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C++ made its advent in the early 1980s and enabled programmers to write their programs 
the object-oriented way. For this reason, the language quickly gained popularity and became 
a programming language of choice. Despite the development of a number of competing 
object-oriented languages including Java, C++ has successfully maintained its position of 
popularity.

C++ starts where C stops. C++ is a superset of C. All the language features of C language 
appear in C++ with little or no modi  cation. Over and above such features, C++ provides a 
number of extra features, which provide the language its object-oriented character.

About the Book

The continued popularity of C++ has led to considerable literature. Innumerable books, journals, 
magazines, and articles have been written on C++. So, why another book on C++? 

The aim of the book is to thoroughly explain all aspects of the language constructs provided 
by C++. While doing full justice to the commonly explained topics of C++, the book does 
not neglect the advanced and new concepts of C++ that are not widely taught. 

This book is a power-packed instruction guide for Object-Oriented Programming and C++. 
The purpose of this book is two-fold:

To clarify the fundamentals of the Object-Oriented Programming System 
To provide an in-depth treatment of each feature and language construct of C++ 

This book emphasizes the Object-Oriented Programming System—its bene  ts and its 
superiority over the conventional Procedure-Oriented Programming System.

This book starts directly with C++ since the common features of C and C++ are anyway 
covered in books on C language. Each feature of C++ is covered from the practical point of 
view. Instead of brief introductions, this book gives an in-depth explanation of the rationale 
and proper use of each object-oriented feature of C++.

To help the readers assimilate the large volume of knowledge contained in this book, an 
adequate number of example programs, well-designed diagrams, and analogies with the real 
world have been given. Some program examples given in this book are abstract in nature to 
help readers focus on the concept being discussed. 
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The object-oriented programming system (OOPS) enables a programmer to model real-world 
objects. It allows the programmer to add characteristics like data security, data encapsulation, 
etc. 

In the procedure-oriented programming system, procedures are dissociated from data and 
are not a part of it. Instead, they receive structure variables, or their addresses, and then work 
upon them. The code design is centered around procedures. While this may sound obvious, 
this programming pattern has its drawbacks, a major one being that the data is not secure. It 
can be manipulated by any procedure. 

It is the lack of data security of the procedure-oriented programming system that led to 
OOPS, in which, with the help of a new programming construct and new keywords, associated 
functions of the data structure can be given exclusive rights to work upon its variables. 

There is another characteristic of real-world objects—a guaranteed initialization of data. 
Programming languages that implement OOPS enable library programmers to incorporate this 
characteristic of real-world objects into structure variables. Library programmers can ensure 
a guaranteed initialization of data members of structure variables to the desired values. For 
this, application programmers do not need to write code explicitly. 

OOPS further supports the following concepts: 
Inheritance  This feature allows a class to inherit the data and function members of an 
existing class.
Data abstraction  Data abstraction is a virtue by which an object hides its internal 
operations from the rest of the program.
Modularity  This feature supports dividing a program into small segments and implement 
those segments using different functions.
Polymorphism  Through polymorphism, functions with different set of formal arguments 
can have the same name. 

The  rst edition had covered the fundamentals of the object oriented programming system 
in depth. These explanations in the  rst edition hold true for any programming language that 
supports OOPS. This second edition enhances coverage, as listed below.

New to this Edition

New chapter on data structures containing new and original algorithms, especially an  
elegant and simple recursive algorithm for inserting nodes into trees. The explanations 
are elaborate and full of diagrams.
New sections on explicit constructors, command line arguments, and re-throwing  
exceptions.

Preface to the Second Edition
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iv  Preface to the Second Edition

Expanded glossary. 
Accompanying CD contains all the program codes given in the text. 

Key Features

Simple and concise language eases the understanding of complex concepts that have  
made C++ powerful but enigmatic.
Plenty of solved examples with complete program listings and test cases to reinforce  
learning.
Review questions and program writing exercises at the end of each chapter to provide  
additional practice.
Self-tests at the end of the book to prepare the students for examinations. 

Organization of the Book

A brief knowledge of C language is a prerequisite for this book. The readers need to know 
how programs are written in C, data types, decision-making and looping constructs, operators, 
functions, header  les, pointers, and structures.

Chapter 1 contains an explanation of the procedure-oriented programming system, the 
role played by structures in this system, its drawbacks and how these drawbacks led to the 
creation of OOPS. The meaning and method of modelling real-world objects by the object-
oriented programming system have been clearly explained. The chapter includes a study of 
the non-object-oriented features of C++.

Chapter 2 is devoted to the study of objects and classes. It gives a thorough explanation 
of the class construct of C++. Superiority of the class construct of C++ over the structure 
construct of C language is explained. A description of the various types and features of member 
functions and member data is included. Other concepts included are namespaces, arrays of 
objects, arrays in objects, and nested classes.

Chapter 3 deals with dynamic memory management. It explains the use of the new and the 
delete operators. It also explains the method of specifying our own new handler for handling 
out-of-memory conditions.

Chapter 4 explains constructors and destructors. It discusses their importance, their features, 
and the method of de  ning them.

Chapter 5 is devoted to inheritance. Concepts like base class, derived class, base class 
pointer, and derived class pointer are covered. The protected keyword and the implications 
of deriving by different access speci  ers are explained. This chapter describes various types 
of inheritance.

Chapter 6 gives a detailed explanation of one of the most striking features of C++—
dynamic polymorphism. This chapter describes the virtual functions and how it enables C++ 
programmers to extend class libraries. The importance of pure virtual functions and clone 
functions is also explained.

Chapter 7 describes the standard C++ library for handling streams. It explains the two 
types of input and output—text mode and binary mode. Input and output from disk  les are 
explained. The chapter also describes the use of error-handling routines of the standard C++ 
stream library and manipulators.

Chapter 8 is devoted to operator overloading, type conversion, new style casts, and RTTI. 
This chapter explains the various intricacies and the proper use of operator overloading. 
This chapter also explains how a C++ programmer can implement conventional style type 
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 Preface to the Second Edition v

conversions. New style casts for implementing type conversions are explained next. This 
chapter ends with a treatment of run time type information (RTTI).

Chapter 9 explains and illustrates the most important data structures—linked lists and trees. 
It includes full-  edged programs that can be used to create various data structures.

Chapter 10 contains a detailed description of templates. The importance of function 
templates and class templates and their utilization in code reuse is explained. This chapter 
also provides an overview of the Standard Template Library (STL) of C++.

Chapter 11 explains the concept of exception handling. It begins with a section on 
conventional methods and their drawbacks. This is followed by an explanation of the try-catch-
throw mechanism provided by C++ and its superiority over the conventional methods.

The appendices in the book include a case study, comparison of C++ with C, comparison 
of C++ with Java, an overview of object-oriented analysis and design, and self tests.
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Introduction to C++

This chapter introduces the reader to the fundamentals of object-oriented programming systems 
(OOPS).

The chapter begins with an overview of structures, the reasons for their inclusion as a 
language construct in C language, and their role in procedure-oriented programming systems. 
Use of structures for creating new data types is described. Also, the drawbacks of structures 
and the development of OOPS are elucidated.

The middle section of the chapter explains OOPS, supplemented with suitable examples 
and analogies to help in understanding this tricky subject.

The concluding section of the chapter includes a study of a number of new features that are 
implemented by C++ compilers but do not fall under the category of object-oriented features. 
(Language constructs of C++ that implement object-oriented features are dealt with in the 
next chapter.)

O 

V 
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R 

V 

I 

E 

W

 1.1  A Review of  Structures

In order to understand procedure-oriented programming systems, let us  rst recapitulate our 
understanding of structures in C. Let us review their necessity and use in creating new data 
types.

1.1.1 The  Need for Structures

There are cases where the value of one variable depends upon that of another variable.
Take the example of date. A date can be programmatically represented in C by three 

different integer variables taken together. Say,
int d,m,y; //three integers for representing dates 

Here ‘d’, ‘m’, and ‘y’ represent the day of the month, the month, and the year, respectively. 
Observe carefully. Although these three variables are not grouped together in the code, they 
actually belong to the same group. The value of one variable may in  uence the value of the 
other two. In order to understand this clearly, consider a function next_day() that accepts 
the addresses of the three integers that represent a date and changes their values to represent 
the next day. The prototype of this function will be

void next_day(int *,int *,int *); //function to calculate
     //the next day

1
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Suppose,
d=1;
m=1;
y=2002;  //1st January, 2002

Now, if we write
 next_day(&d,&m,&y);

‘d’ will become 2, ‘m’ will remain 1, and ‘y’ will remain 2002.

But if
 d=28;
m=2;
y=1999; //28th February, 1999

and we call the function as
next_day(&d,&m,&y);

‘d’ will become 1, ‘m’ will become 3, and ‘y’ will remain 1999.
Again, if

d=31;
m=12;
y=1999;  //31st December, 1999

and we call the function as
next_day(&d,&m,&y);

‘d’ will become 1, ‘m’ will become 1, and ‘y’ will become 2000.
As you can see, ‘d’, ‘m’, and ‘y’ actually belong to the same group. A change in the value 

of one may change the value of the other two. But there is no language construct that actually 
places them in the same group. Thus, members of the wrong group may be accidentally sent 
to the function (Listing 1.1)!  

 Listing 1.1 Problem in passing groups of programmatically independent but logically 
dependent variable

d1=28; m1=2; y1=1999; //28th February, 1999
d2=19; m2=3; y2=1999; //19th March, 1999
next_day(&d1,&m1,&y1); //OK
next_day(&d1,&m2,&y2); //What? Incorrect set passed!

As can be observed in Listing 1.1, there is nothing in the language itself that prevents the 
wrong set of variables from being sent to the function. Moreover, integer-type variables that 
are not meant to represent dates might also be sent to the function!

Let us try arrays to solve the problem. Suppose the next_day() function accepts an array 
as a parameter. Its prototype will be

void next_day(int *);

 Let us declare date as an array of three integers.
int date[3];
date[0]=28;
date[1]=2;
date[2]=1999;     //28th February, 1999
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Now, let us call the function as follows:
next_day(date);

The values of ‘date[0]’, ‘date[1]’, and ‘date[2]’ will be correctly set to 1, 3, and 1999, 
respectively. Although this method seems to work, it certainly appears unconvincing. After 
all any integer array can be passed to the function, even if it does not necessarily represent 
a date. There is no data type of date itself. Moreover, this solution of arrays will not work if 
the variables are not of the same type. The solution to this problem is to create a data type 
called date itself using structures

 struct date //a structure to represent dates
{
 int d, m, y;
};

Now, the next_day() function will accept the address of a variable of the structure date 
as a parameter. Accordingly, its prototype will be as follows:

void next_day(struct date *); 

Let us now call it as shown in Listing 1.2.

Listing 1.2 The need for structures

struct date d1;
d1.d=28;
d1.m=2;
d1.y=1999;
next_day(&d1);

‘d1.d’, ‘d1.m’, and ‘d1.y’ will be correctly set to 1, 3, and 1999, respectively. Since the 
function takes the address of an entire structure variable as a parameter at a time, there is no 
chance of variables of the different groups being sent to the function.

 Structure is a programming construct in C that allows us to put together variables that 
should be together.

Library programmers use structures to create new data types. Application programs and 
other library programs use these new data types by declaring variables of this data type.

struct date d1; 

They call the associated functions by passing these variables or their addresses to them.
 d1.d=31;
d1.m=12;
d1.y=2003;
next_day(&d1);

Finally, they use the resultant value of the passed variable further as per requirements.
printf(“The next day is: %d/%d/%d\n”, d1.d, d1.m, d1.y); 

Output
The next day is: 01/01/2004
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1.1.2  Creating a New Data Type Using Structures

Creation of a new data type using structures is loosely a three-step process that is executed 
by the library programmer.
Step 1: Put the structure de  nition and the prototypes of the associated functions in a header 
 le, as shown in Listing 1.3.

Listing 1.3  Header fi le containing defi nition of a structure variable and prototypes of its 
associated functions

/*Beginning of date.h*/
/*This file contains the structure definition and
prototypes of its associated functions*/

struct date
{
 int d,m,y;
};
void next_day(struct date *); //get the next date
void get_sys_date(struct date *); //get the current
     //system date
/*
 Prototypes of other useful and relevant functions to
 work upon variables of the date structure
*/
/*End of date.h*/

Step 2: As shown in Listing 1.4, put the de  nition of the associated functions in a source 
code and create a library.

Listing 1.4 Defi ning the associated functions of a structure

/*Beginning of date.c*/
/*This file contains the definitions of the associated
functions*/
#include “date.h”

void next_day(struct date * p)
{
//calculate the date that immediately follows the one
//represented by *p and set it to *p.
}
void get_sys_date(struct date * p)
{
//determine the current system date and set it to *p
}
/*
  Definitions of other useful and relevant functions to work upon variables 

of the date structure
*/
/*End of date.c*/

Step 3: Provide the header  le and the library, in whatever media, to other programmers who 
want to use this new data type.

Creation of a structure and creation of its associated functions are two separate steps that 
together constitute one complete process.



 Introduction to C++ 5

1.1.3  Using Structures in Application Programs

The steps to use this new data type are as follows:
Step 1: Include the header  le provided by the library programmer in the source code.

/*Beginning of dateUser.c*/
#include“date.h”
void main( )
{
 . . . .
 . . . .
}
/*End of dateUser.c*/

Step 2: Declare variables of the new data type in the source code.
/*Beginning of dateUser.c*/
#include“date.h”
void main( )
{
 struct date d;
 . . . .
 . . . .
}
/*End of dateUser.c*/ 

Step 3: As shown in Listing 1.5, embed calls to the associated functions by passing these 
variables in the source code.

Listing 1.5 Using a structure in an application program

  /*Beginning of dateUser.c*/
#include“date.h”
void main()
{
 struct date d;
 d.d=28;
 d.m=2;
 d.y=1999;
 next_day(&d);
 . . . .
 . . . .
}
/*End of dateUser.c*/

 Step 4: Compile the source code to get the object  le.
Step 5: Link the object  le with the library provided by the library programmer to get the 
executable or another library.

 1.2   Procedure-Oriented Programming Systems  

In light of the previous discussion, let us understand the procedure-oriented programming 
system. The foregoing pattern of programming divides the code into functions. Data (contained 
in structure variables) is passed from one function to another to be read from or written into. 
The focus is on procedures. This programming pattern is, therefore, a feature of the procedure-
oriented programming system.
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In the procedure-oriented programming system, procedures are dissociated from data and 
are not a part of it. Instead, they receive structure variables or their addresses and work upon 
them. The code design is centered around procedures. While this may sound obvious, this 
programming pattern has its drawbacks.

The drawback with this programming pattern is that the  data is not secure. It can be 
manipulated by any procedure. Associated functions that were designed by the library 
programmer do not have the exclusive rights to work upon the data. They are not a part of 
the structure de  nition itself. Let us see why this is a problem.

Suppose the library programmer has de  ned a structure and its associated functions as 
described above. Further, in order to perfect his/her creation, he/she has rigorously tested 
the associated functions by calling them from small test applications. Despite his/her best 
efforts, he/she cannot be sure that an application that uses the structure will be bug free. The 
application program might modify the structure variables, not by the associated function he/
she has created, but by some code inadvertently written in the application program itself. 
Compilers that implement the procedure-oriented programming system do not prevent 
unauthorized functions from accessing/manipulating structure variables.

Now, let us look at the situation from the application programmer’s point of view. Consider 
an application of around 25,000 lines (quite common in the real programming world), in 
which variables of this structure have been used quite extensively. During testing, it is found 
that the date being represented by one of these variables has become 29th February 1999! 
The faulty piece of code that is causing this bug can be anywhere in the program. Therefore, 
debugging will involve a visual inspection of the entire code (of 25000 lines!) and will not 
be limited to the associated functions only.

The situation becomes especially grave if the execution of the code that is likely to corrupt 
the data is conditional. For example,

if(<some condition>)
 d.m++; //d is a variable of date structure… d.m may
    //become 13!

The condition under which the bug-infested code executes may not arise during testing. 
While distributing his/her application, the application programmer cannot be sure that it would 
run successfully. Moreover, every new piece of code that accesses structure variables will 
have to be visually inspected and tested again to ensure that it does not corrupt the members 
of the structure. After all, compilers that implement procedure-oriented programming systems 
do not prevent unauthorized functions from accessing/manipulating structure variables.

Let us think of a compiler that enables the library programmer to assign exclusive rights to 
the associated functions for accessing the data members of the corresponding structure. If this 
happens, then our problem is solved. If a function which is not one of the intended associated 
functions accesses the data members of a structure variable, a compile-time error will result. 
To ensure a successful compile of his/her application code, the application programmer will 
be forced to remove those statements that access data members of structure variables. Thus, 
the application that arises out of a successful compile will be the outcome of a piece of code 
that is free of any unauthorized access to the data members of the structure variables used 
therein. Consequently, if a run-time error arises, attention can be focused on the associated 
library functions.

It is the  lack of data security of procedure-oriented programming systems that led to object-
oriented programming systems (OOPS). This new system of programming is the subject of 
our next discussion.
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 1.3   Object-Oriented Programming Systems 

In OOPS, we try to model real-world objects. But, what are real-world objects? Most real-
world objects have internal parts and interfaces that enable us to operate them. These interfaces 
perfectly manipulate the internal parts of the objects. They also have the exclusive rights to 
do so.

Let us understand this concept with the help of an example. Take the case of a simple 
LCD projector (a real-world object). It has a fan and a lamp. There are two switches—one to 
operate the fan and the other to operate the lamp. However, the operation of these switches is 
necessarily governed by rules. If the lamp is switched on, the fan should automatically switch 
itself on. Otherwise, the LCD projector will get damaged. For the same reason, the lamp should 
automatically get switched off if the fan is switched off. In order to cater to these conditions, 
the switches are suitably linked with each other. The interface to the LCD projector is perfect. 
Further, this interface has the exclusive rights to operate the lamp and fan.

This, in fact, is a common characteristic of all real-world objects. If a perfect interface is 
required to work on an object, it will also have exclusive rights to do so.

Coming back to C++ programming, we notice a resemblance between the observed 
behaviour of the LCD projector and the desired behaviour of data structure’s variables. In 
OOPS, with the help of a new programming construct and new keywords, associated functions 
of the data structure can be given exclusive rights to work upon its variables. In other words, 
all other pieces of code can be prevented from accessing the data members of the variables 
of this structure. 

Compilers that implement OOPS enable  data security by diligently enforcing this 
prohibition. They do this by throwing compile-time errors against pieces of code that violate 
the prohibition. This prohibition, if enforced, will make structure variables behave like real-
world objects. Associated functions that are de  ned to perfectly manipulate structure variables 
can be given exclusive rights to do so.

There is still another characteristic of real-world objects—a guaranteed initialization of 
data. After all, when you connect the LCD projector to the mains, it does not start up in an 
invalid state (fan off and lamp on). By default, either both the lamp and the fan are off or 
both are on. Users of the LCD projector need not do this explicitly. The same characteristic 
is found in all real-world objects.

Programming languages that implement OOPS enable library programmers to incorporate 
this characteristic of real-world objects into structure variables. Library programmers can 
ensure a  guaranteed initialization of data members of structure variables to the desired values. 
For this, application programmers do not need to write code explicitly.

Two more features are incidental to OOPS. They are:
   Inherit ance
   Polymor phism

Inheritance allows one structure to inherit the characteristics of an existing structure. 
As we know from our knowledge of structures, a variable of the new structure will contain 

data members mentioned in the new structure’s de  nition. However, because of inheritance, 
it will also contain data members mentioned in the existing structure’s de  nition from which 
the new structure has inherited. 

Further, associated functions of the new structure can work upon a variable of the new 
structure. For this, the address/name of a variable of the new structure is passed to the associated 
functions of the new structure. Again, as a result of inheritance, associated functions of the 
existing structure from which the new structure has inherited will also be able to work upon 
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a variable of the new structure. For this, the address/name of a variable of the new structure 
is passed to the associated functions of the existing structure.

In inheritance, data and interface may both be inherited. This is expected as data and 
interface complement each other. The parent structure can be given the general common 
characteristics while its child structures can be given the more speci  c characteristics. This 
allows code reusability by keeping the common code in a common place—the base structure. 
Otherwise, the code would have to be replicated in all of the child structures, which will 
lead to maintenance nightmares. Inheritance also enables code extensibility by allowing 
the creation of new structures that are better suited to our requirements as compared to the 
existing structures.

Polymorphism, as the name suggests, is the phenomena by virtue of which the same entity 
can exist in two or more forms. In OOPS, functions can be made to exhibit polymorphic 
behaviour. Functions with different set of formal arguments can have the same name. 
Polymorphism is of two types: static and dynamic. We will understand how this feature enables 
C++ programmers to reuse and extend existing code in the subsequent chapters.

 1.4   Comparison of C++ with C
C++ is an extension of C language. It is a proper superset of C language. This means that 
a C++ compiler can compile programs written in C language. However, the reverse is not 
true. A C++ compiler can understand all the keywords that a C compiler can understand. 
Again, the reverse is not true. Decision-making constructs, looping constructs, structures, 
functions, etc. are written in exactly the same way in C++ as they are in C language. Apart 
from the keywords that implement these common programming constructs, C++ provides 
a number of additional keywords and language constructs that enable it to implement the 
object-oriented paradigm.

The header  le given in Listing 1.6 shows how the structure Date, which has been our 
running example so far, can be rewritten in C++.

Listing 1.6 Redefi ning the Date structure in C++

/*Beginning of Date.h*/
class Date  //class instead of structure
{
 private:
  int d,m,y;
 public:
  Date();
  void get_sys_date(); //associated functions appear
    //within the class definition
  void next_day();
};
/*End of Date.h*/

The following differences can be noticed between Date structure in C (Listing 1.3) and C++ 
(Listing 1.6):

The keyword  class has been used instead of struct.
Two new keywords— private and public—appear in the code.
Apart from data members, the class constructor also has member functions. 
A function that has the same name as the class itself is also present in the class. Incidentally,  
it has no return type specified. This is the class constructor and is discussed in Chapter 4 
of this book.
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The next chapter contains an in-depth study of the above class construct. It explains the 
meaning and implications of this new feature. It also explains how this and many more 
new features implement the features of OOPS, such as data hiding, data encapsulation, data 
abstraction, and a guaranteed initialization of data. However, before proceeding to Chapter 
2, let us digress slightly and study the following:

Console input/output in C++ 
Some non-object-oriented features provided exclusively in C++ (reference variables,  
function overloading, default arguments, inline functions)
Remember that C++ program  les have the extension ‘.cpp’ or ‘.C’. The former extension 

is normally used for Windows or DOS-based compilers while the latter is normally used 
for UNIX-based compilers. The compiler’s manual can be consulted to  nd out the exact 
extension.

 1.5   Console Input/Output in C++
This section discusses console input and output in C++.

1.5.1 Console Output
The output functions in C language, such as  printf(), can be included in C++ programs 
because they are anyway de  ned in the standard library. However, there are some more ways 
of outputting to the console in C++. Let us consider an example (see Listing 1.7).

Listing 1.7 Outputting in C++

 /*Beginning of cout.cpp*/
#include<iostream.h>
void main()
{
 int x;
 x=10;
 cout<<x; //outputting to the console
}
/*End of cout.cpp*/

Output
10

The third statement in the main() function (Listing 1.7) needs to be understood.
 cout (pronounce see-out) is actually an object of the class ostream_withassign (you can 

think of it as a variable of the structure  ostream_withassign). It stands as an alias for the 
console output device, that is, the monitor (hence the name).

The << symbol, originally the left shift operator, has had its de  nition extended in C++. 
In the given context, it operates as the  insertion operator. It is a binary operator. It takes 
two operands. The operand on its left must be some object of the ostream class. The operand 
on its right must be a value of some fundamental data type. The value on the right side of 
the insertion operator is ‘inserted’ (hence the name) into the stream headed towards the 
device associated with the object on the left. Consequently, the value of ‘x’ is displayed on 
the monitor.

The  le iostream.h needs to be included in the source code to ensure successful compilation 
because the object cout and the insertion operator have been declared in that  le.
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Another object  endl allows us to insert a new line into the output stream. Listing 1.8 
illustrates this.  

Listing 1.8 Inserting  new line by ‘endl’ 

/*Beginning of endl.cpp*/
#include<iostream.h>
void main()
{
 int x,y;
 x=10;
 y=20;
 cout<<x;
 cout<<endl; //inserting a new line by endl
 cout<<y;
}
/*End of endl.cpp*/

Output
10
20

One striking feature of the insertion operator is that it works equally well with values of 
all fundamental types as its right-hand operand. It does not need the format speci  ers that are 
needed in the  printf() family of functions. Listing 1.9 exempli  es this.

Listing 1.9 Outputting data with the insertion operator

 /*Beginning of cout.cpp*/
#include<iostream.h> 
void main() 
{
 int iVar;
 char cVar;
 float fVar;
 double dVar;
 char * cPtr;
 iVar=10;
 cVar=‘x’;
 fVar=2.3;
 dVar=3.14159;
 cPtr=“Hello World”;
 cout<<iVar;
 cout<<endl;
 cout<<cVar;
 cout<<endl;
 cout<<fVar;
 cout<<endl;
 cout<<dVar;
 cout<<endl;
 cout<<cPtr;
 cout<<endl;
}
/*End of cout.cpp*/



 Introduction to C++ 11

Output
10
x
2.3
3.14159
Hello World

Just like the arithmetic addition operator, it is possible to cascade the  insertion operator. 
Listing 1.10 is a case in point.

Listing 1.10 Cascading the insertion operator

 /*Beginning of coutCascade.cpp*/
#include<iostream.h> 
void main() 
{
 int x;
 float y;
 x=10;
 y=2.2;
 cout<<x<<endl<<y; //cascading the insertion operator
}
/*End of coutCascade.cpp*/

Output
10
2.2

It is needless to say that we can pass constants instead of variables as operands to the insertion 
operator, as shown in Listing 1.11.

Listing 1.11 Outputting constants using the insertion operator

 /*Beginning of coutMixed.cpp*/
#include<iostream.h>
void main() 
{
 cout<<10<<endl<<“Hello World\n”<<3.4;
}
/*End of coutMixed.cpp*/

Ouput
10
Hello World
3.4

In Listing 1.11, note the use of the new line character in the string that is passed as one of the 
operands to the insertion operator.

It was mentioned in the beginning of this section that cout is an object that is associated 
with the console. Hence, if it is the left-hand side operand of the insertion operator, the 
value on the right is displayed on the monitor. You will learn in the chapter on stream handling 
that it is possible to pass objects of some other classes that are similarly associated with disk 



 Object-Oriented Programming with C++12

 les as the left-hand side operand to the insertion operator. In such cases, the values on 
the right get stored in the associated  les.

1.5.2 Console Input

The input functions in C language, such as scanf(), can be included in C++ programs because 
they are anyway de  ned in the standard library. However, we do have some more ways of 
inputting from the console in C++. Let us consider an example.

Listing 1.12 Inputting in C++

 /*Beginning of cin.cpp*/
#include<iostream.h>
void main()
{
 int x;
 cout<<“Enter a number: ”;
 cin>>x; //console input in C++
 cout<<“You entered: ”<<x;
}
/*End of cin.cpp*/

 Output
Enter a number: 10<enter>
You entered: 10

The third statement in the main() function of Listing 1.12 needs to be understood.
cin (pronounce see-in) is actually an object of the class istream_withassign (you can 

think of it as a variable of the structure istream_withassign). It stands as an alias for the 
console input device, that is, the keyboard (hence the name).

The >> symbol, originally the right-shift operator, has had its de  nition extended in C++. 
In the given context, it operates as the extraction operator. It is a binary operator and takes 
two operands. The operand on its left must be some object of the istream_withassign class. 
The operand on its right must be a variable of some fundamental data type. The value for the 
variable on the right side of the extraction operator is extracted (hence the name) from the 
stream originating from the device associated with the object on the left. Consequently, the 
value of ‘x’ is obtained from the keyboard.

The  le  iostream.h needs to be included in the source code to ensure successful compilation 
because the object cin and the extraction operator have been declared in that  le.

Again, just like the insertion operator, the extraction operator works equally well 
with variables of all fundamental types as its right-hand operand. It does not need the format 
speci  ers that are needed in the  scanf() family of functions. Listing 1.13 exempli  es this.

Listing 1.13 Inputting data with the extraction operator

/*Beginning of cin.cpp*/
#include<iostream.h>
void main()
{
 int iVar;
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 char cVar;
 float fVar;
 cout<<“Enter a whole number: ”;
 cin>>iVar;
 cout<<“Enter a character: ”;
 cin>>cVar;
 cout<<“Enter a real number: ”;
 cin>>fVar;
 cout<<“You entered: ”<<iVar<<“ ”<<cVar<<“ ”<<fVar;
}
/*End of cin.cpp*/

Output
Enter a whole number: 10<enter>
Enter a character: x<enter>
Enter a real number: 2.3<enter>
You entered: 10 x 2.3

Just like the insertion operator, it is possible to cascade the  extraction operator. Listing 
1.14 is a case in point.

Listing 1.14 Cascading the extraction operator

/*Beginning of cinCascade.cpp*/
#include<iostream.h> 
void main()
{
  int x,y;
 cout<<“Enter two numbers\n”;
 cin>>x>>y; //cascading the extraction operator
 cout<<“You entered ”<<x<<“ and ”<<y;
}
/*End of cinCascade.cpp*/

Output
Enter two numbers
10<enter>
20<enter>
You entered 10 and 20

It was mentioned in the beginning of this section that  cin is an object that is associated with 
the console. Hence, if it is the left-hand side operand of the  extraction operator, the variable 
on the right gets its value from the keyboard. You will learn in the chapter on stream handling 
that it is possible to pass objects of some other classes that are similarly associated with disk 
 les as the left-hand side operand to the extraction operator. In such cases, the variable on 

the right gets its value from the associated  les.

 1.6  Variables in C++ 

Variables in C++ can be declared anywhere inside a function and not necessarily at its very 
beginning. For example, see Listing 1.15.
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Listing 1.15 Declaring variables in C++

#include<iostream.h>
void main()
{
 int x;
 x=10;
 cout<<“Value of x= ”<<x<<endl;
 int * iPtr; //declaring a variable in the middle of a
    //function
 iPtr=&x;
 cout<<“Address of x= ”<<iPtr<<endl;
}

Output
Value of x=10
Address of x= 0x21878163

 1.7   Reference Variables in C++

First, let us understand the basics. How does the operating system (OS) display the value of 
variables? How are assignment operations such as ‘x=y’ executed during run time? A detailed 
answer to these questions is beyond the scope of this book. A brief study is, nevertheless, 
possible and necessary for a good understanding of reference variables. What follows is a 
simpli  ed and tailored explanation.

The OS maintains the addresses of each variable as it allocates memory for them during run 
time. In order to access the value of a variable, the OS  rst  nds the address of the variable 
and then transfers control to the byte whose address matches that of the variable. 

Suppose the following statement is executed (‘x’ and ‘y’ are integer type variables). 
 x=y;

The steps followed are:
1. The OS first finds the address of ‘y’. 
2. The OS transfers control to the byte whose address matches this address. 
3. The OS reads the value from the block of four bytes that starts with this byte (most C++ 

compilers cause integer-type variables to occupy four bytes during run time and we will 
accept this value for our purpose). 

4. The OS pushes the read value into a temporary stack. 
5. The OS finds the address of ‘x’.
6. The OS transfers control to the byte whose address matches this address.
7. The OS copies the value from the stack, where it had put it earlier, into the block of four 

bytes that starts with the byte whose address it has found above (address of ‘x’).
Notice that addresses of the variables on the left as well as on the right of the assignment 

operator are determined. However, the value of the right-hand operand is also determined. The 
expression on the right must be capable of being evaluated to a value. This is an important 
point and must be borne in mind. It will enable us to understand a number of concepts later. 
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Especially, you must remember that the expression on the left of the assignment operator 
must be capable of being evaluated to a valid address at which data can be written.

Now, let us study reference variables. A reference variable is nothing but a reference for 
an existing variable. It shares the memory location with an existing variable. The syntax for 
declaring a reference variable is as follows:

<data-type> & <ref-var-name>=<existing-var-name>; 

For example, if ‘x’ is an existing integer-type variable and we want to declare iRef as a 
reference to it the statement is as follows:

 int & iRef=x;

iRef is a reference to ‘x’. This means that although iRef and ‘x’ have separate entries in the 
OS, their addresses are actually the same!

Thus, a change in the value of ‘x’ will naturally reflect in iRef and vice versa. 
Listing 1.16 illustrates this.

Listing 1.16 Reference variables

/*Beginning of reference01.cpp*/
#include<iostream.h>
void main()
{
 int x;
 x=10;
 cout<<x<<endl;
 int & iRef=x; //iRef is a reference to x
 iRef=20; //same as x=10;
 cout<<x<<endl;
 x++;  //same as iRef++;
 cout<<iRef<<endl;
}
/*End of reference01.cpp*/

Output
10
20
21

Reference variables must be initialized at the time of declaration (otherwise the compiler will 
not know what address it has to record for the reference variable).

Reference variables are variables in their own right. They just happen to have the address 
of another variable. After their creation, they function just like any other variable. 

We have just seen what happens when a value is written into a reference variable. The 
value of a reference variable can be read in the same way as the value of an ordinary variable 
is read. Listing 1.17 illustrates this.

Listing 1.17 Reading the value of a reference variable

/*Beginning of reference02.cpp*/
#include<iostream.h>
void main()
{
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 int x,y;
 x=10;
 int & iRef=x;
 y=iRef;  //same as y=x;
 cout<<y<<endl;
 y++;   //x and iRef unchanged
 cout<<x<<endl<<iRef<<endl<<y<<endl;
}
/*End of reference02.cpp*/

Output
10
10
10
11

 A reference variable can be a function argument and thus change the value of the parameter 
that is passed to it in the function call. Listing 1.18 is an illustrative example.

Listing 1.18 Passing by reference

  /*Beginning of reference03.cpp*/
#include<iostream.h>
void increment(int &); //formal argument is a reference
    //to the passed parameter
void main()
{
 int x;
 x=10;
 increment(x);
 cout<<x<<endl;
}
void increment(int & r) 
{
 r++;  //same as x++;
}
/*End of reference03.cpp*/

Output
11

Functions can return by reference also. See Listing 1.19.

Listing 1.19 Returning by reference

/*Beginning of reference04.cpp*/
#include<iostream.h>
int & larger(int &, int &);
int main()
{
 int x,y;
 x=10;
 y=20;
 int & r=larger(x,y);
 r=-1;
 cout<<x<<endl<<y<<endl;
}
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int & larger(int & a, int & b)
{
 if(a>b) //return a reference to the larger parameter
  return a;
 else
  return b;
}
/*End of reference04.cpp*/

Output
10
–1

In the foregoing listing, ‘a’ and ‘x’ refer to the same memory location while ‘b’ and ‘y’ 
refer to the same memory location. From the larger() function, a reference to ‘b’, that is, 
reference to ‘y’ is returned and stored in a reference variable ‘r’. The larger() function does 
not return the value ‘b’ because the return type is int& and not int. Thus, the address of ‘r’ 
becomes equal to the address of ‘y’. Consequently, any change in the value of ‘r’ also changes 
the value of ‘y’. Listing 1.19 can be shortened as illustrated in Listing 1.20.

Listing 1.20 Returning by reference

/*Beginning of reference05.cpp*/
#include<iostream.h>
int & larger(int &, int &);
int main()
{
 int x,y;
 x=10;
 y=20;
 larger(x,y)=-1;
 cout<<x<<endl<<y<<endl;
}
int & larger(int & a, int & b)
{
 if(a>b) //return a reference to the larger parameter
  return a;
 else
  return b;
}
/*End of reference05.cpp*/

Output
10
–1

The name of a non-constant variable can be placed on the left of the assignment operator 
because a valid address—the address of the variable—can be determined from it. A call to 
a function that returns by reference can be placed on the left of the assignment operator for 
the same reason. 

If the compiler  nds the name of a non-constant variable on the left of the assignment 
operator in the source code, it writes instructions in the executable to 

determine the address of the variable, 
transfer control to the byte that has that address, and  
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write the value on the right of the  assignment operator into the block that begins with 
the byte found above.
A function that returns by reference primarily returns the address of the returned variable. 

If the call is found on the left of the assignment operator, the compiler writes necessary 
instructions in the executable to 

transfer control to the byte whose address is returned by the function and  
write the value on the right of the  assignment operator into the block that begins with 
the byte found above.
The name of a variable can be placed on the right of the assignment operator. A call to 

a function that returns by reference can be placed on the right of the assignment operator 
for the same reason. 

If the compiler  nds the name of a variable on the right of the assignment operator in the 
source code, it writes instructions in the executable to 

determine the address of the variable, 
transfer control to the byte that has that address, 
read the value from the block that begins with the byte found above, and  
push the read value into the stack.  
A function that returns by reference primarily returns the address of the returned variable. 

If the call is found on the right of the assignment operator, the compiler writes necessary 
instructions in the executable to 

transfer control to the byte whose address is returned by the function, 
read the value from the block that begins with the byte found above, and  
push the read value into the stack. 
A constant cannot be placed on the left of the assignment operator. This is because 

constants do not have a valid address. Moreover, how can a constant be changed? Functions 
that return by value, return the value of the returned variable, which is a constant. Therefore, 
a call to a function that returns by value cannot be placed on the left of the assignment 
operator.

You may notice that the formal arguments of the larger() function in the foregoing listing 
have been declared as constant references because they are not supposed to change the values 
of the passed parameters even accidentally.

We must avoid  returning a reference to a local variable. For example, see Listing 1.21.

Listing 1.21 Returning the reference of a local variable

 /*Beginning of reference06.cpp*/
#include<iostream.h>
int & abc();
void main()
{
 abc()=-1;
}

int & abc()
{
 int x;
 return x; //returning reference of a local variable
}
/*End of reference06.cpp*/
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The problem with the above program is that when the abc() function terminates, ‘x’ will 
go out of scope. Consequently, the statement

 abc()=-1;

in the main() function will write ‘–1’ in an unallocated block of memory. This can lead to 
run-time errors.

 1.8   Function Prototyping 

Function prototyping is necessary in C++. A prototype describes the function’s interface to 
the compiler. It tells the compiler the return type of the function as well as the number, type, 
and sequence of its formal arguments.

The general  syntax of function prototype is as follows:

return_type function_name(argument_list);

For example,
 int add(int, int);

This prototype indicates that the add() function returns a value of integer type and takes two 
parameters both of integer type.

Since a function prototype is also a statement, a semicolon must follow it.
Providing names to the formal arguments in function prototypes is optional. Even if 

such names are provided, they need not match those provided in the function de  nition. For 
example, see Listing 1.22.

 Listing 1.22 Function prototyping

/*Beginning of funcProto.cpp*/
#include<iostream.h>
int add(int,int); //function prototype

void main()
{
 int x,y,z;
 cout<<“Enter a number: ”;
 cin>>x;
 cout<<“Enter another number: ”;
 cin>>y;
 z=add(x,y); //function call
 cout<<z<<endl;
}
int add(int a,int b) //function definition
{
 return (a+b);
}
/*End of funcProto.cpp*/

Output
Enter a number: 10<enter>
Enter another number: 20<enter>
30

 Why is prototyping important? By making prototyping necessary, the compiler ensures 
the following:
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The return value of a function is handled correctly. 
Correct number and type of arguments are passed to a function. 

Let us discuss these points.
Consider the following statement in Listing 1.22:

 int add(int, int);

The prototype tells the compiler that the add() function returns an integer-type value. Thus, 
the compiler knows how many bytes have to be retrieved from the place where the add() 
function is expected to write its return value and how these bytes are to be interpreted.

In the absence of prototypes, the compiler will have to assume the type of the returned 
value. Suppose, it assumes that the type of the returned value is an integer. However, the 
called function may return a value of an incompatible type (say a structure type). Now, 
suppose an integer-type variable is equated to the call to a function where the function call 
precedes the function de  nition. In this situation, the compiler will report an error against 
the function de  nition and not the function call. This is because the function call abided by 
its assumption, but the de  nition did not. However, if the function de  nition is in a different 
 le to be compiled separately, then no compile-time errors will arise. Instead, wrong results 

will arise during run time as Listing 1.23 shows.

Listing 1.23 Absence of function prototype produces weird results

 /*Beginning of def.c*/
/*function definition*/
struct abc
{
 char a;
 int b;
 float c;
};

struct abc test()
{
 struct abc a1;
 a1.a=‘x’;
 a1.b=10;
 a1.c=1.1;
 return a1;
}
/*End of def.c*/

/*Beginning of driver.c*/
void main()
{
 int x;
 x=test();  //no compile time error!!
 printf(“%d”,x);
}
/*End of driver.c*/

Output
1688

A compiler that does not enforce prototyping will de  nitely compile the above program. 
But then it will have no way of knowing what type of value the test() function returns. 
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Therefore, erroneous results will be obtained during run time as the output of Listing 1.23 
clearly shows.

Since the C++ compiler necessitates function prototyping, it will report an error against 
the function call because no prototype has been provided to resolve the function call. Again, 
if the correct prototype is provided, the compiler will still report an error since this time the 
function call does not match the prototype. The compiler will not be able to convert a struct 
abc to an integer. Thus, function prototyping guarantees protection from errors arising out 
of incorrect function calls.

What happens if the function prototype and the function call do not match? Such a situation 
cannot arise. Both the function prototype and the function de  nition are created by the same 
person, that is, the library programmer. The library programmer puts the function’s prototype in 
a header  le. He/she provides the function’s de  nition in a library. The application programmer 
includes the header  le in his/her application program  le in which the function is called. He/
she creates an object  le from this application program  le and links this object  le to the 
library to get an executable  le.

The function’s prototype also tells the compiler that the add() function accepts two 
parameters. If the program fails to provide such parameters, the prototype enables the compiler 
to detect the error. A compiler that does not enforce function prototyping will compile a 
function call in which an incorrect number and/or type of parameters have been passed. Run-
time errors will arise as in the foregoing case.

Finally, function prototyping produces automatic-type conversion wherever appropriate. 
We take the case of compilers that do not enforce prototyping. Suppose, a function expects an 
integer-type value (assuming integers occupy four bytes) but a value of double type (assuming 
doubles occupy eight bytes) is wrongly passed. During run time, the value in only the  rst 
four bytes of the passed eight bytes will be extracted. This is obviously undesirable. However, 
the C++ compiler automatically converts the double-type value into an integer type. This 
is because it inevitably encounters the function prototype before encountering the function 
call and therefore knows that the function expects an integer-type value. However, it must 
be remembered that such automatic-type conversions due to function prototypes occur only 
when it makes sense. For example, the compiler will prevent an attempted conversion from 
a structure type to integer type.

Nevertheless, can the same bene  ts not be realized without prototyping? Is it not possible 
for the compiler to simply scan the rest of the source code and  nd out how the function has 
been de  ned? There are two reasons why this solution is inappropriate. They are:

It is inefficient. The compiler will have to suspend the compilation of the line containing  
the function call and search the rest of the file.
Most of the times the function definition is not contained in the file where it is called. It  
is usually contained in a library.
Such compile-time checking for prototypes is known as static-type-checking.

 1.9   Function Overloading

C++ allows two or more functions to have the same name. For this, however, they must have 
different signatures. Signature of a function means the number, type, and sequence of formal 
arguments of the function. In order to distinguish amongst the functions with the same name, 
the compiler expects their signatures to be different. Depending upon the type of parameters 
that are passed to the function call, the compiler decides which of the available de  nitions 
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will be invoked. For this, function prototypes should be provided to the compiler for matching 
the function calls. Accordingly, the linker, during link time, links the function call with the 
correct function de  nition. Listing 1.24 clari  es this.

 Listing 1.24 Function overloading

/*Beginning of funcOverload.cpp*/
#include<iostream.h>
int add(int,int); //first prototype
int add(int,int,int); //second prototype

void main()
{
 int x,y;
 x=add(10,20); //matches first prototype
 y=add(30,40,50); //matches second prototype
 cout<<x<<endl<<y<<endl;
}

int add(int a,int b)
{
 return(a+b);
}

int add(int a,int b,int c)
{
 return(a+b+c);
}
/*End of funcOverload.cpp*/ 

Output
30
120

Just like ordinary functions, the de  nitions of overloaded functions are also put in libraries. 
Moreover, the function prototypes are placed in header  les.

The two function prototypes at the beginning of the program tell the compiler the two 
different ways in which the add() function can be called. When the compiler encounters the 
two distinct calls to the add() function, it already has the prototypes to satisfy them both. 
Thus, the compilation phase is completed successfully. During linking, the linker  nds the 
two necessary de  nitions of the add() function and, hence, links successfully to create the 
executable  le.

The compiler decides which function is to be called based upon the number, type, and 
sequence of parameters that are passed to the function call. When the compiler encounters 
the  rst function call,

 x=add(10,20);

it decides that the function that takes two integers as formal arguments is to be executed. 
Accordingly, the linker then searches for the de  nition of the add() function where there are 
two integers as formal arguments.

Similarly, the second call to the add() function
 y=add(30,40,50);

is also handled by the compiler and the linker.
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Note the importance of function prototyping. Since function prototyping is mandatory in 
C++, it is possible for the compiler to support function overloading properly. The compiler 
is able to not only restrict the number of ways in which a function can be called but also 
support more than one way in which a function can be called. Function overloading is possible 
because of the necessity to prototype functions. 

By itself, function overloading is of little use. Instead of giving exactly the same name for 
functions that perform similar tasks, it is always possible for us to give them similar names. 
However, function overloading enables the C++ compiler to support another feature, that 
is, function overriding (which in turn is not really a very useful thing by itself but forms the 
basis for  dynamic polymorphism—one of the most striking features of C++ that promotes 
code reuse).

Function overloading is also known as  function polymorphism because, just like 
 polymorphism in the real world where an entity exists in more than one form, the same 
function name carries different meanings.

Function polymorphism is static in nature because the function de  nition to be executed 
is selected by the compiler during compile time itself. Thus, an overloaded function is said 
to exhibit  static polymorphism.

 1.10   Default Values for Formal Arguments of Functions 
It is possible to specify default values for some or all of the formal arguments of a function. If 
no value is passed for an argument when the function is called, the default value speci  ed for 
it is passed. If parameters are passed in the normal fashion for such an argument, the default 
value is ignored. Listing 1.25 is an illustrative example.

Listing 1.25 Default values for function arguments

 /*Beginning of defaultArg.cpp*/
#include<iostream.h>
int add(int,int,int c=0); //third argument has default value

void main()
{
 int x,y;
 x=add(10,20,30); //default value ignored
 y=add(40,50); //default value taken for the
    //third parameter
 cout<<x<<endl<<y<<endl;
}

int add(int a,int b,int c)
{
 return (a+b+c);
}
/*End of defaultArg.cpp*/

Output
60
90

In the above listing, a default value—zero—has been speci  ed for the third argument of the 
add() function. In the absence of a value being passed to it, the compiler assigns the default 
value. If a value is passed to it, the compiler assigns the passed value. In the  rst call
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x=add(10,20,30); 

the values of ‘a’, ‘b’, and ‘c’ are 10, 20, and 30, respectively. But, in the second function call
y=add(40,50); 

the values of ‘a’, ‘b’, and ‘c’ are 10, 20, and 0, respectively. The default value—zero—for 
the third parameter ‘c’ is taken. This explains the output of the above listing.

Default values can be assigned to more than one argument. Listing 1.26 illustrates this.

Listing 1.26 Default values for more than one argument

/*Beginning of multDefaultArg.cpp*/
#include<iostream.h>
int add(int,int b=0,int c=0);  //second and third arguments
     //have default values

void main()
{
 int x,y,z;
 x=add(10,20,30); //all default values ignored
 y=add(40,50); //default value taken for the
    //third argument
 z=add(60); //default value taken for
    //the second and the third
    //arguments
 cout<<x<<endl<<y<<endl<<z<<endl;
}

int add(int a,int b,int c)
{
 return (a+b+c);
}
/*End of multDefaultArg.cpp*/ 

Output
60
90
60

There is no need to provide names to the arguments taking default values in the function 
prototypes.

int add(int,int=0,int=0); 

can be written instead of
int add(int,int b=0,int c=0); 

Default values must be supplied starting from the rightmost argument. Before supplying 
default value to an argument, all arguments to its right must be given default values. Suppose 
you write

int add(int,int=0,int); 

you are attempting to give a default value to the second argument from the right without 
specifying a default value for the argument on its right. The compiler will report an error that 
the default value is missing (for the third argument). 
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Default values must be speci  ed in function prototypes alone. They should not be speci  ed 
in the function de  nitions. 

While compiling a function call, the compiler will de  nitely have its prototype. Its de  nition 
will probably be located after the function call. It might be in the same  le, or it will be in a 
different  le or library. Thus, to ensure a successful compilation of the function calls where 
values for arguments having default values have not been passed, the compiler must be aware 
of those default values. Hence, default values must be speci  ed in the function prototype.

You must also remember that the function prototypes are placed in header  les. These are 
included in both the library  les that contain the function’s de  nition and the client program 
 les that contain calls to the functions. While compiling the library  le that contains the 

function de  nition, the compiler will obviously read the function prototype before it reads 
the function de  nition. Suppose the function de  nition also contains default values for the 
arguments. Even if the same default values are supplied for the same arguments, the compiler 
will think that you are trying to supply two different default values for the same argument. 
This is obviously unacceptable because the default value can be only one in number. Thus, 
default values must be speci  ed in the function prototypes and should not be speci  ed again 
in the function de  nitions.

If default values are speci  ed for the arguments of a function, the function behaves like 
an overloaded function and, therefore, should be overloaded with care; otherwise ambiguity 
errors might be caused. For example, if you prototype a function as follows:

int add(int,int,int=0);
int add(int,int); 

This can confuse the compiler. If only two integers are passed as parameters to the function 
call, both these prototypes will match. The compiler will not be able to decide with which 
de  nition the function call has to be resolved. This will lead to an ambiguity error.

Default values can be given to arguments of any data type as follows:
double hra(double,double=0.3);
void print(char=’a’); 

 1.11   Inline Functions

Inline functions are used to increase the speed of execution of the executable  les. C++ inserts 
calls to the normal functions and the inline functions in different ways in an executable.

The executable program that is created after compiling the various source codes and linking 
them consists of a set of machine language instructions. When a program is started, the 
operating system loads these instructions into the computer’s memory. Thus, each instruction 
has a particular memory address. The computer then goes through these instructions one by 
one. If there are any instructions to branch out or loop, the control skips over instructions and 
jumps backward or forward as needed. When a program reaches the function call instruction, 
it stores the memory address of the instruction immediately following the function call. It then 
jumps to the beginning of the function, whose address it  nds in the function call instruction 
itself, executes the function code, and jumps back to the instruction whose address it had 
saved earlier.

Obviously, an overhead is involved in
making the control jump back and forth and 
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storing the address of the instruction to which the control should jump after the function  
terminates.
The C++ inline function provides a solution to this problem. An inline function is a function 

whose compiled code is ‘in line’ with the rest of the program. That is, the compiler replaces 
the function call with the corresponding function code. With inline code, the program does 
not have to jump to another location to execute the code and then jump back. Inline functions, 
thus, run a little faster than regular functions.

However, there is a trade-off between memory and speed. If an inline function is 
called repeatedly, then multiple copies of the function definition appear in the code 
(see Figures 1.1 and 1.2). Thus, the executable program itself becomes so large that it occupies 
a lot of space in the computer’s memory during run time. Consequently, the program runs 
slow instead of running fast. Thus, inline functions must be chosen with care.

For specifying an inline function, you must:
prefix the definition of the function with the  inline keyword and
define the function before all functions that call it, that is, define it in the header file  
itself.
The following listing illustrates the inline technique with the inline cube() function that 

cubes its argument. Note that the entire de  nition is in one line. That is not a necessary 
condition. But if the de  nition of a function does not  t in one line, the function is probably 
a poor candidate for an inlne function!

Figure 1.1 Transfer of control in a non-inline function
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Listing 1.27 Inline functions

 /*Beginning of inline.cpp*/
#include<iostream.h>

inline double cube(double x) { return x*x*x; }

void main()
{
 double a,b;
 double c=13.0;
 a=cube(5.0);
 b=cube(4.5+7.5);
 cout<<a<<endl;
 cout<<b<<endl;
 cout<<cube(c++)<<endl;
 cout<<c<<endl;
}
/*End of inline.cpp*/

Figure 1.2 Control does not get transferred in an inline function
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Output
125
1728
2197
14

 However, under some circumstances, the compiler, despite your indications, may not expand the 
function inline. Instead, it will issue a warning that the function could not be expanded inline 
and then compile all calls to such functions in the ordinary fashion. Those conditions are:

The function is recursive. 
There are looping constructs in the function. 
There are static variables in the function. 

Let us brie  y compare  macros in C and inline function in C++. Macros are a poor predecessor 
to inline functions. For example, a macro for cubing a number is as follows:

#define CUBE(X) X*X*X 

Here, a mere text substitution takes place with‘X’ being replaced by the macro parameter.
a=CUBE(5.0);  //replaced by a=5.0*5.0*5.0;
b=CUBE(4.5+7.5);  //replaced by
     //b=4.5+7.5*4.5+7.5*4.5+7.5;
c=CUBE(x++);  //replaced by c=x++*x++*x++; 

Only the  rst statement works properly. An intelligent use of parentheses improves matters 
slightly.

 #define CUBE(X) ((X)*(X)*(X))

Even now, CUBE(c++) undesirably increments ‘c’ thrice. But the inline cube() function 
evaluates ‘c’, passes the value to be cubed, and then correctly increments ‘c’ once.

It is advisable to use inline functions instead of macros.

Variables sometimes in  uence each other’s values. 
A change in the value of one may necessitate a 
corresponding adjustment in the value of another. It 
is, therefore, necessary to pass these variables together 
in a single group to functions. Structures enable us to 
do this.

Structures are used to create new data types. This 
is a two-step process.
Step 1: Create the structure itself.
Step 2: Create associated functions that work upon 
variables of the structure.

While structures do fulfil the important need 
described above, they nevertheless have limitations. 
They do not enable the library programmer to make 
variables of the structure that he/she has designed to 

be safe from unintentional modi  cation by functions 
other than those de  ned by him/her. Moreover, they do 
not guarantee a proper initialization of data members 
of structure variables.

Both of the above drawbacks are in direct 
contradiction with the characteristics possessed by 
real-world objects. A real-world object has not only 
a perfect interface to manipulate its internal parts but 
also exclusive rights to do so. Consequently, a real-
world object never reaches an invalid state during its 
lifetime. When we start operating a real-world object, it 
automatically assumes a valid state. In object-oriented 
programming systems (OOPS), we can incorporate 
these features of real-world objects into structure 
variables.

Summary
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Inheritance allows a structure to inherit both data 
and functions of an existing structure. Polymorphism 
allows different functions to have the same name. It is 
of two types: static and dynamic.

Console output is achieved in C++ with the help 
of insertion operator and the cout object. Console 
input is achieved in C++ with the help of extraction 
operator and the cin object.

In C++, variables can be de  ned anywhere in a 
function. A reference variable shares the same memory 
location as the one of which it is a reference. Therefore, 
any change in its value automatically changes the value 

of the variable with which it is sharing memory. Calls 
to functions that return by reference can be placed on 
the left of the assignment operator.

Function prototyping is necessary in C++. Functions 
can be overloaded. Functions with different signatures 
can have the same name. A function argument can be 
given a default value so that if no value is passed for it 
in the function call, the default value is assigned to it. 
If a function is declared inline, its de  nition replaces 
its call, thus, speeding up the execution of the resultant 
executable.

Key Terms 
creating new data types using structures
lack of data security in structures
no guaranteed initialization of data in structures
procedure-oriented programming system
object-oriented programming system
data security in classes
guaranteed initialization of data in classes
inheritance
polymorphism
console input/output in C++

- cout
- ostream_withassign class
- insertion operator

- cin
- istream_withassign class
- extraction operator
- iostream.h header  le
- endl

reference variable
- passing by reference
- returning by reference

importance of function prototyping
function overloading 
default values for function arguments
inline functions

Exercises

 1. Which programming needs do structures ful  ll? Why 
does C language enable us to create structures?

 2. What are the limitations of structures?
 3. What is the procedure-oriented programming 

system?
 4. What is the object-oriented programming system?
 5. Which class is ‘cout’ an object of?
 6. Which class is ‘cin’ an object of?
 7. What bene  ts does a programmer get if the compiler 

forces him/her to prototype a function?
 8. Why will an ambiguity error arise if a default value 

is given to an argument of an overloaded function?
 9. Why should default values be given to function 

arguments in the function’s prototype and not in the 
function’s de  nition?

 10. State true or false.
(a) Structures enable a programmer to secure the 

data contained in structure variables from being 
changed by unauthorized functions.

(b) The insertion operator is used for outputting 
in C++.

(c) The extraction operator is used for outputting 
in C++.

(d) A call to a function that returns by reference 
cannot be placed on the left of the assignment 
operator.

(e) An inline function cannot have a looping 
construct.

 11. Think of some examples from your own experience in 
C programming where you felt the need for structures. 
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Do you see an opportunity for programming in OOPS 
in those examples?

 12. Structures in C do not enable the library programmers 
to guarantee an initialization of data. Appreciate the 
implications of this limitation by taking the date 
structure as an example.

13. Calls to functions that return by reference can be put 

on the left-hand side of the assignment operator. 
Experiment and  nd out whether such calls can be 
chained. Consider the following:

f(a, b) = g(c, d) = x;

  where ‘f’ and ‘g’ are functions that return by reference 
while ‘a’, ‘b’, ‘c’, ‘d’, and ‘x’ are variables.



Classes and Objects

The previous chapter refreshed the reader’s knowledge of the structure construct provided 
by C language—its use and usage. It also dealt with a critical analysis of structures along with 
their pitfalls and limitations. The reader was made aware of a strong need for data security and 
for a guaranteed initialization of data that structures do not provide.

This chapter is a logical continuation to the previous one. It begins with a thorough 
explanation of the class construct of  C++ and the ways by which it ful  ls the above-mentioned 
needs. Superiority of the class construct of C++ over the structure construct of C language is 
emphasized in this chapter.

This chapter also deals with how classes enable the library programmer to provide exclusive 
rights to the associated functions. 

A description of various types and features of member functions and member data  nds a 
prominent place in this chapter. This description covers:

Overloaded member functions 
Default values for the arguments of member functions 
Inline member functions 
Constant member functions 
Mutable data members 
Friend functions and friend classes 
Static members 
A section in this chapter is devoted to namespaces. They enable the C++ programmer to 

prevent pollution of the global namespace that leads to name clashes. 
Example code to tackle arrays of objects and arrays inside objects form the penultimate 

portion of this chapter.
The chapter ends with an essay on nested classes—their need and use.
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 2.1  Introduction to Classes and Objects 

Classes are to C++ what structures are to C. Both provide the library programmer a means 
to create new data types. 

Let us brie  y recapitulate the issues faced while programming in C described in the previous 
chapter. In C, the library programmer creates structures. He/she also provides a set of tested 
bug-free functions that correctly manipulate the data members of structure variables. 

The Date structure and its accompanying functions may be perfect. However, there is 
absolutely no guarantee that the client programs will use only these functions to manipulate 
the members of variables of the structure. See Listing 2.1.
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Listing 2.1 Undesirable manipulation of structures not prevented in C

struct Date d1;
setDate(&d1); //assign system date to d1.
printf(“%d”,d1.month);
d1.month = 13; //undesirable but unpreventable!!

The bug arising out of the last line of the main() function above is easily detected even 
by a visual inspection. Nevertheless, the same will certainly not be the case if the code is 
around 25,000 lines long. Lines similar to the last line of the main() function above may be 
scattered all over the code. Thus, they will be dif  cult to hunt down. 

Notice that the absence of a facility to bind the data and the code that can have the exclusive 
rights to manipulate the data can lead to dif  cult-to-detect run-time bugs. C does not provide 
the library programmer with the facilities to encapsulate data, to hide data, and to abstract 
data.

The C++ compiler provides a solution to this problem.  Structures (the struct keyword) 
have been rede  ned to allow member functions also. Listing 2.2 illustrates this.

Listing 2.2 C++ allows member functions in structures    

/*Beginning of structDistance01.cpp*/
#include<iostream.h>

struct Distance
{
 int iFeet;
 float fInches;
 void setFeet(int x)
 {
  iFeet=x;
 }
 int getFeet()
 {
  return iFeet;
 }
 void setInches(float y)
 {
  fInches=y;
 }
 float getInches()
 {
  return fInches;
 }
};

void main()
{
 Distance d1,d2;
 d1.setFeet(2);
 d1.setInches(2.2);
 d2.setFeet(3);
 d2.setInches(3.3);
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
 cout<<d2.getFeet()<<“ ”<<d2.getInches()<<endl;
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}

/*End of structDistance01.cpp*/

Output
2 2.2
3 3.3

First, we must notice that functions have also been de  ned within the scope of the structure 
de  nition. This means that not only the member data of the structure can be accessed through 
the variables of the structures but also the member functions can be invoked. The struct 
keyword has actually been  rede  ned in C++. This latter point is illustrated by the main() 
function in Listing 2.2 above. We must make careful note of the way variables of the structure 
have been declared and how the member functions have been invoked.

Member functions are invoked in much the same way as member data are accessed, that is, 
by using the variable-to-member access operator. In a member function, one can refer directly 
to members of the object for which the member function is invoked. For example, as a result 
of the second line of the main() function in Listing 2.2, it is d1.iFeet that gets the value of 
2. On the other hand, it is d2.iFeet that gets the value of 3 when the fourth line is invoked. 
This is explained in the section on the  this pointer that follows shortly.

Each structure variable contains a separate copy of the member data within itself. However, 
only one copy of the member function exists. Again, the section on the this pointer explains 
this.

However, in the above example, note that the member data of structure variables can still 
be accessed directly. The following line of code illustrates this.

d1.iFeet=2; //legal!! 

 2.1.1 Private and Public Members

What is the advantage of having member functions also in structures? We have put together 
the data and functions that work upon the data but we have not been able to give exclusive 
rights to these functions to work upon the data. Problems in code debugging can still arise 
as before. Specifying member functions as public but member data as private obtains the 
advantage. The syntax for this is illustrated by Listing 2.3.

Listing 2.3 Making members of structures private

 /*Beginning of structDistance02.cpp*/
#include<iostream.h>
struct Distance
{
 private:
  int iFeet;
  float fInches;
 public:
  void setFeet(int x)
{
 iFeet=x; //LEGAL: private member accessed by 
    //member function
}
int getFeet()
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{
 return iFeet;
}
void setInches(float y)
{
 fInches=y;
}
float getInches()
 {
 return fInches;
 }
};

void main()
{
 Distance d1,d2;
 d1.setFeet(2);
 d1.setInches(2.2);
 d2.setFeet(3);
 d2.setInches(3.3);
 d1.iFeet++; //ERROR!!: private member accessed by 
    //non-member function
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
 cout<<d2.getFeet()<<“ ”<<d2.getInches()<<endl;
}
/*End of structDistance02.cpp*/

First, let us have a close look at the modi  ed de  nition of the structure Distance. Two 
new keywords, private and public have been introduced in the de  nition of the structure. Their 
presence in the foregoing example tells the compiler that iFeet and fInches are private data 
members of variables of the structure Distance and the member functions are public. Thus, 
values of iFeet and fInches of each variable of the structure Distance can be accessed/
modi  ed only through member functions of the structure and not by any non-member 
function in the program (again note that it is the iFeet and fInches of the invoking object 
that are accessed/modi  ed by the member functions). Any attempt to violate this restriction 
is prevented by the compiler because that is how the C++ compiler recognizes the private 
keyword. Since the member functions are public, they can be invoked from any part of the 
program.

As we can observe from Listing 2.3, the compiler refuses to compile the line in which a 
private member of a structure variable is accessed from a non-member function (the main() 
function in Listing 2.3).

The keywords private and public are also known as access modi  ers or access speci  ers 
because they control the access to the members of structures.

C++ introduces a new keyword class as a substitute for the keyword struct. In a structure, 
members are public by default. See the de  nition in Listing 2.4.

Listing 2.4 Structure members are public by default

 struct Distance
{
 private:
  int iFeet;
  float fInches;
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 public:
  void setFeet(int x)
  {
   iFeet=x; 
  }
  int getFeet()
  {
   return iFeet;
  }
  void setInches(float y)
  {
   fInches=y;
  }
  float getInches()
  {
   return fInches;
  }
};

can also be written as 
struct Distance
{
  void setFeet(int x) //public by default
  {
   iFeet=x; 
  }
  int getFeet() //public by default
  {
   return iFeet;
  }
  void setInches(float y) //public by default
  {
   fInches=y;
  }
  float getInches() //public by default
  {
   return fInches;
  }
 private:
  int iFeet;
  float fInches;
};

In Listing 2.4, the member functions have not been placed under any access modi  er. 
Therefore, they are public members by default.

On the other hand, class members are private by default. This is the only difference between 
the class keyword and the struct keyword.

Thus, the structure Distance can be rede  ned by using the  class keyword as shown in 
Listing 2.5.

Listing 2.5 Class members are private by default

 class Distance
{
  int iFeet; //private by default
  float fInches; //private by default
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 public:
  void setFeet(int x)
  {
   iFeet=x; 
  }
  int getFeet()
  {
   return iFeet;
  }
  void setInches(float y)
  {
   fInches=y;
  }
  float getInches()
  {
   return fInches;
  }
};

The  struct keyword has been retained to maintain backward compatibility with C 
language. A header  le created in C might contain the de  nition of a structure, and structures 
in C will have member data only. A C++ compiler will easily compile a source code that has 
included the above header  le since the new de  nition of the struct keyword allows, not 
mandates, the inclusion of member functions in structures.

Functions in a C language source code access member data of structures. A C++ compiler 
will easily compile such a source code since the C++ compiler treats members of structures 
as public members by default.

 2.1.2 Objects

Variables of classes are known as objects.
An object of a class occupies the same amount of memory as a variable of a structure that 

has the same data members. This is illustrated by Listing 2.6.

Listing 2.6 Size of a class object is equal to that of a structure variable with identical 
data members

/*Beginning of objectSize.cpp*/
#include<iostream.h>

struct A
{
 char a;
 int b;
 float c;
};

class B  //a class with the same data members
{
 char a;
 int b;
 float c;
};

void main()
{
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 cout<<sizeof(A)<<endl<<sizeof(B)<<endl;
}
/*End of objectSize.cpp*/

Output
9
9

Introducing member functions does not in  uence the size of objects. The reason for this 
will become apparent when we study the  this pointer. Moreover, making data members 
private or public does not in  uence the size of objects. The access modi  ers merely control 
the accessibility of the members.

2.1.3  Scope Resolution Operator

It is possible and usually necessary for the library programmer to de  ne the member functions 
outside their respective classes. The scope resolution operator makes this possible. Listing 
2.7 illustrates the use of the scope resolution operator (::).

 Listing 2.7 The scope resolution operator

/*Beginning of scopeResolution.cpp*/
class Distance
{
  int iFeet;
  float fInches;
 public:
  void setFeet(int); //prototype only
  int getFeet(); //prototype only
  void setInches(float); //prototype only
  float getInches(); //prototype only
};

void Distance::setFeet(int x) //definition
{
 iFeet=x;
}

int Distance::getFeet() //definition
{
 return iFeet;
}

void Distance::setInches(float y) //definition
{
 fInches=y;
}

float Distance::getInches() //definition
{
 return fInches;
}
/*End of scopeResolution.cpp*/ 

We can observe that the member functions have been only prototyped within the class; 
they have been de  ned outside. The scope resolution operator signi  es the class to which they 
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belong. The class name is speci  ed on the left-hand side of the scope resolution operator. The 
name of the function being de  ned is on the right-hand side. 

2.1.4 Creating Libraries Using the Scope Resolution Operator

As in C language, creating a new data type in C++ using classes is also a three-step process 
that is executed by the library programmer.
Step 1: Place the class de  nition in a header  le. 

/*Beginning of Distance.h*/
/*Header file containing the definition of the Distance class*/

class Distance
{
  int iFeet;
  float fInches;
 public:
  void setFeet(int); //prototype only
  int getFeet(); //prototype only
  void setInches(float); //prototype only
  float getInches(); //prototype only
};
/*End of Distance.h*/ 

Step 2: Place the de  nitions of the member functions in a C++ source  le (the library source 
code). A  le that contains de  nitions of the member functions of a class is known as the 
implementation  le of that class. Compile this implementation  le and put in a library.

/*Beginning of Distlib.cpp*/
/*Implementation file for the class Distance*/
#include“Distance.h”

void Distance::setFeet(int x) //definition
{
 iFeet=x;
}

int Distance::getFeet() //definition
{
 return iFeet;
}

void Distance::setInches(float y) //definition
{
 fInches=y;
}

float Distance::getInches() //definition
{
 return fInches;
}
/*End of Distlib.cpp*/ 

Step 3: Provide the header  le and the library, in whatever media, to other programmers who 
want to use this new data type. 
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2.1.5 Using Classes in Application Programs

The steps followed by programmers for using this new data type are:
Step 1: Include the header  le provided by the library programmer in their source code.

/*Beginning of Distmain.cpp*/
#include“Distance.h”

void main()
{
 . . . .
 . . . .
}
/*End of Distmain.cpp*/ 

Step 2: Declare variables of the new data type in their source code.
 /*Beginning of Distmain.cpp*/
#include“Distance.h”

void main()
{
 Distance d1,d2;
 . . . .
 . . . .
}
/*End of Distmain.cpp*/

Step 3: Embed calls to the associated functions by passing these variables in their source 
code. See Listing 2.8.

 Listing 2.8 Using classes in application programs

/*Beginning of Distmain.cpp*/
/*A sample driver program for creating and using objects of the class Dis-
tance*/
#include<iostream.h>
#include“Distance.h”

void main()
{
 Distance d1,d2;
 d1.setFeet(2);
 d1.setInches(2.2);
 d2.setFeet(3);
 d2.setInches(3.3);
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
 cout<<d2.getFeet()<<“ ”<<d2.getInches()<<endl;
}
/*End of Distmain.cpp*/

Step 4: Compile the source code to get the object  le.
Step 5: Link the object  le with the library provided by the library programmer to get the 
executable or another library.

Output of Listing 2.8
2 2.2
3 3.3
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Implementation  les are compiled and converted into static and dynamic libraries in the 
usual manner.

Again, we notice that there is no obvious connection between the member data being 
accessed within the member function and the object that is invoking the function.

2.1.6  this Pointer

The facility to create and call member functions of class objects is provided by the C++ 
compiler. You have already seen how this facility is to be used. However, how does the 
compiler support this facility? The compiler does this by using a unique pointer known as 
the this pointer. A thorough understanding of the this pointer is vital for understanding 
many concepts in C++. 

The this pointer is always a constant pointer. The this pointer always points at the object 
with respect to which the function was called. An explanation that follows shortly explains 
why and how it functions. 

After the compiler has ascertained that no attempt has been made to access the private 
members of an object by non-member functions, it converts the C++ code into an ordinary 
C language code as follows:
1. It converts the class into a structure with only data members as follows.

 Before
class Distance
{
  int iFeet;
  float fInches;
 public:
  void setFeet(int); //prototype only
  int getFeet(); //prototype only
  void setInches(float); //prototype only
  float getInches(); //prototype only
};

 After
struct Distance
{
 int iFeet;
 float fInches;
};

2. It puts a declaration of the this pointer as a leading formal argument in the prototypes 
of all member functions as follows.

 Before
void setFeet(int); 

 After
void setFeet(Distance * const, int); 

 Before
 int getFeet();
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 After
int getFeet(Distance * const); 

 Before
void setInches(float); 

 After
void setInches(Distance * const, float); 

 Before
float getInches(); 

 After
float getInches(Distance * const); 

3. It puts the definition of the this pointer as a leading formal argument in the definitions 
of all member functions as follows. It also modifies all the statements to access object 
members by accessing them through the this pointer using the pointer-to-member access 
operator (->).

 Before
void Distance::setFeet(int x)
{
 iFeet=x;
}

 After
void setFeet(Distance * const this, int x)
{
 this->iFeet=x;
}

 Before
int Distance::getFeet()
{
 return iFeet;
}

 After
int getFeet(Distance * const this)
{
 return this->iFeet;
}

 Before
void Distance::setInches(float y)
{
 fInches=y;
}

 After
void setInches(Distance * const this, float y)
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{
 this->fInches=y;
} 

 Before
float Distance::getInches()
{
 return fInches;
}

 After
float getInches(Distance * const this)
{
 return this->fInches;

} 

 We must understand how the  scope resolution operator works. The scope resolution 
operator is also an operator. Just like any other operator, it operates upon its operands. 
The scope resolution operator is a binary operator, that is, it takes two operands. The 
operand on its left is the name of a pre-defined class. On its right is a member function of 
that class. Based upon this information, the scope resolution operator inserts a constant 
operator of the correct type as a leading formal argument to the function on its right. 
For example, if the class name is Distance, as in the above case, the compiler inserts a 
pointer of type Distance * const as a leading formal argument to the function on its 
right.

4. It passes the address of invoking object as a leading parameter to each call to the member 
functions as follows.

 Before
d1.setFeet(1);

 After
 setFeet(&d1,1);

 Before
d1.setInches(1.1);

 After
 setInches(&d1,1.1);

 Before
cout<<d1.getFeet()<<endl;

 After
 cout<<getFeet(&d1)<<endl;

 Before
cout<<d1.getInches()<<endl;
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 After
 cout<<getInches(&d1)<<endl;

 In the case of C++, the  dot operator’s definition has been extended. It not only takes data 
members as in C but also member functions as its right-hand side operand. If the operand 
on its right is a data member, then the dot operator behaves just like it does in C language. 
However, if the operand on its right is a member function, then the dot operator causes 
the address of the object on its left to be passed as an implicit leading parameter to the 
function call.

Clearly, members of the invoking object are referred to when they are accessed without 
any quali  ers in member functions. It should also be obvious that multiple copies of member 
data exist (one inside each object) but only one copy exists for each member function.

It is evident that the this pointer should continue to point at the same object—the object 
with respect to which the member function has been called—throughout its lifetime. For this 
reason, the compiler creates it as a constant pointer.

The accessibility of the implicit object is the same as that of the other objects passed as 
parameters in the function call and the local objects inside that function. Listing 2.9 illustrates 
this. A new function—add()—has been added to the existing de  nition of the Distance 
class.

 Listing 2.9 Accessing data members of local objects inside member functions and of 
objects that are passed as parameters

 /*Beginning of Distance.h*/
class Distance
{
 /*
  rest of the class Distance
 */
  Distance add(Distance);
};
/*End of Distance.h*/

/*Beginning of Distlib.cpp*/
#include“Distance.h”

Distance Distance::add(Distance dd)
{
 Distance temp;
 temp.iFeet=iFeet+dd.iFeet;  //legal to access both 
     //temp.iFeet and 
     //dd.iFeet
 temp.fInches=fInches+dd.fInches;  //ditto
 return temp;
}

/*
 definitions of the rest of the functions of class   
 Distance
*/
/*End of Distlib.cpp*/

/*Beginning of Distmain.cpp*/
#include<iostream.h>
#include“Distance.h”
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void main()
{
 Distance d1,d2,d3;
 d1.setFeet(1);
 d1.setInches(1.1);
 d2.setFeet(2);
 d2.setInches(2.2);
 d3=d1.add(d2);
 cout<<d3.getFeet()<<“’-”<<d3.getInches()<<“’’\n”;
}
/*End of Distmain.cpp*/ 

Output
3'-3.3'

The de  nition of Distance :: add() function, after the previously described conversion 
by the compiler is carried out, will appear as follows.

 Distance add(Distance * const this, Distance dd)
{
 Distance temp;
 temp.iFeet=this->iFeet+dd.iFeet;
 temp.fInches=this->fInches+dd.fInches;
 return temp;
}

When this function is called from the main() function with respect to ‘d1’, the this pointer 
points at ‘d1’. Thus, it is the private data member of ‘d1’ that is being accessed in the second 
and third lines of the add() function.

So, now we can
Declare a class 
Define member data and member functions 
Make members private and public 
Declare objects and call member functions with respect to objects 

What advantages does all this lead to? The advantage that library programmers can now 
derive from this arrangement is epitomized in the following observation:

An executable  le will not be created from a source code in which private data members 
of an object have been accessed by non-member functions.

Once again, the importance of compile-time errors over run-time errors is emphasized. 
Suppose, an if block exists in a function that is not intended by the library programmer to 
access the data members of a structure. This if block contains a bug (say ‘d1.month’ has been 
assigned the value of 13, where ‘d1’ is a variable of the structure ‘date’).

A pure C compiler would not recognize this statement as an invalid access. During testing, 
the if condition of this if block might never become true. The bug would remain undetected; 
the executable will get created with bugs. Thus, creating bug-free executables is dif  cult 
and unreliable in C. This is due to the absence of language constructs that enforce data 
security.

On the other hand, a C++ compiler that also detects invalid access of private data members 
would immediately throw an error during compile time itself and prevent the creation of the 
executable. Thus, creating bug-free executables is easier and more reliable in C++ than in 
C. This is due to the presence of language constructs that enforce data security.
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2.1.7  Data Abstraction

The class construct provides facilities to implement data abstraction. Data abstraction is 
an important concept and should be understood properly. Let us take up the example of 
the LCD projector from the previous chapter. It has member data (light and fan) as well as 
member functions (switches that operate the light and the fan). This real-world object hides 
its internal operations from the outside world. It, thus, obviates the need for the user to know 
the possible pitfalls that might be encountered during its operation. During its operation, the 
LCD projector never reaches an invalid state. Moreover, the LCD projector does not start in 
an invalid state.

Data abstraction is a virtue by which an object hides its internal operations from the rest 
of the program. It makes it unnecessary for the client programs to know how the data is 
internally arranged in the object. Thus, it obviates the need for the client programs to write 
precautionary code upon creating and while using objects.

Now, in order to understand this concept, let us take an example in C++. The library 
programmer, who has designed the Distance class, wants to ensure that the fInches portion 
of an object of the class should never exceed 12. If a value larger than 12 is speci  ed by 
an application programmer while calling the Distance::setInches() function, the logic 
incorporated within the de  nition of the function should automatically increment the value 
of iFeet and decrement the value of fInches by suitable amounts. A modi  ed de  nition of 
the Distance::setInches() function is as follows.

 void Distance::setInches(float y)
{
 fInches=y;
 if(fInches>=12)
 {
  iFeet+=fInches/12;
  fInches-=((int)fInches/12)*12;
 }
}

Here, we notice that an application programmer need not send values less than 12 while calling 
the Distance::setInches() function. The default logic within the Distance::setInches() 
function does the necessary adjustments. This is an example of data abstraction.

The above restriction may not appear mandatory. However, very soon we will create classes 
where similar restrictions will be absolutely necessary (and also complicated).

Similarly, the de  nition of the Distance::add() function should also be modi  ed as 
follows by the library programmer. Here, it can be assumed that the value of fInches portion 
of neither the invoking object nor the object appearing as formal argument (‘dd’) can be 
greater than 12.

Distance Distance::add(Distance dd)
{
 Distance temp;
 temp.iFeet=iFeet+dd.iFeet; 
 temp.setInches(fInches+dd.fInches); 
 return temp;
} 

Now, if we write the statements shown in Listing 2.10
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 Listing 2.10 Enforcing restrictions on the data members of a class

 d1.setFeet(1);
d1.setInches(9.5);
d2.setFeet(2);
d2.setInches(5.5);
d3=d1.add(d2);

then the value of d3.fInches will become 3 (not 15) and the value of d3.iFeet will become 
4 (not 3).

It has already been mentioned that real-world objects never attain an invalid state. They 
also do not start in an invalid state. Does C++ enable the library programmer to implement 
this feature in class objects? 

Let us continue with our earlier example—the Distance class. Recollect that it is the library 
programmer’s intention to ensure that the value of fInches portion of none of the objects of 
the class Distance should exceed 12. Now, let us consider Listing 2.11.

 Listing 2.11 Object gets created with improper values

 /*Beginning of DistJunk.cpp*/
#include<iostream.h>
#include“Distance.h”

void main()
{
 Distance d1;
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
}

/*End of DistJunk.cpp*/

Output
297 34.56

As you can see, the value of fInches of ‘d1’ is larger than 12! This happened because the 
value of both iFeet and fInches automatically got set to junk values when ‘d1’ was allocated 
memory and the junk value is larger than 12 for d1.fInches. Thus, the objective of the library 
programmer to keep the value of fInches less than 12 has not yet been achieved. 

It would be unrealistic to expect that an application programmer will explicitly initialize 
each object that is declared.

 Distance d1;
d1.setFeet(0); //initialization
d1.setInches(0.0); //initialization

Obviously, the library programmer would like to add a function to the Distance class that 
gets called automatically whenever an object is created and sets the values of the data members 
of the object properly. Such a function is the constructor. The concept of constructor and a 
related function, the destructor, is discussed in one of the later chapters. 

But we may say that even if Distance was an ordinary structure and setInches() 
function was a non-member function just as in C, data abstraction would still be in place. 
Nevertheless, in the case of C, the library programmer cannot force calls to only those 
functions that have been de  ned. He/she cannot prevent calls to those functions that 
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he/she has not de  ned. Data abstraction is effective due to data hiding only (recall the case 
of the overhead projector systems discussed earlier).

On the other side of the coin, in C language, life becomes dif  cult for an application 
programmer also. If a certain member of a structure variable acquires an invalid or a wrong 
value, he/she has to hunt through the entire source code to detect the bug. This problem rapidly 
gains signi  cance as the code length increases. In actual practice, it is common to have code 
of more than 25,000 lines.

Let us now sum up as follows:
Perfect de  nitions of the member functions are guaranteed to achieve their objective 

because of data hiding.
This is the essence of the object-oriented programming system. Real-world objects have 

not only working parts but also an exclusive interface to these inner-working parts. A perfect 
interface is guaranteed to work because of its exclusive rights. 

2.1.8  Explicit Address Manipulation

An application programmer can manipulate the member data of any object by explicit address 
manipulation. Listing 2.12 illustrates the point.

 Listing 2.12 Explicit address manipulation

 /*Beginning of DistAddrManip.cpp*/
#include“Distance.h”
#include<iostream.h>

void main()
{
 Distance d1;
 d1.setFeet(256);
 d1.setInches(2.2);
 char * p=(char *)&d1;  //explicit address manipulation
 *p=1;   //undesirable but unpreventable
 cout<<d1.getFeet()<<“ ”<<d1.getInches()<<endl;
}
/*End of DistAddrManip.cpp*/

 Output
257 2.2

However, such explicit address manipulation by an application programmer cannot be 
prevented. It is left as an exercise for the readers to explain the output of the above program 
(Listing 2.12).

2.1.9  Arrow Operator

Member functions can be called with respect to an object through a pointer pointing at the 
object. The arrow operator (->) does this. An illustrative example is shown in Listing 2.13.

 Listing 2.13 Accessing members through pointers

/*Beginning of PointerToMember.cpp*/
#include<iostream.h>
#include“Distance.h”
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void main()
{
 Distance d1; //object
 Distance * dPtr; //pointer
 dPtr=&d1; //pointer initialized
 /*Same as d1.setFeet(1) and d1.setInches(1.1)*/
 dPtr->setFeet(1); //calling member functions
 dPtr->setInches(1.1); //through pointers
 /*Same as d1.getFeet() and d1.getInches()*/
 cout<<dPtr->getFeet()<<“ ”<<dPtr->getInches()<<endl;
}
/*End of PointerToMember.cpp*/

 Output
1 1.1

It is interesting to note that just like the dot (.) operator, the de  nition of the arrow (->) 
operator has also been extended in C++. It takes not only data members on its right as in C, 
but also member functions as its right-hand side operand. If the operand on its right is a data 
member, then the arrow operator behaves just as it does in C language. However, if it is a 
member function of a class where a pointer of the same class type is its left-hand side operand, 
then the compiler simply passes the value of the pointer as an implicit leading parameter to 
the function call. Thus, the statement

dPtr->setFeet(1); 

after conversion becomes
 setFeet(dPtr,1);

Now, the value of dPtr is copied into the this pointer. Therefore, the this pointer also 
points at the same object at which dPtr points.

2.1.10  Calling One Member Function from Another

One member function can be called from another. An illustrative example is shown in 
Listing 2.14.

 Listing 2.14 Calling one member function from another

 /*Beginning of NestedCall.cpp*/
class A
{
  int x;
 public:
  void setx(int);
  void setxindirect(int);
};

void A::setx(int p)
{
 x=p;
}

void A::setxindirect(int q)
{
 setx(q);
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}

void main()
{
 A A1;
 A1.setxindirect(1);
}
/*End of NestedCall.cpp*/

It is relatively simple to explain the above program. The call to the A::setxindirect() 
function changes from

 A1.setxindirect(1);

to
 setxindirect(&A1,1);

The de  nition of the A::setxindirect() function changes from
 void A::setxindirect(int q)
{
 setx(q);
}

to
void setxindirect(A * const this, int q)
{
 this->setx(q); //calling function through a pointer
} 

which, in turn, changes to
void setxindirect(A * const this, int q)
{
 setx(this,q); //action of arrow operator
} 

 2.2  Member Functions and Member Data

Let us study the various kinds of member functions and member data that classes in C++ 
have.

2.2.1  Overloaded Member Functions

Member functions can be overloaded just like non-member functions. Listing 2.15 illustrates 
this point.

Listing 2.15 Overloaded member functions

 /*Beginning of memFuncOverload.cpp*/
#include<iostream.h>

class A
{
 public:
  void show();
  void show(int); //function show() overloaded!!
};
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void A::show()
{
 cout<<“Hello\n”;
}

void A::show(int x)
{
 for(int i=0;i<x;i++)
  cout<<“Hello\n”;
}

void main()
{
 A A1;
 A1.show();  //first definition called
 A1.show(3);  //second definition called
}
/*End of memFuncOverload.cpp*/

Output
Hello
Hello
Hello
Hello

 Function overloading enables us to have two functions of the same name and same signature 
in two different classes. The class de  nitions given in Listing 2.16 illustrate the point.

Listing 2.16 Facility of overloading functions permits member functions of two different 
classes to have the same name

 class A
{
 public:
  void show();
};
class B
{
 public:
  void show();
};

A function of the same name show() is de  ned in both the classes—‘A’ and ‘B’. The 
signature also appears to be the same. But with our knowledge of the  this pointer, we know 
that the signatures are actually different. The function prototypes in the respective classes 
are actually as follows.

void show(A * const);
void show(B * const); 

Without the facility of function overloading, it would not be possible for us to have two 
functions of the same name in different classes. Without the facility of function overloading, 
choice of names for member functions would become more and more restricted. Later, we 
will  nd that function overloading enables function overriding that, in turn, enables dynamic 
polymorphism.
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2.2.2 Default Values for Formal Arguments of Member Functions

We already know that default values can be assigned to arguments of non-member functions. 
Default values can be speci  ed for formal arguments of member functions also. An illustrative 
example follows in Listing 2.17.

  Listing 2.17 Giving default values to arguments of member functions

/*Beginning of memFuncDefault.cpp*/
#include<iostream.h>

class A
{
 public:
  void show(int=1);
};

void A::show(int p)
{
 for(int i=0;i<p;i++)
  cout<<“Hello\n”;
}

void main()
{
 A A1;
 A1.show(); //default value taken
 A1.show(3); //default value overridden
}
/*End of memFuncDefault.cpp*/

Output
Hello
Hello
Hello
Hello

Again, it has to be kept in mind that a member function should be overloaded with care if 
default values are speci  ed for some or all of its formal arguments. For example, the compiler 
will report an ambiguity error when it  nds the second prototype for the show() function of 
class A in Listing 2.18.

Listing 2.18 Giving default values to arguments of overloaded member functions can 
lead to ambiguity errors

 class A
{
 public:
  void show();
  void show(int=0); //ambiguity error
};

Reasons for such ambiguity errors have already been explained in the section on function 
overloading in Chapter 1. As in the case of non-member functions, if default values are 
speci  ed for more than one formal argument, they must be speci  ed from the right to the 
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left. Similarly, default values must be speci  ed in the function prototypes and not in function 
de  nitions. Further, default values can be speci  ed for a formal argument of any type.

2.2.3 Inline Member Functions

Member functions are made inline by either of the following two methods.
By defining the function within  the class itself (as in Listing 2.5)
By only prototyping and not defining the function within the class. The function is defined  
outside the class by using the scope resolution operator. The definition is prefixed by the 
inline keyword. As in non-member functions, the definition of the inline function must 
appear before it is called. Hence, the function should be defined in the same header file 
in which its class is defined. Listing 2.19 illustrates this.

Listing 2.19 Inline member functions

 /*Beginning of memInline.cpp*/
class A
{
 public:
  void show();
};

inline void A::show() //definition in header file itself
{
    //definition of A::show() function
}
/*End of memInline.cpp*/

2.2.4  Constant Member Functions

Let us consider this situation. The library programmer desires that one of the member functions 
of his/her class should not be able to change the value of member data. This function should be 
able to merely read the values contained in the data members, but not change them. However, 
he/she fears that while de  ning the function he/she might accidentally write the code to do 
so. In order to prevent this, he/she seeks the compiler’s help. If he/she declares the function 
as a constant function, and thereafter attempts to change the value of a data member through 
the function, the compiler throws an error.

