
www.allitebooks.com

http://www.allitebooks.org

Learning Boost C++ Libraries

Solve practical programming problems using powerful,
portable, and expressive libraries from Boost

Arindam Mukherjee

BIRMINGHAM - MUMBAI

www.allitebooks.com

http://www.allitebooks.org

Learning Boost C++ Libraries

Copyright © 2015 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval
system, or transmitted in any form or by any means, without the prior written
permission of the publisher, except in the case of brief quotations embedded in
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy
of the information presented. However, the information contained in this book is
sold without warranty, either express or implied. Neither the author, nor Packt
Publishing, and its dealers and distributors will be held liable for any damages
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the
companies and products mentioned in this book by the appropriate use of capitals.
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: July 2015

Production reference: 1280715

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-78355-121-7

www.packtpub.com

www.allitebooks.com

www.packtpub.com
http://www.allitebooks.org

Credits

Author
Arindam Mukherjee

Reviewers
Michael Medin

Anthony Shoumikhin

Drew Tennenbaum

Sergey Zubkov

Commissioning Editor
Usha Iyer

Acquisition Editor
Nikhil Karkal

Content Development Editors
Natasha DSouza

Sweny Sukumaran

Technical Editors
Pramod Kumavat

Saurabh Malhotra

Mitali Somaiya

Copy Editor
Rashmi Sawant

Project Coordinator
Vijay Kushlani

Proofreaders
Stephen Copestake

Safis Editing

Indexer
Hemangini Bari

Graphics
Sheetal Aute

Production Coordinator
Komal Ramchandani

Cover Work
Komal Ramchandani

www.allitebooks.com

http://www.allitebooks.org

About the Author

Arindam Mukherjee is a senior principal software engineer at Symantec,
Pune, India, where he is involved in the research and development of business
continuity solutions for enterprises. He has used C++ extensively for developing
large-scale distributed systems. He was a speaker at Dr. Dobb's Journal India
Conference 2014 and is the organizer of regular meets for the Pune C++ and Boost
Meetup. He believes that writing books and articles, speaking for interest groups,
and engaging with the programming community are the best ways to develop a
critical understanding of technology. He is also an amateur musician, dabbles in
food photography, and loves profound discussions with his 4-year-old daughter,
especially about dinosaurs and their diets.

I would like to express my sincerest gratitude to Sergey Zubkov
for helping me refine the content of this book with his critical
reviews and observations. Special thanks to Anthony Shoumikhin,
Drew Tennenbaum, and Michael Medin for their thoughtful
reviews and feedback. A special word of thanks to Nikhil Karkal,
Natasha DSouza, Pramod Kumavat, and Sweny Sukumaran at
Packt Publishing for their tremendous support and helping me
manage all the missed deadlines. Last but not least, I thank my
father for making me believe as a child that writing books could
be fun, my mother for far more than words can ever express, my
wife for believing in my dream, and my daughter for making it all
worthwhile.

www.allitebooks.com

http://www.allitebooks.org

About the Reviewers

Michael Medin is a senior developer and lead architect of the NSClient++ project.
He is an avid C++ developer and has been developing open source software using
C++ and the Boost library for longer than he cares to remember.

As always, I would like to thank my beloved, Xiqun, for putting up
with me when I spend countless hours working on NSClient++ and
my two daughters for always bringing a smile to my face.

Anthony Shoumikhin is yet another geek who loves hacking, cycling,
swimming, and occasional work at Microsoft.

He grew up in Ukraine and spent his early years in a city of rocket science and
secret technologies—Dnipropetrovsk. These days, he works in Redmond, WA,
on an upcoming release of Microsoft Office for Mac and iOS.

In his spare time, he creates full-stack mobile apps and funny low-level system
hacks on Mac OS X and Linux (mostly in his beloved C++ empowered with Boost).

Drew Tennenbaum was introduced to programming at the age of 12. As a present,
his parents gave him his first computer, a Commodore 64. A family friend purchased
a book titled, Assembly Language for Kids: Commodore 64. Bored one night, he began
reading the book and instantly found attraction in learning how to make a machine
perform specific tasks. He quickly took to assembly language, which is now the
foundation for much of what he works on today.

www.allitebooks.com

http://www.allitebooks.org

He attended the University of Arizona, where he received a BS degree in Computer
Science and Math.

Since graduating from university in 1997, he has worked on a vast array of
technologies, ranging from video games to embedded devices. He spent many years
working on massively multiplayer online video games. In 2011, he was a Technical
Director at BioWare, helping launch Star Wars: The Old Republic. More recently, he
managed the development of the Appstore for Amazon's line of hardware devices,
including the Kindle and Fire TV. In early 2015, he founded Titan Labs. Titan Labs is
a small boutique consulting firm based in sunny Southern California.

In his spare time, he enjoys riding one of his many motorcycles and also holds
an amateur motorcycle racing license.

I want to thank my parents for giving me the room to explore my
passions in life. Without their patience, I would not have been where
I am today, and more importantly, I would not have been the person
I've become. I would also like to thank Dawn, my partner in life
who supports me in anything I do and puts up with those late night
programming sessions. Finally, I would like to thank all of my family
members, including my grandmother, brother, and sister.

Sergey Zubkov is a former biochemistry researcher who became a C++
programmer. He is currently working at Morgan Stanley and spends his free
time updating http://cppreference.com.

www.allitebooks.com

http://cppreference.com
http://www.allitebooks.org

www.PacktPub.com

Support files, eBooks, discount offers, and more
For support files and downloads related to your book, please visit www.PacktPub.com.

Did you know that Packt offers eBook versions of every book published, with PDF
and ePub files available? You can upgrade to the eBook version at www.PacktPub.
com and as a print book customer, you are entitled to a discount on the eBook copy.
Get in touch with us at service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign
up for a range of free newsletters and receive exclusive discounts and offers on
Packt books and eBooks.

TM

https://www2.packtpub.com/books/subscription/packtlib

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital
book library. Here, you can search, access, and read Packt's entire library of books.

Why subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print, and bookmark content
• On demand and accessible via a web browser

Free access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view 9 entirely free books. Simply use your login credentials for
immediate access.

www.allitebooks.com

www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
www.PacktPub.com
https://www2.packtpub.com/books/subscription/packtlib
www.PacktPub.com
http://www.allitebooks.org

www.allitebooks.com

http://www.allitebooks.org

[i]

Table of Contents
Preface ix
Chapter 1: Introducing Boost 1

How it all started 1
What is Boost? 2
Getting started with Boost libraries 3

Necessary software 3
Linux toolchain 4
Windows toolchain 4

Obtaining and building Boost libraries 5
Planning your Boost sandbox 5
Library naming conventions 5
Library name components 5
Library name layouts 6
Installing a Boost binary distribution 8
Building and installing the Boost libraries from source 10

Using Boost libraries in your projects 15
Linking against Boost libraries on Linux 16
Linking against Boost libraries on Windows 17

Building the code listings in this book 20
CMake 20
Code examples 20

Self-test questions 23
Summary 23

Chapter 2: The First Brush with Boost's Utilities 25
Simple data structures 25

Boost.Optional 26
Accessing values stored in boost::optional 28
get_value_or 29
Boost.Optional versus pointers 30

www.allitebooks.com

http://www.allitebooks.org

Table of Contents

[ii]

Boost.Tuple 30
Creating tuples 31
Accessing tuple elements 32
Comparing tuples 33
Writing generic code using tuples 34

Working with heterogeneous values 34
Boost.Variant 35

Accessing values in a variant 37
Defining recursive variants 41

Boost.Any 47
Boost.Conversion 50

lexical_cast 51
Handling command-line arguments 52

Designing command-line options 52
The diff command – a case study 53

Using Boost.Program_Options 55
Parsing positional parameters 58
Multiple option values 59

Other utilities and compile-time checks 60
BOOST_CURRENT_FUNCTION 61
Boost.Swap 63
Compile-time asserts 65
Diagnostics using preprocessor macros 69

Self-test questions 73
Summary 74
References 74

Chapter 3: Memory Management and Exception Safety 75
Dynamic memory allocation and exception safety 76

Exception safety and RAII 78
Smart pointers 80

Unique ownership semantics 81
boost::scoped_ptr 81
boost::scoped_array 90
std::unique_ptr 92

Shared ownership semantics 96
boost::shared_ptr and std::shared_ptr 96
Intrusive smart pointers – boost::intrusive_ptr 109
shared_array 113

Managing non-memory resources using smart pointers 114
Self-test questions 115
Summary 117
References 117

Table of Contents

[iii]

Chapter 4: Working with Strings 119
Text processing with Boost String Algorithms library 120

Using Boost String Algorithms 124
Find algorithms 126
Case-conversion and trimming algorithms 133
The replace and erase algorithms 136
The split and join algorithms 137

Splitting text using the Boost Tokenizer library 139
Tokenizing based on separators 140
Tokenizing records with fields containing metacharacters 142
Tokenizing records with fixed-length fields 144
Writing your own tokenizer functions 146

Regular expressions using Boost.Regex 152
Regular expression syntax 152

Atoms 152
Quantifiers 153
Character classes 154
Anchors 154
Sub-expressions 154
Disjunctions 155

Using Boost.Regex to parse regular expressions 155
Matching text 156
Searching text 157
Tokenizing text using regex 160
Replacing text 163

Self-test questions 164
Summary 165

Chapter 5: Effective Data Structures beyond STL 167
Boost Container library 168

Move-awareness and in-place construction 169
Nonstandard containers 172

Flat associative containers 172
slist 175
stable_vector 181
static_vector 184

Fast lookups using Boost Unordered containers 186
Containers for dynamically-allocated objects 190

Ownership semantics of pointer containers 197
Null pointers in pointer containers 202

Expressive initialization and assignment using Boost.Assign 203
Assigning lists of values to containers 203
Initializing containers with lists of values 206
Initializing pointer containers and assigning values 209

Table of Contents

[iv]

Iteration patterns using Boost.Iterator 212
Smart iteration using Boost.Iterator 212

Filter Iterator 213
Transform Iterator 215
Function Output Iterator 216

Creating conforming iterators for custom classes 218
Self-test questions 224
Summary 225
References 225

Chapter 6: Bimap and Multi-index Containers 227
Containers for multi-criteria lookups 228
Boost Multi-index containers 230

Index types 233
Range lookups using lambda 235
Insertions and updates 236

Boost Bimap 239
Collection types 242
More ways to use bimaps 245

Tagged access 245
Projections 246

Self-test questions 247
Summary 248
References 248

Chapter 7: Higher Order and Compile-time Programming 249
Higher order programming with Boost 250

Function objects 251
Lambdas – unnamed function literals 255
Delegates and closures 259
Partial function application 262

Compile-time programming with Boost 267
Basic compile-time control flow using templates 267

Branching 267
Recursion 269

Boost Type Traits 270
SFINAE and enable_if / disable_if 275

The Boost Metaprogramming Library (MPL) 278
Metafunctions 278
Using MPL metafunctions 278

Domain Specific Embedded Languages 284
Lazy evaluation 284
Expression templates 285

Table of Contents

[v]

Boost Phoenix 290
Boost Spirit Parser Framework 296

Using Spirit Qi 297
Self-test questions 308
Summary 309
References 309

Chapter 8: Date and Time Libraries 311
Date and time calculations with Boost Date Time 311

Dates from the Gregorian calendar 312
Creating date objects 312
Handling date durations 314
Date periods 314

Posix time 316
Constructing time points and durations 316
Resolution 318
Time periods 320
Time iterator 321

Using Chrono to measure time 322
Durations 322

Duration arithmetic 324
Clocks and time points 326

Measuring program performance using Boost Timer 329
cpu_timer 329
auto_cpu_timer 332

Self-test questions 333
Summary 334
References 334

Chapter 9: Files, Directories, and IOStreams 335
Managing files and directories with Boost Filesystem 336

Manipulating paths 336
Printing paths 336
Constructing paths 340
Breaking paths into components 342

Traversing directories 347
Querying filesystem entries 350
Performing operations on files 354

Creating directories 354
Creating symbolic links 355
Copying files 356
Moving and deleting files 358
Path-aware fstreams 358

Table of Contents

[vi]

Extensible I/O with Boost IOStreams 359
Architecture of Boost IOStreams 359
Using devices 361

Devices for file I/O 361
Devices for reading and writing to memory 363

Using filters 365
Basic filters 366
Filters for compression and decompression 368
Composing filters 370

Self-test questions 374
Summary 375

Chapter 10: Concurrency with Boost 377
Creating concurrent tasks with Boost Thread 378

Using Boost Threads 379
Moving threads and waiting on threads 382
Thread IDs 384
Cores and threads 386

Managing shared data 386
Creating and coordinating concurrent tasks 386

boost::future and boost::promise 388
Waiting for future 390
Throwing exceptions across threads 391
shared_future 393
std::future and std::promise 395
std::packaged_task and std::async 396

Lock-based thread synchronization methods 400
Data races and atomic operations 401
Mutual exclusion and critical sections 403
Synchronizing on conditions 412
The Readers-Writers problem 417
Standard Library primitives 423

Boost Coroutine 423
Asymmetric coroutines 424

Self-test questions 426
Summary 427
References 428

Chapter 11: Network Programming Using Boost Asio 429
Task execution with Asio 430

IO Service, queues, and handlers 430
Handler states – run_one, poll, and poll_one 432
post versus dispatch 432

Table of Contents

[vii]

Concurrent execution via thread pools 434
io_service::work 436

Serialized and ordered execution via strands 437
Network I/O using Asio 441

UDP and TCP 441
IP addresses 442

IPv4 addresses 442
IPv6 addresses 445

Endpoints, sockets, and name resolution 448
Ports 448
Sockets 448
Hostnames and domain names 449

Buffers 452
Buffer sequences for vectored I/O 453

Synchronous and asynchronous communications 455
Asio deadline timer 455
Asynchronous logic using Asio coroutines 458
UDP 461

Synchronous UDP client and server 461
Asynchronous UDP server 464
Performance and concurrency 470

TCP 474
Establishing a TCP connection 474
Synchronous TCP client and server 475
Asynchronous TCP server 480

Self-test questions 489
Summary 491
References 491

Appendix: C++11 Language Features Emulation 493
RAII 493
Copy semantics 495

The nothrow swap 498
Move semantics and rvalue references 499

rvalue references 501
rvalue-reference overloads 503
Move assignment 504
xvalues 505

Move emulation using Boost.Move 507
C++11 auto and Boost.Auto 511

Type deduction rules 512
Common uses 512
Boost.Auto 513

Table of Contents

[viii]

Range-based for-loops 513
Boost.Foreach 514

C++11 exception-handling improvements 515
Storing and rethrowing exceptions 515
Storing and rethrowing exception using Boost 517

Self-test questions 518
References 519

Index 521

[ix]

Preface
Boost is not just a collection of useful, portable, generic C++ libraries. It is an
important incubator for ideas and concepts that make their way to the ISO C++
Standard itself. If you are involved in the development of software written in C++,
then learning to use the Boost libraries would save you from reinventing the wheel,
improve the quality of your software, and very likely push up your productivity.

I first came across the Boost libraries a decade ago, while looking for a portable
C++ regular expressions library. Over the next couple of days, porting Perl and Korn
Shell text-processing code to C++ became a breeze, and I took an instant liking to
Boost. In using many more Boost libraries to write software since then, I often found
myself digging deep into the documentation, or asking questions on the mailing list
and online forums to understand library semantics and nuances. As effective as that
was, I always sorely missed a book that would get me started on the most useful
Boost libraries and help me become productive faster. This is that book.

Boost has a wide array of libraries for solving various kinds of programming tasks.
This book is a tutorial introduction to a selection of over of the most useful libraries
from Boost to solve programming problems effectively. The chosen libraries represent
the breadth of cross-cutting concerns from software development, including data
structures and algorithms, text processing, memory management, exception safety,
date and time calculations, file and directory management, concurrency, and file and
network I/O, among others. You will learn about each library by understanding the
kind of problems it helps solve, learning the fundamental concepts associated with
it, and looking at a series of code examples to understand how the library is used.
Libraries introduced earlier in this book are freely used in later examples, exposing
you to the frequent synergies that occur in practice between the Boost libraries.

Preface

[x]

As a collection of peer-reviewed, open source libraries, Boost draws heavily from
community expertise. I firmly believe that this book will give you a strong practical
foundation in using the Boost libraries. This foundation will reflect in the quality
of the software you write, and also give you the leverage to engage with the Boost
community and make valuable contributions to it.

What this book covers
Chapter 1, Introducing Boost, discusses how to set up a development environment to
use the Boost libraries. We cover different ways of obtaining Boost library binary
packages, building them from source for different configurations, and using them
in a development environment.

Chapter 2, The First Brush with Boost's Utilities, explores a handful of Boost libraries
for common programming tasks that include dealing with variant data types,
handling command-line arguments, and detecting the configuration parameters
of the development environment.

Chapter 3, Memory Management and Exception Safety, explains what is meant by
exception safety, and shows how to write exception-safe code using the different
smart pointer types provided by Boost and C++11.

Chapter 4, Working with Strings, explores the Boost String Algorithms library for
performing various computations with character strings, the Boost Range library
for elegantly defining subsequences, the Boost Tokenizer library to split strings into
tokens using different strategies, and the Boost Regex library to search for complex
patterns in text.

Chapter 5, Effective Data Structures beyond STL, deals with the Boost Container library
focusing on containers not available in the C++ Standard Library. We see the
Pointer Container library for storing dynamically-allocated objects in action,
and use the Boost Iterator library to generate various value sequences from
underlying containers.

Chapter 6, Bimap and Multi-index Containers, looks at bidirectional maps and
multi-index containers—two nifty container templates from Boost.

Chapter 7, Higher Order and Compile-time Programming, delves into compile-time
programming using Boost Type Traits and Template Metaprogramming libraries.
We take a first look at Domain Specific Embedded Languages and use Boost Phoenix
to build basic expression templates. We use Boost Spirit to build simple parsers
using the Spirit Qi DSEL.

Preface

[xi]

Chapter 8, Date and Time Libraries, introduces the Boost Date Time and Boost Chrono
libraries to represent dates, time points, intervals, and periods.

Chapter 9, Files, Directories, and IOStreams, features the Boost Filesystem library
for manipulating filesystem entries, and the Boost IOStreams library for performing
type-safe I/O with rich semantics.

Chapter 10, Concurrency with Boost, uses the Boost Thread library and Boost
Coroutine library to write concurrent logic, and shows various synchronization
techniques in action.

Chapter 11, Network Programming Using Boost Asio, shows techniques for writing
scalable TCP and UDP servers and clients using the Asio library.

Appendix, C++11 Language Features Emulation, summarizes C++11 move semantics
and Boost's emulation of several C++11 features in C++03.

