points.
Consider the following statement in Listing 1.22:

 int add(int, int);

The prototype tells the compiler that the add() function returns an integer-type value. Thus,
the compiler knows how many bytes have to be retrieved from the place where the add()
function is expected to write its return value and how these bytes are to be interpreted.

In the absence of prototypes, the compiler will have to assume the type of the returned
value. Suppose, it assumes that the type of the returned value is an integer. However, the
called function may return a value of an incompatible type (say a structure type). Now,
suppose an integer-type variable is equated to the call to a function where the function call
precedes the function de nition. In this situation, the compiler will report an error against
the function de nition and not the function call. This is because the function call abided by
its assumption, but the de nition did not. However, if the function de nition is in a different
 le to be compiled separately, then no compile-time errors will arise. Instead, wrong results

will arise during run time as Listing 1.23 shows.

Listing 1.23 Absence of function prototype produces weird results

 /*Beginning of def.c*/
/*function definition*/
struct abc
{
 char a;
 int b;
 float c;
};

struct abc test()
{
 struct abc a1;
 a1.a=‘x’;
 a1.b=10;
 a1.c=1.1;
 return a1;
}
/*End of def.c*/

/*Beginning of driver.c*/
void main()
{
 int x;
 x=test(); //no compile time error!!
 printf(“%d”,x);
}
/*End of driver.c*/

Output
1688

A compiler that does not enforce prototyping will de nitely compile the above program.
But then it will have no way of knowing what type of value the test() function returns.

 Introduction to C++ 21

Therefore, erroneous results will be obtained during run time as the output of Listing 1.23
clearly shows.

Since the C++ compiler necessitates function prototyping, it will report an error against
the function call because no prototype has been provided to resolve the function call. Again,
if the correct prototype is provided, the compiler will still report an error since this time the
function call does not match the prototype. The compiler will not be able to convert a struct
abc to an integer. Thus, function prototyping guarantees protection from errors arising out
of incorrect function calls.

What happens if the function prototype and the function call do not match? Such a situation
cannot arise. Both the function prototype and the function de nition are created by the same
person, that is, the library programmer. The library programmer puts the function’s prototype in
a header le. He/she provides the function’s de nition in a library. The application programmer
includes the header le in his/her application program le in which the function is called. He/
she creates an object le from this application program le and links this object le to the
library to get an executable le.

The function’s prototype also tells the compiler that the add() function accepts two
parameters. If the program fails to provide such parameters, the prototype enables the compiler
to detect the error. A compiler that does not enforce function prototyping will compile a
function call in which an incorrect number and/or type of parameters have been passed. Run-
time errors will arise as in the foregoing case.

Finally, function prototyping produces automatic-type conversion wherever appropriate.
We take the case of compilers that do not enforce prototyping. Suppose, a function expects an
integer-type value (assuming integers occupy four bytes) but a value of double type (assuming
doubles occupy eight bytes) is wrongly passed. During run time, the value in only the rst
four bytes of the passed eight bytes will be extracted. This is obviously undesirable. However,
the C++ compiler automatically converts the double-type value into an integer type. This
is because it inevitably encounters the function prototype before encountering the function
call and therefore knows that the function expects an integer-type value. However, it must
be remembered that such automatic-type conversions due to function prototypes occur only
when it makes sense. For example, the compiler will prevent an attempted conversion from
a structure type to integer type.

Nevertheless, can the same bene ts not be realized without prototyping? Is it not possible
for the compiler to simply scan the rest of the source code and nd out how the function has
been de ned? There are two reasons why this solution is inappropriate. They are:

It is inefficient. The compiler will have to suspend the compilation of the line containing
the function call and search the rest of the file.
Most of the times the function definition is not contained in the file where it is called. It
is usually contained in a library.
Such compile-time checking for prototypes is known as static-type-checking.

 1.9 Function Overloading

C++ allows two or more functions to have the same name. For this, however, they must have
different signatures. Signature of a function means the number, type, and sequence of formal
arguments of the function. In order to distinguish amongst the functions with the same name,
the compiler expects their signatures to be different. Depending upon the type of parameters
that are passed to the function call, the compiler decides which of the available de nitions

 Object-Oriented Programming with C++22

will be invoked. For this, function prototypes should be provided to the compiler for matching
the function calls. Accordingly, the linker, during link time, links the function call with the
correct function de nition. Listing 1.24 clari es this.

 Listing 1.24 Function overloading

/*Beginning of funcOverload.cpp*/
#include<iostream.h>
int add(int,int); //first prototype
int add(int,int,int); //second prototype

void main()
{
 int x,y;
 x=add(10,20); //matches first prototype
 y=add(30,40,50); //matches second prototype
 cout<<x<<endl<<y<<endl;
}

int add(int a,int b)
{
 return(a+b);
}

int add(int a,int b,int c)
{
 return(a+b+c);
}
/*End of funcOverload.cpp*/

Output
30
120

Just like ordinary functions, the de nitions of overloaded functions are also put in libraries.
Moreover, the function prototypes are placed in header les.

The two function prototypes at the beginning of the program tell the compiler the two
different ways in which the add() function can be called. When the compiler encounters the
two distinct calls to the add() function, it already has the prototypes to satisfy them both.
Thus, the compilation phase is completed successfully. During linking, the linker nds the
two necessary de nitions of the add() function and, hence, links successfully to create the
executable le.

The compiler decides which function is to be called based upon the number, type, and
sequence of parameters that are passed to the function call. When the compiler encounters
the rst function call,

 x=add(10,20);

it decides that the function that takes two integers as formal arguments is to be executed.
Accordingly, the linker then searches for the de nition of the add() function where there are
two integers as formal arguments.

Similarly, the second call to the add() function
 y=add(30,40,50);

is also handled by the compiler and the linker.

 Introduction to C++ 23

Note the importance of function prototyping. Since function prototyping is mandatory in
C++, it is possible for the compiler to support function overloading properly. The compiler
is able to not only restrict the number of ways in which a function can be called but also
support more than one way in which a function can be called. Function overloading is possible
because of the necessity to prototype functions.

By itself, function overloading is of little use. Instead of giving exactly the same name for
functions that perform similar tasks, it is always possible for us to give them similar names.
However, function overloading enables the C++ compiler to support another feature, that
is, function overriding (which in turn is not really a very useful thing by itself but forms the
basis for dynamic polymorphism—one of the most striking features of C++ that promotes
code reuse).

Function overloading is also known as function polymorphism because, just like
 polymorphism in the real world where an entity exists in more than one form, the same
function name carries different meanings.

Function polymorphism is static in nature because the function de nition to be executed
is selected by the compiler during compile time itself. Thus, an overloaded function is said
to exhibit static polymorphism.

 1.10 Default Values for Formal Arguments of Functions
It is possible to specify default values for some or all of the formal arguments of a function. If
no value is passed for an argument when the function is called, the default value speci ed for
it is passed. If parameters are passed in the normal fashion for such an argument, the default
value is ignored. Listing 1.25 is an illustrative example.

Listing 1.25 Default values for function arguments

 /*Beginning of defaultArg.cpp*/
#include<iostream.h>
int add(int,int,int c=0); //third argument has default value

void main()
{
 int x,y;
 x=add(10,20,30); //default value ignored
 y=add(40,50); //default value taken for the
 //third parameter
 cout<<x<<endl<<y<<endl;
}

int add(int a,int b,int c)
{
 return (a+b+c);
}
/*End of defaultArg.cpp*/

Output
60
90

In the above listing, a default value—zero—has been speci ed for the third argument of the
add() function. In the absence of a value being passed to it, the compiler assigns the default
value. If a value is passed to it, the compiler assigns the passed value. In the rst call

 Object-Oriented Programming with C++24

x=add(10,20,30);

the values of ‘a’, ‘b’, and ‘c’ are 10, 20, and 30, respectively. But, in the second function call
y=add(40,50);

the values of ‘a’, ‘b’, and ‘c’ are 10, 20, and 0, respectively. The default value—zero—for
the third parameter ‘c’ is taken. This explains the output of the above listing.

Default values can be assigned to more than one argument. Listing 1.26 illustrates this.

Listing 1.26 Default values for more than one argument

/*Beginning of multDefaultArg.cpp*/
#include<iostream.h>
int add(int,int b=0,int c=0); //second and third arguments
 //have default values

void main()
{
 int x,y,z;
 x=add(10,20,30); //all default values ignored
 y=add(40,50); //default value taken for the
 //third argument
 z=add(60); //default value taken for
 //the second and the third
 //arguments
 cout<<x<<endl<<y<<endl<<z<<endl;
}

int add(int a,int b,int c)
{
 return (a+b+c);
}
/*End of multDefaultArg.cpp*/

Output
60
90
60

There is no need to provide names to the arguments taking default values in the function
prototypes.

int add(int,int=0,int=0);

can be written instead of
int add(int,int b=0,int c=0);

Default values must be supplied starting from the rightmost argument. Before supplying
default value to an argument, all arguments to its right must be given default values. Suppose
you write

int add(int,int=0,int);

you are attempting to give a default value to the second argument from the right without
specifying a default value for the argument on its right. The compiler will report an error that
the default value is missing (for the third argument).

 Introduction to C++ 25

Default values must be speci ed in function prototypes alone. They should not be speci ed
in the function de nitions.

While compiling a function call, the compiler will de nitely have its prototype. Its de nition
will probably be located after the function call. It might be in the same le, or it will be in a
different le or library. Thus, to ensure a successful compilation of the function calls where
values for arguments having default values have not been passed, the compiler must be aware
of those default values. Hence, default values must be speci ed in the function prototype.

You must also remember that the function prototypes are placed in header les. These are
included in both the library les that contain the function’s de nition and the client program
 les that contain calls to the functions. While compiling the library le that contains the

function de nition, the compiler will obviously read the function prototype before it reads
the function de nition. Suppose the function de nition also contains default values for the
arguments. Even if the same default values are supplied for the same arguments, the compiler
will think that you are trying to supply two different default values for the same argument.
This is obviously unacceptable because the default value can be only one in number. Thus,
default values must be speci ed in the function prototypes and should not be speci ed again
in the function de nitions.

If default values are speci ed for the arguments of a function, the function behaves like
an overloaded function and, therefore, should be overloaded with care; otherwise ambiguity
errors might be caused. For example, if you prototype a function as follows:

int add(int,int,int=0);
int add(int,int);

This can confuse the compiler. If only two integers are passed as parameters to the function
call, both these prototypes will match. The compiler will not be able to decide with which
de nition the function call has to be resolved. This will lead to an ambiguity error.

Default values can be given to arguments of any data type as follows:
double hra(double,double=0.3);
void print(char=’a’);

 1.11 Inline Functions

Inline functions are used to increase the speed of execution of the executable les. C++ inserts
calls to the normal functions and the inline functions in different ways in an executable.

The executable program that is created after compiling the various source codes and linking
them consists of a set of machine language instructions. When a program is started, the
operating system loads these instructions into the computer’s memory. Thus, each instruction
has a particular memory address. The computer then goes through these instructions one by
one. If there are any instructions to branch out or loop, the control skips over instructions and
jumps backward or forward as needed. When a program reaches the function call instruction,
it stores the memory address of the instruction immediately following the function call. It then
jumps to the beginning of the function, whose address it nds in the function call instruction
itself, executes the function code, and jumps back to the instruction whose address it had
saved earlier.

Obviously, an overhead is involved in
making the control jump back and forth and

 Object-Oriented Programming with C++26

storing the address of the instruction to which the control should jump after the function
terminates.
The C++ inline function provides a solution to this problem. An inline function is a function

whose compiled code is ‘in line’ with the rest of the program. That is, the compiler replaces
the function call with the corresponding function code. With inline code, the program does
not have to jump to another location to execute the code and then jump back. Inline functions,
thus, run a little faster than regular functions.

However, there is a trade-off between memory and speed. If an inline function is
called repeatedly, then multiple copies of the function definition appear in the code
(see Figures 1.1 and 1.2). Thus, the executable program itself becomes so large that it occupies
a lot of space in the computer’s memory during run time. Consequently, the program runs
slow instead of running fast. Thus, inline functions must be chosen with care.

For specifying an inline function, you must:
prefix the definition of the function with the inline keyword and
define the function before all functions that call it, that is, define it in the header file
itself.
The following listing illustrates the inline technique with the inline cube() function that

cubes its argument. Note that the entire de nition is in one line. That is not a necessary
condition. But if the de nition of a function does not t in one line, the function is probably
a poor candidate for an inlne function!

Figure 1.1 Transfer of control in a non-inline function

 Introduction to C++ 27

Listing 1.27 Inline functions

 /*Beginning of inline.cpp*/
#include<iostream.h>

inline double cube(double x) { return x*x*x; }

void main()
{
 double a,b;
 double c=13.0;
 a=cube(5.0);
 b=cube(4.5+7.5);
 cout<<a<<endl;
 cout<<b<<endl;
 cout<<cube(c++)<<endl;
 cout<<c<<endl;
}
/*End of inline.cpp*/

Figure 1.2 Control does not get transferred in an inline function

 Object-Oriented Programming with C++28

Output
125
1728
2197
14

 However, under some circumstances, the compiler, despite your indications, may not expand the
function inline. Instead, it will issue a warning that the function could not be expanded inline
and then compile all calls to such functions in the ordinary fashion. Those conditions are:

The function is recursive.
There are looping constructs in the function.
There are static variables in the function.

Let us brie y compare macros in C and inline function in C++. Macros are a poor predecessor
to inline functions. For example, a macro for cubing a number is as follows:

#define CUBE(X) X*X*X

Here, a mere text substitution takes place with‘X’ being replaced by the macro parameter.
a=CUBE(5.0); //replaced by a=5.0*5.0*5.0;
b=CUBE(4.5+7.5); //replaced by
 //b=4.5+7.5*4.5+7.5*4.5+7.5;
c=CUBE(x++); //replaced by c=x++*x++*x++;

Only the rst statement works properly. An intelligent use of parentheses improves matters
slightly.

 #define CUBE(X) ((X)*(X)*(X))

Even now, CUBE(c++) undesirably increments ‘c’ thrice. But the inline cube() function
evaluates ‘c’, passes the value to be cubed, and then correctly increments ‘c’ once.

It is advisable to use inline functions instead of macros.

Variables sometimes in uence each other’s values.
A change in the value of one may necessitate a
corresponding adjustment in the value of another. It
is, therefore, necessary to pass these variables together
in a single group to functions. Structures enable us to
do this.

Structures are used to create new data types. This
is a two-step process.
Step 1: Create the structure itself.
Step 2: Create associated functions that work upon
variables of the structure.

While structures do fulfil the important need
described above, they nevertheless have limitations.
They do not enable the library programmer to make
variables of the structure that he/she has designed to

be safe from unintentional modi cation by functions
other than those de ned by him/her. Moreover, they do
not guarantee a proper initialization of data members
of structure variables.

Both of the above drawbacks are in direct
contradiction with the characteristics possessed by
real-world objects. A real-world object has not only
a perfect interface to manipulate its internal parts but
also exclusive rights to do so. Consequently, a real-
world object never reaches an invalid state during its
lifetime. When we start operating a real-world object, it
automatically assumes a valid state. In object-oriented
programming systems (OOPS), we can incorporate
these features of real-world objects into structure
variables.

Summary

 Introduction to C++ 29

Inheritance allows a structure to inherit both data
and functions of an existing structure. Polymorphism
allows different functions to have the same name. It is
of two types: static and dynamic.

Console output is achieved in C++ with the help
of insertion operator and the cout object. Console
input is achieved in C++ with the help of extraction
operator and the cin object.

In C++, variables can be de ned anywhere in a
function. A reference variable shares the same memory
location as the one of which it is a reference. Therefore,
any change in its value automatically changes the value

of the variable with which it is sharing memory. Calls
to functions that return by reference can be placed on
the left of the assignment operator.

Function prototyping is necessary in C++. Functions
can be overloaded. Functions with different signatures
can have the same name. A function argument can be
given a default value so that if no value is passed for it
in the function call, the default value is assigned to it.
If a function is declared inline, its de nition replaces
its call, thus, speeding up the execution of the resultant
executable.

Key Terms
creating new data types using structures
lack of data security in structures
no guaranteed initialization of data in structures
procedure-oriented programming system
object-oriented programming system
data security in classes
guaranteed initialization of data in classes
inheritance
polymorphism
console input/output in C++

- cout
- ostream_withassign class
- insertion operator

- cin
- istream_withassign class
- extraction operator
- iostream.h header le
- endl

reference variable
- passing by reference
- returning by reference

importance of function prototyping
function overloading
default values for function arguments
inline functions

Exercises

 1. Which programming needs do structures ful ll? Why
does C language enable us to create structures?

 2. What are the limitations of structures?
 3. What is the procedure-oriented programming

system?
 4. What is the object-oriented programming system?
 5. Which class is ‘cout’ an object of?
 6. Which class is ‘cin’ an object of?
 7. What bene ts does a programmer get if the compiler

forces him/her to prototype a function?
 8. Why will an ambiguity error arise if a default value

is given to an argument of an overloaded function?
 9. Why should default values be given to function

arguments in the function’s prototype and not in the
function’s de nition?

 10. State true or false.
(a) Structures enable a programmer to secure the

data contained in structure variables from being
changed by unauthorized functions.

(b) The insertion operator is used for outputting
in C++.

(c) The extraction operator is used for outputting
in C++.

(d) A call to a function that returns by reference
cannot be placed on the left of the assignment
operator.

(e) An inline function cannot have a looping
construct.

 11. Think of some examples from your own experience in
C programming where you felt the need for structures.

 Object-Oriented Programming with C++30

Do you see an opportunity for programming in OOPS
in those examples?

 12. Structures in C do not enable the library programmers
to guarantee an initialization of data. Appreciate the
implications of this limitation by taking the date
structure as an example.

13. Calls to functions that return by reference can be put

on the left-hand side of the assignment operator.
Experiment and nd out whether such calls can be
chained. Consider the following:

f(a, b) = g(c, d) = x;

 where ‘f’ and ‘g’ are functions that return by reference
while ‘a’, ‘b’, ‘c’, ‘d’, and ‘x’ are variables.

Classes and Objects

The previous chapter refreshed the reader’s knowledge of the structure construct provided
by C language—its use and usage. It also dealt with a critical analysis of structures along with
their pitfalls and limitations. The reader was made aware of a strong need for data security and
for a guaranteed initialization of data that structures do not provide.

This chapter is a logical continuation to the previous one. It begins with a thorough
explanation of the class construct of C++ and the ways by which it ful ls the above-mentioned
needs. Superiority of the class construct of C++ over the structure construct of C language is
emphasized in this chapter.

This chapter also deals with how classes enable the library programmer to provide exclusive
rights to the associated functions.

A description of various types and features of member functions and member data nds a
prominent place in this chapter. This description covers:

Overloaded member functions
Default values for the arguments of member functions
Inline member functions
Constant member functions
Mutable data members
Friend functions and friend classes
Static members
A section in this chapter is devoted to namespaces. They enable the C++ programmer to

prevent pollution of the global namespace that leads to name clashes.
Example code to tackle arrays of objects and arrays inside objects form the penultimate

portion of this chapter.
The chapter ends with an essay on nested classes—their need and use.

O

V

E

R

V

I

E

W

2

 2.1 Introduction to Classes and Objects

Classes are to C++ what structures are to C. Both provide the library programmer a means
to create new data types.

Let us brie y recapitulate the issues faced while programming in C described in the previous
chapter. In C, the library programmer creates structures. He/she also provides a set of tested
bug-free functions that correctly manipulate the data members of structure variables.

The Date structure and its accompanying functions may be perfect. However, there is
absolutely no guarantee that the client programs will use only these functions to manipulate
the members of variables of the structure. See Listing 2.1.

 Object-Oriented Programming with C++32

Listing 2.1 Undesirable manipulation of structures not prevented in C

struct Date d1;
setDate(&d1); //assign system date to d1.
printf(“%d”,d1.month);
d1.month = 13; //undesirable but unpreventable!!

The bug arising out of the last line of the main() function above is easily detected even
by a visual inspection. Nevertheless, the same will certainly not be the case if the code is
around 25,000 lines long. Lines similar to the last line of the main() function above may be
scattered all over the code. Thus, they will be dif cult to hunt down.

Notice that the absence of a facility to bind the data and the code that can have the exclusive
rights to manipulate the data can lead to dif cult-to-detect run-time bugs. C does not provide
the library programmer with the facilities to encapsulate data, to hide data, and to abstract
data.

The C++ compiler provides a solution to this problem. Structures (the struct keyword)
have been rede ned to allow member functions also. Listing 2.2 illustrates this.

Listing 2.2 C++ allows member functions in structures

/*Beginning of structDistance01.cpp*/
#include<iostream.h>

struct Distance
{
 int iFeet;
 float fInches;
 void setFeet(int x)
 {
 iFeet=x;
 }
 int getFeet()
 {
 return iFeet;
 }
 void setInches(float y)
 {
 fInches=y;
 }
 float getInches()
 {
 return fInches;
 }
};

void main()
{
 Distance d1,d2;
 d1.setFeet(2);
 d1.setInches(2.2);
 d2.setFeet(3);
 d2.setInches(3.3);
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
 cout<<d2.getFeet()<<“ ”<<d2.getInches()<<endl;

 Classes and Objects 33

}

/*End of structDistance01.cpp*/

Output
2 2.2
3 3.3

First, we must notice that functions have also been de ned within the scope of the structure
de nition. This means that not only the member data of the structure can be accessed through
the variables of the structures but also the member functions can be invoked. The struct
keyword has actually been rede ned in C++. This latter point is illustrated by the main()
function in Listing 2.2 above. We must make careful note of the way variables of the structure
have been declared and how the member functions have been invoked.

Member functions are invoked in much the same way as member data are accessed, that is,
by using the variable-to-member access operator. In a member function, one can refer directly
to members of the object for which the member function is invoked. For example, as a result
of the second line of the main() function in Listing 2.2, it is d1.iFeet that gets the value of
2. On the other hand, it is d2.iFeet that gets the value of 3 when the fourth line is invoked.
This is explained in the section on the this pointer that follows shortly.

Each structure variable contains a separate copy of the member data within itself. However,
only one copy of the member function exists. Again, the section on the this pointer explains
this.

However, in the above example, note that the member data of structure variables can still
be accessed directly. The following line of code illustrates this.

d1.iFeet=2; //legal!!

 2.1.1 Private and Public Members

What is the advantage of having member functions also in structures? We have put together
the data and functions that work upon the data but we have not been able to give exclusive
rights to these functions to work upon the data. Problems in code debugging can still arise
as before. Specifying member functions as public but member data as private obtains the
advantage. The syntax for this is illustrated by Listing 2.3.

Listing 2.3 Making members of structures private

 /*Beginning of structDistance02.cpp*/
#include<iostream.h>
struct Distance
{
 private:
 int iFeet;
 float fInches;
 public:
 void setFeet(int x)
{
 iFeet=x; //LEGAL: private member accessed by
 //member function
}
int getFeet()

 Object-Oriented Programming with C++34

{
 return iFeet;
}
void setInches(float y)
{
 fInches=y;
}
float getInches()
 {
 return fInches;
 }
};

void main()
{
 Distance d1,d2;
 d1.setFeet(2);
 d1.setInches(2.2);
 d2.setFeet(3);
 d2.setInches(3.3);
 d1.iFeet++; //ERROR!!: private member accessed by
 //non-member function
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
 cout<<d2.getFeet()<<“ ”<<d2.getInches()<<endl;
}
/*End of structDistance02.cpp*/

First, let us have a close look at the modi ed de nition of the structure Distance. Two
new keywords, private and public have been introduced in the de nition of the structure. Their
presence in the foregoing example tells the compiler that iFeet and fInches are private data
members of variables of the structure Distance and the member functions are public. Thus,
values of iFeet and fInches of each variable of the structure Distance can be accessed/
modi ed only through member functions of the structure and not by any non-member
function in the program (again note that it is the iFeet and fInches of the invoking object
that are accessed/modi ed by the member functions). Any attempt to violate this restriction
is prevented by the compiler because that is how the C++ compiler recognizes the private
keyword. Since the member functions are public, they can be invoked from any part of the
program.

As we can observe from Listing 2.3, the compiler refuses to compile the line in which a
private member of a structure variable is accessed from a non-member function (the main()
function in Listing 2.3).

The keywords private and public are also known as access modi ers or access speci ers
because they control the access to the members of structures.

C++ introduces a new keyword class as a substitute for the keyword struct. In a structure,
members are public by default. See the de nition in Listing 2.4.

Listing 2.4 Structure members are public by default

 struct Distance
{
 private:
 int iFeet;
 float fInches;

 Classes and Objects 35

 public:
 void setFeet(int x)
 {
 iFeet=x;
 }
 int getFeet()
 {
 return iFeet;
 }
 void setInches(float y)
 {
 fInches=y;
 }
 float getInches()
 {
 return fInches;
 }
};

can also be written as
struct Distance
{
 void setFeet(int x) //public by default
 {
 iFeet=x;
 }
 int getFeet() //public by default
 {
 return iFeet;
 }
 void setInches(float y) //public by default
 {
 fInches=y;
 }
 float getInches() //public by default
 {
 return fInches;
 }
 private:
 int iFeet;
 float fInches;
};

In Listing 2.4, the member functions have not been placed under any access modi er.
Therefore, they are public members by default.

On the other hand, class members are private by default. This is the only difference between
the class keyword and the struct keyword.

Thus, the structure Distance can be rede ned by using the class keyword as shown in
Listing 2.5.

Listing 2.5 Class members are private by default

 class Distance
{
 int iFeet; //private by default
 float fInches; //private by default

 Object-Oriented Programming with C++36

 public:
 void setFeet(int x)
 {
 iFeet=x;
 }
 int getFeet()
 {
 return iFeet;
 }
 void setInches(float y)
 {
 fInches=y;
 }
 float getInches()
 {
 return fInches;
 }
};

The struct keyword has been retained to maintain backward compatibility with C
language. A header le created in C might contain the de nition of a structure, and structures
in C will have member data only. A C++ compiler will easily compile a source code that has
included the above header le since the new de nition of the struct keyword allows, not
mandates, the inclusion of member functions in structures.

Functions in a C language source code access member data of structures. A C++ compiler
will easily compile such a source code since the C++ compiler treats members of structures
as public members by default.

 2.1.2 Objects

Variables of classes are known as objects.
An object of a class occupies the same amount of memory as a variable of a structure that

has the same data members. This is illustrated by Listing 2.6.

Listing 2.6 Size of a class object is equal to that of a structure variable with identical
data members

/*Beginning of objectSize.cpp*/
#include<iostream.h>

struct A
{
 char a;
 int b;
 float c;
};

class B //a class with the same data members
{
 char a;
 int b;
 float c;
};

void main()
{

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

 Classes and Objects 37

 cout<<sizeof(A)<<endl<<sizeof(B)<<endl;
}
/*End of objectSize.cpp*/

Output
9
9

Introducing member functions does not in uence the size of objects. The reason for this
will become apparent when we study the this pointer. Moreover, making data members
private or public does not in uence the size of objects. The access modi ers merely control
the accessibility of the members.

2.1.3 Scope Resolution Operator

It is possible and usually necessary for the library programmer to de ne the member functions
outside their respective classes. The scope resolution operator makes this possible. Listing
2.7 illustrates the use of the scope resolution operator (::).

 Listing 2.7 The scope resolution operator

/*Beginning of scopeResolution.cpp*/
class Distance
{
 int iFeet;
 float fInches;
 public:
 void setFeet(int); //prototype only
 int getFeet(); //prototype only
 void setInches(float); //prototype only
 float getInches(); //prototype only
};

void Distance::setFeet(int x) //definition
{
 iFeet=x;
}

int Distance::getFeet() //definition
{
 return iFeet;
}

void Distance::setInches(float y) //definition
{
 fInches=y;
}

float Distance::getInches() //definition
{
 return fInches;
}
/*End of scopeResolution.cpp*/

We can observe that the member functions have been only prototyped within the class;
they have been de ned outside. The scope resolution operator signi es the class to which they

 Object-Oriented Programming with C++38

belong. The class name is speci ed on the left-hand side of the scope resolution operator. The
name of the function being de ned is on the right-hand side.

2.1.4 Creating Libraries Using the Scope Resolution Operator

As in C language, creating a new data type in C++ using classes is also a three-step process
that is executed by the library programmer.
Step 1: Place the class de nition in a header le.

/*Beginning of Distance.h*/
/*Header file containing the definition of the Distance class*/

class Distance
{
 int iFeet;
 float fInches;
 public:
 void setFeet(int); //prototype only
 int getFeet(); //prototype only
 void setInches(float); //prototype only
 float getInches(); //prototype only
};
/*End of Distance.h*/

Step 2: Place the de nitions of the member functions in a C++ source le (the library source
code). A le that contains de nitions of the member functions of a class is known as the
implementation le of that class. Compile this implementation le and put in a library.

/*Beginning of Distlib.cpp*/
/*Implementation file for the class Distance*/
#include“Distance.h”

void Distance::setFeet(int x) //definition
{
 iFeet=x;
}

int Distance::getFeet() //definition
{
 return iFeet;
}

void Distance::setInches(float y) //definition
{
 fInches=y;
}

float Distance::getInches() //definition
{
 return fInches;
}
/*End of Distlib.cpp*/

Step 3: Provide the header le and the library, in whatever media, to other programmers who
want to use this new data type.

 Classes and Objects 39

2.1.5 Using Classes in Application Programs

The steps followed by programmers for using this new data type are:
Step 1: Include the header le provided by the library programmer in their source code.

/*Beginning of Distmain.cpp*/
#include“Distance.h”

void main()
{

}
/*End of Distmain.cpp*/

Step 2: Declare variables of the new data type in their source code.
 /*Beginning of Distmain.cpp*/
#include“Distance.h”

void main()
{
 Distance d1,d2;

}
/*End of Distmain.cpp*/

Step 3: Embed calls to the associated functions by passing these variables in their source
code. See Listing 2.8.

 Listing 2.8 Using classes in application programs

/*Beginning of Distmain.cpp*/
/*A sample driver program for creating and using objects of the class Dis-
tance*/
#include<iostream.h>
#include“Distance.h”

void main()
{
 Distance d1,d2;
 d1.setFeet(2);
 d1.setInches(2.2);
 d2.setFeet(3);
 d2.setInches(3.3);
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
 cout<<d2.getFeet()<<“ ”<<d2.getInches()<<endl;
}
/*End of Distmain.cpp*/

Step 4: Compile the source code to get the object le.
Step 5: Link the object le with the library provided by the library programmer to get the
executable or another library.

Output of Listing 2.8
2 2.2
3 3.3

 Object-Oriented Programming with C++40

Implementation les are compiled and converted into static and dynamic libraries in the
usual manner.

Again, we notice that there is no obvious connection between the member data being
accessed within the member function and the object that is invoking the function.

2.1.6 this Pointer

The facility to create and call member functions of class objects is provided by the C++
compiler. You have already seen how this facility is to be used. However, how does the
compiler support this facility? The compiler does this by using a unique pointer known as
the this pointer. A thorough understanding of the this pointer is vital for understanding
many concepts in C++.

The this pointer is always a constant pointer. The this pointer always points at the object
with respect to which the function was called. An explanation that follows shortly explains
why and how it functions.

After the compiler has ascertained that no attempt has been made to access the private
members of an object by non-member functions, it converts the C++ code into an ordinary
C language code as follows:
1. It converts the class into a structure with only data members as follows.

 Before
class Distance
{
 int iFeet;
 float fInches;
 public:
 void setFeet(int); //prototype only
 int getFeet(); //prototype only
 void setInches(float); //prototype only
 float getInches(); //prototype only
};

 After
struct Distance
{
 int iFeet;
 float fInches;
};

2. It puts a declaration of the this pointer as a leading formal argument in the prototypes
of all member functions as follows.

 Before
void setFeet(int);

 After
void setFeet(Distance * const, int);

 Before
 int getFeet();

 Classes and Objects 41

 After
int getFeet(Distance * const);

 Before
void setInches(float);

 After
void setInches(Distance * const, float);

 Before
float getInches();

 After
float getInches(Distance * const);

3. It puts the definition of the this pointer as a leading formal argument in the definitions
of all member functions as follows. It also modifies all the statements to access object
members by accessing them through the this pointer using the pointer-to-member access
operator (->).

 Before
void Distance::setFeet(int x)
{
 iFeet=x;
}

 After
void setFeet(Distance * const this, int x)
{
 this->iFeet=x;
}

 Before
int Distance::getFeet()
{
 return iFeet;
}

 After
int getFeet(Distance * const this)
{
 return this->iFeet;
}

 Before
void Distance::setInches(float y)
{
 fInches=y;
}

 After
void setInches(Distance * const this, float y)

 Object-Oriented Programming with C++42

{
 this->fInches=y;
}

 Before
float Distance::getInches()
{
 return fInches;
}

 After
float getInches(Distance * const this)
{
 return this->fInches;

}

 We must understand how the scope resolution operator works. The scope resolution
operator is also an operator. Just like any other operator, it operates upon its operands.
The scope resolution operator is a binary operator, that is, it takes two operands. The
operand on its left is the name of a pre-defined class. On its right is a member function of
that class. Based upon this information, the scope resolution operator inserts a constant
operator of the correct type as a leading formal argument to the function on its right.
For example, if the class name is Distance, as in the above case, the compiler inserts a
pointer of type Distance * const as a leading formal argument to the function on its
right.

4. It passes the address of invoking object as a leading parameter to each call to the member
functions as follows.

 Before
d1.setFeet(1);

 After
 setFeet(&d1,1);

 Before
d1.setInches(1.1);

 After
 setInches(&d1,1.1);

 Before
cout<<d1.getFeet()<<endl;

 After
 cout<<getFeet(&d1)<<endl;

 Before
cout<<d1.getInches()<<endl;

 Classes and Objects 43

 After
 cout<<getInches(&d1)<<endl;

 In the case of C++, the dot operator’s definition has been extended. It not only takes data
members as in C but also member functions as its right-hand side operand. If the operand
on its right is a data member, then the dot operator behaves just like it does in C language.
However, if the operand on its right is a member function, then the dot operator causes
the address of the object on its left to be passed as an implicit leading parameter to the
function call.

Clearly, members of the invoking object are referred to when they are accessed without
any quali ers in member functions. It should also be obvious that multiple copies of member
data exist (one inside each object) but only one copy exists for each member function.

It is evident that the this pointer should continue to point at the same object—the object
with respect to which the member function has been called—throughout its lifetime. For this
reason, the compiler creates it as a constant pointer.

The accessibility of the implicit object is the same as that of the other objects passed as
parameters in the function call and the local objects inside that function. Listing 2.9 illustrates
this. A new function—add()—has been added to the existing de nition of the Distance
class.

 Listing 2.9 Accessing data members of local objects inside member functions and of
objects that are passed as parameters

 /*Beginning of Distance.h*/
class Distance
{
 /*
 rest of the class Distance
 */
 Distance add(Distance);
};
/*End of Distance.h*/

/*Beginning of Distlib.cpp*/
#include“Distance.h”

Distance Distance::add(Distance dd)
{
 Distance temp;
 temp.iFeet=iFeet+dd.iFeet; //legal to access both
 //temp.iFeet and
 //dd.iFeet
 temp.fInches=fInches+dd.fInches; //ditto
 return temp;
}

/*
 definitions of the rest of the functions of class
 Distance
*/
/*End of Distlib.cpp*/

/*Beginning of Distmain.cpp*/
#include<iostream.h>
#include“Distance.h”

 Object-Oriented Programming with C++44

void main()
{
 Distance d1,d2,d3;
 d1.setFeet(1);
 d1.setInches(1.1);
 d2.setFeet(2);
 d2.setInches(2.2);
 d3=d1.add(d2);
 cout<<d3.getFeet()<<“’-”<<d3.getInches()<<“’’\n”;
}
/*End of Distmain.cpp*/

Output
3'-3.3'

The de nition of Distance :: add() function, after the previously described conversion
by the compiler is carried out, will appear as follows.

 Distance add(Distance * const this, Distance dd)
{
 Distance temp;
 temp.iFeet=this->iFeet+dd.iFeet;
 temp.fInches=this->fInches+dd.fInches;
 return temp;
}

When this function is called from the main() function with respect to ‘d1’, the this pointer
points at ‘d1’. Thus, it is the private data member of ‘d1’ that is being accessed in the second
and third lines of the add() function.

So, now we can
Declare a class
Define member data and member functions
Make members private and public
Declare objects and call member functions with respect to objects

What advantages does all this lead to? The advantage that library programmers can now
derive from this arrangement is epitomized in the following observation:

An executable le will not be created from a source code in which private data members
of an object have been accessed by non-member functions.

Once again, the importance of compile-time errors over run-time errors is emphasized.
Suppose, an if block exists in a function that is not intended by the library programmer to
access the data members of a structure. This if block contains a bug (say ‘d1.month’ has been
assigned the value of 13, where ‘d1’ is a variable of the structure ‘date’).

A pure C compiler would not recognize this statement as an invalid access. During testing,
the if condition of this if block might never become true. The bug would remain undetected;
the executable will get created with bugs. Thus, creating bug-free executables is dif cult
and unreliable in C. This is due to the absence of language constructs that enforce data
security.

On the other hand, a C++ compiler that also detects invalid access of private data members
would immediately throw an error during compile time itself and prevent the creation of the
executable. Thus, creating bug-free executables is easier and more reliable in C++ than in
C. This is due to the presence of language constructs that enforce data security.

 Classes and Objects 45

2.1.7 Data Abstraction

The class construct provides facilities to implement data abstraction. Data abstraction is
an important concept and should be understood properly. Let us take up the example of
the LCD projector from the previous chapter. It has member data (light and fan) as well as
member functions (switches that operate the light and the fan). This real-world object hides
its internal operations from the outside world. It, thus, obviates the need for the user to know
the possible pitfalls that might be encountered during its operation. During its operation, the
LCD projector never reaches an invalid state. Moreover, the LCD projector does not start in
an invalid state.

Data abstraction is a virtue by which an object hides its internal operations from the rest
of the program. It makes it unnecessary for the client programs to know how the data is
internally arranged in the object. Thus, it obviates the need for the client programs to write
precautionary code upon creating and while using objects.

Now, in order to understand this concept, let us take an example in C++. The library
programmer, who has designed the Distance class, wants to ensure that the fInches portion
of an object of the class should never exceed 12. If a value larger than 12 is speci ed by
an application programmer while calling the Distance::setInches() function, the logic
incorporated within the de nition of the function should automatically increment the value
of iFeet and decrement the value of fInches by suitable amounts. A modi ed de nition of
the Distance::setInches() function is as follows.

 void Distance::setInches(float y)
{
 fInches=y;
 if(fInches>=12)
 {
 iFeet+=fInches/12;
 fInches-=((int)fInches/12)*12;
 }
}

Here, we notice that an application programmer need not send values less than 12 while calling
the Distance::setInches() function. The default logic within the Distance::setInches()
function does the necessary adjustments. This is an example of data abstraction.

The above restriction may not appear mandatory. However, very soon we will create classes
where similar restrictions will be absolutely necessary (and also complicated).

Similarly, the de nition of the Distance::add() function should also be modi ed as
follows by the library programmer. Here, it can be assumed that the value of fInches portion
of neither the invoking object nor the object appearing as formal argument (‘dd’) can be
greater than 12.

Distance Distance::add(Distance dd)
{
 Distance temp;
 temp.iFeet=iFeet+dd.iFeet;
 temp.setInches(fInches+dd.fInches);
 return temp;
}

Now, if we write the statements shown in Listing 2.10

 Object-Oriented Programming with C++46

 Listing 2.10 Enforcing restrictions on the data members of a class

 d1.setFeet(1);
d1.setInches(9.5);
d2.setFeet(2);
d2.setInches(5.5);
d3=d1.add(d2);

then the value of d3.fInches will become 3 (not 15) and the value of d3.iFeet will become
4 (not 3).

It has already been mentioned that real-world objects never attain an invalid state. They
also do not start in an invalid state. Does C++ enable the library programmer to implement
this feature in class objects?

Let us continue with our earlier example—the Distance class. Recollect that it is the library
programmer’s intention to ensure that the value of fInches portion of none of the objects of
the class Distance should exceed 12. Now, let us consider Listing 2.11.

 Listing 2.11 Object gets created with improper values

 /*Beginning of DistJunk.cpp*/
#include<iostream.h>
#include“Distance.h”

void main()
{
 Distance d1;
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
}

/*End of DistJunk.cpp*/

Output
297 34.56

As you can see, the value of fInches of ‘d1’ is larger than 12! This happened because the
value of both iFeet and fInches automatically got set to junk values when ‘d1’ was allocated
memory and the junk value is larger than 12 for d1.fInches. Thus, the objective of the library
programmer to keep the value of fInches less than 12 has not yet been achieved.

It would be unrealistic to expect that an application programmer will explicitly initialize
each object that is declared.

 Distance d1;
d1.setFeet(0); //initialization
d1.setInches(0.0); //initialization

Obviously, the library programmer would like to add a function to the Distance class that
gets called automatically whenever an object is created and sets the values of the data members
of the object properly. Such a function is the constructor. The concept of constructor and a
related function, the destructor, is discussed in one of the later chapters.

But we may say that even if Distance was an ordinary structure and setInches()
function was a non-member function just as in C, data abstraction would still be in place.
Nevertheless, in the case of C, the library programmer cannot force calls to only those
functions that have been de ned. He/she cannot prevent calls to those functions that

 Classes and Objects 47

he/she has not de ned. Data abstraction is effective due to data hiding only (recall the case
of the overhead projector systems discussed earlier).

On the other side of the coin, in C language, life becomes dif cult for an application
programmer also. If a certain member of a structure variable acquires an invalid or a wrong
value, he/she has to hunt through the entire source code to detect the bug. This problem rapidly
gains signi cance as the code length increases. In actual practice, it is common to have code
of more than 25,000 lines.

Let us now sum up as follows:
Perfect de nitions of the member functions are guaranteed to achieve their objective

because of data hiding.
This is the essence of the object-oriented programming system. Real-world objects have

not only working parts but also an exclusive interface to these inner-working parts. A perfect
interface is guaranteed to work because of its exclusive rights.

2.1.8 Explicit Address Manipulation

An application programmer can manipulate the member data of any object by explicit address
manipulation. Listing 2.12 illustrates the point.

 Listing 2.12 Explicit address manipulation

 /*Beginning of DistAddrManip.cpp*/
#include“Distance.h”
#include<iostream.h>

void main()
{
 Distance d1;
 d1.setFeet(256);
 d1.setInches(2.2);
 char * p=(char *)&d1; //explicit address manipulation
 *p=1; //undesirable but unpreventable
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
}
/*End of DistAddrManip.cpp*/

 Output
257 2.2

However, such explicit address manipulation by an application programmer cannot be
prevented. It is left as an exercise for the readers to explain the output of the above program
(Listing 2.12).

2.1.9 Arrow Operator

Member functions can be called with respect to an object through a pointer pointing at the
object. The arrow operator (->) does this. An illustrative example is shown in Listing 2.13.

 Listing 2.13 Accessing members through pointers

/*Beginning of PointerToMember.cpp*/
#include<iostream.h>
#include“Distance.h”

 Object-Oriented Programming with C++48

void main()
{
 Distance d1; //object
 Distance * dPtr; //pointer
 dPtr=&d1; //pointer initialized
 /*Same as d1.setFeet(1) and d1.setInches(1.1)*/
 dPtr->setFeet(1); //calling member functions
 dPtr->setInches(1.1); //through pointers
 /*Same as d1.getFeet() and d1.getInches()*/
 cout<<dPtr->getFeet()<<“ ”<<dPtr->getInches()<<endl;
}
/*End of PointerToMember.cpp*/

 Output
1 1.1

It is interesting to note that just like the dot (.) operator, the de nition of the arrow (->)
operator has also been extended in C++. It takes not only data members on its right as in C,
but also member functions as its right-hand side operand. If the operand on its right is a data
member, then the arrow operator behaves just as it does in C language. However, if it is a
member function of a class where a pointer of the same class type is its left-hand side operand,
then the compiler simply passes the value of the pointer as an implicit leading parameter to
the function call. Thus, the statement

dPtr->setFeet(1);

after conversion becomes
 setFeet(dPtr,1);

Now, the value of dPtr is copied into the this pointer. Therefore, the this pointer also
points at the same object at which dPtr points.

2.1.10 Calling One Member Function from Another

One member function can be called from another. An illustrative example is shown in
Listing 2.14.

 Listing 2.14 Calling one member function from another

 /*Beginning of NestedCall.cpp*/
class A
{
 int x;
 public:
 void setx(int);
 void setxindirect(int);
};

void A::setx(int p)
{
 x=p;
}

void A::setxindirect(int q)
{
 setx(q);

 Classes and Objects 49

}

void main()
{
 A A1;
 A1.setxindirect(1);
}
/*End of NestedCall.cpp*/

It is relatively simple to explain the above program. The call to the A::setxindirect()
function changes from

 A1.setxindirect(1);

to
 setxindirect(&A1,1);

The de nition of the A::setxindirect() function changes from
 void A::setxindirect(int q)
{
 setx(q);
}

to
void setxindirect(A * const this, int q)
{
 this->setx(q); //calling function through a pointer
}

which, in turn, changes to
void setxindirect(A * const this, int q)
{
 setx(this,q); //action of arrow operator
}

 2.2 Member Functions and Member Data

Let us study the various kinds of member functions and member data that classes in C++
have.

2.2.1 Overloaded Member Functions

Member functions can be overloaded just like non-member functions. Listing 2.15 illustrates
this point.

Listing 2.15 Overloaded member functions

 /*Beginning of memFuncOverload.cpp*/
#include<iostream.h>

class A
{
 public:
 void show();
 void show(int); //function show() overloaded!!
};

 Object-Oriented Programming with C++50

void A::show()
{
 cout<<“Hello\n”;
}

void A::show(int x)
{
 for(int i=0;i<x;i++)
 cout<<“Hello\n”;
}

void main()
{
 A A1;
 A1.show(); //first definition called
 A1.show(3); //second definition called
}
/*End of memFuncOverload.cpp*/

Output
Hello
Hello
Hello
Hello

 Function overloading enables us to have two functions of the same name and same signature
in two different classes. The class de nitions given in Listing 2.16 illustrate the point.

Listing 2.16 Facility of overloading functions permits member functions of two different
classes to have the same name

 class A
{
 public:
 void show();
};
class B
{
 public:
 void show();
};

A function of the same name show() is de ned in both the classes—‘A’ and ‘B’. The
signature also appears to be the same. But with our knowledge of the this pointer, we know
that the signatures are actually different. The function prototypes in the respective classes
are actually as follows.

void show(A * const);
void show(B * const);

Without the facility of function overloading, it would not be possible for us to have two
functions of the same name in different classes. Without the facility of function overloading,
choice of names for member functions would become more and more restricted. Later, we
will nd that function overloading enables function overriding that, in turn, enables dynamic
polymorphism.

 Classes and Objects 51

2.2.2 Default Values for Formal Arguments of Member Functions

We already know that default values can be assigned to arguments of non-member functions.
Default values can be speci ed for formal arguments of member functions also. An illustrative
example follows in Listing 2.17.

 Listing 2.17 Giving default values to arguments of member functions

/*Beginning of memFuncDefault.cpp*/
#include<iostream.h>

class A
{
 public:
 void show(int=1);
};

void A::show(int p)
{
 for(int i=0;i<p;i++)
 cout<<“Hello\n”;
}

void main()
{
 A A1;
 A1.show(); //default value taken
 A1.show(3); //default value overridden
}
/*End of memFuncDefault.cpp*/

Output
Hello
Hello
Hello
Hello

Again, it has to be kept in mind that a member function should be overloaded with care if
default values are speci ed for some or all of its formal arguments. For example, the compiler
will report an ambiguity error when it nds the second prototype for the show() function of
class A in Listing 2.18.

Listing 2.18 Giving default values to arguments of overloaded member functions can
lead to ambiguity errors

 class A
{
 public:
 void show();
 void show(int=0); //ambiguity error
};

Reasons for such ambiguity errors have already been explained in the section on function
overloading in Chapter 1. As in the case of non-member functions, if default values are
speci ed for more than one formal argument, they must be speci ed from the right to the

 Object-Oriented Programming with C++52

left. Similarly, default values must be speci ed in the function prototypes and not in function
de nitions. Further, default values can be speci ed for a formal argument of any type.

2.2.3 Inline Member Functions

Member functions are made inline by either of the following two methods.
By defining the function within the class itself (as in Listing 2.5)
By only prototyping and not defining the function within the class. The function is defined
outside the class by using the scope resolution operator. The definition is prefixed by the
inline keyword. As in non-member functions, the definition of the inline function must
appear before it is called. Hence, the function should be defined in the same header file
in which its class is defined. Listing 2.19 illustrates this.

Listing 2.19 Inline member functions

 /*Beginning of memInline.cpp*/
class A
{
 public:
 void show();
};

inline void A::show() //definition in header file itself
{
 //definition of A::show() function
}
/*End of memInline.cpp*/

2.2.4 Constant Member Functions

Let us consider this situation. The library programmer desires that one of the member functions
of his/her class should not be able to change the value of member data. This function should be
able to merely read the values contained in the data members, but not change them. However,
he/she fears that while de ning the function he/she might accidentally write the code to do
so. In order to prevent this, he/she seeks the compiler’s help. If he/she declares the function
as a constant function, and thereafter attempts to change the value of a data member through
the function, the compiler throws an error.

Let us consider the class Distance. The Distance::getFeet(), Distance::getInches(),
and the Distance::add() functions should obviously be constant functions. They should not
change the values of iFeet or fInches members of the invoking object even by accident.

Member functions are speci ed as constants by suf xing the prototype and the function
de nition header with the const keyword. The modi ed prototypes and de nitions of the
member functions of the class Distance are illustrated in Listing 2.20.

 Listing 2.20 Constant member functions

 /*Beginning of Distance.h*/
/*Header file containing the definition of the Distance
class*/
class Distance
{

 Classes and Objects 53

 int iFeet;
 float fInches;
 public:
 void setFeet(int);
 int getFeet() const; //constant function
 void setInches(float);
 float getInches() const; //constant function
 Distance add(Distance) const; //constant function
};
/*End of Distance.h*/

/*Beginning of Distlib.cpp*/
/*Implementation file for the class Distance*/
#include“Distance.h”

void Distance::setFeet(int x)
{
 iFeet=x;
}
int Distance::getFeet() const //constant function
{
 iFeet++; //ERROR!!
 return iFeet;
}

void Distance::setInches(float y)
{
 fInches=y;
}

float Distance::getInches() const //constant function
{
 fInches=0.0; //ERROR!!
 return fInches;
}

Distance Distance::add(Distance dd) const //constant
 //function
{
 Distance temp;
 temp.iFeet=iFeet+dd.iFeet;
 temp.setInches(fInches+dd.fInches);
 iFeet++; //ERROR!!
 return temp;
}
/*End of Distlib.cpp*/

For constant member functions, the memory occupied by the invoking object is a read-
only memory. How does the compiler manage this? For constant member functions, the this
pointer becomes ‘a constant pointer to a constant’ instead of only ‘a constant pointer’. For
example, the this pointer is of type const Distance * const for the Distance::getFeet(),
Distance::getInches(), and Distance::add() functions. For the other member functions
of the class Distance, the this pointer is of type Distance * const.

Clearly, only constant member functions can be called with respect to constant objects. Non-
constant member functions cannot be called with respect to constant objects. However, constant
as well as non-constant functions can be called with respect to non-constant objects.

 Object-Oriented Programming with C++54

2.2.5 Mutable Data Members

A mutable data member is never constant. It can be modi ed inside constant functions also.
Pre xing the declaration of a data member with the keyword mutable makes it mutable.
Listing 2.21 illustrates this.

Listing 2.21 Mutable data members

 /*Beginning of mutable.h*/
class A
{
 int x; //non-mutable data member
 mutable int y; //mutable data member

 public:

 void abc() const //a constant member function
 {
 x++; //ERROR: cannot modify a non-constant data
 //member in a constant member function
 y++; //OK: can modify a mutable data member in a
 //constant member function
 }

 void def() //a non-constant member function
 {
 x++; //OK: can modify a non-constant data member
 //in a non-constant member function
 y++; //OK: can modify a mutable data member in a
 //non-constant member function
 }
};
/*End of mutable.h*/

We frequently need a data member that can be modi ed even for constant objects. Suppose,
there is a member function that saves the data of the invoking object in a disk le. Obviously,
this function should be declared as a constant to prevent even an inadvertent change to data
members of the invoking object. If we need to maintain a ag inside each object that tells us
whether the object has already been saved or not, such a ag should be modi ed within the
above constant member function. Therefore, this data member should be declared a mutable
data member.

2.2.6 Friends

A class can have global non-member functions and member functions of other classes as
friends. Such functions can directly access the private data members of objects of the class.

 Friend non-member functions

A friend function is a non-member function that has special rights to access private data
members of any object of the class of whom it is a friend. In this section, we will study only
those friend functions that are not member functions of some other class.

A friend function is prototyped within the de nition of the class of which it is intended
to be a friend. The prototype is pre xed with the keyword friend. Since it is a non-member

 Classes and Objects 55

function, it is de ned without using the scope resolution operator. Moreover, it is not called
with respect to an object. An illustrative example is shown in Listing 2.22.

 Listing 2.22 Friend functions

 /*Beginning of friend.cpp*/
class A
{
 int x;
 public:
 friend void abc(A&); //prototype of the friend function
};

void abc(A& AObj) //definition of the friend function
{
 AObj.x++; //accessing private members of the object
}

void main()
{
 A A1;
 abc(A1);
}
/*End of friend.cpp*/

A few points about the friend functions that we must keep in mind are as follows:

friend keyword should appear in the prototype only and not in the definition.

Since it is a non-member function of the class of which it is a friend, it can be prototyped
in either the private or the public section of the class.

A friend function takes one extra parameter as compared to a member function that
performs the same task. This is because it cannot be called with respect to any object.
Instead, the object itself appears as an explicit parameter in the function call.

We need not and should not use the scope resolution operator while defining a friend
function.

There are situations where a function that needs to access the private data members of the
objects of a class cannot be called with respect to an object of the class. In such situations, the
function must be declared as a friend. We will encounter one such situation in Chapter 8.

Friend functions do not contradict the principles of OOPS. Since it is necessary to prototype
the friend function inside the class itself, the list of functions that can access the private
members of a class’s object remains well de ned and restricted. The bene ts provided by
data hiding are not compromised by friend functions.

 Friend classes

A class can be a friend of another class. Member functions of a friend class can access private
data members of objects of the class of which it is a friend. If class B is to be made a friend
of class A, then the statement

 friend class B;

should be written within the de nition of class A. Listing 2.23 illustrates this.

 Object-Oriented Programming with C++56

 Listing 2.23 Declaring friend classes

 class A
{
 friend class B; //declaring B as a friend of A
 /*
 rest of the class A
 */
};

It does not matter whether the statement declaring class B as a friend is mentioned within
the private or the public section of class A. Now, member functions of class B can access the
private data members of objects of class A. Listing 2.24 exempli es this.

Listing 2.24 Effect of declaring a friend class

/*Beginning of friendClass.cpp*/
class B; //forward declaration… necessary because
 //definition of class B is after the statement
 //that declares class B a friend of class A.
class A
{
 int x;
 public:
 void setx(const int=0);
 int getx()const;
 friend class B; //declaring B as a friend of A
};
class B
{
 A * APtr;
 public:
 void Map(A * const);
 void test_friend(const int);
};
void B::Map(A * const p)
{
 APtr = p;
}
void B::test_friend(const int i)
{
 APtr->x=i; //accessing the private data member
}
/*End of friendClass.cpp*/

As we can see, member functions of class B are able to access private data member of
objects of the class A although they are not member functions of class A. This is because
they are member functions of class B that is a friend of class A.

Friendship is not transitive. For example, consider Listing 2.25.

 Classes and Objects 57

 Listing 2.25 Friendship is not transitive

class B;
class C;

 /*Beginning of friendTran.cpp*/
class A
{
 friend class B;
 int a;
};

class B
{
 friend class C;
};

class C
{
 void f(A * p)
 {
 p->a++; //error: C is not a friend of A
 //despite being a friend of a friend
 }
};
/*End of friendTran.cpp*/

 Friend member functions
How can we make some speci c member functions of one class friendly to another class? For
making only B::test_friend() function a friend of class A, replace the line

 friend class B;

in the declaration of the class A with the line
 friend void B::test_friend();

The modi ed de nition of the class A is
 class A
{
 /*
 rest of the class A
 */
 friend void B::test_friend();
};

However, in order to compile this code successfully, the compiler should rst see the
de nition of the class B. Otherwise, it does not know that test_friend() is a member
function of the class B. This means that we should put the de nition of class B before the
de nition of class A.

However, a pointer of type A * is a private data member of class B. So, the compiler should
also know that there is a class A before it compiles the de nition of class B. This problem of
circular dependence is solved by forward declaration. This is done by inserting the line

class A; //Declaration only! Not definition!!

before the de nition of class B. Now, the declarations and de nitions of the two classes
appear as shown in Listing 2.26.

 Object-Oriented Programming with C++58

Listing 2.26 Forward declaring a class that requires a friend

 /*Beginning of friendMemFunc.h*/
class A;

class B
{
 A * APtr;
 public:
 void Map(const A * const);
 void test_friend(const int=0);
};

class A
{
 int x;
 public:
 friend void B::test_friend(const int=0);
};
/*End of friendMemFunc.h*/

Another problem arises if we try to de ne the B::test_friend() function as an inline
function by de ning it within class B itself. See Listing 2.27.

 Listing 2.27 Problem in declaring a friend member function inline

 class B
{
 /*
 rest of the class B
 */
 public:
 void test_friend(const int p)
 {
 APtr->x=p; //will not compile
 }
};

But how will the code inside B::test_friend() function compile? The compiler will
not know that there is a data member ‘x’ inside the de nition of class A. For overcoming
this problem, merely prototype B::test_friend() function within class B; de ne it as
inline after the de nition of class A in the header le itself. The revised de nitions appear
in Listing 2.28.

 Listing 2.28 Declaring a friend member function inline

 /*Beginning of friendMemFuncInline.h*/
class A;

class B
{
 A * APtr;
 public:
 void Map(const A * const);
 void test_friend(const int=0);
};

 Classes and Objects 59

class A
{
 int x;
 public:
 friend void B::test_friend(const int=0);
};

inline void B::test_friend(const int p)
{
 APtr->x=p;
}
/*End of friendMemFuncInline.h*/

Friends as bridges

Friend functions can be used as bridges between two classes.
Suppose there are two unrelated classes whose private data members need a simultaneous

update through a common function. This function should be declared as a friend to both the
classes. See Listing 2.29.

Listing 2.29 Friends as bridges

class B; //forward declaration

class A
{
 /*
 rest of the class A
 */
 friend void ab(const A&, const B&);
};

class B
{
 /*
 rest of the class B
 */
 friend void ab(const A&, const B&);
};

2.2.7 Static Members

 Static member data

Static data members hold global data that is common to all objects of the class. Examples of
such global data are

count of objects currently present,
common data accessed by all objects, etc.

Let us consider class Account. We want all objects of this class to calculate interest at the
rate of say 4.5%. Therefore, this data should be globally available to all objects of this class
(Listing 2.30).

This data cannot and should not be a member of the objects themselves. Otherwise, multiple
copies of this data will be embedded within the objects taking up unnecessary space. Same

 Object-Oriented Programming with C++60

value would have to be maintained for this data in all objects. This is very dif cult. Thus,
this data cannot be stored in a member variable of class Account.

At the same time, this data should not be stored in a global variable. Then the data is liable
to be changed by even non-member functions. It will also potentially lead to name con icts.
However, this means that it should be stored in a member variable of class Account!

How can this con ict be resolved? Storing the data in a static variable of the class resolves
this con ict. Static data members are members of the class and not of any object of the class,
that is, they are not contained inside any object.

We pre x the declaration of a variable within the class de nition with the keyword static
to make it a static data member of the class. See Listing 2.30.

 Listing 2.30 Declaring a static data member

 /*Beginning of Account.h*/
class Account
{
 static float interest_rate; //a static data member
 /*
 rest of the class Account
 */
};
/*End of Account.h*/

A statement declaring a static data member inside a class will obviously not cause any
memory to get allocated for it. Moreover, memory for a static data member will not get
allocated when objects of the class are declared. This is because a static data member is not a
member of any object. Therefore, we must not forget to write the statement to de ne (allocate
memory for) a static member variable. Explicitly de ning a static data member outside the
class is necessary. Otherwise, the linker produces an error. The following statement allocates
memory for interest_rate member of class Account.

 float Account::interest_rate;

The above statement initializes interest_rate to zero. If some other initial value (say 4.5)
is desired instead, the statement should be rewritten as follows.

 float Account::interest_rate=4.5;

Static data members should be de ned in the implementation les only. The header le is
included in both the implementation le and the driver program. If a static data member is
de ned in the header le, the static data member’s de nition would be in two les—the library
 le created from the implementation le and the object le created from the driver program.

But in order to get the executable, the linker will have to link these les. Upon nding two
de nitions of the static data member, the linker would throw an error.

Making static data members private prevents any change from non-member functions as
only member functions can change the values of static data members.

Introducing static data members does not increase the size of objects of the class. Static data
members are not contained within objects. There is only one copy of the static data member
in the memory. Let us try the following program (Listing 2.31) to nd out.

 Classes and Objects 61

 Listing 2.31 Static data members are not a part of objects

/*Beginning of staticSize.cpp*/
#include<iostream.h>
class A
{
 int x;
 char y;
 float z;
 static float s;
};
float A::s=1.1;
void main()
{
 cout<<sizeof(A)<<endl;
}
/*End of staticSize.cpp*/

Output
9

 Static data members can be of any type. For example, name of the bank that has the
accounts can be stored as a character array in a static data member of the class as illustrated
in Listing 2.32.

 Listing 2.32 Static data member can be of any type

 /*Beginning of Account.h*/

class Account
{
 static float interest_rate;
 static char name[30];
 /*
 rest of the class Account
 */
};

/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

float A::interest_rate=4.5;
char A::name[30]=“The Rich and Poor Bank”;
/*
 definitions of the rest of the functions of class Account
*/
/*End of Account.cpp*/

Static data members of integral type can be initialized within the class itself if the need
arises. For example, see Listing 2.33.

 Object-Oriented Programming with C++62

 Listing 2.33 Initializing integral static data members within the class itself

 /*Beginning of Account.h*/

class Account
{
 static int nameLength=30;
 static char name[nameLength];
 /*
 rest of the class Account
 */
};

/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

int A::nameLength;
char A::name[nameLength]=“The Rich and Poor Bank”;
/*
 definitions of the rest of the functions of class Account
*/
/*End of Account.cpp*/

We must notice that the static data member that has been initialized inside the class must be
still de ned outside the class to allocate memory for it. Once the initial value has been supplied
within the class, the static data member must not be re-initialized when it is de ned.

Non-integral static data members cannot be initialized like this. For example, see
Listing 2.34.

 Listing 2.34 Non-integral static data members cannot be initialized within the class

 /*Beginning of Account.h*/

class Account
{
 static char name[30]=“The Rich and Poor Bank”; //error!!
 /*
 rest of the class Account
 */
};
/*End of Account.h*/

In Listing 2.33, the variable nameLength is referred to directly without the class name and
the scope resolution operator while de ning the variable name. One static data member can
directly refer to another without using the scope resolution operator.

Member functions can refer to static data members directly. An example follows (Listing
2.35).

 Listing 2.35 Accessing static data members from non-static member functions

 /*Beginning of Account.h*/

class Account
{
 static float interest_rate;
 public:

 Classes and Objects 63

 void updateBalance();
 /*
 rest of the class Account
 */
};

/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

float Account::interest_rate=4.5;
void Account::updateBalance()
{
 if(end_of_year)
 balance+=balance*interest_rate/100;
}
/*
 definitions of the rest of the functions of class Account
*/
/*End of Account.cpp*/

The object-to-member access operator can be used to refer to the static data member
of a class with respect to an object. The class name with the scope resolution operator can
do this directly.

f=a1.interest_rate; //a1 is an object of the class Account
f=Account::interest_rate;

There are some things static data members can do but non-static data members cannot.
A static data member can be of the same type as the class of which it is a member. See
Listing 2.36.

 Listing 2.36 Static data members can be of the same type as their class

 class A
{
 static A A1; //OK : static
 A * APtr; //OK : pointer
 A A2; //ERROR!! : non-static
};

A static data member can appear as the default value for the formal arguments of member
functions of its class. See Listing 2.37.

 Listing 2.37 A static data member can appear as the default argument in the member
functions

class A
{
 static int x;
 int y;
 public:
 void abc(int=x); //OK
 void def(int=y); //ERROR!! : object required
};

 Object-Oriented Programming with C++64

A static data member can be declared to be a constant. In that case, the member functions
will be able to only read it but not modify its value.

 Static member functions

How do we create a member function that need not be called with respect to an existing
object? This function’s sole purpose is to access and/or modify static data members of the
class. Static member functions ful ll the above criteria. Pre xing the function prototype with
the keyword static speci es it as a static member function. However, the keyword static
should not reappear in the de nition of the function.

Suppose there is a function set_interest_rate() that sets the value of the interest_rate
static data member of class Account. The application programmer should be able to call this
function even if no objects have been declared. As discussed previously, this function should
be static. Its de nition can be as shown in Listing 2.38.

 Listing 2.38 Static member function

 /*Beginning of Account.h*/
class Account
{
 static float interest_rate;
 public:
 static void set_interest_rate(float);
 /*
 rest of the class Account
 */
};
/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

float Account::interest_rate = 4.5;

void Account::set_interest_rate(float p)
{
 interest_rate=p;
}
/*
 definitions of the rest of the functions of class Account
*/
/*End of Account.cpp*/

Now, the Account::set_interest_rate() function can be called directly without an
object.

Account::set_interest_rate(5);

Static member functions do not take the this pointer as a formal argument. Therefore,
accessing non-static data members through a static member function results in compile-time
errors. Static member functions can access only static data members of the class.

Static member functions can still be called with respect to objects.
a1.set_interest_rate(5); //a1 is an object of the class
 //Account

 Classes and Objects 65

 2.3 Objects and Functions

Objects can appear as local variables inside functions. They can also be passed by value or by
reference to functions. Finally, they can be returned by value or by reference from functions.
Listings 2.39 and 2.40 illustrate all this.

Listing 2.39 Returning class objects

/*Beginning of Distance.h*/
class Distance
{
 public:
 /*function to add the invoking object with another
 object passed as a parameter and return the resultant
 object*/
 Distance add(Distance);
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”

Distance Distance::add(Distance dd)
{
 Distance temp;
 temp.iFeet=iFeet+dd.iFeet;
 temp.setInches(fInches+dd.fInches);
 return temp;
}
/*
 definitions of the rest of the functions of class
 Distance
*/

/*End of Distance.cpp*/

/*Beginning of Distmain.cpp*/
#include<iostream.h>
#include“Distance.h”

void main()
{
 Distance d1,d2,d3;
 d1.setFeet(5);
 d1.setInches(7.5);
 d2.setFeet(3);
 d2.setInches(6.25);
 d3=d1.add(d2);
 cout<<d3.getFeet()<<“ ”<<d3.getInches()<<endl;
}

/*End of Distmain.cpp*/

Output
9 1.75

 Object-Oriented Programming with C++66

 Listing 2.40 Returning class objects by reference

/*Beginning of Distance.h*/
/*Header file containing the definition of the Distance
class*/
class Distance
{
/*definition of the class Distance*/
};
Distance& larger(Distance&, Distance&);
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include”Distance.h”
Distance& larger(Distance& dd1, Distance& dd2)
{
 float i,j;
 i=dd1.getFeet()*12+dd1.getInches();
 j=dd2.getFeet()*12+dd2.getInches();
 if(i>j)
 return dd1;
 else
 return dd2;
}
/*
definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

/*Beginning of Distmain.cpp*/
#include<iostream.h>
#include”Distance.h”
void main()
{
 Distance d1,d2;
 d1.setFeet(5);
 d1.setInches(7.5);
 d2.setFeet(5);
 d2.setInches(6.25);
 Distance& d3=larger(d1,d2);
 d3.setFeet(0);
 d3.setInches(0.0);
 cout<<d1.getFeet()<<» «<<d1.getInches()<<endl;
 cout<<d2.getFeet()<<» «<<d2.getInches()<<endl;
}
/*End of Distmain.cpp*/

Output
0 0.0
5 6.25

 2.4 Objects and Arrays

Let us understand how arrays of objects and arrays inside objects are handled in C++.

 Classes and Objects 67

2.4.1 Arrays of Objects

We can create arrays of objects. The following program shows how.

Listing 2.41 Array of objects

 /*Beginning of DistArray.cpp*/
#include“Distance.h”
#include<iostream.h>
#define SIZE 3

void main()
{
 Distance dArray[SIZE];
 int a;
 float b;
 for(int i=0;i<SIZE;i++)
 {
 cout<<“Enter the feet : ”;
 cin>>a;
 dArray[i].setFeet(a);
 cout<<“Enter the inches : ”;
 cin>>b;
 dArray[i].setInches(b);
 }
 for(int i=0;i<SIZE;i++)
 {
 cout <<dArray[i].getFeet()<<“ ”
 <<dArray[i].getInches()<<endl;
 }
}

/*End of DistArray.cpp*/

Output
Enter the feet : 1<enter>
Enter the inches : 1.1<enter>
Enter the feet : 2<enter>
Enter the inches : 2.2<enter>
Enter the feet : 3<enter>
Enter the inches : 3.3<enter>
1 1.1
2 2.2
3 3.3

2.4.2 Arrays Inside Objects

An array can be declared inside a class. Such an array becomes a member of all objects of
the class. It can be manipulated/accessed by all member functions of the class. The class
de nition shown in Listing 2.42 illustrates this.

 Object-Oriented Programming with C++68

 Listing 2.42 Arrays inside objects

 #define SIZE 3
/*A class to duplicate the behaviour of an integer array*/
class A
{
 int iArray[SIZE];
 public:
 void setElement(unsigned int,int);
 int getElement(unsigned int);
};
/*function to write the value passed as second parameter at the position passed
as first parameter*/
void A::setElement(unsigned int p,int v)
{
 if(p>=SIZE)
 return; //better to throw an exception
 iArray[p]=v;
}
/*function to read the value from the position passed as parameter*/
int A::getElement(unsigned int p)
{
 if(p>=SIZE)
 return –1; //better to throw an exception
 return iArray[p];
}

The class de nition is self-explanatory. However, the comments indicate that it is better
to throw exceptions rather than terminate the function. What are exceptions? How are they
thrown? What are the bene ts of using them? All these questions are answered in the chapter
on Exception Handling.

 2.5 Namespaces

Namespaces enable the C++ programmer to prevent pollution of the global namespace that
leads to name clashes.

The term ‘global namespace’ refers to the entire source code. It also includes all the directly
and indirectly included header les. By default, the name of each class is visible in the entire
source code, that is, in the global namespace. This can lead to problems.

Suppose a class with the same name is de ned in two header les.
/*Beginning of A1.h*/
class A
{
};
/*End of A1.h*/

/*Beginning of A2.h*/
class A //a class with an existing name
{
};
/*End of A2.h*/

Now, let us include both these header les in a program and see what happens if we declare
an object of the class. See Listing 2.43.

 Classes and Objects 69

 Listing 2.43 Referring to a globally declared class can lead to ambiguity error

/*Beginning of multiDef01.cpp*/
#include”A1.h”
#include”A2.h”
void main()
{
 A AObj; //ERROR: Ambiguity error due to multiple
 //definitions of A
}
/*End of multiDef01.cpp*/

The scenario in Listing 2.43 is quite likely in large programs. The global visibility of
the de nition of class A makes the inclusion of the two header les mutually exclusive.
Consequently, this also makes use of the two de nitions of class A mutually exclusive.

How can this problem be overcome? How can we ensure that an application is able to
use both de nitions of class A simultaneously? Enclosing the two de nitions of the class in
separate namespaces overcomes this problem.

 /*Beginning of A1.h*/
namespace A1 //beginning of a namespace A1
{
 class A
 {
 };
} //end of a namespace A1
/*End of A1.h*/

/*Beginning of A2.h*/
namespace A2 //beginning of a namespace A2
{
 class A
 {
 };
} //end of a namespace A2
/*End of A2.h*/

Now, the two de nitions of the class are enveloped in two different namespaces. The
corresponding namespace, followed by the scope resolution operator, must be pre xed to
the name of the class while referring to it anywhere in the source code. Thus, the ambiguity
encountered in the above listing can be overcome. A revised de nition of the main() function
from Listing 2.43 illustrates this (Listing 2.44).

 Listing 2.44 Enclosing classes in namespaces prevents pollution of the global
namespace

/*Beginning of multiDef02.cpp*/
#include”A1.h”
#include”A2.h”
void main()
{
 A1::A AObj1; //OK: AObj1 is an object of the class
 //defined in A1.h
 A2::A AObj2; //OK: AObj2 is an object of the class
 //defined in A2.h
}
/*End of multiDef02.cpp*/

 Object-Oriented Programming with C++70

Qualifying the name of the class with that of the namespace can be cumbersome. The
 using directive enables us to make the class de nition inside a namespace visible so that
qualifying the name of the referred class by the name of the namespace is no longer required.
Listing 2.45 shows how this is done.

 Listing 2.45 The using directive makes qualifying of referred class names by names of
enclosing namespaces unnecessary

 /*Beginning of using.cpp*/
#include“A1.h”
#include“A2.h”
void main()
{
 using namespace A1;
 A AObj1; //OK: AObj1 is an object of the class
 //defined in A1.h
A2::A AObj2; //OK: AObj2 is an object of the class
 //defined in A2.h
}
/*Beginning of using.cpp*/

However, we must note that the using directive brings back the global namespace pollution
that the namespaces mechanism was supposed to remove in the rst place! The last line in
the above listing compiles only because the class name was quali ed by the name of the
namespace.

Some namespaces have long names. Qualifying the name of a class that is enclosed within
such a namespace, with the name of the namespace, is cumbersome. See Listing 2.46.

 Listing 2.46 Cumbersome long names for namespace

 /*Beginning of longName01.cpp*/
namespace a_very_very_long_name
{
 class A
 {
 };
}

void main()
{
 a_very_very_long_name::A A1; //cumbersome long name
}
/*End of longName01.cpp*/

Assigning a suitably short alias to such a long namespace name solves the problem as
illustrated in Listing 2.47.

 Listing 2.47 Providing an alias for a namespace

 /*Beginning of longName02.cpp*/
namespace a_very_very_long_name
{
 class A
 {
 };

 Classes and Objects 71

}

namespace x = a_very_very_long_name; //declaring an

 //alias
void main()
{
 x::A A1; //convenient short name
}
/*End of longName02.cpp*/

Aliases provide an incidental bene t also. Suppose an alias has been used at a number
of places in the source code. Changing the alias declaration so that it stands as an alias for
a different namespace will make each reference of the enclosed class refer to a completely
different class. Suppose an alias X refers to a namespace ‘N1’.

namespace X = N1; //declaring an alias

Further, suppose that this alias has been used extensively in the source code.
X::A AObj; //AObj is an object of class A that is
 //enclosed in namespace N1.
AObj.f1(); //f1() is a member function of the above
 //class.

If the declaration of alias X is modi ed as follows (‘N2’ is also a namespace)
 namespace X = N2; //modifying the alias

then, all existing quali cations of referred class names that use X would now refer to class
A that is contained in namespace ‘N2’. Of course, the lines having such references would
compile only if both of the namespaces, ‘N1’ and ‘N2’, contain a class named A, and if these
two classes have the same interface.

For keeping the explanations simple, classes that have been given as examples in the rest
of this book are not enclosed in namespaces.

 2.6 Nested Inner Classes
A class can be de ned inside another class. Such a class is known as a nested class. The
class that contains the nested class is known as the enclosing class. Nested classes can be
de ned in the private, protected, or public portions of the enclosing class (protected access
speci er is explained in the chapter on inheritance).

In Listing 2.48, class B is de ned in the private section of class A.

 Listing 2.48 Nested classes

 /*Beginning of nestPrivate.h*/
class A
{
 class B
 {
 /*
 definition of class B
 */
 };
 /*
 definition of class A
 */

 Object-Oriented Programming with C++72

};
/*End of nestPrivate.h*/

In Listing 2.49, class B is de ned in the public section of class A.

 Listing 2.49 A public nested class

 /*Beginning of nestPublic.h*/
class A
{
 public:
 class B
 {
 /*
 definition of class B
 */
 };
 /*
 definition of class A
 */
};
/*End of nestPublic.h*/

A nested class is created if it does not have any relevance outside its enclosing class. By
de ning the class as a nested class, we avoid a name collision. In Listings 2.48 and 2.49, even if
there is a class B de ned as a global class, its name will not clash with the nested class B.

The size of objects of an enclosing class is not affected by the presence of nested classes.
See Listing 2.50.

Listing 2.50 Size of objects of the enclosing class

/*Beginning of nestSize.cpp*/
#include<iostream.h>

class A
{
 int x;
 public:
 class B
 {
 int y;
 };
};

void main()
{
 cout<<sizeof(int)<<endl;
 cout<<sizeof(A)<<endl;
}
/*End of nestSize.cpp*/

 Output
4
4

How are the member functions of a nested class de ned? Member functions of a nested
class can be de ned outside the de nition of the enclosing class. This is done by pre xing

 Classes and Objects 73

the function name with the name of the enclosing class followed by the scope resolution
operator. This, in turn, is followed by the name of the nested class followed again by the
scope resolution operator. This is illustrated by Listing 2.51.

Listing 2.51 Defi ning member functions of nested classes

/*Beginning of nestClassDef.h*/
class A
{
 public:
 class B
 {
 public:
 void BTest(); //prototype only
 };
 /*
 definition of class A
 */
};
/*End of nestClassDef.h*/

/*Beginning of nestClassDef.cpp*/
#include“nestClassDef.h”
void A::B::BTest()
{
 //definition of A::B::BTest() function
}

/*
 definitions of the rest of the functions of class B
*/
/*End of nestClassDef.cpp*/

A nested class may be only prototyped within its enclosing class and de ned later. Again,
the name of the enclosing class followed by the scope resolution operator is required. See
Listing 2.52.

 Listing 2.52 Defi ning a nested class outside the enclosing class

 /*Beginning of nestClassDef.h*/
class A
{
 class B; //prototype only
};

class A::B
{
 /*
 definition of the class B
 */
};
/*End of nestClassDef.h*/

Objects of the nested class are de ned outside the member functions of the enclosing
class in much the same way (by using the name of the enclosing class followed by the scope
resolution operator).

 A::B B1;

 Object-Oriented Programming with C++74

However, the above line will compile only if class B is de ned within the public section
of class A. Otherwise, a compile-time error will result.

An object of the nested class can be used in any of the member functions of the enclosing
class without the scope resolution operator. Moreover, an object of the nested class can be a
member of the enclosing class. In either case, only the public members of the object can be
accessed unless the enclosing class is a friend of the nested class. See Listing 2.53.

Listing 2.53 Declaring objects of the nested class in the member functions of the
enclosing class

 /*Beginning of nestClassObj.h*/
class A
{
 class B
 {
 public:
 void BTest(); //prototype only
 };
 B B1;
 public:
 void ATest();
};
/*End of nestClassObj.h*/

/*Beginning of nestClassObj.cpp*/
#include“nestClassObj.h”

void A::ATest()
{
 B1.BTest();
 B B2;
 B2.BTest();
}
/*End of nestClassObj.cpp*/

Member functions of the nested class can access the non-static public members of the
enclosing class through an object, a pointer, or a reference only. An illustrative example
follows in Listing 2.54.

 Listing 2.54 Accessing non-static members of the enclosing class in member functions
of the nested class.

 /*Beginning of enclClassObj.h*/
class A
{
 public:
 void ATest();
 class B
 {
 public:
 void BTest(A&);
 void BTest1();
 };
};
/*End of enclClassObj.h*/

 Classes and Objects 75

/*Beginning of enclClassObj.cpp*/
#include“enclClassObj.h”

void A::B::BTest(A& ARef)
{
 ARef.ATest(); //OK
}

void A::B::BTest1()
{
 ATest(); //ERROR!!
}
/*End of enclClassObj.cpp*/

It can be observed that an error is produced when a direct access is made to a member
of the enclosing class through a function of the nested class. This is as it should be. After
all, creation of an object of the nested class does not cause an object of the enclosing class
to be created. The classes are nested to merely control the visibility. Since ‘A::B::BTest()’
function will be called with respect to an object of class B, a direct access to a member of the
enclosing class A can be made through an object of that class only.

By default, the enclosing class and the nested class do not have any access rights to each
other’s private data members. They can do so only if they are friends to each other.

Classes have both member data and member functions.
Member functions can be given exclusive rights to
access data members. Member functions and mem-
ber data can be private, protected, or public. The
struct keyword has been rede ned in C++. Apart
from member data, structures in C++ can have mem-
ber functions also. In a class, members are private
by default. In a structure, members are public by
default.

The scope resolution operator is used to separate
the class de nition from the de nitions of the member
functions. The class de nition can be placed in a header
 le. Member functions, with the aid of scope resolution

operator, can be placed in a separate implementation
 le.

The this pointer is implicitly inserted by the com-
piler, as a leading formal argument, in the prototype
and in the de nition of each member function of each
class. When a member function is called with respect
to an object, the compiler inserts the address of the
calling object as a leading parameter to the function
call. Consequently, the this pointer, which exists as
the implicit leading formal argument in all member
functions, always points at the object with respect to
which the member function has been called.

Access to member data and member functions
from within member functions is resolved by the this
pointer. The this pointer is a constant pointer in case
of non-constant member functions and a constant
pointer to a constant in case of constant member
functions.

If the operand on its right is a data member, then
the object-to-member access operator (.) behaves just
as it does in C language. However, if it is a member
function of a class whereas an object of the same class
is its left-hand side operand, then the compiler simply
passes the address of the object as an implicit leading
parameter to the function call.

Similarly, if the operand on its right is a data
member, then the pointer-to-member access operator
(->) behaves just as it does in C language. However,
if it is a member function of a class whereas a pointer
to an object of the same class is its left-hand side
operand, then the compiler simply passes the value
of the pointer as an implicit leading parameter to the
function call. Member functions can call each other.
Calls are resolved through the this pointer. Member
functions can be overloaded. Default values can be
given to the formal arguments of member functions.

Summary

 Object-Oriented Programming with C++76

Programs having inline functions tend to run faster
than equivalent programs with non-inline functions. A
function is declared inline either by de ning it inside
a class or by declaring it inside a class and de ning it
outside with the keyword inline. This feature should
be used sparingly. Otherwise, the increased size of the
executable can slow it down.

If required, member functions can be declared
as constant functions to prevent even an inadvertent
change in the data members. A function can be declared
as a constant function by suf xing its prototype and the
header of its de nition by the keyword const.

A mutable data member is never constant. It is
modi able inside constant functions also. A friend
function is a non-member function that has a special
right to access private data members of objects of the
class of which it is a friend. This does not really negate
the philosophy of OOPS. A friend function still needs
to be declared inside the class of which it is a friend.
The advantage that a friend function provides is that it
is not called with respect to an object.

A global non-member function can be declared as
a friend to a class. Member function of one class can
be declared as a friend function of another. An entire
class can be declared as a friend of another too. A class
or a function is declared friend to a desired class by
prototyping it in the class and pre xing the prototype
with the keyword friend.

Only one copy of a static data member exists for
the entire class. This is in contrast to non-static data
members that exist separately in each object. Static
data members are used to keep data that relates to the
entire set of objects that exist at any given point during
the program’s execution. A data member is declared as
a static member of a class by pre xing its declaration
in the class by the keyword static.

Static member functions can access static data
members only. They can be called without declaring
any objects. A member function is declared as a static
member of a class by pre xing its declaration in the
class by the keyword static.

Objects can appear as local variables inside
functions. They can also be passed by value or by
reference to functions. Finally, they can be returned
by value or by reference from functions.

Arrays of objects can be created. Arrays can be
created inside classes also. One class can be de ned
inside another class. Such a class is known as a nested
class. The class that contains the nested class is known
as the enclosing class. Nested classes can be de ned
in the private, protected, or public portions of the
enclosing class.

Namespaces enable the C++ programmer to prevent
pollution of the global namespace. They help prevent
name classes.

Key Terms
class
private access speci er
public access speci er
objects
scope resolution operator
the this pointer
data abstraction
arrow operator
overloaded member functions
default values for formal arguments of member
functions

inline member functions
constant member functions
mutable data members
friend non-member functions
friend classes
friend member functions
friends as bridges
static member data
static member functions
namespaces
nested classes

Exercises
1. How does the class construct enable data security?
2. What is the use of the scope resolution operator?
3. What is the this pointer? Where and why does the

compiler insert it implicitly?

 4. What is data abstraction? How is it implemented in
C++?

 5. Which operator is used to access a class member with
respect to a pointer?

 Classes and Objects 77

 6. What is the difference between a mutable data
member and a static data member?

 7. Describe the two ways in which a member function
can be declared as an inline function.

 8. How can a global non-member function be declared
as a friend to a class?

 9. What is the use of declaring a class as a friend of
another?

 10. Explain why friend functions do not contradict the
principles of OOPS.

 11. Explain why static data members should be explicitly
declared outside the class.

 12. Why should static data members be de ned in the
implementation les only?

 13. What is the use of static member functions?
 14. How do namespaces help in preventing pollution of

the global namespace?
 15. What is a nested class? What is its use?
 16. How are the member functions of a nested class

defined outside the definition of the enclosing
class?

 17. State true or false.
(a) Structures in C++ can have member functions

also.
(b) Structure members are private by default.
(c) The this pointer is always a constant pointer.
(d) Member functions cannot be overloaded.
(e) Default values can be given to the formal

arguments of member functions.
(f) Only constant member function can be called for

constant objects.
(h) The keyword friend should appear in the

prototype as well as the de nition of the function
that is being declared as a friend.