Let us consider the class Distance. The Distance::getFeet(), Distance::getInches(), 
and the Distance::add() functions should obviously be constant functions. They should not 
change the values of iFeet or fInches members of the invoking object even by accident. 

Member functions are speci  ed as constants by suf  xing the prototype and the function 
de  nition header with the const keyword. The modi  ed prototypes and de  nitions of the 
member functions of the class Distance are illustrated in Listing 2.20.

 Listing 2.20 Constant member functions

 /*Beginning of Distance.h*/
/*Header file containing the definition of the Distance 
class*/
class Distance
{
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  int iFeet;
  float fInches;
 public:
  void setFeet(int);
  int getFeet() const; //constant function
  void setInches(float);
  float getInches() const; //constant function 
  Distance add(Distance) const; //constant function
};
/*End of Distance.h*/

/*Beginning of Distlib.cpp*/
/*Implementation file for the class Distance*/
#include“Distance.h”

void Distance::setFeet(int x) 
{
 iFeet=x;
}
int Distance::getFeet() const //constant function
{
 iFeet++; //ERROR!!
 return iFeet;
}

void Distance::setInches(float y)
{
 fInches=y;
}

float Distance::getInches() const //constant function 
{
 fInches=0.0; //ERROR!!
 return fInches;
}

Distance Distance::add(Distance dd) const //constant 
     //function
{
 Distance temp;
 temp.iFeet=iFeet+dd.iFeet; 
 temp.setInches(fInches+dd.fInches);
 iFeet++; //ERROR!!
 return temp;
}
/*End of Distlib.cpp*/

For constant member functions, the memory occupied by the invoking object is a read-
only memory. How does the compiler manage this? For constant member functions, the  this 
pointer becomes ‘a constant pointer to a constant’ instead of only ‘a constant pointer’. For 
example, the this pointer is of type const Distance * const for the Distance::getFeet(), 
Distance::getInches(), and Distance::add() functions. For the other member functions 
of the class Distance, the this pointer is of type Distance * const.

Clearly, only constant member functions can be called with respect to constant objects. Non-
constant member functions cannot be called with respect to constant objects. However, constant 
as well as non-constant functions can be called with respect to non-constant objects.
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2.2.5  Mutable Data Members

A mutable data member is never constant. It can be modi  ed inside constant functions also. 
Pre  xing the declaration of a data member with the keyword mutable makes it mutable. 
Listing 2.21 illustrates this.

Listing 2.21 Mutable data members

 /*Beginning of mutable.h*/
class A
{
  int x; //non-mutable data member
  mutable int y; //mutable data member

 public:

  void abc() const //a constant member function
  {
  x++; //ERROR: cannot modify a non-constant data 
    //member in a constant member function
  y++; //OK: can modify a mutable data member in a 
    //constant member function
 }

 void def() //a non-constant member function
 {
  x++; //OK: can modify a non-constant data member 
    //in a non-constant member function
  y++; //OK: can modify a mutable data member in a 
    //non-constant member function
 }
};
/*End of mutable.h*/

We frequently need a data member that can be modi  ed even for constant objects. Suppose, 
there is a member function that saves the data of the invoking object in a disk  le. Obviously, 
this function should be declared as a constant to prevent even an inadvertent change to data 
members of the invoking object. If we need to maintain a  ag inside each object that tells us 
whether the object has already been saved or not, such a  ag should be modi  ed within the 
above constant member function. Therefore, this data member should be declared a mutable 
data member.

2.2.6  Friends

A class can have global non-member functions and member functions of other classes as 
friends. Such functions can directly access the private data members of objects of the class.

 Friend non-member functions

A friend function is a non-member function that has special rights to access private data 
members of any object of the class of whom it is a friend. In this section, we will study only 
those friend functions that are not member functions of some other class.

A friend function is prototyped within the de  nition of the class of which it is intended 
to be a friend. The prototype is pre  xed with the keyword friend. Since it is a non-member 
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function, it is de  ned without using the scope resolution operator. Moreover, it is not called 
with respect to an object. An illustrative example is shown in Listing 2.22.

 Listing 2.22 Friend functions

 /*Beginning of friend.cpp*/
class A
{
  int x;
 public:
  friend void abc(A&); //prototype of the friend function
};

void abc(A& AObj) //definition of the friend function
{
 AObj.x++; //accessing private members of the object
}

void main()
{
 A A1;
 abc(A1);
}
/*End of friend.cpp*/

A few points about the friend functions that we must keep in mind are as follows:

friend  keyword should appear in the prototype only and not in the definition.

Since it is a non-member function of the class of which it is a friend, it can be prototyped  
in either the private or the public section of the class.

A friend function takes one extra parameter as compared to a member function that  
performs the same task. This is because it cannot be called with respect to any object. 
Instead, the object itself appears as an explicit parameter in the function call.

We need not and should not use the scope resolution operator while defining a friend  
function.

There are situations where a function that needs to access the private data members of the 
objects of a class cannot be called with respect to an object of the class. In such situations, the 
function must be declared as a friend. We will encounter one such situation in Chapter 8.

Friend functions do not contradict the principles of OOPS. Since it is necessary to prototype 
the friend function inside the class itself, the list of functions that can access the private 
members of a class’s object remains well de  ned and restricted. The bene  ts provided by 
data hiding are not compromised by friend functions.

 Friend classes

A class can be a friend of another class. Member functions of a friend class can access private 
data members of objects of the class of which it is a friend. If class B is to be made a friend 
of class A, then the statement

 friend class B;

should be written within the de  nition of class A. Listing 2.23 illustrates this.
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 Listing 2.23 Declaring friend classes

 class A
{
 friend class B; //declaring B as a friend of A
 /*
  rest of the class A
 */
};

It does not matter whether the statement declaring class B as a friend is mentioned within 
the private or the public section of class A. Now, member functions of class B can access the 
private data members of objects of class A. Listing 2.24 exempli  es this.

Listing 2.24 Effect of declaring a friend class

/*Beginning of friendClass.cpp*/
class B; //forward declaration… necessary because
    //definition of class B is after the statement
    //that declares class B a friend of class A.
class A
{
  int x;
 public:
  void setx(const int=0);
  int getx()const;
  friend class B;  //declaring B as a friend of A
};
class B
{
  A * APtr;
 public:
  void Map(A * const);
  void test_friend(const int);
};
void B::Map(A * const p)
{
 APtr = p;
}
void B::test_friend(const int i)
{
 APtr->x=i;  //accessing the private data member
}
/*End of friendClass.cpp*/

As we can see, member functions of class B are able to access private data member of 
objects of the class A although they are not member functions of class A. This is because 
they are member functions of class B that is a friend of class A.

Friendship is not transitive. For example, consider Listing 2.25.



 Classes and Objects 57

 Listing 2.25 Friendship is not transitive

class B;
class C;

 /*Beginning of friendTran.cpp*/
class A
{
 friend class B;
 int a;
};

class B
{
 friend class C;
};

class C
{
 void f(A * p)
 {
  p->a++; //error: C is not a friend of A
    //despite being a friend of a friend
 }
};
/*End of friendTran.cpp*/

 Friend member functions
How can we make some speci  c member functions of one class friendly to another class? For 
making only B::test_friend() function a friend of class A, replace the line

 friend class B;

in the declaration of the class A with the line
 friend void B::test_friend();

The modi  ed de  nition of the class A is
 class A
{
 /*
  rest of the class A
 */
  friend void B::test_friend();
};

However, in order to compile this code successfully, the compiler should  rst see the 
de  nition of the class B. Otherwise, it does not know that test_friend() is a member 
function of the class B. This means that we should put the de  nition of class B before the 
de  nition of class A.

However, a pointer of type A * is a private data member of class B. So, the compiler should 
also know that there is a class A before it compiles the de  nition of class B. This problem of 
circular dependence is solved by forward declaration. This is done by inserting the line

class A; //Declaration only! Not definition!! 

before the de  nition of class B. Now, the declarations and de  nitions of the two classes 
appear as shown in Listing 2.26.
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Listing 2.26 Forward declaring a class that requires a friend

 /*Beginning of friendMemFunc.h*/
class A;

class B
{
  A * APtr;
 public:
  void Map(const A * const);
  void test_friend(const int=0);
};

class A
{
  int x;
 public:
  friend void B::test_friend(const int=0);
};
/*End of friendMemFunc.h*/

Another problem arises if we try to de  ne the B::test_friend() function as an inline 
function by de  ning it within class B itself. See Listing 2.27.

 Listing 2.27 Problem in declaring a friend member function inline

 class B
{
 /*
  rest of the class B
 */
 public:
  void test_friend(const int p)
  {
   APtr->x=p; //will not compile
  }
};

But how will the code inside B::test_friend() function compile? The compiler will 
not know that there is a data member ‘x’ inside the de  nition of class A. For overcoming 
this problem, merely prototype B::test_friend() function within class B; de  ne it as 
inline after the de  nition of class A in the header  le itself. The revised de  nitions appear 
in Listing 2.28.

 Listing 2.28 Declaring a friend member function inline

 /*Beginning of friendMemFuncInline.h*/
class A;

class B
{
  A * APtr;
 public:
  void Map(const A * const);
  void test_friend(const int=0);
};
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class A
{
  int x;
 public:
  friend void B::test_friend(const int=0);
};

inline void B::test_friend(const int p)
{
 APtr->x=p;
}
/*End of friendMemFuncInline.h*/

Friends as bridges

Friend functions can be used as bridges between two classes. 
Suppose there are two unrelated classes whose private data members need a simultaneous 

update through a common function. This function should be declared as a friend to both the 
classes. See Listing 2.29.

Listing 2.29 Friends as bridges

class B; //forward declaration

class A
{
 /*
  rest of the class A
 */
 friend void ab(const A&, const B&);
};

class B
{
 /*
  rest of the class B
 */
 friend void ab(const A&, const B&);
}; 

2.2.7  Static Members

 Static member data

Static data members hold global data that is common to all objects of the class. Examples of 
such global data are

count of objects currently present, 
common data accessed by all objects, etc. 

Let us consider class Account. We want all objects of this class to calculate interest at the 
rate of say 4.5%. Therefore, this data should be globally available to all objects of this class 
(Listing 2.30).

This data cannot and should not be a member of the objects themselves. Otherwise, multiple 
copies of this data will be embedded within the objects taking up unnecessary space. Same 
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value would have to be maintained for this data in all objects. This is very dif  cult. Thus, 
this data cannot be stored in a member variable of class Account.

At the same time, this data should not be stored in a global variable. Then the data is liable 
to be changed by even non-member functions. It will also potentially lead to name con  icts. 
However, this means that it should be stored in a member variable of class Account!

How can this con  ict be resolved? Storing the data in a static variable of the class resolves 
this con  ict. Static data members are members of the class and not of any object of the class, 
that is, they are not contained inside any object. 

We pre  x the declaration of a variable within the class de  nition with the keyword static 
to make it a static data member of the class. See Listing 2.30.

 Listing 2.30 Declaring a static data member

 /*Beginning of Account.h*/
class Account
{
 static float interest_rate;   //a static data member
 /*
  rest of the class Account
 */
};
/*End of Account.h*/

A statement declaring a static data member inside a class will obviously not cause any 
memory to get allocated for it. Moreover, memory for a static data member will not get 
allocated when objects of the class are declared. This is because a static data member is not a 
member of any object. Therefore, we must not forget to write the statement to de  ne (allocate 
memory for) a static member variable. Explicitly de  ning a static data member outside the 
class is necessary. Otherwise, the linker produces an error. The following statement allocates 
memory for interest_rate member of class Account.

 float Account::interest_rate;

The above statement initializes interest_rate to zero. If some other initial value (say 4.5) 
is desired instead, the statement should be rewritten as follows.

 float Account::interest_rate=4.5;

Static data members should be de  ned in the implementation  les only. The header  le is 
included in both the implementation  le and the driver program. If a static data member is 
de  ned in the header  le, the static data member’s de  nition would be in two  les—the library 
 le created from the implementation  le and the object  le created from the driver program. 

But in order to get the executable, the linker will have to link these  les. Upon  nding two 
de  nitions of the static data member, the linker would throw an error.

Making static data members private prevents any change from non-member functions as 
only member functions can change the values of static data members.

Introducing static data members does not increase the size of objects of the class. Static data 
members are not contained within objects. There is only one copy of the static data member 
in the memory. Let us try the following program (Listing 2.31) to  nd out.
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 Listing 2.31 Static data members are not a part of objects

/*Beginning of staticSize.cpp*/
#include<iostream.h>
class A
{
 int x;
 char y;
 float z;
 static float s;
};
float A::s=1.1;
void main()
{
 cout<<sizeof(A)<<endl;
}
/*End of staticSize.cpp*/

Output
9

 Static data members can be of any type. For example, name of the bank that has the 
accounts can be stored as a character array in a static data member of the class as illustrated 
in Listing 2.32.

 Listing 2.32 Static data member can be of any type

 /*Beginning of Account.h*/

class Account
{
 static float interest_rate;
 static char name[30];
 /*
  rest of the class Account
 */
};

/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

float A::interest_rate=4.5;
char A::name[30]=“The Rich and Poor Bank”;
/*
 definitions of the rest of the functions of class Account
*/
/*End of Account.cpp*/

Static data members of integral type can be initialized within the class itself if the need 
arises. For example, see Listing 2.33.
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 Listing 2.33 Initializing integral static data members within the class itself

 /*Beginning of Account.h*/

class Account
{
 static int nameLength=30;
 static char name[nameLength];
 /*
  rest of the class Account
 */
};

/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

int A::nameLength;
char A::name[nameLength]=“The Rich and Poor Bank”;
/*
 definitions of the rest of the functions of class Account
*/
/*End of Account.cpp*/

We must notice that the static data member that has been initialized inside the class must be 
still de  ned outside the class to allocate memory for it. Once the initial value has been supplied 
within the class, the static data member must not be re-initialized when it is de  ned.

Non-integral static data members cannot be initialized like this. For example, see 
Listing 2.34.

 Listing 2.34 Non-integral static data members cannot be initialized within the class

 /*Beginning of Account.h*/

class Account
{
 static char name[30]=“The Rich and Poor Bank”; //error!!
 /*
  rest of the class Account
 */
};
/*End of Account.h*/

In Listing 2.33, the variable nameLength is referred to directly without the class name and 
the scope resolution operator while de  ning the variable name. One static data member can 
directly refer to another without using the scope resolution operator.

Member functions can refer to static data members directly. An example follows (Listing 
2.35).

 Listing 2.35 Accessing static data members from non-static member functions

 /*Beginning of Account.h*/

class Account
{
  static float interest_rate;
 public:
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  void updateBalance();
  /*
   rest of the class Account
  */
};

/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

float Account::interest_rate=4.5;
void Account::updateBalance()
{
 if(end_of_year)
  balance+=balance*interest_rate/100;
}
/*
 definitions of the rest of the functions of class Account
*/
/*End of Account.cpp*/

The object-to-member access operator can be used to refer to the static data member 
of a class with respect to an object. The class name with the scope resolution operator can 
do this directly.

f=a1.interest_rate; //a1 is an object of the class Account
f=Account::interest_rate; 

There are some things static data members can do but non-static data members cannot.
A static data member can be of the  same type as the class of which it is a member. See 
Listing 2.36.

 Listing 2.36 Static data members can be of the same type as their class

 class A
{
 static A A1; //OK : static
 A * APtr; //OK : pointer
 A A2; //ERROR!! : non-static
};

A static data member can appear as the  default value for the formal arguments of member 
functions of its class. See Listing 2.37.

 Listing 2.37 A static data member can appear as the default argument in the member 
functions

class A
{
  static int x;
  int y;
 public:
  void abc(int=x); //OK
  void def(int=y); //ERROR!! : object required
}; 



 Object-Oriented Programming with C++64

A static data member can be declared to be a constant. In that case, the member functions 
will be able to only read it but not modify its value.

 Static member functions

How do we create a member function that need not be called with respect to an existing 
object? This function’s sole purpose is to access and/or modify static data members of the 
class. Static member functions ful  ll the above criteria. Pre  xing the function prototype with 
the keyword static speci  es it as a static member function. However, the keyword static 
should not reappear in the de  nition of the function.

Suppose there is a function set_interest_rate() that sets the value of the interest_rate 
static data member of class Account. The application programmer should be able to call this 
function even if no objects have been declared. As discussed previously, this function should 
be static. Its de  nition can be as shown in Listing 2.38.

 Listing 2.38 Static member function

 /*Beginning of Account.h*/
class Account
{
  static float interest_rate;
 public:
  static void set_interest_rate(float);
 /*
  rest of the class Account
 */
};
/*End of Account.h*/

/*Beginning of Account.cpp*/
#include“Account.h”

float Account::interest_rate = 4.5;

void Account::set_interest_rate(float p)
{
 interest_rate=p;
}
/*
 definitions of the rest of the functions of class Account
*/
/*End of Account.cpp*/

Now, the Account::set_interest_rate() function can be called directly without an 
object.

Account::set_interest_rate(5); 

Static member functions do not take the this pointer as a formal argument. Therefore, 
accessing non-static data members through a static member function results in compile-time 
errors. Static member functions can access only static data members of the class.

Static member functions can still be called with respect to objects.
a1.set_interest_rate(5); //a1 is an object of the class 
     //Account
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  2.3   Objects and Functions  

Objects can appear as local variables inside functions. They can also be passed by value or by 
reference to functions. Finally, they can be returned by value or by reference from functions. 
Listings 2.39 and 2.40 illustrate all this.

Listing 2.39 Returning class objects

/*Beginning of Distance.h*/
class Distance
{
 public:
  /*function to add the invoking object with another  
  object passed as a parameter and return the resultant  
  object*/
  Distance add(Distance);
  /*
   rest of the class Distance
  */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”

Distance Distance::add(Distance dd)
{
 Distance temp;
 temp.iFeet=iFeet+dd.iFeet;
 temp.setInches(fInches+dd.fInches);
 return temp;
}
/*
 definitions of the rest of the functions of class  
 Distance
*/

/*End of Distance.cpp*/

/*Beginning of Distmain.cpp*/
#include<iostream.h>
#include“Distance.h”

void main()
{
 Distance d1,d2,d3;
 d1.setFeet(5);
 d1.setInches(7.5);
 d2.setFeet(3);
 d2.setInches(6.25);
 d3=d1.add(d2);
 cout<<d3.getFeet()<<“ ”<<d3.getInches()<<endl;
}

/*End of Distmain.cpp*/

Output
9 1.75
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 Listing 2.40 Returning class objects by reference

/*Beginning of Distance.h*/
/*Header file containing the definition of the Distance
class*/
class Distance
{
/*definition of the class Distance*/
};
Distance& larger(Distance&, Distance&);
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include”Distance.h”
Distance& larger(Distance& dd1, Distance& dd2)
{
 float i,j;
 i=dd1.getFeet()*12+dd1.getInches();
 j=dd2.getFeet()*12+dd2.getInches();
 if(i>j)
  return dd1;
 else
  return dd2;
}
/*
definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

/*Beginning of Distmain.cpp*/
#include<iostream.h>
#include”Distance.h”
void main()
{
 Distance d1,d2;
 d1.setFeet(5);
 d1.setInches(7.5);
 d2.setFeet(5);
 d2.setInches(6.25);
 Distance& d3=larger(d1,d2);
 d3.setFeet(0);
 d3.setInches(0.0);
 cout<<d1.getFeet()<<» «<<d1.getInches()<<endl;
 cout<<d2.getFeet()<<» «<<d2.getInches()<<endl;
}
/*End of Distmain.cpp*/

Output
0 0.0
5 6.25

 2.4  Objects and Arrays  

Let us understand how arrays of objects and arrays inside objects are handled in C++.
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2.4.1  Arrays of Objects

We can create arrays of objects. The following program shows how.

Listing 2.41 Array of objects

 /*Beginning of DistArray.cpp*/
#include“Distance.h”
#include<iostream.h>
#define SIZE 3

void main()
{
 Distance dArray[SIZE];
 int a;
 float b;
 for(int i=0;i<SIZE;i++)
 {
  cout<<“Enter the feet : ”;
  cin>>a;
  dArray[i].setFeet(a);
  cout<<“Enter the inches : ”;
  cin>>b;
  dArray[i].setInches(b);
 }
 for(int i=0;i<SIZE;i++)
 {
  cout <<dArray[i].getFeet()<<“ ”  
    <<dArray[i].getInches()<<endl;
 }
}

/*End of DistArray.cpp*/

Output
Enter the feet : 1<enter>
Enter the inches : 1.1<enter>
Enter the feet : 2<enter>
Enter the inches : 2.2<enter>
Enter the feet : 3<enter>
Enter the inches : 3.3<enter>
1 1.1
2 2.2
3 3.3

2.4.2  Arrays Inside Objects

An array can be declared inside a class. Such an array becomes a member of all objects of 
the class. It can be manipulated/accessed by all member functions of the class. The class 
de  nition shown in Listing 2.42 illustrates this.
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 Listing 2.42 Arrays inside objects

 #define SIZE 3
/*A class to duplicate the behaviour of an integer array*/
class A
{
  int iArray[SIZE];
 public:
  void setElement(unsigned int,int);
  int getElement(unsigned int);
};
/*function to write the value passed as second parameter at the position passed 
as first parameter*/
void A::setElement(unsigned int p,int v)
{
 if(p>=SIZE)
  return; //better to throw an exception
 iArray[p]=v;
}
/*function to read the value from the position passed as parameter*/
int A::getElement(unsigned int p)
{
 if(p>=SIZE)
  return –1; //better to throw an exception
 return iArray[p];
}

The class de  nition is self-explanatory. However, the comments indicate that it is better 
to throw exceptions rather than terminate the function. What are exceptions? How are they 
thrown? What are the bene  ts of using them? All these questions are answered in the chapter 
on Exception Handling.

 2.5   Namespaces  

Namespaces enable the C++ programmer to prevent pollution of the global namespace that 
leads to name clashes.

The term ‘global namespace’ refers to the entire source code. It also includes all the directly 
and indirectly included header  les. By default, the name of each class is visible in the entire 
source code, that is, in the global namespace. This can lead to problems.

Suppose a class with the same name is de  ned in two header  les.
/*Beginning of A1.h*/
class A
{
};
/*End of A1.h*/

/*Beginning of A2.h*/
class A //a class with an existing name
{
};
/*End of A2.h*/ 

Now, let us include both these header  les in a program and see what happens if we declare 
an object of the class. See Listing 2.43.
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 Listing 2.43 Referring to a globally declared class can lead to ambiguity error

/*Beginning of multiDef01.cpp*/
#include”A1.h”
#include”A2.h”
void main()
{
 A AObj; //ERROR: Ambiguity error due to multiple
    //definitions of A
}
/*End of multiDef01.cpp*/

The scenario in Listing 2.43 is quite likely in large programs. The global visibility of 
the de  nition of class A makes the inclusion of the two header  les mutually exclusive. 
Consequently, this also makes use of the two de  nitions of class A mutually exclusive.

How can this problem be overcome? How can we ensure that an application is able to 
use both de  nitions of class A simultaneously? Enclosing the two de  nitions of the class in 
separate namespaces overcomes this problem.

 /*Beginning of A1.h*/
namespace A1 //beginning of a namespace A1
{
 class A
 {
 };
}    //end of a namespace A1
/*End of A1.h*/

/*Beginning of A2.h*/
namespace A2 //beginning of a namespace A2
{
 class A
 {
 };
}    //end of a namespace A2
/*End of A2.h*/

Now, the two de  nitions of the class are enveloped in two different namespaces. The 
corresponding namespace, followed by the scope resolution operator, must be pre  xed to 
the name of the class while referring to it anywhere in the source code. Thus, the ambiguity 
encountered in the above listing can be overcome. A revised de  nition of the main() function 
from Listing 2.43 illustrates this (Listing 2.44).

 Listing 2.44 Enclosing classes in namespaces prevents pollution of the global 
namespace

/*Beginning of multiDef02.cpp*/
#include”A1.h”
#include”A2.h”
void main()
{
 A1::A AObj1; //OK: AObj1 is an object of the class
    //defined in A1.h
 A2::A AObj2; //OK: AObj2 is an object of the class
    //defined in A2.h
}
/*End of multiDef02.cpp*/



 Object-Oriented Programming with C++70

Qualifying the name of the class with that of the namespace can be cumbersome. The 
 using directive enables us to make the class de  nition inside a namespace visible so that 
qualifying the name of the referred class by the name of the namespace is no longer required. 
Listing 2.45 shows how this is done.

  Listing 2.45 The using directive makes qualifying of referred class names by names of 
enclosing namespaces unnecessary

 /*Beginning of using.cpp*/
#include“A1.h”
#include“A2.h”
void main()
{
 using namespace A1;
 A AObj1; //OK: AObj1 is an object of the class 
    //defined in A1.h
A2::A AObj2; //OK: AObj2 is an object of the class 
    //defined in A2.h
}
/*Beginning of using.cpp*/

However, we must note that the using directive brings back the global namespace pollution 
that the namespaces mechanism was supposed to remove in the  rst place! The last line in 
the above listing compiles only because the class name was quali  ed by the name of the 
namespace.

Some namespaces have long names. Qualifying the name of a class that is enclosed within 
such a namespace, with the name of the namespace, is cumbersome. See Listing 2.46.

 Listing 2.46 Cumbersome long names for namespace

 /*Beginning of longName01.cpp*/
namespace a_very_very_long_name
{
 class A
 {
 };
}

void main()
{
 a_very_very_long_name::A A1; //cumbersome long name
}
/*End of longName01.cpp*/

Assigning a suitably short alias to such a long namespace name solves the problem as 
illustrated in Listing 2.47.

 Listing 2.47 Providing an alias for a namespace

 /*Beginning of longName02.cpp*/
namespace a_very_very_long_name
{
 class A
 {
 };
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}

namespace x = a_very_very_long_name; //declaring an 

     //alias
void main()
{
 x::A A1; //convenient short name
}
/*End of longName02.cpp*/

Aliases provide an incidental bene  t also. Suppose an alias has been used at a number 
of places in the source code. Changing the alias declaration so that it stands as an alias for 
a different namespace will make each reference of the enclosed class refer to a completely 
different class. Suppose an alias X refers to a namespace ‘N1’.

namespace X = N1; //declaring an alias 

Further, suppose that this alias has been used extensively in the source code.
X::A AObj; //AObj is an object of class A that is 
   //enclosed in namespace N1.
AObj.f1(); //f1() is a member function of the above
   //class. 

If the declaration of alias X is modi  ed as follows (‘N2’ is also a namespace)
 namespace X = N2; //modifying the alias

then, all existing quali  cations of referred class names that use X would now refer to class 
A that is contained in namespace ‘N2’. Of course, the lines having such references would 
compile only if both of the namespaces, ‘N1’ and ‘N2’, contain a class named A, and if these 
two classes have the same interface.

For keeping the explanations simple, classes that have been given as examples in the rest 
of this book are not enclosed in namespaces.

 2.6   Nested Inner Classes  
A class can be de  ned inside another class. Such a class is known as a nested class. The 
class that contains the nested class is known as the enclosing class. Nested classes can be 
de  ned in the private, protected, or public portions of the enclosing class (protected access 
speci  er is explained in the chapter on inheritance).

In Listing 2.48, class B is de  ned in the private section of class A.

  Listing 2.48 Nested classes

 /*Beginning of nestPrivate.h*/
class A
{
 class B
 {
  /*
   definition of class B
  */
 };
 /*
  definition of class A
 */



 Object-Oriented Programming with C++72

};
/*End of nestPrivate.h*/

In Listing 2.49, class B is de  ned in the public section of class A.

 Listing 2.49 A public nested class

 /*Beginning of nestPublic.h*/
class A
{
 public:
 class B
 {
  /*
   definition of class B
  */
 };
 /*
  definition of class A
 */
};
/*End of nestPublic.h*/

A nested class is created if it does not have any relevance outside its enclosing class. By 
de  ning the class as a nested class, we avoid a name collision. In Listings 2.48 and 2.49, even if 
there is a class B de  ned as a global class, its name will not clash with the nested class B.

The size of objects of an enclosing class is not affected by the presence of nested classes. 
See Listing 2.50.

Listing 2.50 Size of objects of the enclosing class

/*Beginning of nestSize.cpp*/
#include<iostream.h>

class A
{
  int x;
 public:
  class B
  {
    int y;
  };
};

void main()
{
 cout<<sizeof(int)<<endl;
 cout<<sizeof(A)<<endl;
}
/*End of nestSize.cpp*/

 Output
4
4

How are the member functions of a nested class de  ned? Member functions of a nested 
class can be de  ned outside the de  nition of the enclosing class. This is done by pre  xing 
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the function name with the name of the enclosing class followed by the scope resolution 
operator. This, in turn, is followed by the name of the nested class followed again by the 
scope resolution operator. This is illustrated by Listing 2.51.

Listing 2.51 Defi ning member functions of nested classes

/*Beginning of nestClassDef.h*/
class A
{
 public:
 class B
 {
  public:
   void BTest(); //prototype only
 };
 /*
  definition of class A
 */
};
/*End of nestClassDef.h*/

/*Beginning of nestClassDef.cpp*/
#include“nestClassDef.h”
void A::B::BTest()
{
 //definition of A::B::BTest() function
}

/*
 definitions of the rest of the functions of class B
*/
/*End of nestClassDef.cpp*/ 

A nested class may be only prototyped within its enclosing class and de  ned later. Again, 
the name of the enclosing class followed by the scope resolution operator is required. See 
Listing 2.52.

 Listing 2.52 Defi ning a nested class outside the enclosing class

 /*Beginning of nestClassDef.h*/
class A
{
 class B; //prototype only
};

class A::B
{
 /*
  definition of the class B
 */
};
/*End of nestClassDef.h*/

Objects of the nested class are de  ned outside the member functions of the enclosing 
class in much the same way (by using the name of the enclosing class followed by the scope 
resolution operator).

 A::B B1;
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However, the above line will compile only if class B is de  ned within the public section 
of class A. Otherwise, a compile-time error will result.

An object of the nested class can be used in any of the member functions of the enclosing 
class without the scope resolution operator. Moreover, an object of the nested class can be a 
member of the enclosing class. In either case, only the public members of the object can be 
accessed unless the enclosing class is a friend of the nested class. See Listing 2.53.

Listing 2.53 Declaring objects of the nested class in the member functions of the 
enclosing class

 /*Beginning of nestClassObj.h*/
class A
{
  class B
  {
   public:
    void BTest(); //prototype only
  };
  B B1;
 public:
  void ATest();
};
/*End of nestClassObj.h*/

/*Beginning of nestClassObj.cpp*/
#include“nestClassObj.h”

void A::ATest()
{
 B1.BTest();
 B B2;
 B2.BTest();
}
/*End of nestClassObj.cpp*/

Member functions of the nested class can access the non-static public members of the 
enclosing class through an object, a pointer, or a reference only. An illustrative example 
follows in Listing 2.54.

 Listing 2.54 Accessing non-static members of the enclosing class in member functions 
of the nested class.

 /*Beginning of enclClassObj.h*/
class A
{
 public:
  void ATest();
  class B
  {
   public:
    void BTest(A&);
    void BTest1();
  };
};
/*End of enclClassObj.h*/
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/*Beginning of enclClassObj.cpp*/
#include“enclClassObj.h”

void A::B::BTest(A& ARef)
{
 ARef.ATest(); //OK
}

void A::B::BTest1()
{
 ATest(); //ERROR!!
}
/*End of enclClassObj.cpp*/

It can be observed that an error is produced when a direct access is made to a member 
of the enclosing class through a function of the nested class. This is as it should be. After 
all, creation of an object of the nested class does not cause an object of the enclosing class 
to be created. The classes are nested to merely control the visibility. Since ‘A::B::BTest()’ 
function will be called with respect to an object of class B, a direct access to a member of the 
enclosing class A can be made through an object of that class only.

By default, the enclosing class and the nested class do not have any access rights to each 
other’s private data members. They can do so only if they are friends to each other.

Classes have both member data and member functions. 
Member functions can be given exclusive rights to 
access data members. Member functions and mem-
ber data can be private, protected, or public. The 
struct keyword has been rede  ned in C++. Apart 
from member data, structures in C++ can have mem-
ber functions also. In a class, members are private 
by default. In a structure, members are public by 
default.

The scope resolution operator is used to separate 
the class de  nition from the de  nitions of the member 
functions. The class de  nition can be placed in a header 
 le. Member functions, with the aid of scope resolution 

operator, can be placed in a separate implementation 
 le.

The this pointer is implicitly inserted by the com-
piler, as a leading formal argument, in the prototype 
and in the de  nition of each member function of each 
class. When a member function is called with respect 
to an object, the compiler inserts the address of the 
calling object as a leading parameter to the function 
call. Consequently, the this pointer, which exists as 
the implicit leading formal argument in all member 
functions, always points at the object with respect to 
which the member function has been called.

Access to member data and member functions 
from within member functions is resolved by the this 
pointer. The this pointer is a constant pointer in case 
of non-constant member functions and a constant 
pointer to a constant in case of constant member 
functions.

If the operand on its right is a data member, then 
the object-to-member access operator (.) behaves just 
as it does in C language. However, if it is a member 
function of a class whereas an object of the same class 
is its left-hand side operand, then the compiler simply 
passes the address of the object as an implicit leading 
parameter to the function call.

Similarly, if the operand on its right is a data 
member, then the pointer-to-member access operator 
(->) behaves just as it does in C language. However, 
if it is a member function of a class whereas a pointer 
to an object of the same class is its left-hand side 
operand, then the compiler simply passes the value 
of the pointer as an implicit leading parameter to the 
function call. Member functions can call each other. 
Calls are resolved through the this pointer. Member 
functions can be overloaded. Default values can be 
given to the formal arguments of member functions.

Summary
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Programs having inline functions tend to run faster 
than equivalent programs with non-inline functions. A 
function is declared inline either by de  ning it inside 
a class or by declaring it inside a class and de  ning it 
outside with the keyword inline. This feature should 
be used sparingly. Otherwise, the increased size of the 
executable can slow it down.

If required, member functions can be declared 
as constant functions to prevent even an inadvertent 
change in the data members. A function can be declared 
as a constant function by suf  xing its prototype and the 
header of its de  nition by the keyword const.

A mutable data member is never constant. It is 
modi  able inside constant functions also. A friend 
function is a non-member function that has a special 
right to access private data members of objects of the 
class of which it is a friend. This does not really negate 
the philosophy of OOPS. A friend function still needs 
to be declared inside the class of which it is a friend. 
The advantage that a friend function provides is that it 
is not called with respect to an object.

A global non-member function can be declared as 
a friend to a class. Member function of one class can 
be declared as a friend function of another. An entire 
class can be declared as a friend of another too. A class 
or a function is declared friend to a desired class by 
prototyping it in the class and pre  xing the prototype 
with the keyword friend.

Only one copy of a static data member exists for 
the entire class. This is in contrast to non-static data 
members that exist separately in each object. Static 
data members are used to keep data that relates to the 
entire set of objects that exist at any given point during 
the program’s execution. A data member is declared as 
a static member of a class by pre  xing its declaration 
in the class by the keyword static.

Static member functions can access static data 
members only. They can be called without declaring 
any objects. A member function is declared as a static 
member of a class by pre  xing its declaration in the 
class by the keyword static.

Objects can appear as local variables inside 
functions. They can also be passed by value or by 
reference to functions. Finally, they can be returned 
by value or by reference from functions.

Arrays of objects can be created. Arrays can be 
created inside classes also. One class can be de  ned 
inside another class. Such a class is known as a nested 
class. The class that contains the nested class is known 
as the enclosing class. Nested classes can be de  ned 
in the private, protected, or public portions of the 
enclosing class.

Namespaces enable the C++ programmer to prevent 
pollution of the global namespace. They help prevent 
name classes.

Key Terms 
class
private access speci  er
public access speci  er
objects
scope resolution operator
the this pointer
data abstraction
arrow operator
overloaded member functions
default values for formal arguments of member 
functions

inline member functions
constant member functions
mutable data members
friend non-member functions
friend classes
friend member functions
friends as bridges
static member data
static member functions
namespaces
nested classes

Exercises
1. How does the class construct enable data security?
2. What is the use of the scope resolution operator?
3. What is the this pointer? Where and why does the 

compiler insert it implicitly?

 4. What is data abstraction? How is it implemented in 
C++?

 5. Which operator is used to access a class member with 
respect to a pointer?
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 6. What is the difference between a mutable data 
member and a static data member?

 7. Describe the two ways in which a member function 
can be declared as an inline function.

 8. How can a global non-member function be declared 
as a friend to a class?

 9. What is the use of declaring a class as a friend of 
another?

 10. Explain why friend functions do not contradict the 
principles of OOPS.

 11. Explain why static data members should be explicitly 
declared outside the class.

 12. Why should static data members be de  ned in the 
implementation  les only?

 13. What is the use of static member functions?
 14. How do namespaces help in preventing pollution of 

the global namespace?
 15. What is a nested class? What is its use?
 16. How are the member functions of a nested class 

defined outside the definition of the enclosing 
class?

 17. State true or false.
(a) Structures in C++ can have member functions 

also.
(b) Structure members are private by default.
(c) The this pointer is always a constant pointer.
(d) Member functions cannot be overloaded.
(e) Default values can be given to the formal 

arguments of member functions.
(f) Only constant member function can be called for 

constant objects.
(h) The keyword friend should appear in the 

prototype as well as the de  nition of the function 
that is being declared as a friend.

(i) A friend function can be prototyped in only the 
public section of the class.

(j) Friendship is not transitive.
(k) A static data member can be of the same type as 

the class of which it is a member.
(l) The size of objects of an enclosing class is 

affected by the presence of nested classes.
(m) An object of the nested class can be used in any 

of the member functions of the enclosing class 
without the scope resolution operator. 

(n) An object of the nested class cannot be a member 
of the enclosing class. 

(o) Public members of the nested class’s object 

which have been declared in a function of the 
enclosing class can always be accessed.

 18. Your compiler should provide a structure 
and associated functions to fetch the current 
system date. Suppose the name of the structure 
is date_d and the name of the associated 
functions to fetch the current system date is 
getSysDate().

   Create a class with a name that is similar to 
the above structure. This class should contain 
a variable of the above structure as its private 
data member. Introduce a member function 
in the class that calls the associated function 
of the date structure. Thus, create a wrapper 
class and make an available structure safe to 
use.

class date_D //a wrapper class
{
  date_d d;
 public:
  void getSysDate();
};

void date_D::getSysDate()
{
getSysDate(&d); // calling the associ-

ated function from 
    //the member function
} 

  Also, write a small test program to test the 
above class.

 19. Create a class named Distance_mks. This class 
should be similar to the class Distance, except for 
the following differences:

 The data members of this new class would be 
iMeters (type integer; for representing the 
meters portion of a distance) and fCentimeters 
(type float; for representing the centimeters 
portion of a distance) instead of iFeet and 
fInches.

 Suitably designed member functions to work 
upon the new data members should replace the 
ones that we have seen for the class Distance. 
The member functions should ensure that the 
fCentimeters of no object should ever exceed 
100.



Dynamic Memory Management

This chapter explains the use of tools that are available in C++ for dynamic memory 
management. It begins with a brief explanation of static memory management and its limitation. 
This is followed by an elucidation of the mechanism of dynamic memory management.

The middle portion of the chapter deals with the use and usage of the new operator and the 
delete operator. Methods for allocating and deallocating memory for single objects and array 
of objects are explained. 

The chapter also explains how the size of a dynamically allocated memory block is 
stored.

The last portion of the chapter explains the use of the set_new_handler() function for 
specifying our own new handler.
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 3.1  Introduction

Let us have an overview of  static memory management. Memory for program variables gets 
allocated and deallocated during run time only. For example, we write 

int x;

in some function in the source code. When the source code containing this statement (apart 
from the other statements) is compiled and linked, an executable  le is generated. Besides 
containing equivalent instructions for the other statements, the executable  le also contains 
the equivalent instructions for this statement. When the executable  le is executed, all the 
instructions contained inside it, including the ones to allocate memory for ‘x’, are executed. 
Thus, memory gets allocated for ‘x’ during run time. This is known as static memory allocation 
(although memory gets allocated during run time only).

The compiler writes instructions in the executable to deallocate the memory previously 
allocated for ‘x’ when it encounters the end of the function, in which ‘x’ was declared, in 
the source code. When the executable  le is executed, all instructions contained inside it 
including the ones to deallocate memory for ‘x’ are executed. Thus, memory for ‘x’ gets 
deallocated during run time. This is known as static memory deallocation (although memory 
gets deallocated during run time only).

Static allocation and deallocation of memory has a limitation. It is rigid. The programmers 
are forced to predict the total amount of data the program will utilize. They write statements 
to declare pre-calculated amounts of memory. During run time, if more memory is required, 
static memory allocation cannot ful  ll the need. Once a certain memory block is no longer of 
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any use to the program, memory allocated to it cannot be released immediately. The memory 
will continue to be held up until the end of the block in which the variable was created.

 Dynamic memory management is a feature provided and supported in C and C++. It 
overcomes the drawbacks of static memory allocation. Just like in static memory allocation and 
deallocation, in dynamic memory allocation and deallocation also, memory gets allocated and 
deallocated during run time only. However, the decisions to do so can be taken dynamically 
in response to the requirements arising during run time itself. 

If the program is running and the user indicates the need to feed in more data, a  memory 
block suf  cient to hold the additional amount of data is immediately allocated. For this, code 
utilizing the relevant functions and operators provided by C and C++ has to be explicitly 
written in the source code. Again, once a certain block of memory is no longer required, it 
can immediately be returned to the OS. For this again, code utilizing the relevant functions 
and operators provided by C and C++ has to be explicitly written in the source code. The OS 
can then allocate the deallocated memory block if the need arises.

 3.2   Dynamic Memory Allocation 

Dynamic memory allocation is achieved in C through the malloc(), calloc(), and realloc() 
functions. In C++, it is achieved through the  new operator. An illustrative example (Listing 
3.1) and its explanation follow.

Listing 3.1 Using the new operator for dynamic memory allocation

/*Beginning of dynamic.cpp*/
#include<iostream.h>
void main()
{
 int * iPtr;
 iPtr=new int;
 *iPtr=10;
 cout<<*iPtr<<endl;
}
/*End of dynamic.cpp*/

Output
10

The word new is a keyword in C++. It is an operator. It takes a prede  ned data type as 
an operand (int in Listing 3.1). It then allocates memory to hold one value of the data type 
that is passed as a parameter to it in the heap (four bytes in Listing 3.1). Finally, it returns 
the address of the allocated block. This address need not be explicitly typecast since the new 
operator returns the address with the correct cast (int * in this case). This address can then be 
stored in a pointer of an appropriate type (iPtr in this call). The allocated block of memory 
can then be accessed through the pointer. See Figure 3.1(a).
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Statement: int * iptr;

Figure 3.1(a) Dynamic memory allocation

Statement: iptr = new int;

Figure 3.1(b) Dynamic memory allocation

1265 5972

5972 xxxx four bytes

iPtr

The new operator allocates memory in the heap to hold one integer-type value. Suppose, 
the block from the byte with address 5972 to the byte with address 5975 gets allocated. The 
new operator returns the base address of the block (5972). This value gets stored in iPtr. See 
Figure 3.1(b).

Statement:  *iPtr = 10;

Figure 3.1(c) Dynamic memory allocation

1265 5972

5972 10

iPtr

iPtr is dereferenced and the value 10 gets written into the memory block of four bytes at 
which iPtr points (5972 to 5975).

Four bytes get allocated for iPtr containing junk
value at the bytes with addresses from 1265 to 1268 (say).
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Statement: cout<<*iPtr<<endl;

Figure 3.1(d) Dynamic memory allocation using the new operator

1265 5972

5972 10

iPtr

iPtr is again dereferenced and the value (10) stored in the 
memory block to which iPtr points (5972 to 5975) is read.

The general  syntax of the new operator is
<pointer> = new <data_type>;

The new operator can be used to create multiple blocks of memory also. This is shown in 
Listing 3.2. Figures 3.2(a) and (b) explain the statements.

Listing 3.2 Creating an array dynamically using the new operator

/*Beginning of DynArray1.cpp*/
#include<iostream.h>
#define SIZE 10
void main()
{
 int * iPtr;
 iPtr = new int[SIZE];
 for(int i=0;i<SIZE;i++)
  iPtr[i]=i; //can write cin>>iPtr[i]; also
 for(int j=0;j<SIZE;j++)
  cout<<iPtr[j]<<endl;
}
/*End of DynArray1.cpp*/

Output
0
1
2
3
4
5
6
7
8
9
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Statement: int * iPtr;

Four bytes get allocated for iPtr containing junk value at 
the bytes with addresses from, say, 1265 to 1268.

Figure 3.2(a) Memory allocation for an array using iPtr

1265

xxxx four bytes

iPtr

Statement: iPtr = new int[SIZE]; //SIZE=10

The new operator allocates memory in the heap to hold ten integer type values [see Figure 
3.2(b)]. If the block from the byte with address 5972 to the byte with address 6012 gets 
allocated, the new operator returns the base address of the block 5972. This value gets stored 
in iPtr. After this, iPtr is simply dereferenced within the for loop by using the subscript 
operator. All the elements of the array at whose  rst element the pointer is pointing are 
accessed. The  syntax for using the new operator to create an array is as follows:

Figure 3.2(b) Dynamically allocating memory for an array using the new operator

5972

5972

1265

four bytesxxxx

four bytes

four bytes

40 bytes

iPtr

<pointer> = new <data_type>[<number_of_elements>];

Now, let us make the program interactive to exploit the power of the new operator. The 
value that we passed inside the subscript while allocating the memory using the new operator 
can be that of a variable. In Listing 3.3, we will  rst ask the user to enter the size of the array 
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and store it in a variable. Next, we will pass the variable into the subscript while using the new 
operator to allocate memory. The address returned by the new operator will then be stored 
in a pointer. Finally, we will access the array thus created through the pointer. The program 
is shown in Listing 3.3.

Listing 3.3 Creating an array dynamically when its size is specifi ed during run time

/*Beginning of DynArray2.cpp*/
#include<iostream.h>
void main()
{
 int * iPtr;
 unsigned int iSize;
 cout<<“Enter the size of the array : ”;
 cin>>iSize;
 iPtr = new int[iSize];
 for(int i=0;i<iSize;i++)
 {
  cout<<“Enter the value for element ”<<i+1<<“ : ”;
  cin>>iPtr[i];
 }
 for(int j=0;j<iSize;j++)
  cout<<iPtr[j]<<endl;
}
/*End of DynArray2.cpp*/

 Output
Enter the size of the array : 3<enter>
Enter the value for element 1 : 12<enter>
Enter the value for element 2 : 7<enter>
Enter the value for element 3 : 19<enter>
12
7
19

We must note that the new operator has enabled us to allocate memory dynamically. In 
Listing 3.3, memory is getting allocated during run time (just like in static memory allocation). 
However, the amount of memory to be allocated is being decided during run time itself.

Same methodology can be applied for dynamically creating arrays of the other prede  ned 
fundamental data types. Arrays of class objects can also be created dynamically in the same 
way. Listing 3.4 is a case in point.

Listing 3.4 Creating an array of objects dynamically during run time

/*Beginning of DynDist.cpp*/
#include<iostream.h>
#include“Distance.h”
void main()
{
 Distance * dPtr;
 unsigned int iSize;
 cout<<“Enter the number of elements : ”;
 cin>>iSize;
 dPtr = new Distance[iSize];
 for(int i=0;i<iSize;i++)
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 {
  cout<<“Enter the feet : ”;
  cin>>a;
  cout<<“Enter the inches : ”;
  cin>>b;
  dPtr[i].setFeet(a);
  dPtr[i].setInches(b);
 }
 for(int j=0;j<iSize;j++)
 {
  cout <<dPtr[j].getFeet()<<“ ”

<<dPtr[j].getInches()<<endl;
 }
}
/*End of DynDist.cpp*/

Output
Enter the number of elements : 3<enter>
Enter the feet : 1<enter>
Enter the inches : 1.1<enter>
Enter the feet : 2<enter>
Enter the inches : 2.2<enter>
Enter the feet : 3<enter>
Enter the inches : 3.3<enter>
1 1.1
2 2.2
3 3.3

In Listings 3.3 and 3.4, the user is explicitly asked to enter the size of the array he/she 
wants to create. This is a little abrupt. Requirements for more memory may arise during run 
time in a more subtle fashion (say, while creating data structures such as linked lists, trees, 
etc.). Nevertheless, the basic technique of using the new operator remains the same.

 3.3   Dynamic Memory Deallocation  
We already know that a block of memory allocated dynamically can be deallocated 
dynamically. Once it is not in use any more, a dynamically allocated block of memory should 
de  nitely be returned to the OS. 

In C, dynamic memory deallocation is achieved through the free() function. Dynamically 
allocated blocks of memory can be returned to the OS in C++ through the  delete operator.

What is the need to deallocate a dynamically allocated block of memory? What will happen 
if a dynamically allocated block of memory is not returned to the OS? These questions are 
answered by Listing 3.5 and the explanatory  gure (Figure 3.3) that follows.

Listing 3.5 Memory leak

/*Beginning of memleak.cpp*/
#include<iostream.h>
void abc();
void main()
{
 abc(); //call to the abc() function
 /*
  rest of the main() function
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 */
}
void abc()
{
 int * iPtr;
 iPtr = new int;
 /*
  rest of the abc() function
 */
}
/*End of memleak.cpp*/

The following statement executes from within the abc() function which is called from 
the main() function.

Statement:  iPtr = new int;

As a result, the following scenario emerges.
5972

5972

1265

four bytesxxxx

iPtr

The new operator allocates memory in the heap to hold one integer type value. Suppose 
the block from the byte with address 5972 to the byte with address 5975 gets allocated. The 
new operator returns the base address of the block 5972. This value gets stored in iPtr.

After abc()  nishes execution, memory for iPtr itself is deallocated. But, the memory in 
the heap area remains locked up as an orphan (unreferenced) locked up block of memory.

Figure 3.3 Memory leak

5972

four bytesxxxx

As it can be seen from Figure 3.3, after the abc() function terminates, four bytes of memory 
are lost. Since they have not been returned to the OS, they remain locked up. This is known 
as a  memory leak. If more memory is required, the OS will not allocate this block of memory. 
Moreover, this block of memory cannot be accessed since the only pointer (iPtr) that was 
pointing at it has itself been removed from the stack. 

This block of memory that is no longer of any use can and should be returned to the OS. 
A dynamically allocated block of memory can be deallocated by passing the pointer pointing 
to it as an operand to the delete operator. For example, the following statement should be 
inserted before the end of the abc() function in Listing 3.5.

delete iPtr; 
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The foregoing statement is executed just before the abc() function terminates. The 
memory block at which iPtr points gets deallocated (it becomes available for the OS). Next, 
the memory allocated for iPtr itself is deallocated. Finally, the function terminates. Thus, 
memory leak is prevented.

When the new operator is used, the OS blocks a block of memory of the requested size. 
The OS never allocates this particular block of memory in response to subsequent requests 
for memory blocks as long as this block of memory is not deallocated. When the delete 
operator is used on the pointer that points at this block of memory, the memory block gets 
deallocated, that is, freed and made available for the OS. In other words, the OS, in response 
to subsequent requests for memory blocks, may allocate this freed block of memory.

A dynamically allocated block of memory remaining locked up is frequently a blessing. 
The fact that the block of memory locked up by the code in a certain function persists even 
after the function terminates is frequently desirable. A called function may allocate a memory 
block and a pointer local to the calling function can be made to point at it. Even after the called 
function terminates, the dynamically allocated block of memory will remain persistent, but 
not unreferenced. Listing 3.6 illustrates this.

Listing 3.6 Making a dynamically allocated block of memory available to the calling 
function

void abc(int  ** p)
{
 /*
  some complex algorithm
 */

 *p = new int;

 /*
  rest of the abc() function
 */
}
void main()
{
 int * iPtr;
 abc(&iPtr);
 /*
  rest of the main() function
 */
}

In Listing 3.6, the address of iPtr that is local to the calling function (main() function) is 
passed as a parameter to the called function (abc() function). Its value needs to be changed 
by the abc() function. Its address is stored in a double pointer (a pointer to a pointer has to 
be a double pointer). A block of memory is allocated and its address is stored in iPtr by 
dereferencing the pointer that points at it. It is our obvious desire that the dynamically allocated 
block of memory persists even after the abc() function terminates. After the abc() function 
terminates, iPtr that is a local variable in the calling function will point at the dynamically 
allocated block of memory.

The general  syntax of the delete operator to deallocate a single block of memory is:
 delete <pointer>;
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In the foregoing listings, the memory block was deallocated only at the end of the functions 
that allocated it. However, dynamic memory deallocation is usually conditional (Listing 3.7).

Listing 3.7 C++ allows deallocation of memory as and when required

void abc(int ** p)
{
 if(memory_not_required)
 {
  delete *p;
  *p = NULL;
 }
 /*
  rest of the abc() function
 */
}

A misconception about the  delete operator is due to the commonly used phrase ‘deleting 
the pointer’. An uninitiated reader may think that the memory being occupied by the pointer 
itself gets removed if the delete operator is used on the pointer. In reality, nothing of this 
sort happens.

When the delete operator is used on a pointer, the pointer continues to occupy its own 
block of memory and continues to have the same value that is the address of the  rst byte of 
the block of memory that has just got deallocated. Thus, the pointer continues to point at the 
same block of memory. This will lead to run-time errors if the pointer is dereferenced.

We can see in Listing 3.7 that the pointer being pointed at by ‘p’ was deliberately nulli  ed 
after the memory that the pointer was pointing at had been deallocated. This is a very common 
practice to indicate that the pointer (the pointer whose address is passed from the calling 
function in this case) no longer points at a valid dynamically allocated block of memory. In 
other words, it is highly desirable that either the pointer points at a valid block of memory or 
be NULL. It is not possible to ensure this due to the low level of representation of pointers. 
A pointer is unlikely to be NULL at the time of its creation. But that does not mean that 
the value it contains is the address of some valid allocated block of memory. There is no 
guaranteed initialization of data. This problem is solved by the use of  constructors, which 
have been discussed in Chapter 4.

A multiple block of memory is deallocated by suf  xing the delete operator with an empty 
pair of square brackets followed by the pointer that points at the multiple block of memory, 
as shown in Listing 3.8.

Listing 3.8 Deallocating memory that was allocated for an array

int * iPtr;
….
iPtr = new int[10];
….
delete[] iPtr;

If we write delete iPtr instead of delete[] iPtr, only the  rst four bytes of the block 
of 40 bytes at which iPtr is pointing, will be deallocated. Using delete[] deallocates the 
entire block of 40 bytes. The  syntax for using the delete operator to deallocate an array is 
as follows:

 delete [] <pointer>;
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The size of the array to be created is passed as a parameter to the new operator. But while 
deallocating the memory allocated for the array, the size is not passed (the square brackets 
are empty). Then how does the compiler know how much of memory is to be deallocated? 
The answer is that when the new operator executes to allocate a block of array, the OS stores 
the size passed. Figure 3.4 shows the size of the memory block, which is captured during 
run time, is pre  xed to the memory block itself. When the delete operator is used followed 
by the empty pair of square brackets, the compiler uses the size stored and deallocates the 
entire block correctly.

Figure 3.4 Size of the allocated memory is prefi xed to the memory block

Blocks of memory containing arrays of other types can also be deallocated similarly. For 
example, see Listing 3.9.

Listing 3.9 Deallocating memory that was allocated for an array of objects

Distance * dPtr;
dPtr = new Distance[5]; //creates an array of 5 objects of
    //the class Distance
….
….
delete[] dPtr; //de-allocates the memory 
    //allocated for the entire array

 3.4   set_new_handler() Function 

We already know that the new operator attempts to capture more chunks of memory from 
the heap during run time. But, what happens if no more memory is available to satisfy this 
attempt? We get an out-of-memory condition.

The  new operator, when faced with an  out-of-memory condition, calls a global function 
and then throws an exception of type bad_alloc (the chapter on exception handling deals 
with the mechanism of throwing and catching exceptions). This global function is known as 
the  new handler function.
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We can specify our own new handler function also! We can specify that the new operator, 
upon encountering an out-of-memory condition, calls a function of our choice. We can do 
this by calling the set_new_handler() function and passing the name of the desired function 
as a parameter to it. The prototype of the set_new_handler() function clari  es this. This 
prototype is in the new.h header  le.

 new_handler set_new_handler(new_handler);

Obviously, new_handler is a data type. It is a function pointer type. The formal argument 
of the set_new_handler() function is a function pointer. If we pass the name of our desired 
function as a parameter to the set_new_handler() function, all subsequent out-of-memory 
conditions cause the new operator to call it. Our desired function becomes the new handler. 
Moreover, when the set_new_handler() function is called, it returns a pointer to the previous 
new handler function.

An illustrative example follows in Listing 3.10.

Listing 3.10 Specifying a new handler function

/*Beginning of newHandler.cpp*/
#define BIG_NUMBER 9999999
#include<new.h> //for set_new_handler() function
void myNewHandler()
{
 /*
  code to handle out-of-memory condition
 */
}
void main()
{
new_handler oldHandler;
//set the function myNewHandler as the new handler

oldHandler = set_new_handler(myNewHandler); 
int * p = new int[BIG_NUMBER]; //probably cause out-of-
    //memory condition
}
/*End of newHandler.cpp*/

If the OS is unable to allocate the requested amount of memory, which is quite likely in 
Listing 3.10, the  new operator fails. The new handler function gets called. The call to the set_
new_handler() function, just prior to the call to the new operator, has already set the function 
myNewHandler as the new handler. Therefore, the function myNewHandler gets called.

An important characteristic of the new operator is that when its request for memory fails, 
it  calls the new handler function repeatedly until its request is satis  ed. This fact helps in 
meaningfully de  ning the new handler function (Listing 3.11).

We can make the new handler function log an error message and then call the  abort() 
function.

Listing 3.11 Defi ning the new handler function

void myNewHandler()
{
 //statement to log a suitable error message
 abort();
}
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The abort() function simply terminates the program. We can also throw an exception 
from within the new handler function. The chapter on exception handling explains the syntax 
for throwing exceptions and its superiority over calling the abort() function. 

Another course of action is to replace the existing new handler function by another one. 
For this, we can call the set_new_handler() function from within the existing new handler 
function and pass the name of the new handler as a parameter to it. Of course, such a call 
should be preceded by the code that attempts to resolve the out-of-memory condition  rst. 
The new handler should be replaced only if this attempt fails. See Listing 3.12.

Listing 3.12 Replacing the existing new handler function

#include<new.h>
void myNewHandler()
{
 //make an attempt to resolve the out-of-memory 
 //condition
 if(above_attempt_fails)
  set_new_handler(myAnotherNewHandler);
}

An interesting way of de  ning the new handler is to allocate some buffer memory in 
advance and free it part by part as the need arises.

Memory is allocated for program variables during run 
time only. In static memory allocation, the amount of 
memory to be allocated is decided during compile time 
itself. The instance at which each statically allocated 
variable would get created during the program’s 
execution is also decided during the program’s 
compilation.

On the other hand, the amount of memory to 
be allocated is decided during run time in case of 
dynamic memory allocation. Moreover, memory can 
be allocated in response to conditions that arise during 
run time.

C++ provides the new operator for allocating 
memory dynamically. The syntax of the new operator 
for allocating memory for a single block is

 <pointer> = new <data_type>;

The new operator allocates enough memory in the 
heap area to accommodate one variable of the data type 
that is passed as its right-hand-side operand. Further, 
it returns the address of the  rst byte of this allocated 
block of memory that can be stored in the pointer on 
the left-hand-side of the assignment operator as shown 
in the above statement.

Memory for an array can be allocated by using the 
new operator. The syntax is as follows:

 <pointer> = new <data_type>[<number_of_
elements>];

Again, dynamically allocated memory can be 
dynamically deallocated in response to conditions that 
arise during run time. Dynamically allocated memory 
must be deallocated, that is, returned to the Operating 
System. Otherwise, memory leak would occur.

C++ provides the delete operator for deallocating 
dynamically allocated memory. The syntax of the 
delete operator for deallocating memory earlier 
allocated for a single block is

 delete <pointer>;

The delete operator deallocates the memory in 
the heap area that the pointer that is passed as its right-
hand-side operand points at. 

Memory allocated dynamically for an array can 
also be deallocated by using the delete operator. The 
syntax is as follows:

 delete [] <pointer>;

Summary
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Key Terms 

This version is similar to the previous one with 
the difference that an empty pair of square brackets 
appears between the delete keyword and the name 
of the pointer. C++ knows the exact number of bytes 
to be returned. It stores the size of the dynamically 

allocated block in a block of memory that it pre  xes 
to the allocated block of memory itself. The set_new_
handler() function enables us to set a function of our 
choice as the new handler function.

static memory allocation
static memory deallocation
dynamic memory allocation
dynamic memory deallocation

new operator
delete operator
set_new_handler() function
new handler function

Exercises

 1. What is static memory allocation? 
 2. When is memory allocated and deallocated in static 

memory allocation—during compile time, link time, 
or run time?

 3. Under what conditions does static memory allocation 
become unsuitable?

 4. What is dynamic memory allocation? How is it 
different from static memory allocation? 

 5. When is memory allocated and deallocated in 
dynamic memory allocation— during compile time, 
link time, or run time?

 6. Under what conditions does the use of dynamic 
memory allocation become mandatory?

 7. What is the syntax of the new operator for
(a) allocating memory for a single variable?
(b) allocating memory for an array?

 8. Describe how additional blocks of memory can be 

captured in C++ during run time based upon existing 
run-time conditions?

 9. What is the syntax of the delete operator for
(a) deallocating memory that has been allocated for 

a single variable?
(b) deallocating memory that has been allocated for 

an array?
 10. The size of the array, whose memory is to be deallo-

cated, is not passed to the delete operator. How does 
the compiler determine this size?

 11. What is memory leak?
 12. How can the delete operator be used to prevent a 

memory leak?
 13. What is an out-of-memory condition?
 14. What is the new handler? How is the set_new_

handler() function used to set our own new 
handler?



Constructors and Destructors

We are already aware of the need to include a member function in our class that initializes 
the data members of its class to desired default values and gets called automatically for each 
object that has just got created. Constructors ful  ll this need and the  rst portion of this chapter 
deals with constructors. Various types of constructors are described in the middle portion of 
this chapter.

There is also the need to include a member function in our class that gets called automatically 
for each object that is going out of scope. Destructors ful  ll this need and the penultimate 
portion of this chapter deals with destructors.

Along with the class construct and the access speci  ers, constructors and destructors 
complete the requirements needed to created new data type—safe and ef  cient data types. 
This is discussed in the last portion of this chapter.
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 4.1   Constructors 

The constructor gets called automatically for each object that has just got created. It appears 
as member function of each class, whether it is de  ned or not. It has the same name as that 
of the class. It may or may not take parameters. It does not return anything (not even void). 
The prototype of a constructor is

<class name> (<parameter list>);

The need for a function that guarantees initialization of member data of a class was felt in 
Chapter 2. Constructors ful  ll this need. Domain constraints on the values of data members 
can also be implemented via constructors. For example, we want the value of data member 
 nches of each object of the class Distance to be between 0.0 and 12.0 at all times within 
the lifetime of the object. But this condition may get violated in case an object has just got 
created. However, introducing a suitable constructor to the class Distance can enforce this 
condition.

The compiler embeds a call to the constructor for each object when it is created. Suppose 
a class A has been declared as follows:

/*Beginning of A.h*/
class A
{
  int x;

public:
  void setx(const int=0);
  int getx();
};
/*End of A.h*/
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Consider the statement that declares an object of a class A in Listing 4.1.

Listing 4.1 Constructor gets called automatically for each object when it is created

/*Beginning of AMain.cpp*/
#include“A.h”
void main()
{
 A A1;  //object declared … constructor called
}
/*End of AMain.cpp*/

The statement in the function main() in Listing 4.1 is transformed into the following 
statements.

A A1;   //memory allocated for the object (4 bytes)
A1.A();  //constructor called implicitly by compiler

The second statement above is then transformed to
A(&A1); //see Chapter 2

Similarly, the constructor is called for each object that is created dynamically in the heap by 
the new operator.

A * APtr;
APtr = new A; //constructor called implicitly by compiler

The second statement above is transformed into the following two statements.
APtr = new A; //memory allocated
APtr->A(); //constructor called implicitly by compiler

The second statement above is then transformed into
A(APtr); //see Chapter 2

The foregoing explanations make one thing very clear. Unlike their name, constructors do 
not actually allocate memory for objects. They are member functions that are called for each 
object immediately after memory has been allocated for the object. 

The constructor is called in this manner separately for each object that is created. But did 
we prototype and de  ne a public function with the name ‘A()’ inside the class A? The answer 
is ‘no’. Then how did the above function call get resolved? The compiler prototypes and 
de  nes the constructor for us. But what statements does the de  nition of such a constructor 
have? The answer is ‘nothing’.

Before
class A
{
  . . . .
  . . . .
 public:
  . . . .
  . . . .
  //no constructor
};
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After
class A
{
  . . . .
  . . . .
 public:
  A(); //prototype inserted implicitly by compiler
  . . . .
  . . . .
};

A::A()
{
 //empty definition inserted implicitly by compiler
}

As we can see, the name of the constructor is the same as the name of the class. Also, the 
constructor does not return anything. The compiler de  nes the constructor in order to resolve 
the call to the constructor that it compulsorily places for the object being created. 

For reasons that we will discuss later, it is forbidden to call the constructor explicitly for 
an existing object as follows.

A1.A(); //not legal C++ code!

4.1.1  Zero-argument Constructor

We can and should de  ne our own constructors if the need arises. If we do so, the compiler 
does not de  ne the constructor. However, it still embeds implicit calls to the constructor as 
before.

The constructor is a non-static member function. It is called for an object. It, therefore, takes 
the this pointer as a leading formal argument just like other non-static member functions. 
Correspondingly, the address of the invoking object is passed as a leading parameter to the 
constructor call. This means that the members of the invoking object can be accessed from 
within the de  nition of the constructor.

Let us add our own constructor to class A de  ned in Listing 4.1 and verify whether the 
constructor is actually called implicitly by the compiler or not. See Listing 4.2.

Listing 4.2 Constructor gets called for each object when the object is created

/*Beginning of A.h*/
class A
{
 int x;
 public:
 A();   //our own constructor
 void setx(const int=0);
 int getx();
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include”A.h”
#include<iostream.h>
A::A()   //our own constructor
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{
 cout<<”Constructor of class A called\n”;
}
/*
definitions of the rest of the functions of class A
*/
/*End of A.cpp*/

/*Beginning of AMain.cpp*/
#include<iostream.h>
#include“A.h”
void main()
{
 A A1;
 cout<<”End of program\n”;
}
/*End of AMain.cpp*/

Output
Constructor of class A called
End of program

Let us now de  ne our own constructor for the class Distance. What should the constructor 
do to the invoking object? We would like it to set the values of the iFeet and fInches 
data members of the invoking object to 0 and 0.0, respectively. Accordingly, let us add the 
prototype of the function within the class de  nition in the header  le and its de  nition in the 
library source code. See Listing 4.3.

Listing 4.3 A user-defi ned constructor to implement domain constraints on the data 
members of a class

/*Beginning of Distance.h*/
class Distance
{
 public:
  Distance(); //our own constructor
  /*
   rest of the class Distance
  */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance::Distance() //our own constructor
{
 iFeet=0;
 fInches=0.0;
}
/*
 definitions of the rest of the functions of class 
 Distance
*/
/*End of Distance.cpp*/

/*Beginning of DistTest.cpp*/
#include<iostream.h>
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#include“Distance.h”
void main()
{
 Distance d1; //constructor called
 cout<<d1.getFeet()<<“ ”<<d1.getInches();
}
/*End of DistTest.cpp*/

Output
0 0.0

Now, due to the presence of the constructor within the class Distance, there is a  guaranteed 
initialization of the data of all objects of the class Distance. Our objective of keeping the 
fInches portion of all objects of the class Distance within 12.0 is now ful  lled.

The constructor that we have de  ned in Listing 4.2 does not take any arguments and is 
called the zero-argument constructor. The constructor provided by default by the compiler also 
does not take any arguments. Therefore, the terms ‘zero-argument constructor’ and ‘default 
constructor’ are used interchangeably.

Now, let us start the study of a class that will enable us to abstract character arrays and 
overcome many of the drawbacks that exist in them. This class will be our running example 
for explaining most of the concepts of this book. We will de  ne it incrementally. Our purpose 
is to ultimately de  ne a class that can be used instead of character arrays. 

Let us call the class String. It will have two data members. Both these data members will 
be private. The  rst data member will be a character pointer. It will point at a dynamically 
allocated block of memory that contains the actual character array. The other data member 
will be a long unsigned integer that will contain the length of this character array.

/*Beginning of String.h*/
class String
{
  char * cStr; //character pointer to point at 
    //the character array

  long unsigned int len; //to hold the length of the 
    //character array

  /*
   rest of the class String
  */

};
/*End of String.h*/

Suppose ‘s1’ is an object of the class String and the string ‘abc’ has been assigned to it. 
Diagrammatically this situation can be depicted in Figure 4.1.

The address of the  rst byte of the memory block containing the string is 101. This value 
is stored in the ‘cStr’ portion of ‘s1’. The address of ‘s1’ is 27.

Also, we would religiously implement the following two conditions on all objects of the 
class String.

• ‘cStr’ should either point at a dynamically allocated block of memory exclusively allocated 
for it (that is, no other pointer should point at the block of memory being pointed at by 
‘cStr’) or ‘cStr’ should be NULL.

• There should be no memory leaks.
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Obviously, when an object of the class String is created, the ‘cStr’ portion of the object 
should be initially set to NULL (and ‘len’ should be set to 0). Accordingly, the prototype and 
the de  nition of the constructor are as shown in Listing 4.4.

Listing 4.4 A user-defi ned constructor

/*Beginning of String.h*/
class String
{
  char * cStr;
  long unsigned int len;
 public:
  String(); //prototype of the constructor
  /*
   rest of the class String
  */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
String::String() //definition of the constructor
{    //When an object is created …
 cStr=NULL; //…nullify its pointer and…
 len=0; //…set the length as zero.
}
/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

4.1.2  Parameterized Constructors

Constructors take arguments and can, therefore, be overloaded. Suppose, for the class 
Distance, the library programmer decides that while creating an object, the application 
programmer should be able to pass some initial values for the data members contained in the 
object. For this, he/she can create a parameterized constructor as shown in Listing 4.5.

Figure 4.1 Memory layout of an object of the class String
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Listing 4.5 A user-defi ned parameterized constructor—called by creating an object in 
the stack

/*Beginning of Distance.h*/
class Distance
{
 public:
  Distance(); //prototypes provided by the 
    //library programmer
  Distance(int,float); //prototype of the parameterized 
    //constructor
  /*
   rest of the class Distance
  */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance::Distance()
{
 iFeet=0;
 fInches=0.0;
}
Distance::Distance(int p, float q)
{
 iFeet=p;
 setInches(q);
}

/*
 definitions of the rest of the functions of class 
Distance
*/
/*End of Distance.cpp*/

/*Beginning of DistTest1.cpp*/
#include<iostream.h>
#include“Distance.h”
void main()
{
 Distance d1(1,1.1); //parameterized constructor called
 cout<<d1.getFeet()<<“ ”<<d1.getInches();
}
/*End of DistTest1.cpp*/

Output
1 1.1

Listing 4.5 demonstrates a user-de  ned parameterized costructor being called by creating 
an object in the stack while Listing 4.6 demonstrates a user-de  ned parameterized constructor 
being called in the heap.

Listing 4.6 A user-defi ned parameterized constructor—called by creating an object in 
the heap

/*Beginning of DistTest2.cpp*/
#include<iostream.h>
#include“Distance.h”
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void main()
{
 Distance * dPtr;
 dPtr = new Distance(1,1.1); // parameterized 
    //constructor called Output
 cout<<dPtr->getFeet()<<“ ”<<dPtr->getInches();
}
/*End of DistTest2.cpp*/

Output
1 1.1

The  rst line of the function main() in Listing 4.5 and the second line of the main() 
function in Listing 4.6 show the syntax for passing values to the parameterized constructor. 
The parameterized constructor is prototyped and de  ned just like any other member function 
except for the fact that it does not return any value. 

We must remember that if the parameterized constructor is provided and the zero-argument 
constructor is not provided, the compiler will not provide the default constructor. In such a 
case, the following statement will not compile.

Distance d1; //ERROR: No matching constructor

Just like in other member functions, the formal arguments of the parameterized constructor 
can be assigned default values. But in that case, the zero-argument constructor should be 
provided. Otherwise, an ambiguity error will arise when we attempt to create an object without 
passing any values for the constructor. See Listing 4.7.

Listing 4.7 Default values given to parameters of a parameterized constructor make the 
zero-argument constructor unnecessary 

/*Beginning of Distance.h*/
class Distance
{
 public:
  //Distance();zero-argument constructor commented out
  Distance(int=0,float=0.0); //default values given
  /*
   rest of the class Distance
  */
};
/*End of Distance.h*/

If we write,
Distance d1;

an ambiguity error arises if the zero-argument constructor is also de  ned. This is because 
both the zero-argument constructor and the parameterized constructor can resolve this 
statement.

Let us now create a parameterized constructor for the class String. We will also assign 
a default value for the argument of the parameterized constructor. The constructor would 
handle the following statements.

String s1(“abc”);
OR
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char * cPtr = “abc”;
String s1(cPtr);
OR
char cArr[10] = “abc”;
String s1(cArr);

In each of these statements, we are essentially passing the base address of the memory 
block in which the string itself is stored to the constructor. 

In the  rst case, base address of the memory block of four bytes in which the string “abc” 
is stored is passed as a parameter to the constructor. But the constructor of the class String 
should be de  ned in such a manner that ‘s1.cStr’ is made to point at the base of a different 
memory block of four bytes in the heap area that has been exclusively allocated for the purpose. 
Only the contents of the memory block, whose base address is passed to the constructor, should 
be copied into the memory block at which ‘s1.cStr’ points. Finally, ‘s1.len’ should be set to 
3. The formal argument of the parameterized constructor for the class String will obviously 
be a character pointer because the address of a memory block containing a string has to be 
passed to it. Let us call this pointer ‘p’. Then, after the statements String s1 (“abc”); 
executes, the scenario shown in Figure 4.2 should emerge.

Figure 4.2 Assigning a string to an object of the class String
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In Figure 4.2, ‘p’ is the formal argument of the constructor. The address of the memory 
block that contains the passed string is 50. This address is passed to the constructor and stored 
in ‘p’. Therefore, the value of ‘p’ is 50. But the constructor should execute in such a manner 
that a different block that is suf  ciently long to hold the string at which ‘p’ is pointing should 
also be allocated dynamically in the heap area (see Figure 4.2). This memory block extends 
from byte numbers 101 to 104. The base address of this block of memory is then stored in the 
pointer embedded in ‘s1’. The string is copied from the memory block at which ‘p’ points to 
the memory block at which ‘s1.cStr’ points. Finally, ‘s1.len’ is appropriately set to 3.

In the second case
char * cPtr = “abc”;
String s1(cPtr);

the value of ‘cPtr’ is passed as a parameter to the constructor. This value is stored in ‘p’. 
Thus, both ‘p’ and ‘cPtr’ point at the same place. As in the previous case, the constructor of 
the class String should be de  ned in such a manner that ‘s1.cStr’ should be made to point 
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at the base of a different memory block of four bytes that has been exclusively allocated for 
the purpose. Only the contents of the memory block whose base address is passed to the 
constructor should be copied into the memory block at which ‘s1.cStr’ points.

In Figure 4.3, ‘cPtr’ points at the memory block containing the string. In other words, the 
value of ‘cPtr’ is the address of the memory block containing the string.

The third case 
char cArr[10] = “abc”;
String s1(cArr);

is very similar to the second. In this, we are passing the name of the array as a parameter to 
the constructor. But we know that the name of an array is itself a  xed pointer that contains 
the base address of the memory block containing the actual contents of the array. This can 
be seen in Figure 4.4.

Let us now de  ne the constructor that produces these effects. We must realize that ‘p’ (the 
formal argument of the constructor) should be as follows:

const char * const

First, it should be a constant pointer because throughout the execution of the constructor, 
it should continue to point at the same memory block. Second, it should be a pointer to a 
constant because even inadvertently, the library programmer should not dereference it to 
change the contents of the memory block at which it is pointing. Additionally, we would 
like to specify a default value for ‘p’ (NULL) so that there is no need to separately de  ne a 
zero-argument constructor.

The de  nition of the class String along with the prototype of the constructor and its 
de  nition are shown in Listing 4.8.

Figure 4.3 Assigning a string to an object of the class String
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Listing 4.8 A user-defi ned parameterized constructor for acquiring memory outside the 
object

/*Beginning of String.h*/
class String
{
  char * cStr;
  long unsigned int len;
 public:
  /*no zero-argument constructor*/
  String(const char * const p = NULL);
  const char * getString();
  /*
   rest of the class String
  */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
#include<string.h>
String::String(const char * const p)
{
 if(p==NULL) //if default value passed…
 {
  cStr=NULL; //…nullify
  len=0;
 }
 else  //…otherwise…
 {
  len=strlen(p);

Figure 4.4 Assigning an array to an object of the class String
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  cStr=new char[len+1]; //…dynamically allocate a 
    //separate memory block
  strcpy(cStr,p); //…and copy into it
 }
}

const char * String::getString()
{
 return cStr;
}

/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

/*Beginning of StringMain.cpp*/
#include“String.h”
#include<iostream.h>
void main()
{
 String s1(“abc”); //pass a string to the 
    //parameterized constructor
 cout<<s1.getString()<<endl; //display the string
}
/*End of StringMain.cpp*/

Output
abc

Another function called getString() has also been introduced to the class String. It 
will enable us to display the string itself. The function returns a const char * so that only 
a pointer to a constant can be equated to a call to this function. 

const char * p = s1.getString();

Such a pointer will effectively point at the same memory block at which the invoking 
object’s pointer points. As a result of the above statement both ‘p’ and ‘s1.cStr’ would end 
up pointing at the same place. Yet it will not be able to change the values contained in the 
memory block since it is a pointer to a constant. We must note that for securing data that is 
outside the object itself, extra efforts are required on the part of the library programmer.

We can reprogram the above main() function and verify that the newly de  ned constructor 
is capable of producing the effects depicted in Figures 4.2, 4.3, and 4.4.

4.1.3 Explicit Constructors

Note that the  rst statement of the main() function in Listing 4.8 calls the constructor of the 
class String. Now, look at the following statement.

String s1 = “abc”;

The above statement also calls the constructor of the class String. The above statement 
compiles because there is a constructor in the class String that takes a string as a parameter. 
This constructor implicitly converts the string “abc” into an object of the class String. It is 
as if the above statement was written as follows (note the cast):

String s1 = (String)“abc”;
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But, we did not provide a cast in the statement that we wrote. Then how did the conversion 
take place? As mentioned earlier, it is the constructor that is carrying out the conversion 
for us.

However, if the constructor is declared as an explicit constructor, statements like the one 
above will not compile. Explicit constructors do not allow implicit conversions like the one 
that occurred in the above example.

Constructors are declared explicit by pre  xing their declarations with the explicit keyword. 
Let us  rst look at the syntax for declaring an explicit constructor (see Listing 4.9). We will 
then look at a program that will illustrate the situation under which we can get the error if a 
constructor has been declared as an explicit constructor.

Listing 4.9 The explicit constructor

/*Beginning of String.h*/
class String
{
  char * cStr;
  long unsigned int len;
 public:
  /*no zero-argument constructor*/
  /*
   The next statement declares an explicit constructor. 
   Note the explicit keyword.
  */
  explicit String(const char * const p = NULL);
  const char * getString();
  /*
   rest of the class String
  */
};
/*End of String.h*/

Let us look at Listing 4.10, which illustrates the error we can get when a constructor is 
declared as an explicit constructor.

Listing 4.10 Error caused by the explicit constructor

/*Beginning of StringMain.cpp*/
#include<iostream.h>
#include“String.h”
void main()
{
 String s1(“abc”);  //ok: explicit constructor called
 String s2 = “def”; //error: will not compile due to 
    //the explicit constructor
}
/*End of StringMain.cpp*/

Note that the error in the above program will go away if the statement is written as 
follows:

String s2 = (String)“def”; //ok

It is obvious that the explicit constructor is preventing an implicit conversion of string 
into an object of the class String and is forcing the application programmer to do explicit 
conversion.
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Further note that we need to mention the explicit keyword in the declaration of the 
constructor only. It is not necessary to pre  x the de  nition of the constructor with the explicit 
keyword.

Explicit constructors can prove to be useful for the programmer if he is creating a class 
for which an implicit conversion by the constructor is undesirable.

4.1.4  Copy Constructor

The copy constructor is a special type of parameterized constructor. As its name implies, it 
copies one object to another. It is called when an object is created and equated to an existing 
object at the same time. The copy constructor is called for the object being created. The pre-
existing object is passed as a parameter to it. The copy constructor member-wise copies the 
object passed as a parameter to it into the object for which it is called.

If we do not de  ne the copy constructor for a class, the compiler de  nes it for us. But in 
either case, a call is embedded to it under the following three circumstances. 

When an object is created and simultaneously equated  to another existing object, the copy 
constructor is called for the object being created. The object to which this object was 
equated is passed as a parameter to the copy constructor.

A A1;   //zero-argument/default constructor called
A A2=A1; //copy constructor called

or
A A2(A1); //copy constructor called

or
A * APtr = new A(A1); //copy constructor called

 Here, the copy constructor is called for ‘A2’ and for ‘Aptr’ while ‘A1’ is passed as a 
parameter to the copy constructor in both cases.

When an object is created as a non-reference formal argument  of a function. The copy 
constructor is called for the argument object. The object passed as a parameter to the 
function is passed as a parameter to the copy constructor.

void abc(A);
A A1;   //zero-argument/default constructor called
abc(A1); //copy constructor called

void abc(A A2)
{
 /*
  definition of abc()
 */
}

 Here again the copy constructor is called for ‘A2’ while ‘A1’ is passed as a parameter to 
the copy constructor.
When an object is created and simultaneously equated to a call to a function that returns  
an object. The copy constructor is called for the object that is equated to the function call. 
The object returned from the function is passed as a parameter to the constructor.

A abc()
{
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 A A1;  //zero-argument/default constructor called
 /*
  remaining definition of abc()
 */
 return A1;
}
A A2=abc(); //copy constructor called

 Once more, the copy constructor is called for ‘A2’ while ‘A1’ is passed as a parameter 
to the copy constructor.

The prototype and the de  nition of the default copy constructor de  ned by the compiler are 
as follows.

class A
{
 public:
  A(A&); //the default copy constructor
};

A::A(A& AOBj) //the default copy constructor
{
*this=AObj; //copies the passed object into the invoking 
    //object
}

As is obvious, the default copy constructor does exactly what it is supposed to do—it copies. 
The statement

A A2=A1;

is converted as follows:
A A2;   //memory allocated for A2
A2.A(A1); //copy constructor is called for A2 and A1 is 
    //passed as a parameter to it

This last statement is then transformed to
A(&A2,A1); //see the section on ‘this’ pointer in Chapter 2

When the above statement executes, ‘AObj’ (the formal argument in the copy constructor) 
becomes a reference to ‘A1’, whereas the this pointer points at ‘A2’ (the invoking object). 
Similarly, the other statements where the object is created as a formal argument or is returned 
from a function can also be explained.

But why does the compiler create the formal argument of the default copy constructor as a 
reference object? And when the compiler does de  ne a copy constructor in the expected way, 
then why should we de  ne one on our own? Both these questions are answered now.

First, let us  nd out why objects are passed by reference to the copy constructor. Suppose 
the formal argument (‘AObj’) of the copy constructor is not a reference. Now, suppose the 
following statement executes.

A A2=A1;

The copy constructor will be called for ‘A2’ and ‘A1’ will be passed as a parameter to it. 
Then the copy constructor will be called for ‘AObj’ and ‘A1’ will be passed as a parameter to 
it. This is because ‘AObj’ is a non-reference formal argument of the copy constructor. Thus, an 
endless chain of calls to the copy constructor will be initiated. However, if the formal argument 
of the copy constructor is a reference, then no constructor (not even the copy constructor) will 
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be called for it. This is because a reference to an object is not a separate object. No separate 
memory is allocated for it. Therefore, a call to a constructor is not embedded for it.

Now we come to a crucial question. Why should we de  ne our own copy constructor? 
After all, the default copy constructor (which is provided free of cost by the complier) does 
a pretty decent job. First, recollect the conditions we decided to implement for all objects 
of the class String. Suppose an object of the class String is created and at the same time 
equated to another object of the class. For example,

String s1(“abc”);
String s2=s1; //copy constructor is called for s2 and s1 
    //is passed as a parameter to it

Since we have not de  ned the copy constructor for the class String, the compiler has 
done it for us. What does this default copy constructor do in the above case? It simply copies 
the values of ‘s1’ to ‘s2’! This means that the value of ‘s2.cStr’ becomes equal to ‘s1.cStr’. 
Thus, both the pointers point at the same place! This is certainly a violation of our conditions. 
The behaviour of the default copy constructor is undesirable in this case. To overcome this 
problem of the default copy constructor, we must de  ne our own copy constructor.

From within the copy constructor of the class String, a separate memory block must be 
 rst allocated dynamically in the heap. This memory block must be equal in length to that of 

the string at which the pointer of the object passed as a parameter (‘s1’ in this case) points. 
The pointer of the invoking object (‘s2’ in this case) must then be made to point at this newly 
allocated memory block. The value of ‘len’ variable of the invoking object should also be 
set appropriately. However, if the pointer in the object passed as a parameter is NULL, then 
the value of the pointer and ‘len’ variable of the invoking object must be set to NULL and 
zero, respectively.

Accordingly, the prototype and the de  nition of the copy constructor of the class String 
appear as shown in Listing 4.11.

Listing 4.11 A user-defi ned copy constructor

/*Beginning of String.h*/
#include<iostream.h>
class String
{
 char * cStr;
 long unsigned int len;

 public:
 String(const String&); //our own copy constructor
 /*
  rest of the class String
 */
  explicit String(const char * const p = NULL);
const char * getString();
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include”String.h”
#include<string.h>
String::String(const String& ss) //our own copy constructor
{
 if(ss.cStr==NULL) //if passed object’s pointer is NULL…
 {
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  cStr=NULL; //… then nullify the invoking object’s
    //pointer too
  len=0;
 }
 else  //otherwise…
 {
  len=ss.len;
  cStr = new char[len+1]; //…dynamically allocate a
    //separate memory block
  strcpy(cStr,ss.cStr); //…and copy into it
 }
}
String::String(const char * const p)
{
 if(p==NULL) //if default value passed…
 {
  cStr=NULL; //…nullify
  len=0;
 }
 else  //…otherwise…
 {
  len=strlen(p);
  cStr=new char[len+1]; //…dynamically allocate a
    //separate memory block
  strcpy(cStr,p); //…and copy into it
 }
}
const char * String::getString()
{
 return cStr;
}
/*End of String.cpp*/

/*Beginning of StringMain.cpp*/
#include”String.h”
#include<iostream.h>
void main()
{
 String s1(“abc”);
 String s2=s1;
 cout<<s1.getString()<<endl;
 cout<<s2.getString()<<endl;
}
/*End of StringMain.cpp*/

Output
abc
abc

In the copy constructor (Listing 4.11), the formal argument is a constant. It has to be a 
reference in order to prevent an endless chain of calls to itself. But at the same time the library 
programmer would certainly want to prevent even an inadvertent change in the values of the 
object that gets passed to the copy constructor. He/she would like the compiler to report a 
compile-time error if he/she inadvertently writes statements like the following. 

ss.cStr=NULL; //pointer of parameter object modified!
ss.len++; //len variable of the parameter object
    //modified!
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 4.2   Destructors
The destructor gets called for each object that is about to go out of scope. It appears as a 
member function of each class whether we de  ne it or not. It has the same name as that of 
the class but pre  xed with a tilde sign. It does not take parameters. It does not return anything 
(not even void). The prototype of a destructor is

~ <class name> ();

The need for a function that guarantees deinitialization of member data of a class and frees 
up the resources acquired by the object during its lifetime will be explained soon. Destructors 
ful  ll this need.

The compiler embeds a call to the destructor for every object when it is destroyed. Let us 
have one more look at the main() function of Listing 4.1.

void main()
{
 A A1;
} //A1 goes out of scope here

‘A1’ goes out of scope just before the main() function terminates. At this point, the compiler 
embeds a call to the destructor for ‘A1’. It embeds the following statement.

A1.~A(); //destructor called … not legal C++ code

An explicit call to the destructor for an existing object is forbidden. The above statement 
is then transformed into

~A(&A1); //see chapter 2

The destructor will also be called for an object that has been dynamically created in the 
heap just before the delete operator is applied on the pointer pointing at it.

A * APtr;
APtr = new A; //object created … constructor called
. . . .
. . . .
delete APtr; //object destroyed … destructor called

The last statement is transformed into
APtr->~A(); //destructor called for *APtr
delete APtr; //memory for *APtr released

First, the destructor is called for the object that is going out of scope. Thereafter, the 
memory occupied by the object itself is deallocated. The second last statement above is 
transformed into

~A(APtr); //see the section on ‘this’ pointer in Chapter 2

Unlike its name, the destructor does not ‘destroy’ or deallocate memory that an object 
occupies. It is merely a member function that is called for each object just before the object 
goes out of scope (gets destroyed).