What you need for this book
You will need a computer capable of running an operating system that supports a C++
compiler toolchain supported by Boost. You can find more details at http://www.
boost.org/doc/libs/release/libs/log/doc/html/log/installation.html.

To compile and run the code from this book, you will need to install the Boost
libraries version 1.56 or later. See Chapter 1, Introducing Boost, for more details.

Many code examples in this book require C++11 support, and thus, you should
choose versions of your compiler that have good support for C++11. You can find
more details at http://en.cppreference.com/w/cpp/compiler_support.

A CMake project is provided with the downloadable source code to help you quickly
build all the examples using your preferred build system (gmake or Microsoft
Visual Studio). In order to use this, you need to install CMake version 2.8 or later.
See Chapter 1, Introducing Boost, for more details.

This book tries not to repeat content from the online reference manual. You should
use the Boost library's online reference manuals liberally in conjunction with this
book to discover additional properties, functions, and techniques. You can find
the documentation at http://www.boost.org/doc/libs/.

Finally, the code listings in this book are sometimes abridged for brevity and focus.
The code examples accompanying this book are complete versions of these listings,
and you should use them when trying to build the examples.

www.allitebooks.com

http://www.boost.org/doc/libs/release/libs/log/doc/html/log/installation.html
http://www.boost.org/doc/libs/release/libs/log/doc/html/log/installation.html
http://en.cppreference.com/w/cpp/compiler_support
http://www.boost.org/doc/libs/
http://www.allitebooks.org

Preface

[xii]

Who this book is for
This book is for every C++ programmer who is interested in learning about Boost.
In particular, if you have never used the Boost libraries before, Learning Boost
C++Libraries will get you up to speed with understanding, building, deploying,
and using the Boost libraries. If you are familiar with the Boost libraries, but were
looking for a springboard to dive deeper and take your expertise to the next level,
this book will give you a comprehensive round-up of the most useful Boost
libraries and the ways to use them in practical code.

Boost is a collection of C++ libraries, and naturally, C++ is the sole language used
in this book. You need to have a good working knowledge of C++. In particular,
you should be able to read code that uses C++ templates, understand the C++
compilation model, and be able to use a C++ development environment on Linux,
Windows, or Mac OS.

This book does not cover general C++ concepts as a rule, but some useful C++ books
and articles, listed at the end of some chapters, should serve as excellent references.

Conventions
In this book, you will find a number of text styles that distinguish between different
kinds of information. Here are some examples of these styles and an explanation of
their meaning.

Code words and C++ language keywords in text are shown as follows: "We pass
the number of bytes returned by async_receive to the handler."

Folder names, filenames, file extensions, pathnames, include file names in text are
shown as follows: "The header file boost/asio.hpp includes most of the types and
functions required for using the Asio library".

A block of code is set as follows:

46 int main() {
47 asio::io_service service;
48 UDPAsyncServer server(service, 55000);
49
50 boost::thread_group pool;
51 pool.create_thread([&service] { service.run(); });
52 pool.create_thread([&service] { service.run(); });
53 pool.join_all();
54 }

Preface

[xiii]

Except in smaller code snippets, each line of code is numbered for ease of reference
from within the text. Important lines of code in a block are highlighted as shown
above, and referred to from text using line numbers in parentheses (lines 51-52).

Any command-line input is written as follows:

$ g++ -g listing1.cpp -o listing1 -lboost_system -lboost_coroutine
-lboost_date_time -std=c++11

Important new programming terms are shown in bold. Conceptual terms are shown
in italics.

Important additional details about a topic appear like this,
as in a sidebar.

Important notes, tips, and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or disliked. Reader feedback is important for us as it
helps us develop titles that you will really get the most out of.

To send us general feedback, simply e-mail feedback@packtpub.com, and mention
the book's title in the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing
or contributing to a book, see our author guide at www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to
help you to get the most from your purchase.

Downloading the example code
You can download the example code files from your account at http://www.
packtpub.com for all the Packt Publishing books you have purchased. If you
purchased this book elsewhere, you can visit http://www.packtpub.com/support
and register to have the files e-mailed directly to you.

www.packtpub.com/authors
http://www.packtpub.com
http://www.packtpub.com
http://www.packtpub.com/support

Preface

[xiv]

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you could report this to us. By doing so, you can
save other readers from frustration and help us improve subsequent versions of this
book. If you find any errata, please report them by visiting http://www.packtpub.
com/submit-errata, selecting your book, clicking on the Errata Submission Form
link, and entering the details of your errata. Once your errata are verified, your
submission will be accepted and the errata will be uploaded to our website or
added to any list of existing errata under the Errata section of that title.

To view the previously submitted errata, go to https://www.packtpub.com/books/
content/support and enter the name of the book in the search field. The required
information will appear under the Errata section.

Piracy
Piracy of copyrighted material on the Internet is an ongoing problem across
all media. At Packt, we take the protection of our copyright and licenses very
seriously. If you come across any illegal copies of our works in any form on
the Internet, please provide us with the location address or website name
immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected
pirated material.

We appreciate your help in protecting our authors and our ability to bring you
valuable content.

Questions
If you have a problem with any aspect of this book, you can contact us at
questions@packtpub.com, and we will do our best to address the problem.

http://www.packtpub.com/submit-errata
http://www.packtpub.com/submit-errata
https://www.packtpub.com/books/content/support
https://www.packtpub.com/books/content/support

[1]

Introducing Boost
Welcome to learning about the richest collection of C++ libraries around, that is,
Boost. In this introductory chapter, we will take a look at:

• The history and evolution of Boost
• What is Boost?
• Getting started with Boost libraries

Like all the chapters in the book, this is a hands-on chapter that will require you
to type in commands, write and test your code. Therefore, you should have access
to a computer with a reasonably modern C++ compiler and an internet connection
to download free software, including Boost libraries.

How it all started
Sometime around 1997-98, when the draft of the first C++ Standard was
being finalized for publication as an ISO/IEC Standard, Robert Klarer from the
IBM Labs conceived the idea of a programming language that would be called
BOOSE (pronounced "booz"), and which would compete with Java in the area
of high-performance embedded software development, which the latter had been
aimed at. In a 1998 article for the now defunct C++ Report magazine, C++ guru
Herb Sutter wrote a tongue-in-cheek spoof on this new language, whose name
ostensibly expanded to Bjarne's Object Oriented Software Environment. In this
article, he claimed that portability and potability were, among other things, key
advantages of this language, which also supposedly promoted extraordinary
camaraderie in team environments and made developers excessively happy,
communicative, and passionate.

Introducing Boost

[2]

While this was an April Fools' Day article in 1998, the fact remained that the first
C++ Standard was going to have a fairly basic standard library consisting of a memory
allocation subsystem, type-generic containers and algorithms, a string class, basic
abstractions for input and output devices, and sundry utilities. Now around the same
time, a few folks from the C++ Standards Committee formed a group that worked on
producing a collection of high-quality, peer-reviewed, free, and open source libraries in
C++ that would have wide applicability and complement the features in standard C++.
Inspired by BOOSE, perhaps for its stated competition with Java, which was a newer
language but with a much richer library, they named this initiative Boost, a working
title that stuck (source: FAQ on the Boost website, http://www.boost.org).

What is Boost?
Boost is a collection of free, peer-reviewed, portable, open source libraries in C++.
Over the last decade and a half, there have been, as of this writing, 57 releases of the
Boost libraries. In this span, Boost has released libraries of compelling usefulness that
promote correct, portable, efficient, and readable C++ code. A number of prominent
Standards Committee members are also the most active participants in Boost and
subsequent directions of C++ standardization have been heavily influenced by
the work done at Boost. Boost has provided the Standards Committee with the
laboratory they need to perfect their ideas for the best new features that C++ should
have. Several Boost libraries were included in the Technical Report 1 of the C++
Standards Committee, which considerably enhanced the functionality defined in the
C++ 2003 revised standard; these included both language and library features. Most
of these libraries made it to the C++11 Standard published in 2011. A couple more
library features that originated in Boost have been added to the latest revision of the
C++ Standard known as C++14 (published in 2014).

Over the years, Boost has added libraries for string and text processing, including
regular expression handling, generic containers compatible with the Standard
Library, smart pointers for efficient exception-safe memory management, concurrent
programming, network programming, interprocess communication, filesystem
handling, template metaprogramming, and many others. The following table lists
some of the prominent Boost libraries grouped by category. This is by no means
exhaustive:

Category Libraries
Memory
management

Smart Ptr, Align, Pool

Data structures Container, Array, Multi-Index, Bimap, Pointer Container, Optional,
Variant, Any, Tuple, Assign

Algorithms Algorithm, Range

http://www.boost.org

Chapter 1

[3]

Category Libraries
String and text Conversion, String Algo, Regex, Tokenizer, Spirit, Xpressive
Systems
programming

System, Filesystem, Chrono, Date Time, Thread, Asio, Interprocess

I/O IOStreams, Locale, Serialization, Format
Higher-order
programming

Function, Bind, Phoenix, Signals2

Generic
programming

Enable If, Type Traits, MPL, Fusion, Proto

Language
features
emulation

Foreach, Move, Exception, Parameter

Correctness and
testing

Test, Static Assert

Miscellaneous Utility, Log, Uuid, Program Options, CRC

Boost libraries have found varied use in the industry because of some very
high-performance libraries (such as Boost.Asio and Boost.Intrusive), and because of a
very permissive and uncomplicated Boost license, which allows source redistribution,
distribution of derivative work, and distribution in a binary form for noncommercial
as well as commercial purposes with minimal constraints. In the next section, we will
set up a development environment that enables us to use any Boost library in our C++
code using consistent conventions. This should serve us well for the rest of the book.

Getting started with Boost libraries
We shall now set up a development sandbox for you to write code using the Boost
libraries. We can either install a binary distribution of the Boost libraries, or build them
from source. If we build them from source, we have a whole range of concerns to take
care of from choosing a suitable naming convention for the library files and building
the libraries, to making sure that we are linking them to the correct versions of the
library. There are platform-specific differences too that need to be handled; we shall
take a look at both the Linux and Windows environments.

Necessary software
On Linux, we will only consider the C++ compiler (g++) version 4.8.1 or later,
distributed with the GNU Compiler Collection (GCC). On Windows, we will
use Visual Studio 2013. You can get more elaborate software support matrices
for each Boost release on the Boost website.

Introducing Boost

[4]

Linux toolchain
You should be able to build Boost on most major Linux distributions. I use a Lubuntu
14.04 32-bit installation with GCC 4.8.1 and Clang 3.4. You can possibly build
on much older distributions, as the Boost website lists GCC 3.3 as the minimum
supported version. If you also want good C++11 support, use GCC 4.8 or higher.

Required software Minimum
version

Recommended
version

Ubuntu package Fedora/
CentOS
package

GNU C++ compiler 4.8.x 4.8.4 g++ gcc-c++

GNU Standard C++
Library

4.8.x 4.8.4 libstdc++-dev libstdc++-
devel

GNU Standard C++
runtime

4.8.x 4.8.4 libstdc++ libstdc++

If you want to use Clang instead of GCC, the recommended version is 3.4 or higher.
Here are the required packages on Ubuntu:

Required software Minimum
version

Recommended
version

Ubuntu package

LLVM compiler
toolchain

3.2 3.4 llvm

LLVM C, C++, and
Objective-C compiler

3.2 3.4 clang

LLVM C++ Standard
Library

3.2 3.4 libc++-dev

Windows toolchain
You should be able to build Boost on Visual Studio 7.1 upwards. I use Visual Studio
2013 on a Windows 7 64-bit installation:

Required

software

Minimum
version

Recommended version

Visual Studio with Visual C++ 7.1 12 (2013)

I would also recommend installing 7-Zip on Windows to extract Boost sources
from the .7z or .tar.bz2 archives, which offer much better compression than
the .zip archives.

Chapter 1

[5]

Obtaining and building Boost libraries
You can build the Boost libraries from source or install them as an operating system
package on platforms where such as package is available. All examples in this book
use Boost version 1.57. You may choose to download a more recent version of the
sources and most of the discussion here should still hold. However, few details
may change from one release to the next, so you should be prepared to dig into the
online documentation.

Planning your Boost sandbox
As part of our day-to-day development work using Boost, we would need access
to Boost's header files and Boost's libraries. A vast number of Boost libraries are
header-only, which means that you just need to include the appropriate headers and
build your sources. Some others have to be built into binary libraries that can be
linked statically or dynamically to your application.

If we build from source, we will first identify a directory on our development machine,
where we would like to install these files. The choice is arbitrary, but we can follow
conventions if they exist. So on Linux, we can choose to install the library headers and
binaries under /opt/boost. On Windows, this could be f:\code\libraries\Boost.
You are free to choose different paths, just avoid spaces within them for less hassle.

Library naming conventions
Boost library binaries can have names that are difficult to decipher at first.
So, we shall learn about what goes into naming the libraries. Library names have
different layouts. Depending on the layout, different components are added to
the base name in order to identify different facets of the library's binary compatibility
and functionality.

Library name components
Each library, whether static or shared, is named according to a well-defined
scheme. The name of a library can be split into several components, not all of
which are mandatory:

• Prefix: Libraries may have a prefix, typically lib. On Windows, only static
libraries have this prefix while on Unix, all libraries have this prefix.

• Toolset identifier: Library names may be tagged with the string, identifying
the toolset with which it was built. Roughly speaking, a toolset or toolchain
is the set of system utilities, including compiler, linker, archiver, and so on,
that are used to build libraries and programs. For example, vc120 identifies
the Microsoft Visual C++ 12.0 toolchain.

Introducing Boost

[6]

• Threading model: If a library is thread-safe, that is, it can be used in
multithreaded programs without additional synchronization, then its name
may be tagged with mt, which stands for multithreaded.

• ABI: ABI stands for application binary interface. This component captures
details, such as whether the library is a debug library (d) or not, whether it is
linked to a debug version of the runtime (g) or not, and whether the link to
the runtime is static (s) or not. Thus, a debug library that is statically linked
to a release version of the runtime would be marked with only sd, while one
that is dynamically linked to a debug version would be marked with gd. A
release version of the library dynamically linked to a release version of the
runtime will have a blank ABI marker.

• Version: This is the version string of the Boost library. For example, 1_57
would be the version marker for the Boost 1.57 libraries.

• Extension: Library extensions identify the file types. On Windows, dynamic
libraries have the extension .dll, while static libraries and import libraries
have the extension .lib. On Linux and some other Unix systems, dynamic
libraries have the extension .so, while static libraries or archives have the
extension .a. Dynamic library extensions often have a version suffix, for
example, .so.1.57.0.

Library name layouts
How a library name is made up of its components determines its name layout. There
are three kinds of name layouts supported by Boost: versioned, system, and tagged.

Versioned layout
It is the most elaborate layout and is the default layout on Windows. The general
structure of the versioned layout name is libboost_<name>-<toolset>-
<threading>-<ABI>-<version>.<ext>. For example, here is the Boost.Filesystem
library debug DLL for Windows: boost_filesystem-vc100-mt-gd-1_57.dll. The
tokens in the filename tell the complete story. This DLL was built using Visual C++
10.0 compiler (-vc100), is thread-safe (-mt), and is a debug DLL (d) linked dynamically
to the debug version of the runtime (g). The version of Boost is 1.57 (1_57).

Chapter 1

[7]

System layout
The default layout on Unix is the system layout that removes all the name decorations.
The general structure of library names in this layout is libboost_<name>.<ext>. For
example, here is the Boost.System shared library on Linux: libboost_filesystem.
so.1.57.0. Looking at it, there is no way to tell whether it supports multithreading,
whether it is a debug library, or any other detail that you could wean from a filename
in the versioned layout. The 1.57.0 suffix of the extension indicates the version of the
shared library. This is the Unix convention for versioning shared libraries and is not
affected by the Boost name layout.

Tagged layout
There is a third layout called the tagged layout, which is midway between
the versioned and system layouts in terms of detail. It removes all the version
information but retains other information. Its general structure is libboost_<name>-
<threading>-<ABI>.<ext>.

Here is the Boost.Exception static library from Windows built using the non-default
tagged layout: libboost_filesystem-mt.lib. This is a static library as indicated by
its lib- prefix. Also, -mt indicates that this library is thread-safe, and the lack of an
ABI indicator means that this is not a debug library (d), nor does it link to the static
runtime (s). Also, it does not link to the debug version of the runtime (g).

The versioned layout is a bit unwieldy. On systems where you need to manually
specify names of libraries to link against, moving from one version of Boost to the
next would require some effort to fix the build scripts. The system layout is a bit
minimalistic and is great for environments where you need only one variant of a
given library. However, you cannot have both debug and release versions of the
library, or thread-safe and thread-unsafe ones side by side, with system layout. For
this reason, in the rest of this book, we will only use tagged layout for the libraries.
We will also only build thread-safe libraries (-mt) and shared libraries (.dll or
.so). Some libraries can only be built as static libraries and, as such, would be
automatically created by the Boost build system. So now, we finally get to the point
where we have enough information to start creating our Boost sandbox.

www.allitebooks.com

http://www.allitebooks.org

Introducing Boost

[8]

Installing a Boost binary distribution
On Microsoft Windows and several distributions of Linux, you can install a binary
distribution of the Boost libraries. The following table lists the methods of installing
Boost on some of the popular operating systems:

Operating
system

Package name Install method

Microsoft
Windows

boost_1_57_0-
msvc-12.0-64.
exe (64-bit)
boost_1_57_0-
msvc-12.0-32.
exe (32-bit)

Download executable from http://sourceforge.
net/projects/boost/files/boost-
binaries/ and install it by running the executable

Ubuntu libboost-all-
dev

sudo apt-get install libboost-all-dev

Fedora/
CentOS

boost-devel sudo yum install boost-devel

Installing a binary distribution is convenient because it is the fastest way to be up
and running.

Installing on Windows
Starting with Boost 1.54, you can download a binary distribution of the Boost
libraries, built using Microsoft Visual Studio, from SourceForge. The download
is available as a 64-bit or 32-bit installable executable that contains header files,
libraries, sources, documentation, and tools. There are separate distributions for
different versions of Visual Studio, from version 12 (VS 2013) backward through
version 8 (VS 2005). The name of the executable is of the form boost_ver-msvc-
vcver-W.exe, where ver is the Boost version (for example, 1_57_0), vcver is the
version of Visual C++ (for example, 12.0 for Visual Studio 2013), and W is the native
word size of your operating system (for example, 64 or 32).