(i) A friend function can be prototyped in only the
public section of the class.

(j) Friendship is not transitive.
(k) A static data member can be of the same type as

the class of which it is a member.
(l) The size of objects of an enclosing class is

affected by the presence of nested classes.
(m) An object of the nested class can be used in any

of the member functions of the enclosing class
without the scope resolution operator.

(n) An object of the nested class cannot be a member
of the enclosing class.

(o) Public members of the nested class’s object

which have been declared in a function of the
enclosing class can always be accessed.

 18. Your compiler should provide a structure
and associated functions to fetch the current
system date. Suppose the name of the structure
is date_d and the name of the associated
functions to fetch the current system date is
getSysDate().

 Create a class with a name that is similar to
the above structure. This class should contain
a variable of the above structure as its private
data member. Introduce a member function
in the class that calls the associated function
of the date structure. Thus, create a wrapper
class and make an available structure safe to
use.

class date_D //a wrapper class
{
 date_d d;
 public:
 void getSysDate();
};

void date_D::getSysDate()
{
getSysDate(&d); // calling the associ-

ated function from
 //the member function
}

 Also, write a small test program to test the
above class.

 19. Create a class named Distance_mks. This class
should be similar to the class Distance, except for
the following differences:

 The data members of this new class would be
iMeters (type integer; for representing the
meters portion of a distance) and fCentimeters
(type float; for representing the centimeters
portion of a distance) instead of iFeet and
fInches.

 Suitably designed member functions to work
upon the new data members should replace the
ones that we have seen for the class Distance.
The member functions should ensure that the
fCentimeters of no object should ever exceed
100.

Dynamic Memory Management

This chapter explains the use of tools that are available in C++ for dynamic memory
management. It begins with a brief explanation of static memory management and its limitation.
This is followed by an elucidation of the mechanism of dynamic memory management.

The middle portion of the chapter deals with the use and usage of the new operator and the
delete operator. Methods for allocating and deallocating memory for single objects and array
of objects are explained.

The chapter also explains how the size of a dynamically allocated memory block is
stored.

The last portion of the chapter explains the use of the set_new_handler() function for
specifying our own new handler.

O
V
E
R
V
I
E
W

3

 3.1 Introduction

Let us have an overview of static memory management. Memory for program variables gets
allocated and deallocated during run time only. For example, we write

int x;

in some function in the source code. When the source code containing this statement (apart
from the other statements) is compiled and linked, an executable le is generated. Besides
containing equivalent instructions for the other statements, the executable le also contains
the equivalent instructions for this statement. When the executable le is executed, all the
instructions contained inside it, including the ones to allocate memory for ‘x’, are executed.
Thus, memory gets allocated for ‘x’ during run time. This is known as static memory allocation
(although memory gets allocated during run time only).

The compiler writes instructions in the executable to deallocate the memory previously
allocated for ‘x’ when it encounters the end of the function, in which ‘x’ was declared, in
the source code. When the executable le is executed, all instructions contained inside it
including the ones to deallocate memory for ‘x’ are executed. Thus, memory for ‘x’ gets
deallocated during run time. This is known as static memory deallocation (although memory
gets deallocated during run time only).

Static allocation and deallocation of memory has a limitation. It is rigid. The programmers
are forced to predict the total amount of data the program will utilize. They write statements
to declare pre-calculated amounts of memory. During run time, if more memory is required,
static memory allocation cannot ful ll the need. Once a certain memory block is no longer of

 Dynamic Memory Management 79

any use to the program, memory allocated to it cannot be released immediately. The memory
will continue to be held up until the end of the block in which the variable was created.

 Dynamic memory management is a feature provided and supported in C and C++. It
overcomes the drawbacks of static memory allocation. Just like in static memory allocation and
deallocation, in dynamic memory allocation and deallocation also, memory gets allocated and
deallocated during run time only. However, the decisions to do so can be taken dynamically
in response to the requirements arising during run time itself.

If the program is running and the user indicates the need to feed in more data, a memory
block suf cient to hold the additional amount of data is immediately allocated. For this, code
utilizing the relevant functions and operators provided by C and C++ has to be explicitly
written in the source code. Again, once a certain block of memory is no longer required, it
can immediately be returned to the OS. For this again, code utilizing the relevant functions
and operators provided by C and C++ has to be explicitly written in the source code. The OS
can then allocate the deallocated memory block if the need arises.

 3.2 Dynamic Memory Allocation

Dynamic memory allocation is achieved in C through the malloc(), calloc(), and realloc()
functions. In C++, it is achieved through the new operator. An illustrative example (Listing
3.1) and its explanation follow.

Listing 3.1 Using the new operator for dynamic memory allocation

/*Beginning of dynamic.cpp*/
#include<iostream.h>
void main()
{
 int * iPtr;
 iPtr=new int;
 *iPtr=10;
 cout<<*iPtr<<endl;
}
/*End of dynamic.cpp*/

Output
10

The word new is a keyword in C++. It is an operator. It takes a prede ned data type as
an operand (int in Listing 3.1). It then allocates memory to hold one value of the data type
that is passed as a parameter to it in the heap (four bytes in Listing 3.1). Finally, it returns
the address of the allocated block. This address need not be explicitly typecast since the new
operator returns the address with the correct cast (int * in this case). This address can then be
stored in a pointer of an appropriate type (iPtr in this call). The allocated block of memory
can then be accessed through the pointer. See Figure 3.1(a).

 Object-Oriented Programming with C++80

Statement: int * iptr;

Figure 3.1(a) Dynamic memory allocation

Statement: iptr = new int;

Figure 3.1(b) Dynamic memory allocation

1265 5972

5972 xxxx four bytes

iPtr

The new operator allocates memory in the heap to hold one integer-type value. Suppose,
the block from the byte with address 5972 to the byte with address 5975 gets allocated. The
new operator returns the base address of the block (5972). This value gets stored in iPtr. See
Figure 3.1(b).

Statement: *iPtr = 10;

Figure 3.1(c) Dynamic memory allocation

1265 5972

5972 10

iPtr

iPtr is dereferenced and the value 10 gets written into the memory block of four bytes at
which iPtr points (5972 to 5975).

Four bytes get allocated for iPtr containing junk
value at the bytes with addresses from 1265 to 1268 (say).

 Dynamic Memory Management 81

Statement: cout<<*iPtr<<endl;

Figure 3.1(d) Dynamic memory allocation using the new operator

1265 5972

5972 10

iPtr

iPtr is again dereferenced and the value (10) stored in the
memory block to which iPtr points (5972 to 5975) is read.

The general syntax of the new operator is
<pointer> = new <data_type>;

The new operator can be used to create multiple blocks of memory also. This is shown in
Listing 3.2. Figures 3.2(a) and (b) explain the statements.

Listing 3.2 Creating an array dynamically using the new operator

/*Beginning of DynArray1.cpp*/
#include<iostream.h>
#define SIZE 10
void main()
{
 int * iPtr;
 iPtr = new int[SIZE];
 for(int i=0;i<SIZE;i++)
 iPtr[i]=i; //can write cin>>iPtr[i]; also
 for(int j=0;j<SIZE;j++)
 cout<<iPtr[j]<<endl;
}
/*End of DynArray1.cpp*/

Output
0
1
2
3
4
5
6
7
8
9

 Object-Oriented Programming with C++82

Statement: int * iPtr;

Four bytes get allocated for iPtr containing junk value at
the bytes with addresses from, say, 1265 to 1268.

Figure 3.2(a) Memory allocation for an array using iPtr

1265

xxxx four bytes

iPtr

Statement: iPtr = new int[SIZE]; //SIZE=10

The new operator allocates memory in the heap to hold ten integer type values [see Figure
3.2(b)]. If the block from the byte with address 5972 to the byte with address 6012 gets
allocated, the new operator returns the base address of the block 5972. This value gets stored
in iPtr. After this, iPtr is simply dereferenced within the for loop by using the subscript
operator. All the elements of the array at whose rst element the pointer is pointing are
accessed. The syntax for using the new operator to create an array is as follows:

Figure 3.2(b) Dynamically allocating memory for an array using the new operator

5972

5972

1265

four bytesxxxx

four bytes

four bytes

40 bytes

iPtr

<pointer> = new <data_type>[<number_of_elements>];

Now, let us make the program interactive to exploit the power of the new operator. The
value that we passed inside the subscript while allocating the memory using the new operator
can be that of a variable. In Listing 3.3, we will rst ask the user to enter the size of the array

 Dynamic Memory Management 83

and store it in a variable. Next, we will pass the variable into the subscript while using the new
operator to allocate memory. The address returned by the new operator will then be stored
in a pointer. Finally, we will access the array thus created through the pointer. The program
is shown in Listing 3.3.

Listing 3.3 Creating an array dynamically when its size is specifi ed during run time

/*Beginning of DynArray2.cpp*/
#include<iostream.h>
void main()
{
 int * iPtr;
 unsigned int iSize;
 cout<<“Enter the size of the array : ”;
 cin>>iSize;
 iPtr = new int[iSize];
 for(int i=0;i<iSize;i++)
 {
 cout<<“Enter the value for element ”<<i+1<<“ : ”;
 cin>>iPtr[i];
 }
 for(int j=0;j<iSize;j++)
 cout<<iPtr[j]<<endl;
}
/*End of DynArray2.cpp*/

 Output
Enter the size of the array : 3<enter>
Enter the value for element 1 : 12<enter>
Enter the value for element 2 : 7<enter>
Enter the value for element 3 : 19<enter>
12
7
19

We must note that the new operator has enabled us to allocate memory dynamically. In
Listing 3.3, memory is getting allocated during run time (just like in static memory allocation).
However, the amount of memory to be allocated is being decided during run time itself.

Same methodology can be applied for dynamically creating arrays of the other prede ned
fundamental data types. Arrays of class objects can also be created dynamically in the same
way. Listing 3.4 is a case in point.

Listing 3.4 Creating an array of objects dynamically during run time

/*Beginning of DynDist.cpp*/
#include<iostream.h>
#include“Distance.h”
void main()
{
 Distance * dPtr;
 unsigned int iSize;
 cout<<“Enter the number of elements : ”;
 cin>>iSize;
 dPtr = new Distance[iSize];
 for(int i=0;i<iSize;i++)

 Object-Oriented Programming with C++84

 {
 cout<<“Enter the feet : ”;
 cin>>a;
 cout<<“Enter the inches : ”;
 cin>>b;
 dPtr[i].setFeet(a);
 dPtr[i].setInches(b);
 }
 for(int j=0;j<iSize;j++)
 {
 cout <<dPtr[j].getFeet()<<“ ”

<<dPtr[j].getInches()<<endl;
 }
}
/*End of DynDist.cpp*/

Output
Enter the number of elements : 3<enter>
Enter the feet : 1<enter>
Enter the inches : 1.1<enter>
Enter the feet : 2<enter>
Enter the inches : 2.2<enter>
Enter the feet : 3<enter>
Enter the inches : 3.3<enter>
1 1.1
2 2.2
3 3.3

In Listings 3.3 and 3.4, the user is explicitly asked to enter the size of the array he/she
wants to create. This is a little abrupt. Requirements for more memory may arise during run
time in a more subtle fashion (say, while creating data structures such as linked lists, trees,
etc.). Nevertheless, the basic technique of using the new operator remains the same.

 3.3 Dynamic Memory Deallocation
We already know that a block of memory allocated dynamically can be deallocated
dynamically. Once it is not in use any more, a dynamically allocated block of memory should
de nitely be returned to the OS.

In C, dynamic memory deallocation is achieved through the free() function. Dynamically
allocated blocks of memory can be returned to the OS in C++ through the delete operator.

What is the need to deallocate a dynamically allocated block of memory? What will happen
if a dynamically allocated block of memory is not returned to the OS? These questions are
answered by Listing 3.5 and the explanatory gure (Figure 3.3) that follows.

Listing 3.5 Memory leak

/*Beginning of memleak.cpp*/
#include<iostream.h>
void abc();
void main()
{
 abc(); //call to the abc() function
 /*
 rest of the main() function

 Dynamic Memory Management 85

 */
}
void abc()
{
 int * iPtr;
 iPtr = new int;
 /*
 rest of the abc() function
 */
}
/*End of memleak.cpp*/

The following statement executes from within the abc() function which is called from
the main() function.

Statement: iPtr = new int;

As a result, the following scenario emerges.
5972

5972

1265

four bytesxxxx

iPtr

The new operator allocates memory in the heap to hold one integer type value. Suppose
the block from the byte with address 5972 to the byte with address 5975 gets allocated. The
new operator returns the base address of the block 5972. This value gets stored in iPtr.

After abc() nishes execution, memory for iPtr itself is deallocated. But, the memory in
the heap area remains locked up as an orphan (unreferenced) locked up block of memory.

Figure 3.3 Memory leak

5972

four bytesxxxx

As it can be seen from Figure 3.3, after the abc() function terminates, four bytes of memory
are lost. Since they have not been returned to the OS, they remain locked up. This is known
as a memory leak. If more memory is required, the OS will not allocate this block of memory.
Moreover, this block of memory cannot be accessed since the only pointer (iPtr) that was
pointing at it has itself been removed from the stack.

This block of memory that is no longer of any use can and should be returned to the OS.
A dynamically allocated block of memory can be deallocated by passing the pointer pointing
to it as an operand to the delete operator. For example, the following statement should be
inserted before the end of the abc() function in Listing 3.5.

delete iPtr;

 Object-Oriented Programming with C++86

The foregoing statement is executed just before the abc() function terminates. The
memory block at which iPtr points gets deallocated (it becomes available for the OS). Next,
the memory allocated for iPtr itself is deallocated. Finally, the function terminates. Thus,
memory leak is prevented.

When the new operator is used, the OS blocks a block of memory of the requested size.
The OS never allocates this particular block of memory in response to subsequent requests
for memory blocks as long as this block of memory is not deallocated. When the delete
operator is used on the pointer that points at this block of memory, the memory block gets
deallocated, that is, freed and made available for the OS. In other words, the OS, in response
to subsequent requests for memory blocks, may allocate this freed block of memory.

A dynamically allocated block of memory remaining locked up is frequently a blessing.
The fact that the block of memory locked up by the code in a certain function persists even
after the function terminates is frequently desirable. A called function may allocate a memory
block and a pointer local to the calling function can be made to point at it. Even after the called
function terminates, the dynamically allocated block of memory will remain persistent, but
not unreferenced. Listing 3.6 illustrates this.

Listing 3.6 Making a dynamically allocated block of memory available to the calling
function

void abc(int ** p)
{
 /*
 some complex algorithm
 */

 *p = new int;

 /*
 rest of the abc() function
 */
}
void main()
{
 int * iPtr;
 abc(&iPtr);
 /*
 rest of the main() function
 */
}

In Listing 3.6, the address of iPtr that is local to the calling function (main() function) is
passed as a parameter to the called function (abc() function). Its value needs to be changed
by the abc() function. Its address is stored in a double pointer (a pointer to a pointer has to
be a double pointer). A block of memory is allocated and its address is stored in iPtr by
dereferencing the pointer that points at it. It is our obvious desire that the dynamically allocated
block of memory persists even after the abc() function terminates. After the abc() function
terminates, iPtr that is a local variable in the calling function will point at the dynamically
allocated block of memory.

The general syntax of the delete operator to deallocate a single block of memory is:
 delete <pointer>;

www.allitebooks.comwww.allitebooks.com

http://www.allitebooks.org
http://www.allitebooks.org

 Dynamic Memory Management 87

In the foregoing listings, the memory block was deallocated only at the end of the functions
that allocated it. However, dynamic memory deallocation is usually conditional (Listing 3.7).

Listing 3.7 C++ allows deallocation of memory as and when required

void abc(int ** p)
{
 if(memory_not_required)
 {
 delete *p;
 *p = NULL;
 }
 /*
 rest of the abc() function
 */
}

A misconception about the delete operator is due to the commonly used phrase ‘deleting
the pointer’. An uninitiated reader may think that the memory being occupied by the pointer
itself gets removed if the delete operator is used on the pointer. In reality, nothing of this
sort happens.

When the delete operator is used on a pointer, the pointer continues to occupy its own
block of memory and continues to have the same value that is the address of the rst byte of
the block of memory that has just got deallocated. Thus, the pointer continues to point at the
same block of memory. This will lead to run-time errors if the pointer is dereferenced.

We can see in Listing 3.7 that the pointer being pointed at by ‘p’ was deliberately nulli ed
after the memory that the pointer was pointing at had been deallocated. This is a very common
practice to indicate that the pointer (the pointer whose address is passed from the calling
function in this case) no longer points at a valid dynamically allocated block of memory. In
other words, it is highly desirable that either the pointer points at a valid block of memory or
be NULL. It is not possible to ensure this due to the low level of representation of pointers.
A pointer is unlikely to be NULL at the time of its creation. But that does not mean that
the value it contains is the address of some valid allocated block of memory. There is no
guaranteed initialization of data. This problem is solved by the use of constructors, which
have been discussed in Chapter 4.

A multiple block of memory is deallocated by suf xing the delete operator with an empty
pair of square brackets followed by the pointer that points at the multiple block of memory,
as shown in Listing 3.8.

Listing 3.8 Deallocating memory that was allocated for an array

int * iPtr;
….
iPtr = new int[10];
….
delete[] iPtr;

If we write delete iPtr instead of delete[] iPtr, only the rst four bytes of the block
of 40 bytes at which iPtr is pointing, will be deallocated. Using delete[] deallocates the
entire block of 40 bytes. The syntax for using the delete operator to deallocate an array is
as follows:

 delete [] <pointer>;

 Object-Oriented Programming with C++88

The size of the array to be created is passed as a parameter to the new operator. But while
deallocating the memory allocated for the array, the size is not passed (the square brackets
are empty). Then how does the compiler know how much of memory is to be deallocated?
The answer is that when the new operator executes to allocate a block of array, the OS stores
the size passed. Figure 3.4 shows the size of the memory block, which is captured during
run time, is pre xed to the memory block itself. When the delete operator is used followed
by the empty pair of square brackets, the compiler uses the size stored and deallocates the
entire block correctly.

Figure 3.4 Size of the allocated memory is prefi xed to the memory block

Blocks of memory containing arrays of other types can also be deallocated similarly. For
example, see Listing 3.9.

Listing 3.9 Deallocating memory that was allocated for an array of objects

Distance * dPtr;
dPtr = new Distance[5]; //creates an array of 5 objects of
 //the class Distance
….
….
delete[] dPtr; //de-allocates the memory
 //allocated for the entire array

 3.4 set_new_handler() Function

We already know that the new operator attempts to capture more chunks of memory from
the heap during run time. But, what happens if no more memory is available to satisfy this
attempt? We get an out-of-memory condition.

The new operator, when faced with an out-of-memory condition, calls a global function
and then throws an exception of type bad_alloc (the chapter on exception handling deals
with the mechanism of throwing and catching exceptions). This global function is known as
the new handler function.

 Dynamic Memory Management 89

We can specify our own new handler function also! We can specify that the new operator,
upon encountering an out-of-memory condition, calls a function of our choice. We can do
this by calling the set_new_handler() function and passing the name of the desired function
as a parameter to it. The prototype of the set_new_handler() function clari es this. This
prototype is in the new.h header le.

 new_handler set_new_handler(new_handler);

Obviously, new_handler is a data type. It is a function pointer type. The formal argument
of the set_new_handler() function is a function pointer. If we pass the name of our desired
function as a parameter to the set_new_handler() function, all subsequent out-of-memory
conditions cause the new operator to call it. Our desired function becomes the new handler.
Moreover, when the set_new_handler() function is called, it returns a pointer to the previous
new handler function.

An illustrative example follows in Listing 3.10.

Listing 3.10 Specifying a new handler function

/*Beginning of newHandler.cpp*/
#define BIG_NUMBER 9999999
#include<new.h> //for set_new_handler() function
void myNewHandler()
{
 /*
 code to handle out-of-memory condition
 */
}
void main()
{
new_handler oldHandler;
//set the function myNewHandler as the new handler

oldHandler = set_new_handler(myNewHandler);
int * p = new int[BIG_NUMBER]; //probably cause out-of-
 //memory condition
}
/*End of newHandler.cpp*/

If the OS is unable to allocate the requested amount of memory, which is quite likely in
Listing 3.10, the new operator fails. The new handler function gets called. The call to the set_
new_handler() function, just prior to the call to the new operator, has already set the function
myNewHandler as the new handler. Therefore, the function myNewHandler gets called.

An important characteristic of the new operator is that when its request for memory fails,
it calls the new handler function repeatedly until its request is satis ed. This fact helps in
meaningfully de ning the new handler function (Listing 3.11).

We can make the new handler function log an error message and then call the abort()
function.

Listing 3.11 Defi ning the new handler function

void myNewHandler()
{
 //statement to log a suitable error message
 abort();
}

 Object-Oriented Programming with C++90

The abort() function simply terminates the program. We can also throw an exception
from within the new handler function. The chapter on exception handling explains the syntax
for throwing exceptions and its superiority over calling the abort() function.

Another course of action is to replace the existing new handler function by another one.
For this, we can call the set_new_handler() function from within the existing new handler
function and pass the name of the new handler as a parameter to it. Of course, such a call
should be preceded by the code that attempts to resolve the out-of-memory condition rst.
The new handler should be replaced only if this attempt fails. See Listing 3.12.

Listing 3.12 Replacing the existing new handler function

#include<new.h>
void myNewHandler()
{
 //make an attempt to resolve the out-of-memory
 //condition
 if(above_attempt_fails)
 set_new_handler(myAnotherNewHandler);
}

An interesting way of de ning the new handler is to allocate some buffer memory in
advance and free it part by part as the need arises.

Memory is allocated for program variables during run
time only. In static memory allocation, the amount of
memory to be allocated is decided during compile time
itself. The instance at which each statically allocated
variable would get created during the program’s
execution is also decided during the program’s
compilation.

On the other hand, the amount of memory to
be allocated is decided during run time in case of
dynamic memory allocation. Moreover, memory can
be allocated in response to conditions that arise during
run time.

C++ provides the new operator for allocating
memory dynamically. The syntax of the new operator
for allocating memory for a single block is

 <pointer> = new <data_type>;

The new operator allocates enough memory in the
heap area to accommodate one variable of the data type
that is passed as its right-hand-side operand. Further,
it returns the address of the rst byte of this allocated
block of memory that can be stored in the pointer on
the left-hand-side of the assignment operator as shown
in the above statement.

Memory for an array can be allocated by using the
new operator. The syntax is as follows:

 <pointer> = new <data_type>[<number_of_
elements>];

Again, dynamically allocated memory can be
dynamically deallocated in response to conditions that
arise during run time. Dynamically allocated memory
must be deallocated, that is, returned to the Operating
System. Otherwise, memory leak would occur.

C++ provides the delete operator for deallocating
dynamically allocated memory. The syntax of the
delete operator for deallocating memory earlier
allocated for a single block is

 delete <pointer>;

The delete operator deallocates the memory in
the heap area that the pointer that is passed as its right-
hand-side operand points at.

Memory allocated dynamically for an array can
also be deallocated by using the delete operator. The
syntax is as follows:

 delete [] <pointer>;

Summary

 Dynamic Memory Management 91

Key Terms

This version is similar to the previous one with
the difference that an empty pair of square brackets
appears between the delete keyword and the name
of the pointer. C++ knows the exact number of bytes
to be returned. It stores the size of the dynamically

allocated block in a block of memory that it pre xes
to the allocated block of memory itself. The set_new_
handler() function enables us to set a function of our
choice as the new handler function.

static memory allocation
static memory deallocation
dynamic memory allocation
dynamic memory deallocation

new operator
delete operator
set_new_handler() function
new handler function

Exercises

 1. What is static memory allocation?
 2. When is memory allocated and deallocated in static

memory allocation—during compile time, link time,
or run time?

 3. Under what conditions does static memory allocation
become unsuitable?

 4. What is dynamic memory allocation? How is it
different from static memory allocation?

 5. When is memory allocated and deallocated in
dynamic memory allocation— during compile time,
link time, or run time?

 6. Under what conditions does the use of dynamic
memory allocation become mandatory?

 7. What is the syntax of the new operator for
(a) allocating memory for a single variable?
(b) allocating memory for an array?

 8. Describe how additional blocks of memory can be

captured in C++ during run time based upon existing
run-time conditions?

 9. What is the syntax of the delete operator for
(a) deallocating memory that has been allocated for

a single variable?
(b) deallocating memory that has been allocated for

an array?
 10. The size of the array, whose memory is to be deallo-

cated, is not passed to the delete operator. How does
the compiler determine this size?

 11. What is memory leak?
 12. How can the delete operator be used to prevent a

memory leak?
 13. What is an out-of-memory condition?
 14. What is the new handler? How is the set_new_

handler() function used to set our own new
handler?

Constructors and Destructors

We are already aware of the need to include a member function in our class that initializes
the data members of its class to desired default values and gets called automatically for each
object that has just got created. Constructors ful ll this need and the rst portion of this chapter
deals with constructors. Various types of constructors are described in the middle portion of
this chapter.

There is also the need to include a member function in our class that gets called automatically
for each object that is going out of scope. Destructors ful ll this need and the penultimate
portion of this chapter deals with destructors.

Along with the class construct and the access speci ers, constructors and destructors
complete the requirements needed to created new data type—safe and ef cient data types.
This is discussed in the last portion of this chapter.

O

V

E

R

V

I

E

W

4

 4.1 Constructors

The constructor gets called automatically for each object that has just got created. It appears
as member function of each class, whether it is de ned or not. It has the same name as that
of the class. It may or may not take parameters. It does not return anything (not even void).
The prototype of a constructor is

<class name> (<parameter list>);

The need for a function that guarantees initialization of member data of a class was felt in
Chapter 2. Constructors ful ll this need. Domain constraints on the values of data members
can also be implemented via constructors. For example, we want the value of data member
 nches of each object of the class Distance to be between 0.0 and 12.0 at all times within
the lifetime of the object. But this condition may get violated in case an object has just got
created. However, introducing a suitable constructor to the class Distance can enforce this
condition.

The compiler embeds a call to the constructor for each object when it is created. Suppose
a class A has been declared as follows:

/*Beginning of A.h*/
class A
{
 int x;

public:
 void setx(const int=0);
 int getx();
};
/*End of A.h*/

 Constructors and Destructors 93

Consider the statement that declares an object of a class A in Listing 4.1.

Listing 4.1 Constructor gets called automatically for each object when it is created

/*Beginning of AMain.cpp*/
#include“A.h”
void main()
{
 A A1; //object declared … constructor called
}
/*End of AMain.cpp*/

The statement in the function main() in Listing 4.1 is transformed into the following
statements.

A A1; //memory allocated for the object (4 bytes)
A1.A(); //constructor called implicitly by compiler

The second statement above is then transformed to
A(&A1); //see Chapter 2

Similarly, the constructor is called for each object that is created dynamically in the heap by
the new operator.

A * APtr;
APtr = new A; //constructor called implicitly by compiler

The second statement above is transformed into the following two statements.
APtr = new A; //memory allocated
APtr->A(); //constructor called implicitly by compiler

The second statement above is then transformed into
A(APtr); //see Chapter 2

The foregoing explanations make one thing very clear. Unlike their name, constructors do
not actually allocate memory for objects. They are member functions that are called for each
object immediately after memory has been allocated for the object.

The constructor is called in this manner separately for each object that is created. But did
we prototype and de ne a public function with the name ‘A()’ inside the class A? The answer
is ‘no’. Then how did the above function call get resolved? The compiler prototypes and
de nes the constructor for us. But what statements does the de nition of such a constructor
have? The answer is ‘nothing’.

Before
class A
{

 public:

 //no constructor
};

 Object-Oriented Programming with C++94

After
class A
{

 public:
 A(); //prototype inserted implicitly by compiler

};

A::A()
{
 //empty definition inserted implicitly by compiler
}

As we can see, the name of the constructor is the same as the name of the class. Also, the
constructor does not return anything. The compiler de nes the constructor in order to resolve
the call to the constructor that it compulsorily places for the object being created.

For reasons that we will discuss later, it is forbidden to call the constructor explicitly for
an existing object as follows.

A1.A(); //not legal C++ code!

4.1.1 Zero-argument Constructor

We can and should de ne our own constructors if the need arises. If we do so, the compiler
does not de ne the constructor. However, it still embeds implicit calls to the constructor as
before.

The constructor is a non-static member function. It is called for an object. It, therefore, takes
the this pointer as a leading formal argument just like other non-static member functions.
Correspondingly, the address of the invoking object is passed as a leading parameter to the
constructor call. This means that the members of the invoking object can be accessed from
within the de nition of the constructor.

Let us add our own constructor to class A de ned in Listing 4.1 and verify whether the
constructor is actually called implicitly by the compiler or not. See Listing 4.2.

Listing 4.2 Constructor gets called for each object when the object is created

/*Beginning of A.h*/
class A
{
 int x;
 public:
 A(); //our own constructor
 void setx(const int=0);
 int getx();
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include”A.h”
#include<iostream.h>
A::A() //our own constructor

 Constructors and Destructors 95

{
 cout<<”Constructor of class A called\n”;
}
/*
definitions of the rest of the functions of class A
*/
/*End of A.cpp*/

/*Beginning of AMain.cpp*/
#include<iostream.h>
#include“A.h”
void main()
{
 A A1;
 cout<<”End of program\n”;
}
/*End of AMain.cpp*/

Output
Constructor of class A called
End of program

Let us now de ne our own constructor for the class Distance. What should the constructor
do to the invoking object? We would like it to set the values of the iFeet and fInches
data members of the invoking object to 0 and 0.0, respectively. Accordingly, let us add the
prototype of the function within the class de nition in the header le and its de nition in the
library source code. See Listing 4.3.

Listing 4.3 A user-defi ned constructor to implement domain constraints on the data
members of a class

/*Beginning of Distance.h*/
class Distance
{
 public:
 Distance(); //our own constructor
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance::Distance() //our own constructor
{
 iFeet=0;
 fInches=0.0;
}
/*
 definitions of the rest of the functions of class
 Distance
*/
/*End of Distance.cpp*/

/*Beginning of DistTest.cpp*/
#include<iostream.h>

 Object-Oriented Programming with C++96

#include“Distance.h”
void main()
{
 Distance d1; //constructor called
 cout<<d1.getFeet()<<“ ”<<d1.getInches();
}
/*End of DistTest.cpp*/

Output
0 0.0

Now, due to the presence of the constructor within the class Distance, there is a guaranteed
initialization of the data of all objects of the class Distance. Our objective of keeping the
fInches portion of all objects of the class Distance within 12.0 is now ful lled.

The constructor that we have de ned in Listing 4.2 does not take any arguments and is
called the zero-argument constructor. The constructor provided by default by the compiler also
does not take any arguments. Therefore, the terms ‘zero-argument constructor’ and ‘default
constructor’ are used interchangeably.

Now, let us start the study of a class that will enable us to abstract character arrays and
overcome many of the drawbacks that exist in them. This class will be our running example
for explaining most of the concepts of this book. We will de ne it incrementally. Our purpose
is to ultimately de ne a class that can be used instead of character arrays.

Let us call the class String. It will have two data members. Both these data members will
be private. The rst data member will be a character pointer. It will point at a dynamically
allocated block of memory that contains the actual character array. The other data member
will be a long unsigned integer that will contain the length of this character array.

/*Beginning of String.h*/
class String
{
 char * cStr; //character pointer to point at
 //the character array

 long unsigned int len; //to hold the length of the
 //character array

 /*
 rest of the class String
 */

};
/*End of String.h*/

Suppose ‘s1’ is an object of the class String and the string ‘abc’ has been assigned to it.
Diagrammatically this situation can be depicted in Figure 4.1.

The address of the rst byte of the memory block containing the string is 101. This value
is stored in the ‘cStr’ portion of ‘s1’. The address of ‘s1’ is 27.

Also, we would religiously implement the following two conditions on all objects of the
class String.

• ‘cStr’ should either point at a dynamically allocated block of memory exclusively allocated
for it (that is, no other pointer should point at the block of memory being pointed at by
‘cStr’) or ‘cStr’ should be NULL.

• There should be no memory leaks.

 Constructors and Destructors 97

Obviously, when an object of the class String is created, the ‘cStr’ portion of the object
should be initially set to NULL (and ‘len’ should be set to 0). Accordingly, the prototype and
the de nition of the constructor are as shown in Listing 4.4.

Listing 4.4 A user-defi ned constructor

/*Beginning of String.h*/
class String
{
 char * cStr;
 long unsigned int len;
 public:
 String(); //prototype of the constructor
 /*
 rest of the class String
 */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
String::String() //definition of the constructor
{ //When an object is created …
 cStr=NULL; //…nullify its pointer and…
 len=0; //…set the length as zero.
}
/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

4.1.2 Parameterized Constructors

Constructors take arguments and can, therefore, be overloaded. Suppose, for the class
Distance, the library programmer decides that while creating an object, the application
programmer should be able to pass some initial values for the data members contained in the
object. For this, he/she can create a parameterized constructor as shown in Listing 4.5.

Figure 4.1 Memory layout of an object of the class String

cStr 101

3

27

len

a b c \0

s1

101

 Object-Oriented Programming with C++98

Listing 4.5 A user-defi ned parameterized constructor—called by creating an object in
the stack

/*Beginning of Distance.h*/
class Distance
{
 public:
 Distance(); //prototypes provided by the
 //library programmer
 Distance(int,float); //prototype of the parameterized
 //constructor
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance::Distance()
{
 iFeet=0;
 fInches=0.0;
}
Distance::Distance(int p, float q)
{
 iFeet=p;
 setInches(q);
}

/*
 definitions of the rest of the functions of class
Distance
*/
/*End of Distance.cpp*/

/*Beginning of DistTest1.cpp*/
#include<iostream.h>
#include“Distance.h”
void main()
{
 Distance d1(1,1.1); //parameterized constructor called
 cout<<d1.getFeet()<<“ ”<<d1.getInches();
}
/*End of DistTest1.cpp*/

Output
1 1.1

Listing 4.5 demonstrates a user-de ned parameterized costructor being called by creating
an object in the stack while Listing 4.6 demonstrates a user-de ned parameterized constructor
being called in the heap.

Listing 4.6 A user-defi ned parameterized constructor—called by creating an object in
the heap

/*Beginning of DistTest2.cpp*/
#include<iostream.h>
#include“Distance.h”

 Constructors and Destructors 99

void main()
{
 Distance * dPtr;
 dPtr = new Distance(1,1.1); // parameterized
 //constructor called Output
 cout<<dPtr->getFeet()<<“ ”<<dPtr->getInches();
}
/*End of DistTest2.cpp*/

Output
1 1.1

The rst line of the function main() in Listing 4.5 and the second line of the main()
function in Listing 4.6 show the syntax for passing values to the parameterized constructor.
The parameterized constructor is prototyped and de ned just like any other member function
except for the fact that it does not return any value.

We must remember that if the parameterized constructor is provided and the zero-argument
constructor is not provided, the compiler will not provide the default constructor. In such a
case, the following statement will not compile.

Distance d1; //ERROR: No matching constructor

Just like in other member functions, the formal arguments of the parameterized constructor
can be assigned default values. But in that case, the zero-argument constructor should be
provided. Otherwise, an ambiguity error will arise when we attempt to create an object without
passing any values for the constructor. See Listing 4.7.

Listing 4.7 Default values given to parameters of a parameterized constructor make the
zero-argument constructor unnecessary

/*Beginning of Distance.h*/
class Distance
{
 public:
 //Distance();zero-argument constructor commented out
 Distance(int=0,float=0.0); //default values given
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/

If we write,
Distance d1;

an ambiguity error arises if the zero-argument constructor is also de ned. This is because
both the zero-argument constructor and the parameterized constructor can resolve this
statement.

Let us now create a parameterized constructor for the class String. We will also assign
a default value for the argument of the parameterized constructor. The constructor would
handle the following statements.

String s1(“abc”);
OR

 Object-Oriented Programming with C++100

char * cPtr = “abc”;
String s1(cPtr);
OR
char cArr[10] = “abc”;
String s1(cArr);

In each of these statements, we are essentially passing the base address of the memory
block in which the string itself is stored to the constructor.

In the rst case, base address of the memory block of four bytes in which the string “abc”
is stored is passed as a parameter to the constructor. But the constructor of the class String
should be de ned in such a manner that ‘s1.cStr’ is made to point at the base of a different
memory block of four bytes in the heap area that has been exclusively allocated for the purpose.
Only the contents of the memory block, whose base address is passed to the constructor, should
be copied into the memory block at which ‘s1.cStr’ points. Finally, ‘s1.len’ should be set to
3. The formal argument of the parameterized constructor for the class String will obviously
be a character pointer because the address of a memory block containing a string has to be
passed to it. Let us call this pointer ‘p’. Then, after the statements String s1 (“abc”);
executes, the scenario shown in Figure 4.2 should emerge.

Figure 4.2 Assigning a string to an object of the class String

cStr 101

3

27

len

a b c \0

s1

a b c \050

p

50

101

In Figure 4.2, ‘p’ is the formal argument of the constructor. The address of the memory
block that contains the passed string is 50. This address is passed to the constructor and stored
in ‘p’. Therefore, the value of ‘p’ is 50. But the constructor should execute in such a manner
that a different block that is suf ciently long to hold the string at which ‘p’ is pointing should
also be allocated dynamically in the heap area (see Figure 4.2). This memory block extends
from byte numbers 101 to 104. The base address of this block of memory is then stored in the
pointer embedded in ‘s1’. The string is copied from the memory block at which ‘p’ points to
the memory block at which ‘s1.cStr’ points. Finally, ‘s1.len’ is appropriately set to 3.

In the second case
char * cPtr = “abc”;
String s1(cPtr);

the value of ‘cPtr’ is passed as a parameter to the constructor. This value is stored in ‘p’.
Thus, both ‘p’ and ‘cPtr’ point at the same place. As in the previous case, the constructor of
the class String should be de ned in such a manner that ‘s1.cStr’ should be made to point

 Constructors and Destructors 101

at the base of a different memory block of four bytes that has been exclusively allocated for
the purpose. Only the contents of the memory block whose base address is passed to the
constructor should be copied into the memory block at which ‘s1.cStr’ points.

In Figure 4.3, ‘cPtr’ points at the memory block containing the string. In other words, the
value of ‘cPtr’ is the address of the memory block containing the string.

The third case
char cArr[10] = “abc”;
String s1(cArr);

is very similar to the second. In this, we are passing the name of the array as a parameter to
the constructor. But we know that the name of an array is itself a xed pointer that contains
the base address of the memory block containing the actual contents of the array. This can
be seen in Figure 4.4.

Let us now de ne the constructor that produces these effects. We must realize that ‘p’ (the
formal argument of the constructor) should be as follows:

const char * const

First, it should be a constant pointer because throughout the execution of the constructor,
it should continue to point at the same memory block. Second, it should be a pointer to a
constant because even inadvertently, the library programmer should not dereference it to
change the contents of the memory block at which it is pointing. Additionally, we would
like to specify a default value for ‘p’ (NULL) so that there is no need to separately de ne a
zero-argument constructor.

The de nition of the class String along with the prototype of the constructor and its
de nition are shown in Listing 4.8.

Figure 4.3 Assigning a string to an object of the class String

cStr 101

3

27

len

a b c \0

s1

a b c \050

p

50

101

50

cPtr

 Object-Oriented Programming with C++102

Listing 4.8 A user-defi ned parameterized constructor for acquiring memory outside the
object

/*Beginning of String.h*/
class String
{
 char * cStr;
 long unsigned int len;
 public:
 /*no zero-argument constructor*/
 String(const char * const p = NULL);
 const char * getString();
 /*
 rest of the class String
 */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
#include<string.h>
String::String(const char * const p)
{
 if(p==NULL) //if default value passed…
 {
 cStr=NULL; //…nullify
 len=0;
 }
 else //…otherwise…
 {
 len=strlen(p);

Figure 4.4 Assigning an array to an object of the class String

cStr 101

3

27

len

a b c \0

s1

a b c \050

p

50

101

50

cArr

 Constructors and Destructors 103

 cStr=new char[len+1]; //…dynamically allocate a
 //separate memory block
 strcpy(cStr,p); //…and copy into it
 }
}

const char * String::getString()
{
 return cStr;
}

/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

/*Beginning of StringMain.cpp*/
#include“String.h”
#include<iostream.h>
void main()
{
 String s1(“abc”); //pass a string to the
 //parameterized constructor
 cout<<s1.getString()<<endl; //display the string
}
/*End of StringMain.cpp*/

Output
abc

Another function called getString() has also been introduced to the class String. It
will enable us to display the string itself. The function returns a const char * so that only
a pointer to a constant can be equated to a call to this function.

const char * p = s1.getString();

Such a pointer will effectively point at the same memory block at which the invoking
object’s pointer points. As a result of the above statement both ‘p’ and ‘s1.cStr’ would end
up pointing at the same place. Yet it will not be able to change the values contained in the
memory block since it is a pointer to a constant. We must note that for securing data that is
outside the object itself, extra efforts are required on the part of the library programmer.

We can reprogram the above main() function and verify that the newly de ned constructor
is capable of producing the effects depicted in Figures 4.2, 4.3, and 4.4.

4.1.3 Explicit Constructors

Note that the rst statement of the main() function in Listing 4.8 calls the constructor of the
class String. Now, look at the following statement.

String s1 = “abc”;

The above statement also calls the constructor of the class String. The above statement
compiles because there is a constructor in the class String that takes a string as a parameter.
This constructor implicitly converts the string “abc” into an object of the class String. It is
as if the above statement was written as follows (note the cast):

String s1 = (String)“abc”;

 Object-Oriented Programming with C++104

But, we did not provide a cast in the statement that we wrote. Then how did the conversion
take place? As mentioned earlier, it is the constructor that is carrying out the conversion
for us.

However, if the constructor is declared as an explicit constructor, statements like the one
above will not compile. Explicit constructors do not allow implicit conversions like the one
that occurred in the above example.

Constructors are declared explicit by pre xing their declarations with the explicit keyword.
Let us rst look at the syntax for declaring an explicit constructor (see Listing 4.9). We will
then look at a program that will illustrate the situation under which we can get the error if a
constructor has been declared as an explicit constructor.

Listing 4.9 The explicit constructor

/*Beginning of String.h*/
class String
{
 char * cStr;
 long unsigned int len;
 public:
 /*no zero-argument constructor*/
 /*
 The next statement declares an explicit constructor.
 Note the explicit keyword.
 */
 explicit String(const char * const p = NULL);
 const char * getString();
 /*
 rest of the class String
 */
};
/*End of String.h*/

Let us look at Listing 4.10, which illustrates the error we can get when a constructor is
declared as an explicit constructor.

Listing 4.10 Error caused by the explicit constructor

/*Beginning of StringMain.cpp*/
#include<iostream.h>
#include“String.h”
void main()
{
 String s1(“abc”); //ok: explicit constructor called
 String s2 = “def”; //error: will not compile due to
 //the explicit constructor
}
/*End of StringMain.cpp*/

Note that the error in the above program will go away if the statement is written as
follows:

String s2 = (String)“def”; //ok

It is obvious that the explicit constructor is preventing an implicit conversion of string
into an object of the class String and is forcing the application programmer to do explicit
conversion.

 Constructors and Destructors 105

Further note that we need to mention the explicit keyword in the declaration of the
constructor only. It is not necessary to pre x the de nition of the constructor with the explicit
keyword.

Explicit constructors can prove to be useful for the programmer if he is creating a class
for which an implicit conversion by the constructor is undesirable.

4.1.4 Copy Constructor

The copy constructor is a special type of parameterized constructor. As its name implies, it
copies one object to another. It is called when an object is created and equated to an existing
object at the same time. The copy constructor is called for the object being created. The pre-
existing object is passed as a parameter to it. The copy constructor member-wise copies the
object passed as a parameter to it into the object for which it is called.

If we do not de ne the copy constructor for a class, the compiler de nes it for us. But in
either case, a call is embedded to it under the following three circumstances.

When an object is created and simultaneously equated to another existing object, the copy
constructor is called for the object being created. The object to which this object was
equated is passed as a parameter to the copy constructor.

A A1; //zero-argument/default constructor called
A A2=A1; //copy constructor called

or
A A2(A1); //copy constructor called

or
A * APtr = new A(A1); //copy constructor called

 Here, the copy constructor is called for ‘A2’ and for ‘Aptr’ while ‘A1’ is passed as a
parameter to the copy constructor in both cases.

When an object is created as a non-reference formal argument of a function. The copy
constructor is called for the argument object. The object passed as a parameter to the
function is passed as a parameter to the copy constructor.

void abc(A);
A A1; //zero-argument/default constructor called
abc(A1); //copy constructor called

void abc(A A2)
{
 /*
 definition of abc()
 */
}

 Here again the copy constructor is called for ‘A2’ while ‘A1’ is passed as a parameter to
the copy constructor.
When an object is created and simultaneously equated to a call to a function that returns
an object. The copy constructor is called for the object that is equated to the function call.
The object returned from the function is passed as a parameter to the constructor.

A abc()
{

 Object-Oriented Programming with C++106

 A A1; //zero-argument/default constructor called
 /*
 remaining definition of abc()
 */
 return A1;
}
A A2=abc(); //copy constructor called

 Once more, the copy constructor is called for ‘A2’ while ‘A1’ is passed as a parameter
to the copy constructor.

The prototype and the de nition of the default copy constructor de ned by the compiler are
as follows.

class A
{
 public:
 A(A&); //the default copy constructor
};

A::A(A& AOBj) //the default copy constructor
{
*this=AObj; //copies the passed object into the invoking
 //object
}

As is obvious, the default copy constructor does exactly what it is supposed to do—it copies.
The statement

A A2=A1;

is converted as follows:
A A2; //memory allocated for A2
A2.A(A1); //copy constructor is called for A2 and A1 is
 //passed as a parameter to it

This last statement is then transformed to
A(&A2,A1); //see the section on ‘this’ pointer in Chapter 2

When the above statement executes, ‘AObj’ (the formal argument in the copy constructor)
becomes a reference to ‘A1’, whereas the this pointer points at ‘A2’ (the invoking object).
Similarly, the other statements where the object is created as a formal argument or is returned
from a function can also be explained.

But why does the compiler create the formal argument of the default copy constructor as a
reference object? And when the compiler does de ne a copy constructor in the expected way,
then why should we de ne one on our own? Both these questions are answered now.

First, let us nd out why objects are passed by reference to the copy constructor. Suppose
the formal argument (‘AObj’) of the copy constructor is not a reference. Now, suppose the
following statement executes.

A A2=A1;

The copy constructor will be called for ‘A2’ and ‘A1’ will be passed as a parameter to it.
Then the copy constructor will be called for ‘AObj’ and ‘A1’ will be passed as a parameter to
it. This is because ‘AObj’ is a non-reference formal argument of the copy constructor. Thus, an
endless chain of calls to the copy constructor will be initiated. However, if the formal argument
of the copy constructor is a reference, then no constructor (not even the copy constructor) will

 Constructors and Destructors 107

be called for it. This is because a reference to an object is not a separate object. No separate
memory is allocated for it. Therefore, a call to a constructor is not embedded for it.

Now we come to a crucial question. Why should we de ne our own copy constructor?
After all, the default copy constructor (which is provided free of cost by the complier) does
a pretty decent job. First, recollect the conditions we decided to implement for all objects
of the class String. Suppose an object of the class String is created and at the same time
equated to another object of the class. For example,

String s1(“abc”);
String s2=s1; //copy constructor is called for s2 and s1
 //is passed as a parameter to it

Since we have not de ned the copy constructor for the class String, the compiler has
done it for us. What does this default copy constructor do in the above case? It simply copies
the values of ‘s1’ to ‘s2’! This means that the value of ‘s2.cStr’ becomes equal to ‘s1.cStr’.
Thus, both the pointers point at the same place! This is certainly a violation of our conditions.
The behaviour of the default copy constructor is undesirable in this case. To overcome this
problem of the default copy constructor, we must de ne our own copy constructor.

From within the copy constructor of the class String, a separate memory block must be
 rst allocated dynamically in the heap. This memory block must be equal in length to that of

the string at which the pointer of the object passed as a parameter (‘s1’ in this case) points.
The pointer of the invoking object (‘s2’ in this case) must then be made to point at this newly
allocated memory block. The value of ‘len’ variable of the invoking object should also be
set appropriately. However, if the pointer in the object passed as a parameter is NULL, then
the value of the pointer and ‘len’ variable of the invoking object must be set to NULL and
zero, respectively.

Accordingly, the prototype and the de nition of the copy constructor of the class String
appear as shown in Listing 4.11.

Listing 4.11 A user-defi ned copy constructor

/*Beginning of String.h*/
#include<iostream.h>
class String
{
 char * cStr;
 long unsigned int len;

 public:
 String(const String&); //our own copy constructor
 /*
 rest of the class String
 */
 explicit String(const char * const p = NULL);
const char * getString();
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include”String.h”
#include<string.h>
String::String(const String& ss) //our own copy constructor
{
 if(ss.cStr==NULL) //if passed object’s pointer is NULL…
 {

 Object-Oriented Programming with C++108

 cStr=NULL; //… then nullify the invoking object’s
 //pointer too
 len=0;
 }
 else //otherwise…
 {
 len=ss.len;
 cStr = new char[len+1]; //…dynamically allocate a
 //separate memory block
 strcpy(cStr,ss.cStr); //…and copy into it
 }
}
String::String(const char * const p)
{
 if(p==NULL) //if default value passed…
 {
 cStr=NULL; //…nullify
 len=0;
 }
 else //…otherwise…
 {
 len=strlen(p);
 cStr=new char[len+1]; //…dynamically allocate a
 //separate memory block
 strcpy(cStr,p); //…and copy into it
 }
}
const char * String::getString()
{
 return cStr;
}
/*End of String.cpp*/

/*Beginning of StringMain.cpp*/
#include”String.h”
#include<iostream.h>
void main()
{
 String s1(“abc”);
 String s2=s1;
 cout<<s1.getString()<<endl;
 cout<<s2.getString()<<endl;
}
/*End of StringMain.cpp*/

Output
abc
abc

In the copy constructor (Listing 4.11), the formal argument is a constant. It has to be a
reference in order to prevent an endless chain of calls to itself. But at the same time the library
programmer would certainly want to prevent even an inadvertent change in the values of the
object that gets passed to the copy constructor. He/she would like the compiler to report a
compile-time error if he/she inadvertently writes statements like the following.

ss.cStr=NULL; //pointer of parameter object modified!
ss.len++; //len variable of the parameter object
 //modified!

 Constructors and Destructors 109

 4.2 Destructors
The destructor gets called for each object that is about to go out of scope. It appears as a
member function of each class whether we de ne it or not. It has the same name as that of
the class but pre xed with a tilde sign. It does not take parameters. It does not return anything
(not even void). The prototype of a destructor is

~ <class name> ();

The need for a function that guarantees deinitialization of member data of a class and frees
up the resources acquired by the object during its lifetime will be explained soon. Destructors
ful ll this need.

The compiler embeds a call to the destructor for every object when it is destroyed. Let us
have one more look at the main() function of Listing 4.1.

void main()
{
 A A1;
} //A1 goes out of scope here

‘A1’ goes out of scope just before the main() function terminates. At this point, the compiler
embeds a call to the destructor for ‘A1’. It embeds the following statement.

A1.~A(); //destructor called … not legal C++ code

An explicit call to the destructor for an existing object is forbidden. The above statement
is then transformed into

~A(&A1); //see chapter 2

The destructor will also be called for an object that has been dynamically created in the
heap just before the delete operator is applied on the pointer pointing at it.

A * APtr;
APtr = new A; //object created … constructor called
. . . .
. . . .
delete APtr; //object destroyed … destructor called

The last statement is transformed into
APtr->~A(); //destructor called for *APtr
delete APtr; //memory for *APtr released

First, the destructor is called for the object that is going out of scope. Thereafter, the
memory occupied by the object itself is deallocated. The second last statement above is
transformed into

~A(APtr); //see the section on ‘this’ pointer in Chapter 2

Unlike its name, the destructor does not ‘destroy’ or deallocate memory that an object
occupies. It is merely a member function that is called for each object just before the object
goes out of scope (gets destroyed).

As can be readily observed, the compiler embeds a call to the destructor for each and every
object that is going out of scope. But we did not prototype and de ne the destructor inside
the class. Then how was the above call to the destructor resolved? The compiler prototypes
and de nes the destructor for us. But what statements does the de nition of such a destructor
have? The answer is ‘nothing’. An example of a compiler-de ned destructor follows.

 Object-Oriented Programming with C++110

Before
class A
{

 public:

 //no destructor
};

After
class A
{

 public:
 ~A(); //prototype inserted implicitly by compiler

};

A::~A()
{
 //empty definition inserted implicitly by compiler
}

Let us add our own destructor to the class A de ned in Listing 4.2 and verify whether the
destructor is actually called implicitly by the compiler or not. See Listing 4.12.

Listing 4.12 Destructor gets called for each object when the object is destroyed

/*Beginning of A.h*/
class A
{
 int x;
 public:
 A();
 void setx(const int=0);
 int getx();
 ~A(); //our own destructor
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include“A.h”
#include<iostream.h>
A::A()
{
 cout<<“Constructor of class A called\n”;
}

A::~A() //our own destructor
{
 cout<<“Destructor of class A called\n”;
}

/*
 definitions of the rest of the functions of class A
*/

 Constructors and Destructors 111

/*End of A.cpp*/

/*Beginning of AMain.cpp*/
#include“A.h”
#include<iostream.h>
void main()
{
 A A1;
 cout<<“End of program\n”;
}
/*End of AMain.cpp*/

Output
Constructor of class A called
End of program
Destructor of class A called

As we can see, the name of the destructor is the same as the name of the class but pre xed
with a tilde sign. Moreover, the destructor does not return anything. The compiler de nes
the destructor in order to resolve the call to the destructor that it compulsorily places for the
object going out of scope.

Destructors do not take any arguments. Therefore, they cannot be overloaded.
Why should we de ne our own destructor? We must remember that the destructor is also

a member function. It is called for objects. Therefore, it can access the data members of the
object for which it has been called.

Let us think of a relevant de nition for the destructor of the class Distance. What would
we like it to do for us? What should it do to the data members of the object that is going out
of scope? Should it set them to zero?

Distance::~Distance()
{
 iFeet=0;
 fInches=0.0;
}

But what is the use? The object is anyway going out of scope immediately after the
destructor executes.

But we must de ne the destructor for classes whose objects, during their lifetime, acquire
resources that are outside the objects themselves. Let us take the example of the class String.
We consider the following code block.

{

 String s1(“abc”);

}

The memory that was allocated to ‘s1’ itself gets deallocated when this block nishes
execution. But ‘s1.cStr’ was pointing at a memory block that was dynamically allocated in the
heap area. This memory block was outside the memory block occupied by ‘s1’ itself. After
‘s1’ gets destroyed, this memory block remains allocated as a locked up lost resource. The
only pointer that was pointing at it (‘s1.cStr’) is no longer available. This is memory leak. It
should be prevented. We should deallocate the memory block at which the pointer inside any

 Object-Oriented Programming with C++112

object of the class String is pointing exactly when the object goes out of scope. This means
that we must call the delete operator for the pointer inside the class String and place this
statement inside the destructor. See Listing 4.13.

Listing 4.13 A user-defi ned destructor

/*Beginning of String.h*/
class String
{
 char * cStr;
 long unsigned int len;
 public:
 ~String(); //our own destructor
 /*
 rest of the class String
 */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
#include<string.h>
String::~String() //our own destructor
{
 if(cStr!=NULL) //if memory exists
 delete[] cStr; //… destroy it
}

/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

 4.3 Philosophy of OOPS

Now, let us digress and appreciate the basic philosophy of OOPS. One of the aims in OOPS
is to abolish the use of fundamental data types. Classes can contain huge amounts of func-
tionality (member functions) that free the application programmer from the worry of taking
precautions against bugs.

The class String is one such data type. By adding some more relevant functions, we can
conveniently use objects of the class String. Consider adding the following function to the
class String.

void String::addChar(char); //function to add a character
 //to the string

As its name suggests, this function will append a character to the string at which the pointer
inside the invoking object points.

String s1(“abc”);

As a result of this statement, the pointer inside ‘s1’ points at a memory block of four bytes
(last one containing NULL). Now, if we write

s1.addChar(‘d’); //add a character to the string

the following things should happen.

 Constructors and Destructors 113

Another block of five bytes should get allocated.
The string contained in the memory block at which ‘s1.cStr’ is currently pointing should
get copied into this new memory block.
The character ‘d’ should get appended to the string.
The null character should get further appended to the string.
‘s1.cStr’ should be made to point at this new memory block.
The memory block at which ‘s1.cStr’ was pointing previously should be deallocated (to
prevent memory leaks).

Figure 4.5 shows adding a character to a stretchable string in the object-oriented way.

Before
String s1(“abc”);

cStr 101

3

27

len

a b c \0

s1

101

After
s1.addChar(‘d’);

Figure 4.5 Adding a character to a stretchable string—the object-oriented way

One possible way of using this function is by using a loop to obtain a string from the user,
which can be of any length. While writing the program, the application programmer need not
predict the length of the string the user will enter. The following code can be used for adding
a character to a stretchable string in the object-oriented way.

while(1) //potentially infinite loop
{
 ch=getche();
 if(ch==‘\n’) //if user finishes entering the string
 break; //… break the loop
 s1.addChar(ch); //…else append the character to it
}

 Object-Oriented Programming with C++114

As the user keeps adding characters to the string, the allocated memory keeps getting
stretched in a manner that is transparent to the application programmer. Such an effect is
simply unthinkable with character arrays.

We would also like to add a function that will replace the string associated with an object
with the string that we pass to it. We let this function be

void String::setString(const char * const);

Suppose the following statements are executed.
String s1(“abc”);
s1.setString(“def”); //replace “abc” by “def”

Then the following events should take place when the second statement executes (‘s1.cStr’
is already pointing at a memory block that contains the string abc and is not NULL).

A block of four bytes should be dynamically allocated to accommodate the string “def ”.
The string def should get written in that memory block with the null character
appended.
s1.cStr should be made to point at this new block of memory.
The block of memory at which s1.cStr was previously pointing should be deallocated
to prevent memory leak.
The formal argument of the String::setString() function is a const char * const. The

reasons for this have already been discussed under the section on parameterized constructor.
We may think that the de nition of this function will be the same as that of the constructor. But
this is not so. When the constructor starts executing, cStr may or may not be NULL (it may
contain junk value). But if it is not NULL, it does not mean that it is pointing at a dynamically
allocated block of memory. But when the String::setString() function starts executing, if
cStr is not NULL, then it is de nitely pointing at a dynamically allocated block of memory.
Statements to check this condition and to deallocate the memory block and to nullify cStr
and to set ‘len’ to zero should be inserted at the beginning of the String::setString()
function. Otherwise a memory leak will occur. De ning the String::addChar() and
String::setString() functions is left as an exercise.

Let us think of more such relevant functions that can be added to the class String. There
can be a function that will change the value of a character at a particular position in the string
at which the pointer of the invoking object points. Moreover, there can be a function that
reads the value from a particular position in the string at which the pointer of the invoking
object points. These functions can have built-in checks to prevent values from being written
to or read from bytes that are beyond the memory block allocated. Again, such a check is not
built into character arrays. The application programmer has to put in extra efforts on his/her
own to prevent the program from exceeding the bounds of the array.

After we have added all such functions to the class String, we will get a new data type
that will be safe, ef cient, and convenient to use.

Suitably de ned constructors and destructors have a vital role to play in the creation of
such data types. Together they ensure that

There are no memory leaks (the destructor frees up unwanted memory).
There are no run-time errors (no two calls to the destructor try to free up the same block
of memory).
Data is never in an invalid state and domain constraints on the values of data members
are never violated.
After such data types have been de ned, new data types can be created that extend the

de nitions of existing data types. They contain the de nition of the existing data types and at

 Constructors and Destructors 115

the same time add more specialized features on their own. This facility of de ning new data
types by making use of existing data types is known as inheritance. Chapter 5 deals with this
feature of OOPS and its implementation in C++.

Constructors can be used to guarantee a proper
initialization of data members of a class. Domain
constraints on values of data members can be
implemented via constructors.

Constructors are member functions and have the
same name as that of the class itself. The compiler
creates a zero-argument constructor and a copy
constructor if we do not de ne them. Constructors take
parameters and, therefore, can be overloaded. They
do not return anything (not even void). The compiler
implicitly embeds a call to the constructor for each
object that is being created. An explicit call to the
constructor for an existing object is forbidden.

If necessary, destructors can be used to guarantee
a proper clean up when an object goes out of scope.
Destructors are member functions and have the same
name as that of the class itself but with the tilde sign
pre xed. The compiler creates a destructor if we do
not de ne one. Destructors do not take parameters and,
therefore, cannot be overloaded. They do not return
anything (not even void). The compiler implicitly
embeds a call to the destructor for each object that is
going out of scope (being destroyed). An explicit call
to the destructor for an existing object is forbidden.

Summary

Key Terms
constructors

– called automatically for each object that has just
got created

– de ned by default
– has the same name as that of the class

– does not return anything
zero-argument constructor
parameterized constructors
copy constructor
destructors

Exercises

 1. What are constructors? When are they called? What
is their utility?

 2. Why should the formal argument of a copy
constructor be a reference object?

 3. What are destructors? When are they called? What
is their utility?

 4. Is a destructor necessary for the following class?

class Time
{
 int hours, minutes, seconds;
 public:
 /*
 rest of the class Time … but no

more data members
 */
};

 5. De ne a suitable parameterized constructor with
default values for the class Time given in question
4.

 6. Four member functions are provided by default by
the compiler for each class that we de ne. We have
studied three of them in this chapter. Name them.

 7. State true or false.
(a) Memory occupied by an object is allocated by

the constructor of its class.
(b) Constructors can be used to acquire memory

outside the objects.
(c) Constructors can be overloaded.
(d) A constructor can have a return statement in its

de nition.
(e) Memory occupied by an object is deallocated by

the destructor of its class.

 Object-Oriented Programming with C++116

(f) Destructors can be used to release memory that
has been acquired outside the objects.

(g) Destructors can be overloaded.
(h) A destructor can have a return statement in its

de nition.
8. The copy constructor has been explicitly de ned for

the class String so that no two objects of the class
String end up sharing the same resource, that is,
end up with their contained pointers pointing at the
same block of dynamically allocated memory. In
this case, two such blocks may contain two copies
of the same data as a result of the copy constructor,

which is perfectly acceptable. However, there are
situations where no two objects should share even
copies of the same data. If A is a class for whose
objects this restriction needs to be applied, then we
should ensure that a statement like the second one
below should not compile.

A A1;
A A2 = A1;

 How can this objective be achieved? (Hint: Member
functions are not always public and the copy
constructor is a member function.)

Inheritance

This chapter discusses inheritance. Inheritance is one of the most important and useful features
of the object-oriented programming system.

The chapter begins with an overview of inheritance. Basic concepts such as base class and
derived class are discussed. The effects, advantages, and important points of inheritance are
also discussed.

The middle portion of the chapter deals with the implications of making a base class pointer
point at an object of the derived class and vice versa. Thereafter, the concept of function
overriding is discussed. This is followed by a section on base class initialization in which the
method of initializing base class members via constructors of the derived class is discussed.

The protected keyword is an important concept in C++. The protected keyword, along
with the public and private keywords, completes the triad of access speci ers provided by
C++. A separate section of this chapter elucidates this keyword and the effect of its use in
inheritance.

Classes can be derived by public, private, or protected keywords. The effect caused by each
of these is different. The current chapter compares this difference in a systematic manner.

Inheritance can be of various types based upon the number of classes derived from a single
base class and the number of base classes for a single derived class. All of these types are dealt
with in the penultimate section of the chapter.

The chapter ends with a section on the order of invocation of constructors and
destructors.

O

V

E

R

V

I

E

W

5

 5.1 Introduction

Inheritance is a very useful feature of OOPS that is supported by C++. A class may be de ned
in such a way that it automatically includes member data and member functions of an existing
class. Additionally, member data and member functions may be de ned in the new class also.
This is called inheritance.

The existing class whose features are being inherited is known as the base class or parent
class or super class. The new class that is being de ned by inheriting from the existing
class is known as its derived class or child class or sub-class. The syntax for derivation is as
follows.

class <name of derived class> : <access specifier> <name of base class>
{
 /*
 definition of derived class

 Object-Oriented Programming with C++118

 */
};

Suppose a class A already exists. Then a new class B can be derived from class A as
follows.

class B : public A
{
 /*
 new features of class B
 */
};

The public access speci er has been used in the foregoing example. The implications of
using the other access speci ers are discussed later in this chapter.

A pointer from the derived class to the base class diagrammatically depicts derivation
(see Figure 5.1).

Figure 5.1 Diagrammatic depiction of inheritance

A

B

5.1.1 Effects of Inheritance

Inheritance affects the size and behaviour of derived class objects in two ways.
Obviously, an object of the derived class will contain all data members of the derived
class. However, it will contain data members of the base class also. Thus, an object of the
derived class will always be larger than an object of the base class. (The only exception
to this is when neither the base class nor the derived class has data members. In that case,
objects of both the base class and the derived class occupy one byte each.)
Obviously, with respect to an object of the derived class, we can call the public member
functions of the derived class in any global non-member function. However, we can call the
public member functions of the base class also. (There are exceptions to this. Circumstances
under which these exceptions occur are described later in this chapter.)
Listing 5.1 illustrates this.

 Listing 5.1 Effects of inheritance

/*Beginning of A.h*/
class A
{
 int x;
 public:
 void setX(const int=0);
 int getX()const;
};

 Inheritance 119

/*End of A.h*/

/*Beginning on A.cpp*/
#include”A.h”
void A::setX(const int pX)
{
 x = pX;
}
int A::getX() const
{
 return x;
}
/*End on A.cpp*/

/*Beginning of B.h*/
#include”A.h”
class B : public A //inheriting from A
{
 int y;

 public:
 void setY(const int=0);
 int getY()const;
};
/*End of B.h*/

/*Beginning on B.cpp*/
#include”B.h”
void B::setY(const int pY)
{
 y = pY;
}
int B::getY() const
{
 return y;
}
/*End on B.cpp*/

/*Beginning of inherit.cpp*/
#include<iostream.h>
#include“B.h”
void main()
{
 cout<<sizeof(A)<<endl<<sizeof(B)<<endl;
 B B1; //an object of the derived class
 B1.setX(1); //OK: calling a base class member function
 //with respect to a derived class object
 B1.setY(3);
 cout<<B1.getX()<<endl; //OK: calling a base class
 //member function with respect to
 //a derived class object
 cout<<B1.getY()<<endl;
}
/*End of inherit.cpp*/

Output
4
8
1
3

 Object-Oriented Programming with C++120

De ning the member functions of classes A and B is left as an exercise.
This highly simpli ed example (Listing 5.1) effectively illustrates the basic mechanisms of

inheritance. An object of class B (the derived class) will contain two integers (one from class
B and the other from class A). Therefore, its size will be 8. Also, with respect to an object of
class B, we can call member functions of class B as well as those of class A.

An object of the derived class will contain the data members of the base class as well as
the data members of the derived class. Thus, the size of an object of the derived class will be
equal to the sum of sizes of the data members of the base class plus the sum of the sizes of
the data members of the derived class.

Inheritance implements an ‘is-a’ relationship. A derived class is a type of the base class just
like an aircraft (derived class) is a type of vehicle (base class). Contrast this to containership
that implements a ‘has-a’ relationship. A class may contain an object of another class or a
pointer to a data structure that contains a set of objects of another class. Such a class is known
as a container class. For example, an aircraft has one engine or an array of engines.

Another example can be that of a manager class and employee class. A manager (i.e.,
an object of the class manager) is an employee (i.e., an object of the class employee).
Nevertheless, it has some features that are not possessed by all employees. For example, it
may have a pointer to an array of employees that report to him. Derived class object is also
a base class object (as shown in the following lines of code).

class employee
{
 String name;
 double basic;
 Date doj;
 /*
 rest of the class employee
 */
};

class manager : public employee //manager is an employee
{
 employee * list;
 /*
 rest of the class manager
 */
};

A derived class contains additional data and members and is thus a specialized de nition
of its base class. Therefore, the process of inheritance is also known as specialization.

5.1.2 Benefits of Inheritance

This process of adding only the additional data members in the derived class has implications.
The base class can have a generic common de nition. The data and functions that are common
to more than one class can be put together in the base class. While only the special ones can
be put in each of the derived classes. Thus, inheritance is another feature of C++ that enables
code reusability.

5.1.3 Inheritance in Actual Practice

In actual practice, the library programmer de nes a certain class and its member functions.
Another interested programmer, in order to create his/her application, then inherits from this

 Inheritance 121

class and adds only the special data members and the code to handle these additional data
members in the derived class.

5.1.4 Base Class and Derived Class Objects

Now, many students of C++ may start believing that objects of the derived class inherit from
objects of the base class. This is incorrect as an object of the derived class is not at all related
to another simultaneously existing object of the base class.

An object of class A (say ‘A1’) will occupy four bytes containing only ‘x’. Whereas an
object of class B (say ‘B1’) will occupy a different block of eight bytes containing both ‘x’ and
‘y’, as shown in Figure 5.2. (As per the de nitions of classes A and B given in Listing 5.1.)

Figure 5.2 Memory layout of base class and derived class object

101

A1

x

fo
ur

by
te

s
x

201

y

fo
ur

by
te

s
fo

ur
by

te
s

ei
gh

t b
yt

es

B1

5.1.5 Accessing Members of the Base Class in the Derived Class

Only public members of base class can be accessed in the functions of derived class (protected
members of the base class can also be accessed; we shall discuss protected members later).
But, private members of the base class cannot be accessed.

Suppose in the B::setY() function we write
x=y;

the compiler will report an error stating that private members of the base class cannot be
accessed. (In this case we are trying to access ‘x’ in a member function of the derived class.
But ‘x’ is a private member of the base class.)

But we can access A::setX() and A::getX() functions in the member functions of the
derived class because they are public members of the base class. Private members of the base
class remain private with respect to member functions of the derived class. The following
lines of code demonstrate this.

void B::setY(const int q)
{
 y=q;
 setX(y); //x=y
}

This is as it should be. C++ prevents us from accessing private members of the base class
in member functions of the derived class to fully implement data security. After all, the base
class provider made some members of the base class private because he/she wanted only the

 Object-Oriented Programming with C++122

member functions of the base class (which he/she has perfected) to access them. If member
functions of the derived class are allowed to access private members of the base class, then
one cannot identify all statements in the program that access private members of the base
class by merely looking at its member and friend functions.

We may argue that the existing set of functions of the base class is sometimes not enough.
We would like to create a derived class that supplements the base class by containing those
member functions that we feel are missing in the base class. For example, suppose a function
such as String::addChar (char) is not present in the class String. But in this case, the
drawback is in the base class itself. It is the base class itself that should be corrected. Inheritance
is not used to remove such lacuna. It is used to provide additional data and additional code to
work upon the additional data in the derived class. Inheritance is used to add facilities to an
existing class without reprogramming it or recompiling it. Thus, it enables us to implement
code reusability.

Friendship is not inherited. A class does not become a friend to a class to which its parent
is a friend. Listing 5.2 illustrates this.

Listing 5.2 Friendship is not inherited

/*Beginning of friendInherit.cpp*/
class B;

class A
{
 friend class B;
 int x;
};

class B
{
 void fB(A * p)
 {
 p->x=0; //OK: B is a friend of A
 }
};

class C : public B
{
 void fC(A * p)
 {
 p->x=0; //ERROR: C is not a friend of A
 //despite being derived from a friend
 }
};
/*End of friendInherit.cpp*/

 5.2 Base Class and Derived Class Pointers

A base class pointer can point at an object of the derived class. However, a derived class
pointer cannot point at an object of the base class. To be more precise, a base class pointer can
safely point at an object of the derived class without the need for typecasting. But a derived
class pointer can be made to point at an object of the base class only forcibly by typecasting.
However, this can cause run-time errors.

 Inheritance 123

Note: There are exceptions to the above assertion. The compiler will prevent a base
class pointer from pointing at an object of the derived under certain circumstances. These
circumstances are described later in this chapter.

First, let us understand why no harm can come by making a base class pointer point at an
object of the derived class. To understand this, we consider the classes of Listing 5.3.

Listing 5.3 A derived class and its base class

/*Beginning of A.h*/
class A
{
 public:
 int x;
};
/*End of A.h*/

/*Beginning of B.h*/
#include“A.h”
class B : public A //derived from A
{
 public:
 int y;
};
/*End of B.h*/

These classes have only data members. There are no member functions and even these
member data are public. These classes are given here to initially understand the concepts
only. Explanations with classes that have private data members and public member functions
are given later.

Now, let us compile the main() function of Listing 5.4 and see what happens.

Listing 5.4 Base class pointer pointing at a derived class object

/*Beginning of BasePtr01.cpp*/
#include“B.h” //from listing 5.03
void main()
{
 A * APtr;
 B B1;
 APtr=&B1; //line 1 – OK: base class pointer points at
 //derived class’s object
 APtr->x=10; //line 2 – OK: accessing base class member
 //through base class pointer
 APtr->y=20; //line 3 - ERROR: y not found in class A
}
/*End of BasePtr01.cpp*/

Line 1 of Listing 5.4 will compile because line 3 will not. A base class pointer can point at
an object of the derived class. Let us see why. ‘APtr’ is of type ‘A *’. It is supposed to point
at objects of the base class A. Therefore, it cannot access ‘y’. There is no member of the name
‘y’ in class A. The fact that ‘APtr’ points at an object of the derived class is of no signi cance.
Through ‘APtr’, it is possible to access ‘x’ because there is a member of the name ‘x’ in class
A. Although ‘APtr’ points at ‘B1’, which occupies eight bytes (four for ‘x’ and four for ‘y’),

 Object-Oriented Programming with C++124

it is able to access the value contained in only the rst four bytes. Thus, ‘APtr’ cannot access
an area in the memory that has not been allocated. Therefore, a pointer of the base class type
can safely point at an object of the derived class, as illustrated by Figure 5.3.

Figure 5.3 Base class pointer points at an object of the derived class

201 x

201

y

fo
ur

by
te

s
fo

ur
by

te
s

ei
gh

t b
yt

es

B1

APtr

We will soon realize that making a base class pointer point at an object of the derived class
is a very common requirement in C++ programming.

Now, let us nd out why derived class pointers cannot be made to point at objects of the
base class without explicit typecasting, and why, even that is a very unsafe thing to do. Now,
let us compile the main() function of Listing 5.5 and see the result.

Listing 5.5 Derived class pointer pointing at a base class object

/*Beginning of DerivedPtr01.cpp*/
#include“B.h” //from listing 5.03
void main()
{
 A A1;
 B * BPtr;
 BPtr=&A1; //line 1 – ERROR. Cannot convert from B* to
 //A*.
 BPtr->x=10; //line 2 – OK. Derived class pointer
 //accesses base class member.
 BPtr->y=20; //line 3 – OK. Derived class pointer
 //accesses derived class member.
}
/*End of DerivedPtr01.cpp*/

Line 1 of Listing 5.5 will not compile because line 3 will. A derived class pointer cannot
point at an object of the base class. Let us see why. ‘BPtr’ is of type ‘B *’. It is supposed to
point at objects of the derived class B. Therefore, it can access ‘y’ also. ‘BPtr’ is pointing at
‘A1’, which occupies four bytes only. However, it is able to access the value contained in the
next four bytes also. There is a member of name ‘y’ in class B. Thus, ‘BPtr’ is able to access
an area in the memory that has not been allocated. Therefore, a pointer of the derived class
type cannot safely point at an object of the base class, as shown in Figure 5.4.

Line 3 of Listing 5.5 would write 20 into the bytes whose addresses are from 205 to 208.
But this block has not been allocated for the object at which the pointer points. But this line
will compile. The problem is actually in line 1.

 Inheritance 125

Figure 5.4 Derived class pointer pointing at an object of the base class

201 x

201

y would be here
in case of

derived class
objects

fo
ur

by
te

s
fo

ur
by

te
s ei

gh
t b

yt
es

A1BPtr

However, a derived class pointer can be forcibly made to point at an object of the derived
class by explicit typecasting, as illustrated by Listing 5.6. Continuing with classes A and B
given in Listing 5.3.

Listing 5.6 Forcible typecasting to make a derived class pointer point at an object of the
base class

/*Beginning of DerivedPtrTypeCast.cpp*/
#include“B.h” //from listing 5.03
void main()
{
 A A1;
 B * BPtr; //derived class pointer
 BPtr=(B*)&A1; //forcible typecasting to make derived
 //class pointer point at base class
 //object
}
/*End of DerivedPtrTypeCast.cpp*/

But explicit address manipulation like this is obviously dangerous. Now, let us consider
the realistic cases where the classes have private data members and public member functions
(see Listing 5.7). The same explanations that have been given above will hold true even if
the classes A and B have ‘x’ and ‘y’ as private data members, respectively.

Listing 5.7 Classes of Listing 5.3 with member functions

/*Beginning of A.h*/
class A
{
 int x;
 public:
 void setx(const int=0);
 /*
 rest of the class A
 */
};
/*End of A.h*/

/*Beginning of B.h*/
#include“A.h”
class B : public A
{

 Object-Oriented Programming with C++126

 int y;
 public:
 void sety(const int=0);
 /*
 rest of the class B
 */
};
/*End of B.h*/

The member functions in Listing 5.5 access private data members of their respective classes.

Listing 5.8 Base class pointer pointing at an object of the derived class

/*Beginning of BasePtr02.cpp*/
#include“B.h” //from listing 5.7
void main()
{
 A * APtr;
 B B1;
 APtr=&B1; //OK: base class pointer points at
 //derived class’s object
 APtr->setx(10); //OK: accessing base class member
 //through base class pointer
 APtr->sety(20); //ERROR: sety() not a member of class A
}
/*End of BasePtr02.cpp*/

Listing 5.9 Derived class pointer pointing at an object of the base class

/*Beginning of DerivedPtr02.cpp*/
#include“B.h” //from listing 5.7
void main()
{
 A A1;
 B * BPtr;
 BPtr=&A1; //ERROR: cannot convert A* to B*
 BPtr->setx(10); //OK: Derived class pointer accesses
 //base class member.
 BPtr->sety(20); //OK: Derived class pointer accesses
 //derived class member.
}
/*End of DerivedPtr02.cpp*/

The fact that a base class pointer can point at an object of the derived class (see Listings
5.8 and 5.9) should not be surprising. After all, this is exactly what happens when we call a
base class function with respect to an object of the derived class.

B1.setx(10);

Based upon the knowledge we have gained about the this pointer in Chapter 2, we know
that the compiler will internally convert the above statement to

setx(&B1,10);

The address of ‘B1’ (a derived class object) is passed as a parameter to the function. But
the corresponding formal argument in the A::setx() function is the this pointer of type
A * const (Listing 5.10).

 Inheritance 127

Listing 5.10 This pointer in a base class member function points at the derived class
invoking object

void setx(A * const this, const int p)
{
 this->x=p;
}

Obviously, the this pointer points at ‘B1’, which is an object of the derived class.

 5.3 Function Overriding

Member functions of the base class can be overridden in the derived class. De ning a member
function in the derived class in such a manner that its name and signature match those of a base
class function is known as function overriding. Function overriding results in two functions
of the same name and same signature. One of them is in the base class. The other one is in
the derived class. An illustrative example follows in Listing 5.11.

Listing 5.11 Function overriding

/*Beginning of A.h*/
class A
{
 public:
 void show()
 {
 cout<<“show() function of class A called\n”;
 }
};
/*End of A.h*/

/*Beginning of B.h*/
#include“A.h”
class B : public A
{
 public:
 void show() //overriding A::show()
 {
 cout<<“show() function of class B called\n”;
 }
};
/*End of B.h*/

The show() function of class B has overridden the show() function of class A.
Consequently, if the show() function is called with respect to an object of the derived class
B, the show() function of class B will be called instead of the show() function of class A.
See Listing 5.12.

Listing 5.12 Calling the overriding function

/*Beginning of Override01.cpp*/
#include“B.h”
void main()
{
 B B1;
 B1.show(); //B::show() called

 Object-Oriented Programming with C++128

}
/*End of Override01.cpp*/

Output
show() function of class B called

Whenever a function is called with respect to an object of a class, the compiler rst searches
for the function prototype in the same class. Only if this search fails, the compiler goes up
the class hierarchy to look for the function prototype. In Listings 5.11 and 5.12, the show()
function of class A was virtually hidden by the show() function of class B.

Of course, the overridden function of the base class will be called if it is called with respect
to an object of the base class (Listing 5.13).

Listing 5.13 Calling the overridden function with respect to an object of the base class

/*Beginning of Override02.cpp*/
#include“B.h”
void main()
{
 A A1;
 A1.show(); //A::show() called
}
/*End of Override02.cpp*/

Output
show() function of class A called

The overridden base class function can still be called with respect to an object of the derived
class by using the scope resolution operator as illustrated in Listing 5.14.

Listing 5.14 Calling the overridden function forcibly with respect to an object of the
derived class

/*Beginning of Override03.cpp*/
#include“B.h”
void main()
{
 B B1;
 B1.A::show(); //A::show() called
}
/*End of Override03.cpp*/

Output
show() function of class A called

Function overriding is actually a form of function overloading. Our knowledge of the
this pointer immediately makes this clear. The signatures of the overriding function and
the overridden function are only apparently the same. They are actually different from each
other. The actual prototype of the A::show() function is

void show(A * const);

On the other hand, the actual prototype of the B::show() function is
void show(B * const);

 Inheritance 129

The overridden function can be called from the overriding function as follows.
void B::show()
{
 A::show();
 /*
 rest of the B::show() function
 */
}

The scope resolution operator is necessary to avoid in nite recursion.
But, what is the use of function overriding? Function overriding appears to be nothing

more than a fancy language construct. Function overriding becomes signi cant only when
the base class function being overridden is virtual. More about virtual functions and how they
implement dynamic polymorphism is illustrated in Chapter 6.

 5.4 Base Class Initialization

A derived class object is composed of data members of the derived class as well as those of
the base class. Often we need to initialize all of these data members while creating an object
of the derived class. We must remember that when an object of the derived class is created,
the compiler implicitly and inevitably embeds a call to the base class constructor and then
the derived class constructor with respect to the object.

Suppose A is the base class and B is its derived class. The statement
B B1;

is converted into
B B1; //memory allocated for the object
B1.A(); //base class constructor called
B1.B(); //derived class constructor called

Destructors are called in the reverse order. As we already know, explicitly calling the
constructors and destructors, with respect to an existing object, is prohibited. Now, let us
look at Listing 5.15.

Listing 5.15 Unsuccessful initialization of base class members

/*Beginning of A.h*/
class A
{
 int x;
 public:
 A(const int=0);
 void setx(const int=0);
 int getx()const;
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include“A.h”

A::A(const int p)
{
 x=p;
}

 Object-Oriented Programming with C++130

void A::setx(const int p)
{
 x=p;
}

int A::getx() const
{
 return x;
}
/*End of A.cpp*/

/*Beginning of B.h*/
#include“A.h”

class B : public A
{
 int y;
 public:
 B(const int=0);
 void sety(const int=0);
 int gety()const;
};
/*End of B.h*/

/*Beginning of B.cpp*/
#include“B.h”

B::B(const int q)
{
 y=q;
}

void B::sety(const int q)
{
 y=q;
}

int B::gety() const
{
 return y;
}
/*End of B.cpp*/

/*Beginning of baseinit01.cpp*/
#include“B.h”
#include<iostream.h>

void main()
{
 B B1(20);
 cout <<B1.getx()<<endl

<<B1.gety()<<endl;
}
/*End of baseinit01.cpp*/

Output
0
20

The output is explained by the simple observation that the statement
B B1(20);

 Inheritance 131

gets converted to the following:
B B1; //memory allocated for the object
B1.A(); //base class constructor called
B1.B(20); //derived class constructor called

As we can see, base class data members of the derived class object got initialized through
the base class constructor with the default value being passed to it. Thus, ‘B1.y’ got initialized
to 20 (the value passed). But ‘B1.x’ got initialized to 0 (the default value). While creating
an object of the derived class, we would like to pass a value explicitly to the base class
constructor. Thus, in Listing 5.15, the constructor of class B should take not one but two
parameters. One of these should be passed to ‘y’ while the other should be used to initialize
‘x’. For this, the prototype and de nition of the constructor of class B should be modi ed as
shown in Listing 5.16.

Listing 5.16 Modifying the derived class constructor to ensure successful initialization of
the base class members

/*Beginning of B.h*/
#include“A.h”

class B : public A
{
 public:
 B(const int=0, const int=0);
 /*
 rest of the class B
 */
}
/*End of B.h*/

/*Beginning of B.cpp*/
#include“B.h”

B::B(const int p,const int q):A(p) //passing value to base
 //class constructor
{
 y=q;
}

/*
 Definitions of the remaining member functions of class B
*/

/*End of B.cpp*/

An object of class B can be declared by passing two parameters to its constructor. One of
them is assigned to ‘x’. The other is assigned to ‘y’.

Listing 5.17 Base class initialization

/*Beginning of baseinit02.cpp*/
#include“B.h”
#include<iostream.h>

void main()
{
 B B1(10,20);
 cout<<B1.getx()<<endl<<B1.gety()<<endl;

 Object-Oriented Programming with C++132

}
/*End of baseinit02.cpp*/

Output
10
20

Again, the output of Listing 5.17 can be explained by noting that due to the modi ed
de nition of the constructor of class B, the statement

 B B1(10,20);

gets converted to
B B1; //memory allocated for the object
B1.A(10); //base class constructor called
B1.B(20); //derived class constructor called

As per the de nition of the derived class constructor in Listing 5.17, the rst parameter
passed to it was in turn passed to the base class constructor. But this is not necessary. Any
of the parameters passed to the derived class constructor can be passed to the base class
constructor.

 5.5 Protected Access Specifier

Apart from the public and private access speci ers, there is a third access modi er in C++
known as protected. Protected members are inaccessible to non-member functions. However,
they are accessible to the member functions of their own class and to member functions of
the derived classes. Listing 5.18 along with its accompanying comments illu strates this.