As can be readily observed, the compiler embeds a call to the destructor for each and every 
object that is going out of scope. But we did not prototype and de  ne the destructor inside 
the class. Then how was the above call to the destructor resolved? The compiler prototypes 
and de  nes the destructor for us. But what statements does the de  nition of such a destructor 
have? The answer is ‘nothing’. An example of a compiler-de  ned destructor follows.
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Before
class A
{
  . . . .
  . . . .
 public:
  . . . .
  . . . .
  //no destructor
};

After
class A
{
  . . . .
  . . . .
 public:
  ~A(); //prototype inserted implicitly by compiler
  . . . .
  . . . .
};

A::~A()
{
 //empty definition inserted implicitly by compiler
}

Let us add our own destructor to the class A de  ned in Listing 4.2 and verify whether the 
destructor is actually called implicitly by the compiler or not. See Listing 4.12.

Listing 4.12 Destructor gets called for each object when the object is destroyed

/*Beginning of A.h*/
class A
{
  int x;
 public:
  A(); 
  void setx(const int=0);
  int getx();
  ~A(); //our own destructor
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include“A.h”
#include<iostream.h>
A::A()
{
 cout<<“Constructor of class A called\n”;
}

A::~A()  //our own destructor
{
 cout<<“Destructor of class A called\n”;
}

/*
 definitions of the rest of the functions of class A
*/
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/*End of A.cpp*/

/*Beginning of AMain.cpp*/
#include“A.h”
#include<iostream.h>
void main()
{
 A A1;
 cout<<“End of program\n”;
}
/*End of AMain.cpp*/

Output
Constructor of class A called
End of program
Destructor of class A called

As we can see, the name of the destructor is the same as the name of the class but pre  xed 
with a tilde sign. Moreover, the destructor does not return anything. The compiler de  nes 
the destructor in order to resolve the call to the destructor that it compulsorily places for the 
object going out of scope. 

Destructors do not take any arguments. Therefore, they cannot be overloaded.
Why should we de  ne our own destructor? We must remember that the destructor is also 

a member function. It is called for objects. Therefore, it can access the data members of the 
object for which it has been called. 

Let us think of a relevant de  nition for the destructor of the class Distance. What would 
we like it to do for us? What should it do to the data members of the object that is going out 
of scope? Should it set them to zero?

Distance::~Distance()
{
 iFeet=0;
 fInches=0.0;
}

But what is the use? The object is anyway going out of scope immediately after the 
destructor executes.

But we must de  ne the destructor for classes whose objects, during their lifetime, acquire 
resources that are outside the objects themselves. Let us take the example of the class String. 
We consider the following code block.

{
 . . . .
 . . . .
 String s1(“abc”);
 . . . .
 . . . .
}

The memory that was allocated to ‘s1’ itself gets deallocated when this block  nishes 
execution. But ‘s1.cStr’ was pointing at a memory block that was dynamically allocated in the 
heap area. This memory block was outside the memory block occupied by ‘s1’ itself. After 
‘s1’ gets destroyed, this memory block remains allocated as a locked up lost resource. The 
only pointer that was pointing at it (‘s1.cStr’) is no longer available. This is  memory leak. It 
should be  prevented. We should deallocate the memory block at which the pointer inside any 



 Object-Oriented Programming with C++112

object of the class String is pointing exactly when the object goes out of scope. This means 
that we must call the delete operator for the pointer inside the class String and place this 
statement inside the destructor. See Listing 4.13.

Listing 4.13 A user-defi ned destructor

/*Beginning of String.h*/
class String
{
  char * cStr;
  long unsigned int len;
 public:
  ~String(); //our own destructor
  /*
   rest of the class String
  */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
#include<string.h>
String::~String() //our own destructor
{
 if(cStr!=NULL) //if memory exists
  delete[] cStr; //… destroy it
}

/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

 4.3  Philosophy of OOPS 

Now, let us digress and appreciate the basic philosophy of OOPS. One of the aims in OOPS 
is to abolish the use of fundamental data types. Classes can contain huge amounts of func-
tionality (member functions) that free the application programmer from the worry of taking 
precautions against bugs. 

The class String is one such data type. By adding some more relevant functions, we can 
conveniently use objects of the class String. Consider adding the following function to the 
class String.

void String::addChar(char); //function to add a character
    //to the string

As its name suggests, this function will append a character to the string at which the pointer 
inside the invoking object points.

String s1(“abc”);

As a result of this statement, the pointer inside ‘s1’ points at a memory block of four bytes 
(last one containing NULL). Now, if we write

s1.addChar(‘d’); //add a character to the string

the following things should happen.
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Another block of five bytes should get allocated. 
The string contained in the memory block at which ‘s1.cStr’  is currently pointing should 
get copied into this new memory block.
The character ‘d’  should get appended to the string.
The null character should get further appended to the string. 
‘s1.cStr’  should be made to point at this new memory block.
The memory block at which ‘s1.cStr’  was pointing previously should be deallocated (to 
prevent memory leaks).

Figure 4.5 shows adding a character to a stretchable string in the object-oriented way.

Before
String s1(“abc”);

cStr 101

3

27

len

a b c \0

s1

101

After
s1.addChar(‘d’);

Figure 4.5 Adding a character to a stretchable string—the object-oriented way

One possible way of using this function is by using a loop to obtain a string from the user, 
which can be of any length. While writing the program, the application programmer need not 
predict the length of the string the user will enter. The following code can be used for adding 
a character to a stretchable string in the object-oriented way.

while(1) //potentially infinite loop
{
 ch=getche();
 if(ch==‘\n’) //if user finishes entering the string
  break; //… break the loop
 s1.addChar(ch); //…else append the character to it
}
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As the user keeps adding characters to the string, the allocated memory keeps getting 
stretched in a manner that is transparent to the application programmer. Such an effect is 
simply unthinkable with character arrays.

We would also like to add a function that will replace the string associated with an object 
with the string that we pass to it. We let this function be

void String::setString(const char * const);

Suppose the following statements are executed.
String s1(“abc”);
s1.setString(“def”); //replace “abc” by “def”

Then the following events should take place when the second statement executes (‘s1.cStr’ 
is already pointing at a memory block that contains the string abc and is not NULL).

A block of four bytes should be dynamically allocated to accommodate the string “def  ”.
The string  def should get written in that memory block with the null character 
appended.
s1.cStr  should be made to point at this new block of memory.
The block of memory at which  s1.cStr was previously pointing should be deallocated 
to prevent memory leak.
The formal argument of the String::setString() function is a const char * const. The 

reasons for this have already been discussed under the section on parameterized constructor. 
We may think that the de  nition of this function will be the same as that of the constructor. But 
this is not so. When the constructor starts executing, cStr may or may not be NULL (it may 
contain junk value). But if it is not NULL, it does not mean that it is pointing at a dynamically 
allocated block of memory. But when the String::setString() function starts executing, if 
cStr is not NULL, then it is de  nitely pointing at a dynamically allocated block of memory. 
Statements to check this condition and to deallocate the memory block and to nullify cStr 
and to set ‘len’ to zero should be inserted at the beginning of the String::setString() 
function. Otherwise a memory leak will occur. De  ning the String::addChar() and 
String::setString() functions is left as an exercise. 

Let us think of more such relevant functions that can be added to the class String. There 
can be a function that will change the value of a character at a particular position in the string 
at which the pointer of the invoking object points. Moreover, there can be a function that 
reads the value from a particular position in the string at which the pointer of the invoking 
object points. These functions can have built-in checks to prevent values from being written 
to or read from bytes that are beyond the memory block allocated. Again, such a check is not 
built into character arrays. The application programmer has to put in extra efforts on his/her 
own to prevent the program from exceeding the bounds of the array. 

After we have added all such functions to the class String, we will get a new data type 
that will be safe, ef  cient, and convenient to use.

Suitably de  ned constructors and destructors have a vital role to play in the creation of 
such data types. Together they ensure that

There are no memory leaks (the destructor frees up unwanted memory). 
There are no run-time errors (no two calls to the destructor try to free up the same block  
of memory).
Data is never in an invalid state and domain constraints on the values of data members  
are never violated.
After such data types have been de  ned, new data types can be created that extend the 

de  nitions of existing data types. They contain the de  nition of the existing data types and at 
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the same time add more specialized features on their own. This facility of de  ning new data 
types by making use of existing data types is known as inheritance. Chapter 5 deals with this 
feature of OOPS and its implementation in C++.

Constructors can be used to guarantee a proper 
initialization of data members of a class. Domain 
constraints on values of data members can be 
implemented via constructors.

Constructors are member functions and have the 
same name as that of the class itself. The compiler 
creates a zero-argument constructor and a copy 
constructor if we do not de  ne them. Constructors take 
parameters and, therefore, can be overloaded. They 
do not return anything (not even void). The compiler 
implicitly embeds a call to the constructor for each 
object that is being created. An explicit call to the 
constructor for an existing object is forbidden.

If necessary, destructors can be used to guarantee 
a proper clean up when an object goes out of scope. 
Destructors are member functions and have the same 
name as that of the class itself but with the tilde sign 
pre  xed. The compiler creates a destructor if we do 
not de  ne one. Destructors do not take parameters and, 
therefore, cannot be overloaded. They do not return 
anything (not even void). The compiler implicitly 
embeds a call to the destructor for each object that is 
going out of scope (being destroyed). An explicit call 
to the destructor for an existing object is forbidden.

Summary

Key Terms 
constructors

– called automatically for each object that has just 
got created

– de  ned by default
– has the same name as that of the class

– does not return anything
zero-argument constructor
parameterized constructors
copy constructor
destructors

Exercises

 1. What are constructors? When are they called? What 
is their utility?

 2. Why should the formal argument of a copy 
constructor be a reference object?

 3. What are destructors? When are they called? What 
is their utility?

 4. Is a destructor necessary for the following class?

class Time
{
  int hours, minutes, seconds;
 public:
  /*
    rest of the class Time … but no 

more data members
  */
};

 5. De  ne a suitable parameterized constructor with 
default values for the class Time given in question 
4.

 6. Four member functions are provided by default by 
the compiler for each class that we de  ne. We have 
studied three of them in this chapter. Name them.

 7. State true or false.
(a) Memory occupied by an object is allocated by 

the constructor of its class.
(b) Constructors can be used to acquire memory 

outside the objects.
(c) Constructors can be overloaded.
(d) A constructor can have a return statement in its 

de  nition.
(e) Memory occupied by an object is deallocated by 

the destructor of its class.



 Object-Oriented Programming with C++116

(f ) Destructors can be used to release memory that 
has been acquired outside the objects.

(g) Destructors can be overloaded.
(h) A destructor can have a return statement in its 

de  nition.
8. The copy constructor has been explicitly de  ned for 

the class String so that no two objects of the class 
String end up sharing the same resource, that is, 
end up with their contained pointers pointing at the 
same block of dynamically allocated memory. In 
this case, two such blocks may contain two copies 
of the same data as a result of the copy constructor, 

which is perfectly acceptable. However, there are 
situations where no two objects should share even 
copies of the same data. If A is a class for whose 
objects this restriction needs to be applied, then we 
should ensure that a statement like the second one 
below should not compile.

A A1;
A A2 = A1;

  How can this objective be achieved? (Hint: Member 
functions are not always public and the copy 
constructor is a member function.)



Inheritance

This chapter discusses inheritance. Inheritance is one of the most important and useful features 
of the object-oriented programming system.

The chapter begins with an overview of inheritance. Basic concepts such as base class and 
derived class are discussed. The effects, advantages, and important points of inheritance are 
also discussed.

The middle portion of the chapter deals with the implications of making a base class pointer 
point at an object of the derived class and vice versa. Thereafter, the concept of function 
overriding is discussed. This is followed by a section on base class initialization in which the 
method of initializing base class members via constructors of the derived class is discussed.

The protected keyword is an important concept in C++. The protected keyword, along 
with the public and private keywords, completes the triad of access speci  ers provided by 
C++. A separate section of this chapter elucidates this keyword and the effect of its use in 
inheritance.

Classes can be derived by public, private, or protected keywords. The effect caused by each 
of these is different. The current chapter compares this difference in a systematic manner.

Inheritance can be of various types based upon the number of classes derived from a single 
base class and the number of base classes for a single derived class. All of these types are dealt 
with in the penultimate section of the chapter.

The chapter ends with a section on the order of invocation of constructors and 
destructors.
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 5.1  Introduction

Inheritance is a very useful feature of OOPS that is supported by C++. A class may be de  ned 
in such a way that it automatically includes member data and member functions of an existing 
class. Additionally, member data and member functions may be de  ned in the new class also. 
This is called inheritance.

The existing class whose features are being inherited is known as the base class or parent 
class or super class. The new class that is being de  ned by inheriting from the existing 
class is known as its derived class or child class or sub-class. The  syntax for derivation is as 
follows. 

class <name of derived class> : <access specifier> <name of base class>
{
 /*
  definition of derived class
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 */
};

Suppose a class A already exists. Then a new class B can be derived from class A as 
follows.

class B : public A
{
 /*
  new features of class B
 */
};

The public access speci  er has been used in the foregoing example. The implications of 
using the other access speci  ers are discussed later in this chapter.

A pointer from the derived class to the base class diagrammatically depicts derivation 
(see Figure 5.1).

Figure 5.1 Diagrammatic depiction of inheritance

A

B

5.1.1 Effects of Inheritance

Inheritance affects the size and behaviour of derived class objects in two ways.
Obviously, an object of the derived class will contain all data members of the derived  
class. However, it will contain data members of the base class also. Thus, an object of the 
derived class will always be larger than an object of the base class. (The only exception 
to this is when neither the base class nor the derived class has data members. In that case, 
objects of both the base class and the derived class occupy one byte each.)
Obviously, with respect to an object of the derived class, we can call the public member  
functions of the derived class in any global non-member function. However, we can call the 
public member functions of the base class also. (There are exceptions to this. Circumstances 
under which these exceptions occur are described later in this chapter.)
Listing 5.1 illustrates this.  

 Listing 5.1 Effects of inheritance

/*Beginning of A.h*/
class A
{
 int x;
 public:
 void setX(const int=0);
 int getX()const;
};
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/*End of A.h*/

/*Beginning on A.cpp*/
#include”A.h”
void A::setX(const int pX)
{
 x = pX;
}
int A::getX() const
{
 return x;
}
/*End on A.cpp*/

/*Beginning of B.h*/
#include”A.h”
class B : public A //inheriting from A
{
 int y;

 public:
 void setY(const int=0);
 int getY()const;
};
/*End of B.h*/

/*Beginning on B.cpp*/
#include”B.h”
void B::setY(const int pY)
{
 y = pY;
}
int B::getY() const
{
 return y;
}
/*End on B.cpp*/

/*Beginning of inherit.cpp*/
#include<iostream.h>
#include“B.h”
void main()
{
 cout<<sizeof(A)<<endl<<sizeof(B)<<endl;
 B B1;  //an object of the derived class
 B1.setX(1); //OK: calling a base class member function
    //with respect to a derived class object
 B1.setY(3);
 cout<<B1.getX()<<endl; //OK: calling a base class
    //member function with respect to
    //a derived class object
 cout<<B1.getY()<<endl;
}
/*End of inherit.cpp*/

Output
4
8
1
3
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De  ning the member functions of classes A and B is left as an exercise.
This highly simpli  ed example (Listing 5.1) effectively illustrates the basic mechanisms of 

inheritance. An object of class B (the derived class) will contain two integers (one from class 
B and the other from class A). Therefore, its size will be 8. Also, with respect to an object of 
class B, we can call member functions of class B as well as those of class A.

An object of the derived class will contain the data members of the base class as well as 
the data members of the derived class. Thus, the size of an object of the derived class will be 
equal to the sum of sizes of the data members of the base class plus the sum of the sizes of 
the data members of the derived class.

Inheritance implements an ‘is-a’ relationship. A derived class is a type of the base class just 
like an aircraft (derived class) is a type of vehicle (base class). Contrast this to containership 
that implements a ‘has-a’ relationship. A class may contain an object of another class or a 
pointer to a data structure that contains a set of objects of another class. Such a class is known 
as a container class. For example, an aircraft has one engine or an array of engines.

Another example can be that of a manager class and employee class. A manager (i.e., 
an object of the class manager) is an employee (i.e., an object of the class employee). 
Nevertheless, it has some features that are not possessed by all employees. For example, it 
may have a pointer to an array of employees that report to him. Derived class object is also 
a base class object (as shown in the following lines of code).

class employee
{
  String name;
  double basic;
  Date doj;
  /*
   rest of the class employee
  */
};

class manager : public employee //manager is an employee 
{
 employee * list;
 /*
  rest of the class manager
 */
};

A derived class contains additional data and members and is thus a specialized de  nition 
of its base class. Therefore, the process of inheritance is also known as specialization.

5.1.2 Benefits of Inheritance

This process of adding only the additional data members in the derived class has implications. 
The base class can have a generic common de  nition. The data and functions that are common 
to more than one class can be put together in the base class. While only the special ones can 
be put in each of the derived classes. Thus, inheritance is another feature of C++ that enables 
code reusability.

5.1.3 Inheritance in Actual Practice

In actual practice, the library programmer de  nes a certain class and its member functions. 
Another interested programmer, in order to create his/her application, then inherits from this 
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class and adds only the special data members and the code to handle these additional data 
members in the derived class. 

5.1.4 Base Class and Derived Class Objects

Now, many students of C++ may start believing that objects of the derived class inherit from 
objects of the base class. This is incorrect as an object of the derived class is not at all related 
to another simultaneously existing object of the base class. 

An object of class A (say ‘A1’) will occupy four bytes containing only ‘x’. Whereas an 
object of class B (say ‘B1’) will occupy a different block of eight bytes containing both ‘x’ and 
‘y’, as shown in Figure 5.2. (As per the de  nitions of classes A and B given in Listing 5.1.)

Figure 5.2 Memory layout of base class and derived class object
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5.1.5  Accessing Members of the Base Class in the Derived Class

Only public members of base class can be accessed in the functions of derived class (protected 
members of the base class can also be accessed; we shall discuss protected members later). 
But, private members of the base class cannot be accessed.

Suppose in the B::setY() function we write
x=y;

the compiler will report an error stating that private members of the base class cannot be 
accessed. (In this case we are trying to access ‘x’ in a member function of the derived class. 
But ‘x’ is a private member of the base class.)

But we can access A::setX() and A::getX() functions in the member functions of the 
derived class because they are public members of the base class. Private members of the base 
class remain private with respect to member functions of the derived class. The following 
lines of code demonstrate this.

void B::setY(const int q)
{
 y=q;
 setX(y); //x=y
}

This is as it should be. C++ prevents us from accessing private members of the base class 
in member functions of the derived class to fully implement data security. After all, the base 
class provider made some members of the base class private because he/she wanted only the 
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member functions of the base class (which he/she has perfected) to access them. If member 
functions of the derived class are allowed to access private members of the base class, then 
one cannot identify all statements in the program that access private members of the base 
class by merely looking at its member and friend functions.

We may argue that the existing set of functions of the base class is sometimes not enough. 
We would like to create a derived class that supplements the base class by containing those 
member functions that we feel are missing in the base class. For example, suppose a function 
such as String::addChar (char) is not present in the class String. But in this case, the 
drawback is in the base class itself. It is the base class itself that should be corrected. Inheritance 
is not used to remove such lacuna. It is used to provide additional data and additional code to 
work upon the additional data in the derived class. Inheritance is used to add facilities to an 
existing class without reprogramming it or recompiling it. Thus, it enables us to implement 
code reusability.

Friendship is not inherited. A class does not become a friend to a class to which its parent 
is a friend. Listing 5.2 illustrates this.

Listing 5.2 Friendship is not inherited

/*Beginning of friendInherit.cpp*/
class B;

class A
{
 friend class B;
 int x;
};

class B
{
 void fB(A * p)
 {
  p->x=0; //OK: B is a friend of A
 }
};

class C : public B
{
 void fC(A * p)
 {
  p->x=0; //ERROR: C is not a friend of A
    //despite being derived from a friend
 }
};
/*End of friendInherit.cpp*/

 5.2   Base Class and Derived Class Pointers 

A base class pointer can point at an object of the derived class. However, a derived class 
pointer cannot point at an object of the base class. To be more precise, a base class pointer can 
safely point at an object of the derived class without the need for typecasting. But a derived 
class pointer can be made to point at an object of the base class only forcibly by typecasting. 
However, this can cause run-time errors.
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Note: There are exceptions to the above assertion. The compiler will prevent a base 
class pointer from pointing at an object of the derived under certain circumstances. These 
circumstances are described later in this chapter.

First, let us understand why no harm can come by making a base class pointer point at an 
object of the derived class. To understand this, we consider the classes of Listing 5.3.

Listing 5.3 A derived class and its base class

/*Beginning of A.h*/
class A
{
 public:
  int x;
};
/*End of A.h*/

/*Beginning of B.h*/
#include“A.h”
class B : public A //derived from A
{
 public:
  int y;
};
/*End of B.h*/

These classes have only data members. There are no member functions and even these 
member data are public. These classes are given here to initially understand the concepts 
only. Explanations with classes that have private data members and public member functions 
are given later.

Now, let us compile the main() function of Listing 5.4 and see what happens.

Listing 5.4 Base class pointer pointing at a derived class object

/*Beginning of BasePtr01.cpp*/
#include“B.h” //from listing 5.03
void main()
{
 A * APtr;
 B B1;
 APtr=&B1; //line 1 – OK: base class pointer points at 
    //derived class’s object
 APtr->x=10; //line 2 – OK: accessing base class member 
    //through base class pointer
 APtr->y=20; //line 3 - ERROR: y not found in class A
}
/*End of BasePtr01.cpp*/

Line 1 of Listing 5.4 will compile because line 3 will not. A base class pointer can point at 
an object of the derived class. Let us see why. ‘APtr’ is of type ‘A *’. It is supposed to point 
at objects of the base class A. Therefore, it cannot access ‘y’. There is no member of the name 
‘y’ in class A. The fact that ‘APtr’ points at an object of the derived class is of no signi  cance. 
Through ‘APtr’, it is possible to access ‘x’ because there is a member of the name ‘x’ in class 
A. Although ‘APtr’ points at ‘B1’, which occupies eight bytes (four for ‘x’ and four for ‘y’), 
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it is able to access the value contained in only the  rst four bytes. Thus, ‘APtr’ cannot access 
an area in the memory that has not been allocated. Therefore, a pointer of the base class type 
can safely point at an object of the derived class, as illustrated by Figure 5.3.

Figure 5.3 Base class pointer points at an object of the derived class
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We will soon realize that making a base class pointer point at an object of the derived class 
is a very common requirement in C++ programming.

Now, let us  nd out why derived class pointers cannot be made to point at objects of the 
base class without explicit typecasting, and why, even that is a very unsafe thing to do. Now, 
let us compile the main() function of Listing 5.5 and see the result.

Listing 5.5 Derived class pointer pointing at a base class object

/*Beginning of DerivedPtr01.cpp*/
#include“B.h” //from listing 5.03
void main()
{
 A A1;
 B * BPtr;
 BPtr=&A1; //line 1 – ERROR. Cannot convert from B* to 
    //A*.
 BPtr->x=10; //line 2 – OK. Derived class pointer 
    //accesses base class member.
 BPtr->y=20; //line 3 – OK. Derived class pointer 
    //accesses derived class member.
}
/*End of DerivedPtr01.cpp*/

Line 1 of Listing 5.5 will not compile because line 3 will. A derived class pointer cannot 
point at an object of the base class. Let us see why. ‘BPtr’ is of type ‘B *’. It is supposed to 
point at objects of the derived class B. Therefore, it can access ‘y’ also. ‘BPtr’ is pointing at 
‘A1’, which occupies four bytes only. However, it is able to access the value contained in the 
next four bytes also. There is a member of name ‘y’ in class B. Thus, ‘BPtr’ is able to access 
an area in the memory that has not been allocated. Therefore, a pointer of the derived class 
type cannot safely point at an object of the base class, as shown in Figure 5.4.

Line 3 of Listing 5.5 would write 20 into the bytes whose addresses are from 205 to 208. 
But this block has not been allocated for the object at which the pointer points. But this line 
will compile. The problem is actually in line 1.
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Figure 5.4 Derived class pointer pointing at an object of the base class
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However, a derived class pointer can be forcibly made to point at an object of the derived 
class by explicit typecasting, as illustrated by Listing 5.6. Continuing with classes A and B 
given in Listing 5.3.

Listing 5.6 Forcible typecasting to make a derived class pointer point at an object of the 
base class

/*Beginning of DerivedPtrTypeCast.cpp*/
#include“B.h” //from listing 5.03
void main()
{
 A A1;
 B * BPtr; //derived class pointer
 BPtr=(B*)&A1; //forcible typecasting to make derived 
    //class pointer point at base class 
    //object
}
/*End of DerivedPtrTypeCast.cpp*/

But explicit address manipulation like this is obviously dangerous. Now, let us consider 
the realistic cases where the classes have private data members and public member functions 
(see Listing 5.7). The same explanations that have been given above will hold true even if 
the classes A and B have ‘x’ and ‘y’ as private data members, respectively.

Listing 5.7 Classes of Listing 5.3 with member functions

/*Beginning of A.h*/
class A
{
  int x;
 public:
  void setx(const int=0);
  /*
   rest of the class A
  */
};
/*End of A.h*/

/*Beginning of B.h*/
#include“A.h”
class B : public A
{
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  int y;
 public:
  void sety(const int=0);
  /*
   rest of the class B
  */
};
/*End of B.h*/

The member functions in Listing 5.5 access private data members of their respective classes.

Listing 5.8 Base class pointer pointing at an object of the derived class

/*Beginning of BasePtr02.cpp*/
#include“B.h” //from listing 5.7
void main()
{
 A * APtr;
 B B1;
 APtr=&B1; //OK: base class pointer points at 
    //derived class’s object
 APtr->setx(10); //OK: accessing base class member 
    //through base class pointer
 APtr->sety(20); //ERROR: sety() not a member of class A
}
/*End of BasePtr02.cpp*/

Listing 5.9 Derived class pointer pointing at an object of the base class

/*Beginning of DerivedPtr02.cpp*/
#include“B.h” //from listing 5.7
void main()
{
 A A1;
 B * BPtr;
 BPtr=&A1; //ERROR: cannot convert A* to B*
 BPtr->setx(10); //OK: Derived class pointer accesses
    //base class member.
 BPtr->sety(20); //OK: Derived class pointer accesses 
    //derived class member.
}
/*End of DerivedPtr02.cpp*/

The fact that a base class pointer can point at an object of the derived class (see Listings 
5.8 and 5.9) should not be surprising. After all, this is exactly what happens when we call a 
base class function with respect to an object of the derived class.

B1.setx(10);

Based upon the knowledge we have gained about the this pointer in Chapter 2, we know 
that the compiler will internally convert the above statement to

setx(&B1,10);

The address of ‘B1’ (a derived class object) is passed as a parameter to the function. But 
the corresponding formal argument in the A::setx() function is the this pointer of type 
A * const (Listing 5.10).
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Listing 5.10 This pointer in a base class member function points at the derived class 
invoking object

void setx(A * const this, const int p)
{
 this->x=p;
}

Obviously, the this pointer points at ‘B1’, which is an object of the derived class.

 5.3    Function Overriding

Member functions of the base class can be overridden in the derived class. De  ning a member 
function in the derived class in such a manner that its name and signature match those of a base 
class function is known as function overriding. Function overriding results in two functions 
of the same name and same signature. One of them is in the base class. The other one is in 
the derived class. An illustrative example follows in Listing 5.11.

Listing 5.11 Function overriding

/*Beginning of A.h*/
class A
{
 public:
  void show()
  {
   cout<<“show() function of class A called\n”;
  }
};
/*End of A.h*/

/*Beginning of B.h*/
#include“A.h”
class B : public A
{
 public:
  void show() //overriding A::show()
  {
   cout<<“show() function of class B called\n”;
  }
};
/*End of B.h*/

The show() function of class B has overridden the show() function of class A. 
Consequently, if the show() function is called with respect to an object of the derived class 
B, the show() function of class B will be called instead of the show() function of class A. 
See Listing 5.12.

Listing 5.12 Calling the overriding function

/*Beginning of Override01.cpp*/
#include“B.h”
void main()
{
 B B1;
 B1.show(); //B::show() called
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}
/*End of Override01.cpp*/

Output
show() function of class B called

Whenever a function is called with respect to an object of a class, the compiler  rst searches 
for the function prototype in the same class. Only if this search fails, the compiler goes up 
the class hierarchy to look for the function prototype. In Listings 5.11 and 5.12, the show() 
function of class A was virtually hidden by the show() function of class B.

Of course, the overridden function of the base class will be called if it is called with respect 
to an object of the base class (Listing 5.13).

Listing 5.13 Calling the overridden function with respect to an object of the base class

/*Beginning of Override02.cpp*/
#include“B.h”
void main()
{
 A A1;
 A1.show(); //A::show() called
}
/*End of Override02.cpp*/

Output
show() function of class A called

The overridden base class function can still be called with respect to an object of the derived 
class by using the scope resolution operator as illustrated in Listing 5.14.

Listing 5.14 Calling the overridden function forcibly with respect to an object of the 
derived class

/*Beginning of Override03.cpp*/
#include“B.h”
void main()
{
 B B1;
 B1.A::show(); //A::show() called
}
/*End of Override03.cpp*/

Output
show() function of class A called

Function overriding is actually a form of function overloading. Our knowledge of the 
this pointer immediately makes this clear. The signatures of the overriding function and 
the overridden function are only apparently the same. They are actually different from each 
other. The actual prototype of the A::show() function is

void show(A * const);

On the other hand, the actual prototype of the B::show() function is
void show(B * const);
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The overridden function can be called from the overriding function as follows.
void B::show()
{
 A::show();
 /*
  rest of the B::show() function
 */
}

The  scope resolution operator is necessary to avoid in  nite recursion.
But, what is the use of function overriding? Function overriding appears to be nothing 

more than a fancy language construct. Function overriding becomes signi  cant only when 
the base class function being overridden is virtual. More about virtual functions and how they 
implement dynamic polymorphism is illustrated in Chapter 6.

 5.4   Base Class Initialization

A derived class object is composed of data members of the derived class as well as those of 
the base class. Often we need to initialize all of these data members while creating an object 
of the derived class. We must remember that when an object of the derived class is created, 
the compiler implicitly and inevitably embeds a call to the base class constructor and then 
the derived class constructor with respect to the object.

Suppose A is the base class and B is its derived class. The statement
B B1;

is converted into
B B1;  //memory allocated for the object
B1.A(); //base class constructor called
B1.B(); //derived class constructor called

Destructors are called in the reverse order. As we already know, explicitly calling the 
constructors and destructors, with respect to an existing object, is prohibited. Now, let us 
look at Listing 5.15.

Listing 5.15 Unsuccessful initialization of base class members

/*Beginning of A.h*/
class A
{
  int x;
 public:
  A(const int=0);
  void setx(const int=0);
  int getx()const;
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include“A.h”

A::A(const int p)
{
 x=p;
}
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void A::setx(const int p)
{
 x=p;
}

int A::getx() const
{
 return x;
}
/*End of A.cpp*/

/*Beginning of B.h*/
#include“A.h”

class B : public A
{
  int y;
 public:
  B(const int=0);
  void sety(const int=0);
  int gety()const;
};
/*End of B.h*/

/*Beginning of B.cpp*/
#include“B.h”

B::B(const int q)
{
 y=q;
}

void B::sety(const int q)
{
 y=q;
}

int B::gety() const
{
 return y;
}
/*End of B.cpp*/

/*Beginning of baseinit01.cpp*/
#include“B.h”
#include<iostream.h>

void main()
{
 B B1(20);
 cout <<B1.getx()<<endl

<<B1.gety()<<endl;
}
/*End of baseinit01.cpp*/

Output
0
20

The output is explained by the simple observation that the statement
B B1(20);
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gets converted to the following:
B B1; //memory allocated for the object
B1.A(); //base class constructor called
B1.B(20); //derived class constructor called

As we can see, base class data members of the derived class object got initialized through 
the base class constructor with the default value being passed to it. Thus, ‘B1.y’ got initialized 
to 20 (the value passed). But ‘B1.x’ got initialized to 0 (the default value). While creating 
an object of the derived class, we would like to pass a value explicitly to the base class 
constructor. Thus, in Listing 5.15, the constructor of class B should take not one but two 
parameters. One of these should be passed to ‘y’ while the other should be used to initialize 
‘x’. For this, the prototype and de  nition of the constructor of class B should be modi  ed as 
shown in Listing 5.16.

Listing 5.16 Modifying the derived class constructor to ensure successful initialization of 
the base class members

/*Beginning of B.h*/
#include“A.h”

class B : public A
{
 public:
  B(const int=0, const int=0);
 /*
  rest of the class B
 */
}
/*End of B.h*/

/*Beginning of B.cpp*/
#include“B.h”

B::B(const int p,const int q):A(p)  //passing value to base 
     //class constructor
{
 y=q;
}

/*
 Definitions of the remaining member functions of class B
*/

/*End of B.cpp*/

An object of class B can be declared by passing two parameters to its constructor. One of 
them is assigned to ‘x’. The other is assigned to ‘y’.

Listing 5.17 Base class initialization

/*Beginning of baseinit02.cpp*/
#include“B.h”
#include<iostream.h>

void main()
{
 B B1(10,20);
 cout<<B1.getx()<<endl<<B1.gety()<<endl;
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}
/*End of baseinit02.cpp*/

Output
10
20

Again, the output of Listing 5.17 can be explained by noting that due to the modi  ed 
de  nition of the constructor of class B, the statement

 B B1(10,20);

gets converted to
B B1;   //memory allocated for the object
B1.A(10); //base class constructor called
B1.B(20); //derived class constructor called

As per the de  nition of the derived class constructor in Listing 5.17, the  rst parameter 
passed to it was in turn passed to the base class constructor. But this is not necessary. Any 
of the parameters passed to the derived class constructor can be passed to the base class 
constructor.

 5.5    Protected Access Specifier

Apart from the public and private access speci  ers, there is a third access modi  er in C++ 
known as protected. Protected members are inaccessible to non-member functions. However, 
they are accessible to the member functions of their own class and to member functions of 
the derived classes. Listing 5.18 along with its accompanying comments illu strates this.

Listing 5.18 Accessing protected members

/*Beginning of A.h*/
class A
{
 private:
  int x;
 protected:
  int y;
 public:
  int z;
};
/*End of A.h*/

/*Beginning of B.h*/
#include“A.h”
class B : public A //derived class
{
 public:
  void xyz();
};
/*End of B.h*/

/*Beginning of B.cpp*/
#include“B.h”
void B::xyz() //member function of derived class
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{
 x=1; //ERROR: private member of base class
 y=2; //OK: protected member of base class
 z=3; //OK: public member of base class
}
/*End of B.cpp*/

/*Beginning of protected.cpp*/
#include“A.h”
void main() //nonmember function
{
 A * Aptr;
 APtr->x=10; //ERROR: private member
 APtr->y=20; //ERROR: protected member
 APtr->z=30; //OK: public member
}
/*End of protected.cpp*/

 5.6  Deriving by Different Access Specifiers

5.6.1  Deriving by the Public Access Specifier

Deriving by the public access speci  er retains the access level of base class members.

Private members: Member functions of the derived class cannot access. Member functions of 
the subsequently derived classes cannot access them. Non-member functions cannot access 
them.

Protected members: Member functions of the derived class can access. Member functions 
of the subsequently derived classes can also access them. Non-member functions cannot 
access them. 

Public members: Member functions of the derived class can access. Member functions of 
the subsequently derived classes can also access them. The non-member functions can also 
access them.

Errors that are encountered while compiling Listing 5.19 make this evident.

Listing 5.19 Accessing the inherited members of an object of a class derived by public 
access specifi er

/*Beginning of publicInheritance.cpp*/
class A
{
 private:
  int x;
 protected:
  int y;
 public:
  int z;
};

class B : public A //B is a public derived class of A
{
 public:
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  void f1()
  {
   x=1; //ERROR: private member remains private
   y=2; //OK: protected member remains protected
   z=2; //OK: public member remains public
  }
};

class C : public B
{
 public:
  void f2()
  {
   x=1; //ERROR: private member remains private
   y=2; //OK: protected member remains protected
   z=2; //OK: public member remains public
  }
};

void xyz() //non-member function
{
 B B1;  //line 1: An object of a protected derived class
 B1.z=100; //line 2: ERROR. Cannot access public member
    //of a base class through an object of a
    //protected derived class.
 A * APtr; //line 3
 APtr=&B1; //line 4: ERROR. Cannot make a base class
    //pointer point at an object of a protected
    //derived class.
 APtr->z=100; //line 5. OK. Can access public
    //member of the base class through a base
    //class pointer.

/*End of publicInheritance.cpp*/

A base class pointer can point at an object of a derived class that has been derived by using 
the public access speci  er. Let us rede  ne the xyz() function from the program in Listing 
5.19 as in Listing 5.20 and see what happens if we recompile the program.

Listing 5.20 A base class pointer can point at an object of the public-derived class

void xyz() //non-member function
{
B B1;   //line 1: An object of a public derived 
    //class
B1.z=100; //line 2: OK. Can access public member of 
    //a base class through an object of a 
    //public derived class.
A * APtr; //line 3
APtr=&B1; //line 4: OK. Can make a base class pointer 
    //point at an object of a public derived 
    //class.
Aptr->z=100; //line 5. OK. Can access inherited public 
    //member of the base class through a base 
    //class pointer.
}

Line 4 of Listing 5.20 will compile successfully because lines 2 and 5 will. Line 2 will 
compile successfully because ‘z’ is a public member of the base class A and class B is derived 
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from class A by using the public access speci  er. In this case, the base class pointer would 
access the object of a public-derived class in a way (line 5 of Listing 5.20) that is anyway 
permitted when the object is accessed by using the name of the object itself (line 2 of Listing 
5.20).

Therefore, the C++ compiler does not prevent a base class pointer from pointing at an 
object of the derived class if the public access speci  er has been used to derive the class.

 5.6.2 Deriving by the Protected Access Specifier
Deriving by the protected access speci  er reduces the access level of public base class 
members to protected while the access level of protected and private base class members 
remains unchanged.
Private members: Member functions of the derived class cannot access. Member functions of 
the subsequently derived classes cannot access them. Non-member functions cannot access 
them.
Protected members: Member functions of the derived class can access. Member functions 
of the subsequently derived classes can also access them. Non-member functions cannot 
access them. 
Public members: Member functions of the derived class can access. Member functions of 
the subsequently derived classes can also access them. Non-member functions cannot access 
them.

Errors encountered while compiling Listing 5.21 demonstrate this.

Listing 5.21 Accessing the inherited members of an object of a class derived by 
protected access specifi er

/*Beginning of publicInheritance.cpp*/
class A
{
 private:
 int x;
 protected:
 int y;
 public:
 int z;
};
class B : public A //B is a public derived class of A
{
 public:
 void f1()
 {
//  x=1; //ERROR: private member remains private
  y=2; //OK: protected member remains protected
  z=2; //OK: public member remains public
 }
};
class C : public B
{
 public:
 void f2()
 {
//  x=1; //ERROR: private member remains private
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  y=2; //OK: protected member remains protected
  z=2; //OK: public member remains public
 }
};
void xyz() //non-member function
{
 B B1;  //line 1: An object of a public derived class
 B1.z=100; //line 2: OK. Can access public member of
    //a base class through an object of a
    //public derived class.
 A * APtr; //line 3
 APtr=&B1; //line 4: OK. Can make a base class pointer
    //point at an object of a public derived
    //class.
 APtr->z=100; //line 5. OK. Can access inherited public
    //member of the base class through a base
    //class pointer.
}
/*End of publicInheritance.cpp*/

A base class pointer cannot point at an object of a derived class that has been derived by 
using the protected access speci  er. Let us rede  ne the xyz() function from the program in 
Listing 5.21 as in Listing 5.22 and see what happens if we recompile the program.

Listing 5.22 A base class pointer cannot point at an object of the protected derived class

void xyz() //non-member function
{
 B B1;  //line 1: An object of a protected derived 
    //class
 B1.z=100; //line 2: ERROR. Cannot access public member of 
    //a base class through an object of a 
    //protected derived class.
 A * APtr; //line 3
 APtr=&B1; //line 4: ERROR. Cannot make a base class pointer 
    //point at an object of a protected derived 
    //class.
 Aptr->z=100; //line 5. OK. Can access public 
    //member of the base class through a base 
    //class pointer.
}

Line 4 of Listing 5.22 will not compile because line 2 will not compile and line 5 will 
compile. Line 2 will not compile because although ‘z’ is a public member of the base class A, 
class B is derived from class A by using the protected access speci  er. In this case, the base 
class pointer might access the object of a protected derived class in a way (line 5 of Listing 
5.22) that is not permitted when the object is accessed by using the name of the object itself 
(line 2 of Listing 5.22).

Therefore, the C++ compiler prevents a base class pointer from pointing at an object of 
the derived class if the protected access speci  er has been used to derive the class.

5.6.3  Deriving by the Private Access Specifier
Deriving by the private access speci  er reduces the access level of public and protected 
base class members to private while access level of private base class members remains 
unchanged.
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Private members: Member functions of the derived class cannot access. Member functions of 
the subsequently derived classes cannot access them. Non-member functions cannot access 
them.

Protected members: Member functions of the derived class can access. Member functions of 
the subsequently derived classes cannot access them. Non-member functions cannot access 
them.

Public members: Member functions of the derived class can access. Member functions of 
the subsequently derived classes cannot access them. Non-member functions cannot access 
them.

Errors encountered while compiling Listing 5.23 demonstrate this.

Listing 5.23 Accessing the inherited members of an object of a class derived by private 
access specifi er

/*Beginning of protectedInheritance.cpp*/
class A
{
 private:
 int x;
 protected:
 int y;
 public:
 int z;
};
class B : protected A //B is a protected derived class of A
{
 public:
 void f1()
 {
//  x=1; //ERROR: private member remains private
  y=2; //OK: protected member remains protected
  z=2; //OK: public member becomes protected
 }
};
class C : public B
{
 public:
 void f2()
 {
//  x=1; //ERROR: private member remains private
  y=2; //OK: protected member remains protected
  z=2; //OK: protected member remains protected
 }
};
void xyz() //non-member function
{
 B B1;  //line 1: An object of a protected derived class
 B1.z=100; //line 2: ERROR. Cannot access public member
    //of a base class through an object of a
    //protected derived class.
 A * APtr; //line 3
 APtr=&B1; //line 4: ERROR. Cannot make a base class
    //pointer point at an object of a protected
    //derived class.
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 APtr->z=100; //line 5. OK. Can access public
    //member of the base class through a base
    //class pointer.
}
/*End of protectedInheritance.cpp*/

A base class pointer cannot point at an object of a derived class that has been derived by 
using the private access speci  er. Let us rede  ne the xyz() function from the above program 
(Listing 5.23) as in Listing 5.24 and see what happens if we recompile the program.

Listing 5.24 A base class pointer cannot point at an object of the private-derived class

/*Beginning of privateInheritance.cpp*/
class A
{
 private:
 int x;
 protected:
 int y;
 public:
 int z;
};
class B : private A //B is a private derived class of A
{
 public:
 void f1()
 {
  x=1; //ERROR: private member remains private
  y=2; //OK: protected member becomes private in 
    //this class
  z=2; //OK: protected member becomes private in 
    //this class
 }
};
class C : public B
{
 public:
 void f2()
 {
  x=1; //ERROR: private member remains private
  y=2; //ERROR: private member remains private
  z=2; //ERROR: private member remains private
 }
};
void xyz(B * BPtr) //non-member function
{
 BPtr->x=10; //ERROR: private member remains private
 BPtr->y=20; //ERROR: protected member becomes private
 BPtr->z=30; //ERROR: public member becomes private
}
/*End of privateInheritance.cpp*/

Line 4 of Listing 5.24 will not compile because line 2 will not compile and line 5 will 
compile. Line 2 will not  compile because although ‘z’ is a public member of the base class 
A, class B is derived from class A by using the private access speci  er. In this case, the base 
class pointer might access the object of a private-derived class in a way (line 5 of Listing 5.24) 
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that is not permitted when the object is accessed by using the name of the object itself (line 
2 of Listing 5.24).

Therefore, the C++ compiler prevents a base class pointer from pointing at an object of 
the derived class if the private access speci  er has been used to derive the class.

The default access speci  er for inheritance is private. The following declarations are 
equivalent:

class B : private A //B is a private derived class of A
{
 /*
  definition of class B
 */
};

class B : A //B is still a private derived class of A
{
 /*
  definition of class B
 */
};

 5.7  Different Kinds of Inheritance 

5.7.1  Multiple Inheritance

Figure 5.5 shows that in multiple inheritance, a class derives from more than one base 
class.

Figure 5.5 Multiple inheritance (class C derived from classes A and B)

A B

C

The general syntax for multiple inheritance is as follows:
class <name of derived class> 
: <access specifier> <name of first base class>, 
 <access specifier> <name of second base class>, 
 <access specifier> <name of third base class> …
{
 /*
  definition of derived class
 */

};

An illustrative example follows in Listing 5.25. We must note that for each of the base 
classes, a different access speci  er can be used.
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Listing 5.25 Multiple inheritance

/*Beginning of privateInheritance.cpp*/
class A
{
 private:
 int x;
 protected:
 int y;
 public:
 int z;
};
class B : private A //B is a private derived class of A
{
 public:
 void f1()
 {
//  x=1; //ERROR: private member remains private
  y=2; //OK: protected member becomes private in 
//this class
  z=2; //OK: protected member becomes private in 
//this class
 }
};
class C : public B
{
 public:
 void f2()
 {
//  x=1; //ERROR: private member remains private
//  y=2; //ERROR: private member remains private
//  z=2; //ERROR: private member remains private
 }
};
void xyz() //non-member function
{
 B B1;  //line 1: An object of a private derived class
 B1.z=100; //line 2: ERROR. Cannot access public member
    //of a base class through an object of a
    //private derived class.
 A * APtr; //line 3
 APtr=&B1; //line 4: ERROR. Cannot make a base class
    //pointer point at an object of a private
    //derived class.
 APtr->z=100; //line 5. OK. Can access public
    //member of the base class through a base
    //class pointer.
}
/*End of privateInheritance.cpp*/

Output
10
20
30

An object of a class de  ned by multiple inheritance contains not only the data members 
de  ned in the derived class, but also the data members de  ned in all of the base classes. Thus, 
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the size of such an object is equal to the sum of the sizes of the data members of all the base 
classes plus the sum of the sizes of the data members of all of the derived classes. Hence, the 
size of an object of the class C in Listing 5.25 is 12.

Moreover, with respect to such an object, it is possible to call the member functions of 
not only the derived class, but also the member functions of all the base classes. Therefore, 
in Listing 5.25, the member functions of classes A, B, and C have been called with respect 
to ‘C1’.

5.7.2  Ambiguities in Multiple Inheritance

Multiple inheritance leads to a number of ambiguities, namely, identical members in more 
than one base class and diamond-shaped inheritance.

1. Identical members in more than one base class: The first ambiguity arises if two or 
more of the base classes have a member of the same name. This is illustrated in Listing 
5.26.

Listing 5.26 Ambiguity due to identical member being in more than one base class

/*Beginning of A.h*/
class A
{
 int x;

 public:
 void setx(const int=0);
 int getx()const;
};
/*End of A.h*/

/*Beginning on A.cpp*/
#include”A.h”
void A::setx(const int pX)
{
 x = pX;
}
int A::getx() const
{
 return x;
}
/*End on A.cpp*/

/*Beginning of B.h*/
class B
{
 int y;

 public:
 void sety(const int=0);
 int gety()const;
};
/*End of B.h*/

/*Beginning on B.cpp*/
#include”B.h”
void B::sety(const int pY)
{
 y = pY;
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}
int B::gety() const
{
 return y;
}
/*End on B.cpp*/

/*Beginning of C.h*/
#include”A.h”
#include”B.h”
class C : public A, public B //multiple inheritance
{
 int z;

 public:
 void setz(const int=0);
 int getz()const;
};
/*End of C.h*/

/*Beginning on C.cpp*/
#include”C.h”
void C::setz(const int pZ)
{
 z = pZ;
}
int C::getz() const
{
 return z;
}
/*End on C.cpp*/

/*Beginning of multiInherit.cpp*/
#include<iostream.h>
#include”C.h”
void main()
{
 C C1;  //declaring an object of the class that does 
    //multiple inheritance
 C1.setx(10); //calling member function of one base 
    //class.
 C1.sety(20); //calling member function of the other 
    //base class.
 C1.setz(30); //calling member function the derived 
    //class.
 cout<<C1.getx()<<endl; //calling member function of 
    //one base class.
 cout<<C1.gety()<<endl; //calling member function of 
    //the other base class.
 cout<<C1.getz()<<endl; //calling member function the 
    //derived class.
}
/*End of multiInherit.cpp*/

In Listing 5.26, the compiler will not be able to decide which of the two show() functions 
it has to call. This ambiguity can be resolved by using the  scope resolution operator. We 
can replace the main() function of Listing 5.26 with that of Listing 5.27 and see the 
difference.
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Listing 5.27 Ambiguity resolution by using scope resolution operator 

/*Beginning of multiInheritAmbiguityResolve01.cpp*/
void<iostream.h>
Class A
{
 Public:
 Void show()
 {
  cout<<“show() function of clas A called\n”;
 }
};
class B
{
 Public:
 void show()
 {
  cout<<“show() function of class B called\n”;
};
class C : public A, public B
{ };
void main()
{
 C C1;
 C1.A: :show() ; //OK: show() function of class A called
 C1.B: :show() ; //OK: show() function of class B called
}
/*End of multiInheritAmbiguityResolve01.cpp*/

Output
show() function of class A called
show() function of class B called

This ambiguity can also be resolved by   overriding the multiple inherited base class member 
as shown in Listing 5.28.

Listing 5.28 Ambiguity resolution by overriding

/*Beginning of multiInheritAmbiguityResolve02.cpp*/
#include<iostream.h>
class A
{
 public:
  void show()
  {
   cout<<“show() function of class A called\n”;
  }
};

class B
{
 public:
  void show()



 Object-Oriented Programming with C++144

  {
   cout<<“show() function of class B called\n”;
  }
};

class C : public A, public B
{
 public:
  void show() //override both of the inherited 
    //functions
  {
   cout<<“show() function of class C called\n”;
  }
};

void main()
{
 C C1;
 C1.show(); //OK: C::show() called
}
/*End of multiInheritAmbiguityResolve02.cpp*/

Output
show() function of class C called

We can still call the show() functions of classes A and B with respect to an object of class 
C by using the scope resolution operator. Let us now replace the main() function with that 
of Listing 5.29 and see the difference.

Listing 5.29 Calling overridden members by scope resolution operator

void main()
{
 C C1.A::show();
 C1.B::show();
}

Output
show() function of class A called
show() function of class B called

2. Diamond-shaped inheritance: Ambiguities can also arise if two or more base classes 
in turn inherit from a common base class (Figure 5.6). This is known as diamond-shaped 
inheritance (see Listing 5.30).

Figure 5.6 Base classes inheriting from a common base class

A

B C

D
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Listing 5.30 Diamond-shaped inheritance

/*Beginning of multiInheritAmbiguity02.cpp*/
class A
{
 public:
  void show();
};

class B : public A
{};

class C : public A
{};

class D : public B, public C
{};

void main()
{
 D D1;
 D1.show(); //ERROR: ambiguous call to show()
}
/*End of multiInheritAmbiguity02.cpp*/

The two previous solutions—using scope resolution operator and overriding—are applicable 
here also. Nevertheless, a third solution is also available—that of declaring the top base class 
to be virtual. The ambiguity disappears if we declare class A to be a   virtual base class of 
classes B and C. This is demonstrated by the following lines of code.

class B : virtual public A
{};
class C : virtual public A
{};

Now, the call to the show() function with respect to an object of class D is no longer 
ambiguous.

5.7.3  Multi-level Inheritance 

When a class inherits from a derived class, it is known as multi-level inheritance. In other 
words, a class derives from a class that is in turn derived from another class. Figure 5.7 depicts 
multi-level inheritance.

Figure 5.7 Multi-level inheritance
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B

C
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In Figure 5.7, class C is derived from class B, which is in turn derived from class A. The 
syntax for implementing this derivation is shown in Listing 5.31.

Listing 5.31 Multi-level inheritance

/*Beginning of multiInherit.cpp*/
#include<iostream.h>

class A
{
 public:
  void fA()
  {
   cout<<“fA() called\n”;
  }
};

class B : public A //B derived from A
{
 public:
  void fB()
  {
   cout<<“fB() called\n”;
  }
};

class C : public B //C derived from B, B derived from A
{
 public:
  void fC()
  {
   cout<<“fC() called\n”;
  }
};

void main()
{
 C C1;
 C1.fA();
 C1.fB();
 C1.fC(); 
}

/*End of multiInherit.cpp*/

Output
fA() called
fB() called
fC() called

Multi-level inheritance can be extended to any level.
Multi-level inheritance is commonly used to implement successive re  nement of a data 

type. For instance, ‘Animal’ is a more generic class. ‘Mammal’ is a type of ‘Animal’. ‘Man’ 
is a type of ‘Mammal’.

In Figure 5.8, the data type ‘Animal’ is successively re  ned to ‘Mammal’ and then to 
‘Man’. The bene  t of having intermediate classes, such as the class ‘Mammal’, is that they 
can then be used as a base class for some other classes also. For example, the class ‘Mammal’ 
can be used as a common base class for classes ‘Whale’, ‘Dog’, etc. 
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Animal

Mammal

Man

Figure 5.8 Example of using multi-level inheritance to successively refi ne a data type

5.7.4  Hierarchical Inheritance

In hierarchical inheritance, a single class serves as a base class for more than one derived 
class. Figure 5.9 illustrates this.

Figure 5.9 Hierarchical inheritance

A

CB

In Figure 5.9, class A is the common base class for classes B and C. This is demonstrated 
in Listing 5.32.

Listing 5.32 Hierarchical inheritance

/*Beginning of hierarchicalInherit.cpp*/
#include<iostream.h>
class A
{
 public:
  void fA()
  {
   cout<<“fA() called\n”;
  }
};

class B : public A //derived from A
{
 public:
  void fB()
  {
   cout<<“fB() called\n”;
  }
};
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class C : public A //also derived from A
{
 public:
  void fC()
  {
   cout<<“fC() called\n”;
  }
};

void main()
{
 B B1;
 C C1;
 B1.fA();
 B1.fB();
 C1.fA();
 C1.fC();
}
/*End of hierarchicalInherit.cpp*/

Output
fA() called
fB() called
fA() called
fC() called

Hierarchical inheritance is probably the best illustration of the virtues of code reusability. 
The common features of two or more classes can be put together in a single base class that 
can then be inherited by those classes. The need to duplicate the common features in more 
than one class is, thus, eliminated. 

As an example, the class ‘Mammal’ can be a common base class for the classes ‘Man’, 
‘Whale’, ‘Dog’, ‘Cat’, etc. The features that are common to all these derived classes can be 
placed in the class ‘Mammal’. Only the special features may be put in the respective derived 
classes.

5.7.5  Hybrid Inheritance

Hybrid inheritance, as the name indicates, is simply a mixture of all the above kinds of 
inheritances. Figure 5.10 illustrates this.

Figure 5.10 Hybrid inheritance

B

DC

A
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 5.8   Order of Invocation of Constructors and Destructors 

Constructors are invoked in the following order:
Virtual base class constructors in the order of inheritance 
Non-virtual base class constructors in the order of inheritance 
Member objects’ constructors in the order of declaration 
Derived class constructor 

Destructors are invoked in the reverse order. Listing 5.33 illustrates this.

Listing 5.33 Order of invocation of constructors and destructors

/*Beginning of cd_order.cpp*/
#include<iostream.h>

class A
{
 public:
  A()
  {
   cout<<“Constructor of class A called\n”;
  }
  ~A()
  {
   cout<<“Destructor of class A called\n”;
  }
};

class B
{
 public:
  B()
  {
   cout<<“Constructor of class B called\n”;
  }
  ~B()
  {
   cout<<“Destructor of class B called\n”;
  }
};

class C : virtual public A
{
 public:
  C()
  {
   cout<<“Constructor of class C called\n”;
  }
  ~C()
  {
   cout<<“Destructor of class C called\n”;
  }
};

class D : virtual public A
{
 public:
  D()
  {
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   cout<<“Constructor of class D called\n”;
  }
  ~D()
  {
   cout<<“Destructor of class D called\n”;
  }
};

class E
{
 public:
  E()
  {
   cout<<“Constructor of class E called\n”;
  }
  ~E()
  {
   cout<<“Destructor of class E called\n”;
  }
};

class F : public B, public C, public D
{
 private:
  E Eobj;
 public:
  F()
  {
   cout<<“Constructor of class F called\n”;
  }
  ~F()
  {
   cout<<“Destructor of class F called\n”;
  }
};

void main()
{
 F Fobj;
}
/*End of cd_order.cpp*/

Output
Constructor of class A called
Constructor of class B called
Constructor of class C called
Constructor of class D called
Constructor of class E called
Constructor of class F called
Destructor of class F called
Destructor of class E called
Destructor of class D called
Destructor of class C called
Destructor of class B called
Destructor of class A called
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C++ allows a class to be de  ned in such a way that 
it automatically includes member data and member 
functions of an existing class. As usual, it allows 
additional member data and member functions 
to be de  ned in the new class also. This is called 
inheritance.

The existing class whose features are being inherited 
is known as the base class or parent class or super class. 
The new class that is being de  ned by inheriting from 
the base class is known as the derived class or child 
class or sub-class.

Objects of the derived class contain data members 
of the derived class as well as the base class. Objects of 
the base class can call member functions of the derived 
class as well as those of the base class.

By allowing only the common data members and 
common member functions in the base class, inheritance 
enables code reusability and eases code maintenance. 
Inheritance implements an ‘is-a’ relationship whereas 
containership implements a ‘has-a’ relationship. 
Friendship is not inherited.

A base class pointer can point at an object of the 
derived class. But a derived class pointer cannot point 
at an object of the base class.

Member functions of the base class can be 
overridden in the derived class. De  ning a member 
function in the derived class in such a manner that its 
name and signature match those of a base class function 
is known as function overriding.

Base class members can be initialized to values 
that are passed to the constructor of the derived class. 
These values can in turn be passed to the base class 
constructor.

‘Protected’ members are inaccessible to non-
member functions. But they are accessible to the 
member functions of their own class and to member 
functions of the derived classes.

Classes can be derived by the public, protected, 
and private keywords. Deriving by the public access 

speci  er retains the access level of base class members. 
Deriving by the protected access speci  er reduces the 
access level of public base class members to protected 
while the access level of protected and private base 
class members remains unchanged. Deriving by the 
private access speci  er reduces the access level of 
public and protected base class members to private 
while access level of private base class members 
remains unchanged. The default access speci  er for 
inheritance is ‘private’.

In multiple inheritance, a class derives from more 
than one base class. Multiple inheritance leads to a 
number of ambiguities. Ambiguity arises if two or more 
of the base classes have a member of the same name. 
Ambiguity can also arise if two or more base classes in 
turn inherit from a common base class. This is known 
as diamond-shaped inheritance. These ambiguities are 
resolved by either of the following:

 Using the scope resolution operator and passing the 
name of the actual owner class to call the function

 Overriding the function of the ultimate base class 
in the intermediate base class

 Deriving the intermediate base classes by using the 
virtual keyword
When a class inherits from a derived class, it is 

known as multi-level inheritance. In hierarchical 
inheritance, a single class serves as a base class for the 
derived class(es). Hybrid inheritance is a mixture of all 
the above kinds of inheritances.
Constructors are invoked in the following order:

 Virtual base class constructors in the order of 
inheritance

 Non-virtual base class constructors in the order of 
inheritance

 Member objects’ constructors in the order of 
declaration

 Derived class constructor

Destructors are invoked in the reverse order.

Summary

Key Terms 
inheritance
base class, parent class, super class
derived class, child class, subclass
data members of base class and objects of the derived 
class

function members of base class and objects of the derived 
class
keeping common features in base class for code 
reusability
base class and derived class pointers
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Exercises

 1. What is inheritance? How does it enable code 
reusability?

 2. How does inheritance influence the size and 
functionality of derived class objects?

3. How does inheritance compare with containership?
4. How does inheritance compare with nesting?
5. Create a global non-member function that has a base 

class pointer as its formal argument. Call member 
functions of the base class through the pointer from 
within this function. Now call the function by passing 
addresses of the derived class objects.

6. Override one of the base class member functions that 
have been called from within the function you have 
de  ned above, in the derived class. Pass the address 
of an object of this derived class to the function. 
Which function gets called—the overridden function 
of the base class or the overriding function of the 
derived class?

 7. Make a derived class pointer point at an object of 
the base class by explicit typecasting. Now access 
a member of the derived class that does not exist in 
the base class. What happens?

8. Why is it necessary for the derived class constructor 
to pass values explicitly to the base class constructor 
for initializing base class members?

9. A base class has data members. However, a class that 
is derived from it does not. Does the derived class 
need a constructor? Why?

 10. What is the effect of using the protected access 
speci  er on the visibility of a base class member?

 11. Will a function of the derived class be able to access a 
public member of the base class if no access speci  er 
was used to derive the derived class? Why?

12. What are the ambiguities that arise in multiple and 
diamond-shaped inheritance? How can they be 
removed?

13. In which order are the constructors and destructors 
called when an object of the derived class is 
created?

 14. State true or false
(a) A base class object is usually smaller than an 

object of its derived class.
(b) Inheritance increases the visibility of base class 

members.
(c) The constructor of a virtual base class is called 

before the constructor of a non-virtual base 
class.

(d) Inheritance implements a ‘has-a’ relationship.
(e) A public member of the base class can be called 

with respect to an object of the derived class in 
a non-member function if the protected access 
speci  er was used to derive the derived class.

 15. Assume that you are building a simpli  ed windows-
based drawing program. From a menu, the user would 
select which type of shape—ellipse or rectangle—
he/she wants to draw. After selecting, he/she would 
drag the mouse pointer from one point of the window 
to another and the selected shape would get drawn 
within the enclosing rectangle whose diagonally 
opposite points coincide with these two points. 

   Create a class Shape. Derive two classes—
Ellipse and Rectangle—from this class. Answer 
the following questions to arrive at the de  nitions of 
the classes:
(a) Which class/classes should hold the coordinates 

of the enclosing rectangle as its data members—
Shape, Ellipse, Rectangle or all of three?

(b) In the chapter on virtual functions and dynamic 
polymorphism, you would realize that the 
class Shape should also have functions such as 
draw() and getArea(). Should these functions 
have only an empty de  nition when they are 
de  ned as members of the class Shape? Would 
they have empty definitions when they are 
de  ned as members of the classes Ellipse and 
Rectangle?

overriding of base class member functions
base class initilization
protected members
deriving by public, protected, and private speci  ers
multiple inheritance

– ambiguities in multiple inheritance
multi-level inheritance
hierarchical inheritance
order of invocation of constructors and destructors



Virtual Functions and Dynamic 
Polymorphism

This chapter deals with one of the most remarkable features of C++: dynamic polymorphism 
and how virtual functions enable it.

Virtual functions enable the C++ programmer to create reusable code. So far, function 
overriding has appeared to be an unnecessary feature of C++. This chapter explains why C++ 
provides the feature of function overriding.

The mechanism by which C++ implements the virtual functions has also been dealt with 
in this chapter. Pure virtual functions, their need and usage  nd a prominent place in this 
chapter. 

This chapter also discusses the use of virtual destructors and clone functions.
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 6.1   Need for Virtual Functions

First, let us consider Listing 6.1 and its output.

Listing 6.1 Overriding member function of base class in the derived class

/*Beginning of A.h*/
#ifndef _A_H_
#define _A_H_
class A
{

public:
void show();

};
#endif
/*End of A.h*/

/*Beginning of B.h*/
#ifndef _B_H_
#define _B_H_
#include”A.h”
class B : public A //class B derived from class A
{

public:
void show(); //function override

};
#endif
/*End of B.h*/

/*Beginning of A.cpp*/
#include”A.h”
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#include<iostream.h>
void A::show()
{
 cout<<”A\n”;
}
/*End of A.cpp*/

/*Beginning of B.cpp*/
#include”B.h”
#include<iostream.h>
void B::show()
{
 A::show(); //calling back the overridden function to
    //logically extend the class definition
 cout<<”B\n”;
}
/*End of B.cpp*/

Now, let us consider the client program shown in Listing 6.2.

Listing 6.2 Calling an overridden function through a pointer of base class type

/*Beginning of try1.cpp*/
#include“B.h”
#include<iostream.h>
void main()
{
 A A1;
 B B1;
 A * APtr;
 APtr=&A1;
 APtr->show(); //A::show() called. APtr is of type A*
 APtr=&B1;
 APtr->show(); //A::show() called. APtr is of type A*
}
/*End of try1.cpp*/

Output
A
A

As we will notice, the base class function is called irrespective of the type of object pointed 
at by the pointer. Here, the compiler decides which function is to be called by considering 
the type of the pointer; the type of the object pointed at by the pointer is not considered. The 
conclusion is that overriding in such cases is ineffective. This can be a serious problem when a 
client is trying to extend a class hierarchy. Why? Before we try to  nd an answer, let us realize 
that calling the function through a reference produces the same effect. See Listing 6.3.

Listing 6.3 Calling an overridden function through a reference of base class type

/*Beginning of try2.cpp*/
#include“B.h” //from listing 6.01
#include<iostream.h>
void main()
{
 A A1;
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 B B1;
 A &ARef1=A1;
 ARef1.show(); //A::show() called. ARef1 is of type A&
 A &ARef2=B1;
 ARef2.show(); //A::show() called. ARef2 is of type A&
}
/*End of try2.cpp*/

Output
A
A

Now, let us try to understand why the ineffectiveness of overriding can be a major hindrance 
in the extension of a class hierarchy.

Placing the pointer and the object pointed at by the pointer in the same function as local 
variables does not make any sense. After all, an object can be as effectively accessed through 
its name itself. Instead, the pointer appears as a formal argument in function de  nitions and 
the address of the object is passed as a parameter to the function calls. Similar comments hold 
true for the reference variable also. Let us proceed with this piece of knowledge.

Keeping in mind the de  nitions of classes A and B from Listing 6.1, we have a look at the 
de  nition of function abc() of a class X in Listing 6.4.

Listing 6.4 Calling an overridden function through a pointer of base class type

/*Beginning of X.h*/
#ifndef _X_H_
#define _X_H_
#include”A.h”
class X
{
 public:
 void abc(A*); //A* is the formal argument
};
#endif
/*End of X.h*/

/*Beginning of X.cpp*/
#include“X.h”
void X::abc(A * p)
{
 //some lines of (complicated) code
 p->show();
 //some more lines of (complicated) code
}
/*End of X.cpp*/

/*Beginning of try3.cpp*/
#include”X.h”
#include”B.h”
void main()
{
 X X1;
 A A1;
 B B1;
 X1.abc(&A1); //A::show() will be called
 X1.abc(&B1); //A::show() will be called
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}
/*End of try3.cpp*/

Output
A
A

From our recent study we know that the A::show() function will be called against both 
of the function calls in the main() function of Listing 6.4.

Now let us take stock of the situation. The library programmer has defined the 
following: 

The class A 
The  show() function of class A
The class X  
The  abc() function of class X 

The de  nitions of the A::show() and X::abc() functions are  nal and have been put in 
libraries.

It is expected that a class will get derived from class A. The derived class may override the 
show() function of class A. The overriding function will add the extra code that is relevant 
to the derived class. To complete the picture, it will also call back the overridden function 
A::show(). In this way, the base class function will get successively re  ned by the overriding 
functions of the derived classes. 

However, as Listing 6.4 shows, such an override has so far appeared ineffective. It is highly 
desirable that when the address of an object of the derived class B is passed to the X::abc() 
function, then the B::show() function should be called (see Listing 6.4). If this happens, 
then the same X::abc() function will prove useful irrespective of the type of object whose 
address is being passed to it. Unfortunately, such an extension of the class hierarchy has so 
far remained elusive.

We must realize that derived classes such as class B may be de  ned much after functions 
such as X::abc() function have been de  ned. 

Moreover, the function X::abc() should work equally well whether the address of an 
object of the base class A is passed as a parameter to it or the address of an object of any of 
the derived classes is passed. 

In the present situation, it appears necessary to rede  ne the X::abc() function corresponding 
to each derived class of class A. That is, the X::abc(A *) function should be copied and 
rede  ned with a pointer of the derived class type as a formal argument. For example, X::abc(A 
*), X::abc(B *), etc. This is certainly impossible because the de  nition of the X::abc() 
function will be in some library that is inaccessible to the programmer who is de  ning the 
derived classes. It is also extremely cumbersome to rede  ne the X::abc() function for each 
of the derived classes. This anyway goes against the principles of code reusability.

Thus, it proves impossible to extend an existing class hierarchy. Function overriding does 
not produce the desired effects. Virtual functions solve this problem.

 6.2   Virtual Functions

Virtual functions provide one of the most useful and powerful features of C++ called dynamic 
polymorphism. 
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In order to appreciate the various nuances of dynamic polymorphism, let us  rst look at a 
function (shown in Listing 6.5) that returns the sum of factorials of the numbers that belong 
to a range whose limits are passed to it. The function may have the following de  nition.

Listing 6.5 Function to compute sum of factorials

long int factorialSum(unsigned int a, unsigned int b)
{
 int i;
 long int sum;
 for(sum=0,i=a;i<=b;i++)
  sum+=factorial(i);
 return sum;
}

Here, factorial() is a function that returns the factorial of the parameter passed to it. 
Similarly, the function in Listing 6.6 returns the sum of cubes of the numbers that belong to 
the range whose limits are passed to it.

Listing 6.6 Function to compute sum of cubes

long int cubeSum(unsigned int a, unsigned int b)
{
 int i;
 long int sum;
 for(sum=0,i=a;i<=b;i++)
  sum+=cube(i);
 return sum;
}

The cube() function returns the cube of the number passed as a parameter to it.
Again, the function of Listing 6.7 returns the sum of logarithms of the numbers that belong 

to the range whose limits are passed to it.

Listing 6.7 Function to compute sum of logarithms

long int logSum(unsigned int a, unsigned int b)
{
 int i;
 long int sum;
 for(sum=0,i=a;i<=b;i++)
  sum+=log(i);
 return sum;
}

The log() function returns the logarithm of the number passed as a parameter to it.
A close look at the de  nitions of these functions reveals that the de  nitions of the functions 

are exactly the same except for the name of the inner function they all call. Nevertheless, the 
similarity in their de  nitions is striking. It will not be entirely unreasonable on our part to 
expect that there must be some means of replacing all these functions by a single function. We 
want to make a generic function that will replace all the above functions. For this, we have to 
specify a function pointer as an additional formal argument in the function. See Listing 6.8.
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Listing 6.8 Generic function to compute summation of series

//a generic sum function
long int genSum(unsigned int a, unsigned int b, 
    long int (*p)())
{
 int i;
 long int sum;
 for(sum=0,i=a;i<=b;i++)
  sum+=(*p)(i);
 return sum;
}

Next, we can call the function by passing the function whose returned values have to 
be summed up as the last parameter to this generic function. The following lines of code 
demonstrate this. 

x=genSum(1,5,factorial);
x=genSum(3,8,cube);

Now, any kind of summation can be carried out by this single generic function, provided 
the function whose returned values are being summed up returns a long int or a value of a 
compatible type. A very important point to be noted is that the generic sum function is capable 
of similarly summing up the returned values from a function that may be created well into 
the future! The function call,

(*p)(i),

exhibits polymorphic behaviour, because while compiling it, it is not known which function 
will actually be executed. This becomes known only later when the client program that calls 
the genSum() function is compiled.

We would like to perform a similar feat in C++ also. Let us look at the de  nition of 
X::abc() function in Listing 6.4. We would certainly like the show() function of that class 
to be called whose object’s address is passed as its parameter. In other words, we would like 
to extend the class library as described in the previous section.

If the library programmer, who is de  ning the base class, expects and suspects overriding 
of a certain member function and wants to make such an override meaningful, he/she should 
declare the function as virtual. For declaring a function as virtual, the prototype of the function 
within the class should be pre  xed with the virtual keyword. The virtual keyword may appear 
either before or after the keyword specifying the return type of the function. If the function is 
de  ned outside the class, then only the prototype should have the virtual keyword. 

The syntax for declaring a virtual function as follows:
virtual <return type> <function name>(<formal arguments>);

The following lines of code illustrate how virtual functions are declared.
class A
{
 public:
  virtual void show(); //A::show() is virtual
};

or
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class A
{
 public:
  void virtual show(); //A::show() is virtual
};

If we de  ne the A::show() function in Listing 6.1 as a virtual function by following this 
syntax, then the output of Listing 6.2 will be
A
B
instead of
A
A

This means that when the base class pointer points at an object of the derived class and a 
call is dispatched to an overridden virtual function, then it is the overriding function of the 
derived class, and not the overridden function of the base class, that is called.

Now, let us take stock of the situation. The library programmer’s desire to enable a logical 
extension of the class library is now ful  lled. Let us go back to Listing 6.4. Even if class A is 
derived and the A::show() function is overridden in the derived class much after the X::abc() 
function is de  ned, the correct function will be called from within the X::abc() function. 
That is, if the derived class overrides the base class function and the address of the derived 
class object is passed as a parameter to the X::abc() function, then the overriding function 
will be called. If no such overriding occurs, the base class function itself will be called.

The function call
p->show();

in the X::abc() function in Listing 6.4 exhibits polymorphic behaviour. Against this function 
call, the show() function of the base class or the overriding show() function of any of its 
derived classes will be called. However, this polymorphic behaviour is also dynamic in 
nature. Which function will be ultimately called is not known when the X::abc() function 
is compiled and put in a library. This is decided only when the client program that calls this 
function is compiled. We can therefore say that compile time for the client is run time for the 
library. Therefore, the polymorphic behaviour exhibited by virtual functions is also termed 
as dynamic polymorphism.

It is worthwhile to note that functions in the base class usually contain only those statements 
that are relevant to the base class itself. It is not always possible to provide a complete de  nition 
to them, as the base classes are sometimes abstract in nature (start() method in the Vehicle 
class). The overriding functions of the derived class  rst call back the overridden base class 
functions and then add the extra statements that complete the de  nitions with respect to the 
derived class itself. Having such base class functions as virtual ensures that the client is able 
to call both the functions in sequence as desired.

Virtual functions of the base classes reappear as virtual in the derived classes also. Again, 
using the virtual keyword while de  ning the overriding derived class function is optional. 
See Listing 6.9.

Listing 6.9 Virtual functions remain virtual

/*Beginning of autoVirtual.cpp*/
#include<iostream.h>
class A
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{
 public:
  virtual void show() //A::show() is virtual
  {
   cout<<“A\n”;
  }
};
class B : public A //B derived from A
{
 public:
  void show() //B::show() is virtual
  {
   cout<<“B\n”;
  }
};
class C : public B //C derived from B
{
 public:
  void show() //C::show() is virtual
  {
   cout<<“C\n”;
  }
};

void main()
{
 B * BPtr;
 BPtr = new C;
 BPtr->show();
}
/*End of autoVirtual.cpp*/

Output
C

 6.3   Mechanism of Virtual Functions 

Now, let us understand the mechanism of virtual functions. For every base class that has one 
or more virtual functions, a table of function addresses is created during run time. This table 
of function addresses is called the  virtual table or VTBL in short. The VTBL contains the 
address of each and every virtual function that has been de  ned in the corresponding class. 
Addresses of non-virtual functions do not appear in such tables.

Suppose a class A has two virtual functions —abc() and def() (Listing 6.10).

Listing 6.10 A class with two virtual functions

/*Beginning of A.h*/
class A
{
 public:
  virtual void abc();
  virtual void def();
};
/*End of A.h*/

During run time the VTBL of class A will be as shown in Figure 6.1.
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Figure 6.1 Table addresses of virtual functions of the base class

101 201

address of A::abc() address of A::def()

VTBL of class A

Similarly, such a table of addresses of virtual functions will be created for the derived 
class also. If the derived class does not rede  ne a certain base class member, then the table 
will contain the address of the inherited base class virtual function itself. But if a certain base 
class virtual function is rede  ned in the derived class, this table will contain the address of the 
overriding function. Finally, if the derived class de  nes a new virtual function, then its address 
will also be contained in the table. Thus, if class B is derived from class A as illustrated in 
Listing 6.11, then the VTBL for class B will appear as shown in Figure 6.2.

Listing 6.11 Overriding base class virtual functions and introducing new ones

/*Beginning of B.h*/
#include“A.h”
class B : public A
{
 public:
  void def(); //overriding the A::def() function
  virtual void ghi(); //introduces a new virtual 
    //function
};
/*End of B.h*/

Figure 6.2 Table of addresses of virtual functions of the derived class

Notice that since the A::abc() function is not overridden in the derived class, its address 
reappears in the VTBL of class B. On the other hand, since the A::def() function was 
overridden in the derived class, therefore its address is replaced in the VTBL of class B by the 
address of the B::def() function. Finally, a new address appears in the VTBL of class B—the 
address of B::ghi() function which is a newly introduced virtual function in class B.

Finally, every object of a class that has a virtual function contains a pointer to the VTBL 
of the corresponding class. This pointer is also known as the  virtual pointer or VPTR. For 
example, an object of class A, apart from all other non-static data members, will also have a 
pointer to the VTBL of class A. This table is depicted in Figure 6.1. Similarly, an object of 
class B, apart from all other non-static data members, will also have a pointer to the VTBL of 
class B. This table is depicted in Figure 6.2. Now, whenever a call is dispatched to a virtual 
function through an object or a reference to an object, or through a pointer to an object, then 
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 rst of all the value of the VPTR of the object is read. Then the address of the called function 
from the corresponding VTBL is obtained. Finally, the function is called through the address 
thus obtained. 

Now it is obvious how the virtual functions work. If a base class pointer points at (or a base 
class reference refers to) an object of the derived class and a virtual function is called with 
respect to it, then the derived class function will be called if it overrides the base class virtual 
function. If the base class virtual function is not overridden, then it itself will be called.

Note that it is the table size that varies from class to class (for each class there is only 
one VTBL). The size of the object does not vary. Only the size of the objects of classes with 
virtual functions increases uniformly by four bytes due to the presence of the additional 
pointer (VPTR).

We might wonder as to why C++ supports two types of binding—static and dynamic. 
Why does it not support dynamic binding only? In other words, why does it not declare all 
functions virtual by default? The reason is that virtual functions entail a run-time cost in the 
form of space that is wasted for creating the VTBL and embedding the VPTR in each and 
every object of the base/derived class. Time is also lost in searching the VTBL for the function 
address. If none of the member functions of a certain class will be overridden, then making 
them virtual will unnecessarily incur the above cost. Therefore, C++ allows the programmer 
to decide whether the member function has to be declared as virtual or not.

 6.4   Pure Virtual Functions

From Section 6.3, we already know that it is optional to override virtual functions. A library 
programmer declares a member function as virtual if he/she expects overriding and wants to 
make the override effective. 

But there are cases where the library programmer would like to enforce an override of 
the base class virtual functions. Such a case is now described. A call to a base class virtual 
function has been embedded somewhere in the code with respect to a pointer or reference of 
base class type. For example, a class A can have a virtual function abc() that is called from 
a function xyz() of class X. See Listing 6.12.

Listing 6.12 Using virtual functions

/* Beginning of X.xpp*/
#include“X.h”
void X::xyz(A * p)
{
 //some lines of (complicated) code
 p->abc();
 //some more lines of (complicated) code
}
/*End of X.cpp*/

Now, A::abc() function may satisfy either of the following descriptions.
It has no meaningful definition with respect to the base class. For example, a function to  
rotate the shape cannot be defined in the class Shape itself. The algorithm to rotate the 
shape is not known since the shape itself is not known. See Listing 6.13.
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Listing 6.13 Giving blank defi nition to undefi nable virtual function

class Shape
{
 public:
  virtual void rotate();
};

void shape::rotate()
{
 //null definition!
}

It has only a few lines of code, which do not really give it a complete definition. The function  
is such that it cannot be called in isolation. It can only be called indirectly through the derived 
class’s overriding function that has the necessary code to complete the definition.
Obviously, C++ should provide some mechanism to the library programmer to enforce 

the desired override. Pure virtual functions provide this mechanism. If even one member 
function is declared as a pure virtual function, then the corresponding class becomes an 
  Abstract Base Class (ABC in short). A function is declared as a pure virtual function by 
pre  xing its prototype with the virtual keyword as before but suf  xing it with an ‘equal to’ 
sign and then by a ‘zero’ (0).

The syntax for declaring a pure virtual function is
virtual <return type> <function name>(<formal 
arguments>)=0;

Listing 6.14 illustrates this.

Listing 6.14 Defi ning a pure virtual function

/*Beginning of A.h*/
class A
{
 virtual void abc()=0;
 /*
  rest of the class A
 */
};
/*End of A.h*/

An abstract base class cannot be instantiated, that is, objects of an abstract base class cannot 
be declared. Compile-time errors defeat attempts to do so.

A A1;  //error

The derived class must override all pure virtual functions of the base class or itself get 
branded as an ABC by the compiler. For example, any class that derives from class A in Listing 
6.14 must override the A::abc() function to become a concrete or instantiable class.

What is the utility of an ABC? The utility of an ABC lies in its use as an interface. The 
library programmer de  nes the ABC and also some generic functions that implement the 
general  ow of a related algorithm without considering the exact data type on which they 
will work. An example to illustrate this point follows.

Let us consider an abstract class Shape (see Listing 6.15).
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Listing 6.15 An abstract class

/*Beginning of Shape.h*/
class Shape
{
  int x1,y1,x2,y2; //coordinates of the 
    //bounding rectangle
 public:
  void setBoundingRect(int,int,int,int);
    //set the bounding 
    //rectangle for the 
    //shape
  void move(int,int); //move upper left corner 
    //of bounding rectangle 
    //to specified 
    //coordinates
  virtual void rotate(float)=0; //rotate by angle 
    //specified in the 
    //parameter
  virtual void shrink(float)=0; //shrink by percent
    //specified in the 
    //parameter
  virtual void grow(float)=0; //grow by percent
    //specified in the 
    //parameter
  virtual void hflip()=0; //flip horizontally
  virtual void vflip()=0; //flip vertically
  virtual void draw()=0; //draw the shape
};
/*End of Shape.h*/

Let us consider a client driver function that the programmer de  nes to operate upon 
an object of class Shape or any of its derived classes. This function will  ash a shape in a 
certain sequence. While the actual object that will be  ashed is not known when the function 
is de  ned, the sequence of operations for carrying out the operation has been decided. See 
Listing 6.16.

Listing 6.16 Client code to use the abstract class

/*Beginning of MyWindow.cpp*/
#include“MyWindow.h”
void MyWindow::flash(Shape * p)
{
 p->setBoundingRect(0,0,10,10);
 p->draw();
 p->rotate(90);
 for(int x=0;x<=10;x++)
  p->shrink(5);
 for(int x=0;x<=10;x++)
  p->grow(5);
 p->hlip();
 p->hflip();
 p->vflip();
 p->vflip();
}
/*
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 definitions of rest of the functions of class MyWindow
*/
/*End of MyWindow.cpp*/

There might be many more lines of code in the function of Listing 6.16. But the important 
thing to be remembered is that the class, which will be derived from the class Shape and whose 
object’s address will be passed to this function, might be de  ned much later. In addition, 
the same function will work equally well for each such class. Moreover, there can be many 
such client programs. After all, what is a class library if it does not have plenty of clients! 
But there is absolutely no need to de  ne such driver functions for each of the derived classes 
separately. However, every such class will have to de  ne each and every pure virtual function 
of the class Shape. The abstract nature of the base class ensures this. 

Thus, the ABC behaves just like an interface with little or no implementation of its own. 
The facility that the library programmer gets is that he/she is free to de  ne generic functions 
without bothering about the implementation details. He/she can enforce all necessary overrides. 
The advantage for the application programmer is that he/she can derive any class from the 
ABC, provide his/her own implementations for the derived class and then use the same driver 
functions like MyWindow::  ash() for any of these derived classes.

Abstract Base Classes are also used to build implementation in stages. We know that if 
a pure virtual function inherited from the base class is not de  ned in the derived class, it 
remains a pure virtual function in the derived class. Thus, the derived class also becomes an 
abstract class. 

Let me exemplify this explanation. Suppose there is an abstract class A having a number 
of pure virtual functions (Listing 6.17). 

Listing 6.17 An abstract base class

class A
{
 public:
  virtual void abc()=0;
  virtual void def()=0;
  virtual void ghi()=0;
};

void main()
{
 A A1;  //ERROR!
}

A class B is derived from it. This class B overrides and de  nes only a few of the functions 
of class A. Thus, class B is also an ABC. See Listing 6.18.

Listing 6.18 Not defi ning all base class pure virtual functions results in an abstract class

class B : public A
{
 public:
  void abc()
  {
   //definition of B::abc() function
  }
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};

void main()
{
 B B1;  //ERROR!
}

Next, a class C derives from class B. It overrides and de  nes the remaining pure virtual 
functions of class A. Thus, class C becomes a concrete class. See Listing 6.19.

Listing 6.19 Defi ning all the inherited pure virtual functions results in a concrete class

class C : public B
{
 public:
  void def()
  {
   //definition of C::def() function
  }
  void ghi()
  {
   //definition of C::ghi() function
  }
};

void main()
{
 C C1;  //OK
}

We may ask why all pure virtual functions of class A were not de  ned in class B itself. The 
reason is that there is no concrete de  nition of the remaining functions with respect to class B. 
It itself serves as a base class for a number of derived classes. Each of the derived classes have 
a different de  nition of the pure virtual functions of class A that are left unde  ned by class B. 
If class B de  nes any of these functions, then such functions will themselves be called when 
a pointer of class A type points at an object of any of the derived classes of class B and calls 
are dispatched to the pure virtual function of class A. This is obviously undesirable. Class B 
will de  ne only those pure virtual functions of class A that can have a suitable meaning with 
respect to it. Such de  nitions will be applicable to all its derived classes.

Although concrete classes must provide an implementation to all the pure virtual functions, 
the abstract data type may provide one as well. The derived class can invoke it by using the 
scope resolution operator (Listing 6.20).

Listing 6.20 Defi ning a pure virtual function in the abstract base class itself

class A  //An abstract base class
{
 public:
  virtual void abc()=0;
};

void A::abc() //pure virtual function defined
{
 //definition of A::abc() function 
}
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class B : public A
{
 public:
  void abc();
};

void B::abc()
{
 A::abc();
 //definition of rest of the B::abc() function 
}

The ability to provide an implementation to pure virtual methods allows data types to 
provide core functionality while still requiring derived classes to provide a specialized 
implementation. Note that the class remains abstract even if we provide an implementation 
for its pure virtual function.

As per requirements, a member function can be non-virtual, virtual, or pure virtual.

 6.5   Virtual Destructors and Virtual Constructors

We will now study the creation and use of virtual constructors and destructors. We will  rst 
study virtual destructors. This will be followed by a study of virtual constructors.

6.5.1 Virtual Destructors

Destructors can be de  ned as virtual. If necessary, destructors must be de  ned as virtual. 
Why? Let us consider Listing 6.21 (A is a base class and B is a class derived from A). 

Listing 6.21 Destroying a derived class object through a base class pointer

A * APtr;
APtr = new B;
. . . .
. . . .
delete APtr;

Let us consider the last line of Listing 6.21 that deletes the memory occupied by the object 
of class B at which ‘APtr’ points. Because ‘APtr’ is of base class type, only the base class 
destructor is called with respect to the object before the entire memory occupied by the object 
is returned to the OS. This can lead to memory leaks apart from other problems. Suppose 
objects of the derived class B have a pointer. It is possible that this pointer, which is contained 
in the object at which ‘APtr’ points, is assigned a dynamically allocated memory block during 
the lifetime of the object. Although the destructor of class B destroys that memory block to 
prevent memory leaks, a memory leak will still occur because the destructor of class B is 
not called.

On the other hand, if the destructor of class A is virtual, then against the last line of Listing 
6.21,  rst the destructor of class B will be called, then the destructor of class A will be called. 
Finally, the entire memory block occupied by the object will be returned to the OS.

The conclusion is that if we expect the use of the delete operator on objects of a base 
class and the presence of pointers in the derived classes, we must declare the destructor of 
the base class as virtual.
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An interesting point to be noted is that when a pointer of the base class points at a 
dynamically created object of the derived class and then deletes the memory occupied by 
the object, the entire block of memory is deleted. In other words, if the total size of the non-
static data members of the base class is ‘x’ and the total size of the non-static data members 
of the derived class is ‘y’, then the total block of size ‘x+y’ is deleted. This is irrespective of 
whether the base class destructor is virtual or not.

6.5.2 Virtual Constructors

First, let us understand that constructors cannot be virtual. Declaring a constructor as virtual 
results in a compile-time error. Why? Consider a class A, and a class B that is derived from 
A. If the constructor of class A is virtual, then in the following statement

A * p = new B;

the constructor of class B alone will be called. The constructor of class A will not be called. 
This can lead to trouble. What will happen if class A has a pointer that the constructor correctly 
initializes? Since the constructor is not called, a rogue pointer will result.