As part of the installation, you can choose the directory where you want to install
the Boost libraries. Let us consider that you choose to install it under boost-dir.
Then, the following directories contain the necessary headers and libraries:

Directory Files
boost-dir This is the base directory of the Boost installation. All the header files

are present in a hierarchy under the boost subdirectory.

http://sourceforge.net/projects/boost/files/boost-binaries/
http://sourceforge.net/projects/boost/files/boost-binaries/
http://sourceforge.net/projects/boost/files/boost-binaries/

Chapter 1

[9]

Directory Files
boost-dir/
libW-msvc-
vcver

This directory contains all variants of the Boost libraries, static and
shared (DLLs), debug and release. The library filenames follow the
versioned layout.
W: 32 or 64 depending on whether you installed a 32-bit version or
64-bit version.
vcver: Visual Studio version.

boost-dir/
doc

This directory contains the library documentation in the HTML
format and contains scripts to build PDF docs.

Installing on Linux
On Ubuntu, you need to install the libboost-all-dev package. You need to
perform the installation using superuser privileges, so run the following command:

$ sudo apt-get install libboost-all-dev

This installs the necessary headers and libraries in the following directories:

Directory Files
/usr/include This contains all the header files present in a hierarchy under the

boost subdirectory.
/usr/lib/arch-
linux-gnu

This contains all the Boost libraries, static and shared (DSOs). The
library filenames follow the system layout.
Replace arch with x86_64 for 64-bit operating systems and with
i386 for 32-bit operating systems.

On CentOS/Fedora, you need to install the boost-devel package. You need to
perform the installation using superuser privileges, so this is the command to run:

$ sudo yum install boost-devel

This installs the necessary headers and libraries in the following directories:

Directory Files
/usr/include This contains all the header files present in a hierarchy under

the boost directory.
/usr/lib This contains all the Boost libraries, static and shared (DSOs).

The library filenames follow the system layout.

Introducing Boost

[10]

Building and installing the Boost libraries from
source
Building the Boost libraries from source offers more flexibility, as it is easy to
customize the build, use alternative compilers/toolchains, and change the default
name layout like we plan to. We shall build the Boost libraries from a source
archive downloaded from the Boost website http://www.boost.org or http://
sourceforge.net/projects/boost. I prefer the 7-Zip or the bzip2 archives, as they
have the best compression ratios. We will use Boost libraries Version 1.57, and we
will look at building them only on Linux and Windows operating systems.

Optional packages
There are several optional packages that are used to provide additional functionality
by certain Boost libraries when present. These include:

• The zlib and bzip2 development libraries, used by Boost.IOStream
to read and write compressed archives in gzip and bzip2 formats

• The ICU i18n development libraries, which are heavily used by Boost.
Locale and also by Boost.Regex to support Unicode regular expressions

• The expat XML parser library, used by the Boost.Graph library to
support the GraphML XML vocabulary for describing graphs

Some of these libraries may be made available through your native package
management systems, particularly on Linux. When installed from such packages, the
Boost build system may find these libraries automatically and link them by default.
If you chose to build these libraries from source and installed them at non-standard
locations instead, then you should use specific environment variables to point to the
installation directory of these libraries or to the include and library directories. The
following table summarizes these optional libraries, their source websites, Ubuntu
package names, and the environment variables needed by Boost to identify them when
installed from source:

Library Details
Zlib library (http://www.zlib.net) Environment variable: ZLIB_SOURCE

(extracted source directory)
Ubuntu packages: zlib1g, zlib1g-
dev, and zlib1c

Bzip2 library (http://www.bzip.org/
downloads.html)

Environment variable: BZIP2_SOURCE
(extracted source directory)
Ubuntu packages: libbz2 and
libbz2-dev

http://www.boost.org
http://sourceforge.net/projects/boost
http://sourceforge.net/projects/boost
http://www.zlib.net
http://www.bzip.org/downloads.html
http://www.bzip.org/downloads.html

Chapter 1

[11]

Library Details
ICU library (http://www.icu-project.
org/download)

Environment variables:
HAVE_ICU=1

ICU_PATH (installation root)
Ubuntu package: libicu-dev

Expat library (http://sourceforge.net/
projects/expat)

Environment variables: EXPAT_
INCLUDE (expat include dir) and
EXPAT_LIBPATH (expat library dir)
Ubuntu packages: libexpat1 and
libexpat1-dev

We will be using the gzip and bzip2 libraries in Chapter 9, Files, Directories, and
IOStreams, to compress data, while we will not be using the ICU and Expat
libraries for the code examples in this book.

Building the Boost libraries on Linux
If you choose not to install a binary distribution of Boost or if such a distribution is
not available for your platform, then you must build the Boost libraries from source.
Download the source archives for the Boost libraries, zlib and bzip2. Assuming that
you want to install Boost in the/opt/boost directory, perform the following steps
from a shell command prompt to build Boost with the GNU toolchain:

1. Create a directory and extract the Boost source archive in it:
$ mkdir boost-src

$ cd boost-src

$ tar xfj /path/to/archive/boost_1_57_0.tar.bz2

$ cd boost_1_57_0

2. Generate the Boost build system for your toolset. The following should
work if you are building with g++:
$./bootstrap.sh

If you are using Clang instead, run the following:

$./bootstrap.sh toolset=clang cxxflags="-stdlib=libc++
-std=c++11" linkflags="-stdlib=libc++"

3. Extract the bzip2 and zlib source archives and make a note of the
directories they have been extracted to.

http://www.icu-project.org/download
http://www.icu-project.org/download
http://sourceforge.net/projects/expat
http://sourceforge.net/projects/expat

Introducing Boost

[12]

4. Build the libraries and install them. For GCC, run the following command:

$./b2 install --prefix=/opt/boost --build-dir=../boost-build
--layout=tagged variant=debug,release link=shared runtime-
link=shared threading=multi cxxflags="-std=c++11" -sZLIB_
SOURCE=<zlib-source-dir> -sBZIP2_SOURCE=<bzip2-source-dir>

For Clang, run the following command instead:

$./b2 install toolset=clang --prefix=/opt/boost --build-dir=../
boost-build --layout=tagged variant=debug,release link=shared
runtime-link=shared threading=multi cxxflags="-stdlib=libc++
-std=c++11" linkflags="-stdlib=libc++" -sZLIB_SOURCE=<zlib-source-
dir> -sBZIP2_SOURCE=<bzip2-source-dir>

The last step should build all the Boost libraries and install them under the /opt/
boost directory, as identified by the --prefix option. All the libraries will be
installed under /opt/boost/lib and all include files under /opt/boost/include.
In addition to the Boost libraries, you should also see libboost_zlib-mt.so and
libboost_bzip2-mt.so—the dynamic shared objects for zlib and bzip2, which
libboost_iostreams-mt.so depends on.

• The --build-dir option would identify the directory in which the
intermediate products of the build are created.

• The --layout=tagged option chooses the tagged layout for library names.
• We will build only thread-safe (threading=multi) shared libraries

(link=shared) if possible, linked them to the dynamic runtime (runtime-
link=shared). We would need both debug and release versions of the
library (variant=debug,release).

• The -sZLIB_SOURCE=<zlib-source-dir> option is used to point the build
to the directory under which the zlib sources were extracted in step 3;
likewise, for the bzip2 source directory, using -sBZIP2_SOURCE=<bzip2-
source-dir>.

• If you want to build Boost libraries using support for C++11, then you
should use the cxxflags="-std=c++11" option. Throughout the rest of
the book, many of the code examples use features from C++11. Enabling
a C++11 build of Boost at this point might be a good idea. Make sure that
your compiler has good support for C++11. For g++, it would be version
4.8.1 or later. Also, make sure that you compile all your own code using
the Boost libraries with C++11 as well.

Chapter 1

[13]

Most of the examples in this book use C++11 features, and so you
should keep the C++11 option on while compiling Boost. Appendix
provides a short introduction to the important C++11 features used
in this book, and also describes how you can emulate them in C++03
using Boost if you are still using an older compiler.

Building the Boost libraries on Windows
Once you have downloaded the Boost source archive, from a Windows Explorer
session, create a directory called boost-src and extract the source archive inside
this directory. Assuming that you want to install Boost in the boost-dir directory
and boost-build is the directory in which the intermediate products of the build
are kept, perform the following steps from a command prompt:

1. Initialize the 32-bit Visual C++ build environment to build the Boost build
system (even if you want to build 64-bit):
"C:\Program Files\Microsoft Visual Studio 12.0\VC\vcvarsall.bat"
x86

2. On a 64-bit system with a 32-bit Visual Studio installation, Visual Studio
is typically installed under C:\Program Files (x86), so you will have
to run this command instead:
"C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\vcvarsall.
bat" x86

3. Generate the Boost build system for your toolset:
cd /d drive:\path\to\boost-src

bootstrap.bat

4. If you want to build 64-bit Boost libraries, initialize the 64-bit Visual C++
build environment:
"C:\Program Files\Microsoft Visual Studio 12.0\VC\vcvarsall.bat"
x86_amd64

5. On a 64-bit system with 32-bit Visual Studio installation, you will have to
run this command instead:
"C:\Program Files (x86)\Microsoft Visual Studio 12.0\VC\vcvarsall.
bat" x86_amd64

6. Extract the bzip2 and zlib source archives, and make a note of the
directories they have been extracted to.

Introducing Boost

[14]

7. Build the libraries and install them. If you want to build 32-bit libraries,
use the following command line:
b2 install --libdir=boost-dir\libs --includedir= boost-dir\include
--build-dir= boost-build --layout=tagged variant=debug,release
threading=multi link=shared runtime-link=shared -sZLIB_
SOURCE=<zlib-src-dir> -sBZIP2_SOURCE=<bzip2-src-dir>

8. If you want to build 64-bit libraries, use the following command line:

b2 install --libdir=boost-dir\libs64 --includedir= boost-
dir\include --build-dir= boost-build64 --layout=tagged
variant=debug,release threading=multi link=shared runtime-
link=shared address-model=64 –sZLIB_SOURCE=<zlib-src-dir> -sBZIP2_
SOURCE=<bzip2-src-dir>

This last step builds and installs the necessary headers and libraries in the
following directories:

Directory Files
boost-dir/
include

All header files present in a hierarchy under the boost
directory.

boost-dir/libs All 32-bit Boost libraries, static and shared libraries (DLLs),
debug and release.

boost-dir/libs64 All 64-bit Boost libraries, static and shared libraries (DLLs),
debug and release

In addition to the Boost libraries, you should also see boost_zlib-mt.dll and
boost_bzip2-mt.dll—the DLLs for zlib and bzip2, which boost_iostreams-mt.
dll depends on.

Let us take a look at the various options we have used in the preceding commands:

• The --build-dir option will identify the directory in which the
intermediate products of the build are created.

• The --layout=tagged option chooses the tagged layout for the library
names, as explained earlier.

• We will build only the shared libraries (link=shared). If possible,
link them to the dynamic runtime (runtime-link=shared), and
create thread-safe libraries (threading=multi).

Chapter 1

[15]

• We will want both debug and release versions of the library
(variant=debug,release).

• The 32- and 64-bit builds will take place in separate intermediate directories
identified by the --build-dir option and will be copied to separate library
directories identified by the --libdir option.

• The address-model=64 option would trigger the 64-bit build.

Under Visual Studio 2013, C++11 support is automatically enabled, and you
do not need to use any specific switches for the purpose.

Using Boost libraries in your projects
We shall now write our first small C++ program that uses the Boost Filesystem
library to check for the existence of a file whose name is passed to on the command
line and then build on Linux and Windows.

Here is the listing for chkfile.cpp:

 1 #include <iostream>
 2 #include <boost/filesystem.hpp>
 3 // define a short alias for the namespace
 4 namespace boostfs = boost::filesystem;
 5
 6 int main(int argc, char *argv[])
 7 {
 8 if (argc <= 1) {
 9 std::cerr << "Usage: " << argv[0] << " <filename>"
10 << std::endl;
11 return 1;
12 }
13
14 boostfs::path p(argv[1]);
15
16 if (boostfs::exists(p)) {
17 std::cout << "File " << p << " exists." << std::endl;
18 } else {
19 std::cout << "File " << p << " does not exist." << '\n';
20 }
21
22 return 0;
23 }

Introducing Boost

[16]

Linking against Boost libraries on Linux
If you have installed Boost in a nonstandard location (which is typically the case if
you have not installed it from a native package), then you will need to make sure
that your preprocessor can find the Boost header files you have included using the
–I option in the compiler:

$ g++ -c chkfile.cpp -I/opt/boost/include -std=c++11

This step will create an object file called chkfile.o, which we will link to the
binary. You can specify which library to link to using the -l option. In case of a
nonstandard installation, you will need to ensure that the linker can find the
path to the library you want to link against using the -L option:

$ g++ chkfile.o -o chkfile -L/opt/boost/lib -lboost_filesystem-mt
-lboost_system-mt -std=c++11

Use the -std=c++11 option only if you built your Boost
libraries using C++11.

The preceding command line will work for either a static or a shared library.
However, if both types of library are found, it will use the shared version.
You can override this with appropriate linker options:

$ g++ chkfile.o -o chkfile -L/opt/boost/lib -Wl,-Bstatic -lboost_
filesystem-mt -Wl,-Bdynamic -lboost_system-mt -std=c++11

In the preceding case, the filesystem library is linked statically while others
are linked dynamically. The -Wl switch is used to pass its arguments to the linker.
In this case, it passes the -Bstatic and -Bdynamic switches.

If it is a shared library that you link against, then at runtime the dynamic linker
needs to locate the shared library and load it too. The way to ensure this varies
from one version of Unix to the other. One way to ensure this is to embed a
search path in your executable using the rpath linker directive:

$ g++ -o chkfile chkfile.o -L/opt/boost/lib -lboost_filesystem-mt
-lboost_system-mt -Wl,-rpath,/opt/boost/lib:/usr/lib/boost -std=c++11

On the target system, where the binary mytest is run, the dynamic linker would
look for the filesystem and system shared libraries under /opt/boost/lib
and /usr/lib/boost.

Chapter 1

[17]

Other ways besides using the rpath mechanism also exist. Linux uses a utility
called ldconfig to locate shared libraries and update search paths. For more details,
look at the man pages for ldconfig (8). On Solaris, the crle utility performs a
similar action.

Linking against Boost libraries on Windows
Using the Visual Studio IDE, we will have to tweak certain project settings in order
to link against the Boost libraries.

First, ensure that your compiler is able to find the necessary header files:

1. Open your C++ project in Visual Studio. From the menu, select
Project | Project Properties.

2. In the Property Pages dialog that comes up, expand Configuration
Properties and select C/C++.

3. Edit the value of Additional Include Directories by adding the path to
your Boost, include directories. Separate it from other entries in the field
using a semicolon:

www.allitebooks.com

http://www.allitebooks.org

Introducing Boost

[18]

4. Next, ensure that your linker is able to find the shared or static libraries.
In the Project Properties dialog, under Configuration Properties,
choose Linker.

5. Edit the Additional Library Directories field to add the path to the Boost
libraries, separated by a semicolon from any other entries:

6. Now you can leverage Boost's auto-linking feature on Windows to
automatically link to the correct libraries. To enable this, you have to
define the BOOST_ALL_DYN_LINK preprocessor symbol. To do this, in the
Project Properties dialog, navigate to Configuration Properties | C/C++ |
Preprocessor, and add BOOST_ALL_DYN_LINK to the Preprocessor Definitions
field, separating it from other entries with a semicolon.

If you built your Boost libraries on Windows with the default layout (versioned),
this is all you will need to do for linking correctly. If we use the tagged layout, we
must also define a second preprocessor symbol BOOST_AUTO_LINK_TAGGED. If we
use system layout for naming, we will need to define BOOST_AUTO_LINK_NOMANGLE
instead. You will get a linker error without these definitions:

Chapter 1

[19]

You should now be able to build your project from your IDE without any problems.
In order to run your program, the dynamic linker must be able to locate the dynamic
library. To take care of this, on Windows, you can add the path of your Boost
libraries to the PATH environment variable. For running your programs from within
the IDE, you can add the path of your Boost libraries to the PATH variable
by navigating to Debugging | Environment, as shown in the following screenshot:

Introducing Boost

[20]

Building the code listings in this book
Each chapter in this book includes the example source code, which is also available
for download from the Packt website (http://www.packtpub.com). You should
download and build these examples on your development machines.

CMake
In order to build the examples, you need to install CMake, which is one of the most
popular cross-platform build tools for C++ programs. With CMake, you can easily
generate a build system of your choice on an operating system of your choice, using
a single set of CMake specifications.

You can download a binary package for CMake from www.cmake.org, or download
a source archive and build it on a platform of your choice.

Minimum version required: CMake 2.8.
Windows: A 32-bit exe-installer is available for Windows that
works for both 32-bit and 64-bit builds.
Linux: CMake is usually bundled with all major Linux distributions
and is available as an optional package. Consult your distribution's
package repository.

Code examples
Download the source code archive and extract it to a directory on your development
machine. The layout of the extracted directory would look like this:

The source code archive available for download contains separate directories for
each chapter. Within each chapter directory, you will find the complete source code
for each example. The source code files are named based on the listing identifier.

http://www.packtpub.com
www.cmake.org

Chapter 1

[21]

A listing identifier is a unique tag used for examples in this book, as shown in the
following screenshot:

Here, the listing identifier is Listing 11.18 and indicates that this is the eighteenth
example in Chapter 11, Network Programming Using Boost Asio. Therefore, in the ch11
folder, you will find listing11_18.cpp, which contains the asynchronous UDP
server example that appears in Chapter 11, Network Programming Using Boost Asio.
In some cases, a big example is broken down into multiple listings in the text, but
they all form part of the same source file. In such cases the listings are tagged
with letters; for example, listing 7.22a, 7.22b, 7.22c, and so on. You can still expect
a file called listing7_22.cpp, which combines the code from these listings.

In order to build all the examples in this book, you need to follow these steps:

1. Make sure that CMake 2.8 or higher is installed.
2. Extract the source archive for the book to a directory, say srcdir.
3. Change to the cmake_bin directory under the source directory:

$ cd srcdir/lbcpp-src/cmake_bin

4. Export the BOOST_DIR environment variable to point to the Boost
installation directory.
For example, if it is /opt/boost on Linux, you can run the following
command:
$ export BOOST_DIR=/opt/boost

If you have installed Boost from a standard package in the package
repository of your distribution, then you can skip this step.
On Windows, if you have installed it under f:\boost, you can run
this command:

set BOOST_DIR=f:\boost

Introducing Boost

[22]

5. If the Boost include directory and the Boost library directory do not
share a common parent, as may be the case if you installed a binary
distribution of Boost, then you should skip setting BOOST_DIR and instead
set the following two environment variables:

 ° BOOST_INCDIR should be set to the directory that contains the
Boost header files, for example, /usr/include on Ubuntu.

 ° BOOST_LIBDIR should be set to the directory that contains the Boost
library files, for example, /usr/lib/x86_64-linux-gnu on Ubuntu.