Listing 5.18 Accessing protected members

/*Beginning of A.h*/
class A
{
 private:
 int x;
 protected:
 int y;
 public:
 int z;
};
/*End of A.h*/

/*Beginning of B.h*/
#include“A.h”
class B : public A //derived class
{
 public:
 void xyz();
};
/*End of B.h*/

/*Beginning of B.cpp*/
#include“B.h”
void B::xyz() //member function of derived class

 Inheritance 133

{
 x=1; //ERROR: private member of base class
 y=2; //OK: protected member of base class
 z=3; //OK: public member of base class
}
/*End of B.cpp*/

/*Beginning of protected.cpp*/
#include“A.h”
void main() //nonmember function
{
 A * Aptr;
 APtr->x=10; //ERROR: private member
 APtr->y=20; //ERROR: protected member
 APtr->z=30; //OK: public member
}
/*End of protected.cpp*/

 5.6 Deriving by Different Access Specifiers

5.6.1 Deriving by the Public Access Specifier

Deriving by the public access speci er retains the access level of base class members.

Private members: Member functions of the derived class cannot access. Member functions of
the subsequently derived classes cannot access them. Non-member functions cannot access
them.

Protected members: Member functions of the derived class can access. Member functions
of the subsequently derived classes can also access them. Non-member functions cannot
access them.

Public members: Member functions of the derived class can access. Member functions of
the subsequently derived classes can also access them. The non-member functions can also
access them.

Errors that are encountered while compiling Listing 5.19 make this evident.

Listing 5.19 Accessing the inherited members of an object of a class derived by public
access specifi er

/*Beginning of publicInheritance.cpp*/
class A
{
 private:
 int x;
 protected:
 int y;
 public:
 int z;
};

class B : public A //B is a public derived class of A
{
 public:

 Object-Oriented Programming with C++134

 void f1()
 {
 x=1; //ERROR: private member remains private
 y=2; //OK: protected member remains protected
 z=2; //OK: public member remains public
 }
};

class C : public B
{
 public:
 void f2()
 {
 x=1; //ERROR: private member remains private
 y=2; //OK: protected member remains protected
 z=2; //OK: public member remains public
 }
};

void xyz() //non-member function
{
 B B1; //line 1: An object of a protected derived class
 B1.z=100; //line 2: ERROR. Cannot access public member
 //of a base class through an object of a
 //protected derived class.
 A * APtr; //line 3
 APtr=&B1; //line 4: ERROR. Cannot make a base class
 //pointer point at an object of a protected
 //derived class.
 APtr->z=100; //line 5. OK. Can access public
 //member of the base class through a base
 //class pointer.

/*End of publicInheritance.cpp*/

A base class pointer can point at an object of a derived class that has been derived by using
the public access speci er. Let us rede ne the xyz() function from the program in Listing
5.19 as in Listing 5.20 and see what happens if we recompile the program.

Listing 5.20 A base class pointer can point at an object of the public-derived class

void xyz() //non-member function
{
B B1; //line 1: An object of a public derived
 //class
B1.z=100; //line 2: OK. Can access public member of
 //a base class through an object of a
 //public derived class.
A * APtr; //line 3
APtr=&B1; //line 4: OK. Can make a base class pointer
 //point at an object of a public derived
 //class.
Aptr->z=100; //line 5. OK. Can access inherited public
 //member of the base class through a base
 //class pointer.
}

Line 4 of Listing 5.20 will compile successfully because lines 2 and 5 will. Line 2 will
compile successfully because ‘z’ is a public member of the base class A and class B is derived

 Inheritance 135

from class A by using the public access speci er. In this case, the base class pointer would
access the object of a public-derived class in a way (line 5 of Listing 5.20) that is anyway
permitted when the object is accessed by using the name of the object itself (line 2 of Listing
5.20).

Therefore, the C++ compiler does not prevent a base class pointer from pointing at an
object of the derived class if the public access speci er has been used to derive the class.

 5.6.2 Deriving by the Protected Access Specifier
Deriving by the protected access speci er reduces the access level of public base class
members to protected while the access level of protected and private base class members
remains unchanged.
Private members: Member functions of the derived class cannot access. Member functions of
the subsequently derived classes cannot access them. Non-member functions cannot access
them.
Protected members: Member functions of the derived class can access. Member functions
of the subsequently derived classes can also access them. Non-member functions cannot
access them.
Public members: Member functions of the derived class can access. Member functions of
the subsequently derived classes can also access them. Non-member functions cannot access
them.

Errors encountered while compiling Listing 5.21 demonstrate this.

Listing 5.21 Accessing the inherited members of an object of a class derived by
protected access specifi er

/*Beginning of publicInheritance.cpp*/
class A
{
 private:
 int x;
 protected:
 int y;
 public:
 int z;
};
class B : public A //B is a public derived class of A
{
 public:
 void f1()
 {
// x=1; //ERROR: private member remains private
 y=2; //OK: protected member remains protected
 z=2; //OK: public member remains public
 }
};
class C : public B
{
 public:
 void f2()
 {
// x=1; //ERROR: private member remains private

 Object-Oriented Programming with C++136

 y=2; //OK: protected member remains protected
 z=2; //OK: public member remains public
 }
};
void xyz() //non-member function
{
 B B1; //line 1: An object of a public derived class
 B1.z=100; //line 2: OK. Can access public member of
 //a base class through an object of a
 //public derived class.
 A * APtr; //line 3
 APtr=&B1; //line 4: OK. Can make a base class pointer
 //point at an object of a public derived
 //class.
 APtr->z=100; //line 5. OK. Can access inherited public
 //member of the base class through a base
 //class pointer.
}
/*End of publicInheritance.cpp*/

A base class pointer cannot point at an object of a derived class that has been derived by
using the protected access speci er. Let us rede ne the xyz() function from the program in
Listing 5.21 as in Listing 5.22 and see what happens if we recompile the program.

Listing 5.22 A base class pointer cannot point at an object of the protected derived class

void xyz() //non-member function
{
 B B1; //line 1: An object of a protected derived
 //class
 B1.z=100; //line 2: ERROR. Cannot access public member of
 //a base class through an object of a
 //protected derived class.
 A * APtr; //line 3
 APtr=&B1; //line 4: ERROR. Cannot make a base class pointer
 //point at an object of a protected derived
 //class.
 Aptr->z=100; //line 5. OK. Can access public
 //member of the base class through a base
 //class pointer.
}

Line 4 of Listing 5.22 will not compile because line 2 will not compile and line 5 will
compile. Line 2 will not compile because although ‘z’ is a public member of the base class A,
class B is derived from class A by using the protected access speci er. In this case, the base
class pointer might access the object of a protected derived class in a way (line 5 of Listing
5.22) that is not permitted when the object is accessed by using the name of the object itself
(line 2 of Listing 5.22).

Therefore, the C++ compiler prevents a base class pointer from pointing at an object of
the derived class if the protected access speci er has been used to derive the class.

5.6.3 Deriving by the Private Access Specifier
Deriving by the private access speci er reduces the access level of public and protected
base class members to private while access level of private base class members remains
unchanged.

 Inheritance 137

Private members: Member functions of the derived class cannot access. Member functions of
the subsequently derived classes cannot access them. Non-member functions cannot access
them.

Protected members: Member functions of the derived class can access. Member functions of
the subsequently derived classes cannot access them. Non-member functions cannot access
them.

Public members: Member functions of the derived class can access. Member functions of
the subsequently derived classes cannot access them. Non-member functions cannot access
them.

Errors encountered while compiling Listing 5.23 demonstrate this.

Listing 5.23 Accessing the inherited members of an object of a class derived by private
access specifi er

/*Beginning of protectedInheritance.cpp*/
class A
{
 private:
 int x;
 protected:
 int y;
 public:
 int z;
};
class B : protected A //B is a protected derived class of A
{
 public:
 void f1()
 {
// x=1; //ERROR: private member remains private
 y=2; //OK: protected member remains protected
 z=2; //OK: public member becomes protected
 }
};
class C : public B
{
 public:
 void f2()
 {
// x=1; //ERROR: private member remains private
 y=2; //OK: protected member remains protected
 z=2; //OK: protected member remains protected
 }
};
void xyz() //non-member function
{
 B B1; //line 1: An object of a protected derived class
 B1.z=100; //line 2: ERROR. Cannot access public member
 //of a base class through an object of a
 //protected derived class.
 A * APtr; //line 3
 APtr=&B1; //line 4: ERROR. Cannot make a base class
 //pointer point at an object of a protected
 //derived class.

 Object-Oriented Programming with C++138

 APtr->z=100; //line 5. OK. Can access public
 //member of the base class through a base
 //class pointer.
}
/*End of protectedInheritance.cpp*/

A base class pointer cannot point at an object of a derived class that has been derived by
using the private access speci er. Let us rede ne the xyz() function from the above program
(Listing 5.23) as in Listing 5.24 and see what happens if we recompile the program.

Listing 5.24 A base class pointer cannot point at an object of the private-derived class

/*Beginning of privateInheritance.cpp*/
class A
{
 private:
 int x;
 protected:
 int y;
 public:
 int z;
};
class B : private A //B is a private derived class of A
{
 public:
 void f1()
 {
 x=1; //ERROR: private member remains private
 y=2; //OK: protected member becomes private in
 //this class
 z=2; //OK: protected member becomes private in
 //this class
 }
};
class C : public B
{
 public:
 void f2()
 {
 x=1; //ERROR: private member remains private
 y=2; //ERROR: private member remains private
 z=2; //ERROR: private member remains private
 }
};
void xyz(B * BPtr) //non-member function
{
 BPtr->x=10; //ERROR: private member remains private
 BPtr->y=20; //ERROR: protected member becomes private
 BPtr->z=30; //ERROR: public member becomes private
}
/*End of privateInheritance.cpp*/

Line 4 of Listing 5.24 will not compile because line 2 will not compile and line 5 will
compile. Line 2 will not compile because although ‘z’ is a public member of the base class
A, class B is derived from class A by using the private access speci er. In this case, the base
class pointer might access the object of a private-derived class in a way (line 5 of Listing 5.24)

 Inheritance 139

that is not permitted when the object is accessed by using the name of the object itself (line
2 of Listing 5.24).

Therefore, the C++ compiler prevents a base class pointer from pointing at an object of
the derived class if the private access speci er has been used to derive the class.

The default access speci er for inheritance is private. The following declarations are
equivalent:

class B : private A //B is a private derived class of A
{
 /*
 definition of class B
 */
};

class B : A //B is still a private derived class of A
{
 /*
 definition of class B
 */
};

 5.7 Different Kinds of Inheritance

5.7.1 Multiple Inheritance

Figure 5.5 shows that in multiple inheritance, a class derives from more than one base
class.

Figure 5.5 Multiple inheritance (class C derived from classes A and B)

A B

C

The general syntax for multiple inheritance is as follows:
class <name of derived class>
: <access specifier> <name of first base class>,
 <access specifier> <name of second base class>,
 <access specifier> <name of third base class> …
{
 /*
 definition of derived class
 */

};

An illustrative example follows in Listing 5.25. We must note that for each of the base
classes, a different access speci er can be used.

 Object-Oriented Programming with C++140

Listing 5.25 Multiple inheritance

/*Beginning of privateInheritance.cpp*/
class A
{
 private:
 int x;
 protected:
 int y;
 public:
 int z;
};
class B : private A //B is a private derived class of A
{
 public:
 void f1()
 {
// x=1; //ERROR: private member remains private
 y=2; //OK: protected member becomes private in
//this class
 z=2; //OK: protected member becomes private in
//this class
 }
};
class C : public B
{
 public:
 void f2()
 {
// x=1; //ERROR: private member remains private
// y=2; //ERROR: private member remains private
// z=2; //ERROR: private member remains private
 }
};
void xyz() //non-member function
{
 B B1; //line 1: An object of a private derived class
 B1.z=100; //line 2: ERROR. Cannot access public member
 //of a base class through an object of a
 //private derived class.
 A * APtr; //line 3
 APtr=&B1; //line 4: ERROR. Cannot make a base class
 //pointer point at an object of a private
 //derived class.
 APtr->z=100; //line 5. OK. Can access public
 //member of the base class through a base
 //class pointer.
}
/*End of privateInheritance.cpp*/

Output
10
20
30

An object of a class de ned by multiple inheritance contains not only the data members
de ned in the derived class, but also the data members de ned in all of the base classes. Thus,

 Inheritance 141

the size of such an object is equal to the sum of the sizes of the data members of all the base
classes plus the sum of the sizes of the data members of all of the derived classes. Hence, the
size of an object of the class C in Listing 5.25 is 12.

Moreover, with respect to such an object, it is possible to call the member functions of
not only the derived class, but also the member functions of all the base classes. Therefore,
in Listing 5.25, the member functions of classes A, B, and C have been called with respect
to ‘C1’.

5.7.2 Ambiguities in Multiple Inheritance

Multiple inheritance leads to a number of ambiguities, namely, identical members in more
than one base class and diamond-shaped inheritance.

1. Identical members in more than one base class: The first ambiguity arises if two or
more of the base classes have a member of the same name. This is illustrated in Listing
5.26.

Listing 5.26 Ambiguity due to identical member being in more than one base class

/*Beginning of A.h*/
class A
{
 int x;

 public:
 void setx(const int=0);
 int getx()const;
};
/*End of A.h*/

/*Beginning on A.cpp*/
#include”A.h”
void A::setx(const int pX)
{
 x = pX;
}
int A::getx() const
{
 return x;
}
/*End on A.cpp*/

/*Beginning of B.h*/
class B
{
 int y;

 public:
 void sety(const int=0);
 int gety()const;
};
/*End of B.h*/

/*Beginning on B.cpp*/
#include”B.h”
void B::sety(const int pY)
{
 y = pY;

 Object-Oriented Programming with C++142

}
int B::gety() const
{
 return y;
}
/*End on B.cpp*/

/*Beginning of C.h*/
#include”A.h”
#include”B.h”
class C : public A, public B //multiple inheritance
{
 int z;

 public:
 void setz(const int=0);
 int getz()const;
};
/*End of C.h*/

/*Beginning on C.cpp*/
#include”C.h”
void C::setz(const int pZ)
{
 z = pZ;
}
int C::getz() const
{
 return z;
}
/*End on C.cpp*/

/*Beginning of multiInherit.cpp*/
#include<iostream.h>
#include”C.h”
void main()
{
 C C1; //declaring an object of the class that does
 //multiple inheritance
 C1.setx(10); //calling member function of one base
 //class.
 C1.sety(20); //calling member function of the other
 //base class.
 C1.setz(30); //calling member function the derived
 //class.
 cout<<C1.getx()<<endl; //calling member function of
 //one base class.
 cout<<C1.gety()<<endl; //calling member function of
 //the other base class.
 cout<<C1.getz()<<endl; //calling member function the
 //derived class.
}
/*End of multiInherit.cpp*/

In Listing 5.26, the compiler will not be able to decide which of the two show() functions
it has to call. This ambiguity can be resolved by using the scope resolution operator. We
can replace the main() function of Listing 5.26 with that of Listing 5.27 and see the
difference.

 Inheritance 143

Listing 5.27 Ambiguity resolution by using scope resolution operator

/*Beginning of multiInheritAmbiguityResolve01.cpp*/
void<iostream.h>
Class A
{
 Public:
 Void show()
 {
 cout<<“show() function of clas A called\n”;
 }
};
class B
{
 Public:
 void show()
 {
 cout<<“show() function of class B called\n”;
};
class C : public A, public B
{ };
void main()
{
 C C1;
 C1.A: :show() ; //OK: show() function of class A called
 C1.B: :show() ; //OK: show() function of class B called
}
/*End of multiInheritAmbiguityResolve01.cpp*/

Output
show() function of class A called
show() function of class B called

This ambiguity can also be resolved by overriding the multiple inherited base class member
as shown in Listing 5.28.

Listing 5.28 Ambiguity resolution by overriding

/*Beginning of multiInheritAmbiguityResolve02.cpp*/
#include<iostream.h>
class A
{
 public:
 void show()
 {
 cout<<“show() function of class A called\n”;
 }
};

class B
{
 public:
 void show()

 Object-Oriented Programming with C++144

 {
 cout<<“show() function of class B called\n”;
 }
};

class C : public A, public B
{
 public:
 void show() //override both of the inherited
 //functions
 {
 cout<<“show() function of class C called\n”;
 }
};

void main()
{
 C C1;
 C1.show(); //OK: C::show() called
}
/*End of multiInheritAmbiguityResolve02.cpp*/

Output
show() function of class C called

We can still call the show() functions of classes A and B with respect to an object of class
C by using the scope resolution operator. Let us now replace the main() function with that
of Listing 5.29 and see the difference.

Listing 5.29 Calling overridden members by scope resolution operator

void main()
{
 C C1.A::show();
 C1.B::show();
}

Output
show() function of class A called
show() function of class B called

2. Diamond-shaped inheritance: Ambiguities can also arise if two or more base classes
in turn inherit from a common base class (Figure 5.6). This is known as diamond-shaped
inheritance (see Listing 5.30).

Figure 5.6 Base classes inheriting from a common base class

A

B C

D

 Inheritance 145

Listing 5.30 Diamond-shaped inheritance

/*Beginning of multiInheritAmbiguity02.cpp*/
class A
{
 public:
 void show();
};

class B : public A
{};

class C : public A
{};

class D : public B, public C
{};

void main()
{
 D D1;
 D1.show(); //ERROR: ambiguous call to show()
}
/*End of multiInheritAmbiguity02.cpp*/

The two previous solutions—using scope resolution operator and overriding—are applicable
here also. Nevertheless, a third solution is also available—that of declaring the top base class
to be virtual. The ambiguity disappears if we declare class A to be a virtual base class of
classes B and C. This is demonstrated by the following lines of code.

class B : virtual public A
{};
class C : virtual public A
{};

Now, the call to the show() function with respect to an object of class D is no longer
ambiguous.

5.7.3 Multi-level Inheritance

When a class inherits from a derived class, it is known as multi-level inheritance. In other
words, a class derives from a class that is in turn derived from another class. Figure 5.7 depicts
multi-level inheritance.

Figure 5.7 Multi-level inheritance

A

B

C

 Object-Oriented Programming with C++146

In Figure 5.7, class C is derived from class B, which is in turn derived from class A. The
syntax for implementing this derivation is shown in Listing 5.31.

Listing 5.31 Multi-level inheritance

/*Beginning of multiInherit.cpp*/
#include<iostream.h>

class A
{
 public:
 void fA()
 {
 cout<<“fA() called\n”;
 }
};

class B : public A //B derived from A
{
 public:
 void fB()
 {
 cout<<“fB() called\n”;
 }
};

class C : public B //C derived from B, B derived from A
{
 public:
 void fC()
 {
 cout<<“fC() called\n”;
 }
};

void main()
{
 C C1;
 C1.fA();
 C1.fB();
 C1.fC();
}

/*End of multiInherit.cpp*/

Output
fA() called
fB() called
fC() called

Multi-level inheritance can be extended to any level.
Multi-level inheritance is commonly used to implement successive re nement of a data

type. For instance, ‘Animal’ is a more generic class. ‘Mammal’ is a type of ‘Animal’. ‘Man’
is a type of ‘Mammal’.

In Figure 5.8, the data type ‘Animal’ is successively re ned to ‘Mammal’ and then to
‘Man’. The bene t of having intermediate classes, such as the class ‘Mammal’, is that they
can then be used as a base class for some other classes also. For example, the class ‘Mammal’
can be used as a common base class for classes ‘Whale’, ‘Dog’, etc.

 Inheritance 147

Animal

Mammal

Man

Figure 5.8 Example of using multi-level inheritance to successively refi ne a data type

5.7.4 Hierarchical Inheritance

In hierarchical inheritance, a single class serves as a base class for more than one derived
class. Figure 5.9 illustrates this.

Figure 5.9 Hierarchical inheritance

A

CB

In Figure 5.9, class A is the common base class for classes B and C. This is demonstrated
in Listing 5.32.

Listing 5.32 Hierarchical inheritance

/*Beginning of hierarchicalInherit.cpp*/
#include<iostream.h>
class A
{
 public:
 void fA()
 {
 cout<<“fA() called\n”;
 }
};

class B : public A //derived from A
{
 public:
 void fB()
 {
 cout<<“fB() called\n”;
 }
};

 Object-Oriented Programming with C++148

class C : public A //also derived from A
{
 public:
 void fC()
 {
 cout<<“fC() called\n”;
 }
};

void main()
{
 B B1;
 C C1;
 B1.fA();
 B1.fB();
 C1.fA();
 C1.fC();
}
/*End of hierarchicalInherit.cpp*/

Output
fA() called
fB() called
fA() called
fC() called

Hierarchical inheritance is probably the best illustration of the virtues of code reusability.
The common features of two or more classes can be put together in a single base class that
can then be inherited by those classes. The need to duplicate the common features in more
than one class is, thus, eliminated.

As an example, the class ‘Mammal’ can be a common base class for the classes ‘Man’,
‘Whale’, ‘Dog’, ‘Cat’, etc. The features that are common to all these derived classes can be
placed in the class ‘Mammal’. Only the special features may be put in the respective derived
classes.

5.7.5 Hybrid Inheritance

Hybrid inheritance, as the name indicates, is simply a mixture of all the above kinds of
inheritances. Figure 5.10 illustrates this.

Figure 5.10 Hybrid inheritance

B

DC

A

 Inheritance 149

 5.8 Order of Invocation of Constructors and Destructors

Constructors are invoked in the following order:
Virtual base class constructors in the order of inheritance
Non-virtual base class constructors in the order of inheritance
Member objects’ constructors in the order of declaration
Derived class constructor

Destructors are invoked in the reverse order. Listing 5.33 illustrates this.

Listing 5.33 Order of invocation of constructors and destructors

/*Beginning of cd_order.cpp*/
#include<iostream.h>

class A
{
 public:
 A()
 {
 cout<<“Constructor of class A called\n”;
 }
 ~A()
 {
 cout<<“Destructor of class A called\n”;
 }
};

class B
{
 public:
 B()
 {
 cout<<“Constructor of class B called\n”;
 }
 ~B()
 {
 cout<<“Destructor of class B called\n”;
 }
};

class C : virtual public A
{
 public:
 C()
 {
 cout<<“Constructor of class C called\n”;
 }
 ~C()
 {
 cout<<“Destructor of class C called\n”;
 }
};

class D : virtual public A
{
 public:
 D()
 {

 Object-Oriented Programming with C++150

 cout<<“Constructor of class D called\n”;
 }
 ~D()
 {
 cout<<“Destructor of class D called\n”;
 }
};

class E
{
 public:
 E()
 {
 cout<<“Constructor of class E called\n”;
 }
 ~E()
 {
 cout<<“Destructor of class E called\n”;
 }
};

class F : public B, public C, public D
{
 private:
 E Eobj;
 public:
 F()
 {
 cout<<“Constructor of class F called\n”;
 }
 ~F()
 {
 cout<<“Destructor of class F called\n”;
 }
};

void main()
{
 F Fobj;
}
/*End of cd_order.cpp*/

Output
Constructor of class A called
Constructor of class B called
Constructor of class C called
Constructor of class D called
Constructor of class E called
Constructor of class F called
Destructor of class F called
Destructor of class E called
Destructor of class D called
Destructor of class C called
Destructor of class B called
Destructor of class A called

 Inheritance 151

C++ allows a class to be de ned in such a way that
it automatically includes member data and member
functions of an existing class. As usual, it allows
additional member data and member functions
to be de ned in the new class also. This is called
inheritance.

The existing class whose features are being inherited
is known as the base class or parent class or super class.
The new class that is being de ned by inheriting from
the base class is known as the derived class or child
class or sub-class.

Objects of the derived class contain data members
of the derived class as well as the base class. Objects of
the base class can call member functions of the derived
class as well as those of the base class.

By allowing only the common data members and
common member functions in the base class, inheritance
enables code reusability and eases code maintenance.
Inheritance implements an ‘is-a’ relationship whereas
containership implements a ‘has-a’ relationship.
Friendship is not inherited.

A base class pointer can point at an object of the
derived class. But a derived class pointer cannot point
at an object of the base class.

Member functions of the base class can be
overridden in the derived class. De ning a member
function in the derived class in such a manner that its
name and signature match those of a base class function
is known as function overriding.

Base class members can be initialized to values
that are passed to the constructor of the derived class.
These values can in turn be passed to the base class
constructor.

‘Protected’ members are inaccessible to non-
member functions. But they are accessible to the
member functions of their own class and to member
functions of the derived classes.

Classes can be derived by the public, protected,
and private keywords. Deriving by the public access

speci er retains the access level of base class members.
Deriving by the protected access speci er reduces the
access level of public base class members to protected
while the access level of protected and private base
class members remains unchanged. Deriving by the
private access speci er reduces the access level of
public and protected base class members to private
while access level of private base class members
remains unchanged. The default access speci er for
inheritance is ‘private’.

In multiple inheritance, a class derives from more
than one base class. Multiple inheritance leads to a
number of ambiguities. Ambiguity arises if two or more
of the base classes have a member of the same name.
Ambiguity can also arise if two or more base classes in
turn inherit from a common base class. This is known
as diamond-shaped inheritance. These ambiguities are
resolved by either of the following:

 Using the scope resolution operator and passing the
name of the actual owner class to call the function

 Overriding the function of the ultimate base class
in the intermediate base class

 Deriving the intermediate base classes by using the
virtual keyword
When a class inherits from a derived class, it is

known as multi-level inheritance. In hierarchical
inheritance, a single class serves as a base class for the
derived class(es). Hybrid inheritance is a mixture of all
the above kinds of inheritances.
Constructors are invoked in the following order:

 Virtual base class constructors in the order of
inheritance

 Non-virtual base class constructors in the order of
inheritance

 Member objects’ constructors in the order of
declaration

 Derived class constructor

Destructors are invoked in the reverse order.

Summary

Key Terms
inheritance
base class, parent class, super class
derived class, child class, subclass
data members of base class and objects of the derived
class

function members of base class and objects of the derived
class
keeping common features in base class for code
reusability
base class and derived class pointers

 Object-Oriented Programming with C++152

Exercises

 1. What is inheritance? How does it enable code
reusability?

 2. How does inheritance influence the size and
functionality of derived class objects?

3. How does inheritance compare with containership?
4. How does inheritance compare with nesting?
5. Create a global non-member function that has a base

class pointer as its formal argument. Call member
functions of the base class through the pointer from
within this function. Now call the function by passing
addresses of the derived class objects.

6. Override one of the base class member functions that
have been called from within the function you have
de ned above, in the derived class. Pass the address
of an object of this derived class to the function.
Which function gets called—the overridden function
of the base class or the overriding function of the
derived class?

 7. Make a derived class pointer point at an object of
the base class by explicit typecasting. Now access
a member of the derived class that does not exist in
the base class. What happens?

8. Why is it necessary for the derived class constructor
to pass values explicitly to the base class constructor
for initializing base class members?

9. A base class has data members. However, a class that
is derived from it does not. Does the derived class
need a constructor? Why?

 10. What is the effect of using the protected access
speci er on the visibility of a base class member?

 11. Will a function of the derived class be able to access a
public member of the base class if no access speci er
was used to derive the derived class? Why?

12. What are the ambiguities that arise in multiple and
diamond-shaped inheritance? How can they be
removed?

13. In which order are the constructors and destructors
called when an object of the derived class is
created?

 14. State true or false
(a) A base class object is usually smaller than an

object of its derived class.
(b) Inheritance increases the visibility of base class

members.
(c) The constructor of a virtual base class is called

before the constructor of a non-virtual base
class.

(d) Inheritance implements a ‘has-a’ relationship.
(e) A public member of the base class can be called

with respect to an object of the derived class in
a non-member function if the protected access
speci er was used to derive the derived class.

 15. Assume that you are building a simpli ed windows-
based drawing program. From a menu, the user would
select which type of shape—ellipse or rectangle—
he/she wants to draw. After selecting, he/she would
drag the mouse pointer from one point of the window
to another and the selected shape would get drawn
within the enclosing rectangle whose diagonally
opposite points coincide with these two points.

 Create a class Shape. Derive two classes—
Ellipse and Rectangle—from this class. Answer
the following questions to arrive at the de nitions of
the classes:
(a) Which class/classes should hold the coordinates

of the enclosing rectangle as its data members—
Shape, Ellipse, Rectangle or all of three?

(b) In the chapter on virtual functions and dynamic
polymorphism, you would realize that the
class Shape should also have functions such as
draw() and getArea(). Should these functions
have only an empty de nition when they are
de ned as members of the class Shape? Would
they have empty definitions when they are
de ned as members of the classes Ellipse and
Rectangle?

overriding of base class member functions
base class initilization
protected members
deriving by public, protected, and private speci ers
multiple inheritance

– ambiguities in multiple inheritance
multi-level inheritance
hierarchical inheritance
order of invocation of constructors and destructors

Virtual Functions and Dynamic
Polymorphism

This chapter deals with one of the most remarkable features of C++: dynamic polymorphism
and how virtual functions enable it.

Virtual functions enable the C++ programmer to create reusable code. So far, function
overriding has appeared to be an unnecessary feature of C++. This chapter explains why C++
provides the feature of function overriding.

The mechanism by which C++ implements the virtual functions has also been dealt with
in this chapter. Pure virtual functions, their need and usage nd a prominent place in this
chapter.

This chapter also discusses the use of virtual destructors and clone functions.

O
V
E
R
V
I
E
W

6

 6.1 Need for Virtual Functions

First, let us consider Listing 6.1 and its output.

Listing 6.1 Overriding member function of base class in the derived class

/*Beginning of A.h*/
#ifndef _A_H_
#define _A_H_
class A
{

public:
void show();

};
#endif
/*End of A.h*/

/*Beginning of B.h*/
#ifndef _B_H_
#define _B_H_
#include”A.h”
class B : public A //class B derived from class A
{

public:
void show(); //function override

};
#endif
/*End of B.h*/

/*Beginning of A.cpp*/
#include”A.h”

 Object-Oriented Programming with C++154

#include<iostream.h>
void A::show()
{
 cout<<”A\n”;
}
/*End of A.cpp*/

/*Beginning of B.cpp*/
#include”B.h”
#include<iostream.h>
void B::show()
{
 A::show(); //calling back the overridden function to
 //logically extend the class definition
 cout<<”B\n”;
}
/*End of B.cpp*/

Now, let us consider the client program shown in Listing 6.2.

Listing 6.2 Calling an overridden function through a pointer of base class type

/*Beginning of try1.cpp*/
#include“B.h”
#include<iostream.h>
void main()
{
 A A1;
 B B1;
 A * APtr;
 APtr=&A1;
 APtr->show(); //A::show() called. APtr is of type A*
 APtr=&B1;
 APtr->show(); //A::show() called. APtr is of type A*
}
/*End of try1.cpp*/

Output
A
A

As we will notice, the base class function is called irrespective of the type of object pointed
at by the pointer. Here, the compiler decides which function is to be called by considering
the type of the pointer; the type of the object pointed at by the pointer is not considered. The
conclusion is that overriding in such cases is ineffective. This can be a serious problem when a
client is trying to extend a class hierarchy. Why? Before we try to nd an answer, let us realize
that calling the function through a reference produces the same effect. See Listing 6.3.

Listing 6.3 Calling an overridden function through a reference of base class type

/*Beginning of try2.cpp*/
#include“B.h” //from listing 6.01
#include<iostream.h>
void main()
{
 A A1;

 Virtual Functions and Dynamic Polymorphism 155

 B B1;
 A &ARef1=A1;
 ARef1.show(); //A::show() called. ARef1 is of type A&
 A &ARef2=B1;
 ARef2.show(); //A::show() called. ARef2 is of type A&
}
/*End of try2.cpp*/

Output
A
A

Now, let us try to understand why the ineffectiveness of overriding can be a major hindrance
in the extension of a class hierarchy.

Placing the pointer and the object pointed at by the pointer in the same function as local
variables does not make any sense. After all, an object can be as effectively accessed through
its name itself. Instead, the pointer appears as a formal argument in function de nitions and
the address of the object is passed as a parameter to the function calls. Similar comments hold
true for the reference variable also. Let us proceed with this piece of knowledge.

Keeping in mind the de nitions of classes A and B from Listing 6.1, we have a look at the
de nition of function abc() of a class X in Listing 6.4.

Listing 6.4 Calling an overridden function through a pointer of base class type

/*Beginning of X.h*/
#ifndef _X_H_
#define _X_H_
#include”A.h”
class X
{
 public:
 void abc(A*); //A* is the formal argument
};
#endif
/*End of X.h*/

/*Beginning of X.cpp*/
#include“X.h”
void X::abc(A * p)
{
 //some lines of (complicated) code
 p->show();
 //some more lines of (complicated) code
}
/*End of X.cpp*/

/*Beginning of try3.cpp*/
#include”X.h”
#include”B.h”
void main()
{
 X X1;
 A A1;
 B B1;
 X1.abc(&A1); //A::show() will be called
 X1.abc(&B1); //A::show() will be called

 Object-Oriented Programming with C++156

}
/*End of try3.cpp*/

Output
A
A

From our recent study we know that the A::show() function will be called against both
of the function calls in the main() function of Listing 6.4.

Now let us take stock of the situation. The library programmer has defined the
following:

The class A
The show() function of class A
The class X
The abc() function of class X

The de nitions of the A::show() and X::abc() functions are nal and have been put in
libraries.

It is expected that a class will get derived from class A. The derived class may override the
show() function of class A. The overriding function will add the extra code that is relevant
to the derived class. To complete the picture, it will also call back the overridden function
A::show(). In this way, the base class function will get successively re ned by the overriding
functions of the derived classes.

However, as Listing 6.4 shows, such an override has so far appeared ineffective. It is highly
desirable that when the address of an object of the derived class B is passed to the X::abc()
function, then the B::show() function should be called (see Listing 6.4). If this happens,
then the same X::abc() function will prove useful irrespective of the type of object whose
address is being passed to it. Unfortunately, such an extension of the class hierarchy has so
far remained elusive.

We must realize that derived classes such as class B may be de ned much after functions
such as X::abc() function have been de ned.

Moreover, the function X::abc() should work equally well whether the address of an
object of the base class A is passed as a parameter to it or the address of an object of any of
the derived classes is passed.

In the present situation, it appears necessary to rede ne the X::abc() function corresponding
to each derived class of class A. That is, the X::abc(A *) function should be copied and
rede ned with a pointer of the derived class type as a formal argument. For example, X::abc(A
*), X::abc(B *), etc. This is certainly impossible because the de nition of the X::abc()
function will be in some library that is inaccessible to the programmer who is de ning the
derived classes. It is also extremely cumbersome to rede ne the X::abc() function for each
of the derived classes. This anyway goes against the principles of code reusability.

Thus, it proves impossible to extend an existing class hierarchy. Function overriding does
not produce the desired effects. Virtual functions solve this problem.

 6.2 Virtual Functions

Virtual functions provide one of the most useful and powerful features of C++ called dynamic
polymorphism.

 Virtual Functions and Dynamic Polymorphism 157

In order to appreciate the various nuances of dynamic polymorphism, let us rst look at a
function (shown in Listing 6.5) that returns the sum of factorials of the numbers that belong
to a range whose limits are passed to it. The function may have the following de nition.

Listing 6.5 Function to compute sum of factorials

long int factorialSum(unsigned int a, unsigned int b)
{
 int i;
 long int sum;
 for(sum=0,i=a;i<=b;i++)
 sum+=factorial(i);
 return sum;
}

Here, factorial() is a function that returns the factorial of the parameter passed to it.
Similarly, the function in Listing 6.6 returns the sum of cubes of the numbers that belong to
the range whose limits are passed to it.

Listing 6.6 Function to compute sum of cubes

long int cubeSum(unsigned int a, unsigned int b)
{
 int i;
 long int sum;
 for(sum=0,i=a;i<=b;i++)
 sum+=cube(i);
 return sum;
}

The cube() function returns the cube of the number passed as a parameter to it.
Again, the function of Listing 6.7 returns the sum of logarithms of the numbers that belong

to the range whose limits are passed to it.

Listing 6.7 Function to compute sum of logarithms

long int logSum(unsigned int a, unsigned int b)
{
 int i;
 long int sum;
 for(sum=0,i=a;i<=b;i++)
 sum+=log(i);
 return sum;
}

The log() function returns the logarithm of the number passed as a parameter to it.
A close look at the de nitions of these functions reveals that the de nitions of the functions

are exactly the same except for the name of the inner function they all call. Nevertheless, the
similarity in their de nitions is striking. It will not be entirely unreasonable on our part to
expect that there must be some means of replacing all these functions by a single function. We
want to make a generic function that will replace all the above functions. For this, we have to
specify a function pointer as an additional formal argument in the function. See Listing 6.8.

 Object-Oriented Programming with C++158

Listing 6.8 Generic function to compute summation of series

//a generic sum function
long int genSum(unsigned int a, unsigned int b,
 long int (*p)())
{
 int i;
 long int sum;
 for(sum=0,i=a;i<=b;i++)
 sum+=(*p)(i);
 return sum;
}

Next, we can call the function by passing the function whose returned values have to
be summed up as the last parameter to this generic function. The following lines of code
demonstrate this.

x=genSum(1,5,factorial);
x=genSum(3,8,cube);

Now, any kind of summation can be carried out by this single generic function, provided
the function whose returned values are being summed up returns a long int or a value of a
compatible type. A very important point to be noted is that the generic sum function is capable
of similarly summing up the returned values from a function that may be created well into
the future! The function call,

(*p)(i),

exhibits polymorphic behaviour, because while compiling it, it is not known which function
will actually be executed. This becomes known only later when the client program that calls
the genSum() function is compiled.

We would like to perform a similar feat in C++ also. Let us look at the de nition of
X::abc() function in Listing 6.4. We would certainly like the show() function of that class
to be called whose object’s address is passed as its parameter. In other words, we would like
to extend the class library as described in the previous section.

If the library programmer, who is de ning the base class, expects and suspects overriding
of a certain member function and wants to make such an override meaningful, he/she should
declare the function as virtual. For declaring a function as virtual, the prototype of the function
within the class should be pre xed with the virtual keyword. The virtual keyword may appear
either before or after the keyword specifying the return type of the function. If the function is
de ned outside the class, then only the prototype should have the virtual keyword.

The syntax for declaring a virtual function as follows:
virtual <return type> <function name>(<formal arguments>);

The following lines of code illustrate how virtual functions are declared.
class A
{
 public:
 virtual void show(); //A::show() is virtual
};

or

 Virtual Functions and Dynamic Polymorphism 159

class A
{
 public:
 void virtual show(); //A::show() is virtual
};

If we de ne the A::show() function in Listing 6.1 as a virtual function by following this
syntax, then the output of Listing 6.2 will be
A
B
instead of
A
A

This means that when the base class pointer points at an object of the derived class and a
call is dispatched to an overridden virtual function, then it is the overriding function of the
derived class, and not the overridden function of the base class, that is called.

Now, let us take stock of the situation. The library programmer’s desire to enable a logical
extension of the class library is now ful lled. Let us go back to Listing 6.4. Even if class A is
derived and the A::show() function is overridden in the derived class much after the X::abc()
function is de ned, the correct function will be called from within the X::abc() function.
That is, if the derived class overrides the base class function and the address of the derived
class object is passed as a parameter to the X::abc() function, then the overriding function
will be called. If no such overriding occurs, the base class function itself will be called.

The function call
p->show();

in the X::abc() function in Listing 6.4 exhibits polymorphic behaviour. Against this function
call, the show() function of the base class or the overriding show() function of any of its
derived classes will be called. However, this polymorphic behaviour is also dynamic in
nature. Which function will be ultimately called is not known when the X::abc() function
is compiled and put in a library. This is decided only when the client program that calls this
function is compiled. We can therefore say that compile time for the client is run time for the
library. Therefore, the polymorphic behaviour exhibited by virtual functions is also termed
as dynamic polymorphism.

It is worthwhile to note that functions in the base class usually contain only those statements
that are relevant to the base class itself. It is not always possible to provide a complete de nition
to them, as the base classes are sometimes abstract in nature (start() method in the Vehicle
class). The overriding functions of the derived class rst call back the overridden base class
functions and then add the extra statements that complete the de nitions with respect to the
derived class itself. Having such base class functions as virtual ensures that the client is able
to call both the functions in sequence as desired.

Virtual functions of the base classes reappear as virtual in the derived classes also. Again,
using the virtual keyword while de ning the overriding derived class function is optional.
See Listing 6.9.

Listing 6.9 Virtual functions remain virtual

/*Beginning of autoVirtual.cpp*/
#include<iostream.h>
class A

 Object-Oriented Programming with C++160

{
 public:
 virtual void show() //A::show() is virtual
 {
 cout<<“A\n”;
 }
};
class B : public A //B derived from A
{
 public:
 void show() //B::show() is virtual
 {
 cout<<“B\n”;
 }
};
class C : public B //C derived from B
{
 public:
 void show() //C::show() is virtual
 {
 cout<<“C\n”;
 }
};

void main()
{
 B * BPtr;
 BPtr = new C;
 BPtr->show();
}
/*End of autoVirtual.cpp*/

Output
C

 6.3 Mechanism of Virtual Functions

Now, let us understand the mechanism of virtual functions. For every base class that has one
or more virtual functions, a table of function addresses is created during run time. This table
of function addresses is called the virtual table or VTBL in short. The VTBL contains the
address of each and every virtual function that has been de ned in the corresponding class.
Addresses of non-virtual functions do not appear in such tables.

Suppose a class A has two virtual functions —abc() and def() (Listing 6.10).

Listing 6.10 A class with two virtual functions

/*Beginning of A.h*/
class A
{
 public:
 virtual void abc();
 virtual void def();
};
/*End of A.h*/

During run time the VTBL of class A will be as shown in Figure 6.1.

 Virtual Functions and Dynamic Polymorphism 161

Figure 6.1 Table addresses of virtual functions of the base class

101 201

address of A::abc() address of A::def()

VTBL of class A

Similarly, such a table of addresses of virtual functions will be created for the derived
class also. If the derived class does not rede ne a certain base class member, then the table
will contain the address of the inherited base class virtual function itself. But if a certain base
class virtual function is rede ned in the derived class, this table will contain the address of the
overriding function. Finally, if the derived class de nes a new virtual function, then its address
will also be contained in the table. Thus, if class B is derived from class A as illustrated in
Listing 6.11, then the VTBL for class B will appear as shown in Figure 6.2.

Listing 6.11 Overriding base class virtual functions and introducing new ones

/*Beginning of B.h*/
#include“A.h”
class B : public A
{
 public:
 void def(); //overriding the A::def() function
 virtual void ghi(); //introduces a new virtual
 //function
};
/*End of B.h*/

Figure 6.2 Table of addresses of virtual functions of the derived class

Notice that since the A::abc() function is not overridden in the derived class, its address
reappears in the VTBL of class B. On the other hand, since the A::def() function was
overridden in the derived class, therefore its address is replaced in the VTBL of class B by the
address of the B::def() function. Finally, a new address appears in the VTBL of class B—the
address of B::ghi() function which is a newly introduced virtual function in class B.

Finally, every object of a class that has a virtual function contains a pointer to the VTBL
of the corresponding class. This pointer is also known as the virtual pointer or VPTR. For
example, an object of class A, apart from all other non-static data members, will also have a
pointer to the VTBL of class A. This table is depicted in Figure 6.1. Similarly, an object of
class B, apart from all other non-static data members, will also have a pointer to the VTBL of
class B. This table is depicted in Figure 6.2. Now, whenever a call is dispatched to a virtual
function through an object or a reference to an object, or through a pointer to an object, then

 Object-Oriented Programming with C++162

 rst of all the value of the VPTR of the object is read. Then the address of the called function
from the corresponding VTBL is obtained. Finally, the function is called through the address
thus obtained.

Now it is obvious how the virtual functions work. If a base class pointer points at (or a base
class reference refers to) an object of the derived class and a virtual function is called with
respect to it, then the derived class function will be called if it overrides the base class virtual
function. If the base class virtual function is not overridden, then it itself will be called.

Note that it is the table size that varies from class to class (for each class there is only
one VTBL). The size of the object does not vary. Only the size of the objects of classes with
virtual functions increases uniformly by four bytes due to the presence of the additional
pointer (VPTR).

We might wonder as to why C++ supports two types of binding—static and dynamic.
Why does it not support dynamic binding only? In other words, why does it not declare all
functions virtual by default? The reason is that virtual functions entail a run-time cost in the
form of space that is wasted for creating the VTBL and embedding the VPTR in each and
every object of the base/derived class. Time is also lost in searching the VTBL for the function
address. If none of the member functions of a certain class will be overridden, then making
them virtual will unnecessarily incur the above cost. Therefore, C++ allows the programmer
to decide whether the member function has to be declared as virtual or not.

 6.4 Pure Virtual Functions

From Section 6.3, we already know that it is optional to override virtual functions. A library
programmer declares a member function as virtual if he/she expects overriding and wants to
make the override effective.

But there are cases where the library programmer would like to enforce an override of
the base class virtual functions. Such a case is now described. A call to a base class virtual
function has been embedded somewhere in the code with respect to a pointer or reference of
base class type. For example, a class A can have a virtual function abc() that is called from
a function xyz() of class X. See Listing 6.12.

Listing 6.12 Using virtual functions

/* Beginning of X.xpp*/
#include“X.h”
void X::xyz(A * p)
{
 //some lines of (complicated) code
 p->abc();
 //some more lines of (complicated) code
}
/*End of X.cpp*/

Now, A::abc() function may satisfy either of the following descriptions.
It has no meaningful definition with respect to the base class. For example, a function to
rotate the shape cannot be defined in the class Shape itself. The algorithm to rotate the
shape is not known since the shape itself is not known. See Listing 6.13.

 Virtual Functions and Dynamic Polymorphism 163

Listing 6.13 Giving blank defi nition to undefi nable virtual function

class Shape
{
 public:
 virtual void rotate();
};

void shape::rotate()
{
 //null definition!
}

It has only a few lines of code, which do not really give it a complete definition. The function
is such that it cannot be called in isolation. It can only be called indirectly through the derived
class’s overriding function that has the necessary code to complete the definition.
Obviously, C++ should provide some mechanism to the library programmer to enforce

the desired override. Pure virtual functions provide this mechanism. If even one member
function is declared as a pure virtual function, then the corresponding class becomes an
 Abstract Base Class (ABC in short). A function is declared as a pure virtual function by
pre xing its prototype with the virtual keyword as before but suf xing it with an ‘equal to’
sign and then by a ‘zero’ (0).

The syntax for declaring a pure virtual function is
virtual <return type> <function name>(<formal
arguments>)=0;

Listing 6.14 illustrates this.

Listing 6.14 Defi ning a pure virtual function

/*Beginning of A.h*/
class A
{
 virtual void abc()=0;
 /*
 rest of the class A
 */
};
/*End of A.h*/

An abstract base class cannot be instantiated, that is, objects of an abstract base class cannot
be declared. Compile-time errors defeat attempts to do so.

A A1; //error

The derived class must override all pure virtual functions of the base class or itself get
branded as an ABC by the compiler. For example, any class that derives from class A in Listing
6.14 must override the A::abc() function to become a concrete or instantiable class.

What is the utility of an ABC? The utility of an ABC lies in its use as an interface. The
library programmer de nes the ABC and also some generic functions that implement the
general ow of a related algorithm without considering the exact data type on which they
will work. An example to illustrate this point follows.

Let us consider an abstract class Shape (see Listing 6.15).

 Object-Oriented Programming with C++164

Listing 6.15 An abstract class

/*Beginning of Shape.h*/
class Shape
{
 int x1,y1,x2,y2; //coordinates of the
 //bounding rectangle
 public:
 void setBoundingRect(int,int,int,int);
 //set the bounding
 //rectangle for the
 //shape
 void move(int,int); //move upper left corner
 //of bounding rectangle
 //to specified
 //coordinates
 virtual void rotate(float)=0; //rotate by angle
 //specified in the
 //parameter
 virtual void shrink(float)=0; //shrink by percent
 //specified in the
 //parameter
 virtual void grow(float)=0; //grow by percent
 //specified in the
 //parameter
 virtual void hflip()=0; //flip horizontally
 virtual void vflip()=0; //flip vertically
 virtual void draw()=0; //draw the shape
};
/*End of Shape.h*/

Let us consider a client driver function that the programmer de nes to operate upon
an object of class Shape or any of its derived classes. This function will ash a shape in a
certain sequence. While the actual object that will be ashed is not known when the function
is de ned, the sequence of operations for carrying out the operation has been decided. See
Listing 6.16.

Listing 6.16 Client code to use the abstract class

/*Beginning of MyWindow.cpp*/
#include“MyWindow.h”
void MyWindow::flash(Shape * p)
{
 p->setBoundingRect(0,0,10,10);
 p->draw();
 p->rotate(90);
 for(int x=0;x<=10;x++)
 p->shrink(5);
 for(int x=0;x<=10;x++)
 p->grow(5);
 p->hlip();
 p->hflip();
 p->vflip();
 p->vflip();
}
/*

 Virtual Functions and Dynamic Polymorphism 165

 definitions of rest of the functions of class MyWindow
*/
/*End of MyWindow.cpp*/

There might be many more lines of code in the function of Listing 6.16. But the important
thing to be remembered is that the class, which will be derived from the class Shape and whose
object’s address will be passed to this function, might be de ned much later. In addition,
the same function will work equally well for each such class. Moreover, there can be many
such client programs. After all, what is a class library if it does not have plenty of clients!
But there is absolutely no need to de ne such driver functions for each of the derived classes
separately. However, every such class will have to de ne each and every pure virtual function
of the class Shape. The abstract nature of the base class ensures this.

Thus, the ABC behaves just like an interface with little or no implementation of its own.
The facility that the library programmer gets is that he/she is free to de ne generic functions
without bothering about the implementation details. He/she can enforce all necessary overrides.
The advantage for the application programmer is that he/she can derive any class from the
ABC, provide his/her own implementations for the derived class and then use the same driver
functions like MyWindow:: ash() for any of these derived classes.

Abstract Base Classes are also used to build implementation in stages. We know that if
a pure virtual function inherited from the base class is not de ned in the derived class, it
remains a pure virtual function in the derived class. Thus, the derived class also becomes an
abstract class.

Let me exemplify this explanation. Suppose there is an abstract class A having a number
of pure virtual functions (Listing 6.17).

Listing 6.17 An abstract base class

class A
{
 public:
 virtual void abc()=0;
 virtual void def()=0;
 virtual void ghi()=0;
};

void main()
{
 A A1; //ERROR!
}

A class B is derived from it. This class B overrides and de nes only a few of the functions
of class A. Thus, class B is also an ABC. See Listing 6.18.

Listing 6.18 Not defi ning all base class pure virtual functions results in an abstract class

class B : public A
{
 public:
 void abc()
 {
 //definition of B::abc() function
 }

 Object-Oriented Programming with C++166

};

void main()
{
 B B1; //ERROR!
}

Next, a class C derives from class B. It overrides and de nes the remaining pure virtual
functions of class A. Thus, class C becomes a concrete class. See Listing 6.19.

Listing 6.19 Defi ning all the inherited pure virtual functions results in a concrete class

class C : public B
{
 public:
 void def()
 {
 //definition of C::def() function
 }
 void ghi()
 {
 //definition of C::ghi() function
 }
};

void main()
{
 C C1; //OK
}

We may ask why all pure virtual functions of class A were not de ned in class B itself. The
reason is that there is no concrete de nition of the remaining functions with respect to class B.
It itself serves as a base class for a number of derived classes. Each of the derived classes have
a different de nition of the pure virtual functions of class A that are left unde ned by class B.
If class B de nes any of these functions, then such functions will themselves be called when
a pointer of class A type points at an object of any of the derived classes of class B and calls
are dispatched to the pure virtual function of class A. This is obviously undesirable. Class B
will de ne only those pure virtual functions of class A that can have a suitable meaning with
respect to it. Such de nitions will be applicable to all its derived classes.

Although concrete classes must provide an implementation to all the pure virtual functions,
the abstract data type may provide one as well. The derived class can invoke it by using the
scope resolution operator (Listing 6.20).

Listing 6.20 Defi ning a pure virtual function in the abstract base class itself

class A //An abstract base class
{
 public:
 virtual void abc()=0;
};

void A::abc() //pure virtual function defined
{
 //definition of A::abc() function
}

 Virtual Functions and Dynamic Polymorphism 167

class B : public A
{
 public:
 void abc();
};

void B::abc()
{
 A::abc();
 //definition of rest of the B::abc() function
}

The ability to provide an implementation to pure virtual methods allows data types to
provide core functionality while still requiring derived classes to provide a specialized
implementation. Note that the class remains abstract even if we provide an implementation
for its pure virtual function.

As per requirements, a member function can be non-virtual, virtual, or pure virtual.

 6.5 Virtual Destructors and Virtual Constructors

We will now study the creation and use of virtual constructors and destructors. We will rst
study virtual destructors. This will be followed by a study of virtual constructors.

6.5.1 Virtual Destructors

Destructors can be de ned as virtual. If necessary, destructors must be de ned as virtual.
Why? Let us consider Listing 6.21 (A is a base class and B is a class derived from A).

Listing 6.21 Destroying a derived class object through a base class pointer

A * APtr;
APtr = new B;
. . . .
. . . .
delete APtr;

Let us consider the last line of Listing 6.21 that deletes the memory occupied by the object
of class B at which ‘APtr’ points. Because ‘APtr’ is of base class type, only the base class
destructor is called with respect to the object before the entire memory occupied by the object
is returned to the OS. This can lead to memory leaks apart from other problems. Suppose
objects of the derived class B have a pointer. It is possible that this pointer, which is contained
in the object at which ‘APtr’ points, is assigned a dynamically allocated memory block during
the lifetime of the object. Although the destructor of class B destroys that memory block to
prevent memory leaks, a memory leak will still occur because the destructor of class B is
not called.

On the other hand, if the destructor of class A is virtual, then against the last line of Listing
6.21, rst the destructor of class B will be called, then the destructor of class A will be called.
Finally, the entire memory block occupied by the object will be returned to the OS.

The conclusion is that if we expect the use of the delete operator on objects of a base
class and the presence of pointers in the derived classes, we must declare the destructor of
the base class as virtual.

 Object-Oriented Programming with C++168

An interesting point to be noted is that when a pointer of the base class points at a
dynamically created object of the derived class and then deletes the memory occupied by
the object, the entire block of memory is deleted. In other words, if the total size of the non-
static data members of the base class is ‘x’ and the total size of the non-static data members
of the derived class is ‘y’, then the total block of size ‘x+y’ is deleted. This is irrespective of
whether the base class destructor is virtual or not.

6.5.2 Virtual Constructors

First, let us understand that constructors cannot be virtual. Declaring a constructor as virtual
results in a compile-time error. Why? Consider a class A, and a class B that is derived from
A. If the constructor of class A is virtual, then in the following statement

A * p = new B;

the constructor of class B alone will be called. The constructor of class A will not be called.
This can lead to trouble. What will happen if class A has a pointer that the constructor correctly
initializes? Since the constructor is not called, a rogue pointer will result.

However, the need to construct virtually arises very frequently while programming in C++.
Let us consider the function in the following lines of code.

void abc(A * p) //A is a class
{
 //definition of abc() function
}

For reasons that will be listed later, an exact copy of the object at which ‘p’ points is
required within the ‘abc()’ function. This means that another object that has the same values
as the object at which ‘p’ points needs to be created within the ‘abc()’ function. Calling the
copy constructor seems to serve the purpose (Listing 6.22).

Listing 6.22 Trying to clone using copy constructor

 A * q = new A(*p);

or
 A A1(*p);

This will work if the designer of class A has correctly de ned the copy constructor and
if ‘p’ points at an object of class A and not at an object of a class that is derived directly or
indirectly from class A. If ‘p’ points at an object of a class that is derived directly or indirectly
from class A, the call to the copy constructor as mentioned above will merely create an object
of class A. The data members of this object will have the same values as the corresponding
data members of the object at which ‘p’ points. Nevertheless, it will not be of the same type
(it will be smaller in size with less data members).

How can this problem be solved? If the designer of class A suspects and expects the need
to create copies like this, he/she will de ne a clone function to do so. Such a function can be
de ned as shown in Listing 6.23.

Listing 6.23 A clone function in the base class

class A
{

 Virtual Functions and Dynamic Polymorphism 169

 public:
 virtual A * clone()
 {
 return new A(*this);
 }
 /*
 definition of class A
 */
};

Classes that derive from class A will similarly de ne and override this clone function
(Listing 6.24).

Listing 6.24 A clone function in the derived class

class B : public A
{
 public:
 virtual B * clone()
 {
 return new B(*this);
 }
 /*
 definition of class B
 */
};

Whenever a clone of the object is required (from within the ‘abc()’ function as described
in Listing 6.24), the clone function is called (Listing 6.25). The clone object created is
subsequently destroyed.

Listing 6.25 Using the clone function

void abc(A * p)
{

 A * q = p->clone();

 delete q;
}

Since the clone() function is virtual, its correct version is called. Thus, if ‘p’ points at
an object of class A, then another object of class A itself is created which is an exact copy
of the object at which ‘p’ is pointing. And, if ‘p’ points at an object of a class derived from
A, then another object of that same class is created which is an exact copy of the object at
which ‘p’ is pointing. Thus, the abc() function succeeds in obtaining an exact copy of the
object at which ‘p’ is pointing while being unaware of its type.

Since the clone function constructs an object and is also virtual, we sometimes call it
a virtual constructor! But we must remember that there is actually nothing like a virtual
constructor.

Now let us discuss the need for the clone function. Although there are several examples
that highlight this need, the following example alone should suf ce.

 Object-Oriented Programming with C++170

Generic code contained in the functions of the base
class remains inextensible without the use of virtual
functions. Virtual functions make expected overrides
in the derived class effective. Marking a base class
function as a pure virtual function forces its override
in the derived class.

An abstract base class is a class that has at least one
pure virtual function. An abstract base class cannot
be instantiated. Virtual destructors ensure a proper
cleanup operation if the ‘delete’ operator is applied
on a base class pointer that points at a derived class
object.

Although we cannot have virtual constructors, clone
functions that construct virtually can be used instead.
A clone function returns an exact copy of the object
at which the base class pointer, with respect to which
it is called, points. If the pointer points at a base class
object, the clone function creates an object of the base
class and returns a pointer to it. If the pointer points
at a derived class object, the clone function creates an
object of the derived class and returns a pointer to it.

Summary

Key Terms
virtual functions
extending class libraries by using virtual functions
pure virtual functions

abstract base class
virtual destructors
clone functions

Let us consider a function that copies and pastes a graphics object to a different place of
the window. See Listing 6.26.

Listing 6.26 An example to illustrate the use of the clone function

void MyWindow::copyPaste(const Shape * const p,
unsigned int x, unsigned int y)

{
 Shape * q;
 q=p->clone();
 q->move(x,y);
 q->show();
 //code to attach the new object to the list
 //of current objects on the screen
}

The pointer ‘p’ points at the object being copied. The variables ‘x’ and ‘y’ are the coordinates
of the place where the copied object is to be pasted. Although ‘p’ might point at an object of
any of the classes that are derived from the Shape class, the entire operation of copying and
pasting works in all cases. The only precondition is that the classes that are derived from the
Shape class must de ne the clone() function, the move() function, and the show() function.
This is easily ensured by declaring all these functions as pure virtual functions in the Shape
class. An additional point to be noted in this speci c example is that the clone object should
not be destroyed. Instead, it should be added to the list of existing objects on the screen.

 Virtual Functions and Dynamic Polymorphism 171

Exercises

 1. What is a virtual function? When is it needed?
 2. How does the compiler resolve a call to a virtual

function?
 3. Suppose a member function of a class has been

prototyped as virtual. The function has not been
de ned. Now, when we instantiate the class, the
linker gives an error even if we do not call the
function. Why? (Hint: Remember that if a non-virtual
function is prototyped and then neither called nor
de ned, no error is generated.)

 4. What is a pure virtual function? When is it needed?
 5. State true or false.

(a) Virtual functions implement static polymor-
phism.

(b) We cannot have a virtual constructor.
(c) An abstract base class cannot be instantiated.
(d) We cannot de ne a pure virtual function.

 6. Write a program to nd out whether a virtual function
can be a friend of another class.

 7. Create a class Shape. It should have no data members.
It should have a pure virtual function get_area().

 Derive a class Rectangle from the class Shape.
It should have two data members—one for holding
the width of the rectangle and the other for holding
its height. Both of these data members should be
of oat type. Override the Shape::get_area()
function inside this class. This overriding function
should return the area of the rectangle. Also, write a
constructor for the class.

 Derive another class Ellipse from the class
Shape. It should also have two data members—one
for holding the length of the major axis of the ellipse
and the other for holding the length of its minor axis.
Both of these data members should be of oat type.
Override the Shape::get_area() function inside
this class. This overriding function should return the
area of the ellipse. Also, write a constructor for the
class.

 Create a class Canvas. It should have no data
members. Its only member function, display(),
will have a reference of class Shape type as a formal
argument. With this reference, call the Shape::get_
area() function inside Canvas:: display()
function.

 Finally, write a main() function to utilize these
classes. Declare objects of classes Rectangle,
Ellipse, and Canvas. Call the Canvas::display()
function rst by passing the object of class Rectangle
and then by passing the object of class Ellipse to
it. Observe the output and ascertain whether the
base class function or the derived class function got
called.

 Rede ne the Shape::get_area() function as
a non-virtual function and see the difference in the
output.

Stream and File Handling

This chapter deals with handling streams. It includes a study of classes in the C++ standard
library that enable a programmer to handle ow of data to and from the console and also from
disk les.

Text and binary mode of handling streams and the distinction between the two forms an
important part of the chapter.

The use of classes and their member functions that enable a random access to disk les is
discussed. Objects can and in many cases should be made capable of outputting and loading
their own data to and from disk les. This chapter tells you how.

Error handling is an important feature expected in any industrial strength software. This
chapter discusses the use of error handling functions that pertain to streams.

Manipulators are a handy tool for the C++ programmer. This chapter elucidates the use of
many system-de ned manipulators and the method of creating user-speci c ones.

O

V

E

R

V

I

E

W

7

 7.1 Streams

Stream means ow of data. We declare variables in our C++ programs for holding the data
temporarily in the memory. Streams are nothing but a ow of data to and from program
variables.

Input stream is the ow of data from a le to program variables. The keyboard is also
treated as source of input stream. Output stream is the ow of data to a le from program
variables. The monitor is also treated as target for output stream.

 7.2 Class Hierarchy for Handling Streams

C++ provides us with a library of classes that have the functionality to implement various
aspects of stream handling. These classes have been arranged in a hierarchical fashion by
using inheritance. The important portion of this hierarchy is depicted in Figure 7.1.

The class ios is the base class in this hierarchy.
The class ostream is derived from the class ios and handles the general output stream.

The insertion operator (<<) is de ned and overloaded in the class ostream to handle output
streams from program variables to output les.

The class ostream_withassign is derived from the class ostream. cout is an object of
the class ostream_withassign and stands for console output. As mentioned earlier, C++
treats all peripheral devices as les. It treats the monitor also as a le (for output stream). The
object cout represents the monitor.

 Stream and File Handling 173

Thus the statement
cout<<x;

translates as:
“Insert the stream from the program variable ‘x’ into the le called cout (which is nothing

but the monitor).”
The class istream is derived from the class ios and handles the general input streams.

The extraction operator (>>) is de ned and overloaded in the class istream to handle inputs
streams from input les to program variables.

The class istream_withassign is derived from the class istream. cin is an object of
the class istream_withassign and stands for console input. C++ treats all peripheral devices
as les. It treats the keyboard also as a le (for input stream). The object cin represents the
keyboard.

Thus the statement
cin>>x;

translates as:
“Extract the stream from the le (which is nothing but the keyboard) and place it in the

program variable ‘x’.”
The class iostream is derived by multiple inheritance from the classes istream and

ostream. It has the functionality to handle both input and output streams.
The class ofstream is derived from the class ostream. It has the functionality to handle

output streams to disk les. Objects of the class ofstream represent output les on the disk.
Thus, the following piece of code opens a disk le for output (note that the name of the le
to be opened is passed as a string to the constructor of the class):

ofstream ofile(“first.dat”);

The le rst.dat is opened for output in the directory where the executable will run.
The entire path of the le to be opened can also be pre xed to the name of the le. Since the
insertion operator is de ned in the base class of the class ofstream, the object o le can be
passed as the left-hand side operand instead of cout.

ofile<<x;

Figure 7.1 Library classes that handle streams

 Object-Oriented Programming with C++174

The above statement translates as:
“Insert the stream from the program variable ‘x’ into the le rst.dat.”
The class ifstream is derived from the class istream. It has the functionality to handle

input streams from disk les. Objects of the class ifstream represent input les on the disk.
Thus, the following piece of code opens a disk le for input (note that the name of the le to
be opened is passed as a string to the constructor of the class):

ifstream ifile(“first.dat”);

The le rst.dat is opened for input in the directory where the executable will run. The
entire path of the le to be opened can also be pre xed to the name of the le. Since the
extraction operator is de ned in the base class of the class ifstream, the object i le can be
passed as the left-hand side operand instead of cin.

ifile>>x;

This statement translates as:
“Extract the stream from the le rst.dat and place it in the program variable ‘x’.”
The class fstream is derived from the class iostream. It has the functionality to handle

both input and output streams from and to disk les.
The classes for handling streams to and from disk les are de ned in the header le

fstream.h. The classes for handling general streams are de ned in the header le iostream.h.
The header le iostream.h is included in the le fstream.h.

 7.3 Text and Binary Input/Output

In this section, the two modes of input/output—text mode and binary mode—will be explained.
The difference between them and the suitability of each mode for console I/O and disk I/O
will also be explained.

7.3.1 Data Storage in Memory

During run time, the value of a character variable is stored in the memory as the binary
equivalent of its ASCII equivalent. But the value of an integer, oat, or double-type variable
is simply stored as its binary equivalent.

For example, if the value of a character-type variable is ‘A’, it is stored in one byte where
the bits represent the number ‘65’, which is the ASCII equivalent of ‘A’, in base 2.

01000001

But if the value of an integer-type variable is ‘65’, it is stored in four bytes where the bits
represent the number ‘65’ in base 2.

01000001
00000000
00000000
00000000

The value of a oat and a double-type variable is stored in a similar fashion. Thus, the value
of a numeric variable (integer, oat, or double) is stored in base 2 format in the memory.

 Stream and File Handling 175

7.3.2 Input/Output of Character Data

There is no difference between text mode I/O and binary mode I/O with respect to character-
type variables. In both modes, the value of the character-type data is copied from the memory
into the output le as it is and copied from the input le into the memory as it is.

If a function that outputs in binary mode is called to output the value of a character variable,
it will copy its value into the output le without transforming its representation in any way.
A function that outputs in text mode will output the value of a character-type variable in the
same way.

7.3.3 Input/Output of Numeric Data

A standard library function that outputs numeric data in text mode will reckon that the data,
which is in base 2 format in the memory, needs to be output in base 10 (text) format. It will
therefore read the value of the source variable from memory, transform the representation of
the data from the existing base 2 to base 10 and only then copy it to the output le.

Whereas a standard library function that outputs numeric data in binary mode will reckon
that the data, which is in base 2 format in the memory, needs to be output in base 2 (binary)
format itself. It will therefore read the value of the source variable from memory, not transform
the data from the existing base 2 to base 10 and simply copy it to the output le.

Further, a standard library function that inputs numeric data in text mode will reckon that
the data, which is to be input, exists in base 10 (text) format. It will therefore read the value
from the input le, transform the representation of the data from the existing base 10 to base
2 and only then copy it to the target variable in memory.

Whereas a standard library function that inputs numeric data in binary mode will reckon
that the data, which is to be read, already exists in base 2 (binary) format. It will therefore
read the value from the memory, not transform the data in any way and simply copy it into
the target variable in memory.

Significance of the difference between binary mode and text mode I/O for numeric data

Suppose the value of an integer-type variable is ‘65’. The value ‘65’ is stored, in the memory
block of four bytes occupied by the variable, in binary mode.

The foregoing data will occupy four bytes with the same bit setting in the output disk le,
if it is copied by an output function that outputs in binary mode.

If this output function is used to output to the monitor, instead of a disk le, the value
‘A’ followed by three blank spaces will be displayed. This is because the lowest byte of the
variable contains ‘65’, which is the ASCII equivalent of ‘A’ and the rest of the three bytes
have all their bits set to zero. The monitor displays the ASCII equivalent of the value in each
byte in the output stream that is supplied to it. But, we would like to see ‘65’ and not ‘A’
followed by three blank spaces on the monitor.

However, if the same value is copied by an output function that outputs in text mode,
this data will occupy two bytes with a different bit setting in the output le. The rst byte
will have its bits set to represent the character ‘6’ (The ASCII equivalent of ‘6’ will be stored
in base 2 format). While the second byte will have its bits set to represent the character ‘5’
(The ASCII equivalent of ‘5’ will be stored in base 2 format). This is because the output
function, since it works in text mode, has transformed the representation of the data from
base 2 to base 10.

 Object-Oriented Programming with C++176

For the same reason, if the same output function is used to output to the monitor, instead
of a disk le, the value ‘65’ will be displayed. This is the kind of display we would desire.

An input function that inputs in binary mode will read the rst four bytes from an input
 le if it is asked to input into an integer-type variable. It will copy the read value into the

memory block of four bytes occupied by the target integer variable without transforming
the representation of the data. This function will not transform the data because it inputs in
binary mode and therefore reckons that the data existing in the input stream is already in
base 2 format.

If the input is read from the keyboard instead of a disk le, the function reads the rst
four bytes from the keyboard and copies the read value into the memory block of four bytes
occupied by an integer variable without transforming the representation of the data.

Further, a function that reads in text mode, reads the bytes from the input le up to the
white space. It reckons that the read value is in base 10 format. It therefore determines the
equivalent representation in base 2 format. This produces a value that occupies four bytes.
The function then copies these four bytes into the memory block of four bytes occupied by
integer variable.

If the input is read from the keyboard instead of a disk le, the function reads the bytes from
the keyboard up to the white space and operates upon it in a similar fashion. For example,
if the user enters the number ‘65’, the characters ‘6’ and ‘5’ get stored in the keyboard
buffer, which represents the input le in this case. The characters ‘6’ and ‘5’ that are stored
in two bytes represent the number ‘65’ in base 10 format. The input function transforms
this representation into base 2 format and stores the resultant integer value in the four bytes
occupied by the target integer variable.

A very important and interesting observation can be made here. Text mode is suitable for
console I/O because they are in base 10 format with which we are accustomed. For reasons
that will be explained shortly, binary mode is suitable for disk I/O.

7.3.4 Note on Opening Disk Files for I/O

In this section, that is, Section 7.3, ‘Text and binary input/output’, we would open les for
writing through the constructor of class ofstream. If the le being opened does not exist,
it would get created. If it does exist, its contents would get overwritten. For producing a
different effect—appending or obtaining errors if the le does not exist—we have to apply
the techniques that are explained in Sections 7.4 and 7.8. We would also open les for reading
through the constructor of class ifstream. If the le being opened does not exist, a run-time
error is produced. The technique of handling such errors is explained in Section 7.8.

 7.4 Text Versus Binary Files

Now let us talk about text les and binary les.
In text les, binary data (numeric data that is stored in base 2 format in memory) is

stored in base 10 format. In binary les, the same binary data is stored in the same format
(base 2).

Before proceeding further, let us be clear that the les by themselves are neither text les
nor binary les. It is the mode in which the data is written into them that de nes the nature
of the les.

As we have already learnt, when the value of a numeric variable (say an integer) is output
in binary mode, it occupies the same number of bytes in the output le as it does in the

 Stream and File Handling 177

memory, which is four. Thus, if a number of such values are output in binary mode, the size
of the output le will always be a multiple of four. Obviously, we can determine the size of
the le and divide it by four to easily nd the number of integers (records) that are stored in
the le.

We can apply this simple technique to values of other types including objects. Suppose
an object consists of an integer (four bytes), a oat (four bytes), and a double (eight bytes).
This object occupies 16 bytes in the memory. If output in binary mode, it will occupy 16
bytes in the output le also.

The C++ standard library provides functions that input (read from les and write the read
values into variables) in binary mode. These functions require the address of the variable
whose data needs to be input along with its size. The code inside these functions reads the
value from a point in the input le at which a temporary pointer points (more about this
pointer later). The size of the block of bytes this code reads is equal to the supplied size.
The code then writes the read data into the memory block whose starting address is equal
to the supplied address. Functions that output in binary mode work in a similar fashion. As
we can see, binary input functions treat size as the delimiter while reading data from disk
 les. Therefore, the binary functions that write data into the disks need not insert an arti cial

delimiter while the data is output.
Let us contrast this to what happens in text mode. In text mode, records stored in the output

 le are of variable lengths. Again, for our understanding, let us take the case of an integer-
type variable. Its value is always stored in four bytes in the memory. Suppose it is output to
a disk le in text mode. If its value is ‘1’, it will occupy one byte in the output le although it
occupies four bytes in the memory. If its value is ‘11’, it will occupy two bytes in the output
 le although it occupies four bytes in the memory. If its value is ‘111’, it will occupy three

bytes in the output le although it occupies four bytes in the memory and so on.
Thus, in case values are output in text mode, size of the output value is not xed. Hence,

size cannot be used as the delimiter by functions that will read the output values in future. But
it should be ensured that values that are output in text mode can be read correctly in future.
For this, the code that calls a text mode function for output should also insert a delimiter of
choice in the output le after every such call. This ensures that another piece of code is able
to successfully read this output value.

Choosing a suitable delimiter is certainly an issue. There should be no chance of the
delimiting character itself becoming a part of the output value anytime in the future. But this
is dif cult to guarantee.

There is another dif culty in outputting in text mode. The size of a le does not indicate
the number of records stored in it. This is because the size of the records is not xed.

 7.5 Text Output/Input

7.5.1 Text Output

Text output is achieved in C++ by:
The insertion operator
The put() function

 Object-Oriented Programming with C++178

 The insertion operator

As we have seen in the rst section of this chapter, the insertion operator can be used to output
values to disk les. The insertion operator outputs in text mode.

The insertion operator has been de ned and overloaded in the class ostream. It takes an
object of the class ostream or an object of a class that is derived from the class ostream
as its left-hand side operand. As its right-hand side operand, it takes a value of one of the
fundamental data types. It copies the value on its right into the le that is associated with the
object on its left. Let us study its action on data of different types. We must keep in mind that
the insertion operator has been overloaded differently for each of the data types as follows:

1. Inserting characters into output streams using the insertion operator: A character-type
value occupies one byte in the memory. If output in text mode by the insertion operator, it
occupies one byte in the output le too. The bit setting of both the bytes is identical. See
Listing 7.1.

Listing 7.1 Outputting a character in text mode by using the insertion operator

/*Beginning of charFileOutput.cpp*/
#include<fstream.h>
void main()
{
 char cVar;
 ofstream ofile(“first.dat”);
 cVar=’A’;
 ofile<<cVar;
}
/*End of charFileOutput.cpp*/

The last statement of Listing 7.1 copies the value of cVar from memory to the disk le
 rst.dat without transforming its representation in any way.

2. Inserting integers into output streams using the insertion operator: An integer-type
value occupies four bytes in the memory. As we already know, if output in text mode by the
insertion operator, the number of bytes it occupies in the output le depends upon its value.
See Listing 7.2.

Listing 7.2 Outputting an integer in text mode by using the insertion operator

/*Beginning of intFileOutput.cpp*/
#include<fstream.h>
void main()
{
 int iVar;
 ofstream ofile(“first.dat”);
 iVar=111;
 ofile<<iVar;
}
/*End of intFileOutput.cpp*/

The last statement of Listing 7.2 copies the value of ‘iVar’ from memory to the disk le
‘ rst.dat’ after transforming its representation from base 2 to base 10. The value of ‘iVar’
will be written in text format (base 10) and will therefore occupy three bytes in the output

 Stream and File Handling 179

 le. If the value of ‘iVar’ is ‘11111’ instead of ‘111’, it will occupy ve bytes in the output
 le instead of three.

3. Inserting fl oats and doubles into output streams using the insertion operator: A oat-
type value occupies four bytes in the memory. As we already know, if output in text mode
by the insertion operator, the number of bytes it occupies in the output le depends upon its
value. See Listing 7.3.

Listing 7.3 Outputting a fl oat in text mode by using the insertion operator

/*Beginning of floatFileOutput.cpp*/
#include<fstream.h>
void main()
{
 float fVar;
 ofstream ofile(“first.dat”);
 fVar=1.111;
 ofile<<fVar;
}
/*End of floatFileOutput.cpp*/

The last statement of Listing 7.3 copies the value of ‘fVar’ from memory to the disk le
 rst.dat after transforming its representation from base 2 to base 10. The value of ‘fVar’
will be written in text format (base 10) and will therefore occupy ve bytes in the output le.
If the value of ‘fVar’ is ‘11.111’ instead of ‘1.111’, it will occupy six bytes in the output le
instead of ve.

The insertion operator works in the same way for double-type variables.

4. Inserting strings into output streams using the insertion operator: A character array is
allocated a xed number of bytes in the memory during run time. However, the actual string
contained in it usually occupies only a part of that memory. For example,

char cArr[20]=“abcd”;

The character array ‘cArr’ will be allocated 20 bytes during run time. But the string inside
it will occupy only four bytes. The fth byte will have the NULL character.

If the value of ‘cArr’ is output by the insertion operator, it will occupy four bytes in the
output le. See Listing 7.4.

Listing 7.4 Outputting a string in text mode by using the insertion operator

/*Beginning of charArrFileOutput.cpp*/
#include<fstream.h>
void main()
{
 char cArr[20]=“abcd”;
 ofstream ofile(“first.dat”);
 ofile<<cArr;
}
/*End of charArrFileOutput.cpp*/

But if ‘cArr’ contains a string of length ve, then ve bytes will get written into the output
 le.

 Object-Oriented Programming with C++180

5. Inserting objects into output streams using the insertion operator: If we want to use the
insertion operator for inserting objects of a particular class into the output stream, we have
to overload it for that class. The concept of operator overloading, its need, and its use are
elucidated in the next chapter.

The put() function

The put() function is a member of the ostream class. Its prototype is
 ostream & ostream :: put(char c);

From the prototype, it is obvious that the function can be called with respect to an object
of the ostream class or any of the classes that are derived from the ostream class. One such
object is cout.

This function copies the character that is passed as a parameter to it into the output le
associated with the object with respect to which the function is called. Let us consider the
explanatory program given in Listing 7.5.

Listing 7.5 The put() function

/*Beginning of put.cpp*/
#include<fstream.h>
void main()
{
 ofstream ofile(“first.dat”);
 ofile.put(‘a’);
}
/*End of put.cpp*/

In Listing 7.5, the put() function is called with respect to the object o le. This object is
associated with the le rst.dat. Consequently, the character ‘a’ is written into the le.

As was mentioned earlier, the put() function can be used with the object cout also (as
shown in Listing 7.6).

Listing 7.6 Using the put() function with cout object

/*Beginning of coutPut.cpp*/
#include<iostream.h>
void main()
{
 cout.put(‘a’);
}
/*End of coutPut.cpp*/

Output
a

The call to the put() function in Listing 7.6 will display the character ‘a’ on the
monitor.

We may wonder what is the difference between using the put() function and the insertion
operator. After all we could have used the insertion operator instead of calling the put()
function as follows:

cout<<‘a’;

 Stream and File Handling 181

The difference between the insertion operator and the put() function is that while the
former modi es the format of the output with respect to the manipulators set earlier, the latter
simply ignores format manipulator settings. Formatted output is dealt with in one of the later
sections of this chapter.

7.5.2 Text Input

Text input is achieved in C++ by:
The extraction operator
The get() function
The getline() function

The extraction operator

As we have seen earlier in this chapter, the extraction operator can be used to input values
from disk les. The extraction operator inputs in text mode.

The extraction operator has been de ned and overloaded in the class istream. It takes
an object of the class istream or an object of a class that is derived from the class istream
as its left-hand side operand. As its right-hand side operand, it takes a variable of one of the
fundamental data types. It copies the value found at the current location in the le that is
associated with the object on its left into the variable on its right. Let us study its action on
data of different types. We must keep in mind that the extraction operator has been overloaded
differently for each of the data types as follows:

1. Extracting characters from input streams using the extraction operator: If the right-hand
side operand of the extraction operator is a character-type variable, it reads one byte from
the input le that is attached with the object on its left and writes it into the variable (Listing
7.7).

Listing 7.7 Inputting a character in text mode by using the extraction operator

/*Beginning of charFileInputText.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 ifstream ifile(“first.dat”); //Current location is at
 //the beginning of the file.
 //Suppose first byte in the
 //file contains ‘A’.
 char cVar;
 ifile>>cVar;
 cout<<cVar;
}
/*End of charFileInputText.cpp*/

Output
A

2. Extracting integers from input streams using the extraction operator: If the right-hand
side operand of the extraction operator is an integer-type variable, it reads bytes from the
input le that is attached with the object on its left until it nds a white space. It reckons

 Object-Oriented Programming with C++182

that the read set of bytes represents an integer in base 10 format. Therefore, the extraction
operator converts the read value into base 2 format. Finally, it writes the converted value
into the variable.

Suppose the contents of a le rst.dat are as follows:
11 22 33

We must note that there is a space after ‘11’. The rst byte of the le has the ASCII
equivalent of the character ‘1’. The second byte also has the ASCII equivalent of the character
‘1’. The third byte has the ASCII equivalent of the character ‘ ’ (space). The fourth byte has
the ASCII equivalent of the character ‘2’ and so on.

Now let us consider Listing 7.8.

Listing 7.8 Inputting an integer in text mode by using the extraction operator

/*Beginning of intFileInputText.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 ifstream ifile(“first.dat”);
 int iVar;
 ifile>>iVar;
 cout<<iVar;
}
/*End of intFileInputText.cpp*/

Output
11

As discussed earlier, the extraction operator reads from the le until it nds a white space.
Since the third byte contains a white space, it reads the rst two bytes only. These two bytes
represent the number eleven in base 10 format. The extraction operator converts this into base
2 format. The resultant value is in four bytes. It writes this value into the variable ‘iVar’.

3. Extracting fl oats and doubles from input streams using the extraction operator: Values
for oat and double-type variables are extracted in the same as they are for integer type
variables.

4. Extracting strings from input streams using the extraction operator: As in the case of
integers, the extraction operator reads from the le until it nds a white space while reading
value for a character array.

Suppose the contents of a le rst.dat are:
abc def ghi

We must note that there is a white space after ‘c’. See Listing 7.9.

Listing 7.9 Inputting a character array by using the extraction operator

/*Beginning of charArrFileInputText.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 ifstream ifile(“first.dat”);

 Stream and File Handling 183

 char cArr[20];
 ifile>>cArr;
 cout<<cArr;
}
/*End of charArrFileInputText.cpp*/

Output
abc

Obviously, the extraction operator read up to the white space and stored the read value in
the character array.

5. Extracting objects from input streams using the extraction operator: If we want to use
the extraction operator for extracting objects of a particular class from the input stream, we
have to overload it for that class. The concept of operator overloading, its need, and its use
are elucidated in a later chapter.

The get() function
The get() function has been de ned in the class istream. It reads one byte from the input
 le and stores it in the character variable that is passed as a parameter to it (Listing 7.10).

The prototype of the get() function is as follows:
istream & istream :: get(char &);

Suppose the contents of a le rst.dat are as follows:
abcd

Listing 7.10 Inputting a character by using the get() function

/*Beginning of charFileInputText.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 ifstream ifile(“first.dat”);
 char cVar;
 ifile.get(cVar);
 cout<<cVar;
}
/*End of charFileInputText.cpp*/

Output
a

The getline() function

The getline() function reads one line from the input le. It has been de ned in the class
istream.

The prototype of the getline() function is
istream & istream :: getline(char *, int, char = ‘\n’);

It takes three parameters. The rst parameter is the name of the character array in which
the read line will be stored. The second parameter, an integer, signi es the number of bytes
that will be read from the input le. The third parameter is the delimiting character whose

 Object-Oriented Programming with C++184

presence in the stream of bytes that is being read from the input le prevents the getline()
function from reading further.

The getline() function reads from the le that is attached with the object with respect to
which it has been called till it reads bytes whose total count is one less than the value of the
second parameter or till it encounters the delimiting character speci ed by the third parameter,
whichever occurs earlier.

Listing 7.11 shows what happens when the getline() function is used to read from the
keyboard.

Listing 7.11 Using the getline() function to read from the keyboard

/*Beginning of getlineCin.cpp*/
#include<iostream.h>
void main()
{
 char cArr[20];
 cout<<“Enter a string: ”;
 cin.getline(cArr,6,‘#’);
 cout<<“You entered: ”<<cArr<<endl;
}
/*End of getlineCin.cpp*/

Output
Enter a string: abcdefgh<enter>
You entered: abcde

Output
Enter a string: abc#defgh<enter>
You entered: abc

Output
Enter a string: aa bb cc<enter>
You entered: aa bb

It can be observed that the getline() function reads white spaces also. It is mentioned
in the prototype that the getline() function takes a default value, the newline character, for
the third parameter. Thus, if the third parameter is not speci ed, it will continue to read till it
encounters the newline character provided the number of bytes it has already read does not
exceed the number speci ed by its second parameter.

The getline() function reads from the keyboard buffer and leaves behind the unread
bytes in the buffer itself.

The getline() function works in a similar fashion when it reads from disk les. Suppose
the contents of a le rst.dat are

 abcdefgh

Now let us consider Listing 7.12.

Listing 7.12 Using the getline() function to read from a disk fi le

/*Beginning of getlineFile.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()

 Stream and File Handling 185

{
 char cArr[20];
 ifstream ifile(“first.dat”);
 ifile.getline(cArr,6,‘#’);
 cout<<cArr<<endl;
}
/*End of getlineFile.cpp*/

Output
abcde

If the contents are
abc#def

the output would be ‘abc’.
Again, if the contents are

aa bb cc

the output would be ‘aa bb’.