However, the need to construct virtually arises very frequently while programming in C++. 
Let us consider the function in the following lines of code.

void abc(A * p) //A is a class
{
 //definition of abc() function
}

For reasons that will be listed later, an exact copy of the object at which ‘p’ points is 
required within the ‘abc()’ function. This means that another object that has the same values 
as the object at which ‘p’ points needs to be created within the ‘abc()’ function. Calling the 
copy constructor seems to serve the purpose (Listing 6.22). 

Listing 6.22 Trying to clone using copy constructor

 A * q = new A(*p);

or
 A A1(*p);

This will work if the designer of class A has correctly de  ned the copy constructor and 
if ‘p’ points at an object of class A and not at an object of a class that is derived directly or 
indirectly from class A. If ‘p’ points at an object of a class that is derived directly or indirectly 
from class A, the call to the copy constructor as mentioned above will merely create an object 
of class A. The data members of this object will have the same values as the corresponding 
data members of the object at which ‘p’ points. Nevertheless, it will not be of the same type 
(it will be smaller in size with less data members).

How can this problem be solved? If the designer of class A suspects and expects the need 
to create copies like this, he/she will de  ne a  clone function to do so. Such a function can be 
de  ned as shown in Listing 6.23.

Listing 6.23 A clone function in the base class

class A
{
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 public:
  virtual A * clone()
  {
   return new A(*this);
  }
  /*
   definition of class A
  */
};

Classes that derive from class A will similarly de  ne and override this clone function 
(Listing 6.24).

Listing 6.24 A clone function in the derived class

class B : public A
{
 public:
  virtual B * clone()
  {
   return new B(*this);
  }
  /*
   definition of class B
  */
};

Whenever a clone of the object is required (from within the ‘abc()’ function as described 
in Listing 6.24), the clone function is called (Listing 6.25). The clone object created is 
subsequently destroyed.

Listing 6.25 Using the clone function

void abc(A * p)
{
 . . . .
 . . . .
 A * q = p->clone();
 . . . .
 . . . .
 delete q;
}

Since the clone() function is virtual, its correct version is called. Thus, if ‘p’ points at 
an object of class A, then another object of class A itself is created which is an exact copy 
of the object at which ‘p’ is pointing. And, if ‘p’ points at an object of a class derived from 
A, then another object of that same class is created which is an exact copy of the object at 
which ‘p’ is pointing. Thus, the abc() function succeeds in obtaining an exact copy of the 
object at which ‘p’ is pointing while being unaware of its type.

Since the clone function constructs an object and is also virtual, we sometimes call it 
a virtual constructor! But we must remember that there is actually nothing like a virtual 
constructor.

Now let us discuss the need for the clone function. Although there are several examples 
that highlight this need, the following example alone should suf  ce.
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Generic code contained in the functions of the base 
class remains inextensible without the use of virtual 
functions. Virtual functions make expected overrides 
in the derived class effective. Marking a base class 
function as a pure virtual function forces its override 
in the derived class.

An abstract base class is a class that has at least one 
pure virtual function. An abstract base class cannot 
be instantiated. Virtual destructors ensure a proper 
cleanup operation if the ‘delete’ operator is applied 
on a base class pointer that points at a derived class 
object.

Although we cannot have virtual constructors, clone 
functions that construct virtually can be used instead. 
A clone function returns an exact copy of the object 
at which the base class pointer, with respect to which 
it is called, points. If the pointer points at a base class 
object, the clone function creates an object of the base 
class and returns a pointer to it. If the pointer points 
at a derived class object, the clone function creates an 
object of the derived class and returns a pointer to it.

Summary

Key Terms 
virtual functions
extending class libraries by using virtual functions
pure virtual functions

abstract base class
virtual destructors
clone functions

Let us consider a function that copies and pastes a graphics object to a different place of 
the window. See Listing 6.26.

Listing 6.26 An example to illustrate the use of the clone function

void MyWindow::copyPaste( const Shape * const p,
unsigned int x, unsigned int y)

{
 Shape * q;
 q=p->clone();
 q->move(x,y);
 q->show();
 //code to attach the new object to the list
 //of current objects on the screen
}

The pointer ‘p’ points at the object being copied. The variables ‘x’ and ‘y’ are the coordinates 
of the place where the copied object is to be pasted. Although ‘p’ might point at an object of 
any of the classes that are derived from the Shape class, the entire operation of copying and 
pasting works in all cases. The only precondition is that the classes that are derived from the 
Shape class must de  ne the clone() function, the move() function, and the show() function. 
This is easily ensured by declaring all these functions as pure virtual functions in the Shape 
class. An additional point to be noted in this speci  c example is that the clone object should 
not be destroyed. Instead, it should be added to the list of existing objects on the screen.
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Exercises

 1. What is a virtual function? When is it needed?
 2. How does the compiler resolve a call to a virtual 

function?
 3. Suppose a member function of a class has been 

prototyped as virtual. The function has not been 
de  ned. Now, when we instantiate the class, the 
linker gives an error even if we do not call the 
function. Why? (Hint: Remember that if a non-virtual 
function is prototyped and then neither called nor 
de  ned, no error is generated.)

 4. What is a pure virtual function? When is it needed?
 5. State true or false.

(a) Virtual functions implement static polymor-
phism.

(b) We cannot have a virtual constructor.
(c) An abstract base class cannot be instantiated.
(d) We cannot de  ne a pure virtual function.

 6. Write a program to  nd out whether a virtual function 
can be a friend of another class.

 7. Create a class Shape. It should have no data members. 
It should have a pure virtual function get_area().

   Derive a class Rectangle from the class Shape. 
It should have two data members—one for holding 
the width of the rectangle and the other for holding 
its height. Both of these data members should be 
of  oat type. Override the Shape::get_area() 
function inside this class. This overriding function 
should return the area of the rectangle. Also, write a 
constructor for the class.

   Derive another class Ellipse from the class 
Shape. It should also have two data members—one 
for holding the length of the major axis of the ellipse 
and the other for holding the length of its minor axis. 
Both of these data members should be of  oat type. 
Override the Shape::get_area() function inside 
this class. This overriding function should return the 
area of the ellipse. Also, write a constructor for the 
class.

   Create a class Canvas. It should have no data 
members. Its only member function, display(), 
will have a reference of class Shape type as a formal 
argument. With this reference, call the Shape::get_
area() function inside Canvas:: display() 
function.

   Finally, write a main() function to utilize these 
classes. Declare objects of classes Rectangle, 
Ellipse, and Canvas. Call the Canvas::display() 
function  rst by passing the object of class Rectangle 
and then by passing the object of class Ellipse to 
it. Observe the output and ascertain whether the 
base class function or the derived class function got 
called.

   Rede  ne the Shape::get_area() function as 
a non-virtual function and see the difference in the 
output.



Stream and File Handling

This chapter deals with handling streams. It includes a study of classes in the C++ standard 
library that enable a programmer to handle  ow of data to and from the console and also from 
disk  les. 

Text and binary mode of handling streams and the distinction between the two forms an 
important part of the chapter.

The use of classes and their member functions that enable a random access to disk  les is 
discussed. Objects can and in many cases should be made capable of outputting and loading 
their own data to and from disk  les. This chapter tells you how.

Error handling is an important feature expected in any industrial strength software. This 
chapter discusses the use of error handling functions that pertain to streams.

Manipulators are a handy tool for the C++ programmer. This chapter elucidates the use of 
many system-de  ned manipulators and the method of creating user-speci  c ones.
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 7.1   Streams

Stream means  ow of data. We declare variables in our C++ programs for holding the data 
temporarily in the memory. Streams are nothing but a  ow of data to and from program 
variables.

Input stream is the  ow of data from a  le to program variables. The keyboard is also 
treated as source of input stream. Output stream is the  ow of data to a  le from program 
variables. The monitor is also treated as target for output stream.

 7.2   Class Hierarchy for Handling Streams

C++ provides us with a library of classes that have the functionality to implement various 
aspects of stream handling. These classes have been arranged in a hierarchical fashion by 
using inheritance. The important portion of this hierarchy is depicted in Figure 7.1.

The class  ios is the base class in this hierarchy.
The class  ostream is derived from the class ios and handles the general output stream. 

The  insertion operator (<<) is de  ned and overloaded in the class ostream to handle output 
streams from program variables to output  les. 

The class ostream_withassign is derived from the class ostream.  cout is an object of 
the class ostream_withassign and stands for console output. As mentioned earlier, C++ 
treats all peripheral devices as  les. It treats the monitor also as a  le (for output stream). The 
object cout represents the monitor.
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Thus the statement
cout<<x;

translates as:
“Insert the stream from the program variable ‘x’ into the  le called cout (which is nothing 

but the monitor).”
The class  istream is derived from the class ios and handles the general input streams. 

The  extraction operator (>>) is de  ned and overloaded in the class istream to handle inputs 
streams from input  les to program variables. 

The class  istream_withassign is derived from the class istream.  cin is an object of 
the class istream_withassign and stands for console input. C++ treats all peripheral devices 
as  les. It treats the keyboard also as a  le (for input stream). The object cin represents the 
keyboard.

Thus the statement
cin>>x;

translates as:
“Extract the stream from the  le (which is nothing but the keyboard) and place it in the 

program variable ‘x’.”
The class  iostream is derived by multiple inheritance from the classes istream and 

ostream. It has the functionality to handle both input and output streams.
The class  ofstream is derived from the class ostream. It has the functionality to handle 

output streams to disk  les. Objects of the class ofstream represent output  les on the disk. 
Thus, the following piece of code opens a disk  le for output (note that the name of the  le 
to be opened is passed as a string to the constructor of the class):

ofstream ofile(“first.dat”);

The  le  rst.dat is opened for output in the directory where the executable will run. 
The entire path of the  le to be opened can also be pre  xed to the name of the  le. Since the 
insertion operator is de  ned in the base class of the class ofstream, the object o  le can be 
passed as the left-hand side operand instead of cout.

ofile<<x;

Figure 7.1 Library classes that handle streams
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The above statement translates as:
“Insert the stream from the program variable ‘x’ into the  le  rst.dat.”
The class  ifstream is derived from the class istream. It has the functionality to handle 

input streams from disk  les. Objects of the class ifstream represent input  les on the disk. 
Thus, the following piece of code opens a disk  le for input (note that the name of the  le to 
be opened is passed as a string to the constructor of the class):

ifstream ifile(“first.dat”);

The  le  rst.dat is opened for input in the directory where the executable will run. The 
entire path of the  le to be opened can also be pre  xed to the name of the  le. Since the 
extraction operator is de  ned in the base class of the class ifstream, the object i  le can be 
passed as the left-hand side operand instead of cin.

ifile>>x;

This statement translates as:
“Extract the stream from the  le  rst.dat and place it in the program variable ‘x’.”
The class  fstream is derived from the class iostream. It has the functionality to handle 

both input and output streams from and to disk  les.
The classes for handling streams to and from disk  les are de  ned in the header  le 

fstream.h. The classes for handling general streams are de  ned in the header  le iostream.h. 
The header  le iostream.h is included in the  le fstream.h.

 7.3   Text and Binary Input/Output

In this section, the two modes of input/output—text mode and binary mode—will be explained. 
The difference between them and the suitability of each mode for console I/O and disk I/O 
will also be explained.

7.3.1 Data Storage in Memory

During run time, the value of a character variable is stored in the memory as the binary 
equivalent of its ASCII equivalent. But the value of an integer,  oat, or double-type variable 
is simply stored as its binary equivalent.

For example, if the value of a character-type variable is ‘A’, it is stored in one byte where 
the bits represent the number ‘65’, which is the ASCII equivalent of ‘A’, in base 2.

01000001

But if the value of an integer-type variable is ‘65’, it is stored in four bytes where the bits 
represent the number ‘65’ in base 2.

01000001
00000000
00000000
00000000

The value of a  oat and a double-type variable is stored in a similar fashion. Thus, the value 
of a numeric variable (integer,  oat, or double) is stored in base 2 format in the memory.
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7.3.2 Input/Output of Character Data

There is no difference between text mode I/O and binary mode I/O with respect to character-
type variables. In both modes, the value of the character-type data is copied from the memory 
into the output  le as it is and copied from the input  le into the memory as it is. 

If a function that outputs in binary mode is called to output the value of a character variable, 
it will copy its value into the output  le without transforming its representation in any way. 
A function that outputs in text mode will output the value of a character-type variable in the 
same way.

7.3.3 Input/Output of Numeric Data

A standard library function that outputs numeric data in text mode will reckon that the data, 
which is in base 2 format in the memory, needs to be output in base 10 (text) format. It will 
therefore read the value of the source variable from memory, transform the representation of 
the data from the existing base 2 to base 10 and only then copy it to the output  le.

Whereas a standard library function that outputs numeric data in binary mode will reckon 
that the data, which is in base 2 format in the memory, needs to be output in base 2 (binary) 
format itself. It will therefore read the value of the source variable from memory, not transform 
the data from the existing base 2 to base 10 and simply copy it to the output  le.

Further, a standard library function that inputs numeric data in text mode will reckon that 
the data, which is to be input, exists in base 10 (text) format. It will therefore read the value 
from the input  le, transform the representation of the data from the existing base 10 to base 
2 and only then copy it to the target variable in memory.

Whereas a standard library function that inputs numeric data in binary mode will reckon 
that the data, which is to be read, already exists in base 2 (binary) format. It will therefore 
read the value from the memory, not transform the data in any way and simply copy it into 
the target variable in memory.

Significance of the difference between binary mode and text mode I/O for numeric data

Suppose the value of an integer-type variable is ‘65’. The value ‘65’ is stored, in the memory 
block of four bytes occupied by the variable, in binary mode. 

The foregoing data will occupy four bytes with the same bit setting in the output disk  le, 
if it is copied by an output function that outputs in binary mode. 

If this output function is used to output to the monitor, instead of a disk  le, the value 
‘A’ followed by three blank spaces will be displayed. This is because the lowest byte of the 
variable contains ‘65’, which is the ASCII equivalent of ‘A’ and the rest of the three bytes 
have all their bits set to zero. The monitor displays the ASCII equivalent of the value in each 
byte in the output stream that is supplied to it. But, we would like to see ‘65’ and not ‘A’ 
followed by three blank spaces on the monitor.

However, if the same value is copied by an output function that outputs in text mode, 
this data will occupy two bytes with a different bit setting in the output  le. The  rst byte 
will have its bits set to represent the character ‘6’ (The ASCII equivalent of ‘6’ will be stored 
in base 2 format). While the second byte will have its bits set to represent the character ‘5’ 
(The ASCII equivalent of ‘5’ will be stored in base 2 format). This is because the output 
function, since it works in text mode, has transformed the representation of the data from 
base 2 to base 10. 
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For the same reason, if the same output function is used to output to the monitor, instead 
of a disk  le, the value ‘65’ will be displayed. This is the kind of display we would desire. 

An input function that inputs in binary mode will read the  rst four bytes from an input 
 le if it is asked to input into an integer-type variable. It will copy the read value into the 

memory block of four bytes occupied by the target integer variable without transforming 
the representation of the data. This function will not transform the data because it inputs in 
binary mode and therefore reckons that the data existing in the input stream is already in 
base 2 format.

If the input is read from the keyboard instead of a disk  le, the function reads the  rst 
four bytes from the keyboard and copies the read value into the memory block of four bytes 
occupied by an integer variable without transforming the representation of the data.

Further, a function that reads in text mode, reads the bytes from the input  le up to the 
white space. It reckons that the read value is in base 10 format. It therefore determines the 
equivalent representation in base 2 format. This produces a value that occupies four bytes. 
The function then copies these four bytes into the memory block of four bytes occupied by 
integer variable. 

If the input is read from the keyboard instead of a disk  le, the function reads the bytes from 
the keyboard up to the white space and operates upon it in a similar fashion. For example, 
if the user enters the number ‘65’, the characters ‘6’ and ‘5’ get stored in the keyboard 
buffer, which represents the input  le in this case. The characters ‘6’ and ‘5’ that are stored 
in two bytes represent the number ‘65’ in base 10 format. The input function transforms 
this representation into base 2 format and stores the resultant integer value in the four bytes 
occupied by the target integer variable.

A very important and interesting observation can be made here. Text mode is suitable for 
console I/O because they are in base 10 format with which we are accustomed. For reasons 
that will be explained shortly, binary mode is suitable for disk I/O.

7.3.4 Note on Opening Disk Files for I/O

In this section, that is, Section 7.3, ‘Text and binary input/output’, we would open  les for 
writing through the constructor of class ofstream. If the  le being opened does not exist, 
it would get created. If it does exist, its contents would get overwritten. For producing a 
different effect—appending or obtaining errors if the  le does not exist—we have to apply 
the techniques that are explained in Sections 7.4 and 7.8. We would also open  les for reading 
through the constructor of class ifstream. If the  le being opened does not exist, a run-time 
error is produced. The technique of handling such errors is explained in Section 7.8.

 7.4   Text Versus Binary Files

Now let us talk about text  les and binary  les.
In text  les, binary data (numeric data that is stored in base 2 format in memory) is 

stored in base 10 format. In binary  les, the same binary data is stored in the same format 
(base 2).

Before proceeding further, let us be clear that the  les by themselves are neither text  les 
nor binary  les. It is the mode in which the data is written into them that de  nes the nature 
of the  les.

As we have already learnt, when the value of a numeric variable (say an integer) is output 
in binary mode, it occupies the same number of bytes in the output  le as it does in the 
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memory, which is four. Thus, if a number of such values are output in binary mode, the size 
of the output  le will always be a multiple of four. Obviously, we can determine the size of 
the  le and divide it by four to easily  nd the number of integers (records) that are stored in 
the  le.

We can apply this simple technique to values of other types including objects. Suppose 
an object consists of an integer (four bytes), a  oat (four bytes), and a double (eight bytes). 
This object occupies 16 bytes in the memory. If output in binary mode, it will occupy 16 
bytes in the output  le also.

The C++ standard library provides functions that input (read from  les and write the read 
values into variables) in binary mode. These functions require the address of the variable 
whose data needs to be input along with its size. The code inside these functions reads the 
value from a point in the input  le at which a temporary pointer points (more about this 
pointer later). The size of the block of bytes this code reads is equal to the supplied size. 
The code then writes the read data into the memory block whose starting address is equal 
to the supplied address. Functions that output in binary mode work in a similar fashion. As 
we can see, binary input functions treat size as the delimiter while reading data from disk 
 les. Therefore, the binary functions that write data into the disks need not insert an arti  cial 

delimiter while the data is output.
Let us contrast this to what happens in text mode. In text mode, records stored in the output 

 le are of variable lengths. Again, for our understanding, let us take the case of an integer-
type variable. Its value is always stored in four bytes in the memory. Suppose it is output to 
a disk  le in text mode. If its value is ‘1’, it will occupy one byte in the output  le although it 
occupies four bytes in the memory. If its value is ‘11’, it will occupy two bytes in the output 
 le although it occupies four bytes in the memory. If its value is ‘111’, it will occupy three 

bytes in the output  le although it occupies four bytes in the memory and so on.
Thus, in case values are output in text mode, size of the output value is not  xed. Hence, 

size cannot be used as the delimiter by functions that will read the output values in future. But 
it should be ensured that values that are output in text mode can be read correctly in future. 
For this, the code that calls a text mode function for output should also insert a delimiter of 
choice in the output  le after every such call. This ensures that another piece of code is able 
to successfully read this output value.

Choosing a suitable delimiter is certainly an issue. There should be no chance of the 
delimiting character itself becoming a part of the output value anytime in the future. But this 
is dif  cult to guarantee.

There is another dif  culty in outputting in text mode. The size of a  le does not indicate 
the number of records stored in it. This is because the size of the records is not  xed.

 7.5  Text Output/Input

7.5.1 Text Output

Text output is achieved in C++ by:
The insertion operator 
The  put( ) function
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 The insertion operator

As we have seen in the  rst section of this chapter, the insertion operator can be used to output 
values to disk  les. The insertion operator outputs in text mode. 

The insertion operator has been de  ned and overloaded in the class ostream. It takes an 
object of the class ostream or an object of a class that is derived from the class ostream 
as its left-hand side operand. As its right-hand side operand, it takes a value of one of the 
fundamental data types. It copies the value on its right into the  le that is associated with the 
object on its left. Let us study its action on data of different types. We must keep in mind that 
the insertion operator has been overloaded differently for each of the data types as follows:

1. Inserting characters into output streams using the insertion operator: A character-type 
value occupies one byte in the memory. If output in text mode by the insertion operator, it 
occupies one byte in the output  le too. The bit setting of both the bytes is identical. See 
Listing 7.1.

Listing 7.1 Outputting a character in text mode by using the insertion operator

/*Beginning of charFileOutput.cpp*/
#include<fstream.h>
void main()
{
 char cVar;
 ofstream ofile(“first.dat”);
 cVar=’A’;
 ofile<<cVar;
}
/*End of charFileOutput.cpp*/

The last statement of Listing 7.1 copies the value of cVar from memory to the disk  le 
 rst.dat without transforming its representation in any way.

2. Inserting integers into output streams using the insertion operator: An integer-type 
value occupies four bytes in the memory. As we already know, if output in text mode by the 
insertion operator, the number of bytes it occupies in the output  le depends upon its value. 
See Listing 7.2.

Listing 7.2 Outputting an integer in text mode by using the insertion operator

/*Beginning of intFileOutput.cpp*/
#include<fstream.h>
void main()
{
 int iVar;
 ofstream ofile(“first.dat”);
 iVar=111;
 ofile<<iVar;
}
/*End of intFileOutput.cpp*/

The last statement of Listing 7.2 copies the value of ‘iVar’ from memory to the disk  le 
‘  rst.dat’ after transforming its representation from base 2 to base 10. The value of ‘iVar’ 
will be written in text format (base 10) and will therefore occupy three bytes in the output 
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 le. If the value of ‘iVar’ is ‘11111’ instead of ‘111’, it will occupy  ve bytes in the output 
 le instead of three.

3. Inserting fl oats and doubles into output streams using the insertion operator: A  oat-
type value occupies four bytes in the memory. As we already know, if output in text mode 
by the insertion operator, the number of bytes it occupies in the output  le depends upon its 
value. See Listing 7.3.

Listing 7.3 Outputting a fl oat in text mode by using the insertion operator

/*Beginning of floatFileOutput.cpp*/
#include<fstream.h>
void main()
{
 float fVar;
 ofstream ofile(“first.dat”);
 fVar=1.111;
 ofile<<fVar;
}
/*End of floatFileOutput.cpp*/

The last statement of Listing 7.3 copies the value of ‘fVar’ from memory to the disk  le 
 rst.dat after transforming its representation from base 2 to base 10. The value of ‘fVar’ 
will be written in text format (base 10) and will therefore occupy  ve bytes in the output  le. 
If the value of ‘fVar’ is ‘11.111’ instead of ‘1.111’, it will occupy six bytes in the output  le 
instead of  ve.

The insertion operator works in the same way for double-type variables.

4. Inserting strings into output streams using the insertion operator: A character array is 
allocated a  xed number of bytes in the memory during run time. However, the actual string 
contained in it usually occupies only a part of that memory. For example,

char cArr[20]=“abcd”;

The character array ‘cArr’ will be allocated 20 bytes during run time. But the string inside 
it will occupy only four bytes. The  fth byte will have the NULL character.

If the value of ‘cArr’ is output by the insertion operator, it will occupy four bytes in the 
output  le. See Listing 7.4.

Listing 7.4 Outputting a string in text mode by using the insertion operator

/*Beginning of charArrFileOutput.cpp*/
#include<fstream.h>
void main()
{
 char cArr[20]=“abcd”;
 ofstream ofile(“first.dat”);
 ofile<<cArr;
}
/*End of charArrFileOutput.cpp*/

But if ‘cArr’ contains a string of length  ve, then  ve bytes will get written into the output 
 le.
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5. Inserting objects into output streams using the insertion operator: If we want to use the 
insertion operator for inserting objects of a particular class into the output stream, we have 
to overload it for that class. The concept of operator overloading, its need, and its use are 
elucidated in the next chapter.

The  put() function 

The put( ) function is a member of the ostream class. Its prototype is
 ostream & ostream :: put(char c);

From the prototype, it is obvious that the function can be called with respect to an object 
of the ostream class or any of the classes that are derived from the ostream class. One such 
object is cout.

This function copies the character that is passed as a parameter to it into the output  le 
associated with the object with respect to which the function is called. Let us consider the 
explanatory program given in Listing 7.5.

Listing 7.5 The put() function

/*Beginning of put.cpp*/
#include<fstream.h>
void main()
{
 ofstream ofile(“first.dat”);
 ofile.put(‘a’);
}
/*End of put.cpp*/

In Listing 7.5, the put() function is called with respect to the object o  le. This object is 
associated with the  le  rst.dat. Consequently, the character ‘a’ is written into the  le.

As was mentioned earlier, the put() function can be used with the object cout also (as 
shown in Listing 7.6).

Listing 7.6 Using the put() function with cout object

/*Beginning of coutPut.cpp*/
#include<iostream.h>
void main()
{
 cout.put(‘a’);
}
/*End of coutPut.cpp*/

Output
a

The call to the put() function in Listing 7.6 will display the character ‘a’ on the 
monitor.

We may wonder what is the difference between using the put() function and the insertion 
operator. After all we could have used the insertion operator instead of calling the put() 
function as follows:

cout<<‘a’;
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The difference between the insertion operator and the put() function is that while the 
former modi  es the format of the output with respect to the manipulators set earlier, the latter 
simply ignores format manipulator settings. Formatted output is dealt with in one of the later 
sections of this chapter.

7.5.2 Text Input

Text input is achieved in C++ by:
The extraction operator 
The  get( ) function
The  getline( ) function

The  extraction operator

As we have seen earlier in this chapter, the extraction operator can be used to input values 
from disk  les. The extraction operator inputs in text mode. 

The extraction operator has been de  ned and overloaded in the class istream. It takes 
an object of the class istream or an object of a class that is derived from the class istream 
as its left-hand side operand. As its right-hand side operand, it takes a variable of one of the 
fundamental data types. It copies the value found at the current location in the  le that is 
associated with the object on its left into the variable on its right. Let us study its action on 
data of different types. We must keep in mind that the extraction operator has been overloaded 
differently for each of the data types as follows:

1. Extracting characters from input streams using the extraction operator: If the right-hand 
side operand of the extraction operator is a character-type variable, it reads one byte from 
the input  le that is attached with the object on its left and writes it into the variable (Listing 
7.7).

Listing 7.7 Inputting a character in text mode by using the extraction operator

/*Beginning of charFileInputText.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 ifstream ifile(“first.dat”); //Current location is at 
    //the beginning of the file.
    //Suppose first byte in the 
    //file contains ‘A’.
 char cVar;
 ifile>>cVar;
 cout<<cVar;
}
/*End of charFileInputText.cpp*/

Output
A

2. Extracting integers from input streams using the extraction operator: If the right-hand 
side operand of the extraction operator is an integer-type variable, it reads bytes from the 
input  le that is attached with the object on its left until it  nds a white space. It reckons 
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that the read set of bytes represents an integer in base 10 format. Therefore, the extraction 
operator converts the read value into base 2 format. Finally, it writes the converted value 
into the variable.

Suppose the contents of a  le  rst.dat are as follows:
11 22 33

We must note that there is a space after ‘11’. The  rst byte of the  le has the ASCII 
equivalent of the character ‘1’. The second byte also has the ASCII equivalent of the character 
‘1’. The third byte has the ASCII equivalent of the character ‘ ’ (space). The fourth byte has 
the ASCII equivalent of the character ‘2’ and so on.

Now let us consider Listing 7.8.

Listing 7.8 Inputting an integer in text mode by using the extraction operator

/*Beginning of intFileInputText.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 ifstream ifile(“first.dat”);
 int iVar;
 ifile>>iVar;
 cout<<iVar;
}
/*End of intFileInputText.cpp*/

Output
11

As discussed earlier, the extraction operator reads from the  le until it  nds a white space. 
Since the third byte contains a white space, it reads the  rst two bytes only. These two bytes 
represent the number eleven in base 10 format. The extraction operator converts this into base 
2 format. The resultant value is in four bytes. It writes this value into the variable ‘iVar’.

3. Extracting fl oats and doubles from input streams using the extraction operator: Values 
for  oat and double-type variables are extracted in the same as they are for integer type 
variables.

4. Extracting strings from input streams using the extraction operator: As in the case of 
integers, the extraction operator reads from the  le until it  nds a white space while reading 
value for a character array.

Suppose the contents of a  le  rst.dat are:
abc def ghi 

We must note that there is a white space after ‘c’. See Listing 7.9.

Listing 7.9 Inputting a character array by using the extraction operator

/*Beginning of charArrFileInputText.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 ifstream ifile(“first.dat”);
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 char cArr[20];
 ifile>>cArr;
 cout<<cArr;
}
/*End of charArrFileInputText.cpp*/

Output
abc

Obviously, the extraction operator read up to the white space and stored the read value in 
the character array.

5. Extracting objects from input streams using the extraction operator: If we want to use 
the extraction operator for extracting objects of a particular class from the input stream, we 
have to overload it for that class. The concept of operator overloading, its need, and its use 
are elucidated in a later chapter.

The  get() function
The get() function has been de  ned in the class istream. It reads one byte from the input 
 le and stores it in the character variable that is passed as a parameter to it (Listing 7.10).

The prototype of the get() function is as follows:
istream & istream :: get(char &);

Suppose the contents of a  le  rst.dat are as follows:
abcd

Listing 7.10 Inputting a character by using the get() function

/*Beginning of charFileInputText.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 ifstream ifile(“first.dat”);
 char cVar;
 ifile.get(cVar);
 cout<<cVar;
}
/*End of charFileInputText.cpp*/

Output
a

The  getline() function

The getline() function reads one line from the input  le. It has been de  ned in the class 
istream. 

The prototype of the getline() function is
istream & istream :: getline(char *, int, char = ‘\n’);

It takes three parameters. The  rst parameter is the name of the character array in which 
the read line will be stored. The second parameter, an integer, signi  es the number of bytes 
that will be read from the input  le. The third parameter is the delimiting character whose 
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presence in the stream of bytes that is being read from the input  le prevents the getline() 
function from reading further.

The getline() function reads from the  le that is attached with the object with respect to 
which it has been called till it reads bytes whose total count is one less than the value of the 
second parameter or till it encounters the delimiting character speci  ed by the third parameter, 
whichever occurs earlier.

Listing 7.11 shows what happens when the getline() function is used to read from the 
keyboard.

Listing 7.11 Using the getline() function to read from the keyboard

/*Beginning of getlineCin.cpp*/
#include<iostream.h>
void main()
{
 char cArr[20];
 cout<<“Enter a string: ”;
 cin.getline(cArr,6,‘#’);
 cout<<“You entered: ”<<cArr<<endl;
}
/*End of getlineCin.cpp*/

Output
Enter a string: abcdefgh<enter>
You entered: abcde

Output
Enter a string: abc#defgh<enter>
You entered: abc

Output
Enter a string: aa bb cc<enter>
You entered: aa bb

It can be observed that the getline() function reads white spaces also. It is mentioned 
in the prototype that the getline() function takes a default value, the newline character, for 
the third parameter. Thus, if the third parameter is not speci  ed, it will continue to read till it 
encounters the newline character provided the number of bytes it has already read does not 
exceed the number speci  ed by its second parameter.

The getline() function reads from the keyboard buffer and leaves behind the unread 
bytes in the buffer itself.

The getline() function works in a similar fashion when it reads from disk  les. Suppose 
the contents of a  le  rst.dat are

 abcdefgh

Now let us consider Listing 7.12.

Listing 7.12 Using the getline() function to read from a disk fi le

/*Beginning of getlineFile.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
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{
 char cArr[20];
 ifstream ifile(“first.dat”);
 ifile.getline(cArr,6,‘#’);
 cout<<cArr<<endl;
}
/*End of getlineFile.cpp*/

Output
abcde

If the contents are
abc#def

the output would be ‘abc’.
Again, if the contents are

aa bb cc

the output would be ‘aa bb’.

 7.6  Binary Output/Input

7.6.1 Binary Output— write() Function

The write() function copies the values of variables from the memory to the speci  ed output 
 le. It works in binary mode. 

As we already know, binary mode functions are not concerned about the data type of the 
variable that is output. They are only interested in the address of the variable (starting point 
of the block whose data needs to be output) and the size of the variable (total number of bytes 
to be output). The prototype of the write() function makes this clear:

ostream & ostream :: write(const char *, int);

The write() function has been de  ned in the class ostream. It takes two parameters. The 
 rst parameter is the address of the variable whose value needs to be outputted. The second 

parameter is the size of the variable. The write() function writes the value of the variable 
to the  le that is associated with the object with respect to which it has been called.

Let us now discuss how the write() function is used to output data of various types.

1. Inserting characters into output streams using write() function: Listing 7.13 illustrates 
how the write() function can be used to output the value of a character-type variable to a 
disk  le.

Listing 7.13 Using the write() function to output character-type value to a disk fi le

/*Beginning of writeCharDisk.cpp*/
#include<fstream.h>
void main()
{
 ofstream ofile(“first.dat”);
 char cVar;
 cVar = ‘a’;
 ofile.write(&cVar,sizeof(char));
}
/*Beginning of writeCharDisk.cpp*/
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Listing 7.14 illustrates how the write() function can be used to output the value of a 
character-type variable to the monitor.

Listing 7.14 Using the write() function to output character-type value to the monitor

/*Beginning of writeCharConsole.cpp*/
#include<iostream.h>
void main()
{
 char cVar;
 cVar = ‘a’;
 cout.write(&cVar,sizeof(char));
}
/*End of writeCharConsole.cpp*/

Output
a

It is evident that there is no difference between outputting a character-type value in text 
mode (insertion operator, put() function) and in binary mode (write() function). There is 
no conversion in either case.

2. Inserting integers into output streams using write() function: Listing 7.15 illustrates 
how the write() function can be used to output the value of an integer-type variable to a 
disk  le.

Listing 7.15 Using the write() function to output integer-type value to disk fi le

/*Beginning of writeIntDisk.cpp*/
#include<fstream.h>
void main()
{
 ofstream ofile(“first.dat”);
 int iVar;
 iVar = 65;
 ofile.write((char *)&iVar,sizeof(int));
}
/*Beginning of writeIntDisk.cpp*/

As we have already discussed, the value contained in the four bytes that are occupied by 
‘iVar’ will get copied to the designated output  le without any transformation.

Listing 7.16 illustrates how the write() function can be used to output the value of an 
integer-type variable to the monitor.

Listing 7.16 Using the write() function to output integer-type value to the monitor

/*Beginning of writeIntConsole.cpp*/
#include<iostream.h>
void main()
{
 int iVar;
 iVar = 65;
 cout.write((char *)&iVar,sizeof(int));
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}
/*End of writeIntConsole.cpp*/

Output
A

It is interesting to understand the output of Listing 7.16. As a result of the second statement 
of the main() function, the eight bits in the  rst of the four bytes occupied by ‘iVar’ are set 
to represent the binary equivalent of the number ‘65’. The bits in the remaining three bytes 
are set to zero. As we know, the monitor shows the ASCII equivalent of each of the bytes that 
are passed to it. The ASCII equivalent of ‘65’ is ‘A’. Hence, we get this output.

It is evident that there is an important difference between outputting an integer type value 
in text mode (insertion operator, put() function) and in binary mode (write() function). 
In the former case, representation of the value that is read from the memory is transformed 
from base 2 to base 10 and then copied to the output  le. There is no such conversion in the 
latter case.

3. Inserting fl oats and doubles into output streams using write() function: Float and 
double-type values are output in the same way in binary mode as integer-type values.

4. Inserting strings into output streams using write() function: Listing 7.17 illustrates how 
the write() function can be used to output the value of a character array to a disk  le.

Listing 7.17 Using the write() function to output a string to a disk fi le

/*Beginning of writeCharArrDisk.cpp*/
#include<fstream.h>
void main()
{
 ofstream ofile(“first.dat”);
 char cArr[10]=“abcdefgh”;
 ofile.write(cArr,sizeof(cArr));
}
/*Beginning of writeCharArrDisk.cpp*/

The name of the array that is passed as the  rst parameter to the write() function represents 
its starting address. The second parameter represents the size of the memory block whose 
value is to be written into the output  le. 

The second parameter that is passed to the write() function in Listing 7.17 evaluates to 
‘10’ (the size of the array). For this reason, the entire set of 10 bytes is copied verbatim to the 
speci  ed output  le. This includes the string itself, which is of eight characters, the delimiting 
NULL character (a single byte with all bits set to zero) that follows the string and one byte 
at the end with junk value. 

If ‘5’ is passed as the second parameter, only the  rst  ve bytes of the character array are 
written into the  le.

Listing 7.18 illustrates how the write() function can be used to output the value of a 
character array to the monitor.

Listing 7.18 Using the write() function to output a string to the monitor

/*Beginning of writeCharArrConsole.cpp*/
#include<iostream.h>
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void main()
{
 char cArr[10] = “abcdefgh”;
 cout.write(cArr,strlen(cArr));
}
/*End of writeCharArrConsole.cpp*/

Output
abcdefgh

5. Inserting objects into output streams using write() function: Listing 7.19 illustrates 
one of the ways of inserting a class object into output streams in binary mode. In this method, 
value contained in the memory block that is occupied by a class object is copied to a speci  ed 
output  le.

Listing 7.19 Using the write() function to output an object to a disk fi le

/*Beginning of writeObjectDisk.cpp*/
#include<fstream.h>
class A
{
 /*
  definition of class A
 */
};
void main()
{
 A A1;
 ofstream ofile(“first.dat”);
 ofile.write((char *)&A1,sizeof(A));
}
/*End of writeObjectDisk.cpp*/

Of course, we will notice that the value of the object is being accessed directly by a non-
member function—the main() function. C++ does not prevent a direct access by means of 
such an explicit typecasting of an object’s address. Statements like the following are allowed 
in C++.

char * cPtr = (char *)&A1;

A close look at this piece of code reveals a major drawback. Let us consider the case 
where an object of the class String is used in the above listing instead of the object of the 
hypothetical class A (see Listing 7.20). In such a case, the value of the pointer that is embedded 
within the object would get copied to the output  le. However, the string that is contained in 
the memory and at which that pointer is pointing would not get copied.

Listing 7.20 Problem in using the write() function to output an object with an 
embedded pointer

/*Beginning of writeStringDisk.cpp*/
#include<fstream.h>
#include“String.h” //header file that contains our class 
    //String
void main()
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{
 ofstream ofile(“first.dat”);
 String s1(“C++ is a wonderful language”); 
    //s1.cStr points at the string
 ofile.write((char *)&s1,sizeof(String)); 
    //The value of s1.cStr gets stored 
    //in the file. The string itself does
    //not get stored.
}
/*End of writeStringDisk.cpp*/

If the value that is stored in the  le through the program in Listing 7.20 is later read through 
another program, and stored in an object of the class String declared therein, the pointer 
in that object would end up pointing at a place where the string itself no longer exists! The 
string itself would be lost in the memory and the entire purpose of storing the object would 
get defeated.

Client programs are not supposed to know how the actual data is managed, arranged, 
organized, and stored internally by the objects they are using (data abstraction). The conclusion 
is obvious. Objects should be responsible for outputting their own data. This conclusion 
becomes even more apparent if we consider the case of complex objects such as linked lists, 
vectors, trees, etc. where the object contains only the pointer to the  rst node of the data 
structure while the actual data structure remains outside it.

We will discuss some elementary methods of making objects capable of outputting their 
own data in one of the later sections of this chapter.

7.6.2 Binary Input— read() Function

The read() function copies the values from the speci  ed input  le to the memory block that 
is occupied by the target variable. It works in binary mode. 

The logic mentioned in the introduction to the write() function holds true in this case 
also. We can once again conclude that the read() function accepts the address of the variable 
(starting point of the block into which the read data needs to be input) and the size of the 
variable (total number of bytes to be input). Accordingly, the prototype of the read() function 
is as follows:

istream & istream :: read(char *, int);

The read() function has been de  ned in the class istream. It takes two parameters. The 
 rst parameter is the address of the variable into which the read value needs to be input. 

The second parameter is the size of the variable. The read() function reads the value for 
the variable from the  le that is associated with the object with respect to which it has been 
called.

Let us now discuss how the read() function is used to input data of various types.

1. Extracting characters from input streams using read() function: Listing 7.21 illustrates 
how the read() function can be used to input the value for a character-type variable by 
making it read from a disk  le.

Suppose the contents of the  le  rst.dat are:

xyz
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Listing 7.21 Using the read() function to input character-type value from a disk fi le

/*Beginning of readCharDisk.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 ifstream ifile(“first.dat”);
 char cVar;
 ifile.read(&cVar,sizeof(char));
 cout<<cVar;
}
/*End of readCharDisk.cpp*/

Output
x

Listing 7.22 illustrates how the read() function can be used to input the value of a character-
type variable by making it read from the keyboard.

Listing 7.22 Using the read() function to input character-type value from the keyboard

/*Beginning of readCharConsole.cpp*/
#include<iostream.h>
void main()
{
 char cVar;
 cout<<“Enter a character: ”;
 cin.read(&cVar,sizeof(char));
 cout<<cVar;
}
/*End of readCharConsole.cpp*/

Output
Enter a character: a<enter>
a

It is evident that there is no difference between inputting a character type value in text 
mode (extraction operator, get() function) and in binary mode (read() function). There is 
no conversion in either case.

2. Extracting integers from input streams using read() function: Listing 7.23 illustrates 
how the read() function can be used to input a value into an integer-type variable by making 
it read from a disk  le.

Suppose the  rst four bytes of a disk  le  rst.dat together contain the binary equivalent 
of number 64.

01000000 
00000000 
00000000 
00000000
. . . .
. . . .
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Listing 7.23 Using the read() function to input integer-type value from a disk fi le

/*Beginning of readIntDisk.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 ifstream ifile(“first.dat”);
 int iVar;
 ifile.read((char *)&iVar, sizeof(int));
 cout<<iVar<<endl;
}
/*End of readIntDisk.cpp*/

Output
64

As expected, the read() function reads exactly four bytes from the input  le that is 
associated with its invoking object. This is because the value of the second parameter that 
has been passed to it is four. It copies the read value into the memory block the address of 
whose  rst byte is equal to the  rst parameter passed to it.

Now, let us look at Listing 7.24 in which the read() function is used to read the value 
for an integer-type variable from the keyboard. As per its known characteristics, the read() 
function is expected to read four bytes from the keyboard, not convert the read bytes in any 
way and copy them into the four bytes that are occupied by the target integer type variable.

Listing 7.24 Using the read() function to input integer-type value from the keyboard 

/*Beginning of readIntConsole.cpp*/
#include<iostream.h>
void main()
{
 int iVar;
 cout<<“Enter a number in base 2 format: ”;
 cin.read((char *)&iVar, sizeof(int));
 iVar = iVar & 0x000000ff; /*Inputting zeros in the
    upper 3 bytes of the four
    bytes of iVar*/
 cout<<iVar<<endl;
}
/*End of readIntConsole.cpp*/

Output
Enter a number in base 2 format: ABCD<enter>
65

The explanation of this program has been left as an exercise for the reader.
3. Extracting fl oats and doubles from input streams using read() function: Float and 
double-type values are input in the same way in binary mode as integer-type values.
4. Extracting strings from input streams using read() function: Listing 7.25 is a good 
example for illustrating the use of read() function to read character arrays from a disk  le.

Suppose the contents of a  le  rst.dat are as follows:

abcdefgh
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Listing 7.25 Using the read() function to input strings from disk fi les

/*Beginning of readStringDisk.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 ifstream ifile(“first.dat”);
 char cArr[20] = “12345678”;
 ifile.read(cArr,3);
 cout<<cArr<<endl;
}
/*End of readStringDisk.cpp*/

Output
abc45678

The number ‘3’ has been passed as the second parameter to the read() function. It therefore 
reads only three characters from the  le that is associated with the object that has called it.

As we know, the name of the array represents the starting address of the memory block 
occupied by it. Thus, the  rst parameter passed to the read() function in the Listing 7.25 is 
the address of the  rst byte of the memory block that the array occupies. Therefore, the read() 
function copies the three characters it has already read into the  rst three bytes of the array.

A similar method can be devised for using the read() function to read character strings 
from the keyboard.

5. Extracting objects from input streams using read() function: Let us consider the program 
of Listing 7.19 that was used to output the data of an object into a disk  le. The object being 
output was a simple one, that is, it had no pointers as its data members. Thus, the actual data 
was stored in the  le. Suppose the name of the  le is  rst.dat. Listing 7.26 illustrates how 
the data that was stored in the disk  le can be loaded back in an object.

Listing 7.26 Using the read() function to input objects from disk fi les

/*Beginning of readObj.cpp*/
#include<fstream.h>
class A
{
 /*
  definition of class A
 */
};
void main()
{
 ifstream ifile(“first.dat”);
 A A1;
 ifile.read((char *)&A1, sizeof(A));
}
/*End of readObj.cpp*/

Listing 7.26 was simple. Now, let us take the case of complex objects, that is, objects 
having embedded pointers. 

After reading the section, ‘Binary output—the write() function’, it is natural to expect 
that the class of such complex objects will have a suitable function to output the external 
data structure into disk  les. Thus, we can also expect the class to have a function that reads 



 Stream and File Handling 193

the entire data structure from disk  les. Client programs should not and need not take this 
responsibility. We will discuss the techniques for de  ning such functions in one of the later 
sections of this chapter.

 7.7  Opening and Closing Files

So far, we have output data to and input data from the same disk  le by using two different 
programs. Data is usually output and input within the same program. For this, it is necessary 
to close the disk  le after one operation before it is opened for another. The open() and 
close() functions that are provided as members of the library stream handling classes enable 
us to do this.

7.7.1  open() Function

So far, we have opened  les through the constructors of classes ifstream and ofstream. 
We can do this by invoking the open() function also. This function has been provided in 
both of these classes.

The open() function can be called by passing the name of the disk  le to be opened as 
the only parameter.

. . . .
ofstream ofile;
ofile.open(“first.dat”);
. . . .

. . . .
ifstream ifile;
ifile.open(“first.dat”);
. . . .

A second parameter can also be passed to this function. This parameter is known as the 
open mode. It is an integer-type value. There are a number of integer-type constants de  ned 
in the stream handling library. Each of these constants, when passed as the second parameter 
to the open() function, produces a different effect while opening the  le. A list of these 
constants along with their use is given in Table 7.1.

Table 7.1 Table of  Open Mode Bits

Constant Meaning

ios::app For appending to end of fi le

ios::ate For going to end of fi le on opening

ios::binary For opening a binary fi le

ios::in For opening fi le for reading only

ios::nocreate For causing open to fail if the fi le does not exist

ios::noreplace For causing open to fail if the fi le already exists

ios::out For opening fi le for writing only

ios::trunc For deleting contents of the fi le if it exists

The constructor of the class ofstream and its overridden version of the open() function 
takes ios::out as the default value for the second parameter. Therefore, the  le is opened 
for writing purpose only.
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The constructor of the class ifstream and its overridden version of the open() function 
take ios::in as the default value for the second parameter. Therefore, the  le is opened for 
reading purpose only.

These constants can be meaningfully combined together to further in  uence the manner 
in which the  le is opened. Using the bitwise OR operator does this.

ofstream ofile;
ofile.open(“first.dat”, ios::app | ios::nocreate);

In this example, the  le would be opened for appending. But if the  le does not exist 
already, the operation would fail. The method for detecting such failures is discussed in one 
of the later sections of this chapter.

The difference between ios::app and ios::ate is discussed in the section on seekp() 
function.

7.7.2  close() Function

A currently open  le may need to be closed within a program. This need arises when we 
want to write into a  le that we have already opened for reading and vice versa. An open  le 
can be closed by calling the close() function with respect to the object that has been used 
to open it.

The close() function has been de  ned in the istream class as well as the ostream class. 
The following code snippet shows how the close() function is used.

. . . .
ostream ofile;
ofile.open(“first.dat”);
. . . .
. . . .
ofile.close();
. . . .

 7.8  Files as Objects of the  fstream Class

The overloaded version of the open() function for the class fstream does not take a default 
value for the second parameter. We have to specify explicitly whether we want to open the 
 le for writing or for reading. We can also specify that we want to open the  le for both 

reading and writing.
. . . .
fstream iofile.
iofile.open(“first.dat”, ios::in | ios::out);
. . . .

In this example, the  le will be opened for both reading and writing.

 7.9  File Pointers

File pointers are created and maintained for open  les during run time. There are two  le 
pointers, the put pointer and the get pointer. The put pointer points at that byte of the open 
 le where the next write operation will be conducted. The get pointer points at that byte of 

the open  le where the next read operation will be conducted.
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File pointers can be explicitly manipulated by the use of some functions that have been 
provided as members of the stream handling classes. An explanation of these functions 
follows.

7.9.1  seekp() Function

This function is used to explicitly make the put pointer point at a desired position in the 
open  le. It is important to note that by default the put pointer points at the beginning of 
the  le if it is newly opened for writing. In case an existing  le is opened for appending, the 
put pointer points at its end by default. Also, every write operation pushes forward the put 
pointer by the number of bytes written.

The seekp() function has been de  ned in the class ostream. It has two versions.
ostream & ostream :: seekp(streampos pos);

ostream & ostream :: seekp(streamoff off, 
    ios::seek_dir dir);

In the  rst version, the seekp() function takes only one parameter—the absolute position 
with respect to the beginning of the  le. The type streampos is type de  ned with long as the 
source data type. We must remember that the numbering of the position starts from zero.

In the following example, the put pointer is made to point at the second byte of the  le:
ofile.seekp(1); //ofile is an object of class ofstream

In the  rst version, the new position of the put pointer can be speci  ed with respect to 
the beginning of the  le only. But in the second version, the seekp() function takes two 
parameters—the  rst parameter is the offset and the second parameter is the position in the 
open  le with respect to which the offset is being speci  ed. The type streamoff is type 
de  ned with long as the source data type. The type ios::seek_dir is an enumerated type 
with the following values:

ios::beg—offset will be calculated from the beginning of the file

ios::cur—offset will be calculated from the current position in the file

ios::end—offset will be calculated from the end of the file

In the following example, the put pointer is made to point at the last byte of the  le. 
We must remember that the EOF character is actually the last byte of the  le. Thus, in the 
following example, the put pointer will end up pointing at the last byte that was written into 
the  le that is one byte to the left of the EOF character.

ofile.seekp(-1,ios::end); //ofile is an object of class 
    //ofstream

Some more examples follow:
ofile.seekp(0,ios::beg); //take the put pointer to the 
    //beginning of the file
ofile.seekp(2,ios::beg); //take the put pointer to the 
    //third byte from the beginning 
    //of the file
ofile.seekp(-2,ios::cur); //take the put pointer two 
    //bytes to the left from the its 
    //current position in the file
ofile.seekp(2,ios::cur); //take the put pointer two bytes 
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    //to the right from the its 
    //current position in the file
ofile.seekp(0,ios::end); //take the put pointer to the end 
    //of the file (past the 
    //last byte)
ofile.seekp(-1,ios::end); //take the put pointer to the last 
    //byte of the file

Let us now understand the difference between ios::app and ios::ate  ags. Both of these 
 ags open the  le for appending and make the put pointer point at the end of the opened 
 le by default (past the last existing byte). Neither of the two overwrites an existing  le. But 

the difference between the two is that while the  ag ios::ate allows you to rewind the put 
pointer and modify the existing contents of the  le, the  ag ios::app does not allow this. In 
other words, if the  le is opened using ios::app  ag, an attempt to use the seekp() function 
for rewinding the put pointer will fail. The put pointer would continue to point at the end of 
the  le. As bytes are appended to the  le, the put pointer, as already mentioned, also moves 
forward. Thereafter, it cannot be rewound if the  le was opened by using the ios::app  ag. 
But in case of ios::ate  ag, the put pointer can be rewound.

7.9.2  tellp() Function

The tellp() function returns the current position of the put pointer. It has been de  ned in 
the class ostream.

streampos ostream::tellp();

In the following example, the current position of the put pointer is determined and stored 
in a program variable.

long pos = ofile.tellp(); //ofile is an object of the 
    //class ofstream

7.9.3  seekg() Function

This function is used to explicitly make the get pointer point at a desired position in the 
open  le. It is important to note that by default the get pointer points at the beginning of the 
 le that is opened for reading. Every read operation pushes forward the get pointer by the 

number of bytes read.
The seekg() function has been de  ned in the class istream. It has two versions.

istream & istream :: seekg(streampos pos);

istream & istream :: seekg(streamoff off, 
    ios::seek_dir dir);

The explanation for these two versions of the seekg() function is similar to the one 
provided for the corresponding versions of seekp() function.

7.9.4  tellg() Function

The tellg() function, like the tellp() function, returns the current position of the get 
pointer. It has been de  ned in the class istream.

streampos istream::tellg();
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In the following example, the current position of the get pointer is determined and stored 
in a program variable.

long pos = ifile.tellg(); //ifile is an object of the 
    //class ifstream

 7.10   Random Access to Files

In random access, an intermediate record of a  le is accessed directly without sequentially 
iterating through its neighbouring records. We have already studied the tools necessary for 
accessing a record in a disk  le at random, the seekp() and seekg() functions.

Suppose we have output integer-type values into a disk  le and we want to directly access 
the nth integer. We can do this sequentially by using a loop that starts iterating from the  rst 
record. This loop increments a counter after every read and stops when the counter indicates 
that the (n–1)th record has been read. At this point, the pointers would point at the nth record. 
But a more direct approach is to use either the seekp() function or the seekg() function, as 
the need may be, as follows:

iofile.seekp((n-1)*sizeof(int), ios::beg); //iofile is an 
    //object of 
    //the class 
    //fstream

This statement causes the  le pointers to point at the nth record. At this point, if the write 
operation is conducted, the nth record would get modi  ed.

Note that the technique works only if the size of all the records that are stored in the  le 
is equal. This is possible only if binary data is stored in binary mode.

The size of the  le and the number of records can also be found out very easily.
iofile.seekp(0,ios::end); //iofile is an object of the 
    //class fstream
long lSize = iofile.tellp();
int iNoOfRec = lSize/sizeof(int);

In this example, the pointer is  rst forced to the end of the  le. The current position of the 
pointer, since it points just past the last byte and the byte numbering starts from zero, denotes 
the size of the  le in bytes. Dividing this size by the size of each record gives the number of 
records. Again, we must note that the technique works only if the size of all the records that 
are stored in the  le is equal. This is possible only if binary data is stored in binary mode.

 7.11   Object Input/Output Through Member Functions

We have realized that classes that have pointers that point at externally held data should 
also have the necessary functionality to output and input their data. Client programs of such 
classes should not be burdened with the responsibility of knowing how the data stored in the 
objects of such classes is organized.

Let us provide the String class, which has been our running example so far, with the 
functionality to write its data into and read its data from disk  les. See Listing 7.27.

Listing 7.27 Input/output of objects through member functions

/*Beginning of String.h*/
#include<iostream.h>
class String
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{
 /*
  rest of the class String
 */
 explicit String(const char * const p = NULL);
 const char * getString();
 void diskOut(ofstream &);
 void diskIn(ifstream &);
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include<fstream.h>
#include<string.h>
#include“String.h”
/*
 rest of the class String
*/
String::String(const char * const p)
{
 if(p==NULL) //if default value passed…
 {
  cStr=NULL; //…nullify
  len=0;
 }
 else  //…otherwise…
 {
  len=strlen(p);
  cStr=new char[len+1]; //…dynamically allocate a
    //separate memory block
  strcpy(cStr,p); //…and copy into it
 }
}
const char * String::getString()
{
 return cStr;
}
void String::diskOut(ofstream & fout)
{
 fout.write((char *)&len, sizeof(int));
 for(int i = 0;i<len;i++)
 {
  fout.put(cStr[i]);
 }
}
void String::diskIn(ifstream & fin)
{
 String temp;
 fin.read((char *)&temp.len, sizeof(int));
 temp.cStr = new char[temp.len+1];
 int i;
 for(i = 0;i<temp.len;i++)
  fin.get(temp.cStr[i]);
 temp.cStr[i]=’\0’;
 *this = temp;
}
/*End of String.cpp*/

/*Beginning of strDiskMain.cpp*/
#include<fstream.h>
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#include“String.h”
void main()
{
 String s1(“abcd”);
 ofstream ofile(“C:\\string.dat”);
 s1.diskOut(ofile);
 ofile.close();
 String s2;
 ifstream ifile(“C:\\string.dat”);
 s2.diskIn(ifile);
 cout<<s2.getString()<<endl;
 ifile.close();
}
/*End of strDiskMain.cpp*/

Output
abcd

 7.12  Error Handling   

Every object of the class istream, ostream or of a class that is derived from one of these 
two classes contains three  ags that indicate state of the next byte in the associated  le. These 
 ags are:

eofbit —becomes true if the end of file is encountered
failbit —becomes true if the read/write operation fails (This in turn can be due to various 
reasons that are described shortly.)
badbit —becomes true if the file being read is corrupt beyond recovery

7.12.1  eof() Function

The eof() function returns true whenever the  le pointer encounters the end of  le mark 
while reading the  le that has been opened through the calling object. Whenever a stream 
library function, while reading from an input  le, reaches the end of  le mark, it sets the 
value of eofbit to true.

while(!ifile.eof()) //read till end of file
{
 //statements to read from the file and operate upon the 
 //read value
}

Note that the eof() function returns the result of a past read. It does not look ahead before 
returning the result. Therefore, the test for end of  le is given at the beginning of the loop.

7.12.2  fail() Function

The fail() function returns true if the  le could not be opened for any reason. Whenever 
the open() function fails to open a  le, it sets the failbit to true.

One reason that causes the open() function to fail is the non-existence of the  le that is 
being opened for reading or writing by using the ios::nocreate  ag.

ifstream ifile;
ifile.open(“first.dat”,ios::in | ios::nocreate);
if(ifile.fail())
{
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 cout<<“File does not exist for reading\n”;
 /*
  statements to take corrective action
 */
}

Another reason can be that the  le is being opened for writing by using the ios::noreplace 
 ag but it already exists.

ofstream ofile;
ofile.open(“first.dat”, ios::out | ios::noreplace);
if(ofile.fail())
{
 cout<<“File already exists … overwrite (y/n)?”;
 /*
  statements to record user’s response and take  
  appropriate action
 */
}

Some more reasons that cause the read/write operation to fail follow:
The file being opened for writing is read only. 
There is no space on the disk. 
The file being opened for writing is in a disk that is write-protected. 

7.12.3  bad() Function

The bad() function returns true whenever a function that is reading from a  le encounters a 
serious I/O error. Under such circumstances, the value of the badbit  ag gets set to true. It 
is best to abort I/O operations on the stream in this situation.

7.12.4  clear() Function

The clear() function is used to clear the bits returned by the bad() function. This is necessary 
under a number of circumstances. Listing 7.28 illustrates one such circumstance.

Listing 7.28 The clear() function

/*Beginning of clearEof.cpp*/
#include<iostream.h>
#include<fstream.h>
void main()
{
 fstream iofile(“first.dat”,ios::in | ios::out);
 char cArr[100];
 int i=0;
 while(!iofile.eof())
 {
  iofile.get(cArr[i++]);
 }
 iofile.clear();
 for(int j=0;j<i;j++)
 iofile.put(cArr[j]); //append the contents of the 
    //file to itself
}
/*End of clearEof.cpp*/
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We must note that the use of clear() function was necessary in Listing 7.28. After the 
while loop ends, the eofbit  ag becomes true. Any further write operation on the  le will 
fail if the clear() function is not used.

 7.13   Manipulators

Manipulators are used to format the output. C++ provides some pre-de  ned manipulators. 
The programmer can create his own application-speci  c manipulators too.

Manipulators can be inserted in an output stream just like values are inserted for output.
out << manip1 << manip2 << value1 << manip3 << value2;

In this example, out is an object of the class ostream or any of its derived classes. cout 
can also be used in place of out to format the output to the monitor.

7.13.1 Pre-defined Manipulators

C++ provides a number of handy manipulators that are pre-de  ned in the header  le 
iomanip.h. Therefore, programs that use these manipulators must include this header  le.

Some of the most commonly used pre-de  ned manipulators are listed in Table 7.2.

Table 7.2 Pre-defi ned Manipulators

Manipulator Use

setw(int w) Set the fi eld width to w

setprecision(int d) Set the fl oating point precision to d

setfi ll(int c) Set the fi ll character to c

setiosfl ags(long f) Set the format fl ag to f

resetiosfl ags(long f) Clear the fl ag specifi ed by f

The  setw() manipulator
The setw() manipulator takes an integer-type variable as its only parameter. This parameter 
speci  es the width of the column within which the next output will be output. If the value 
that is output after this manipulator is passed in the insertion stream occupies less number 
of bytes than the speci  ed parameter, then extra space will be created in the column that will 
contain the output value. These extra spaces will be padded by blanks or by the character that 
is passed as a parameter to the set  ll() function.

An example code snippet follows:
cout << 123 << endl;
cout << setw(3) << 10;

Output
123
 10

It is obvious that there is a blank space on the left of ‘10’ in the second line of this 
output.

The setw() manipulator has to be used separately for each item to be displayed.
cout << setw(5) << 10 << setw(5) << 234 << endl;
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No truncation of data occurs if the parameter that is passed to the setw() function is not 
suf  cient to hold the data that is output subsequently. Instead, the padding requirement implied 
by the setw() function is ignored.

cout << 123 << endl;
cout << setw(3) << 10000;

Output 
123
10000

The  setprecision() manipulator

By default, C++ displays the values of  oat and double type with six digits after the decimal 
point. However, we can pass the number of digits we want to display after the decimal point 
as a parameter to the setprecision() manipulator.

cout << setprecision(3) 
  << sqrt(3) << endl 
  << 1.14159 << endl;

Output
1.732
1.142

We must notice how the second output got rounded off to the nearest number.
Unlike the setw() manipulator, the setprecision() manipulator retains its effect even 

after outputting a value.

The  setfill() manipulator

By default, the setw() manipulator pads any extra spaces it  nds in the column that it has 
created with blank spaces. However, we can also specify the padding character by passing it 
as a parameter to the set  ll() manipulator.

cout << setfill(‘*’) 
  << setw(5) << 10
  << setw(5) << 234 
  << endl;

Output
***10**234

The  setiosflags() manipulator

The setios  ags() manipulator is also used to format the manner in which the output data is 
displayed. Two important parameters that it takes are ios::showpos and ios::showpoint.

The ios::showpos  ag, when passed as a parameter to the setios  ags() manipulator, 
ensures that the positive sign is pre  xed to numeric data when they are displayed.

cout << setiosflags(ios::showpos) << 10;

Output
+10
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The ios::showpoint  ag, when passed as a parameter to the setios  ags() manipulator, 
ensures that if the number of signi  cant digits in the value being output is less than that 
speci  ed by the setprecision() manipulator, then the extra spaces obtained thereby are 
 lled with zeros.

cout << setprecision(3) 
  << 2.5 <<endl 
  << setiosflags(ios::showpoint) 
  << 2.5 << endl;

Output
2.5
2.500

The second line in the output highlights the effect of the setios  ags() manipulator.

The  resetiosflags() manipulator

This manipulator cancels the effect of the parameter that was passed to an earlier call to the 
setios  ags() manipulator. The output of the following code snippet shows how.

cout << setprecision(3) 
  << 2.5 << endl 
  << setiosflags(ios::showpoint) 
  << 2.5 << endl 
  << resetiosflags(ios::showpoint) 
  << 2.5 << endl;

Output
2.5
2.500
2.5

7.13.2  User-defined Manipulators

It is possible to create requirement-speci  c manipulators too. A programmer can create 
a manipulator to satisfy his speci  c needs. He/she can do this by de  ning a function as 
follows:

ostream & <manipulator> (ostream & out)
{
 //statements
 return out;
}

An example of a user-de  ned manipulator follows:
ostream & currency (ostream & out)
{
 out << “$. ”;
 return out;
}

Now if we write
cout << currency << 20;
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the output would be
$ 20

User-de  ned manipulators enable modularity. A user-de  ned manipulator can be used 
throughout an application to format the output in a uniform manner. If a change is required, 
it needs to be carried out at only one place—the de  nition of the manipulator—and again the 
change occurs uniformly throughout the application.

 7.14  Command Line Arguments
Command line arguments are values that are passed to executables when they are run from 
the command line. As we know, after we successfully compile and link a C++ program we 
get an executable  le. These executable programs can be run from the command line of your 
computer’s operating system.

How do we pass command line arguments to executables? Let us understand this with the 
help of an example.

Suppose the name of an executable that has been generated from a C++ program is ‘test.
exe’. We can run this executable by typing the following command on the command line 
and then hitting the enter key:

test

We can also run the executable by issuing the following command:
test.exe

Let us follow the  rst method for running the executable. (Note that the above two methods 
would work if the operating system on your computer is Windows. The method may change 
for a different operating system. Please consult the operating system’s documentation or your 
lab instructor if the operating system on your computer is not Windows. For the purpose of 
this book, we will assume that the operating system on your computer is Windows.)

Suppose we want to pass the strings ‘abc’ and ‘def’ as command line arguments to the 
executable. We can do this by calling the executable from the command line as follows:

test abc def

Note that ‘abc’ and ‘def’ have been passed as parameters to the command for executing 
the executable  le test.

Why are command line arguments important? Why should a C++ programmer write 
programs that can read the values of command line arguments? Consider a very simple 
program (Listing 7.29) that adds up two numbers and then displays the result.

Listing 7.29 The programmer can decide the values to be added

/*Beginning of add.cpp*/
/*
 A program in which two numbers are added but it is the 
 programmer, and not the program’s user, who decides the 
 values to be added.
*/
#include <iostream.h>
void main()
{
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 int x = 10, y = 20;
 int z = x + y;
 cout << z << endl;
}
/*End of add.cpp*/

Output
30

As can be seen, it is the programmer who declared two variables and initialized them to 
values of his/her choice. But, what if we need the values from the user? One way is to take 
inputs from the keyboard using the cin object. But what will happen if our executable is being 
run from another program? That program, when it is running, won’t be able to give keyboard 
inputs (after all it is a program, not a human). It will obviously be much more convenient if 
our program accepts the values it needs, as command line arguments.

Now, we come to the most important question—how can we program our C++ programs 
so that they can read and process command line arguments? The main() function can be 
programmed to read command line arguments. For this, we need to de  ne the header of the 
main() function as follows:

void main(int argc, char * argv[])

The  rst argument, argc, gives us the number of arguments present on the command 
line, including the name of the executable. It is known as the argument counter. The second 
argument, argv, is an array of character pointers. Each pointer points at a separate command 
line argument. It is known as the argument vector.

Note that argc and argv are only the names of the main() function’s arguments. You, 
while writing your own programs, can give them names of your choice. For example, you 
can name them ‘x’ and ‘y’. The names argc and argv are the conventional names. And we 
will use them as such in our examples.

Let us again consider the previous command to execute our program.
test abc def

In this case, two command line arguments have been passed. Therefore, the value of argc 
would be 3 (2 arguments plus the name of the executable  le itself). The value of argv[0] 
would be test. The value of argv[1] would be ‘abc’. The value of argv[2] would be def.

Let us look at some very simple examples that illustrate how the main() function reads 
command line arguments through its parameters (see Listing 7.30). These would be followed 
by programs that illustrate the possible practical ways in which command line arguments 
can be used.

Listing 7.30 The command line counter

/*Beginning of test.cpp*/
/*
 A program the displays the count of command line 
 arguments.
*/
#include <iostream.h>
void main(int argc, char *argv[])
{
 cout << argc << endl;
}
/*End of test.cpp*/



 Object-Oriented Programming with C++206

Note that this example program displays the number of command line arguments that were 
passed to its executable, plus 1 (for the name of the executable itself). Suppose we run the 
executable  le from the above program by passing no command line arguments as follows:

test

Output
1

The output is 1 because no command line arguments were passed to the executable.
Suppose we run the executable  le from the above program by passing two command line 

arguments as follows:
test abc def

Output
3

The output is 3 because two command line arguments were passed to the executable.
Let us enhance the above program so that it not only displays the number of command 

line arguments, but also the arguments themselves (Listing 7.31).

Listing 7.31 The command line arguments

/*Beginning of test.cpp*/
/*
 A program that displays the count of command line 
 arguments and the command line arguments themselves.
*/
#include <iostream.h>
void main(int argc, char *argv[])
{
 cout << argc << endl;
 for(int i = 0; i < argc; i++)
 {
  cout << argv[i] << endl;
 }
}
/*End of test.cpp*/

Suppose we run the above program as follows:
test Happy Birthday

The output would be as follows:

Output
3
test
Happy
Birthday
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The above program  rst displays the count of command line arguments, which is 3. It then 
executes a for loop whose loop counter ‘i’ starts from 0 and ends at 3 (the value of argc). 
Therefore, the for loop displays the values of argv[0], argv[1], and argv[2]. The value 
of argv[0] is ‘test’ (the name of the executable  le). The value of argv[1] is ‘Happy’ (the 
value of the  rst argument). The value of argv[2] is ‘Birthday’ (the value of the second 
argument).

Suppose we need to enforce a condition that the user must enter a certain number of 
command line arguments. For example, we may need that the user must enter exactly two 
command line arguments. If the user does not pass exactly two command line arguments, 
we may like to give an error message and terminate the program. Let us see how we can 
accomplish this. Let us continue to enhance the test program. See Listing 7.32.

Listing 7.32 Ensuring a specifi c number of command line arguments

/*Beginning of test.cpp*/
/*
 A program that utilizes the command line argument counter 
 to ensure that the correct number of command line  
 arguments are passed.
*/
#include <iostream.h>
void main(int argc, char *argv[])
{
 if(argc != 3)
 {
  cout << “Incorrect number of arguments passed” << endl;
  exit();
 }
 cout << argc << endl;
 for(int i = 0; i < argc; i++)
 {
  cout << argv[i] << endl;
 }
}
/*End of test.cpp*/

The above main() function, at the very beginning, checks whether the value of the argument 
counter is 3 or not. It is actually checking whether the number of command line arguments 
that were passed to the executable is 2 or not (remember that the argument counter counts 
the executable also).

If the value of the argument counter is not 3, the main() function  ashes an error message 
and then terminates the program by calling the exit() function. (Note: No arguments have 
been passed to the exit() function above. However, the number of arguments that the exit() 
function takes in your installation of the C++ library may be different. If that is the case, then 
consult the documentation or your lab instructor and modify the call accordingly.)
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Streams are nothing but a  ow of data to and from 
program variables. Input stream is the  ow of data from 
a  le on the permanent storage medium to program 
variables. The keyboard is also treated as source of 
input stream. Output stream is the  ow of data to a 
 le on the permanent storage medium from program 

variables. The monitor is also treated as target for 
output stream.

C++ provides us with a hierarchy of classes that 
have the functionality to implement various aspects 
of stream handling. The class ios is the base class in 
this hierarchy.

The class ostream is derived from the class ios 
and handles the general output stream. The insertion 
operator (<<) is de  ned and overloaded in the class 
ostream to handle output streams from program 
variables to output  les. 

The class ostream_withassign is derived from the 
class ostream. cout is an object of the class ostream_
withassign. cout stands for console output. As 
mentioned earlier, C++ treats all peripheral devices 
as  les. It treats the monitor also as a  le (for output 
stream). The object cout represents the monitor.

The class istream is derived from ios and handles 
the general input streams. The extraction operator 
(>>) is de  ned and overloaded in the class istream 
to handle input streams from input  les to program 
variables. 

The class istream_withassign is derived from 
the class istream. cin is an object of the class 
istream_withassign. cin stands for console input. 
C++ treats all peripheral devices as  les. It treats the 
keyboard also as a  le (for input stream). The object 
cin represents the keyboard.

The class iostream  is derived by multiple 
inheritance from the classes istream and ostream. 
It has the functionality to handle both input and 
output streams. The class ofstream is derived from 
the class ostream. It has the functionality to handle 
output streams to disk  les. The class ifstream is 
derived from the class istream. It has the functionality 
to handle input streams from disk  les. The class 
fstream is derived from the class iostream. It has the 
functionality to handle both input and output streams 
from and to disk  les.

In text mode output, numeric data that exists in base 
2 format in the memory variables, is  rst converted to 
base 10 format before being output. In binary mode, 
no such conversion occurs.

In text mode input, numeric data that is being 
input into a memory variable is reckoned to be in 
base 10 format. Therefore, it is  rst converted into 
base 2 format and then stored in the target memory 
variable.

The insertion operator is used to output data 
in text mode. The put() function is used to output a 
single character at a time. The extraction operator 
is used to input data in text mode. The get() function 
is used to input a single character at a time.

The write() function is used to output data in 
binary mode. The read() function is used to input 
data in binary mode.

Apart from the constructors of the library classes, 
the open() function can also be used to open  les. 
The  rst parameter that the constructor and the open() 
function take is the name of the  le. The second 
parameter speci  es the open mode. Destructors of 
library stream classes close the  les associated with 
them anyway. But the close() function can be used 
to explicitly close  les.

File pointers can be manipulated by the seekp() 
and seekg() functions. Their current positions can be 
determined by the tellp() and tellg() functions. 
An intermediate record can be directly accessed by 
using the seekp() or seekg() function to make the 
 le pointer jump to a speci  c byte in the  le. It is 

mandatory to use member functions for outputting and 
inputting data in case of complex classes.

Every object of the class istream, ostream or of 
a class that is derived from either of these two classes, 
contains three  ags that indicate state of the next byte 
in the associated  le. These  ags are:

 eofbit—becomes true if the end of  le is encountered 
(The eof() function returns the state of the eofbit 
 ag.)

 failbit—becomes true if the read/write operation 
fails (The fail() function returns the state of the 
failbit  ag.)

 badbit—becomes true if the file being read is 
corrupt beyond recovery (The bad() function 
returns the state of the badbit  ag.)
The clear() function is used to clear the bits 

described above.
Manipulators are used to format the output. 

C++ provides some pre-de  ned manipulators. The 
programmer can create his own application-speci  c 
manipulators too.

Summary
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Key Terms 

Command line arguments are values that are passed 
to executables when they are run from the command 
line. They enable programs to capture input values 
from the user and from other systems.

The main() function can be programmed to read 
command line arguments. We need to de  ne the header 
of the main() function as follows:

void main(int argc, char * argv[])

The  rst argument gives us the number of arguments 
present on the command line, including the name of the 
executable. It is known as the argument counter. The 
second argument is an array of character pointers. Each 
pointer points at a separate command line argument. 
It is known as the argument vector.

streams
standard stream handling classes of C++
– ios
– ostream
– ostream_withassign
– istream
– istream_withassign
– iostream
– ofstream
– ifstream
– fstream
text mode input/output
cout
insertion operator
put() function
cin

extraction operator
get() function
write() function
read() function
open() function
close() function
seekp() function
seekg() function
tellp() function
tellg() function
eof() function and the eofbit  ag
fail() function and the failbit  ag
bad() function and the badbit  ag
clear() function
manipulators

Exercises
 1. Brie  y describe the class hierarchy provided by C++ 

for stream handling.
 2. State true or false.

(a) cout  is an object of the class ostream_
withassign.

(b) The insertion operator (<<) is defined and 
overloaded in the class istream.

(c) The header  le iostream.h is included in the 
 le fstream.h.

(d) The insertion operator outputs in binary mode.
 3. What are text mode and binary mode input/

output? What are their corresponding strengths and 
weaknesses?

 4. What is the difference between a text  le and a binary 
 le?

 5. Why should read operation on a  le take place in 
the same mode in which the write operation has 
occurred? Explain.

 6. How are values of various types output to disk  les 
by using the insertion operator?

 7. Describe the read() and write() functions, their 
prototype, use, and the way they input and output 
data.

 8. How can a file be opened for both reading and 
writing?

 9. What is the difference between opening a  le using 
the constructor of the stream class and the open() 
function.

 10. Describe how the contents of a disk  le can be 
randomly accessed in C++.

 11. Describe the circumstances under which each of the 
 ags—eofbit, failbit, and badbit—becomes 

true.
 12. Describe the use of the following manipulators:
   setw()
   setprecision()
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   set  ll()
   setios  ags()
   resetios  ags()
 13. How can a programmer define his/her own 

manipulators?
14. What are command line arguments? Why are they 

important?
 15. How can the main() function be programmed to read 

command line arguments?
 16. Write a program to obtain as many integers from 

the user as he/she wants and write them into a disk 
 le. After the user has  nished entering the integers, 

read them from the  le and display them on the 
monitor.

 17. Create a class whose objects would hold linked 
lists of integers. Apart from the regular features of 
linked lists, the objects would also have the necessary 
functionality to download their data into a speci  ed 
disk  le and to upload their data from speci  ed disk 
 les. The application would be menu-driven. The 

user will have the option to save the linked list and 
to ‘save as’ the linked list. 

  Hint:
 Create two classes as follows:

class intNode
{
  int data;
  intNode * Next;
 public:
   //functions to set and get the data 

members

};

class intList
{
  intNode * head;
 public:
  // functions to add, delete, modify, 

save and load
};

 18. Write a manipulator that pre  xes a currency symbol 
to the output value. For this, the manipulator should 
read the symbol from a disk  le.

 19. Write a program that gives an error message if the 
number of arguments that are passed to its executable 
is not equal to 1 (hint: ‘argc’ != 2), and then 
terminates itself. The error message should advise 
the user that exactly one argument should be passed 
to the executable, and that it should be the name of 
a  le.

   Otherwise, if the user has passed exactly one 
argument to the executable, the program should 
open the  le whose name matches the value of the 
argument (hint: argv[1]). It should then append the 
name of the executable (hint: argv[0]) into a new 
line in the  le, along with a text that says that the 
executable executed successfully. For example, if the 
name of the executable is test, then the following 
line should get appended to the  le:

test executed successfully.



8.1  Operator Overloading 

Let us  rst understand the meaning of operator overloading and how this useful feature of 
the C++ language is implemented.

Overloading an operator means programming an operator to work on operands of types it 
has not yet been designed to operate. For instance, the addition operator can work on operands 
of type char, int,  oat, and double. However, if ‘s1’, ‘s2’, and ‘s3’ are objects of the 
class String, which we have de  ned earlier, then the following statement

s3 = s1 + s2

Operator Overloading, Type 
Conversion, New Style Casts, 

and RTTI

Operator overloading is an extremely interesting feature of C++. It is not only interesting 
and exciting, but also an essential tool for the class designer. This chapter explains the 
following:
 the concept of operator overloading,
 the support provided by C++ for operator overloading,
 the need to overload operators,
 rules for operator overloading,
 use and misuse of operator overloading, and
 pitfalls in operator overloading.

The initial sections of the chapter give an overview of operator overloading. They contain 
only the skeleton code to illustrate the concepts without burdening the reader with the intricacies 
of the exact code. The exact code to overload various operators for various classes is dealt 
with in the later sections.

Type conversions from basic type to class type, from class type to basic type, and from one 
class type to another are also dealt with in this chapter.

C++ provides the following four  new style cast operators to replace the use of the old error 
prone and dif  cult to detect C style casts:
 dynamic_cast
 static_cast
 reinterpret_cast
 const_cast

RTTI (run time type information) enables the programmer to  nd the type of object at which 
a pointer points during run time. Apart from the dynamic_cast operator, C++ provides the 
typeid operator for implementing RTTI.

The chapter ends with an explanation of new style cast operators and RTTI.
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will not compile unless the creator of class String explicitly overloads the addition operator 
to work on objects of his class. The method of implementing such overloading is described 
next.

8.1.1 Overloading Operators—The  Syntax

Operators are overloaded by writing operator-overloading functions. These functions are either 
member functions or friend functions of that class whose objects are intended as operands 
of the overloaded operator. Operator overloading functions are very similar to the member 
functions and friend functions we have been reading about all along. The only thing peculiar 
about them is their name. The names of operator-overloading functions are composed of the 
keyword operator followed by the symbol of the operator being overloaded.

The syntax for member functions that overload a given operator is as follows:
class <class_name>
{
 <return_type> operator <op> (<arg_list>); //prototype
};
<return_type> <class_name> :: operator <op> (<arg_list>)
//definition
{
 //function body
}

Member functions that overload operators can be private, protected, or public. The 
prototype of the operator-overloading function speci  es a return type (as do the normal 
member functions). The keyword operator follows the return type. This in turn is followed 
by the symbol of the operator being overloaded. Finally, a pair of parentheses containing the 
formal arguments is speci  ed (as do the normal member functions).

The syntax for a friend function that overloads a given operator is as follows:
class <class_name>
{
 friend <return_type> operator <op> (<arg_list>); //prototype
};
<return_type> operator <op> (<arg_list>) //definition
{
 //function body
}

We already know that a friend function takes one argument more that the member function 
that serves the same purpose (because the invoking object appears as an explicit parameter to 
the friend function whereas in member functions it is passed as an implicit parameter). The 
same holds true in case of operator-loading functions.

The following examples will help in clarifying this syntax.
Suppose we want to overload the addition operator (+) so that it can take objects of the 

class String that we de  ned earlier. The exact syntax for this (in case of member function) 
would be as shown in Listing 8.1.

Listing 8.1 Defi ning and using operator-overloading function as a member function

/*Beginning of String.h*/
class String
{
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 public:
  String operator + (const String &) const; //prototype
  /*
   rest of the class String
  */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
String String ::  operator + (const String & ss) const 

//definition
{
 //function body
}
/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

/*Beginning of SomeProgram.cpp*/
#include“String.h”
void f() //some function
{
 String s1,s2,s3;
 /*
  rest of the function f()
 */ 
 s3 = s1 + s2;
 /*
  rest of the function f()
 */ 
}
/*End of SomeProgram.cpp*/

We can notice that the function has been declared as a public member of the class. This 
is because the operator will usually be used in its overloaded form within the non-member 
functions. The reasons for the return type and signature of this function will be discussed later. 
Moreover, the techniques of de  ning such functions will be demonstrated later.

If this function were to be declared as a friend, then the syntax would be as shown in 
Listing 8.2.

Listing 8.2 Defi ning operator-overloading function as a friend function

/*Beginning of String.h*/
class String
{
 friend String operator +  (const String &, 

const String &);  //prototype
  /*
   rest of the class String
  */
};
/*End of String.h*/
/*Beginning of String.cpp*/
#include“String.h”
String operator + ( const String & ss1, const String & ss2)

//definition
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{
 //function body
}
/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

/*Beginning of SomeProgram.cpp*/
#include“String.h”
void f() //some function
{
 String s1,s2,s3;
 /*
  rest of the function f()
 */ 
 s3 = s1 + s2;
 /*
  rest of the function f()
 */ 
}
/*End of SomeProgram.cpp*/

8.1.2 Compiler Interpretation of Operator-Overloading Functions

It is important to understand how the compiler interprets operator-overloading functions.
The statement

s3 = s1 + s2; //s1, s2 and s3 are objects of the class 
    //String

is interpreted as
s3 = s1.operator + (s2);

If the operator-overloading function has been declared as a member function, then this 
interpretation is satis  ed. Otherwise, the statement is interpreted as

s3 = operator + (s1, s2);

If the operator-overloading function has been declared as a friend function, then this 
interpretation is satis  ed. Otherwise, the compiler reports an error to the effect that the given 
operator has not been overloaded for the class. It is interesting to note the compiler does not 
say that invalid operands have been passed to the operator!

So far, we have seen that the operators have been overloaded within the classes using 
member functions or friend functions. These functions are compiled and stored in the 
library. 

We have also seen that the overloaded operators have been used within the applications 
using their usual syntax. As described in this section, the compiler  rst converts the statements 
where the overloaded operators are used. However, we must note that the operator-overloading 
functions can also be called directly from within the application programs (the way the compiler 
 nally interprets it). Operator-overloading functions can be called directly as follows.

s3 = s1.operator + (s2); //in case of member function

or
s3 = operator + (s1, s2); //in case of friend function
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The bene  t of overloading the operator will not be felt if the overloaded operators are 
directly called in this manner. (In that case, they can be very well replaced by ordinary member 
functions.) Moreover, we must note that only the name of the operator-overloading function is 
unusual (it contains the keyword operator). Otherwise, the operator- overloading functions 
are implemented just like ordinary member, non-member, or friend functions.

Concept of overload  using friend functions

We might wonder why friend functions are used to overload operators. After all, member 
functions seem to serve the purpose. In order to understand this, let us consider two classes 
A (which we have de  ned) and B (an existing class or an intrinsic data type). We realize that 
for some reason only an object of class A will be added to an object of class B to get another 
object of class A. This will be done as follows.

a2 = b1 + a1; //a1, a2 are objects of class A, b1 is 
    //an object of class B

An object of class B will not be added to an object of class A. Objects of class B will 
appear on the left of the addition operator and not on the right. We will soon realize that such 
restrictions can and do exist. Statements such as the one that follow will not be written.

a2 = a1 + b1; //a1, a2 are objects of class A, b1 is 
    //an object of class B

Further let us assume (rather accept) that we have no means of modifying the de  nition of 
class B. (This is a perfectly acceptable restriction. We cannot de  ne somebody else’s class 
de  nition. Class de  nitions are provided in read-only header  les and de  nitions of member 
functions in libraries.) Now, if we de  ne the operator-overloading function as a member 
function of class A as follows, the  rst of the two preceding statements will not compile.

class A
{
 public:
  A operator + (const B &);
};

The compiler will interpret the statement
a2 = b1 + a1;

 rst as
a2 = b1.operator + (a1);

and then as
a2 = operator + (b1,a1);

The prototype of the member function satis  es neither of these two interpretations. The 
compiler will naturally throw an error. Declaring the operator-overloading function as a 
friend function with an object of class B as the  rst formal argument solves the problem. 
See Listing 8.3.

Listing 8.3 Operator overloading using friend function

class A
{
 public:
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  friend A operator + ( const B &, const A &);
//prototype

};
A operator + (const B & bb, const A & aa) //definition
{
 //function body
}

It is interesting to note that the compiler throws an ambiguity error if both member function 
and friend function are used to overload an operator. This is because both of them will satisfy 
calls to the overloaded operator. The compiler will certainly be in no position to decide with 
which function such a call is to be resolved.

8.1.3 Overview of Overloading Unary and Binary Operators

Member functions that overload unary operators take no operands. This is because apart from 
the calling object, no other parameter is passed to the operator and the calling object is passed 
as an implicit parameter to the object. Friend functions that overload unary operators will 
naturally take one parameter since the calling object will be passed as an explicit parameter 
to it.

Similarly, member functions that overload binary operators will take one parameter. This 
is because apart from the calling object, another value will be passed to the operator as an 
operand (binary operators take two operands). The calling object will itself be passed to the 
function as an implicit parameter. Again, friend functions that overload binary operators will 
take one operand more, that is, two operands. We can very well explain this.

8.1.4  Operator Overloading

Let us now  nd out the need to overload operators. After all, the operator-overloading functions 
can be so easily substituted by member functions or friend functions with ordinary but 
meaningful and relevant names. For example, the operator-overloading function to overload 
the addition operator (+) for objects of the class String can be easily replaced by a member 
function of a proper name. See Listing 8.4.

Listing 8.4 Using an ordinary member function to substitute an operator-overloading 
function

class String
{
 public:
  //String operator + (const String &);
  String add(const String &); //prototype
};
String String :: add(const String & ss) //definition
{
 //function body
}
void f() //some function
{
 String s1,s2,s3;
 /*
  rest of the function f()
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 */ 
 s3 = s1.add(s2);
 /*
  rest of the function f()
 */ 
}

The de  nition of the String :: add() function can be the same as the operator- overloading 
function to overload the addition operator (+).

However, operator overloading becomes mandatory under the following circumstances:
Objects of the class acquire resources dynamically during run time and no two objects  
should share the same copy of the resource.
Objects of the class acquire some resources dynamically during run time and no two  
objects should share even different copies of the resource.
Objects need to be passed as parameters in function templates and the operators being  
used on template class objects within the template functions should work in the same 
way on objects of the class.
The default action of the dynamic memory management operators ( new and delete) are 
unsuitable for the class being designed. 
Change in the implementation of the class forces an undesirable change in its interface  
in turn necessitating the rewriting and recompiling of the application programs.
Overloading provides better readability of code. Although this is a somewhat weak reason,  
it, nevertheless, is a factor that can be considered. The statement

o2 = ++o1;

is much more readable than say a statement such as
o2 = o1.pre_fix_increment();

Let us understand these circumstances one by one. For understanding the  rst case, let us 
reconsider the class String. Let us try to visualize what happens at the end of the block of 
code given in Listing 8.5.

Listing 8.5 Undesirable default action of the assignment operator

String s1(“abc”), s2;
s2 = s1;

As a result of the second statement in Listing 8.5, the scenario shown in Figure 8.1 
emerges.

Figure 8.1 Diagram depicting the drawback in the default action of the assignment operator
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As a result of the second statement in Listing 8.5, the pointers embedded in both the objects 
point at the same dynamically allocated memory block. The default action of the assignment 
operator simply copies the value of the pointer embedded in ‘s1’ into the pointer embedded 
in ‘s2’. 