6. Generate the build system of your choice using CMake.
On Linux, run the following command:
$ cmake

This generates a Makefile-based build system using GNU g++. If you want to
use clang++ instead, export the environment variables CC and CXX,
as shown here:
export CC=`which clang`
export CXX=`which clang++`

On Windows, run the following command:
$ cmake .. -G "Visual Studio 12"

This generates a Visual C++ 2013 solution file and project files. The string
passed with the -G option is called the generator string and identifies the
toolchain for which you want to generate the build system. The CMake
documentation lists all the supported generator strings. For our purposes,
we will use Visual Studio 12 or Visual Studio 12 Win64.

7. Build the sources using the generated build system.

On Linux, you can build it by simply running the following command:
$ gmake

On Windows, it is best to build by opening the generated solution file in
Visual C++ IDE and then building all the sources or a single source at a time.
You can run the examples by running the executables formed under srcdir/
lbcpp-src/bin.

We do not cover CMake in this book. It is worth exploring CMake further on your
own, and a great place to get started is the CMake Wiki (http://www.cmake.org/
Wiki/CMake).

http://www.cmake.org/Wiki/CMake
http://www.cmake.org/Wiki/CMake

Chapter 1

[23]

Self-test questions
1. What are the different types of name layouts supported by Boost libraries?

a. Tagged, native, and mangled
b. Tagged, mangled, and versioned
c. Tagged, versioned, and system
d. Versioned, systems, and decorated

2. Boost allows you to automatically link to necessary Boost libraries on
Windows.
a. True
b. False

3. What does the following filename tell you about the library?
boost_date_time-vc100-mt-gd-1_57.dll
Tick all that apply.
a. It is the DateTime library.
b. It is a thread-safe library.
c. It was built using g++.
d. It is not a debug library.

4. What is the name layout of the following library?
libboost_exception-mt-gd.lib

a. Tagged
b. System
c. Versioned
d. Default

Summary
In this chapter, we got an overview of the Boost C++ libraries and set up a
development environment for us, which should help us to easily build and run
C++ programs, using Boost libraries that we will learn in the rest of the book.

In the next chapter, we will learn a variety of techniques using different Boost
libraries, which simplify some common day-to-day programming tasks and set
us up for the heavy lifting to be done in the later chapters.

[25]

The First Brush with
Boost's Utilities

Over the course of this book, we will focus on a number of Boost libraries that deal
with different subsystems, such as filesystems, threads, network I/O, and a variety
of containers, among others. In each chapter, we will delve into the details of a few
such libraries. This chapter is different, in the sense that we will pick up a set of
useful and varied tricks that will help you in almost all programming situations.
To that end we have the following topics lined up for us:

• Simple data structures
• Working with heterogeneous values
• Handling command-line arguments
• Other utilities and compile-time checks

This is the kitchen-sink chapter that you can keep coming back to and scour for
an interesting technique that would seem to apply to a problem at hand.

Simple data structures
In this section, we will look at two different libraries that will help you create simple
data structures of immediate usefulness: Boost.Optional and Boost.Tuple. Boost.
Optional can be used to represent optional values; objects that may or may
not be there. Boost.Tuple is used to create ordered sets of heterogeneous values.

The First Brush with Boost's Utilities

[26]

Boost.Optional
Let us consider that you need to maintain about musicians in a data store. Among
other things, you can look up the latest album released by an artiste. You have
written a simple API in C++ for doing this:

std::string find_latest_album_of(const std::string& artisteName);

For simplicity we will ignore the possibility that two or more artistes could share
the same name. Here is a simple implementation of this function:

 1 #include <string>
 2 #include <map>
 3
 4 typedef std::map<std::string, std::string> artiste_album_map;
 5
 6 extern artiste_album_map latest_albums;
 7
 8 std::string find_latest_album_of(
 9 const std::string& artiste_name) {
10 auto iter = latest_albums.find(artiste_name);
11
12 if (iter != latest_albums.end()) {
13 return iter->second;
14 } else {
15 return "";
16 }
17 }

We store the names of artistes and their latest albums in a map called latest_albums.
The find_latest_album_of function takes the name of an artiste and uses the find
member function of std::map to look up the latest album. If it does not find an entry,
it returns an empty string. Now, it is possible that some artistes have not released an
album yet. Returning an empty string seems legit for such cases until you realize that
musicians have their unique whims and sometimes, they release an album without
a name. So, how do you distinguish between the cases where the musician is yet to
release an album, versus where the musician's latest album was untitled? In one case,
there is no value to return while in the other case, it is an empty string.

Chapter 2

[27]

The boost::optional<T> template can be used to represent an optional value;
one that may or may not be present. In this case, it is tailor-made for our problem.
To represent a std::string value that may or may not be present, you use
boost::optional<std::string>. We can rewrite the find_latest_album_of
function using boost::optional, as shown in the following code listing:

Listing 2.1: Using Boost.Optional

 1 #include <string>
 2 #include <map>
 3 #include <boost/optional.hpp>
 4
 5 typedef std::map<std::string, std::string> artiste_album_map;
 6
 7 extern artiste_album_map latest_albums;
 8
 9 boost::optional<std::string> find_latest_album_of(
10 const std::string& artiste_name) {
11 auto iter = latest_albums.find(artiste_name);
12
13 if (iter != latest_albums.end()) {
14 return iter->second;
15 } else {
16 return boost::none;
17 }
18 }

We simply return the value found (line 14), which is automatically wrapped in a
boost::optional container. If there is no value to return, we return a special object,
boost::none (line 16). This causes an empty boost::optional object to be returned.
The code using boost::optional does exactly what we need; it checks whether
a key is present in the container and returns the value or indicates that it is absent
without any ambiguity (that is, empty versus untitled).

A default-initialized instance of boost::optional is always
empty. If the value stored in boost::optional is movable
(see Appendix, C++11 Language Features Emulation), the wrapper
optional object is also movable. If the stored value is copyable,
the wrapper optional object is also copyable.

www.allitebooks.com

http://www.allitebooks.org

The First Brush with Boost's Utilities

[28]

We can generalize the lookup function in listing 2.1 to any container with a map-like
or dictionary interface as follows:

Listing 2.2: Generic lookup using optional

 1 #include <boost/optional.hpp>
 2
 3 template <typename C>
 4 boost::optional<typename C::mapped_type>
 5 lookup(const C& dict, const typename C::key_type& key)
 6 {
 7 typename C::const_iterator it = dict.find(key);
 8 if (it != dict.end()) {
 9 return it->second;
10 } else {
11 return boost::none;
12 }
13 }

In the preceding code, we have converted lookup to a function template that can be
called on any map, multimap, their unordered variants, or any other nonstandard
container, exposing a similar interface. It is parameterized on the container type C.
The container type C must have nested type definitions: key_type and mapped_type
corresponding to the types of keys and values the map stores; a constraint satisfied
by std:map and other associative containers from the Standard Library.

The use of the typename keyword (lines 4, 5, 7) may need some explanation. If we
omit the typename keyword from these lines, the compiler will fail to identify
C::mapped_type, C::key_type, and C::const_iterator as names of types. Because
mapped_type, key_type, and const_iterator are names that are dependent on the
type template parameter C, the compiler needs to be told that they identify types. We
use the typename keyword to do this.

Accessing values stored in boost::optional
You can check whether an optional object contains a value or is empty, and extract
the value stored in a non-empty optional object:

 1 std::string artiste("Korn");
 2 boost::optional<std::string> album =
 3 find_latest_album_of(artiste);
 4 if (album) {

Chapter 2

[29]

 5 std::cout << "The last album from " << artiste;
 6
 7 if (album->empty()) {
 8 std::cout << " is untitled\n";
 9 } else {
10 std::cout << " is named " << *album << '\n';
11 }
12 } else {
13 std::cout << "No information on albums from "
14 << artiste << '\n';
15 }

In the code that calls find_latest_album_of, to test whether the returned value
is empty, we invoke the object in a Boolean context (line 4). If it evaluates to true,
it means that album is not empty. If it has a value, we can obtain a reference to the
contained value using the overloaded operator* (line 10). We can access members
of the underlying object using an overloaded operator-> ; in this case we call the
empty member function of std::string (line 7). We could also use get member
function of a nonempty boost::optional object instead of the overloaded operator*
to access the value stored. Dereferencing an empty optional value by calling the
operator*, get, or operator-> causes a runtime error, which is why we first check
whether the optional object is empty before trying to dereference it.

get_value_or
Using optional, we indicate that there may or may not be a value present for
albums. But we would sometimes need to use APIs that should have taken optional
values but do not. In such cases, we may want to return empty values with some
default value. Imagine residents of Paris being asked about their favorite city
and for those who do not name one, Paris being used as the default favorite:

 1 void printFavoriteCity(const std::string& name,
 2 const std::string& city)
 3 {
 4 std::cout << name "'s favorite city is " << city << '\n';
 5 }
 6
 7 boost::optional<std::string> getFavoriteCity(
 8 const std::string& resident_id);
 9 ...

The First Brush with Boost's Utilities

[30]

10 std::string resident = "Serge";
11 boost::optional<std::string> fav_city =
12 getFavoriteCity(resident);
13
14 printFavoriteCity(fav_city.get_value_or("Paris"));

If the imaginary getFavoriteCity function returns an empty value, we want
Paris to be passed to the printFavoriteCity function. We do this using the
get_value_or member function (line 14).

Boost.Optional versus pointers
If we did not use optional, what would the functions find_last_album_of or
lookup return in order to indicate that there was no value found? They would either
need to return a pointer to a dynamically-allocated object or nullptr if there was
no value found. Besides using dynamic memory, it requires that the caller function
manage the lifetime of the dynamically-allocated object that is returned. This
condition can be mitigated using smart pointers (Chapter 3, Memory Management and
Exception Safety), but it does not eliminate free store allocations that are costly. The
boost::optional class eliminates free store allocations and stores the encapsulated
object in its layout. In addition, it stores a Boolean flag to keep track of whether it is
initialized or not.

Boost.Tuple
Boost Tuples are a cool way to group disparate types of data together into ordered
tuples and pass them around. Structures do the same thing but a couple of things
set tuples apart:

• You can write generic code to manipulate tuples of all kinds, for example,
to print all their members and comparing two tuples for similarity in
structure and types.

• Each new structure or class defines a new type in your software. Types
should represent interfaces and behaviors. Representing every ad hoc
clumping of data with a type results in proliferation of types that have
no meaning in the problem space or its abstraction.

A Boost Tuple is an incredibly useful library that helps you conveniently create
schemas for moving related data around together, such as exchanging data between
functions. Boost Tuples are a generalization of std::pair, which is used to create
2-element tuples.

Chapter 2

[31]

If you are using a C++ compiler with good C++11 support, you should
use the std::tuple facility from the Standard Library—one of the Boost
libraries that made it to the C++11 standard. The header to be included is
<tuple>. Most of what we discuss here is applicable to std::tuple.

Creating tuples
Let us look at an example. Given a series of stock prices at different points in time,
we want to find out the best two points in time to buy and sell the stock to maximize
the profit. We can assume that there is no option to short-sell, that is, you must buy
before you sell. For simplicity, the input can be assumed to be a vector of doubles. In
this vector, we are interested in the pair of indices that represent the best time to buy
and sell the stock to maximize profit:

Listing 2.3: Using tuples

 1 #include <boost/tuple/tuple.hpp>
 2 #include <vector>
 3
 4 boost::tuple<size_t, size_t, double>
 5 getBestTransactDays(std::vector<double> prices)
 6 {
 7 double min = std::numeric_limits<double>::max();
 8 double gain = 0.0, max_gain = 0.0;
 9 size_t min_day, max_day;
10 size_t buy_day;
11 for (size_t i = 0, days = prices.size(); i < days; ++i) {
12 if (prices[i] < min) {
13 min = prices[i];
14 min_day = i;
15 } else if ((gain = prices[i] - min) > max_gain) {
16 max_gain = gain;
17 buy_day = min_day;
18 max_day = i;
19 }
20 }
21
22 return boost::make_tuple(buy_day, max_day, max_gain);
23 }

The First Brush with Boost's Utilities

[32]

The function getBestTransactDays returns a tuple of two unsigned integers
(size_t) and a double (line 4) that represent the two indices at which buying and
selling the stock would maximize profit, and the maximum profit possible. The
return type of the function is boost::tuple<size_t, size_t, double>. The
header boost/tuple/tuple.hpp provides the necessary functions and types for
working with tuples (line 1).

The function getBestTransactDays implements a simple linear algorithm that
runs through the vector, keeping track of the lowest stock price seen so far. If the
current element has a lesser value than the lowest stock price so far, then this is set
as the new lowest, and its index is noted (lines 12-14). The function also keeps track
of the maximum gain, that is, the maximum difference in prices noted so far. If we
encounter an element whose difference from the lowest price is higher than the
maximum gain, then we note this difference as the new maximum gain (line 15),
and also note the days of transaction required to achieve this gain (lines 16-18).

We create the tuple using boost::make_tuple (line 22), which is a convenience
function for creating tuples from its elements without explicit template
instantiations. You could have also created and returned a tuple like this
in place of line 22:

22 boost::tuple<size_t, size_t, double> best_buy(buy_day, max_day,
23 max_gain);
24 return best_buy;

As you can see, boost::make_tuple is more compact and, being a function
template, resolves the types of its arguments automatically to create the tuple of
correct types. This is a frequently seen pattern where you use a factory function
template to instantiate a class template, thus automating type detection.

Accessing tuple elements
There are several ways in which we can access the elements in a tuple. Look at the
following example of calling the getBestTransactDays function:

 1 std::vector<double> stockPrices;
 2 ...
 3 boost::tuple<size_t, size_t, double> best_buy =
 4 getBestTransactDays(stockPrices);
 5
 6 size_t buyDay = boost::get<0>(best_buy); // Access 0th element
 7 size_t sellDay = boost::get<1>(best_buy); // Access 1st element
 8 double profit = boost::get<2>(best_buy); // Access 2nd element

Chapter 2

[33]

We can also unpack the elements in the tuple into individual variables using
boost::tie:

 1 size_t buyDay, sellDay;
 2 double profit;
 3 boost::tie(buyDay, sellDay, profit) =
 4 getBestTransactDays(stockPrices);

The preceding line of code will assign the first element of the tuple to buyDay, the
second to sellDay, and the third to profit. If we are interested in only a subset of
the elements in the tuple, we can ignore the others using boost::tuples::ignore.
Here is the same example, but we have ignored sellDay this time using
boost::tuples::ignore:

 1 size_t buyDay, sellDay;
 2 boost::tie(buyDay, sellDay, boost::tuples::ignore) =
 3 getBestTransactDays(stockPrices);

Comparing tuples
Tuples of the same length can be compared to relational operators, such as ==, <, >,
<=, and >=. In any such comparison, the corresponding elements at each position
are compared. The types of elements at the corresponding positions need not be
identical; they just need to be comparable using the relational operator in question:

 1 boost::tuple<int, int, std::string> t1 =
 2 boost::make_tuple(1, 2, "Hello");
 3 boost::tuple<double, double, const char*> t2 =
 4 boost::make_tuple(1, 2, "Hi");
 5 assert(t1 < t2); // because Hello < Hi

Note that the actual types in tuples t1 and t2 are different, but both have the same
length, and the elements at corresponding positions are comparable with each other.
In general, comparison stops at the first pair of elements that determines the outcome
of the comparison. In this example, all three elements are compared because the first
two elements compare equal.

 1 boost::tuple<int, int, std::string> t1 =
 2 boost::make_tuple(1, 20, "Hello");
 3 boost::tuple<double, double, const char*> t2 =
 4 boost::make_tuple(1, 2, "Hi");
 5 assert(t1 > t2); // because 20 > 2

The First Brush with Boost's Utilities

[34]

The following code is used to define relational operators for structs with very
little code:

 1 struct my_type {
 2 int a;
 3 double b;
 4 char c;
 5 };
 6
 7 bool operator<(const my_type& left, const my_type& right) {
 8 return boost::make_tuple(left.a, left.b, left.c) <
 9 boost::make_tuple(right.a, right.b, right.c);
10 }

Writing generic code using tuples
We will now write a generic function to find the number of elements in a tuple:

 1 template <typename T>
 2 size_t tuple_length(const T&) {
 3 return boost::tuples::length<T>::value;
 4 }

This function simply uses the boost::tuples::length<T> metafunction to compute
the number of elements in the tuple. This computation takes place at compile time.
A metafunction is just a class template that has an accessible static member or a
nested type computed at compile time from its template arguments (see Chapter 7,
Higher Order and Compile-time Programming, for a more rigorous definition). In this
case, the boost::tuples::length<T> metafunction has a public static member
called value, which is computed as the number of elements in the tuple T. If
you use tuples from the Standard Library, you should use std::tuple_size<T>
instead of boost::tuples::length<T>. This is just a small illustration of generic
programming using metafunctions and type computation.

Working with heterogeneous values
The need to have a value that can hold different types of data at different times
during the lifetime of a program is not new. C++ supports the union construct of
C, which essentially allows you to have a single type that can, at different times,
assume values of different underlying POD types. POD or Plain Old Data types,
roughly speaking, are types that do not require any special initialization, destruction,
and copying steps and whose semantic equivalents may be created by copying their
memory layouts byte for byte.

Chapter 2

[35]

These restrictions mean that most C++ classes, including a majority of those from
the Standard Library, can never be part of a union. Starting with C++11, these
restrictions on a union have been relaxed somewhat, and you can now store objects
of types with nontrivial construction, destruction, and copy semantics (that is, non-
POD types) in a union. However, the life cycle management of such objects stored
in a union is not automatic and can be a pain in the neck, hence it is best avoided.

Two libraries from Boost, Variant, and Any, provide useful variant types that provide
the same functionality as unions without many of the restrictions. Using Variants
and Any, storing heterogeneous data in the Standard Library containers becomes
remarkably easy and error-free. These libraries represent discriminated union types.
Values of a range of types can be stored in discriminated unions, and the
type information is stored along with the value.

In addition to storing data of heterogeneous types, we frequently need to convert
between different representations of the same data, for example, text to numeric
and vice versa. Boost Conversion provides, among other things, a way to seamlessly
convert between types using a uniform syntax. We look at Any, Variant, and
Conversion libraries in the following sections.

Boost.Variant
Boost Variant avoids all that is wrong with C++ unions and provides a union-like
construct defined over a fixed set of arbitrary types, not just POD types. We can
define a variant datatype using the Boost Variant header-only library by instantiating
the boost::variant template with a list of types. The list of types identifies the
different types of values that the variant object can assume at different points in
time. The different types in the list can be varied and unrelated, conforming to
only one binding condition—that each of the types be copyable or at least movable.
You may even create variants that contain other variants.