 7.6 Binary Output/Input

7.6.1 Binary Output— write() Function

The write() function copies the values of variables from the memory to the speci ed output
 le. It works in binary mode.

As we already know, binary mode functions are not concerned about the data type of the
variable that is output. They are only interested in the address of the variable (starting point
of the block whose data needs to be output) and the size of the variable (total number of bytes
to be output). The prototype of the write() function makes this clear:

ostream & ostream :: write(const char *, int);

The write() function has been de ned in the class ostream. It takes two parameters. The
 rst parameter is the address of the variable whose value needs to be outputted. The second

parameter is the size of the variable. The write() function writes the value of the variable
to the le that is associated with the object with respect to which it has been called.

Let us now discuss how the write() function is used to output data of various types.

1. Inserting characters into output streams using write() function: Listing 7.13 illustrates
how the write() function can be used to output the value of a character-type variable to a
disk le.

Listing 7.13 Using the write() function to output character-type value to a disk fi le

/*Beginning of writeCharDisk.cpp*/
#include<fstream.h>
void main()
{
 ofstream ofile(“first.dat”);
 char cVar;
 cVar = ‘a’;
 ofile.write(&cVar,sizeof(char));
}
/*Beginning of writeCharDisk.cpp*/

 Object-Oriented Programming with C++186

Listing 7.14 illustrates how the write() function can be used to output the value of a
character-type variable to the monitor.

Listing 7.14 Using the write() function to output character-type value to the monitor

/*Beginning of writeCharConsole.cpp*/
#include<iostream.h>
void main()
{
 char cVar;
 cVar = ‘a’;
 cout.write(&cVar,sizeof(char));
}
/*End of writeCharConsole.cpp*/

Output
a

It is evident that there is no difference between outputting a character-type value in text
mode (insertion operator, put() function) and in binary mode (write() function). There is
no conversion in either case.

2. Inserting integers into output streams using write() function: Listing 7.15 illustrates
how the write() function can be used to output the value of an integer-type variable to a
disk le.

Listing 7.15 Using the write() function to output integer-type value to disk fi le

/*Beginning of writeIntDisk.cpp*/
#include<fstream.h>
void main()
{
 ofstream ofile(“first.dat”);
 int iVar;
 iVar = 65;
 ofile.write((char *)&iVar,sizeof(int));
}
/*Beginning of writeIntDisk.cpp*/

As we have already discussed, the value contained in the four bytes that are occupied by
‘iVar’ will get copied to the designated output le without any transformation.

Listing 7.16 illustrates how the write() function can be used to output the value of an
integer-type variable to the monitor.

Listing 7.16 Using the write() function to output integer-type value to the monitor

/*Beginning of writeIntConsole.cpp*/
#include<iostream.h>
void main()
{
 int iVar;
 iVar = 65;
 cout.write((char *)&iVar,sizeof(int));

 Stream and File Handling 187

}
/*End of writeIntConsole.cpp*/

Output
A

It is interesting to understand the output of Listing 7.16. As a result of the second statement
of the main() function, the eight bits in the rst of the four bytes occupied by ‘iVar’ are set
to represent the binary equivalent of the number ‘65’. The bits in the remaining three bytes
are set to zero. As we know, the monitor shows the ASCII equivalent of each of the bytes that
are passed to it. The ASCII equivalent of ‘65’ is ‘A’. Hence, we get this output.

It is evident that there is an important difference between outputting an integer type value
in text mode (insertion operator, put() function) and in binary mode (write() function).
In the former case, representation of the value that is read from the memory is transformed
from base 2 to base 10 and then copied to the output le. There is no such conversion in the
latter case.

3. Inserting fl oats and doubles into output streams using write() function: Float and
double-type values are output in the same way in binary mode as integer-type values.

4. Inserting strings into output streams using write() function: Listing 7.17 illustrates how
the write() function can be used to output the value of a character array to a disk le.

Listing 7.17 Using the write() function to output a string to a disk fi le

/*Beginning of writeCharArrDisk.cpp*/
#include<fstream.h>
void main()
{
 ofstream ofile(“first.dat”);
 char cArr[10]=“abcdefgh”;
 ofile.write(cArr,sizeof(cArr));
}
/*Beginning of writeCharArrDisk.cpp*/

The name of the array that is passed as the rst parameter to the write() function represents
its starting address. The second parameter represents the size of the memory block whose
value is to be written into the output le.

The second parameter that is passed to the write() function in Listing 7.17 evaluates to
‘10’ (the size of the array). For this reason, the entire set of 10 bytes is copied verbatim to the
speci ed output le. This includes the string itself, which is of eight characters, the delimiting
NULL character (a single byte with all bits set to zero) that follows the string and one byte
at the end with junk value.

If ‘5’ is passed as the second parameter, only the rst ve bytes of the character array are
written into the le.

Listing 7.18 illustrates how the write() function can be used to output the value of a
character array to the monitor.

Listing 7.18 Using the write() function to output a string to the monitor

/*Beginning of writeCharArrConsole.cpp*/
#include<iostream.h>

 Object-Oriented Programming with C++188

void main()
{
 char cArr[10] = “abcdefgh”;
 cout.write(cArr,strlen(cArr));
}
/*End of writeCharArrConsole.cpp*/

Output
abcdefgh

5. Inserting objects into output streams using write() function: Listing 7.19 illustrates
one of the ways of inserting a class object into output streams in binary mode. In this method,
value contained in the memory block that is occupied by a class object is copied to a speci ed
output le.

Listing 7.19 Using the write() function to output an object to a disk fi le

/*Beginning of writeObjectDisk.cpp*/
#include<fstream.h>
class A
{
 /*
 definition of class A
 */
};
void main()
{
 A A1;
 ofstream ofile(“first.dat”);
 ofile.write((char *)&A1,sizeof(A));
}
/*End of writeObjectDisk.cpp*/

Of course, we will notice that the value of the object is being accessed directly by a non-
member function—the main() function. C++ does not prevent a direct access by means of
such an explicit typecasting of an object’s address. Statements like the following are allowed
in C++.

char * cPtr = (char *)&A1;

A close look at this piece of code reveals a major drawback. Let us consider the case
where an object of the class String is used in the above listing instead of the object of the
hypothetical class A (see Listing 7.20). In such a case, the value of the pointer that is embedded
within the object would get copied to the output le. However, the string that is contained in
the memory and at which that pointer is pointing would not get copied.

Listing 7.20 Problem in using the write() function to output an object with an
embedded pointer

/*Beginning of writeStringDisk.cpp*/
#include<fstream.h>
#include“String.h” //header file that contains our class
 //String
void main()

 Stream and File Handling 189

{
 ofstream ofile(“first.dat”);
 String s1(“C++ is a wonderful language”);
 //s1.cStr points at the string
 ofile.write((char *)&s1,sizeof(String));
 //The value of s1.cStr gets stored
 //in the file. The string itself does
 //not get stored.
}
/*End of writeStringDisk.cpp*/

If the value that is stored in the le through the program in Listing 7.20 is later read through
another program, and stored in an object of the class String declared therein, the pointer
in that object would end up pointing at a place where the string itself no longer exists! The
string itself would be lost in the memory and the entire purpose of storing the object would
get defeated.

Client programs are not supposed to know how the actual data is managed, arranged,
organized, and stored internally by the objects they are using (data abstraction). The conclusion
is obvious. Objects should be responsible for outputting their own data. This conclusion
becomes even more apparent if we consider the case of complex objects such as linked lists,
vectors, trees, etc. where the object contains only the pointer to the rst node of the data
structure while the actual data structure remains outside it.

We will discuss some elementary methods of making objects capable of outputting their
own data in one of the later sections of this chapter.

7.6.2 Binary Input— read() Function

The read() function copies the values from the speci ed input le to the memory block that
is occupied by the target variable. It works in binary mode.

The logic mentioned in the introduction to the write() function holds true in this case
also. We can once again conclude that the read() function accepts the address of the variable
(starting point of the block into which the read data needs to be input) and the size of the
variable (total number of bytes to be input). Accordingly, the prototype of the read() function
is as follows:

istream & istream :: read(char *, int);

The read() function has been de ned in the class istream. It takes two parameters. The
 rst parameter is the address of the variable into which the read value needs to be input.

The second parameter is the size of the variable. The read() function reads the value for
the variable from the le that is associated with the object with respect to which it has been
called.

Let us now discuss how the read() function is used to input data of various types.

1. Extracting characters from input streams using read() function: Listing 7.21 illustrates
how the read() function can be used to input the value for a character-type variable by
making it read from a disk le.

Suppose the contents of the le rst.dat are:

xyz

 Object-Oriented Programming with C++190

Listing 7.21 Using the read() function to input character-type value from a disk fi le

/*Beginning of readCharDisk.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 ifstream ifile(“first.dat”);
 char cVar;
 ifile.read(&cVar,sizeof(char));
 cout<<cVar;
}
/*End of readCharDisk.cpp*/

Output
x

Listing 7.22 illustrates how the read() function can be used to input the value of a character-
type variable by making it read from the keyboard.

Listing 7.22 Using the read() function to input character-type value from the keyboard

/*Beginning of readCharConsole.cpp*/
#include<iostream.h>
void main()
{
 char cVar;
 cout<<“Enter a character: ”;
 cin.read(&cVar,sizeof(char));
 cout<<cVar;
}
/*End of readCharConsole.cpp*/

Output
Enter a character: a<enter>
a

It is evident that there is no difference between inputting a character type value in text
mode (extraction operator, get() function) and in binary mode (read() function). There is
no conversion in either case.

2. Extracting integers from input streams using read() function: Listing 7.23 illustrates
how the read() function can be used to input a value into an integer-type variable by making
it read from a disk le.

Suppose the rst four bytes of a disk le rst.dat together contain the binary equivalent
of number 64.

01000000
00000000
00000000
00000000
. . . .
. . . .

 Stream and File Handling 191

Listing 7.23 Using the read() function to input integer-type value from a disk fi le

/*Beginning of readIntDisk.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 ifstream ifile(“first.dat”);
 int iVar;
 ifile.read((char *)&iVar, sizeof(int));
 cout<<iVar<<endl;
}
/*End of readIntDisk.cpp*/

Output
64

As expected, the read() function reads exactly four bytes from the input le that is
associated with its invoking object. This is because the value of the second parameter that
has been passed to it is four. It copies the read value into the memory block the address of
whose rst byte is equal to the rst parameter passed to it.

Now, let us look at Listing 7.24 in which the read() function is used to read the value
for an integer-type variable from the keyboard. As per its known characteristics, the read()
function is expected to read four bytes from the keyboard, not convert the read bytes in any
way and copy them into the four bytes that are occupied by the target integer type variable.

Listing 7.24 Using the read() function to input integer-type value from the keyboard

/*Beginning of readIntConsole.cpp*/
#include<iostream.h>
void main()
{
 int iVar;
 cout<<“Enter a number in base 2 format: ”;
 cin.read((char *)&iVar, sizeof(int));
 iVar = iVar & 0x000000ff; /*Inputting zeros in the
 upper 3 bytes of the four
 bytes of iVar*/
 cout<<iVar<<endl;
}
/*End of readIntConsole.cpp*/

Output
Enter a number in base 2 format: ABCD<enter>
65

The explanation of this program has been left as an exercise for the reader.
3. Extracting fl oats and doubles from input streams using read() function: Float and
double-type values are input in the same way in binary mode as integer-type values.
4. Extracting strings from input streams using read() function: Listing 7.25 is a good
example for illustrating the use of read() function to read character arrays from a disk le.

Suppose the contents of a le rst.dat are as follows:

abcdefgh

 Object-Oriented Programming with C++192

Listing 7.25 Using the read() function to input strings from disk fi les

/*Beginning of readStringDisk.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 ifstream ifile(“first.dat”);
 char cArr[20] = “12345678”;
 ifile.read(cArr,3);
 cout<<cArr<<endl;
}
/*End of readStringDisk.cpp*/

Output
abc45678

The number ‘3’ has been passed as the second parameter to the read() function. It therefore
reads only three characters from the le that is associated with the object that has called it.

As we know, the name of the array represents the starting address of the memory block
occupied by it. Thus, the rst parameter passed to the read() function in the Listing 7.25 is
the address of the rst byte of the memory block that the array occupies. Therefore, the read()
function copies the three characters it has already read into the rst three bytes of the array.

A similar method can be devised for using the read() function to read character strings
from the keyboard.

5. Extracting objects from input streams using read() function: Let us consider the program
of Listing 7.19 that was used to output the data of an object into a disk le. The object being
output was a simple one, that is, it had no pointers as its data members. Thus, the actual data
was stored in the le. Suppose the name of the le is rst.dat. Listing 7.26 illustrates how
the data that was stored in the disk le can be loaded back in an object.

Listing 7.26 Using the read() function to input objects from disk fi les

/*Beginning of readObj.cpp*/
#include<fstream.h>
class A
{
 /*
 definition of class A
 */
};
void main()
{
 ifstream ifile(“first.dat”);
 A A1;
 ifile.read((char *)&A1, sizeof(A));
}
/*End of readObj.cpp*/

Listing 7.26 was simple. Now, let us take the case of complex objects, that is, objects
having embedded pointers.

After reading the section, ‘Binary output—the write() function’, it is natural to expect
that the class of such complex objects will have a suitable function to output the external
data structure into disk les. Thus, we can also expect the class to have a function that reads

 Stream and File Handling 193

the entire data structure from disk les. Client programs should not and need not take this
responsibility. We will discuss the techniques for de ning such functions in one of the later
sections of this chapter.

 7.7 Opening and Closing Files

So far, we have output data to and input data from the same disk le by using two different
programs. Data is usually output and input within the same program. For this, it is necessary
to close the disk le after one operation before it is opened for another. The open() and
close() functions that are provided as members of the library stream handling classes enable
us to do this.

7.7.1 open() Function

So far, we have opened les through the constructors of classes ifstream and ofstream.
We can do this by invoking the open() function also. This function has been provided in
both of these classes.

The open() function can be called by passing the name of the disk le to be opened as
the only parameter.

. . . .
ofstream ofile;
ofile.open(“first.dat”);
. . . .

. . . .
ifstream ifile;
ifile.open(“first.dat”);
. . . .

A second parameter can also be passed to this function. This parameter is known as the
open mode. It is an integer-type value. There are a number of integer-type constants de ned
in the stream handling library. Each of these constants, when passed as the second parameter
to the open() function, produces a different effect while opening the le. A list of these
constants along with their use is given in Table 7.1.

Table 7.1 Table of Open Mode Bits

Constant Meaning

ios::app For appending to end of fi le

ios::ate For going to end of fi le on opening

ios::binary For opening a binary fi le

ios::in For opening fi le for reading only

ios::nocreate For causing open to fail if the fi le does not exist

ios::noreplace For causing open to fail if the fi le already exists

ios::out For opening fi le for writing only

ios::trunc For deleting contents of the fi le if it exists

The constructor of the class ofstream and its overridden version of the open() function
takes ios::out as the default value for the second parameter. Therefore, the le is opened
for writing purpose only.

 Object-Oriented Programming with C++194

The constructor of the class ifstream and its overridden version of the open() function
take ios::in as the default value for the second parameter. Therefore, the le is opened for
reading purpose only.

These constants can be meaningfully combined together to further in uence the manner
in which the le is opened. Using the bitwise OR operator does this.

ofstream ofile;
ofile.open(“first.dat”, ios::app | ios::nocreate);

In this example, the le would be opened for appending. But if the le does not exist
already, the operation would fail. The method for detecting such failures is discussed in one
of the later sections of this chapter.

The difference between ios::app and ios::ate is discussed in the section on seekp()
function.

7.7.2 close() Function

A currently open le may need to be closed within a program. This need arises when we
want to write into a le that we have already opened for reading and vice versa. An open le
can be closed by calling the close() function with respect to the object that has been used
to open it.

The close() function has been de ned in the istream class as well as the ostream class.
The following code snippet shows how the close() function is used.

. . . .
ostream ofile;
ofile.open(“first.dat”);
. . . .
. . . .
ofile.close();
. . . .

 7.8 Files as Objects of the fstream Class

The overloaded version of the open() function for the class fstream does not take a default
value for the second parameter. We have to specify explicitly whether we want to open the
 le for writing or for reading. We can also specify that we want to open the le for both

reading and writing.
. . . .
fstream iofile.
iofile.open(“first.dat”, ios::in | ios::out);
. . . .

In this example, the le will be opened for both reading and writing.

 7.9 File Pointers

File pointers are created and maintained for open les during run time. There are two le
pointers, the put pointer and the get pointer. The put pointer points at that byte of the open
 le where the next write operation will be conducted. The get pointer points at that byte of

the open le where the next read operation will be conducted.

 Stream and File Handling 195

File pointers can be explicitly manipulated by the use of some functions that have been
provided as members of the stream handling classes. An explanation of these functions
follows.

7.9.1 seekp() Function

This function is used to explicitly make the put pointer point at a desired position in the
open le. It is important to note that by default the put pointer points at the beginning of
the le if it is newly opened for writing. In case an existing le is opened for appending, the
put pointer points at its end by default. Also, every write operation pushes forward the put
pointer by the number of bytes written.

The seekp() function has been de ned in the class ostream. It has two versions.
ostream & ostream :: seekp(streampos pos);

ostream & ostream :: seekp(streamoff off,
 ios::seek_dir dir);

In the rst version, the seekp() function takes only one parameter—the absolute position
with respect to the beginning of the le. The type streampos is type de ned with long as the
source data type. We must remember that the numbering of the position starts from zero.

In the following example, the put pointer is made to point at the second byte of the le:
ofile.seekp(1); //ofile is an object of class ofstream

In the rst version, the new position of the put pointer can be speci ed with respect to
the beginning of the le only. But in the second version, the seekp() function takes two
parameters—the rst parameter is the offset and the second parameter is the position in the
open le with respect to which the offset is being speci ed. The type streamoff is type
de ned with long as the source data type. The type ios::seek_dir is an enumerated type
with the following values:

ios::beg—offset will be calculated from the beginning of the file

ios::cur—offset will be calculated from the current position in the file

ios::end—offset will be calculated from the end of the file

In the following example, the put pointer is made to point at the last byte of the le.
We must remember that the EOF character is actually the last byte of the le. Thus, in the
following example, the put pointer will end up pointing at the last byte that was written into
the le that is one byte to the left of the EOF character.

ofile.seekp(-1,ios::end); //ofile is an object of class
 //ofstream

Some more examples follow:
ofile.seekp(0,ios::beg); //take the put pointer to the
 //beginning of the file
ofile.seekp(2,ios::beg); //take the put pointer to the
 //third byte from the beginning
 //of the file
ofile.seekp(-2,ios::cur); //take the put pointer two
 //bytes to the left from the its
 //current position in the file
ofile.seekp(2,ios::cur); //take the put pointer two bytes

 Object-Oriented Programming with C++196

 //to the right from the its
 //current position in the file
ofile.seekp(0,ios::end); //take the put pointer to the end
 //of the file (past the
 //last byte)
ofile.seekp(-1,ios::end); //take the put pointer to the last
 //byte of the file

Let us now understand the difference between ios::app and ios::ate ags. Both of these
 ags open the le for appending and make the put pointer point at the end of the opened
 le by default (past the last existing byte). Neither of the two overwrites an existing le. But

the difference between the two is that while the ag ios::ate allows you to rewind the put
pointer and modify the existing contents of the le, the ag ios::app does not allow this. In
other words, if the le is opened using ios::app ag, an attempt to use the seekp() function
for rewinding the put pointer will fail. The put pointer would continue to point at the end of
the le. As bytes are appended to the le, the put pointer, as already mentioned, also moves
forward. Thereafter, it cannot be rewound if the le was opened by using the ios::app ag.
But in case of ios::ate ag, the put pointer can be rewound.

7.9.2 tellp() Function

The tellp() function returns the current position of the put pointer. It has been de ned in
the class ostream.

streampos ostream::tellp();

In the following example, the current position of the put pointer is determined and stored
in a program variable.

long pos = ofile.tellp(); //ofile is an object of the
 //class ofstream

7.9.3 seekg() Function

This function is used to explicitly make the get pointer point at a desired position in the
open le. It is important to note that by default the get pointer points at the beginning of the
 le that is opened for reading. Every read operation pushes forward the get pointer by the

number of bytes read.
The seekg() function has been de ned in the class istream. It has two versions.

istream & istream :: seekg(streampos pos);

istream & istream :: seekg(streamoff off,
 ios::seek_dir dir);

The explanation for these two versions of the seekg() function is similar to the one
provided for the corresponding versions of seekp() function.

7.9.4 tellg() Function

The tellg() function, like the tellp() function, returns the current position of the get
pointer. It has been de ned in the class istream.

streampos istream::tellg();

 Stream and File Handling 197

In the following example, the current position of the get pointer is determined and stored
in a program variable.

long pos = ifile.tellg(); //ifile is an object of the
 //class ifstream

 7.10 Random Access to Files

In random access, an intermediate record of a le is accessed directly without sequentially
iterating through its neighbouring records. We have already studied the tools necessary for
accessing a record in a disk le at random, the seekp() and seekg() functions.

Suppose we have output integer-type values into a disk le and we want to directly access
the nth integer. We can do this sequentially by using a loop that starts iterating from the rst
record. This loop increments a counter after every read and stops when the counter indicates
that the (n–1)th record has been read. At this point, the pointers would point at the nth record.
But a more direct approach is to use either the seekp() function or the seekg() function, as
the need may be, as follows:

iofile.seekp((n-1)*sizeof(int), ios::beg); //iofile is an
 //object of
 //the class
 //fstream

This statement causes the le pointers to point at the nth record. At this point, if the write
operation is conducted, the nth record would get modi ed.

Note that the technique works only if the size of all the records that are stored in the le
is equal. This is possible only if binary data is stored in binary mode.

The size of the le and the number of records can also be found out very easily.
iofile.seekp(0,ios::end); //iofile is an object of the
 //class fstream
long lSize = iofile.tellp();
int iNoOfRec = lSize/sizeof(int);

In this example, the pointer is rst forced to the end of the le. The current position of the
pointer, since it points just past the last byte and the byte numbering starts from zero, denotes
the size of the le in bytes. Dividing this size by the size of each record gives the number of
records. Again, we must note that the technique works only if the size of all the records that
are stored in the le is equal. This is possible only if binary data is stored in binary mode.

 7.11 Object Input/Output Through Member Functions

We have realized that classes that have pointers that point at externally held data should
also have the necessary functionality to output and input their data. Client programs of such
classes should not be burdened with the responsibility of knowing how the data stored in the
objects of such classes is organized.

Let us provide the String class, which has been our running example so far, with the
functionality to write its data into and read its data from disk les. See Listing 7.27.

Listing 7.27 Input/output of objects through member functions

/*Beginning of String.h*/
#include<iostream.h>
class String

 Object-Oriented Programming with C++198

{
 /*
 rest of the class String
 */
 explicit String(const char * const p = NULL);
 const char * getString();
 void diskOut(ofstream &);
 void diskIn(ifstream &);
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include<fstream.h>
#include<string.h>
#include“String.h”
/*
 rest of the class String
*/
String::String(const char * const p)
{
 if(p==NULL) //if default value passed…
 {
 cStr=NULL; //…nullify
 len=0;
 }
 else //…otherwise…
 {
 len=strlen(p);
 cStr=new char[len+1]; //…dynamically allocate a
 //separate memory block
 strcpy(cStr,p); //…and copy into it
 }
}
const char * String::getString()
{
 return cStr;
}
void String::diskOut(ofstream & fout)
{
 fout.write((char *)&len, sizeof(int));
 for(int i = 0;i<len;i++)
 {
 fout.put(cStr[i]);
 }
}
void String::diskIn(ifstream & fin)
{
 String temp;
 fin.read((char *)&temp.len, sizeof(int));
 temp.cStr = new char[temp.len+1];
 int i;
 for(i = 0;i<temp.len;i++)
 fin.get(temp.cStr[i]);
 temp.cStr[i]=’\0’;
 *this = temp;
}
/*End of String.cpp*/

/*Beginning of strDiskMain.cpp*/
#include<fstream.h>

 Stream and File Handling 199

#include“String.h”
void main()
{
 String s1(“abcd”);
 ofstream ofile(“C:\\string.dat”);
 s1.diskOut(ofile);
 ofile.close();
 String s2;
 ifstream ifile(“C:\\string.dat”);
 s2.diskIn(ifile);
 cout<<s2.getString()<<endl;
 ifile.close();
}
/*End of strDiskMain.cpp*/

Output
abcd

 7.12 Error Handling

Every object of the class istream, ostream or of a class that is derived from one of these
two classes contains three ags that indicate state of the next byte in the associated le. These
 ags are:

eofbit —becomes true if the end of file is encountered
failbit —becomes true if the read/write operation fails (This in turn can be due to various
reasons that are described shortly.)
badbit —becomes true if the file being read is corrupt beyond recovery

7.12.1 eof() Function

The eof() function returns true whenever the le pointer encounters the end of le mark
while reading the le that has been opened through the calling object. Whenever a stream
library function, while reading from an input le, reaches the end of le mark, it sets the
value of eofbit to true.

while(!ifile.eof()) //read till end of file
{
 //statements to read from the file and operate upon the
 //read value
}

Note that the eof() function returns the result of a past read. It does not look ahead before
returning the result. Therefore, the test for end of le is given at the beginning of the loop.

7.12.2 fail() Function

The fail() function returns true if the le could not be opened for any reason. Whenever
the open() function fails to open a le, it sets the failbit to true.

One reason that causes the open() function to fail is the non-existence of the le that is
being opened for reading or writing by using the ios::nocreate ag.

ifstream ifile;
ifile.open(“first.dat”,ios::in | ios::nocreate);
if(ifile.fail())
{

 Object-Oriented Programming with C++200

 cout<<“File does not exist for reading\n”;
 /*
 statements to take corrective action
 */
}

Another reason can be that the le is being opened for writing by using the ios::noreplace
 ag but it already exists.

ofstream ofile;
ofile.open(“first.dat”, ios::out | ios::noreplace);
if(ofile.fail())
{
 cout<<“File already exists … overwrite (y/n)?”;
 /*
 statements to record user’s response and take
 appropriate action
 */
}

Some more reasons that cause the read/write operation to fail follow:
The file being opened for writing is read only.
There is no space on the disk.
The file being opened for writing is in a disk that is write-protected.

7.12.3 bad() Function

The bad() function returns true whenever a function that is reading from a le encounters a
serious I/O error. Under such circumstances, the value of the badbit ag gets set to true. It
is best to abort I/O operations on the stream in this situation.

7.12.4 clear() Function

The clear() function is used to clear the bits returned by the bad() function. This is necessary
under a number of circumstances. Listing 7.28 illustrates one such circumstance.

Listing 7.28 The clear() function

/*Beginning of clearEof.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 fstream iofile(“first.dat”,ios::in | ios::out);
 char cArr[100];
 int i=0;
 while(!iofile.eof())
 {
 iofile.get(cArr[i++]);
 }
 iofile.clear();
 for(int j=0;j<i;j++)
 iofile.put(cArr[j]); //append the contents of the
 //file to itself
}
/*End of clearEof.cpp*/

 Stream and File Handling 201

We must note that the use of clear() function was necessary in Listing 7.28. After the
while loop ends, the eofbit ag becomes true. Any further write operation on the le will
fail if the clear() function is not used.

 7.13 Manipulators

Manipulators are used to format the output. C++ provides some pre-de ned manipulators.
The programmer can create his own application-speci c manipulators too.

Manipulators can be inserted in an output stream just like values are inserted for output.
out << manip1 << manip2 << value1 << manip3 << value2;

In this example, out is an object of the class ostream or any of its derived classes. cout
can also be used in place of out to format the output to the monitor.

7.13.1 Pre-defined Manipulators

C++ provides a number of handy manipulators that are pre-de ned in the header le
iomanip.h. Therefore, programs that use these manipulators must include this header le.

Some of the most commonly used pre-de ned manipulators are listed in Table 7.2.

Table 7.2 Pre-defi ned Manipulators

Manipulator Use

setw(int w) Set the fi eld width to w

setprecision(int d) Set the fl oating point precision to d

setfi ll(int c) Set the fi ll character to c

setiosfl ags(long f) Set the format fl ag to f

resetiosfl ags(long f) Clear the fl ag specifi ed by f

The setw() manipulator
The setw() manipulator takes an integer-type variable as its only parameter. This parameter
speci es the width of the column within which the next output will be output. If the value
that is output after this manipulator is passed in the insertion stream occupies less number
of bytes than the speci ed parameter, then extra space will be created in the column that will
contain the output value. These extra spaces will be padded by blanks or by the character that
is passed as a parameter to the set ll() function.

An example code snippet follows:
cout << 123 << endl;
cout << setw(3) << 10;

Output
123
 10

It is obvious that there is a blank space on the left of ‘10’ in the second line of this
output.

The setw() manipulator has to be used separately for each item to be displayed.
cout << setw(5) << 10 << setw(5) << 234 << endl;

 Object-Oriented Programming with C++202

No truncation of data occurs if the parameter that is passed to the setw() function is not
suf cient to hold the data that is output subsequently. Instead, the padding requirement implied
by the setw() function is ignored.

cout << 123 << endl;
cout << setw(3) << 10000;

Output
123
10000

The setprecision() manipulator

By default, C++ displays the values of oat and double type with six digits after the decimal
point. However, we can pass the number of digits we want to display after the decimal point
as a parameter to the setprecision() manipulator.

cout << setprecision(3)
 << sqrt(3) << endl
 << 1.14159 << endl;

Output
1.732
1.142

We must notice how the second output got rounded off to the nearest number.
Unlike the setw() manipulator, the setprecision() manipulator retains its effect even

after outputting a value.

The setfill() manipulator

By default, the setw() manipulator pads any extra spaces it nds in the column that it has
created with blank spaces. However, we can also specify the padding character by passing it
as a parameter to the set ll() manipulator.

cout << setfill(‘*’)
 << setw(5) << 10
 << setw(5) << 234
 << endl;

Output
***10**234

The setiosflags() manipulator

The setios ags() manipulator is also used to format the manner in which the output data is
displayed. Two important parameters that it takes are ios::showpos and ios::showpoint.

The ios::showpos ag, when passed as a parameter to the setios ags() manipulator,
ensures that the positive sign is pre xed to numeric data when they are displayed.

cout << setiosflags(ios::showpos) << 10;

Output
+10

 Stream and File Handling 203

The ios::showpoint ag, when passed as a parameter to the setios ags() manipulator,
ensures that if the number of signi cant digits in the value being output is less than that
speci ed by the setprecision() manipulator, then the extra spaces obtained thereby are
 lled with zeros.

cout << setprecision(3)
 << 2.5 <<endl
 << setiosflags(ios::showpoint)
 << 2.5 << endl;

Output
2.5
2.500

The second line in the output highlights the effect of the setios ags() manipulator.

The resetiosflags() manipulator

This manipulator cancels the effect of the parameter that was passed to an earlier call to the
setios ags() manipulator. The output of the following code snippet shows how.

cout << setprecision(3)
 << 2.5 << endl
 << setiosflags(ios::showpoint)
 << 2.5 << endl
 << resetiosflags(ios::showpoint)
 << 2.5 << endl;

Output
2.5
2.500
2.5

7.13.2 User-defined Manipulators

It is possible to create requirement-speci c manipulators too. A programmer can create
a manipulator to satisfy his speci c needs. He/she can do this by de ning a function as
follows:

ostream & <manipulator> (ostream & out)
{
 //statements
 return out;
}

An example of a user-de ned manipulator follows:
ostream & currency (ostream & out)
{
 out << “$. ”;
 return out;
}

Now if we write
cout << currency << 20;

 Object-Oriented Programming with C++204

the output would be
$ 20

User-de ned manipulators enable modularity. A user-de ned manipulator can be used
throughout an application to format the output in a uniform manner. If a change is required,
it needs to be carried out at only one place—the de nition of the manipulator—and again the
change occurs uniformly throughout the application.

 7.14 Command Line Arguments
Command line arguments are values that are passed to executables when they are run from
the command line. As we know, after we successfully compile and link a C++ program we
get an executable le. These executable programs can be run from the command line of your
computer’s operating system.

How do we pass command line arguments to executables? Let us understand this with the
help of an example.

Suppose the name of an executable that has been generated from a C++ program is ‘test.
exe’. We can run this executable by typing the following command on the command line
and then hitting the enter key:

test

We can also run the executable by issuing the following command:
test.exe

Let us follow the rst method for running the executable. (Note that the above two methods
would work if the operating system on your computer is Windows. The method may change
for a different operating system. Please consult the operating system’s documentation or your
lab instructor if the operating system on your computer is not Windows. For the purpose of
this book, we will assume that the operating system on your computer is Windows.)

Suppose we want to pass the strings ‘abc’ and ‘def’ as command line arguments to the
executable. We can do this by calling the executable from the command line as follows:

test abc def

Note that ‘abc’ and ‘def’ have been passed as parameters to the command for executing
the executable le test.

Why are command line arguments important? Why should a C++ programmer write
programs that can read the values of command line arguments? Consider a very simple
program (Listing 7.29) that adds up two numbers and then displays the result.

Listing 7.29 The programmer can decide the values to be added

/*Beginning of add.cpp*/
/*
 A program in which two numbers are added but it is the
 programmer, and not the program’s user, who decides the
 values to be added.
*/
#include <iostream.h>
void main()
{

 Stream and File Handling 205

 int x = 10, y = 20;
 int z = x + y;
 cout << z << endl;
}
/*End of add.cpp*/

Output
30

As can be seen, it is the programmer who declared two variables and initialized them to
values of his/her choice. But, what if we need the values from the user? One way is to take
inputs from the keyboard using the cin object. But what will happen if our executable is being
run from another program? That program, when it is running, won’t be able to give keyboard
inputs (after all it is a program, not a human). It will obviously be much more convenient if
our program accepts the values it needs, as command line arguments.

Now, we come to the most important question—how can we program our C++ programs
so that they can read and process command line arguments? The main() function can be
programmed to read command line arguments. For this, we need to de ne the header of the
main() function as follows:

void main(int argc, char * argv[])

The rst argument, argc, gives us the number of arguments present on the command
line, including the name of the executable. It is known as the argument counter. The second
argument, argv, is an array of character pointers. Each pointer points at a separate command
line argument. It is known as the argument vector.

Note that argc and argv are only the names of the main() function’s arguments. You,
while writing your own programs, can give them names of your choice. For example, you
can name them ‘x’ and ‘y’. The names argc and argv are the conventional names. And we
will use them as such in our examples.

Let us again consider the previous command to execute our program.
test abc def

In this case, two command line arguments have been passed. Therefore, the value of argc
would be 3 (2 arguments plus the name of the executable le itself). The value of argv[0]
would be test. The value of argv[1] would be ‘abc’. The value of argv[2] would be def.

Let us look at some very simple examples that illustrate how the main() function reads
command line arguments through its parameters (see Listing 7.30). These would be followed
by programs that illustrate the possible practical ways in which command line arguments
can be used.

Listing 7.30 The command line counter

/*Beginning of test.cpp*/
/*
 A program the displays the count of command line
 arguments.
*/
#include <iostream.h>
void main(int argc, char *argv[])
{
 cout << argc << endl;
}
/*End of test.cpp*/

 Object-Oriented Programming with C++206

Note that this example program displays the number of command line arguments that were
passed to its executable, plus 1 (for the name of the executable itself). Suppose we run the
executable le from the above program by passing no command line arguments as follows:

test

Output
1

The output is 1 because no command line arguments were passed to the executable.
Suppose we run the executable le from the above program by passing two command line

arguments as follows:
test abc def

Output
3

The output is 3 because two command line arguments were passed to the executable.
Let us enhance the above program so that it not only displays the number of command

line arguments, but also the arguments themselves (Listing 7.31).

Listing 7.31 The command line arguments

/*Beginning of test.cpp*/
/*
 A program that displays the count of command line
 arguments and the command line arguments themselves.
*/
#include <iostream.h>
void main(int argc, char *argv[])
{
 cout << argc << endl;
 for(int i = 0; i < argc; i++)
 {
 cout << argv[i] << endl;
 }
}
/*End of test.cpp*/

Suppose we run the above program as follows:
test Happy Birthday

The output would be as follows:

Output
3
test
Happy
Birthday

 Stream and File Handling 207

The above program rst displays the count of command line arguments, which is 3. It then
executes a for loop whose loop counter ‘i’ starts from 0 and ends at 3 (the value of argc).
Therefore, the for loop displays the values of argv[0], argv[1], and argv[2]. The value
of argv[0] is ‘test’ (the name of the executable le). The value of argv[1] is ‘Happy’ (the
value of the rst argument). The value of argv[2] is ‘Birthday’ (the value of the second
argument).

Suppose we need to enforce a condition that the user must enter a certain number of
command line arguments. For example, we may need that the user must enter exactly two
command line arguments. If the user does not pass exactly two command line arguments,
we may like to give an error message and terminate the program. Let us see how we can
accomplish this. Let us continue to enhance the test program. See Listing 7.32.

Listing 7.32 Ensuring a specifi c number of command line arguments

/*Beginning of test.cpp*/
/*
 A program that utilizes the command line argument counter
 to ensure that the correct number of command line
 arguments are passed.
*/
#include <iostream.h>
void main(int argc, char *argv[])
{
 if(argc != 3)
 {
 cout << “Incorrect number of arguments passed” << endl;
 exit();
 }
 cout << argc << endl;
 for(int i = 0; i < argc; i++)
 {
 cout << argv[i] << endl;
 }
}
/*End of test.cpp*/

The above main() function, at the very beginning, checks whether the value of the argument
counter is 3 or not. It is actually checking whether the number of command line arguments
that were passed to the executable is 2 or not (remember that the argument counter counts
the executable also).

If the value of the argument counter is not 3, the main() function ashes an error message
and then terminates the program by calling the exit() function. (Note: No arguments have
been passed to the exit() function above. However, the number of arguments that the exit()
function takes in your installation of the C++ library may be different. If that is the case, then
consult the documentation or your lab instructor and modify the call accordingly.)

 Object-Oriented Programming with C++208

Streams are nothing but a ow of data to and from
program variables. Input stream is the ow of data from
a le on the permanent storage medium to program
variables. The keyboard is also treated as source of
input stream. Output stream is the ow of data to a
 le on the permanent storage medium from program

variables. The monitor is also treated as target for
output stream.

C++ provides us with a hierarchy of classes that
have the functionality to implement various aspects
of stream handling. The class ios is the base class in
this hierarchy.

The class ostream is derived from the class ios
and handles the general output stream. The insertion
operator (<<) is de ned and overloaded in the class
ostream to handle output streams from program
variables to output les.

The class ostream_withassign is derived from the
class ostream. cout is an object of the class ostream_
withassign. cout stands for console output. As
mentioned earlier, C++ treats all peripheral devices
as les. It treats the monitor also as a le (for output
stream). The object cout represents the monitor.

The class istream is derived from ios and handles
the general input streams. The extraction operator
(>>) is de ned and overloaded in the class istream
to handle input streams from input les to program
variables.

The class istream_withassign is derived from
the class istream. cin is an object of the class
istream_withassign. cin stands for console input.
C++ treats all peripheral devices as les. It treats the
keyboard also as a le (for input stream). The object
cin represents the keyboard.

The class iostream is derived by multiple
inheritance from the classes istream and ostream.
It has the functionality to handle both input and
output streams. The class ofstream is derived from
the class ostream. It has the functionality to handle
output streams to disk les. The class ifstream is
derived from the class istream. It has the functionality
to handle input streams from disk les. The class
fstream is derived from the class iostream. It has the
functionality to handle both input and output streams
from and to disk les.

In text mode output, numeric data that exists in base
2 format in the memory variables, is rst converted to
base 10 format before being output. In binary mode,
no such conversion occurs.

In text mode input, numeric data that is being
input into a memory variable is reckoned to be in
base 10 format. Therefore, it is rst converted into
base 2 format and then stored in the target memory
variable.

The insertion operator is used to output data
in text mode. The put() function is used to output a
single character at a time. The extraction operator
is used to input data in text mode. The get() function
is used to input a single character at a time.

The write() function is used to output data in
binary mode. The read() function is used to input
data in binary mode.

Apart from the constructors of the library classes,
the open() function can also be used to open les.
The rst parameter that the constructor and the open()
function take is the name of the le. The second
parameter speci es the open mode. Destructors of
library stream classes close the les associated with
them anyway. But the close() function can be used
to explicitly close les.

File pointers can be manipulated by the seekp()
and seekg() functions. Their current positions can be
determined by the tellp() and tellg() functions.
An intermediate record can be directly accessed by
using the seekp() or seekg() function to make the
 le pointer jump to a speci c byte in the le. It is

mandatory to use member functions for outputting and
inputting data in case of complex classes.

Every object of the class istream, ostream or of
a class that is derived from either of these two classes,
contains three ags that indicate state of the next byte
in the associated le. These ags are:

 eofbit—becomes true if the end of le is encountered
(The eof() function returns the state of the eofbit
 ag.)

 failbit—becomes true if the read/write operation
fails (The fail() function returns the state of the
failbit ag.)

 badbit—becomes true if the file being read is
corrupt beyond recovery (The bad() function
returns the state of the badbit ag.)
The clear() function is used to clear the bits

described above.
Manipulators are used to format the output.

C++ provides some pre-de ned manipulators. The
programmer can create his own application-speci c
manipulators too.

Summary

 Stream and File Handling 209

Key Terms

Command line arguments are values that are passed
to executables when they are run from the command
line. They enable programs to capture input values
from the user and from other systems.

The main() function can be programmed to read
command line arguments. We need to de ne the header
of the main() function as follows:

void main(int argc, char * argv[])

The rst argument gives us the number of arguments
present on the command line, including the name of the
executable. It is known as the argument counter. The
second argument is an array of character pointers. Each
pointer points at a separate command line argument.
It is known as the argument vector.

streams
standard stream handling classes of C++
– ios
– ostream
– ostream_withassign
– istream
– istream_withassign
– iostream
– ofstream
– ifstream
– fstream
text mode input/output
cout
insertion operator
put() function
cin

extraction operator
get() function
write() function
read() function
open() function
close() function
seekp() function
seekg() function
tellp() function
tellg() function
eof() function and the eofbit ag
fail() function and the failbit ag
bad() function and the badbit ag
clear() function
manipulators

Exercises
 1. Brie y describe the class hierarchy provided by C++

for stream handling.
 2. State true or false.

(a) cout is an object of the class ostream_
withassign.

(b) The insertion operator (<<) is defined and
overloaded in the class istream.

(c) The header le iostream.h is included in the
 le fstream.h.

(d) The insertion operator outputs in binary mode.
 3. What are text mode and binary mode input/

output? What are their corresponding strengths and
weaknesses?

 4. What is the difference between a text le and a binary
 le?

 5. Why should read operation on a le take place in
the same mode in which the write operation has
occurred? Explain.

 6. How are values of various types output to disk les
by using the insertion operator?

 7. Describe the read() and write() functions, their
prototype, use, and the way they input and output
data.

 8. How can a file be opened for both reading and
writing?

 9. What is the difference between opening a le using
the constructor of the stream class and the open()
function.

 10. Describe how the contents of a disk le can be
randomly accessed in C++.

 11. Describe the circumstances under which each of the
 ags—eofbit, failbit, and badbit—becomes

true.
 12. Describe the use of the following manipulators:
 setw()
 setprecision()

 Object-Oriented Programming with C++210

 set ll()
 setios ags()
 resetios ags()
 13. How can a programmer define his/her own

manipulators?
14. What are command line arguments? Why are they

important?
 15. How can the main() function be programmed to read

command line arguments?
 16. Write a program to obtain as many integers from

the user as he/she wants and write them into a disk
 le. After the user has nished entering the integers,

read them from the le and display them on the
monitor.

 17. Create a class whose objects would hold linked
lists of integers. Apart from the regular features of
linked lists, the objects would also have the necessary
functionality to download their data into a speci ed
disk le and to upload their data from speci ed disk
 les. The application would be menu-driven. The

user will have the option to save the linked list and
to ‘save as’ the linked list.

 Hint:
 Create two classes as follows:

class intNode
{
 int data;
 intNode * Next;
 public:
 //functions to set and get the data

members

};

class intList
{
 intNode * head;
 public:
 // functions to add, delete, modify,

save and load
};

 18. Write a manipulator that pre xes a currency symbol
to the output value. For this, the manipulator should
read the symbol from a disk le.

 19. Write a program that gives an error message if the
number of arguments that are passed to its executable
is not equal to 1 (hint: ‘argc’ != 2), and then
terminates itself. The error message should advise
the user that exactly one argument should be passed
to the executable, and that it should be the name of
a le.

 Otherwise, if the user has passed exactly one
argument to the executable, the program should
open the le whose name matches the value of the
argument (hint: argv[1]). It should then append the
name of the executable (hint: argv[0]) into a new
line in the le, along with a text that says that the
executable executed successfully. For example, if the
name of the executable is test, then the following
line should get appended to the le:

test executed successfully.

8.1 Operator Overloading

Let us rst understand the meaning of operator overloading and how this useful feature of
the C++ language is implemented.

Overloading an operator means programming an operator to work on operands of types it
has not yet been designed to operate. For instance, the addition operator can work on operands
of type char, int, oat, and double. However, if ‘s1’, ‘s2’, and ‘s3’ are objects of the
class String, which we have de ned earlier, then the following statement

s3 = s1 + s2

Operator Overloading, Type
Conversion, New Style Casts,

and RTTI

Operator overloading is an extremely interesting feature of C++. It is not only interesting
and exciting, but also an essential tool for the class designer. This chapter explains the
following:
 the concept of operator overloading,
 the support provided by C++ for operator overloading,
 the need to overload operators,
 rules for operator overloading,
 use and misuse of operator overloading, and
 pitfalls in operator overloading.

The initial sections of the chapter give an overview of operator overloading. They contain
only the skeleton code to illustrate the concepts without burdening the reader with the intricacies
of the exact code. The exact code to overload various operators for various classes is dealt
with in the later sections.

Type conversions from basic type to class type, from class type to basic type, and from one
class type to another are also dealt with in this chapter.

C++ provides the following four new style cast operators to replace the use of the old error
prone and dif cult to detect C style casts:
 dynamic_cast
 static_cast
 reinterpret_cast
 const_cast

RTTI (run time type information) enables the programmer to nd the type of object at which
a pointer points during run time. Apart from the dynamic_cast operator, C++ provides the
typeid operator for implementing RTTI.

The chapter ends with an explanation of new style cast operators and RTTI.

O

V

E

R

V

I

E

W

8

 Object-Oriented Programming with C++212

will not compile unless the creator of class String explicitly overloads the addition operator
to work on objects of his class. The method of implementing such overloading is described
next.

8.1.1 Overloading Operators—The Syntax

Operators are overloaded by writing operator-overloading functions. These functions are either
member functions or friend functions of that class whose objects are intended as operands
of the overloaded operator. Operator overloading functions are very similar to the member
functions and friend functions we have been reading about all along. The only thing peculiar
about them is their name. The names of operator-overloading functions are composed of the
keyword operator followed by the symbol of the operator being overloaded.

The syntax for member functions that overload a given operator is as follows:
class <class_name>
{
 <return_type> operator <op> (<arg_list>); //prototype
};
<return_type> <class_name> :: operator <op> (<arg_list>)
//definition
{
 //function body
}

Member functions that overload operators can be private, protected, or public. The
prototype of the operator-overloading function speci es a return type (as do the normal
member functions). The keyword operator follows the return type. This in turn is followed
by the symbol of the operator being overloaded. Finally, a pair of parentheses containing the
formal arguments is speci ed (as do the normal member functions).

The syntax for a friend function that overloads a given operator is as follows:
class <class_name>
{
 friend <return_type> operator <op> (<arg_list>); //prototype
};
<return_type> operator <op> (<arg_list>) //definition
{
 //function body
}

We already know that a friend function takes one argument more that the member function
that serves the same purpose (because the invoking object appears as an explicit parameter to
the friend function whereas in member functions it is passed as an implicit parameter). The
same holds true in case of operator-loading functions.

The following examples will help in clarifying this syntax.
Suppose we want to overload the addition operator (+) so that it can take objects of the

class String that we de ned earlier. The exact syntax for this (in case of member function)
would be as shown in Listing 8.1.

Listing 8.1 Defi ning and using operator-overloading function as a member function

/*Beginning of String.h*/
class String
{

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 213

 public:
 String operator + (const String &) const; //prototype
 /*
 rest of the class String
 */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
String String :: operator + (const String & ss) const

//definition
{
 //function body
}
/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

/*Beginning of SomeProgram.cpp*/
#include“String.h”
void f() //some function
{
 String s1,s2,s3;
 /*
 rest of the function f()
 */
 s3 = s1 + s2;
 /*
 rest of the function f()
 */
}
/*End of SomeProgram.cpp*/

We can notice that the function has been declared as a public member of the class. This
is because the operator will usually be used in its overloaded form within the non-member
functions. The reasons for the return type and signature of this function will be discussed later.
Moreover, the techniques of de ning such functions will be demonstrated later.

If this function were to be declared as a friend, then the syntax would be as shown in
Listing 8.2.

Listing 8.2 Defi ning operator-overloading function as a friend function

/*Beginning of String.h*/
class String
{
 friend String operator + (const String &,

const String &); //prototype
 /*
 rest of the class String
 */
};
/*End of String.h*/
/*Beginning of String.cpp*/
#include“String.h”
String operator + (const String & ss1, const String & ss2)

//definition

 Object-Oriented Programming with C++214

{
 //function body
}
/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

/*Beginning of SomeProgram.cpp*/
#include“String.h”
void f() //some function
{
 String s1,s2,s3;
 /*
 rest of the function f()
 */
 s3 = s1 + s2;
 /*
 rest of the function f()
 */
}
/*End of SomeProgram.cpp*/

8.1.2 Compiler Interpretation of Operator-Overloading Functions

It is important to understand how the compiler interprets operator-overloading functions.
The statement

s3 = s1 + s2; //s1, s2 and s3 are objects of the class
 //String

is interpreted as
s3 = s1.operator + (s2);

If the operator-overloading function has been declared as a member function, then this
interpretation is satis ed. Otherwise, the statement is interpreted as

s3 = operator + (s1, s2);

If the operator-overloading function has been declared as a friend function, then this
interpretation is satis ed. Otherwise, the compiler reports an error to the effect that the given
operator has not been overloaded for the class. It is interesting to note the compiler does not
say that invalid operands have been passed to the operator!

So far, we have seen that the operators have been overloaded within the classes using
member functions or friend functions. These functions are compiled and stored in the
library.

We have also seen that the overloaded operators have been used within the applications
using their usual syntax. As described in this section, the compiler rst converts the statements
where the overloaded operators are used. However, we must note that the operator-overloading
functions can also be called directly from within the application programs (the way the compiler
 nally interprets it). Operator-overloading functions can be called directly as follows.

s3 = s1.operator + (s2); //in case of member function

or
s3 = operator + (s1, s2); //in case of friend function

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 215

The bene t of overloading the operator will not be felt if the overloaded operators are
directly called in this manner. (In that case, they can be very well replaced by ordinary member
functions.) Moreover, we must note that only the name of the operator-overloading function is
unusual (it contains the keyword operator). Otherwise, the operator- overloading functions
are implemented just like ordinary member, non-member, or friend functions.

Concept of overload using friend functions

We might wonder why friend functions are used to overload operators. After all, member
functions seem to serve the purpose. In order to understand this, let us consider two classes
A (which we have de ned) and B (an existing class or an intrinsic data type). We realize that
for some reason only an object of class A will be added to an object of class B to get another
object of class A. This will be done as follows.

a2 = b1 + a1; //a1, a2 are objects of class A, b1 is
 //an object of class B

An object of class B will not be added to an object of class A. Objects of class B will
appear on the left of the addition operator and not on the right. We will soon realize that such
restrictions can and do exist. Statements such as the one that follow will not be written.

a2 = a1 + b1; //a1, a2 are objects of class A, b1 is
 //an object of class B

Further let us assume (rather accept) that we have no means of modifying the de nition of
class B. (This is a perfectly acceptable restriction. We cannot de ne somebody else’s class
de nition. Class de nitions are provided in read-only header les and de nitions of member
functions in libraries.) Now, if we de ne the operator-overloading function as a member
function of class A as follows, the rst of the two preceding statements will not compile.

class A
{
 public:
 A operator + (const B &);
};

The compiler will interpret the statement
a2 = b1 + a1;

 rst as
a2 = b1.operator + (a1);

and then as
a2 = operator + (b1,a1);

The prototype of the member function satis es neither of these two interpretations. The
compiler will naturally throw an error. Declaring the operator-overloading function as a
friend function with an object of class B as the rst formal argument solves the problem.
See Listing 8.3.

Listing 8.3 Operator overloading using friend function

class A
{
 public:

 Object-Oriented Programming with C++216

 friend A operator + (const B &, const A &);
//prototype

};
A operator + (const B & bb, const A & aa) //definition
{
 //function body
}

It is interesting to note that the compiler throws an ambiguity error if both member function
and friend function are used to overload an operator. This is because both of them will satisfy
calls to the overloaded operator. The compiler will certainly be in no position to decide with
which function such a call is to be resolved.

8.1.3 Overview of Overloading Unary and Binary Operators

Member functions that overload unary operators take no operands. This is because apart from
the calling object, no other parameter is passed to the operator and the calling object is passed
as an implicit parameter to the object. Friend functions that overload unary operators will
naturally take one parameter since the calling object will be passed as an explicit parameter
to it.

Similarly, member functions that overload binary operators will take one parameter. This
is because apart from the calling object, another value will be passed to the operator as an
operand (binary operators take two operands). The calling object will itself be passed to the
function as an implicit parameter. Again, friend functions that overload binary operators will
take one operand more, that is, two operands. We can very well explain this.

8.1.4 Operator Overloading

Let us now nd out the need to overload operators. After all, the operator-overloading functions
can be so easily substituted by member functions or friend functions with ordinary but
meaningful and relevant names. For example, the operator-overloading function to overload
the addition operator (+) for objects of the class String can be easily replaced by a member
function of a proper name. See Listing 8.4.

Listing 8.4 Using an ordinary member function to substitute an operator-overloading
function

class String
{
 public:
 //String operator + (const String &);
 String add(const String &); //prototype
};
String String :: add(const String & ss) //definition
{
 //function body
}
void f() //some function
{
 String s1,s2,s3;
 /*
 rest of the function f()

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 217

 */
 s3 = s1.add(s2);
 /*
 rest of the function f()
 */
}

The de nition of the String :: add() function can be the same as the operator- overloading
function to overload the addition operator (+).

However, operator overloading becomes mandatory under the following circumstances:
Objects of the class acquire resources dynamically during run time and no two objects
should share the same copy of the resource.
Objects of the class acquire some resources dynamically during run time and no two
objects should share even different copies of the resource.
Objects need to be passed as parameters in function templates and the operators being
used on template class objects within the template functions should work in the same
way on objects of the class.
The default action of the dynamic memory management operators (new and delete) are
unsuitable for the class being designed.
Change in the implementation of the class forces an undesirable change in its interface
in turn necessitating the rewriting and recompiling of the application programs.
Overloading provides better readability of code. Although this is a somewhat weak reason,
it, nevertheless, is a factor that can be considered. The statement

o2 = ++o1;

is much more readable than say a statement such as
o2 = o1.pre_fix_increment();

Let us understand these circumstances one by one. For understanding the rst case, let us
reconsider the class String. Let us try to visualize what happens at the end of the block of
code given in Listing 8.5.

Listing 8.5 Undesirable default action of the assignment operator

String s1(“abc”), s2;
s2 = s1;

As a result of the second statement in Listing 8.5, the scenario shown in Figure 8.1
emerges.

Figure 8.1 Diagram depicting the drawback in the default action of the assignment operator

 Object-Oriented Programming with C++218

As a result of the second statement in Listing 8.5, the pointers embedded in both the objects
point at the same dynamically allocated memory block. The default action of the assignment
operator simply copies the value of the pointer embedded in ‘s1’ into the pointer embedded
in ‘s2’.

The problems that arise out of such a situation have already been discussed in Chapter
4. We will notice that the same undesirable situation arose due to the initial absence of a
suitable copy constructor in the class String. This had prompted us to de ne a suitable copy
constructor for the class String. The same factors dictate that a suitable function to overload
the assignment operator be de ned for the class String. Instead of the default action of the
assignment operator, execution of this function will take place when statements such as the
second one in Listing 8.5 are executed.

For understanding the second circumstance where operator overloading is mandatory,
let us imagine that there is a class whose objects should not share even separate copies of
dynamically allocated resources. This means that statements such as the following one should
not compile at all.

o1 = o2; //o1, o2 are objects of the said class

Here the solution is quite simple. We just declare the function to overload the assignment
operator in the private section of the class. Any use of the assignment operator within a
non-member function will launch a call to this operator-overloading function. Since the
function is private, such a call will throw a compile-time error. As desired, the use of the
assignment operator will be prevented. However, what would happen if we inadvertently use
the assignment operator within a member function or a friend function? The private nature
of the function will not be enough to prevent such a call. However, even such calls can be
prevented by not de ning the function to overload the assignment operator. This trick will
make the linker throw an error.

To understand the third circumstance where operator overloading is mandatory, we require
the knowledge of function templates, which are discussed in the next chapter.

Now, let us understand the fourth circumstance. The new operator does a number of things
by default, some, or all of which might be undesirable for the class being designed.

By default, the new operator throws an exception if it fails to allocate the amount of memory
requested (exceptions are dealt with in one of the later chapters). However, this default action
of the new operator may be unsuitable for the class being designed. In response to this out-of-
memory condition, the class designer might instead need to call one of the member functions
of the class. Only overloading the new operator can ful ll this need.

Also by default, the new operator not only allocates the amount of memory requested, it also
stores the amount of memory allocated in the memory itself. This enables the delete operator
(if it is called) to nd out the size of the memory allocated so that it can then deallocate the
same amount of memory (see Chapter 3). However, in memory critical applications, such
expenditure of memory might be prohibitive. If the class designer knows that the same amount
of memory will be allocated whenever the new operator is called, he/she can cleverly prevent
this wastage of memory. Again, only overloading the new operator can do this.

Further, by default, the new operator simply allocates memory for the object whose type is
passed as an operand to it. However, the class designer would not want that the class should
ever have more than one object. He/she may want that an object should be created only when
the new operator is called for the very rst time. Subsequent calls to the new operator should
not create more objects. Instead, such subsequent calls should merely return the address of
the object that was created in response to the rst call to the new operator.

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 219

The last circumstance that mandates operator overloading is self-explanatory.

8.1.5 Rules for Operator Overloading

The following rules must be observed while overloading operators.
1. New operators cannot be created: New operators (such as **) cannot be created. For

example, the piece of code shown in Listing 8.6 will produce a compile-time error.

Listing 8.6 An illegal attempt to create a new operator

class A
{
 public:
 void operator ** ();
};

2. Meaning of existing operators cannot be changed: Any operator-overloading function
(member or friend) should take at least one operand of the class of which it is a member
or friend. Thus, it is not possible to change the manner in which an existing operator
works on operands of fundamental types (char, int, float, double).

 In case of member functions, this condition is automatically enforced because the
address of the calling object is implicitly passed as a parameter to it. However, in case
of friend functions, the library programmer needs to take extra care. For example, the
following piece of code (Listing 8.7) will not compile.

Listing 8.7 An illegal attempt to modify the behaviour of operators on intrinsic types

class A
{
 public:
 friend int operator + (int, int); //ERROR: will not
 //compile
};

 As we can see, by ensuring that at least one operand of an operator-overloading function
must be of the class type, the compiler ensures that the meanings of the existing operators
cannot be changed. If the code in Listing 8.7 had compiled, the statement
z = x + y; //x, y, z are integer type

 could have invoked the operator + () function of the class A. Of course, this is
undesirable.

3. Some of the existing operators cannot be overloaded: The following operators cannot
be overloaded:

 :: (scope resolution)
 . (member selection)
 .* (member selection through pointer to member)
 ?: (conditional operator)
 sizeof (finding the size of values and types)
 typeid (finding the type of object pointed at)

 Object-Oriented Programming with C++220

4. Some operators can be overloaded using non-static member functions only: The
following operators can be overloaded using non-static member functions alone.

 = (Assignment operator)
 () (Function operator)
 [] (Subscripting operator)
 -> (Pointer-to-member access operator)
 These operators cannot be overloaded using friend functions or static functions.
5. Number of arguments that an existing operator takes cannot be changed: Operator-

overloading functions should take the same number of parameters that the operator being
overloaded ordinarily takes. For example, the division operator takes two arguments.
Hence, the class definition shown in Listing 8.8 causes a compile-time error ‘operator /
takes too few arguments’ for the operator-overloading function.

Listing 8.8 An illegal attempt to modify the number of arguments that an operator takes
by default

class A
{
 public:
 void operator / ();
};

6. Overloaded operators cannot take default arguments: The class definition shown in
Listing 8.9 causes a compile-time error ‘operator/cannot take default arguments’ for the
operator-overloading function.

Listing 8.9 An illegal attempt to assign a default value to an argument of an operator-
overloading function

class A
{
 public:
 void operator / (int = 0);
};

 Finally, we must note that it is highly imprudent to modify the values of the operands
that are passed to the operator-overloading functions. To appreciate this point better, let
us consider the function to overload the addition operator for the class String.
class String
{
 char * cStr;
 long int len;
 public:
 String operator + (String &);
};

 The library programmer may mistakenly write some statements to modify the value
of the implicit or the explicit parameter of the String :: operator + () function (see
Listing 8.10).

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 221

Listing 8.10 Modifying the left-hand side and the right-hand side operands of the
addition operands in the function to overload it

String String :: operator + (String & ss)
{
 /*
 rest of the function String :: operator + ()
 */
 this->cStr = NULL; // BUG: left-hand parameter
 //changed!
 /*
 rest of the function String :: operator + ()
 */
 ss.cStr = NULL; //BUG: right-hand parameter
 //changed!
 /*
 rest of the function String :: operator + ()
 */
}

 To guard against this mishap, the operator-overloading function can be declared as
shown in Listing 8.11.

Listing 8.11 Making necessary use of the const keyword to prevent bugs

class String
{
 char * cStr;
 long int len;
 public:
 String operator + (const String &) const;
};

 Neither of the statements given in Listing 8.10 that have bugs will compile.
 Let us now see how operators are actually overloaded.

8.2 Overloading Various Operators

8.2.1 Overloading Increment and Decrement Operators (Prefix and Postfix)

Let us recollect the class Distance. We can overload the increment operator for objects of
the class. What would we like such a function to do? If ‘d1’ and ‘d2’ are objects of the class
Distance, then the following statement

d2 = ++d1;

is interpreted by the compiler as
d2 = d1.operator ++ ();

Let us envisage that this operator-overloading function should rst increment ‘iFeet’
portion of ‘d1’. It should leave the fInches portion of ‘d1’ unaltered. Then it should return the
resultant object. With these guidelines in mind, the prototype and de nition of the operator-
overloading function will be as shown in Listing 8.12.

 Object-Oriented Programming with C++222

Listing 8.12 Declaring member function to overload the increment operator

/*Beginning of Distance.h*/
class Distance
{
 public:
 /*
 rest of the class Distance
 */
 Distance operator ++ ();
};
/*End of Distance.h*/
/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance Distance :: operator ++ ()
{
 return Distance(++iFeet, fInches);
}
/*
 definitions of the rest of the functions of class
 Distance
*/
/*End of Distance.h*/

The operator-overloading function should be public because it will mostly be called from
within functions that are not members of the class Distance. It should not be a constant
member function since it will certainly modify the value of at least one of the data members
(iFeet) of the calling object. Although the de nition of the operator-overloading function
appears cryptic, it is in fact very simple (and economical). First, the increment operator
works (since it is in pre x notation). Thus, the iFeet data member of the calling object gets
incremented. Second, the explicit call to the constructor creates a nameless object of the class
Distance by passing the incremented value of iFeet and the unaltered value of fInches
as parameters. Third, the operator-overloading function returns the nameless object thus
constructed. If the call to the operator-overloading function is on the right-hand side of the
assignment operator, the values of the returned object will expectedly be copied to the object
on the left. Thus, our purpose is served.

However, we would like a different effect to be produced if we write the statement
d2 = d1++;

In this case, we would like the initial value of ‘d1’ to be copied to ‘d2’ and, thereafter, the
value of iFeet data member of ‘d1’ to get incremented. However, if the compiler interprets
both the statements

d2 = ++d1;

and
d2 = d1++;

in identical ways, then we will have no way of writing the two different functions. Fortunately,
this is not so. While the compiler interprets the statement

d2 = ++d1;

as
d2 = d1.operator ++ ();

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 223

it interprets the statement
d2 = d1++;

as
d2 = d1.operator ++ (0);

It implicitly passes zero as a parameter to the call to the operator-overloading function when
the post x notation is used. If it nds a prototype that matches this call exactly, it compiles
without warnings or errors. However, if it nds the prototype given in Listing 8.12, it gives a
warning but still compiles with the operator-overloading function Distance :: operator ++
(). The fact that the compiler rst looks for a function with an integer as a formal argument
provides us with a solution. We can now de ne an additional operator-overloading function
to overload the increment operator in post x notation. See Listing 8.13.

Listing 8.13 Overloading the increment operator in both the prefi x and the postfi x
notation

/*Beginning of Distance.h*/
class Distance
{
 public:
 Distance operator ++ (); //for prefix notation
 Distance operator ++ (int); //for postfix notation
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/
/*Beginning of Distance.cpp*/
#include “Distance.h”
Distance “Distance :: operator ++ () //for prefix
 //notation
{
return Distance(++iFeet, fInches); //as in listing
 //8.12
}
Distance Distance :: operator ++ (int) //for postfix
 //notation
{
 return Distance(iFeet++, fInches);
}
/*
definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

The explanation for the de nition of the function to overload the increment operator in
post x notation is as follows. The constructor gets called before the increment operator
executes because the increment operator has been purposefully placed in post x notation.
Thus, a nameless object with the initial values of the calling object is created. Thereafter,
the increment operator increments the value of iFeet data member of the calling object.
Finally, the nameless object constructed earlier with the initial values of the calling object
is returned. Since the formal parameter of the function is a dummy, therefore, its name
need not be mentioned. Obviously, if the call to this operator-overloading function is on the

 Object-Oriented Programming with C++224

right-hand side of the assignment operator and there is an object of the class Distance on its
left, then the object on the left will get the initial values of the object on the right. The value of
the object on the right will alone be incremented. These two operator-overloading functions
convincingly duplicate the default action of the increment operator on intrinsic types.

Obviously, if we provide an operator-overloading function for the increment operator in
pre x notation, we must provide one for the post x notation also.

Decrement operators are overloaded in the same way as the increment operators. See
Listing 8.14.

Listing 8.14 Overloading the decrement operator in both the prefi x and postfi x notation

/*Beginning of Distance.h*/
class Distance
{
 public:
 Distance operator ++ ();
 Distance operator ++ (int);
 Distance operator -- ();
 Distance operator -- (int);
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance Distance :: operator -- ()
{
 return Distance(--iFeet, fInches);
}
Distance Distance :: operator -- (int)
{
 return Distance(iFeet--, fInches);
}
/*
 definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

8.2.2 Overloading Unary Minus and Unary Plus Operator

Overloading the unary minus operator is shown in Listing 8.15.

Listing 8.15 Overloading the unary minus operator through a member function

/*Beginning of A.h*/
class A
{
 int x;

 public:
 A(int = 0);
 A operator - ();
};
/*End of A.h*/

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 225

/*Beginning of A.cpp*/
#include“A.h”
A::A(int p)
{
 x = p;
}
A A :: operator - ()
{
 return A(-x);
}
/*End of A.cpp*/

The operator can be overloaded by a friend function also (as shown in Listing 8.16).

Listing 8.16 Overloading the unary minus operator through a friend function

/*Beginning of A.h*/
class A
{
 int x;
 A(int = 0);

 public:
 friend A operator - (const A&);
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include“A.h”
A::A(int p)
{
 x = p;
}
A operator - (const A& AObj)
{
 return A(-AObj.x);
}
/*End of A.cpp*/

Overloading the unary plus operator is left as an exercise for the reader.

8.2.3 Overloading Arithmetic Operators

Arithmetic operators are binary operators. Therefore, the syntax for overloading them through
member functions is as illustrated in Listing 8.17.

Listing 8.17 Syntax for overloading the arithmetic operators through member functions

class <class_name>
{
 public:
 //prototype
 <return_type> operator<arith_op_symbol>(<param_list>);
};
//definition
<return_type> <class_name>:: operator<arith_op_symbol>

(<param_list>)

 Object-Oriented Programming with C++226

{
 //function body
}

An object that will store the value of the right-hand side operand of the arithmetic operator
will appear in the list of formal arguments. The left-hand side operand will be passed implicitly
to the function since the operator-overloading function will be called with respect to it. The
statement

Obj3 = Obj1 <arith_op_symbol> Obj2;

will be interpreted as
Obj3 = Obj1.operator <arith_op_symbol> (Obj2);

If instead a friend function overloads the arithmetic operator, the syntax will be as shown
in Listing 8.18.

Listing 8.18 Syntax for overloading the arithmetic operators through friend functions

class <class_name>
{
 public:
 //prototype
 friend <return_type> operator<arith_op_symbol>

(<param_list>);
};
//definition
<return_type> operator<arith_op_symbol>(<param_list>)
{
 //function body
}

Objects that store the values of the left-hand side and the right-hand side operands of the
arithmetic operator will appear in the list of formal arguments.
The statement

Obj3 = Obj1 <arith_op_symbol> Obj2;

will be rst interpreted as
Obj3 = Obj1.operator <arith_op_symbol> (Obj2);

Since, the arithmetic operator has been overloaded through a friend function, the nal
interpretation will be

Obj3 = operator <arith_op_symbol> (Obj1,Obj2);

Now let us try some concrete examples. Let us nd out how to overload the addition
operator for the class Distance with which we are already familiar. We would like the piece
of code given in Listing 8.19 to compile successfully and its output to be 10 -2 .

Listing 8.19 Using an overloaded addition operator on objects of the class Distance

Distance d1(5,8),d2(4,6),d3;
d3=d1+d2;
cout<<d3.getFeet()<<“’-“<<d3.getInches()<<“’’\n”;

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 227

For this, we must overload the addition operator for the class Distance by using either
a member function or a friend function.

Let us rst look at a member function to overload the addition operator for the class
Distance. In this case, the statement

d3 = d1 + d2;

will be interpreted as
d3 = d1.operator + (d2);

This obviously means that the function must return an object of the class Distance and
must accept an object of the class Distance as a parameter. The actual code to implement
the addition operator so that it produces the desired effect described above is given in
Listing 8.20.

Listing 8.20 Overloading the addition operator for the class Distance through member
function

/*Beginning of Distance.h*/
class Distance
{
 int iFeet;
 float fInches;
 public:
 Distance(const int=0, const float=0.0);
 void setFeet(const int=0);
 int getFeet() const;
 void setInches(const float=0.0);
 float getInches() const;
 //prototype
 Distance operator + (const Distance) const;
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
//definition
Distance Distance::operator+(const Distance dd1) const
{
 return Distance(iFeet+dd1.iFeet, fInches+dd1.fInches);
}
/*
 definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

The code in Listing 8.20 works ne if the right-hand side operand of the addition operator
is an object of class Distance. However, if it is a oat-type value, then the preceding function
will not work.

d3=d1+4.5;

This is because the compiler will interpret this statement as follows:
d3=d1.operator+(4.5);

The oat-type value 4.5 will be passed as a parameter to the operator-overloading function.
Since the formal argument of the operator-overloading function is a Distance type object,

 Object-Oriented Programming with C++228

the compiler will throw an error. However, introducing a suitable constructor that converts
from oat to Distance solves the problem. See Listing 8.21.

Listing 8.21 Introducing a constructor in the class Distance to initialize its objects to
fl oat-type values

/*Beginning of Distance.h*/
class Distance
{
 public:
 Distance(const float);
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance::Distance(const float p)
{
 iFeet=(int)p;
 fInches=(p-iFeet)*12;
}
/*
definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

However, one condition still remains to be tackled. What if the left-hand side operand is
of oat type?

d2 = 4.75 + d1;

The solution is obvious. We replace the member function given in Listing 8.20 with a
friend function. See Listing 8.22.

Listing 8.22 Overloading the addition operator for the class Distance through friend
function

/*Beginning of Distance.h*/
class Distance
{
 int iFeet;
 float fInches;

 public:
 Distance(int, float);
 //no ‘Distance operator + (const Distance) const;’
 //prototype
 friend Distance operator + (const Distance , const

Distance);
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 229

/*Beginning of Distance.cpp*/
#include“Distance.h”
//definition
Distance operator + (const Distance dd1, const Distance dd2)
{
 return Distance(dd1.iFeet+dd2.iFeet, dd1.fInches+dd2.fInches);
}
/*
definitions of the rest of the functions of class
Distance
*/
/*End of Distance.cpp*/

The friend function given in Listing 8.22 tackles all three conditions as follows:
Both the left-hand side and the right-hand side operands are objects of class Distance:
d3 = d1 + d2;

 The operator-overloading function is called straight away without any prior
conversions.
The right-hand side operand is a float-type value while the left-hand side operand is an
object of class Distance:
d2 = d1 + 4.75;

 The right-hand side operand is first converted into an object of the class Distance by
the constructor and then the operator-overloading function is called.
The left-hand side operand is a float-type value while the right-hand side operand is an
object of class Distance:
d2 = 4.75 + d1;

 The left-hand side operand is first converted into an object of the class Distance by
the constructor and then the operator-overloading function is called.

We may wonder about the fourth possibility where both operands are oat-type values.
However, in that case the operator-overloading mechanism will not be invoked at all. Instead,
the oat-type values will simply get added to each other.
The statement

d1 = 4.75 + 3.25;

will turn into
d1 = 8.0;

However, there is no function in the class Distance that converts a oat-type value to an
object of class Distance. Surprisingly, in this case also, the constructor that takes a oat-type
value as a parameter and initializes the object with it will be called. This is despite the fact
that the object is being created and initialized by two separate statements. Such a constructor
is called an implicit constructor.

Note that in Listing 8.22, the member function to overload the addition operator is
replaced by a friend function. Having both a friend function and a member function will lead
to ambiguity errors.

The compiler will be able to resolve the call

 Object-Oriented Programming with C++230

d3 = d1 + d2;

by both
//member function
Distance Distance::operator + (const Distance);

and
//friend function
Distance operator + (const Distance, const Distance);

This will naturally confuse the compiler.
We have now reached the end of our discussion on overloading the addition operator.

The method of overloading the remaining arithmetic operators is left as an exercise for the
reader.

8.2.4 Overloading Relational Operators

Relational operators are binary operators. Therefore, the syntax for overloading them through
member functions is given in Listing 8.23.

Listing 8.23 Syntax for overloading the relational operators through member functions

class <class_name>
{
 public:
 //prototype
 <return_type> operator <rel_op_symbol> (<param_list>);
};
//definition
<return_type> <class_name>: :operator <rel_op_symbol>

(<param_list>)
{
 //function body
}

An object that will store the value of the right-hand side operand of the relational operator
will appear in the list of formal arguments. The left-hand side operand will be passed implicitly
to the function since the operator-overloading function will be called with respect to it. The
expression

Obj1 <rel_op_symbol> Obj2

will be interpreted as
Obj1.operator <rel_op_symbol> (Obj2)

If instead, a friend function overloads the relational operator, the syntax will be as shown
in Listing 8.24.

Listing 8.24 Syntax for overloading the relational operators through friend functions

class <class_name>
{
 public:
 //prototype
 friend <return_type> operator <rel_op_symbol>

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 231

(<param_list>);
};

//definition
<return_type> operator <rel_op_symbol> (<param_list>)
{
 //function body
}

Objects that store the values of both the left-hand side and the right-hand side operands of
the relational operator will appear in the list of formal arguments.
The expression

Obj1 <rel_op_symbol> Obj2

will rst be interpreted as
Obj1.operator <rel_op_symbol> (Obj2)

Since, the relational operator has been overloaded through a friend function, this
interpretation will be

operator <rel_op_symbol> (Obj1,Obj2)

Now, let us nd out how to overload the greater than relational operator for the class
Distance. We would like the piece of code given in Listing 8.25 to compile successfully
and its output to be “Greater than”.

Listing 8.25 Using an overloaded greater than operator for the class Distance

Distance d1(5,8),d2(4,6);
if(d1>d2)
 cout<<“Greater than”;
else
 cout<<“Less than”;

For this, we must overload the ‘greater than’ operator for the class Distance by using
either a member function or a friend function.

Let us rst look at a member function to overload the greater than operator for the class
Distance. In this case, the expression

d1>d2

will be interpreted as
d1.operator>(d2)

Obviously, the function must return a boolean-type value (true or false) and should accept
an object of the class Distance as a parameter. The actual code to implement the greater
than operator so that it produces the desired aforementioned effect is given in Listing 8.26.

Listing 8.26 Overloading the greater than operator for the class Distance through a
member function

/*Beginning of Distance.h*/
enum bool{false, true};
class Distance

 Object-Oriented Programming with C++232

{
 int iFeet;
 float fInches;
 public:
 Distance(const int=0, const float=0.0);
 bool operator > (const Distance) const; //prototype
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/
/*Beginning of Distance.cpp*/
#include“Distance.h”
//definition
bool Distance::operator > (const Distance dd1) const
{
 if(iFeet*12+ fInches >dd1.iFeet*12 +dd1.fInches)
 return true;
 return false;
}
/*
 definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

The code in Listing 8.26 works ne if the right-hand side operand of the greater-than
operator is an object of class Distance. However, if it is a oat-type value, then the expression
will not compile.

d1>4.5

This is because the compiler will interpret this expression as ollows:
d1.operator>(4.5);

The oat type value ‘4.5’ will be passed as a parameter to the operator-overloading function.
Since the formal argument of the operator-overloading function is a Distance type object, the
compiler will throw an error. As in the case of the addition operator, introducing a suitable
constructor that converts from oat to Distance solves the problem (see Listing 8.21).

Nevertheless, one condition still remains to be tackled. What will happen if the left-hand
side operand is of oat type?

 4.75 > d1

The solution is the same as in the case of the addition operator. We replace the member
function given in Listing 8.26 with a friend function, as shown in Listing 8.27.

Listing 8.27 Overloading the greater-than operator for the class Distance through
friend function

/*Beginning of Distance.h*/
class Distance
{
 int iFeet;
 float fInches;

 public:
 //no ‘bool operator > (const Distance) const;’

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 233

 //prototype
 friend bool operator > (const Distance , const

Distance);
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
//definition
bool operator > (const Distance dd1, const Distance dd2)
{
 if(dd1.iFeet*12+ dd1.fInches >
 dd2.iFeet*12+dd2.fInches)
 return true;
 return false;
}
/*
 definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

The friend function given in Listing 8.27 tackles all three conditions as follows:
Both the left-hand side and the right-hand side operands are objects of class Distance:
d1 > d2

 The operator-overloading function is called straight away without any prior
conversions.
The right-hand side operand is a float-type value while the left-hand side operand is an
object of class Distance:
d1 > 4.75

 The right-hand side operand is first converted into an object of the class Distance by
the constructor and then the operator-overloading function is called.
The left-hand side operand is a float-type value while the right-hand side operand is an
object of class Distance:
4.75 > d1

 The left-hand side operand is first converted into an object of the class Distance by
the constructor and then the operator-overloading function is called.

We may again wonder about the fourth possibility where both operands are oat-type
values. Again, in such a case the operator-overloading mechanism will not be invoked at all.
Instead, the oat-type values will simply get compared to each other.

The expression
4.75 > 3.25

will return true.
As in the case of the addition operator, the member function to overload the greater

than operator is replaced by a friend function. Having both a friend function and a member
function will lead to ambiguity errors.

 Object-Oriented Programming with C++234

The compiler will be able to resolve the expression
d1 > d2

by both
//member function
bool Distance::operator > (const Distance);

and
//friend function
bool operator > (const Distance, const Distance);

This will naturally confuse the compiler.
We have now reached the end of our discussion on overloading the greater than operator.

The method of overloading the remaining relational operators is left as an exercise for the
reader.

8.2.5 Overloading Assignment Operator

The assignment operator is a binary operator. If overloaded, it must be overloaded by a
non-static member function only. Thus, the syntax for overloading the assignment operator
is as shown in Listing 8.28.

Listing 8.28 Syntax for overloading the assignment operator

class <class_name>
{
 public:
 //prototype
 class_name & operator = (const class_name &);
};
class_name & class_name :: operator = (const class_name & rhs) //definition
{
 //statements
}

We must keep in mind that, by default, the compiler generates the function to overload the
assignment operator if the class designer does not provide one. This default function carries
out a simple member-wise copy. See Listing 8.29.

Listing 8.29 Default assignment operator generated by the compiler

class A
{
 public:
 A& operator = (const A&);
};
A& A :: operator = (const A& rhs)
{
 *this = rhs;
 return *this;
}

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 235

In most cases, this default assignment operator is suf cient. However, there are cases where
this default behaviour causes problems. We may recollect the section on copy constructors
from Chapter 4. We discussed the ill effects of the default copy constructor for classes that
acquire resources dynamically. Exactly the same problems arise due to the effect of the default
assignment operator. The problems caused by the code

String s1, s2;
s1.setString(“abcd”);
s2 = s1;

if the assignment operator is not de ned are the same as the problems that arise out of the
code

String s1(“abcd”);
String s2 = s1;

if the copy constructor is not de ned. As a result of the preceding assignment operation,
the pointers of both ‘s1’ and ‘s2’ will end up pointing at the same memory block (see Figure
8.1). From the study of the copy constructor, we are already conversant with the havoc this
situation causes. The conclusion is that the assignment operator must be de ned for a class
for whom the copy constructor has been de ned. A suitable de nition of the assignment
operator for the class String is given in Listing 8.30.

Listing 8.30 A practical example of overloading the assignment operator

/*Beginning of String.h*/
class String
{
 char * cStr;
 unsigned int len;

 public:
 String(const String&); //the copy constructor
 String& operator = (const String&);
 /*
 rest of the class String
 */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
#include<string.h>
String& String :: operator = (const String& ss)
{
 if(this != &ss)
 {
 if(cStr != NULL)
 {
 delete[] cStr;
 cStr = NULL;
 len = 0;
 }
 if(ss.cStr != NULL)
 {

 Object-Oriented Programming with C++236

 len = ss.len;
 cStr = new char[len + 1];
 strcpy(cStr,ss.cStr);
 }
 }
 return *this;
}
/*
definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

Before understanding why the outermost ‘if ’ (if (this != &ss)) has been inserted at the top of
the function and why the function returns the calling object by reference, we must appreciate
that the de nition of the assignment operator in Listing 8.30 convincingly handles all four
possible cases as follows:

LHS.cStr = NULL and RHS.cStr = NULL
 If LHS.cStr = NULL then the first inner ‘if ’ (if (cStr != NULL)) fails and the corresponding

‘if ’ block does not execute. If RHS.cStr = NULL then the second inner ‘if ’ (if (ss.cStr !=
0)) fails and the corresponding ‘if ’ block does not execute. The entire function as a whole
does not do anything except that it returns the calling object by reference. As expected
and desired, the value of the left-hand side operand remains unchanged (as cStr = NULL
and len = 0) because the corresponding values in the right-hand side object are NULL
and 0, respectively.
LHS.cStr = NULL and RHS.cStr != NULL

 If LHS.cStr = NULL then the first inner ‘if ’ (if (cStr != NULL)) fails and the corresponding
‘if ’ block does not execute. If RHS.cStr != NULL then the second inner ‘if ’ (if (ss.cStr
!= 0)) succeeds and the corresponding ‘if’ block executes. It does the following:

 correctly sets the value of the ‘len’ member of the calling object to be equal to the
length of the memory block that will hold a copy of the string at which ‘cStr’ member
of the right-hand side object is pointing,

 allocates just enough memory to hold a copy of the string at which the cStr member
of the right-hand side object is pointing and makes the ‘cStr’ member of the left-hand
side object point at it, and

 copies the string at which the ‘cStr’ member of the right-hand side object is pointing
into the memory block at which the ‘cStr’ member of the left-hand side object is
pointing.

LHS.cStr != NULL and RHS.cStr = NULL
 If LHS.cStr != NULL then the first inner ‘if ’ (if (cStr != NULL)) succeeds and the

corresponding ‘if ’ block executes. It deallocates the memory block at which the ‘cStr’
member of the left-hand side object points, sets its value to NULL and sets the value
of ‘len’ member of the left-hand side object to 0. If RHS.cStr = NULL then the second
inner ‘if ’ (if (ss.cStr != 0)) fails and the corresponding ‘if ’ block does not execute.
As expected and desired, if it was not already so, the value of the left-hand side operand
gets nullified (cStr = NULL and len = 0) because the right-hand side operand is NULL.
LHS.cStr != NULL and RHS.cStr != NULL

 If LHS.cStr != NULL then the first inner ‘if ’ (if (cStr != NULL)) succeeds and the
corresponding ‘if ’ block executes. It deallocates the memory block at which the ‘cStr’

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 237

member of the left-hand side object points, sets its value to NULL, and sets the value of
‘len’ member of the left-hand side object to 0. If RHS.cStr != NULL then the second inner
‘if ’ (if (ss.cStr != 0)) succeeds and the corresponding ‘if ’ block executes. It does the
following:

 correctly sets the value of the ‘len’ member of the calling object to be equal to the
length of the memory block that will hold a copy of the string at which ‘cStr’ member
of the right-hand side object is pointing,

 allocates just enough memory to hold a copy of the string at which the ‘cStr’ member
of the right-hand side object is pointing and makes the ‘cStr’ member of the left-hand
side object point at it, and

 copies the string at which the ‘cStr’ member of the right-hand side object is pointing
into the memory block at which the ‘cStr’ member of the left-hand side object is
pointing.