The problems that arise out of such a situation have already been discussed in Chapter 
4. We will notice that the same undesirable situation arose due to the initial absence of a 
suitable copy constructor in the class String. This had prompted us to de  ne a suitable copy 
constructor for the class String. The same factors dictate that a suitable function to overload 
the assignment operator be de  ned for the class String. Instead of the default action of the 
assignment operator, execution of this function will take place when statements such as the 
second one in Listing 8.5 are executed.

For understanding the second circumstance where operator overloading is mandatory, 
let us imagine that there is a class whose objects should not share even separate copies of 
dynamically allocated resources. This means that statements such as the following one should 
not compile at all.

o1 = o2;   //o1, o2 are objects of the said class

Here the solution is quite simple. We just declare the function to overload the assignment 
operator in the private section of the class. Any use of the assignment operator within a 
non-member function will launch a call to this operator-overloading function. Since the 
function is private, such a call will throw a compile-time error. As desired, the use of the 
assignment operator will be prevented. However, what would happen if we inadvertently use 
the assignment operator within a member function or a friend function? The private nature 
of the function will not be enough to prevent such a call. However, even such calls can be 
prevented by not de  ning the function to overload the assignment operator. This trick will 
make the linker throw an error.

To understand the third circumstance where operator overloading is mandatory, we require 
the knowledge of function templates, which are discussed in the next chapter. 

Now, let us understand the fourth circumstance. The new operator does a number of things 
by default, some, or all of which might be undesirable for the class being designed.

By default, the new operator throws an exception if it fails to allocate the amount of memory 
requested (exceptions are dealt with in one of the later chapters). However, this default action 
of the new operator may be unsuitable for the class being designed. In response to this out-of-
memory condition, the class designer might instead need to call one of the member functions 
of the class. Only overloading the new operator can ful  ll this need. 

Also by default, the new operator not only allocates the amount of memory requested, it also 
stores the amount of memory allocated in the memory itself. This enables the delete operator 
(if it is called) to  nd out the size of the memory allocated so that it can then deallocate the 
same amount of memory (see Chapter 3). However, in memory critical applications, such 
expenditure of memory might be prohibitive. If the class designer knows that the same amount 
of memory will be allocated whenever the new operator is called, he/she can cleverly prevent 
this wastage of memory. Again, only overloading the new operator can do this. 

Further, by default, the new operator simply allocates memory for the object whose type is 
passed as an operand to it. However, the class designer would not want that the class should 
ever have more than one object. He/she may want that an object should be created only when 
the new operator is called for the very  rst time. Subsequent calls to the new operator should 
not create more objects. Instead, such subsequent calls should merely return the address of 
the object that was created in response to the  rst call to the new operator.
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The last circumstance that mandates operator overloading is self-explanatory.

8.1.5  Rules for Operator Overloading

The following rules must be observed while overloading operators.
1. New operators cannot be created: New operators (such as **) cannot be created. For 

example, the piece of code shown in Listing 8.6 will produce a compile-time error.

Listing 8.6 An illegal attempt to create a new operator

class A
{
 public:
  void operator ** ();
};

2. Meaning of existing operators cannot be changed: Any operator-overloading function 
(member or friend) should take at least one operand of the class of which it is a member 
or friend. Thus, it is not possible to change the manner in which an existing operator 
works on operands of fundamental types (char, int, float, double).

  In case of member functions, this condition is automatically enforced because the 
address of the calling object is implicitly passed as a parameter to it. However, in case 
of friend functions, the library programmer needs to take extra care. For example, the 
following piece of code (Listing 8.7) will not compile.

Listing 8.7 An illegal attempt to modify the behaviour of operators on intrinsic types

class A
{
 public:
  friend int operator + (int, int);  //ERROR: will not 
      //compile
};

  As we can see, by ensuring that at least one operand of an operator-overloading function 
must be of the class type, the compiler ensures that the meanings of the existing operators 
cannot be changed. If the code in Listing 8.7 had compiled, the statement
z = x + y; //x, y, z are integer type

 could have invoked the operator + () function of the class A. Of course, this is 
undesirable.

3. Some of the existing operators cannot be overloaded: The following operators cannot 
be overloaded:

  :: (scope resolution)
  . (member selection)
  .* (member selection through pointer to member)
  ?: (conditional operator)
  sizeof (finding the size of values and types)
  typeid (finding the type of object pointed at)
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4. Some operators can be overloaded using non-static member functions only: The 
following operators can be overloaded using non-static member functions alone. 

  = (Assignment operator)
  () (Function operator)
  [] (Subscripting operator)
  -> (Pointer-to-member access operator)
 These operators cannot be overloaded using friend functions or static functions.
5. Number of arguments that an existing operator takes cannot be changed: Operator-

overloading functions should take the same number of parameters that the operator being 
overloaded ordinarily takes. For example, the division operator takes two arguments. 
Hence, the class definition shown in Listing 8.8 causes a compile-time error ‘operator / 
takes too few arguments’ for the operator-overloading function.

Listing 8.8 An illegal attempt to modify the number of arguments that an operator takes 
by default

class A
{
 public:
  void operator / ();
};

6. Overloaded operators cannot take default arguments: The class definition shown in 
Listing 8.9 causes a compile-time error ‘operator/cannot take default arguments’ for the 
operator-overloading function.

Listing 8.9 An illegal attempt to assign a default value to an argument of an operator- 
overloading function

class A
{
 public:
  void operator / (int = 0);
};

  Finally, we must note that it is highly imprudent to modify the values of the operands 
that are passed to the operator-overloading functions. To appreciate this point better, let 
us consider the function to overload the addition operator for the class String.
class String
{
  char * cStr;
  long int len;
 public:
  String operator + (String &);
};

  The library programmer may mistakenly write some statements to modify the value 
of the implicit or the explicit parameter of the String :: operator + () function (see 
Listing 8.10).
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Listing 8.10 Modifying the left-hand side and the right-hand side operands of the 
addition operands in the function to overload it

String String :: operator + (String & ss)
{
 /*
  rest of the function String :: operator + ()
 */ 
 this->cStr = NULL; // BUG: left-hand parameter 
    //changed!
 /*
  rest of the function String :: operator + ()
 */ 
 ss.cStr = NULL; //BUG: right-hand parameter 
    //changed!
 /*
  rest of the function String :: operator + ()
 */ 
}

  To guard against this mishap, the operator-overloading function can be declared as 
shown in Listing 8.11.

Listing 8.11 Making necessary use of the const keyword to prevent bugs

class String
{
  char * cStr;
  long int len;
 public:
  String operator + (const String &) const;
};

  Neither of the statements given in Listing 8.10 that have bugs will compile.
  Let us now see how operators are actually overloaded.

8.2 Overloading Various Operators 

8.2.1  Overloading Increment and Decrement Operators (Prefix and Postfix)

Let us recollect the class Distance. We can overload the increment operator for objects of 
the class. What would we like such a function to do? If ‘d1’ and ‘d2’ are objects of the class 
Distance, then the following statement

d2 = ++d1;

is interpreted by the compiler as
d2 = d1.operator ++ ();

Let us envisage that this operator-overloading function should  rst increment ‘iFeet’ 
portion of ‘d1’. It should leave the fInches portion of ‘d1’ unaltered. Then it should return the 
resultant object. With these guidelines in mind, the prototype and de  nition of the operator-
overloading function will be as shown in Listing 8.12.
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Listing 8.12 Declaring member function to overload the increment operator

/*Beginning of Distance.h*/
class Distance
{
 public:
  /*
   rest of the class Distance
  */
  Distance operator ++ ();
};
/*End of Distance.h*/
/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance Distance :: operator ++ ()
{
 return Distance(++iFeet, fInches);
}
/*
 definitions of the rest of the functions of class 
 Distance
*/
/*End of Distance.h*/

The operator-overloading function should be public because it will mostly be called from 
within functions that are not members of the class Distance. It should not be a constant 
member function since it will certainly modify the value of at least one of the data members 
(iFeet) of the calling object. Although the de  nition of the operator-overloading function 
appears cryptic, it is in fact very simple (and economical). First, the increment operator 
works (since it is in pre  x notation). Thus, the iFeet data member of the calling object gets 
incremented. Second, the explicit call to the constructor creates a nameless object of the class 
Distance by passing the incremented value of iFeet and the unaltered value of fInches 
as parameters. Third, the operator-overloading function returns the nameless object thus 
constructed. If the call to the operator-overloading function is on the right-hand side of the 
assignment operator, the values of the returned object will expectedly be copied to the object 
on the left. Thus, our purpose is served.

However, we would like a different effect to be produced if we write the statement
d2 = d1++;

In this case, we would like the initial value of ‘d1’ to be copied to ‘d2’ and, thereafter, the 
value of iFeet data member of ‘d1’ to get incremented. However, if the compiler interprets 
both the statements

d2 = ++d1;

and
d2 = d1++;

in identical ways, then we will have no way of writing the two different functions. Fortunately, 
this is not so. While the compiler interprets the statement

d2 = ++d1;

as 
d2 = d1.operator ++ ();
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it interprets the statement
d2 = d1++;

as
d2 = d1.operator ++ (0);

It implicitly passes zero as a parameter to the call to the operator-overloading function when 
the post  x notation is used. If it  nds a prototype that matches this call exactly, it compiles 
without warnings or errors. However, if it  nds the prototype given in Listing 8.12, it gives a 
warning but still compiles with the operator-overloading function Distance :: operator ++ 
(). The fact that the compiler  rst looks for a function with an integer as a formal argument 
provides us with a solution. We can now de  ne an additional operator-overloading function 
to overload the increment operator in post  x notation. See Listing 8.13.

Listing 8.13 Overloading the increment operator in both the prefi x and the postfi x 
notation

/*Beginning of Distance.h*/
class Distance
{
 public:
  Distance operator ++ ();  //for prefix notation
  Distance operator ++ (int);  //for postfix notation
  /*
   rest of the class Distance
  */
};
/*End of Distance.h*/
/*Beginning of Distance.cpp*/
#include “Distance.h”
Distance “Distance :: operator ++ () //for prefix 
     //notation
{
return Distance(++iFeet, fInches);  //as in listing 
     //8.12
}
Distance Distance :: operator ++ (int) //for postfix 
     //notation
{
 return Distance(iFeet++, fInches); 
}
/*
definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

The explanation for the de  nition of the function to overload the increment operator in 
post  x notation is as follows. The constructor gets called before the increment operator 
executes because the increment operator has been purposefully placed in post  x notation. 
Thus, a nameless object with the initial values of the calling object is created. Thereafter, 
the increment operator increments the value of iFeet data member of the calling object. 
Finally, the nameless object constructed earlier with the initial values of the calling object 
is returned. Since the formal parameter of the function is a dummy, therefore, its name 
need not be mentioned. Obviously, if the call to this operator-overloading function is on the 
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right-hand side of the assignment operator and there is an object of the class Distance on its 
left, then the object on the left will get the initial values of the object on the right. The value of 
the object on the right will alone be incremented. These two operator-overloading functions 
convincingly duplicate the default action of the increment operator on intrinsic types.

Obviously, if we provide an operator-overloading function for the increment operator in 
pre  x notation, we must provide one for the post  x notation also.

Decrement operators are overloaded in the same way as the increment operators. See 
Listing 8.14.

Listing 8.14 Overloading the decrement operator in both the prefi x and postfi x notation

/*Beginning of Distance.h*/
class Distance
{
 public:
  Distance operator ++ ();
  Distance operator ++ (int);
  Distance operator -- ();
  Distance operator -- (int);
  /*
   rest of the class Distance
  */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance Distance :: operator -- ()
{
 return Distance(--iFeet, fInches);
}
Distance Distance :: operator -- (int)
{
 return Distance(iFeet--, fInches);
}
/*
 definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

8.2.2  Overloading Unary Minus and Unary Plus Operator

Overloading the unary minus operator is shown in Listing 8.15. 

Listing 8.15 Overloading the unary minus operator through a member function

/*Beginning of A.h*/
class A
{
 int x;

 public:
 A(int = 0);
 A operator - ();
};
/*End of A.h*/



 Operator Overloading, Type Conversion, New Style Casts, and RTTI 225

/*Beginning of A.cpp*/
#include“A.h”
A::A(int p)
{
 x = p;
}
A A :: operator - ()
{
 return A(-x);
}
/*End of A.cpp*/

The operator can be overloaded by a friend function also (as shown in Listing 8.16).

Listing 8.16 Overloading the unary minus operator through a friend function

/*Beginning of A.h*/
class A
{
 int x;
 A(int = 0);

 public:
 friend A operator - (const A&);
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include“A.h”
A::A(int p)
{
 x = p;
}
A operator - (const A& AObj)
{
 return A(-AObj.x);
}
/*End of A.cpp*/

Overloading the unary plus operator is left as an exercise for the reader.

8.2.3  Overloading Arithmetic Operators

Arithmetic operators are binary operators. Therefore, the syntax for overloading them through 
member functions is as illustrated in Listing 8.17.

Listing 8.17 Syntax for overloading the arithmetic operators through member functions

class <class_name>
{
 public:
  //prototype
  <return_type> operator<arith_op_symbol>(<param_list>);  
};
//definition
<return_type> <class_name>:: operator<arith_op_symbol> 

(<param_list>) 
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{
 //function body
}

An object that will store the value of the right-hand side operand of the arithmetic operator 
will appear in the list of formal arguments. The left-hand side operand will be passed implicitly 
to the function since the operator-overloading function will be called with respect to it. The 
statement

Obj3 = Obj1 <arith_op_symbol> Obj2;

will be interpreted as 
Obj3 = Obj1.operator <arith_op_symbol> (Obj2);

If instead a friend function overloads the arithmetic operator, the syntax will be as shown 
in Listing 8.18.

Listing 8.18 Syntax for overloading the arithmetic operators through friend functions

class <class_name>
{
 public:
  //prototype
  friend <return_type> operator<arith_op_symbol> 

(<param_list>); 
};
//definition
<return_type> operator<arith_op_symbol>(<param_list>)  
{
 //function body
}

Objects that store the values of the left-hand side and the right-hand side operands of the 
arithmetic operator will appear in the list of formal arguments.
The statement

Obj3 = Obj1 <arith_op_symbol> Obj2;

will be  rst interpreted as 
Obj3 = Obj1.operator <arith_op_symbol> (Obj2);

Since, the arithmetic operator has been overloaded through a friend function, the  nal 
interpretation will be

Obj3 = operator <arith_op_symbol> (Obj1,Obj2);

Now let us try some concrete examples. Let us  nd out how to overload the addition 
operator for the class Distance with which we are already familiar. We would like the piece 
of code given in Listing 8.19 to compile successfully and its output to be 10 -2 .

Listing 8.19 Using an overloaded addition operator on objects of the class Distance

Distance d1(5,8),d2(4,6),d3;
d3=d1+d2;
cout<<d3.getFeet()<<“’-“<<d3.getInches()<<“’’\n”;
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For this, we must overload the addition operator for the class Distance by using either 
a member function or a friend function. 

Let us  rst look at a member function to overload the addition operator for the class 
Distance. In this case, the statement

d3 = d1 + d2;

will be interpreted as
d3 = d1.operator + (d2);

This obviously means that the function must return an object of the class Distance and 
must accept an object of the class Distance as a parameter. The actual code to implement 
the addition operator so that it produces the desired effect described above is given in 
Listing 8.20.

Listing 8.20 Overloading the addition operator for the class Distance through member 
function

/*Beginning of Distance.h*/
class Distance
{
  int iFeet;
  float fInches;
 public:
  Distance(const int=0, const float=0.0);
  void setFeet(const int=0);
  int getFeet() const;
  void setInches(const float=0.0);
  float getInches() const;
  //prototype
  Distance operator + (const Distance) const; 
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
//definition
Distance Distance::operator+(const Distance dd1) const
{
 return Distance(iFeet+dd1.iFeet, fInches+dd1.fInches);
}
/*
 definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

The code in Listing 8.20 works  ne if the right-hand side operand of the addition operator 
is an object of class Distance. However, if it is a  oat-type value, then the preceding function 
will not work.

d3=d1+4.5;

This is because the compiler will interpret this statement as follows:
d3=d1.operator+(4.5);

The  oat-type value 4.5 will be passed as a parameter to the operator-overloading function. 
Since the formal argument of the operator-overloading function is a Distance type object, 
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the compiler will throw an error. However, introducing a suitable constructor that converts 
from  oat to Distance solves the problem. See Listing 8.21.

Listing 8.21 Introducing a constructor in the class Distance to initialize its objects to 
fl oat-type values

/*Beginning of Distance.h*/
class Distance
{
 public:
  Distance(const float);
  /*
   rest of the class Distance
  */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance::Distance(const float p)
{
 iFeet=(int)p;
 fInches=(p-iFeet)*12;
}
/*
definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

However, one condition still remains to be tackled. What if the left-hand side operand is 
of  oat type? 

d2 = 4.75 + d1;

The solution is obvious. We replace the member function given in Listing 8.20 with a 
friend function. See Listing 8.22.

Listing 8.22 Overloading the addition operator for the class Distance through friend 
function

/*Beginning of Distance.h*/
class Distance
{
 int iFeet;
 float fInches;

 public:
 Distance(int, float);
 //no ‘Distance operator + (const Distance) const;’
 //prototype
 friend Distance operator + (const  Distance , const 

Distance);
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/



 Operator Overloading, Type Conversion, New Style Casts, and RTTI 229

/*Beginning of Distance.cpp*/
#include“Distance.h”
//definition
Distance operator + (const Distance dd1, const Distance dd2)
{
 return Distance(dd1.iFeet+dd2.iFeet, dd1.fInches+dd2.fInches);
}
/*
definitions of the rest of the functions of class
Distance
*/
/*End of Distance.cpp*/

The friend function given in Listing 8.22 tackles all three conditions as follows:
Both the left-hand side and the right-hand side operands are objects of class  Distance:
d3 = d1 + d2;

  The operator-overloading function is called straight away without any prior 
conversions.
The right-hand side operand is a float-type value while the left-hand side operand is an  
object of class Distance:
d2 = d1 + 4.75;

  The right-hand side operand is first converted into an object of the class Distance by 
the constructor and then the operator-overloading function is called.
The left-hand side operand is a float-type value while the right-hand side operand is an  
object of class Distance:
d2 = 4.75 + d1;

  The left-hand side operand is first converted into an object of the class Distance by 
the constructor and then the operator-overloading function is called.

We may wonder about the fourth possibility where both operands are  oat-type values. 
However, in that case the operator-overloading mechanism will not be invoked at all. Instead, 
the  oat-type values will simply get added to each other.
The statement

d1 = 4.75 + 3.25;

will turn into
d1 = 8.0;

However, there is no function in the class Distance that converts a  oat-type value to an 
object of class Distance. Surprisingly, in this case also, the constructor that takes a  oat-type 
value as a parameter and initializes the object with it will be called. This is despite the fact 
that the object is being created and initialized by two separate statements. Such a constructor 
is called an implicit constructor. 

Note that in Listing 8.22, the member function to overload the addition operator is 
replaced by a friend function. Having both a friend function and a member function will lead 
to ambiguity errors.

The compiler will be able to resolve the call
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d3 = d1 + d2;

by both
//member function
Distance Distance::operator + (const Distance);

and
//friend function
Distance operator + (const Distance, const Distance); 

This will naturally confuse the compiler.
We have now reached the end of our discussion on overloading the addition operator. 

The method of overloading the remaining arithmetic operators is left as an exercise for the 
reader.

8.2.4  Overloading Relational Operators

Relational operators are binary operators. Therefore, the syntax for overloading them through 
member functions is given in Listing 8.23.

Listing 8.23 Syntax for overloading the relational operators through member functions

class <class_name>
{
 public:
  //prototype
  <return_type> operator <rel_op_symbol> (<param_list>); 
};
//definition
<return_type> <class_name>: :operator <rel_op_symbol> 

(<param_list>) 
{
 //function body
}

An object that will store the value of the right-hand side operand of the relational operator 
will appear in the list of formal arguments. The left-hand side operand will be passed implicitly 
to the function since the operator-overloading function will be called with respect to it. The 
expression

Obj1 <rel_op_symbol> Obj2

will be interpreted as 
Obj1.operator <rel_op_symbol> (Obj2)

If instead, a friend function overloads the relational operator, the syntax will be as shown 
in Listing 8.24.

Listing 8.24 Syntax for overloading the relational operators through friend functions

class <class_name>
{
 public:
  //prototype
  friend <return_type>  operator <rel_op_symbol> 
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(<param_list>); 
};

//definition
<return_type> operator <rel_op_symbol> (<param_list>) 
{
 //function body
}

Objects that store the values of both the left-hand side and the right-hand side operands of 
the relational operator will appear in the list of formal arguments.
The expression

Obj1 <rel_op_symbol> Obj2

will  rst be interpreted as 
Obj1.operator <rel_op_symbol> (Obj2)

Since, the relational operator has been overloaded through a friend function, this 
interpretation will be

operator <rel_op_symbol> (Obj1,Obj2)

Now, let us  nd out how to overload the greater than relational operator for the class 
Distance. We would like the piece of code given in Listing 8.25 to compile successfully 
and its output to be “Greater than”.

Listing 8.25 Using an overloaded greater than operator for the class Distance

Distance d1(5,8),d2(4,6);
if(d1>d2)
 cout<<“Greater than”;
else
 cout<<“Less than”;

For this, we must overload the ‘greater than’ operator for the class Distance by using 
either a member function or a friend function. 

Let us  rst look at a member function to overload the greater than operator for the class 
Distance. In this case, the expression

d1>d2

will be interpreted as
d1.operator>(d2)

Obviously, the function must return a boolean-type value (true or false) and should accept 
an object of the class Distance as a parameter. The actual code to implement the greater 
than operator so that it produces the desired aforementioned effect is given in Listing 8.26.

Listing 8.26 Overloading the greater than operator for the class Distance through a 
member function

/*Beginning of Distance.h*/
enum bool{false, true};
class Distance
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{
  int iFeet;
  float fInches;
 public:
  Distance(const int=0, const float=0.0);
  bool operator > (const Distance) const; //prototype
  /*
   rest of the class Distance
  */
};
/*End of Distance.h*/
/*Beginning of Distance.cpp*/
#include“Distance.h”
//definition
bool Distance::operator > (const Distance dd1) const 
{
 if(iFeet*12+ fInches >dd1.iFeet*12 +dd1.fInches)
  return true;
 return false;
}
/*
 definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

The code in Listing 8.26 works  ne if the right-hand side operand of the greater-than 
operator is an object of class Distance. However, if it is a  oat-type value, then the expression 
will not compile.

d1>4.5 

This is because the compiler will interpret this expression as ollows:
d1.operator>(4.5); 

The  oat type value ‘4.5’ will be passed as a parameter to the operator-overloading function. 
Since the formal argument of the operator-overloading function is a Distance type object, the 
compiler will throw an error. As in the case of the addition operator, introducing a suitable 
constructor that converts from  oat to Distance solves the problem (see Listing 8.21).

Nevertheless, one condition still remains to be tackled. What will happen if the left-hand 
side operand is of  oat type?

 4.75 > d1

The solution is the same as in the case of the addition operator. We replace the member 
function given in Listing 8.26 with a friend function, as shown in Listing 8.27.

Listing 8.27 Overloading the greater-than operator for the class Distance through 
friend function

/*Beginning of Distance.h*/
class Distance
{
 int iFeet;
 float fInches;

 public:
 //no ‘bool operator > (const Distance) const;’
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 //prototype
 friend bool operator > (const  Distance , const

Distance);
 /*
 rest of the class Distance
 */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
//definition
bool operator > (const Distance dd1, const Distance dd2)
{
 if(dd1.iFeet*12+ dd1.fInches  > 
 dd2.iFeet*12+dd2.fInches)
 return true;
 return false;
}
/*
 definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

The friend function given in Listing 8.27 tackles all three conditions as follows:
Both the left-hand side and the right-hand side operands are objects of class  Distance:
d1 > d2

  The operator-overloading function is called straight away without any prior 
conversions.
The right-hand side operand is a float-type value while the left-hand side operand is an  
object of class Distance:
d1 > 4.75

  The right-hand side operand is first converted into an object of the class Distance by 
the constructor and then the operator-overloading function is called.
The left-hand side operand is a float-type value while the right-hand side operand is an  
object of class Distance:
4.75 > d1

  The left-hand side operand is first converted into an object of the class Distance by 
the constructor and then the operator-overloading function is called.

We may again wonder about the fourth possibility where both operands are  oat-type 
values. Again, in such a case the operator-overloading mechanism will not be invoked at all. 
Instead, the  oat-type values will simply get compared to each other.

The expression
4.75 > 3.25

will return true.
As in the case of the addition operator, the member function to overload the greater 

than operator is replaced by a friend function. Having both a friend function and a member 
function will lead to ambiguity errors.
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The compiler will be able to resolve the expression
d1 > d2

by both
//member function
bool Distance::operator > (const Distance);

and
//friend function
bool operator > (const Distance, const Distance); 

This will naturally confuse the compiler.
We have now reached the end of our discussion on overloading the greater than operator. 

The method of overloading the remaining relational operators is left as an exercise for the 
reader.

8.2.5  Overloading Assignment Operator

The assignment operator is a binary operator. If overloaded, it must be overloaded by a 
non-static member function only. Thus, the syntax for overloading the assignment operator 
is as shown in Listing 8.28.

Listing 8.28 Syntax for overloading the assignment operator

class <class_name>
{
 public:
  //prototype
  class_name & operator = (const class_name &); 
};
class_name & class_name :: operator = (const class_name & rhs) //definition
{
 //statements
}

We must keep in mind that, by default, the compiler generates the function to overload the 
assignment operator if the class designer does not provide one. This default function carries 
out a simple member-wise copy. See Listing 8.29.

Listing 8.29 Default assignment operator generated by the compiler

class A
{
 public:
  A& operator = (const A&);
};
A& A :: operator = (const A& rhs)
{
 *this = rhs;
 return *this;
}
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In most cases, this default assignment operator is suf  cient. However, there are cases where 
this default behaviour causes problems. We may recollect the section on copy constructors 
from Chapter 4. We discussed the ill effects of the default copy constructor for classes that 
acquire resources dynamically. Exactly the same problems arise due to the effect of the default 
assignment operator. The problems caused by the code

String s1, s2;
s1.setString(“abcd”);
s2 = s1;

if the assignment operator is not de  ned are the same as the problems that arise out of the 
code

String s1(“abcd”);
String s2 = s1;

if the copy constructor is not de  ned. As a result of the preceding assignment operation, 
the pointers of both ‘s1’ and ‘s2’ will end up pointing at the same memory block (see Figure 
8.1). From the study of the copy constructor, we are already conversant with the havoc this 
situation causes. The conclusion is that the assignment operator must be de  ned for a class 
for whom the copy constructor has been de  ned. A suitable de  nition of the assignment 
operator for the class String is given in Listing 8.30.

Listing 8.30 A practical example of overloading the assignment operator

/*Beginning of String.h*/
class String
{
 char * cStr;
 unsigned int len;

 public:
 String(const String&); //the copy constructor
 String& operator = (const String&);
 /*
 rest of the class String
 */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
#include<string.h>
String& String :: operator = (const String& ss)
{
 if(this != &ss)
 {
  if(cStr != NULL)
  {
   delete[] cStr;
   cStr = NULL;
   len = 0;
  }
  if(ss.cStr != NULL)
  {
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   len = ss.len;
   cStr = new char[len + 1];
   strcpy(cStr,ss.cStr);
  }
 }
 return *this;
}
/*
definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

Before understanding why the outermost ‘if ’ (if (this != &ss)) has been inserted at the top of 
the function and why the function returns the calling object by reference, we must appreciate 
that the de  nition of the assignment operator in Listing 8.30 convincingly handles all four 
possible cases as follows:

LHS.cStr  = NULL and RHS.cStr = NULL
  If LHS.cStr = NULL then the first inner ‘if ’ (if (cStr != NULL)) fails and the corresponding 

‘if ’ block does not execute. If RHS.cStr = NULL then the second inner ‘if ’ (if (ss.cStr != 
0)) fails and the corresponding ‘if ’ block does not execute. The entire function as a whole 
does not do anything except that it returns the calling object by reference. As expected 
and desired, the value of the left-hand side operand remains unchanged (as cStr = NULL 
and len = 0) because the corresponding values in the right-hand side object are NULL 
and 0, respectively.
LHS.cStr  = NULL and RHS.cStr != NULL

  If LHS.cStr = NULL then the first inner ‘if ’ (if (cStr != NULL)) fails and the corresponding 
‘if ’ block does not execute. If RHS.cStr != NULL then the second inner ‘if ’ (if (ss.cStr 
!= 0)) succeeds and the corresponding ‘if’ block executes. It does the following:

   correctly sets the value of the ‘len’ member of the calling object to be equal to the 
length of the memory block that will hold a copy of the string at which ‘cStr’ member 
of the right-hand side object is pointing,

   allocates just enough memory to hold a copy of the string at which the cStr member 
of the right-hand side object is pointing and makes the ‘cStr’ member of the left-hand 
side object point at it, and 

   copies the string at which the ‘cStr’ member of the right-hand side object is pointing 
into the memory block at which the ‘cStr’ member of the left-hand side object is 
pointing.

LHS.cStr  != NULL and RHS.cStr = NULL
  If LHS.cStr != NULL then the first inner ‘if ’ (if (cStr != NULL)) succeeds and the 

corresponding ‘if ’ block executes. It deallocates the memory block at which the ‘cStr’ 
member of the left-hand side object points, sets its value to NULL and sets the value 
of ‘len’ member of the left-hand side object to 0. If RHS.cStr = NULL then the second 
inner ‘if ’ (if (ss.cStr != 0)) fails and the corresponding ‘if ’ block does not execute. 
As expected and desired, if it was not already so, the value of the left-hand side operand 
gets nullified (cStr = NULL and len = 0) because the right-hand side operand is NULL.
LHS.cStr  != NULL and RHS.cStr != NULL

  If LHS.cStr != NULL then the first inner ‘if ’ (if (cStr != NULL)) succeeds and the 
corresponding ‘if ’ block executes. It deallocates the memory block at which the ‘cStr’ 
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member of the left-hand side object points, sets its value to NULL, and sets the value of 
‘len’ member of the left-hand side object to 0. If RHS.cStr != NULL then the second inner 
‘if ’ (if (ss.cStr != 0)) succeeds and the corresponding ‘if ’ block executes. It does the 
following:

   correctly sets the value of the ‘len’ member of the calling object to be equal to the 
length of the memory block that will hold a copy of the string at which ‘cStr’ member 
of the right-hand side object is pointing,

   allocates just enough memory to hold a copy of the string at which the ‘cStr’ member 
of the right-hand side object is pointing and makes the ‘cStr’ member of the left-hand 
side object point at it, and 

   copies the string at which the ‘cStr’ member of the right-hand side object is pointing 
into the memory block at which the ‘cStr’ member of the left-hand side object is 
pointing.

Now, let us understand why the preceding function to overload the assignment operator 
accepts the argument as a const reference and also returns the calling object by reference. 
The function accepts the argument as a const reference to test for and guard against self-
assignment. First, let us understand how this guard works. We shall then  nd out why this 
check is needed at all. 

We must take note of the following two facts:
Since the formal argument  ‘ss’ in the above function is a reference variable, its address 
is the same as the address of the right-hand side object. 
The  this pointer holds the address of the left-hand side object. 

Therefore, the ‘if ’ condition ‘this == &ss’ (address of the left-hand side object == address 
of the right-hand side object) tests to  nd out whether an object is being equated with itself 
or not. An object may get equated with itself in a variety of ways:

String s1;
s1 = s1;

or
String s1;
String &s2 = s1;
s2 = s1;

Each of these assignments will cause an execution of the function to overload the 
assignment operator. Moreover, in each of the cases, the ‘if ’ condition in that function will 
evaluate to true. For such circumstances, the main body of the operator-overloading function 
has been deliberately designed to remain unexecuted. Why is this necessary? The reason is 
simple—in case of a self-assignment, no action is necessary! This function to overload the 
assignment will work even if the outer ‘if ’ condition is removed and the reference variable 
that appears as the formal argument is replaced by an ordinary variable. See Listing 8.31.

Listing 8.31 Bypassing the check for self-assignment in the function to overload the 
assignment operator

/*Beginning of String.h*/
class String
{
 char * cStr;
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 unsigned int len;

 public:
 String(const String&); //the copy constructor
 String operator = (const String);
 /*
 rest of the class String
 */
};
/*End of String.h*/

/*Beginning of String.cpp*/
#include“String.h”
#include<string.h>
String String :: operator = (const String ss)
{
 if(cStr != NULL)
 {
  delete[] cStr;
  cStr = NULL;
  len = 0;
 }
 if(ss.cStr != 0)
 {
  len = ss.len;
  cStr = new char[len + 1];
  strcpy(cStr,ss.cStr);
 }
 return *this;
}
/*
definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

However, this function proves to be highly inef  cient in case of a self-assignment. Suppose 
the statement is:

s1 = s1;

This statement turns into
s1.operator=(s1);

‘s1’ is passed by value to the operator-overloading function. Therefore, the copy constructor 
is called with respect to the formal arguments ‘ss’ and ‘s1’ is passed as a parameter to it. A 
properly de  ned copy constructor ensures that ‘ss’ contains a separate copy of the same string 
which ‘s1’ contains. Nevertheless, the copy constructor is called. Now, when the actual function 
body executes, the string contained by ‘s1’ is  rst deallocated by the  rst ‘if ’ block and then 
reallocated with the same value for the string by the second ‘if ’ block. Although the net effect 
is that nothing happens to the actual value of the string contained by the object, the function 
is nevertheless inef  cient. The unnecessary deallocation and reallocation can and should be 
avoided. This has been done by the check for self-assignment given in Listing 8.30.

Next, let us understand why the function has been designed to return by reference. The 
reasons are similar to those that prompted us to pass by reference (to check for self-assignment). 
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The function has been designed to return by reference to prevent chaining operation from 
becoming inef  cient, that is, to ensure an ef  cient execution of statements such as the 
following ones.

String s1, s2, s3;
s3 = s2 = s1;

This statement is interpreted as
s3.operator = (s2.operator = (s1));

Suppose the statement is written as
s2 = s2 = s1;

Notice the self-assignment embedded in the preceding statement. First, ‘s2’ is equated with 
‘s1’. Then the value of ‘s2’ is returned. Suppose it is returned by value and not by reference. 
In this case, a copy of ‘s2’ is created in the stack. Although the copy has a separate copy of the 
same string value as ‘s2’ has, its address is nevertheless different from that of ‘s2’. Therefore, 
when the assignment operator executes for the second time, the reference variable ‘ss’ refers 
to this copy and not to ‘s2’ itself. Consequently, the test for self-assignment fails and again 
the unnecessary deallocation and reallocation operations occur.

There is another circumstance when the library programmer would like to overload the 
assignment operator. The library programmer may not want two objects to share even 
different copies of the same data. In the previous example, where the assignment operator 
has been overloaded for the class String, objects are able to share physically separate and 
different copies of the same string value. To satisfy the new requirement described earlier, 
the assignment operator should be de  ned as a  private member function (Listing 8.32).

Listing 8.32 Overloading the assignment operator through a private member function

class A
{
  A& operator = (const A&);
 public:
  /*
   rest of the class A
  */
};

Now, if the client programs call the assignment operator indirectly (object1 = object2) 
or directly (object1.operator=(object2)), the compiler raises an error and the assignment 
of one object to another is prevented. What will happen if one of the member functions or 
friend functions of class A calls the assignment operator? This compiler will certainly not 
complain and our safeguard will fail. For this, the library programmer can simply avoid 
de  ning the assignment operator. Now, if one of the member functions or friend functions 
of class A calls the assignment operator, the compiler does not complain, but the linker 
certainly does!

Let us understand another interesting thing about the assignment operator. For this, we 
should remember that a derived class object can be assigned to a base class object. However, 
the reverse is not true. See Listing 8.33. The reason is obvious. Suppose A is the base class 
and B is its derived class.
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Listing 8.33 Assigning a derived class object to a base class object and vice versa 

A A1;
B B1;
A1=B1; //OK
B1=A1; //ERROR!

The set of data members of the derived class is, or is reckoned to be, a proper superset 
of the set of data members of its base class. Thus, in the example in Listing 8.33, ‘B1’ will 
have its own copies of not only those data members that ‘A1’ has, but also some extra data 
members of its own. If the second assignment in Listing 8.33 works, then the data members 
of ‘B1’ that are common in name with those of ‘A1’ will get initialized. However, the data 
members that are exclusively in ‘B1’ will remain unchanged and may no longer match with 
rest of the data members of ‘B1’. Keeping this in mind, the compiler prevents the second 
assignment.

However, the class designer, if he/she so desires, may provide an assignment operator 
function to the derived class so that a base class object can be assigned to a derived class 
object. See Listing 8.34.

Listing 8.34 Enabling a base class object to be assigned to a derived class object

/*Beginning of B.h*/
#include“A.h”
class B : public A
{
 public:
  B& operator=(const A&); //to enable B1=A1;
  /*
   rest of the class B
  */
};
/*End of B.h*/

Statements to modify the values of the data members that are exclusive to the derived class 
can be provided in Listing 8.34.

Suppose there is no explicitly de  ned assignment operator-overloading function for the 
derived class that has a reference to the derived class object as a formal argument. Further, 
suppose there is an explicitly de  ned assignment operator-overloading function for the 
derived class that has a reference to the base class object as a formal argument. Even then 
the complier would generate an assignment operator that has a reference to the derived class 
object as a formal argument. For suppressing the generation of the implicit default assignment, 
the formal argument of the explicit operator must be of the same type as the class itself.

8.2.6  Overloading Insertion and Extraction Operators

The syntax for overloading the insertion operator is given in Listing 8.35.

Listing 8.35 Syntax for overloading the insertion operator

class A
{
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 public:
  //prototype
  friend ostream & operator << (ostream &, const A &); 
  /*
   rest of the class A
  */
};

//definition
ostream & operator << (ostream & dout, const A & AA) 
{
 /*
  rest of the function
 */ 
 return dout;
}

The statement
cout << A1; //A1 is an object of class A

is interpreted as
operator << (cout, A1);

The syntax for overloading the extraction operator is given in Listing 8.36.

Listing 8.36 Syntax for overloading the extraction operator

class A
{
 public:
  /*
   rest of the class A
  */
  //prototype
  friend istream & operator >> (istream &, A &);  
};
//definition
istream & operator >> (istream & din, A & AA)   
{
 /*
  rest of the function
 */ 
 return din;
}

The statement
cin >> A1; //A1 is an object of class A

is interpreted as
operator >> (cin, A1); 

The insertion and the extraction operators are overloaded by using friend functions 
for reasons explained in the beginning of this chapter. 
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We may observe that the objects of the classes istream and ostream are passed and returned 
by reference in the preceding functions. Let us understand why. The copy constructor and the 
assignment operator have been declared as protected members in both the classes istream 
and ostream. This prevents two objects from undesirably sharing even different copies of 
the same stream. Thus the statements

ostream dout = cout; //ERROR!
ostream dout;
dout = cout; //ERROR!
istream din = cin; //ERROR!
istream din;
din = cin; //ERROR!

will throw compile-time errors. This explains why the formal arguments are reference 
variables. 

The compulsion to return by reference is also explained similarly. If the object is returned by 
value, then a separate object is created in the stack. A call to the copy constructor is dispatched 
with respect to it and the object returned by the operator-overloading function is passed as a 
parameter. However, the copy constructor is a protected member! Therefore, the object must 
be returned by reference and not by value. But why should the object be returned at all. Can 
the function not return anything? Can the function not be as shown in Listing 8.37?

Listing 8.37 Overloading the insertion operator without returning

class A
{
 public:
  //prototype
  friend void operator << (ostream &, const A &); 
  /*
   rest of the class A
  */
};

//definition
void operator << (ostream & dout, const A & AA) 
{
 /*
  definition of the function
 */ 
}

The answer is yes. Nevertheless, how will we chain the operator?
cout << A1 << A2;

The preceding statement is interpreted as
operator << (operator << (cout, A1), A2);

If the inner nested call (whose return value becomes the  rst argument of the outer one) 
returns void instead of ostream &, how will the outer call execute?

The insertion and extraction operators are overloaded to achieve data abstraction—a 
complete independence between the interface and the implementation. The signatures and 
return types of member functions do not change even if the data members within the class 
do. Consequently, changes in the internal representation of data members of a class do not 
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force its client programs to change. Client programs need not be aware either of the internal 
representation of data inside the class whose objects they are operating or of any changes 
therein.

Let us understand this with the help of an example. Let us consider the class String and the 
String::getString() function. The function returns a char *. This is because the string is 
stored in a null terminated memory block of characters. Suppose this manner of representing 
the data changes for some reason. Maybe the string is no longer stored as a null terminated 
string. Maybe the string is stored in wide characters. These changes necessitate modi  cations 
in the client programs. For example, the following statement will no longer work:

cout<<s1.getString()<<endl;

The problem with having a function return the value to be inserted is that the function 
must return a value and that value must have a data type—the data type of the data member 
that is containing the object’s value. That is where the problem lies. If the data type changes, 
the existing clients are likely to fail.

However, if the insertion operator has been overloaded then the preceding statement 
can be rewritten as:

cout<<s1<<endl;

The responsibility of displaying the data is shifted to the object itself. The manner in which 
the data is stored in the object and any change therein will no longer affect the client.

Nevertheless, it seems that even if the client programs need not recompile, their object 
 les will have to be re-linked to the new libraries, which are created out of the changed class 

de  nition, to create updated executables. However, in the actual programming world, libraries 
are provided as dynamic link libraries (DLLs). They do not form a part of the executables 
physically. They exist separately. Whenever the corresponding executable executes, they are 
dynamically loaded into the memory during run time and if the called functions are contained 
within them, they are executed. Operator overloading, together with DLLs, enables a library 
programmer in achieving complete data abstraction.

Can the same effect be achieved by a friend function that has the same signature as the 
insertion operator? See Listing 8.38.

Listing 8.38 A friend function as an alternative to operator overloading

class String
{
 public:
  friend ostream& print(ostream&, const String&);
  /*
   rest of the class String
  */
};

Let us output one object of the class String by using Listing 8.38
print(cout,s1);

In case of two objects:
print(print(cout,s1),s2);

In case of three objects:
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print(print(print(cout,s1),s2),s3);

However, the statement
cout<<s1<<s2<<s3;

looks far more intuitive.
Moreover, what will happen in case of templates? Let us consider a common global template 

function that has calls to the insertion operator embedded within it. If we want to utilize such 
a function by passing an object of the class String as a parameter, the insertion operator 
would automatically get applied on the passed object. If the insertion operator has not been 
overloaded for the class String, compile-time error will arise. The narration and examples on 
function templates, from the chapter on templates (Chapter 10), clarify this point.

The extraction operators are overloaded for similar reasons as the insertion operators. 
The problem with String::setString() function is that the client needs to load the string 
that it wants to store in an object of the class String in a buffer and then pass it to a call to 
this function. The formal argument of this function is of the same type as the data member 
that is storing the string. Obviously, the buffer should also be of the same type. The problem 
with this function is that the buffer must be passed to the function and that array must have 
the same type as the data member in which the data is stored. If that type changes, the type 
of the buffer also needs to change. This forces the clients to change. But, if the extraction 
operator is overloaded for the class String, the following statement can be used instead of 
calls to the String::setString() function:

cin>>s1;

The responsibility of reading the data is shifted to the object itself. Again, the manner 
in which the data is stored in the object and any change therein will no longer affect the 
client.

The insertion and extraction operators are overloaded to achieve independence of the 
implementation (de  nitions of member functions) from the interface (prototypes of member 
functions).

8.2.7  Overloading new and delete Operators

The new and the delete operators can be overloaded for speci  c classes. The behaviour of 
these operators can be altered for operands of speci  c class types. 

If these operators are overloaded for a speci  c class, then the functions that overload them 
are called when the class type is passed as a parameter to these operators. Otherwise, the global 
new and delete operators are called. For example, if the new operator has been overloaded 
for a class X but not for a class Y, then the statement

X * XPtr = new X;

will call the function that overloads the new operator of class X. But the statement
Y * Yptr = new Y;

will call the global new operator. It is interesting to note that the user programs may not 
change if the functions to overload the new and the delete operators are inserted into a class 
or removed from it.

The syntax for overloading the new operator (for allocating memory for a single object) 
is as shown in Listing 8.39.
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Listing 8.39 Syntax for functions that overload the new operator and allocate memory for 
a single object

class <class_name>
{
 public:
  static void * operator new(size_t); //function 
      //prototype
  /*
   rest of the class
  */
};
void * <class_name> :: operator new ( size_t size)
    //function definition
{
 /*
  definition of the function
 */ 
}

The syntax for overloading the new operator (for allocating memory for an array of objects) 
is given in Listing 8.40.

Listing 8.40 Syntax for functions that overload the new operator and allocate memory 
for an array of objects

class <class_name>
{
 public:
  static void * operator new [](size_t); //function
      //prototype
  /*
   rest of the class
  */
};

void * <class_name>::operator new [] ( size_t size)     
    //function definition
{
 /*
  definition of the function
 */ 
}

The syntax for overloading the delete operator (for deallocating memory for a single 
object) is given in Listing 8.41.

Listing 8.41 Syntax for functions that overload the delete operator and deallocate 
memory for a single object

class <class_name>
{
 public:
  static void operator delete(void  *,size_t);

//function prototype
  /*
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   rest of the class
  */
};
void <class_name>::operator delete ( void * p, size_t size)

//function definition
{
 /*
  definition of the function
 */
}

The syntax for overloading the delete operator (for deallocating memory for an array of 
objects) is given in Listing 8.42.

Listing 8.42 Syntax for functions that overload the delete operator and deallocate 
memory for an array of objects

class <class_name>
{
 public:
  static void operator delete [] ( void *, size_t );

//function prototype
  /*
   rest of the class
  */
};
void <class_name>::operator delete []( void *, size_t size)

//function definition
{
 /*
  definition of the function
 */
}

The operator new function and the operator delete function must be static. However, their 
prototypes may or may not be pre  xed with the static keyword. Either way, the compiler 
treats these functions as static (reasons for this are explained later in this chapter). 

The return type of the operator new function must be of type void *. The value returned 
by this function is the address of the memory block it captures by calling the global new 
operator. The operator new function should take at least one formal argument of type size_t. 
As we will discover later, the operator new function can take more than one formal argument 
also. The size_t argument holds the amount of memory to be allocated in bytes. The code in 
Listing 8.43 illustrates this. It also illustrates how the global new operator is used from within 
the member new operator function to capture memory in the heap area and how a pointer to 
that memory is returned.

Listing 8.43 Overloading the new operator

/*Beginning of A.h*/
#include<new.h>
class A
{
 int x;

 public:
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 void * operator new(size_t);
 /*
 rest of the class A
 */
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include<iostream.h>
#include“A.h”
void * A :: operator new(size_t size)
{
 cout << sizeof(A) << endl;
 cout << size << endl;
 void * p = :: operator new(size);
 return p;
}
/*
definitions of the rest of the functions of class A
*/
/*End of A.cpp*/

/*Beginning of Test.cpp*/
#include<iostream.h>
#include“A.h”
void main()
{
 A * APtr = new A;
}
/*End of Test.cpp*/

Output
4
4

It is obvious that the class designer will overload the new operator only if he/she is not 
satis  ed with the default action of the new operator for his/her class and would therefore like 
to  ne-tune it. For this, he/she will insert the necessary code in the function to overload the 
new operator. Apart from this code, statements to allocate the required amount of memory 
(by calling the global new operator) and then to return the address of the captured memory 
block are also inserted in the function to overload the new operator. Otherwise, the requested 
memory will never get allocated.

The return type of the operator delete function must be void as it does not return anything. 
Its  rst formal argument should be of type void *. The address of the memory block being 
deleted is passed to it. The second formal argument of the operator delete function is of type 
size_t. The size of the memory block to be deleted is passed as a parameter to it. Listing 
8.44 illustrates all this. It also illustrates how the global delete operator should be used to 
deallocate the memory being targeted.

Listing 8.44 Overloading the delete operator

/*Beginning of A.h*/
#include<new.h>
class A
{
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 int x;

 public:
 void operator delete(void * const, const size_t);
 /*
 rest of the class A
 */
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include<iostream.h>
#include“A.h”
void A :: operator delete(void * const p, const size_t size)
{
 cout << p << endl;
 cout << sizeof(A) << endl;
 cout << size << endl;
 ::operator delete(p);
}
/*
definitions of the rest of the functions of class A
*/
/*End of A.cpp*/

/*Beginning of Test.cpp*/
#include<iostream.h>
#include“A.h”
void main()
{
 A * APtr = new A;
 cout << APtr << endl;
 delete APtr;
}
/*End of Test.cpp*/

Output
0xCCCCCC
0xCCCCCC
4
4

The reason for overloading the delete operator is similar to the reason for overloading the 
new operator. As in the case of the new operator, the class designer will overload the delete 
operator only if he/she is not satis  ed with the default action of the delete operator for his/
her class and would therefore like to  ne-tune it. For this, he/she will insert the necessary 
code in the function to overload the delete operator. Apart from this code, a statement to 
deallocate the required amount of memory (by calling the global delete operator) is also 
inserted in the function to overload the delete operator. Otherwise, the requested memory 
will never get deallocated.

The operator new function and the operator delete functions are static by default. This 
means that the compiler treats them as static functions whether the class designer uses 
the static keyword in their declarations or not. This is because the compiler places a call 
to the constructor immediately after the call to the new operator and a call to the destructor 
immediately before the call to the delete operator. The statement
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A * APtr = new A;

is translated by the compiler as
A * APtr = A::operator new(sizeof(A)); //nameless object
     //created
A::A(APtr); //constructor called for nameless object

While the statement
delete APtr;

is translated by the compiler as
A::~A(APtr);//destructor called for nameless object
A::operator delete(APtr, sizeof(A)); //nameless object 
     //destroyed

In order to understand the implications of these translations, let us consider a class that 
has a pointer as one of its data members. The class designer would certainly like to initialize 
this pointer to some valid value (say, NULL) in the constructor of the class.

class String
{
  char * cStr;
 public:
  String()
  {
   cStr = NULL;
   /*
     rest of the function String::String()
   */
  }
  /*
   rest of the class String
  */
};

However, if access is allowed to the private data members in the new operator function, 
the class designer may accidentally allocate some memory dynamically in the heap and make 
‘cStr’ point at it.

void * String::operator new(const size_t size)
{
 . . . .
 cStr = new char …
 . . . .
}

Now, when the constructor is called, a memory leak will occur because the value of 
‘cStr’ will be straight away nulli  ed without  rst deallocating the memory block at which it 
is pointing. We may suggest the following improvisation (Listing 8.45) in the code for the 
class constructor:

Listing 8.45 The new and delete operators are static

A::A()
{
 if(cStr != NULL)
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  delete [] cStr;
 cStr = NULL;
}

However, there is a serious drawback in this code. It presupposes that if ‘cStr’ is not NULL, 
then it is de  nitely pointing at a dynamically allocated memory block that has been captured 
earlier by using the new operator. This is true only if the objects are created by using the new 
operator. However, if objects are created in the normal fashion as follows:

A A1;

then the mere fact that the code in the constructor of the class String  nds that the value of 
‘cStr’ is not NULL does not mean that ‘cStr’ is de  nitely pointing at a valid block of memory. 
In fact, in this case, ‘cStr’ is simply a rogue pointer. Using the delete operator on such a 
rogue pointer will naturally lead to a run-time error. For such reasons, the C++ compiler 
prevents access to the non-static data members of the class by treating the operator new and 
operator delete functions as static. It is repeated that the compiler treats these functions as 
static whether we mention the static keyword in its declaration or not. We cannot force 
access to the non-static data members in the new and delete operator functions by avoiding 
the static keyword in their declarations.

It will not be out of context to mention once again that the constructor does not ‘construct’ 
the object, that is, it does not actually allocate memory for the object. It is merely a function 
that is called immediately after the memory for the object has actually been allocated. Its 
job is to ensure guaranteed initialization of all data members to proper values and to acquire 
any resources if necessary. Similarly, the destructor does not actually destroy the object in 
the sense that it does not actually deallocate the memory block occupied by the object. It is 
merely a function that is called immediately before the memory for the object is deallocated. 
Its job is to ensure a proper clean-up operation and to release all resources that were acquired 
during the lifetime of the object. The manner in which the compiler translates calls to the new 
and delete operators makes all this amply clear. Moreover, we may note how the global new 
and delete operators are called from the class member functions that overload them.

Values are passed to the constructor in the usual way even after the new operator is 
overloaded (Listing 8.46). 

Listing 8.46 Passing parameters to an overloaded new operator

A * APtr = new A(10,20);

is translated by the compiler as
A * APtr = A::operator new;
A::A(APtr,10,20);

We have already discussed, in brief, an overall reason for overloading the new and delete 
operators. The class designer overloads these operators if he/she considers their default action 
inappropriate or inef  cient for his/her class. Now, we will learn about the speci  c cases where 
overloading these operators becomes bene  cial. 

First, let us see how the new operator works. In order to deallocate the correct amount of 
memory, the delete operator must know how much memory the new operator has allocated. 
The compilers solve this problem by pre  xing the memory block allocated by the new operator 
with the amount of memory allocated. Therefore, as a result of the statement
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A * APtr = new A;

we get Part A and not Part B of Figure 8.2 (suppose objects of class A occupy 10 bytes)
This means that every time the new operator is called for the class A, a separate block to 

store the amount of memory allocated will also be allocated. This consumption of memory 
can be a real bottleneck in applications where memory is critical. 

Before we come to a solution to this problem, we should know that even if the ‘new’ 
operator allocates an array of objects, only one memory slice will be pre  xed to the allocated 
memory block in order to hold its size. Therefore, the amount of extra memory allocated 
remains the same whether one object is created in the heap or an array of objects is created 
in the heap. The class designer can take advantage of this fact.

The class designer can ensure that when the new operator is called for the  rst time, a 
memory to hold a large number of objects gets allocated and the address of the memory block 
gets returned. The address returned will obviously be the address of the  rst object in the 
pool. Thereafter, every call to the new operator will return the address of the next available 
block from the pool.

This solution is explained in Figures 8.3 and 8.4. Suppose A is a class whose objects 
occupy 10 bytes. The class designer reckons that the pool will hold  ve objects at a time. 
Therefore, the pool size will be equal to 50 bytes. Let us consider the piece of code given in 
Listing 8.47.

Listing 8.47 Calling an overloaded new operator

. . . .

. . . .
A * APtr01 = new A; //line 1
A * APtr02 = new A; //line 2
A * APtr03 = new A; //line 3
A * APtr04 = new A; //line 4
A * APtr05 = new A; //line 5
A * APtr06 = new A; //line 6
. . . .
. . . .

Figure 8.2 Wastage of memory due to the default action of the new operator
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A memory pool of 50 bytes (10 bytes for each of the  ve objects) will be created when 
line 1 executes (because the new operator is being called for the  rst time). When lines 2 to 5 
execute, addresses of adjacent blocks are returned sequentially from this pool. After the  rst 
line executes, the following scenario emerges.

The address of the allocated memory block is ‘101’ (say). Therefore, the value of ‘APtr01’ 
becomes ‘101’. The address block from ‘101’ to ‘150’ has been allocated as a result of the 
 rst line. As we can see, the size of the memory block (50) has been pre  xed to the memory 

block itself. The second line will not cause another memory block to be allocated. Instead, 
the address of the next segment from the memory pool having address ‘111’ will be returned. 
Therefore, the value of ‘APtr02’ will become ‘111’. The following scenario will emerge.

This process will continue until the sixth line is reached. After the  fth line  nishes 
execution, the memory pool will get exhausted. At this point of time, another memory pool 

Figure 8.3 Saving memory by overloading the new operator and modifying its behaviour

Figure 8.4 Accessing the memory pool allocated by the overloaded new operator



 Operator Overloading, Type Conversion, New Style Casts, and RTTI 253

of the same size (50 bytes—10 bytes for  ve objects each) will get allocated and the process 
will repeat itself. All this is the effect of the code the class designer has written in the function 
that overloads the new operator.

The actual code is given in Listing 8.48.

Listing 8.48 Overloading the new operator to improve effi ciency

/*Beginning of NewDeleteForMemorySave.h*/
#include<new.h>
class ClassNewDelete
{
 union
 {
  int x;
  ClassNewDelete * next;
 }v;
 static int NO_OF_OBJECTS;
 static ClassNewDelete * head;

 public:
 void setx(const int = 0);
 int getx() const;
 static void * operator new(const size_t);
};
/*End of NewDeleteForMemorySave.h*/

/*Beginning of NewDeleteForMemorySave.cpp*/
#include“NewDeleteForMemorySave.h”
int ClassNewDelete::NO_OF_OBJECTS = 5;
ClassNewDelete * ClassNewDelete::head;
int ClassNewDelete::getx() const
{
 return v.x;
}
void ClassNewDelete::setx(const int p)
{
 v.x=p;
}
void * ClassNewDelete::operator new(const size_t size)
{
 ClassNewDelete * temp,*p;
 temp = head;
 if(!temp)
 {
  temp = (ClassNewDelete *)::operator new(sizeof(class Class NewDelete)*NO_

OF_OBJECTS);
  for(p=temp;p!=&temp[NO_OF_OBJECTS-1];p++)
   p->v.next=p+1;
  p->v.next=0;
 }
 head=temp->v.next;
 return temp;
}
/*End of NewDeleteForMemorySave.cpp*/

/*Beginning of NewDeleteForMemorySaveMain.cpp*/
#include<iostream.h>
#include“NewDeleteForMemorySave.h”
void main()
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{
 ClassNewDelete * ClassNewDeletePtr01 = new ClassNewDelete;
 ClassNewDeletePtr01->setx(10);
 cout<<ClassNewDeletePtr01->getx()<<endl;
 ClassNewDelete * ClassNewDeletePtr02 = new ClassNewDelete;
 ClassNewDeletePtr02->setx(20);
 cout<<ClassNewDeletePtr02->getx()<<endl;
 ClassNewDelete * ClassNewDeletePtr03 = new ClassNewDelete;
 ClassNewDeletePtr03->setx(30);
 cout<<ClassNewDeletePtr03->getx()<<endl;
 ClassNewDelete * ClassNewDeletePtr04 = new ClassNewDelete;
 ClassNewDeletePtr04->setx(40);
 cout<<ClassNewDeletePtr04->getx()<<endl;
 ClassNewDelete * ClassNewDeletePtr05 = new ClassNewDelete;
 ClassNewDeletePtr05->setx(50);
 cout<<ClassNewDeletePtr05->getx()<<endl;
 ClassNewDelete * ClassNewDeletePtr06 = new ClassNewDelete;
 ClassNewDeletePtr06->setx(60);
 cout<<ClassNewDeletePtr06->getx()<<endl;
}
/*End of NewDeleteForMemorySaveMain.cpp*/

Output
10
20
30
40
50
60

When this program runs,  rst memory for the static data members of class ClassNew 
gets allocated. The static data member NO_OF_OBJECTS stores how many blocks (objects) 
will coexist in each pool. This data member should be static because it contains information 
for the set of objects and is therefore not particular to any speci  c object. The value of this 
data member should be chosen with care. A value that is too large will waste memory and 
thereby prove counterproductive. Large portions of the pool may remain unutilized for long 
periods or for the entire lifetime of the program. A very small value will necessitate a frequent 
allocation of more pools, thereby slowing down the program. If it is felt that large number 
of objects will exist simultaneously at any given point of time, the value of this variable 
should be kept large, otherwise this value should be small. In our case, we have initialized 
NO_OF_OBJECTS to ‘5’.

Next, memory for another static data member head is allocated. This pointer points at the 
next available block from the pool. This data member should also be static because it will 
function for the entire set of objects and will, therefore, not be a part of any particular object. 
Every call to the new operator returns the current value of this pointer and increments its value 
so that it then points at the next available block in the pool. This pointer has been initialized 
to NULL for reasons that will soon become apparent.

Now the main function begins execution. Memory for ClassNewPtr01 (four bytes since 
it is a pointer) is allocated. Currently, it has junk value. Next, the new operator function for 
class ClassNew is called. Two pointers, temp (for holding the current value of head so that 
head can move to the next block) and ‘p’ (for traversing through the pool) are created. The 
pointer temp is initialized to the current value of head. Now, the current value of the head 
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pointer is evaluated. During the  rst call to the new operator, its value will be NULL. We 
will soon see that its value will be NULL under a slightly different circumstance also. The 
test expression in the if construct succeeds. Therefore, the if block executes. Suf  cient 
memory for holding NO_OF_OBJECTS number of objects is allocated by calling the global 
new operator. The address of this pool (in other words the address of the  rst object or block 
in this pool) is then stored in the temp pointer. After this, the for loop makes the value of 
the next pointer of each object (except the last object) in the newly created pool equal to 
the address of the next object. After the loop terminates, the last statement of the if block 
makes the next pointer of the last object NULL. With this, the if block terminates. The 
second last statement of the function makes the head pointer point at the second object of the 
pool. The value of temp, that is, the address of the  rst object of the pool is then returned by 
the operator new function. Thus, ClassNewPtr01 now points at the  rst object of the pool. 
ClassNewPtr01 pointer now operates on the  rst object of the pool by calling the member 
functions of the class ClassNew.

Now let us look at the fourth statement of the main function in Listing 8.48. The operator 
new function of class ClassNew will be called for a second time. Again, temp pointer will be 
initialized to the current value of head which is not NULL (head is pointing at the second 
object of the pool). The if block will therefore be skipped. Only the last two statements 
execute. The head pointer is again incremented to point at the next object (in this case the 
third object) and the address of the object (in this case the second object) at which temp is 
currently pointing is returned. 

This process will continue till the operator new function of the class ClassNew is called for 
the  fth time (ClassNew * ClassNewPtr05 = new ClassNew). Although this time also the 
test expression of the if block will fail, the value of the head pointer will become NULL while 
the address of the  fth and last block in the pool will be returned. Now, when the operator 
new function is called for the sixth time, the test expression of the if block succeeds. A fresh 
pool is allocated and the process repeats itself.

In order to make the operator new function succeed, it is necessary to thread the memory 
by using the for loop. This necessitates the presence of the next pointer in each object of 
the pool. Wastage of memory because of this next pointer, which would otherwise defeat 
the very purpose for which the new operator was overloaded, is elegantly prevented by the 
use of a union.

Now let us see how we can overload the delete operator for the class ClassNew. The 
delete operator will be overloaded in a manner that will not actually deallocate the memory. 
Instead, the block at which the pointer, on whom the delete operator is being applied points, 
will be put back in the free list. When the new operator is called for the next time, the address 
of that block will be returned. Before looking at the actual code, let us see its effects.

Let us consider the case where the new operator is called once only. This solitary call is 
followed by a call to the delete operator (Listing 8.49).

Listing 8.49 Calling an overloaded delete operator

/*Beginning of NewDeleteForMemorySaveMain.cpp*/
#include<iostream.h>
#include“NewDeleteForMemorySave.h”
void main()
{
 ClassNewDelete * ClassNewDeletePtr01 = new ClassNewDelete;
 ClassNewDeletePtr01->setx(10);
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 cout<<ClassNewDeletePtr01->getx()<<endl;
 delete ClassNewDeletePtr01;
}
/*End of NewDeleteForMemorySaveMain.cpp*/

After the execution of the  rst statement, the scenario shown in Figure 8.5 emerges.
Memory for  ve objects gets allocated in a pool. The addresses of the blocks in the pool 

are displayed on the right, while the values of the next pointers embedded in each object is 
shown within the rectangles that represent the objects. The amount of memory allocated (20 
bytes for  ve objects @ 4 bytes per object) has been pre  xed to the pool. After the second 
statement executes, the following scenario shown in Figure 8.6 emerges.

The value of the member ‘x’ of the  rst block is modi  ed to ‘10’. The third statement 
does not alter the pool in any way. Now let us consider the fourth statement. The delete 
operator is being applied on the pointer ClassNewPtr01. It is pointing at the block with 
address ‘101’. The operator delete function will copy the current value of the head pointer 
to the next pointer of this block. Thus, the next pointer of the block will point at the head 
of the free list. Thereafter, the address of this block will be copied to the head pointer. As a 
result, the scenario shown in Figure 8.7 will emerge.

Now, if the ‘new’ operator is called, the address of the  rst block (101) will be returned 
by the operator new function. 

Question: For the following two circumstances, try to explain this action of the operator 
delete function.

Figure 8.5 Effect of the overloaded delete operator
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Figure 8.6 Effect of the overloaded delete operator

Figure 8.7 Effect of the overloaded delete operator
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The pointer to be deleted and the  head pointer are not pointing to blocks that are next 
to each.
There are two pools (say six objects). The  delete operator is applied on the sixth pointer 
and then on the fifth.

The actual code is given in Listing 8.50.

Listing 8.50 Overloading the delete operator

/*Beginning of NewDeleteForMemorySave.h*/
#include<new.h>
class ClassNewDelete
{
 union
 {
  int x;
  ClassNewDelete * next;
 }v;
 static int NO_OF_OBJECTS;
 static ClassNewDelete * head;

 public:
 void setx(const int = 0);
 int getx() const;
 static void * operator new(const size_t);
 static void operator delete(void *, const size_t);
};
/*End of NewDeleteForMemorySave.h*/

/*Beginning of NewDeleteForMemorySave.cpp*/
#include”NewDeleteForMemorySave.h”
int ClassNewDelete::NO_OF_OBJECTS = 5;
ClassNewDelete * ClassNewDelete::head;
int ClassNewDelete::getx() const
{
 return v.x;
}
void ClassNewDelete::setx(const int p)
{
 v.x=p;
}
void * ClassNewDelete::operator new(const size_t size)
{
 ClassNewDelete * temp,*p;
 temp = head;
 if(!temp)
 {
  temp = (ClassNewDelete *)::operator new(sizeof(class  ClassNewDelete)* 

NO_OF_OBJECTS);
  for(p=temp;p!=&temp[NO_OF_OBJECTS-1];p++)
   p->v.next=p+1;
  p->v.next=0;
 }
 head=temp->v.next;
 return temp;
}
void ClassNewDelete::operator delete(void * p, const size_t size)
{
 ClassNewDelete * temp = (ClassNewDelete *)p;
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 temp->v.next = head;
 head = temp;
}
/*End of NewDeleteForMemorySave.cpp*/

/*Beginning of NewDeleteForMemorySaveMain.cpp*/
#include<iostream.h>
#include“NewDeleteForMemorySave.h”
void main()
{
 ClassNewDelete * ClassNewDeletePtr01 = new ClassNewDelete;
 ClassNewDeletePtr01->setx(10);
 cout<<ClassNewDeletePtr01->getx()<<endl;
 delete ClassNewDeletePtr01;
}
/*End of NewDeleteForMemorySaveMain.cpp*/

Let us end this discussion with a word of caution. Operator new and operator delete functions 
get inherited. This gives rise to bugs. We will soon see why this is so. However,  rst let us 
prove that this inheritance does occur. See Listing 8.51.

Listing 8.51 Operator new and delete functions get inherited

/*Beginning of A.h*/
#include<new.h>
class A
{
 int x;

 public:
 void setx(const int = 0);
 int getx() const;
 static void * operator new(const size_t);
 static void operator delete(void * const, const size_t);
};
/*End of A.h*/

/*Beginning of A.cpp*/
#include“A.h”
#include<iostream.h>
void A::setx(const int p)
{
 x=p;
}
int A::getx() const
{
 return x;
}
void * A::operator new(const size_t size)
{
 cout<<“operator new of class A called\n”;
}
void A::operator delete(void * const p, const size_t size)
{
 cout<<“operator delete of class A called\n”;
}
/*End of A.cpp*/

/*Beginning of B.h*/
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#include“A.h”
class B : public A
{
 int y;

 public:
 void sety(const int = 0);
 int gety() const;
};
/*End of B.h*/

/*Beginning of B.cpp*/
#include“B.h”
void B::sety(const int q)
{
 y=q;
}
int B::gety() const
{
 return y;
}
/*End of B.cpp*/

/*Beginning of Main.cpp*/
#include<iostream.h>
#include“B.h”
void main()
{
 B * BPtr01 = new B;
 delete BPtr01;
}
/*End of Main.cpp*/

Output
operator new of class A called
operator delete of class A called

Thus, when the new and delete operators are called by passing the derived class type as 
parameter, it is seen that the new and delete operator functions of the base class are called. 
How can this be a problem?

The problem this inheritance causes is due to the fact that when the new operator is called, 
the head pointer points at the wrong place. Let us consider the overloaded new operator in 
Listing 8.48. Suppose the new operator is overloaded for class A in Listing 8.51 in the same 
way it is overloaded for class ClassNew in Listing 8.48. After the new operator executes for 
the  rst time, the head pointer points four bytes away from the  rst byte of the pool even if the 
derived class type is passed as a parameter to the new operator. Thus, when the new operator 
is called for the second time, the address of the  fth byte is returned and not the ninth byte. 
The address of the ninth object is desired because an object of the class B will occupy eight 
bytes—four for ‘x’ and four for ‘y’. The problem that arises because of this can be clearly 
understood from Listing 8.52.

Listing 8.52 Undesirable effect of operator new and delete functions getting inherited

/*Beginning of Main.cpp*/
#include“B.h”
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void main()
{
 B * BPtr01 = new B;
 B * BPtr02 = new B;
 BPtr02->setx(20);
 cout<<BPtr02->getx()<<endl;
 BPtr01->sety(10)<<endl;
 cout<<BPtr02->getx()<<endl;
}
/*End of Main.cpp*/

Output
20
10

After the  rst two statements in Listing 8.52 execute, ‘BPtr01’ will point at the  rst byte 
of the memory pool and ‘BPtr02’ will point at the  fth. The third statement writes 20 into 
the block of bytes from the  fth byte to the eighth byte. However, the  fth statement writes 
‘10’ into the same memory block! 

In order to neutralize this effect of inheritance, the size of memory block being targeted 
for allocation or deallocation should be compared with the size of the class for which the 
operator is being overloaded. If these two do not match, then the global new or the global 
delete operator should be called (see Listing 8.53).

Listing 8.53 Preventing the ill effects of the new and delete operators getting inherited

void * A::operator new(const size_t size)
{
 if(size != sizeof(class A)) //true if derived class type 
    //passed as parameter
  return ::operator new(size);
 //rest of the code
}

void A::operator delete(void * const p, const size_t size)
{
 if(size != sizeof(class A)) //true if derived class type 
    //passed as parameter
 {
  ::operator delete(p);
  return;
 }
 //rest of the code
}

8.2.8  Overloading Subscript Operator

The syntax for overloading the subscript operator is shown in Listing 8.54.

Listing 8.54 Syntax for overloading the subscript operator

class <class_name>
{
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 public:
  <return_type> operator[](<param_list>); //prototype
};
//definition
<return_type> <class_name> :: operator[](<param_list>) 
{
 //statements
}

The function that overloads the subscript operator must be a non-static member of the 
class. 

Let us overload the subscript operator for the class String. We will de  ne the operator 
so that it returns the character stored in the position that is passed as a parameter to it. See 
Listing 8.55.

Listing 8.55 Overloading the subscript operator for the class String

/*Beginning of String.h*/
class String
{
 public:
  char& operator[](const int);
  /*
   rest of the class String
  */
};
/*End of String.h*/
/*Beginning of String.cpp*/
#include“String.h”
char& String :: operator[] (const int p)
{
 if(p<0 || p>len-1)
  throw “Invalid Subscript”;
 return cStr[p];
}
/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/
/*Beginning of StringMain.cpp*/
#include“String.h”
#include<iostream.h>
void main()
{
 String s(“abcd”);
 cout<<s.getString()<<endl;
 cout<<s[0]<<endl;
 s[1]=’x’;
 cout<<s.getString()<<endl;
}
/*Beginning of StringMain.cpp*/

Output
abcd
a
abxd
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For the time being, we must ignore the throw statement (explained in Chapter 11) within 
the String :: operator[]() function. The de  nition of the String :: operator[]() 
function is quite simple. It  nds out whether the subscript passed is within the acceptable 
limits or not. If not, it throws an exception. As we will learn in Chapter 11, throwing 
exceptions is a very effective and ef  cient way of error handling. If the subscript passed is 
within acceptable limits, the function returns the corresponding element by reference. Why 
is the element returned by reference? This is because the subscript operator might be used 
on the left-hand side of the assignment operator also. Under such circumstances, returning 
by reference causes the returned element to be assigned to the value passed on the right-hand 
side of the assignment operator.

s[1]=’x’; //assign ‘x’ to the second character in the 
    //string held by s.

However, the de  nition of the String :: operator[]() function has a  aw. Suppose 
there is a constant object.

const String s(“abcd”);

Now, if we call the subscript operator with respect to the constant object, the compiler 
correctly throws a compile-time error. 

cout << s[1] << endl; //ERROR!

This is because the String :: operator[]() function is not a constant function and 
therefore cannot be called with respect to the constant object. Let us therefore introduce another 
constant function that overloads the subscript operator in the same way as the non-constant 
function. See Listing 8.56.

Listing 8.56 Overloading the subscript operators for constant objects

/*Beginning of String.h*/
class String
{
 public:
  char& operator[](const int);   //for non-constant 
      //objects
  char& operator[](const int) const; //for constant 
      //objects
  /*
   rest of the class String
  */
};
/*End of String.h*/
/*Beginning of String.cpp*/
#include“String.h”
char& String :: operator[] (const int p) //for non-constant 
      //objects
{
 if(p<0 || p>len-1)
  throw “Invalid Subscript”;
 return cStr[p];
}
char& String :: operator[] (const int p) const//for 
    //constant objects
{
 if(p<0 || p>len-1)
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  throw “Invalid Subscript”;
 return cStr[p];
}
/*
 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

Now, there are separate functions to overload the subscript operator for constant and 
non-constant objects. However, the constant function given in Listing 8.56 is still imperfect. 
Let us consider the following piece of code.

const String s(“abcd”);
s[1]=’x’; //unacceptable, but the compiler doesn’t 
    //complain!

The second statement in the code calls the constant function with respect to the constant 
object. The function returns the selected element by reference and the value of the selected 
element gets set to ‘x’. Although the compiler will compile, our perception of a constant tells 
us that the second statement above should not compile. In order to ensure this, we must make 
the constant String :: operator[]() function return the value as a constant reference and 
not as a non-constant reference. See Listing 8.57.

Listing 8.57 Returning a constant value for constant objects

/*Beginning of String.h*/
class String
{
 public:
  char& operator[](const int); //for non-constant 
    //objects
  const char& operator[](const int) const;  //for constant 
       //objects
  /*
   rest of the class String
  */
};
/*End of String.h*/
/*Beginning of String.cpp*/
#include“String.h”
char& String :: operator[] (const int p) //for non-constant 
      //objects
{
 if(p<0 || p>len-1)
  throw “Invalid Subscript”;
 return cStr[p];
}
const char& String :: operator[] (const int p) const
     //for constant 
     //objects
{
 if(p<0 || p>len-1)
  throw “Invalid Subscript”;
 return cStr[p];
}
/*
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 definitions of the rest of the functions of class String
*/
/*End of String.cpp*/

As desired, statements such as
s[1]=’x’;

will no longer compile if the calling object ‘s’ is a constant.
We conclude this section on overloading the subscript operator with one last piece of 

information. The formal argument of the function that overloads the subscript operator can 
be of any type. In the example given in Listing 8.57, the formal argument was of type const 
int. However, it can be of any type, such as char,  oat, double. See Listing 8.58.

Listing 8.58 Formal argument of the function that overloads the subscript operator can 
be of any type

/*Beginning of String.h*/
class String
{
 public:
  int operator[](const char);   //for non-constant
      //objects
  int operator[](const char) const;  //for constant
      //objects
  /*
   rest of the class String
  */
};
/*End of String.h*/

8.2.9  Overloading Pointer-to-member (->) Operator (Smart Pointer)

Overloading the pointer-to-member (->) operator is slightly complicated. First, let us 
understand that it is a post  x unary operator. If it is overloaded as follows:

class A
{
 public:
  B * operator->();
  /*
   rest of the class A
  */
};

then the second statement that follows
A p;
p->abc();

translates to
(p.operator->())->abc();

Obviously, ‘abc()’ must be a member of class B.
The pointer-to-member (->) operator can be overloaded to create  smart pointers. 
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Smart pointers, unlike the ordinary unsmart pointers, can be designed to inevitably point 
at valid objects. In contrast, the ordinary unsmart pointers have to be explicitly initialized by 
the client. Consequently, they have to be tested for validity before every use. Smart pointers 
are class objects. Let us create a class whose objects will behave like pointers to the class 
String. See Listing 8.59.

Listing 8.59 A class of smart pointers

/*Beginning of StrPtr.h*/
#include“String.h”
class StrPtr
{
  String * p;
 public:
  StrPtr(String&); //the one and only one constructor
};
/*End of StrPtr.h*/
/*Beginning of StrPtr.cpp*/
#include“StrPtr.h”
StrPtr::StrPtr(String& ss)
{
 p=&ss;
}
/*End of StrPtr.cpp*/

We must notice how a zero-argument constructor has been deliberately left out from the 
class de  nition in Listing 8.59. This forces clients to invariably pass an object of the class 
String as a parameter whenever they create objects of the class StrPtr. Therefore, the 
embedded pointer of the class StrPtr always points at an object of the class String. The 
client can create an object of the class in Listing 8.59 as follows:

String s1(“abc”);
StrPtr p(s1);

To mimic a pointer completely, objects of the class StrPtr should be capable of being 
used as follows:

p->setString(“def”);

For this, the pointer-to-member operator (->) needs to be overloaded for the class StrPtr. 
This can be done as shown in Listing 8.60.

Listing 8.60 Overloading the pointer-to-member operator for smart pointers

/*Beginning of StrPtr.h*/
#include“String.h”
class StrPtr
{
  String * p;
 public:
  StrPtr(String&); //the one and only one constructor
  String * operator->(); //the overloaded operator
};
/*End of StrPtr.h*/
/*Beginning of StrPtr.cpp*/
#include“StrPtr.h”
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StrPtr::StrPtr(String& ss)
{
 p=&ss;
}
String * StrPtr::operator->()
{
 return p;
}
/*End of StrPtr.cpp*/

Contrast objects of the class StrPtr with ordinary pointers that point at objects of the 
class String. In case of ordinary pointers, there is no guarantee that the pointer being used 
is pointing at a valid block of memory.

void f1(String * p)
{
 p->setString(“abc”); //No way to check the validity of p
}

On the other hand, an attempt to similarly initialize an object of the class StrPtr results 
in a compile-time error.

StrPtr p; //ERROR: no zero-argument constructor

Therefore, in case of smart pointers, there is a guarantee that the pointer being used is 
pointing at a valid block of memory.

void f1(StrPtr p)
{
 p->setString(“abc”); //p is definitely valid
}

 8.3   Type Conversion 

In this section, we shall be dealing with techniques for converting variables from one type to 
another. Conversion of one type to another is achieved by the use of constructors and type-
conversion functions.

8.3.1  Basic Type to Class Type

Conversion for basic type to class type is achieved by introducing a suitable constructor in 
the class. Suppose it is desired that the following statement should make d1.iFeet equal to 
‘1’ and d1.fInches equal to ‘9’.

Distance d1 = 1.75; //OR Distance d1(1.75);

A value (‘1.75’) which is of a basic type (  oat) needs to be converted into an object of the 
class Distance. A suitable constructor in the class Distance can carry out this conversion 
(Listing 8.61).

Listing 8.61 Using constructors for converting a value of basic type to class type

/*Beginning of Distance.h*/
class Distance
{
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  int iFeet;
  float fInches;
 public:
  Distance(const float);
  /*
   rest of the class Distance
  */
};
/*End of Distance.h*/

/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance::Distance(const float p)
{
 iFeet=(int)p;
 fInches=(p-iFeet)*12;
}
/*
 definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

An ambiguity arises when two classes convert from the same type. Let us consider the 
two classes shown in Listing 8.62.

Listing 8.62 Ambiguity due to conversion from the same type

/*Beginning of ambiguity.cpp*/
class A
{
 public:
 A(int);
};

class B
{
 public:
 B(int);
};

void f(A);
void f(B);//function f() is overloaded

void g()
{
 f(1); //ERROR: ambiguous call – f(X(1)) or f(Y(1))?
}
/*End of ambiguity.cpp*/

The ambiguity in Listing 8.62 can be resolved by an explicit-type conversion:
f(X(1)); //OK 
f(Y(1)); //OK

8.3.2  Class Type to Basic Type

Type-conversion operators achieve the conversion of class type to basic type. The syntax for 
the type-conversion functions is shown in Listing 8.63.
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Listing 8.63 Syntax for converting values from class type to basic type

class <class_name>
{
 public:
  operator <type_name> (); //prototype
  /*
   rest of the class
  */
};
<class_name> :: operator <type_name> () //definition
{
 /*
  definition of the function
 */
}

We must notice that the return type is not mentioned. Type-conversion operators resemble 
constructors in this respect. Let us introduce a function in the class Distance for converting 
its objects into  oat type variables. In particular, we would like the value of the variable ‘x’ 
in the following piece of code to become ‘1.75’.

Distance d1(1,9);
float x=d1;

The code to achieve this transformation is as given in Listing 8.64. 

Listing 8.64 Converting from class type to basic type

/*Beginning of Distance.h*/
class Distance
{
  int iFeet;
  float fInches;
 public:
  operator float();
  /*
   rest of the class Distance
  */
};
/*End of Distance.h*/
/*Beginning of Distance.cpp*/
#include“Distance.h”
Distance::operator float()
{
 return (iFeet+(fInches/12));
}
/*
 definitions of the rest of the functions of class Distance
*/
/*End of Distance.cpp*/

8.3.3  Class Type to Class Type

Conversion of one class-type value to another can be achieved by both a constructor and a 
type-conversion operator. Which of these two techniques will be used depends upon the class 
that is being provided the capability to convert the value. 
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If it is desired that the object on the left side of the assignment should have the ability, 
then a suitable constructor should be introduced in that object’s class. If it is desired that the 
object on the right side of the assignment should have the ability, then a suitable conversion 
operator should be introduced in that object’s class. See Listing 8.65.

Listing 8.65 Assigning an object of one class to another

/*Beginning of ClassToClass01.cpp*/
class A {};
class B {};
void f()
{
 A A1;
 B B1;
 A1=B1; //either class A should have a constructor or
  //class B should have a type conversion operator
}
/*End of ClassToClass01.cpp*/

The constructor can be introduced in class A as shown in Listing 8.66.

Listing 8.66 Using a constructor for converting from one class type to another

/*Beginning of ClassToClass02.cpp*/
class A
{
 public:
 A(const B&); //prototype
};
A::A(const B& b) //definition
{
 /*
  definition of the function
 */
}
/*End of ClassToClass02.cpp*/

The type conversion operator can be introduced in class B as shown in Listing 8.67.

Listing 8.67 Using a type conversion operator for converting from one class type to 
another

/*Beginning of ClassToClass03.cpp*/
class B
{
 public:
 operator A(); //prototype
};
B::operator A() //definition
{
 /*
 definition of the function
 */
}
/*End of ClassToClass03.cpp*/
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Care should be taken to ensure that only one of these two techniques is used on the pair of 
classes. If both are used together, the compiler throws an ambiguity error when the objects of 
the two classes are equated. This is because both the techniques can carry out the conversion 
and the compiler is not in a position to choose between the two.

 8.4  New Style Casts and the typeid Operator 

C++ provides a new set of operators for typecasting. These operators can be used instead 
of the highly error-prone method of typecasting provided by the C language. An example 
of the traditional method of typecasting was mentioned in the section titled ‘Explicit address 
manipulation’ in Chapter 2.

The new style casts are safe to use and can be easily located in source codes by using the 
search facility of the editor in which the source code has been opened. The latter bene  t is 
especially useful in large source codes.

Ideally, a program should not need casts at all. However, there are various programming 
patterns where they are necessary. In order to meet this need, new style casts should be used 
instead of the old traditional style.

There are four new style cast operators.
 dynamic_cast

 static_cast

 reinterpret_cast

 const_cast

Each of the these operators converts the object, which is passed to it as an operand, in a 
pre-de  ned way and returns the converted object. The general syntax of these operators is:

operator <type>(value whose type is to be converted)

The typeid operator is similar to the dynamic_cast operator.

8.4.1  dynamic_cast Operator

Run time type information (RTTI) enables us to  nd the type of a value and to compare 
the types of two values. C++ provides dynamic_cast operator and the typeid operator for 
implementing RTTI. 

The dynamic_cast operator is used to determine whether a particular base class pointer 
points at an object of the base class or an object of one of the derived classes at run time. It 
is also used to determine whether a base class reference refers to an object of the base class 
or an object of one of the derived classes at run time.

We know from Chapter 5 that a base class pointer can point at an object of the derived 
class while a derived class pointer cannot point at an object of the base class.

Let A be a base class and B be its derived class.
A A1, * APtr;
B B1, * BPtr;
APtr=&B1; //line 1: OK: Can convert from B* to A*
BPtr=&A1; //line 2: ERROR: Cannot convert from A* to B*
BPtr=APtr; //line 3: ERROR: Cannot convert from A* to B*
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However, in the  rst line of this piece of code, ‘APtr’ (a base class pointer) points at ‘B1’ 
(an object of the derived class). In this particular case, there should be no harm in assigning 
the value of the base class pointer to the derived class pointer (see the third line). After all, 
the base class pointer contains the address of a derived class object and a derived class pointer 
can certainly point at an object of the derived class. 

However, a statement that assigns the value of a base class pointer to a derived class pointer 
(line 3) will not compile. The compiler has no way of knowing the type of the object whose 
address would get assigned to the base class pointer at run time. 

As we already know, a pointer usually appears as function argument. Usually, it is not a 
local variable. The library programmer puts the prototypes of his/her functions, including the 
ones that have pointers as formal arguments, in header  les and their compiled de  nitions in 
libraries. These functions are called from functions that are de  ned in application codes or 
in other library codes. In case the particular library function being called has a pointer as a 
formal argument, the application source code passes a suitable address to it. This address can 
be the address of a base class object or a derived class object. However, within the de  nition 
of the library function, there is no way of determining the exact type of the object whose 
address will be passed to it. Therefore, a line within the library function such as the third line 
in the foregoing code snippet will not compile.

However, the library programmer may need to assign the value of a base class pointer to 
a derived class pointer if the base class pointer points at an object of the same derived class. 
The dynamic_cast operator enables us to know the type of the object whose address gets 
assigned to a base class pointer during run time.

Please refer to the general syntax of the new style cast operators given at the beginning 
of this section. If ‘type’ is a derived class pointer type and the value to be converted is the 
address of an object of the same derived class, then the dynamic_cast operator returns a 
pointer to the object. Else, it returns NULL. Remember that for the dynamic_cast operator 
to operate, the base class should be polymorphic in nature, that is, it should have at least one 
virtual function. Listing 8.68 shows an illustrative program follows.

Listing 8.68 Using the dynamic_cast operator with pointers

/*Beginning of dynamicCast01.cpp*/
#include<iostream.h>
class A
{
 public:
 virtual void f1()
 {
  cout<<“A::f1() called\n”;
 }
};
class B : public A
{
 public:
 void f2()
 {
  cout<<“B::f2() called\n”;
 }
};
class C : public A
{
 public:
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 void f3()
 {
  cout<<“C::f3() called\n”;
 }
};
void main()
{
 A * APtr;
 B B1, * BPtr;
 C C1;
 APtr=&B1; //APtr points at an object of class B.
 BPtr=dynamic_cast<B*>(APtr); //APtr is actually of
    //type B* and type is
    //also B*. Hence, cast
    //returns address of B1.
 if(BPtr!=NULL) //BPtr is not NULL. It contains the
    //address of B1.
  BPtr->f2();
 else
  cout<<“Invalid cast\n”;
 APtr=&C1; //APtr points at an object of class C.
 BPtr=dynamic_cast<B*>(APtr); //APtr is actually of
    //type C* and type is
    //B*. Hence, cast
    //returns NULL.
 if(BPtr!=NULL) //BPtr is NULL.
  BPtr->f2();
 else
  cout<<“Invalid cast\n”;
}
/*End of dynamicCast01.cpp*/

Output
B::f(2) called
Invalid cast

The process implemented in Listing 8.68 for safely casting a pointer of base class type to a 
pointer of derived class type is known as safe downcasting. This process enables us to access 
those features of the derived class that are not present in the base class.

If the dynamic_cast operator is used with references, it throws an exception of type  Bad_
cast where it would have otherwise returned NULL, had pointers been used. Understanding 
this requires preliminary knowledge of exception handling. Therefore, Listing 8.69 can be 
read after reading Chapter 11 on exception handling.