In our first example, we create a variant of an integer, a std::string, and two
user-defined types Foo and Bar. With this, we illustrate the constraints on creating
variant types and on operations that can be performed on such variant values:

The First Brush with Boost's Utilities

[36]

Listing 2.4: Creating and using variants

 1 #include <boost/variant.hpp>
 2 #include <string>
 3
 4 struct Foo {
 5 Foo(int n = 0) : id_(n) {} // int convertible to Foo
 6 private:
 7 int id_;
 8 };
 9
10 struct Bar {
11 Bar(int n = 0) : id_(n) {} // int convertible to Bar
12 private:
13 int id_;
14 };
15
16 int main()
17 {
18 boost::variant<Foo, int, std::string> value; // error if Foo
19 // not be default constructible
20 boost::variant<std::string, Foo, Bar> value2;
21
22 value = 1; // sets int, not Foo
23 int *pi = boost::get<int>(&value);
24 assert(pi != 0);
25 value = "foo"; // sets std::string
26 value = Foo(42); // sets Foo
27
28 // value2 = 1; // ERROR: ambiguous - Foo or Bar?
29 // std::cout << value << ' ' << value2 << '\n'; // ERROR:
30 // Foo, Bar cannot be streamed to ostream
31 }

We create two bare bones types: Foo (line 4) and Bar (line 10); we can initialize
both implicitly from int. We define a variant called value (line 18) over three
types, Foo, int, and std::string. A second variant, value2 (line 20) is defined
over std::string, Foo, and Bar.

By default, each variant instance is value-initialized to an object of its first type.
Thus, value is default-constructed to a Foo instance—the first type in the list of
type parameters to the variant. Similarly, value2 is default-constructed to
std::string—the first type in its list of type parameters. If the first type is a
POD type, it is zero-initialized. Thus, the first type must be default constructible
for the variant to be default constructible.

Chapter 2

[37]

We assign an integer to value (line 22). This sets it to be an int and not Foo, which
an integer is implicitly convertible to. We confirm this using the boost::get<T>
function template on the address of value with T=int (line 23), and we confirm that
it is not null (line 24).

We assign a const char* to value (line 25), which implicitly converts to std::string
that gets stored in value, overwriting the integer value stored earlier. Next, we assign
an object of Foo (line 26), which overwrites the earlier std::string value.

If we try to assign an integer to value2 (line 28, commented), it will cause a
compilation error. The variable value2 being a variant defined over std::string,
Foo, and Bar, an integer can implicitly be converted to either Foo or Bar and neither
is a better choice—hence, it causes ambiguity and the compiler throws an error. In
general, variant initialization and assignment should not result in an ambiguity over
which type to instantiate within the variant.

If we try to stream the contents of value to std::cout (line 29, commented), then
again, we would encounter a compilation error. This would be because one of the
types (Foo) supported by the variant is not streamable, which means it cannot be
written to ostreams using the insertion operator (<<).

Accessing values in a variant
We use the boost::get<T> function template to access the value of type T in a
variant, where T is the concrete type of the value we want. This function, when
called on a variant reference, returns a reference to the stored value or throws a
boost::bad_get exception if the stored value is not of the type specified. When
called on a pointer to a variant, it returns the address of the stored value or a null
pointer if the stored value is not of the specified type. The latter behavior can be used
to test whether a variant stores a particular type of value or not, the way it was used
in listing 2.4 (line 23). This behavior of get<> closely mirrors that of dynamic_cast:

Listing 2.5: Accessing values in a variant

 1 #include <boost/variant.hpp>
 2 #include <string>
 3 #include <cassert>
 4
 5 int main() {
 6 boost::variant<std::string, int> v1;
 7 v1 = "19937"; // sets string
 8 int i1;
 9
10 try {

www.allitebooks.com

http://www.allitebooks.org

The First Brush with Boost's Utilities

[38]

11 i1 = boost::get<int>(v1); // will fail, throw
12 } catch (std::exception& e) {
13 std::cerr << e.what() << '\n';
14 }
15
16 int *pi = boost::get<int>(&v1); // will return null
17 assert(pi == 0);
18
19 size_t index = v1.which(); // returns 0
20 }

In the preceding code, we create a variant v1 that can store a std::string or an
int value (line 6). We set v1 to the character string "19937" (line 7). We use the
boost::get<int> function to try and get an integer from v1 (line 11) but, since
v1 stores a string at this point, this results in an exception being thrown. Next,
we use the pointer overload of boost::get<int> that takes the address of the
variant v1. This returns the pointer to the stored value if its type matches the one
requested via get function's template parameter. If it does not, as in this case, a
null pointer is returned (lines 16 and 17). Finally, we can get the zero-based index
of the type of the value that is currently stored in the variant by calling the which
member function. Since v1 contains std::string and the declared type of v1 is
boost::variant<std::string, int>, therefore v1.which() should return the
index of std::string in the variant's declaration—0 in this case (line 19).

Compile-time visitation
How the value stored in a variant is consumed usually depends on the type of the
value. Checking a variant for each possible type using an if-else ladder can quickly
aggravate the readability and maintainability of your code. Of course, we can find
out the zero-based index of the type of the current value using the which member
method of the variant, but it would be of little immediate use. Instead, we will look
at a very elegant and versatile compile-time visitation mechanism provided by the
Boost Variant library without which handling variants would be quite a drag.

The idea is to create a visitor class that contains an overloaded function call operator
(operator()) to handle each type that may be stored in the variant. Using the function
boost::apply_visitor, we can invoke the appropriate overload in the visitor class
on a variant object, based on the type of value it contains.

Chapter 2

[39]

The visitor class should publicly inherit from the boost::static_visitor<T>
template, where T is the return type of the overloaded function call operator. By
default, T is void. Let us look at an example:

Listing 2.6: Compile-time visitation of variants

 1 #include <boost/variant.hpp>
 2
 3 struct SimpleVariantVisitor :public boost::static_visitor<void>
 4 {
 5 void operator() (const std::string& s) const
 6 { std::cout << "String: " << s << '\n'; }
 7
 8 void operator() (long n) const
 9 { std::cout << "long: " << n << '\n'; }
10 };
11
12 int main()
13 {
14 boost::variant<std::string, long, double> v1;
15 v1 = 993.3773;
16
17 boost::apply_visitor(SimpleVariantVisitor(), v1);
18 }

We create a variant over the types std::string, long, and double called v1 (line
14). We set it to a value of type double (line 15). Finally, we invoke a visitor of type
SimpleVariantVistor on v1 (line 17). The SimpleVariantVisitor inherits from
boost::apply_visitor<void> (line 3) and contains overloads of operator() for
std::string (line 5) and long (line 8) but not double. Each overload prints its
argument to the standard output.

The resolution of overloads happens at compile time rather than at runtime. Thus,
an overload must be available for every type of value that the variant may contain.
A particular overload is invoked if its parameter type is the best match for the type
of the value stored in the variant. Moreover, a single overload may handle multiple
types if all the types are convertible to the type of the argument of the overload.

The First Brush with Boost's Utilities

[40]

Interestingly, in the preceding example, there is no overload available for double.
However, narrowing conversions are allowed and the overload for long is invoked
with potential narrowing. In this case, the overload for long handles both long and
double types. On the other hand, if we had separate overloads available for double
and long but none for std::string, we would have had a compilation error. This
would happen because not even a narrowing conversion would be available from
std::string to either long or double, and the overload resolution would fail. Being
a compile-time mechanism, this is independent of the type of the actual value stored
in a variant object at any time.

Generic visitors
You may create a member function template that handles a family of types. In cases
where the code for handling different types does not significantly differ, it may make
sense to have such member templates. Here is an example of a visitor which prints
the contents of the variant:

Listing 2.7: Generic compile-time visitation

 1 #include <boost/variant.hpp>
 2
 3 struct PrintVisitor : boost::static_visitor<>
 4 {
 5 template <typename T>
 6 void operator() (const T& t) const {
 7 std::cout << t << '\n';
 8 }
 9 };
10
11 boost::variant<std::string, double, long, Foo> v1;
12 boost::apply_visitor(PrintVisitor(), v1);

In the preceding code, we define a variant over the types std::string, double, long,
and Foo. The visitor class PrintVisitor contains a generic operator(). As long as all
the types in the variant are streamable, this code will compile and print the value of the
variant to the standard output.

Chapter 2

[41]

Applying visitors to variants in a container
Often, we have an STL container of variant objects, and we want to visit each object
using our visitor. We can utilize the std::for_each STL algorithm and a single-
argument overload of boost::apply_visitor for the purpose. The single-argument
overload of boost::apply_visitor takes a visitor instance and returns a functor
that applies the visitor to a passed element. The following example best illustrates
the usage:

 1 #include <boost/variant.hpp>
 2
 3 std::vector<boost::variant<std::string, double, long> > vvec;
 4 …
 5 std::for_each(vvec.begin(), vvec.end(),
 6 boost::apply_visitor(SimpleVariantVisitor()));

Defining recursive variants
The last few years have seen a phenomenal growth in the popularity of one
particular data interchange format—JavaScript Object Notation or JSON. It is a
simple text-based format that is often less verbose XML. Originally used as object
literals in JavaScript, the format is more readable than XML. It is also a relatively
simple format that is easy to understand and parse. In this section, we will represent
well-formed JSON content using boost::variants and see how variants can handle
recursive definitions.

The JSON format
To start with, we will look at an example of people records in the JSON notation:

 {
 "Name": "Lucas",
 "Age": 38,
 "PhoneNumbers" : ["1123654798", "3121548967"],
 "Address" : { "Street": "27 Riverdale", "City": "Newtown",
 "PostCode": "902739"}
 }

The First Brush with Boost's Utilities

[42]

The preceding code is an example of a JSON object—it contains key-value pairs
identifying the attributes of an unnamed object. The attribute names are quoted
strings, such as "Name", "Age", "PhoneNumbers" (of which you can have more
than one), and "Address". Their values could be simple strings ("Name") or
numeric values ("Age"), or arrays of such values ("PhoneNumbers") or other objects
("Address"). A single colon (:) separates keys from values. The key-value pairs
are separated by commas. The list of key-value pairs in an object are enclosed in
curly braces. This format allows arbitrary levels of nesting as seen in the case of
the "Address" attribute whose value itself is an object. You can create more nested
objects that are values of attributes of other nested objects.

You may combine many such records together in an array, which are enclosed in
square brackets and separated by commas:

[
 {
 "Name": "Lucas",
 "Age": 38,
 "PhoneNumbers" : ["1123654798", "3121548967"],
 "Address" : { "Street": "27 Riverdale", "City": "Newtown",
 "PostCode": "902739"}
 },
 {
 "Name": "Damien",
 "Age": 52,
 "PhoneNumbers" : ["6427851391", "3927151648"],
 "Address": {"Street": "11 North Ave.", "City" : "Rockport",
 "PostCode": "389203"}
 },
 …
]

A well-formed JSON text contains an object or an array of zero or more objects,
numeric values, strings, Booleans, or null values. An object itself contains zero
or more unique attributes each represented by a unique string. The value of each
attribute can be a string, numeric value, Boolean value, null value, another object,
or an array of such values. Thus, the basic tokens in JSON content are numeric
values, strings, Booleans, and nulls. The aggregates are objects and arrays.

Chapter 2

[43]

Representing JSON content with recursive variants
If we were to declare a variant to represent a basic token in a JSON, it would look
like this:

 1 struct JSONNullType {};
 2 boost::variant<std::string, double, bool, JSONNullType> jsonToken;

The type JSONNullType is an empty type that may be used to represent a null
element in JSON.

To extend this variant to represent more complex JSON content, we will try to
represent a JSON object—a key-value pair as a type. The keys are always strings,
but the values can be any of the types listed above or another nested object. So,
the definition of a JSON object is essentially recursive, and this is why we need a
recursive variant definition to model it.

To include the definition of a JSON object in the preceding variant type, we use a
metafunction called boost::make_recursive_variant. It takes a list of types and
defines the resultant recursive variant type as a nested type called type. So, here is
how we write a recursive definition of the variant:

 1 #define BOOST_VARIANT_NO_FULL_RECURSIVE_VARIANT_SUPPORT
 2 #include <boost/variant.hpp>
 3
 4 struct JSONNullType {};
 5
 6 typedef boost::make_recursive_variant<
 7 std::string,
 8 double,
 9 bool,
10 JSONNullType,
11 std::map<std::string,
12 boost::recursive_variant_>
13 >::type JSONValue;

The #define statement on line 1 may be necessary for many compilers where
the support for recursive variants, especially using make_recursive_variant,
is limited.

The First Brush with Boost's Utilities

[44]

We define the recursive variant using the boost::make_recursive_variant
metafunction (line 6). In the list of types, we add a new type std::map with keys
of type std::string (line 11) and values of type boost::recursive_variant_
(line 12). The special type boost::recursive_variant_ is used to indicate that the
outer variant type can occur as a value in the map itself. Thus, we have captured the
recursive nature of a JSON object in the variant definition.

This definition is still not complete. A well-formed JSON content may contain arrays
of elements of all these different kinds. Such arrays may also be the values of an
object's attributes or be nested inside other arrays. If we choose to represent an array
by a vector, then an extension of the preceding definition is easy:

Listing 2.8a: Recursive variant for JSON

 1 #define BOOST_VARIANT_NO_FULL_RECURSIVE_VARIANT_SUPPORT
 2 #include <boost/variant.hpp>
 3
 4 struct JSONNullType {};
 5
 6 typedef boost::make_recursive_variant<
 7 std::string,
 8 double,
 9 bool,
10 JSONNullType,
11 std::map<std::string,
12 boost::recursive_variant_>,
13 std::vector<boost::recursive_variant_>
14 >::type JSONValue;
15
16 typedef std::vector<JSONValue> JSONArray;
17 typedef std::map<std::string, JSONValue> JSONObject;

We add one more type—std::vector<boost::recursive_variant_>
(line 13)—which represents an array of JSONValue objects. By virtue of this
one additional line, we now support several more possibilities:

• A top-level array consisting of JSON objects, other JSON arrays, and the
basic types of tokens

• An array-valued attribute of an object
• An array-valued element in another JSON array

This is the complete definition of JSONValue. In addition, we create typedefs for
the recursive aggregate types—JSON arrays and JSON objects (line 16 and 17).

Chapter 2

[45]

Visiting recursive variants
We shall now write a visitor to print JSON data stored in a variant in its standard
notation. Visiting a recursive variant is not different from visiting a nonrecursive
one. We still need to define overloads that can handle all types of values that the
variant may store. In addition, in the overloads for the recursive aggregate types
(in this case, JSONArray and JSONObject), we may need to recursively visit each
of its elements:

Listing 2.8b: Visiting recursive variants

 1 void printArrElem(const JSONValue& val);
 2 void printObjAttr(const JSONObject::value_type& val);
 3
 4 struct JSONPrintVisitor : public boost::static_visitor<void>
 5 {
 6 void operator() (const std::string& str) const
 7 {
 8 std::cout << '"' << escapeStr(str) << '"';
 9 }
10
11 void operator() (const JSONNullType&) const
12 {
13 std::cout << "null";
14 }
15
16 template <typename T>
17 void operator()(const T& value) const
18 {
19 std::cout << std::boolalpha << value;
20 }
21
22 void operator()(const JSONArray& arr) const
23 {
24 std::cout << '[';
25
26 if (!arr.empty()) {
27 boost::apply_visitor(*this, arr[0]);
28 std::for_each(arr.begin() + 1, arr.end(), printArrElem);
29 }
30

The First Brush with Boost's Utilities

[46]

31 std::cout << "\n";
32 }
33
34 void operator()(const JSONObject& object) const
35 {
36 std::cout << '{';
37
38 if (!object.empty()) {
39 const auto& kv_pair = *(object.begin());
40 std::cout << '"' << escapeStr(kv_pair.first) << '"';
41 std::cout << ':';
42 boost::apply_visitor(*this, kv_pair.second);
43
44 auto it = object.begin();
45 std::for_each(++it, object.end(), printObjAttr);
46 }
47 std::cout << '}';
48 }
49
50 };
51
52 void printArrElem(const JSONValue& val) {
53 std::cout << ',';
54 boost::apply_visitor(JSONPrintVisitor(), val);
55 }
56
57 void printObjAttr(const JSONObject::value_type& val) {
58 std::cout << ',';
59 std::cout << '"' << escapeStr(val.first) << '"';
60 std::cout << ':';
61 boost::apply_visitor(JSONPrintVisitor(), val.second);
62 }

The visitor JSONPrintVisitor inherits publicly from boost::static_visitor<void>
and provides overloads of operator() for the different possible types of JSON values.
There is an overload for std::string (line 6), which prints strings in double quotes
(line 8) after escaping any embedded quotes and other characters that need escaping.
For this, we assume the availability of a function called escapeStr. We have a second
overload for the JSONNullType (line 11), which just prints the string null without
quotes. Other types of values, such as double or bool are handled by the member
template (line 17). For bool values, it prints the unquoted strings true and false
using the std::boolalpha ostream manipulator (line 19).

Chapter 2

[47]

The main work is done by the two overloads for JSONArray (line 22) and JSONObject
(line 34). The JSONArray overload prints the elements of the array enclosed in
square brackets and separated by commas. It prints the first element of the vector of
JSONValues (line 27) and then, applies the std::for_each generic algorithm on this
vector, starting with its second element to print the subsequent elements separated by
commas (line 28). For this purpose, it passes as the third argument to std::for_each,
a pointer to the function printArrElem. The printArrElem (line 52) function prints
each element by applying JSONPrintVisitor (line 54).

The JSONObject overload prints the elements of the map as a comma-separated list of
key-value pairs. The first pair is printed as a quoted, escaped key (line 40), then a colon
(line 41) followed by a call to boost::apply_visitor (line 42). Subsequent pairs are
printed separated by commas from the preceding ones by iterating over the remaining
elements of the map using the std::for_each and printObjAttr function pointers
(line 45). The logic is analogous to that in the JSONArray overload. The printObjAttr
function (line 57) prints each key-value pair passed to it, prefixing a comma (line 58),
printing the escaped, quoted key (line 59), prints a colon (line 60), and invoking the
visitor on the variant value (line 61).

Boost.Any
The Boost Any library takes a different route to store heterogeneous data than Boost
Variant. Unlike Variant, Any allows you to store almost any type of data not limited
to a fixed set and maintains the runtime type information of the stored data. Thus, it
does not use templates at all and requires that Runtime Type Identification (RTTI)
be enabled, while compiling the code using Boost Any (most modern compilers keep
this enabled by default).

For the Boost Any library to work correctly, you must not disable
the generation of RTTI for your programs.