Now, let us understand why the preceding function to overload the assignment operator
accepts the argument as a const reference and also returns the calling object by reference.
The function accepts the argument as a const reference to test for and guard against self-
assignment. First, let us understand how this guard works. We shall then nd out why this
check is needed at all.

We must take note of the following two facts:
Since the formal argument ‘ss’ in the above function is a reference variable, its address
is the same as the address of the right-hand side object.
The this pointer holds the address of the left-hand side object.

Therefore, the ‘if ’ condition ‘this == &ss’ (address of the left-hand side object == address
of the right-hand side object) tests to nd out whether an object is being equated with itself
or not. An object may get equated with itself in a variety of ways:

String s1;
s1 = s1;

or
String s1;
String &s2 = s1;
s2 = s1;

Each of these assignments will cause an execution of the function to overload the
assignment operator. Moreover, in each of the cases, the ‘if ’ condition in that function will
evaluate to true. For such circumstances, the main body of the operator-overloading function
has been deliberately designed to remain unexecuted. Why is this necessary? The reason is
simple—in case of a self-assignment, no action is necessary! This function to overload the
assignment will work even if the outer ‘if ’ condition is removed and the reference variable
that appears as the formal argument is replaced by an ordinary variable. See Listing 8.31.

Listing 8.31 Bypassing the check for self-assignment in the function to overload the
assignment operator

/*Beginning of String.h*/
class String
{
 char * cStr;

 Object-Oriented Programming with C++238

 unsigned int len;

 public:
 String(const String&); //the copy constructor
 String operator = (const String);
 /*
 rest of the class String
 */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
#include<string.h>
String String :: operator = (const String ss)
{
 if(cStr != NULL)
 {
 delete[] cStr;
 cStr = NULL;
 len = 0;
 }
 if(ss.cStr != 0)
 {
 len = ss.len;
 cStr = new char[len + 1];
 strcpy(cStr,ss.cStr);
 }
 return *this;
}
/*
definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

However, this function proves to be highly inef cient in case of a self-assignment. Suppose
the statement is:

s1 = s1;

This statement turns into
s1.operator=(s1);

‘s1’ is passed by value to the operator-overloading function. Therefore, the copy constructor
is called with respect to the formal arguments ‘ss’ and ‘s1’ is passed as a parameter to it. A
properly de ned copy constructor ensures that ‘ss’ contains a separate copy of the same string
which ‘s1’ contains. Nevertheless, the copy constructor is called. Now, when the actual function
body executes, the string contained by ‘s1’ is rst deallocated by the rst ‘if ’ block and then
reallocated with the same value for the string by the second ‘if ’ block. Although the net effect
is that nothing happens to the actual value of the string contained by the object, the function
is nevertheless inef cient. The unnecessary deallocation and reallocation can and should be
avoided. This has been done by the check for self-assignment given in Listing 8.30.

Next, let us understand why the function has been designed to return by reference. The
reasons are similar to those that prompted us to pass by reference (to check for self-assignment).

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 239

The function has been designed to return by reference to prevent chaining operation from
becoming inef cient, that is, to ensure an ef cient execution of statements such as the
following ones.

String s1, s2, s3;
s3 = s2 = s1;

This statement is interpreted as
s3.operator = (s2.operator = (s1));

Suppose the statement is written as
s2 = s2 = s1;

Notice the self-assignment embedded in the preceding statement. First, ‘s2’ is equated with
‘s1’. Then the value of ‘s2’ is returned. Suppose it is returned by value and not by reference.
In this case, a copy of ‘s2’ is created in the stack. Although the copy has a separate copy of the
same string value as ‘s2’ has, its address is nevertheless different from that of ‘s2’. Therefore,
when the assignment operator executes for the second time, the reference variable ‘ss’ refers
to this copy and not to ‘s2’ itself. Consequently, the test for self-assignment fails and again
the unnecessary deallocation and reallocation operations occur.

There is another circumstance when the library programmer would like to overload the
assignment operator. The library programmer may not want two objects to share even
different copies of the same data. In the previous example, where the assignment operator
has been overloaded for the class String, objects are able to share physically separate and
different copies of the same string value. To satisfy the new requirement described earlier,
the assignment operator should be de ned as a private member function (Listing 8.32).

Listing 8.32 Overloading the assignment operator through a private member function

class A
{
 A& operator = (const A&);
 public:
 /*
 rest of the class A
 */
};

Now, if the client programs call the assignment operator indirectly (object1 = object2)
or directly (object1.operator=(object2)), the compiler raises an error and the assignment
of one object to another is prevented. What will happen if one of the member functions or
friend functions of class A calls the assignment operator? This compiler will certainly not
complain and our safeguard will fail. For this, the library programmer can simply avoid
de ning the assignment operator. Now, if one of the member functions or friend functions
of class A calls the assignment operator, the compiler does not complain, but the linker
certainly does!

Let us understand another interesting thing about the assignment operator. For this, we
should remember that a derived class object can be assigned to a base class object. However,
the reverse is not true. See Listing 8.33. The reason is obvious. Suppose A is the base class
and B is its derived class.

 Object-Oriented Programming with C++240

Listing 8.33 Assigning a derived class object to a base class object and vice versa

A A1;
B B1;
A1=B1; //OK
B1=A1; //ERROR!

The set of data members of the derived class is, or is reckoned to be, a proper superset
of the set of data members of its base class. Thus, in the example in Listing 8.33, ‘B1’ will
have its own copies of not only those data members that ‘A1’ has, but also some extra data
members of its own. If the second assignment in Listing 8.33 works, then the data members
of ‘B1’ that are common in name with those of ‘A1’ will get initialized. However, the data
members that are exclusively in ‘B1’ will remain unchanged and may no longer match with
rest of the data members of ‘B1’. Keeping this in mind, the compiler prevents the second
assignment.

However, the class designer, if he/she so desires, may provide an assignment operator
function to the derived class so that a base class object can be assigned to a derived class
object. See Listing 8.34.

Listing 8.34 Enabling a base class object to be assigned to a derived class object

/*Beginning of B.h*/
#include“A.h”
class B : public A
{
 public:
 B& operator=(const A&); //to enable B1=A1;
 /*
 rest of the class B
 */
};
/*End of B.h*/

Statements to modify the values of the data members that are exclusive to the derived class
can be provided in Listing 8.34.

Suppose there is no explicitly de ned assignment operator-overloading function for the
derived class that has a reference to the derived class object as a formal argument. Further,
suppose there is an explicitly de ned assignment operator-overloading function for the
derived class that has a reference to the base class object as a formal argument. Even then
the complier would generate an assignment operator that has a reference to the derived class
object as a formal argument. For suppressing the generation of the implicit default assignment,
the formal argument of the explicit operator must be of the same type as the class itself.

8.2.6 Overloading Insertion and Extraction Operators

The syntax for overloading the insertion operator is given in Listing 8.35.

Listing 8.35 Syntax for overloading the insertion operator

class A
{

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 241

 public:
 //prototype
 friend ostream & operator << (ostream &, const A &);
 /*
 rest of the class A
 */
};

//definition
ostream & operator << (ostream & dout, const A & AA)
{
 /*
 rest of the function
 */
 return dout;
}

The statement
cout << A1; //A1 is an object of class A

is interpreted as
operator << (cout, A1);

The syntax for overloading the extraction operator is given in Listing 8.36.

Listing 8.36 Syntax for overloading the extraction operator

class A
{
 public:
 /*
 rest of the class A
 */
 //prototype
 friend istream & operator >> (istream &, A &);
};
//definition
istream & operator >> (istream & din, A & AA)
{
 /*
 rest of the function
 */
 return din;
}

The statement
cin >> A1; //A1 is an object of class A

is interpreted as
operator >> (cin, A1);

The insertion and the extraction operators are overloaded by using friend functions
for reasons explained in the beginning of this chapter.

 Object-Oriented Programming with C++242

We may observe that the objects of the classes istream and ostream are passed and returned
by reference in the preceding functions. Let us understand why. The copy constructor and the
assignment operator have been declared as protected members in both the classes istream
and ostream. This prevents two objects from undesirably sharing even different copies of
the same stream. Thus the statements

ostream dout = cout; //ERROR!
ostream dout;
dout = cout; //ERROR!
istream din = cin; //ERROR!
istream din;
din = cin; //ERROR!

will throw compile-time errors. This explains why the formal arguments are reference
variables.

The compulsion to return by reference is also explained similarly. If the object is returned by
value, then a separate object is created in the stack. A call to the copy constructor is dispatched
with respect to it and the object returned by the operator-overloading function is passed as a
parameter. However, the copy constructor is a protected member! Therefore, the object must
be returned by reference and not by value. But why should the object be returned at all. Can
the function not return anything? Can the function not be as shown in Listing 8.37?

Listing 8.37 Overloading the insertion operator without returning

class A
{
 public:
 //prototype
 friend void operator << (ostream &, const A &);
 /*
 rest of the class A
 */
};

//definition
void operator << (ostream & dout, const A & AA)
{
 /*
 definition of the function
 */
}

The answer is yes. Nevertheless, how will we chain the operator?
cout << A1 << A2;

The preceding statement is interpreted as
operator << (operator << (cout, A1), A2);

If the inner nested call (whose return value becomes the rst argument of the outer one)
returns void instead of ostream &, how will the outer call execute?

The insertion and extraction operators are overloaded to achieve data abstraction—a
complete independence between the interface and the implementation. The signatures and
return types of member functions do not change even if the data members within the class
do. Consequently, changes in the internal representation of data members of a class do not

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 243

force its client programs to change. Client programs need not be aware either of the internal
representation of data inside the class whose objects they are operating or of any changes
therein.

Let us understand this with the help of an example. Let us consider the class String and the
String::getString() function. The function returns a char *. This is because the string is
stored in a null terminated memory block of characters. Suppose this manner of representing
the data changes for some reason. Maybe the string is no longer stored as a null terminated
string. Maybe the string is stored in wide characters. These changes necessitate modi cations
in the client programs. For example, the following statement will no longer work:

cout<<s1.getString()<<endl;

The problem with having a function return the value to be inserted is that the function
must return a value and that value must have a data type—the data type of the data member
that is containing the object’s value. That is where the problem lies. If the data type changes,
the existing clients are likely to fail.

However, if the insertion operator has been overloaded then the preceding statement
can be rewritten as:

cout<<s1<<endl;

The responsibility of displaying the data is shifted to the object itself. The manner in which
the data is stored in the object and any change therein will no longer affect the client.

Nevertheless, it seems that even if the client programs need not recompile, their object
 les will have to be re-linked to the new libraries, which are created out of the changed class

de nition, to create updated executables. However, in the actual programming world, libraries
are provided as dynamic link libraries (DLLs). They do not form a part of the executables
physically. They exist separately. Whenever the corresponding executable executes, they are
dynamically loaded into the memory during run time and if the called functions are contained
within them, they are executed. Operator overloading, together with DLLs, enables a library
programmer in achieving complete data abstraction.

Can the same effect be achieved by a friend function that has the same signature as the
insertion operator? See Listing 8.38.

Listing 8.38 A friend function as an alternative to operator overloading

class String
{
 public:
 friend ostream& print(ostream&, const String&);
 /*
 rest of the class String
 */
};

Let us output one object of the class String by using Listing 8.38
print(cout,s1);

In case of two objects:
print(print(cout,s1),s2);

In case of three objects:

 Object-Oriented Programming with C++244

print(print(print(cout,s1),s2),s3);

However, the statement
cout<<s1<<s2<<s3;

looks far more intuitive.
Moreover, what will happen in case of templates? Let us consider a common global template

function that has calls to the insertion operator embedded within it. If we want to utilize such
a function by passing an object of the class String as a parameter, the insertion operator
would automatically get applied on the passed object. If the insertion operator has not been
overloaded for the class String, compile-time error will arise. The narration and examples on
function templates, from the chapter on templates (Chapter 10), clarify this point.

The extraction operators are overloaded for similar reasons as the insertion operators.
The problem with String::setString() function is that the client needs to load the string
that it wants to store in an object of the class String in a buffer and then pass it to a call to
this function. The formal argument of this function is of the same type as the data member
that is storing the string. Obviously, the buffer should also be of the same type. The problem
with this function is that the buffer must be passed to the function and that array must have
the same type as the data member in which the data is stored. If that type changes, the type
of the buffer also needs to change. This forces the clients to change. But, if the extraction
operator is overloaded for the class String, the following statement can be used instead of
calls to the String::setString() function:

cin>>s1;

The responsibility of reading the data is shifted to the object itself. Again, the manner
in which the data is stored in the object and any change therein will no longer affect the
client.

The insertion and extraction operators are overloaded to achieve independence of the
implementation (de nitions of member functions) from the interface (prototypes of member
functions).

8.2.7 Overloading new and delete Operators

The new and the delete operators can be overloaded for speci c classes. The behaviour of
these operators can be altered for operands of speci c class types.

If these operators are overloaded for a speci c class, then the functions that overload them
are called when the class type is passed as a parameter to these operators. Otherwise, the global
new and delete operators are called. For example, if the new operator has been overloaded
for a class X but not for a class Y, then the statement

X * XPtr = new X;

will call the function that overloads the new operator of class X. But the statement
Y * Yptr = new Y;

will call the global new operator. It is interesting to note that the user programs may not
change if the functions to overload the new and the delete operators are inserted into a class
or removed from it.

The syntax for overloading the new operator (for allocating memory for a single object)
is as shown in Listing 8.39.

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 245

Listing 8.39 Syntax for functions that overload the new operator and allocate memory for
a single object

class <class_name>
{
 public:
 static void * operator new(size_t); //function
 //prototype
 /*
 rest of the class
 */
};
void * <class_name> :: operator new (size_t size)
 //function definition
{
 /*
 definition of the function
 */
}

The syntax for overloading the new operator (for allocating memory for an array of objects)
is given in Listing 8.40.

Listing 8.40 Syntax for functions that overload the new operator and allocate memory
for an array of objects

class <class_name>
{
 public:
 static void * operator new [](size_t); //function
 //prototype
 /*
 rest of the class
 */
};

void * <class_name>::operator new [] (size_t size)
 //function definition
{
 /*
 definition of the function
 */
}

The syntax for overloading the delete operator (for deallocating memory for a single
object) is given in Listing 8.41.

Listing 8.41 Syntax for functions that overload the delete operator and deallocate
memory for a single object

class <class_name>
{
 public:
 static void operator delete(void *,size_t);

//function prototype
 /*

 Object-Oriented Programming with C++246

 rest of the class
 */
};
void <class_name>::operator delete (void * p, size_t size)

//function definition
{
 /*
 definition of the function
 */
}

The syntax for overloading the delete operator (for deallocating memory for an array of
objects) is given in Listing 8.42.

Listing 8.42 Syntax for functions that overload the delete operator and deallocate
memory for an array of objects

class <class_name>
{
 public:
 static void operator delete [] (void *, size_t);

//function prototype
 /*
 rest of the class
 */
};
void <class_name>::operator delete [](void *, size_t size)

//function definition
{
 /*
 definition of the function
 */
}

The operator new function and the operator delete function must be static. However, their
prototypes may or may not be pre xed with the static keyword. Either way, the compiler
treats these functions as static (reasons for this are explained later in this chapter).

The return type of the operator new function must be of type void *. The value returned
by this function is the address of the memory block it captures by calling the global new
operator. The operator new function should take at least one formal argument of type size_t.
As we will discover later, the operator new function can take more than one formal argument
also. The size_t argument holds the amount of memory to be allocated in bytes. The code in
Listing 8.43 illustrates this. It also illustrates how the global new operator is used from within
the member new operator function to capture memory in the heap area and how a pointer to
that memory is returned.

Listing 8.43 Overloading the new operator

/*Beginning of A.h*/
#include<new.h>
class A
{
 int x;

 public:

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 247

 void * operator new(size_t);
 /*
 rest of the class A
 */
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include<iostream.h>
#include“A.h”
void * A :: operator new(size_t size)
{
 cout << sizeof(A) << endl;
 cout << size << endl;
 void * p = :: operator new(size);
 return p;
}
/*
definitions of the rest of the functions of class A
*/
/*End of A.cpp*/

/*Beginning of Test.cpp*/
#include<iostream.h>
#include“A.h”
void main()
{
 A * APtr = new A;
}
/*End of Test.cpp*/

Output
4
4

It is obvious that the class designer will overload the new operator only if he/she is not
satis ed with the default action of the new operator for his/her class and would therefore like
to ne-tune it. For this, he/she will insert the necessary code in the function to overload the
new operator. Apart from this code, statements to allocate the required amount of memory
(by calling the global new operator) and then to return the address of the captured memory
block are also inserted in the function to overload the new operator. Otherwise, the requested
memory will never get allocated.

The return type of the operator delete function must be void as it does not return anything.
Its rst formal argument should be of type void *. The address of the memory block being
deleted is passed to it. The second formal argument of the operator delete function is of type
size_t. The size of the memory block to be deleted is passed as a parameter to it. Listing
8.44 illustrates all this. It also illustrates how the global delete operator should be used to
deallocate the memory being targeted.

Listing 8.44 Overloading the delete operator

/*Beginning of A.h*/
#include<new.h>
class A
{

 Object-Oriented Programming with C++248

 int x;

 public:
 void operator delete(void * const, const size_t);
 /*
 rest of the class A
 */
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include<iostream.h>
#include“A.h”
void A :: operator delete(void * const p, const size_t size)
{
 cout << p << endl;
 cout << sizeof(A) << endl;
 cout << size << endl;
 ::operator delete(p);
}
/*
definitions of the rest of the functions of class A
*/
/*End of A.cpp*/

/*Beginning of Test.cpp*/
#include<iostream.h>
#include“A.h”
void main()
{
 A * APtr = new A;
 cout << APtr << endl;
 delete APtr;
}
/*End of Test.cpp*/

Output
0xCCCCCC
0xCCCCCC
4
4

The reason for overloading the delete operator is similar to the reason for overloading the
new operator. As in the case of the new operator, the class designer will overload the delete
operator only if he/she is not satis ed with the default action of the delete operator for his/
her class and would therefore like to ne-tune it. For this, he/she will insert the necessary
code in the function to overload the delete operator. Apart from this code, a statement to
deallocate the required amount of memory (by calling the global delete operator) is also
inserted in the function to overload the delete operator. Otherwise, the requested memory
will never get deallocated.

The operator new function and the operator delete functions are static by default. This
means that the compiler treats them as static functions whether the class designer uses
the static keyword in their declarations or not. This is because the compiler places a call
to the constructor immediately after the call to the new operator and a call to the destructor
immediately before the call to the delete operator. The statement

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 249

A * APtr = new A;

is translated by the compiler as
A * APtr = A::operator new(sizeof(A)); //nameless object
 //created
A::A(APtr); //constructor called for nameless object

While the statement
delete APtr;

is translated by the compiler as
A::~A(APtr);//destructor called for nameless object
A::operator delete(APtr, sizeof(A)); //nameless object
 //destroyed

In order to understand the implications of these translations, let us consider a class that
has a pointer as one of its data members. The class designer would certainly like to initialize
this pointer to some valid value (say, NULL) in the constructor of the class.

class String
{
 char * cStr;
 public:
 String()
 {
 cStr = NULL;
 /*
 rest of the function String::String()
 */
 }
 /*
 rest of the class String
 */
};

However, if access is allowed to the private data members in the new operator function,
the class designer may accidentally allocate some memory dynamically in the heap and make
‘cStr’ point at it.

void * String::operator new(const size_t size)
{

 cStr = new char …

}

Now, when the constructor is called, a memory leak will occur because the value of
‘cStr’ will be straight away nulli ed without rst deallocating the memory block at which it
is pointing. We may suggest the following improvisation (Listing 8.45) in the code for the
class constructor:

Listing 8.45 The new and delete operators are static

A::A()
{
 if(cStr != NULL)

 Object-Oriented Programming with C++250

 delete [] cStr;
 cStr = NULL;
}

However, there is a serious drawback in this code. It presupposes that if ‘cStr’ is not NULL,
then it is de nitely pointing at a dynamically allocated memory block that has been captured
earlier by using the new operator. This is true only if the objects are created by using the new
operator. However, if objects are created in the normal fashion as follows:

A A1;

then the mere fact that the code in the constructor of the class String nds that the value of
‘cStr’ is not NULL does not mean that ‘cStr’ is de nitely pointing at a valid block of memory.
In fact, in this case, ‘cStr’ is simply a rogue pointer. Using the delete operator on such a
rogue pointer will naturally lead to a run-time error. For such reasons, the C++ compiler
prevents access to the non-static data members of the class by treating the operator new and
operator delete functions as static. It is repeated that the compiler treats these functions as
static whether we mention the static keyword in its declaration or not. We cannot force
access to the non-static data members in the new and delete operator functions by avoiding
the static keyword in their declarations.

It will not be out of context to mention once again that the constructor does not ‘construct’
the object, that is, it does not actually allocate memory for the object. It is merely a function
that is called immediately after the memory for the object has actually been allocated. Its
job is to ensure guaranteed initialization of all data members to proper values and to acquire
any resources if necessary. Similarly, the destructor does not actually destroy the object in
the sense that it does not actually deallocate the memory block occupied by the object. It is
merely a function that is called immediately before the memory for the object is deallocated.
Its job is to ensure a proper clean-up operation and to release all resources that were acquired
during the lifetime of the object. The manner in which the compiler translates calls to the new
and delete operators makes all this amply clear. Moreover, we may note how the global new
and delete operators are called from the class member functions that overload them.

Values are passed to the constructor in the usual way even after the new operator is
overloaded (Listing 8.46).

Listing 8.46 Passing parameters to an overloaded new operator

A * APtr = new A(10,20);

is translated by the compiler as
A * APtr = A::operator new;
A::A(APtr,10,20);

We have already discussed, in brief, an overall reason for overloading the new and delete
operators. The class designer overloads these operators if he/she considers their default action
inappropriate or inef cient for his/her class. Now, we will learn about the speci c cases where
overloading these operators becomes bene cial.

First, let us see how the new operator works. In order to deallocate the correct amount of
memory, the delete operator must know how much memory the new operator has allocated.
The compilers solve this problem by pre xing the memory block allocated by the new operator
with the amount of memory allocated. Therefore, as a result of the statement

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 251

A * APtr = new A;

we get Part A and not Part B of Figure 8.2 (suppose objects of class A occupy 10 bytes)
This means that every time the new operator is called for the class A, a separate block to

store the amount of memory allocated will also be allocated. This consumption of memory
can be a real bottleneck in applications where memory is critical.

Before we come to a solution to this problem, we should know that even if the ‘new’
operator allocates an array of objects, only one memory slice will be pre xed to the allocated
memory block in order to hold its size. Therefore, the amount of extra memory allocated
remains the same whether one object is created in the heap or an array of objects is created
in the heap. The class designer can take advantage of this fact.

The class designer can ensure that when the new operator is called for the rst time, a
memory to hold a large number of objects gets allocated and the address of the memory block
gets returned. The address returned will obviously be the address of the rst object in the
pool. Thereafter, every call to the new operator will return the address of the next available
block from the pool.

This solution is explained in Figures 8.3 and 8.4. Suppose A is a class whose objects
occupy 10 bytes. The class designer reckons that the pool will hold ve objects at a time.
Therefore, the pool size will be equal to 50 bytes. Let us consider the piece of code given in
Listing 8.47.

Listing 8.47 Calling an overloaded new operator

. . . .

. . . .
A * APtr01 = new A; //line 1
A * APtr02 = new A; //line 2
A * APtr03 = new A; //line 3
A * APtr04 = new A; //line 4
A * APtr05 = new A; //line 5
A * APtr06 = new A; //line 6
. . . .
. . . .

Figure 8.2 Wastage of memory due to the default action of the new operator

 Object-Oriented Programming with C++252

A memory pool of 50 bytes (10 bytes for each of the ve objects) will be created when
line 1 executes (because the new operator is being called for the rst time). When lines 2 to 5
execute, addresses of adjacent blocks are returned sequentially from this pool. After the rst
line executes, the following scenario emerges.

The address of the allocated memory block is ‘101’ (say). Therefore, the value of ‘APtr01’
becomes ‘101’. The address block from ‘101’ to ‘150’ has been allocated as a result of the
 rst line. As we can see, the size of the memory block (50) has been pre xed to the memory

block itself. The second line will not cause another memory block to be allocated. Instead,
the address of the next segment from the memory pool having address ‘111’ will be returned.
Therefore, the value of ‘APtr02’ will become ‘111’. The following scenario will emerge.

This process will continue until the sixth line is reached. After the fth line nishes
execution, the memory pool will get exhausted. At this point of time, another memory pool

Figure 8.3 Saving memory by overloading the new operator and modifying its behaviour

Figure 8.4 Accessing the memory pool allocated by the overloaded new operator

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 253

of the same size (50 bytes—10 bytes for ve objects each) will get allocated and the process
will repeat itself. All this is the effect of the code the class designer has written in the function
that overloads the new operator.

The actual code is given in Listing 8.48.

Listing 8.48 Overloading the new operator to improve effi ciency

/*Beginning of NewDeleteForMemorySave.h*/
#include<new.h>
class ClassNewDelete
{
 union
 {
 int x;
 ClassNewDelete * next;
 }v;
 static int NO_OF_OBJECTS;
 static ClassNewDelete * head;

 public:
 void setx(const int = 0);
 int getx() const;
 static void * operator new(const size_t);
};
/*End of NewDeleteForMemorySave.h*/

/*Beginning of NewDeleteForMemorySave.cpp*/
#include“NewDeleteForMemorySave.h”
int ClassNewDelete::NO_OF_OBJECTS = 5;
ClassNewDelete * ClassNewDelete::head;
int ClassNewDelete::getx() const
{
 return v.x;
}
void ClassNewDelete::setx(const int p)
{
 v.x=p;
}
void * ClassNewDelete::operator new(const size_t size)
{
 ClassNewDelete * temp,*p;
 temp = head;
 if(!temp)
 {
 temp = (ClassNewDelete *)::operator new(sizeof(class Class NewDelete)*NO_

OF_OBJECTS);
 for(p=temp;p!=&temp[NO_OF_OBJECTS-1];p++)
 p->v.next=p+1;
 p->v.next=0;
 }
 head=temp->v.next;
 return temp;
}
/*End of NewDeleteForMemorySave.cpp*/

/*Beginning of NewDeleteForMemorySaveMain.cpp*/
#include<iostream.h>
#include“NewDeleteForMemorySave.h”
void main()

 Object-Oriented Programming with C++254

{
 ClassNewDelete * ClassNewDeletePtr01 = new ClassNewDelete;
 ClassNewDeletePtr01->setx(10);
 cout<<ClassNewDeletePtr01->getx()<<endl;
 ClassNewDelete * ClassNewDeletePtr02 = new ClassNewDelete;
 ClassNewDeletePtr02->setx(20);
 cout<<ClassNewDeletePtr02->getx()<<endl;
 ClassNewDelete * ClassNewDeletePtr03 = new ClassNewDelete;
 ClassNewDeletePtr03->setx(30);
 cout<<ClassNewDeletePtr03->getx()<<endl;
 ClassNewDelete * ClassNewDeletePtr04 = new ClassNewDelete;
 ClassNewDeletePtr04->setx(40);
 cout<<ClassNewDeletePtr04->getx()<<endl;
 ClassNewDelete * ClassNewDeletePtr05 = new ClassNewDelete;
 ClassNewDeletePtr05->setx(50);
 cout<<ClassNewDeletePtr05->getx()<<endl;
 ClassNewDelete * ClassNewDeletePtr06 = new ClassNewDelete;
 ClassNewDeletePtr06->setx(60);
 cout<<ClassNewDeletePtr06->getx()<<endl;
}
/*End of NewDeleteForMemorySaveMain.cpp*/

Output
10
20
30
40
50
60

When this program runs, rst memory for the static data members of class ClassNew
gets allocated. The static data member NO_OF_OBJECTS stores how many blocks (objects)
will coexist in each pool. This data member should be static because it contains information
for the set of objects and is therefore not particular to any speci c object. The value of this
data member should be chosen with care. A value that is too large will waste memory and
thereby prove counterproductive. Large portions of the pool may remain unutilized for long
periods or for the entire lifetime of the program. A very small value will necessitate a frequent
allocation of more pools, thereby slowing down the program. If it is felt that large number
of objects will exist simultaneously at any given point of time, the value of this variable
should be kept large, otherwise this value should be small. In our case, we have initialized
NO_OF_OBJECTS to ‘5’.

Next, memory for another static data member head is allocated. This pointer points at the
next available block from the pool. This data member should also be static because it will
function for the entire set of objects and will, therefore, not be a part of any particular object.
Every call to the new operator returns the current value of this pointer and increments its value
so that it then points at the next available block in the pool. This pointer has been initialized
to NULL for reasons that will soon become apparent.

Now the main function begins execution. Memory for ClassNewPtr01 (four bytes since
it is a pointer) is allocated. Currently, it has junk value. Next, the new operator function for
class ClassNew is called. Two pointers, temp (for holding the current value of head so that
head can move to the next block) and ‘p’ (for traversing through the pool) are created. The
pointer temp is initialized to the current value of head. Now, the current value of the head

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 255

pointer is evaluated. During the rst call to the new operator, its value will be NULL. We
will soon see that its value will be NULL under a slightly different circumstance also. The
test expression in the if construct succeeds. Therefore, the if block executes. Suf cient
memory for holding NO_OF_OBJECTS number of objects is allocated by calling the global
new operator. The address of this pool (in other words the address of the rst object or block
in this pool) is then stored in the temp pointer. After this, the for loop makes the value of
the next pointer of each object (except the last object) in the newly created pool equal to
the address of the next object. After the loop terminates, the last statement of the if block
makes the next pointer of the last object NULL. With this, the if block terminates. The
second last statement of the function makes the head pointer point at the second object of the
pool. The value of temp, that is, the address of the rst object of the pool is then returned by
the operator new function. Thus, ClassNewPtr01 now points at the rst object of the pool.
ClassNewPtr01 pointer now operates on the rst object of the pool by calling the member
functions of the class ClassNew.

Now let us look at the fourth statement of the main function in Listing 8.48. The operator
new function of class ClassNew will be called for a second time. Again, temp pointer will be
initialized to the current value of head which is not NULL (head is pointing at the second
object of the pool). The if block will therefore be skipped. Only the last two statements
execute. The head pointer is again incremented to point at the next object (in this case the
third object) and the address of the object (in this case the second object) at which temp is
currently pointing is returned.

This process will continue till the operator new function of the class ClassNew is called for
the fth time (ClassNew * ClassNewPtr05 = new ClassNew). Although this time also the
test expression of the if block will fail, the value of the head pointer will become NULL while
the address of the fth and last block in the pool will be returned. Now, when the operator
new function is called for the sixth time, the test expression of the if block succeeds. A fresh
pool is allocated and the process repeats itself.

In order to make the operator new function succeed, it is necessary to thread the memory
by using the for loop. This necessitates the presence of the next pointer in each object of
the pool. Wastage of memory because of this next pointer, which would otherwise defeat
the very purpose for which the new operator was overloaded, is elegantly prevented by the
use of a union.

Now let us see how we can overload the delete operator for the class ClassNew. The
delete operator will be overloaded in a manner that will not actually deallocate the memory.
Instead, the block at which the pointer, on whom the delete operator is being applied points,
will be put back in the free list. When the new operator is called for the next time, the address
of that block will be returned. Before looking at the actual code, let us see its effects.

Let us consider the case where the new operator is called once only. This solitary call is
followed by a call to the delete operator (Listing 8.49).

Listing 8.49 Calling an overloaded delete operator

/*Beginning of NewDeleteForMemorySaveMain.cpp*/
#include<iostream.h>
#include“NewDeleteForMemorySave.h”
void main()
{
 ClassNewDelete * ClassNewDeletePtr01 = new ClassNewDelete;
 ClassNewDeletePtr01->setx(10);

 Object-Oriented Programming with C++256

 cout<<ClassNewDeletePtr01->getx()<<endl;
 delete ClassNewDeletePtr01;
}
/*End of NewDeleteForMemorySaveMain.cpp*/

After the execution of the rst statement, the scenario shown in Figure 8.5 emerges.
Memory for ve objects gets allocated in a pool. The addresses of the blocks in the pool

are displayed on the right, while the values of the next pointers embedded in each object is
shown within the rectangles that represent the objects. The amount of memory allocated (20
bytes for ve objects @ 4 bytes per object) has been pre xed to the pool. After the second
statement executes, the following scenario shown in Figure 8.6 emerges.

The value of the member ‘x’ of the rst block is modi ed to ‘10’. The third statement
does not alter the pool in any way. Now let us consider the fourth statement. The delete
operator is being applied on the pointer ClassNewPtr01. It is pointing at the block with
address ‘101’. The operator delete function will copy the current value of the head pointer
to the next pointer of this block. Thus, the next pointer of the block will point at the head
of the free list. Thereafter, the address of this block will be copied to the head pointer. As a
result, the scenario shown in Figure 8.7 will emerge.

Now, if the ‘new’ operator is called, the address of the rst block (101) will be returned
by the operator new function.

Question: For the following two circumstances, try to explain this action of the operator
delete function.

Figure 8.5 Effect of the overloaded delete operator

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 257

Figure 8.6 Effect of the overloaded delete operator

Figure 8.7 Effect of the overloaded delete operator

 Object-Oriented Programming with C++258

The pointer to be deleted and the head pointer are not pointing to blocks that are next
to each.
There are two pools (say six objects). The delete operator is applied on the sixth pointer
and then on the fifth.

The actual code is given in Listing 8.50.

Listing 8.50 Overloading the delete operator

/*Beginning of NewDeleteForMemorySave.h*/
#include<new.h>
class ClassNewDelete
{
 union
 {
 int x;
 ClassNewDelete * next;
 }v;
 static int NO_OF_OBJECTS;
 static ClassNewDelete * head;

 public:
 void setx(const int = 0);
 int getx() const;
 static void * operator new(const size_t);
 static void operator delete(void *, const size_t);
};
/*End of NewDeleteForMemorySave.h*/

/*Beginning of NewDeleteForMemorySave.cpp*/
#include”NewDeleteForMemorySave.h”
int ClassNewDelete::NO_OF_OBJECTS = 5;
ClassNewDelete * ClassNewDelete::head;
int ClassNewDelete::getx() const
{
 return v.x;
}
void ClassNewDelete::setx(const int p)
{
 v.x=p;
}
void * ClassNewDelete::operator new(const size_t size)
{
 ClassNewDelete * temp,*p;
 temp = head;
 if(!temp)
 {
 temp = (ClassNewDelete *)::operator new(sizeof(class ClassNewDelete)*

NO_OF_OBJECTS);
 for(p=temp;p!=&temp[NO_OF_OBJECTS-1];p++)
 p->v.next=p+1;
 p->v.next=0;
 }
 head=temp->v.next;
 return temp;
}
void ClassNewDelete::operator delete(void * p, const size_t size)
{
 ClassNewDelete * temp = (ClassNewDelete *)p;

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 259

 temp->v.next = head;
 head = temp;
}
/*End of NewDeleteForMemorySave.cpp*/

/*Beginning of NewDeleteForMemorySaveMain.cpp*/
#include<iostream.h>
#include“NewDeleteForMemorySave.h”
void main()
{
 ClassNewDelete * ClassNewDeletePtr01 = new ClassNewDelete;
 ClassNewDeletePtr01->setx(10);
 cout<<ClassNewDeletePtr01->getx()<<endl;
 delete ClassNewDeletePtr01;
}
/*End of NewDeleteForMemorySaveMain.cpp*/

Let us end this discussion with a word of caution. Operator new and operator delete functions
get inherited. This gives rise to bugs. We will soon see why this is so. However, rst let us
prove that this inheritance does occur. See Listing 8.51.

Listing 8.51 Operator new and delete functions get inherited

/*Beginning of A.h*/
#include<new.h>
class A
{
 int x;

 public:
 void setx(const int = 0);
 int getx() const;
 static void * operator new(const size_t);
 static void operator delete(void * const, const size_t);
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include“A.h”
#include<iostream.h>
void A::setx(const int p)
{
 x=p;
}
int A::getx() const
{
 return x;
}
void * A::operator new(const size_t size)
{
 cout<<“operator new of class A called\n”;
}
void A::operator delete(void * const p, const size_t size)
{
 cout<<“operator delete of class A called\n”;
}
/*End of A.cpp*/

/*Beginning of B.h*/

 Object-Oriented Programming with C++260

#include“A.h”
class B : public A
{
 int y;

 public:
 void sety(const int = 0);
 int gety() const;
};
/*End of B.h*/

/*Beginning of B.cpp*/
#include“B.h”
void B::sety(const int q)
{
 y=q;
}
int B::gety() const
{
 return y;
}
/*End of B.cpp*/

/*Beginning of Main.cpp*/
#include<iostream.h>
#include“B.h”
void main()
{
 B * BPtr01 = new B;
 delete BPtr01;
}
/*End of Main.cpp*/

Output
operator new of class A called
operator delete of class A called

Thus, when the new and delete operators are called by passing the derived class type as
parameter, it is seen that the new and delete operator functions of the base class are called.
How can this be a problem?

The problem this inheritance causes is due to the fact that when the new operator is called,
the head pointer points at the wrong place. Let us consider the overloaded new operator in
Listing 8.48. Suppose the new operator is overloaded for class A in Listing 8.51 in the same
way it is overloaded for class ClassNew in Listing 8.48. After the new operator executes for
the rst time, the head pointer points four bytes away from the rst byte of the pool even if the
derived class type is passed as a parameter to the new operator. Thus, when the new operator
is called for the second time, the address of the fth byte is returned and not the ninth byte.
The address of the ninth object is desired because an object of the class B will occupy eight
bytes—four for ‘x’ and four for ‘y’. The problem that arises because of this can be clearly
understood from Listing 8.52.

Listing 8.52 Undesirable effect of operator new and delete functions getting inherited

/*Beginning of Main.cpp*/
#include“B.h”

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 261

void main()
{
 B * BPtr01 = new B;
 B * BPtr02 = new B;
 BPtr02->setx(20);
 cout<<BPtr02->getx()<<endl;
 BPtr01->sety(10)<<endl;
 cout<<BPtr02->getx()<<endl;
}
/*End of Main.cpp*/

Output
20
10

After the rst two statements in Listing 8.52 execute, ‘BPtr01’ will point at the rst byte
of the memory pool and ‘BPtr02’ will point at the fth. The third statement writes 20 into
the block of bytes from the fth byte to the eighth byte. However, the fth statement writes
‘10’ into the same memory block!

In order to neutralize this effect of inheritance, the size of memory block being targeted
for allocation or deallocation should be compared with the size of the class for which the
operator is being overloaded. If these two do not match, then the global new or the global
delete operator should be called (see Listing 8.53).

Listing 8.53 Preventing the ill effects of the new and delete operators getting inherited

void * A::operator new(const size_t size)
{
 if(size != sizeof(class A)) //true if derived class type
 //passed as parameter
 return ::operator new(size);
 //rest of the code
}

void A::operator delete(void * const p, const size_t size)
{
 if(size != sizeof(class A)) //true if derived class type
 //passed as parameter
 {
 ::operator delete(p);
 return;
 }
 //rest of the code
}

8.2.8 Overloading Subscript Operator

The syntax for overloading the subscript operator is shown in Listing 8.54.

Listing 8.54 Syntax for overloading the subscript operator

class <class_name>
{

 Object-Oriented Programming with C++262

 public:
 <return_type> operator[](<param_list>); //prototype
};
//definition
<return_type> <class_name> :: operator[](<param_list>)
{
 //statements
}

The function that overloads the subscript operator must be a non-static member of the
class.

Let us overload the subscript operator for the class String. We will de ne the operator
so that it returns the character stored in the position that is passed as a parameter to it. See
Listing 8.55.

Listing 8.55 Overloading the subscript operator for the class String

/*Beginning of String.h*/
class String
{
 public:
 char& operator[](const int);
 /*
 rest of the class String
 */
};
/*End of String.h*/
/*Beginning of String.cpp*/
#include“String.h”
char& String :: operator[] (const int p)
{
 if(p<0 || p>len-1)
 throw “Invalid Subscript”;
 return cStr[p];
}
/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/
/*Beginning of StringMain.cpp*/
#include“String.h”
#include<iostream.h>
void main()
{
 String s(“abcd”);
 cout<<s.getString()<<endl;
 cout<<s[0]<<endl;
 s[1]=’x’;
 cout<<s.getString()<<endl;
}
/*Beginning of StringMain.cpp*/

Output
abcd
a
abxd

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 263

For the time being, we must ignore the throw statement (explained in Chapter 11) within
the String :: operator[]() function. The de nition of the String :: operator[]()
function is quite simple. It nds out whether the subscript passed is within the acceptable
limits or not. If not, it throws an exception. As we will learn in Chapter 11, throwing
exceptions is a very effective and ef cient way of error handling. If the subscript passed is
within acceptable limits, the function returns the corresponding element by reference. Why
is the element returned by reference? This is because the subscript operator might be used
on the left-hand side of the assignment operator also. Under such circumstances, returning
by reference causes the returned element to be assigned to the value passed on the right-hand
side of the assignment operator.

s[1]=’x’; //assign ‘x’ to the second character in the
 //string held by s.

However, the de nition of the String :: operator[]() function has a aw. Suppose
there is a constant object.

const String s(“abcd”);

Now, if we call the subscript operator with respect to the constant object, the compiler
correctly throws a compile-time error.

cout << s[1] << endl; //ERROR!

This is because the String :: operator[]() function is not a constant function and
therefore cannot be called with respect to the constant object. Let us therefore introduce another
constant function that overloads the subscript operator in the same way as the non-constant
function. See Listing 8.56.

Listing 8.56 Overloading the subscript operators for constant objects

/*Beginning of String.h*/
class String
{
 public:
 char& operator[](const int); //for non-constant
 //objects
 char& operator[](const int) const; //for constant
 //objects
 /*
 rest of the class String
 */
};
/*End of String.h*/
/*Beginning of String.cpp*/
#include“String.h”
char& String :: operator[] (const int p) //for non-constant
 //objects
{
 if(p<0 || p>len-1)
 throw “Invalid Subscript”;
 return cStr[p];
}
char& String :: operator[] (const int p) const//for
 //constant objects
{
 if(p<0 || p>len-1)

 Object-Oriented Programming with C++264

 throw “Invalid Subscript”;
 return cStr[p];
}
/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

Now, there are separate functions to overload the subscript operator for constant and
non-constant objects. However, the constant function given in Listing 8.56 is still imperfect.
Let us consider the following piece of code.

const String s(“abcd”);
s[1]=’x’; //unacceptable, but the compiler doesn’t
 //complain!

The second statement in the code calls the constant function with respect to the constant
object. The function returns the selected element by reference and the value of the selected
element gets set to ‘x’. Although the compiler will compile, our perception of a constant tells
us that the second statement above should not compile. In order to ensure this, we must make
the constant String :: operator[]() function return the value as a constant reference and
not as a non-constant reference. See Listing 8.57.

Listing 8.57 Returning a constant value for constant objects

/*Beginning of String.h*/
class String
{
 public:
 char& operator[](const int); //for non-constant
 //objects
 const char& operator[](const int) const; //for constant
 //objects
 /*
 rest of the class String
 */
};
/*End of String.h*/
/*Beginning of String.cpp*/
#include“String.h”
char& String :: operator[] (const int p) //for non-constant
 //objects
{
 if(p<0 || p>len-1)
 throw “Invalid Subscript”;
 return cStr[p];
}
const char& String :: operator[] (const int p) const
 //for constant
 //objects
{
 if(p<0 || p>len-1)
 throw “Invalid Subscript”;
 return cStr[p];
}
/*

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 265

 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

As desired, statements such as
s[1]=’x’;

will no longer compile if the calling object ‘s’ is a constant.
We conclude this section on overloading the subscript operator with one last piece of

information. The formal argument of the function that overloads the subscript operator can
be of any type. In the example given in Listing 8.57, the formal argument was of type const
int. However, it can be of any type, such as char, oat, double. See Listing 8.58.

Listing 8.58 Formal argument of the function that overloads the subscript operator can
be of any type

/*Beginning of String.h*/
class String
{
 public:
 int operator[](const char); //for non-constant
 //objects
 int operator[](const char) const; //for constant
 //objects
 /*
 rest of the class String
 */
};
/*End of String.h*/

8.2.9 Overloading Pointer-to-member (->) Operator (Smart Pointer)

Overloading the pointer-to-member (->) operator is slightly complicated. First, let us
understand that it is a post x unary operator. If it is overloaded as follows:

class A
{
 public:
 B * operator->();
 /*
 rest of the class A
 */
};

then the second statement that follows
A p;
p->abc();

translates to
(p.operator->())->abc();

Obviously, ‘abc()’ must be a member of class B.
The pointer-to-member (->) operator can be overloaded to create smart pointers.

 Object-Oriented Programming with C++266

Smart pointers, unlike the ordinary unsmart pointers, can be designed to inevitably point
at valid objects. In contrast, the ordinary unsmart pointers have to be explicitly initialized by
the client. Consequently, they have to be tested for validity before every use. Smart pointers
are class objects. Let us create a class whose objects will behave like pointers to the class
String. See Listing 8.59.

Listing 8.59 A class of smart pointers

/*Beginning of StrPtr.h*/
#include“String.h”
class StrPtr
{
 String * p;
 public:
 StrPtr(String&); //the one and only one constructor
};
/*End of StrPtr.h*/
/*Beginning of StrPtr.cpp*/
#include“StrPtr.h”
StrPtr::StrPtr(String& ss)
{
 p=&ss;
}
/*End of StrPtr.cpp*/

We must notice how a zero-argument constructor has been deliberately left out from the
class de nition in Listing 8.59. This forces clients to invariably pass an object of the class
String as a parameter whenever they create objects of the class StrPtr. Therefore, the
embedded pointer of the class StrPtr always points at an object of the class String. The
client can create an object of the class in Listing 8.59 as follows:

String s1(“abc”);
StrPtr p(s1);

To mimic a pointer completely, objects of the class StrPtr should be capable of being
used as follows:

p->setString(“def”);

For this, the pointer-to-member operator (->) needs to be overloaded for the class StrPtr.
This can be done as shown in Listing 8.60.

Listing 8.60 Overloading the pointer-to-member operator for smart pointers

/*Beginning of StrPtr.h*/
#include“String.h”
class StrPtr
{
 String * p;
 public:
 StrPtr(String&); //the one and only one constructor
 String * operator->(); //the overloaded operator
};
/*End of StrPtr.h*/
/*Beginning of StrPtr.cpp*/
#include“StrPtr.h”

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 267

StrPtr::StrPtr(String& ss)
{
 p=&ss;
}
String * StrPtr::operator->()
{
 return p;
}
/*End of StrPtr.cpp*/

Contrast objects of the class StrPtr with ordinary pointers that point at objects of the
class String. In case of ordinary pointers, there is no guarantee that the pointer being used
is pointing at a valid block of memory.

void f1(String * p)
{
 p->setString(“abc”); //No way to check the validity of p
}

On the other hand, an attempt to similarly initialize an object of the class StrPtr results
in a compile-time error.

StrPtr p; //ERROR: no zero-argument constructor

Therefore, in case of smart pointers, there is a guarantee that the pointer being used is
pointing at a valid block of memory.

void f1(StrPtr p)
{
 p->setString(“abc”); //p is definitely valid
}

 8.3 Type Conversion

In this section, we shall be dealing with techniques for converting variables from one type to
another. Conversion of one type to another is achieved by the use of constructors and type-
conversion functions.

8.3.1 Basic Type to Class Type

Conversion for basic type to class type is achieved by introducing a suitable constructor in
the class. Suppose it is desired that the following statement should make d1.iFeet equal to
‘1’ and d1.fInches equal to ‘9’.

Distance d1 = 1.75; //OR Distance d1(1.75);

A value (‘1.75’) which is of a basic type (oat) needs to be converted into an object of the
class Distance. A suitable constructor in the class Distance can carry out this conversion
(Listing 8.61).

Listing 8.61 Using constructors for converting a value of basic type to class type

/*Beginning of Distance.h*/
class Distance
{

 Object-Oriented Programming with C++268

 int iFeet;
 float fInches;
 public:
 Distance(const float);
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance::Distance(const float p)
{
 iFeet=(int)p;
 fInches=(p-iFeet)*12;
}
/*
 definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

An ambiguity arises when two classes convert from the same type. Let us consider the
two classes shown in Listing 8.62.

Listing 8.62 Ambiguity due to conversion from the same type

/*Beginning of ambiguity.cpp*/
class A
{
 public:
 A(int);
};

class B
{
 public:
 B(int);
};

void f(A);
void f(B);//function f() is overloaded

void g()
{
 f(1); //ERROR: ambiguous call – f(X(1)) or f(Y(1))?
}
/*End of ambiguity.cpp*/

The ambiguity in Listing 8.62 can be resolved by an explicit-type conversion:
f(X(1)); //OK
f(Y(1)); //OK

8.3.2 Class Type to Basic Type

Type-conversion operators achieve the conversion of class type to basic type. The syntax for
the type-conversion functions is shown in Listing 8.63.

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 269

Listing 8.63 Syntax for converting values from class type to basic type

class <class_name>
{
 public:
 operator <type_name> (); //prototype
 /*
 rest of the class
 */
};
<class_name> :: operator <type_name> () //definition
{
 /*
 definition of the function
 */
}

We must notice that the return type is not mentioned. Type-conversion operators resemble
constructors in this respect. Let us introduce a function in the class Distance for converting
its objects into oat type variables. In particular, we would like the value of the variable ‘x’
in the following piece of code to become ‘1.75’.

Distance d1(1,9);
float x=d1;

The code to achieve this transformation is as given in Listing 8.64.

Listing 8.64 Converting from class type to basic type

/*Beginning of Distance.h*/
class Distance
{
 int iFeet;
 float fInches;
 public:
 operator float();
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/
/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance::operator float()
{
 return (iFeet+(fInches/12));
}
/*
 definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

8.3.3 Class Type to Class Type

Conversion of one class-type value to another can be achieved by both a constructor and a
type-conversion operator. Which of these two techniques will be used depends upon the class
that is being provided the capability to convert the value.

 Object-Oriented Programming with C++270

If it is desired that the object on the left side of the assignment should have the ability,
then a suitable constructor should be introduced in that object’s class. If it is desired that the
object on the right side of the assignment should have the ability, then a suitable conversion
operator should be introduced in that object’s class. See Listing 8.65.

Listing 8.65 Assigning an object of one class to another

/*Beginning of ClassToClass01.cpp*/
class A {};
class B {};
void f()
{
 A A1;
 B B1;
 A1=B1; //either class A should have a constructor or
 //class B should have a type conversion operator
}
/*End of ClassToClass01.cpp*/

The constructor can be introduced in class A as shown in Listing 8.66.

Listing 8.66 Using a constructor for converting from one class type to another

/*Beginning of ClassToClass02.cpp*/
class A
{
 public:
 A(const B&); //prototype
};
A::A(const B& b) //definition
{
 /*
 definition of the function
 */
}
/*End of ClassToClass02.cpp*/

The type conversion operator can be introduced in class B as shown in Listing 8.67.

Listing 8.67 Using a type conversion operator for converting from one class type to
another

/*Beginning of ClassToClass03.cpp*/
class B
{
 public:
 operator A(); //prototype
};
B::operator A() //definition
{
 /*
 definition of the function
 */
}
/*End of ClassToClass03.cpp*/

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 271

Care should be taken to ensure that only one of these two techniques is used on the pair of
classes. If both are used together, the compiler throws an ambiguity error when the objects of
the two classes are equated. This is because both the techniques can carry out the conversion
and the compiler is not in a position to choose between the two.

 8.4 New Style Casts and the typeid Operator

C++ provides a new set of operators for typecasting. These operators can be used instead
of the highly error-prone method of typecasting provided by the C language. An example
of the traditional method of typecasting was mentioned in the section titled ‘Explicit address
manipulation’ in Chapter 2.

The new style casts are safe to use and can be easily located in source codes by using the
search facility of the editor in which the source code has been opened. The latter bene t is
especially useful in large source codes.

Ideally, a program should not need casts at all. However, there are various programming
patterns where they are necessary. In order to meet this need, new style casts should be used
instead of the old traditional style.

There are four new style cast operators.
 dynamic_cast

 static_cast

 reinterpret_cast

 const_cast

Each of the these operators converts the object, which is passed to it as an operand, in a
pre-de ned way and returns the converted object. The general syntax of these operators is:

operator <type>(value whose type is to be converted)

The typeid operator is similar to the dynamic_cast operator.

8.4.1 dynamic_cast Operator

Run time type information (RTTI) enables us to nd the type of a value and to compare
the types of two values. C++ provides dynamic_cast operator and the typeid operator for
implementing RTTI.

The dynamic_cast operator is used to determine whether a particular base class pointer
points at an object of the base class or an object of one of the derived classes at run time. It
is also used to determine whether a base class reference refers to an object of the base class
or an object of one of the derived classes at run time.

We know from Chapter 5 that a base class pointer can point at an object of the derived
class while a derived class pointer cannot point at an object of the base class.

Let A be a base class and B be its derived class.
A A1, * APtr;
B B1, * BPtr;
APtr=&B1; //line 1: OK: Can convert from B* to A*
BPtr=&A1; //line 2: ERROR: Cannot convert from A* to B*
BPtr=APtr; //line 3: ERROR: Cannot convert from A* to B*

 Object-Oriented Programming with C++272

However, in the rst line of this piece of code, ‘APtr’ (a base class pointer) points at ‘B1’
(an object of the derived class). In this particular case, there should be no harm in assigning
the value of the base class pointer to the derived class pointer (see the third line). After all,
the base class pointer contains the address of a derived class object and a derived class pointer
can certainly point at an object of the derived class.

However, a statement that assigns the value of a base class pointer to a derived class pointer
(line 3) will not compile. The compiler has no way of knowing the type of the object whose
address would get assigned to the base class pointer at run time.

As we already know, a pointer usually appears as function argument. Usually, it is not a
local variable. The library programmer puts the prototypes of his/her functions, including the
ones that have pointers as formal arguments, in header les and their compiled de nitions in
libraries. These functions are called from functions that are de ned in application codes or
in other library codes. In case the particular library function being called has a pointer as a
formal argument, the application source code passes a suitable address to it. This address can
be the address of a base class object or a derived class object. However, within the de nition
of the library function, there is no way of determining the exact type of the object whose
address will be passed to it. Therefore, a line within the library function such as the third line
in the foregoing code snippet will not compile.

However, the library programmer may need to assign the value of a base class pointer to
a derived class pointer if the base class pointer points at an object of the same derived class.
The dynamic_cast operator enables us to know the type of the object whose address gets
assigned to a base class pointer during run time.

Please refer to the general syntax of the new style cast operators given at the beginning
of this section. If ‘type’ is a derived class pointer type and the value to be converted is the
address of an object of the same derived class, then the dynamic_cast operator returns a
pointer to the object. Else, it returns NULL. Remember that for the dynamic_cast operator
to operate, the base class should be polymorphic in nature, that is, it should have at least one
virtual function. Listing 8.68 shows an illustrative program follows.

Listing 8.68 Using the dynamic_cast operator with pointers

/*Beginning of dynamicCast01.cpp*/
#include<iostream.h>
class A
{
 public:
 virtual void f1()
 {
 cout<<“A::f1() called\n”;
 }
};
class B : public A
{
 public:
 void f2()
 {
 cout<<“B::f2() called\n”;
 }
};
class C : public A
{
 public:

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 273

 void f3()
 {
 cout<<“C::f3() called\n”;
 }
};
void main()
{
 A * APtr;
 B B1, * BPtr;
 C C1;
 APtr=&B1; //APtr points at an object of class B.
 BPtr=dynamic_cast<B*>(APtr); //APtr is actually of
 //type B* and type is
 //also B*. Hence, cast
 //returns address of B1.
 if(BPtr!=NULL) //BPtr is not NULL. It contains the
 //address of B1.
 BPtr->f2();
 else
 cout<<“Invalid cast\n”;
 APtr=&C1; //APtr points at an object of class C.
 BPtr=dynamic_cast<B*>(APtr); //APtr is actually of
 //type C* and type is
 //B*. Hence, cast
 //returns NULL.
 if(BPtr!=NULL) //BPtr is NULL.
 BPtr->f2();
 else
 cout<<“Invalid cast\n”;
}
/*End of dynamicCast01.cpp*/

Output
B::f(2) called
Invalid cast

The process implemented in Listing 8.68 for safely casting a pointer of base class type to a
pointer of derived class type is known as safe downcasting. This process enables us to access
those features of the derived class that are not present in the base class.

If the dynamic_cast operator is used with references, it throws an exception of type Bad_
cast where it would have otherwise returned NULL, had pointers been used. Understanding
this requires preliminary knowledge of exception handling. Therefore, Listing 8.69 can be
read after reading Chapter 11 on exception handling.

Listing 8.69 Using the dynamic_cast operator with references

/*Beginning of dynamicCast02.cpp*/
#include<iostream.h>
#include<typeinfo.h>
class A
{
 public:
 virtual void f1()
 {
 cout<<“A::f1() called\n”;
 }

 Object-Oriented Programming with C++274

};
class B : public A
{
 public:
 void f2()
 {
 cout<<“B::f2() called\n”;
 }
};
class C : public A
{
 public:
 void f3()
 {
 cout<<“C::f3() called\n”;
 }
};
void main()
{
 B BObj;
 C CObj;
 A & ARef1=BObj; //ARef1 is a reference to an object of
 //class B
 try
 {
 B & BRef1=dynamic_cast<B &>(ARef1);
 //ARef1 is actually of type B& and
 //type is also B&. Hence, cast
 //returns reference to BObj.
 BRef1.f2();
 }
 catch(bad_cast)
 {
 cout<<“Invalid cast\n”;
 }
 A & ARef2=CObj; //ARef2 is a reference to an object of
 //class C
 try
 {
 B & BRef2=dynamic_cast<B &>(ARef2);
 //ARef2 is actually of type C& and
 //type is B&. Hence, cast
 //throws an exception of type
 //bad_cast.
 BRef2.f2();
 }
 catch(bad_cast)
 {
 cout<<“Invalid cast\n”;
 }
}
/*End of dynamicCast02.cpp*/

Output
B::f2() called
Invalid cast

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 275

8.4.2 static_cast Operator

The only difference between the static_cast operator and the dynamic_cast operator is that
while the dynamic_cast operator carries out a run-time check to ensure a valid conversion
(it returns NULL or throws an exception of type Bad_cast), the static_cast operator caries
out no such check. See Listing 8.70.

Listing 8.70 The static_cast operator

/*Beginning of typeid.cpp*/
#include<iostream.h>
#include<typeinfo.h>
void main()
{
 char c;
 int i;
 float f;
 double d;
 cout<<typeid(c).name()<<endl;
 cout<<typeid(i).name()<<endl;
 cout<<typeid(f).name()<<endl;
 cout<<typeid(d).name()<<endl;
 if(typeid(i)==typeid(1.1)) //comparing int with float
 cout<<“i is of the same type as 1.1”;
 else
 cout<<“i is not of the same type as 1.1”;
}
/*End of typeid.cpp*/

Output
B::setx() called
1
B::setx() called
2

The rst conversion by the static_cast operator in Listing 8.70 is correct. ‘BPtr’ (of
type ‘B*’) points at ‘B1’ (of type B).

However, the second conversion by the static_cast operator is incorrect. ‘BPtr’ (of type
‘B*’) points at ‘C1’ (of type C). Since ‘BPtr’ is of type ‘B*’, the member functions of class
B alone can be called with respect to it.

It is interesting to note what happens when ‘BPtr’ points at ‘C1’ and the B::setx() function
is called for it. The statement

x=p;

in B::setx() function simply stores the value ‘2’ in the rst four bytes of the object at which
‘BPtr’ points. This is because ‘B::x’ is an integer-type value and is the only data member of
class B. However, these four bytes are occupied by ‘C1.y’! Therefore, the output of the last
statement in Listing 8.70 is ‘2’. The error-prone nature of the static_cast operator is quite
evident from this.

However, this does not mean that the old style cast (‘B*’) is as good as the static_cast
operator. The static_cast operator is still a better choice because it can be easily located in

 Object-Oriented Programming with C++276

the source codes by searching for the string static_cast. Bugs suspected due to an invalid-
type conversion can thus be easily found out.

8.4.3 reinterpret_cast Operator

Just like the old style cast, the reinterpret_cast operator allows us to cast one type to
another.

Suppose ‘cPtr’ is a character pointer and ‘vPtr’ is a void pointer. If the value of ‘vPtr’ is
to be assigned to ‘cPtr’, it needs to be typecast rst.

cPtr=(char *)vPtr;

However, the preceding statement can be rewritten as
cPtr=reinterpret_cast<char *>(vPtr);

The compiler generates errors or warnings if casts are absent from conversion statements
where a value of one type is being converted to an incompatible type. These errors and
warnings can be switched off by inserting cast operators. Inserting a cast operator is a way
of expressing our awareness and acceptance of the potential consequences to the compiler
and the reader.

As in the case of static_cast, the reinterpret_cast operator seems to be an unnecessary
substitute of the old style cast. Again, as in the case of static_cast, the visibility of the
new style cast is considerably greater than the old style cast, which makes tracking down a
rogue old style cast much easier.

8.4.4 const_cast Operator

The const_cast operator serves the same purpose as the mutable keyword that has been
explained in Chapter 2. The const_cast operator is used to cast away the constness of a
pointer.

We may recall the following listing on mutable data members from Chapter 2 (Listing
2.21).

/*Beginning of mutable.h*/
class A
{
 int x; //non-mutable data member
 mutable int y; //mutable data member
 public:
 void abc() const //a constant member function
 {
 x++; //ERROR: cannot modify a non-mutable data
 //member in a constant member function
 y++; //OK: can modify a mutable data member in a
 //constant member function
 }
 void def() //a non-constant member function
 {
 x++; //OK: can modify a non-mutable data member
 //in a non-constant member function
 y++; //OK: can modify a mutable data member in a
 //non-constant member function
 }

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 277

};
/*End of mutable.h*/

Listing 2.21 can be rewritten by using the const_cast operator instead of declaring the
desired data member as mutable as shown in Listing 8.71.

Listing 8.71 The const_cast operator

/*Beginning of const_cast.h*/
class A
{
 int x; //non-mutable data member
 int y; //non-mutable data member
 public:
 void abc() const //a constant member function
 {
 x++; //ERROR: cannot modify a non-constant data
 //member in a constant member function
 const_cast<A*>(this)->y++;
 //OK: can modify a non-mutable data member
 //in a constant member function by casting
 //away the constness of the this pointer
 }
 void def() //a non-constant member function
 {
 x++; //OK: can modify a non-mutable data member
 //in a non-constant member function
 y++; //OK: can modify a mutable data member in a
 //non-constant member function
 }
};
/*End of const_cast.h*/

The compiler treats the this pointer as a constant pointer inside non-constant functions.
However, it treats the this pointer as a constant pointer to a constant inside constant functions.
In the A::abc() function in Listing 8.71, the constness of the this pointer is cast away. This
enables us to modify a non-mutable data member in a constant function.

We may note that by passing ‘A*’ to the const_cast operator in the A::abc() function
in Listing 8.71, the this pointer was made an ordinary pointer that is neither a constant nor
supposed to point at a constant object. We could have very well passed ‘A * const’ instead
and still ensured a successful compilation of the statement. This is because passing ‘A *
const’ to the const_cast operator would have rendered the this pointer a constant pointer
that points at a non-const object.

The motive for using the const_cast operator is the same as the motive for using the
mutable keyword.

As in the case of the other new style cast operators, using the const_cast operator indicates
the programmer’s awareness and acceptance of the possible negative consequences of its
use.

8.4.5 typeid Operator

Apart from the dynamic_cast operator, C++ provides the typeid operator for implementing
RTTI (typeid is a keyword in C++). The typeid operator takes a value as its only parameter.

 Object-Oriented Programming with C++278

It returns the type of the passed value as a reference to an object of class type_info. The
class type_info is de ned in the header le typeinfo.h.

Two objects of the class type_info can be compared by using the ‘equality’ operator. The
name of the type of value passed to the typeid operator can also be determined by using the
type_info::name() function.

Values of fundamental data types, pointers to values of fundamental data types, and
references to values of fundamental data types can be passed to the typeid operator. See
Listing 8.72.

Listing 8.72 The typeid operator

/*Beginning of typeid.cpp*/
#include<typeinfo.h>
void main()
{
 char c;
 int i;
 float f;
 double d;

 cout<<typeid(c).name()<<endl;
 cout<<typeid(i).name()<<endl;
 cout<<typeid(f).name()<<endl;
 cout<<typeid(d).name()<<endl;

if(typeid(i)==typeid(1.1)) //comparing int with float
 cout<<“i is of the same type as 1.1”;
 else
 cout<<“i is not of the same type as 1.1”;
}
/*End of typeid.cpp*/

Output
char
int
float
double
i is not of the same type as 1.1

Class objects, pointers to class objects, or references to class objects can also be passed
to the typeid operator. However, for the typeid operator to work correctly, the class whose
object, pointer, or reference is passed to it should be polymorphic in nature. Otherwise, either
of the following will happen depending upon the compiler and its settings:

The compiler would issue a compile-time warning against the statement in which the
typeid operator has been called. The OS would throw a run-time error.
If a dereferenced base class pointer that points at a derived class object is passed as a
parameter to the typeid operator, the typeid operator would not be able to determine
the type of the object pointed at by the pointer. It would instead return the base class
type as the type of the object pointed at by the base class pointer, which of course is
undesirable.

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 279

class A {}; //no virtual function
class B : public A {};
B B1;
A * APtr=&B1;
cout<<typeid(*APtr).name()<<endl; //prints: class A

Had the base class A in the preceding code contained at least one virtual function, the last
cout statement would have printed class B as desired.

Given that class A does have a virtual function, what would the following tests evaluate
to?

typeid(APtr) == typeid(A*) //comparing pointers
typeid(*APtr) == typeid(A) //comparing objects pointed
 //at

The rst of these test expressions would return true while the second one would return
false. In the rst case, the types of the pointers, and not the types of the objects being pointed
at, are being compared. Since ‘APtr’ is of type ‘A*’, the rst statement returns true. In the
second case, the types of the objects being pointed at, and not the types of the pointers, are
being compared. Since ‘*APtr’ is of type B, the second statement returns false.

In C++, the library programmer can provide existing
operators with additional capabilities to operate upon
objects of his/her class. This is known as operator
overloading.

Operators can be overloaded by functions having
their names composed of the keyword operator and
the symbol of the operator being overloaded. These
functions may be member functions or friend functions.
Friend functions are used when the objects of the class
for which the operator is being overloaded invariably
appear on the right-hand side of the operator.

Operators are overloaded to
 Neutralize the effect of the functions that are

generated by default (the assignment’ operator).
 To make the operation of the operators more

ef cient (the new and delete operators).
 To provide capabilities to the class so that its objects

can be used in prede ned templates.
The rules for operator overloading are as follows:

 New operators cannot be created.
 Meaning of existing operators cannot be changed.
 The following operators cannot be overloaded:

 :: (scope resolution)

 . (member selection)
 .* (member selection through pointer to member)
 ?: (conditional operator)
 sizeof (nding the size of values and types)
 typeid (nding the type of object pointed at)

 The following operators can be overloaded using
member functions alone:

 = (Assignment operator)
 () (Function operator)
 [] (Subscripting operator)
 -> (Pointer-to-member access operator)

 Number of arguments that an existing operator takes
cannot be changed.
The following type conversions can be carried out:

 basic type to class type (by using a constructor),
 class type to basic type (by using a type conversion

operator), and
 class type to class type (by using either a constructor

or a type conversion operator).
The C++ language provides a new set of operators

for typecasting. These operators can be used instead of
the highly error-prone method of typecasting provided
by the C language.

Summary

 Object-Oriented Programming with C++280

The new style casts are safe to use and can be easily
located in source codes by using the search facility of
the editor in which the source code has been opened.
The latter bene t is especially useful in large source
codes.

There are four new style cast operators.
 dynamic_cast
 static_cast
 reinterpret_cast
 const_cast

Each of the new style cast operators converts the
object that is passed to it as an operand in its own way
and returns the converted object. The general syntax
of these operators is:

operator <type>(value whose type is to be
converted)

The dynamic_cast operator is used to determine
whether a particular base class pointer points at an
object of the base class or an object of one of the
derived classes at run time. It is also used to determine
whether a base class reference refers to an object of
the base class or an object of one of the derived classes
at run time.

In the general syntax, if type is a derived class
pointer type and the value to be converted is the
address of an object of the same derived class, then the
dynamic_cast operator returns a pointer to the object.
Else, it returns NULL. For the dynamic_cast operator
to operate, the base class should be polymorphic
in nature, that is, it should have at least one virtual
function.

The dynamic_cast operator enables us to access
those features of the derived class that are not present
in the base class.

If the dynamic_cast operator is used with
references, it throws an exception of type Bad_cast
where it would have otherwise returned NULL had
pointers been used.

While the dynamic_cast operator carries out
a run-time check to ensure a valid conversion, the
static_cast operator caries out no such check.

The reinterpret_cast operator allows us to cast
one type to another.

New style casts are de nitely a better choice than
the old C-style casts. Visibility of the new style cast
is considerably greater than the old style cast, which
makes tracking down a rogue old style cast much
easier.

The const_cast operator serves the same purpose
as the mutable keyword. The const_cast operator is
used to cast away the constness of a pointer.

Apart from the dynamic_cast operator, C++
provides the typeid operator for implementing RTTI
(typeid is a keyword in C++). The typeid operator
takes a value as its only parameter. It returns the type
of the passed value as a reference to an object of class
type_info. The class type_info is de ned in the
header le typeinfo.h.

Two objects of the class type_info can be
compared by using the equality operator. The name
of the type of value passed to the typeid operator can
also be determined by using the type_info::name()
function.

Class objects, pointers to class objects, or references
to class objects can be passed to the typeid operator.
However, for the typeid operator to work correctly,
the class whose object, pointer, or reference is passed
to it should be polymorphic in nature.

Key Terms
operator overloading
syntax for operator overloading
using friend functions for operator overloading
need for operator overloading
type conversions
– basic type of class type
– class type of basic type

– class type of class type
dynamic_cast operator
static_cast operator
reinterpret_cast operator
const_cast operator
typeid operator

 Operator Overloading, Type Conversion, New Style Casts, and RTTI 281

Exercises
 1. What is operator overloading?
 2. How are operators overloaded?
 3. How does the compiler interpret the operator-

overloading functions?
 4. Why are operators overloaded?
 5. Under what circumstances does overloading using

friend functions become necessary?
 6. What is the difference between the functions that

overload the increment operator in pre x and in
post x formats?

 7. Why does the function to overload the assignment
operator receive and return by reference?

 8. Explain why the function to overload the assignment
operator for the class String returns *this and not
the passed parameter.

 9. Why is the assignment operator function not
inherited? Explain. Why does the compiler generate
the assignment operator for a class, for which the
class designer has not de ned one, and even if its base
class already has the assignment operator function
implicitly or explicitly de ned?

 10. Why are objects of the classes istream and ostream
passed and returned by reference in the functions to
overload the insertion and extraction operators?

 11. How is data abstraction achieved by overloading the
insertion and extraction operators?

 12. Why does the function to overload the subscript
operator return by reference?

 13. What special precautions should be taken while
overloading the subscript operator for constant
objects?

 14. What are smart pointers? How are they created?
 15. How are values of fundamental data types converted

to class objects?
 16. What ambiguity can arise in the following code?

How can it be resolved?
class A
{
 public:
 A(int);
};
class B
{
 public:
 B(int);
};
void f(A);
void f(B);//function f() is overloaded
void g()
{
 f(1);
}

 17. How can a class object be converted to a value of
fundamental data type?

 18. What are the two ways of converting an object of one
class to an object of another? Describe the ambiguity
that can arise if both methods are applied.

 19. What is the advantage of using the new style casts
over the old C-style casts?

 20. Name the four new style casts provided by C++.
 21. What is RTTI? What are its practical uses?
 22. What is the difference between the static_cast and

dynamic_cast operators?
 23. What does the const_cast operator do? Which

keyword of C++ can it be used instead of?
 24. How can the typeid operator be used to nd the type

of a particular object?
 25. State true or false.

(a) New operators can be created by operator
overloading.

(b) The sizeof operator cannot be overloaded.
(c) Number of arguments that an existing

operator takes cannot be changed by operator
overloading.

(d) Functions to overload the new and delete
operators are always static.

(e) The dynamic_cast operator throws an error if
the type of the pointer that is passed to it does
not match the type that is passed to it.

 26. Modify the code given under the section on
overloading the new operator to save memory when
a large number of objects are created. Instead of
having a union with the next pointer as a member,
put another static data member that will count how
many objects from the pool have had their addresses
returned. When this counter becomes equal to the
number of objects, another pool can be allocated.
Compare the two codes for ef ciency in memory
usage.

 27. Overload the equality operator (==) for the class
Distance.

 28. Overload the insertion and extraction operators
for the class String.

 29. Overload the subscript operator for the class
String so that it takes a character as a parameter
and returns the position of its rst occurrence. The
output of the following code should be two.

String s1(“abcd”);
cout << s1[‘c’] << endl;

 30. Overload the addition operator for the class String
so that it adds two strings and returns the result.

 Object-Oriented Programming with C++282

The output of the following piece of code should be
‘abcxyz’.

String s1(“abc”),s2(“xyz”),s3;
s3 = s1 + s2;
cout << s3 << endl;

 31. Overload the addition operator for the class
String so that the output of the following code is
‘c’. Introduce suitable checks for array bounds.

String s1(“abcd”);
cout << s1 + 2 << endl;

 Moreover, the output of the following piece of code
should be ‘abxd’.

String s1(“abcd”);
s1 + 2 = ‘x’;
cout << s1 << endl;

32. Overload the bitwise exclusive OR operator (^) for
the class Distance. The overloading function should
return true if the value of either of the two objects
that are passed to the operator is not equal to zero.
For the rest of the cases, the function should return
false.

 33. Refer to the section on overloading the pointer-to-
member operator. The operator has been overloaded
so that objects of the class StrPtr can mimic the
behaviour of pointers. In order to complete the
picture, overload the dereferencing operator so that

the following statements become equivalent (‘p’ is
an object of the class StrPtr).

p->setString(“abcd”);
*p.setString(“abcd”);

 34. Define two classes Polar and Rectangle to
represent points in the polar and rectangle systems.
Introduce a conversion operator function in class
Polar to convert its objects into objects of class
Rectangle and a conversion operator function in
class Rectangle to convert its objects into objects
of class Polar.

 35. Consider the following class hierarchy:

class A
{
 public:
 virtual void f1() {}
};
class B : public A {};
class C : public B {}

 In which of the following would the dynamic_cast
operator return zero?

(a) A * APtr = new C;
 C * CPtr = dynamic_cast<C *>(APtr);

(b) A * APtr = new B;
 C * CPtr = dynamic_cast<C *>(APtr);
(c) A * APtr = new C;
 B * BPtr = dynamic_cast<B *>(APtr);

Data Structures9
This data structures are very useful in the world of programming. They are nothing but
special ways in which various pieces of data are arranged and related to each other during run
time. We are already familiar with one data structure—arrays. However, arrays have various
limitations.

You can create various data structures like lists, trees, etc. Lists are a superior substitute
for arrays. Data structures are used to solve a number of programming problems. They can
be created using various programming languages, including C++. This chapter explains and
illustrates the most important data structures—linked lists and trees. It also includes full edged
programs that can be used to create various data structures.

O
V
E
R
V
I
E
W

 9.1 Introduction

As mentioned in the overview, data structures are special ways in which pieces of data are
arranged and related to each other during run-time. These pieces of data can be integers,
character constants, strings, etc. Each such piece of data is embedded in a node that contains
the piece of data itself along with one or more pointers that either point at other similar nodes
or have null values.

We will soon learn to create such nodes ourselves. Let us rst look at the following gure
that clearly illustrates two such nodes. Each node contains an integer and a pointer. The value
of the integer in the rst node is 10, while the value of the integer in the second node is 20.
The pointer in the rst node points at the second node. Let us assume that the address of the
second node is 1296. Therefore, the value of the pointer in the rst node will be 1296. The
pointer in the second node has NULL value. This means that the pointer in the second node
is not pointing at any other node. This also means that the second node is the last node in the
list (Figure 9.1).

Figure 9.1 Nodes of a data structure

20
NULL

10
1296

We are already familiar with one data structure—arrays. However, arrays have the limitation
that their size cannot be modi ed during run time. Whatever size the programmer speci es
for the array while writing the program remains xed during run time. But, during run time,

 Object-Oriented Programming with C++284

the user of the program may nd that the size of the array is not enough to hold the number
of elements that he/she needs to create.

Conversely, if the programmer speci es a very large value for the size of the array, the
user may not use all of the elements of the array during run time. But the array, when it gets
created during run time, occupies the space for all of its elements even if they are not in use.
This will lead to wastage of space especially if each element is a large object. Also, we cannot
easily insert a new element at the beginning or in the middle of the array.

Linked lists (a type of data structure) are a good substitute for arrays. They do not have
the above limitations of arrays. But, in order to use them and other data structures, you need
to either write special programs to create and then use them or use libraries that can create
them for your use.

Arrays have one more limitation. They have a linear structure. One element of the array
is followed by only one element. But our programming need may require us to link one
element to two or more elements. Trees (another type of data structure) enable us to ful ll
this programming need. Again, just like linked lists, you need to either write special programs
to create and then use trees or use libraries that can create them for your use.

Data structures can be used to solve a number of programming problems like creating
database software, engineering problems, etc. They can be created using various programming
languages, including C++. We can create various data structures by utilizing classes, functions,
pointers, the new and the delete operators, etc.

 9.2 Linked Lists

Linked lists are linear data structures. They consist of nodes that are linked to each other in
a linear fashion. Each node in a linked list is an object that is made up of two parts. The rst
part is the data carried by the node. The second part of each node is a pointer that carries the
address of the next node in the list. This is how a node is linked to the next node.

Each node in a single linked list is linked to exactly one more node (Note that we are
talking about single linked lists here. We also have double linked lists where one node is
connected to two nodes—the next node in the list and the previous node in the list.). Figure
9.2 illustrates a sample structure of a single linked list.

This gure shows an example of a single linked list of four nodes. In order to understand
the gure, keep in mind that each of the four boxes represents a node and the address of each
node has been mentioned above the box that represents it. The address of the rst node is
6327, that of the second node is 9243, that of the third node is 743, and that of the last node
is 8138. Let us ignore the box labelled head for the time being.

In this speci c case, each node carries an integer as the data. But, we can embed any type
of data there. The data carried by the rst node is 4327, that by the second node is 55, that
by the third node is 3281, and that by the last node is 21629.

As we know, the second part of each node is a pointer that carries the address of the next
node in the list. Therefore, the address stored inside the rst node is 9243 (which is the address
of the second node), the address stored inside the second node is 743 (which is the address
of the third node), and the address stored inside the third node is 8138 (which is the address
of the fourth node). The address stored inside the fourth node is NULL (which indicates that
it is not connected to any other node and is therefore the last node).

We also need to store the address of the rst node. This is where the head pointer comes
into play. It stores the address of the rst node (6327 in this case).

 Data Structures 285

We will soon learn how to create single linked lists of our own. Let us rst view some
 gures that depict the process of appending nodes to single linked lists. Let us see how a

node is appended to the list we have seen above. After that we will see how the rst node
gets appended to an empty list.

Let us assume that a node with value 41 has been appended to the list shown in Figure
9.2. Figure 9.3 shows how the list will look now. As you can see, the address of this new
node is 9351, and this node now stores the address NULL. That is, it now becomes the last
node in the list.

Figure 9.4 shows a linked list with no nodes.
The head pointer contains NULL value because there are no nodes in the list (remember

that the head pointer is supposed to point at the rst node). Let us see how the linked list will
look like when a node is added to this empty list. Let us assume that a node with value 5287
has been appended to the list above. Figure 9.5 shows how the list will look now.

You must be very eager to look at the code that can enable you to create linked lists. Let
us look at the code now.

We will study two classes:
A node class whose objects will be the actual nodes of the single linked list.
A single linked list class each object of which will represent a separate linked list of
nodes.

Please keep in mind that you will have to study a number of building blocks before you
are able to write an executable program that creates linked lists. Have patience!

We will rst look at a header le that contains the declaration of the node class. Like the
other class declarations, this class declaration will also include the declarations of the data

Figure 9.2 A sample linked list

Address of current node

Address of next nodehead

current: 6327

val: 4327
next: 9243

Node data

current: 9243

val: 55
next: 743

current: 743

current: 8138

val: 3281
next: 8138

21629
NULL

6327

 Object-Oriented Programming with C++286

head

6327

4327
9243

9243

55
743

743

8138

9351

3281
8138

21629
9351

41
NULL

6327

Figure 9.3 Addition of a node to a linked list

Figure 9.4 An empty linked list

head

NULL

Figure 9.5 A node added to an empty list

head

245

5287
NULL

245

members and member functions of the class. Thereafter, we will look at the implementation
 le that contains the de nitions of the member functions of the node class.

We will next look at a header le that contains the declaration of the single linked list
class. Like the other class declarations, this class declaration will also include the declarations
of the data members and member functions of the class. Thereafter, we will look at the

 Data Structures 287

implementation le that contains the de nitions of the member functions of the single linked
list class.

You will nd a lot of comments in the program listings. Please ensure that you read them.
Reading these comments will make it much easier to understand the code.

Let us start with studying the header le that contains a declaration of the node class
(Listing 9.1).

Listing 9.1 Header fi le containing declaration of single linked list node class

/*
 Beginning of SingleLinkedListNode.h
*/
#ifndef _SINGLE_LINKED_LIST_NODE_H
#define _SINGLE_LINKED_LIST_NODE_H

/*
 The node class.
 Each instance of this class will be a node in the single
 linked list.
*/
class SingleLinkedListNode
{
 private:
 /*
 The data part of the nodes.
 */
 int val;
 /*
 The next pointer will exist in each node and will
 point at the next node (or be NULL)
 */
 SingleLinkedListNode * next;

 public:
 /*
 The constructor of the node class. It will nullify
 the next pointer by default.
 */
 SingleLinkedListNode();
 /*
 This function sets the value of the data part.
 */
 void setVal(int);
 /*
 This function returns the data part.
 */
 int getVal();
 /*
 This function sets the value of the next pointer.
 */
 void setNext(SingleLinkedListNode *);
 /*
 This function returns the value of the next pointer.
 */
 SingleLinkedListNode * getNext();
 /*
 The destructor of the class.
 */

 Object-Oriented Programming with C++288

 ~SingleLinkedListNode();
};

#endif
/*
 End of SingleLinkedListNode.h
*/

The header le begins with a comment that speci es the name of the header le and also
announces the beginning of the le. This is followed by pre-processor directives that prevent
multiple inclusion of the header le in other source codes (you must have studied this in your
C language course). This is followed by the declaration of the node class. The second last
line of the header le contains the end of the pre-process block and the last line contains a
comment that marks the end of the header le.

Each object of the SingleLinkedListNode class will be a node in the linked list. This
class has an integer data member, val, which is supposed to contain the value of the node.
In this example, each node has this integer-type variable as the data member. However, the
data part can be of any type, including class objects.

The other data member of the node class is next. It is a pointer. It is obvious from its
de nition that next is supposed to point at another node, i.e. another object of the same class.
In our program, it will either be made to point at the next node in the linked list or will be
assigned the NULL value (to indicate that the current node is the last node).

Let us look at the implementation le (Listing 9.2) that contains the de nitions of the
member functions of the node class. It is important to clearly understand these functions
because they serve as the building blocks for the functions of the single linked list class.

Listing 9.2 Implementation fi le of the linked list node class
/*
 Beginning of SingleLinkedListNode.cpp
*/
#include “SingleLinkedListNode.h”

/*
 The constructor of the node class. It will nullify the
 next pointer by default.
*/
SingleLinkedListNode::SingleLinkedListNode()
{
 /*Set the data part to zero.*/
 val = 0;
 /*Set the next pointer to NULL.*/
 next = NULL;
}

/*
 This function sets the value of the data part.
*/
void SingleLinkedListNode::setVal(int pVal)
{
 /*
 Set the value of the data part to the value of the
 passed parameter.
 */
 val = pVal;
}

 Data Structures 289

/*
 This function returns the data part.
*/
int SingleLinkedListNode::getVal()
{
 /*
 Return the value of the data part.
 */
 return val;
}

/*
 This function sets the value of the next pointer.
*/
void SingleLinkedListNode::setNext(SingleLinkedListNode * pNext)
{
 /*
 Set the value of the next pointer to the value of the
 passed parameter.
 */
 next = pNext;
}

/*
 This function returns the value of the next pointer.
*/
SingleLinkedListNode * SingleLinkedListNode::getNext()
{
 /*
 Return the value of the next pointer.
 */
 return next;
}

/*
 The destructor of the class.
*/
SingleLinkedListNode::~SingleLinkedListNode()
{
 /*
 Right now the destructor has empty definition.
 But we may like to insert some statements here later.
 */
}
/*
 End of SingleLinkedListNode.cpp
*/

The implementation le begins with a comment that speci es the name of the implementation
 le and also announces the beginning of the le. This is followed by an include directive that

includes the header le, which contains the declaration of the node class. This is followed by
the de nitions of the member functions of the node class. The last line contains a comment
that marks the end of the implementation le.

To understand the implementation, let us start with the constructor of the node class.
/*
 The constructor of the node class. It will nullify the
 next pointer by default.
*/

 Object-Oriented Programming with C++290

SingleLinkedListNode::SingleLinkedListNode()
{
 /*
 Set the data part to zero.
 */
 val = 0;
 /*
 Set the next pointer to NULL.
 */
 next = NULL;
}

As a result of the constructor, whenever an object of the SingleLinkedListNode class
is created, the value of its val data member will be set to zero and the value of its next data
member will be set to NULL.

Nullifying the next pointer will make it easier for us to de ne the rest of the functions
because we can be sure that the value of the next pointer will be NULL for any new object
of the node class. Let us understand the constructor with the help of (Listing 9.3). Suppose a
new object of the node class is created as follows.