Listing 8.69 Using the dynamic_cast operator with references

/*Beginning of dynamicCast02.cpp*/
#include<iostream.h>
#include<typeinfo.h>
class A
{
 public:
 virtual void f1()
 {
  cout<<“A::f1() called\n”;
 }
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};
class B : public A
{
 public: 
 void f2() 
 {
  cout<<“B::f2() called\n”;
 }
};
class C : public A
{
 public:
 void f3()
 {
  cout<<“C::f3() called\n”;
 }
};
void main()
{
 B BObj;
 C CObj;
 A & ARef1=BObj; //ARef1 is a reference to an object of
    //class B
 try
 {
  B & BRef1=dynamic_cast<B &>(ARef1);
    //ARef1 is actually of type B& and
    //type is also B&. Hence, cast
    //returns reference to BObj.
  BRef1.f2();
 }
 catch(bad_cast)
 {
  cout<<“Invalid cast\n”;
 }
 A & ARef2=CObj; //ARef2 is a reference to an object of
    //class C
 try
 {
  B & BRef2=dynamic_cast<B &>(ARef2); 
    //ARef2 is actually of type C& and
    //type is B&. Hence, cast
    //throws an exception of type
    //bad_cast.
  BRef2.f2();
 }
 catch(bad_cast)
 {
  cout<<“Invalid cast\n”;
 }
}
/*End of dynamicCast02.cpp*/

Output
B::f2() called 
Invalid cast
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8.4.2  static_cast Operator

The only difference between the static_cast operator and the dynamic_cast operator is that 
while the dynamic_cast operator carries out a run-time check to ensure a valid conversion 
(it returns NULL or throws an exception of type Bad_cast), the static_cast operator caries 
out no such check. See Listing 8.70.

Listing 8.70 The static_cast operator

/*Beginning of typeid.cpp*/
#include<iostream.h>
#include<typeinfo.h>
void main()
{
 char c;
 int i;
 float f;
 double d;
 cout<<typeid(c).name()<<endl;
 cout<<typeid(i).name()<<endl;
 cout<<typeid(f).name()<<endl;
 cout<<typeid(d).name()<<endl;
 if(typeid(i)==typeid(1.1))   //comparing int with float
  cout<<“i is of the same type as 1.1”;
 else
  cout<<“i is not of the same type as 1.1”;
}
/*End of typeid.cpp*/

Output
B::setx() called
1
B::setx() called
2

The  rst conversion by the static_cast operator in Listing 8.70 is correct. ‘BPtr’ (of 
type ‘B*’) points at ‘B1’ (of type B).

However, the second conversion by the static_cast operator is incorrect. ‘BPtr’ (of type 
‘B*’) points at ‘C1’ (of type C). Since ‘BPtr’ is of type ‘B*’, the member functions of class 
B alone can be called with respect to it.

It is interesting to note what happens when ‘BPtr’ points at ‘C1’ and the B::setx() function 
is called for it. The statement 

x=p;

in B::setx() function simply stores the value ‘2’ in the  rst four bytes of the object at which 
‘BPtr’ points. This is because ‘B::x’ is an integer-type value and is the only data member of 
class B. However, these four bytes are occupied by ‘C1.y’! Therefore, the output of the last 
statement in Listing 8.70 is ‘2’. The error-prone nature of the static_cast operator is quite 
evident from this.

However, this does not mean that the old style cast (‘B*’) is as good as the static_cast 
operator. The static_cast operator is still a better choice because it can be easily located in 
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the source codes by searching for the string static_cast. Bugs suspected due to an invalid-
type conversion can thus be easily found out.

8.4.3  reinterpret_cast Operator

Just like the old style cast, the reinterpret_cast operator allows us to cast one type to 
another. 

Suppose ‘cPtr’ is a character pointer and ‘vPtr’ is a void pointer. If the value of ‘vPtr’ is 
to be assigned to ‘cPtr’, it needs to be typecast  rst.

cPtr=(char *)vPtr;

However, the preceding statement can be rewritten as
cPtr=reinterpret_cast<char *>(vPtr);

The compiler generates errors or warnings if casts are absent from conversion statements 
where a value of one type is being converted to an incompatible type. These errors and 
warnings can be switched off by inserting cast operators. Inserting a cast operator is a way 
of expressing our awareness and acceptance of the potential consequences to the compiler 
and the reader.

As in the case of static_cast, the reinterpret_cast operator seems to be an unnecessary 
substitute of the old style cast. Again, as in the case of static_cast, the visibility of the 
new style cast is considerably greater than the old style cast, which makes tracking down a 
rogue old style cast much easier.

8.4.4  const_cast Operator

The const_cast operator serves the same purpose as the  mutable keyword that has been 
explained in Chapter 2. The const_cast operator is used to cast away the constness of a 
pointer.

We may recall the following listing on mutable data members from Chapter 2 (Listing 
2.21).

/*Beginning of mutable.h*/
class A
{
  int x; //non-mutable data member
  mutable int y; //mutable data member
 public:
  void abc() const //a constant member function
  {
   x++; //ERROR: cannot modify a non-mutable data 
    //member in a constant member function
   y++; //OK: can modify a mutable data member in a 
    //constant member function
  }
  void def()  //a non-constant member function
  {
   x++; //OK: can modify a non-mutable data member 
    //in a non-constant member function
   y++; //OK: can modify a mutable data member in a 
    //non-constant member function
  }
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};
/*End of mutable.h*/

Listing 2.21 can be rewritten by using the const_cast operator instead of declaring the 
desired data member as mutable as shown in Listing 8.71.

Listing 8.71 The const_cast operator 

/*Beginning of const_cast.h*/
class A
{
  int x; //non-mutable data member
  int y; //non-mutable data member
 public:
  void abc() const //a constant member function
  {
   x++; //ERROR: cannot modify a non-constant data 
    //member in a constant member function
   const_cast<A*>(this)->y++; 
    //OK: can modify a non-mutable data member 
    //in a constant member function by casting 
    //away the constness of the this pointer
  }
  void def() //a non-constant member function
  {
   x++; //OK: can modify a non-mutable data member 
    //in a non-constant member function
   y++; //OK: can modify a mutable data member in a 
    //non-constant member function
  }
};
/*End of const_cast.h*/

The compiler treats the this pointer as a constant pointer inside non-constant functions. 
However, it treats the this pointer as a constant pointer to a constant inside constant functions. 
In the A::abc() function in Listing 8.71, the constness of the this pointer is cast away. This 
enables us to modify a non-mutable data member in a constant function. 

We may note that by passing ‘A*’ to the const_cast operator in the A::abc() function 
in Listing 8.71, the this pointer was made an ordinary pointer that is neither a constant nor 
supposed to point at a constant object. We could have very well passed ‘A * const’ instead 
and still ensured a successful compilation of the statement. This is because passing ‘A * 
const’ to the const_cast operator would have rendered the this pointer a constant pointer 
that points at a non-const object.

The motive for using the const_cast operator is the same as the motive for using the 
mutable keyword. 

As in the case of the other new style cast operators, using the const_cast operator indicates 
the programmer’s awareness and acceptance of the possible negative consequences of its 
use.

8.4.5  typeid Operator

Apart from the dynamic_cast operator, C++ provides the typeid operator for implementing 
RTTI (typeid is a keyword in C++). The typeid operator takes a value as its only parameter. 
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It returns the type of the passed value as a reference to an object of class type_info. The 
class type_info is de  ned in the header  le typeinfo.h.

Two objects of the class type_info can be compared by using the ‘equality’ operator. The 
name of the type of value passed to the typeid operator can also be determined by using the 
type_info::name() function.

Values of fundamental data types, pointers to values of fundamental data types, and 
references to values of fundamental data types can be passed to the typeid operator. See 
Listing 8.72.

Listing 8.72 The typeid operator

/*Beginning of typeid.cpp*/
#include<typeinfo.h>
void main()
{
 char c;
 int i;
 float f;
 double d;

 cout<<typeid(c).name()<<endl;
 cout<<typeid(i).name()<<endl;
 cout<<typeid(f).name()<<endl;
 cout<<typeid(d).name()<<endl;

if(typeid(i)==typeid(1.1)) //comparing int with float
  cout<<“i is of the same type as 1.1”;
 else
  cout<<“i is not of the same type as 1.1”;
}
/*End of typeid.cpp*/

Output
char
int
float
double
i is not of the same type as 1.1

Class objects, pointers to class objects, or references to class objects can also be passed 
to the typeid operator. However, for the typeid operator to work correctly, the class whose 
object, pointer, or reference is passed to it should be polymorphic in nature. Otherwise, either 
of the following will happen depending upon the compiler and its settings:

The compiler would issue a compile-time warning against the statement in which the  
typeid operator has been called. The OS would throw a run-time error.
If a dereferenced base class pointer that points at a derived class object is passed as a  
parameter to the typeid operator, the typeid operator would not be able to determine 
the type of the object pointed at by the pointer. It would instead return the base class 
type as the type of the object pointed at by the base class pointer, which of course is 
undesirable.
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class A {};  //no virtual function
class B : public A {};
B B1;
A * APtr=&B1;
cout<<typeid(*APtr).name()<<endl;  //prints: class A

Had the base class A in the preceding code contained at least one virtual function, the last 
cout statement would have printed class B as desired.

Given that class A does have a virtual function, what would the following tests evaluate 
to?

typeid(APtr) == typeid(A*) //comparing pointers
typeid(*APtr) == typeid(A) //comparing objects pointed 
    //at

The  rst of these test expressions would return true while the second one would return 
false. In the  rst case, the types of the pointers, and not the types of the objects being pointed 
at, are being compared. Since ‘APtr’ is of type ‘A*’, the  rst statement returns true. In the 
second case, the types of the objects being pointed at, and not the types of the pointers, are 
being compared. Since ‘*APtr’ is of type B, the second statement returns false. 

In C++, the library programmer can provide existing 
operators with additional capabilities to operate upon 
objects of his/her class. This is known as operator 
overloading.

Operators can be overloaded by functions having 
their names composed of the keyword operator and 
the symbol of the operator being overloaded. These 
functions may be member functions or friend functions. 
Friend functions are used when the objects of the class 
for which the operator is being overloaded invariably 
appear on the right-hand side of the operator.

Operators are overloaded to
 Neutralize the effect of the functions that are 

generated by default (the assignment’ operator).
 To make the operation of the operators more 

ef  cient (the new and delete operators).
 To provide capabilities to the class so that its objects 

can be used in prede  ned templates.
The rules for operator overloading are as follows:

 New operators cannot be created.
 Meaning of existing operators cannot be changed.
 The following operators cannot be overloaded:

 :: (scope resolution)

 . (member selection)
 .* (member selection through pointer to member)
 ?: (conditional operator)
 sizeof (  nding the size of values and types)
 typeid (  nding the type of object pointed at)

 The following operators can be overloaded using 
member functions alone: 

 = (Assignment operator)
 () (Function operator)
 [] (Subscripting operator)
 -> (Pointer-to-member access operator)

 Number of arguments that an existing operator takes 
cannot be changed.
The following type conversions can be carried out:

 basic type to class type (by using a constructor),
 class type to basic type (by using a type conversion 

operator), and
 class type to class type (by using either a constructor 

or a type conversion operator).
The C++ language provides a new set of operators 

for typecasting. These operators can be used instead of 
the highly error-prone method of typecasting provided 
by the C language.

Summary
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The new style casts are safe to use and can be easily 
located in source codes by using the search facility of 
the editor in which the source code has been opened. 
The latter bene  t is especially useful in large source 
codes.

There are four new style cast operators.
 dynamic_cast
 static_cast
 reinterpret_cast
 const_cast

Each of the new style cast operators converts the 
object that is passed to it as an operand in its own way 
and returns the converted object. The general syntax 
of these operators is:

operator <type>(value whose type is to be 
converted)

The dynamic_cast operator is used to determine 
whether a particular base class pointer points at an 
object of the base class or an object of one of the 
derived classes at run time. It is also used to determine 
whether a base class reference refers to an object of 
the base class or an object of one of the derived classes 
at run time.

In the general syntax, if type is a derived class 
pointer type and the value to be converted is the 
address of an object of the same derived class, then the 
dynamic_cast operator returns a pointer to the object. 
Else, it returns NULL. For the dynamic_cast operator 
to operate, the base class should be polymorphic 
in nature, that is, it should have at least one virtual 
function.

The dynamic_cast operator enables us to access 
those features of the derived class that are not present 
in the base class.

If the dynamic_cast  operator is used with 
references, it throws an exception of type Bad_cast 
where it would have otherwise returned NULL had 
pointers been used.

While the dynamic_cast operator carries out 
a run-time check to ensure a valid conversion, the 
static_cast operator caries out no such check.

The reinterpret_cast operator allows us to cast 
one type to another.

New style casts are de  nitely a better choice than 
the old C-style casts. Visibility of the new style cast 
is considerably greater than the old style cast, which 
makes tracking down a rogue old style cast much 
easier.

The const_cast operator serves the same purpose 
as the mutable keyword. The const_cast operator is 
used to cast away the constness of a pointer.

Apart from the dynamic_cast operator, C++ 
provides the typeid operator for implementing RTTI 
(typeid is a keyword in C++). The typeid operator 
takes a value as its only parameter. It returns the type 
of the passed value as a reference to an object of class 
type_info. The class type_info is de  ned in the 
header  le typeinfo.h.

Two objects of the class type_info can be 
compared by using the equality operator. The name 
of the type of value passed to the typeid operator can 
also be determined by using the type_info::name() 
function.

Class objects, pointers to class objects, or references 
to class objects can be passed to the typeid operator. 
However, for the typeid operator to work correctly, 
the class whose object, pointer, or reference is passed 
to it should be polymorphic in nature.

Key Terms 
operator overloading
syntax for operator overloading
using friend functions for operator overloading
need for operator overloading
type conversions
– basic type of class type
– class type of basic type

– class type of class type
dynamic_cast operator
static_cast operator
reinterpret_cast operator
const_cast operator
typeid operator
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Exercises
 1. What is operator overloading?
 2. How are operators overloaded?
 3. How does the compiler interpret the operator-

overloading functions?
 4. Why are operators overloaded?
 5. Under what circumstances does overloading using 

friend functions become necessary?
 6. What is the difference between the functions that 

overload the increment operator in pre  x and in 
post  x formats?

 7. Why does the function to overload the assignment 
operator receive and return by reference?

 8. Explain why the function to overload the assignment 
operator for the class String returns *this and not 
the passed parameter.

 9. Why is the assignment operator function not 
inherited? Explain. Why does the compiler generate 
the assignment operator for a class, for which the 
class designer has not de  ned one, and even if its base 
class already has the assignment operator function 
implicitly or explicitly de  ned?

 10. Why are objects of the classes istream and ostream 
passed and returned by reference in the functions to 
overload the insertion and extraction operators?

 11. How is data abstraction achieved by overloading the 
insertion and extraction operators?

 12. Why does the function to overload the subscript 
operator return by reference?

 13. What special precautions should be taken while 
overloading the subscript operator for constant 
objects?

 14. What are smart pointers? How are they created?
 15. How are values of fundamental data types converted 

to class objects?
 16. What ambiguity can arise in the following code? 

How can it be resolved?
class A
{
 public:
  A(int);
};
class B
{
 public:
  B(int);
};
void f(A);
void f(B);//function f() is overloaded
void g()
{
 f(1);
}

 17. How can a class object be converted to a value of 
fundamental data type?

 18. What are the two ways of converting an object of one 
class to an object of another? Describe the ambiguity 
that can arise if both methods are applied.

 19. What is the advantage of using the new style casts 
over the old C-style casts?

 20. Name the four new style casts provided by C++.
 21. What is RTTI? What are its practical uses?
 22. What is the difference between the static_cast and 

dynamic_cast operators?
 23. What does the const_cast operator do? Which 

keyword of C++ can it be used instead of?
 24. How can the typeid operator be used to  nd the type 

of a particular object?
 25. State true or false.

(a) New operators can be created by operator 
overloading.

(b) The sizeof operator cannot be overloaded.
(c) Number of arguments that an existing 

operator takes cannot be changed by operator 
overloading.

(d) Functions to overload the new and delete 
operators are always static.

(e) The dynamic_cast operator throws an error if 
the type of the pointer that is passed to it does 
not match the type that is passed to it.

 26. Modify the code given under the section on 
overloading the new operator to save memory when 
a large number of objects are created. Instead of 
having a union with the next pointer as a member, 
put another static data member that will count how 
many objects from the pool have had their addresses 
returned. When this counter becomes equal to the 
number of objects, another pool can be allocated. 
Compare the two codes for ef  ciency in memory 
usage.

 27. Overload the equality operator (==) for the class 
Distance.

 28. Overload the insertion and extraction operators 
for the class String.

 29. Overload the subscript operator for the class 
String so that it takes a character as a parameter 
and returns the position of its  rst occurrence. The 
output of the following code should be two.

String s1(“abcd”);
cout << s1[‘c’] << endl;

 30. Overload the addition operator for the class String 
so that it adds two strings and returns the result. 
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The output of the following piece of code should be 
‘abcxyz’.

String s1(“abc”),s2(“xyz”),s3;
s3 = s1 + s2;
cout << s3 << endl;

 31. Overload the addition operator for the class 
String so that the output of the following code is 
‘c’. Introduce suitable checks for array bounds.

String s1(“abcd”);
cout << s1 + 2 << endl;

 Moreover, the output of the following piece of code 
should be ‘abxd’.

String s1(“abcd”);
s1 + 2 = ‘x’;
cout << s1 << endl;

32. Overload the bitwise exclusive OR operator (^) for 
the class Distance. The overloading function should 
return true if the value of either of the two objects 
that are passed to the operator is not equal to zero. 
For the rest of the cases, the function should return 
false.

 33. Refer to the section on overloading the pointer-to-
member operator. The operator has been overloaded 
so that objects of the class StrPtr can mimic the 
behaviour of pointers. In order to complete the 
picture, overload the dereferencing operator so that 

the following statements become equivalent (‘p’ is 
an object of the class StrPtr).

p->setString(“abcd”);
*p.setString(“abcd”);

 34. Define two classes Polar and Rectangle to 
represent points in the polar and rectangle systems. 
Introduce a conversion operator function in class 
Polar to convert its objects into objects of class 
Rectangle and a conversion operator function in 
class Rectangle to convert its objects into objects 
of class Polar.

 35. Consider the following class hierarchy:

class A
{
 public:
  virtual void f1() {}
};
class B : public A {};
class C : public B {}

  In which of the following would the dynamic_cast 
operator return zero?

(a) A * APtr = new C;
 C * CPtr = dynamic_cast<C *>(APtr);

(b) A * APtr = new B;
 C * CPtr = dynamic_cast<C *>(APtr);
(c) A * APtr = new C;
 B * BPtr = dynamic_cast<B *>(APtr);



Data Structures9
This data structures are very useful in the world of programming. They are nothing but 
special ways in which various pieces of data are arranged and related to each other during run 
time. We are already familiar with one data structure—arrays. However, arrays have various 
limitations.

You can create various data structures like lists, trees, etc. Lists are a superior substitute 
for arrays. Data structures are used to solve a number of programming problems. They can 
be created using various programming languages, including C++. This chapter explains and 
illustrates the most important data structures—linked lists and trees. It also includes full  edged 
programs that can be used to create various data structures.

O 
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 9.1  Introduction

As mentioned in the overview,  data structures are special ways in which pieces of data are 
arranged and related to each other during run-time. These pieces of data can be integers, 
character constants, strings, etc. Each such piece of data is embedded in a node that contains 
the piece of data itself along with one or more pointers that either point at other similar nodes 
or have null values.

We will soon learn to create such nodes ourselves. Let us  rst look at the following  gure 
that clearly illustrates two such nodes. Each node contains an integer and a pointer. The value 
of the integer in the  rst node is 10, while the value of the integer in the second node is 20. 
The pointer in the  rst node points at the second node. Let us assume that the address of the 
second node is 1296. Therefore, the value of the pointer in the  rst node will be 1296. The 
pointer in the second node has NULL value. This means that the pointer in the second node 
is not pointing at any other node. This also means that the second node is the last node in the 
list (Figure 9.1).

Figure 9.1 Nodes of a data structure

20
NULL

10
1296

We are already familiar with one data structure—arrays. However, arrays have the limitation 
that their size cannot be modi  ed during run time. Whatever size the programmer speci  es 
for the array while writing the program remains  xed during run time. But, during run time, 
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the user of the program may  nd that the size of the array is not enough to hold the number 
of elements that he/she needs to create.

Conversely, if the programmer speci  es a very large value for the size of the array, the 
user may not use all of the elements of the array during run time. But the array, when it gets 
created during run time, occupies the space for all of its elements even if they are not in use. 
This will lead to wastage of space especially if each element is a large object. Also, we cannot 
easily insert a new element at the beginning or in the middle of the array.

Linked lists (a type of data structure) are a good substitute for arrays. They do not have 
the above limitations of arrays. But, in order to use them and other data structures, you need 
to either write special programs to create and then use them or use libraries that can create 
them for your use.

Arrays have one more limitation. They have a linear structure. One element of the array 
is followed by only one element. But our programming need may require us to link one 
element to two or more elements. Trees (another type of data structure) enable us to ful  ll 
this programming need. Again, just like linked lists, you need to either write special programs 
to create and then use trees or use libraries that can create them for your use.

Data structures can be used to solve a number of programming problems like creating 
database software, engineering problems, etc. They can be created using various programming 
languages, including C++. We can create various data structures by utilizing classes, functions, 
pointers, the new and the delete operators, etc.

 9.2   Linked Lists

Linked lists are linear data structures. They consist of nodes that are linked to each other in 
a linear fashion. Each node in a linked list is an object that is made up of two parts. The  rst 
part is the data carried by the node. The second part of each node is a pointer that carries the 
address of the next node in the list. This is how a node is linked to the next node.

Each node in a single linked list is linked to exactly one more node (Note that we are 
talking about single linked lists here. We also have double linked lists where one node is 
connected to two nodes—the next node in the list and the previous node in the list.). Figure 
9.2 illustrates a sample structure of a single linked list.

This  gure shows an example of a single linked list of four nodes. In order to understand 
the  gure, keep in mind that each of the four boxes represents a node and the address of each 
node has been mentioned above the box that represents it. The address of the  rst node is 
6327, that of the second node is 9243, that of the third node is 743, and that of the last node 
is 8138. Let us ignore the box labelled head for the time being.

In this speci  c case, each node carries an integer as the data. But, we can embed any type 
of data there. The data carried by the  rst node is 4327, that by the second node is 55, that 
by the third node is 3281, and that by the last node is 21629.

As we know, the second part of each node is a pointer that carries the address of the next 
node in the list. Therefore, the address stored inside the  rst node is 9243 (which is the address 
of the second node), the address stored inside the second node is 743 (which is the address 
of the third node), and the address stored inside the third node is 8138 (which is the address 
of the fourth node). The address stored inside the fourth node is NULL (which indicates that 
it is not connected to any other node and is therefore the last node).

We also need to store the address of the  rst node. This is where the head pointer comes 
into play. It stores the address of the  rst node (6327 in this case).
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We will soon learn how to create single linked lists of our own. Let us  rst view some 
 gures that depict the process of appending nodes to single linked lists. Let us see how a 

node is appended to the list we have seen above. After that we will see how the  rst node 
gets appended to an empty list.

Let us assume that a node with value 41 has been appended to the list shown in Figure 
9.2. Figure 9.3 shows how the list will look now. As you can see, the address of this new 
node is 9351, and this node now stores the address NULL. That is, it now becomes the last 
node in the list.

Figure 9.4 shows a linked list with no nodes.
The head pointer contains NULL value because there are no nodes in the list (remember 

that the head pointer is supposed to point at the  rst node). Let us see how the linked list will 
look like when a node is added to this empty list. Let us assume that a node with value 5287 
has been appended to the list above. Figure 9.5 shows how the list will look now.

You must be very eager to look at the code that can enable you to create linked lists. Let 
us look at the code now.

We will study two classes:
A node class whose objects will be the actual nodes of the single linked list. 
A single linked list class each object of which will represent a separate linked list of  
nodes.

Please keep in mind that you will have to study a number of building blocks before you 
are able to write an executable program that creates linked lists. Have patience!

We will  rst look at a header  le that contains the declaration of the node class. Like the 
other class declarations, this class declaration will also include the declarations of the data 

Figure 9.2 A sample linked list

Address of current node

Address of next nodehead

current: 6327

val: 4327
next: 9243

Node data

current: 9243

val: 55
next: 743

current: 743

current: 8138

val: 3281
next: 8138

21629
NULL

6327
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head

6327

4327
9243

9243

55
743

743

8138

9351

3281
8138

21629
9351

41
NULL

6327

Figure 9.3 Addition of a node to a linked list

Figure 9.4 An empty linked list

head

NULL

Figure 9.5 A node added to an empty list

head
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members and member functions of the class. Thereafter, we will look at the implementation 
 le that contains the de  nitions of the member functions of the node class.

We will next look at a header  le that contains the declaration of the single linked list 
class. Like the other class declarations, this class declaration will also include the declarations 
of the data members and member functions of the class. Thereafter, we will look at the 
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implementation  le that contains the de  nitions of the member functions of the single linked 
list class.

You will  nd a lot of comments in the program listings. Please ensure that you read them. 
Reading these comments will make it much easier to understand the code.

Let us start with studying the header  le that contains a declaration of the node class 
(Listing 9.1).

Listing 9.1 Header fi le containing declaration of single linked list node class

/*
 Beginning of SingleLinkedListNode.h
*/
#ifndef _SINGLE_LINKED_LIST_NODE_H
#define _SINGLE_LINKED_LIST_NODE_H

/*
 The node class.
 Each instance of this class will be a node in the single 
 linked list.
*/
class SingleLinkedListNode
{
 private:
 /*
  The data part of the nodes.
 */
 int val;
 /*
  The next pointer will exist in each node and will 
  point at the next node (or be NULL)
 */
 SingleLinkedListNode * next;

 public:
 /*
  The constructor of the node class. It will nullify 
  the next pointer by default.
 */
 SingleLinkedListNode();
 /*
  This function sets the value of the data part.
 */
 void setVal(int);
 /*
  This function returns the data part.
 */
 int getVal();
 /*
  This function sets the value of the next pointer.
 */
 void setNext(SingleLinkedListNode *);
 /*
  This function returns the value of the next pointer.
 */
 SingleLinkedListNode * getNext();
 /*
  The destructor of the class.
 */
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 ~SingleLinkedListNode();
};

#endif
/*
 End of SingleLinkedListNode.h
*/

The header  le begins with a comment that speci  es the name of the header  le and also 
announces the beginning of the  le. This is followed by pre-processor directives that prevent 
multiple inclusion of the header  le in other source codes (you must have studied this in your 
C language course). This is followed by the declaration of the node class. The second last 
line of the header  le contains the end of the pre-process block and the last line contains a 
comment that marks the end of the header  le.

Each object of the SingleLinkedListNode class will be a node in the linked list. This 
class has an integer data member, val, which is supposed to contain the value of the node. 
In this example, each node has this integer-type variable as the data member. However, the 
data part can be of any type, including class objects.

The other data member of the node class is next. It is a pointer. It is obvious from its 
de  nition that next is supposed to point at another node, i.e. another object of the same class. 
In our program, it will either be made to point at the next node in the linked list or will be 
assigned the NULL value (to indicate that the current node is the last node).

Let us look at the implementation  le (Listing 9.2) that contains the de  nitions of the 
member functions of the node class. It is important to clearly understand these functions 
because they serve as the building blocks for the functions of the single linked list class.

Listing 9.2 Implementation fi le of the linked list node class
/*
 Beginning of SingleLinkedListNode.cpp
*/
#include “SingleLinkedListNode.h”

/*
 The constructor of the node class. It will nullify the 
 next pointer by default.
*/
SingleLinkedListNode::SingleLinkedListNode()
{
 /*Set the data part to zero.*/
 val = 0;
 /*Set the next pointer to NULL.*/
 next = NULL;
}

/*
 This function sets the value of the data part.
*/
void SingleLinkedListNode::setVal(int pVal)
{
 /*
  Set the value of the data part to the value of the 
  passed parameter.
 */
 val = pVal;
}
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/*
 This function returns the data part.
*/
int SingleLinkedListNode::getVal()
{
 /*
  Return the value of the data part.
 */
 return val;
}

/*
 This function sets the value of the next pointer.
*/
void SingleLinkedListNode::setNext(SingleLinkedListNode * pNext)
{
 /*
  Set the value of the next pointer to the value of the 
  passed parameter.
 */
 next = pNext;
}

/*
 This function returns the value of the next pointer.
*/
SingleLinkedListNode * SingleLinkedListNode::getNext()
{
 /*
  Return the value of the next pointer.
 */
 return next;
}

/*
 The destructor of the class.
*/
SingleLinkedListNode::~SingleLinkedListNode()
{
 /*
  Right now the destructor has empty definition.
  But we may like to insert some statements here later.
 */
}
/*
 End of SingleLinkedListNode.cpp
*/

The implementation  le begins with a comment that speci  es the name of the implementation 
 le and also announces the beginning of the  le. This is followed by an include directive that 

includes the header  le, which contains the declaration of the node class. This is followed by 
the de  nitions of the member functions of the node class. The last line contains a comment 
that marks the end of the implementation  le.

To understand the implementation, let us start with the constructor of the node class.
/*
 The constructor of the node class. It will nullify the 
 next pointer by default.
*/
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SingleLinkedListNode::SingleLinkedListNode()
{
 /*
  Set the data part to zero.
 */
 val = 0;
 /*
  Set the next pointer to NULL.
 */
 next = NULL;
}

As a result of the constructor, whenever an object of the SingleLinkedListNode class 
is created, the value of its val data member will be set to zero and the value of its next data 
member will be set to NULL.

Nullifying the next pointer will make it easier for us to de  ne the rest of the functions 
because we can be sure that the value of the next pointer will be NULL for any new object 
of the node class. Let us understand the constructor with the help of (Listing 9.3). Suppose a 
new object of the node class is created as follows.

Listing 9.3 Executing the constructor of the single linked list node class
/*
 Beginning of NodeConstructor.cpp
*/
#include <iostream.h>
#include “SingleLinkedListNode.h”

void main()
{
 SingleLinkedListNode * temp = new SingleLinkedListNode();
}
/*
 End of NodeConstructor.cpp
*/

The result can be diagrammatically represented as shown in Figure 9.6.

Figure 9.6 Effect of the node class constructor

temp
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The box on the right represents the newly created object of the node class. Its data 
members—val and next—have been labelled. As can be seen, their values are 0 and NULL 
respectively. They have been separated by a line in the box. Let us assume that the address 
of this node is 245. The value of the temp pointer will therefore be 245.

It is very important to note that since the new operator was used in the above statement 
to create the object, the created object will occupy memory in the heap area. This block of 
memory will continue to be allocated even after the block of code that contains the above 
statement ends.

Let us now look at the setVal() function.
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/*
 This function sets the value of the data part.
*/
void SingleLinkedListNode::setVal(int pVal)
{
 /*
  Set the value of the data part to the value of the 
  passed parameter.
 */
 val = pVal;
}

This is a very simple function. It assigns the value of the parameter that is passed to it to 
the val data member. Continuing with our previous example, it may be called as follows 
(Listing 9.4).

Listing 9.4 Executing the setVal() function of the single linked list node class

/*
 Beginning of SetVal.cpp
*/
#include <iostream.h>
#include “SingleLinkedListNode.h”

void main()
{
 SingleLinkedListNode * temp = new SingleLinkedListNode();
 temp -> setVal(10);
}
/*
 End of SetVal.cpp
*/

A diagrammatic representation of the effects of the above statement is shown in Figure 9.7.
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Figure 9.7 Effect of setVal() function

The next function we need to look at is the getVal() function (Listing 9.5).
/*
 This function returns the data part.
*/
int SingleLinkedListNode::getVal()
{
 /*
  Return the value of the data part.
 */
 return val;
}

Again, this is a simple function. It simply returns the value of the val data member. Still 
continuing with our previous example, suppose we call it as follows.
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Listing 9.5 Executing the getVal() function

/*
 Beginning of GetVal.cpp
*/
#include <iostream.h>
#include “SingleLinkedListNode.h”

void main()
{
 SingleLinkedListNode * temp = new SingleLinkedListNode();
 temp -> setVal(10);
 int x = temp -> getVal();
 cout << x << endl;
}
/*
 End of GetVal.cpp
*/

Output
10

Next is the setNext() function.
/*
 This function sets the value of the next pointer.
*/
void SingleLinkedListNode::setNext(SingleLinkedListNode * pNext)
{
 /*
  Set the value of the next pointer to the value of the 
  passed parameter.
 */
 next = pNext;
}

This function assigns the value of the parameter that is passed to it to the next data member. 
While studying the linked list class, you will realize that the value passed to this function of 
the node class will be the address of the next node in the list. This should also be obvious 
from the de  nition of the parameter pNext.

Let us understand this function with the help of an actual program (Listing 9.6) and  gures 
that illustrate the effects of its statements.

Listing 9.6 Executing the setNext() function

/*
 Beginning of SetNext.cpp
*/
#include <iostream.h>
#include “SingleLinkedListNode.h”

void main()
{
 /*
  Create a fresh node and assign its address to a 
  pointer.
 */
 SingleLinkedListNode * temp = new SingleLinkedListNode();
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 /*
  Set the value of val data member in the new node.
 */
 temp -> setVal(10);
 /*
  Create another fresh node and assign its address to 
  another pointer.
 */
 SingleLinkedListNode * temp1 =  new 

SingleLinkedListNode();
 /*
  Set the value of val data member in the new node.
 */
 temp1 -> setVal(20);
 /*
  Make the next pointer of the existing node point at the 
  freshly created node.
 */
 temp -> setNext(temp1);
}
/*
 End of SetNext.cpp
*/

Let us look at the statements one-by-one.
/*
 Create a fresh node and assign its address to a pointer.
*/
SingleLinkedListNode * temp = new SingleLinkedListNode();

This statement will create a new node and make the pointer temp point to it. Figure 9.8 
represents the result diagrammatically.

temp
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Figure 9.8 Creating a temporary node

The box on the right represents the newly created object of the node class. Its data 
members—val and next—have been labelled. As can be seen, their values have been set 
to 0 and NULL respectively (by the constructor). They have been separated by a line in the 
box. Let us assume that the address of this node is 108. The value of the temp pointer will 
therefore be 108.

/*
 Set the value of val data member in the new node.
*/
temp -> setVal(10);

This statement will assign 10 to the val data member. Figure 9.9 shows the result diagram-
matically.
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Figure 9.9 Effect of setVal() function

/*
 Create another fresh node and assign its address to 
 another pointer.
*/
SingleLinkedListNode * temp1 = new SingleLinkedListNode();

This statement will create a new node and make the pointer temp1 point to it. Figure 9.10 
shows the result diagrammatically.
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Figure 9.10 Creating a temporary node

No explanation is needed for the above  gure because a similar statement has already 
been explained above.

/*
 Set the value of val data member in the new node.
*/
temp1 -> setVal(20);

This statement will assign 20 to the val data member. Figure 9.11 shows the result 
diagrammatically.
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Figure 9.11 Effect of setVal() function

/*
 Make the next pointer of the existing node point at the 
 freshly created node.
*/
temp -> setNext(temp1);

Figure 9.12 shows the result diagrammatically.
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Figure 9.12 Effect of setNext() function

We can see from its de  nition that the setNext() function assigns the value of its 
parameter to the next data member of the object for which it has been called. In the above 
case, the function has been called for the object at which temp points. The value passed to it 
as parameter is the value of temp1, which is 320. As a result, the value of the next pointer 
of the object at which temp points is set to 320 and it now points at the freshly created node. 
You can already see a linked list getting created!

Now for the getNext() function.
/*
 This function returns the value of the next pointer.
*/
SingleLinkedListNode * SingleLinkedListNode::getNext()
{
 /*
  Return the value of the next pointer.
 */
 return next;
}

Again, this is a simple function. It simply returns the value of the next data member. Still 
continuing with our previous example, let us understand what happens when it is called (see 
Listing 9.7).

Listing 9.7 Executing the getNext() function
/*
 Beginning of GetNext.cpp
*/
#include <iostream.h>
#include “SingleLinkedListNode.h”

void main()
{
 /*
  Create a fresh node and assign its address to a  
  pointer.
 */
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 SingleLinkedListNode * temp = new SingleLinkedListNode();
 /*
  Set the value of val data member in the new node.
 */
 temp -> setVal(10);
 /*
  Create another fresh node and assign its address to 
  another pointer.
 */
 SingleLinkedListNode * temp1 = new SingleLinkedListNode();
 /*
  Set the value of val data member in the new node.
 */
 temp1 -> setVal(20);
 /*
  Make the next pointer of the existing node point at the 
  freshly created node.
 */
 temp -> setNext(temp1);
 /*
  Reset temp1 so that it points at the first node.
 */
 temp1 = temp;
 /*
  Display the value in the node that temp1 points at.
 */
 cout << temp1->getVal() << endl;
 /*
  Increment the temp1 pointer so that it points at the 
  second node.
 */
 temp1 = temp1 -> getNext();
 /*
  Display the value in the node that temp1 points at.
 */
 cout << temp1->getVal() << endl;
}
/*
 End of GetNext.cpp
*/

Output
10
20

We know that at the end of the statement
temp -> setNext(temp1);

the linked list looks like Figure 9.13.
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Figure 9.13 Effect of the setNext() function

Let us look at the rest of the statements.
/*
 Reset temp1 so that it points at the first node.
*/
temp1 = temp;

The above statement will copy the value of temp to temp1. This will cause temp1 to point 
at the same node as temp, which is the  rst node (Figure 9.14).
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Figure 9.14 Copying the value of one temporary pointer to another.

After this, we have
/*
 Display the value in the node that temp1 points at.
*/
cout << temp1->getVal() << endl;

This time, the call temp1->getVal() will return 10. The above statement will therefore 
display this value on the screen.

Now, we get to look at a call to the getNext() function, which is the topic of our current 
discussion.

/*
 Increment the temp1 pointer so that it points at the 
 second node.
*/
temp1 = temp1 -> getNext();
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Note that before this statement executes, the temp1 pointer will point at the  rst node, whose 
next pointer’s value is 320. Hence, 320 will get returned by the call temp1 -> getNext(). 
The above statement copies this returned value back to temp1. Hence, the value of temp1 will 
become 320 and it will end up pointing at the next node (Figure 9.15).
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Figure 9.15 Incrementing the value of the temporary pointer

/*
 Display the value in the node that temp1 points at.
*/
cout << temp1->getVal() << endl;

This time, the call temp1->getVal() will return 20. The above statement will therefore 
display this value on the screen.

The last function of the SingleLinkedListNode class is the destructor.
/*
 The destructor of the class.
*/
SingleLinkedListNode::~SingleLinkedListNode()
{
 /*
  Right now the destructor has empty definition.
  But we may like to insert some statements here later.
 */
}

Like all destructors, this destructor gets called whenever the delete operator is called 
on a pointer that is de  ned to point at objects of the SingleLinkedListNode class. It gets 
called for the object at which such a pointer points. The block of heap memory occupied by 
the object at which the pointer points also gets deallocated.

Let us see what happens when the delete operator is called for the temp pointer, thereby 
triggering a call to the destructor for the object at which temp points (see Listing 9.8).

Listing 9.8 Executing the destructor of the single linked list node class

/*
 Beginning of NodeDestructor.cpp
*/
#include <iostream.h>
#include “SingleLinkedListNode.h”
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void main()
{
 /*
  Create a fresh node and assign its address to a 
  pointer.
 */
 SingleLinkedListNode * temp = new SingleLinkedListNode();
 /*
  Delete the memory occupied by the new node.
 */
 delete temp;
}
/*
 End of NodeDestructor.cpp
*/

Two things happen as a result of the last statement in the above program. One, the destructor 
is called for the object at which temp points. Second, the memory block occupied by the object 
at which temp points gets deallocated (is returned to the system for use). Since the destructor 
has a blank de  nition, no code gets executed.

Let us now study the linked list class. Let us start by looking at the header  le of the linked 
list class (Listing 9.9).

Listing 9.9 Header fi le having declaration of single linked list class
/*
 Beginning of SingleLinkedList.h
*/
#ifndef _SINGLE_LINKED_LIST_H
#define _SINGLE_LINKED_LIST_H

#include “SingleLinkedListNode.h”

/*
 The single linked list class.
 Each instance of this class will represent a single 
 linked list.
*/
class SingleLinkedList
{
 private:
 /*
  The head pointer. It will point at the first node of 
  the list.
  It will be NULL when the list id empty.
 */
 SingleLinkedListNode * head;
 
 public:
 /*
  The constructor of the single linked list class. It 
  will nullify the head pointer.
 */
 SingleLinkedList();
 /*
  Function to add a node at the bottom of the list.
 */
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 void appendNode(int);
 /*
  Function to insert a node at the beginning of the 
  list.
 */
 void prependNode(int);
 /*
  Function to find whether a node with a particular value 
  exists or not.
 */
 bool find(int);
 /*
  Function to delete the first node.
 */
 void delBeg();
 /*
  Function to delete the last node.
 */
 void delEnd();
 /*
  Function to display the nodes in the list.
 */
 void display();
 /*
  The destructor of the class. It will delete the memory 
  occupied by all nodes of the list.
 */
 ~SingleLinkedList();
};

#endif
/*
 End of SingleLinkedList.h
*/

Just like the header  le for the node class, this header  le also begins with a comment that 
speci  es the name of the header  le and announces the beginning of the  le. This is followed 
by pre-processor directives that prevent multiple inclusion of the header  le in other source 
codes. This is followed by the declaration of the linked list class. The second last line of the 
header  le contains the end of the pre-process block and the last line contains a comment 
that marks the end of the header  le.

Each object of the SingleLinkedList class will be a linked list. This class has a data 
member, head, which is a pointer. It is obvious from its de  nition that head is supposed to 
point at the  rst node of the linked list. In our program, it will either be made to point at the 
 rst node in the linked list or will be assigned the NULL value (to indicate that the current 

list is empty).
Let us look at the implementation  le (Listing 9.10) that contains the de  nitions of the 

member functions of the single linked list class.

Listing 9.10 Implementation fi le of single linked list

/*
 Beginning of SingleLinkedList.cpp
*/
#include <iostream.h>
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#include “SingleLinkedList.h”

/*
 The constructor of the single linked list class. It will 
 nullify the head pointer.
*/
SingleLinkedList::SingleLinkedList()
{
 /*
  Nullify the head pointer by default.
 */
 head = NULL;
}

/*
 Function to add a node at the bottom of the list.
*/
void SingleLinkedList::appendNode(int pVal)
{
 /*
  Create a temporary node that we will append to the 
  list.
  The constructor of SingleLinkedListNode class will 
  nullify the next pointer of this node.
 */
 SingleLinkedListNode * temp = new SingleLinkedListNode();
 /*
  Copy the parameter value passed to the function, to the 
  new node.
 */
 temp->setVal(pVal);
 /*
  If the head pointer is NULL (list is empty) ...
 */
 if(head == NULL)
 {
  /*
   ... make the head pointer point at the temporary node 
   ...
  */
  head = temp;
 }
 /*
  ... otherwise ...
 */
 else
 {
  /*
   ... make a temporary pointer, ...
  */
  SingleLinkedListNode * iter;
  /*
   ... make it point at the first node, traverse to the 
   end of the list and ...
  */
  for(iter = head; iter->getNext() != NULL;
    iter = iter->getNext());
  /*
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   ... make the next pointer of the last node point at 
   the temporary node.
  */
  iter->setNext(temp);
 }
}

/*
 Function to insert a node at the beginning of the list.
*/
void SingleLinkedList::prependNode(int pVal)
{
 /*
  Create a temporary node that we will prepend to the 
  list.
  The constructor of SingleLinkedListNode class will 
  nullify the next pointer of this node.
 */
 SingleLinkedListNode * temp = new SingleLinkedListNode();
 /*
  Copy the parameter value passed to the function, to the 
  new node.
 */
 temp->setVal(pVal);
 /*
  If the head pointer is NULL (list is empty) ...
 */
 if(head == NULL)
 {
  /*
   ... make the head pointer point at the temporary node 
   ...
  */
  head = temp;
 }
 /*
  ... otherwise ...
 */
 else
 {
  /*
   ... make the next pointer of the temporary node point 
   at the first node and ...
  */
  temp->setNext(head);
  /*
   ... make the head pointer point at the temporary 
   node.
  */
  head=temp;
 }
}

/*
 Function to display the nodes in the list.
*/
void SingleLinkedList::display()
{
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 /*
  If the head pointer is NULL (list is empty) ...
 */
 if(head == NULL)
 {
  /*
   ... display error message ...
  */
  cout << “No nodes in list\n”;
 }
 /*
  ... otherwise ...
 */
 else
 {
  /*
   ... make a temporary pointer point at the first node, 
   iterate over the list and ...
  */
  for(SingleLinkedListNode * iter = head;iter != NULL;
    iter = iter->getNext())
  {
   /*
      ... display the value in the node being pointed 

at.
   */
   cout << iter->getVal() << endl;
  }
 }
}

/*
 Function to find whether a node with a particular value 
 exists or not.
*/
bool SingleLinkedList::find(int pTarget)
{
 /*
  Initialize a flag to false, ...
 */
 bool found = false;
 /*
  ... make a temporary pointer point at the first node, 
  iterate over the list and ...
 */
 for(SingleLinkedListNode * iter = head;iter != NULL;
   iter = iter->getNext())
 {
  /*
   ... if the value matches ...
  */
  if(iter->getVal() == pTarget)
  {
   /*
     ... set the flag to true and ...
   */
   found = true;
   /*
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     ... break the loop and ...
   */
   break;
  }
 }
 /*... return the value of the flag.*/
 return found;
}

/*
 Function to delete the first node.
*/
void SingleLinkedList::delBeg()
{
 /*
  Delete only if the list is empty.
 */
 if(head != NULL)
 {
  /*
   Make a temporary pointer point at the first node.
  */
  SingleLinkedListNode * temp = head;
  /*
   Make the head pointer point at the second node.
  */
  head = head -> getNext(); //head becomes NULL if only 
    //one node in the list.
  /*
   Delete the first node.
  */
  delete temp;
 }
 /*
  Don’t do anything if list is empty (no else).
 */
}

/*
 Function to delete the last node.
*/
void SingleLinkedList::delEnd()
{
 /*
  Delete only if the list is empty.
 */
 if(head != NULL)
 {
  /*
   If there is only one node ...
  */
  if(head -> getNext() == NULL)
  {
   /*
     ... delete it and ...
   */
   delete head;
   /*
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     ... nullify the head pointer.
   */
   head = NULL;
  }
  /*
   ... otherwise ...
  */
  else
  {
   /*
     ... declare a temporary pointer, ...
   */
   SingleLinkedListNode * iter;
   /*
     ... iterate the list to point at the second last 
     node, ...
   */
   for (iter = head;

iter -> getNext() -> getNext() != NULL;
iter = iter -> getNext());

   /*
     ... delete the last node and ...
   */
   delete iter -> getNext();
   /*
     ... nullify the next pointer of the second last 
     node ...
   */
   iter -> setNext(NULL);
  }
 }
 /*
  Don’t do anything if list is empty (no else).
 */
}

/*
 The destructor of the class. It will delete the memory 
 occupied by all nodes of the list.
*/
SingleLinkedList::~SingleLinkedList()
{
 /*
  Delete only if no nodes in the list.
 */
 if(head != NULL)
 {
  /*
   As long as the head pointer does not get a NULL value 
   ...
  */
  while(head != NULL)
  {
   /*
     ... keep calling the delEnd() function to keep 
     deleting the last node.
   */
   delEnd();
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  }
 }
 /*
  Don’t do anything if list is empty (no else).
 */
}
/*
 End of SingleLinkedList.cpp
*/

The implementation  le begins with a comment that speci  es the name of the implementation 
 le and also announces the beginning of the  le. This is followed by an include directive that 

includes the header  le, which contains the declaration of the linked list class. This is followed 
by the de  nitions of the member functions of the linked list class. The last line contains a 
comment that marks the end of the implementation  le.

Let us start with the constructor of the linked list class. After this we will study the 
appendNode() function. This will be followed by a study of the display() function. The 
rest of the functions will follow thereafter.

/*
 The constructor of the single linked list class. It will 
 nullify the head pointer.
*/
SingleLinkedList::SingleLinkedList()
{
 /*
  Nullify the head pointer by default.
 */
 head = NULL;
}

As a result of the constructor, whenever an object of the SingleLinkedList class is 
created, the value of its head data member will be set to NULL. Nullifying the pointer will 
make it easier for us to de  ne the rest of the functions because we can be sure that the value 
of the head pointer will be NULL for any new object of the linked list class. Let us understand 
the constructor with the help of an example. Suppose a new object of the linked list class is 
created as shown in Listing 9.11.

Listing 9.11 Executing the constructor of the single linked list class

/*
 Beginning of ListConstructor.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*Create a list object*/
 SingleLinkedList list1;
}
/*
 End of ListConstructor.cpp
*/

The result can be diagrammatically represented as shown in Figure 9.16.
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Figure 9.16 Effects of the list class constructor

list1 is an object of the SingleLinkedList class. The box depicts the memory block 
occupied by list1. It is evident from the de  nition of the SingleLinkedList class that an 
object of the class will have only one data member. The name of this data member is head. 
The constructor of the class will  re at the time the object is created. It will set the value of 
the head pointer to NULL.

Let us look at the next function appendNode().
/*
 Function to add a node at the bottom of the list.
*/
void SingleLinkedList::appendNode(int pVal)
{
 /*
  Create a temporary node that we will append to the 
  list.
  The constructor of SingleLinkedListNode class will 
  nullify the next pointer of this node.
 */
 SingleLinkedListNode * temp = new SingleLinkedListNode();
 /*
  Copy the parameter value passed to the function, to the 
  new node.
 */
 temp->setVal(pVal);
 /*
  If the head pointer is NULL (list is empty) ...
 */
 if(head == NULL)
 {
  /*
   ... make the head pointer point at the temporary node 
   ...
  */
  head = temp;
 }
 /*
  ... otherwise ...
 */
 else
 {
  /*
   ... make a temporary pointer, ...
  */
  SingleLinkedListNode * iter;
  /*
   ... make it point at the first node, traverse to the 
   end of the list and ...
  */
  for( iter = head; iter->getNext() != NULL;

iter = iter->getNext());
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  /*
   ... make the next pointer of the last node point at 
   the temporary node.
  */
  iter->setNext(temp);
 }
}

The above function is designed to add a node to the linked list. Let us  rst understand what 
we will like the above function to do. Then, by studying the de  nition of the function (Listing 
9.12), we will decide whether it actually does what we want it to do or not.

Listing 9.12 Executing the appendNode() function

/*
 Beginning of AppendNode01.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
  Create a list object
 */
 SingleLinkedList list1;
 /*
  Call the appendNode() function on the list1 object.
 */
 list1.appendNode(5287);
}
/*
 End of AppendNode01.cpp
*/

After the first statement in the above program, because of the constructor of the 
SingleLinkedList class, the value of the head pointer inside the object will be set to NULL. 
This can be depicted by Figure 9.17.
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headNULL

list1

Figure 9.17 Effects of the list class constructor

The above box depicts the object named list1 (labelled at the bottom of the box). Since 
it is an object of the SingleLinkedList class, it has only one data member—head (labelled 
on the right of the box). The constructor of the class sets the head data member to NULL.

Let us look at the call to the appendNode() function on the list1 object.
list1.appendNode(5287);

If the function has been de  ned correctly, then, at the end of its execution, the linked list 
should look like Figure 9.18.
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Figure 9.18 Expected effect of the appendNode() function

Let us see whether the function performs as expected or not. Before the function executes, 
the value of the head pointer is NULL. When the function starts executing, the value of the 
function’s parameter pVal gets set to 5287 because that is the value that has been passed to 
the function. After this, a temporary node gets created by the new operator and the temporary 
pointer temp is made to point at it (Figure 9.19).
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Figure 9.19 The creation of a temporary node that will be added to the list by the 
appendNode() function

The next statement is:
temp->setVal(pVal);

This will copy the value of pVal, which is 5287, to the val data member of the node. After 
this, the if statement will check whether the value of the head pointer is NULL or not. This 
test will return true at this time because the list is empty. The if block will execute and the 
value of temp will be copied to head. This will cause the head pointer to also point at the 
temporary node that has been created earlier. Figure 9.20 illustrates this.
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Figure 9.20 Value of the temp pointer copied to the head pointer

The else block will not execute and the function will come to an end. Since temp is a 
local variable, it goes out of scope and what we will be left with is a linked list that looks 
like Figure 9.21.
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Figure 9.21 Observed effect of the appendNode() function

Compare Figure 9.21 with Figure 9.18, which depicts what we were expecting. As you 
can see there is an exact match between what we were expecting the function to do and what 
actually happened. Hence, we can conclude that our function has been de  ned correctly. Let 
us call the same function on the list1 object twice and verify whether or not the function 
does what it has been de  ned to do (Listing 9.13).

Listing 9.13 Executing the appendNode() function

/*
 Beginning of AppendNode02.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
  Create a list object
 */
 SingleLinkedList list1;
 /*
  Call the appendNode() function on the list1 object.
 */
 list1.appendNode(5287);
 /*
  Again call the appendNode() function on the list1 
  object.
 */
 list1.appendNode(325);
}
/*
 End of AppendNode02.cpp
*/

At the end of the execution of the above program, we will expect the linked list to look 
like Figure 9.22.
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Figure 9.22 Expected effect of the appendNode() function

Let us trace the function once more and see whether it does what we want it to do or not. 
Let us start from the second call to the function because we have already seen the effects of 
the previous portion of the program.

Keep in mind that the head pointer is NOT NULL when the function is called for a second 
time. The execution is the same as the previous one till the point where the if statement 
checks whether the value of the head pointer is NULL or not. This test will return false this 
time because the list is not empty. The if block will not execute. Instead, the else block will 
execute. The  rst statement of the else block declares a pointer called iter that is supposed 
to point at objects of the class SingleLinkedListNode. Note that the for loop does not have 
a body. At the start of the loop, the value of the head pointer is copied to the pointer iter. 
Thus, iter ends up pointing at the  rst node of the list. The resulting situation is depicted 
by Figure 9.23.
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Figure 9.23 The temporary node and the iterator iterating over the list

The statements before the if statement will create a node and make a temporary pointer, 
called temp, to point at the node. This is depicted by the upper half of the above  gure. The 
head pointer will already be pointing at the one and only node in the list that was created by 
the previous call to the appendNode() function. Now, the value of the head pointer has been 
copied to the pointer called iter. Hence, iter will also point at the  rst node of the list.
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The for loop has been de  ned to execute as long as the call to the getNext() function 
through the iter pointer does not return NULL. But, we can see from Figure 9.23 that this 
function will return NULL right now because the next pointer of the node at which iter is 
pointing is NULL. Thus, the re-initialization expression of the for loop will not execute, the 
loop will terminate, and the iter pointer will continue to point at the  rst node of the linked 
list. The next statement to execute is:

iter->setNext(temp);

This call will copy the value of the temp pointer to the next pointer of the node at which 
iter points. As a result, the linked list will look like Figure 9.24.
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Figure 9.24 Appending the temporary node to the list

The rest of the processing remains the same as the previous one. Since temp and iter are 
local variables, they go out of scope and what we are left with is a linked list that looks like 
Figure 9.25.

320

val

next

5287

7912

7912

val

next

325

NULL

245

head 320

list1

Figure 9.25 Observed effect of the appendNode() function
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Compare Figure 9.25 with Figure 9.22, which depicts what we were expecting. As you 
can see there is an exact match between what we were expecting the function to do and 
what actually happened. Hence, we can again conclude that our function has been de  ned 
correctly.

Now, go ahead and verify that the function has been de  ned correctly by  nding out what 
will happen if the function is called for yet another time on the same object.

Let us now try to understand the display() function.
/*
 Function to display the nodes in the list.
*/
void SingleLinkedList::display()
{
 /*
  If the head pointer is NULL (list is empty) ...
 */
 if(head == NULL)
 {
  /*
   ... display error message ...
  */
  cout << “No nodes in list\n”;
 }
 /*
  ... otherwise ...
 */
 else
 {
  /*
   ... make a temporary pointer point at the first node, 
   iterate over the list and ...
  */
  for( SingleLinkedListNode * iter = head;iter != NULL; 

iter = iter->getNext())
  {
   /*
     ... display the value in the node being pointed at.
   */
   cout << iter->getVal() << endl;
  }
 }
}

As before, let us start with a new object of the linked list class, which will create an empty 
list, and then call the display() function on the new object (Listing 9.14). We will thereafter 
compare the actual execution with the expected execution.

Listing 9.14 Executing the display() function

/*
 Beginning of ListDisplay01.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
  Create a list object.
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 */
 SingleLinkedList list1;
 /*
  Display the contents.
 */
 list1.display();
}
/*
 End of ListDisplay01.cpp
*/

Output
No nodes in list

Since the list is empty, we will expect the function to display a message that says that the 
list is empty. Let us see whether this happens or not.

Note that the value of the head pointer inside the list1 object will get set to NULL at the 
time of creation because of the constructor. Hence, it will be NULL at the time the display() 
function gets called.

Now, when the function begins executing, the if block compares the value of the head 
pointer with NULL. Since the value of the head pointer is NULL, the test expression in the 
if statement returns true. Therefore, the if block executes. This causes the string ‘No nodes 
in list’ to get displayed on the monitor. Naturally, the else block does not execute and the 
function comes to an end. And this is what we were expecting.

Let us take the other case where the list is not empty (Listing 9.15).

Listing 9.15 Executing the display() function

/*
 Beginning of ListDisplay02.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
  Create a list object.
 */
 SingleLinkedList list1;
 /*
  Add a node to the list.
 */
 list1.appendNode(5287);
 /*
  Add another node.
 */
 list1.appendNode(325);
 /*
  Display the contents.
 */
 list1.display();
}
/*
 End of ListDisplay02.cpp
*/
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Output
5287
325

We now know that after the second call to the appendNode() function above, the linked 
list will look like Figure 9.26.
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Figure 9.26 The list as it looks before the display() function executes

As a result of the call to the display() function, we will expect the values in the nodes 
5287 and 325 to get displayed on the monitor. Let us see whether this happens or not.

Note that the head pointer is not NULL in this case. Therefore, the if block in the function 
will not execute. Instead, the else block will execute. This will cause the for loop to start. The 
value of the head pointer will get copied to the temporary pointer called iter. The resulting 
situation is represented by Figure 9.27.
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Figure 9.27 Iterator iterating over the list
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We can see that the value of iter is not NULL. Hence, the test expression of the for 
loop will return true. This will cause the body of the loop to execute. The statement in the 
loop’s body is:

cout << iter->getVal() << endl;

iter->getVal() will return 5287. Hence, the above statement will display 5287 on the 
monitor. Thereafter, the re-initialization expression of the for loop will execute. iter-
>getNext() will return 7912. This value will be copied back to iter. Hence, iter will end 
up pointing at the next node. The resulting situation is represented by Figure 9.28.
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Figure 9.28 Iterator iterating over the list

Next, the test expression of the for loop will execute once more. Since iter is still not 
NULL, the test expression will again return true. This will cause the loop to execute once 
more. But this time, iter->getVal() will return 325. Hence, 325 will be displayed on the 
computer’s monitor.

As before, the value of iter will get reset in the re-initialization expression of the for loop. 
But this time, iter->getNext() will return NULL (see Figure 9.28). Hence, the value of 
iter will get set to NULL in the re-initialization expression of the for loop. This will cause 
the test expression of the for loop to return false. Hence, the for loop will terminate and, 
because there are no further statements in the function, the function will also terminate.

Let us now look at the prependNode() function. Compared to the appendNode() function, 
this is a relatively simple function. As its name suggests, it inserts a node at the beginning 
of the list.

/*
 Function to insert a node at the beginning of the list.
*/
void SingleLinkedList::prependNode(int pVal)
{
 /*
  Create a temporary node that we will prepend to the 
  list.
  The constructor of SingleLinkedListNode class will 
  nullify the next pointer of this node.
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 */
 SingleLinkedListNode * temp = new SingleLinkedListNode();
 /*
  Copy the parameter value passed to the function, to the 
  new node.
 */
 temp->setVal(pVal);
 /*
  If the head pointer is NULL (list is empty) ...
 */
 if(head == NULL)
 {
  /*
   ... make the head pointer point at the temporary node 
   ...
  */
  head = temp;
 }
 /*
  ... otherwise ...
 */
 else
 {
  /*
   ... make the next pointer of the temporary node point 
   at the first node and ...
  */
  temp->setNext(head);
  /*
   ... make the head pointer point at the temporary 
   node.
  */
  head=temp;
 }
}

As before, let us  rst understand what we would like the above function to do (Listing 
9.16). Then, by studying the de  nition of the function, we will decide whether it actually 
does what we want it to do or not.

Listing 9.16 Executing the prependNode() function

/*
 Beginning of PrependNode01.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*Create a list object*/
 SingleLinkedList list1;
 /*
  Call the prependNode() function on the list1 object.
 */
 list1.prependNode(5287);
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}
/*
 End of PrependNode01.cpp
*/

After the first statement in the above program, because of the constructor of the 
SingleLinkedList class, the value of the head pointer inside the object will be set to NULL. 
This is depicted by Figure 9.29.
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headNULL

list1

Figure 9.29 Empty list prior to the call to the prependNode() function

The box shown in the  gure depicts the object named list1 (labelled at the bottom of the 
box). Since it is an object of the SingleLinkedList class, it has only one data member—head 
(labelled on the right of the box). The constructor of the class sets the head data member to 
NULL.

Let us look at the call to the prependNode() function on the list1 object.
list1.prependNode(5287);

If the function has been de  ned correctly, then, at the end of its execution, the linked list 
should look like Figure 9.30.
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Figure 9.30 Expected effect of the prependNode() function

Let us see whether the function performs as expected or not. Before the function executes, 
the value of the head pointer is NULL. When the function starts executing, the value of the 
function’s parameter pVal gets set to 5287 because that is the value that has been passed to 
the function. After this, a temporary node gets created by the new operator and the temporary 
pointer temp is made to point at it (Figure 9.31).
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Figure 9.31 Creation of a temporary blank node

The next statement is:
temp->setVal(pVal);
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This will copy the value of pVal, which is 5287, to the data member of the node. After 
this, the test expression in the if statement will check whether the value of the head pointer 
is NULL or not. This test will return true at this time because the list is empty. The if block 
will execute and the value of temp will be copied to head. This will cause the head pointer 
to also point at the temporary node that has been created earlier. Figure 9.32 illustrates this.
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Figure 9.32 Initialization of the temporary node and making the head pointer point at it

The else block will not execute and the function will come to an end. Since temp is a 
local variable, it goes out of scope and what we will be left with is a linked list that looks 
like Figure 9.33.
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Figure 9.33 Observed effect of the prependNode() function

Compare Figure 9.33 with Figure 9.30, which depicts what we were expecting. As you 
can see there is an exact match between what we were expecting the function to do and what 
actually happened.

Let us call the same function on the list1 object twice (Listing 9.17) and verify whether 
or not the function does what it has been de  ned to do.

Listing 9.17 Executing the prependNode() function

/*
 Beginning of PrependNode02.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
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  Create a list object
 */
 SingleLinkedList list1;
 /*
  Call the prependNode() function on the list1 object.
 */
 list1.prependNode(5287);
 /*
  Again call the prependNode() function on the list1  
  object.
 */
 list1.prependNode(325);
}
/*
 End of PrependNode02.cpp
*/

At the end of the execution of this program (Listing 9.17), we will expect the linked list 
to look like Figure 9.34.
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Figure 9.34 Expected effect of the prependNode() function

Let us trace the function once more and see whether it does what we want it to do or not. 
Let us start from the second call to the function because we have already seen the effects of 
the previous portion of the program. At this point, the linked list looks like this.
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Figure 9.35 Addition of the fi rst node by the prependNode() function
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At this point, the function is called for the second time. Notice that the head pointer is 
not NULL at this time (its value is 320, which is the address of the  rst node at which it 
points).

The execution is the same as the previous one till the point where the test expression in 
the if statement checks whether the value of the head pointer is NULL or not. This test will 
return false this time because the list is not empty. The if block will not execute. Instead, the 
else block will execute. The  rst statement of the else block copies the value of the head 
pointer to the next pointer of the temporary node created at the beginning of the function. 
The resulting situation can be depicted by Figure 9.36.
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Figure 9.36 Linking of the new node to the old node

The next statement copies the value of the temp pointer to the head pointer. Thus, the head 
pointer ends up pointing at the temporary node. Figure 9.37 depicts this situation.
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Figure 9.37 Making the head pointer point at the new temporary node

Since temp is a local variable, it goes out of scope and what we will be left with is a linked 
list that looks like Figure 9.38.
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Figure 9.38 Observed effect of the prependNode() function

Again, compare Figure 9.38 with Figure 9.34, which depicts what we were expecting. As 
you can see there is an exact match between what we were expecting the function to do and 
what actually happened. Thus we can see that the prependNode() function has been de  ned 
correctly.

The next function that we need to look at is the  nd() function. As its name suggests, 
this function tells us whether one of the nodes in the linked list contains a particular value 
or not.

/*
 Function to find whether a node with a particular value 
 exists or not.
*/
bool SingleLinkedList::find(int pTarget)
{
 /*
  Initialize a flag to false, ...
 */
 bool found = false;
 /*
  ... make a temporary pointer point at the first node, 
  iterate over the list and ...
 */
 for(SingleLinkedListNode * iter = head;iter != NULL;
   iter = iter->getNext())
 {
  /*
   ... if the value matches ...
  */
  if(iter->getVal() == pTarget)
  {
   /*
    ... set the flag to true and ...
   */
   found = true;
   /*
    ... break the loop and ...
   */
   break;
  }
 }
 /*
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  ... return the value of the flag.
 */
 return found;
}

Let us look at a program that calls this function and the expected output (Listing 9.18). 
We will then analyse the function’s de  nition and verify whether it can give the expected 
output or not.

Listing 9.18 Executing the  nd() function (Note: On the computer used to execute this 
function, 1 gets displayed instead of true and 0 gets displayed instead of false.)

/*
 Beginning of ListNodeFind.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
  Create a list object
 */
 SingleLinkedList list1;
 /*
  Declare a Boolean variable to store the result of our 
  search.
 */
 bool result;
 /*
  Call the prependNode() function on the list1 object.
 */
 list1.prependNode(5287);
 /*
  Call the find() function on the list1 object.
 */
 result = list1.find(5287);
 /*
  Display the result.
 */
 cout << result << endl;
 /*
  Again call the find() function on the list1 object.
 */
 result = list1.find(325);
 /*
  Display the result.
 */
 cout << result << endl;
}
/*
 End of ListNodeFind.cpp
*/

Output
1
0
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We will expect the  rst call to the  nd() function to return true because the value that has 
been passed to it (5287) should exist in the list as a result of the call to the prependNode() 
function in the previous statement. Because 325 has not been inserted to the list, we will also 
expect the second call to the  nd() function to return false.

Let us now look at the function and see whether it is capable of giving us the results we 
are expecting.

We know that when the  nd() function is called for the  rst time, the linked list looks like 
Figure 9.39 (because of the previous call to the prependNode() function).
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Figure 9.39 What the linked list looks like before the call to the  nd() function

The value passed to the function, 5287, gets copied to the parameter pTarget. Next, a 
local variable, found, gets created and initialized to false. After this, the for loop starts. The 
temporary pointer iter gets created and the value of the head pointer gets copied to it. Hence, 
it ends up pointing at the  rst node. The resulting scenario is depicted by Figure 9.40.
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Figure 9.40 Iterator iterating over the list

The test expression of the for loop will return true because the value of iter is not NULL 
(its value is 320). The test expression of the if block will get evaluated. The expression ‘iter-
>getVal() will return 5287. Because the value of pTarget is also 5287, the test expression 
will return true. The  rst statement in the if block will set the value of the variable found to 
true. The second statement will cause the loop to break. The only remaining statement in the 
function will return the value of found, which is true.

When the  nd() function is called for the second time, the value of pTarget will be 
325. The processing will be the same as the previous execution of the function till the point 
where the for loop executes for the  rst time. The local variable, found, will get created and 
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initialized to false. After this, the for loop will start. The temporary pointer iter will get 
created and the value of the head pointer will get copied to it. Hence, it will end up pointing 
at the  rst node. The resulting scenario will be the same as before (Figure 9.41).
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Figure 9.41 Iterator iterating over the list

The test expression of the for loop will return true because the value of iter is not NULL 
(its value is 320). The test expression of the if block will get evaluated. The expression iter-
>getVal() will return 5287. Because the value of pTarget is also 325, the test expression 
will return false. Therefore, the if block will not execute. And there is no else block. The 
re-initialization expression of the loop will execute. The expression iter->getNext() will 
return NULL. Therefore, the value of iter will become NULL.

Now, when the loop executes again, its test expression returns false because the value of 
iter is now NULL. The loop terminates and the function returns the value of the variable 
found, which has remained false. Thus, we can see that the  nd() function has been de  ned 
in the way we expect it.

The next function to be studied is delBeg(). As the name indicates, this function will 
delete the  rst node from the list, if it exists.

/*
 Function to delete the first node.
*/
void SingleLinkedList::delBeg()
{
 /*
  Delete only if the list is empty.
 */
 if(head != NULL)
 {
  /*
   Make a temporary pointer point at the first node.
  */
  SingleLinkedListNode * temp = head;
  /*
   Make the head pointer point at the second node.
  */
  head = head -> getNext(); //head becomes NULL if only 
    //one node in the list.
  /*
   Delete the first node.
  */
  delete temp;
 }
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 /*
  Don’t do anything if list is empty (no else).
 */
}

Let us take two cases in order to verify whether the function works correctly or not. In case 
one, the list is empty. In the second case, the list has one or more nodes.

The function has obviously been de  ned correctly to handle the case where the list is 
empty. If the list is empty, then we know that the value of the head pointer will be NULL. 
You will notice that the delBeg() function has an if statement at the beginning. The test 
expression of this if statement checks the value of the head pointer and, if it  nds that it is 
NULL, simply prevents the if block from executing. There is no else block for the if block 
and there are no more statements in the function. Hence, if the list is empty, the function does 
not do anything. And, this is what we expect.

Now, let us take the other case where the list is not empty. Let us look at a sample execution of 
the function and see whether the function executes as expected or not. Consider Listing 9.19.

Listing 9.19 Executing the delBeg() function

/*
 Beginning of DelBeg.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
  Create a list object
 */
 SingleLinkedList list1;
 /*
  Call the prependNode() function on the list1 object.
 */
 list1.prependNode(5287);
 /*
  Again call the prependNode() function on the list1 
  object.
 */
 list1.prependNode(325);
 /*
  Delete the first node
 */
 list1.delBeg();
 /*
  Display the values in the list.
 */
 list1.display();
}
/*
 End of DelBeg.cpp
*/

Output
5287

We know that after the second call to the prependNode() function, the list will look like 
Figure 9.42.
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Figure 9.42 The structure of the list prior to the call to the delBeg() function

The delBeg() function has been called at this point in the program. At the end of its 
execution, we will expect the list to look like Figure 9.43.
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Figure 9.43 Expected effect of the delBeg() function

Let us review the function and see whether it has been de  ned correctly or not. When the 
delBeg() function starts, the test expression of the if statement gets evaluated. It checks 
whether the value of the head pointer is NULL or not. At this point, the value of the head 
pointer is 320 (it points at the  rst of two nodes that are currently in the list). Therefore, the 
test expression returns true and the if block executes.

The  rst statement in the if block declares a temporary pointer and copies the value of 
the head pointer to it. Figure 9.44 depicts the resulting situation.
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Figure 9.44 Making a temporary pointer point at the node to be deleted
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The next statement is:
head = head -> getNext();

The call to the getNext() function via the head pointer returns 7912. This value is copied 
back to the head pointer. Thus, the value of the head pointer becomes 7912 and it ends up 
pointing at the second node. The resulting situation is depicted by Figure 9.45.
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Figure 9.45 Advancing the head pointer so that it points at the second node

The next statement is:
delete temp;

This statement frees the memory block at which temp points. After this, the if block ends. 
Since the temp pointer is a local variable inside the if block, it goes out of scope and we have 
the situation shown in Figure 9.46.
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Figure 9.46 The linked list after the temporary pointer has deleted the fi rst node 
and has itself gone out of scope

The delBeg() has no more statements after the if block. Hence, it comes to an end and 
we have the scenario shown in Figure 9.47.
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Figure 9.47 Observed effect of the delBeg() function
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Compare Figure 9.47 with Figure 9.43. You can see that the delBeg() function did what 
we were expecting it to do.

Let us now study the delEnd() function. As the name suggests, this function deletes the last 
node from the list. Compared to the delBeg() function, this a slightly complicated function.

/*
 Function to delete the last node.
*/
void SingleLinkedList::delEnd()
{
 /*
  Delete only if the list is empty.
 */
 if(head != NULL)
 {
  /*
   If there is only one node ...
  */
  if(head -> getNext() == NULL)
  {
   /*
    ... delete it and ...
   */
   delete head;
   /*
    ... nullify the head pointer.
   */
   head = NULL;
  }
  /*
   ... otherwise ...
  */
  else
  {
   /*
    ... declare a temporary pointer, ...
   */
   SingleLinkedListNode * iter;
   /*
    ... iterate the list to point at the second last 
    node, ...
   */
   for(iter = head; iter -> getNext() -> getNext() != 
     NULL; iter = iter -> getNext());
   /*
    ... delete the last node and ...
   */
   delete iter -> getNext();
   /*
    ... nullify the next pointer of the second last 
    node ...
   */
   iter -> setNext(NULL);
  }
 }
 /*
  Don’t do anything if list is empty (no else).
 */
}
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The function is supposed to ideally delete the last node under three different circumstances—
list is empty, list has exactly one node, and list has more than one node.

The case where the list is empty is handled in exactly the same way as it was handled by 
the delBeg() function. No further explanation is needed.

Let us take the case where there is exactly one node in the list. Consider Listing 9.20.

Listing 9.20 Executing the delEnd() function

/*
 Beginning of DelEnd01.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
  Create a list object
 */
 SingleLinkedList list1;
 /*
  Call the prependNode() function on the list1 object.
 */
 list1.prependNode(5287);
 /*
  Delete the last node
 */
 list1.delEnd();
 /*
  Display the values in the list.
 */
 list1.display();
}
/*
 End of DelEnd01.cpp
*/

Output
No nodes in list

We will expect the structure of the linked list after the call to the delEnd() function to 
be like Figure 9.48.

245

head NULL

list1

Figure 9.48 Expected effect of the delEnd() function

Let us see whether this happens or not. We know that the structure of the linked list after 
the call to the prependNode() function will look like Figure 9.49.
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7912

val

next

5287

NULL

245

head 7912

list1

Figure 9.49 The structure of the linked list before the delEnd() function is called.

This is followed by a call to the delEnd() function. The test expression of the  rst if 
block in the function checks whether the value of head is NULL or not. The check returns 
true because head is not NULL (its value is 7912 because it points at the  rst node, whose 
address is 7912). 

This causes the test expression of the embedded if block to get tested. This test also 
returns true. This is because the call to the getNext() function via the head pointer will return 
NULL. This in turn is because the head pointer points at the  rst node and, in this case, the 
next pointer of this  rst node is NULL.

The nested if block executes. The  rst statement calls the delete operator and passes the 
head pointer as parameter. This causes the memory block at which the head pointer points to 
be returned to the operating system. The next statement assigns NULL to the head pointer. 
The resulting scenario is depicted by Figure 9.50.

245

NULL

head

Figure 9.50 Structure of the linked list after the fi rst and only node has been deleted through 
the head pointer and the head pointer has been nullifi ed

The else block does not execute (because the if block has executed). There are no further 
statements in the function and the function comes to an end. We get the structure shown in 
Figure 9.51.

245

head NULL

list1

Figure 9.51 Observed effect of the delEnd() function

Compare Figure 9.51 with Figure 9.48. As you can see, the effect of the function is exactly 
the same as what we had expected. Hence, the call to the display() function displays ‘No 
nodes in list’.

Finally, let us take the case where the list has more than one node. Consider Listing 9.21.
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Listing 9.21 Executing the delEnd() function

/*
 Beginning of DelEnd02.cpp
*/
#include “SingleLinkedList.h”

void main()
{
 /*
  Create a list object
 */
 SingleLinkedList list1;
 /*
  Call the prependNode() function on the list1 object.
 */
 list1.prependNode(5287);
 /*
  Call the prependNode() function on the list1 object.
 */
 list1.prependNode(325);
 /*
  Delete the last node
 */
 list1.delEnd();
 /*
  Display the values in the list.
 */
 list1.display();
}
/*
 End of DelEnd02.cpp
*/

Output
325

We will expect the structure of the linked list after the call to the delEnd() function to 
be like Figure 9.52.

320

val

next

325

NULL

245

head 320

list1

Figure 9.52 Expected effect of the delEnd() function

Let us see whether this happens or not. We know that the structure of the linked list after 
the second call to the prependNode() function will look like Figure 9.53.
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320

7912

val

val

next

next

325

5287

7912

NULL

245

320

head

Figure 9.53 Structure of the linked list before the call to the delEnd() function

The delEnd() function has been called after the second call to the prependNode() function. 
We already know that the test expression in the outer if block inside the delEnd() function 
will return true. However, the test expression in the inner if block, which calls the getNext() 
function via the head pointer, will return false. This is because the next pointer of the node 
at which the head pointer points is not NULL. Its value is 7912. It points at the second node. 
Therefore, the else block will execute.

The  rst statement in the else block declares a temporary pointer called iter. The second 
statement calls a for loop that does not have a body (there is a semicolon at the end of the 
statement). The initialization statement of the for loop copies the value of the head pointer 
to iter (Figure 9.54).

320

val

next

325

320

215

320

iter

7912

val

next

5287

NULL

245

320

head

Figure 9.54 A temporary iterator pointing at the fi rst node

Now, look carefully at the test expression of the for loop. The call iter -> getNext() 
returns a pointer to the second node. The chained call to the getNext() function returns the 
value of the second node’s next pointer. As can be seen from Figure 9.54, this value is NULL. 
The test expression therefore returns false and the loop breaks.

The next statement calls the getNext() function via iter. It passes the value returned 
by this call, as a parameter to the delete operator. However, this call to the getNext() 
function returns a pointer to the second node. Therefore, the delete operator gets called on 
the second node. This causes the memory occupied by the second node to get returned to the 
operating system.
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The next statement of the else block calls the setNext() function and passes NULL as a 
parameter. Since iter points at the  rst node, the value of the next pointer in the  rst node 
gets set to NULL. The resulting situation can be depicted by Figure 9.55.

320

val

next

325

NULL

245

320

head

Figure 9.55 Structure of the linked list after the second (and last) node has been deleted

Since there are no more statements in the else block and in the function itself, the call to 
the function comes to an end. We are left with a linked list that looks like Figure 9.56.

320

val

next

325

NULL

245

head 320

list1

Figure 9.56 Observed effect of the delEnd() function

Compare Figure 9.56 with Figure 9.52. As you can see, the effect of the function is exactly 
the same as what we had expected. Hence, the call to the display() function displays 325.

Try to verify that the delEnd() function has been correctly de  ned to handle the case 
where the list has more than two nodes.

The last function we need to look at is the destructor.
/*
 The destructor of the class. It will delete the memory  
 occupied by all nodes of the list.
*/
SingleLinkedList::~SingleLinkedList()
{
 /*
  Delete only if no nodes in the list.
 */
 if(head != NULL)
 {
  /*
   As long as the head pointer does not get a NULL value 
   ...
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  */
  while(head != NULL)
  {
   /*
    ... keep calling the delEnd() function to keep 
    deleting the last node.
   */
   delEnd();
  }
 }
 /*
  Don’t do anything if list is empty (no else).
 */
}

The destructor will be called whenever an object of the linked list class will go out of 
scope. It has been designed to return the memory occupied by the nodes of the linked list 
back to the operating system. The function itself is simple. If the list is empty, it does not do 
anything. Otherwise, it simply keeps calling the delEnd() function as long as the list does 
not become empty.

When the delEnd() function is called repeatedly, it keeps deleting the nodes from the end 
of the list. However, remember that the delEnd() function makes the head pointer NULL 
when it is called to delete a linked list that has only one node. Therefore, when the delEnd() 
function is called when the list has only one node left, it will make the list empty and also 
make the head pointer NULL. At this point, the test expression of the while loop will return 
false, and the loop will break.

Also, remember that one function of a class (in this case, the destructor) can call another 
function of the same class [in this case, the delEnd() function].

One point about the signi  cance of the destructor—suppose an object of the linked list class 
has been created in the main() function. When the main() function ends, the program also 
terminates. The memory occupied by the nodes in the linked list will anyway get returned to 
the operating system. You may think that the destructor is super  uous. However, objects of the 
linked list class may not always get created in the main() function. Consider Listing 9.22.

Listing 9.22 Illustrating the importance of the destructor

/*
 Beginning of ListDestructor.cpp
*/
#include “SingleLinkedList.h”

void f1()
{
 /*
  Create a list object
 */
 SingleLinkedList list1;
 /*
  Call the prependNode() function on the list1 object.
 */
 list1.prependNode(5287);
 /*
  Call the prependNode() function on the list1 object.
 */
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 list1.prependNode(325);
 /*
  Display the values in the list.
 */
 list1.display();
}

void main()
{
 f1();
 /*
  More statements and function calls….
 */
}
/*
 End of ListDestructor.cpp
*/

Output
325
5287

The linked list has been created from within the f1() function. The f1() function has 
been called from within the main() function. Suppose, after the call to the f1() function, 
there are several statements and function calls in the main() function. If the destructor has 
not been de  ned, then the memory occupied by the nodes in the linked list will continue to 
occupy memory. The destructor ensures that when the f1() function terminates (and the list1 
object goes out of scope), the memory occupied by the nodes in the linked list is returned to 
the operating system.

 9.3   Stacks

Stacks are also data structures. They are very similar to the linked lists we have just studied. 
Just like linked lists, stacks also consist of nodes, where each node is linked to exactly one 
other node (with the exception of the last node, which is not connected to any other node).

We have learnt that we can add a node to the beginning as well as the end of a linked list. 
However, in a stack, we can add a node only to the beginning. This operation is called push 
operation.

We have also learnt that we can delete a node from the beginning as well as the end of a 
linked list. However, in a stack, we can delete a node only from the beginning. This operation 
is called pop operation.

Thus, stacks are said to have a LIFO (last-in-  rst-out) operation. The last node to get in 
is the  rst to get out.

Let us look at the de  nitions of the stack class and its functions. Let us start with the 
header  le (Listing 9.23).

Listing 9.23 Header fi le of the stack class

/*
 Beginning of Stack.h
*/

#ifndef _STACK_H_
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#define _STACK_H_

#include “SingleLinkedList.h”

/*
 The stack class.
 Each instance of this class will represent a stack.
*/
class Stack : private SingleLinkedList
{
 public:
 /*
  Function to push a value to the top of the stack.
 */
 void push(int);
 /*
  Function to display the values in the nodes of the 
  stack.
 */
 void display();
 /*
  Function to pop a value from the top of the stack.
 */
 void pop();
};

#endif
/*
 End of Stack.h
*/

The header  le of Listing 9.23 contains the de  nition of the stack class. As we can see, 
the Stack class gets private inheritance from the SingleLinkedList class. We will soon 
understand the reason for inheriting privately. The class does not have any data members. It 
has a set of public member functions.

Let us first understand why the Stack class has been defined to inherit from the 
SingleLinkedList class. We will then understand why it has been de  ned to inherit privately 
from the SingleLinkedList class.

We know that stacks share two functionalities with linked lists. One of these functionalities 
is the addition of nodes to the beginning and the other one is the deletion of nodes from the 
beginning. Another shared functionality is displaying the values in the nodes.

We have already defined functions that implement these functionalities in the 
SingleLinkedList class. The prependNode() function inserts a node at the beginning. 
The delBeg() function deletes a node from the beginning. It makes sense to inherit from the 
SingleLinkedList class instead of rede  ning them in the Stack class. We know that, due 
to inheritance, we will be able to call these functions with respect to objects of the Stack 
class.

For example, suppose stack1 is an object of the Stack class. We will like to call the 
prependNode() function with respect to it.

stack1.prependNode(10);

Let us now understand why we have inherited privately. As we know, we are supposed 
to add nodes only at the beginning of stack objects. However, the base class has a function 
that adds nodes to the end of the list also [the appendNode() function]. While we will like 
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to call some functions of the SingleLinkedList class with respect to objects of the Stack 
class, there are some function calls that we will like to be disallowed. For example, a user 
program of the Stack class may call the appendNode() function as follows (stack1 is an 
object of the Stack class):

stack1.appendNode(10);

We will not like the above statement to compile. This is because the above call will add 
a node at the end of the stack, which we do not want to allow. Inheriting privately makes all 
public functions of the base class private in the derived class and therefore causes statements 
like the one above to throw compile-time errors.

As we can see, inheriting privately solves one problem for us. But, it leads to another. 
While it prevents calls to unwanted functions of the base class, it prevents calls to the wanted 
functions too! How can this problem be solved? The problem can be solved by de  ning 
functions in the derived class that internally call the wanted functions of the base class. The 
implementation  le of the Stack class (Listing 9.24) shows how this can be done. So, let us 
have a look at it.

Listing 9.24 Implementation fi le of the Stack class

/*
 Beginning of Stack.cpp
*/
#include “Stack.h”

/*
 Function to push a value to the top of the stack.
*/
void Stack::push(int pVal)
{
 /*
  Call the base class function.
 */
 prependNode(pVal);
}

/*
 Function to display the values in the nodes of the stack.
*/
void Stack::display()
{
 /*
  Call the base class function.
 */
 SingleLinkedList::display();
}
/*
 Function to pop a value from the top of the stack.
*/
void Stack::pop()
{
 /*
  Call the base class function.
 */
 delBeg();
}
/*End of Stack.cpp*/
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Let us start with the push() function. This function simply calls the prependNode() 
function of the base class and passes the value that was passed to it to the called function. 
This causes a node to get added to the beginning of the stack.

Although the prependNode() function becomes a private member of the Stack class, the 
push() function has full rights to call it because it is a member function of the Stack class 
(remember that member functions of a class have access to private members of the class).

The next function is the display() function. All this function needs to do is to call the 
display() function of the base class. However, doing so without the class name quali  er 
will lead to in  nite recursion. Hence, the call to the base class’s display() function has been 
quali  ed with the base class name.

The last function is the pop() function. Like the push() function, it calls the relevant 
function of the base class, which is the delBeg() function in this case. This causes the  rst 
node of the stack to get deleted.

Again, the pop() function has full rights to call the delBeg() function for reasons explained 
earlier.

Let us look at Listing 9.25, which puts this all of this together.

Listing 9.25 An example user program of the Stack class

/*
 Beginning of StackUser.cpp
*/
#include <iostream.h>
#include “Stack.h”
void main()
{
 Stack stack1;
 cout << “Displaying a new stack:” << endl;
 stack1.display();
 cout << endl;

 stack1.push(30);
 cout << “Displaying after pushing 30:” << endl;
 stack1.display();
 cout << endl;

 stack1.push(20);
 cout << “Displaying after pushing 20:” << endl;
 stack1.display();
 cout << endl;

 stack1.push(10);
 cout << “Displaying after pushing 10:” << endl;
 stack1.display();
 cout << endl;

 stack1.pop();
 cout << “Displaying after popping:” << endl;
 stack1.display();
 cout << endl;

 stack1.pop();
 cout << “Displaying after popping:” << endl;
 stack1.display();
 cout << endl;

 stack1.pop();
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 cout << “Displaying after popping:” << endl;
 stack1.display();
 cout << endl;

}
/*
 End of StackUser.cpp
*/

Output
Displaying a new stack:
No nodes in list
Displaying after pushing 30:
30
Displaying after pushing 20:
20
30
Displaying after pushing 10:
10
20
30
Displaying after popping:
20
30
Displaying after popping:
30
Displaying after popping:
No nodes in list

 9.4   Queues

Queues are data structures too. They are very similar to stacks. The only difference between 
the two is in their push operations. In a stack, the push operation causes the new node to 
get added to the beginning. But, in a queue, the push operation causes the new node to get 
added to the end.

Thus, queues are said to have a FIFO (  rst-in-  rst-out) operation. The  rst node to get in 
is the  rst to get out.

Let us look at the de  nitions of the queue class and its functions. Let us start with the 
header  le (Listing 9.26).

Listing 9.26 Header fi le of the queue class

/*
 Beginning of Queue.h
*/

#ifndef _QUEUE_H_
#define _QUEUE_H_

#include “SingleLinkedList.h”

/*
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 The queue class.
 Each instance of this class will represent a queue.
*/
class Queue : private SingleLinkedList
{
 public:
 /*
  Function to push a value to the end of the queue.
 */
 void push(int);
 /*
  Function to display the values in the nodes of the 
  queue.
 */
 void display();
 /*
  Function to pop a value from the top of the queue.
 */
 void pop();
};

#endif
/*
 End of Queue.h
*/

The above header  le contains the de  nition of the queue class. As we can see, the Queue 
class does private inheritance from the SingleLinkedList class. We already know the reason 
for inheriting from the SingleLinkedList class. We also know the reason for inheriting 
privately.

Let us have a look at the implementation  le of the Queue class (Listing 9.27).

Listing 9.27 Implementation fi le of the Queue class

/*
 Beginning of Queue.cpp
*/
#include “Queue.h”

/*
 Function to push a value to the end of the queue.
*/
void Queue::push(int pVal)
{
 /*
  Call the base class function.
 */
 appendNode(pVal);
}

/*
 Function to display the values in the nodes of the queue.
*/
void Queue::display()
{
 /*
  Call the base class function.
 */
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 SingleLinkedList::display();
}
/*
 Function to pop a value from the top of the queue.
*/
void Queue::pop()
{
 /*
  Call the base class function.
 */
 delBeg();
}
/*End of Queue.cpp*/

As we can see, all functions of the Queue class are identical to those of the Stack class, 
except the push() function. This function calls the appendNode() function of the base class 
instead of the prependNode() function. This causes a node to get added to the end of the 
stack instead of the beginning.