In the following example, we create instances of boost::any to store numeric data,
character arrays, and non-POD type objects:

Listing 2.9: Using Boost Any

 1 #include <boost/any.hpp>
 2 #include <vector>
 3 #include <iostream>
 4 #include <string>

www.allitebooks.com

http://www.allitebooks.org

The First Brush with Boost's Utilities

[48]

 5 #include <cassert>
 6 using boost::any_cast;
 7
 8 struct MyValue {
 9 MyValue(int n) : value(n) {}
10
11 int get() const { return value; }
12
13 int value;
14 };
15
16 int main() {
17 boost::any v1, v2, v3, v4;
18
19 assert(v1.empty());
20 const char *hello = "Hello";
21 v1 = hello;
22 v2 = 42;
23 v3 = std::string("Hola");
24 MyValue m1(10);
25 v4 = m1;
26
27 try {
28 std::cout << any_cast<const char*>(v1) << '\n';
29 std::cout << any_cast<int>(v2) << '\n';
30 std::cout << any_cast<std::string>(v3) << '\n';
31 auto x = any_cast<MyValue>(v4);
32 std::cout << x.get() << '\n';
33 } catch (std::exception& e) {
34 std::cout << e.what() << '\n';
35 }
36 }

You can also use a nonthrowing version of any_cast by passing the address of an
any object instead of a reference. This returns a null pointer, instead of throwing
an exception if the stored type does not match the type it is cast to. The following
snippet illustrates this:

 1 boost::any v1 = 42;
 2 boost::any v2 = std::string("Hello");
 3 std::string *str = boost::any_cast<std::string>(&v1);
 4 assert(str == nullptr);

Chapter 2

[49]

 5 int *num = boost::any_cast<int>(&v2);
 6 assert(num == nullptr);
 7
 8 num = boost::any_cast<int>(&v1);
 9 str = boost::any_cast<std::string>(&v2);
10 assert(num != nullptr);
11 assert(str != nullptr);

We pass the address of any objects to any_cast (lines 3, 5, 8, and 9), and it returns
null unless the type parameter to any_cast matches the type of the value stored
in the any object. Using the pointer overload of any_cast, we can write a generic
predicate to check whether an any variable stores a value of a given type:

template <typename T>
bool is_type(boost::any& any) {
 return (!any.empty() && boost::any_cast<T>(&any));
}

This is how you would use it:

boost::any v1 = std::string("Hello");
assert(is_type<std::string>(v1));

This behavior of boost::any_cast emulates how dynamic_cast works.

In listing 2.9, we used different instances of the type boost::any to store different
types of values. But the same instance of boost::any can store different types
of values at different times. The following snippet illustrates this using the swap
member function of any:

 1 boost::any v1 = 19937;
 2 boost::any v2 = std::string("Hello");
 3
 4 assert(boost::any_cast<int>(&v1) != nullptr);
 5 assert(boost::any_cast<std::string>(&v2) != nullptr);
 6
 7 v1 = 22.36;
 8 v1.swap(v2);
 9 assert(boost::any_cast<std::string>(&v1) != nullptr);
10 assert(boost::any_cast<double>(&v2) != nullptr);

The First Brush with Boost's Utilities

[50]

We first assign a value of type double to v1 (line 7), which was carrying a value
of type int (line 1). Next, we swap the contents of v1 with v2 (line 8), which was
carrying a value of type std::string (line 2). We can now expect v1 to contain a
std::string value (line 9) and v2 to contain a double value (line 10).

Besides using the pointer overload of any_cast, we can also use the type member
function of any to access the type of the stored value:

Listing 2.10: Accessing type information in Any

boost::any value;
value = 20;
if (value.type().hash_code() == typeid(int).hash_code()) {
 std::cout << boost::any_cast<int>(value) << '\n';
}

The type member function of any returns an object of std::type_info (defined in
the Standard Library header <typeinfo>). To check whether this type is the same
as a given type, we compare it with the type_info object obtained by applying
the typeid operator on the given type (in this case, it is int). Instead of directly
comparing the two type_info objects, we compare their hash codes obtained using
the hash_code member function of type_info.

Boost.Conversion
If you have ever tried parsing a text input (from a file, standard input, network, and
so on) and tried a semantic translation of the data in it, you would have possibly felt
the need for an easy way to convert text to numeric values. The opposite problem
is to write text output based on values of numeric and textual program variables.
The basic_istream and basic_ostream classes provide facilities for reading and
writing specific types of values. However, the programming model for such uses is
not very intuitive or robust. The C++ Standard Library and its extensions offer various
conversion functions with various degrees of control, flexibility, and a general lack
of usability. For example, there exists a whole slew of functions that convert between
numeric and character formats or the other way round (for example, atoi, strtol,
strtod, itoa, ecvt, fcvt, and so on). If we were trying to write generic code for
converting between types, we would not even have the option of using any of these
functions, which only work for conversions between specific types. How can we define
a generic conversion syntax that can be extended to arbitrary types?

The Boost Conversion library introduces a couple of function templates that
provide a very intuitive and uniform conversion syntax, which can also be extended
through user-defined specializations. We will look at the conversion templates
one by one.

Chapter 2

[51]

lexical_cast
The lexical_cast function template can be used to convert a source type to a
target type. Its syntax resembles the syntax of various C++ casts:

#include <boost/lexical_cast.hpp>
namespace boost {
template <typename T, typename S>
T lexical_cast (const S& source);
}

The following example shows how we can use lexical_cast to convert a string to
an integer:

Listing 2.11: Using lexical_cast

 1 std::string str = "1234";
 2
 3 try {
 4 int n = boost::lexical_cast<int>(str);
 5 assert(n == 1234);
 6 } catch (std::exception& e) {
 7 std::cout << e.what() << '\n';
 8 }

We apply lexical_cast (line 4) to convert a value of type std::string to a value
of int. The beauty of this approach is that it can provide a uniform syntax to all
conversions and can be extended to new types. If the string does not contain a valid
numeric string, then the lexical_cast invocation will throw an exception of type
bad_lexical_cast.

Overloads of the lexical_cast function template are provided to allow the
conversion of a part of a character array:

#include <boost/lexical_cast.hpp>
namespace boost {
template <typename T >
T lexical_cast (const char* str, size_t size);
}

We can use the preceding function in the following way:

 1 std::string str = "abc1234";
 2
 3 try {
 4 int n = boost::lexical_cast<int>(str.c_str() + 3, 4);
 5 assert(n == 1234);

The First Brush with Boost's Utilities

[52]

 6 } catch (std::exception& e) {
 7 std::cout << e.what() << '\n';
 8 }

When converting objects of types that are streamable, lexical_cast streams the
objects to an ostream object, such as an instance of stringstream, and reads it back
as the target type.

A streamable object can be converted to a stream of characters
and inserted into an ostream object, such as an instance of
stringstream. In other words, a type T, such that ostream&
operator<<(ostream&, const T&), is defined is said to
be streamable.

Setting up and tearing down stream objects for each such operation incurs some
overhead. As a result, in some cases, the default version of lexical_cast may
not give you the best possible performance. In such cases, you may specialize the
lexical_cast template for the set of types involved, and use a fast library function
or provide your own fast implementation. The Conversion library already takes care
of optimizing lexical_cast for all common type pairs.

Besides the lexical_cast template, there are other templates available for
conversion between different numeric types (boost::numeric_cast), downcasts
and cross-casts in class hierarchies (polymorphic_downcast, polymorphic_cast).
You can refer to the online documentation for more information on these features.

Handling command-line arguments
Command-line arguments, like API parameters, are the remote control buttons that
help you tune the behavior of commands to your advantage. A well-designed set of
command-line options is behind much of the power of a command. In this section,
we will see how the Boost.Program_Options library helps you add support for a
rich and standardized set of command-line options to your own programs.

Designing command-line options
C provides the most primitive abstraction for the command line of your program.
Using the two arguments passed to the main function—the number of arguments
(argc) and the list of arguments (argv)—you can find out about each and every
argument passed to the program and their relative ordering. The following program
prints argv[0], which is the path to the program itself with which the program was
invoked. When run with a set of command-line arguments, the program also prints
each argument on a separate line.

Chapter 2

[53]

Most programs need to add more logic and validation to verify and interpret
command-line arguments and hence, a more elaborate framework is needed to
handle command-line arguments:

1 int main(int argc, char *argv[])
2 {
3 std::cout << "Program name: " << argv[0] << '\n';
4
5 for (int i = 1; i < argc; ++i) {
6 std::cout << "argv[" << i << "]: " << argv[i] << '\n';
7 }
8 }

The diff command – a case study
Programs usually document a set of command-line options and switches that modify
their behavior. Let us take a look at the example of the diff command in Unix. The
diff command is run like this:

$ diff file1 file2

It prints the difference between the content of the two files. There are several ways in
which you can choose to print the differences. For each different chunk found, you
may choose to print a few additional lines surrounding the difference to get a better
understanding of the context in which the differing part appears. These surrounding
lines or "context" do not differ between the two files. To do this, you can use one of
the following alternatives:

$ diff -U 5 file1 file2

$ diff --unified=5 file1 file2

Here, you choose to print five additional lines of context. You can also choose the
default of three by specifying:

$ diff --unified file1 file2

In the preceding examples, -U or --unified are examples of command-line options.
The former is a short option consisting of a single leading hyphen and a single letter
(-U). The latter is a long option with two leading hyphens and a multi-character
option name (--unified).

The First Brush with Boost's Utilities

[54]

The number 5 is an option value; an argument to the option (-U or --unified)
preceding it. The option value is separated from a preceding short option by space,
but from a preceding long option by an equals sign (=).

If you are "diffing" two C or C++ source files, you can get more useful information
using a command-line switch or flag -p. A switch is an option that does not take an
option value as an argument. Using this switch, you can print the name of the C or
C++ function in the context of which a particular difference is detected. There is no
long option corresponding to it.

The diff command is a very powerful tool with which you can find differences in
the content of files in full directories. When diffing two directories, if a file exists in
one but not the other, diff ignores this file by default. However, you may want to
instead see the contents of the new file. To do this, you will use the -N or --new-file
switch. If we want to now run our diff command on two directories of C++ source
code to identify changes, we can do it in this way:

$ diff -pN –unified=5 old_source_dir new_source_dir

You don't have to be eagle-eyed to notice that we used an option called -pN. This is
actually not a single option but two switches, (-p) and (-N), collapsed together.

Certain patterns or conventions should be evident from this case-study:

• Starting short options with single hyphens
• Starting long options with double hyphens
• Separating short options and option-values with space
• Separating long options and option-value with equals
• Collapsing short switches together

These are de facto standardized conventions on highly POSIX-compliant systems,
such as Linux. It is, however, by no means the only convention followed. Windows
command lines often use a leading forward slash (/) in place of a hyphen. They often
do not distinguish between short and long options, and sometimes use a colon (:)
in place of an equals sign to separate an option and its option value. Java commands
as well as commands in several older Unix systems use a single leading hyphen
for both short and long options. Some of them use a space for separating an option
and option-value irrespective of whether it is a short option or a long one. How can
you take care of so many complex rules that vary from platform to platform while
parsing your command line? This is where Boost Program Options library makes a
big difference.

Chapter 2

[55]

Using Boost.Program_Options
The Boost Program Options library provides you with a declarative way of parsing
command lines. You can specify the set of options and switches and the type of
option-values for each option that your program supports. You can also specify
which set of conventions you want to support for your command line. You can
then feed all of this information to the library functions that parse and validate the
command line and extract all the command-line data into a dictionary-like structure
from which you can access individual bits of data. We will now write some code to
model the previously mentioned options for the diff command:

Listing 2.12a: Using Boost Program Options

 1 #include <boost/program_options.hpp>
 2
 3 namespace po = boost::program_options;
 4 namespace postyle = boost::program_options::command_line_style;
 5
 6 int main(int argc, char *argv[])
 7 {
 8 po::options_description desc("Options");
 9 desc.add_options()
10 ("unified,U", po::value<unsigned int>()->default_value(3),
11 "Print in unified form with specified number of "
12 "lines from the surrounding context")
13 (",p", "Print names of C functions "
14 " containing the difference")
15 (",N", "When comparing two directories, if a file exists in"
16 " only one directory, assume it to be present but "
17 " blank in the other directory")
18 ("help,h", "Print this help message");

In the preceding code snippet, we declare the structure of the command line using an
options_description object. Successive options are declared using an overloaded
function call operator() in the object returned by the add_options. You can
cascade calls to this operator in the same way that you can print multiple values by
cascading calls to the insertion operator (<<) on std::cout. This makes for a highly
readable specification of the options.

We declare the --unified or -U option specifying both the long and short options
in a single string, separated by a comma (line 10). The second argument indicates
that we expect a numeric argument, and the default value will be taken as 3 if the
argument is not specified on the command line. The third field is the description of
the option and will be used to generate a documentation string.

The First Brush with Boost's Utilities

[56]

We declare the short options -p and -N (lines 13 and 15), but as they do not have
corresponding long options, they are introduced with a comma followed by a short
option (",p" and ",N"). They also do not take an option value, so we just provide
their description.

So far so good. We will now complete the code example by parsing the command
line and fetching the values. First, we will specify the styles to follow in Windows
and Unix:

Listing 2.12b: Using Boost Program Options

19 int unix_style = postyle::unix_style
20 |postyle::short_allow_next;
21
22 int windows_style = postyle::allow_long
23 |postyle::allow_short
24 |postyle::allow_slash_for_short
25 |postyle::allow_slash_for_long
26 |postyle::case_insensitive
27 |postyle::short_allow_next
28 |postyle::long_allow_next;

The preceding code highlights some important differences between Windows and
Unix conventions:

• A more or less standardized Unix style is available precanned and called,
unix_style. However, we have to build the Windows style ourselves.

• The short_allow_next flag allows you to separate a short option and its
option value with a space; this is used on both Windows and Unix.

• The allows_slash_for_short and allow_slash_for_long flags allow the
options to be preceded by forward slashes; a common practice on Windows.

• The case_insensitive flag is appropriate for Windows where the usual
practice is to have case insensitive commands and options.

• The long_allow_next flag on Windows allows long options and option
values to be separated by a space instead of equals.

Now, let us see how we can parse a conforming command line using all of this
information. To do this, we will declare an object of type variables_map to read
all the data and then parse the command line:

Chapter 2

[57]

Listing 2.12c: Using Boost Program Options

29 po::variables_map vm;
30 try {
31 po::store(
32 po::command_line_parser(argc, argv)
33 .options(desc)
34 .style(unix_style) // or windows_style
35 .run(), vm);
36
37 po::notify(vm);
38
39 if (argc == 1 || vm.count("help")) {
40 std::cout << "USAGE: " << argv[0] << '\n'
41 << desc << '\n';
42 return 0;
43 }
44 } catch (po::error& poe) {
45 std::cerr << poe.what() << '\n'
46 << "USAGE: " << argv[0] << '\n' << desc << '\n';
47 return EXIT_FAILURE;
48 }

We create a command-line parser using the command_line_parser function (line
32). We call the options member function on the returned parser to specify the
parsing rules encoded in desc (line 33). We chain further member function calls,
to the style member function of the parser for specifying the expected style (line
34), and to the run member function to actually perform the parsing. The call to run
returns a data structure containing the data parsed from the command-line. The call
to boost::program_options::store stores the parsed data from this data structure
inside the variables_map object vm (lines 31-35). Finally, we check whether the
program was invoked without arguments or with the help option, and print the help
string (line 39). Streaming the option_description instance desc to an ostream
prints a help string, that is automatically generated based on the command-line rules
encoded in desc (line 41). All this is encapsulated in a try-catch block to trap any
command line parsing errors thrown by the call to run (line 35). In the event of such
an error, the error details are printed (line 45) along with the usage details (line 46).

If you notice, we call a function called notify(…) on line 37. In more advanced uses,
we may choose to use values that are read from the command line to set variables
or object members, or perform other post-processing actions. Such actions can be
specified for each option while declaring option descriptions, but these actions are
only initiated by the call to notify. As a matter of consistency, do not drop the call
to notify.

The First Brush with Boost's Utilities

[58]

We can now extract the values passed via the command line:

Listing 2.12d: Using Boost Program Options

49 unsigned int context = 0;
50 if (vm.count("unified")) {
51 context = vm["unified"].as<unsigned int>();
52 }
53
54 bool print_cfunc = (vm.count("p") > 0);

Parsing positional parameters
If you were observant, you would have noticed that we did nothing to read the two
file names; the two main operands of the diff command. We did this for simplicity,
and we will fix this now. We run the diff command like this:

$ diff -pN --unified=5 old_source_dir new_source_dir

The old_source_dir and new_source_dir arguments are called positional
parameters. They are not options or switches, nor are they arguments to any options.
In order to handle them, we will have to use a couple of new tricks. First of all, we
must tell the parser the number and type of these parameters that we expect. Second,
we must tell the parser that these are positional parameters. Here is the code snippet:

 1 std::string file1, file2;
 2 po::options_description posparams("Positional params");
 3 posparams.add_options()
 4 ("file1", po::value<std::string>(&file1)->required(), "")
 5 ("file2", po::value<std::string>(&file2)->required(), "");
 6 desc.add(posparams);
 7
 8
 9 po::positional_options_description posOpts;
10 posOpts.add("file1", 1); // second param == 1 indicates that
11 posOpts.add("file2", 1); // we expect only one arg each
12
13 po::store(po::command_line_parser(argc, argv)
14 .options(desc)
15 .positional(posOpts)
16 .style(windows_style)
17 .run(), vm);

Chapter 2

[59]

In the preceding code, we set up a second options description object called posparams
to identify the positional parameters. We add options with names "file1" and
"file2", and indicate that these parameters are mandatory, using the required()
member function of the value parameter (lines 4 and 5). We also specify two string
variables file1 and file2 to store the positional parameters. All of this is added to
the main options description object desc (line 6). For the parser to not look for actual
options called "--file1" and "--file2", we must tell the parser that these are
positional parameters. This is done by defining a positional_options_description
object (line 9) and adding the options that should be treated as positional options (lines
10 and 11). The second parameter in the call to add(…) specifies how many positional
parameters should be considered for that option. Since we want one file name, each for
options file1 and file2, we specify 1 in both the calls. Positional parameters on the
command line are interpreted according to the order in which they are added to the
positional options description. Thus, in this case, the first positional parameter will be
treated as file1, and the second parameter will be treated as file2.