Listing 9.3 Executing the constructor of the single linked list node class
/*
 Beginning of NodeConstructor.cpp
*/
#include <iostream.h>
#include “SingleLinkedListNode.h”

void main()
{
 SingleLinkedListNode * temp = new SingleLinkedListNode();
}
/*
 End of NodeConstructor.cpp
*/

The result can be diagrammatically represented as shown in Figure 9.6.

Figure 9.6 Effect of the node class constructor

temp

245

val

next

0

NULL

245

The box on the right represents the newly created object of the node class. Its data
members—val and next—have been labelled. As can be seen, their values are 0 and NULL
respectively. They have been separated by a line in the box. Let us assume that the address
of this node is 245. The value of the temp pointer will therefore be 245.

It is very important to note that since the new operator was used in the above statement
to create the object, the created object will occupy memory in the heap area. This block of
memory will continue to be allocated even after the block of code that contains the above
statement ends.

Let us now look at the setVal() function.

 Data Structures 291

/*
 This function sets the value of the data part.
*/
void SingleLinkedListNode::setVal(int pVal)
{
 /*
 Set the value of the data part to the value of the
 passed parameter.
 */
 val = pVal;
}

This is a very simple function. It assigns the value of the parameter that is passed to it to
the val data member. Continuing with our previous example, it may be called as follows
(Listing 9.4).

Listing 9.4 Executing the setVal() function of the single linked list node class

/*
 Beginning of SetVal.cpp
*/
#include <iostream.h>
#include “SingleLinkedListNode.h”

void main()
{
 SingleLinkedListNode * temp = new SingleLinkedListNode();
 temp -> setVal(10);
}
/*
 End of SetVal.cpp
*/

A diagrammatic representation of the effects of the above statement is shown in Figure 9.7.

temp

245

val

next

10

NULL

245

Figure 9.7 Effect of setVal() function

The next function we need to look at is the getVal() function (Listing 9.5).
/*
 This function returns the data part.
*/
int SingleLinkedListNode::getVal()
{
 /*
 Return the value of the data part.
 */
 return val;
}

Again, this is a simple function. It simply returns the value of the val data member. Still
continuing with our previous example, suppose we call it as follows.

 Object-Oriented Programming with C++292

Listing 9.5 Executing the getVal() function

/*
 Beginning of GetVal.cpp
*/
#include <iostream.h>
#include “SingleLinkedListNode.h”

void main()
{
 SingleLinkedListNode * temp = new SingleLinkedListNode();
 temp -> setVal(10);
 int x = temp -> getVal();
 cout << x << endl;
}
/*
 End of GetVal.cpp
*/

Output
10

Next is the setNext() function.
/*
 This function sets the value of the next pointer.
*/
void SingleLinkedListNode::setNext(SingleLinkedListNode * pNext)
{
 /*
 Set the value of the next pointer to the value of the
 passed parameter.
 */
 next = pNext;
}

This function assigns the value of the parameter that is passed to it to the next data member.
While studying the linked list class, you will realize that the value passed to this function of
the node class will be the address of the next node in the list. This should also be obvious
from the de nition of the parameter pNext.

Let us understand this function with the help of an actual program (Listing 9.6) and gures
that illustrate the effects of its statements.

Listing 9.6 Executing the setNext() function

/*
 Beginning of SetNext.cpp
*/
#include <iostream.h>
#include “SingleLinkedListNode.h”

void main()
{
 /*
 Create a fresh node and assign its address to a
 pointer.
 */
 SingleLinkedListNode * temp = new SingleLinkedListNode();

 Data Structures 293

 /*
 Set the value of val data member in the new node.
 */
 temp -> setVal(10);
 /*
 Create another fresh node and assign its address to
 another pointer.
 */
 SingleLinkedListNode * temp1 = new

SingleLinkedListNode();
 /*
 Set the value of val data member in the new node.
 */
 temp1 -> setVal(20);
 /*
 Make the next pointer of the existing node point at the
 freshly created node.
 */
 temp -> setNext(temp1);
}
/*
 End of SetNext.cpp
*/

Let us look at the statements one-by-one.
/*
 Create a fresh node and assign its address to a pointer.
*/
SingleLinkedListNode * temp = new SingleLinkedListNode();

This statement will create a new node and make the pointer temp point to it. Figure 9.8
represents the result diagrammatically.

temp

108

val

next

0

NULL

108

Figure 9.8 Creating a temporary node

The box on the right represents the newly created object of the node class. Its data
members—val and next—have been labelled. As can be seen, their values have been set
to 0 and NULL respectively (by the constructor). They have been separated by a line in the
box. Let us assume that the address of this node is 108. The value of the temp pointer will
therefore be 108.

/*
 Set the value of val data member in the new node.
*/
temp -> setVal(10);

This statement will assign 10 to the val data member. Figure 9.9 shows the result diagram-
matically.

 Object-Oriented Programming with C++294

temp

108

val

next

10

NULL

108

Figure 9.9 Effect of setVal() function

/*
 Create another fresh node and assign its address to
 another pointer.
*/
SingleLinkedListNode * temp1 = new SingleLinkedListNode();

This statement will create a new node and make the pointer temp1 point to it. Figure 9.10
shows the result diagrammatically.

temp1

320

val

next

0

NULL

320

Figure 9.10 Creating a temporary node

No explanation is needed for the above gure because a similar statement has already
been explained above.

/*
 Set the value of val data member in the new node.
*/
temp1 -> setVal(20);

This statement will assign 20 to the val data member. Figure 9.11 shows the result
diagrammatically.

temp1

320

val

next

20

NULL

320

Figure 9.11 Effect of setVal() function

/*
 Make the next pointer of the existing node point at the
 freshly created node.
*/
temp -> setNext(temp1);

Figure 9.12 shows the result diagrammatically.

 Data Structures 295

temp1

320

val

next

20

NULL

320

temp

108

val

next

10

320

108

Figure 9.12 Effect of setNext() function

We can see from its de nition that the setNext() function assigns the value of its
parameter to the next data member of the object for which it has been called. In the above
case, the function has been called for the object at which temp points. The value passed to it
as parameter is the value of temp1, which is 320. As a result, the value of the next pointer
of the object at which temp points is set to 320 and it now points at the freshly created node.
You can already see a linked list getting created!

Now for the getNext() function.
/*
 This function returns the value of the next pointer.
*/
SingleLinkedListNode * SingleLinkedListNode::getNext()
{
 /*
 Return the value of the next pointer.
 */
 return next;
}

Again, this is a simple function. It simply returns the value of the next data member. Still
continuing with our previous example, let us understand what happens when it is called (see
Listing 9.7).

Listing 9.7 Executing the getNext() function
/*
 Beginning of GetNext.cpp
*/
#include <iostream.h>
#include “SingleLinkedListNode.h”

void main()
{
 /*
 Create a fresh node and assign its address to a
 pointer.
 */

 Object-Oriented Programming with C++296

 SingleLinkedListNode * temp = new SingleLinkedListNode();
 /*
 Set the value of val data member in the new node.
 */
 temp -> setVal(10);
 /*
 Create another fresh node and assign its address to
 another pointer.
 */
 SingleLinkedListNode * temp1 = new SingleLinkedListNode();
 /*
 Set the value of val data member in the new node.
 */
 temp1 -> setVal(20);
 /*
 Make the next pointer of the existing node point at the
 freshly created node.
 */
 temp -> setNext(temp1);
 /*
 Reset temp1 so that it points at the first node.
 */
 temp1 = temp;
 /*
 Display the value in the node that temp1 points at.
 */
 cout << temp1->getVal() << endl;
 /*
 Increment the temp1 pointer so that it points at the
 second node.
 */
 temp1 = temp1 -> getNext();
 /*
 Display the value in the node that temp1 points at.
 */
 cout << temp1->getVal() << endl;
}
/*
 End of GetNext.cpp
*/

Output
10
20

We know that at the end of the statement
temp -> setNext(temp1);

the linked list looks like Figure 9.13.

 Data Structures 297

temp1

320

val

next

20

NULL

320

temp

108

val

next

10

320

108

Figure 9.13 Effect of the setNext() function

Let us look at the rest of the statements.
/*
 Reset temp1 so that it points at the first node.
*/
temp1 = temp;

The above statement will copy the value of temp to temp1. This will cause temp1 to point
at the same node as temp, which is the rst node (Figure 9.14).

temp1

320

val

next

20

NULL

108

temp

108

val

next

10

320

108

Figure 9.14 Copying the value of one temporary pointer to another.

After this, we have
/*
 Display the value in the node that temp1 points at.
*/
cout << temp1->getVal() << endl;

This time, the call temp1->getVal() will return 10. The above statement will therefore
display this value on the screen.

Now, we get to look at a call to the getNext() function, which is the topic of our current
discussion.

/*
 Increment the temp1 pointer so that it points at the
 second node.
*/
temp1 = temp1 -> getNext();

 Object-Oriented Programming with C++298

Note that before this statement executes, the temp1 pointer will point at the rst node, whose
next pointer’s value is 320. Hence, 320 will get returned by the call temp1 -> getNext().
The above statement copies this returned value back to temp1. Hence, the value of temp1 will
become 320 and it will end up pointing at the next node (Figure 9.15).

temp1

320

val

next

20

NULL

320

temp

108

val

next

10

320

108

Figure 9.15 Incrementing the value of the temporary pointer

/*
 Display the value in the node that temp1 points at.
*/
cout << temp1->getVal() << endl;

This time, the call temp1->getVal() will return 20. The above statement will therefore
display this value on the screen.

The last function of the SingleLinkedListNode class is the destructor.
/*
 The destructor of the class.
*/
SingleLinkedListNode::~SingleLinkedListNode()
{
 /*
 Right now the destructor has empty definition.
 But we may like to insert some statements here later.
 */
}

Like all destructors, this destructor gets called whenever the delete operator is called
on a pointer that is de ned to point at objects of the SingleLinkedListNode class. It gets
called for the object at which such a pointer points. The block of heap memory occupied by
the object at which the pointer points also gets deallocated.

Let us see what happens when the delete operator is called for the temp pointer, thereby
triggering a call to the destructor for the object at which temp points (see Listing 9.8).

Listing 9.8 Executing the destructor of the single linked list node class

/*
 Beginning of NodeDestructor.cpp
*/
#include <iostream.h>
#include “SingleLinkedListNode.h”

 Data Structures 299

void main()
{
 /*
 Create a fresh node and assign its address to a
 pointer.
 */
 SingleLinkedListNode * temp = new SingleLinkedListNode();
 /*
 Delete the memory occupied by the new node.
 */
 delete temp;
}
/*
 End of NodeDestructor.cpp
*/

Two things happen as a result of the last statement in the above program. One, the destructor
is called for the object at which temp points. Second, the memory block occupied by the object
at which temp points gets deallocated (is returned to the system for use). Since the destructor
has a blank de nition, no code gets executed.

Let us now study the linked list class. Let us start by looking at the header le of the linked
list class (Listing 9.9).

Listing 9.9 Header fi le having declaration of single linked list class
/*
 Beginning of SingleLinkedList.h
*/
#ifndef _SINGLE_LINKED_LIST_H
#define _SINGLE_LINKED_LIST_H

#include “SingleLinkedListNode.h”

/*
 The single linked list class.
 Each instance of this class will represent a single
 linked list.
*/
class SingleLinkedList
{
 private:
 /*
 The head pointer. It will point at the first node of
 the list.
 It will be NULL when the list id empty.
 */
 SingleLinkedListNode * head;

 public:
 /*
 The constructor of the single linked list class. It
 will nullify the head pointer.
 */
 SingleLinkedList();
 /*
 Function to add a node at the bottom of the list.
 */

 Object-Oriented Programming with C++300

 void appendNode(int);
 /*
 Function to insert a node at the beginning of the
 list.
 */
 void prependNode(int);
 /*
 Function to find whether a node with a particular value
 exists or not.
 */
 bool find(int);
 /*
 Function to delete the first node.
 */
 void delBeg();
 /*
 Function to delete the last node.
 */
 void delEnd();
 /*
 Function to display the nodes in the list.
 */
 void display();
 /*
 The destructor of the class. It will delete the memory
 occupied by all nodes of the list.
 */
 ~SingleLinkedList();
};

#endif
/*
 End of SingleLinkedList.h
*/

Just like the header le for the node class, this header le also begins with a comment that
speci es the name of the header le and announces the beginning of the le. This is followed
by pre-processor directives that prevent multiple inclusion of the header le in other source
codes. This is followed by the declaration of the linked list class. The second last line of the
header le contains the end of the pre-process block and the last line contains a comment
that marks the end of the header le.

Each object of the SingleLinkedList class will be a linked list. This class has a data
member, head, which is a pointer. It is obvious from its de nition that head is supposed to
point at the rst node of the linked list. In our program, it will either be made to point at the
 rst node in the linked list or will be assigned the NULL value (to indicate that the current

list is empty).
Let us look at the implementation le (Listing 9.10) that contains the de nitions of the

member functions of the single linked list class.

Listing 9.10 Implementation fi le of single linked list

/*
 Beginning of SingleLinkedList.cpp
*/
#include <iostream.h>

 Data Structures 301

#include “SingleLinkedList.h”

/*
 The constructor of the single linked list class. It will
 nullify the head pointer.
*/
SingleLinkedList::SingleLinkedList()
{
 /*
 Nullify the head pointer by default.
 */
 head = NULL;
}

/*
 Function to add a node at the bottom of the list.
*/
void SingleLinkedList::appendNode(int pVal)
{
 /*
 Create a temporary node that we will append to the
 list.
 The constructor of SingleLinkedListNode class will
 nullify the next pointer of this node.
 */
 SingleLinkedListNode * temp = new SingleLinkedListNode();
 /*
 Copy the parameter value passed to the function, to the
 new node.
 */
 temp->setVal(pVal);
 /*
 If the head pointer is NULL (list is empty) ...
 */
 if(head == NULL)
 {
 /*
 ... make the head pointer point at the temporary node
 ...
 */
 head = temp;
 }
 /*
 ... otherwise ...
 */
 else
 {
 /*
 ... make a temporary pointer, ...
 */
 SingleLinkedListNode * iter;
 /*
 ... make it point at the first node, traverse to the
 end of the list and ...
 */
 for(iter = head; iter->getNext() != NULL;
 iter = iter->getNext());
 /*

 Object-Oriented Programming with C++302

 ... make the next pointer of the last node point at
 the temporary node.
 */
 iter->setNext(temp);
 }
}

/*
 Function to insert a node at the beginning of the list.
*/
void SingleLinkedList::prependNode(int pVal)
{
 /*
 Create a temporary node that we will prepend to the
 list.
 The constructor of SingleLinkedListNode class will
 nullify the next pointer of this node.
 */
 SingleLinkedListNode * temp = new SingleLinkedListNode();
 /*
 Copy the parameter value passed to the function, to the
 new node.
 */
 temp->setVal(pVal);
 /*
 If the head pointer is NULL (list is empty) ...
 */
 if(head == NULL)
 {
 /*
 ... make the head pointer point at the temporary node
 ...
 */
 head = temp;
 }
 /*
 ... otherwise ...
 */
 else
 {
 /*
 ... make the next pointer of the temporary node point
 at the first node and ...
 */
 temp->setNext(head);
 /*
 ... make the head pointer point at the temporary
 node.
 */
 head=temp;
 }
}

/*
 Function to display the nodes in the list.
*/
void SingleLinkedList::display()
{

 Data Structures 303

 /*
 If the head pointer is NULL (list is empty) ...
 */
 if(head == NULL)
 {
 /*
 ... display error message ...
 */
 cout << “No nodes in list\n”;
 }
 /*
 ... otherwise ...
 */
 else
 {
 /*
 ... make a temporary pointer point at the first node,
 iterate over the list and ...
 */
 for(SingleLinkedListNode * iter = head;iter != NULL;
 iter = iter->getNext())
 {
 /*
 ... display the value in the node being pointed

at.
 */
 cout << iter->getVal() << endl;
 }
 }
}

/*
 Function to find whether a node with a particular value
 exists or not.
*/
bool SingleLinkedList::find(int pTarget)
{
 /*
 Initialize a flag to false, ...
 */
 bool found = false;
 /*
 ... make a temporary pointer point at the first node,
 iterate over the list and ...
 */
 for(SingleLinkedListNode * iter = head;iter != NULL;
 iter = iter->getNext())
 {
 /*
 ... if the value matches ...
 */
 if(iter->getVal() == pTarget)
 {
 /*
 ... set the flag to true and ...
 */
 found = true;
 /*

 Object-Oriented Programming with C++304

 ... break the loop and ...
 */
 break;
 }
 }
 /*... return the value of the flag.*/
 return found;
}

/*
 Function to delete the first node.
*/
void SingleLinkedList::delBeg()
{
 /*
 Delete only if the list is empty.
 */
 if(head != NULL)
 {
 /*
 Make a temporary pointer point at the first node.
 */
 SingleLinkedListNode * temp = head;
 /*
 Make the head pointer point at the second node.
 */
 head = head -> getNext(); //head becomes NULL if only
 //one node in the list.
 /*
 Delete the first node.
 */
 delete temp;
 }
 /*
 Don’t do anything if list is empty (no else).
 */
}

/*
 Function to delete the last node.
*/
void SingleLinkedList::delEnd()
{
 /*
 Delete only if the list is empty.
 */
 if(head != NULL)
 {
 /*
 If there is only one node ...
 */
 if(head -> getNext() == NULL)
 {
 /*
 ... delete it and ...
 */
 delete head;
 /*

 Data Structures 305

 ... nullify the head pointer.
 */
 head = NULL;
 }
 /*
 ... otherwise ...
 */
 else
 {
 /*
 ... declare a temporary pointer, ...
 */
 SingleLinkedListNode * iter;
 /*
 ... iterate the list to point at the second last
 node, ...
 */
 for (iter = head;

iter -> getNext() -> getNext() != NULL;
iter = iter -> getNext());

 /*
 ... delete the last node and ...
 */
 delete iter -> getNext();
 /*
 ... nullify the next pointer of the second last
 node ...
 */
 iter -> setNext(NULL);
 }
 }
 /*
 Don’t do anything if list is empty (no else).
 */
}

/*
 The destructor of the class. It will delete the memory
 occupied by all nodes of the list.
*/
SingleLinkedList::~SingleLinkedList()
{
 /*
 Delete only if no nodes in the list.
 */
 if(head != NULL)
 {
 /*
 As long as the head pointer does not get a NULL value
 ...
 */
 while(head != NULL)
 {
 /*
 ... keep calling the delEnd() function to keep
 deleting the last node.
 */
 delEnd();

 Object-Oriented Programming with C++306

 }
 }
 /*
 Don’t do anything if list is empty (no else).
 */
}
/*
 End of SingleLinkedList.cpp
*/

The implementation le begins with a comment that speci es the name of the implementation
 le and also announces the beginning of the le. This is followed by an include directive that

includes the header le, which contains the declaration of the linked list class. This is followed
by the de nitions of the member functions of the linked list class. The last line contains a
comment that marks the end of the implementation le.

Let us start with the constructor of the linked list class. After this we will study the
appendNode() function. This will be followed by a study of the display() function. The
rest of the functions will follow thereafter.

/*
 The constructor of the single linked list class. It will
 nullify the head pointer.
*/
SingleLinkedList::SingleLinkedList()
{
 /*
 Nullify the head pointer by default.
 */
 head = NULL;
}

As a result of the constructor, whenever an object of the SingleLinkedList class is
created, the value of its head data member will be set to NULL. Nullifying the pointer will
make it easier for us to de ne the rest of the functions because we can be sure that the value
of the head pointer will be NULL for any new object of the linked list class. Let us understand
the constructor with the help of an example. Suppose a new object of the linked list class is
created as shown in Listing 9.11.

Listing 9.11 Executing the constructor of the single linked list class

/*
 Beginning of ListConstructor.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*Create a list object*/
 SingleLinkedList list1;
}
/*
 End of ListConstructor.cpp
*/

The result can be diagrammatically represented as shown in Figure 9.16.

 Data Structures 307

245

headNULL

list1

Figure 9.16 Effects of the list class constructor

list1 is an object of the SingleLinkedList class. The box depicts the memory block
occupied by list1. It is evident from the de nition of the SingleLinkedList class that an
object of the class will have only one data member. The name of this data member is head.
The constructor of the class will re at the time the object is created. It will set the value of
the head pointer to NULL.

Let us look at the next function appendNode().
/*
 Function to add a node at the bottom of the list.
*/
void SingleLinkedList::appendNode(int pVal)
{
 /*
 Create a temporary node that we will append to the
 list.
 The constructor of SingleLinkedListNode class will
 nullify the next pointer of this node.
 */
 SingleLinkedListNode * temp = new SingleLinkedListNode();
 /*
 Copy the parameter value passed to the function, to the
 new node.
 */
 temp->setVal(pVal);
 /*
 If the head pointer is NULL (list is empty) ...
 */
 if(head == NULL)
 {
 /*
 ... make the head pointer point at the temporary node
 ...
 */
 head = temp;
 }
 /*
 ... otherwise ...
 */
 else
 {
 /*
 ... make a temporary pointer, ...
 */
 SingleLinkedListNode * iter;
 /*
 ... make it point at the first node, traverse to the
 end of the list and ...
 */
 for(iter = head; iter->getNext() != NULL;

iter = iter->getNext());

 Object-Oriented Programming with C++308

 /*
 ... make the next pointer of the last node point at
 the temporary node.
 */
 iter->setNext(temp);
 }
}

The above function is designed to add a node to the linked list. Let us rst understand what
we will like the above function to do. Then, by studying the de nition of the function (Listing
9.12), we will decide whether it actually does what we want it to do or not.

Listing 9.12 Executing the appendNode() function

/*
 Beginning of AppendNode01.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
 Create a list object
 */
 SingleLinkedList list1;
 /*
 Call the appendNode() function on the list1 object.
 */
 list1.appendNode(5287);
}
/*
 End of AppendNode01.cpp
*/

After the first statement in the above program, because of the constructor of the
SingleLinkedList class, the value of the head pointer inside the object will be set to NULL.
This can be depicted by Figure 9.17.

245

headNULL

list1

Figure 9.17 Effects of the list class constructor

The above box depicts the object named list1 (labelled at the bottom of the box). Since
it is an object of the SingleLinkedList class, it has only one data member—head (labelled
on the right of the box). The constructor of the class sets the head data member to NULL.

Let us look at the call to the appendNode() function on the list1 object.
list1.appendNode(5287);

If the function has been de ned correctly, then, at the end of its execution, the linked list
should look like Figure 9.18.

 Data Structures 309

320

val

next

5287

NULL

245

head 320

list1

Figure 9.18 Expected effect of the appendNode() function

Let us see whether the function performs as expected or not. Before the function executes,
the value of the head pointer is NULL. When the function starts executing, the value of the
function’s parameter pVal gets set to 5287 because that is the value that has been passed to
the function. After this, a temporary node gets created by the new operator and the temporary
pointer temp is made to point at it (Figure 9.19).

320

val

next

0

NULL

695

320

temp

Figure 9.19 The creation of a temporary node that will be added to the list by the
appendNode() function

The next statement is:
temp->setVal(pVal);

This will copy the value of pVal, which is 5287, to the val data member of the node. After
this, the if statement will check whether the value of the head pointer is NULL or not. This
test will return true at this time because the list is empty. The if block will execute and the
value of temp will be copied to head. This will cause the head pointer to also point at the
temporary node that has been created earlier. Figure 9.20 illustrates this.

320

val

next

5287

NULL

695

245

320

320

temp

head

Figure 9.20 Value of the temp pointer copied to the head pointer

The else block will not execute and the function will come to an end. Since temp is a
local variable, it goes out of scope and what we will be left with is a linked list that looks
like Figure 9.21.

 Object-Oriented Programming with C++310

320

val

next

5287

NULL

245

head 320

list1

Figure 9.21 Observed effect of the appendNode() function

Compare Figure 9.21 with Figure 9.18, which depicts what we were expecting. As you
can see there is an exact match between what we were expecting the function to do and what
actually happened. Hence, we can conclude that our function has been de ned correctly. Let
us call the same function on the list1 object twice and verify whether or not the function
does what it has been de ned to do (Listing 9.13).

Listing 9.13 Executing the appendNode() function

/*
 Beginning of AppendNode02.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
 Create a list object
 */
 SingleLinkedList list1;
 /*
 Call the appendNode() function on the list1 object.
 */
 list1.appendNode(5287);
 /*
 Again call the appendNode() function on the list1
 object.
 */
 list1.appendNode(325);
}
/*
 End of AppendNode02.cpp
*/

At the end of the execution of the above program, we will expect the linked list to look
like Figure 9.22.

 Data Structures 311

320

7912

val

val

next

next

5287

325

7912

NULL

245

head 320

list1

Figure 9.22 Expected effect of the appendNode() function

Let us trace the function once more and see whether it does what we want it to do or not.
Let us start from the second call to the function because we have already seen the effects of
the previous portion of the program.

Keep in mind that the head pointer is NOT NULL when the function is called for a second
time. The execution is the same as the previous one till the point where the if statement
checks whether the value of the head pointer is NULL or not. This test will return false this
time because the list is not empty. The if block will not execute. Instead, the else block will
execute. The rst statement of the else block declares a pointer called iter that is supposed
to point at objects of the class SingleLinkedListNode. Note that the for loop does not have
a body. At the start of the loop, the value of the head pointer is copied to the pointer iter.
Thus, iter ends up pointing at the rst node of the list. The resulting situation is depicted
by Figure 9.23.

320

val

next

5287

NULL

2142

245

320

320

iter

head

7912

val

next

325

NULL

215

7912

temp

Figure 9.23 The temporary node and the iterator iterating over the list

The statements before the if statement will create a node and make a temporary pointer,
called temp, to point at the node. This is depicted by the upper half of the above gure. The
head pointer will already be pointing at the one and only node in the list that was created by
the previous call to the appendNode() function. Now, the value of the head pointer has been
copied to the pointer called iter. Hence, iter will also point at the rst node of the list.

 Object-Oriented Programming with C++312

The for loop has been de ned to execute as long as the call to the getNext() function
through the iter pointer does not return NULL. But, we can see from Figure 9.23 that this
function will return NULL right now because the next pointer of the node at which iter is
pointing is NULL. Thus, the re-initialization expression of the for loop will not execute, the
loop will terminate, and the iter pointer will continue to point at the rst node of the linked
list. The next statement to execute is:

iter->setNext(temp);

This call will copy the value of the temp pointer to the next pointer of the node at which
iter points. As a result, the linked list will look like Figure 9.24.

320

val

next

5287

7912

2142

245

320

320

iter

head

7912

val

next

325

NULL

215

7912

temp

Figure 9.24 Appending the temporary node to the list

The rest of the processing remains the same as the previous one. Since temp and iter are
local variables, they go out of scope and what we are left with is a linked list that looks like
Figure 9.25.

320

val

next

5287

7912

7912

val

next

325

NULL

245

head 320

list1

Figure 9.25 Observed effect of the appendNode() function

 Data Structures 313

Compare Figure 9.25 with Figure 9.22, which depicts what we were expecting. As you
can see there is an exact match between what we were expecting the function to do and
what actually happened. Hence, we can again conclude that our function has been de ned
correctly.

Now, go ahead and verify that the function has been de ned correctly by nding out what
will happen if the function is called for yet another time on the same object.

Let us now try to understand the display() function.
/*
 Function to display the nodes in the list.
*/
void SingleLinkedList::display()
{
 /*
 If the head pointer is NULL (list is empty) ...
 */
 if(head == NULL)
 {
 /*
 ... display error message ...
 */
 cout << “No nodes in list\n”;
 }
 /*
 ... otherwise ...
 */
 else
 {
 /*
 ... make a temporary pointer point at the first node,
 iterate over the list and ...
 */
 for(SingleLinkedListNode * iter = head;iter != NULL;

iter = iter->getNext())
 {
 /*
 ... display the value in the node being pointed at.
 */
 cout << iter->getVal() << endl;
 }
 }
}

As before, let us start with a new object of the linked list class, which will create an empty
list, and then call the display() function on the new object (Listing 9.14). We will thereafter
compare the actual execution with the expected execution.

Listing 9.14 Executing the display() function

/*
 Beginning of ListDisplay01.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
 Create a list object.

 Object-Oriented Programming with C++314

 */
 SingleLinkedList list1;
 /*
 Display the contents.
 */
 list1.display();
}
/*
 End of ListDisplay01.cpp
*/

Output
No nodes in list

Since the list is empty, we will expect the function to display a message that says that the
list is empty. Let us see whether this happens or not.

Note that the value of the head pointer inside the list1 object will get set to NULL at the
time of creation because of the constructor. Hence, it will be NULL at the time the display()
function gets called.

Now, when the function begins executing, the if block compares the value of the head
pointer with NULL. Since the value of the head pointer is NULL, the test expression in the
if statement returns true. Therefore, the if block executes. This causes the string ‘No nodes
in list’ to get displayed on the monitor. Naturally, the else block does not execute and the
function comes to an end. And this is what we were expecting.

Let us take the other case where the list is not empty (Listing 9.15).

Listing 9.15 Executing the display() function

/*
 Beginning of ListDisplay02.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
 Create a list object.
 */
 SingleLinkedList list1;
 /*
 Add a node to the list.
 */
 list1.appendNode(5287);
 /*
 Add another node.
 */
 list1.appendNode(325);
 /*
 Display the contents.
 */
 list1.display();
}
/*
 End of ListDisplay02.cpp
*/

 Data Structures 315

Output
5287
325

We now know that after the second call to the appendNode() function above, the linked
list will look like Figure 9.26.

320

val

next

5287

7912

7912

val

next

325

NULL

245

head 320

list1

Figure 9.26 The list as it looks before the display() function executes

As a result of the call to the display() function, we will expect the values in the nodes
5287 and 325 to get displayed on the monitor. Let us see whether this happens or not.

Note that the head pointer is not NULL in this case. Therefore, the if block in the function
will not execute. Instead, the else block will execute. This will cause the for loop to start. The
value of the head pointer will get copied to the temporary pointer called iter. The resulting
situation is represented by Figure 9.27.

320

val

next

5287

7912

7912

val

next

325

NULL

245

6127

head 320

320

head

iter

Figure 9.27 Iterator iterating over the list

 Object-Oriented Programming with C++316

We can see that the value of iter is not NULL. Hence, the test expression of the for
loop will return true. This will cause the body of the loop to execute. The statement in the
loop’s body is:

cout << iter->getVal() << endl;

iter->getVal() will return 5287. Hence, the above statement will display 5287 on the
monitor. Thereafter, the re-initialization expression of the for loop will execute. iter-
>getNext() will return 7912. This value will be copied back to iter. Hence, iter will end
up pointing at the next node. The resulting situation is represented by Figure 9.28.

320

val

next

5287

7912

7912

val

next

325

NULL

245

6127

head 320

7912

head

iter

Figure 9.28 Iterator iterating over the list

Next, the test expression of the for loop will execute once more. Since iter is still not
NULL, the test expression will again return true. This will cause the loop to execute once
more. But this time, iter->getVal() will return 325. Hence, 325 will be displayed on the
computer’s monitor.

As before, the value of iter will get reset in the re-initialization expression of the for loop.
But this time, iter->getNext() will return NULL (see Figure 9.28). Hence, the value of
iter will get set to NULL in the re-initialization expression of the for loop. This will cause
the test expression of the for loop to return false. Hence, the for loop will terminate and,
because there are no further statements in the function, the function will also terminate.

Let us now look at the prependNode() function. Compared to the appendNode() function,
this is a relatively simple function. As its name suggests, it inserts a node at the beginning
of the list.

/*
 Function to insert a node at the beginning of the list.
*/
void SingleLinkedList::prependNode(int pVal)
{
 /*
 Create a temporary node that we will prepend to the
 list.
 The constructor of SingleLinkedListNode class will
 nullify the next pointer of this node.

 Data Structures 317

 */
 SingleLinkedListNode * temp = new SingleLinkedListNode();
 /*
 Copy the parameter value passed to the function, to the
 new node.
 */
 temp->setVal(pVal);
 /*
 If the head pointer is NULL (list is empty) ...
 */
 if(head == NULL)
 {
 /*
 ... make the head pointer point at the temporary node
 ...
 */
 head = temp;
 }
 /*
 ... otherwise ...
 */
 else
 {
 /*
 ... make the next pointer of the temporary node point
 at the first node and ...
 */
 temp->setNext(head);
 /*
 ... make the head pointer point at the temporary
 node.
 */
 head=temp;
 }
}

As before, let us rst understand what we would like the above function to do (Listing
9.16). Then, by studying the de nition of the function, we will decide whether it actually
does what we want it to do or not.

Listing 9.16 Executing the prependNode() function

/*
 Beginning of PrependNode01.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*Create a list object*/
 SingleLinkedList list1;
 /*
 Call the prependNode() function on the list1 object.
 */
 list1.prependNode(5287);

 Object-Oriented Programming with C++318

}
/*
 End of PrependNode01.cpp
*/

After the first statement in the above program, because of the constructor of the
SingleLinkedList class, the value of the head pointer inside the object will be set to NULL.
This is depicted by Figure 9.29.

245

headNULL

list1

Figure 9.29 Empty list prior to the call to the prependNode() function

The box shown in the gure depicts the object named list1 (labelled at the bottom of the
box). Since it is an object of the SingleLinkedList class, it has only one data member—head
(labelled on the right of the box). The constructor of the class sets the head data member to
NULL.

Let us look at the call to the prependNode() function on the list1 object.
list1.prependNode(5287);

If the function has been de ned correctly, then, at the end of its execution, the linked list
should look like Figure 9.30.

320

val

next

5287

NULL

245

head 320

list1

Figure 9.30 Expected effect of the prependNode() function

Let us see whether the function performs as expected or not. Before the function executes,
the value of the head pointer is NULL. When the function starts executing, the value of the
function’s parameter pVal gets set to 5287 because that is the value that has been passed to
the function. After this, a temporary node gets created by the new operator and the temporary
pointer temp is made to point at it (Figure 9.31).

320

val

next

0

NULL

695

320

temp

Figure 9.31 Creation of a temporary blank node

The next statement is:
temp->setVal(pVal);

 Data Structures 319

This will copy the value of pVal, which is 5287, to the data member of the node. After
this, the test expression in the if statement will check whether the value of the head pointer
is NULL or not. This test will return true at this time because the list is empty. The if block
will execute and the value of temp will be copied to head. This will cause the head pointer
to also point at the temporary node that has been created earlier. Figure 9.32 illustrates this.

320

val

next

5287

NULL

695

245

320

320

temp

head

Figure 9.32 Initialization of the temporary node and making the head pointer point at it

The else block will not execute and the function will come to an end. Since temp is a
local variable, it goes out of scope and what we will be left with is a linked list that looks
like Figure 9.33.

320

val

next

5287

NULL

245

head 320

list1

Figure 9.33 Observed effect of the prependNode() function

Compare Figure 9.33 with Figure 9.30, which depicts what we were expecting. As you
can see there is an exact match between what we were expecting the function to do and what
actually happened.

Let us call the same function on the list1 object twice (Listing 9.17) and verify whether
or not the function does what it has been de ned to do.

Listing 9.17 Executing the prependNode() function

/*
 Beginning of PrependNode02.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*

 Object-Oriented Programming with C++320

 Create a list object
 */
 SingleLinkedList list1;
 /*
 Call the prependNode() function on the list1 object.
 */
 list1.prependNode(5287);
 /*
 Again call the prependNode() function on the list1
 object.
 */
 list1.prependNode(325);
}
/*
 End of PrependNode02.cpp
*/

At the end of the execution of this program (Listing 9.17), we will expect the linked list
to look like Figure 9.34.

7912

320

val

val

next

next

325

5287

320

NULL

245

head 7912

list1

Figure 9.34 Expected effect of the prependNode() function

Let us trace the function once more and see whether it does what we want it to do or not.
Let us start from the second call to the function because we have already seen the effects of
the previous portion of the program. At this point, the linked list looks like this.

320

val

next

5287

NULL

245

head 320

list1

Figure 9.35 Addition of the fi rst node by the prependNode() function

 Data Structures 321

At this point, the function is called for the second time. Notice that the head pointer is
not NULL at this time (its value is 320, which is the address of the rst node at which it
points).

The execution is the same as the previous one till the point where the test expression in
the if statement checks whether the value of the head pointer is NULL or not. This test will
return false this time because the list is not empty. The if block will not execute. Instead, the
else block will execute. The rst statement of the else block copies the value of the head
pointer to the next pointer of the temporary node created at the beginning of the function.
The resulting situation can be depicted by Figure 9.36.

7912

val

next

325

320

215

7912

temp

320

val

next

5287

NULL

245

320

head

Figure 9.36 Linking of the new node to the old node

The next statement copies the value of the temp pointer to the head pointer. Thus, the head
pointer ends up pointing at the temporary node. Figure 9.37 depicts this situation.

7912

val

next

325

320

215

7912

temp

320

val

next

5287

NULL

245

7912

head

Figure 9.37 Making the head pointer point at the new temporary node

Since temp is a local variable, it goes out of scope and what we will be left with is a linked
list that looks like Figure 9.38.

 Object-Oriented Programming with C++322

7912

320

val

val

next

next

325

5287

320

NULL

245

head 7912

list1

Figure 9.38 Observed effect of the prependNode() function

Again, compare Figure 9.38 with Figure 9.34, which depicts what we were expecting. As
you can see there is an exact match between what we were expecting the function to do and
what actually happened. Thus we can see that the prependNode() function has been de ned
correctly.

The next function that we need to look at is the nd() function. As its name suggests,
this function tells us whether one of the nodes in the linked list contains a particular value
or not.

/*
 Function to find whether a node with a particular value
 exists or not.
*/
bool SingleLinkedList::find(int pTarget)
{
 /*
 Initialize a flag to false, ...
 */
 bool found = false;
 /*
 ... make a temporary pointer point at the first node,
 iterate over the list and ...
 */
 for(SingleLinkedListNode * iter = head;iter != NULL;
 iter = iter->getNext())
 {
 /*
 ... if the value matches ...
 */
 if(iter->getVal() == pTarget)
 {
 /*
 ... set the flag to true and ...
 */
 found = true;
 /*
 ... break the loop and ...
 */
 break;
 }
 }
 /*

 Data Structures 323

 ... return the value of the flag.
 */
 return found;
}

Let us look at a program that calls this function and the expected output (Listing 9.18).
We will then analyse the function’s de nition and verify whether it can give the expected
output or not.

Listing 9.18 Executing the nd() function (Note: On the computer used to execute this
function, 1 gets displayed instead of true and 0 gets displayed instead of false.)

/*
 Beginning of ListNodeFind.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
 Create a list object
 */
 SingleLinkedList list1;
 /*
 Declare a Boolean variable to store the result of our
 search.
 */
 bool result;
 /*
 Call the prependNode() function on the list1 object.
 */
 list1.prependNode(5287);
 /*
 Call the find() function on the list1 object.
 */
 result = list1.find(5287);
 /*
 Display the result.
 */
 cout << result << endl;
 /*
 Again call the find() function on the list1 object.
 */
 result = list1.find(325);
 /*
 Display the result.
 */
 cout << result << endl;
}
/*
 End of ListNodeFind.cpp
*/

Output
1
0

 Object-Oriented Programming with C++324

We will expect the rst call to the nd() function to return true because the value that has
been passed to it (5287) should exist in the list as a result of the call to the prependNode()
function in the previous statement. Because 325 has not been inserted to the list, we will also
expect the second call to the nd() function to return false.

Let us now look at the function and see whether it is capable of giving us the results we
are expecting.

We know that when the nd() function is called for the rst time, the linked list looks like
Figure 9.39 (because of the previous call to the prependNode() function).

320

val

next

5287

NULL

245

head 320

list1

Figure 9.39 What the linked list looks like before the call to the nd() function

The value passed to the function, 5287, gets copied to the parameter pTarget. Next, a
local variable, found, gets created and initialized to false. After this, the for loop starts. The
temporary pointer iter gets created and the value of the head pointer gets copied to it. Hence,
it ends up pointing at the rst node. The resulting scenario is depicted by Figure 9.40.

320

val

next

5287

NULL

695

245

320

320

iter

head

Figure 9.40 Iterator iterating over the list

The test expression of the for loop will return true because the value of iter is not NULL
(its value is 320). The test expression of the if block will get evaluated. The expression ‘iter-
>getVal() will return 5287. Because the value of pTarget is also 5287, the test expression
will return true. The rst statement in the if block will set the value of the variable found to
true. The second statement will cause the loop to break. The only remaining statement in the
function will return the value of found, which is true.

When the nd() function is called for the second time, the value of pTarget will be
325. The processing will be the same as the previous execution of the function till the point
where the for loop executes for the rst time. The local variable, found, will get created and

 Data Structures 325

initialized to false. After this, the for loop will start. The temporary pointer iter will get
created and the value of the head pointer will get copied to it. Hence, it will end up pointing
at the rst node. The resulting scenario will be the same as before (Figure 9.41).

320

val

next

5287

NULL

695

245

320

320

iter

head

Figure 9.41 Iterator iterating over the list

The test expression of the for loop will return true because the value of iter is not NULL
(its value is 320). The test expression of the if block will get evaluated. The expression iter-
>getVal() will return 5287. Because the value of pTarget is also 325, the test expression
will return false. Therefore, the if block will not execute. And there is no else block. The
re-initialization expression of the loop will execute. The expression iter->getNext() will
return NULL. Therefore, the value of iter will become NULL.

Now, when the loop executes again, its test expression returns false because the value of
iter is now NULL. The loop terminates and the function returns the value of the variable
found, which has remained false. Thus, we can see that the nd() function has been de ned
in the way we expect it.

The next function to be studied is delBeg(). As the name indicates, this function will
delete the rst node from the list, if it exists.

/*
 Function to delete the first node.
*/
void SingleLinkedList::delBeg()
{
 /*
 Delete only if the list is empty.
 */
 if(head != NULL)
 {
 /*
 Make a temporary pointer point at the first node.
 */
 SingleLinkedListNode * temp = head;
 /*
 Make the head pointer point at the second node.
 */
 head = head -> getNext(); //head becomes NULL if only
 //one node in the list.
 /*
 Delete the first node.
 */
 delete temp;
 }

 Object-Oriented Programming with C++326

 /*
 Don’t do anything if list is empty (no else).
 */
}

Let us take two cases in order to verify whether the function works correctly or not. In case
one, the list is empty. In the second case, the list has one or more nodes.

The function has obviously been de ned correctly to handle the case where the list is
empty. If the list is empty, then we know that the value of the head pointer will be NULL.
You will notice that the delBeg() function has an if statement at the beginning. The test
expression of this if statement checks the value of the head pointer and, if it nds that it is
NULL, simply prevents the if block from executing. There is no else block for the if block
and there are no more statements in the function. Hence, if the list is empty, the function does
not do anything. And, this is what we expect.

Now, let us take the other case where the list is not empty. Let us look at a sample execution of
the function and see whether the function executes as expected or not. Consider Listing 9.19.

Listing 9.19 Executing the delBeg() function

/*
 Beginning of DelBeg.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
 Create a list object
 */
 SingleLinkedList list1;
 /*
 Call the prependNode() function on the list1 object.
 */
 list1.prependNode(5287);
 /*
 Again call the prependNode() function on the list1
 object.
 */
 list1.prependNode(325);
 /*
 Delete the first node
 */
 list1.delBeg();
 /*
 Display the values in the list.
 */
 list1.display();
}
/*
 End of DelBeg.cpp
*/

Output
5287

We know that after the second call to the prependNode() function, the list will look like
Figure 9.42.

 Data Structures 327

320

7912

val

val

next

next

325

5287

7912

NULL

245

head 320

list1

Figure 9.42 The structure of the list prior to the call to the delBeg() function

The delBeg() function has been called at this point in the program. At the end of its
execution, we will expect the list to look like Figure 9.43.

7912

val

next

5287

NULL

245

head 7912

list1

Figure 9.43 Expected effect of the delBeg() function

Let us review the function and see whether it has been de ned correctly or not. When the
delBeg() function starts, the test expression of the if statement gets evaluated. It checks
whether the value of the head pointer is NULL or not. At this point, the value of the head
pointer is 320 (it points at the rst of two nodes that are currently in the list). Therefore, the
test expression returns true and the if block executes.

The rst statement in the if block declares a temporary pointer and copies the value of
the head pointer to it. Figure 9.44 depicts the resulting situation.

320

7912

val

val

next

next

325

5287

7912

NULL

245

320

head

695

320

temp

Figure 9.44 Making a temporary pointer point at the node to be deleted

 Object-Oriented Programming with C++328

The next statement is:
head = head -> getNext();

The call to the getNext() function via the head pointer returns 7912. This value is copied
back to the head pointer. Thus, the value of the head pointer becomes 7912 and it ends up
pointing at the second node. The resulting situation is depicted by Figure 9.45.

320

7912

val

val

next

next

325

5287

7912

NULL

245

7912

head

695

320

temp

Figure 9.45 Advancing the head pointer so that it points at the second node

The next statement is:
delete temp;

This statement frees the memory block at which temp points. After this, the if block ends.
Since the temp pointer is a local variable inside the if block, it goes out of scope and we have
the situation shown in Figure 9.46.

7912

val

next

5287

NULL

245

7912

head

Figure 9.46 The linked list after the temporary pointer has deleted the fi rst node
and has itself gone out of scope

The delBeg() has no more statements after the if block. Hence, it comes to an end and
we have the scenario shown in Figure 9.47.

7912

val

next

5287

NULL

245

head 7912

list1

Figure 9.47 Observed effect of the delBeg() function

 Data Structures 329

Compare Figure 9.47 with Figure 9.43. You can see that the delBeg() function did what
we were expecting it to do.

Let us now study the delEnd() function. As the name suggests, this function deletes the last
node from the list. Compared to the delBeg() function, this a slightly complicated function.

/*
 Function to delete the last node.
*/
void SingleLinkedList::delEnd()
{
 /*
 Delete only if the list is empty.
 */
 if(head != NULL)
 {
 /*
 If there is only one node ...
 */
 if(head -> getNext() == NULL)
 {
 /*
 ... delete it and ...
 */
 delete head;
 /*
 ... nullify the head pointer.
 */
 head = NULL;
 }
 /*
 ... otherwise ...
 */
 else
 {
 /*
 ... declare a temporary pointer, ...
 */
 SingleLinkedListNode * iter;
 /*
 ... iterate the list to point at the second last
 node, ...
 */
 for(iter = head; iter -> getNext() -> getNext() !=
 NULL; iter = iter -> getNext());
 /*
 ... delete the last node and ...
 */
 delete iter -> getNext();
 /*
 ... nullify the next pointer of the second last
 node ...
 */
 iter -> setNext(NULL);
 }
 }
 /*
 Don’t do anything if list is empty (no else).
 */
}

 Object-Oriented Programming with C++330

The function is supposed to ideally delete the last node under three different circumstances—
list is empty, list has exactly one node, and list has more than one node.

The case where the list is empty is handled in exactly the same way as it was handled by
the delBeg() function. No further explanation is needed.

Let us take the case where there is exactly one node in the list. Consider Listing 9.20.

Listing 9.20 Executing the delEnd() function

/*
 Beginning of DelEnd01.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
 Create a list object
 */
 SingleLinkedList list1;
 /*
 Call the prependNode() function on the list1 object.
 */
 list1.prependNode(5287);
 /*
 Delete the last node
 */
 list1.delEnd();
 /*
 Display the values in the list.
 */
 list1.display();
}
/*
 End of DelEnd01.cpp
*/

Output
No nodes in list

We will expect the structure of the linked list after the call to the delEnd() function to
be like Figure 9.48.

245

head NULL

list1

Figure 9.48 Expected effect of the delEnd() function

Let us see whether this happens or not. We know that the structure of the linked list after
the call to the prependNode() function will look like Figure 9.49.

 Data Structures 331

7912

val

next

5287

NULL

245

head 7912

list1

Figure 9.49 The structure of the linked list before the delEnd() function is called.

This is followed by a call to the delEnd() function. The test expression of the rst if
block in the function checks whether the value of head is NULL or not. The check returns
true because head is not NULL (its value is 7912 because it points at the rst node, whose
address is 7912).

This causes the test expression of the embedded if block to get tested. This test also
returns true. This is because the call to the getNext() function via the head pointer will return
NULL. This in turn is because the head pointer points at the rst node and, in this case, the
next pointer of this rst node is NULL.

The nested if block executes. The rst statement calls the delete operator and passes the
head pointer as parameter. This causes the memory block at which the head pointer points to
be returned to the operating system. The next statement assigns NULL to the head pointer.
The resulting scenario is depicted by Figure 9.50.

245

NULL

head

Figure 9.50 Structure of the linked list after the fi rst and only node has been deleted through
the head pointer and the head pointer has been nullifi ed

The else block does not execute (because the if block has executed). There are no further
statements in the function and the function comes to an end. We get the structure shown in
Figure 9.51.

245

head NULL

list1

Figure 9.51 Observed effect of the delEnd() function

Compare Figure 9.51 with Figure 9.48. As you can see, the effect of the function is exactly
the same as what we had expected. Hence, the call to the display() function displays ‘No
nodes in list’.

Finally, let us take the case where the list has more than one node. Consider Listing 9.21.

 Object-Oriented Programming with C++332

Listing 9.21 Executing the delEnd() function

/*
 Beginning of DelEnd02.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
 Create a list object
 */
 SingleLinkedList list1;
 /*
 Call the prependNode() function on the list1 object.
 */
 list1.prependNode(5287);
 /*
 Call the prependNode() function on the list1 object.
 */
 list1.prependNode(325);
 /*
 Delete the last node
 */
 list1.delEnd();
 /*
 Display the values in the list.
 */
 list1.display();
}
/*
 End of DelEnd02.cpp
*/

Output
325

We will expect the structure of the linked list after the call to the delEnd() function to
be like Figure 9.52.

320

val

next

325

NULL

245

head 320

list1

Figure 9.52 Expected effect of the delEnd() function

Let us see whether this happens or not. We know that the structure of the linked list after
the second call to the prependNode() function will look like Figure 9.53.

 Data Structures 333

320

7912

val

val

next

next

325

5287

7912

NULL

245

320

head

Figure 9.53 Structure of the linked list before the call to the delEnd() function

The delEnd() function has been called after the second call to the prependNode() function.
We already know that the test expression in the outer if block inside the delEnd() function
will return true. However, the test expression in the inner if block, which calls the getNext()
function via the head pointer, will return false. This is because the next pointer of the node
at which the head pointer points is not NULL. Its value is 7912. It points at the second node.
Therefore, the else block will execute.

The rst statement in the else block declares a temporary pointer called iter. The second
statement calls a for loop that does not have a body (there is a semicolon at the end of the
statement). The initialization statement of the for loop copies the value of the head pointer
to iter (Figure 9.54).

320

val

next

325

320

215

320

iter

7912

val

next

5287

NULL

245

320

head

Figure 9.54 A temporary iterator pointing at the fi rst node

Now, look carefully at the test expression of the for loop. The call iter -> getNext()
returns a pointer to the second node. The chained call to the getNext() function returns the
value of the second node’s next pointer. As can be seen from Figure 9.54, this value is NULL.
The test expression therefore returns false and the loop breaks.

The next statement calls the getNext() function via iter. It passes the value returned
by this call, as a parameter to the delete operator. However, this call to the getNext()
function returns a pointer to the second node. Therefore, the delete operator gets called on
the second node. This causes the memory occupied by the second node to get returned to the
operating system.

 Object-Oriented Programming with C++334

The next statement of the else block calls the setNext() function and passes NULL as a
parameter. Since iter points at the rst node, the value of the next pointer in the rst node
gets set to NULL. The resulting situation can be depicted by Figure 9.55.

320

val

next

325

NULL

245

320

head

Figure 9.55 Structure of the linked list after the second (and last) node has been deleted

Since there are no more statements in the else block and in the function itself, the call to
the function comes to an end. We are left with a linked list that looks like Figure 9.56.

320

val

next

325

NULL

245

head 320

list1

Figure 9.56 Observed effect of the delEnd() function

Compare Figure 9.56 with Figure 9.52. As you can see, the effect of the function is exactly
the same as what we had expected. Hence, the call to the display() function displays 325.

Try to verify that the delEnd() function has been correctly de ned to handle the case
where the list has more than two nodes.

The last function we need to look at is the destructor.
/*
 The destructor of the class. It will delete the memory
 occupied by all nodes of the list.
*/
SingleLinkedList::~SingleLinkedList()
{
 /*
 Delete only if no nodes in the list.
 */
 if(head != NULL)
 {
 /*
 As long as the head pointer does not get a NULL value
 ...

 Data Structures 335

 */
 while(head != NULL)
 {
 /*
 ... keep calling the delEnd() function to keep
 deleting the last node.
 */
 delEnd();
 }
 }
 /*
 Don’t do anything if list is empty (no else).
 */
}

The destructor will be called whenever an object of the linked list class will go out of
scope. It has been designed to return the memory occupied by the nodes of the linked list
back to the operating system. The function itself is simple. If the list is empty, it does not do
anything. Otherwise, it simply keeps calling the delEnd() function as long as the list does
not become empty.

When the delEnd() function is called repeatedly, it keeps deleting the nodes from the end
of the list. However, remember that the delEnd() function makes the head pointer NULL
when it is called to delete a linked list that has only one node. Therefore, when the delEnd()
function is called when the list has only one node left, it will make the list empty and also
make the head pointer NULL. At this point, the test expression of the while loop will return
false, and the loop will break.

Also, remember that one function of a class (in this case, the destructor) can call another
function of the same class [in this case, the delEnd() function].

One point about the signi cance of the destructor—suppose an object of the linked list class
has been created in the main() function. When the main() function ends, the program also
terminates. The memory occupied by the nodes in the linked list will anyway get returned to
the operating system. You may think that the destructor is super uous. However, objects of the
linked list class may not always get created in the main() function. Consider Listing 9.22.

Listing 9.22 Illustrating the importance of the destructor

/*
 Beginning of ListDestructor.cpp
*/
#include “SingleLinkedList.h”

void f1()
{
 /*
 Create a list object
 */
 SingleLinkedList list1;
 /*
 Call the prependNode() function on the list1 object.
 */
 list1.prependNode(5287);
 /*
 Call the prependNode() function on the list1 object.
 */

 Object-Oriented Programming with C++336

 list1.prependNode(325);
 /*
 Display the values in the list.
 */
 list1.display();
}

void main()
{
 f1();
 /*
 More statements and function calls….
 */
}
/*
 End of ListDestructor.cpp
*/

Output
325
5287

The linked list has been created from within the f1() function. The f1() function has
been called from within the main() function. Suppose, after the call to the f1() function,
there are several statements and function calls in the main() function. If the destructor has
not been de ned, then the memory occupied by the nodes in the linked list will continue to
occupy memory. The destructor ensures that when the f1() function terminates (and the list1
object goes out of scope), the memory occupied by the nodes in the linked list is returned to
the operating system.

 9.3 Stacks

Stacks are also data structures. They are very similar to the linked lists we have just studied.
Just like linked lists, stacks also consist of nodes, where each node is linked to exactly one
other node (with the exception of the last node, which is not connected to any other node).

We have learnt that we can add a node to the beginning as well as the end of a linked list.
However, in a stack, we can add a node only to the beginning. This operation is called push
operation.

We have also learnt that we can delete a node from the beginning as well as the end of a
linked list. However, in a stack, we can delete a node only from the beginning. This operation
is called pop operation.

Thus, stacks are said to have a LIFO (last-in- rst-out) operation. The last node to get in
is the rst to get out.

Let us look at the de nitions of the stack class and its functions. Let us start with the
header le (Listing 9.23).

Listing 9.23 Header fi le of the stack class

/*
 Beginning of Stack.h
*/

#ifndef _STACK_H_

 Data Structures 337

#define _STACK_H_

#include “SingleLinkedList.h”

/*
 The stack class.
 Each instance of this class will represent a stack.
*/
class Stack : private SingleLinkedList
{
 public:
 /*
 Function to push a value to the top of the stack.
 */
 void push(int);
 /*
 Function to display the values in the nodes of the
 stack.
 */
 void display();
 /*
 Function to pop a value from the top of the stack.
 */
 void pop();
};

#endif
/*
 End of Stack.h
*/

The header le of Listing 9.23 contains the de nition of the stack class. As we can see,
the Stack class gets private inheritance from the SingleLinkedList class. We will soon
understand the reason for inheriting privately. The class does not have any data members. It
has a set of public member functions.

Let us first understand why the Stack class has been defined to inherit from the
SingleLinkedList class. We will then understand why it has been de ned to inherit privately
from the SingleLinkedList class.

We know that stacks share two functionalities with linked lists. One of these functionalities
is the addition of nodes to the beginning and the other one is the deletion of nodes from the
beginning. Another shared functionality is displaying the values in the nodes.

We have already defined functions that implement these functionalities in the
SingleLinkedList class. The prependNode() function inserts a node at the beginning.
The delBeg() function deletes a node from the beginning. It makes sense to inherit from the
SingleLinkedList class instead of rede ning them in the Stack class. We know that, due
to inheritance, we will be able to call these functions with respect to objects of the Stack
class.

For example, suppose stack1 is an object of the Stack class. We will like to call the
prependNode() function with respect to it.

stack1.prependNode(10);

Let us now understand why we have inherited privately. As we know, we are supposed
to add nodes only at the beginning of stack objects. However, the base class has a function
that adds nodes to the end of the list also [the appendNode() function]. While we will like

 Object-Oriented Programming with C++338

to call some functions of the SingleLinkedList class with respect to objects of the Stack
class, there are some function calls that we will like to be disallowed. For example, a user
program of the Stack class may call the appendNode() function as follows (stack1 is an
object of the Stack class):

stack1.appendNode(10);

We will not like the above statement to compile. This is because the above call will add
a node at the end of the stack, which we do not want to allow. Inheriting privately makes all
public functions of the base class private in the derived class and therefore causes statements
like the one above to throw compile-time errors.

As we can see, inheriting privately solves one problem for us. But, it leads to another.
While it prevents calls to unwanted functions of the base class, it prevents calls to the wanted
functions too! How can this problem be solved? The problem can be solved by de ning
functions in the derived class that internally call the wanted functions of the base class. The
implementation le of the Stack class (Listing 9.24) shows how this can be done. So, let us
have a look at it.

Listing 9.24 Implementation fi le of the Stack class

/*
 Beginning of Stack.cpp
*/
#include “Stack.h”

/*
 Function to push a value to the top of the stack.
*/
void Stack::push(int pVal)
{
 /*
 Call the base class function.
 */
 prependNode(pVal);
}

/*
 Function to display the values in the nodes of the stack.
*/
void Stack::display()
{
 /*
 Call the base class function.
 */
 SingleLinkedList::display();
}
/*
 Function to pop a value from the top of the stack.
*/
void Stack::pop()
{
 /*
 Call the base class function.
 */
 delBeg();
}
/*End of Stack.cpp*/

 Data Structures 339

Let us start with the push() function. This function simply calls the prependNode()
function of the base class and passes the value that was passed to it to the called function.
This causes a node to get added to the beginning of the stack.

Although the prependNode() function becomes a private member of the Stack class, the
push() function has full rights to call it because it is a member function of the Stack class
(remember that member functions of a class have access to private members of the class).

The next function is the display() function. All this function needs to do is to call the
display() function of the base class. However, doing so without the class name quali er
will lead to in nite recursion. Hence, the call to the base class’s display() function has been
quali ed with the base class name.

The last function is the pop() function. Like the push() function, it calls the relevant
function of the base class, which is the delBeg() function in this case. This causes the rst
node of the stack to get deleted.

Again, the pop() function has full rights to call the delBeg() function for reasons explained
earlier.

Let us look at Listing 9.25, which puts this all of this together.

Listing 9.25 An example user program of the Stack class

/*
 Beginning of StackUser.cpp
*/
#include <iostream.h>
#include “Stack.h”
void main()
{
 Stack stack1;
 cout << “Displaying a new stack:” << endl;
 stack1.display();
 cout << endl;

 stack1.push(30);
 cout << “Displaying after pushing 30:” << endl;
 stack1.display();
 cout << endl;

 stack1.push(20);
 cout << “Displaying after pushing 20:” << endl;
 stack1.display();
 cout << endl;

 stack1.push(10);
 cout << “Displaying after pushing 10:” << endl;
 stack1.display();
 cout << endl;

 stack1.pop();
 cout << “Displaying after popping:” << endl;
 stack1.display();
 cout << endl;

 stack1.pop();
 cout << “Displaying after popping:” << endl;
 stack1.display();
 cout << endl;

 stack1.pop();

 Object-Oriented Programming with C++340

 cout << “Displaying after popping:” << endl;
 stack1.display();
 cout << endl;

}
/*
 End of StackUser.cpp
*/

Output
Displaying a new stack:
No nodes in list
Displaying after pushing 30:
30
Displaying after pushing 20:
20
30
Displaying after pushing 10:
10
20
30
Displaying after popping:
20
30
Displaying after popping:
30
Displaying after popping:
No nodes in list

 9.4 Queues

Queues are data structures too. They are very similar to stacks. The only difference between
the two is in their push operations. In a stack, the push operation causes the new node to
get added to the beginning. But, in a queue, the push operation causes the new node to get
added to the end.

Thus, queues are said to have a FIFO (rst-in- rst-out) operation. The rst node to get in
is the rst to get out.

Let us look at the de nitions of the queue class and its functions. Let us start with the
header le (Listing 9.26).

Listing 9.26 Header fi le of the queue class

/*
 Beginning of Queue.h
*/

#ifndef _QUEUE_H_
#define _QUEUE_H_

#include “SingleLinkedList.h”

/*

 Data Structures 341

 The queue class.
 Each instance of this class will represent a queue.
*/
class Queue : private SingleLinkedList
{
 public:
 /*
 Function to push a value to the end of the queue.
 */
 void push(int);
 /*
 Function to display the values in the nodes of the
 queue.
 */
 void display();
 /*
 Function to pop a value from the top of the queue.
 */
 void pop();
};

#endif
/*
 End of Queue.h
*/

The above header le contains the de nition of the queue class. As we can see, the Queue
class does private inheritance from the SingleLinkedList class. We already know the reason
for inheriting from the SingleLinkedList class. We also know the reason for inheriting
privately.

Let us have a look at the implementation le of the Queue class (Listing 9.27).

Listing 9.27 Implementation fi le of the Queue class

/*
 Beginning of Queue.cpp
*/
#include “Queue.h”

/*
 Function to push a value to the end of the queue.
*/
void Queue::push(int pVal)
{
 /*
 Call the base class function.
 */
 appendNode(pVal);
}

/*
 Function to display the values in the nodes of the queue.
*/
void Queue::display()
{
 /*
 Call the base class function.
 */

 Object-Oriented Programming with C++342

 SingleLinkedList::display();
}
/*
 Function to pop a value from the top of the queue.
*/
void Queue::pop()
{
 /*
 Call the base class function.
 */
 delBeg();
}
/*End of Queue.cpp*/

As we can see, all functions of the Queue class are identical to those of the Stack class,
except the push() function. This function calls the appendNode() function of the base class
instead of the prependNode() function. This causes a node to get added to the end of the
stack instead of the beginning.

Let us look at Listing 9.28, which puts this all of this together.

Listing 9.28 An example user program of the Queue class

/*
 Beginning of QueueUser.cpp
*/
#include <iostream.h>
#include «Queue.h»
void main()
{
 Queue queue1;
 cout << “Displaying a new queue:” << endl;
 queue1.display();
 cout << endl;

 queue1.push(30);
 cout << “Displaying after pushing 30:” << endl;
 queue1.display();
 cout << endl;

 queue1.push(20);
 cout << “Displaying after pushing 20:” << endl;
 queue1.display();
 cout << endl;

 queue1.push(10);
 cout << “Displaying after pushing 10:” << endl;
 queue1.display();
 cout << endl;

 queue1.pop();
 cout << “Displaying after popping:” << endl;
 queue1.display();
 cout << endl;

 queue1.pop();
 cout << “Displaying after popping:” << endl;
 queue1.display();
 cout << endl;

 Data Structures 343

 queue1.pop();
 cout << “Displaying after popping:” << endl;
 queue1.display();
 cout << endl;

}
/*
 End of QueueUser.cpp
*/

Output
Displaying a new queue:
No nodes in list
Displaying after pushing 30:
30
Displaying after pushing 20:
30
20
Displaying after pushing 10:
30
20
10
Displaying after popping:
20
10
Displaying after popping:
10
Displaying after popping:
No nodes in list

 9.5 Trees

Trees, unlike linked lists, stacks, and queues, do not have a linear structure. In the lists we
have studied so far in this chapter, each node was connected to a maximum of one other node.
But, in a tree, each of the nodes may be connected to more than one node.

We encounter tree-like structures in our everyday life. Such a real example of a tree can be
that of a directory structure in a computer. Figure 9.57 shows a possible directory structure
(each box represents a directory):

My Programs

C Language

Graphics File IO Data Structures Calculator Proj Tic Tac Toe Proj

C++

Figure 9.57 Directory structure looks like a tree

 Object-Oriented Programming with C++344

The ‘My Programs’ folder has two folders beneath it—‘C Language’ and ‘C++’. But the
‘C++’ folder has three folders beneath it—‘Data Structures’, ‘Calculator Proj’, and ‘Tic Tac
Toe Proj’.

Suppose this folder structure is represented by a data structure, in which each folder is
represented by a node. It is obvious that each such node will contain, apart from the name of
the folder, one or more pointers to other similar nodes. Such a data structure is called a tree.
Trees can be created in C++ in order to model these real-world tree-like structures.

9.5.1 Binary Trees

A binary tree is a tree in which each node is linked to a maximum of two nodes. Let us look at
a simpli ed gure of a binary tree (Figure 9.58). In this gure, the nodes have been represented
by circles. Each node has been labelled with a different alphabet. The links between nodes
have been represented with straight lines.

The tree has been drawn in a top-down fashion. This means that A is the root node. The
 gure will be described in greater detail shortly.

A

C

F

IH

E

B

D

G

Figure 9.58 A binary tree

A binary tree is a nite set of elements. It is either empty or is partitioned into three
disjoint subsets. The rst subset contains only one element, which is the root of the tree. The
other subsets are themselves binary trees. One of them is considered to be the left sub-tree
and the other one is considered to be the right sub-tree. Either or both of the sub-trees can
be empty.

Let us understand this with the help of the example shown in Figure 9.58. There are nine
nodes in the tree depicted above. The root node is labelled ‘A’. The tree has a left sub-tree
and a right sub-tree. The root node of the left sub-tree is labelled ‘B’ whereas the root node
of the right sub-tree is labelled ‘C’.

Let us take this description further. The left sub-tree is also a tree. The root node is ‘B’.
The node labelled ‘D’ is the root node of the left sub-tree of ‘B’ and the node labelled ‘E’ is
the root node of the right sub-tree of ‘B’. The tree starting from ‘D’ does not have a left or a
right sub-tree. The tree starting from ‘E’ has a left sub-tree only.

A node that does not have children is known as leaf. Thus, in the above gure, ‘D’, ‘G’,
‘H’, and ‘I’ are leaves.

 Data Structures 345

As per the de nition of a tree, these three sets should be disjointed—the root, the set of
nodes in the left sub-tree, and the set of nodes in the right sub-tree. Accordingly, the structures
shown in Figure 9.59 are not trees.

A

C

F

IH

E

B

D

G

A

C

F

IH

E

B

D

G

Figure 9.59 Structures that are not binary trees

Natural trees usually grow upwards, with their roots in the ground and the branches and
leaves growing in an upward direction. But, in data structures, trees are depicted to grow
downwards, with their root at the top and the branches and leaves growing downwards.

Recursive Nature of Binary Trees

If you look closely, you will observe that binary trees have recursive structures. The entire
tree has a root, a left sub-tree, and a right sub-tree. Both of the sub-trees are trees themselves.
Both of them in turn have roots and sub-trees.

While programming functions that model operations on trees, we can exploit this recursive
nature of trees and make them recursive too. This will make the functions shorter and reduce
our programming effort. You will understand this while studying these functions.

Traversal of a Binary Tree

Traversing a linked list is simple because it has a linear structure. We simply visit the nodes
from the rst to the last. However, trees do not have a linear structure. How can we traverse

 Object-Oriented Programming with C++346

a tree? There are three ways of doing it—pre-order, in-order, and post-order. Keep in mind
that we stop as soon as we encounter an empty tree.

The sequence of steps for traversing a non-empty tree in pre-order is as follows:
1. Visit the root.
2. Visit the left sub-tree in pre-order.
3. Visit the right sub-tree in pre-order.
The sequence of steps for traversing a non-empty tree in in-order is as follows:
1. Visit the left sub-tree in in-order.
2. Visit the root.
3. Visit the right sub-tree in in-order.
The sequence of steps for traversing a non-empty tree in post-order is as follows:
1. Visit the left sub-tree in post-order.
2. Visit the right sub-tree in post-order.
3. Visit the root.

Let us look at some examples now. Consider the tree shown in Figure 9.60, which we
have seen earlier also.

A

C

F

IH

E

B

D

G

Figure 9.60 A binary tree

Let us see the sequence in which we visit the nodes when we follow each of the traversal
methods. Let us start with pre-order traversal.

In pre-order traversal, we visit the root rst. Hence, we get ‘A’. Then we visit the left sub-
tree of ‘A’ in pre-order (visiting the right sub-tree of ‘A’ is pending at this time). We visit the
root rst. Hence, we get ‘B’. Then, we visit the left sub-tree of ‘B’ in pre-order (visiting the
right sub-tree of ‘B’ is pending at this time). We visit the root rst. Hence, we get ‘D’. Then,
we visit the left sub-tree of ‘D’ in pre-order (visiting the right sub-tree of ‘D’ is pending at
this time). There is no left sub-tree for ‘D’. So, we visit the right sub-tree of ‘D’ in pre-order,
which was pending. There is no left sub-tree for ‘D’. Hence, we go one step back. We visit
the right sub-tree of ‘B’ in pre-order, which was pending. If you continue like this after ‘A’,
‘B’, and ‘D’, you will get ‘E’, ‘G’, ‘C’, ‘F’, ‘H’, ‘I’.

To conclude, the result of a pre-order traversal of the above tree will be ‘ABDEGCFHI’.
Similarly, the result of an in-order traversal will be ‘DBGEACHFI’. And the result of a

post-order traversal will be ‘DGEBHIFCA’.

 Data Structures 347

9.5.2 Binary Search Trees

A binary search tree is a special form of binary tree. In a binary search tree, for any given
node, the value contained in its left child is less than the value contained in the node and the
value contained in the node is less than the value contained in its right child. For example,
the tree shown in Figure 9.61 is a binary search tree.

33

35

8726

21

Figure 9.61 A binary search tree

But the binary tree shown in Figure 9.62 is not a binary search tree. This is because 81 is
larger than 49 and cannot be the value of the left child of the node that has 49.

18

25

49

81

17

Figure 9.62 A structure that is not a binary search tree

If you traverse a binary search tree in in-order (left, root, right), and display the value of
each node as you visit, then you will end up printing the values in ascending order. Try to
draw a binary search tree and see whether this happens or not.

Let us now look at the code that can be used to generate binary search trees (BSTs). Broadly,
we will be studying two classes—BSTNode and BST. The rst class will help us in creating the
nodes of BSTs whereas the second class will help us in creating the BSTs themselves.

Let us start with the rst class. See Listing 9.29.

Listing 9.29 The BSTNode class

/*Beginning of BSTNode.h*/

#ifndef _BSTNODE_H_

 Object-Oriented Programming with C++348

#define _BSTNODE_H_

/*
 The node class.
 Each instance of this class will be a node in the binary
 search tree.
*/
class BSTNode
{
 private:
 /*
 The data part of the node.
 */
 int val;
 /*
 The left pointer will exist in each node and will
 point at the left child node (or be null)
 */
 BSTNode * left;
 /*
 The right pointer will exist in each node and will
 point at the right child node (or be null)
 */
 BSTNode * right;

 public:
 /*
 The constructor of the node class. It will nullify the
 left and right pointers by default.
 */
 BSTNode();
 /*
 This function sets the value of the data part.
 */
 void setVal(int);
 /*
 This function returns the data part.
 */
 int getVal();
 /*
 This function sets the value of the left pointer.
 */
 void setLeft(BSTNode *);
 /*
 This function returns a reference to the left pointer.
 */
 BSTNode *& getLeft();
 /*
 This function sets the value of the right pointer.
 */
 void setRight(BSTNode *);
 /*
 This function returns a reference to the right pointer.
 */
 BSTNode *& getRight();
 /*
 The destructor of the class.
 */
 ~BSTNode();

 Data Structures 349

};

#endif
/*End of BSTNode.h*/

Each object of the above class will be a node in the BST. Each node will have three data
members—val, left, and right. The data of each node will be stored in the rst member, val.
This is an integer-type variable, which means that the nodes will contain integer type values.
The remaining data members are left and right. Each of these is a pointer to another node.
As we know, each node of a BST has either a left child or a right child or both or neither. If
a node has a left child node, then the left data member will point at that node. Otherwise,
it will be NULL. The same holds true for the right data member.

Figures 9.63 and 9.64 show some nodes.

2172

val

left

right

20

NULL

NULL

Figure 9.63 A BST node (object of the BSTNode class) with no children.

Figure 9.63 depicts an object of the BSTNode class. This particular object represents a node
of the binary search tree that has no child nodes. Hence, both the left and the right data
members are NULL. Moreover, the value of the val data member is 20. Finally, the address
of the node itself is 2172.

Let us see what happens if a node, having a value of 10, gets added to the above node (Figure
9.64). It will get added as the left child of the existing node because 10 is smaller than 20.

2172

val

left

right

20

2860

NULL

2860

val

left

right

10

NULL

NULL

Figure 9.64 A node with only a left child

Now that we have had a glimpse of the data members of the node class, let us have a brief
look at the declaration of its member functions. All of the declarations are self-evident. The

 Object-Oriented Programming with C++350

only declarations we need to study separately are those of the functions that return references
to the left and the right pointers [the getLeft() and getRight() functions respectively].
You will understand why they return by reference (and not by value) when you study the
insert() function of the BST class.

Let us look at the de nitions of the member functions of the BSTNode class (Listing
9.30).

Listing 9.30 Implementation fi le for the BSTNode class

/*Beginning of BSTNode.cpp*/
#include “BSTNode.h”

/*
 The constructor of the node class. It will nullify the
 left and right pointers by default.
*/

BSTNode::BSTNode()
{
 /*
 Set the data part to zero.
 */
 val = 0;
 /*
 Set the left pointer to null.
 */
 left = NULL;
 /*
 Set the right pointer to null.
 */
 right = NULL;
}

/*
 This function sets the value of the data part.
*/
void BSTNode::setVal(int pVal)
{
 val = pVal;
}

/*
 This function returns the data part.
*/
int BSTNode::getVal()
{
 return val;
}

/*
 This function sets the value of the left pointer.
*/
void BSTNode::setLeft(BSTNode * pLeft)
{
 left = pLeft;
}

/*
 This function returns a reference to the left pointer.

 Data Structures 351

*/
BSTNode *& BSTNode::getLeft()
{
 return left;
}

/*
 This function sets the value of the right pointer.
*/
void BSTNode::setRight(BSTNode * pRight)
{
 right = pRight;
}

/*
 This function returns a reference to the right pointer.
*/
BSTNode *& BSTNode::getRight()
{
 return right;
}

/*
 The destructor of the class.
*/
BSTNode::~BSTNode()
{
}
/*End of BSTNode.cpp*/

Let us have a closer look at the getLeft() and getRight() functions. As you can see, each
of these functions returns a reference to either the left or the right pointer respectively. It is
important to understand the implications of this if we later want to understand the insert()
function of the BST class, which, as the name indicates, inserts a node in the BST. Let us take
the getLeft() function. Suppose, node1 is an instance of the BSTNode class and contains
the value 20, as shown in Figure 9.65.

2172

node1

val

left

right

20

NULL

NULL

Figure 9.65 A BST node

Before going any further, you need to understand that the address of the left pointer is
2176. Why is the address of the left pointer 2176? This is because the address of the node
is 2172. The rst data member in the node is val, which is an integer-type variable. Since
integer-type variables occupy 4 bytes, the rst 4 bytes of node1 will be occupied by val. The
left pointer is the second data member. Hence its address will be 2176 (2172 + 4). Can you
calculate the address of the right pointer?

Now, consider Listing 9.31.

 Object-Oriented Programming with C++352

Listing 9.31 Testing the BSTNode class

/*
 Beginning of BSTNodeTest01.cpp
*/
#include “BSTNode.h”
void main()
{
 BSTNode node1;
 node1.setVal(20);
 BSTNode * & temp = node1.getLeft();
 temp = new BSTNode();
 temp -> setVal(10);
 cout << node1.getLeft()->getVal() << endl;
}
/*
 End of BSTNodeTest01.cpp
*/

Output
10

The rst statement of the above program declares an object of the BSTNode class and the
second statement sets the value of the node to 20. Let us analyse Listing 9.31 from the third
statement onwards.

BSTNode * & temp = node1.getLeft();

Since the call to the getLeft() function returns a reference to the left pointer of the node1
object and because the temp pointer is a reference variable, therefore the temp pointer ends
up being a reference for the left pointer of the node1 object, as shown in Figure 9.66.

2172

node1

val

left

right

20

NULL

NULL
2176

NULL

temp

Figure 9.66 A temporary pointer pointing at a BST node

Since temp is a reference to the left pointer, its address will be the same as that of the
left pointer, which is 2176. And, from our knowledge of reference variables, we know that
any change to the value of temp will cause the same change to the value of the left pointer
(because they are essentially two names for the same memory block). Thus, if the following
statement executes now, it will change the value of the left pointer.

The next statement in the program is:
temp = new BSTNode();

 Data Structures 353

The above statement will create a new object of the BSTNode class and assign its address
to the temp pointer. Consequently, the value of the left pointer in the node1 object will also
become equal to the address of the newly created object, as shown in Figure 9.67.

2172

node1

val

left

right

20

3258

NULL

3258

val

left

right

20

NULL

NULL

2176

3258

temp

Figure 9.67 Temporary pointer and left pointer of existing node pointing at a newly
created node

In this situation, the address of the newly created node is 3258. Therefore, the values of
temp and the left pointer of the existing node have become 3258. The next statement is:

temp -> setVal(10);

This will assign 10 to the node at which temp points, as shown in Figure 9.68.

2172

node1

val

left

right

20

3258

NULL

3258

val

left

right

0

NULL

NULL

2176

3258

temp

Figure 9.68 Newly created node populated by a value

The next statement is:
cout << node1.getLeft()->getVal() << endl;

 Object-Oriented Programming with C++354

The above statement tells us whether temp and the left pointer really point at the same
node or not. If temp and the left pointer really point at the same node, then the call to the
getLeft() function in the above statement should return a pointer to the newly created node.
In that case, the call to the getVal() function should return 10. We can see from the output
that 10 was in fact returned by the call to the getVal() function.

Note how a left child has got added to an existing node through a temporary pointer. Let
us now see the same thing in a more elaborate code (Listing 9.32).

Listing 9.32 Testing the BSTNode class

/*
 Beginning of BSTNodeTest02.cpp
*/
void f1(BSTNode *& temp, int pVal)
{
 temp = new BSTNode();
 temp->setVal(pVal);
}
void main()
{
 BSTNode node1;
 node1.setVal(20);
 f1(node1.getLeft(), 10);
 cout << node1.getLeft() -> getVal() << endl;
}
/*
 End of BSTNodeTest02.cpp
*/

Output
10

Listing 9.32 is similar to the previous one. The difference is that temp is a formal argument in
a called function instead of being a local variable in the caller function. When the f1() function
is called, a reference to the left pointer gets passed as a parameter to it. The corresponding
formal argument in the f1() function, temp, is also a reference-type variable. Consequently,
temp ends up being a reference for the left pointer of the node1 object. The consequence of
the statements inside the f1() function has already been explained above.

As you can see in Listing 9.32, a left child node again got added to an existing node, but this
time via a called function. This technique will be used later on while de ning the insert()
function of the BST class, the function that enables us to insert nodes in the BST. It is therefore
important to understand this explanation.

Let us now go over to the BST class itself (Listing 9.33).

Listing 9.33 The BST class

/*
 Beginning of BST.h
*/
#ifndef _BST_H_
#define _BST_H_

#include “BSTNode.h”

 Data Structures 355

/*
 The binary search tree class. Each object of this class
 will represent a BST.
*/
class BST
{
 private:
 /*
 The root pointer of the BST. It will either point at
 the root node or be NULL.
 */
 BSTNode * root;
 /*
 Private function to insert the node. Will be called
 from the public function.
 */
 void insert(BSTNode *&, int);
 /*
 Private function to do pre-order traversal. Will be
 called from the public function.
 */
 void preorder(BSTNode *);
 /*
 Private function to do in-order traversal. Will be
 called from the public function.
 */
 void inorder(BSTNode *);
 /*
 Private function to do post-order traversal. Will be
 called from the public function.
 */
 void postorder(BSTNode *);

 public:
 /*
 The constructor of the BST class. It will nullify the
 root pointer by default.
 */
 BST();
 /*
 Function to insert a node at the correct place in the
 BST.
 */
 void insert(int);
 /*
 Function to do pre-order traversal.
 */
 void preorder();
 /*
 Function to do in-order traversal.
 */
 void inorder();
 /*
 Function to do post-order traversal.
 */
 void postorder();
 /*
 The destructor of the class.
 */

 Object-Oriented Programming with C++356

 ~BST();
};

#endif
/*End of BST.h*/

This class has only one data member—root—which is private. Consequently, root will
be the only data member in all objects of the BST class, and the constructor of the BST class
will ensure that it gets nulli ed in each newly created object.

As the de nition suggests, root will point at an object of the node class BSTNode. As the
name suggests, it will point at the rst node of the BST.

Let us look at the implementation of the member functions now (Listing 9.34).

Listing 9.34 Implementation fi le of BST class

/*Beginning of BST.cpp*/
#include <iostream.h>
#include “BST.h”

/*
 Private function to insert the node. Will be called from
 the public function.
*/
void BST::insert(BSTNode * &nodePtr, int pValue)
{
 /*
 Reference to a pointer is passed as one parameter.
 */
 /*
 If the pointer is NULL ...
 */
 if(nodePtr == NULL)
 {
 /*
 ... create a node and make the pointer point at it
 and ...
 */
 nodePtr = new BSTNode();
 /*
 ... copy the value passed to the function to the new
 node and ...
 */
 nodePtr -> setVal(pValue);
 /*
 ... return.
 */
 return;
 }
 /*
 If the value in the current node is larger than the
 value passed ...
 */
 if(nodePtr -> getVal() > pValue)
 {
 /*
 ... call the function recursively starting with the
 left child.

 Data Structures 357

 */
 insert(nodePtr -> getLeft(), pValue);
 }

 /*
 If the value in the current node is smaller than the
 value passed ...
 */
 if(nodePtr -> getVal() < pValue)
 {
 /*
 ... call the function recursively starting with the
 right child.
 */
 insert(nodePtr -> getRight(), pValue);
 }
}

/*
 Private function to do pre-order traversal. Will be
 called from the public function.
*/
void BST::preorder(BSTNode * nodePtr)
{
 /*
 As long as the passed pointer is not NULL ...
 */
 if(nodePtr != NULL)
 {
 /*
 ... display the value of the current node first ...
 */
 cout << nodePtr -> getVal() << endl;
 /*
 ... then call the function recursively for the left
 child ...
 */
 preorder(nodePtr -> getLeft());
 /*
 ... and then call the function recursively for the
 right child.
 */
 preorder(nodePtr -> getRight());
 }
}
/*
 Private function to do in-order traversal. Will be called
 from the public function.
*/
void BST::inorder(BSTNode * nodePtr)
{
 /*
 As long as the passed pointer is not NULL ...
 */
 if(nodePtr != NULL)
 {
 /*
 ... call the function recursively for the left child
 first...

 Object-Oriented Programming with C++358

 */
 inorder(nodePtr -> getLeft());
 /*
 ... then display the value of the current node ...
 */
 cout << nodePtr -> getVal() << endl;
 /*
 ... and then call the function recursively for the
 right child.
 */
 inorder(nodePtr -> getRight());
 }
}

/*
 Private function to do post-order traversal. Will be
 called from the public function.
*/
void BST::postorder(BSTNode * nodePtr)
{
 /*
 As long as the passed pointer is not NULL ...
 */
 if(nodePtr != NULL)
 {
 /*
 ... call the function recursively for the left child
 first...
 */
 postorder(nodePtr -> getLeft());
 /*
 ... then call the function recursively for the right
 child ...
 */
 postorder(nodePtr -> getRight());
 /*
 ... and then display the value of the current node.
 */
 cout << nodePtr -> getVal() << endl;
 }
}

/*
 The constructor of the BST class. It will nullify the
 root pointer by default.
*/
BST::BST()
{
 /*
 Nullify the root pointer.
 */
 root = NULL;
}

/*
 Function to insert a node at the correct place in the
 BST.
*/
void BST::insert(int pValue)

 Data Structures 359

{
 /*
 Call the private function to insert the node at the
 correct place in the BST.
 */
 insert(root, pValue);
}

/*
 Function to do pre-order traversal.
*/
void BST::preorder()
{
 /*
 Call the corresponding private function.
 */
 preorder(root);
}

/*
 Function to do in-order traversal.
*/
void BST::inorder()
{
 /*
 Call the corresponding private function.
 */
 inorder(root);
}

/*
 Function to do post-order traversal.
*/
void BST::postorder()
{
 /*
 Call the corresponding private function.
 */
 postorder(root);
}

/*
 The destructor of the class.
*/
BST::~BST()
{
}
/*End of BST.cpp*/

The BST class has a few private member functions. We will return to them later on. Let us
start looking at the public member functions.

The de nition of the constructor is obvious. It simply nulli es the root pointer for each
newly created object of the BST class.