Let us look at Listing 9.28, which puts this all of this together.

Listing 9.28 An example user program of the Queue class

/*
 Beginning of QueueUser.cpp
*/
#include <iostream.h>
#include «Queue.h»
void main()
{
 Queue queue1;
 cout << “Displaying a new queue:” << endl;
 queue1.display();
 cout << endl;

 queue1.push(30);
 cout << “Displaying after pushing 30:” << endl;
 queue1.display();
 cout << endl;

 queue1.push(20);
 cout << “Displaying after pushing 20:” << endl;
 queue1.display();
 cout << endl;

 queue1.push(10);
 cout << “Displaying after pushing 10:” << endl;
 queue1.display();
 cout << endl;

 queue1.pop();
 cout << “Displaying after popping:” << endl;
 queue1.display();
 cout << endl;

 queue1.pop();
 cout << “Displaying after popping:” << endl;
 queue1.display();
 cout << endl;
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 queue1.pop();
 cout << “Displaying after popping:” << endl;
 queue1.display();
 cout << endl;

}
/*
 End of QueueUser.cpp
*/

Output
Displaying a new queue:
No nodes in list
Displaying after pushing 30:
30
Displaying after pushing 20:
30
20
Displaying after pushing 10:
30
20
10
Displaying after popping:
20
10
Displaying after popping:
10
Displaying after popping:
No nodes in list

 9.5   Trees

Trees, unlike linked lists, stacks, and queues, do not have a linear structure. In the lists we 
have studied so far in this chapter, each node was connected to a maximum of one other node. 
But, in a tree, each of the nodes may be connected to more than one node.

We encounter tree-like structures in our everyday life. Such a real example of a tree can be 
that of a directory structure in a computer. Figure 9.57 shows a possible directory structure 
(each box represents a directory):

My Programs

C Language

Graphics File IO Data Structures Calculator Proj Tic Tac Toe Proj

C++

Figure 9.57 Directory structure looks like a tree
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The ‘My Programs’ folder has two folders beneath it—‘C Language’ and ‘C++’. But the 
‘C++’ folder has three folders beneath it—‘Data Structures’, ‘Calculator Proj’, and ‘Tic Tac 
Toe Proj’.

Suppose this folder structure is represented by a data structure, in which each folder is 
represented by a node. It is obvious that each such node will contain, apart from the name of 
the folder, one or more pointers to other similar nodes. Such a data structure is called a tree. 
Trees can be created in C++ in order to model these real-world tree-like structures.

9.5.1  Binary Trees

A binary tree is a tree in which each node is linked to a maximum of two nodes. Let us look at 
a simpli  ed  gure of a binary tree (Figure 9.58). In this  gure, the nodes have been represented 
by circles. Each node has been labelled with a different alphabet. The links between nodes 
have been represented with straight lines.

The tree has been drawn in a top-down fashion. This means that A is the root node. The 
 gure will be described in greater detail shortly.

A

C

F

IH

E

B

D

G

Figure 9.58 A binary tree

A binary tree is a  nite set of elements. It is either empty or is partitioned into three 
disjoint subsets. The  rst subset contains only one element, which is the root of the tree. The 
other subsets are themselves binary trees. One of them is considered to be the left sub-tree 
and the other one is considered to be the right sub-tree. Either or both of the sub-trees can 
be empty.

Let us understand this with the help of the example shown in Figure 9.58. There are nine 
nodes in the tree depicted above. The root node is labelled ‘A’. The tree has a left sub-tree 
and a right sub-tree. The root node of the left sub-tree is labelled ‘B’ whereas the root node 
of the right sub-tree is labelled ‘C’.

Let us take this description further. The left sub-tree is also a tree. The root node is ‘B’. 
The node labelled ‘D’ is the root node of the left sub-tree of ‘B’ and the node labelled ‘E’ is 
the root node of the right sub-tree of ‘B’. The tree starting from ‘D’ does not have a left or a 
right sub-tree. The tree starting from ‘E’ has a left sub-tree only.

A node that does not have children is known as leaf. Thus, in the above  gure, ‘D’, ‘G’, 
‘H’, and ‘I’ are leaves.
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As per the de  nition of a tree, these three sets should be disjointed—the root, the set of 
nodes in the left sub-tree, and the set of nodes in the right sub-tree. Accordingly, the structures 
shown in Figure 9.59 are not trees.
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Figure 9.59 Structures that are not binary trees

Natural trees usually grow upwards, with their roots in the ground and the branches and 
leaves growing in an upward direction. But, in data structures, trees are depicted to grow 
downwards, with their root at the top and the branches and leaves growing downwards.

Recursive Nature of Binary Trees

If you look closely, you will observe that binary trees have recursive structures. The entire 
tree has a root, a left sub-tree, and a right sub-tree. Both of the sub-trees are trees themselves. 
Both of them in turn have roots and sub-trees.

While programming functions that model operations on trees, we can exploit this recursive 
nature of trees and make them recursive too. This will make the functions shorter and reduce 
our programming effort. You will understand this while studying these functions.

Traversal of a Binary Tree

Traversing a linked list is simple because it has a linear structure. We simply visit the nodes 
from the  rst to the last. However, trees do not have a linear structure. How can we traverse 
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a tree? There are three ways of doing it—pre-order, in-order, and post-order. Keep in mind 
that we stop as soon as we encounter an empty tree.

The sequence of steps for traversing a non-empty tree in pre-order is as follows:
1. Visit the root.
2. Visit the left sub-tree in pre-order.
3. Visit the right sub-tree in pre-order.
The sequence of steps for traversing a non-empty tree in in-order is as follows:
1. Visit the left sub-tree in in-order.
2. Visit the root.
3. Visit the right sub-tree in in-order.
The sequence of steps for traversing a non-empty tree in post-order is as follows:
1. Visit the left sub-tree in post-order.
2. Visit the right sub-tree in post-order.
3. Visit the root.

Let us look at some examples now. Consider the tree shown in Figure 9.60, which we 
have seen earlier also.
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Figure 9.60 A binary tree

Let us see the sequence in which we visit the nodes when we follow each of the traversal 
methods. Let us start with pre-order traversal.

In pre-order traversal, we visit the root  rst. Hence, we get ‘A’. Then we visit the left sub-
tree of ‘A’ in pre-order (visiting the right sub-tree of ‘A’ is pending at this time). We visit the 
root  rst. Hence, we get ‘B’. Then, we visit the left sub-tree of ‘B’ in pre-order (visiting the 
right sub-tree of ‘B’ is pending at this time). We visit the root  rst. Hence, we get ‘D’. Then, 
we visit the left sub-tree of ‘D’ in pre-order (visiting the right sub-tree of ‘D’ is pending at 
this time). There is no left sub-tree for ‘D’. So, we visit the right sub-tree of ‘D’ in pre-order, 
which was pending. There is no left sub-tree for ‘D’. Hence, we go one step back. We visit 
the right sub-tree of ‘B’ in pre-order, which was pending. If you continue like this after ‘A’, 
‘B’, and ‘D’, you will get ‘E’, ‘G’, ‘C’, ‘F’, ‘H’, ‘I’.

To conclude, the result of a pre-order traversal of the above tree will be ‘ABDEGCFHI’.
Similarly, the result of an in-order traversal will be ‘DBGEACHFI’. And the result of a 

post-order traversal will be ‘DGEBHIFCA’.
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9.5.2 Binary Search Trees

A binary search tree is a special form of binary tree. In a binary search tree, for any given 
node, the value contained in its left child is less than the value contained in the node and the 
value contained in the node is less than the value contained in its right child. For example, 
the tree shown in Figure 9.61 is a binary search tree.

33

35

8726

21

Figure 9.61 A binary search tree

But the binary tree shown in Figure 9.62 is not a binary search tree. This is because 81 is 
larger than 49 and cannot be the value of the left child of the node that has 49.

18

25

49

81

17

Figure 9.62 A structure that is not a binary search tree

If you traverse a binary search tree in in-order (left, root, right), and display the value of 
each node as you visit, then you will end up printing the values in ascending order. Try to 
draw a binary search tree and see whether this happens or not.

Let us now look at the code that can be used to generate binary search trees (BSTs). Broadly, 
we will be studying two classes—BSTNode and BST. The  rst class will help us in creating the 
nodes of BSTs whereas the second class will help us in creating the BSTs themselves.

Let us start with the  rst class. See Listing 9.29.

Listing 9.29 The BSTNode class

/*Beginning of BSTNode.h*/

#ifndef _BSTNODE_H_
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#define _BSTNODE_H_

/*
 The node class.
 Each instance of this class will be a node in the binary 
 search tree.
*/
class BSTNode
{
 private:
 /*
  The data part of the node.
 */
 int val;
 /*
  The left pointer will exist in each node and will 
  point at the left child node (or be null)
 */
 BSTNode * left;
 /*
  The right pointer will exist in each node and will 
  point at the right child node (or be null)
 */
 BSTNode * right;

  public:
 /*
  The constructor of the node class. It will nullify the 
  left and right pointers by default.
 */
 BSTNode();
 /*
  This function sets the value of the data part.
 */
 void setVal(int);
 /*
  This function returns the data part.
 */
 int getVal();
 /*
  This function sets the value of the left pointer.
 */
 void setLeft(BSTNode *);
 /*
  This function returns a reference to the left pointer.
 */
 BSTNode *& getLeft();
 /*
  This function sets the value of the right pointer.
 */
 void setRight(BSTNode *);
 /*
  This function returns a reference to the right pointer.
 */
 BSTNode *& getRight();
 /*
  The destructor of the class.
 */
 ~BSTNode();
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};

#endif
/*End of BSTNode.h*/

Each object of the above class will be a node in the BST. Each node will have three data 
members—val, left, and right. The data of each node will be stored in the  rst member, val. 
This is an integer-type variable, which means that the nodes will contain integer type values. 
The remaining data members are left and right. Each of these is a pointer to another node. 
As we know, each node of a BST has either a left child or a right child or both or neither. If 
a node has a left child node, then the left data member will point at that node. Otherwise, 
it will be NULL. The same holds true for the right data member.

Figures 9.63 and 9.64 show some nodes.
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Figure 9.63 A BST node (object of the BSTNode class) with no children.

Figure 9.63 depicts an object of the BSTNode class. This particular object represents a node 
of the binary search tree that has no child nodes. Hence, both the left and the right data 
members are NULL. Moreover, the value of the val data member is 20. Finally, the address 
of the node itself is 2172.

Let us see what happens if a node, having a value of 10, gets added to the above node (Figure 
9.64). It will get added as the left child of the existing node because 10 is smaller than 20.
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Figure 9.64 A node with only a left child

Now that we have had a glimpse of the data members of the node class, let us have a brief 
look at the declaration of its member functions. All of the declarations are self-evident. The 
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only declarations we need to study separately are those of the functions that return references 
to the left and the right pointers [the getLeft() and getRight() functions respectively]. 
You will understand why they return by reference (and not by value) when you study the 
insert() function of the BST class.

Let us look at the de  nitions of the member functions of the BSTNode class (Listing 
9.30).

Listing 9.30 Implementation fi le for the BSTNode class

/*Beginning of BSTNode.cpp*/
#include “BSTNode.h”

/*
 The constructor of the node class. It will nullify the 
 left and right pointers by default.
*/

BSTNode::BSTNode()
{
 /*
  Set the data part to zero.
 */
 val = 0;
 /*
  Set the left pointer to null.
 */
 left = NULL;
 /*
  Set the right pointer to null.
 */
 right = NULL;
}

/*
 This function sets the value of the data part.
*/
void BSTNode::setVal(int pVal)
{
 val = pVal;
}

/*
 This function returns the data part.
*/
int BSTNode::getVal()
{
 return val;
}

/*
 This function sets the value of the left pointer.
*/
void BSTNode::setLeft(BSTNode * pLeft)
{
 left = pLeft;
}

/*
 This function returns a reference to the left pointer.
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*/
BSTNode *& BSTNode::getLeft()
{
 return left;
}

/*
 This function sets the value of the right pointer.
*/
void BSTNode::setRight(BSTNode * pRight)
{
 right = pRight;
}

/*
 This function returns a reference to the right pointer.
*/
BSTNode *& BSTNode::getRight()
{
 return right;
}

/*
 The destructor of the class.
*/
BSTNode::~BSTNode()
{
}
/*End of BSTNode.cpp*/

Let us have a closer look at the getLeft() and getRight() functions. As you can see, each 
of these functions returns a reference to either the left or the right pointer respectively. It is 
important to understand the implications of this if we later want to understand the insert() 
function of the BST class, which, as the name indicates, inserts a node in the BST. Let us take 
the getLeft() function. Suppose, node1 is an instance of the BSTNode class and contains 
the value 20, as shown in Figure 9.65.
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Figure 9.65 A BST node

Before going any further, you need to understand that the address of the left pointer is 
2176. Why is the address of the left pointer 2176? This is because the address of the node 
is 2172. The  rst data member in the node is val, which is an integer-type variable. Since 
integer-type variables occupy 4 bytes, the  rst 4 bytes of node1 will be occupied by val. The 
left pointer is the second data member. Hence its address will be 2176 (2172 + 4). Can you 
calculate the address of the right pointer?

Now, consider Listing 9.31.
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Listing 9.31 Testing the BSTNode class

/*
 Beginning of BSTNodeTest01.cpp
*/
#include “BSTNode.h”
void main()
{
 BSTNode node1;
 node1.setVal(20);
 BSTNode * & temp = node1.getLeft();
 temp = new BSTNode();
 temp -> setVal(10);
 cout << node1.getLeft()->getVal() << endl;
}
/*
 End of BSTNodeTest01.cpp
*/

Output
10

The  rst statement of the above program declares an object of the BSTNode class and the 
second statement sets the value of the node to 20. Let us analyse Listing 9.31 from the third 
statement onwards.

BSTNode * & temp = node1.getLeft();

Since the call to the getLeft() function returns a reference to the left pointer of the node1 
object and because the temp pointer is a reference variable, therefore the temp pointer ends 
up being a reference for the left pointer of the node1 object, as shown in Figure 9.66.
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Figure 9.66 A temporary pointer pointing at a BST node

Since temp is a reference to the left pointer, its address will be the same as that of the 
left pointer, which is 2176. And, from our knowledge of reference variables, we know that 
any change to the value of temp will cause the same change to the value of the left pointer 
(because they are essentially two names for the same memory block). Thus, if the following 
statement executes now, it will change the value of the left pointer.

The next statement in the program is:
temp = new BSTNode();
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The above statement will create a new object of the BSTNode class and assign its address 
to the temp pointer. Consequently, the value of the left pointer in the node1 object will also 
become equal to the address of the newly created object, as shown in Figure 9.67.
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Figure 9.67 Temporary pointer and left pointer of existing node pointing at a newly 
created node

In this situation, the address of the newly created node is 3258. Therefore, the values of 
temp and the left pointer of the existing node have become 3258. The next statement is:

temp -> setVal(10);

This will assign 10 to the node at which temp points, as shown in Figure 9.68.

2172

node1

val

left

right

20

3258

NULL

3258

val

left

right

0

NULL

NULL

2176

3258

temp

Figure 9.68 Newly created node populated by a value

The next statement is:
cout << node1.getLeft()->getVal() << endl;
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The above statement tells us whether temp and the left pointer really point at the same 
node or not. If temp and the left pointer really point at the same node, then the call to the 
getLeft() function in the above statement should return a pointer to the newly created node. 
In that case, the call to the getVal() function should return 10. We can see from the output 
that 10 was in fact returned by the call to the getVal() function.

Note how a left child has got added to an existing node through a temporary pointer. Let 
us now see the same thing in a more elaborate code (Listing 9.32).

Listing 9.32 Testing the BSTNode class

/*
 Beginning of BSTNodeTest02.cpp
*/
void f1(BSTNode *& temp, int pVal)
{
 temp = new BSTNode();
 temp->setVal(pVal);
}
void main()
{
 BSTNode node1;
 node1.setVal(20);
 f1(node1.getLeft(), 10);
 cout << node1.getLeft() -> getVal() << endl;
}
/*
 End of BSTNodeTest02.cpp
*/

Output
10

Listing 9.32 is similar to the previous one. The difference is that temp is a formal argument in 
a called function instead of being a local variable in the caller function. When the f1() function 
is called, a reference to the left pointer gets passed as a parameter to it. The corresponding 
formal argument in the f1() function, temp, is also a reference-type variable. Consequently, 
temp ends up being a reference for the left pointer of the node1 object. The consequence of 
the statements inside the f1() function has already been explained above.

As you can see in Listing 9.32, a left child node again got added to an existing node, but this 
time via a called function. This technique will be used later on while de  ning the insert() 
function of the BST class, the function that enables us to insert nodes in the BST. It is therefore 
important to understand this explanation.

Let us now go over to the BST class itself (Listing 9.33).

Listing 9.33 The BST class

/*
 Beginning of BST.h
*/
#ifndef _BST_H_
#define _BST_H_

#include “BSTNode.h”
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/*
 The binary search tree class. Each object of this class 
 will represent a BST.
*/
class BST
{
 private:
 /*
  The root pointer of the BST. It will either point at 
  the root node or be NULL.
 */
 BSTNode * root;
 /*
  Private function to insert the node. Will be called 
  from the public function.
 */
 void insert(BSTNode *&, int);
 /*
  Private function to do pre-order traversal. Will be 
  called from the public function.
 */
 void preorder(BSTNode *);
 /*
  Private function to do in-order traversal. Will be 
  called from the public function.
 */
 void inorder(BSTNode *);
 /*
  Private function to do post-order traversal. Will be 
  called from the public function.
 */
 void postorder(BSTNode *);

 public:
 /*
  The constructor of the BST class. It will nullify the 
  root pointer by default.
 */
 BST();
 /*
  Function to insert a node at the correct place in the 
  BST.
 */
 void insert(int);
 /*
  Function to do pre-order traversal.
 */
 void preorder();
 /*
  Function to do in-order traversal.
 */
 void inorder();
 /*
  Function to do post-order traversal.
 */
 void postorder();
 /*
  The destructor of the class.
 */
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 ~BST();
};

#endif
/*End of BST.h*/

This class has only one data member—root—which is private. Consequently, root will 
be the only data member in all objects of the BST class, and the constructor of the BST class 
will ensure that it gets nulli  ed in each newly created object.

As the de  nition suggests, root will point at an object of the node class BSTNode. As the 
name suggests, it will point at the  rst node of the BST.

Let us look at the implementation of the member functions now (Listing 9.34).

Listing 9.34 Implementation fi le of BST class

/*Beginning of BST.cpp*/
#include <iostream.h>
#include “BST.h”

/*
 Private function to insert the node. Will be called from 
 the public function.
*/
void BST::insert(BSTNode * &nodePtr, int pValue)
{
 /*
  Reference to a pointer is passed as one parameter.
 */
 /*
  If the pointer is NULL ...
 */
 if(nodePtr == NULL)
 {
  /*
   ... create a node and make the pointer point at it 
   and ...
  */
  nodePtr = new BSTNode();
  /*
   ... copy the value passed to the function to the new 
   node and ...
  */
  nodePtr -> setVal(pValue);
  /*
   ... return.
  */
  return;
 }
 /*
  If the value in the current node is larger than the 
  value passed ...
 */
 if(nodePtr -> getVal() > pValue)
 {
  /*
   ... call the function recursively starting with the 
   left child.
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  */
  insert(nodePtr -> getLeft(), pValue);
 }

 /*
  If the value in the current node is smaller than the 
  value passed ...
 */
 if(nodePtr -> getVal() < pValue)
 {
  /*
   ... call the function recursively starting with the 
   right child.
  */
  insert(nodePtr -> getRight(), pValue);
 }
}

/*
 Private function to do pre-order traversal. Will be 
 called from the public function.
*/
void BST::preorder(BSTNode * nodePtr)
{
 /*
  As long as the passed pointer is not NULL ...
 */
 if(nodePtr != NULL)
 {
  /*
   ... display the value of the current node first ...
  */
  cout << nodePtr -> getVal() << endl;
  /*
   ... then call the function recursively for the left 
   child ...
  */
  preorder(nodePtr -> getLeft());
  /*
   ... and then call the function recursively for the 
   right child.
  */
  preorder(nodePtr -> getRight());
 }
}
/*
 Private function to do in-order traversal. Will be called 
 from the public function.
*/
void BST::inorder(BSTNode * nodePtr)
{
 /*
  As long as the passed pointer is not NULL ...
 */
 if(nodePtr != NULL)
 {
  /*
   ... call the function recursively for the left child 
   first...
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  */
  inorder(nodePtr -> getLeft());
  /*
   ... then display the value of the current node ...
  */
  cout << nodePtr -> getVal() << endl;
  /*
   ... and then call the function recursively for the 
   right child.
  */
  inorder(nodePtr -> getRight());
 }
}

/*
 Private function to do post-order traversal. Will be 
 called from the public function.
*/
void BST::postorder(BSTNode * nodePtr)
{
 /*
  As long as the passed pointer is not NULL ...
 */
 if(nodePtr != NULL)
 {
  /*
   ... call the function recursively for the left child 
   first...
  */
  postorder(nodePtr -> getLeft());
  /*
   ... then call the function recursively for the right 
   child ...
  */
  postorder(nodePtr -> getRight());
  /*
   ... and then display the value of the current node.
  */
  cout << nodePtr -> getVal() << endl;
 }
}

/*
 The constructor of the BST class. It will nullify the 
 root pointer by default.
*/
BST::BST()
{
 /*
  Nullify the root pointer.
 */
 root = NULL;
}

/*
 Function to insert a node at the correct place in the
 BST.
*/
void BST::insert(int pValue)
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{
 /*
  Call the private function to insert the node at the 
  correct place in the BST.
 */
 insert(root, pValue);
}

/*
 Function to do pre-order traversal.
*/
void BST::preorder()
{
 /*
  Call the corresponding private function.
 */
 preorder(root);
}

/*
 Function to do in-order traversal.
*/
void BST::inorder()
{
 /*
  Call the corresponding private function.
 */
 inorder(root);
}

/*
 Function to do post-order traversal.
*/
void BST::postorder()
{
 /*
  Call the corresponding private function.
 */
 postorder(root);
}

/*
 The destructor of the class.
*/
BST::~BST()
{
}
/*End of BST.cpp*/

The BST class has a few private member functions. We will return to them later on. Let us 
start looking at the public member functions.

The de  nition of the constructor is obvious. It simply nulli  es the root pointer for each 
newly created object of the BST class.

The next public function is insert(). This function has been designed to create a new 
node and insert it at the appropriate place in the BST. It accepts the value to be inserted as a 
parameter. It in turn calls an overloaded private member function. It transfers its parameter 
to the called function. It also passes the root pointer to the called function.
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Let us come back to the de  nition of the insert() function after understanding the calling 
pattern that we observe here. Please keep in mind that the functions of the BST class that carry 
out the actual task are recursive and therefore need the root pointer to be passed as an initial 
parameter to them. But, at the same time, we cannot expect the programs that use the BST 
class to pass the value of the root pointer when they call its functions (they have no way of 
knowing the value of the root pointer anyway).

So, what is the way out? The problem can be solved by creating a public function that 
does not expect the root pointer to be passed to it, but in turn calls a private function, which 
does the actual work, and passes the root pointer to it. Thus, we are able to ensure that the 
functions that do the actual work get the root pointer as a parameter, without expecting the 
calling program to pass it for us.

For example, if tree1 is an instance of the BST class (created in one of the user programs 
of the BST class) and we need to insert the value 20 into the tree, then the public insert() 
function will be called as follows:

tree1.insert(20);

The de  nition of the public insert() function is as follows:
/*
 Function to insert a node at the correct place in the 
 BST.
*/
void BST::insert(int pValue)
{
 /*
  Call the private function to insert the node at the 
  correct place in the BST.
 */
 insert(root, pValue);
}

As can be seen, the public function in turn calls the private function. It transfers the data 
value that was passed to it to the private function. It also passes the value of the root pointer 
to the private function.

Let us look at the de  nition of the private version of this function, which does the actual 
work for us.

/*
 Private function to insert the node. Will be called from 
 the public function.
*/
void BST::insert(BSTNode * &nodePtr, int pValue)
{
 /*
  Reference to a pointer is passed as one parameter.
 */
 /*
  If the pointer is NULL ...
 */
 if(nodePtr == NULL)
 {
  /*
   ... create a node and make the pointer point at it 
   and ...
  */
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  nodePtr = new BSTNode();
  /*
   ... copy the value passed to the function to the new 
   node and ...
  */
  nodePtr -> setVal(pValue);
  /*
   ... return.
  */
  return;
 }
 /*
  If the value in the current node is larger than the 
  value passed ...
 */
 if(nodePtr -> getVal() > pValue)
 {
  /*
   ... call the function recursively starting with the 
   left child.
  */
  insert(nodePtr -> getLeft(), pValue);
 }
 /*
  If the value in the current node is smaller than the 
  value passed ...
 */
 if(nodePtr -> getVal() < pValue)
 {
  /*
   ... call the function recursively starting with the 
   right child.
  */
  insert(nodePtr -> getRight(), pValue);
 }
}

This complicated looking function is actually very simple. Let us start by considering the 
case where the tree is empty (Listing 9.35).

Listing 9.35 Testing the insert() function

/*Beginning of BSTInsert01.cpp*/
#include “BST.h”
void main()
{
 BST tree1;
 tree1.insert(20);
}
/*End of BSTInsert01.cpp*/

The  rst statement in the above program will create an object of the BST class called tree1. 
Figure 9.69 depicts tree1 after it has got created in the memory.
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Figure 9.69 An object of the BST class

As per the de  nition of the BST class, tree1 has only one data member, called root. The 
address of the object is 2172. Since root is the only data member of the object, its address is 
also 2172. Keep in mind that when the tree is empty, the root pointer’s value will be NULL.

The second statement in the above program calls the public insert() function as 
follows:

tree1.insert(20);

This in turn will call the private function as follows:
insert(root, 20);

Note that nodePtr, which is the  rst formal argument of the private function, is a reference-
type variable. Thus, as a result of the above call, nodePtr will end up being a reference to 
the root pointer. Thus, any change in the value of nodePtr will cause the same change 
to the value of the root pointer. This is a very important point and must be kept in mind. Also, 
the value of pValue, which is the second formal argument, will get set to 20. The resulting 
situation is depicted in Figure 9.70.
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Figure 9.70 Situation resulting out of a call to the insert() function

As can be seen, root and nodePtr have the same address, which is 2172. This is because 
nodePtr is a reference to root. Naturally, they have the same values too. pValue is a separate 
integer type variable. Its value is 20.

Now, the function will start executing. The value of nodePtr will be tested for NULL value 
in the test expression of the  rst if block. The test will return true because the value of the root 
pointer is NULL and the value of nodePtr is the same as the value of the root pointer.

The if block will execute. A new node will get created and the value of its address will 
get copied to nodePtr. This will cause the value of the root pointer to become equal to 
the address of the newly created node because nodePtr is a reference to root as shown in 
Figure 9.71. Suppose, the address of the newly created node is 6221, then the value of both 
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root and nodePtr will become 6221. This is the importance of declaring nodePtr as a 
reference variable.
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Figure 9.71 A newly created node added to the root pointer

The next statement in the if block will copy the value of pValue to the data part of the 
newly created node giving rise to the situation shown in Figure 9.72.
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Figure 9.72 Populating the newly created node with data

Finally, the last statement of the if block will cause the function to return and the remaining 
part of the function will not execute. The local variables nodePtr and pValue will go out of 
scope. We will be left with the root pointer and the newly created node. Thus, a new node, 
with value 20, will get added to the tree. Figure 9.73 shows what the tree will look like.
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Figure 9.73 Situation at the end of the insert() function
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Thus, it is clear that the insert() function will work correctly when the tree is empty. 
Let us now consider the case where the tree is not empty (Listing 9.36).

Listing 9.36 Testing the insert() function

/*Beginning of BSTInsert02.cpp*/
#include “BST.h”
void main()
{
 BST tree1;
 tree1.insert(20);
 tree1.insert(10);
}
/*End of BSTInsert02.cpp*/

We already know that at the end of the second statement of the main() function above, 
the scenario will be as shown in Figure 9.74.
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Figure 9.74 Structure of the BST after the fi rst call to the insert() function

We can see from the  gure that the tree will not be empty when the third statement in the 
main() function starts. The third statement is:

tree1.insert(10);

We know that this in turn will call the private ‘insert()’ function as follows:
insert(root, 10);

As before, nodePtr will end up being a reference to root and the value of pValue will 
become equal to 10, as shown in Figure 9.75.

2172

6221

root

2172

6221

nodePtr

3922

10

pValue

6221

val

left

right

20

NULL

NULL

Figure 9.75 First generation of the call to the insert() function
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As before, the test expression inside the if statement will be tested. However, this time, 
the test will fail. Therefore, the  rst if block will be bypassed. The test expression in the 
next if statement will get tested. This will return true because the value in the node at which 
nodePtr points is 20 and is greater than the value of pValue, which is 10.

Now comes the tricky part. The second if block will execute. The insert() function will 
be called recursively and the second generation of the function will start executing. Look 
closely at the  rst value that is being passed to the recursive call to the insert() function. 
It is as follows:

nodePtr -> getLeft()

We know that this function call will return a reference to the left pointer of the node at 
which nodePtr points currently (and we know that nodePtr currently points at the  rst node). 
Thus, when the second generation of the function gets called, nodePtr, which is one of the 
formal arguments, ends up being a reference to the left pointer of the  rst node. Since the 
address of the  rst node is 6221, the address of its left pointer will be 6225 (we already 
know why). Therefore, the address of nodePtr will also be 6225. Its value will also be NULL 
because the value of the left pointer of the  rst node is NULL.

The other formal argument, pValue, gets created as a local variable in the second generation, 
and its value becomes 10. Let us assume that its address is 6720. Figure 9.76 explains what 
is happening.
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Figure 9.76 First and second generations of the call to the insert() function

In the above  gure, nodePtr and pValue on the left are from the  rst generation while 
those on the right are from the second generation of the function call.

Now, the body of the second generation of the function call will start executing. The test 
expression of the  rst if statement will return true because the value of nodePtr is null. A 
new node will get created and its address will get copied to nodePtr. Since nodePtr is a 
reference to the left pointer of the  rst node, the value of the left pointer of the  rst node 
will also become equal to the address of the newly created node. Let us look at Figure 9.77, 
which depicts this scenario.

After this, the value of pValue will get copied to the val data member of the new node 
giving rise to the structure shown in Figure 9.78.
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Figure 9.77 Node added in the second generation of the call to the insert() function
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Figure 9.78 Newly created node populated with value
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After this, the return statement of the second generation call will execute and the second 
generation will terminate. The local variables of the second generation—nodePtr and 
pValue—will cease to exist. We will then be left with the structure shown in Figure 9.79.
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Figure 9.79 Situation after the second generation of the call to the insert() function ends

This will bring the second if block of the  rst generation to an end. The third if block 
will not execute because its test expression will return false. Thus, the  rst generation will 
terminate. The local variables of the  rst generation—nodePtr and pValue—will cease to 
exist. We will then be left with the structure shown in Figure 9.80.
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Figure 9.80 Situation after the fi rst generation of the call to the insert() function ends
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We can see that a new node has got attached to the left of the  rst node. This is what we were 
expecting. It is clear that the insert() function will work correctly if the tree is not empty.

Similarly, if we call the insert() function by passing a value that is larger than the value 
contained in the root node when the root node does not have a right child, then a right child 
will get attached to the root node.

If you keep in mind the fact that the left and the right sub-trees of any node in the tree are 
trees in their own right, it is quite easy to see how the tree will grow if the insert() function 
gets called repeatedly.

The private insert() function is a recursive function. When we call it, we pass the root 
pointer and the value to be inserted to it. If the tree is empty, then the insert() function 
simply creates a new node and makes root point at it. If there is exactly one node and if the 
insert() function  nds that the value it has received is smaller than the value in the single 
existing node, then it calls itself by passing a reference to the left pointer, and the previous 
step repeats. Similarly, if there is exactly one node and if the insert() function  nds that 
the value it has received is larger than the value in the single existing node, then it calls itself 
by passing a reference to the right pointer, and the previous step repeats.

Keep in mind that a BST should not have duplicate values. The existing de  nition of the 
private insert() function elegantly takes care of this requirement. Let us understand how.

Suppose there is only one node in the tree, and that its value is 20. Further suppose we call 
the insert() function by passing 20. Now, the  rst if block in the insert() function will 
not execute because the value of root is not null. The second and third if blocks will also 
not execute because the value passed to the function is neither smaller than nor greater than 
20 (it is equal to 20). The function will terminate without doing anything.

By extrapolation, it is easy to understand that if we pass a value that is the duplicate of a 
value that is several levels down in the tree, then also the value will not get inserted. When 
the function keeps getting called recursively till the point the node that contains the duplicate 
value is reached, the same thing happens as has been described in the previous paragraph. 
The current generation of the function call will terminate without doing anything. And the 
previous generations will terminate in the reverse order.

Why does a duplicate value not get inserted? This is because of the clever way in which 
the test expressions in the second and third if blocks of the function have been de  ned. The 
third if block is not an else block of the second if block. It simply tests for the opposite 
inequality. Thus, if an equal value is passed, then neither of the two if blocks executes, and 
the function simply terminates.

Let us now study the traversal functions—preorder(), inorder(), and postorder(). 
Each of these functions has a public version as well as a private version. We have de  ned 
the public version to not take any parameters and to call the corresponding private version 
by passing the value of the root pointer as a parameter (we already know why we do this). 
Let us look at the public version of the preorder() function.

/*
 Function to do pre-order traversal.
*/
void BST::preorder()
{
 /*
  Call the corresponding private function.
 */
 preorder(root);



 Data Structures 369

}

As we can see, the public version of the function calls its private version and passes the 
root pointer to it. Let us look at the private function of the function.

/*
 Private function to do pre-order traversal. Will be 
 called from the public function.
*/
void BST::preorder(BSTNode * nodePtr)
{
 /*
  As long as the passed pointer is not NULL ...
 */
 if(nodePtr != NULL)
 {
  /*
   ... display the value of the current node first ...
  */
  cout << nodePtr -> getVal() << endl;
  /*
   ... then call the function recursively for the left 
   child ...
  */
  preorder(nodePtr -> getLeft());
  /*
   ... and then call the function recursively for the 
   right child.
  */
  preorder(nodePtr -> getRight());
 }
}

This function is actually very simple. When this function is called for the  rst time, the 
value of root gets copied to nodePtr. If nodePtr is NULL, then the function terminates 
without doing anything. Otherwise, it displays the value of the  rst node. It then traverses the 
left sub-tree by passing the value of the left pointer of the node, at which nodePtr points, 
to the recursive call to the function. Thereafter, it traverses the left–right sub-tree by passing 
the value of the right pointer of the node at which nodePtr points to the recursive call to the 
function. Keep in mind that as long as the  rst recursive call to the function is executing, the 
second recursive call will not start. Also, in every new generation of the function, nodePtr 
will point at the root node of the lower sub-tree.

The inorder() and postorder() functions can be explained in the same way.

Data structures are special ways in which pieces of 
data are arranged and related to each other during run 
time. Each such piece of data is embedded in a node 
that contains the piece of data itself along with one or 
more pointers that either point at other similar nodes 
or have null values.

Linked lists are linear data structures. They consist 
of nodes that are linked to each other in a linear 
fashion.

Each node in a single linked list is an object that is 
made up of two parts. The  rst part is the data carried 
by the node. The second part of each node is a pointer 

Summary
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that carries the address of the next node in the list. This 
is how a node is linked to the next node.

There are two classes that enable us to create 
linked lists:

 A node class whose objects will be the actual nodes 
of the single linked list. The class that we have 
created is called SingleLinkedListNode.
A single linked list class, each object of which will 
represent a separate linked list of nodes. The class that 
we have created is called SingleLinkedList.
Each object of the SingleLinkedListNode class 

will be a node in the linked list. This class has an integer 
data member, val, which is supposed to contain the 
value of the node.

Each object of the SingleLinkedList class will 
be a linked list. This class has a data member, head, 
which is a pointer. This pointer is de  ned to point at 
the  rst node of the linked list. In our program, it will 
either be made to point at the  rst node in the linked 
list or will be assigned the NULL value (to indicate 
that the current list is empty).

Stacks are also data structures. Just like linked lists, 
stacks also consist of nodes where each node is linked 
to exactly one other node (with the exception of the 
last node, which is not connected to any other node). 
In a stack, we can add a node only to the beginning. 
This operation is called push. In a stack, we can delete 
a node only from the beginning. This operation is 
called pop. Thus, stacks are said to have a LIFO (last-
in-  rst-out) operation. The last node to get in is the 
 rst to get out.

Queues are data structures too. They are very 
similar to stacks. The only difference between the two 
is in their push operations. In a stack, the push operation 
causes the new node to get added to the beginning. But, 
in a queue, the push operation causes the new node to 
get added to the end. Thus, queues are said to have a 

FIFO (  rst-in-  rst-out) operation. The  rst node to get 
in is the  rst to get out.

Trees, unlike linked lists, stacks and queues, do not 
have a linear structure. In a tree, each of the nodes may 
be connected to more than one node.

A binary tree is a tree in which each node is linked 
to a maximum of two nodes. A binary tree is a  nite 
set of elements. It is either empty or is partitioned into 
three disjoint subsets. The  rst subset contains only 
one element, which is the root of the tree. The other 
subsets are themselves binary trees. One of them is 
considered to be the left sub-tree and the other one is 
considered to be the right sub-tree. Either or both of 
the sub-trees can be empty. 

Binary trees have recursive structures. The entire 
tree has a root, a left sub-tree, and a right sub-tree. Both 
of the sub-trees are trees themselves. Both of them in 
turn have roots and sub-trees.

While programming functions that model operations 
on trees, we can exploit this recursive nature of trees and 
make them recursive too. This will make the functions 
shorter and reduce our programming effort.

There are three ways of traversing a tree—in pre-
order, in-order, and post-order.

A binary search tree is a special form of binary tree. 
In a binary search tree, for any given node, the value 
contained in its left child is less than the value contained 
in the node and the value contained in the node is less 
than the value contained in its right child.

If you traverse a binary search tree in in-order 
(left, root, right), and display the value of each node 
as you visit, then you will end up printing the values 
in ascending order.

In order to create trees, we have de  ned two classes 
– ‘BSTNode’ and ‘BST’. The  rst class helped us in 
creating the nodes of BSTs whereas the second class 
helped us in creating the BSTs themselves.

Key Terms 
data structures
arrays have limitations—  xed size, dif  culty in inserting 
values
linked lists
linked list node—value part and next pointer
SingleLinkedListNode class
SingleLinkedList class
head pointer
append nodes to single linked lists
pre  x nodes to single linked lists

 nd nodes in single linked lists
delete nodes from single linked lists
display nodes of single linked lists
stacks
push operation
pop operation
LIFO in stacks 
queues 
FIFO in queues
trees
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non-linear structure of trees
binary trees
three disjoint sets of binary trees—root, left sub-tree, 
and right sub-tree
binary trees are recursive
traversal of binary trees—pre-order, in-order, and post-
order

binary search trees
BSTNode class
BST class
data part of tree node
left pointer of tree node
right pointer of tree node
root pointer of the tree class

Exercises
 1. What are the limitations of arrays?
 2. Describe the parts of each of the nodes of a single 

linked list.
 3. Explain the function that appends nodes to single 

linked lists.
 4. Explain the function that  nds nodes in single linked 

lists that have a speci  c value.
 5. Explain the function that deletes nodes from the 

beginning of single linked lists.
 6. Explain the three orders of traversing a binary tree 

with the aid of  gures of small binary trees.
 7. Explain why the ‘getLeft()’ and ‘getRight()’ 

functions have been de  ned to return by reference.
 8. Write a function to iterate forwards in a linked list 

using recursion.
 9. Add a pointer as a new data member to the 

SingleLinkedList class. This pointer should point at 
the last node of the list (or have NULL value in case 
the list is empty). Update the member functions of 
the SingleLinkedList class in order to ensure this. 
Also, simplify the functions by taking advantage 
of the presence of this pointer. Do we still need to 
ensure that the next pointer of the last node is always 
NULL?

 10. Introduce function to the SingleLinkedList class that 
would return the count of nodes in the linked list.

 11. Can the above function be called with respect to 
an object of the stack class? If not, then what is the 
solution?

 12. De  ne a function to search for a speci  ed value in 
binary search trees. The function should return true 
if the speci  ed value is found and false otherwise. 

 13. State true or false
(a) In a single linked list, the next pointer of the last 

node is always NULL.
(b) Linked lists are non-linear data structures.
(c) Each node of a single linked list can contain only 

integer-type values in its data part.
(d) In a stack, you can add a node only at the 

beginning.
(e) Queues implement FIFO operation.
(f ) A binary tree is a  nite set of elements, which is 

either empty or is partitioned into two disjoint 
subsets.

 14. Fill in the blanks
(a) The maximum number of nodes a node of a single 

linked list is attached to is ............................ .
(b) The number of parts each node of a single linked 

list is ........................................................... .
(c) Adding a node to a stack or a queue is known as 

....................................................................... .
(d) Deleting a node from a stack or a queue is known 

as ................................................................... .
(e) The number of parts each node of a binary tree 

is .................................................................... .
(f ) The three orders of traversing a binary tree 

are ............................, ............................, and 
............................ .



Templates

This chapter explains the concept of generic programming using templates. Function templates 
along with their use and bene  ts are included. Class templates, their use, and bene  ts are also 
included.

The Standard Template Library provides a number of useful class templates that can be 
used to meet various common programming needs. Important class templates of this library 
are also described in this chapter.
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 10.1  Introduction 

We frequently come across functions that work in exactly the same way for different data types. 
Each of these functions has been designed to handle a speci  c data type. For different types 
of variables, only the keyword used to declare the variables upon which they work changes. 
The algorithm that these functions implement remains the same and therefore the structure 
of the function remains the same. One such function that immediately comes to mind is the 
one used to swap two values (Listing 10.1).

Listing 10.1 A function to swap two integers

void swap(int & a,int & b)
{

int temp;
 temp=a;
 a=b;
 b=temp;
}

The preceding swap function swaps the values of two integers. A swap function that swaps 
two  oats will have the de  nition shown in Listing 10.2.

Listing 10.2 A function to swap two fl oat-type numbers

void swap(float & a,float & b)
{

float temp;
 temp=a;
 a=b;
 b=temp;
}
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We can notice that the two swap functions are exactly alike except for the data type of the 
variables upon whom they work. It would be quite reasonable to expect that the C++ language 
provides us with a facility to write a common function that is independent of a data type but 
which embodies the common algorithm and that the C++ language on its own creates the 
actual function as and when the need arises. Having code at a common place has obvious 
advantages, namely ease in code development and ease in code maintenance. 

This facility is provided in the form of templates. The programmer can create a template 
with some or all variables therein having unspeci  ed data types. Whenever the template is 
invoked by passing arguments of a certain type, the C++ language on its own replaces the 
unspeci  ed type with the type of the arguments passed. Such templates can be created for 
individual functions as well as entire classes.

 10.2   Function Templates 

The syntax for creating a template for a generic function is given in Listing 10.3.

Listing 10.3 Syntax for a function template

template <class T, …>
return_type function_name(T arg1, …)
{
 //statements
}

The template de  nition begins with the  template keyword. This is followed by a list of 
generic data types in angular brackets. Each generic type is pre  xed with the class keyword 
and, if the template function works on more than one generic type, commas separate them. 
Thereafter, the function template is de  ned just like an ordinary function. The return type 
comes  rst. This is followed by the name of the function, which in turn is followed by a pair 
of parentheses enclosing the list of formal arguments the function takes. However, there 
should be at least one formal argument of each one of the generic types mentioned within 
the angular brackets.

For example, the template for the function swap can be as given in Listing 10.4.

Listing 10.4 Template for the function swap

/*Beginning of swap.h*/
template <class T>
void swap(T & a, T & b)
{
 T temp;
 temp=a;
 a=b;
 b=temp; 
}
/*End of swap.h*/

Now, suppose the function swap is called by passing two integers. The compiler generates 
an actual de  nition for the function by replacing each occurrence of T by the keyword int. 
See Listing 10.5.
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Listing 10.5 Calling the template for the function swap by passing integers

/*Beginning of swap01.cpp*/
#include<iostream.h>
#include“swap.h”
void main()
{
 int x,y;
 x=10;
 y=20;
 cout<<“Before swapping\n”;
 cout<<“x=”<<x<<“ y=”<<y<<endl;
 swap(x,y); //compiler generates swap(int&, int&); and 
    //resolves the call
 cout<<“After swapping\n”;
 cout<<“x=”<<x<<“ y=”<<y<<endl;
}
/*End of swap01.cpp*/

Output
Before swapping
x=10 y=20
After swapping
x=20 y=10

Similarly, if the function swap is called by passing two  oats, the compiler generates an 
actual de  nition for the function by replacing each occurrence of T by the keyword  oat 
and so on. See Listing 10.6.

Listing 10.6 Calling the template for the function swap by passing fl oats

/*Beginning of swap02.cpp*/
#include<iostream.h>
#include“swap.h”
void main()
{
 float x,y;
 x=1.1;
 y=2.2;
 cout<<“Before swapping\n”;
 cout<<“x=”<<x<<“ y=”<<y<<endl;
 swap(x,y); //compiler generates swap(float&, float&); 
    //and resolves the call
 cout<<“After swapping\n”;
 cout<<“x=”<<x<<“ y=”<<y<<endl;
}
/*End of swap02.cpp*/

Output
Before swapping
x=1.1 y=2.2
After swapping
x=2.2 y=1.1
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Objects of classes can also be passed to the function swap. The compiler will generate an 
actual de  nition by replacing each occurrence of T by the name of the corresponding class. 
See Listing 10.7.

Listing 10.7 Calling the template for the function swap by passing objects of the class 
Distance

/*Beginning of swap03.cpp*/
#include<iostream.h>
#include“swap.h”
#include“Distance.h”
void main()
{
 Distance d1(1,1.1),d2(2,2.2);
 cout<<“Before swapping\n”;
 cout<<“d1=”<<d1.getFeet()<<“’-”<<d1.getInches()<<“’’\n”;  
 cout<<“d2=”<<d2.getFeet()<<“’-”<<d2.getInches()<<“’’\n”;
 swap(d1,d2); //compiler generates swap(Distance&, 
    //Distance&); and resolves the call
 cout<<“After swapping\n”;
 cout<<“d1=”<<d1.getFeet()<<“’-”<<d1.getInches()<<“’’\n”;  
 cout<<“d2=”<<d2.getFeet()<<“’-”<<d2.getInches()<<“’’\n”;
}
/*End of swap03.cpp*/

Output
Before swapping
d1=1 -1.1
d2=2 -2.2
After swapping
d1=2 -2.2
d2=1 -1.1

We must note the amount of effort saved in code development. Only one de  nition suf  ces 
for all possible types! Templates are a very handy tool provided by C++ for implementing 
code reusability.

Further, the compiler generates an actual function from a template only once for a given 
data type. For example, if the function swap is called by passing integers for the  rst time, the 
compiler will generate a function de  nition from its template. Subsequent calls with the same 
data type will not generate the de  nition again. This is for the simple reason that the compiler 
 rst looks for an exact match to resolve a function call before looking for a template (the 

next paragraph explains this with the help of an example). If it  nds an exact match, it does 
not look for a template. Since the  rst function call itself generates the function de  nition, 
subsequent calls do not do so.

Evidently, the entire de  nition of the function must appear in the header  le. Otherwise, the 
compiler would not be able to generate the correct de  nition while compiling a user program 
in which the function template has been called. 

The library programmer may like to put the de  nition of the template function in a library 
while keeping only the prototype in the header  le. There is a keyword called export that is 
supposed to ful  ll this need. However, not all compilers support this keyword.
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It is sometimes necessary to  override the function template by an actual function. In order 
to understand this, let us consider the template for a function to return the larger of the two 
arguments that are passed to it (Listing 10.8). 

Listing 10.8 Template for the larger function

template <class T>
T& larger(const T& a, const T& b)
{
 return a>b? a:b;
}

This function works correctly if variables of ordinary data types such as int and  oat 
are passed to it. However, it does not work correctly if strings are passed to it. See Listing 
10.9.

Listing 10.9 Calling the larger function by passing strings

char * s1=“abcd”, * s2=“efgh”;
char * s3=larger(s1,s2); //compiler generates larger(const 
    //char *&, const char *&); and 
    //resolves the call

We notice that, during execution, the larger(char *&, char *&) function in Listing 
10.9 compares only the addresses of the two strings and not their contents! This is certainly 
not wanted. For this special case, we would like a special version of the function larger for 
the character strings to execute. It is precisely a special version of the function larger that 
we would de  ne along with the template. See Listing 10.10.

Listing 10.10 Overriding the template for the function larger

char * larger(char * a, char * b)
{
 return strcmp(a,b) > 0 ? a : b;
}

Now, if the function larger is called by passing two strings, the function in Listing 10.9 
will be called while the template will be ignored. Function templates can be overloaded. See 
Listing 10.11.

Listing 10.11 Overloading a function template

#include<iostream.h>
template <class T>
void display(const T & a)
{
 cout << a << endl;
}

template <class T>
void display(const T & a, const int n) //overloaded version 
     //of display()
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{
 int ctr;
 for(ctr=0;ctr<n;ctr++)
  cout << a << endl;
}

void main()
{
 char c = ‘a’;
 int i = 10;
 display(c);
 cout<<endl;
 display(c,3);
 cout<<endl;
 display(i);
 cout<<endl;
 display(i,5);
 cout<<endl;
}

Output
a

a
a
a

10

10
10
10
10
10

More than one generic type can also be mentioned in the template definition. See 
Listing 10.12.

Listing 10.12 More than one generic type in a function template

template <class T, class U>
void f1(const T & a, const U & b)
{
 //statements
}

Here we should go back to Chapter 8 on  Operator Overloading. It was mentioned that the 
need to make objects of a class capable of being used in function templates necessitates the 
overloading of operators for the class. We may look at the template for the function larger. 
The greater than operator is embedded within its de  nition. When objects of a certain class 
are passed as parameters to it, the greater than operator will attempt to compare them. If 
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this operator has not been overloaded for the class, the compiler will immediately report an 
error. Thus, in order to take advantage of the template, the greater than operator should 
be overloaded for the class.

 10.3   Class Templates 

The need for class templates is similar to the need for function templates. The need for generic 
classes (Queue, Stack, Array, etc.) that handle data of different types is felt frequently. Let 
us consider the set of three classes in Listing 10.13 whose member functions have similar 
de  nitions, the mere difference being the type of the private data members upon whom they 
operate.

Listing 10.13 Classes with similar defi nition

class X_for_int
{
  int val;
 public:
  void f1(const int &);
  void f2(const int &);
  /*
   rest of the class X_for_int
  */
};

class X_for_char
{
  char val;
 public:
  void f1(const char &);
  void f2(const char &);
  /*
   rest of the class X_for_char
  */
};

class X_for_string
{
  string val;
 public:
  void f1(const string &);
  void f2(const string &);
  /*
   rest of the class X_for_string
  */
};

The classes X_for_int, X_for_char, and X_for_string de  ned in Listing 10.13 are 
similar in every respect except for the type of their data members. As expected, the presence 
of three different classes that are different only in the data type of the data members upon 
whom their member functions work creates huge dif  culties in code maintenance. Any change 
in one of the classes will have to be replicated in all of the others. This situation certainly 
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demands the creation of a template class. Such a template class can be created as illustrated 
by Listing 10.14.

Listing 10.14 A class template

template<class T>
class X
{
  T val;
 public:
  void f1(const T &);
  void f2(const T &);
  /*
   rest of the class X
  */
};

The de  nition of the template class begins with the keyword template. This is followed by 
the list of  type and  non-type   template arguments enclosed in angular brackets. Type template 
arguments are those that represent a data type. An actual built-in or user-de  ned type replaces 
them when an object is declared. Each type template argument is preceded by the keyword 
class. Non-type  template arguments are variables of built-in or user-de  ned type. Actual 
constant values are passed for these non-type template arguments. The data type precedes 
each non-type template argument. Thereafter, the class is de  ned using the usual syntax.

 Member functions of class templates are de  ned as in Listing 10.15.

Listing 10.15 Defi ning the member function of a class template

template<class T>
void X<T> :: f1(const T & p)
{
 /*
  definition of the function
 */
}

Member functions of a template class are de  ned in the same way as the template class 
itself. The de  nition begins with the  template keyword. This is followed by the list of type 
and non-type template arguments enclosed in angular brackets. Each  type template argument 
is preceded by the keyword class; each non-type template argument is preceded by its data 
type. Thereafter, the function is de  ned using the usual syntax except for one important 
difference. The class name given before the scope resolution operator is followed by the 
names of all template arguments enclosed in angular brackets.

Objects of this template class can be declared as follows:
X<int> intObj;

While declaring the object, the class name is followed by the type and non-type template 
parameter(s) enclosed in angular brackets. This is followed as usual by the name of the object 
itself. When the compiler sees the declaration of the object, it replaces each occurrence of 
the template argument by the template parameter in the de  nition of the class template and 
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generates a separate class. In the preceding case, each occurrence of the token T in the class 
X will be replaced by the keyword int.

Objects of template classes, once declared, can be used just like any other object.
X<int> intObj01,intObj02;
intObj01.f1(intObj02);

The compiler generates the exact de  nition of a class from a given class template once 
only for each data type. For example, if two objects of the template class X are declared with 
the data type int, the compiler will generate the exact de  nition for the  rst object only.

X<int> intObj01; //definition generated and used
X<int> intObj02; //no definition generated

As in the case of non-member function templates, member functions of class templates 
are also de  ned in the header  les themselves.

The section on  Standard Template Library, which follows this section, has many instructive 
and practical examples of built-in class templates that are provided by all standard C++ 
compilers. Before moving on to that section, let us have a look at some  ne points on class 
templates.

A template class can take more than one template type argument. Listing 10.16 illustrates  
this.

Listing 10.16 More than one template-type argument in a class template

template<class T, class U>
class X
{
  T val1;
  U val2;
  /*
   rest of the class X
  */
};

A template class can take a non-type template argument. Listing 10.17 illustrates this. 

Listing 10.17 A non-type template argument in a class template

template<class T, int v>
class X
{
  T val1;
  /*
   rest of the class X
  */
};

While declaring an object of such a class, a data type will be passed as a parameter for the 
template-type argument. However, an actual value will be passed for the non-type template 
argument.

X<int,5> intObj;

The name of the template argument cannot be used more than once in the template class’s  
list of template arguments. Listing 10.18 illustrates this.
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Listing 10.18 Error due to identical names of more than one type template arguments

template<class T, class T> //ERROR: duplicate name in 
    //parameter list!
class X
{
  /*
   definition of class X
  */
};

The same name for a template argument can be used in the list of template arguments of  
two different template classes. Listing 10.19 illustrates this.

Listing 10.19 Same name can be used for a type template argument in more than one 
class template

template<class T>
class X
{
  /*
   definition of class X
  */
};

template<class T> //OK: Same name T used in two different 
    //classes
class Y
{
  /*
   definition of class Y
  */
};

The name of a template argument need not be the same in the declaration and the definition  
of the template class. Listing 10.20 illustrates this.

Listing 10.20 Name of a type template argument can be different in a template class 
declaration and its defi nition

template<class T>
class X; //declaration

template<class U> //OK: different name for the template 
    //argument in the
class X  //definition
{
  /*
   definition of class X
  */
};

Formal arguments of template functions can be objects of a template class. Listing 10.21  
illustrates this.
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Listing 10.21 Formal argument of a template function can be the object of a template 
class

template<class T>
class X
{
  /*
   definition of class X
  */
};

template<class U>
void f1(X<U> v)
{
 /*
  definition of the function
 */ 
}

10.3.1  Nested Class Templates

Nested classes can be created for template classes in the same way as they are created for 
non-template classes. Listing 10.22 illustrates this.

Listing 10.22 A nested template class

template<class T>
class A
{
  class B
  {
    T x; //enclosing template type can be used in the 
     //nested class
    /*
      rest of the class B
    */
  };
 /*
  definition of the class A
 */ 
};

 10.4   Standard Template Library 

Would it not be of use if C++ provided class templates for meeting common programming 
requirements? For example, it would be highly convenient to have a class template that enables 
us to create a linked list of objects of any type of our choice.

The standard implementation of C++ does provide a set of header  les where a large 
number of useful class templates have been de  ned. These  les contain de  nitions of the class 
templates, their member functions, and a number of global associated functions. The global 
associated functions implement commonly used algorithms. This library of class templates 
and their helper global functions is known as the Standard Template Library (STL).
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A complete study of all of these templates is beyond the scope of this book. However, we 
will study the more important class templates in the next section. The commonly used member 
functions and the associated global functions are explained with the help of examples.

10.4.1  list Class

The list class is used to create sequential containers. Elements of the list are single objects. 
Objects of the list class are declared as follows:

list<char> clist; //creating a list of characters
list<float> flist; //creating a list of floats
list<int> ilist; //creating a list of integers

For using the list template class, the header  le list needs to be included in the source 
code.

 #include<list>

The elements of a list occupy a non-contiguous memory. They are doubly linked through 
a pair of pointers. One of the pointers points at the next element and the other points at the 
previous element of the list. This allows both forward and backward traversal.

The number of elements a list object would have can be specified at the time of 
declaration.

list<int> ilist(3); //list of integers with three initial 
    //elements.

A default value can be speci  ed for these elements.
list<int> ilist(3, -1); //list of integers with three 
    //initial elements each having -1.

A list can be created from an existing array. We can do this by passing a pointer that points 
at the  rst element of the array and a second pointer that points 1 past the last element of the 
array to be copied.

int iArr[6] = {0,1,2,3,4,5}; //an array with six elements
list<int> ilist(iArr, iArr+6); //list also has six 
    //elements with the same 
    //values

Let us have a look at the important member functions of this class.

The list<>::push_front() Function

This function is used to insert elements at the beginning of the list.
list<int> ilist;
ilist.push_front(1); //inserts 1 at the beginning of 
    //the list
ilist.push_front(2); //inserts 2 at the beginning of 
    //the list … list becomes 2,1.

The list<>::push_back() Function

This function is used to insert elements at the end of the list.
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list<int> ilist;
ilist.push_back(1); //inserts 1 at the end of the list
ilist.push_back(2); //inserts 2 at the end of the list … 
    //list becomes 1,2.

The list<>::pop_front() Function

This function is used to delete the  rst element of the list.
list<int> ilist;
ilist.push_back(1); //inserts 1 at the end of the list
ilist.push_back(2); //inserts 2 at the end of the list … 
    //list becomes 1,2.
ilist.push_back(3); //inserts 3 at the end of the list … 
    //list becomes 1,2,3.
ilist.pop_front(); //deletes the first element … list 
    //becomes 2,3.

The list<>::pop_back() Function

This function is used to delete the last element of the list.
list<int> ilist;
ilist.push_back(1); //inserts 1 at the end of the list
ilist.push_back(2); //inserts 2 at the end of the list … 
    //list becomes 1,2.
ilist.push_back(3); //inserts 3 at the end of the list … 
    //list becomes 1,2,3.
ilist.pop_back(); //deletes the last element … list 
    //becomes 1,2.

Traversing a List using the Iterator

An iterator enables us to traverse the list elements in sequence. The following lines of code 
illustrate the syntax used for its declaration and its use.

list<int> ilist;
ilist.push_back(1);
ilist.push_back(2);
ilist.push_back(3);
list<int>::iterator iter=ilist.begin(); //iter points 
      //at the first
      //element of
      //the list
for(;iter!=ilist.end();++iter)
 cout<<*iter<<endl; //an iterator can be dereferenced 
    //just like a pointer

The list::begin() function returns an iterator that points at the  rst element of the list. 
The list::end() function returns an iterator that points 1 past the last element of the list. 
The increment operator advances the iterator to point at the next element of the list. The 
indirection operator (*) returns the value of the element pointed at by the iterator. 

The list<>::insert() Function

This function enables a random insertion into a list.
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list<int> ilist; 
ilist.push_back(1); //inserts 1 at the end of the list 
ilist.push_back(2); //inserts 2 at the end of the list … 
    //list becomes 1,2. 
ilist.insert(ilist.begin(),-20); //inserts -20 at the 
    //beginning of the list 
    //… list becomes  
    //-20,1,2.

The list<>::insert() function is used with the  nd() function for random insertion 
into a list.

The find() Function

This global function searches speci  ed values in lists. If the searched value is found in 
an element of the list, it returns an iterator to the element. Else, it returns the value of the 
list::end() function.

The following program searches for the value ‘10’ from the beginning of the list to the 
end. It inserts the value ‘–1’ before ‘10’ in the list, if the value is found. Else, it appends ‘–1’ 
at the end of the list.

list<int>::iterator iter;
iter=find(ilist.begin(),ilist.end(),10); //searching
    //from the first element to
    //the last element of the
    //list for the value 10
ilist.insert(iter,-1);

The list<>::size() Function

This function enables us to determine the number of elements currently in this list.
list<int> ilist;
ilist.push_back(1); //inserts 1 at the end of the list
ilist.push_back(2); //inserts 2 at the end of the list … 
    //list becomes 1,2.
cout<<ilist.size()<<endl; //outputs 2

The list<>::erase() Function

This function enables random deletion from the list. The iterator to the position of the element 
to be deleted is passed to the list::erase() function.

Suppose we want to delete the element with value ‘19’ from a list. We can use the  nd() 
function to obtain the iterator to the element and pass it to the list::erase() function.

iter=find(ilist.begin(),ilist.end(),19); //obtaining an 
      //iterator to the element 
      //with value 19
if(iter!=ilist.end()) //checking whether element 
    //with value 19 exists or not
 ilist.erase(iter); //removing the element if 
    //found

The list<>::clear() Function
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This function erases all elements in a list.
list<int> ilist;
ilist.push_back(1);
ilist.push_back(2);
ilist.push_back(3);
cout<<ilist.size()<<endl; //outputs 3
ilist.clear(); //removes all elements of the 
    //list
cout<<ilist.size()<<endl; //outputs 0

The list<>::empty() Function

This function is used to test whether a list is empty or not.
if(ilist.empty())
 //do something
else
 //do something else

Insertion into and deletion from an intermediate position in a list is ef  cient. This is because 
for such operations only the pointers of the affected element need to be reassigned.

On the other hand, random access to a particular element is inef  cient. For traversing to 
the element that has our desired value, value of the pointer in each of the preceding elements 
has to be read starting from the  rst element since the elements are not in contiguous blocks 
of memory.

10.4.2 vector Class

The vector class is used to create sequential containers. Elements of the list are single 
objects. 

The names of member functions of the vector class are the same as those of the list 
class. Global functions, such as the  nd() function that works on objects of the list class, 
have been overloaded to work upon objects of the vector class too.

However, the layout of elements in a vector is completely different from that in a list. In 
a vector, unlike a list, elements are stored in contiguous blocks (just like an array).

For using the vector template class, the header  le vector needs to be included in the 
source code.

#include<vector>

A vector does not actually regrow itself with each individual insertion. The amount of 
memory a vector captures is larger than the number of elements it actually stores. When this 
storage becomes full, it again regrows itself by a certain amount to accommodate the latest 
insertion. The amount by which a vector regrows differs from compiler to compiler.

This brings us to two important concepts about vectors, namely capacity and size. 
Capacity is the total size of the block currently captured by a vector. Obviously, it is 

directly proportional to the total number of elements that can be inserted into the vector 
before it needs to regrow.

Size, on the other hand, is the number of elements actually stored in the memory block 
that has been captured by the vector. Obviously, size of a vector is always less than or equal 
to its capacity.



 Templates 387

The vector class has two functions that enable us to  nd the capacity and the size of the 
vector. These are vector::size() and vector::capacity().

Insertion into and deletion from an intermediate position in a vector is inef  cient. This is 
because for such operations all elements starting from the insertion point need to be pushed 
up or pushed down as the case may be.

On the other hand, random access to a particular element is ef  cient. For traversing to the 
element that has our desired value, only the internal iterator has to be incremented since the 
elements are in contiguous blocks of memory.

10.4.3  pair Class

Objects of the pair class represent a pair of values that may or may not be of the same 
type.

pair<string, int> player(“Kasparov”,1795);

The object player in this statement may represent the number of games in our database 
that have been played by the player with name ‘Kasparov’ (the string class is discussed later 
in this chapter). Obviously, we would like to create more variables of the same type later in 
the program. Using the keyword typedef allows us to do so.

typedef pair<string, int> Player;
Player kasparov(“Kasparov”,1795);
Player fischer(“Fischer”,2162);
Player karpov(“Karpov”,1525);

For using the pair template class, the header  le utility needs to be included in the 
source code.

#include<utility>

The two elements of the objects of the pair class can be accessed as  rst and second. For 
this, the member access operator can be used as follows:

cout <<“Number of games of ”<<kasparov.first
<<“ are ”<<kasparov.second;

10.4.4  map Class

The map class is used to create associative containers. Elements of the list are key/value pairs. 
The map class does not allow duplicates. 

For using the map template class, the header  le map needs to be included in the source 
code.

#include<map>

Each record in the map class is an object of the pair class. Listing 10.23 illustrates all the 
important functionalities of the map class.

Listing 10.23 The map class

/*Beginning of map.cpp*/
#include<iostream.h>
#include<map>
#include<utility>
void main()
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{
 map<string, int> chessbase;
 typedef pair<string, int> Player; //should be of the 
     //same type as map
 Player kasparov(“Kasparov”,1795);
 Player fischer(“Fischer”,2162);
 Player karpov(“Karpov”,1525);

 chessbase.insert(kasparov); //inserting a record
 chessbase.insert(fischer); //inserting another record
 chessbase.insert(karpov); //inserting another record

 //The first member of each record is treated as the key. 
 //The corresponding second member is the value and can be 
 //retrieved as follows:
 cout <<“Number of games of Kasparov is: ”

<<chessbase[“Kasparov”]<<endl;
 cout <<“Number of occurrences of Kasparov is: ”

<<chessbase.count(“Kasparov”)<<endl;

 //Using the subscript operator to query the value for a 
 //key as above inserts it in the map!
 cout <<“Number of occurrences of Anand is: ”

<<chessbase.count(“Anand”)<<endl; //returns zero
 cout <<“Number of games of Anand is: ” 

<<chessbase[“Anand”]<<endl; //returns zero … but a 
     //record got added with 
     //key as “Anand” and 
     //value as zero because 
     //value is of integer 
     //type and zero is taken 
     //as default value for  
     //integers.
 cout <<“Number of occurrences of Anand is: ” 

<<chessbase.count(“Anand”)<<endl; //return 1!!

 //An iterator can also be used. The iterator points at a 
 //pair rather than a single value. The pair is returned 
 //by the find function.
 map<string, int>::iterator iter;
 iter=chessbase.find(“Tendulkar”);
 cout<<“Number of occurrences of Tendulkar is: ” 
   <<chessbase.count(“Tendulkar”)<<endl; //return 0
 if(iter!=chessbase.end())
  cout <<“Number of games of ”<<iter->first<<“ is: ”

<<iter->second<<endl;
 else
  cout<<iter->first<<“ not found\n”;
 cout<<“Number of occurrences of Tendulkar is: ” 
   <<chessbase.count(“Tendulkar”)<<endl; //return 0 … 
      //no new 
      //record 
      //inserted
}
/*End of map.cpp*/

Output
Number of games of Kasparov is: 1795
Number of occurrences of Kasparov is: 1
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Number of occurrences of Anand is: 0
Number of games of Anand is: 0
Number of occurrences of Anand is: 1
Number of occurrences of Tendulkar is: 0
Tendulkar not found
Number of occurrences of Tendulkar is: 0

10.4.5  set Class

The set class is used to create sequential containers. Elements of the list are single objects. 
A set stores a collection of keys in a sorted manner. The data itself serves as the keys to the 
set. The set contains the elements in a sorted fashion and duplicates are discarded during 
insertion.

For using the set template class, the header  le set needs to be included in the source 
code.

#include<set>

An illustrative program follows in Listing 10.24.

Listing 10.24 The set class
/*Beginning of set.cpp*/
#include<set>
#include<string>
#include<iostream.h>
void main() 
{
 set<char> set1; //a set of characters

 string s1(“I am indeed a cat. This is indeed a hat”);
 cout<<s1<<endl;

//Putting all the characters of the string s1 in the
//set. Characters get automatically sorted while 
//duplicates get automatically rejected
set1.insert(s1.begin(),s1.end()); 

set<char>::iterator iter;
for(iter = set1.begin(); iter!=set1.end(); iter++) 
 {
  cout << *iter; //outputting the set
 }
}
/*End of set.cpp*/

Output
I am indeed a cat. This is indeed a hat
.Itacdehimnst

10.4.6  multimap Class

The only difference between the map and the multimap class is that while the map class does 
not allow duplicate key values (it overrides the old value associated with a key), the multimap 



 Object-Oriented Programming with C++390

Templates enable generic programming. Templates 
are created for functions and classes that are similar 
to each other in every respect except for the type of 
data they work upon.

The compiler generates an actual function or a 
class from a template once and only once for a given 
data type. 

The syntax for creating a template for a generic 
function is as follows:

template <class T, …>
return_type function_name(T arg1, …)
{
 //statements
}
The compiler generates an actual function de  nition 

from a function template when the function is called. 
The types of the template arguments in the function 
template are replaced by the data type of the parameters 
passed.

int x,y;
function_name(x,y);  //definition function_

name(int arg1, 
//int arg2) generated

The syntax for creating a template for a generic 
class is as follows:

template <class T, …>

class class_name
{
  T data_member_names;
  . . . .
  . . . .
 public:
   return_type function_name(parameter_

names);
  . . . .
  . . . .
};

The syntax for defining member functions of 
template class is as follows:

template<class T, …>
return_type class_name<T,…>::function_
name(parameter_names)
{
 . . . .
 . . . .
}

The compiler generates an actual class de  nition 
from a class template when an object of the class is 
created. The types of the template arguments in the 
class template are replaced by the data type of the 
parameters passed to the object.

class_name<int> obj;  //actual definition 

Summary

class does allow duplicate key values. Therefore, the multimap class does not support the 
subscript operator.

For using the multimap template class, the header  le map needs to be included in the 
source code.

 #include<map>

10.4.7  multiset Class

The only difference between the set and the multiset class is that while the set class does 
not allow duplicate key values (it overrides the old key value), the multiset class does 
allow duplicate key values.

For using the multiset template class, the header  le set needs to be included in the 
source code.

#include<set>
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of class 
       //class_name generated 

by 
      / / r e p l a c i n g  e v e r y 

occurrence of T 
     //by int.

A template class can take more than one template-
type argument.

A template class can take a non-type template 
argument.

The name of the template argument cannot be used 
more than once in the template class’s list of template 
arguments.

The same name for a template argument can be 
used in the list of template arguments of two different 
template classes.

The name of a template argument need not be 
the same in the declaration and the de  nition of the 
template class.

Formal arguments of template functions can be 
objects of template class.

Nested classes can be created for template classes 
in the same way as they are created for non-template 
classes.

The standard implementation of C++ provides 
a set of header  les where a large number of useful 
class templates have been de  ned. These  les contain 
definitions of the class templates, their member 
functions, and a number of global associated functions. 
The global associated functions implement commonly 
used algorithms. This library of class templates and 
their helper global functions is known as the Standard 
Template Library or STL.

The list  class is used to create sequential 
containers. Elements of the list are single objects. 

For using the list template class, the header  le 
list needs to be included in the source code.

#include<list>

The elements of a list occupy a non-contiguous 
memory. They are doubly linked through a pair of 
pointers. One of the pointers points at the next element 
and the other points at the previous element of the list. 
This allows both forward and backward traversal.

The vector class is used to create sequential 
containers. Elements of the list are single objects. 

In a vector, unlike a list, elements are stored in 
contiguous blocks (just like an array).

For using the vector template class, the header  le 
vector needs to be included in the source code.

#include<vector

Objects of the pair class represent a pair of values 
that may or may not be of the same type.

For using the pair template class, the header  le 
utility needs to be included in the source code.

#include<utility>

The map  class is used to create associative 
containers. Elements of the list are key/value pairs. 
The map class does not allow duplicates. 

For using the map template class, the header  le map 
needs to be included in the source code.

#include<map>

Each record in a map class is an object of the pair 
class.

The set class is used to create sequential containers. 
Elements of the list are single objects. A set stores 
a collection of keys in a sorted manner. The data 
itself serves as the keys to the set. The set contains 
the elements in a sorted fashion and duplicates are 
discarded during insertion.

For using the set template class, the header  le set 
needs to be included in the source code.

#include<set>

The only difference between the map and the 
multimap class is that while the map class does not 
allow duplicate key values (it overrides the old value 
associated with a key), the multimap class does allow 
duplicate key values. 

For using the multimap template class, the header 
 le map needs to be included in the source code.

#include<map>

The only difference between a set and a multiset 
class is that while the set class does not allow 
duplicate key values (it overrides the old key value), 
the multiset class does allow duplicate key values.

For using the multiset template class, the header 
 le set needs to be included in the source code.

#include<set>
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Key Terms 
function templates
class templates
STL
– list class
– vector class

– pair class
– map class
– set class
– multimap class
– multiset class

Exercises
1. What are function templates? What is the need for 

function templates? How are they created?
2. When and how does the C++ compiler generate an 

actual function de  nition from its template?
3. How is a function template overridden for a speci  c 

data type?
4. What are class templates? What is the need for class 

templates? How are they created?
5. When and how does the C++ compiler generate an 

actual class de  nition from its template?
6. State true or false.

(a) The compiler generates an actual function 
de  nition from a function template only once 
for the same type of parameters.

(b) Function templates cannot be overloaded.
(c) A template class cannot take a non-type template 

argument.
(d) The name of a template argument need not be 

the same in the declaration and the de  nition of 
the template class.

 7. What is the Standard Template Library? Name 
some of the template classes that are available in the 
STL.

8. Create a template for the bubble sort function.
9. Create a template for the Array class.

10. Write a program that will show the following menu 
to the user:
(a) Insert an integer at the end of the list
(b) Insert an integer at the beginning of the list
(c) Insert an integer before a speci  ed integer in the 

list
(d) Delete the  rst integer from the list
(e) Delete the last integer from the list
(f ) Delete a speci  ed integer from the list
(g) Display the list of integers
(h) Save the list of integers
(i) Quit

 Implement the above menu by using the list class 
of the STL.

 11. Assume that the user has used the program in 
Exercise 10 to save a list of integers (with plenty 
of duplicates) in a  le. Declare a vector that would 
contain all positions of a given integer in the  le. 
Suppose the contents of the  le are:

21
19
3254
937
19
19
4253
335
19
9825
19 

  The vector for the integer 19 would contain the 
elements 2, 5, 6, 9, and 11. Write a code to populate 
the vector.

 12. Create a pair class that has the integer whose 
positions are to be stored as its  rst member and 
the vector that contains these positions as its second 
member. Rewrite the program in Exercises 10 and 11 
to create such a pair object and assign 19 to its  rst 
member and a vector of its position as the second 
member.

 13. Create a map of two integers. The  rst member of the 
map would represent a number that has been found 
in the  le. The second member would represent the 
last position of the integer in the  le. Write code 
to populate this map by the integers and their last 
positions in the  le.

 14. Declare a set of integers at the beginning of the 
program that you have written for Exercise 10. Keep 
updating the set as the integers are inserted into or 
deleted from the list.



 11.1  Introduction 

Let us begin by assuming the role of a library programmer. While de  ning non-member or 
member functions, we face situations where the function may or may not be able to execute 
further. For example, we write a statement to divide one double-type variable with another. 
Before this statement executes, we want to ensure that the denominator is not zero. We want 
to prevent the function from executing further if denominator is zero. This is only one of the 
conditions under which we want to prevent the further execution of the function. More such 
conditions exist (the function tries to open an unavailable  le or requests more memory than 
is available). We know fully well the conditions under which the function should be aborted. 
However, we cannot decide the appropriate handling strategy. While the library function can 
easily detect error conditions, it cannot decide upon an appropriate handling strategy.

Now, let us assume the role of the application programmer. While calling a function, we 
should not be burdened with the task of detecting each error in the parameters that we pass 
to the functions we call. On the other hand, only we can decide what action should be taken 
whenever a particular error condition is met by the function being called. While the user 
of the library function cannot detect error conditions, it can decide upon an appropriate 
handling strategy.

Exception handling allows the library to sense and dispatch error conditions, and the client 
to handle them. It is usual for the library to know how to detect errors without knowing the 
appropriate handling strategy. It is just as usual for the client programs to understand how to 
deal with errors without being able to detect them.

We may wonder why a library function does not simply terminate the program when it 
detects invalid data input. Why does the library function not return an error value? All these 
questions will be answered in this chapter. Superiority of exception handling mechanism of 
C++ over the C-style error handling will also be discussed.

Exception Handling

This chapter deals with exception handling. The bene  ts of exception handling and the much-
needed protocol it establishes between the library and its applications are discussed. The chapter 
begins with a critical study of the C-style solution to the problem of exception handling. It then 
elucidates the use and mechanism of exception handling (the try-throw-catch mechanism). 
The need to throw class objects, the method of accessing members of thrown objects, and the 
use of nested exception classes are also discussed. The chapter concludes with a study of the 
limitations of exception handling.
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 11.2   C-Style Handling of Error-generating Code 

Let us study a function hmean() that takes two  oat-type numbers as parameters and computes 
their harmonic mean. See Listing 11.1.

Listing 11.1 Function to compute harmonic mean

float hmean(const float a, const float b)
{
 return 2.0*a*b/(a+b);
}

Clearly ‘a’ and ‘b’ should not be the negative of each other, else it would result in division 
by zero. Every effort should be put in to prevent the evaluation of the return expression and 
the consequent run-time error if ‘a’ and ‘b’ are the negative of each other.

There are three traditional C-style solutions to this problem.
Terminate the program 
Check the parameters before function call 
Return a value representing an error 

These methods are discussed below.

11.2.1 Terminate the Program

Let us look at this solution (Listing 11.2).

Listing 11.2 Terminating the program when an error condition is met

/*Beginning of hmean.h*/
float hmean(const float, const float);
/*End of hmean.h*/

/*Beginning of hmean.cpp*/
#include“hmean.h”
#include<stdlib.h> // for abort()
float hmean(const float a, const float b)
{
 if(a==-b)
  abort();
 return 2.0*a*b/(a+b);
}
/*End of hmean.cpp*/

/*Beginning of hmeanmain.cpp*/
#include<iostream.h> 
#include“hmean.h”
void main()
{
 float x,y,z;
 cout<<“Enter a number: ”;
 cin>>x;
 cout<<“Enter another number: ”;
 cin>>y;
 z=hmean(x,y);
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 cout<<“Harmonic mean = ”<<z<<endl ;
}
/*End of hmeanmain.cpp*/

Output
Enter a number: 10<enter>
Enter another number: -10<enter>
Abnormal program termination

This solution of terminating the program (as in Listing 11.2) is too extreme and drastic. The 
library function simply terminates the program on detecting an invalid input. Even if we do 
not provide the abort() function, the OS anyway throws a similar or same error (depending 
upon the implementation) and terminates the program. This solution does not achieve anything 
tangible. The library user does not get a chance to take a corrective action of its choice. The 
library can and should do better.

11.2.2 Check the Parameters before Function Call

A program to prevalidate the function parameters is given in Listing 11.3. 

Listing 11.3 Prevalidating function parameters to avoid error condition

/*Beginning of hmean.h*/
float hmean(const float, const float);
/*End of hmean.h*/

/*Beginning of hmean.cpp*/
#include“hmean.h”
float hmean(const float a, const float b)
{
 return 2.0*a*b/(a+b);
}
/*End of hmean.cpp*/
/*Beginning of hmeanmain.cpp*/
#include<iostream.h> 
#include“hmean.h”
void main()
{
 float x,y,z;
 while(1)
 {
  cout<<“Enter a number: ” ;
  cin>>x;
  cout<<“Enter another number: ” ;
  cin >>y ;
  if(x!=-y)
   break;
  cout<<“Invalid entry – enter again\n”;
 }
 z=hmean(x,y) ;
 cout<<“Harmonic mean = ”<<z<<endl ;
}
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Output
Enter a number: 3<enter>
Enter another number: -3<enter>
Invalid entry – enter again
Enter a number: 2<enter>
Enter another number: 6<enter>
Harmonic mean = 3

This method relies upon the application programmer to prevalidate the data before passing 
them as parameters to the function call. However, it is not safe to rely upon the application 
programmer to know (or care) enough to perform such a check. A properly designed library 
function need not and should not burden the user with the task of checking the parameters 
for all invalid conditions.

11.2.3 Return a Value Representing an Error

Another approach is to use the function’s return value to indicate a problem. Let us use a 
pointer argument or a reference argument to get a value back to the calling program and use 
the function’s return value to indicate success or failure. By informing the calling function 
of the success or failure, we give the program the option of taking a suitable action of its 
choice. Listing 11.4 shows an example of this approach. It rede  nes hmean() function as 
an int function whose return value indicates success or failure. It adds a third argument for 
obtaining the answer.

Listing 11.4 Returning an error condition from the library function

/*Beginning of hmean.h*/
int hmean(const float, const float, float const *);
/*End of hmean.h*/

/*Beginning of hmean.cpp*/
#include“hmean.h”
int hmean(const double a, const double b,double const * c)
{
 if(a==-b)
 {
  *c = 0;
  return 0; //return failure
 }
 else
 {
  *c=2.0*a*b/(a+b) ;
  return 1; //return success
 }
}
/*End of hmean.cpp*/

/*Beginning of hmeanmain.cpp*/
#include<iostream.h>
#include“hmean.h”
void main()
{
 float x,y,z;
 int r;
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 while(1)
 {
  cout<<“Enter a number: ” ;
  cin >>x;
  cout<<“Enter another number: ” ;
  cin >>y;
  r=hmean(x,y,&z);
  if(r==1) //if success
   break;
  cout<<“Invalid entry – enter again\n” ;
 }
 cout<<“Harmonic mean = ”<<z<<endl ;
}
/*End of hmeanmain.cpp*/

Output
Enter a number: 2<enter>
Enter another number: -2<enter>
Invalid entry – enter again
Enter a number: 2<enter>
Enter another number: 6<enter>
Harmonic mean = 3

The de  nition of the hmean function as in Listing 11.4 does not burden the application 
program with the responsibility of prevalidating the parameters. It also allows the application 
program to take corrective action if it detects an error. Nevertheless, it still leaves the 
application program with the responsibility of detecting the error. The application program 
may bypass the test and use the value obtained by the third parameter! After all, the third 
parameter will certainly have some value or the other. The library function has no way of 
forcing the application program to take notice of the error condition!

To conclude, we should note that these C-style solutions are extreme in nature. They are 
either too strict (simply abort the program without allowing the application to take corrective 
action) or too lenient (merely return an error value without forcing the application program 
to take corrective action). What we need is a well-balanced solution by which the library 
function forces and at the same time allows its caller to take corrective action. Such a well-
balanced solution is the exception-handling mechanism provided by C++.

 11.3  C++-Style Solution—the try/throw/catch Construct 

C++ offers the mechanism of exception handling as a superior solution to the problem of 
handling unexpected situations during run time. Listing 11.5 illustrates the use of  try,  throw, 
and  catch keywords for implementing exception handling. The advantages and limitations 
of this feature are discussed later.

Listing 11.5 The try–throw–catch mechanism

/*Beginning of hmean.h*/
float hmean(const float, const float);
/*End of hmean.h*/

/*Beginning of hmean.cpp*/
#include“hmean.h”
float hmean(const float a, const float b)
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{
 if(a==-b)
  throw “bad arguments to hmean()” ;
 return 2.0*a*b /(a+b) ;
}
/*End of hmean.cpp*/

/*Beginning of hmeanmain.cpp*/
#include<iostream.h>
#include“hmean.h”
void main()
{
 char choice=‘y’ ;
 double x,y,z ;
 while(choice==‘y’)
 {
  cout<<“Enter a number: ” ;
  cin>>x;
  cout<<“Enter another number: ” ;
  cin >>y ;
  try
  {
   z=hmean(x,y);
  }
  catch(char * s)
  {
   cout<<s<<endl ;
   cout<<“Enter a new pair of numbers\n”;
   continue;
  }
  cout<<“Harmonic mean of ”<<x<< “and ”<<y<< “ is ”<<z<<endl;
  cout<<“continue ? (y/n) ”;
  cin>>choice;
 }
 cout<<“Bye\n”;
}
/*End of hmeanmain.cpp*/

Output
Enter a number: 4 <enter>
Enter another number: -4 <enter>
bad arguments to hmean()
Enter a new pair of numbers
Enter a number: 2 <enter>
Enter another number: 6 <enter>
Harmonic mean of 2 and 6 is 8
continue ? (y/n) n <enter>
Bye

Exception handling provides a way to transfer control from the library to the application. 
Handling an exception has three components. They are:

throwing an exception, 
catching an exception with a handler, and 
using a try block. 



 Exception Handling 399

The  throw keyword is used to throw an exception. It is followed by a value, such as character 
string or an object, indicating the nature of the exception. The library function noti  es the 
user program about the error by throwing an exception.

The  catch keyword is used to catch an exception. A catch-handler block begins with the 
keyword catch followed, in parentheses, by a type declaration indicating the type of exception 
that it catches. That, in turn, is followed by a brace enclosed block of code indicating the 
actions to take. The catch keyword, along with the exception types, is the point to which 
control should jump when an exception is thrown.

A try block encloses the block of code that is likely to throw an exception. Such a code 
generally consists of calls to library functions that are designed to throw errors in the manner 
described herein. One or more catch blocks follow the try block. The ‘try’ block is itself 
indicated by the keyword  try followed by a brace—enclosed block of code indicating the 
code within which exception will be caught.

The try block looks like this:
try // start of try block
{
 z=hmean(x,y);
} // end of try block

If any statement in the try block causes an exception, the catch blocks after this block will 
handle the exception.

Exceptions are thrown as follows:
if(a==-b)
 throw “bad hmean() arguments : a = -b not allowed”;

In this case, the thrown exception is the string bad hmean() arguments : a = -b not 
allowed. The throw statement resembles the return statement because it terminates function 
execution. However, instead of merely returning control to the calling program, a throw causes 
the control to back up through the sequence of current function calls until it  nds the try block. 
In this case, the throw passes program control back to main(). There, the program looks for 
an exception handler (following the try block) that matches the type of exception thrown.

catch (char * s) // start of exception handler
{
 cout<<s<<“\n”;
 cout<<“Enter a new pair of numbers : ”;
 continue;
}    // end of handler

The keyword catch identi  es the handler and the char * s means that this handler catches 
a string-type exception. The thrown exception is assigned to ‘s’. Since the exception matches 
this handler, the program executes the code within the braces.

If a program completes executing statements in a try block without any exceptions being 
thrown, it skips the catch block or blocks after the try block and goes to the  rst statement 
following the handlers.

Let us follow the  ow of control when the values ‘10’ and ‘–10’ are passed to the hmean() 
function. The if test succeeds and the exception (of char * type) is thrown. The hmean() 
function terminates. The control goes back to the point from where the hmean() function was 
called and determines whether the call was embedded within a try block or not. It  nds that the 
hmean() function was called from the main() function and that the call was embedded within 
a try block. The control then searches for a catch block that follows the try block and is of the 
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matching char * type. The one and only catch block that follows the try block is of char * 
type. Therefore, the statements enclosed within it are executed. Figure 11.1 illustrates this.

In the introduction of this chapter, we had realized that an ideal solution to the problem 
of handling run-time errors should enable the library to sense and dispatch errors and the 
application to trap the dispatched error and take appropriate action. The exception-handling 
mechanism of C++ meets this requirement perfectly.

In order to appreciate the superiority of exception handling over the C-style solutions, we 
should keep the following two things in mind:

It is necessary to catch an exception if it is thrown. 
When an exception is thrown, the stack is unwound. 

11.3.1 It is Necessary to Catch Exceptions

The program terminates immediately if an exception thrown by a called function is not caught 
by the calling function. (A point to be borne in mind is that it is illegal to have a try block 
without a catch block.) The program in Listing 11.6 is a case in point.

Figure 11.1 Flow of control when exceptions are thrown

……………  
while(choice==‘y’) 
{ 
   cout<<“Enter a number : ”; 
   cin>>x; 
   cout<<“Enter another number : ” ; 
   cin>>y; 
   try 
   { 
    z=hmean(x,y); 
   } 
   catch(char * s) 
   { 
    cout<<s<<endl; 
    cout<<“Enter a new pair of numbers\n”; 
    continue; 
   } 

……………. 
double hmean(double a, double b) 
{
 if(a==-b)
  throw “bad hmean() arguments a = -b not allowed” ;
 return 2.0*a*b/(a+b); 
} 
1. The program calls hmean() within a try block
2. hmean() throws an exception, transferring execution to the catch block, and assigning 

the exception string to s.
3. The catch block transfers execution back to the while loop
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Listing 11.6 Abnormal program termination due to uncaught exception

#include<iostream.h>

void abc(int);
void main()
{
 int i;
 abc(-1);
 for(i=1;i<=10;i++)
  cout<<i<<endl;
}

void abc(int x)
{
 if(x<0)
  throw “Invalid parameter”;
}

Output
Abnormal program termination

As we can observe in Listing 11.6, the remaining part of the main() function after the 
call to the abc() function does not execute. Instead, the program terminates. This happens 
because the call to the abc() function has not been placed in a try block. Thus, when abc() 
function throws an exception, there is no catch handler speci  ed by the application programmer 
to execute a desirable piece of code. The program simply terminates with the default error 
message.