Multiple option values
In some cases, a single option may take multiple option values. For example, during
compilation, you will use the -I option multiple times to specify multiple directories.
To parse such options and their option values, you can specify the target type as a
vector, as shown in the following snippet:

 1 po::options_description desc("Options");
 2 desc.add_option()
 3 ("include,I", po::value<std::vector<std::string> >(),
 4 "Include files.")
 5 (…);

This will work on an invocation like this:

$ c++ source.cpp –o target -I path1 -I path2 -I path3

In some cases, however, you might want to specify multiple option values, but you
specify the option itself only once. Let us say that you are running a command to
discover assets (local storage, NICs, HBAs, and so on) connected to each of a set of
servers. You can have a command like this:

$ discover_assets --servers svr1 svr2 svr3 --uid user

The First Brush with Boost's Utilities

[60]

In this case, to model the --server option, you would need to use the multitoken()
directive as shown here:

 1 po::options_description desc("Options");
 2 desc.add_option()
 3 ("servers,S",
 4 po::value<std::vector<std::string> >()->multitoken(),
 5 "List of hosts or IPs.")
 6 ("uid,U", po::value<std::string>, "User name");

You can retrieve vector-valued parameters through the variable map like this:

1 std::vector<std::string> servers = vm["servers"];

Alternatively, you can use variable hooks at the time of option definition like this:

1 std::vector<std::string> servers;
2 desc.add_option()
3 ("servers,S",
4 po::value<std::vector<std::string> >(&servers
5 ->multitoken(),
6 "List of hosts or IPs.")…;

Make sure that you don't forget to call notify after parsing the command line.

Trying to support positional parameters and options with
multi-tokens together in the same command can confuse the
parser and should be generally avoided.

The Program Options library uses Boost Any for its implementation. For the
Program Options library to work correctly, you must not disable the generation
of RTTI for your programs.

Other utilities and compile-time checks
Boost includes a number of micro-libraries that provide small but useful
functionalities. Most of them are not elaborate enough to be separate libraries.
Instead, they are grouped under Boost.Utility and Boost.Core. We will look
at two such libraries here.

We will also look at some useful ways to detect errors as early as possible,
at compile time, and glean information about the program's compilation
environment and tool chains using different facilities from Boost.

Chapter 2

[61]

BOOST_CURRENT_FUNCTION
When writing debug logs, it is incredibly useful to be able to write function names
and some qualifying information about functions from where logging is invoked.
This information is (obviously) available to compilers during the compilation of
sources. However, the way to print it is different for different compilers. Even for
a given compiler, there may be more than one ways to do it. If you want to write
portable code, this is one wart you have to take care to hide. The best tool for this is
the macro BOOST_CURRENT_FUNCTION, formally a part of Boost.Utility, shown in
action in the following example:

Listing 2.13: Pretty printing current function name

 1 #include <boost/current_function.hpp>
 2 #include <iostream>
 3
 4 namespace FoFum {
 5 class Foo
 6 {
 7 public:
 8 void bar() {
 9 std::cout << BOOST_CURRENT_FUNCTION << '\n';
10 bar_private(5);
11 }
12
13 static void bar_static() {
14 std::cout << BOOST_CURRENT_FUNCTION << '\n';
15 }
16
17 private:
18 float bar_private(int x) const {
19 std::cout << BOOST_CURRENT_FUNCTION << '\n';
20 return 0.0;
21 }
22 };
23 } // end namespace FoFum
24
25 namespace {
26 template <typename T>
27 void baz(const T& x)
28 {
29 std::cout << BOOST_CURRENT_FUNCTION << '\n';
30 }

The First Brush with Boost's Utilities

[62]

32 } // end unnamed namespace
33
34 int main()
35 {
36 std::cout << BOOST_CURRENT_FUNCTION << '\n';
37 FoFum::Foo f;
38 f.bar();
39 FoFum::Foo::bar_static();
40 baz(f);
41 }

Depending on your compiler, the output you see would vary in format. GNU
compilers tend to have a more readable output, while on Microsoft Visual Studio
you will see some very elaborate output including details such as calling
conventions. In particular, the output for template instantiations is much more
elaborate on Visual Studio. Here is a sample output I see on my systems.

With GNU g++:

int main()
void FoFum::Foo::bar()
float FoFum::Foo::bar1(int) const
static void FoFum::Foo::bar_static()
void {anonymous}::baz(const T&) [with T = FoFum::Foo]

With Visual Studio:

int __cdecl main(void)
void __thiscall FoFum::Foo::bar(void)
float __thiscall FoFum::Foo::bar1(int) const
void __cdecl FoFum::Foo::bar_static(void)
void __cdecl 'anonymous-namespace'::baz<class FoFum::Foo>(const class
FoFum::Foo &)

You can immediately see some differences. GNU compilers call out static methods
from nonstatic ones. On Visual Studio, you have to differentiate based on calling
conventions (__cdecl for static member methods as well as global methods, __
thiscall for instance methods). You might want to take a look at the current_
function.hpp header file to figure out which macros are used behind the scenes.
On GNU compilers, for example, it is __PRETTY_FUNCTION__, while on Visual
Studio, it is __FUNCSIG__.

Chapter 2

[63]

Boost.Swap
The Boost Swap library is yet another useful micro library and is part of Boost Core:

#include <boost/core/swap.hpp>
namespace boost {
 template<typename T1, typename T2>
 void swap(T1& left, T2& right);
}

It wraps a well-known idiom around swapping objects. Let us first look at the
problem itself to understand what is going on.

There is one global swap function in the std namespace. In many cases, for a type
defined in a particular namespace, a specialized swap overload may be provided
in the same namespace. When writing generic code, this can pose some challenges.
Imagine a generic function that calls swap on its arguments:

 1 template <typename T>
 2 void process_values(T& arg1, T& arg2, …)
 3 {
 4 …
 5 std::swap(arg1, arg2);

In the preceding snippet, we call std::swap on line 5 to perform the swapping.
While this is well-formed, this may not do what is desired in some cases. Consider
the following types and functions in the namespace X:

 1 namespace X {
 2 struct Foo {};
 3
 4 void swap(Foo& left, Foo& right) {
 5 std::cout << BOOST_CURRENT_FUNCTION << '\n';
 6 }
 7 }

Of course, X::Foo is a trivial type and X::swap is a no-op, but they can be replaced
with a meaningful implementation and the points we make here would still hold.

The First Brush with Boost's Utilities

[64]

So, what happens if you call the function process_values on two arguments of
type X::Foo?

 1 X::Foo f1, f2;
 2 process_values(f1, f2, …); // calls process_values<X::Foo>

The call to process_values (line 2) will call std::swap on the passed instances
of X::Foo, that is, f1 and f2. Yet, we would likely have wanted X::swap be called on
f1 and f2 because it is a more appropriate overload. There is a way to do this; you call
boost::swap instead. Here is the rewrite of the process_values template snippet:

 1 #include <boost/core/swap.hpp>
 2
 3 template <typename T>
 4 void process_values(T& arg1, T& arg2, …)
 5 {
 6 …
 7 boost::swap(arg1, arg2);

If you now run this code, you will see the X::swap overload printing its name to the
console. To understand how boost::swap manages to call the appropriate overload,
we need to understand how we could have solved this without boost::swap:

 1 template <typename T>
 2 void process_values(T& arg1, T& arg2, …)
 3 {
 4 …
 5 using std::swap;
 6 swap(arg1, arg2);

If we did not have the using declaration (line 5), the call to swap (line 6) would still
have succeeded for a type T that was defined in a namespace, which had a swap
overload defined for T—thanks to Argument Dependent Lookup (ADL)—X::Foo,
accompanied by X::swap, is such a type. However, it would have failed for types
defined in the global namespace (assuming you didn't define a generic swap in the
global namespace). With the using declaration (line 5), we create the fallback for the
unqualified call to swap (line 6). When ADL succeeds in finding a namespace level
swap overload, the call to swap gets resolved to this overload. When ADL fails to find
such an overload, then std::swap is used, as dictated, by the using declaration. The
problem is that this is a nonobvious trick, and you have to know it to use it. Not every
engineer in your team will come equipped with all the name lookup rules in C++. In
the meantime, he can always use boost::swap, which essentially wraps this piece
of code in a function. You can now use just one version of swap and expect the most
appropriate overload to be invoked each time.

Chapter 2

[65]

Compile-time asserts
Compile-time asserts require certain conditions to hold true at some point in the
code. Any violation of the condition causes the compilation to fail at the point. It is
an effective way to find errors at compile time, which otherwise would cause serious
grief at runtime. It may also help reduce the volume and verbosity of compiler error
messages of the sort generated due to template instantiation failures.

Runtime asserts are meant to corroborate the invariance of certain conditions that
must hold true at some point in the code. Such a condition might be the result of
the logic or algorithm used or could be based on some documented convention.
For example, if you are writing a function to raise a number to some power, how do
you handle the mathematically undefined case of both the number and the power
being zero? You can use an assert to express this explicitly, as shown in the following
snippet (line 6):

 1 #include <cassert>
 2
 3 double power(double base, double exponent)
 4 {
 5 // no negative powers of zero
 6 assert(base != 0 || exponent > 0);
 7 …
 8 }

Any violation of such invariants indicates a bug or a flaw, which needs to be fixed,
and causes a catastrophic failure of the program in debug builds. Boost provides
a macro called BOOST_STATIC_ASSERT that takes an expression, which can be
evaluated at compile time and triggers a compilation failure if this expression
evaluates to false.

For example, you may have designed a memory allocator class template that
is meant to be used only with "small" objects. Of course, smallness is arbitrary,
but you can design your allocator to be optimized for objects of size 16 bytes or
smaller. If you want to enforce correct usage of your class, you should simply
prevent its instantiation for any class of size greater than 16 bytes. Here is our
first example of BOOST_STATIC_ASSERT that helps you enforce the small object
semantics of your allocator:

Listing 2.16a: Using compile-time asserts

 1 #include <boost/static_assert.hpp>
 2
 3 template <typename T>

The First Brush with Boost's Utilities

[66]

 4 class SmallObjectAllocator
 5 {
 6 BOOST_STATIC_ASSERT(sizeof(T) <= 16);
 7
 8 public:
 9 SmallObjectAllocator() {}
10 };

We define our dummy allocator template called SmallObjectAllocator (lines
3 and 4) and call the BOOST_STATIC_ASSERT macro in the class scope (line 6).
We pass an expression to the macro that must be possible to evaluate at compile
time. Now, sizeof expressions are always evaluated by the compiler and 16 is an
integer literal, so the expression sizeof(T) <= 16 can be entirely evaluated at
compile time and can be passed to BOOST_STATIC_ASSERT. If we now instantiate
the SmallObjectAllocator with a type Foo, whose size is 32 bytes, we will get a
compiler error due to the static assert on line 6. Here is the code that can trigger
the assertion:

Listing 2.16b: Using compile-time asserts

11 struct Foo
12 {
13 char data[32];
14 };
15
16 int main()
17 {
18 SmallObjectAllocator<int> intAlloc;
19 SmallObjectAllocator<Foo> fooAlloc; // ERROR: sizeof(Foo) > 16
20 }

We define a type Foo whose size is 32 bytes, which is larger than the
maximum supported by SmallObjectAllocator (line 13). We instantiate the
SmallObjectAllocator template with the types int (line 18) and Foo (line 19) . The
compilation fails for SmallObjectAllocator<Foo>, and we get an error message.

C++11 supports compile-time asserts using the new static_
assert keyword. If you are using a C++11 compiler, BOOST_
STATIC_ASSERT internally uses static_assert.

Chapter 2

[67]

The actual error message naturally varies from compiler to compiler, especially on
C++03 compilers. On C++11 compilers, because this internally uses the static_
assert keyword, the error message tends to be more uniform and meaningful.
However, on pre-C++11 compilers too, you get a fairly accurate idea of the
offending line. On my system, using the GNU g++ compiler in C++03 mode,
I get the following errors:

StaticAssertTest.cpp: In instantiation of 'class
SmallObjectAllocator<Foo>':
StaticAssertTest.cpp:19:29: required from here
StaticAssertTest.cpp:6:3: error: invalid application of 'sizeof' to
incomplete type 'boost::STATIC_ASSERTION_FAILURE<false>'

The last line of the compiler error refers to an incomplete type boost::STATIC_
ASSERTION_FAILURE<false>, which comes from the innards of the BOOST_STATIC_
ASSERT macro. It is clear that there was an error on line 6, and the static assertion
failed. If I switch to C++11 mode, the error messages are a lot saner:

StaticAssertTest.cpp: In instantiation of 'class
SmallObjectAllocator<Foo>':
StaticAssertTest.cpp:19:29: required from here
StaticAssertTest.cpp:6:3: error: static assertion failed: sizeof(T) <=
16

There is another variant of the static assert macro called BOOST_STATIC_ASSERT,
which takes a message string as the second parameter. With C++11 compilers, it
simply prints this message for the error message. Under pre-C++11 compilers, this
message may or may not make it to the compiler error content. You use it this way:

 1 BOOST_STATIC_ASSERT_MSG(sizeof(T) <= 16, "Objects of size more"
 2 " than 16 bytes not supported.");

Not all expressions can be evaluated at compile time. Mostly, expressions involving
constant integers, sizes of types, and general type computations can be evaluated at
compile time. The Boost TypeTraits library and the Boost Metaprogramming Library
(MPL) offer several metafunctions using which many sophisticated conditions can be
checked on types at compile time. We illustrate such use with a small example. We
will see more examples of such use in later chapters.

The First Brush with Boost's Utilities

[68]

We may use static assertions not only in class scope but also in function and
namespace scope. Here is an example of a library of function templates that allow
bitwise operations on different POD types. When instantiating these functions,
we assert at compile time that the types passed are POD types:

Listing 2.17: Using compile-time asserts

 1 #include <boost/static_assert.hpp>
 2 #include <boost/type_traits.hpp>
 3
 4 template <typename T, typename U>
 5 T bitwise_or (const T& left, const U& right)
 6 {
 7 BOOST_STATIC_ASSERT(boost::is_pod<T>::value &&
 8 boost::is_pod<U>::value);
 9 BOOST_STATIC_ASSERT(sizeof(T) >= sizeof(U));
10
11 T result = left;
12 unsigned char *right_array =
13 reinterpret_cast<unsigned char*>(&right);
14 unsigned char *left_array =
15 reinterpret_cast<unsigned char*>(&result);
16 for (size_t i = 0; i < sizeof(U); ++i) {
17 left_array[i] |= right_array[i];
18 }
19
20 return result;
21 }

Here, we define a function bitwise_or (lines 4 and 5) , which takes two objects,
potentially of different types and sizes, and returns the bitwise-or of their content.
Inside this function, we use the metafunction boost::is_pod<T> to assert that both
the objects passed are of POD types (line 7). Also, because the return type of the
function is T, the type of the left argument, we assert that the function must always
be called with the larger argument first (line 9) so that there is no data loss.

Chapter 2

[69]

Diagnostics using preprocessor macros
A number of times in my career as a software engineer, I have worked on products
with a single code base that were built on five different flavors of Unix and on
Windows, often in parallel. Often these build servers would be big iron servers with
hundreds of gigs of attached storage that would be used by multiple products for
the purpose of building. There would be myriad environments, tool chains, and
configurations cohabiting on the same server. It must have taken ages to stabilize
these systems to a point where everything built perfectly. One day, all hell broke
loose when, overnight, without any significant check-ins having gone in, our
software started acting weird. It took us almost a day to figure out that someone had
tinkered with the environment variables, as a result of which we were linking using
a different version of the compiler and linking with a different runtime from the one
with which our third-party libraries were built. I don't need to tell you that this was
not ideal for a build system even at the time that it existed. Unfortunately, you may
still find such messed up environments that take a long time to set up and then get
undone by a flippant change. What saved us that day after half a day's fruitless toil
was the good sense of using preprocessor macros to dump information about the
build system, including compiler names, versions, architecture, and their likes at
program startup. We could soon glean enough information from this data dumped
by the program, before it inevitably crashed and we spotted the compiler mismatch.

Such information is doubly useful for library writers who might be able to provide the
most optimal implementation of a library on each compiler or platform by leveraging
specific interfaces and doing conditional compilation of code based on preprocessor
macro definitions. The bane of working with such macros is, however, the absolute
disparity between different compilers, platforms, and environments on how they
are named and what their function is. Boost provides a much more uniform set of
preprocessor macros for gleaning information about the software build environment
through its Config and Predef libraries. We will look at a handful of useful macros
from these libraries.

The First Brush with Boost's Utilities

[70]

The Predef library is a header-only library that provides all sorts of macros for
getting useful information about the build environment at compile time. The
information available can fall into different categories. Rather than providing a long
list of options and explaining what they do—a job that the online documentation
does adequately—we will look at the following code to illustrate how this
information is accessed and used:

Listing 2.18a: Using diagnostic macros from Predef

 1 #include <boost/predef.h>
 2 #include <iostream>
 3
 4 void checkOs()
 5 {
 6 // identify OS
 7 #if defined(BOOST_OS_WINDOWS)
 8 std::cout << "Windows" << '\n';
 9 #elif defined(BOOST_OS_LINUX)
10 std::cout << "Linux" << '\n';
11 #elif defined(BOOST_OS_MACOS)
12 std::cout << "MacOS" << '\n';
13 #elif defined(BOOST_OS_UNIX)
14 std::cout << Another UNIX" << '\n'; // *_AIX, *_HPUX, etc.
15 #endif
16 }

The preceding function uses the BOOST_OS_* macros from the Predef library
to identify the OS on which the code is built. We have only shown macros for
three different OSes. The online documentation provides a full list of macros for
identifying different OSes.

Listing 2.18b: Using diagnostic macros from Predef

 1 #include <boost/predef.h>
 2 #include <iostream>
 3
 4 void checkArch()
 5 {
 6 // identify architecture
 7 #if defined(BOOST_ARCH_X86)
 8 #if defined(BOOST_ARCH_X86_64)
 9 std::cout << "x86-64 bit" << '\n';
10 #else
11 std::cout << "x86-32 bit" << '\n';
12 #endif

Chapter 2

[71]

13 #elif defined(BOOST_ARCH_ARM)
14 std::cout << "ARM" << '\n';
15 #else
16 std::cout << "Other architecture" << '\n';
17 #endif
18 }

The preceding function uses the BOOST_ARCH_* macros from the Predef library to
identify the architecture of the platform on which the code is built. We have only
shown macros for x86 and ARM architectures; the online documentation provides a
complete list of macros for identifying different architectures.