The next public function is insert(). This function has been designed to create a new
node and insert it at the appropriate place in the BST. It accepts the value to be inserted as a
parameter. It in turn calls an overloaded private member function. It transfers its parameter
to the called function. It also passes the root pointer to the called function.

 Object-Oriented Programming with C++360

Let us come back to the de nition of the insert() function after understanding the calling
pattern that we observe here. Please keep in mind that the functions of the BST class that carry
out the actual task are recursive and therefore need the root pointer to be passed as an initial
parameter to them. But, at the same time, we cannot expect the programs that use the BST
class to pass the value of the root pointer when they call its functions (they have no way of
knowing the value of the root pointer anyway).

So, what is the way out? The problem can be solved by creating a public function that
does not expect the root pointer to be passed to it, but in turn calls a private function, which
does the actual work, and passes the root pointer to it. Thus, we are able to ensure that the
functions that do the actual work get the root pointer as a parameter, without expecting the
calling program to pass it for us.

For example, if tree1 is an instance of the BST class (created in one of the user programs
of the BST class) and we need to insert the value 20 into the tree, then the public insert()
function will be called as follows:

tree1.insert(20);

The de nition of the public insert() function is as follows:
/*
 Function to insert a node at the correct place in the
 BST.
*/
void BST::insert(int pValue)
{
 /*
 Call the private function to insert the node at the
 correct place in the BST.
 */
 insert(root, pValue);
}

As can be seen, the public function in turn calls the private function. It transfers the data
value that was passed to it to the private function. It also passes the value of the root pointer
to the private function.

Let us look at the de nition of the private version of this function, which does the actual
work for us.

/*
 Private function to insert the node. Will be called from
 the public function.
*/
void BST::insert(BSTNode * &nodePtr, int pValue)
{
 /*
 Reference to a pointer is passed as one parameter.
 */
 /*
 If the pointer is NULL ...
 */
 if(nodePtr == NULL)
 {
 /*
 ... create a node and make the pointer point at it
 and ...
 */

 Data Structures 361

 nodePtr = new BSTNode();
 /*
 ... copy the value passed to the function to the new
 node and ...
 */
 nodePtr -> setVal(pValue);
 /*
 ... return.
 */
 return;
 }
 /*
 If the value in the current node is larger than the
 value passed ...
 */
 if(nodePtr -> getVal() > pValue)
 {
 /*
 ... call the function recursively starting with the
 left child.
 */
 insert(nodePtr -> getLeft(), pValue);
 }
 /*
 If the value in the current node is smaller than the
 value passed ...
 */
 if(nodePtr -> getVal() < pValue)
 {
 /*
 ... call the function recursively starting with the
 right child.
 */
 insert(nodePtr -> getRight(), pValue);
 }
}

This complicated looking function is actually very simple. Let us start by considering the
case where the tree is empty (Listing 9.35).

Listing 9.35 Testing the insert() function

/*Beginning of BSTInsert01.cpp*/
#include “BST.h”
void main()
{
 BST tree1;
 tree1.insert(20);
}
/*End of BSTInsert01.cpp*/

The rst statement in the above program will create an object of the BST class called tree1.
Figure 9.69 depicts tree1 after it has got created in the memory.

 Object-Oriented Programming with C++362

2172

rootNULL

tree1

Figure 9.69 An object of the BST class

As per the de nition of the BST class, tree1 has only one data member, called root. The
address of the object is 2172. Since root is the only data member of the object, its address is
also 2172. Keep in mind that when the tree is empty, the root pointer’s value will be NULL.

The second statement in the above program calls the public insert() function as
follows:

tree1.insert(20);

This in turn will call the private function as follows:
insert(root, 20);

Note that nodePtr, which is the rst formal argument of the private function, is a reference-
type variable. Thus, as a result of the above call, nodePtr will end up being a reference to
the root pointer. Thus, any change in the value of nodePtr will cause the same change
to the value of the root pointer. This is a very important point and must be kept in mind. Also,
the value of pValue, which is the second formal argument, will get set to 20. The resulting
situation is depicted in Figure 9.70.

2172

NULL

root

2172

NULL

nodePtr

3922

20

pValue

Figure 9.70 Situation resulting out of a call to the insert() function

As can be seen, root and nodePtr have the same address, which is 2172. This is because
nodePtr is a reference to root. Naturally, they have the same values too. pValue is a separate
integer type variable. Its value is 20.

Now, the function will start executing. The value of nodePtr will be tested for NULL value
in the test expression of the rst if block. The test will return true because the value of the root
pointer is NULL and the value of nodePtr is the same as the value of the root pointer.

The if block will execute. A new node will get created and the value of its address will
get copied to nodePtr. This will cause the value of the root pointer to become equal to
the address of the newly created node because nodePtr is a reference to root as shown in
Figure 9.71. Suppose, the address of the newly created node is 6221, then the value of both

 Data Structures 363

root and nodePtr will become 6221. This is the importance of declaring nodePtr as a
reference variable.

2172

6221

root

2172

6221

nodePtr

3922

20

pValue

6221

val

left

right

0

NULL

NULL

Figure 9.71 A newly created node added to the root pointer

The next statement in the if block will copy the value of pValue to the data part of the
newly created node giving rise to the situation shown in Figure 9.72.

2172

6221

root

2172

6221

nodePtr

3922

20

pValue

6221

val

left

right

20

NULL

NULL

Figure 9.72 Populating the newly created node with data

Finally, the last statement of the if block will cause the function to return and the remaining
part of the function will not execute. The local variables nodePtr and pValue will go out of
scope. We will be left with the root pointer and the newly created node. Thus, a new node,
with value 20, will get added to the tree. Figure 9.73 shows what the tree will look like.

2172

6221

root

6221

val

left

right

20

NULL

NULL

Figure 9.73 Situation at the end of the insert() function

 Object-Oriented Programming with C++364

Thus, it is clear that the insert() function will work correctly when the tree is empty.
Let us now consider the case where the tree is not empty (Listing 9.36).

Listing 9.36 Testing the insert() function

/*Beginning of BSTInsert02.cpp*/
#include “BST.h”
void main()
{
 BST tree1;
 tree1.insert(20);
 tree1.insert(10);
}
/*End of BSTInsert02.cpp*/

We already know that at the end of the second statement of the main() function above,
the scenario will be as shown in Figure 9.74.

2172

6221

root

6221

val

left

right

20

NULL

NULL

Figure 9.74 Structure of the BST after the fi rst call to the insert() function

We can see from the gure that the tree will not be empty when the third statement in the
main() function starts. The third statement is:

tree1.insert(10);

We know that this in turn will call the private ‘insert()’ function as follows:
insert(root, 10);

As before, nodePtr will end up being a reference to root and the value of pValue will
become equal to 10, as shown in Figure 9.75.

2172

6221

root

2172

6221

nodePtr

3922

10

pValue

6221

val

left

right

20

NULL

NULL

Figure 9.75 First generation of the call to the insert() function

 Data Structures 365

As before, the test expression inside the if statement will be tested. However, this time,
the test will fail. Therefore, the rst if block will be bypassed. The test expression in the
next if statement will get tested. This will return true because the value in the node at which
nodePtr points is 20 and is greater than the value of pValue, which is 10.

Now comes the tricky part. The second if block will execute. The insert() function will
be called recursively and the second generation of the function will start executing. Look
closely at the rst value that is being passed to the recursive call to the insert() function.
It is as follows:

nodePtr -> getLeft()

We know that this function call will return a reference to the left pointer of the node at
which nodePtr points currently (and we know that nodePtr currently points at the rst node).
Thus, when the second generation of the function gets called, nodePtr, which is one of the
formal arguments, ends up being a reference to the left pointer of the rst node. Since the
address of the rst node is 6221, the address of its left pointer will be 6225 (we already
know why). Therefore, the address of nodePtr will also be 6225. Its value will also be NULL
because the value of the left pointer of the rst node is NULL.

The other formal argument, pValue, gets created as a local variable in the second generation,
and its value becomes 10. Let us assume that its address is 6720. Figure 9.76 explains what
is happening.

2172

6221

root

2172

6221

nodePtr
6225

NULL

nodePtr

3922

10

pValue

First-generation variables

Second-generation variables

6720

10

pValue

6221

val

left

right

20

NULL

NULL

Figure 9.76 First and second generations of the call to the insert() function

In the above gure, nodePtr and pValue on the left are from the rst generation while
those on the right are from the second generation of the function call.

Now, the body of the second generation of the function call will start executing. The test
expression of the rst if statement will return true because the value of nodePtr is null. A
new node will get created and its address will get copied to nodePtr. Since nodePtr is a
reference to the left pointer of the rst node, the value of the left pointer of the rst node
will also become equal to the address of the newly created node. Let us look at Figure 9.77,
which depicts this scenario.

After this, the value of pValue will get copied to the val data member of the new node
giving rise to the structure shown in Figure 9.78.

 Object-Oriented Programming with C++366

2172

6221

root

2172

6221

nodePtr
6225

7180

nodePtr

3922

10

pValue 6720

10

pValue

6221

val

left

right

20

7180

NULL

7180

val

left

right

0

NULL

NULL

Figure 9.77 Node added in the second generation of the call to the insert() function

2172

6221

root

2172

6221

nodePtr
6225

7180

nodePtr

3922

10

pValue 6720

10

pValue

6221

val

left

right

20

7180

NULL

7180

val

left

right

10

NULL

NULL

Figure 9.78 Newly created node populated with value

 Data Structures 367

After this, the return statement of the second generation call will execute and the second
generation will terminate. The local variables of the second generation—nodePtr and
pValue—will cease to exist. We will then be left with the structure shown in Figure 9.79.

2172

6221

root

2172

6221

nodePtr

3922

10

pValue

6221

val

left

right

20

7180

NULL

7180

val

left

right

10

NULL

NULL

Figure 9.79 Situation after the second generation of the call to the insert() function ends

This will bring the second if block of the rst generation to an end. The third if block
will not execute because its test expression will return false. Thus, the rst generation will
terminate. The local variables of the rst generation—nodePtr and pValue—will cease to
exist. We will then be left with the structure shown in Figure 9.80.

2172

6221

root

6221

val

left

right

20

7180

NULL

7180

val

left

right

10

NULL

NULL

Figure 9.80 Situation after the fi rst generation of the call to the insert() function ends

 Object-Oriented Programming with C++368

We can see that a new node has got attached to the left of the rst node. This is what we were
expecting. It is clear that the insert() function will work correctly if the tree is not empty.

Similarly, if we call the insert() function by passing a value that is larger than the value
contained in the root node when the root node does not have a right child, then a right child
will get attached to the root node.

If you keep in mind the fact that the left and the right sub-trees of any node in the tree are
trees in their own right, it is quite easy to see how the tree will grow if the insert() function
gets called repeatedly.

The private insert() function is a recursive function. When we call it, we pass the root
pointer and the value to be inserted to it. If the tree is empty, then the insert() function
simply creates a new node and makes root point at it. If there is exactly one node and if the
insert() function nds that the value it has received is smaller than the value in the single
existing node, then it calls itself by passing a reference to the left pointer, and the previous
step repeats. Similarly, if there is exactly one node and if the insert() function nds that
the value it has received is larger than the value in the single existing node, then it calls itself
by passing a reference to the right pointer, and the previous step repeats.

Keep in mind that a BST should not have duplicate values. The existing de nition of the
private insert() function elegantly takes care of this requirement. Let us understand how.

Suppose there is only one node in the tree, and that its value is 20. Further suppose we call
the insert() function by passing 20. Now, the rst if block in the insert() function will
not execute because the value of root is not null. The second and third if blocks will also
not execute because the value passed to the function is neither smaller than nor greater than
20 (it is equal to 20). The function will terminate without doing anything.

By extrapolation, it is easy to understand that if we pass a value that is the duplicate of a
value that is several levels down in the tree, then also the value will not get inserted. When
the function keeps getting called recursively till the point the node that contains the duplicate
value is reached, the same thing happens as has been described in the previous paragraph.
The current generation of the function call will terminate without doing anything. And the
previous generations will terminate in the reverse order.

Why does a duplicate value not get inserted? This is because of the clever way in which
the test expressions in the second and third if blocks of the function have been de ned. The
third if block is not an else block of the second if block. It simply tests for the opposite
inequality. Thus, if an equal value is passed, then neither of the two if blocks executes, and
the function simply terminates.

Let us now study the traversal functions—preorder(), inorder(), and postorder().
Each of these functions has a public version as well as a private version. We have de ned
the public version to not take any parameters and to call the corresponding private version
by passing the value of the root pointer as a parameter (we already know why we do this).
Let us look at the public version of the preorder() function.

/*
 Function to do pre-order traversal.
*/
void BST::preorder()
{
 /*
 Call the corresponding private function.
 */
 preorder(root);

 Data Structures 369

}

As we can see, the public version of the function calls its private version and passes the
root pointer to it. Let us look at the private function of the function.

/*
 Private function to do pre-order traversal. Will be
 called from the public function.
*/
void BST::preorder(BSTNode * nodePtr)
{
 /*
 As long as the passed pointer is not NULL ...
 */
 if(nodePtr != NULL)
 {
 /*
 ... display the value of the current node first ...
 */
 cout << nodePtr -> getVal() << endl;
 /*
 ... then call the function recursively for the left
 child ...
 */
 preorder(nodePtr -> getLeft());
 /*
 ... and then call the function recursively for the
 right child.
 */
 preorder(nodePtr -> getRight());
 }
}

This function is actually very simple. When this function is called for the rst time, the
value of root gets copied to nodePtr. If nodePtr is NULL, then the function terminates
without doing anything. Otherwise, it displays the value of the rst node. It then traverses the
left sub-tree by passing the value of the left pointer of the node, at which nodePtr points,
to the recursive call to the function. Thereafter, it traverses the left–right sub-tree by passing
the value of the right pointer of the node at which nodePtr points to the recursive call to the
function. Keep in mind that as long as the rst recursive call to the function is executing, the
second recursive call will not start. Also, in every new generation of the function, nodePtr
will point at the root node of the lower sub-tree.

The inorder() and postorder() functions can be explained in the same way.

Data structures are special ways in which pieces of
data are arranged and related to each other during run
time. Each such piece of data is embedded in a node
that contains the piece of data itself along with one or
more pointers that either point at other similar nodes
or have null values.

Linked lists are linear data structures. They consist
of nodes that are linked to each other in a linear
fashion.

Each node in a single linked list is an object that is
made up of two parts. The rst part is the data carried
by the node. The second part of each node is a pointer

Summary

 Object-Oriented Programming with C++370

that carries the address of the next node in the list. This
is how a node is linked to the next node.

There are two classes that enable us to create
linked lists:

 A node class whose objects will be the actual nodes
of the single linked list. The class that we have
created is called SingleLinkedListNode.
A single linked list class, each object of which will
represent a separate linked list of nodes. The class that
we have created is called SingleLinkedList.
Each object of the SingleLinkedListNode class

will be a node in the linked list. This class has an integer
data member, val, which is supposed to contain the
value of the node.

Each object of the SingleLinkedList class will
be a linked list. This class has a data member, head,
which is a pointer. This pointer is de ned to point at
the rst node of the linked list. In our program, it will
either be made to point at the rst node in the linked
list or will be assigned the NULL value (to indicate
that the current list is empty).

Stacks are also data structures. Just like linked lists,
stacks also consist of nodes where each node is linked
to exactly one other node (with the exception of the
last node, which is not connected to any other node).
In a stack, we can add a node only to the beginning.
This operation is called push. In a stack, we can delete
a node only from the beginning. This operation is
called pop. Thus, stacks are said to have a LIFO (last-
in- rst-out) operation. The last node to get in is the
 rst to get out.

Queues are data structures too. They are very
similar to stacks. The only difference between the two
is in their push operations. In a stack, the push operation
causes the new node to get added to the beginning. But,
in a queue, the push operation causes the new node to
get added to the end. Thus, queues are said to have a

FIFO (rst-in- rst-out) operation. The rst node to get
in is the rst to get out.

Trees, unlike linked lists, stacks and queues, do not
have a linear structure. In a tree, each of the nodes may
be connected to more than one node.

A binary tree is a tree in which each node is linked
to a maximum of two nodes. A binary tree is a nite
set of elements. It is either empty or is partitioned into
three disjoint subsets. The rst subset contains only
one element, which is the root of the tree. The other
subsets are themselves binary trees. One of them is
considered to be the left sub-tree and the other one is
considered to be the right sub-tree. Either or both of
the sub-trees can be empty.

Binary trees have recursive structures. The entire
tree has a root, a left sub-tree, and a right sub-tree. Both
of the sub-trees are trees themselves. Both of them in
turn have roots and sub-trees.

While programming functions that model operations
on trees, we can exploit this recursive nature of trees and
make them recursive too. This will make the functions
shorter and reduce our programming effort.

There are three ways of traversing a tree—in pre-
order, in-order, and post-order.

A binary search tree is a special form of binary tree.
In a binary search tree, for any given node, the value
contained in its left child is less than the value contained
in the node and the value contained in the node is less
than the value contained in its right child.

If you traverse a binary search tree in in-order
(left, root, right), and display the value of each node
as you visit, then you will end up printing the values
in ascending order.

In order to create trees, we have de ned two classes
– ‘BSTNode’ and ‘BST’. The rst class helped us in
creating the nodes of BSTs whereas the second class
helped us in creating the BSTs themselves.

Key Terms
data structures
arrays have limitations— xed size, dif culty in inserting
values
linked lists
linked list node—value part and next pointer
SingleLinkedListNode class
SingleLinkedList class
head pointer
append nodes to single linked lists
pre x nodes to single linked lists

 nd nodes in single linked lists
delete nodes from single linked lists
display nodes of single linked lists
stacks
push operation
pop operation
LIFO in stacks
queues
FIFO in queues
trees

 Data Structures 371

non-linear structure of trees
binary trees
three disjoint sets of binary trees—root, left sub-tree,
and right sub-tree
binary trees are recursive
traversal of binary trees—pre-order, in-order, and post-
order

binary search trees
BSTNode class
BST class
data part of tree node
left pointer of tree node
right pointer of tree node
root pointer of the tree class

Exercises
 1. What are the limitations of arrays?
 2. Describe the parts of each of the nodes of a single

linked list.
 3. Explain the function that appends nodes to single

linked lists.
 4. Explain the function that nds nodes in single linked

lists that have a speci c value.
 5. Explain the function that deletes nodes from the

beginning of single linked lists.
 6. Explain the three orders of traversing a binary tree

with the aid of gures of small binary trees.
 7. Explain why the ‘getLeft()’ and ‘getRight()’

functions have been de ned to return by reference.
 8. Write a function to iterate forwards in a linked list

using recursion.
 9. Add a pointer as a new data member to the

SingleLinkedList class. This pointer should point at
the last node of the list (or have NULL value in case
the list is empty). Update the member functions of
the SingleLinkedList class in order to ensure this.
Also, simplify the functions by taking advantage
of the presence of this pointer. Do we still need to
ensure that the next pointer of the last node is always
NULL?

 10. Introduce function to the SingleLinkedList class that
would return the count of nodes in the linked list.

 11. Can the above function be called with respect to
an object of the stack class? If not, then what is the
solution?

 12. De ne a function to search for a speci ed value in
binary search trees. The function should return true
if the speci ed value is found and false otherwise.

 13. State true or false
(a) In a single linked list, the next pointer of the last

node is always NULL.
(b) Linked lists are non-linear data structures.
(c) Each node of a single linked list can contain only

integer-type values in its data part.
(d) In a stack, you can add a node only at the

beginning.
(e) Queues implement FIFO operation.
(f) A binary tree is a nite set of elements, which is

either empty or is partitioned into two disjoint
subsets.

 14. Fill in the blanks
(a) The maximum number of nodes a node of a single

linked list is attached to is
(b) The number of parts each node of a single linked

list is
(c) Adding a node to a stack or a queue is known as

... .
(d) Deleting a node from a stack or a queue is known

as
(e) The number of parts each node of a binary tree

is .. .
(f) The three orders of traversing a binary tree

are,, and
............................ .

Templates

This chapter explains the concept of generic programming using templates. Function templates
along with their use and bene ts are included. Class templates, their use, and bene ts are also
included.

The Standard Template Library provides a number of useful class templates that can be
used to meet various common programming needs. Important class templates of this library
are also described in this chapter.

O
V
E
R
V
I
E
W

10

 10.1 Introduction

We frequently come across functions that work in exactly the same way for different data types.
Each of these functions has been designed to handle a speci c data type. For different types
of variables, only the keyword used to declare the variables upon which they work changes.
The algorithm that these functions implement remains the same and therefore the structure
of the function remains the same. One such function that immediately comes to mind is the
one used to swap two values (Listing 10.1).

Listing 10.1 A function to swap two integers

void swap(int & a,int & b)
{

int temp;
 temp=a;
 a=b;
 b=temp;
}

The preceding swap function swaps the values of two integers. A swap function that swaps
two oats will have the de nition shown in Listing 10.2.

Listing 10.2 A function to swap two fl oat-type numbers

void swap(float & a,float & b)
{

float temp;
 temp=a;
 a=b;
 b=temp;
}

 Templates 373

We can notice that the two swap functions are exactly alike except for the data type of the
variables upon whom they work. It would be quite reasonable to expect that the C++ language
provides us with a facility to write a common function that is independent of a data type but
which embodies the common algorithm and that the C++ language on its own creates the
actual function as and when the need arises. Having code at a common place has obvious
advantages, namely ease in code development and ease in code maintenance.

This facility is provided in the form of templates. The programmer can create a template
with some or all variables therein having unspeci ed data types. Whenever the template is
invoked by passing arguments of a certain type, the C++ language on its own replaces the
unspeci ed type with the type of the arguments passed. Such templates can be created for
individual functions as well as entire classes.

 10.2 Function Templates

The syntax for creating a template for a generic function is given in Listing 10.3.

Listing 10.3 Syntax for a function template

template <class T, …>
return_type function_name(T arg1, …)
{
 //statements
}

The template de nition begins with the template keyword. This is followed by a list of
generic data types in angular brackets. Each generic type is pre xed with the class keyword
and, if the template function works on more than one generic type, commas separate them.
Thereafter, the function template is de ned just like an ordinary function. The return type
comes rst. This is followed by the name of the function, which in turn is followed by a pair
of parentheses enclosing the list of formal arguments the function takes. However, there
should be at least one formal argument of each one of the generic types mentioned within
the angular brackets.

For example, the template for the function swap can be as given in Listing 10.4.

Listing 10.4 Template for the function swap

/*Beginning of swap.h*/
template <class T>
void swap(T & a, T & b)
{
 T temp;
 temp=a;
 a=b;
 b=temp;
}
/*End of swap.h*/

Now, suppose the function swap is called by passing two integers. The compiler generates
an actual de nition for the function by replacing each occurrence of T by the keyword int.
See Listing 10.5.

 Object-Oriented Programming with C++374

Listing 10.5 Calling the template for the function swap by passing integers

/*Beginning of swap01.cpp*/
#include<iostream.h>
#include“swap.h”
void main()
{
 int x,y;
 x=10;
 y=20;
 cout<<“Before swapping\n”;
 cout<<“x=”<<x<<“ y=”<<y<<endl;
 swap(x,y); //compiler generates swap(int&, int&); and
 //resolves the call
 cout<<“After swapping\n”;
 cout<<“x=”<<x<<“ y=”<<y<<endl;
}
/*End of swap01.cpp*/

Output
Before swapping
x=10 y=20
After swapping
x=20 y=10

Similarly, if the function swap is called by passing two oats, the compiler generates an
actual de nition for the function by replacing each occurrence of T by the keyword oat
and so on. See Listing 10.6.

Listing 10.6 Calling the template for the function swap by passing fl oats

/*Beginning of swap02.cpp*/
#include<iostream.h>
#include“swap.h”
void main()
{
 float x,y;
 x=1.1;
 y=2.2;
 cout<<“Before swapping\n”;
 cout<<“x=”<<x<<“ y=”<<y<<endl;
 swap(x,y); //compiler generates swap(float&, float&);
 //and resolves the call
 cout<<“After swapping\n”;
 cout<<“x=”<<x<<“ y=”<<y<<endl;
}
/*End of swap02.cpp*/

Output
Before swapping
x=1.1 y=2.2
After swapping
x=2.2 y=1.1

 Templates 375

Objects of classes can also be passed to the function swap. The compiler will generate an
actual de nition by replacing each occurrence of T by the name of the corresponding class.
See Listing 10.7.

Listing 10.7 Calling the template for the function swap by passing objects of the class
Distance

/*Beginning of swap03.cpp*/
#include<iostream.h>
#include“swap.h”
#include“Distance.h”
void main()
{
 Distance d1(1,1.1),d2(2,2.2);
 cout<<“Before swapping\n”;
 cout<<“d1=”<<d1.getFeet()<<“’-”<<d1.getInches()<<“’’\n”;
 cout<<“d2=”<<d2.getFeet()<<“’-”<<d2.getInches()<<“’’\n”;
 swap(d1,d2); //compiler generates swap(Distance&,
 //Distance&); and resolves the call
 cout<<“After swapping\n”;
 cout<<“d1=”<<d1.getFeet()<<“’-”<<d1.getInches()<<“’’\n”;
 cout<<“d2=”<<d2.getFeet()<<“’-”<<d2.getInches()<<“’’\n”;
}
/*End of swap03.cpp*/

Output
Before swapping
d1=1 -1.1
d2=2 -2.2
After swapping
d1=2 -2.2
d2=1 -1.1

We must note the amount of effort saved in code development. Only one de nition suf ces
for all possible types! Templates are a very handy tool provided by C++ for implementing
code reusability.

Further, the compiler generates an actual function from a template only once for a given
data type. For example, if the function swap is called by passing integers for the rst time, the
compiler will generate a function de nition from its template. Subsequent calls with the same
data type will not generate the de nition again. This is for the simple reason that the compiler
 rst looks for an exact match to resolve a function call before looking for a template (the

next paragraph explains this with the help of an example). If it nds an exact match, it does
not look for a template. Since the rst function call itself generates the function de nition,
subsequent calls do not do so.

Evidently, the entire de nition of the function must appear in the header le. Otherwise, the
compiler would not be able to generate the correct de nition while compiling a user program
in which the function template has been called.

The library programmer may like to put the de nition of the template function in a library
while keeping only the prototype in the header le. There is a keyword called export that is
supposed to ful ll this need. However, not all compilers support this keyword.

 Object-Oriented Programming with C++376

It is sometimes necessary to override the function template by an actual function. In order
to understand this, let us consider the template for a function to return the larger of the two
arguments that are passed to it (Listing 10.8).

Listing 10.8 Template for the larger function

template <class T>
T& larger(const T& a, const T& b)
{
 return a>b? a:b;
}

This function works correctly if variables of ordinary data types such as int and oat
are passed to it. However, it does not work correctly if strings are passed to it. See Listing
10.9.

Listing 10.9 Calling the larger function by passing strings

char * s1=“abcd”, * s2=“efgh”;
char * s3=larger(s1,s2); //compiler generates larger(const
 //char *&, const char *&); and
 //resolves the call

We notice that, during execution, the larger(char *&, char *&) function in Listing
10.9 compares only the addresses of the two strings and not their contents! This is certainly
not wanted. For this special case, we would like a special version of the function larger for
the character strings to execute. It is precisely a special version of the function larger that
we would de ne along with the template. See Listing 10.10.

Listing 10.10 Overriding the template for the function larger

char * larger(char * a, char * b)
{
 return strcmp(a,b) > 0 ? a : b;
}

Now, if the function larger is called by passing two strings, the function in Listing 10.9
will be called while the template will be ignored. Function templates can be overloaded. See
Listing 10.11.

Listing 10.11 Overloading a function template

#include<iostream.h>
template <class T>
void display(const T & a)
{
 cout << a << endl;
}

template <class T>
void display(const T & a, const int n) //overloaded version
 //of display()

 Templates 377

{
 int ctr;
 for(ctr=0;ctr<n;ctr++)
 cout << a << endl;
}

void main()
{
 char c = ‘a’;
 int i = 10;
 display(c);
 cout<<endl;
 display(c,3);
 cout<<endl;
 display(i);
 cout<<endl;
 display(i,5);
 cout<<endl;
}

Output
a

a
a
a

10

10
10
10
10
10

More than one generic type can also be mentioned in the template definition. See
Listing 10.12.

Listing 10.12 More than one generic type in a function template

template <class T, class U>
void f1(const T & a, const U & b)
{
 //statements
}

Here we should go back to Chapter 8 on Operator Overloading. It was mentioned that the
need to make objects of a class capable of being used in function templates necessitates the
overloading of operators for the class. We may look at the template for the function larger.
The greater than operator is embedded within its de nition. When objects of a certain class
are passed as parameters to it, the greater than operator will attempt to compare them. If

 Object-Oriented Programming with C++378

this operator has not been overloaded for the class, the compiler will immediately report an
error. Thus, in order to take advantage of the template, the greater than operator should
be overloaded for the class.

 10.3 Class Templates

The need for class templates is similar to the need for function templates. The need for generic
classes (Queue, Stack, Array, etc.) that handle data of different types is felt frequently. Let
us consider the set of three classes in Listing 10.13 whose member functions have similar
de nitions, the mere difference being the type of the private data members upon whom they
operate.

Listing 10.13 Classes with similar defi nition

class X_for_int
{
 int val;
 public:
 void f1(const int &);
 void f2(const int &);
 /*
 rest of the class X_for_int
 */
};

class X_for_char
{
 char val;
 public:
 void f1(const char &);
 void f2(const char &);
 /*
 rest of the class X_for_char
 */
};

class X_for_string
{
 string val;
 public:
 void f1(const string &);
 void f2(const string &);
 /*
 rest of the class X_for_string
 */
};

The classes X_for_int, X_for_char, and X_for_string de ned in Listing 10.13 are
similar in every respect except for the type of their data members. As expected, the presence
of three different classes that are different only in the data type of the data members upon
whom their member functions work creates huge dif culties in code maintenance. Any change
in one of the classes will have to be replicated in all of the others. This situation certainly

 Templates 379

demands the creation of a template class. Such a template class can be created as illustrated
by Listing 10.14.

Listing 10.14 A class template

template<class T>
class X
{
 T val;
 public:
 void f1(const T &);
 void f2(const T &);
 /*
 rest of the class X
 */
};

The de nition of the template class begins with the keyword template. This is followed by
the list of type and non-type template arguments enclosed in angular brackets. Type template
arguments are those that represent a data type. An actual built-in or user-de ned type replaces
them when an object is declared. Each type template argument is preceded by the keyword
class. Non-type template arguments are variables of built-in or user-de ned type. Actual
constant values are passed for these non-type template arguments. The data type precedes
each non-type template argument. Thereafter, the class is de ned using the usual syntax.

 Member functions of class templates are de ned as in Listing 10.15.

Listing 10.15 Defi ning the member function of a class template

template<class T>
void X<T> :: f1(const T & p)
{
 /*
 definition of the function
 */
}

Member functions of a template class are de ned in the same way as the template class
itself. The de nition begins with the template keyword. This is followed by the list of type
and non-type template arguments enclosed in angular brackets. Each type template argument
is preceded by the keyword class; each non-type template argument is preceded by its data
type. Thereafter, the function is de ned using the usual syntax except for one important
difference. The class name given before the scope resolution operator is followed by the
names of all template arguments enclosed in angular brackets.

Objects of this template class can be declared as follows:
X<int> intObj;

While declaring the object, the class name is followed by the type and non-type template
parameter(s) enclosed in angular brackets. This is followed as usual by the name of the object
itself. When the compiler sees the declaration of the object, it replaces each occurrence of
the template argument by the template parameter in the de nition of the class template and

 Object-Oriented Programming with C++380

generates a separate class. In the preceding case, each occurrence of the token T in the class
X will be replaced by the keyword int.

Objects of template classes, once declared, can be used just like any other object.
X<int> intObj01,intObj02;
intObj01.f1(intObj02);

The compiler generates the exact de nition of a class from a given class template once
only for each data type. For example, if two objects of the template class X are declared with
the data type int, the compiler will generate the exact de nition for the rst object only.

X<int> intObj01; //definition generated and used
X<int> intObj02; //no definition generated

As in the case of non-member function templates, member functions of class templates
are also de ned in the header les themselves.

The section on Standard Template Library, which follows this section, has many instructive
and practical examples of built-in class templates that are provided by all standard C++
compilers. Before moving on to that section, let us have a look at some ne points on class
templates.

A template class can take more than one template type argument. Listing 10.16 illustrates
this.

Listing 10.16 More than one template-type argument in a class template

template<class T, class U>
class X
{
 T val1;
 U val2;
 /*
 rest of the class X
 */
};

A template class can take a non-type template argument. Listing 10.17 illustrates this.

Listing 10.17 A non-type template argument in a class template

template<class T, int v>
class X
{
 T val1;
 /*
 rest of the class X
 */
};

While declaring an object of such a class, a data type will be passed as a parameter for the
template-type argument. However, an actual value will be passed for the non-type template
argument.

X<int,5> intObj;

The name of the template argument cannot be used more than once in the template class’s
list of template arguments. Listing 10.18 illustrates this.

 Templates 381

Listing 10.18 Error due to identical names of more than one type template arguments

template<class T, class T> //ERROR: duplicate name in
 //parameter list!
class X
{
 /*
 definition of class X
 */
};

The same name for a template argument can be used in the list of template arguments of
two different template classes. Listing 10.19 illustrates this.

Listing 10.19 Same name can be used for a type template argument in more than one
class template

template<class T>
class X
{
 /*
 definition of class X
 */
};

template<class T> //OK: Same name T used in two different
 //classes
class Y
{
 /*
 definition of class Y
 */
};

The name of a template argument need not be the same in the declaration and the definition
of the template class. Listing 10.20 illustrates this.

Listing 10.20 Name of a type template argument can be different in a template class
declaration and its defi nition

template<class T>
class X; //declaration

template<class U> //OK: different name for the template
 //argument in the
class X //definition
{
 /*
 definition of class X
 */
};

Formal arguments of template functions can be objects of a template class. Listing 10.21
illustrates this.

 Object-Oriented Programming with C++382

Listing 10.21 Formal argument of a template function can be the object of a template
class

template<class T>
class X
{
 /*
 definition of class X
 */
};

template<class U>
void f1(X<U> v)
{
 /*
 definition of the function
 */
}

10.3.1 Nested Class Templates

Nested classes can be created for template classes in the same way as they are created for
non-template classes. Listing 10.22 illustrates this.

Listing 10.22 A nested template class

template<class T>
class A
{
 class B
 {
 T x; //enclosing template type can be used in the
 //nested class
 /*
 rest of the class B
 */
 };
 /*
 definition of the class A
 */
};

 10.4 Standard Template Library

Would it not be of use if C++ provided class templates for meeting common programming
requirements? For example, it would be highly convenient to have a class template that enables
us to create a linked list of objects of any type of our choice.

The standard implementation of C++ does provide a set of header les where a large
number of useful class templates have been de ned. These les contain de nitions of the class
templates, their member functions, and a number of global associated functions. The global
associated functions implement commonly used algorithms. This library of class templates
and their helper global functions is known as the Standard Template Library (STL).

 Templates 383

A complete study of all of these templates is beyond the scope of this book. However, we
will study the more important class templates in the next section. The commonly used member
functions and the associated global functions are explained with the help of examples.

10.4.1 list Class

The list class is used to create sequential containers. Elements of the list are single objects.
Objects of the list class are declared as follows:

list<char> clist; //creating a list of characters
list<float> flist; //creating a list of floats
list<int> ilist; //creating a list of integers

For using the list template class, the header le list needs to be included in the source
code.

 #include<list>

The elements of a list occupy a non-contiguous memory. They are doubly linked through
a pair of pointers. One of the pointers points at the next element and the other points at the
previous element of the list. This allows both forward and backward traversal.

The number of elements a list object would have can be specified at the time of
declaration.

list<int> ilist(3); //list of integers with three initial
 //elements.

A default value can be speci ed for these elements.
list<int> ilist(3, -1); //list of integers with three
 //initial elements each having -1.

A list can be created from an existing array. We can do this by passing a pointer that points
at the rst element of the array and a second pointer that points 1 past the last element of the
array to be copied.

int iArr[6] = {0,1,2,3,4,5}; //an array with six elements
list<int> ilist(iArr, iArr+6); //list also has six
 //elements with the same
 //values

Let us have a look at the important member functions of this class.

The list<>::push_front() Function

This function is used to insert elements at the beginning of the list.
list<int> ilist;
ilist.push_front(1); //inserts 1 at the beginning of
 //the list
ilist.push_front(2); //inserts 2 at the beginning of
 //the list … list becomes 2,1.

The list<>::push_back() Function

This function is used to insert elements at the end of the list.

 Object-Oriented Programming with C++384

list<int> ilist;
ilist.push_back(1); //inserts 1 at the end of the list
ilist.push_back(2); //inserts 2 at the end of the list …
 //list becomes 1,2.

The list<>::pop_front() Function

This function is used to delete the rst element of the list.
list<int> ilist;
ilist.push_back(1); //inserts 1 at the end of the list
ilist.push_back(2); //inserts 2 at the end of the list …
 //list becomes 1,2.
ilist.push_back(3); //inserts 3 at the end of the list …
 //list becomes 1,2,3.
ilist.pop_front(); //deletes the first element … list
 //becomes 2,3.

The list<>::pop_back() Function

This function is used to delete the last element of the list.
list<int> ilist;
ilist.push_back(1); //inserts 1 at the end of the list
ilist.push_back(2); //inserts 2 at the end of the list …
 //list becomes 1,2.
ilist.push_back(3); //inserts 3 at the end of the list …
 //list becomes 1,2,3.
ilist.pop_back(); //deletes the last element … list
 //becomes 1,2.

Traversing a List using the Iterator

An iterator enables us to traverse the list elements in sequence. The following lines of code
illustrate the syntax used for its declaration and its use.

list<int> ilist;
ilist.push_back(1);
ilist.push_back(2);
ilist.push_back(3);
list<int>::iterator iter=ilist.begin(); //iter points
 //at the first
 //element of
 //the list
for(;iter!=ilist.end();++iter)
 cout<<*iter<<endl; //an iterator can be dereferenced
 //just like a pointer

The list::begin() function returns an iterator that points at the rst element of the list.
The list::end() function returns an iterator that points 1 past the last element of the list.
The increment operator advances the iterator to point at the next element of the list. The
indirection operator (*) returns the value of the element pointed at by the iterator.

The list<>::insert() Function

This function enables a random insertion into a list.

 Templates 385

list<int> ilist;
ilist.push_back(1); //inserts 1 at the end of the list
ilist.push_back(2); //inserts 2 at the end of the list …
 //list becomes 1,2.
ilist.insert(ilist.begin(),-20); //inserts -20 at the
 //beginning of the list
 //… list becomes
 //-20,1,2.

The list<>::insert() function is used with the nd() function for random insertion
into a list.

The find() Function

This global function searches speci ed values in lists. If the searched value is found in
an element of the list, it returns an iterator to the element. Else, it returns the value of the
list::end() function.

The following program searches for the value ‘10’ from the beginning of the list to the
end. It inserts the value ‘–1’ before ‘10’ in the list, if the value is found. Else, it appends ‘–1’
at the end of the list.

list<int>::iterator iter;
iter=find(ilist.begin(),ilist.end(),10); //searching
 //from the first element to
 //the last element of the
 //list for the value 10
ilist.insert(iter,-1);

The list<>::size() Function

This function enables us to determine the number of elements currently in this list.
list<int> ilist;
ilist.push_back(1); //inserts 1 at the end of the list
ilist.push_back(2); //inserts 2 at the end of the list …
 //list becomes 1,2.
cout<<ilist.size()<<endl; //outputs 2

The list<>::erase() Function

This function enables random deletion from the list. The iterator to the position of the element
to be deleted is passed to the list::erase() function.

Suppose we want to delete the element with value ‘19’ from a list. We can use the nd()
function to obtain the iterator to the element and pass it to the list::erase() function.

iter=find(ilist.begin(),ilist.end(),19); //obtaining an
 //iterator to the element
 //with value 19
if(iter!=ilist.end()) //checking whether element
 //with value 19 exists or not
 ilist.erase(iter); //removing the element if
 //found

The list<>::clear() Function

 Object-Oriented Programming with C++386

This function erases all elements in a list.
list<int> ilist;
ilist.push_back(1);
ilist.push_back(2);
ilist.push_back(3);
cout<<ilist.size()<<endl; //outputs 3
ilist.clear(); //removes all elements of the
 //list
cout<<ilist.size()<<endl; //outputs 0

The list<>::empty() Function

This function is used to test whether a list is empty or not.
if(ilist.empty())
 //do something
else
 //do something else

Insertion into and deletion from an intermediate position in a list is ef cient. This is because
for such operations only the pointers of the affected element need to be reassigned.

On the other hand, random access to a particular element is inef cient. For traversing to
the element that has our desired value, value of the pointer in each of the preceding elements
has to be read starting from the rst element since the elements are not in contiguous blocks
of memory.

10.4.2 vector Class

The vector class is used to create sequential containers. Elements of the list are single
objects.

The names of member functions of the vector class are the same as those of the list
class. Global functions, such as the nd() function that works on objects of the list class,
have been overloaded to work upon objects of the vector class too.

However, the layout of elements in a vector is completely different from that in a list. In
a vector, unlike a list, elements are stored in contiguous blocks (just like an array).

For using the vector template class, the header le vector needs to be included in the
source code.

#include<vector>

A vector does not actually regrow itself with each individual insertion. The amount of
memory a vector captures is larger than the number of elements it actually stores. When this
storage becomes full, it again regrows itself by a certain amount to accommodate the latest
insertion. The amount by which a vector regrows differs from compiler to compiler.

This brings us to two important concepts about vectors, namely capacity and size.
Capacity is the total size of the block currently captured by a vector. Obviously, it is

directly proportional to the total number of elements that can be inserted into the vector
before it needs to regrow.

Size, on the other hand, is the number of elements actually stored in the memory block
that has been captured by the vector. Obviously, size of a vector is always less than or equal
to its capacity.

 Templates 387

The vector class has two functions that enable us to nd the capacity and the size of the
vector. These are vector::size() and vector::capacity().

Insertion into and deletion from an intermediate position in a vector is inef cient. This is
because for such operations all elements starting from the insertion point need to be pushed
up or pushed down as the case may be.

On the other hand, random access to a particular element is ef cient. For traversing to the
element that has our desired value, only the internal iterator has to be incremented since the
elements are in contiguous blocks of memory.

10.4.3 pair Class

Objects of the pair class represent a pair of values that may or may not be of the same
type.

pair<string, int> player(“Kasparov”,1795);

The object player in this statement may represent the number of games in our database
that have been played by the player with name ‘Kasparov’ (the string class is discussed later
in this chapter). Obviously, we would like to create more variables of the same type later in
the program. Using the keyword typedef allows us to do so.

typedef pair<string, int> Player;
Player kasparov(“Kasparov”,1795);
Player fischer(“Fischer”,2162);
Player karpov(“Karpov”,1525);

For using the pair template class, the header le utility needs to be included in the
source code.

#include<utility>

The two elements of the objects of the pair class can be accessed as rst and second. For
this, the member access operator can be used as follows:

cout <<“Number of games of ”<<kasparov.first
<<“ are ”<<kasparov.second;

10.4.4 map Class

The map class is used to create associative containers. Elements of the list are key/value pairs.
The map class does not allow duplicates.

For using the map template class, the header le map needs to be included in the source
code.

#include<map>

Each record in the map class is an object of the pair class. Listing 10.23 illustrates all the
important functionalities of the map class.

Listing 10.23 The map class

/*Beginning of map.cpp*/
#include<iostream.h>
#include<map>
#include<utility>
void main()

 Object-Oriented Programming with C++388

{
 map<string, int> chessbase;
 typedef pair<string, int> Player; //should be of the
 //same type as map
 Player kasparov(“Kasparov”,1795);
 Player fischer(“Fischer”,2162);
 Player karpov(“Karpov”,1525);

 chessbase.insert(kasparov); //inserting a record
 chessbase.insert(fischer); //inserting another record
 chessbase.insert(karpov); //inserting another record

 //The first member of each record is treated as the key.
 //The corresponding second member is the value and can be
 //retrieved as follows:
 cout <<“Number of games of Kasparov is: ”

<<chessbase[“Kasparov”]<<endl;
 cout <<“Number of occurrences of Kasparov is: ”

<<chessbase.count(“Kasparov”)<<endl;

 //Using the subscript operator to query the value for a
 //key as above inserts it in the map!
 cout <<“Number of occurrences of Anand is: ”

<<chessbase.count(“Anand”)<<endl; //returns zero
 cout <<“Number of games of Anand is: ”

<<chessbase[“Anand”]<<endl; //returns zero … but a
 //record got added with
 //key as “Anand” and
 //value as zero because
 //value is of integer
 //type and zero is taken
 //as default value for
 //integers.
 cout <<“Number of occurrences of Anand is: ”

<<chessbase.count(“Anand”)<<endl; //return 1!!

 //An iterator can also be used. The iterator points at a
 //pair rather than a single value. The pair is returned
 //by the find function.
 map<string, int>::iterator iter;
 iter=chessbase.find(“Tendulkar”);
 cout<<“Number of occurrences of Tendulkar is: ”
 <<chessbase.count(“Tendulkar”)<<endl; //return 0
 if(iter!=chessbase.end())
 cout <<“Number of games of ”<<iter->first<<“ is: ”

<<iter->second<<endl;
 else
 cout<<iter->first<<“ not found\n”;
 cout<<“Number of occurrences of Tendulkar is: ”
 <<chessbase.count(“Tendulkar”)<<endl; //return 0 …
 //no new
 //record
 //inserted
}
/*End of map.cpp*/

Output
Number of games of Kasparov is: 1795
Number of occurrences of Kasparov is: 1

 Templates 389

Number of occurrences of Anand is: 0
Number of games of Anand is: 0
Number of occurrences of Anand is: 1
Number of occurrences of Tendulkar is: 0
Tendulkar not found
Number of occurrences of Tendulkar is: 0

10.4.5 set Class

The set class is used to create sequential containers. Elements of the list are single objects.
A set stores a collection of keys in a sorted manner. The data itself serves as the keys to the
set. The set contains the elements in a sorted fashion and duplicates are discarded during
insertion.

For using the set template class, the header le set needs to be included in the source
code.

#include<set>

An illustrative program follows in Listing 10.24.

Listing 10.24 The set class
/*Beginning of set.cpp*/
#include<set>
#include<string>
#include<iostream.h>
void main()
{
 set<char> set1; //a set of characters

 string s1(“I am indeed a cat. This is indeed a hat”);
 cout<<s1<<endl;

//Putting all the characters of the string s1 in the
//set. Characters get automatically sorted while
//duplicates get automatically rejected
set1.insert(s1.begin(),s1.end());

set<char>::iterator iter;
for(iter = set1.begin(); iter!=set1.end(); iter++)
 {
 cout << *iter; //outputting the set
 }
}
/*End of set.cpp*/

Output
I am indeed a cat. This is indeed a hat
.Itacdehimnst

10.4.6 multimap Class

The only difference between the map and the multimap class is that while the map class does
not allow duplicate key values (it overrides the old value associated with a key), the multimap

 Object-Oriented Programming with C++390

Templates enable generic programming. Templates
are created for functions and classes that are similar
to each other in every respect except for the type of
data they work upon.

The compiler generates an actual function or a
class from a template once and only once for a given
data type.

The syntax for creating a template for a generic
function is as follows:

template <class T, …>
return_type function_name(T arg1, …)
{
 //statements
}
The compiler generates an actual function de nition

from a function template when the function is called.
The types of the template arguments in the function
template are replaced by the data type of the parameters
passed.

int x,y;
function_name(x,y); //definition function_

name(int arg1,
//int arg2) generated

The syntax for creating a template for a generic
class is as follows:

template <class T, …>

class class_name
{
 T data_member_names;

 public:
 return_type function_name(parameter_

names);

};

The syntax for defining member functions of
template class is as follows:

template<class T, …>
return_type class_name<T,…>::function_
name(parameter_names)
{

}

The compiler generates an actual class de nition
from a class template when an object of the class is
created. The types of the template arguments in the
class template are replaced by the data type of the
parameters passed to the object.

class_name<int> obj; //actual definition

Summary

class does allow duplicate key values. Therefore, the multimap class does not support the
subscript operator.

For using the multimap template class, the header le map needs to be included in the
source code.

 #include<map>

10.4.7 multiset Class

The only difference between the set and the multiset class is that while the set class does
not allow duplicate key values (it overrides the old key value), the multiset class does
allow duplicate key values.

For using the multiset template class, the header le set needs to be included in the
source code.

#include<set>

 Templates 391

of class
 //class_name generated

by
 / / r e p l a c i n g e v e r y

occurrence of T
 //by int.

A template class can take more than one template-
type argument.

A template class can take a non-type template
argument.

The name of the template argument cannot be used
more than once in the template class’s list of template
arguments.

The same name for a template argument can be
used in the list of template arguments of two different
template classes.

The name of a template argument need not be
the same in the declaration and the de nition of the
template class.

Formal arguments of template functions can be
objects of template class.

Nested classes can be created for template classes
in the same way as they are created for non-template
classes.

The standard implementation of C++ provides
a set of header les where a large number of useful
class templates have been de ned. These les contain
definitions of the class templates, their member
functions, and a number of global associated functions.
The global associated functions implement commonly
used algorithms. This library of class templates and
their helper global functions is known as the Standard
Template Library or STL.

The list class is used to create sequential
containers. Elements of the list are single objects.

For using the list template class, the header le
list needs to be included in the source code.

#include<list>

The elements of a list occupy a non-contiguous
memory. They are doubly linked through a pair of
pointers. One of the pointers points at the next element
and the other points at the previous element of the list.
This allows both forward and backward traversal.

The vector class is used to create sequential
containers. Elements of the list are single objects.

In a vector, unlike a list, elements are stored in
contiguous blocks (just like an array).

For using the vector template class, the header le
vector needs to be included in the source code.

#include<vector

Objects of the pair class represent a pair of values
that may or may not be of the same type.

For using the pair template class, the header le
utility needs to be included in the source code.

#include<utility>

The map class is used to create associative
containers. Elements of the list are key/value pairs.
The map class does not allow duplicates.

For using the map template class, the header le map
needs to be included in the source code.

#include<map>

Each record in a map class is an object of the pair
class.

The set class is used to create sequential containers.
Elements of the list are single objects. A set stores
a collection of keys in a sorted manner. The data
itself serves as the keys to the set. The set contains
the elements in a sorted fashion and duplicates are
discarded during insertion.

For using the set template class, the header le set
needs to be included in the source code.

#include<set>

The only difference between the map and the
multimap class is that while the map class does not
allow duplicate key values (it overrides the old value
associated with a key), the multimap class does allow
duplicate key values.

For using the multimap template class, the header
 le map needs to be included in the source code.

#include<map>

The only difference between a set and a multiset
class is that while the set class does not allow
duplicate key values (it overrides the old key value),
the multiset class does allow duplicate key values.

For using the multiset template class, the header
 le set needs to be included in the source code.

#include<set>

 Object-Oriented Programming with C++392

Key Terms
function templates
class templates
STL
– list class
– vector class

– pair class
– map class
– set class
– multimap class
– multiset class

Exercises
1. What are function templates? What is the need for

function templates? How are they created?
2. When and how does the C++ compiler generate an

actual function de nition from its template?
3. How is a function template overridden for a speci c

data type?
4. What are class templates? What is the need for class

templates? How are they created?
5. When and how does the C++ compiler generate an

actual class de nition from its template?
6. State true or false.

(a) The compiler generates an actual function
de nition from a function template only once
for the same type of parameters.

(b) Function templates cannot be overloaded.
(c) A template class cannot take a non-type template

argument.
(d) The name of a template argument need not be

the same in the declaration and the de nition of
the template class.

 7. What is the Standard Template Library? Name
some of the template classes that are available in the
STL.

8. Create a template for the bubble sort function.
9. Create a template for the Array class.

10. Write a program that will show the following menu
to the user:
(a) Insert an integer at the end of the list
(b) Insert an integer at the beginning of the list
(c) Insert an integer before a speci ed integer in the

list
(d) Delete the rst integer from the list
(e) Delete the last integer from the list
(f) Delete a speci ed integer from the list
(g) Display the list of integers
(h) Save the list of integers
(i) Quit

 Implement the above menu by using the list class
of the STL.

 11. Assume that the user has used the program in
Exercise 10 to save a list of integers (with plenty
of duplicates) in a le. Declare a vector that would
contain all positions of a given integer in the le.
Suppose the contents of the le are:

21
19
3254
937
19
19
4253
335
19
9825
19

 The vector for the integer 19 would contain the
elements 2, 5, 6, 9, and 11. Write a code to populate
the vector.

 12. Create a pair class that has the integer whose
positions are to be stored as its rst member and
the vector that contains these positions as its second
member. Rewrite the program in Exercises 10 and 11
to create such a pair object and assign 19 to its rst
member and a vector of its position as the second
member.

 13. Create a map of two integers. The rst member of the
map would represent a number that has been found
in the le. The second member would represent the
last position of the integer in the le. Write code
to populate this map by the integers and their last
positions in the le.

 14. Declare a set of integers at the beginning of the
program that you have written for Exercise 10. Keep
updating the set as the integers are inserted into or
deleted from the list.

 11.1 Introduction

Let us begin by assuming the role of a library programmer. While de ning non-member or
member functions, we face situations where the function may or may not be able to execute
further. For example, we write a statement to divide one double-type variable with another.
Before this statement executes, we want to ensure that the denominator is not zero. We want
to prevent the function from executing further if denominator is zero. This is only one of the
conditions under which we want to prevent the further execution of the function. More such
conditions exist (the function tries to open an unavailable le or requests more memory than
is available). We know fully well the conditions under which the function should be aborted.
However, we cannot decide the appropriate handling strategy. While the library function can
easily detect error conditions, it cannot decide upon an appropriate handling strategy.

Now, let us assume the role of the application programmer. While calling a function, we
should not be burdened with the task of detecting each error in the parameters that we pass
to the functions we call. On the other hand, only we can decide what action should be taken
whenever a particular error condition is met by the function being called. While the user
of the library function cannot detect error conditions, it can decide upon an appropriate
handling strategy.

Exception handling allows the library to sense and dispatch error conditions, and the client
to handle them. It is usual for the library to know how to detect errors without knowing the
appropriate handling strategy. It is just as usual for the client programs to understand how to
deal with errors without being able to detect them.

We may wonder why a library function does not simply terminate the program when it
detects invalid data input. Why does the library function not return an error value? All these
questions will be answered in this chapter. Superiority of exception handling mechanism of
C++ over the C-style error handling will also be discussed.

Exception Handling

This chapter deals with exception handling. The bene ts of exception handling and the much-
needed protocol it establishes between the library and its applications are discussed. The chapter
begins with a critical study of the C-style solution to the problem of exception handling. It then
elucidates the use and mechanism of exception handling (the try-throw-catch mechanism).
The need to throw class objects, the method of accessing members of thrown objects, and the
use of nested exception classes are also discussed. The chapter concludes with a study of the
limitations of exception handling.

O
V
E
R
V
I
E
W

11

 Object-Oriented Programming with C++394

 11.2 C-Style Handling of Error-generating Code

Let us study a function hmean() that takes two oat-type numbers as parameters and computes
their harmonic mean. See Listing 11.1.

Listing 11.1 Function to compute harmonic mean

float hmean(const float a, const float b)
{
 return 2.0*a*b/(a+b);
}

Clearly ‘a’ and ‘b’ should not be the negative of each other, else it would result in division
by zero. Every effort should be put in to prevent the evaluation of the return expression and
the consequent run-time error if ‘a’ and ‘b’ are the negative of each other.

There are three traditional C-style solutions to this problem.
Terminate the program
Check the parameters before function call
Return a value representing an error

These methods are discussed below.

11.2.1 Terminate the Program

Let us look at this solution (Listing 11.2).

Listing 11.2 Terminating the program when an error condition is met

/*Beginning of hmean.h*/
float hmean(const float, const float);
/*End of hmean.h*/

/*Beginning of hmean.cpp*/
#include“hmean.h”
#include<stdlib.h> // for abort()
float hmean(const float a, const float b)
{
 if(a==-b)
 abort();
 return 2.0*a*b/(a+b);
}
/*End of hmean.cpp*/

/*Beginning of hmeanmain.cpp*/
#include<iostream.h>
#include“hmean.h”
void main()
{
 float x,y,z;
 cout<<“Enter a number: ”;
 cin>>x;
 cout<<“Enter another number: ”;
 cin>>y;
 z=hmean(x,y);

 Exception Handling 395

 cout<<“Harmonic mean = ”<<z<<endl ;
}
/*End of hmeanmain.cpp*/

Output
Enter a number: 10<enter>
Enter another number: -10<enter>
Abnormal program termination

This solution of terminating the program (as in Listing 11.2) is too extreme and drastic. The
library function simply terminates the program on detecting an invalid input. Even if we do
not provide the abort() function, the OS anyway throws a similar or same error (depending
upon the implementation) and terminates the program. This solution does not achieve anything
tangible. The library user does not get a chance to take a corrective action of its choice. The
library can and should do better.

11.2.2 Check the Parameters before Function Call

A program to prevalidate the function parameters is given in Listing 11.3.

Listing 11.3 Prevalidating function parameters to avoid error condition

/*Beginning of hmean.h*/
float hmean(const float, const float);
/*End of hmean.h*/

/*Beginning of hmean.cpp*/
#include“hmean.h”
float hmean(const float a, const float b)
{
 return 2.0*a*b/(a+b);
}
/*End of hmean.cpp*/
/*Beginning of hmeanmain.cpp*/
#include<iostream.h>
#include“hmean.h”
void main()
{
 float x,y,z;
 while(1)
 {
 cout<<“Enter a number: ” ;
 cin>>x;
 cout<<“Enter another number: ” ;
 cin >>y ;
 if(x!=-y)
 break;
 cout<<“Invalid entry – enter again\n”;
 }
 z=hmean(x,y) ;
 cout<<“Harmonic mean = ”<<z<<endl ;
}

 Object-Oriented Programming with C++396

Output
Enter a number: 3<enter>
Enter another number: -3<enter>
Invalid entry – enter again
Enter a number: 2<enter>
Enter another number: 6<enter>
Harmonic mean = 3

This method relies upon the application programmer to prevalidate the data before passing
them as parameters to the function call. However, it is not safe to rely upon the application
programmer to know (or care) enough to perform such a check. A properly designed library
function need not and should not burden the user with the task of checking the parameters
for all invalid conditions.

11.2.3 Return a Value Representing an Error

Another approach is to use the function’s return value to indicate a problem. Let us use a
pointer argument or a reference argument to get a value back to the calling program and use
the function’s return value to indicate success or failure. By informing the calling function
of the success or failure, we give the program the option of taking a suitable action of its
choice. Listing 11.4 shows an example of this approach. It rede nes hmean() function as
an int function whose return value indicates success or failure. It adds a third argument for
obtaining the answer.

Listing 11.4 Returning an error condition from the library function

/*Beginning of hmean.h*/
int hmean(const float, const float, float const *);
/*End of hmean.h*/

/*Beginning of hmean.cpp*/
#include“hmean.h”
int hmean(const double a, const double b,double const * c)
{
 if(a==-b)
 {
 *c = 0;
 return 0; //return failure
 }
 else
 {
 *c=2.0*a*b/(a+b) ;
 return 1; //return success
 }
}
/*End of hmean.cpp*/

/*Beginning of hmeanmain.cpp*/
#include<iostream.h>
#include“hmean.h”
void main()
{
 float x,y,z;
 int r;

 Exception Handling 397

 while(1)
 {
 cout<<“Enter a number: ” ;
 cin >>x;
 cout<<“Enter another number: ” ;
 cin >>y;
 r=hmean(x,y,&z);
 if(r==1) //if success
 break;
 cout<<“Invalid entry – enter again\n” ;
 }
 cout<<“Harmonic mean = ”<<z<<endl ;
}
/*End of hmeanmain.cpp*/

Output
Enter a number: 2<enter>
Enter another number: -2<enter>
Invalid entry – enter again
Enter a number: 2<enter>
Enter another number: 6<enter>
Harmonic mean = 3

The de nition of the hmean function as in Listing 11.4 does not burden the application
program with the responsibility of prevalidating the parameters. It also allows the application
program to take corrective action if it detects an error. Nevertheless, it still leaves the
application program with the responsibility of detecting the error. The application program
may bypass the test and use the value obtained by the third parameter! After all, the third
parameter will certainly have some value or the other. The library function has no way of
forcing the application program to take notice of the error condition!

To conclude, we should note that these C-style solutions are extreme in nature. They are
either too strict (simply abort the program without allowing the application to take corrective
action) or too lenient (merely return an error value without forcing the application program
to take corrective action). What we need is a well-balanced solution by which the library
function forces and at the same time allows its caller to take corrective action. Such a well-
balanced solution is the exception-handling mechanism provided by C++.

 11.3 C++-Style Solution—the try/throw/catch Construct

C++ offers the mechanism of exception handling as a superior solution to the problem of
handling unexpected situations during run time. Listing 11.5 illustrates the use of try, throw,
and catch keywords for implementing exception handling. The advantages and limitations
of this feature are discussed later.

Listing 11.5 The try–throw–catch mechanism

/*Beginning of hmean.h*/
float hmean(const float, const float);
/*End of hmean.h*/

/*Beginning of hmean.cpp*/
#include“hmean.h”
float hmean(const float a, const float b)

 Object-Oriented Programming with C++398

{
 if(a==-b)
 throw “bad arguments to hmean()” ;
 return 2.0*a*b /(a+b) ;
}
/*End of hmean.cpp*/

/*Beginning of hmeanmain.cpp*/
#include<iostream.h>
#include“hmean.h”
void main()
{
 char choice=‘y’ ;
 double x,y,z ;
 while(choice==‘y’)
 {
 cout<<“Enter a number: ” ;
 cin>>x;
 cout<<“Enter another number: ” ;
 cin >>y ;
 try
 {
 z=hmean(x,y);
 }
 catch(char * s)
 {
 cout<<s<<endl ;
 cout<<“Enter a new pair of numbers\n”;
 continue;
 }
 cout<<“Harmonic mean of ”<<x<< “and ”<<y<< “ is ”<<z<<endl;
 cout<<“continue ? (y/n) ”;
 cin>>choice;
 }
 cout<<“Bye\n”;
}
/*End of hmeanmain.cpp*/

Output
Enter a number: 4 <enter>
Enter another number: -4 <enter>
bad arguments to hmean()
Enter a new pair of numbers
Enter a number: 2 <enter>
Enter another number: 6 <enter>
Harmonic mean of 2 and 6 is 8
continue ? (y/n) n <enter>
Bye

Exception handling provides a way to transfer control from the library to the application.
Handling an exception has three components. They are:

throwing an exception,
catching an exception with a handler, and
using a try block.

 Exception Handling 399

The throw keyword is used to throw an exception. It is followed by a value, such as character
string or an object, indicating the nature of the exception. The library function noti es the
user program about the error by throwing an exception.

The catch keyword is used to catch an exception. A catch-handler block begins with the
keyword catch followed, in parentheses, by a type declaration indicating the type of exception
that it catches. That, in turn, is followed by a brace enclosed block of code indicating the
actions to take. The catch keyword, along with the exception types, is the point to which
control should jump when an exception is thrown.

A try block encloses the block of code that is likely to throw an exception. Such a code
generally consists of calls to library functions that are designed to throw errors in the manner
described herein. One or more catch blocks follow the try block. The ‘try’ block is itself
indicated by the keyword try followed by a brace—enclosed block of code indicating the
code within which exception will be caught.

The try block looks like this:
try // start of try block
{
 z=hmean(x,y);
} // end of try block

If any statement in the try block causes an exception, the catch blocks after this block will
handle the exception.

Exceptions are thrown as follows:
if(a==-b)
 throw “bad hmean() arguments : a = -b not allowed”;

In this case, the thrown exception is the string bad hmean() arguments : a = -b not
allowed. The throw statement resembles the return statement because it terminates function
execution. However, instead of merely returning control to the calling program, a throw causes
the control to back up through the sequence of current function calls until it nds the try block.
In this case, the throw passes program control back to main(). There, the program looks for
an exception handler (following the try block) that matches the type of exception thrown.

catch (char * s) // start of exception handler
{
 cout<<s<<“\n”;
 cout<<“Enter a new pair of numbers : ”;
 continue;
} // end of handler

The keyword catch identi es the handler and the char * s means that this handler catches
a string-type exception. The thrown exception is assigned to ‘s’. Since the exception matches
this handler, the program executes the code within the braces.

If a program completes executing statements in a try block without any exceptions being
thrown, it skips the catch block or blocks after the try block and goes to the rst statement
following the handlers.

Let us follow the ow of control when the values ‘10’ and ‘–10’ are passed to the hmean()
function. The if test succeeds and the exception (of char * type) is thrown. The hmean()
function terminates. The control goes back to the point from where the hmean() function was
called and determines whether the call was embedded within a try block or not. It nds that the
hmean() function was called from the main() function and that the call was embedded within
a try block. The control then searches for a catch block that follows the try block and is of the

 Object-Oriented Programming with C++400

matching char * type. The one and only catch block that follows the try block is of char *
type. Therefore, the statements enclosed within it are executed. Figure 11.1 illustrates this.

In the introduction of this chapter, we had realized that an ideal solution to the problem
of handling run-time errors should enable the library to sense and dispatch errors and the
application to trap the dispatched error and take appropriate action. The exception-handling
mechanism of C++ meets this requirement perfectly.

In order to appreciate the superiority of exception handling over the C-style solutions, we
should keep the following two things in mind:

It is necessary to catch an exception if it is thrown.
When an exception is thrown, the stack is unwound.

11.3.1 It is Necessary to Catch Exceptions

The program terminates immediately if an exception thrown by a called function is not caught
by the calling function. (A point to be borne in mind is that it is illegal to have a try block
without a catch block.) The program in Listing 11.6 is a case in point.

Figure 11.1 Flow of control when exceptions are thrown

……………
while(choice==‘y’)
{
 cout<<“Enter a number : ”;
 cin>>x;
 cout<<“Enter another number : ” ;
 cin>>y;
 try
 {
 z=hmean(x,y);
 }
 catch(char * s)
 {
 cout<<s<<endl;
 cout<<“Enter a new pair of numbers\n”;
 continue;
 }

…………….
double hmean(double a, double b)
{
 if(a==-b)
 throw “bad hmean() arguments a = -b not allowed” ;
 return 2.0*a*b/(a+b);
}
1. The program calls hmean() within a try block
2. hmean() throws an exception, transferring execution to the catch block, and assigning

the exception string to s.
3. The catch block transfers execution back to the while loop

 Exception Handling 401

Listing 11.6 Abnormal program termination due to uncaught exception

#include<iostream.h>

void abc(int);
void main()
{
 int i;
 abc(-1);
 for(i=1;i<=10;i++)
 cout<<i<<endl;
}

void abc(int x)
{
 if(x<0)
 throw “Invalid parameter”;
}

Output
Abnormal program termination

As we can observe in Listing 11.6, the remaining part of the main() function after the
call to the abc() function does not execute. Instead, the program terminates. This happens
because the call to the abc() function has not been placed in a try block. Thus, when abc()
function throws an exception, there is no catch handler speci ed by the application programmer
to execute a desirable piece of code. The program simply terminates with the default error
message.

Thus, if the library programmer creates functions that throw exceptions, then the application
programmer who uses the functions, is compelled to place the calls to such exception throwing
library functions inside a try block and to provide suitable catch handlers.

Obviously, the library programmer should indicate the kinds of exceptions his/her function
might throw. The list of exceptions a function throws is indicated in its prototype that is placed
in the header le. The application programmer can nd out what exceptions the library function
throws by reading the header le. If a function, say abc() function, throws exceptions of the
char * type and int type and accepts an int type value as a parameter, then the function
prototype should be as follows.

void abc(int) throw(char *,int);

11.3.2 Unwinding of the Stack

The throw statement unwinds the stack, cleaning up all objects declared within the try
block by calling their destructors. Next, throw calls the matching catch handler, passing the
parameter object.

Listing 11.7 illustrates this fact.

Listing 11.7 Unwinding of the stack due a thrown exception

#include<iostream.h>
class A
{
 int x ;
 public :

 Object-Oriented Programming with C++402

 A(int p)
 {
 x = p ;
 cout << “A ”<< x << endl ;
 }
 ~A()
 {
 cout << “~A ” << x << endl ;
 }
};

void abc();

void main()
{
 try
 {
 A A_main(1);
 abc();
 }
 catch(char * s)
 {
 cout<<s<<endl;
 }
}

void abc()
{
 A A_abc(2);
 throw “Exception thrown from abc()”;
}

Output
A 1
A 2
~A 2
~A 1
Exception thrown from abc()

As can be seen, throw destroys all objects from the point of throw until the try block. This
action of the throw statement is clearly highlighted by Listing 11.8.

Listing 11.8 Reversal of fl ow of control from the point of throw to the try block

#include<iostream.h>
class A
{
 int x;
 public:
 A(int p)
 {
 x=p;
 cout<<“A ”<<x<<endl;
 }
 ~A()
 {
 cout<<“~A ”<<x<<endl;
 }

 Exception Handling 403

};

void abc();
void def();
void ghi();

void main()
{
 try
 {
 A A_main(1);
 cout<<“calling abc()\n”;
 abc();
 }
 catch(char * s)
 {
 cout<<s<<endl;
 }
}
void abc()
{
 A A_abc(2) ;
 cout<<“calling def()\n”;
 def();
}

void def()
{
 A A_def(3) ;
 cout<<“calling ghi()\n” ;
 ghi();
}

void ghi()
{
 A A_ghi(4);
 throw “Exception from ghi()”;
}

Output
A 1
calling abc()
A 2
calling def()
A 3
calling ghi()
A4
~A 4
~A 3
~A 2
~A 1
Exception from ghi()

In Listing 11.8, the try block does not contain a direct call to a function throwing an
exception but it calls a function that throws an exception. Still, the control jumps from the

 Object-Oriented Programming with C++404

function in which the exception is thrown to the function containing the try block and handlers.
All local variables from the throw to the try block are destroyed. See Figure 11.2.

11.3.3 Need to Throw Class Objects

The problem with throwing values of fundamental data types is that the number of fundamental
data types is limited. Thus, if two or more statements in a try block throw values of the same
data type, then con icts arise and it becomes dif cult to detect the source of error in the catch
block. The advantage with throwing objects of classes is that the library programmer can
de ne any number of classes as exception classes. Listing 11.9 illustrates this.

Listing 11.9 Throwing objects of exception classes

#include<iostream.h>
#include<math.h> //for sqrt()

class hmeanexcp{}; //an empty exception class
class gmeanexcp{}; //an empty exception class

double hmean(double,double);
double gmean(double,double);

void main()
{
 double x,y,z1,z2;
 char choice=’y’;
 while(choice==’y’)
 {
 cout<<“Enter a number: ”;
 cin>>x;
 cout<<“Enter another number: ”;
 cin>>y;
 try
 {
 z1=hmean(x,y);
 z2=gmean(x,y);
 }
 catch(hmeanexcp)

Figure 11.2 Unwinding of stack when an exception is thrown

….
void main()
{
 try
 {

 abc();
 }
 catch(char * s)
 {
 ….
 }
}

void abc()
{
 ….
 ….
 def();
}

void def()
{
 ….
 ….
 ghi();
}

void ghi()
{
 ….
 ….
 throw “….”;
}

 Exception Handling 405

 {
 cout<<“Exception error – a=-b not allowed\n”;
 cout<<“Enter a fresh pair of numbers\n”;
 continue;
 }
 catch(gmeanexcp)
 {
 cout<<“Exception error – a*b<0 not allowed\n”;
 cout<<“Enter a fresh pair of numbers\n”;
 continue;
 }
 cout<<“Harmonic mean = ”<<z1<<endl;
 cout<<“Geometric mean = ”<<z2<<endl;
 cout<<“Enter again ? (y/n)”;
 cin>>choice;
 }
 cout<<“Bye\n”;
}
double hmean(double a,double b)
{
 if(a==-b)
 throw hmeanexcp();//construct and throw objects!!
 return 2.0*a*b/(a+b);
}
double gmean(double a,double b)
{
 if(a*b<0)
 throw gmeanexcp();//construct and throw objects!!
 return sqrt(a*b);
}

Output
Enter a number: 10<enter>
Enter another number: -10<enter>
Exception error – a=-b not allowed
Enter a fresh pair of numbers
Enter a number: 10<enter>
Enter another number: -6<enter>
Exception error – a*b<0 not allowed
Enter a fresh pair of numbers
Enter a number: 16<enter>
Enter another number: 4<enter>
Harmonic mean = 6.4
Geometric mean = 8
Enter again? (y/n) n<enter>
Bye

We may note that it is not mandatory to declare an object of the exception class in the
catch block. However, through the throw statements, we always throw objects (as has been
done by calling constructors of the hmeanexcp and gmeanexcp classes in the hmean() and
gmean() functions of Listing 11.9).

 Object-Oriented Programming with C++406

11.3.4 Accessing the Thrown Object in the Catch Block

If we declare an object of the exception class in the catch handler, then the thrown object
gets copied into it. This object can then be accessed and used for further processing. Listing
11.10 illustrates this.

Listing 11.10 Accessing thrown objects

include<iostream.h>
#include<math.h>
#include<string.h>

double hmean(double,double);
double gmean(double,double);

class hmeanexcp
{
 char cError[30];
 public:
 hmeanexcp(char * s)
 {
 strcpy(cError,s);
 }
 char * getcError()
 {
 return cError;
 }
};

class gmeanexcp
{
 char cError[30];
 public:
 gmeanexcp(char * s)
 {
 strcpy(cError,s);
 }
 const char * getcError()
 {
 return cError;
 }
};

void main()
{
 double x,y,z1,z2;
 char choice=’y’;
 while(choice==’y’)
 {
 cout<<“Enter a number: ”;
 cin>>x;
 cout<<“Enter another number: ”;
 cin>>y;
 try
 {
 z1=hmean(x,y);
 z2=gmean(x,y);
 }

 Exception Handling 407

 catch(hmeanexcp& e)
 {
 cout<<e.getcError()<<endl;
 cout<<“Enter a fresh pair of numbers\n”;
 continue;
 }
 catch(gmeanexcp& e)
 {
 cout<<e.getcError()<<endl;
 cout<<“Enter a fresh pair of numbers\n”;
 continue;
 }
 cout<<“Harmonic mean = ”<<z1<<endl;
 cout<<“Geometric mean = ”<<z2<<endl;
 cout<<“Enter again ? (y/n)”;
 cin>>choice;
 }
 cout<<“Bye\n”;
}

double hmean(double a,double b)
{
 if(a==-b)
 throw hmeanexcp(“Exception error – a=-b not allowed”);
 return 2.0*a*b/(a+b);
}

double gmean(double a,double b)
{
 if(a*b<0)
 throw gmeanexcp(“Exception error – a*b<0 not allowed”);
 return sqrt(a*b);
}

Output
Enter a number: 10<enter>
Enter another number: -10<enter>
Exception error – a=-b not allowed
Enter a fresh pair of numbers
Enter a number: 10<enter>
Enter another number: -6<enter>
Exception error – a*b<0 not allowed
Enter a fresh pair of numbers
Enter a number: 16<enter>
Enter another number: 4<enter>
Harmonic mean = 6.4
Geometric mean = 8
Enter again? (y/n) n<enter>
Bye

A temporary copy of the object to be thrown is created and thrown. Hence, the object in
the catch handler refers to a copy of the thrown object. This is desirable because the thrown
object disappears after the function from which it was thrown terminates. Thus, after the
object is thrown, its three copies may be created—the object itself, its copy, and the object in
the catch block. The object itself gets destroyed automatically when the function terminates.

 Object-Oriented Programming with C++408

Therefore, we are left with two copies. In order to reduce this to one, we normally create a
reference to the thrown object in the catch handler (as in the catch blocks of Listing 11.10).

11.3.5 Throwing Parameterized Objects of a Nested Exception Class

Let us have a look at Listing 11.11.

Listing 11.11 Nested exception class

#include<iostream.h>
#include<string.h>

template<class T>
class vector
{
 T * v;
 int size;
 public:
 class RangeError
 {
 char cError[30];
 int errorPos;
 public:
 RangeError(char * str,int p)
 {
 strcpy(cError,str);
 errorPos=p;
 }
 char * getcError()
 {
 return cError;
 }
 int getPos()
 {
 return errorPos;
 }
 };
 vector(int s)
 {
 v=new T[s];
 size=s;
 }
 ~vector()
 {
 delete[] v;
 }
 void setElement(T val,int p)
 {
 if(p>size-1 || p<0)
 throw RangeError(“ Out of range exception – could not _ write”, p);
 v[p]=val;
 }
 T getElement(int p)
 {
 if(p>size-1 || p<0)
 throw RangeError(“Out of range exception – could not _ read”,p);
 return v[p];
 }

 Exception Handling 409

};
void main()
{
 vector<int> int_vector(5);
 try
 {
 int_vector.setElement(3,5);
 cout<<int_vector.getElement(3)<<endl;
 }
 catch(vector<int>::RangeError& e)
 {
 cout<<e.getcError()<<“ at position ”<<e.getPos()+1<<endl;
 }

 vector<float> float_vector(6);
 try
 {
 float_vector.setElement(3.14,3);
 cout<<float_vector.getElement(6)<<endl;
 }
 catch(vector<float>::RangeError& e)
 {
 cout<<e.getcError()<<“ at position ”<<e.getPos()+1<<endl;
 }
}

Output
Out of range exception – could not write at position 6
Out of range exception – could not read at position 7

We can de ne the exception class as a nested class of the class that throws it. This indicates
the class originating an exception. It also prevents pollution of the global namespace. In the
example in Listing 11.11, the class RangeError has been declared within the vector class.
If the setElement() function or the getElement() function nds a bad subscript value, it
throws an exception of type RangeError. The handler for this exception looks like this

catch(vector<int>::RangeError& e) {…}

it may be noted that the nested exception class is public. This allows the catch block to have
access to the type.

11.3.6 Catching Uncaught Exceptions

The C++ language supports a feature to catch exceptions that were raised in a try block
but not caught by any of the catch blocks. The syntax of the catch construct to handle such
exceptions is as follows.

catch(…)
{
 //action for handling an exception
}

The three dots in catch(…) indicate that it catches all types of exceptions. Listing 11.12
illustrates the use of this catch block.

 Object-Oriented Programming with C++410

Listing 11.12 Catching uncaught exceptions

#include<iostream.h>

class Sugar{};
class Spice{};
class Tasteless{};
void abc(int);

void main()
{
 try
 {
 abc(-1);
 }
 catch(Sugar)
 {
 cout<<“Caught Sugar\n”;
 }
 catch(Spice)
 {
 cout<<“Caught Spice\n”;
 }
 catch(…)
 {
 cout<<“Unidentified object caught\n”;
 }
}

void abc(int p)
{
 if(p<0)
 throw Tasteless();
}

Output
Unidentified object caught

11.3.7 Re-throwing Exceptions

Suppose you are de ning a function, which calls another function and the called function
throws an exception. You will therefore have a try/catch mechanism in your function for
handling the exception that the called function throws. Suppose that the name of your function
is test_hmean() and that the name of the called function is hmean(). The overall structure
of your function would look like this:

double test_hmean(double p, double q)
{
 //Variable declaration statements.
 try
 {
 r=hmean(p,q);
 }
 catch
 {
 //Catch handler.
 }
}

 Exception Handling 411

Now, suppose that you either know only a part of what your function needs to do if it
catches the exception or you do not have any idea of what your function needs to do if it
catches the exception. In both cases, you would like the function that calls your function to
do something about it. For this, you would like your function to re-throw the exception to
the function that has called it.

Listing 11.13 shows how functions can re-throw exceptions. In this case, the main()
function has called your function. Note how the throw keyword has been used below in the
test_hmean() function.

Listing 11.13 Re-throwing exceptions

/*Beginning of Rethrowing01.cpp*/
/*
 Program to illustrate re-throwing of exceptions.
*/
#include <iostream.h>
#include <string.h>

double test_hmean(double, double);
double hmean(double, double);

class hmeanexcp
{
 char cError[30];
 public:
 hmeanexcp(char * s)
 {
 strcpy(cError, s);
 }
 char * getcError()
 {
 return cError;
 }
};

void main()
{
 double x, y, z;
 x = 10;
 y = -10;
 try
 {
 z = test_hmean(x, y);
 }
 catch(hmeanexcp& e)
 {
 cout << “Inside the catch block of main()\n”;
 }
}

double test_hmean(double p, double q)
{
 double r;
 try
 {
 r = hmean(p, q);
 }
 catch(hmeanexcp& e)

 Object-Oriented Programming with C++412

 {
 cout << “Inside the catch block of test_hmean()\n”;
 throw;
 }
 return r;
}

double hmean(double a, double b)
{
 if(a==-b)
 throw hmeanexcp(“Exception error - a=-b not allowed”);
 return 2.0*a*b/(a+b);
}
/*End of Rethrowing01.cpp*/

Output
Inside the catch block of test_hmean()
Inside the catch block of main()

Let us follow the execution of the main() function. The main() function calls the test_
hmean() function from inside the try block. The test_hmean() function in turn calls the
hmean() function from inside the try block. The hmean() function throws an error because
the values passed to it are opposite to each other (10 and –10). The type of the exception
is hmeanexcp. The test_hmean() has a catch block that handles exceptions of this type.
Therefore, the catch block of the test_hmean() function executes. The rst statement of this
block displays the message ‘Inside the catch block of test_hmean()’. The second statement
of the catch block throws the same exception again. Thus, the exception is not consumed by
the test_hmean() function. Instead, it gets thrown upwards to the calling function, which
is main().

The main() function in turn has a catch block that handles exceptions of the thrown type.
Therefore, the catch block of the main() function executes. The single statement in this block
displays the error message ‘Inside the catch block of main().

Naturally, if the throw statement is removed from the catch block of the test_hmean()
function, then the catch handler block of the main() function would not execute (because the
test_hmean() function would not be throwing any exception for it to handle). Let us remove
the throw statement and see whether the output changes or not. See Listing 11.14.

Listing 11.14 Removing throw statement prevents re-throwing of exceptions

/*Beginning of Rethrowing02.cpp*/
/*
 Program to illustrate effect of throw statement’s
 absence.
*/
#include <iostream.h>
#include <string.h>

double test_hmean(double, double);
double hmean(double, double);

class hmeanexcp
{
 char cError[30];
 public:

 Exception Handling 413

 hmeanexcp(char * s)
 {
 strcpy(cError, s);
 }
 char * getcError()
 {
 return cError;
 }
};

void main()
{
 double x, y, z;
 x = 10;
 y = -10;
 try
 {
 z = test_hmean(x, y);
 }
 catch(hmeanexcp& e)
 {
 cout << “Inside the catch block of main()\n”;
 }
}

double test_hmean(double p, double q)
{
 double r;
 try
 {
 r = hmean(p, q);
 }
 catch(hmeanexcp& e)
 {
 cout << “Inside the catch block of test_hmean()\n”;
 }
 return r;
}

double hmean(double a, double b)
{
 if(a==-b)
 throw hmeanexcp(“Exception error - a=-b not allowed”);
 return 2.0*a*b/(a+b);
}
/*End of Rethrowing.cpp*/

Output
Inside the catch block of test_hmean()

As can be seen, the catch handler of the main() function did not execute. This happened
because the catch handler of the test_hmean() function did not re-throw the exception.

We now understand that exceptions can be re-thrown. We have seen the reasons for re-
throwing exceptions. We have also studied the method for re-throwing exceptions.

 Object-Oriented Programming with C++414

 11.4 Limitation of Exception Handling

The limitation of exception handling is that if a resource has been acquired (le has been
opened, memory has been allocated dynamically in the heap area, etc.) and the statements to
release the resource are after the throw statements, then the acquired resource may remain
locked up. Listing 11.15 illustrates this.

Listing 11.15 Dynamically allocated resources remain locked after the throw statement

#include<iostream.h>
class A
{
 public:
 A()
 {
 cout<<“Constructor\n”;
 }
 ~A()
 {
 cout<<“Destructor\n”;
 }
};

void abc(int);

void main()
{
 try
 {
 abc(-1);
 }
 catch(char * s)
 {
 cout<<s<<endl;
 }
}

void abc(int p)
{
 A * Aptr = new A[2];
 if(p<0)
 throw “Invalid argument to abc()”;
}

Output
Constructor
Constructor
Invalid argument to abc()

In Listing 11.15, when the stack is unwound, memory occupied by the pointer Aptr in
abc() function gets destroyed. However, the memory block at which the pointer points
remains locked up. (This is evident from the fact that the destructor was not called for the
objects created in the heap.)

 Exception Handling 415

In order to overcome this problem, classes whose objects function like pointers should
be devised. Obviously, such objects will have pointers embedded in them. Memory will be
allocated dynamically for these pointers during the lifetime of the objects. This memory can
be deallocated through the destructor. Thus, when the object itself is destroyed, the memory
locked up and referenced by the embedded pointer will also be destroyed.

Statements to detect conditions that prohibit further
execution of the library function can and should be
placed within the library function itself. Statements
to take appropriate action when such conditions are
detected can and should be placed in the functions that
call these library functions.

Exception handling enables the library function to
notify the detected invalid conditions to the user by
using the throw statement. The program terminates
prematurely if the application program ignores such
noti cations. Application program can catch such
noti cations in a try block and take appropriate action
in a catch block.

Library functions can announce the list of all
possible exceptions that they throw by enlisting them in
their headers. Appropriately, the application program
should place calls to these functions in a try block and

append the try block with a series of catch blocks, one
for each of the exceptions expected to be thrown.

Since the number of fundamental data types is
limited, it is better to throw objects of exception classes
created speci cally for the purpose. These objects can
be initialized with appropriate information before being
thrown by the library functions. This information can
then be accessed within the corresponding catch block
of the application program.

Uncaught exceptions can be caught by the
catch(…) {} construct. Exceptions can be re-thrown.
During unwinding of the stack, memory occupied
by the objects themselves is destroyed. However,
the memory acquired dynamically by the pointers
embedded in these objects remains locked up. This is
a limitation of exception handling.