Thus, if the library programmer creates functions that throw exceptions, then the application 
programmer who uses the functions, is compelled to place the calls to such exception throwing 
library functions inside a try block and to provide suitable catch handlers.

Obviously, the library programmer should indicate the kinds of exceptions his/her function 
might throw. The list of exceptions a function throws is indicated in its prototype that is placed 
in the header  le. The application programmer can  nd out what exceptions the library function 
throws by reading the header  le. If a function, say abc() function, throws exceptions of the 
char * type and int type and accepts an int type value as a parameter, then the function 
prototype should be as follows.

void abc(int) throw(char *,int);

11.3.2 Unwinding of the Stack

The throw statement unwinds the stack, cleaning up all objects declared within the try 
block by calling their destructors. Next, throw calls the matching catch handler, passing the 
parameter object.

Listing 11.7 illustrates this fact.

Listing 11.7 Unwinding of the stack due a thrown exception

#include<iostream.h>
class A
{
  int x ;
 public :
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  A(int p)
  {
   x = p ;
   cout << “A ”<< x << endl ;
  }
  ~A()
  { 
   cout << “~A ” << x << endl ;
  }
};

void abc();

void main()
{
 try
 {
  A A_main(1);
  abc();
 }
 catch(char * s)
 {
  cout<<s<<endl;
 }
}

void abc()
{
 A A_abc(2);
 throw “Exception thrown from abc()”;
}

Output
A 1
A 2
~A 2
~A 1
Exception thrown from abc()

As can be seen, throw destroys all objects from the point of throw until the try block. This 
action of the throw statement is clearly highlighted by Listing 11.8.

Listing 11.8 Reversal of fl ow of control from the point of throw to the try block

#include<iostream.h>
class A
{
  int x;
 public:
  A(int p)
  {
   x=p;
   cout<<“A ”<<x<<endl;
  }
  ~A()
  {
   cout<<“~A ”<<x<<endl;
  }
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};

void abc();
void def();
void ghi();

void main()
{
 try
 {
  A A_main(1);
  cout<<“calling abc()\n”;
  abc();
 }
 catch(char * s)
 {
  cout<<s<<endl;
 }
}
void abc()
{
 A A_abc(2) ;
 cout<<“calling def()\n”;
 def();
}

void def()
{
 A A_def(3) ;
 cout<<“calling ghi()\n” ;
 ghi();
}

void ghi()
{
 A A_ghi(4);
 throw “Exception from ghi()”;
}

Output
A 1
calling abc()
A 2
calling def()
A 3
calling ghi()
A4
~A 4
~A 3
~A 2
~A 1
Exception from ghi()

In Listing 11.8, the try block does not contain a direct call to a function throwing an 
exception but it calls a function that throws an exception. Still, the control jumps from the 
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function in which the exception is thrown to the function containing the try block and handlers. 
All local variables from the throw to the try block are destroyed. See Figure 11.2.

11.3.3  Need to Throw Class Objects

The problem with throwing values of fundamental data types is that the number of fundamental 
data types is limited. Thus, if two or more statements in a try block throw values of the same 
data type, then con  icts arise and it becomes dif  cult to detect the source of error in the catch 
block. The advantage with throwing objects of classes is that the library programmer can 
de  ne any number of classes as exception classes. Listing 11.9 illustrates this.

Listing 11.9 Throwing objects of exception classes

#include<iostream.h>
#include<math.h> //for sqrt()

class hmeanexcp{}; //an empty exception class
class gmeanexcp{}; //an empty exception class

double hmean(double,double);
double gmean(double,double);

void main()
{
 double x,y,z1,z2;
 char choice=’y’;
 while(choice==’y’)
 {
  cout<<“Enter a number: ”;
  cin>>x;
  cout<<“Enter another number: ”;
  cin>>y;
  try
  {
   z1=hmean(x,y);
   z2=gmean(x,y);
  }
  catch(hmeanexcp)

Figure 11.2 Unwinding of stack when an exception is thrown

….
void main()
{
  try
  {

   abc();
  }
  catch(char * s)
  {
     ….
  }
}

void abc()
{
  ….
  ….
  def();
}

void def()
{
  ….
  ….
  ghi();
}

void ghi()
{
  ….
  ….
  throw “….”;
}
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  {
   cout<<“Exception error – a=-b not allowed\n”;
   cout<<“Enter a fresh pair of numbers\n”;
   continue;
  }
  catch(gmeanexcp)
  {
   cout<<“Exception error – a*b<0 not allowed\n”;
   cout<<“Enter a fresh pair of numbers\n”;
   continue;
  }
  cout<<“Harmonic mean = ”<<z1<<endl;
  cout<<“Geometric mean = ”<<z2<<endl;
  cout<<“Enter again ? (y/n)”;
  cin>>choice;
 }
 cout<<“Bye\n”;
}
double hmean(double a,double b)
{
 if(a==-b)
  throw hmeanexcp();//construct and throw objects!!
 return 2.0*a*b/(a+b);
}
double gmean(double a,double b)
{
 if(a*b<0)
  throw gmeanexcp();//construct and throw objects!!
 return sqrt(a*b);
}

Output
Enter a number: 10<enter>
Enter another number: -10<enter>
Exception error – a=-b not allowed
Enter a fresh pair of numbers
Enter a number: 10<enter>
Enter another number: -6<enter>
Exception error – a*b<0 not allowed
Enter a fresh pair of numbers
Enter a number: 16<enter>
Enter another number: 4<enter>
Harmonic mean = 6.4
Geometric mean = 8
Enter again? (y/n) n<enter>
Bye

We may note that it is not mandatory to declare an object of the exception class in the 
catch block. However, through the throw statements, we always throw objects (as has been 
done by calling constructors of the hmeanexcp and gmeanexcp classes in the hmean() and 
gmean() functions of Listing 11.9).
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11.3.4  Accessing the Thrown Object in the Catch Block

If we declare an object of the exception class in the catch handler, then the thrown object 
gets copied into it. This object can then be accessed and used for further processing. Listing 
11.10 illustrates this.

Listing 11.10 Accessing thrown objects

include<iostream.h>
#include<math.h>
#include<string.h>

double hmean(double,double);
double gmean(double,double);

class hmeanexcp
{
  char cError[30];
 public:
  hmeanexcp(char * s)
  {
   strcpy(cError,s);
  }
  char * getcError()
  {
   return cError;
  }
};

class gmeanexcp
{
  char cError[30];
 public:
  gmeanexcp(char * s)
  {
   strcpy(cError,s);
  }
  const char * getcError()
  {
   return cError;
  }
};

void main()
{
 double x,y,z1,z2;
 char choice=’y’;
 while(choice==’y’)
 {
  cout<<“Enter a number: ”;
  cin>>x;
  cout<<“Enter another number: ”;
  cin>>y;
  try
  {
   z1=hmean(x,y);
   z2=gmean(x,y);
  }
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  catch(hmeanexcp& e)
  {
   cout<<e.getcError()<<endl;
   cout<<“Enter a fresh pair of numbers\n”;
   continue;
  }
  catch(gmeanexcp& e)
  {
   cout<<e.getcError()<<endl;
   cout<<“Enter a fresh pair of numbers\n”;
   continue;
  }
  cout<<“Harmonic mean = ”<<z1<<endl;
  cout<<“Geometric mean = ”<<z2<<endl;
  cout<<“Enter again ? (y/n)”;
  cin>>choice;
 }
 cout<<“Bye\n”;
}

double hmean(double a,double b)
{
 if(a==-b)
  throw hmeanexcp(“Exception error – a=-b not allowed”);
 return 2.0*a*b/(a+b);
}

double gmean(double a,double b)
{
 if(a*b<0)
  throw gmeanexcp(“Exception error – a*b<0 not allowed”);
 return sqrt(a*b);
}

Output
Enter a number: 10<enter>
Enter another number: -10<enter>
Exception error – a=-b not allowed
Enter a fresh pair of numbers
Enter a number: 10<enter>
Enter another number: -6<enter>
Exception error – a*b<0 not allowed
Enter a fresh pair of numbers
Enter a number: 16<enter>
Enter another number: 4<enter>
Harmonic mean = 6.4
Geometric mean = 8
Enter again? (y/n) n<enter>
Bye

A temporary copy of the object to be thrown is created and thrown. Hence, the object in 
the catch handler refers to a copy of the thrown object. This is desirable because the thrown 
object disappears after the function from which it was thrown terminates. Thus, after the 
object is thrown, its three copies may be created—the object itself, its copy, and the object in 
the catch block. The object itself gets destroyed automatically when the function terminates. 
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Therefore, we are left with two copies. In order to reduce this to one, we normally create a 
reference to the thrown object in the catch handler (as in the catch blocks of Listing 11.10). 

11.3.5  Throwing Parameterized Objects of a Nested Exception Class

Let us have a look at Listing 11.11.

Listing 11.11 Nested exception class

#include<iostream.h>
#include<string.h>

template<class T>
class vector
{
  T * v;
  int size;
 public:
  class RangeError
  {
    char cError[30];
    int errorPos;
   public:
    RangeError(char * str,int p)
    {
     strcpy(cError,str);
     errorPos=p;
    }
    char * getcError()
    {
     return cError;
    }
    int getPos()
    {
     return errorPos;
    }
  };
  vector(int s)
  {
   v=new T[s];
   size=s;
  }
  ~vector()
  {
   delete[] v;
  }
  void setElement(T val,int p)
  {
   if(p>size-1 || p<0)
    throw RangeError(“ Out of range exception – could not _ write”, p);
   v[p]=val;
  }
  T getElement(int p)
  {
   if(p>size-1 || p<0)
    throw RangeError(“Out of range exception – could not _ read”,p);
    return v[p];
  }
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};
void main()
{
 vector<int> int_vector(5);
 try
 {
  int_vector.setElement(3,5);
  cout<<int_vector.getElement(3)<<endl;
 }
 catch(vector<int>::RangeError& e)
 {
  cout<<e.getcError()<<“ at position ”<<e.getPos()+1<<endl;
 }

 vector<float> float_vector(6);
 try
 {
  float_vector.setElement(3.14,3);
  cout<<float_vector.getElement(6)<<endl;
 }
 catch(vector<float>::RangeError& e)
 {
  cout<<e.getcError()<<“ at position ”<<e.getPos()+1<<endl;
 }
}

Output
Out of range exception – could not write at position 6
Out of range exception – could not read at position 7

We can de  ne the exception class as a nested class of the class that throws it. This indicates 
the class originating an exception. It also prevents pollution of the global namespace. In the 
example in Listing 11.11, the class RangeError has been declared within the vector class. 
If the setElement() function or the getElement() function  nds a bad subscript value, it 
throws an exception of type RangeError. The handler for this exception looks like this

catch(vector<int>::RangeError& e) {…}

it may be noted that the nested exception class is public. This allows the catch block to have 
access to the type.

11.3.6  Catching Uncaught Exceptions

The C++ language supports a feature to catch exceptions that were raised in a try block 
but not caught by any of the catch blocks. The syntax of the catch construct to handle such 
exceptions is as follows.

catch(…)
{
  //action for handling an exception
}

The three dots in catch(…) indicate that it catches all types of exceptions. Listing 11.12 
illustrates the use of this catch block.
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Listing 11.12 Catching uncaught exceptions

#include<iostream.h>

class Sugar{};
class Spice{};
class Tasteless{};
void abc(int);

void main()
{
 try
 {
  abc(-1);
 }
 catch(Sugar)
 {
  cout<<“Caught Sugar\n”;
 }
 catch(Spice)
 {
  cout<<“Caught Spice\n”;
 }
 catch(…)
 {
  cout<<“Unidentified object caught\n”;
 }
}

void abc(int p)
{
 if(p<0)
  throw Tasteless();
}

Output
Unidentified object caught

11.3.7 Re-throwing Exceptions

Suppose you are de  ning a function, which calls another function and the called function 
throws an exception. You will therefore have a try/catch mechanism in your function for 
handling the exception that the called function throws. Suppose that the name of your function 
is test_hmean() and that the name of the called function is hmean(). The overall structure 
of your function would look like this:

double test_hmean(double p, double q)
{
 //Variable declaration statements.
 try
 {
  r=hmean(p,q);
 }
 catch
 {
  //Catch handler.
 }
}
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Now, suppose that you either know only a part of what your function needs to do if it 
catches the exception or you do not have any idea of what your function needs to do if it 
catches the exception. In both cases, you would like the function that calls your function to 
do something about it. For this, you would like your function to re-throw the exception to 
the function that has called it.

Listing 11.13 shows how functions can re-throw exceptions. In this case, the main() 
function has called your function. Note how the throw keyword has been used below in the 
test_hmean() function.

Listing 11.13 Re-throwing exceptions

/*Beginning of Rethrowing01.cpp*/
/*
 Program to illustrate re-throwing of exceptions.
*/
#include <iostream.h>
#include <string.h>

double test_hmean(double, double);
double hmean(double, double);

class hmeanexcp
{
  char cError[30];
 public:
  hmeanexcp(char * s)
  {
   strcpy(cError, s);
  }
  char * getcError()
  {
   return cError;
  }
};

void main()
{
 double x, y, z;
 x = 10;
 y = -10;
 try
 {
  z = test_hmean(x, y);
 }
 catch(hmeanexcp& e)
 {
  cout << “Inside the catch block of main()\n”;
 }
}

double test_hmean(double p, double q)
{
 double r;
 try
 {
  r = hmean(p, q);
 }
 catch(hmeanexcp& e)
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 {
  cout << “Inside the catch block of test_hmean()\n”;
  throw;
 }
 return r;
}

double hmean(double a, double b)
{
 if(a==-b)
  throw hmeanexcp(“Exception error - a=-b not allowed”);
 return 2.0*a*b/(a+b);
}
/*End of Rethrowing01.cpp*/

Output
Inside the catch block of test_hmean()
Inside the catch block of main()

Let us follow the execution of the main() function. The main() function calls the test_
hmean() function from inside the try block. The test_hmean() function in turn calls the 
hmean() function from inside the try block. The hmean() function throws an error because 
the values passed to it are opposite to each other (10 and –10). The type of the exception 
is hmeanexcp. The test_hmean() has a catch block that handles exceptions of this type. 
Therefore, the catch block of the test_hmean() function executes. The  rst statement of this 
block displays the message ‘Inside the catch block of test_hmean()’. The second statement 
of the catch block throws the same exception again. Thus, the exception is not consumed by 
the test_hmean() function. Instead, it gets thrown upwards to the calling function, which 
is main().

The main() function in turn has a catch block that handles exceptions of the thrown type. 
Therefore, the catch block of the main() function executes. The single statement in this block 
displays the error message ‘Inside the catch block of main().

Naturally, if the throw statement is removed from the catch block of the test_hmean() 
function, then the catch handler block of the main() function would not execute (because the 
test_hmean() function would not be throwing any exception for it to handle). Let us remove 
the throw statement and see whether the output changes or not. See Listing 11.14.

Listing 11.14 Removing throw statement prevents re-throwing of exceptions

/*Beginning of Rethrowing02.cpp*/
/*
 Program to illustrate effect of throw statement’s 
 absence.
*/
#include <iostream.h>
#include <string.h>

double test_hmean(double, double);
double hmean(double, double);

class hmeanexcp
{
  char cError[30];
 public:
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  hmeanexcp(char * s)
  {
   strcpy(cError, s);
  }
  char * getcError()
  {
   return cError;
  }
};

void main()
{
 double x, y, z;
 x = 10;
 y = -10;
 try
 {
  z = test_hmean(x, y);
 }
 catch(hmeanexcp& e)
 {
  cout << “Inside the catch block of main()\n”;
 }
}

double test_hmean(double p, double q)
{
 double r;
 try
 {
  r = hmean(p, q);
 }
 catch(hmeanexcp& e)
 {
  cout << “Inside the catch block of test_hmean()\n”;
 }
 return r;
}

double hmean(double a, double b)
{
 if(a==-b)
  throw hmeanexcp(“Exception error - a=-b not allowed”);
 return 2.0*a*b/(a+b);
}
/*End of Rethrowing.cpp*/

Output
Inside the catch block of test_hmean()

As can be seen, the catch handler of the main() function did not execute. This happened 
because the catch handler of the test_hmean() function did not re-throw the exception.

We now understand that exceptions can be re-thrown. We have seen the reasons for re-
throwing exceptions. We have also studied the method for re-throwing exceptions.
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 11.4   Limitation of Exception Handling

The limitation of exception handling is that if a resource has been acquired (  le has been 
opened, memory has been allocated dynamically in the heap area, etc.) and the statements to 
release the resource are after the throw statements, then the acquired resource may remain 
locked up. Listing 11.15 illustrates this.

Listing 11.15 Dynamically allocated resources remain locked after the throw statement

#include<iostream.h>
class A
{
 public:
  A()
  {
   cout<<“Constructor\n”;
  }
  ~A()
  {
   cout<<“Destructor\n”;
  }
};

void abc(int);

void main()
{
 try
 {
  abc(-1);
 }
 catch(char * s)
 {
  cout<<s<<endl;
 }
}

void abc(int p)
{
 A * Aptr = new A[2];
 if(p<0)
  throw “Invalid argument to abc()”;
}

Output
Constructor
Constructor
Invalid argument to abc()

In Listing 11.15, when the stack is unwound, memory occupied by the pointer Aptr in 
abc() function gets destroyed. However, the memory block at which the pointer points 
remains locked up. (This is evident from the fact that the destructor was not called for the 
objects created in the heap.)
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In order to overcome this problem, classes whose objects function like pointers should 
be devised. Obviously, such objects will have pointers embedded in them. Memory will be 
allocated dynamically for these pointers during the lifetime of the objects. This memory can 
be deallocated through the destructor. Thus, when the object itself is destroyed, the memory 
locked up and referenced by the embedded pointer will also be destroyed.

Statements to detect conditions that prohibit further 
execution of the library function can and should be 
placed within the library function itself. Statements 
to take appropriate action when such conditions are 
detected can and should be placed in the functions that 
call these library functions.

Exception handling enables the library function to 
notify the detected invalid conditions to the user by 
using the throw statement. The program terminates 
prematurely if the application program ignores such 
noti  cations. Application program can catch such 
noti  cations in a try block and take appropriate action 
in a catch block. 

Library functions can announce the list of all 
possible exceptions that they throw by enlisting them in 
their headers. Appropriately, the application program 
should place calls to these functions in a try block and 

append the try block with a series of catch blocks, one 
for each of the exceptions expected to be thrown.

Since the number of fundamental data types is 
limited, it is better to throw objects of exception classes 
created speci  cally for the purpose. These objects can 
be initialized with appropriate information before being 
thrown by the library functions. This information can 
then be accessed within the corresponding catch block 
of the application program.

Uncaught exceptions can be caught by the 
catch(…) {} construct. Exceptions can be re-thrown. 
During unwinding of the stack, memory occupied 
by the objects themselves is destroyed. However, 
the memory acquired dynamically by the pointers 
embedded in these objects remains locked up. This is 
a limitation of exception handling.

Summary

Key Terms 
exception handling
C-style solutions for exception handling
try
catch

throw
catching uncaught exceptions
exception classes
unwinding of the stack

Exercises
 1. What is exception handling? What is the need for 

exception handling?
 2. What is the negative impact if the library programmer 

simply terminates an application upon detecting an 
error condition?

 3. Which three keywords are provided by C++ for 
implementing exception handling?

 4. What happens if the application does not catch the 
exception thrown by a library function?

 5. Explain how the stack is unwound when an exception 
is thrown.

 6. What is the need to throw class objects instead of 
values of fundamental types?

 7. Why are nested exception classes needed?
 8. How are uncaught exceptions caught?
 9. What is the limitation of exception handling in 

C++?
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 10. Derive a class from another. Create two catch 
blocks—the  rst one for catching the base class-
type exception and the second one for catching the 
derived class-type exception. Throw an exception 
of the base class type from the try block. Observe 
the result. Now, throw an exception of the derived 
class-type from the try block. Observe and compare 
the results. Repeat the above two observations by 

reversing the sequence of the catch blocks. What do 
you conclude?

 11. Add a function to the class String that will return 
the character from the position that is passed as a 
parameter to it. If the position is out of bounds, the 
function should throw a user-de  ned exception.

 12. Explain the concept and method of re-throwing 
exceptions with the help of an example.



Problem Statement

The word query system should allow us to determine whether a particular word exists in a 
given text  le or not. 

If the program  nds the word being searched, it would display all the lines in which the 
word was found. The program would also display the number of occurrences of the word, the 
serial number of the line in the  le, and the position of the word in the line.

A Sample Run

The  le having the following lines, written by the author about his favorite game, can be 
taken as input:

Chess is the most intellectual mind sport known to mankind. 
A game of chess is a war of intelligence and a clash of 
wills. It is a game of kings, queens, rooks, knights, 
bishops and pawns. What appears to be a two-dimensional 
black and white board of 64 squares is, for the chess 
master, a multidimensional multicolored wonderland of 
cunning strategy and brilliant tactics. Chess has a rich 
and long history. Invented in India as a war game, it has 
followers all over the world. Of all the sports, it has 
perhaps the largest literature. To be a true master of the 
game requires years of hard labor, study and practice. The 
game has been played by kings and by commoners alike. A 
regular practice of the game leads to better concentration 
and an improved ability to deduce facts from logic.

A sample run of the program is as follows (we would implement a case sensitive 
search):

Please enter the word to be searched (enter blank to quit): chess <enter>
Number of occurrences of ‘chess’ = 2
(2,4) A game of chess is a war of intelligence and a clash of
(5,11) black and white board of 64 squares is, for the chess

Please enter the word to be searched (enter blank to quit): master <enter>
Number of occurrences of ‘master’ = 2
(6, 1) master, a multidimensional multicolored wonderland of
(10,9) perhaps the largest literature. To be a true master of the

Case Study—A Word Query System

Appendix A
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Please enter the word to be searched (enter blank to quit): mind <enter>
Number of occurrences of ‘mind’ = 1
(1,6) Chess is the most intellectual mind sport known to mankind.

Please enter the word to be searched (enter blank to quit): golf <enter>
Number of occurrences of ‘golf’ = 0
Please enter the word to be searched (enter blank to quit): <enter>
Bye!

The Source Code

The program listing to implement the word query system as described in the Problem Statement 
follows:

(Please note that the code calls a few of the member functions of the library string class. 
These simple calls have been explained in the accompanying comments.)

/*Beginning of textQuerySearch.cpp*/
#include<string>//the library string class
#include<vector>
#include<fstream.h>
#include<map>

using namespace std;

void main()
{
 ::ifstream infile(“C:\\abc.txt”);

 int flag=0;
 char cVar;
 string word,line;
 int iLineNum=1;
 int iWordNum=1;
 
typedef pair<int,int> location;
location loc;
typedef vector<location> lvec;
lvec temp;
vector<location>::iterator liter;

map<string,lvec> wordmap;
map<string,lvec>::iterator iter;

map<int,string> linemap;

while(infile)
{
  infile.get(cVar);
  
  if(cVar==’ ‘ || cVar==’.’ || cVar==’,’ || 
   cVar==’;’ || cVar==’\n’)
  {
   if(flag==0)
   {
    loc.first=iLineNum;
    loc.second=iWordNum;
    iWordNum++;
    iter=wordmap.find(word);
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    if(iter!=wordmap.end())
     (iter->second).push_back(loc);
    else
    {
     temp.push_back(loc);
     wordmap[word]=temp;

     temp.erase( temp.begin(),
temp.end());

    }
    word.erase(); //nullifying the string
    flag=1;
   }

   if(cVar!=’\n’)
     line=line+cVar; //adding a character to 
    //the string
   else
   {
    linemap[iLineNum]=line;
    line.erase(); //nullifying the string
    iLineNum++;
    iWordNum=1;
   }
   continue;
  }
  else
   flag=0;
  word=word+cVar;  //adding a character to the 

//string
  line=line+cVar;
 }

 while(1)
 {
  cout <<“Please enter the word to be searched “

<<(enter blank to quit): ”;
  word.erase();
  while(cin)
  {
   cin.get(cVar);
   if(cVar==’\n’)
    break;
   word=word+cVar;
  }
  if(word.empty()) //if string is empty
   break;
  iter=wordmap.find(word);
  //string::c_str()returns the contained string
  cout <<“\nNumber of occurrences of ‘”

<<word.c_str()<<“‘ = ”
<<iter->second.size()<<endl<<endl;

  for( liter=iter->second.begin();
liter!=iter->second.end();liter++)

   cout <<“(”<<liter->first<<“,”
<<liter->second<<“) ”
<<linemap[liter->first].c_str();

   cout<<endl<<endl;
 }
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 cout<<“\nBye!\n\n”;
}
/*End of textQuerySearch.cpp*/

Explanation of the Code

The code can be broadly divided in two steps as follows:

Step 1: Create a map of words with their locations.
64 (5,6)
A (2,1) (12,11)
Chess (1,1) (7,6)
India (8,6)
Invented (8,4)
It (3,2)
Of (9,6)
The (11,10)
To (10,5)
What (4,4)
a (2,6) (2,11) (3,4) (4,8) (6,2) (7,8) (8,8) (10,7)
ability (14,4)
alike (12,10)
all (9,2) (9,7)
an (14,2)
and (2,10) (4,2) (5,2) (7,3) (8,1) (11,8) (12,7) (14,1)
appears (4,5)
as (8,7)
be (4,7) (10,6)
been (12,3)
better (13,8)
bishops (4,1)
black (5,1)
board (5,4)
brilliant (7,4)
by (12,5) (12,8)
chess (2,4) (5,11)
clash (2,12)
commoners (12,9)
concentration (13,9)
cunning (7,1)
deduce (14,6)
dimensional (4,10)
facts (14,7)
followers (9,1)
for (5,9)
from (14,8)
game (2,2) (3,5) (8,10) (11,1) (12,1) (13,5)
hard (11,5)
has (7,7) (8,12) (9,11) (12,2)
history (8,3)
improved (14,3)
in (8,5)
intellectual (1,5)
intelligence (2,9)
is (1,2) (2,5) (3,3) (5,8)
it (8,11) (9,10)
kings (3,7) (12,6)
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knights (3,10)
known (1,8)
labor (11,6)
largest (10,3)
leads (13,6)
literature (10,4)
logic (14,9)
long (8,2)
mankind (1,10)
master (6,1) (10,9)
mind (1,6)
most (1,4)
multicolored (6,4)
multidimensional (6,3)
of (2,3) (2,8) (2,13) (3,6) (5,5) (6,6) (10,10) (11,4) (13,3)
over (9,3)
pawns (4,3)
perhaps (10,1)
played (12,4)
practice (11,9) (13,2)
queens (3,8)
regular (13,1)
requires (11,2)
rich (7,9)
rooks (3,9)
sport (1,7)
sports (9,9)
squares (5,7)
strategy (7,2)
study (11,7)
tactics (7,5)
the (1,3) (5,10) (9,4) (9,8) (10,2) (10,11) (13,4)
to (1,9) (4,6) (13,7) (14,5)
true (10,8)
two (4,9)
war (2,7) (8,9)
white (5,3)
wills (3,1)
wonderland (6,5)
world (9,5)
years (11,3)

Step 2: Create a map of lines.
1 Chess is the most intellectual mind sport known to mankind. 

2 A game of chess is a war of intelligence and a clash of 

3 wills. It is a game of kings, queens, rooks, knights, 

4 bishops and pawns. What appears to be a two dimensional 

5 black and white board of 64 squares is, for the chess 

6 master, a multidimensional multicolored wonderland of 

7 cunning strategy and brilliant tactics. Chess has a rich 

8 and long history. Invented in India as a war game, it has 

9 followers all over the world. Of all the sports, it has 
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10 perhaps the largest literature. To be a true master of the 

11 game requires years of hard labor, study and practice. The 

12 game has been played by kings and by commoners alike. A 

13 regular practice of the game leads to better concentration 

14 and an improved ability to deduce facts from logic.

The detailed explanation

Let us go straight to the while loop. The loop reads the characters from the  le one by one. 
If the  rst character is neither a punctuation mark nor the new line character, we simply add 
it to the string representing a word (second last line of the while loop). 

word=word+cVar;

When a punctuation mark or the end of line is encountered,
if(cVar==’ ‘ || cVar==’.’ || cVar==’,’ || cVar==’;’ || 
   cVar==’\n’)

we reckon that we have  nished loading a word. We populate an object ‘loc’ with the line 
number and word number of the word.

loc.first=iLineNum;
loc.second=iWordNum;

We also increment ‘iWordNum’ because the position of the next word would be one 
greater than the previous one.

For the time being, ignore the test
if(flag==0)

Since our word map (see Step 1 above) should keep a vector of all positions of each word, 
we must  rst  nd whether the word already exists in our word map or not. 

iter=wordmap.find(word);

This statement returns an iterator. If the word is found in any of the  rst members of the 
word map, it points at that element whose  rst member is the word itself. If the word is not 
found in any of the  rst members of the word map, the iterator points past its end.

If the word is found in any of the  rst members of the word map, 
if(iter!=wordmap.end())

we append the location object ‘loc’, which we have already populated, into the location vector, 
which is the second member of the element pointed at by the iterator.

(iter->second).push_back(loc);

If the word is not found in any of the  rst members of the word map, we populate a 
temporary vector of locations with only one element—the location object ‘loc’. 

temp.push_back(loc);

Next, we insert the word and its location vector into the word map.
wordmap[word]=temp;

We ensure that the temporary vector of locations remains vacant by writing the following 
line of code.
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temp.erase(temp.begin(),temp.end());

Next, we discard the contents of the string object that is holding the just read word so that 
the next word can be loaded from the  le.

word.erase();

The test
if(flag==0)

ensures that if more than one punctuation mark or new line character are encountered one 
after another, then all of them are ignored while building the word map.

On the  rst occasion, this test returns true. Therefore, the location of the loaded word 
updates the word map. The value of ‘  ag’ has been set to ‘1’ within this if block. This ensures 
that this test returns false if the next character of the text  le is also a punctuation mark or the 
new line character since the value of the ‘  ag’ is reset to ‘0’ only if the character encountered 
is neither a punctuation mark nor the new line character.

After loading the word, if the end of line character is encountered, we increment the value 
of line number and reset the value of word number to ‘1’.

if(cVar!=’\n’)
 line=line+cVar;
else
{
 . . . .
 . . . .
 iLineNum++;
 iWordNum=1;
}

Also, we would like to straight away read the next character from the  le without any 
further processing. Therefore, the continue keyword has been used.

This  nishes the explanation of how the word map has been created. Let us now focus our 
attention on the creation of the line map.

As we read the characters from the  le, we append them into the string that represents a 
line.

line=line+cVar;

If the read character is a punctuation mark but not the new line character, we simply continue 
to append it to the line string object line (punctuation marks are a part of the line).

if(cVar==’ ‘ || cVar==’.’ || cVar==’,’ || cVar==’;’ || 
   cVar==’\n’)
{
. . . .
  if(cVar!=’\n’)
   line=line+cVar;

If the read character is the new line character, we reckon that we have loaded one complete 
line into the line string object line, and therefore simply insert the line number and the 
contents of the line into the line map.

if(cVar!=‘\n’)
 line=line+cVar;
else
{
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 linemap[iLineNum]=line;
 line.erase();
 . . . .

We also erase the contents of the line string object so that the next line can be loaded 
afresh.

Now, we come to the last portion of the code wherein the loop accepts the word to be 
searched from the user and returns the results.

After prompting the user, we  rst clean up the variable in which the word entered by the 
user would be stored. The read characters are appended to the word variable till the user 
presses the enter key.

The test that breaks the potentially in  nite loop is as follows:
if(word.empty())

It has been inserted in the middle since we don’t want the rest of the loop to execute. If 
the user enters a blank string, the loop breaks and the program terminates.

If the user does not enter a blank string, we try to  nd it in the word map.
iter=wordmap.find(word);

If the word is found in the word map, this iterator points at the element whose  rst member 
is the word itself and whose second element is a vector of locations of the found word. The 
size of this vector gives us the number of occurrences of the found word.

The for loop
for( witer=iter->second.begin();

witer!=iter->second.end();witer++)

iterates through the vector of locations of the found word. Each element of the vector is a pair 
of line position and word position. The locations are displayed by enclosing these positions 
in brackets and separating them by commas. 

cout<<“(”<<witer->first<<“,”<<witer->second<<“) ”. . .

Passing the line position to the line vector returns the corresponding line. This is also 
displayed in the for loop.

cout<<. . .<<linemap[witer->first].c_str()<<endl;



C++ is an extension of C language. It is a proper superset of C language. This means that a 
C++ compiler can compile programs written in C language. But, the reverse is not true. A 
C++ compiler can understand all of the keywords that a C compiler can understand. Again, 
the reverse is not true. Decision making constructs, looping constructs, structures, functions 
etc. are written in exactly the same way in C++ as they are in C language. Apart from the 
keywords that implement these common programming constructs, C++ provides a number of 
additional keywords and language constructs that enable it to implement the object-oriented 
paradigm.

Differences between C++ and C can be divided into two categories:
Non-object-oriented features provided in C++ that are absent in C language. 
Object-oriented features provided in C++ to make it comply with the requirements of the  
Object-Oriented Programming System.

Non-object-oriented Features Provided in C++ that are Absent in C Language

Enumerated data types

An enumerated data type in C is internally treated as an integer. In C++, it is treated as a 
separate data type in its own right. Direct conversion from an integer to the enumerated data 
type is therefore prohibited.

enum day_of_week
{
 monday,
 tuesday,
 wednesday,
 thursday,
 friday,
 saturday,
 sunday
};

day_of_week d;
d=Monday; //OK

d=2;   //ERROR

Reference variables

(Refer to Chapter 1 for a detailed discussion.)

Comparison of C++ with C

Appendix B
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Constants

In C, it is illegal to use an integer, which has been declared as a constant, to specify the size 
of an array. This is not so in C++.

const int size=100;
char cArr[size]; //legal in C++ but illegal in C

Function prototyping

(Refer to Chapter 1 for a detailed discussion.)

Function overloading

(Refer to Chapter 1 for a detailed discussion.)

Functions with no default values for arguments

(Refer to Chapter 1 for a detailed discussion.)

Functions with no formal arguments

In C, it is reckoned that a function that has no formal arguments accepts an unspeci  ed number 
of parameters. Therefore, it is legal to pass parameters to it.

In C++, it is reckoned that a function that has no formal arguments does not accept 
parameters. Therefore, it is illegal to pass parameters to it.

Inline functions

(Refer to Chapter 1 for a detailed discussion.)

Object-oriented Features Provided in C++ to make it Comply with the Requirements 
of the Object-Oriented Programming System

The following are some of the additional keywords that have been provided in C++ to make 
it an object-oriented programming language:

class  (Refer to Chapter 2 for a detailed discussion.)
friend  (Refer to Chapter 2 for a detailed discussion.)
operator  (Refer to Chapter 8 for a detailed discussion.)
private  (Refer to Chapter 2 for a detailed discussion.)
protected  (Refer to Chapter 5 for a detailed discussion.)
public  (Refer to Chapter 2 for a detailed discussion.)
template  (Refer to Chapter 9 for a detailed discussion.)
this  (Refer to Chapter 2 for a detailed discussion.)
virtual  (Refer to Chapter 6 for a detailed discussion.)



 C.1  Similarities between C++ and Java 

The following are some of the features that make C++ and Java similar:
Comments:  Comments are given in Java programs in exactly the same way as they are 
given in C++ programs. The multiline comments (/* … */) and single-line comments 
(//) of C++ are supported in Java also.
Control structures:  Decision-making and looping constructs of C and C++ are provided 
in Java also. Moreover, exactly the same syntax is used for utilizing them in Java source 
codes.
Keywords for implementing exception handling:  The keywords try, catch, and 
throw that are provided in C++ are provided in Java. Moreover, the same syntax is used 
for utilizing them in Java source codes. However, there is a slight difference between 
the way C++ allows all unhandled exceptions and the way Java does. This is explained 
in the section on ‘Differences between C++ and Java’.
Fundamental data types:  Like C++, Java also provides a set of fundamental data types. 
They are:

Type Size

byte 1 byte (signed 8-bit)

boolean 1 byte (signed 8-bit)

char 2 bytes Unicode (signed 16-bit Unicode)

short 2 bytes (signed 16-bit)

int 4 bytes (signed 32-bit)

long 8 bytes (signed 64-bit)

 oat 4 bytes (signed 32-bit)

double 8 bytes (signed 64-bit)

Declaration of objects:  Variables of primitive types are declared in exactly the same 
way in Java as in C++. The following statement declares an integer-type variable in both 
C++ and Java.
int x;

However, it is different in the case of classes. The section on ‘Differences between C++ 
and Java’ explains this difference.

Comparison of C++ with Java

Appendix C
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 Purpose of the class construct: Like C++, Java also provides the class construct. The 
purpose and functionality of this construct is approximately the same in both languages. 
Like classes that are defined in C++, there are member functions and member data in 
the classes that are defined in Java. However, there are differences between the ways 
this construct has been implemented in the two languages. The section on ‘Differences 
between C++ and Java’ explains these differences.

 The static keyword: The purpose of this keyword is the same in both the languages.
 Constructor: Constructors in Java are defined in exactly the same way as they are defined 

in C++ and also serve the same purpose. 
  Constructors in C++ and Java are similar to each other in the following ways: The 

compiler defines the constructor if we do not define one. If we define the zero-argument 
constructor or a parameterized constructor for a class, the compiler does not define the 
default constructor for the class. An access specifier can be specified to a constructor.

 Inheritance: Like C++, Java also supports inheritance. However, Java does not support 
multiple inheritance. This is explained in the section on ‘Differences between C++ and 
Java’.

 Static polymorphism: Like C++, Java supports static polymorphism. Two functions 
with different signatures can have the same name.

 Dynamic polymorphism: Dynamic polymorphism is supported in both C++ and Java. 
If a member function of the base class has been overridden in the derived class and it 
is called for a base class reference that actually refers to a derived class object, then the 
member function of the derived class gets called.

 Overriding member functions of a base class in its derived classes: Base class member 
functions can be overridden in the derived class except when the base class function 
has been specified as final. This exceptional case has been explained in the section on 
‘Differences between C++ and Java’.

 C.2  Differences between C++ and Java 

The following are some of the features that make C++ and Java different:
 Structures and unions: There are no structures and unions in Java. Java supports only 

classes.
 The main() function: Unlike the main() function in C++, the main() function in Java 

is not a global function. It is instead a public static function of a class. The class that has 
such a main() function is executed by clients or from command line.

  Unlike the main() function in C++, which takes an array of character pointers as 
parameter, the main() function in Java takes an array of objects of the class String as 
parameter.

 Header files versus packages: Instead of header files, we have packages in Java. Packages 
in Java serve a similar purpose as header files in C++. Packages are included in Java 
source codes by using the import directive as follows:
import java.util.Date; //importing a package

 This statement imports the Date class, which is defined in the ‘util’ package, which is in 
turn included in the ‘Java’ package.
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 The zero-fill right shift operator (>>>): Java introduces a new right shift operator—the 
zero-fill right shift operator. The normal right shift operator (>>), fills up the bits on the 
left with the value of the first bit as it shifts the bits to the right. In contrast, the zero-fill 
right shift operator (>>>), fills up the bits on the left with zeros as it shifts the bits to the 
right. This operator can be used as follows:
x=x>>>1; //shifts bits in x to the right by one place 
    //and move a zero from the left

 There is also a complimentary zero-fill right shift assignment operator (>>>=). The 
foregoing statement can be rewritten as
x>>>=1;  //shifts bits in x to the right by one place and 
    //move a zero from the left

 Operator overloading: Unlike C++, operator overloading is not supported by Java.
 External functions: There are no global functions in Java. All functions must be members 

of some class or the other.
 The final keyword: The final keyword serves the same purpose as the const keyword 

of C++. Member variables are declared as constants by prefixing this keyword to their 
declarations.

 Declaration of objects and the new operator: We already know that variables of 
primitive types are declared in exactly the same way in Java as in C++. However, the 
case is different in the case of classes.

  Suppose A is a class. The following statement creates an actual object in C++.
A A1;  //A1 is an object in C++ but a null reference in 
   //Java

 But in Java, the above statement would only declare a null reference. Such a reference 
has to be explicitly initialized by using the new operator as follows:
A1 = new A();

 In C++, the new operator captures a memory block in the heap and returns a pointer to 
it. In Java, the new operator captures a memory block in the heap and returns a reference 
to it. This is the only way of declaring an object in Java whereas in C++, an object may 
be declared either in the stack or in the heap by using the new operator.

 Pointers: Java does not support pointers. In Java, apart from the variables of primitive 
data types, all objects are actually references.

 Listing C.1 makes it evident that variables of primitive data types are always passed by 
value.

Listing C.1 Variables of primitive data types are passed by value

class first
{
 public static void main(String args[])
 {
  int x; //x is of primitive type
  x=100;

  int y;
  y=x; //y is a separate memory 
    //location

  //outputting to the console
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  System.out.println(“Before changing:”);
  System.out.println(“x=” + x + “,y=” + y); 

  x=200; //x changed, y unchanged

  System.out.println(“After changing:”);
  System.out.println(“x=” + x + “,y=” + y); 
 }
}

Output
Before changing:
x=100,y=100
After changing:
x=200,y=100

 Class objects are always references. Listing C.2 illustrates this.

Listing C.2 Class objects are passed by reference

class A
{
 public int x; //public member
}

class first
{
 public static void main(String args[])
 {
  A A1 = new A(); //necessary to initialize since A1 
    //is only a reference … now A1 is 
    //a reference to a memory location
  A1.x=100;

  A A2;
  A2=A1; //A2 is also a reference to the 
    //memory location to which A1 is a 
    //reference

  //outputting to the console
  System.out.println(“Before changing:”);
  System.out.println(“A1.x=” + A1.x + “,A2.x=” + A2.x); 

  A1.x=200;  //A1.x changed, A2.x also changed

  System.out.println(“After changing:”);
  System.out.println(“A1.x=” + A1.x + “,A2.x=” + A2.x); 
 }
}

Output
Before changing:
A1.x=100,A2.x=100
After changing:
A1.x=200,A2.x=200

 Garbage collection: Unlike C++, where dynamically acquired memory must be explicitly 
returned to the OS, garbage collection is automatic in Java. During the execution of a Java 
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program, an automatic garbage collector runs in the background. If it finds any locked 
up memory that is no longer being referenced, it returns it to the OS.

 Destructor: There is no delete keyword in Java. Therefore, there are no destructors in 
Java.

  In Java, the programmer can simply create an object by using the new operator. 
There is no need to worry about reclaiming the memory, that is the garbage collector’s 
responsibility.

  The finalize() method in Java approximates the destructor’s behaviour. However, 
there is a difference. The garbage collector will definitely execute this method for an 
object that it is destroying. But the exact instance at which the garbage collector would 
destroy an object cannot be specified.

 Terminating class definitions, access specifiers, defining member functions: Class 
definitions are terminated by semicolon in C++. In Java, class definitions are not 
terminated by a semicolon.

  In C++, access specifiers are specified for a group of class members. In Java, access 
specifiers are specified for each individual class member separately.

  Class member functions may be defined outside the class in C++. In Java, class member 
functions are always defined inside the class.

  Unlike C++, access specifiers can be specified for classes in Java. A class prefixed 
with the keyword public is visible to classes outside the package in which it was created. 
Otherwise, it is visible to classes of the same package only.

  Consider the class given in Listing C.3 written in C++.

Listing C.3 Access specifi ers provided to individual members in Java

class A
{
 private: //access specifiers provided to a group 
    //of members in C++
  int x;
 public:
  void setx(int);
  int getx();
};

public class A
{
 private int x; //access specifiers provided to 
    //individual members in Java
 public void setx(int p)
 {
  x=p;
 }
 public int getx()
 {
  return x;
 }
}

 Apart from private, protected, and public access specifiers, which are also provided 
by C++, Java provides the package access specifier. The package access specifier makes 
a member or a class to which it is applied visible to other classes of the same package 
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only. It is the default access specifier. The functionality of this access specifier is similar 
to that of namespaces in C++.

 Enumerations: Java does not support the enum keyword. However, an enumerated type 
can be created in Java as a class that has only static final data members (Listing C.4).

Listing C.4 Specifying and using enumerated data types in Java

public class Color //creating an enumerated type
{
 public static final int red=1;
 public static final int blue=2;
 public static final int green=3;
 public static final int yellow=4;
 public static final int brown=5;
}

. . . .

. . . .

if(fontColor==Color.red) //using a value of the 
    //enumerated type
. . . .

 In C and C++, while using the values of enumerated types, we need not qualify them 
by the name of the enumerated type itself. This leads to potential name clashes. This 
drawback does not exist in Java since the value of an enumerated type is qualified by the 
name of the enumerated type itself.

 The this keyword: The this keyword provides the same functionality in Java as it does 
in C++ with the difference that in C++ it is a pointer whereas in Java it is a reference. 
Therefore the this pointer need not be dereferenced in Java (Listing C.5).

Listing C.5 this is a reference in Java

class A
{
 private int x;
 void setx(int x)
 {
  this.x=x; //‘this’ is a reference in Java
 }
}

 In the above example, the this pointer was used to resolve name ambiguity. The name of 
the member variable of class A is the same as that of the formal argument of the setx() 
function of class A. Using the this keyword resolves this ambiguity and the value of 
the member variable gets set to that of the formal argument.

 The syntax of inheritance: Java provides the extends keyword for declaring a derived 
class. This keyword can be used as follows:
class B extends A //class B inherits from A
{
}
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 The default base class in Java: If you do not specify a base class for a class you are 
defining, the Java compiler automatically assigns a class called Object as its base class. 
Therefore, all classes in Java inherit from the class Object. 

 Overriding member functions of a base class in its derived classes: Using the final 
keyword in the declaration of the member function of a class prevents the derived class 
from overriding it. The compiler throws an error if a member function of the derived 
class overrides a final method of the base class.

 Interfaces and abstract base classes: An interface in Java is similar to the abstract base 
class in C++ but with the following differences:

 - Member functions of an interface can only be declared. They cannot be defined.
 - Member data of an interface are considered final.
 An interface is declared in Java as follows:

public interface A
{
 public void abc(); //declaration only … no definition
 public void def(); //declaration only … no definition
}

 Like the abstract base classes of C++, interfaces in Java cannot be instantiated. The 
following piece of code is illegal:
A A1 = new A();

 A class that implements an interface can be instantiated provided it defines all member 
functions of the interface. See Listing C.6.

Listing C.6 Declaring and implementing an interface in Java

public class B implements A //syntax for implementing an
    //interface
{
 public void abc()
 {
  /*
   definition of the function
  */
 }
}

 If not all member functions of the interface are defined in the class that implements them, 
the class becomes an abstract base class and cannot be instantiated.

  Multiple inheritance is not supported in Java. However, Java provides interfaces. 
A class in Java can inherit from only one class but implement an unlimited number of 
interfaces. In the following definition, class X inherits from class P but implements the 
interfaces A and B.
//implementing more than one interface
public class X extends P implements A, B 
{
 /*
  definition of class X
 */
}
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 An abstract class is declared in C++ by declaring at least one of its member functions 
as a pure virtual function. An abstract class is declared in Java by using the abstract 
keyword in its declaration. As in C++, an abstract class cannot be instantiated. See Listing 
C.7.

Listing C.7 An abstract class in Java

public abstract class A //an abstract class
{
 public abstract void abc(); //an abstract method of 
    //an abstract class
 public void def() //an non-abstract method 
    //of an abstract class
 {
  /*
   definition of the function
  */
 }
}

 As can be seen, some functions of an abstract class can be declared as abstract by using 
the abstract keyword in their declaration while the others can be declared as non-abstract 
by not using the abstract keyword in their declaration. In contrast to interfaces, member 
functions of an abstract class can be defined. If not all member functions of an abstract 
class are defined in the class that extends it, the latter class also becomes an abstract base 
class and cannot be instantiated.

  Abstract and non-abstract member functions of the abstract base class can be overridden 
in the derived class. See Listing C.8.

Listing C.8 Overriding base class functions in the derived class

abstract class A
{
 public abstract void abc();
 public void def()
 {
  System.out.println(“def() function of class A”);
 }
}

public class B extends A
{
 public void abc() //overriding abstract function of 
    //base class
 {
  System.out.println(“abc() function of class B”);
 }
 public void def() //overriding non-abstract function 
    //of base class
 {
  System.out.println(“def() function of class B”);
 }
 public static void main(String args[])
 {
  A A1 = new B();
  A1.abc();
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  A1.def();

  B B1 = new B();
  B1.abc();
  B1.def();
 }
}

Output
abc() function of class B
def() function of class B
abc() function of class B
def() function of class B

 The foregoing output makes one thing very clear. All non-static member functions in 
Java are virtual functions. The abstract qualifier is used in the declaration of a member 
function of the base class only to force its override in the derived class.

  An overridden member function of the base class can be called from the member function 
of the derived class by using the keyword super as illustrated in Listing C.9.

Listing C.9 Calling an overridden function of the base class in a member function of the 
derived class

abstract class A
{
 public abstract void abc();
 public void def()
 {
  System.out.println(“def() function of class A”);
 }
}

public class B extends A
{
 public void abc()
 {
  System.out.println(“abc() function of class B”);
 }
 public void def()
 {
  super.def(); //calling an overridden function of the 
    //base class
  System.out.println(“def() function of class B”);
 }
 public static void main(String args[])
 {
  A A1 = new B();
  A1.abc();
  A1.def();
 }
}

Output
abc() function of class B
def() function of class A
def() function of class B
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 Base class initialization: Base class member data are initialized in C++ by the member 
initialization list. In Java, using the super keyword achieves this objective. See Listing 
C.10.

Listing C.10 Initializing base class members from the derived class constructor

class A
{
 private int x;
 public A(int p)
 {
  x=p;
 }
}

class B extends A
{
 int y;
 public B(int p, int q)
 {
  super(p); //calling the base class constructor
  y=q;
 }
}

 Exception handling: The exception handling mechanism provided in Java is very similar 
to C++ with the following differences:

 -  In Java, the classes of all thrown objects must inherit from the class Throwable. 
Therefore, the block catch(Throwable) in a try … catch construct in Java is 
equivalent to the catch(…) block in C++.

 -  Java introduces a new keyword finally to be used in the try … catch block. The 
block labeled finally is always executed at the end of a try … catch block.



Object-Oriented Analysis and Design

Appendix D

 D.1  Introduction 

This appendix gives a brief but comprehensive overview of  Object-Oriented Analysis and 
Design (OOAD). OOAD is a design methodology. It is used to model solutions of software 
engineering problems. Models can be translated into actual code written in object-oriented 
languages.

Why Build Models?

Software engineering problems are usually quite complex. Different aspects of the solution 
need to be modeled using standard notations. After these models have been veri  ed for 
correctness, they are implemented in actual code.

Models serve several purposes. Some of them are as follows:
The solution can be tested for correctness and completeness before actually building it. 
Models help the developers in communicating clearly and precisely with customers and  
also among themselves. This ensures that all parties are in sync with each other.
Models help developers in visualizing the solution clearly. 
Complexity of the problem gets reduced since the entire system can be broken down into  
successively smaller portions.

Overview of OOAD

What is OOAD?

OOAD has the following  stages:
1. Analysis: In this phase, a model of the solution is built. The analysis model contains 

classes with their members, their relationships, etc. The analysis model shows what the 
desired solution must do, not how it will be done. It does not contain any implementation 
details.

2. System design: In this phase, the analysis model is divided into manageable sub-systems. 
Relationships amongst these sub-systems are also modeled. A strategy of attacking the 
problem is formulated. Performance optimization is also finalized.

3. Object design: In this phase, implementation details are added to the model built during 
the analysis phase.

4. Implementation: The object model thus created is finally translated into a particular 
programming language.
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Overall development time is not always less in OOAD as compared to the conventional 
methodology. But the bene  t is that the resulting model is better suited for future reuse. 
Downstream errors and maintenance efforts also get reduced.

 D.2  Object-Oriented Model 

An object-oriented model consists of the following three kinds of models:
  Object model
  Dynamic model
  Functional model

The object model describes the objects in the system and the relationships amongst these 
objects. It consists of object diagrams.

The dynamic model describes how objects in the system interact with each other. It 
consists of state diagrams. A state diagram depicts states and transitions between states that 
are caused by events.

The functional model describes how data gets transformed in the system. It consists of data 
 ow diagrams. A data  ow diagram depicts processes and data  ow among the processes.

The three models complement each other. They are linked to each other. The object model 
is described  rst. It is necessary to describe what is changing or transforming before describing 
when and how it changes.

The object model describes classes upon whom the dynamic and functional models operate. 
The operations in the object model relate to events in the dynamic model and functions in 
the functional model.

 Object Model

Object diagrams are of two types:  class diagrams and  instance diagrams.
As its name suggests, a class diagram describes classes and relationships amongst 

classes.
An instance diagram depicts the relationship amongst a particular set of objects that exist 

together at a given instance of time. A large number of instance diagrams can be generated 
from a single class diagram.

Boxes are used to depict objects and classes. Different object-oriented design tools use 
slightly different variations of these boxes. A sample is shown in Figure D.1.

A

Figure D.1 A class is depicted in an object model as a box with sharp corners; name is in bold

Attributes

Attributes are nothing but data members of classes. They are listed in the second part of the 
class box. Each attribute name may be followed by a colon and its type. This, in turn, may 
be followed by an equality symbol and the default value of the data member. A line is drawn 
between the class names and attributes (see Figure D.2). No such line exists in object boxes 
(see Figure D.3).
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A

x : integer = 0

Figure D.2 Depicting attributes in class box

(A)

1

Figure D.3 An object is depicted in an object model as a box with rounded corners; class 
name is in bold but is surrounded by parentheses

Operations

Operations are nothing but member functions of classes. They are listed in the third part of the 
class box. The name of the operation is followed by a list of formal arguments in parentheses. 
The arguments are mentioned in the same way as the attributes. These parentheses may be 
followed by a colon and the result type of the operation (see Figure D.4).

A

x : integer = 0

setx(p : integer)
getx() : integer

Figure D.4 A class with operations

Links and associations

An association depicts a conceptual or physical relationship between two classes. A link is an 
instance of an association. Associations may be bidirectional or unidirectional. An association 
may be implemented as a pointer from one object to another. The notation for an association 
is a line between the associated classes. See Figure D.5.

A

x : integer = 0

setx(p : integer)
getx() : integer

B

y : integer = 0

sety(p : integer)
gety() : integer

Figure D.5 Association

Multiplicity

Multiplicity signi  es the number of instances of one class that may relate to a single instance 
of an associated class. An association may be:

One-to-one (Figure D.6) 
One-to-many (Figures D.7 and D.8) 
Many-to-many 
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A

x : integer = 0

setx(p : integer)
getx() : integer

B

y : integer = 0

sety(p : integer)
gety() : integer

Figure D.6 A one to-one association

A

x : integer = 0

setx(p : integer)
getx() : integer

B

y : integer = 0

sety(p : integer)
gety() : integer

Figure D.7 A one-to-many association (zero or one instance of class B may be 
associated with an instance of class A)

A

x : integer = 0

setx(p : integer)
getx() : integer

B

y : integer = 0

sety(p : integer)
gety() : integer

Figure D.8 A one-to-many association (exactly two instances of class B 
may be associated with an instance of class A)

A ball at one end of the line that depicts association between two classes indicates a ‘many’ 
side. A hollow ball indicates that zero or one instance of the class on whose side the ball 
appears may be associated with an instance of the associated class. A solid ball indicates that 
zero or many instances of the class on whose side the ball appears may be associated with an 
instance of the associated class. If no balls appear, it indicates a one-to-one relationship.

If possible, the exact permissible number of instances of one class that can be associated 
with one instance of the associated class is also speci  ed. An exact value can be speci  ed. 
An interval of values can also be speci  ed. The interval may be a single interval or a set of 
disconnected intervals.

Some of the other ways of specifying the multiplicity in Figure D.8 are:
2+ (2 or more), 
2–4 (2,3, or 4), 
2,5,18 (either 2 or 5 or 18), etc. 

Association attributes

An association may have its own attributes. Association attributes are depicted in boxes 
attached to the association by a loop (Figure D.9). Such boxes have the same characteristics 
as the boxes that are used to represent classes.

Attributes of a many-to-many association are always properties of the associations itself. 
They cannot be attached to either object. On the other hand, it is possible to insert attributes 
for one-to-one and one-to-many associations into the class opposite the ‘one’ side.

Pointers are embedded either in one or both of the associated classes to implement 
association. Alternatively, if a separate class has been used to implement an association as 
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in Figure D.9, pointers to both classes appear in the third class. All this is explained in the 
last section of this appendix.

A

x : integer = 0

setx(p : integer)
getx() : integer

B

y : integer = 0

sety(p : integer)
gety() : integer

C

z : integer = 0

setz(p : integer)
getz() : integer

2

Figure D.9 Association attributes

Aggregation

In aggregation, an object of one class contains objects of other classes. Like association, a line 
connects two classes between whom an aggregation relationship exists. However, a diamond 
appears next to the container class. See Figure D.10.

A

x : integer = 0

setx(p : integer)
getx() : integer

B

y : integer = 0

sety(p : integer)
gety() : integer

Figure D.10 Aggregation—an object of class B contains an object of class A

Inheritance

We have already studied inheritance in Chapter 5. The notation for inheritance is an upright 
triangle connecting a superclass to its subclasses. The superclass is connected by a line to the 
apex of the triangle. See Figure D.11.

A

x : integer = 0

B

y : integer = 0

sety(p : integer)
gety() : integer

setx(p : integer)
getx() : integer

Figure D.11 Inheritance—class B derives from class A
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Abstract classes

Abstract classes have already been explained in Chapter 6. An abstract function (that makes 
the class abstract) is designated by a comment in braces (Figure D.12).

A

x : integer = 0

B

y : integer = 0

set(p : integer) {abstract}
get() : integer {abstract}

set(p : integer)
get() : integer

Figure D.12 Depicting an abstract base class

Multiple inheritance

We have already studied multiple inheritance in Chapter 5. Multiple inheritance is depicted 
by using the same symbols that are used for single inheritance (See Figure D.11).

 Dynamic Model

The dynamic model models the sequence of changes that occur in a system.
Two important concepts in dynamic modelling are events and states. State of an object 

is represented by the set of values of the object at a given point of time. Events are external 
stimuli that cause a change of state.

A state diagram depicts the states, events, and transitions from one state to another for 
a given class. One state diagram is created for each class that exhibits important dynamic 
behaviour. The set of all such state diagrams constitutes the dynamic model. The state diagrams 
shared events with each other.

Events

An event is an instantaneous occurrence that causes a change of state. An event is a one-way 
transmission of information from one object to another.

Scenarios and event traces

A scenario is a textual line-by-line description of the sequence of events that occur during 
one particular execution of a system. Event traces are created for each scenario. For this, the 
sender and the receiver objects of each event are identi  ed. This event trace shows each of 
these objects as a vertical line. Each event is depicted as a horizontal arrow from the sender 
object to the receiver object. See Figure D.13.



 Appendix D: Object-Oriented Analysis and Design 443

Figure D.13 An event trace

States

A state is a set of attribute values and links of an object that can be grouped together because 
they occur together at a given point of time. An object remains in the same state during the 
interval between two events.

State diagrams

A state diagram depicts the relation between events and states. Upon receiving an event, the 
state the recipient object attains depends on its current state as well as the event. Transition 
is the change of state caused by an event. 

The symbol for a state is a rounded box that may contain a name for the state. A transition 
is depicted as an arrow from the receiving state to the target state.

A sequence of events on the event trace corresponds to a path through the state diagram. 
See Figure D.14.

Figure D.14 A state diagram
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Conditions

A condition may in  uence the  ring of a transition. Such a transition is known as a guarded 
transition (see Figure D.15). It  res when its event occurs, but only if the guard condition is 
true. A guard condition on a transition is shown in brackets following the event name.

State 1

State 2

Event 1 [condition 1]

Figure D.15 Guarded transitions

Activity

An activity is an operation that executes over a period of time. An activity may continue to 
execute as long as an object remains in a particular state. Activities may run continuously or 
terminate on their own after an interval of time. The notation for specifying that an activity 
A executes as long as the state remains is “do: A” within the state box.

Actions

An action is an instantaneous occurrence that occurs when an event occurs. An action on a 
transition is denoted by a slash (‘/’) and its name, following the name of the event that causes 
it. Figure D.16  shows activities and actions.

State 1
do : activity 1

State 2
do : activity 2

Event 1 [condition 1]/action 1

Figure D.16 Activities and actions

Relation of object and dynamic models

The dynamic model speci  es the sequences in which operations of an object can be called. 
States represent the attribute and link values for the object that may exist concurrently. Events 
are nothing but operations on the object.

 Functional Model

The functional model depicts the transformations of input values into output values. The order 
in which the transformation takes place is not modeled here. Transformations are depicted 
using data  ow diagrams. The functional model consists of multiple data  ow diagrams.
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Data flow diagrams

A data  ow diagram depicts the  ow of data values from source objects through processes 
to their destinations objects.

A data  ow diagram contains processes and data  ows. Processes transform data. Data 
 ows depict the  ow of data amongst processes, actor objects, and data store objects. Actor 

objects are passive objects that enter data and use the data produced by the system. Data store 
objects merely store data and do not transform the data in any way.

Processes

A process is depicted as an ellipse in the data  ow diagram. A descriptive name of the trans-
formation appears as its label. The input and output data for each process are also depicted. 
See Figure D.17.

Input 1

Input 2 Output 2

Output 1

Process 1

Figure D.17 A process in a data fl ow diagram

Data flows

A data  ow connects the output of one object or process to the input of another object or 
process. The value is not changed by the data  ow.

Actors

An actor initiates the data  ow by inputting values. Values output by a data  ow diagram 
may also terminate with an actor. Actors may be data-entry operators or timed devices. An 
actor is depicted as a rectangle since an actor is inherently an object.

Data stores

A data store merely stores data for later use. It does not have any operations de  ned. It is 
depicted as a pair of parallel lines with its name in between the lines (Figure D.18). Data 
stores are inherently objects. Figure D.19 shows a data  ow diagram.

Data store 1

Figure D.18 A data store

Input 1

Input 2

Output 2

Process 1
Output 1

Process 2

Object 1

Data store 2

Data store 1

Figure D.19 A data fl ow diagram with data fl ows, processes, actors, and data stores
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 D.3   Analysis

Now we know the three models that constitute an object-oriented model. This section will 
teach us how we can create a model from the requirement document. The last section will 
teach us how to implement the model.

Overview of Analysis

Requests generated by users, developers, and managers are  rst collected and consolidated. 
A problem statement is created from this consolidated list. Models are built by analyzing 
the problem statement and by taking inputs from users, from domain experts, and from the 
developer’s knowledge of the real world.

Large models are built up iteratively. A small model to achieve only the core requirement 
is built first. Once the model has been perfected, it is expanded to add all ancillary 
functionalities.

Object Modelling

The steps for object modelling are as follows:
1. Identify classes
2. Identify associations and aggregations
3. Add attributes to classes and associations
4. Combine classes using inheritance
5. Add operations to classes after constructing the dynamic and functional models

Classes often appear as nouns in the problem statement.
Associations often appear as verbs or verb phrases.
Attributes often appear as nouns followed by possessive phrases.
Identify classes that share common features and designate them as base classes. Look for 

nouns that appear with different adjectives. The common noun can usually be modeled as a 
base class whereas each of the nouns with an adjective can be modeled as its derived class.

Dynamic Modelling

Brie  y, the  rst step in dynamic modelling is to identify events. Events appear as external 
stimuli and responses. The next step is to summarize permissible event sequences for each 
object with a separate state diagram.

We can start with creating scenarios of typical executions. All common interactions should 
get depicted by scenarios. The next step is to create event traces for each of these scenarios. 
Scan the columns in the event trace to identify events that occur on each object. 

States that an object attains can be identi  ed from the interval between all pairs of events 
that occur on it one after the other. These events and states are organized in a state diagram. 
The resulting set of state diagrams constitutes the dynamic model.

This process can be repeated incrementally for special interactions such as omitted inputs, 
violation of domain constraints, etc. Finally scenarios for error cases are prepared. These 
scenarios are also merged into the state diagram by attaching the new event sequence to the 
existing state as an alternative path.
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Functional Modelling

Activities or actions in the state diagrams of classes can be modeled as processes on the data 
 ow diagram. Objects and attribute values of an object diagram can be modeled as  ows on 

a data  ow diagram.
Parameters of events from the dynamic model appear as input and output values of processes. 

The data  ow diagram can be constructed by inserting processes between corresponding input 
and output values.

Processes in the top-level data  ow diagram may be quite complex. Create a simpli  ed 
and detailed lower-level data  ow diagram for each such process. If this level still contains 
complicated processes, repeat the process till you reach a data  ow diagram with very simple 
processes.

Finally, write a textual description of each lowest-level process. The description should 
emphasize the objective of the process and not how the process would get implemented.

Identify and model actors and internal storage also.

 D.4   System Design

System design is the high-level strategy for solving a problem and building a solution. The 
system is organized into sub-systems. Sub-systems are allocated to hardware and software 
components. Major conceptual and policy decisions that form the guidelines for the detail 
design are also taken. The overall organization of the system is called the system architecture. 
During system design, overall high-level implementation decisions are made. This is followed 
by similar decisions for successively lower levels.

Breaking the System into Sub-systems

A system is divided into sub-systems based on the similarity of services. A service is a set of 
functions that have a common objective.

Each sub-system provides a well-de  ned well-abstracted interface. The interface data can 
be exchanged with the sub-system. It does not specify how the sub-system is implemented 
internally. Thus, the internal design of each sub-system can be created and modi  ed while 
other sub-systems that interact with it remain unchanged.

Layers

A system can be divided into sub-systems and these sub-systems can be horizontally layered 
one on top of another. Each layer is built to provide services to the ones above it. Thus each 
layer provides the basis of designing the one above it. Layers are thus strongly coupled.

Partitions

Sub-systems can be vertically placed next to each other as partitions also (see Figure D.20). 
Partitions are independent or weakly-coupled sub-systems.

A combination of layers and partitions can be used to divide a system.
We should also identify which activities may execute concurrently and which are mutually 

exclusive. The latter set of activities can be put together in a single thread of control.
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Sub-system 1

Sub-system 3

Sub-system 2   Sub-system 4   Sub-system 6

Sub-system 5

Sub-system 7

Sub-system 8

Figure D.20 Dividing a system into sub-systems

D.5   Object Design
De  nitions of the classes and associations modeled earlier are completed in the object design 
phase. Algorithms to be used in the operations are also  nalized.

Overview of Object Design
The list of objects found out during analysis is revised with an intention to minimize execution 
time and memory.

The object model describes the classes of objects in the system, including their attributes 
and the operations they support.

The functional model describes the operations that the system must implement. During 
design we must decide how each operation must be implemented. 

The dynamic model describes how the system responds to external events. The control 
structure for a program is primarily derived from the dynamic model.

Actions and activities of the dynamic model and the processes of the functional model are 
converted to operations.

While designing classes we must decide when to use values of fundamental types for data 
members and when to use another object. Classes can contain objects of other classes, but 
eventually everything must be implemented in terms of built-in primitive data types.

 D.6  Implementation
Writing code is an extension of the design process. Writing code should be straightforward, 
almost mechanical, because all the dif  cult decisions should already have been made during 
design. The code should be a simple translation of the design into code written in a particular 
programming language.

Classes are declared  rst. Attributes and operations mentioned in the object diagram are 
declared as private, protected, or public members.

We have already studied how a class can be de  ned in C++, how members can be declared 
in these classes, how objects of these classes can be declared and how member functions can 
be called with respect to the declared objects. We have also studied how inheritance can be 
implemented in C++. Now is the time to carry out these activities with respect to the object 
design just created.

There are two general approaches for implementing associations—buried pointers and 
distinct association objects.

A binary association is frequently implemented as a buried pointer in each of the associated 
objects that point at the related object or the set of related objects of the associated class. 
Updating one pointer in the implementation of an association implies that the other pointer 
must be updated as well to keep the implementation consistent.

Association can also be implemented as an associative container class (maps and sets).



Abstract Base Class A class that has at least one 
pure virtual function. Abstract base classes 
cannot be instantiated. They only serve as base 
classes for other classes to derive from. (see 
also pure virtual functions) 

Arrow Operator (->) An operator to access data 
members of an object or call member functions 
through a pointer that points at the object.

Base Class A class from which another class 
inherits. (see also inheritance)

Binary Search Tree A binary search tree is a special 
form of binary tree. In a binary search tree, for 
any given node, the value contained in its left 
child is less than the value contained in the node 
and the value contained in the node is less than 
the value contained in its right child.

Binary Tree A binary tree is a tree in which each 
node is linked to a maximum of 2 nodes.

Call by Reference The formal argument of the 
called function is of reference type. (see also 
reference variables)

Call by Value The formal argument of the called 
function is of non-reference type. (see also 
reference variables)

catch The keyword used to catch a thrown 
exception. (see also exception handling, try, 
throw)

Child Class A class that inherits from another class. 
(see also inheritance)

Class A language construct provided by C++ 
that enables the implementation of object-
oriented concepts like data security, guaranteed 
initialization of data, data abstraction, data 
hiding, etc. A class has member functions and 
member data.

Glossary

Appendix E

Class Template A template for a class definition. 
Data type of data members is undefined.

Clone Functions A function that creates an object 
of the same type at which a base class pointer 
points and returns its address.

Command Line Arguments Command line 
arguments are values that are passed to 
executables when they are run from the 
command line.

const_cast Operator This operator is used to cast 
away the constness of a value.

Constant Member Functions A member function 
that can only read the value of data members 
but not modify them.

Constructor A class member function that gets 
called automatically with respect to each object 
at the time of its creation. It is used to guarantee 
the initialization of data members of the object. 
(see also Guaranteed Initialization of Data)

Copy Constructor A constructor that gets 
called whenever an object is created and 
simultaneously equated to another existing 
object. It is called with respect to the object 
that is getting created while the existing object 
is passed as a parameter to it.

Data Member A class member that would contain 
the values of class objects. Each object of the 
class has its own copy of the data member.

Data Security An object-oriented feature that refers 
to preventing unauthorized functions from 
accessing data.

Default Constructor The constructor that gets 
defined by default by the compiler if we do 
not. It does not take parameters. (see also Zero-
argument Constructor)
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Default Values for Function Arguments Default 
values can be assigned for function arguments. 
These values are assigned to the arguments if 
no values are passed to them when the function 
is called.

delete Operator An operator that allows us to return 
a dynamically allocated block of memory to the 
operating system. (see also dynamic memory 
deallocation)

Derived Class (see child class)
Destructor A function that gets called automatically 

for each object at the time of its destruction. It 
is used to release resources held by objects.

Dot Operator (.) An operator that allows us to 
access data members of an object or call 
member functions with respect to an object.

dynamic_cast Operator A cast operator used for 
downcasting a pointer of base class type to a 
pointer of a particular derived class. If the base 
class pointer being typecast actually points at 
an object of the target type, the dynamic_cast 
operator returns the address of the object 
pointed at, else it returns NULL. If the 
dynamic_cast operator is used with references 
instead of pointers, it returns the reference to 
the target object or throws an exception of the 
type Bad_cast. 

Dynamic Binding In dynamic binding, if an 
overridden function of the base class is called 
with respect to a pointer or a reference of the 
base class type, then which of the functions 
(base class function or one of the derived class 
versions) will actually be called, is decided 
based on the type of the object pointed at or 
referred to at run time. The same function 
has more than one form (in the base class and 
the derived classes). Its call can lead to the 
execution of a particular version depending 
upon circumstances arising during run time.

Dynamic Memory Allocation In this type of 
memory allocation, more memory is allocated 
in response to requirements arising during run 
time. 

Dynamic Memory Deallocation Once it is not 
required, memory allocated dynamically can 

be retuned to the operating system. This is 
dynamic memory deallocation. 

Dynamic Polymorphism (see dynamic binding)
 Early Binding In early binding which version of 

a called function that has multiple forms will 
be called at run time is decided during compile 
time itself. 

Enclosing Class A class that contains the definition 
of another class is known as an enclosing class. 
(see also nested class) 

Exception Handling Exception handling is a 
facility that enables the library code to notify 
error conditions, which it is incapable of 
handling, to the calling client. The client can 
catch the exception and decide upon a suitable 
error-handling strategy. Alternatively, the 
client can choose to re-throw exceptions. (see 
also catch, throw, try)

Explicit Constructor Explicit constructors do not 
allow implicit conversions when an object 
is instantiated. Constructors are declared 
explicit by prefixing their declarations with 
the explicit keyword. We need to mention 
the explicit keyword in the declaration of the 
constructor only. It is not necessary to prefix the 
definition of the constructor with the explicit 
keyword. Explicit constructors can prove to be 
useful for the programmer if he/she is creating 
a class for which an implicit conversion by the 
constructor is undesirable.

Friend Function A non-member function that has 
been granted special rights to access private 
data members of the class of which it has been 
declared a friend.

Friend Class A class whose entire set of member 
functions has been granted special rights to 
access private data members of the class of 
which it has been declared a friend.

Function Member A function that is a member of 
a class. It is declared within the class. It has the 
right to access the private data members of all 
objects of the class.

Function Overloading A facility that enables the 
programmer to create two functions with the 
same name.
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Function Prototype A function declaration 
that tells the compiler the return type of the 
function and the type and number of its formal 
arguments.

Function Template A template for a function 
definition. The type of its formal arguments is 
undefined. An actual definition of the function 
gets generated only when the function is 
called. The types of the corresponding passed 
parameters replace the undefined data types of 
formal arguments.

Generic Class (same as class template)
Guaranteed Initialization of Data The data 

members of a structure variable in C language 
may attain invalid values at its time of creation. 
C++ enables programmers to guarantee 
initialization of data members of objects by 
defining constructors. (see also constructor)

Inheritance A feature provided by all object-
oriented languages that enables a class to 
inherit the data and function members of an 
existing class. (see also base class, parent 
class, super class, derived class, child class, sub 
class) 

Inline Function A function that is expanded inline 
with its call by the compiler. 

 Late Binding (see dynamic binding)
Linked Lists Linked lists consist of nodes that 

are linked to each other in a linear fashion. 
Each node in a linked list is an object that is 
made up of two parts. The first part is the data 
carried by the node. The second part of each 
node is a pointer that carries the address of the 
next node in the list. This is a description of 
a single linked list. Alternatively, each node 
may have an additional pointer, a pointer to 
the previous node. Such linked lists are called 
double linked lists.

Manipulators Manipulators are operators that 
enable the C++ programmer to format the 
output from their programs. 

Multiple Inheritance A type of inheritance where 
a class inherits the features of more than one 
base class. 

Mutable Data Members Data members that 
are never constant. Even constant member 

functions can modify their values. (see also 
constant member functions) 

Namespace A language construct in C++ that allows 
us to divide the source code into logical parts. 
This helps in preventing clashes of names. Two 
classes with the same name can be defined if 
they belong to different namespace. 

Nested Class A class that is defined within another 
class is known as a nested class. (see also 
enclosing class) 

New Handler Function A function that gets 
called whenever an out-of-memory condition 
is encountered. We can define our own new 
handler function. 

new Operator An operator that enables us to 
capture more memory in response to conditions 
arising during run time (see also dynamic 
memory allocation) 

New Style Casts C++ provides the following four 
new style cast operators to replace the use of 
the old error-prone and difficult-to-detect C 
style casts:

  dynamic_cast
  static_cast
  reinterpret_cast
  const_cast 
Object An instance of a class is known as an 

object. 
Object-Oriented Programming System A 

programming system that enables programmers 
to model real-world objects. Data and procedures 
that work upon the data are bound together in 
a single construct called class. 

Operator Overloading A feature of most object-
oriented languages that enables programmers 
to provide additional definitions to operators so 
that they can take class objects as operands.

Parameterized Class (see Class Template)
Parameterized Constructor A constructor that 

takes parameters.
Parent Class (see Base Class)
Polymorphism A feature of object-oriented 

languages that allows programmers to create two 
functions with identical names. Polymorphism 
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is of two types—static and dynamic. (see 
also Static Binding, Static Polymorphism, 
Early Binding, Dynamic Binding, Dynamic 
Polymorphism, Late Binding) 

Private Class Members Function and data 
members of a class that have been declared 
under the private section of a class. Private class 
members can be accessed by member functions 
of the same class only. 

Procedure-Oriented Programming System In 
this system, code is divided into procedures. 
Data and procedures that work upon the data 
are not bound together. 

Protected Class Members Function and data 
members of a class that have been declared 
under the protected section of a class. Protected 
class members can be accessed by member 
functions of the same class and those of the 
derived class only. 

Public Class Members Function and data members 
of a class that have been declared under the 
public section of a class. Public class members 
can be accessed by not only the member 
functions of the same class and those of the 
derived class. They can be accessed by global 
non-member functions also. 

Pure Virtual Functions A special type of virtual 
function whose declaration is suffixed by ‘=0’. 
Presence of a pure virtual function makes its 
class an abstract base class. A derived class that 
does not override the pure virtual functions of 
the base becomes an abstract base class. (see 
abstract base class, virtual functions)

Queues Queues are very similar to linked lists. 
However, in a queue, we can add a node only 
to the end. Moreover, in a queue, we can delete 
a node only from the beginning.

Reference Variables A reference variable is a 
reference to another variable. It does not occupy 
its own memory. It shares the memory occupied 
by the variable of which it is a reference.

reinterpret_cast Operator A new style cast 
operator that allows the conversion of one type 
to another. 

Scope Resolution Operator An operator that 
enables the C++ programmer to define a 
member function outside the class.

Stacks Stacks are very similar to linked lists. 
However, in a stack, we can add a node only 
to the beginning. Moreover, in a stack, we can 
delete a node only from the beginning.

static_cast Operator The only difference between 
the static_cast operator and the dynamic_cast 
operator is that while the dynamic_cast operator 
carries out a run-time check to ensure a valid 
conversion, the static_cast operator caries out 
no such check. 

Static Binding (see early binding) 
Static Data Member Static data members hold 

global data that is common to all objects of the 
class. Static data members are members of the 
class and not of any object of the class, that is, 
they are not contained inside any object. 

Static Function Member Static member functions 
are not called with respect to an existing object. 
This function’s sole purpose is to access and/or 
modify static data members of the class.

Static Memory Allocation In this method of 
memory allocation, the amount of memory 
to be allocated and the time at which it would 
get allocated during run-time are both decided 
during compile time itself. 

Static Memory Deallocation In this method of 
memory allocation, the amount of memory to 
be deallocated and the time at which it would 
get deallocated during run-time are both 
decided during compile time itself. 

Static Polymorphism (see early binding) 
Structure A language construct in C language that 

enables the programmer to put together data 
that influence each others’ values and should 
therefore be put together. C language does 
not allow the programmer to define member 
functions inside structures. This leads to lack 
of data security.

Subclass (see  child class, derived class, 
inheritance) 

SuperClass (see parent class, base class, 
inheritance) 

this pointer A constant pointer that gets passed 
to each member function as a leading formal 
argument. It points at the object for which the 
function is called. 
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throw A keyword in C++ that allows the library 
programmer to throw an exception whenever 
an invalid condition is encountered that cannot 
be handled in the library code itself. (see also 
exception handling, try, throw)

Trees  Trees, unlike linked lists, stacks, and queues, 
do not have a linear structure. In a tree, each 
of the nodes may be connected to more than 
one node.

try A keyword in C++ that allows a client to place 
calls to library functions that are likely to throw 
exceptions. (see also exception handling, try, 
throw) 

typeid Operator An operator that enables us to 
determine the type of object at which a pointer 
points. 

Virtual Base Class A base class that is derived 
by using the virtual keyword while declaring 
the derived class. If a class derives from two 
classes that in turn inherit from a virtual base 
class, the final derived class gets only one copy 
of the features of the virtual base class.

Virtual Function A class member function can be 
declared as a virtual function by prefixing its 
declaration with the virtual keyword. Virtual 
functions enable dynamic polymorphism. If a 
virtual function is overridden in a derived class 
and called with respect to a pointer of base class 
type that points at an object of the same derived 
class, then the function called would be of the 
derived class and not of the base class. (see also 
Dynamic Binding, Dynamic Polymorphism, 
Late Binding) 

Zero-argument Constructor A constructor that 
does not take any arguments is called a zero-
argument constructor. The constructor that is 
created by default by the compiler is also a 
zero-argument constructor. Therefore, the two 
terms zero-argument constructor and default 
constructor are used interchangeably. (see also 
constructor, default constructor)



Self Tests

Appendix F

Test 1

Time: 1 hour
Max Marks: 50

True/False

[1 × 10 = 10]
 1. Variables must be declared at the beginning of the function in a C++ program code.
 2. A function can modify the value of the passed parameter if the corresponding formal argument is 

a reference variable.
 3. The presence of an inline function in a code does not impact the size of the resultant executable.
 4. Structures in C++ cannot have member functions.
 5. A constant member function cannot access the static data members of the class.
 6. The return type of a constructor in C++ is void.
 7. A function of the derived class can access the public member of the base class even if the private 

keyword is used for derivation.
 8. A pure virtual function cannot be overloaded.
 9. An actual de  nition is created from a function/class template during run time.
 10. Each node of a single linked list can contain only integer-type values in its data part.

Fill in the Blanks

[1 × 10 = 10]
 1. The process of binding together data and code that works upon the data is known as 

...................................... .
 2. cout is an object of the ...................................... class.
 3. The ...................................... operator is used to access a class member with respect to a pointer.
 4. Members declared under the private and ...................................... sections of a class cannot be 

accessed by non-member functions.
 5. Virtual functions enable ...................................... polymorphism.
 6. A virtual function can be speci  ed as a pure virtual function by suf  xing its declaration with ......

................................ .
 7. Conversion of basic type to class type can be achieved by using ...................................... .
 8. The ......................................  ag should be passed to the open() function to ensure that a  le does 

not get created if it does not exist.
 9. The three keywords provided by C++ for implementing exception handling are try, catch, and 

...................................... .
 10. The syntax for catch all block is ...................................... .
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Multiple Choice Questions

(more than one choice can be correct)
[2 × 5 = 10]

 1. Which of the following are features of the Object-Oriented Programming System?
 (a) Inheritance
 (b) Data persistence
 (c) Polymorphism
 (d) Data abstraction
 2. Which of the following is a correct function prototype?
 (a) int abc(int, int);
 (b) int abc(int a, int b);
 (c) int abc(int a, int b) {}
 (d) int abc(int a, b);
 3. The bene  ts of inheritance is/are
 (a) code reusability
 (b) faster executables
 (c) data hiding
 (d) smaller executables
 4. A copy constructor is called when
 (a) an object is created and simultaneously equated to another existing object.
 (b) a reference is created to an existing object.
 (c) an object is passed to a function whose formal argument is an object.
 (d) an object is passed to a function whose formal argument is a reference.
 5. Which of the following is/are used for outputting in text mode?
 (a) write() function
 (b) insertion operator
 (c) put() function
 (d) extraction operator

Short Answer Questions

[4 × 5 = 20]
 1. Write an inline function and a macro to return the larger of two numbers. Which is better and 

why?
 2. Explain the need for user-de  ned destructors with the help of examples.
 3. What are the ambiguities that arise in multiple and diamond-shaped inheritance. How can they be 

removed?
 4. Explain why read operation on a  le should take place in the same mode in which the write operation 

has occurred?
 5. Explain the function that deletes nodes from the beginning of single linked lists.
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Test 2

Time: 1 hour
Max Marks: 50

True/False

[1 × 10 = 10]
 1. Two functions with same names and signatures can exist together if their return types are 

different.
 2. A function that returns a non-reference value can be placed on the left of the assignment 

operator.
 3. Only one copy of the static data member exists for a class.
 4. Class members are private by default.
 5. A class can have more than one destructor.
 6. A base class pointer can point at an object of the derived class.
 7. All functions of a class must be declared as pure virtual functions in order to make it an abstract 

base class.
 8. The const_cast operator is used to convert a pointer of base class type to a pointer of derived 

class type.
 9. Only one function de  nition is generated from a single function template.
 10. An unhandled exception will cause the program to terminate.

Fill in the Blanks

[1 × 10 = 10]
 1. ...................................... is a feature of the Object-Oriented Programming System that allows one 

function to have more than one de  nition.
 2. The ...................................... operator is used to de  ne a member function outside its class.
 3. The non-member function that has special rights to access private members of objects of a class is 

known as a ...................................... function.
 4. The formal argument of the ...................................... constructor must always be a reference 

object.
 5. Inheritance implements a/an ...................................... relationship.
 6. If a derived class is derived from a base class by using the protected keyword, the public members 

of the base class become ...................................... with respect to member functions of the derived 
class.

 7. Apart from the non-static data member, objects of a class that has at least one virtual function 
contain ....................................... .

 8. Input pointer can be manipulated by using the ...................................... function.
 9. ...................................... is the base class of all classes in the stream handling library of C++.
 10. Adding a node to a stack or a queue is known as  ...................................... .

Multiple Choice Questions

(more than one choice can be correct)
[2 × 5 = 10]

 1. Consider the following function

int abc(int, int) {}
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  Which of the following overload the function?
 (a) int abc(int, int, int) {}
 (b) float abc(int, int) {}
 (c) int abc(float, int) {}
 (d) int abc(int, int=0) {}
 2. Which of the following is/are true about constructors?
 (a) Its name is pre  xed with the tilde sign.
 (b) It can be overloaded.
 (c) It can access static data members of a class.
 (d) It can be virtual.
 3. Which of the following kinds of functions can access the protected members of a class?
 (a) A global non-member friend function.
 (b) A member function of a friend class.
 (c) A global non-member function.
 (d)  A member function of a friend class that has been derived by public or protected 

keywords.
 4. Which of the following are classes in the standard C++ stream handling library?
 (a) iostream
 (b) stream
 (c) ostream
 (d) fstream
 5. Which of the following enable code reusability?
 (a) Function overloading
 (b) Inheritance
 (c) Exception handling
 (d) Templates

Short Answer Questions

[4 × 5 = 20]
 1. Explain the need for user-de  ned copy constructors with the help of examples.
 2. In which order are the constructors and destructors called when an object of the derived class is 

created?
 3. What is the difference between static_cast and dynamic_cast operators?
 4. Why are operators overloaded?
 5. When and how does the C++ compiler generate an actual class de  nition from its template?
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Test 3

Time: 1 hour
Max Marks: 50

True/False

[1 × 10 = 10]
 1. The value of a mutable data member can be modi  ed by a constant function.
 2. Default value cannot be given to more than one formal argument of a function.
 3. A static data member of a class can be of the same type as the class.
 4. A class can have more than one constructor.
 5. A base class and a derived class cannot have functions with the same name and same signature.
 6. Presence of virtual functions in a class does not increase the size of its objects.
 7. We can overload the increment operator to decrement the value of the objects.
 8. The name of the class of the object at which a pointer points can be found out by using the typeid 

operator.
 9. A template class can have only one template type object.
 10. A single catch block can be used to catch more than one type of exception.

Fill in the Blanks

[1 × 10 = 10]
 1. A class that contains another class is knows as ...................................... class.
 2. The ...................................... pointer points at the invoking object.
 3. The ...................................... operator is used to capture memory dynamically in C++.
 4. The name of the destructor is pre  xed with the ...................................... sign.
 5. Deriving from more than one base class is known as ...................................... inheritance.
 6. The ...................................... keyword is used to overload operators.
 7. The two modes of input/output are ...................................... mode and binary mode.
 8. The read() and write() functions operate in ...................................... mode.
 9. The ...................................... operator is used to cast away the constness of the operand.
 10. The ...................................... keyword is used to label the block of code from which an exception 

is likely to be thrown.

Multiple Choice Questions

(more than one choice can be correct)
[2 × 5 = 10]

 1. Which of the following keywords is used to create a new data type?
 (a) class
 (b) inline
 (c) throw
 (d) struct
 2. Which of the following occur when a class is derived from another class by using the private 

keyword?
 (a) Public members of the base class reappear as private members of the derived class.
 (b) Public members of the base class reappear as protected members of the derived class.
 (c) Protected members of the base class reappear as protected members of the derived class.
 (d) Protected members of the base class reappear as private members of the derived class.
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 3. Which of the following are not keywords in C++?
 (a) struct
 (b) abstract
 (c) constant
 (d) cast
 4. Which of the following functions returns the number of elements in a list?
 (a) size()
 (b) length()
 (c) width()
 (d) index()
 5. Flags that indicate state of the next byte in the associated  le are
 (a) eofbit
 (b) no  lebit
 (c) failbit
 (d) badbit

Short Answer Questions
[4 × 5 = 20]

 1. Explain why static data members should be explicitly declared outside the class. Why should static 
data members be de  ned in the implementation  les only?

 2. Why is it necessary for the derived class constructor to pass values explicitly to the base class 
constructor for initializing base class members?

 3. What is the virtual table? How is it created? What is the virtual pointer?
 4. Why does the function to overload the assignment operator receive and return by reference?
 5. Explain why the stack and queue classes do private inheritance from the single linked list class.
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