Summary

Key Terms
exception handling
C-style solutions for exception handling
try
catch

throw
catching uncaught exceptions
exception classes
unwinding of the stack

Exercises
 1. What is exception handling? What is the need for

exception handling?
 2. What is the negative impact if the library programmer

simply terminates an application upon detecting an
error condition?

 3. Which three keywords are provided by C++ for
implementing exception handling?

 4. What happens if the application does not catch the
exception thrown by a library function?

 5. Explain how the stack is unwound when an exception
is thrown.

 6. What is the need to throw class objects instead of
values of fundamental types?

 7. Why are nested exception classes needed?
 8. How are uncaught exceptions caught?
 9. What is the limitation of exception handling in

C++?

 Object-Oriented Programming with C++416

 10. Derive a class from another. Create two catch
blocks—the rst one for catching the base class-
type exception and the second one for catching the
derived class-type exception. Throw an exception
of the base class type from the try block. Observe
the result. Now, throw an exception of the derived
class-type from the try block. Observe and compare
the results. Repeat the above two observations by

reversing the sequence of the catch blocks. What do
you conclude?

 11. Add a function to the class String that will return
the character from the position that is passed as a
parameter to it. If the position is out of bounds, the
function should throw a user-de ned exception.

 12. Explain the concept and method of re-throwing
exceptions with the help of an example.

Problem Statement

The word query system should allow us to determine whether a particular word exists in a
given text le or not.

If the program nds the word being searched, it would display all the lines in which the
word was found. The program would also display the number of occurrences of the word, the
serial number of the line in the le, and the position of the word in the line.

A Sample Run

The le having the following lines, written by the author about his favorite game, can be
taken as input:

Chess is the most intellectual mind sport known to mankind.
A game of chess is a war of intelligence and a clash of
wills. It is a game of kings, queens, rooks, knights,
bishops and pawns. What appears to be a two-dimensional
black and white board of 64 squares is, for the chess
master, a multidimensional multicolored wonderland of
cunning strategy and brilliant tactics. Chess has a rich
and long history. Invented in India as a war game, it has
followers all over the world. Of all the sports, it has
perhaps the largest literature. To be a true master of the
game requires years of hard labor, study and practice. The
game has been played by kings and by commoners alike. A
regular practice of the game leads to better concentration
and an improved ability to deduce facts from logic.

A sample run of the program is as follows (we would implement a case sensitive
search):

Please enter the word to be searched (enter blank to quit): chess <enter>
Number of occurrences of ‘chess’ = 2
(2,4) A game of chess is a war of intelligence and a clash of
(5,11) black and white board of 64 squares is, for the chess

Please enter the word to be searched (enter blank to quit): master <enter>
Number of occurrences of ‘master’ = 2
(6, 1) master, a multidimensional multicolored wonderland of
(10,9) perhaps the largest literature. To be a true master of the

Case Study—A Word Query System

Appendix A

 Object-Oriented Programming with C++418

Please enter the word to be searched (enter blank to quit): mind <enter>
Number of occurrences of ‘mind’ = 1
(1,6) Chess is the most intellectual mind sport known to mankind.

Please enter the word to be searched (enter blank to quit): golf <enter>
Number of occurrences of ‘golf’ = 0
Please enter the word to be searched (enter blank to quit): <enter>
Bye!

The Source Code

The program listing to implement the word query system as described in the Problem Statement
follows:

(Please note that the code calls a few of the member functions of the library string class.
These simple calls have been explained in the accompanying comments.)

/*Beginning of textQuerySearch.cpp*/
#include<string>//the library string class
#include<vector>
#include<fstream.h>
#include<map>

using namespace std;

void main()
{
 ::ifstream infile(“C:\\abc.txt”);

 int flag=0;
 char cVar;
 string word,line;
 int iLineNum=1;
 int iWordNum=1;

typedef pair<int,int> location;
location loc;
typedef vector<location> lvec;
lvec temp;
vector<location>::iterator liter;

map<string,lvec> wordmap;
map<string,lvec>::iterator iter;

map<int,string> linemap;

while(infile)
{
 infile.get(cVar);

 if(cVar==’ ‘ || cVar==’.’ || cVar==’,’ ||
 cVar==’;’ || cVar==’\n’)
 {
 if(flag==0)
 {
 loc.first=iLineNum;
 loc.second=iWordNum;
 iWordNum++;
 iter=wordmap.find(word);

 Appendix A: Case Study—A Word Query System 419

 if(iter!=wordmap.end())
 (iter->second).push_back(loc);
 else
 {
 temp.push_back(loc);
 wordmap[word]=temp;

 temp.erase(temp.begin(),
temp.end());

 }
 word.erase(); //nullifying the string
 flag=1;
 }

 if(cVar!=’\n’)
 line=line+cVar; //adding a character to
 //the string
 else
 {
 linemap[iLineNum]=line;
 line.erase(); //nullifying the string
 iLineNum++;
 iWordNum=1;
 }
 continue;
 }
 else
 flag=0;
 word=word+cVar; //adding a character to the

//string
 line=line+cVar;
 }

 while(1)
 {
 cout <<“Please enter the word to be searched “

<<(enter blank to quit): ”;
 word.erase();
 while(cin)
 {
 cin.get(cVar);
 if(cVar==’\n’)
 break;
 word=word+cVar;
 }
 if(word.empty()) //if string is empty
 break;
 iter=wordmap.find(word);
 //string::c_str()returns the contained string
 cout <<“\nNumber of occurrences of ‘”

<<word.c_str()<<“‘ = ”
<<iter->second.size()<<endl<<endl;

 for(liter=iter->second.begin();
liter!=iter->second.end();liter++)

 cout <<“(”<<liter->first<<“,”
<<liter->second<<“) ”
<<linemap[liter->first].c_str();

 cout<<endl<<endl;
 }

 Object-Oriented Programming with C++420

 cout<<“\nBye!\n\n”;
}
/*End of textQuerySearch.cpp*/

Explanation of the Code

The code can be broadly divided in two steps as follows:

Step 1: Create a map of words with their locations.
64 (5,6)
A (2,1) (12,11)
Chess (1,1) (7,6)
India (8,6)
Invented (8,4)
It (3,2)
Of (9,6)
The (11,10)
To (10,5)
What (4,4)
a (2,6) (2,11) (3,4) (4,8) (6,2) (7,8) (8,8) (10,7)
ability (14,4)
alike (12,10)
all (9,2) (9,7)
an (14,2)
and (2,10) (4,2) (5,2) (7,3) (8,1) (11,8) (12,7) (14,1)
appears (4,5)
as (8,7)
be (4,7) (10,6)
been (12,3)
better (13,8)
bishops (4,1)
black (5,1)
board (5,4)
brilliant (7,4)
by (12,5) (12,8)
chess (2,4) (5,11)
clash (2,12)
commoners (12,9)
concentration (13,9)
cunning (7,1)
deduce (14,6)
dimensional (4,10)
facts (14,7)
followers (9,1)
for (5,9)
from (14,8)
game (2,2) (3,5) (8,10) (11,1) (12,1) (13,5)
hard (11,5)
has (7,7) (8,12) (9,11) (12,2)
history (8,3)
improved (14,3)
in (8,5)
intellectual (1,5)
intelligence (2,9)
is (1,2) (2,5) (3,3) (5,8)
it (8,11) (9,10)
kings (3,7) (12,6)

 Appendix A: Case Study—A Word Query System 421

knights (3,10)
known (1,8)
labor (11,6)
largest (10,3)
leads (13,6)
literature (10,4)
logic (14,9)
long (8,2)
mankind (1,10)
master (6,1) (10,9)
mind (1,6)
most (1,4)
multicolored (6,4)
multidimensional (6,3)
of (2,3) (2,8) (2,13) (3,6) (5,5) (6,6) (10,10) (11,4) (13,3)
over (9,3)
pawns (4,3)
perhaps (10,1)
played (12,4)
practice (11,9) (13,2)
queens (3,8)
regular (13,1)
requires (11,2)
rich (7,9)
rooks (3,9)
sport (1,7)
sports (9,9)
squares (5,7)
strategy (7,2)
study (11,7)
tactics (7,5)
the (1,3) (5,10) (9,4) (9,8) (10,2) (10,11) (13,4)
to (1,9) (4,6) (13,7) (14,5)
true (10,8)
two (4,9)
war (2,7) (8,9)
white (5,3)
wills (3,1)
wonderland (6,5)
world (9,5)
years (11,3)

Step 2: Create a map of lines.
1 Chess is the most intellectual mind sport known to mankind.

2 A game of chess is a war of intelligence and a clash of

3 wills. It is a game of kings, queens, rooks, knights,

4 bishops and pawns. What appears to be a two dimensional

5 black and white board of 64 squares is, for the chess

6 master, a multidimensional multicolored wonderland of

7 cunning strategy and brilliant tactics. Chess has a rich

8 and long history. Invented in India as a war game, it has

9 followers all over the world. Of all the sports, it has

 Object-Oriented Programming with C++422

10 perhaps the largest literature. To be a true master of the

11 game requires years of hard labor, study and practice. The

12 game has been played by kings and by commoners alike. A

13 regular practice of the game leads to better concentration

14 and an improved ability to deduce facts from logic.

The detailed explanation

Let us go straight to the while loop. The loop reads the characters from the le one by one.
If the rst character is neither a punctuation mark nor the new line character, we simply add
it to the string representing a word (second last line of the while loop).

word=word+cVar;

When a punctuation mark or the end of line is encountered,
if(cVar==’ ‘ || cVar==’.’ || cVar==’,’ || cVar==’;’ ||
 cVar==’\n’)

we reckon that we have nished loading a word. We populate an object ‘loc’ with the line
number and word number of the word.

loc.first=iLineNum;
loc.second=iWordNum;

We also increment ‘iWordNum’ because the position of the next word would be one
greater than the previous one.

For the time being, ignore the test
if(flag==0)

Since our word map (see Step 1 above) should keep a vector of all positions of each word,
we must rst nd whether the word already exists in our word map or not.

iter=wordmap.find(word);

This statement returns an iterator. If the word is found in any of the rst members of the
word map, it points at that element whose rst member is the word itself. If the word is not
found in any of the rst members of the word map, the iterator points past its end.

If the word is found in any of the rst members of the word map,
if(iter!=wordmap.end())

we append the location object ‘loc’, which we have already populated, into the location vector,
which is the second member of the element pointed at by the iterator.

(iter->second).push_back(loc);

If the word is not found in any of the rst members of the word map, we populate a
temporary vector of locations with only one element—the location object ‘loc’.

temp.push_back(loc);

Next, we insert the word and its location vector into the word map.
wordmap[word]=temp;

We ensure that the temporary vector of locations remains vacant by writing the following
line of code.

 Appendix A: Case Study—A Word Query System 423

temp.erase(temp.begin(),temp.end());

Next, we discard the contents of the string object that is holding the just read word so that
the next word can be loaded from the le.

word.erase();

The test
if(flag==0)

ensures that if more than one punctuation mark or new line character are encountered one
after another, then all of them are ignored while building the word map.

On the rst occasion, this test returns true. Therefore, the location of the loaded word
updates the word map. The value of ‘ ag’ has been set to ‘1’ within this if block. This ensures
that this test returns false if the next character of the text le is also a punctuation mark or the
new line character since the value of the ‘ ag’ is reset to ‘0’ only if the character encountered
is neither a punctuation mark nor the new line character.

After loading the word, if the end of line character is encountered, we increment the value
of line number and reset the value of word number to ‘1’.

if(cVar!=’\n’)
 line=line+cVar;
else
{

 iLineNum++;
 iWordNum=1;
}

Also, we would like to straight away read the next character from the le without any
further processing. Therefore, the continue keyword has been used.

This nishes the explanation of how the word map has been created. Let us now focus our
attention on the creation of the line map.

As we read the characters from the le, we append them into the string that represents a
line.

line=line+cVar;

If the read character is a punctuation mark but not the new line character, we simply continue
to append it to the line string object line (punctuation marks are a part of the line).

if(cVar==’ ‘ || cVar==’.’ || cVar==’,’ || cVar==’;’ ||
 cVar==’\n’)
{
. . . .
 if(cVar!=’\n’)
 line=line+cVar;

If the read character is the new line character, we reckon that we have loaded one complete
line into the line string object line, and therefore simply insert the line number and the
contents of the line into the line map.

if(cVar!=‘\n’)
 line=line+cVar;
else
{

 Object-Oriented Programming with C++424

 linemap[iLineNum]=line;
 line.erase();

We also erase the contents of the line string object so that the next line can be loaded
afresh.

Now, we come to the last portion of the code wherein the loop accepts the word to be
searched from the user and returns the results.

After prompting the user, we rst clean up the variable in which the word entered by the
user would be stored. The read characters are appended to the word variable till the user
presses the enter key.

The test that breaks the potentially in nite loop is as follows:
if(word.empty())

It has been inserted in the middle since we don’t want the rest of the loop to execute. If
the user enters a blank string, the loop breaks and the program terminates.

If the user does not enter a blank string, we try to nd it in the word map.
iter=wordmap.find(word);

If the word is found in the word map, this iterator points at the element whose rst member
is the word itself and whose second element is a vector of locations of the found word. The
size of this vector gives us the number of occurrences of the found word.

The for loop
for(witer=iter->second.begin();

witer!=iter->second.end();witer++)

iterates through the vector of locations of the found word. Each element of the vector is a pair
of line position and word position. The locations are displayed by enclosing these positions
in brackets and separating them by commas.

cout<<“(”<<witer->first<<“,”<<witer->second<<“) ”. . .

Passing the line position to the line vector returns the corresponding line. This is also
displayed in the for loop.

cout<<. . .<<linemap[witer->first].c_str()<<endl;

C++ is an extension of C language. It is a proper superset of C language. This means that a
C++ compiler can compile programs written in C language. But, the reverse is not true. A
C++ compiler can understand all of the keywords that a C compiler can understand. Again,
the reverse is not true. Decision making constructs, looping constructs, structures, functions
etc. are written in exactly the same way in C++ as they are in C language. Apart from the
keywords that implement these common programming constructs, C++ provides a number of
additional keywords and language constructs that enable it to implement the object-oriented
paradigm.

Differences between C++ and C can be divided into two categories:
Non-object-oriented features provided in C++ that are absent in C language.
Object-oriented features provided in C++ to make it comply with the requirements of the
Object-Oriented Programming System.

Non-object-oriented Features Provided in C++ that are Absent in C Language

Enumerated data types

An enumerated data type in C is internally treated as an integer. In C++, it is treated as a
separate data type in its own right. Direct conversion from an integer to the enumerated data
type is therefore prohibited.

enum day_of_week
{
 monday,
 tuesday,
 wednesday,
 thursday,
 friday,
 saturday,
 sunday
};

day_of_week d;
d=Monday; //OK

d=2; //ERROR

Reference variables

(Refer to Chapter 1 for a detailed discussion.)

Comparison of C++ with C

Appendix B

 Object-Oriented Programming with C++426

Constants

In C, it is illegal to use an integer, which has been declared as a constant, to specify the size
of an array. This is not so in C++.

const int size=100;
char cArr[size]; //legal in C++ but illegal in C

Function prototyping

(Refer to Chapter 1 for a detailed discussion.)

Function overloading

(Refer to Chapter 1 for a detailed discussion.)

Functions with no default values for arguments

(Refer to Chapter 1 for a detailed discussion.)

Functions with no formal arguments

In C, it is reckoned that a function that has no formal arguments accepts an unspeci ed number
of parameters. Therefore, it is legal to pass parameters to it.

In C++, it is reckoned that a function that has no formal arguments does not accept
parameters. Therefore, it is illegal to pass parameters to it.

Inline functions

(Refer to Chapter 1 for a detailed discussion.)

Object-oriented Features Provided in C++ to make it Comply with the Requirements
of the Object-Oriented Programming System

The following are some of the additional keywords that have been provided in C++ to make
it an object-oriented programming language:

class (Refer to Chapter 2 for a detailed discussion.)
friend (Refer to Chapter 2 for a detailed discussion.)
operator (Refer to Chapter 8 for a detailed discussion.)
private (Refer to Chapter 2 for a detailed discussion.)
protected (Refer to Chapter 5 for a detailed discussion.)
public (Refer to Chapter 2 for a detailed discussion.)
template (Refer to Chapter 9 for a detailed discussion.)
this (Refer to Chapter 2 for a detailed discussion.)
virtual (Refer to Chapter 6 for a detailed discussion.)

 C.1 Similarities between C++ and Java

The following are some of the features that make C++ and Java similar:
Comments: Comments are given in Java programs in exactly the same way as they are
given in C++ programs. The multiline comments (/* … */) and single-line comments
(//) of C++ are supported in Java also.
Control structures: Decision-making and looping constructs of C and C++ are provided
in Java also. Moreover, exactly the same syntax is used for utilizing them in Java source
codes.
Keywords for implementing exception handling: The keywords try, catch, and
throw that are provided in C++ are provided in Java. Moreover, the same syntax is used
for utilizing them in Java source codes. However, there is a slight difference between
the way C++ allows all unhandled exceptions and the way Java does. This is explained
in the section on ‘Differences between C++ and Java’.
Fundamental data types: Like C++, Java also provides a set of fundamental data types.
They are:

Type Size

byte 1 byte (signed 8-bit)

boolean 1 byte (signed 8-bit)

char 2 bytes Unicode (signed 16-bit Unicode)

short 2 bytes (signed 16-bit)

int 4 bytes (signed 32-bit)

long 8 bytes (signed 64-bit)

 oat 4 bytes (signed 32-bit)

double 8 bytes (signed 64-bit)

Declaration of objects: Variables of primitive types are declared in exactly the same
way in Java as in C++. The following statement declares an integer-type variable in both
C++ and Java.
int x;

However, it is different in the case of classes. The section on ‘Differences between C++
and Java’ explains this difference.

Comparison of C++ with Java

Appendix C

 Object-Oriented Programming with C++428

 Purpose of the class construct: Like C++, Java also provides the class construct. The
purpose and functionality of this construct is approximately the same in both languages.
Like classes that are defined in C++, there are member functions and member data in
the classes that are defined in Java. However, there are differences between the ways
this construct has been implemented in the two languages. The section on ‘Differences
between C++ and Java’ explains these differences.

 The static keyword: The purpose of this keyword is the same in both the languages.
 Constructor: Constructors in Java are defined in exactly the same way as they are defined

in C++ and also serve the same purpose.
 Constructors in C++ and Java are similar to each other in the following ways: The

compiler defines the constructor if we do not define one. If we define the zero-argument
constructor or a parameterized constructor for a class, the compiler does not define the
default constructor for the class. An access specifier can be specified to a constructor.

 Inheritance: Like C++, Java also supports inheritance. However, Java does not support
multiple inheritance. This is explained in the section on ‘Differences between C++ and
Java’.

 Static polymorphism: Like C++, Java supports static polymorphism. Two functions
with different signatures can have the same name.

 Dynamic polymorphism: Dynamic polymorphism is supported in both C++ and Java.
If a member function of the base class has been overridden in the derived class and it
is called for a base class reference that actually refers to a derived class object, then the
member function of the derived class gets called.

 Overriding member functions of a base class in its derived classes: Base class member
functions can be overridden in the derived class except when the base class function
has been specified as final. This exceptional case has been explained in the section on
‘Differences between C++ and Java’.

 C.2 Differences between C++ and Java

The following are some of the features that make C++ and Java different:
 Structures and unions: There are no structures and unions in Java. Java supports only

classes.
 The main() function: Unlike the main() function in C++, the main() function in Java

is not a global function. It is instead a public static function of a class. The class that has
such a main() function is executed by clients or from command line.

 Unlike the main() function in C++, which takes an array of character pointers as
parameter, the main() function in Java takes an array of objects of the class String as
parameter.

 Header files versus packages: Instead of header files, we have packages in Java. Packages
in Java serve a similar purpose as header files in C++. Packages are included in Java
source codes by using the import directive as follows:
import java.util.Date; //importing a package

 This statement imports the Date class, which is defined in the ‘util’ package, which is in
turn included in the ‘Java’ package.

 Appendix C: Comparison of C++ with Java 429

 The zero-fill right shift operator (>>>): Java introduces a new right shift operator—the
zero-fill right shift operator. The normal right shift operator (>>), fills up the bits on the
left with the value of the first bit as it shifts the bits to the right. In contrast, the zero-fill
right shift operator (>>>), fills up the bits on the left with zeros as it shifts the bits to the
right. This operator can be used as follows:
x=x>>>1; //shifts bits in x to the right by one place
 //and move a zero from the left

 There is also a complimentary zero-fill right shift assignment operator (>>>=). The
foregoing statement can be rewritten as
x>>>=1; //shifts bits in x to the right by one place and
 //move a zero from the left

 Operator overloading: Unlike C++, operator overloading is not supported by Java.
 External functions: There are no global functions in Java. All functions must be members

of some class or the other.
 The final keyword: The final keyword serves the same purpose as the const keyword

of C++. Member variables are declared as constants by prefixing this keyword to their
declarations.

 Declaration of objects and the new operator: We already know that variables of
primitive types are declared in exactly the same way in Java as in C++. However, the
case is different in the case of classes.

 Suppose A is a class. The following statement creates an actual object in C++.
A A1; //A1 is an object in C++ but a null reference in
 //Java

 But in Java, the above statement would only declare a null reference. Such a reference
has to be explicitly initialized by using the new operator as follows:
A1 = new A();

 In C++, the new operator captures a memory block in the heap and returns a pointer to
it. In Java, the new operator captures a memory block in the heap and returns a reference
to it. This is the only way of declaring an object in Java whereas in C++, an object may
be declared either in the stack or in the heap by using the new operator.

 Pointers: Java does not support pointers. In Java, apart from the variables of primitive
data types, all objects are actually references.

 Listing C.1 makes it evident that variables of primitive data types are always passed by
value.

Listing C.1 Variables of primitive data types are passed by value

class first
{
 public static void main(String args[])
 {
 int x; //x is of primitive type
 x=100;

 int y;
 y=x; //y is a separate memory
 //location

 //outputting to the console

 Object-Oriented Programming with C++430

 System.out.println(“Before changing:”);
 System.out.println(“x=” + x + “,y=” + y);

 x=200; //x changed, y unchanged

 System.out.println(“After changing:”);
 System.out.println(“x=” + x + “,y=” + y);
 }
}

Output
Before changing:
x=100,y=100
After changing:
x=200,y=100

 Class objects are always references. Listing C.2 illustrates this.

Listing C.2 Class objects are passed by reference

class A
{
 public int x; //public member
}

class first
{
 public static void main(String args[])
 {
 A A1 = new A(); //necessary to initialize since A1
 //is only a reference … now A1 is
 //a reference to a memory location
 A1.x=100;

 A A2;
 A2=A1; //A2 is also a reference to the
 //memory location to which A1 is a
 //reference

 //outputting to the console
 System.out.println(“Before changing:”);
 System.out.println(“A1.x=” + A1.x + “,A2.x=” + A2.x);

 A1.x=200; //A1.x changed, A2.x also changed

 System.out.println(“After changing:”);
 System.out.println(“A1.x=” + A1.x + “,A2.x=” + A2.x);
 }
}

Output
Before changing:
A1.x=100,A2.x=100
After changing:
A1.x=200,A2.x=200

 Garbage collection: Unlike C++, where dynamically acquired memory must be explicitly
returned to the OS, garbage collection is automatic in Java. During the execution of a Java

 Appendix C: Comparison of C++ with Java 431

program, an automatic garbage collector runs in the background. If it finds any locked
up memory that is no longer being referenced, it returns it to the OS.

 Destructor: There is no delete keyword in Java. Therefore, there are no destructors in
Java.

 In Java, the programmer can simply create an object by using the new operator.
There is no need to worry about reclaiming the memory, that is the garbage collector’s
responsibility.

 The finalize() method in Java approximates the destructor’s behaviour. However,
there is a difference. The garbage collector will definitely execute this method for an
object that it is destroying. But the exact instance at which the garbage collector would
destroy an object cannot be specified.

 Terminating class definitions, access specifiers, defining member functions: Class
definitions are terminated by semicolon in C++. In Java, class definitions are not
terminated by a semicolon.

 In C++, access specifiers are specified for a group of class members. In Java, access
specifiers are specified for each individual class member separately.

 Class member functions may be defined outside the class in C++. In Java, class member
functions are always defined inside the class.

 Unlike C++, access specifiers can be specified for classes in Java. A class prefixed
with the keyword public is visible to classes outside the package in which it was created.
Otherwise, it is visible to classes of the same package only.

 Consider the class given in Listing C.3 written in C++.

Listing C.3 Access specifi ers provided to individual members in Java

class A
{
 private: //access specifiers provided to a group
 //of members in C++
 int x;
 public:
 void setx(int);
 int getx();
};

public class A
{
 private int x; //access specifiers provided to
 //individual members in Java
 public void setx(int p)
 {
 x=p;
 }
 public int getx()
 {
 return x;
 }
}

 Apart from private, protected, and public access specifiers, which are also provided
by C++, Java provides the package access specifier. The package access specifier makes
a member or a class to which it is applied visible to other classes of the same package

 Object-Oriented Programming with C++432

only. It is the default access specifier. The functionality of this access specifier is similar
to that of namespaces in C++.

 Enumerations: Java does not support the enum keyword. However, an enumerated type
can be created in Java as a class that has only static final data members (Listing C.4).

Listing C.4 Specifying and using enumerated data types in Java

public class Color //creating an enumerated type
{
 public static final int red=1;
 public static final int blue=2;
 public static final int green=3;
 public static final int yellow=4;
 public static final int brown=5;
}

. . . .

. . . .

if(fontColor==Color.red) //using a value of the
 //enumerated type
. . . .

 In C and C++, while using the values of enumerated types, we need not qualify them
by the name of the enumerated type itself. This leads to potential name clashes. This
drawback does not exist in Java since the value of an enumerated type is qualified by the
name of the enumerated type itself.

 The this keyword: The this keyword provides the same functionality in Java as it does
in C++ with the difference that in C++ it is a pointer whereas in Java it is a reference.
Therefore the this pointer need not be dereferenced in Java (Listing C.5).

Listing C.5 this is a reference in Java

class A
{
 private int x;
 void setx(int x)
 {
 this.x=x; //‘this’ is a reference in Java
 }
}

 In the above example, the this pointer was used to resolve name ambiguity. The name of
the member variable of class A is the same as that of the formal argument of the setx()
function of class A. Using the this keyword resolves this ambiguity and the value of
the member variable gets set to that of the formal argument.

 The syntax of inheritance: Java provides the extends keyword for declaring a derived
class. This keyword can be used as follows:
class B extends A //class B inherits from A
{
}

 Appendix C: Comparison of C++ with Java 433

 The default base class in Java: If you do not specify a base class for a class you are
defining, the Java compiler automatically assigns a class called Object as its base class.
Therefore, all classes in Java inherit from the class Object.

 Overriding member functions of a base class in its derived classes: Using the final
keyword in the declaration of the member function of a class prevents the derived class
from overriding it. The compiler throws an error if a member function of the derived
class overrides a final method of the base class.

 Interfaces and abstract base classes: An interface in Java is similar to the abstract base
class in C++ but with the following differences:

 - Member functions of an interface can only be declared. They cannot be defined.
 - Member data of an interface are considered final.
 An interface is declared in Java as follows:

public interface A
{
 public void abc(); //declaration only … no definition
 public void def(); //declaration only … no definition
}

 Like the abstract base classes of C++, interfaces in Java cannot be instantiated. The
following piece of code is illegal:
A A1 = new A();

 A class that implements an interface can be instantiated provided it defines all member
functions of the interface. See Listing C.6.

Listing C.6 Declaring and implementing an interface in Java

public class B implements A //syntax for implementing an
 //interface
{
 public void abc()
 {
 /*
 definition of the function
 */
 }
}

 If not all member functions of the interface are defined in the class that implements them,
the class becomes an abstract base class and cannot be instantiated.

 Multiple inheritance is not supported in Java. However, Java provides interfaces.
A class in Java can inherit from only one class but implement an unlimited number of
interfaces. In the following definition, class X inherits from class P but implements the
interfaces A and B.
//implementing more than one interface
public class X extends P implements A, B
{
 /*
 definition of class X
 */
}

 Object-Oriented Programming with C++434

 An abstract class is declared in C++ by declaring at least one of its member functions
as a pure virtual function. An abstract class is declared in Java by using the abstract
keyword in its declaration. As in C++, an abstract class cannot be instantiated. See Listing
C.7.

Listing C.7 An abstract class in Java

public abstract class A //an abstract class
{
 public abstract void abc(); //an abstract method of
 //an abstract class
 public void def() //an non-abstract method
 //of an abstract class
 {
 /*
 definition of the function
 */
 }
}

 As can be seen, some functions of an abstract class can be declared as abstract by using
the abstract keyword in their declaration while the others can be declared as non-abstract
by not using the abstract keyword in their declaration. In contrast to interfaces, member
functions of an abstract class can be defined. If not all member functions of an abstract
class are defined in the class that extends it, the latter class also becomes an abstract base
class and cannot be instantiated.

 Abstract and non-abstract member functions of the abstract base class can be overridden
in the derived class. See Listing C.8.

Listing C.8 Overriding base class functions in the derived class

abstract class A
{
 public abstract void abc();
 public void def()
 {
 System.out.println(“def() function of class A”);
 }
}

public class B extends A
{
 public void abc() //overriding abstract function of
 //base class
 {
 System.out.println(“abc() function of class B”);
 }
 public void def() //overriding non-abstract function
 //of base class
 {
 System.out.println(“def() function of class B”);
 }
 public static void main(String args[])
 {
 A A1 = new B();
 A1.abc();

 Appendix C: Comparison of C++ with Java 435

 A1.def();

 B B1 = new B();
 B1.abc();
 B1.def();
 }
}

Output
abc() function of class B
def() function of class B
abc() function of class B
def() function of class B

 The foregoing output makes one thing very clear. All non-static member functions in
Java are virtual functions. The abstract qualifier is used in the declaration of a member
function of the base class only to force its override in the derived class.

 An overridden member function of the base class can be called from the member function
of the derived class by using the keyword super as illustrated in Listing C.9.

Listing C.9 Calling an overridden function of the base class in a member function of the
derived class

abstract class A
{
 public abstract void abc();
 public void def()
 {
 System.out.println(“def() function of class A”);
 }
}

public class B extends A
{
 public void abc()
 {
 System.out.println(“abc() function of class B”);
 }
 public void def()
 {
 super.def(); //calling an overridden function of the
 //base class
 System.out.println(“def() function of class B”);
 }
 public static void main(String args[])
 {
 A A1 = new B();
 A1.abc();
 A1.def();
 }
}

Output
abc() function of class B
def() function of class A
def() function of class B

 Object-Oriented Programming with C++436

 Base class initialization: Base class member data are initialized in C++ by the member
initialization list. In Java, using the super keyword achieves this objective. See Listing
C.10.

Listing C.10 Initializing base class members from the derived class constructor

class A
{
 private int x;
 public A(int p)
 {
 x=p;
 }
}

class B extends A
{
 int y;
 public B(int p, int q)
 {
 super(p); //calling the base class constructor
 y=q;
 }
}

 Exception handling: The exception handling mechanism provided in Java is very similar
to C++ with the following differences:

 - In Java, the classes of all thrown objects must inherit from the class Throwable.
Therefore, the block catch(Throwable) in a try … catch construct in Java is
equivalent to the catch(…) block in C++.

 - Java introduces a new keyword finally to be used in the try … catch block. The
block labeled finally is always executed at the end of a try … catch block.

Object-Oriented Analysis and Design

Appendix D

 D.1 Introduction

This appendix gives a brief but comprehensive overview of Object-Oriented Analysis and
Design (OOAD). OOAD is a design methodology. It is used to model solutions of software
engineering problems. Models can be translated into actual code written in object-oriented
languages.

Why Build Models?

Software engineering problems are usually quite complex. Different aspects of the solution
need to be modeled using standard notations. After these models have been veri ed for
correctness, they are implemented in actual code.

Models serve several purposes. Some of them are as follows:
The solution can be tested for correctness and completeness before actually building it.
Models help the developers in communicating clearly and precisely with customers and
also among themselves. This ensures that all parties are in sync with each other.
Models help developers in visualizing the solution clearly.
Complexity of the problem gets reduced since the entire system can be broken down into
successively smaller portions.

Overview of OOAD

What is OOAD?

OOAD has the following stages:
1. Analysis: In this phase, a model of the solution is built. The analysis model contains

classes with their members, their relationships, etc. The analysis model shows what the
desired solution must do, not how it will be done. It does not contain any implementation
details.

2. System design: In this phase, the analysis model is divided into manageable sub-systems.
Relationships amongst these sub-systems are also modeled. A strategy of attacking the
problem is formulated. Performance optimization is also finalized.

3. Object design: In this phase, implementation details are added to the model built during
the analysis phase.

4. Implementation: The object model thus created is finally translated into a particular
programming language.

 Object-Oriented Programming with C++438

Overall development time is not always less in OOAD as compared to the conventional
methodology. But the bene t is that the resulting model is better suited for future reuse.
Downstream errors and maintenance efforts also get reduced.

 D.2 Object-Oriented Model

An object-oriented model consists of the following three kinds of models:
 Object model
 Dynamic model
 Functional model

The object model describes the objects in the system and the relationships amongst these
objects. It consists of object diagrams.

The dynamic model describes how objects in the system interact with each other. It
consists of state diagrams. A state diagram depicts states and transitions between states that
are caused by events.

The functional model describes how data gets transformed in the system. It consists of data
 ow diagrams. A data ow diagram depicts processes and data ow among the processes.

The three models complement each other. They are linked to each other. The object model
is described rst. It is necessary to describe what is changing or transforming before describing
when and how it changes.

The object model describes classes upon whom the dynamic and functional models operate.
The operations in the object model relate to events in the dynamic model and functions in
the functional model.

 Object Model

Object diagrams are of two types: class diagrams and instance diagrams.
As its name suggests, a class diagram describes classes and relationships amongst

classes.
An instance diagram depicts the relationship amongst a particular set of objects that exist

together at a given instance of time. A large number of instance diagrams can be generated
from a single class diagram.

Boxes are used to depict objects and classes. Different object-oriented design tools use
slightly different variations of these boxes. A sample is shown in Figure D.1.

A

Figure D.1 A class is depicted in an object model as a box with sharp corners; name is in bold

Attributes

Attributes are nothing but data members of classes. They are listed in the second part of the
class box. Each attribute name may be followed by a colon and its type. This, in turn, may
be followed by an equality symbol and the default value of the data member. A line is drawn
between the class names and attributes (see Figure D.2). No such line exists in object boxes
(see Figure D.3).

 Appendix D: Object-Oriented Analysis and Design 439

A

x : integer = 0

Figure D.2 Depicting attributes in class box

(A)

1

Figure D.3 An object is depicted in an object model as a box with rounded corners; class
name is in bold but is surrounded by parentheses

Operations

Operations are nothing but member functions of classes. They are listed in the third part of the
class box. The name of the operation is followed by a list of formal arguments in parentheses.
The arguments are mentioned in the same way as the attributes. These parentheses may be
followed by a colon and the result type of the operation (see Figure D.4).

A

x : integer = 0

setx(p : integer)
getx() : integer

Figure D.4 A class with operations

Links and associations

An association depicts a conceptual or physical relationship between two classes. A link is an
instance of an association. Associations may be bidirectional or unidirectional. An association
may be implemented as a pointer from one object to another. The notation for an association
is a line between the associated classes. See Figure D.5.

A

x : integer = 0

setx(p : integer)
getx() : integer

B

y : integer = 0

sety(p : integer)
gety() : integer

Figure D.5 Association

Multiplicity

Multiplicity signi es the number of instances of one class that may relate to a single instance
of an associated class. An association may be:

One-to-one (Figure D.6)
One-to-many (Figures D.7 and D.8)
Many-to-many

 Object-Oriented Programming with C++440

A

x : integer = 0

setx(p : integer)
getx() : integer

B

y : integer = 0

sety(p : integer)
gety() : integer

Figure D.6 A one to-one association

A

x : integer = 0

setx(p : integer)
getx() : integer

B

y : integer = 0

sety(p : integer)
gety() : integer

Figure D.7 A one-to-many association (zero or one instance of class B may be
associated with an instance of class A)

A

x : integer = 0

setx(p : integer)
getx() : integer

B

y : integer = 0

sety(p : integer)
gety() : integer

Figure D.8 A one-to-many association (exactly two instances of class B
may be associated with an instance of class A)

A ball at one end of the line that depicts association between two classes indicates a ‘many’
side. A hollow ball indicates that zero or one instance of the class on whose side the ball
appears may be associated with an instance of the associated class. A solid ball indicates that
zero or many instances of the class on whose side the ball appears may be associated with an
instance of the associated class. If no balls appear, it indicates a one-to-one relationship.

If possible, the exact permissible number of instances of one class that can be associated
with one instance of the associated class is also speci ed. An exact value can be speci ed.
An interval of values can also be speci ed. The interval may be a single interval or a set of
disconnected intervals.

Some of the other ways of specifying the multiplicity in Figure D.8 are:
2+ (2 or more),
2–4 (2,3, or 4),
2,5,18 (either 2 or 5 or 18), etc.

Association attributes

An association may have its own attributes. Association attributes are depicted in boxes
attached to the association by a loop (Figure D.9). Such boxes have the same characteristics
as the boxes that are used to represent classes.

Attributes of a many-to-many association are always properties of the associations itself.
They cannot be attached to either object. On the other hand, it is possible to insert attributes
for one-to-one and one-to-many associations into the class opposite the ‘one’ side.

Pointers are embedded either in one or both of the associated classes to implement
association. Alternatively, if a separate class has been used to implement an association as

 Appendix D: Object-Oriented Analysis and Design 441

in Figure D.9, pointers to both classes appear in the third class. All this is explained in the
last section of this appendix.

A

x : integer = 0

setx(p : integer)
getx() : integer

B

y : integer = 0

sety(p : integer)
gety() : integer

C

z : integer = 0

setz(p : integer)
getz() : integer

2

Figure D.9 Association attributes

Aggregation

In aggregation, an object of one class contains objects of other classes. Like association, a line
connects two classes between whom an aggregation relationship exists. However, a diamond
appears next to the container class. See Figure D.10.

A

x : integer = 0

setx(p : integer)
getx() : integer

B

y : integer = 0

sety(p : integer)
gety() : integer

Figure D.10 Aggregation—an object of class B contains an object of class A

Inheritance

We have already studied inheritance in Chapter 5. The notation for inheritance is an upright
triangle connecting a superclass to its subclasses. The superclass is connected by a line to the
apex of the triangle. See Figure D.11.

A

x : integer = 0

B

y : integer = 0

sety(p : integer)
gety() : integer

setx(p : integer)
getx() : integer

Figure D.11 Inheritance—class B derives from class A

 Object-Oriented Programming with C++442

Abstract classes

Abstract classes have already been explained in Chapter 6. An abstract function (that makes
the class abstract) is designated by a comment in braces (Figure D.12).

A

x : integer = 0

B

y : integer = 0

set(p : integer) {abstract}
get() : integer {abstract}

set(p : integer)
get() : integer

Figure D.12 Depicting an abstract base class

Multiple inheritance

We have already studied multiple inheritance in Chapter 5. Multiple inheritance is depicted
by using the same symbols that are used for single inheritance (See Figure D.11).

 Dynamic Model

The dynamic model models the sequence of changes that occur in a system.
Two important concepts in dynamic modelling are events and states. State of an object

is represented by the set of values of the object at a given point of time. Events are external
stimuli that cause a change of state.

A state diagram depicts the states, events, and transitions from one state to another for
a given class. One state diagram is created for each class that exhibits important dynamic
behaviour. The set of all such state diagrams constitutes the dynamic model. The state diagrams
shared events with each other.

Events

An event is an instantaneous occurrence that causes a change of state. An event is a one-way
transmission of information from one object to another.

Scenarios and event traces

A scenario is a textual line-by-line description of the sequence of events that occur during
one particular execution of a system. Event traces are created for each scenario. For this, the
sender and the receiver objects of each event are identi ed. This event trace shows each of
these objects as a vertical line. Each event is depicted as a horizontal arrow from the sender
object to the receiver object. See Figure D.13.

 Appendix D: Object-Oriented Analysis and Design 443

Figure D.13 An event trace

States

A state is a set of attribute values and links of an object that can be grouped together because
they occur together at a given point of time. An object remains in the same state during the
interval between two events.

State diagrams

A state diagram depicts the relation between events and states. Upon receiving an event, the
state the recipient object attains depends on its current state as well as the event. Transition
is the change of state caused by an event.

The symbol for a state is a rounded box that may contain a name for the state. A transition
is depicted as an arrow from the receiving state to the target state.

A sequence of events on the event trace corresponds to a path through the state diagram.
See Figure D.14.

Figure D.14 A state diagram

 Object-Oriented Programming with C++444

Conditions

A condition may in uence the ring of a transition. Such a transition is known as a guarded
transition (see Figure D.15). It res when its event occurs, but only if the guard condition is
true. A guard condition on a transition is shown in brackets following the event name.

State 1

State 2

Event 1 [condition 1]

Figure D.15 Guarded transitions

Activity

An activity is an operation that executes over a period of time. An activity may continue to
execute as long as an object remains in a particular state. Activities may run continuously or
terminate on their own after an interval of time. The notation for specifying that an activity
A executes as long as the state remains is “do: A” within the state box.

Actions

An action is an instantaneous occurrence that occurs when an event occurs. An action on a
transition is denoted by a slash (‘/’) and its name, following the name of the event that causes
it. Figure D.16 shows activities and actions.

State 1
do : activity 1

State 2
do : activity 2

Event 1 [condition 1]/action 1

Figure D.16 Activities and actions

Relation of object and dynamic models

The dynamic model speci es the sequences in which operations of an object can be called.
States represent the attribute and link values for the object that may exist concurrently. Events
are nothing but operations on the object.

 Functional Model

The functional model depicts the transformations of input values into output values. The order
in which the transformation takes place is not modeled here. Transformations are depicted
using data ow diagrams. The functional model consists of multiple data ow diagrams.

 Appendix D: Object-Oriented Analysis and Design 445

Data flow diagrams

A data ow diagram depicts the ow of data values from source objects through processes
to their destinations objects.

A data ow diagram contains processes and data ows. Processes transform data. Data
 ows depict the ow of data amongst processes, actor objects, and data store objects. Actor

objects are passive objects that enter data and use the data produced by the system. Data store
objects merely store data and do not transform the data in any way.

Processes

A process is depicted as an ellipse in the data ow diagram. A descriptive name of the trans-
formation appears as its label. The input and output data for each process are also depicted.
See Figure D.17.

Input 1

Input 2 Output 2

Output 1

Process 1

Figure D.17 A process in a data fl ow diagram

Data flows

A data ow connects the output of one object or process to the input of another object or
process. The value is not changed by the data ow.

Actors

An actor initiates the data ow by inputting values. Values output by a data ow diagram
may also terminate with an actor. Actors may be data-entry operators or timed devices. An
actor is depicted as a rectangle since an actor is inherently an object.

Data stores

A data store merely stores data for later use. It does not have any operations de ned. It is
depicted as a pair of parallel lines with its name in between the lines (Figure D.18). Data
stores are inherently objects. Figure D.19 shows a data ow diagram.

Data store 1

Figure D.18 A data store

Input 1

Input 2

Output 2

Process 1
Output 1

Process 2

Object 1

Data store 2

Data store 1

Figure D.19 A data fl ow diagram with data fl ows, processes, actors, and data stores

 Object-Oriented Programming with C++446

 D.3 Analysis

Now we know the three models that constitute an object-oriented model. This section will
teach us how we can create a model from the requirement document. The last section will
teach us how to implement the model.

Overview of Analysis

Requests generated by users, developers, and managers are rst collected and consolidated.
A problem statement is created from this consolidated list. Models are built by analyzing
the problem statement and by taking inputs from users, from domain experts, and from the
developer’s knowledge of the real world.

Large models are built up iteratively. A small model to achieve only the core requirement
is built first. Once the model has been perfected, it is expanded to add all ancillary
functionalities.

Object Modelling

The steps for object modelling are as follows:
1. Identify classes
2. Identify associations and aggregations
3. Add attributes to classes and associations
4. Combine classes using inheritance
5. Add operations to classes after constructing the dynamic and functional models

Classes often appear as nouns in the problem statement.
Associations often appear as verbs or verb phrases.
Attributes often appear as nouns followed by possessive phrases.
Identify classes that share common features and designate them as base classes. Look for

nouns that appear with different adjectives. The common noun can usually be modeled as a
base class whereas each of the nouns with an adjective can be modeled as its derived class.

Dynamic Modelling

Brie y, the rst step in dynamic modelling is to identify events. Events appear as external
stimuli and responses. The next step is to summarize permissible event sequences for each
object with a separate state diagram.

We can start with creating scenarios of typical executions. All common interactions should
get depicted by scenarios. The next step is to create event traces for each of these scenarios.
Scan the columns in the event trace to identify events that occur on each object.

States that an object attains can be identi ed from the interval between all pairs of events
that occur on it one after the other. These events and states are organized in a state diagram.
The resulting set of state diagrams constitutes the dynamic model.

This process can be repeated incrementally for special interactions such as omitted inputs,
violation of domain constraints, etc. Finally scenarios for error cases are prepared. These
scenarios are also merged into the state diagram by attaching the new event sequence to the
existing state as an alternative path.

 Appendix D: Object-Oriented Analysis and Design 447

Functional Modelling

Activities or actions in the state diagrams of classes can be modeled as processes on the data
 ow diagram. Objects and attribute values of an object diagram can be modeled as ows on

a data ow diagram.
Parameters of events from the dynamic model appear as input and output values of processes.

The data ow diagram can be constructed by inserting processes between corresponding input
and output values.

Processes in the top-level data ow diagram may be quite complex. Create a simpli ed
and detailed lower-level data ow diagram for each such process. If this level still contains
complicated processes, repeat the process till you reach a data ow diagram with very simple
processes.

Finally, write a textual description of each lowest-level process. The description should
emphasize the objective of the process and not how the process would get implemented.

Identify and model actors and internal storage also.

 D.4 System Design

System design is the high-level strategy for solving a problem and building a solution. The
system is organized into sub-systems. Sub-systems are allocated to hardware and software
components. Major conceptual and policy decisions that form the guidelines for the detail
design are also taken. The overall organization of the system is called the system architecture.
During system design, overall high-level implementation decisions are made. This is followed
by similar decisions for successively lower levels.

Breaking the System into Sub-systems

A system is divided into sub-systems based on the similarity of services. A service is a set of
functions that have a common objective.

Each sub-system provides a well-de ned well-abstracted interface. The interface data can
be exchanged with the sub-system. It does not specify how the sub-system is implemented
internally. Thus, the internal design of each sub-system can be created and modi ed while
other sub-systems that interact with it remain unchanged.

Layers

A system can be divided into sub-systems and these sub-systems can be horizontally layered
one on top of another. Each layer is built to provide services to the ones above it. Thus each
layer provides the basis of designing the one above it. Layers are thus strongly coupled.

Partitions

Sub-systems can be vertically placed next to each other as partitions also (see Figure D.20).
Partitions are independent or weakly-coupled sub-systems.

A combination of layers and partitions can be used to divide a system.
We should also identify which activities may execute concurrently and which are mutually

exclusive. The latter set of activities can be put together in a single thread of control.

 Object-Oriented Programming with C++448

Sub-system 1

Sub-system 3

Sub-system 2 Sub-system 4 Sub-system 6

Sub-system 5

Sub-system 7

Sub-system 8

Figure D.20 Dividing a system into sub-systems

D.5 Object Design
De nitions of the classes and associations modeled earlier are completed in the object design
phase. Algorithms to be used in the operations are also nalized.

Overview of Object Design
The list of objects found out during analysis is revised with an intention to minimize execution
time and memory.

The object model describes the classes of objects in the system, including their attributes
and the operations they support.

The functional model describes the operations that the system must implement. During
design we must decide how each operation must be implemented.

The dynamic model describes how the system responds to external events. The control
structure for a program is primarily derived from the dynamic model.

Actions and activities of the dynamic model and the processes of the functional model are
converted to operations.

While designing classes we must decide when to use values of fundamental types for data
members and when to use another object. Classes can contain objects of other classes, but
eventually everything must be implemented in terms of built-in primitive data types.

 D.6 Implementation
Writing code is an extension of the design process. Writing code should be straightforward,
almost mechanical, because all the dif cult decisions should already have been made during
design. The code should be a simple translation of the design into code written in a particular
programming language.

Classes are declared rst. Attributes and operations mentioned in the object diagram are
declared as private, protected, or public members.

We have already studied how a class can be de ned in C++, how members can be declared
in these classes, how objects of these classes can be declared and how member functions can
be called with respect to the declared objects. We have also studied how inheritance can be
implemented in C++. Now is the time to carry out these activities with respect to the object
design just created.

There are two general approaches for implementing associations—buried pointers and
distinct association objects.

A binary association is frequently implemented as a buried pointer in each of the associated
objects that point at the related object or the set of related objects of the associated class.
Updating one pointer in the implementation of an association implies that the other pointer
must be updated as well to keep the implementation consistent.

Association can also be implemented as an associative container class (maps and sets).

Abstract Base Class A class that has at least one
pure virtual function. Abstract base classes
cannot be instantiated. They only serve as base
classes for other classes to derive from. (see
also pure virtual functions)

Arrow Operator (->) An operator to access data
members of an object or call member functions
through a pointer that points at the object.

Base Class A class from which another class
inherits. (see also inheritance)

Binary Search Tree A binary search tree is a special
form of binary tree. In a binary search tree, for
any given node, the value contained in its left
child is less than the value contained in the node
and the value contained in the node is less than
the value contained in its right child.

Binary Tree A binary tree is a tree in which each
node is linked to a maximum of 2 nodes.

Call by Reference The formal argument of the
called function is of reference type. (see also
reference variables)

Call by Value The formal argument of the called
function is of non-reference type. (see also
reference variables)

catch The keyword used to catch a thrown
exception. (see also exception handling, try,
throw)

Child Class A class that inherits from another class.
(see also inheritance)

Class A language construct provided by C++
that enables the implementation of object-
oriented concepts like data security, guaranteed
initialization of data, data abstraction, data
hiding, etc. A class has member functions and
member data.

Glossary

Appendix E

Class Template A template for a class definition.
Data type of data members is undefined.

Clone Functions A function that creates an object
of the same type at which a base class pointer
points and returns its address.

Command Line Arguments Command line
arguments are values that are passed to
executables when they are run from the
command line.

const_cast Operator This operator is used to cast
away the constness of a value.

Constant Member Functions A member function
that can only read the value of data members
but not modify them.

Constructor A class member function that gets
called automatically with respect to each object
at the time of its creation. It is used to guarantee
the initialization of data members of the object.
(see also Guaranteed Initialization of Data)

Copy Constructor A constructor that gets
called whenever an object is created and
simultaneously equated to another existing
object. It is called with respect to the object
that is getting created while the existing object
is passed as a parameter to it.

Data Member A class member that would contain
the values of class objects. Each object of the
class has its own copy of the data member.

Data Security An object-oriented feature that refers
to preventing unauthorized functions from
accessing data.

Default Constructor The constructor that gets
defined by default by the compiler if we do
not. It does not take parameters. (see also Zero-
argument Constructor)

 Object-Oriented Programming with C++450

Default Values for Function Arguments Default
values can be assigned for function arguments.
These values are assigned to the arguments if
no values are passed to them when the function
is called.

delete Operator An operator that allows us to return
a dynamically allocated block of memory to the
operating system. (see also dynamic memory
deallocation)

Derived Class (see child class)
Destructor A function that gets called automatically

for each object at the time of its destruction. It
is used to release resources held by objects.

Dot Operator (.) An operator that allows us to
access data members of an object or call
member functions with respect to an object.

dynamic_cast Operator A cast operator used for
downcasting a pointer of base class type to a
pointer of a particular derived class. If the base
class pointer being typecast actually points at
an object of the target type, the dynamic_cast
operator returns the address of the object
pointed at, else it returns NULL. If the
dynamic_cast operator is used with references
instead of pointers, it returns the reference to
the target object or throws an exception of the
type Bad_cast.

Dynamic Binding In dynamic binding, if an
overridden function of the base class is called
with respect to a pointer or a reference of the
base class type, then which of the functions
(base class function or one of the derived class
versions) will actually be called, is decided
based on the type of the object pointed at or
referred to at run time. The same function
has more than one form (in the base class and
the derived classes). Its call can lead to the
execution of a particular version depending
upon circumstances arising during run time.

Dynamic Memory Allocation In this type of
memory allocation, more memory is allocated
in response to requirements arising during run
time.

Dynamic Memory Deallocation Once it is not
required, memory allocated dynamically can

be retuned to the operating system. This is
dynamic memory deallocation.

Dynamic Polymorphism (see dynamic binding)
 Early Binding In early binding which version of

a called function that has multiple forms will
be called at run time is decided during compile
time itself.

Enclosing Class A class that contains the definition
of another class is known as an enclosing class.
(see also nested class)

Exception Handling Exception handling is a
facility that enables the library code to notify
error conditions, which it is incapable of
handling, to the calling client. The client can
catch the exception and decide upon a suitable
error-handling strategy. Alternatively, the
client can choose to re-throw exceptions. (see
also catch, throw, try)

Explicit Constructor Explicit constructors do not
allow implicit conversions when an object
is instantiated. Constructors are declared
explicit by prefixing their declarations with
the explicit keyword. We need to mention
the explicit keyword in the declaration of the
constructor only. It is not necessary to prefix the
definition of the constructor with the explicit
keyword. Explicit constructors can prove to be
useful for the programmer if he/she is creating
a class for which an implicit conversion by the
constructor is undesirable.

Friend Function A non-member function that has
been granted special rights to access private
data members of the class of which it has been
declared a friend.

Friend Class A class whose entire set of member
functions has been granted special rights to
access private data members of the class of
which it has been declared a friend.

Function Member A function that is a member of
a class. It is declared within the class. It has the
right to access the private data members of all
objects of the class.

Function Overloading A facility that enables the
programmer to create two functions with the
same name.

 Appendix E: Glossary 451

Function Prototype A function declaration
that tells the compiler the return type of the
function and the type and number of its formal
arguments.

Function Template A template for a function
definition. The type of its formal arguments is
undefined. An actual definition of the function
gets generated only when the function is
called. The types of the corresponding passed
parameters replace the undefined data types of
formal arguments.

Generic Class (same as class template)
Guaranteed Initialization of Data The data

members of a structure variable in C language
may attain invalid values at its time of creation.
C++ enables programmers to guarantee
initialization of data members of objects by
defining constructors. (see also constructor)

Inheritance A feature provided by all object-
oriented languages that enables a class to
inherit the data and function members of an
existing class. (see also base class, parent
class, super class, derived class, child class, sub
class)

Inline Function A function that is expanded inline
with its call by the compiler.

 Late Binding (see dynamic binding)
Linked Lists Linked lists consist of nodes that

are linked to each other in a linear fashion.
Each node in a linked list is an object that is
made up of two parts. The first part is the data
carried by the node. The second part of each
node is a pointer that carries the address of the
next node in the list. This is a description of
a single linked list. Alternatively, each node
may have an additional pointer, a pointer to
the previous node. Such linked lists are called
double linked lists.

Manipulators Manipulators are operators that
enable the C++ programmer to format the
output from their programs.

Multiple Inheritance A type of inheritance where
a class inherits the features of more than one
base class.

Mutable Data Members Data members that
are never constant. Even constant member

functions can modify their values. (see also
constant member functions)

Namespace A language construct in C++ that allows
us to divide the source code into logical parts.
This helps in preventing clashes of names. Two
classes with the same name can be defined if
they belong to different namespace.

Nested Class A class that is defined within another
class is known as a nested class. (see also
enclosing class)

New Handler Function A function that gets
called whenever an out-of-memory condition
is encountered. We can define our own new
handler function.

new Operator An operator that enables us to
capture more memory in response to conditions
arising during run time (see also dynamic
memory allocation)

New Style Casts C++ provides the following four
new style cast operators to replace the use of
the old error-prone and difficult-to-detect C
style casts:

 dynamic_cast
 static_cast
 reinterpret_cast
 const_cast
Object An instance of a class is known as an

object.
Object-Oriented Programming System A

programming system that enables programmers
to model real-world objects. Data and procedures
that work upon the data are bound together in
a single construct called class.

Operator Overloading A feature of most object-
oriented languages that enables programmers
to provide additional definitions to operators so
that they can take class objects as operands.

Parameterized Class (see Class Template)
Parameterized Constructor A constructor that

takes parameters.
Parent Class (see Base Class)
Polymorphism A feature of object-oriented

languages that allows programmers to create two
functions with identical names. Polymorphism

 Object-Oriented Programming with C++452

is of two types—static and dynamic. (see
also Static Binding, Static Polymorphism,
Early Binding, Dynamic Binding, Dynamic
Polymorphism, Late Binding)

Private Class Members Function and data
members of a class that have been declared
under the private section of a class. Private class
members can be accessed by member functions
of the same class only.

Procedure-Oriented Programming System In
this system, code is divided into procedures.
Data and procedures that work upon the data
are not bound together.

Protected Class Members Function and data
members of a class that have been declared
under the protected section of a class. Protected
class members can be accessed by member
functions of the same class and those of the
derived class only.

Public Class Members Function and data members
of a class that have been declared under the
public section of a class. Public class members
can be accessed by not only the member
functions of the same class and those of the
derived class. They can be accessed by global
non-member functions also.

Pure Virtual Functions A special type of virtual
function whose declaration is suffixed by ‘=0’.
Presence of a pure virtual function makes its
class an abstract base class. A derived class that
does not override the pure virtual functions of
the base becomes an abstract base class. (see
abstract base class, virtual functions)

Queues Queues are very similar to linked lists.
However, in a queue, we can add a node only
to the end. Moreover, in a queue, we can delete
a node only from the beginning.

Reference Variables A reference variable is a
reference to another variable. It does not occupy
its own memory. It shares the memory occupied
by the variable of which it is a reference.

reinterpret_cast Operator A new style cast
operator that allows the conversion of one type
to another.

Scope Resolution Operator An operator that
enables the C++ programmer to define a
member function outside the class.

Stacks Stacks are very similar to linked lists.
However, in a stack, we can add a node only
to the beginning. Moreover, in a stack, we can
delete a node only from the beginning.

static_cast Operator The only difference between
the static_cast operator and the dynamic_cast
operator is that while the dynamic_cast operator
carries out a run-time check to ensure a valid
conversion, the static_cast operator caries out
no such check.

Static Binding (see early binding)
Static Data Member Static data members hold

global data that is common to all objects of the
class. Static data members are members of the
class and not of any object of the class, that is,
they are not contained inside any object.

Static Function Member Static member functions
are not called with respect to an existing object.
This function’s sole purpose is to access and/or
modify static data members of the class.

Static Memory Allocation In this method of
memory allocation, the amount of memory
to be allocated and the time at which it would
get allocated during run-time are both decided
during compile time itself.

Static Memory Deallocation In this method of
memory allocation, the amount of memory to
be deallocated and the time at which it would
get deallocated during run-time are both
decided during compile time itself.

Static Polymorphism (see early binding)
Structure A language construct in C language that

enables the programmer to put together data
that influence each others’ values and should
therefore be put together. C language does
not allow the programmer to define member
functions inside structures. This leads to lack
of data security.

Subclass (see child class, derived class,
inheritance)

SuperClass (see parent class, base class,
inheritance)

this pointer A constant pointer that gets passed
to each member function as a leading formal
argument. It points at the object for which the
function is called.

 Appendix E: Glossary 453

throw A keyword in C++ that allows the library
programmer to throw an exception whenever
an invalid condition is encountered that cannot
be handled in the library code itself. (see also
exception handling, try, throw)

Trees Trees, unlike linked lists, stacks, and queues,
do not have a linear structure. In a tree, each
of the nodes may be connected to more than
one node.

try A keyword in C++ that allows a client to place
calls to library functions that are likely to throw
exceptions. (see also exception handling, try,
throw)

typeid Operator An operator that enables us to
determine the type of object at which a pointer
points.

Virtual Base Class A base class that is derived
by using the virtual keyword while declaring
the derived class. If a class derives from two
classes that in turn inherit from a virtual base
class, the final derived class gets only one copy
of the features of the virtual base class.

Virtual Function A class member function can be
declared as a virtual function by prefixing its
declaration with the virtual keyword. Virtual
functions enable dynamic polymorphism. If a
virtual function is overridden in a derived class
and called with respect to a pointer of base class
type that points at an object of the same derived
class, then the function called would be of the
derived class and not of the base class. (see also
Dynamic Binding, Dynamic Polymorphism,
Late Binding)

Zero-argument Constructor A constructor that
does not take any arguments is called a zero-
argument constructor. The constructor that is
created by default by the compiler is also a
zero-argument constructor. Therefore, the two
terms zero-argument constructor and default
constructor are used interchangeably. (see also
constructor, default constructor)

Self Tests

Appendix F

Test 1

Time: 1 hour
Max Marks: 50

True/False

[1 × 10 = 10]
 1. Variables must be declared at the beginning of the function in a C++ program code.
 2. A function can modify the value of the passed parameter if the corresponding formal argument is

a reference variable.
 3. The presence of an inline function in a code does not impact the size of the resultant executable.
 4. Structures in C++ cannot have member functions.
 5. A constant member function cannot access the static data members of the class.
 6. The return type of a constructor in C++ is void.
 7. A function of the derived class can access the public member of the base class even if the private

keyword is used for derivation.
 8. A pure virtual function cannot be overloaded.
 9. An actual de nition is created from a function/class template during run time.
 10. Each node of a single linked list can contain only integer-type values in its data part.

Fill in the Blanks

[1 × 10 = 10]
 1. The process of binding together data and code that works upon the data is known as

...................................... .
 2. cout is an object of the class.
 3. The operator is used to access a class member with respect to a pointer.
 4. Members declared under the private and sections of a class cannot be

accessed by non-member functions.
 5. Virtual functions enable polymorphism.
 6. A virtual function can be speci ed as a pure virtual function by suf xing its declaration with

................................ .
 7. Conversion of basic type to class type can be achieved by using
 8. The ag should be passed to the open() function to ensure that a le does

not get created if it does not exist.
 9. The three keywords provided by C++ for implementing exception handling are try, catch, and

...................................... .
 10. The syntax for catch all block is

 Appendix F: Self Tests 455

Multiple Choice Questions

(more than one choice can be correct)
[2 × 5 = 10]

 1. Which of the following are features of the Object-Oriented Programming System?
 (a) Inheritance
 (b) Data persistence
 (c) Polymorphism
 (d) Data abstraction
 2. Which of the following is a correct function prototype?
 (a) int abc(int, int);
 (b) int abc(int a, int b);
 (c) int abc(int a, int b) {}
 (d) int abc(int a, b);
 3. The bene ts of inheritance is/are
 (a) code reusability
 (b) faster executables
 (c) data hiding
 (d) smaller executables
 4. A copy constructor is called when
 (a) an object is created and simultaneously equated to another existing object.
 (b) a reference is created to an existing object.
 (c) an object is passed to a function whose formal argument is an object.
 (d) an object is passed to a function whose formal argument is a reference.
 5. Which of the following is/are used for outputting in text mode?
 (a) write() function
 (b) insertion operator
 (c) put() function
 (d) extraction operator

Short Answer Questions

[4 × 5 = 20]
 1. Write an inline function and a macro to return the larger of two numbers. Which is better and

why?
 2. Explain the need for user-de ned destructors with the help of examples.
 3. What are the ambiguities that arise in multiple and diamond-shaped inheritance. How can they be

removed?
 4. Explain why read operation on a le should take place in the same mode in which the write operation

has occurred?
 5. Explain the function that deletes nodes from the beginning of single linked lists.

 Object-Oriented Programming with C++456

Test 2

Time: 1 hour
Max Marks: 50

True/False

[1 × 10 = 10]
 1. Two functions with same names and signatures can exist together if their return types are

different.
 2. A function that returns a non-reference value can be placed on the left of the assignment

operator.
 3. Only one copy of the static data member exists for a class.
 4. Class members are private by default.
 5. A class can have more than one destructor.
 6. A base class pointer can point at an object of the derived class.
 7. All functions of a class must be declared as pure virtual functions in order to make it an abstract

base class.
 8. The const_cast operator is used to convert a pointer of base class type to a pointer of derived

class type.
 9. Only one function de nition is generated from a single function template.
 10. An unhandled exception will cause the program to terminate.

Fill in the Blanks

[1 × 10 = 10]
 1. is a feature of the Object-Oriented Programming System that allows one

function to have more than one de nition.
 2. The operator is used to de ne a member function outside its class.
 3. The non-member function that has special rights to access private members of objects of a class is

known as a function.
 4. The formal argument of the constructor must always be a reference

object.
 5. Inheritance implements a/an relationship.
 6. If a derived class is derived from a base class by using the protected keyword, the public members

of the base class become with respect to member functions of the derived
class.

 7. Apart from the non-static data member, objects of a class that has at least one virtual function
contain

 8. Input pointer can be manipulated by using the function.
 9. is the base class of all classes in the stream handling library of C++.
 10. Adding a node to a stack or a queue is known as

Multiple Choice Questions

(more than one choice can be correct)
[2 × 5 = 10]

 1. Consider the following function

int abc(int, int) {}

 Appendix F: Self Tests 457

 Which of the following overload the function?
 (a) int abc(int, int, int) {}
 (b) float abc(int, int) {}
 (c) int abc(float, int) {}
 (d) int abc(int, int=0) {}
 2. Which of the following is/are true about constructors?
 (a) Its name is pre xed with the tilde sign.
 (b) It can be overloaded.
 (c) It can access static data members of a class.
 (d) It can be virtual.
 3. Which of the following kinds of functions can access the protected members of a class?
 (a) A global non-member friend function.
 (b) A member function of a friend class.
 (c) A global non-member function.
 (d) A member function of a friend class that has been derived by public or protected

keywords.
 4. Which of the following are classes in the standard C++ stream handling library?
 (a) iostream
 (b) stream
 (c) ostream
 (d) fstream
 5. Which of the following enable code reusability?
 (a) Function overloading
 (b) Inheritance
 (c) Exception handling
 (d) Templates

Short Answer Questions

[4 × 5 = 20]
 1. Explain the need for user-de ned copy constructors with the help of examples.
 2. In which order are the constructors and destructors called when an object of the derived class is

created?
 3. What is the difference between static_cast and dynamic_cast operators?
 4. Why are operators overloaded?
 5. When and how does the C++ compiler generate an actual class de nition from its template?

 Object-Oriented Programming with C++458

Test 3

Time: 1 hour
Max Marks: 50

True/False

[1 × 10 = 10]
 1. The value of a mutable data member can be modi ed by a constant function.
 2. Default value cannot be given to more than one formal argument of a function.
 3. A static data member of a class can be of the same type as the class.
 4. A class can have more than one constructor.
 5. A base class and a derived class cannot have functions with the same name and same signature.
 6. Presence of virtual functions in a class does not increase the size of its objects.
 7. We can overload the increment operator to decrement the value of the objects.
 8. The name of the class of the object at which a pointer points can be found out by using the typeid

operator.
 9. A template class can have only one template type object.
 10. A single catch block can be used to catch more than one type of exception.

Fill in the Blanks

[1 × 10 = 10]
 1. A class that contains another class is knows as class.
 2. The pointer points at the invoking object.
 3. The operator is used to capture memory dynamically in C++.
 4. The name of the destructor is pre xed with the sign.
 5. Deriving from more than one base class is known as inheritance.
 6. The keyword is used to overload operators.
 7. The two modes of input/output are mode and binary mode.
 8. The read() and write() functions operate in mode.
 9. The operator is used to cast away the constness of the operand.
 10. The keyword is used to label the block of code from which an exception

is likely to be thrown.

Multiple Choice Questions

(more than one choice can be correct)
[2 × 5 = 10]

 1. Which of the following keywords is used to create a new data type?
 (a) class
 (b) inline
 (c) throw
 (d) struct
 2. Which of the following occur when a class is derived from another class by using the private

keyword?
 (a) Public members of the base class reappear as private members of the derived class.
 (b) Public members of the base class reappear as protected members of the derived class.
 (c) Protected members of the base class reappear as protected members of the derived class.
 (d) Protected members of the base class reappear as private members of the derived class.

 Appendix F: Self Tests 459

 3. Which of the following are not keywords in C++?
 (a) struct
 (b) abstract
 (c) constant
 (d) cast
 4. Which of the following functions returns the number of elements in a list?
 (a) size()
 (b) length()
 (c) width()
 (d) index()
 5. Flags that indicate state of the next byte in the associated le are
 (a) eofbit
 (b) no lebit
 (c) failbit
 (d) badbit

Short Answer Questions
[4 × 5 = 20]

 1. Explain why static data members should be explicitly declared outside the class. Why should static
data members be de ned in the implementation les only?

 2. Why is it necessary for the derived class constructor to pass values explicitly to the base class
constructor for initializing base class members?

 3. What is the virtual table? How is it created? What is the virtual pointer?
 4. Why does the function to overload the assignment operator receive and return by reference?
 5. Explain why the stack and queue classes do private inheritance from the single linked list class.

 Stanley B. Lippman and Josee Lajoie (1998), C++ Primer, 3rd edn, Pearson Education,
Asia.

 This book contains an in-depth coverage of a wide range of topics in C++. An excellent
book for students aiming to gain an insight into the practical aspects of C++.

 Scott Meyers (1998), Effective C++, 2nd edn, Pearson Education, Asia.
 This book gives excellent tips and tricks for writing C++ code. An easy to follow language

makes the book inviting to read and keeps the reader’s attention riveted till the very end.
A must read for the practical C++ programmer.

 Bjarne Stroustrup (1991), The C++ Programming Language, 2nd end, Pearson
Education, Asia.

 This book has been written by the creator of C++ himself. It is an excellent reference
book on the C++ language.

 Jesse Liberty (1998), C++ Unleashed, Sams.
 This book contains a number of excellent case studies on the practical application areas

of C++, such as CORBA, Data Structures, COM, and Data Persistence. It is highly
recommended for the practical C++ programmer.

 Al Stevens (2003), Teach Yourself C++, 7th edn, Wiley Publishing Inc., Indianapolis,
Indiana.

 This is a good book for learning the fundamentals of C++. Well-arranged topics make the
book easy to read. A number of advanced concepts have been included in this book.

 Stephen Prata (2001), C++ Primer Plus, 4th edn, Sams.
 This is a good book for learning the fundamentals of C++. An easy language and plenty

of solved examples are the salient features of the book.
 E. Balagurusamy (1995), Object Oriented Programming with C+, 2nd edn, Tata

McGraw-Hill.
 This is a popular book on C++ in the Indian market. The book gives a good coverage of

the various aspects of programming in C++.

Bibliography

This page has been reformatted by Knovel to provide easier navigation.

INDEX

Index Terms Links

A

abort() 89

abstract base class 163

arrow operator 47

B

bad_cast 273

bad() function 200

C

catch 399 397

cin 173

 class diagrams 438

class hierarchy for handling streams 172

class keyword 35

calling one member function from another 48

class templates 378

 nested class templates 382

clear() function 200

clone function 168

close() 194

comparison of C++ with C 8

console input/output 9

 cin 13

 cout 9

 endl 10

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

console input/output (Cont.)

 extraction operator 13

 insertion operator 9

 iostream.h 12

 ostream_withassign 9

constant member functions 52

constructors 87

 copy constructor 105

 guaranteed initialization of the data 96

 parameterized 97

 zero-argument 94

cout 172

C-Style handling of error-generating code 394

D

data abstraction 45

data structures 283

default values for formal arguments of functions 23

delete operator 87

 syntax for using the ‘delete’ operator 86 87

destructors 109

 preventing memory leaks 111

dot operator 43

dynamic memory management 79

 dynamic memory allocation 79

 dynamic memory deallocation 84

E

early binding 450

eof() function 199

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

exception handling 393

 accessing the thrown object in the catch block 406

 catching uncaught exceptions 409

 limitation of exception handling 414

 need to throw class objects 404

 throwing parameterized objects of a nested

 exception 408

explicit address manipulation 47

extraction operator 173 181

F

fail() function 199

friends 54

 friend classes 55

 friend member functions 57

 friend non-member functions 54

fstream 194 174

function overloading 21

function overriding 127

function prototyping 19

 syntax 19

 why is prototyping important 19

function templates 373

 override the function template 376

G

get() 183

getline() 183

I

ifstream 174

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

inherit 7

inheritance

 accessing members of the base class 121

 ambiguities in multiple inheritance 141

 base class and derived class pointers 122

 base class initialization 129

 deriving by the ‘private’ access specifier 136

 deriving by the ‘protected’ access specifier 135

 deriving by the ‘public’ access specifier 133

 function overriding 127

 hierarchical inheritance 147

 hybrid inheritance 148

 multi-level inheritance 145

 multiple inheritance 139

 order of invocation of constructors and destructor 149

 overriding 143

 protected access specifier 132

 syntax 117

 virtual base class 145

inline functions 25

insertion operator 172 178

instance diagrams 438

ios 172

iostream 173

istream 173

istream_withassign 173

L

late binding 451

linked lists 284

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

M

macros 28

manipulators 201

 resetiosflags() 203

 setfill() 202

 setiosflags() 202

 setprecision() 202

 setw() 201

 user-defined 203

memory leak 85 111

mutable data members 54

mutable keyword 276

N

namespaces 68

nested classes 71

new operator 89 88 79

 syntax of the new operator 81

new style cast operators 211

 const_cast 276 211

 dynamic_cast 271 211

 reinterpret_cast 276 211

 static_cast 275 211

non-type 379

 template arguments 379

O

object design 448

object input/output through member functions 197

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

object-oriented analysis and design 437

 analysis 446

 dynamic model 438 442

 functional model 438 444

 object model 438

 stages 437

object-oriented programming system 7

 inheritance 7

 data security 7

 guaranteed initialization of data members 7

 polymorphism 7

objects 36

 arrays inside objects 67

 arrays of objects 67

 objects and functions 65

ofstream 173

open() 193

 open mode bits 193

operator overloading 211 378

 overloading the arithmetic operators 225

 overloading the assignment operator 234

 overloading the increment and the decrement

 operator 221

 overloading the insertion and the extraction operator 240

 overloading the new and the delete operators 244

 overloading the pointer-to-member (->) operator 265

 overloading the relational operators 230

 overloading the subscript operator 261

 overloading the unary minus and the unary plus ope 224

 rules for operator overloading 219

 syntax 212

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

operator overloading (Cont.)

 using friend functions 215

 why are operators overloaded? 216

ostream 172

overloaded member functions 49

overriding 143

P

polymorphism 23

 dynamic 23

 function 23

 static 23

printf() 9 10

private member function 239

procedure-oriented programming system 5

 data is not secure 6

protected access specifier 132

put() function 180

Q

queues 340

R

random access to files 197

read() 189

reference variables 14

 a reference variable can be a function argument 16

 returning a reference to a local variable 18

RTTI (run time type information) 211

 typeid 211

 typeid operator 277

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

S

scanf() 12

scope resolution operator 37 42 142 129

seekg() 196

seekp() 195

set_new_handler() function 88

 new handler function 88

 out-of-memory condition 88

smart pointers 265

stacks 336

standard template library 380 382

 list class 383

 map class 387

 multimap class 389

 multiset class 390

 pair class 387

 set class 389

 vector class 386

static members 59

 static member data 59

 static member functions 64

static memory management 78

streams 172

struct keyword 36

structure 1 3

 creating a new data type 4

 lack of data security 6

 using structures in application programs 5

 need for 1

 private and public members 33

 redefined in C++ 33

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

system design 447

T

tellg() 196

tellp() 196

template keyword 379 373

text and binary input/output 174

text Versus Binary Files 176

‘this’ pointer 40 53 50 37

 33

throw 399 397

trees 343

 binary trees 344

try 399 397

type,

 template arguments 379

 type template argument 379

type conversion 211 267

 basic type to class type 267

 class type to basic type 268

 class type to class type 269

U

using directive 70

V

virtual base class 145

virtual functions 156

 abstract base class 163

 mechanism of virtual functions 160

 need for virtual functions 153

Index Terms Links

This page has been reformatted by Knovel to provide easier navigation.

virtual functions (Cont.)

 pure virtual functions 162

 virtual destructors and virtual constructors 167

 virtual pointer 161

 virtual table 160

W

write() 185

	Front Matter
	Preface to the First Edition
	Prefaces
	Preface to the Second Edition

	Table of Contents
	1. Introduction to C++
	1.1 A Review of Structures
	1.1.1 The Need for Structures
	1.1.2 Creating a New Data Type Using Structures
	1.1.3 Using Structures in Application Programs

	1.2 Procedure-Oriented Programming Systems
	1.3 Object-Oriented Programming Systems
	1.4 Comparison of C++ with C
	1.5 Console Input/Output in C++
	1.5.1 Console Output
	1.5.2 Console Input

	1.6 Variables in C++
	1.7 Reference Variables in C++
	1.8 Function Prototyping
	1.9 Function Overloading
	1.10 Default Values for Formal Arguments of Functions
	1.11 Inline Functions
	Summary
	Key Terms
	Exercises

	2. Classes and Objects
	2.1 Introduction to Classes and Objects
	2.1.1 Private and Public Members
	2.1.2 Objects
	2.1.3 Scope Resolution Operator
	2.1.4 Creating Libraries Using the Scope Resolution Operator
	2.1.5 Using Classes in Application Programs
	2.1.6 this Pointer
	2.1.7 Data Abstraction
	2.1.8 Explicit Address Manipulation
	2.1.9 Arrow Operator
	2.1.10 Calling One Member Function from Another

	2.2 Member Functions and Member Data
	2.2.1 Overloaded Member Functions
	2.2.2 Default Values for Formal Arguments of Member Functions
	2.2.3 Inline Member Functions
	2.2.4 Constant Member Functions
	2.2.5 Mutable Data Members
	2.2.6 Friends
	2.2.6.1 Friend Non-Member Functions
	2.2.6.2 Friend Classes
	2.2.6.3 Friend Member Functions
	2.2.6.4 Friends as Bridges

	2.2.7 Static Members
	2.2.7.1 Static Member Data
	2.2.7.2 Static Member Functions

	2.3 Objects and Functions
	2.4 Objects and Arrays
	2.4.1 Arrays of Objects
	2.4.2 Arrays inside Objects

	2.5 Namespaces
	2.6 Nested Inner Classes
	Summary
	Key Terms
	Exercises

	3. Dynamic Memory Management
	3.1 Introduction
	3.2 Dynamic Memory Allocation
	3.3 Dynamic Memory Deallocation
	3.4 set_new_handler Function
	Summary
	Key Terms
	Exercises

	4. Constructors and Destructors
	4.1 Constructors
	4.1.1 Zero-Argument Constructor
	4.1.2 Parameterized Constructors
	4.1.3 Explicit Constructors
	4.1.4 Copy Constructor

	4.2 Destructors
	4.3 Philosophy of OOPS
	Summary
	Key Terms
	Exercises

	5. Inheritance
	5.1 Introduction
	5.1.1 Effects of Inheritance
	5.1.2 Benefits of Inheritance
	5.1.3 Inheritance in Actual Practice
	5.1.4 Base Class and Derived Class Objects
	5.1.5 Accessing Members of the Base Class in the Derived Class

	5.2 Base Class and Derived Class Pointers
	5.3 Function Overriding
	5.4 Base Class Initialization
	5.5 Protected Access Specifier
	5.6 Deriving by Different Access Specifiers
	5.6.1 Deriving by the Public Access Specifier
	5.6.2 Deriving by the Protected Access Specifier
	5.6.3 Deriving by the Private Access Specifier

	5.7 Different Kinds of Inheritance
	5.7.1 Multiple Inheritance
	5.7.2 Ambiguities in Multiple Inheritance
	5.7.3 Multi-Level Inheritance
	5.7.4 Hierarchical Inheritance
	5.7.5 Hybrid Inheritance

	5.8 Order of Invocation of Constructors and Destructors
	Summary
	Key Terms
	Exercises

	6. Virtual Functions and Dynamic Polymorphism
	6.1 Need for Virtual Functions
	6.2 Virtual Functions
	6.3 Mechanism of Virtual Functions
	6.4 Pure Virtual Functions
	6.5 Virtual Destructors and Virtual Constructors
	6.5.1 Virtual Destructors
	6.5.2 Virtual Constructors

	Summary
	Key Terms
	Exercises

	7. Stream and File Handling
	7.1 Streams
	7.2 Class Hierarchy for Handling Streams
	7.3 Text and Binary Input/Output
	7.3.1 Data Storage in Memory
	7.3.2 Input/Output of Character Data
	7.3.3 Input/Output of Numeric Data
	7.3.4 Note on Opening Disk Files for I/O

	7.4 Text versus Binary Files
	7.5 Text Output/Input
	7.5.1 Text Output
	7.5.2 Text Input

	7.6 Binary Output/Input
	7.6.1 Binary Output - write Function
	7.6.2 Binary Input - read Function

	7.7 Opening and Closing Files
	7.7.1 open Function
	7.7.2 close Function

	7.8 Files as Objects of the fstream Class
	7.9 File Pointers
	7.9.1 seekp Function
	7.9.2 tellp Function
	7.9.3 seekg Function
	7.9.4 tellg Function

	7.10 Random Access to Files
	7.11 Object Input/Output through Member Functions
	7.12 Error Handling
	7.12.1 eof Function
	7.12.2 fail Function
	7.12.3 bad Function
	7.12.4 clear Function

	7.13 Manipulators
	7.13.1 Pre-Defined Manipulators
	7.13.2 User-Defined Manipulators

	7.14 Command Line Arguments
	Summary
	Key Terms
	Exercises

	8. Operator Overloading, Type Conversion, New Style Casts, and RTTI
	8.1 Operator Overloading
	8.1.1 Overloading Operators - The Syntax
	8.1.2 Compiler Interpretation of Operator-Overloading Functions
	8.1.3 Overview of Overloading Unary and Binary Operators
	8.1.4 Operator Overloading
	8.1.5 Rules for Operator Overloading

	8.2 Overloading Various Operators
	8.2.1 Overloading Increment and Decrement Operators Prefix and Postfix
	8.2.2 Overloading Unary Minus and Unary Plus Operator
	8.2.3 Overloading Arithmetic Operators
	8.2.4 Overloading Relational Operators
	8.2.5 Overloading Assignment Operator
	8.2.6 Overloading Insertion and Extraction Operators
	8.2.7 Overloading new and delete Operators
	8.2.8 Overloading Subscript Operator
	8.2.9 Overloading Pointer-to-member - Operator Smart Pointer

	8.3 Type Conversion
	8.3.1 Basic Type to Class Type
	8.3.2 Class Type to Basic Type
	8.3.3 Class Type to Class Type

	8.4 New Style Casts and the typeid Operator
	8.4.1 dynamic_cast Operator
	8.4.2 static_cast Operator
	8.4.3 reinterpret_cast Operator
	8.4.4 const_cast Operator
	8.4.5 typeid Operator

	Summary
	Key Terms
	Exercises

	9. Data Structures
	9.1 Introduction
	9.2 Linked Lists
	9.3 Stacks
	9.4 Queues
	9.5 Trees
	9.5.1 Binary Trees
	9.5.2 Binary Search Trees

	Summary
	Key Terms
	Exercises

	10. Templates
	10.1 Introduction
	10.2 Function Templates
	10.3 Class Templates
	10.3.1 Nested Class Templates

	10.4 Standard Template Library
	10.4.1 list Class
	10.4.2 vector Class
	10.4.3 pair Class
	10.4.4 map Class
	10.4.5 set Class
	10.4.6 multimap Class
	10.4.7 multiset Class

	Summary
	Key Terms
	Exercises

	11. Exception Handling
	11.1 Introduction
	11.2 C-Style Handling of Error-Generating Code
	11.2.1 Terminate the Program
	11.2.2 Check the Parameters before Function Call
	11.2.3 Return a Value Representing an Error

	11.3 C++-Style Solution - The try/throw/catch Construct
	11.3.1 It is Necessary to Catch Exceptions
	11.3.2 Unwinding of the Stack
	11.3.3 Need to Throw Class Objects
	11.3.4 Accessing the Thrown Object in the Catch Block
	11.3.5 Throwing Parameterized Objects of a Nested Exception Class
	11.3.6 Catching Uncaught Exceptions
	11.3.7 Re-Throwing Exceptions

	11.4 Limitation of Exception Handling
	Summary
	Key Terms
	Exercises

	Appendices
	Appendix A: Case Study - A Word Query System
	A.1 Problem Statement
	A.2 A Sample Run
	A.3 The Source Code
	A.4 Explanation of the Code

	Appendix B: Comparison of C++ with C
	B.1 Non-Object-Oriented Features Provided in C++ That are Absent in C Language
	B.2 Object-Oriented Features Provided in C++ to Make it Comply with the Requirements of the Object-Oriented Programming System

	Appendix C: Comparison of C++ with Java
	C.1 Similarities between C++ and Java
	C.2 Differences between C++ and Java

	Appendix D: Object-Oriented Analysis and Design
	D.1 Introduction
	D.1.1 Why Build Models?
	D.1.2 Overview of OOAD

	D.2 Object-Oriented Model
	D.2.1 Object Model
	D.2.2 Dynamic Model
	D.2.3 Functional Model

	D.3 Analysis
	D.3.1 Overview of Analysis
	D.3.2 Object Modelling
	D.3.3 Dynamic Modelling
	D.3.4 Functional Modelling

	D.4 System Design
	D.4.1 Breaking the System into Sub-Systems
	D.4.2 Layers
	D.4.3 Partitions

	D.5 Object Design
	D.5.1 Overview of Object Design

	D.6 Implementation

	Appendix E: Glossary
	Appendix F: Self Tests
	F.1 Test 1
	F.2 Test 2
	F.3 Test 3

	Bibliography
	Index
	A
	B
	C
	D
	E
	F
	G
	I
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W