Listing 2.18c: Using diagnostic macros from Predef

 1 #include <boost/predef.h>
 2 #include <iostream>
 3
 4 void checkCompiler()
 5 {
 6 // identify compiler
 7 #if defined(BOOST_COMP_GNUC)
 8 std::cout << "GCC, Version: " << BOOST_COMP_GNUC << '\n';
 9 #elif defined(BOOST_COMP_MSVC)
10 std::cout << "MSVC, Version: " << BOOST_COMP_MSVC << '\n';
11 #else
12 std::cout << "Other compiler" << '\n';
13 #endif
14 }

The preceding function uses the BOOST_COMP_* macros from the Predef library to
identify the compiler that was used to build the code. We have only shown macros
for GNU and Microsoft Visual C++ compilers. The online documentation provides
a complete list of macros for identifying different compilers. When defined, the
BOOST_COMP_* macro for a particular compiler evaluates to its numeric version. For
example, on Visual Studio 2010, BOOST_COMP_MSVC evaluates to 100030319. This
could be translated as version 10.0.30319:

Listing 2.18d: Using diagnostic macros from Predef

 1 #include <boost/predef.h>
 2 #include <iostream>
 3
 4 void checkCpp11()
 5 {
 6 // Do version checks

The First Brush with Boost's Utilities

[72]

 7 #if defined(BOOST_COMP_GNUC)
 8 #if BOOST_COMP_GNUC < BOOST_VERSION_NUMBER(4, 8, 1)
 9 std::cout << "Incomplete C++ 11 support" << '\n';
10 #else
11 std::cout << "Most C++ 11 features supported" << '\n';
12 #endif
13 #elif defined(BOOST_COMP_MSVC)
14 #if BOOST_COMP_MSVC < BOOST_VERSION_NUMBER(12, 0, 0)
15 std::cout << "Incomplete C++ 11 support" << '\n';
16 #else
17 std::cout << "Most C++ 11 features supported" << '\n';
18 #endif
19 #endif
20 }

In the preceding code, we use the BOOST_VERSION_NUMBER macro to construct
versions against which we compare the current version of the GNU or Microsoft
Visual C++ compilers. If the GNU compiler version is less than 4.8.1 or the Microsoft
Visual Studio C++ compiler version is less than 12.0, we print that the support for
C++11 might be incomplete.

In the final example of this section, we use macros from boost/config.hpp to print
compiler, platform, and runtime library names (lines 6, 7, and 8). We also use two
macros defined in boost/version.hpp to print the version of Boost used, as a string
(line 10) and as a numeric value (line 11):

Listing 2.19: Using configuration information macros

 1 #include <boost/config.hpp>
 2 #include <boost/version.hpp>
 3 #include <iostream>
 4
 5 void buildEnvInfo() {
 6 std::cout << "Compiler: " << BOOST_COMPILER << '\n'
 7 << "Platform: " << BOOST_PLATFORM << '\n'
 8 << "Library: " << BOOST_STDLIB << '\n';
 9
10 std::cout << "Boost version: " << BOOST_LIB_VERSION << '['
11 << BOOST_VERSION << ']' << '\n';
12 }

Chapter 2

[73]

Self-test questions
For multiple choice questions, choose all the options that apply:

1. What are the advantages of using boost::swap over std::swap?
a. There is no real advantage
b. boost::swap invokes swap overloads supplied with the passed type, if
any
c. boost::swap is faster than std::swap
d. boost::swap does not throw exceptions

2. Can you apply a visitor to multiple variant arguments in a single call? (Hint:
you may want to look up the online documentation)
a. Yes. A visitor can only be applied to one or two variant arguments
b. Yes. A visitor can be applied to one or more arguments
c. No. The member operators take only one variant argument
d. None of the above

3. Is the following a valid compile-time assert?
BOOST_STATIC_ASSERT(x == 0); // x is some variable

a. Yes, provided x is of an integral type
b. Yes, provided x is declared as a const static numeric variable
c. No, x is a variable, and its value cannot be known at compile time
d. Only expressions involving sizeof are valid in a BOOST_STATIC_ASSERT

4. What do we mean when we say that a type X is a POD type?
a. X does not have a user-defined constructor or destructor
b. X can be copied by copying its memory layout bit-wise
c. X does not have a user-defined copy constructor or copy
assignment operator
d. All of the above

The First Brush with Boost's Utilities

[74]

5. What is the type and value stored in a default-constructed object of type
boost::variant<std::string, double>?
a. The type is const char* and value is NULL
b. The type is double and value is 0.0
c. The type is std::string and value is the default constructed
std::string

d. The type is boost::optional<double> and value is empty

6. Check the reference on Boost.Optional in the online documentation for
the latest Boost libraries. What happens if you call the get and get_ptr
methods on an empty optional object?

a. Both throw the boost::empty_optional exception
b. get throws an exception, while get_ptr returns a null pointer
c. get asserts, while get_ptr returns a null pointer
d. Both get and get_ptr assert

Summary
This chapter was a quick tour of several Boost libraries that help you do important
programming chores, such as parsing command lines, creating type-safe variant
types, handling empty values, and performing compile-time checks.

Hopefully, you have appreciated the diversity of libraries in Boost and the
expressive power they lend to your code. In the process, you would have also
become more familiar with compiling code that uses the Boost libraries and
linking to the appropriate libraries as needed.

In the next chapter, we will look at how you can deterministically manage heap
memory and other resources in exception-safe ways using various flavors of
Boost's smart pointers.

References
Curiously Recurring Template Pattern: https://en.wikibooks.org/wiki/
More_C%2B%2B_Idioms/Curiously_Recurring_Template_Pattern

https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Curiously_Recurring_Template_Pattern
https://en.wikibooks.org/wiki/More_C%2B%2B_Idioms/Curiously_Recurring_Template_Pattern

[75]

Memory Management and
Exception Safety

C++ has a great deal of compatibility with the C programming language. C++ retains
pointers for representing and accessing specific memory addresses and provides
manual memory management primitives via the new and delete operators. You can
also seamlessly access from C++, the C Standard Library functions and C system
calls or platform APIs of most major operating systems. Naturally, C++ code often
deals with handles to various OS resources, like heap memory, open files, sockets,
threads, and shared memory. Acquiring such resources and failing to release them
could have undesirable consequences for your programs, showing up as insidious
bugs, including memory leaks and deadlocks.

In this chapter, we look at ways of encapsulating pointers to dynamically-allocated
objects using smart pointers to ensure that they are automatically deallocated
when they are no longer needed. We then extend these techniques to non-memory
resources. In the process, we develop an understanding of what is meant by
exception-safe code and use smart pointers to write such code.

These topics are divided into the following sections:

• Dynamic memory allocation and exception safety
• Smart pointers
• Unique ownership semantics
• Shared ownership semantics

For some sections of this chapter, you will need access to a compiler with C++11
support. This will be called out with additional instructions in individual sections.

Memory Management and Exception Safety

[76]

Dynamic memory allocation and
exception safety
Imagine that you have to write a program to rotate images. Your program takes
the name of the file and the angle of rotation as input, reads the contents of the file,
performs the processing, and returns the output. Here is some sample code.

 1 #include <istream>
 2 #include <fstream>
 3 typedef unsigned char byte;
 4
 5 byte *rotateImage(std::string imgFile, double angle,
 6 size_t& sz) {
 7 // open the file for reading
 8 std::ifstream imgStrm(imgFile.c_str(), std::ios::binary);
 9
10 if (imgStrm) {
11 // determine file size
12 imgStrm.seekg(0, std::ios::end);
13 sz = imgStrm.tellg();
14 imsStrm.seekg(0); // seek back to start of stream
15
16 byte *img = new byte[sz]; // allocate buffer and read
17 // read the image contents
18 imgStrm.read(reinterpret_cast<char*>(img), sz);
19 // process it
20 byte *rotated = img_rotate(img, sz, angle);
21 // deallocate buffer
22 delete [] img;
23
24 return rotated;
25 }
26
27 sz = 0;
28 return 0;
29 }

Chapter 3

[77]

The actual work of rotating the image is done by an imaginary C++ API called
img_rotate (line 20). The img_rotate function takes three parameters: the contents
of the image as an array of bytes, the size of the array in a non-const reference, and
the angle of rotation. It returns the contents of the rotated image as a dynamically-
allocated byte array. The size of this array is returned via the reference passed as the
third parameter. This is an imperfect code, more reminiscent of C. Code like this is
surprisingly common "in the wild" and that's why it is important to know its pitfalls.
So, let us dissect the problem.

In order to read the contents of the image file, we first determine the size of the file
(lines 12-13), and then allocate a byte array img just big enough to hold the entire
data in the file (line 16). We read the image contents (line 18), and after performing
rotation of the image through a call to img_rotate, we delete the buffer img
containing the original image (line 22). Finally, we return the byte array with the
rotated image (line 24). For simplicity, we do not check for read errors (line 18).

There are two glaring issues in the preceding code. If the rotation of the image failed
(line 19) and img_rotate threw an exception, then the function rotateImage would
return without deallocating the byte buffer img, which would thus be leaked. This is a
definitive example of code that is not well-behaved in the face of exceptions, that is,
it is not exception-safe. Moreover, even if everything went right, the function would
return the rotated buffer (line 24), which itself was dynamically-allocated. So we
leave its deallocation entirely at the caller's mercy with no guarantees whatsoever.
We ought to do better.

There is a third less obvious problem. The img_rotate function ought to have
documented how it allocates memory for us to know how to free it—by calling the
array delete (delete []) operator (line 22). But what if there was a more efficient
custom memory management scheme that the developers of img_rotate found
and wanted to use in the next version? They would avoid doing so; otherwise all
of their client code would break as the delete [] operator may no longer be the
correct way to deallocate that memory. Ideally, this is one detail that the clients of
the img_rotate API should never have had to bother about.

Memory Management and Exception Safety

[78]

Exception safety and RAII
In the previous example, we looked informally at the concept of exception safety. We
saw that a potential exception thrown from the img_rotate API could leak resources
in the rotateImage function. It turns out that you can reason about the behavior of
your code in the face of exceptions in terms of a set of criteria called
The Abrahams Exception Safety Guarantees. They are named after Dave Abrahams,
the Boost cofounder and an eminent C++ Standards Committee member, who
formalized these guarantees in 1996. They have since been refined further by others,
including notably Herb Sutter, and are listed below:

• Basic guarantee: An operation terminated midway preserves invariants
and does not leak resources

• Strong guarantee: An operation terminated midway will not have any
effect, that is, the operation is atomic

• No-throw guarantee: An operation that cannot fail

An operation that does not satisfy any of these criteria is said to be "not
exception-safe" or more colloquially, exception-unsafe. The appropriate level
of exception safety for an operation is the programmer's prerogative but
exception-unsafe code is rarely acceptable.

The most fundamental and effective C++ technique for making code exception-safe
goes by the curious name Resource Acquisition is Initialization (RAII). The RAII
idiom proposes the following model for encapsulating resources that require
manual management:

1. Encapsulate resource acquisition in the constructor of a wrapper object.
2. Encapsulate resource release in the destructor of the wrapper object.
3. Additionally, define consistent copy and move semantics for the wrapper

object or disable them.

If the wrapper object is created on the stack, its destructor is called for normal scope
exit as well as exit due to exceptions. Otherwise, the wrapper object itself should be
managed by the RAII idiom. Loosely speaking, you either create your objects on the
stack or manage them using RAII. At this point, some examples are in order, and we
can go straight back to the image rotation example and fix it using RAII:

 1 struct ScopeGuard
 2 {
 3 ScopeGuard(byte *buffer) : data_(buffer) {}

Chapter 3

[79]

 4 ~ScopeGuard() { delete [] data_; }
 5
 6 byte *get() { return data_; }
 7 private:
 8 byte *data_;
 9 };
10
11 byte *rotateImage(std::string imgFile, double angle, size_t& sz)
12 {
13 // open the file for reading
14 std::ifstream imgStrm(imgFile.c_str(), std::ios::binary);
15
16 if (imgStrm) {
17 // determine file size
18 imgStrm.seekg(0, std::ios::end);
19 sz = imgStrm.tellg();
20 imgStrm.seekg(0);
21
22 // allocate buffer and read
23 ScopeGuard img(new byte[sz]);
24 // read the image contents
25 imgStrm.read(reinterpret_cast<char*>(img.get()), sz);
26 // process it
27 return img_rotate(img.get(), sz, angle);
28 } // ScopeGuard destructor
29
30 sz = 0;
31 return 0;
32 }

The preceding code is a modest attempt that makes the rotateImage function
exception-safe, provided the img_rotate function itself is exception-safe. First up
we define a struct called ScopeGuard (lines 1-9) for encapsulating character arrays
allocated by the array new operator. It takes a pointer to an allocated array as its
constructor argument and sets the data member data_ to this pointer (line 3). Its
destructor deallocates the array pointed to by its data_ member using the array
delete operator (line 4). The get member function (line 6) provides a way to get the
underlying pointer from a ScopeGuard object.

Memory Management and Exception Safety

[80]

Inside the rotateImage function, we instantiate a ScopeGuard object called img,
wrapping the byte array allocated using array new operator (line 23). We call read
on the open file stream and pass to it the raw byte array obtained by calling the get
method on img (line 25). We assume read always succeeds but, in production code,
we should always have proper error checks in place. Finally, we call the img_rotate
API and return the rotated image it returns (line 27). As we exit the scope, the
ScopeGuard destructor is called and automatically deallocates the encapsulated byte
array (line 28). Even if img_rotate threw an exception, the ScopeGuard destructor
would still be called as part of stack unwinding. Through the use of RAII via the
ScopeGuard class, we are able to claim that the rotateImage function can never leak
the buffer containing the image data.

On the other hand, the buffer containing the rotated image returned by rotateImage
could be leaked, unless the caller takes care to assign it to a pointer and then duly
release it in an exception-safe way. The ScopeGuard class in its current form is no
good there. It turns out that Boost ships different kinds of smart pointer templates to
address various use cases like these, and it is worthwhile to understand these smart
pointers and the patterns of resource acquisition, and the exception safety problems
they help solve.

Smart pointers
A smart pointer, definitively, is a class that encapsulates access to a pointer and
often manages memory associated with the pointer. If you paid attention, you would
have noticed the similarity smart pointers have with pineapples—smart pointers
are classes, not pointers, just as pineapples aren't really apples. Moving away from
fruit analogies, different types of smart pointers often have additional features like
bounds-checking, null-checking, and access control, among others. In C++, smart
pointers usually overload the dereference operator (operator->), which allows any
method calls invoked on the smart pointer using operator-> to be bound to the
underlying pointer.

Boost includes a set of four different smart pointers with differing semantics. Also,
because C++ often uses pointers to identify and manipulate arrays of objects, Boost
provides two different smart array templates that encapsulate array access via
pointers. In the following sections, we study the different classes of smart pointers
from Boost and their semantics. We will also look at std::unique_ptr, a C++11
smart pointer class that supersedes one of the Boost smart pointers and supports
semantics not readily available from Boost.

Chapter 3

[81]

Unique ownership semantics
Consider the following code snippet for instantiating an object and calling a
method on it:

 1 class Widget;
 2
 3 // …
 4
 5 void useWidget()
 6 {
 7 Widget *wgt = new Widget;
 8 wgt->setTitle(...);
 9 wgt->setSize(...);
10 wgt->display(...);
11 delete wgt;
12 }

As we saw in the previous section, the preceding code is not exception-safe.
Exceptions thrown from operations after the Widget object is constructed on
dynamic memory (line 7) and before the Widget object is destroyed (line 11), can
cause the dynamically-allocated memory for the Widget object to leak. To fix this,
we need something akin to the ScopeGuard class we wrote in the previous section,
and Boost obliges with the boost::scoped_ptr template.

boost::scoped_ptr
Here is the preceding example fixed using scoped_ptr. The scoped_ptr template
is available from the header file boost/scoped_ptr.hpp. It is a header-only library,
and you don't need to link your program against any other libraries:

Listing 3.1: Using scoped_ptr

 1 #include <boost/scoped_ptr.hpp>
 2 #include "Widget.h" // contains the definition of Widget
 3
 4 // …
 5
 6 void useWidget()
 7 {
 8 boost::scoped_ptr<Widget> wgt(new Widget);
 9 wgt->setTitle(...);
10 wgt->setSize(...);
11 wgt->display(...);
12 }

Memory Management and Exception Safety

[82]

In the preceding code, wgt is an object of type scoped_ptr<Widget>, which is a
drop-in replacement for the Widget* pointer. We initialize it with a dynamically-
allocated Widget object (line 8) and drop the call to delete. These are the only two
changes needed to make this code exception-safe.

Smart pointers like scoped_ptr and others from Boost, take care of calling delete
on the encapsulated pointer in their destructor. When useWidget completes or
if an exception terminates it midway, the destructor of the scoped_ptr instance
wgt will be invoked and will destroy the Widget object and release its memory.
The overloaded dereference operator (operator->) in scoped_ptr allows Widget
members to be accessed via the wgt smart pointer (lines 9-11).

The destructor of boost::scoped_ptr template uses boost::checked_delete
to release the dynamically-allocated memory that the encapsulated pointer points
to. Thus, the type of the object pointed to by the encapsulated pointer must be
completely defined at the point the boost::scoped_ptr instance goes out of scope;
otherwise, the code will fail to compile.

The boost::scoped_ptr is the simplest of Boost's smart pointers. It takes ownership
of the dynamically-allocated pointer passed and calls delete on it inside its own
destructor. This binds the life of the underlying object to the scope in which the
encapsulating scoped_ptr operates—hence, the name scoped_ptr. Essentially, it
implements RAII on the encapsulated pointer. Moreover, scoped_ptr cannot be
copied. This means that a dynamically-allocated object can only be wrapped by one
scoped_ptr instance at any given point in time. Thus, scoped_ptr is said to exhibit
unique ownership semantics. Note that scoped_ptr instances cannot be stored in
Standard Library containers because they can neither be copied nor moved from in
the C++11 sense.

In the following example, we explore some more features of scoped_ptr:

Listing 3.2: scoped_ptr in detail

 1 #include <boost/scoped_ptr.hpp>
 2 #include <cassert>
 3 #include "Widget.h" // Widget definition
 4 // …
 5
 6 void useTwoWidgets()
 7 {
 8 // default constructed scoped_ptr
 9 boost::scoped_ptr<Widget> wgt;
10 assert(!wgt); // null test - Boolean context

Chapter 3

[83]

11
12 wgt.reset(new Widget); // create first widget
13 assert(wgt); // non-null test – Boolean context
14 wgt->display(); // display first widget
15 wgt.reset(new Widget); // destroy first, create second widget
16 wgt->display(); // display second widget
17
18 Widget *w1 = wgt.get(); // get the raw pointer
19 Widget& rw1 = *wgt; // 'dereference' the smart pointer
20 assert(w1 == &rw1); // same object, so same address
21
22 boost::scoped_ptr<Widget> wgt2(new Widget);
23 Widget *w2 = wgt2.get();
24 wgt.swap(wgt2);
25 assert(wgt.get() == w2); // effect of swap
26 assert(wgt2.get() == w1); // effect of swap
27 }

In this example, we first construct an object of type scoped_ptr<Widget> using its
default constructor (line 9). This creates a scoped_ptr containing a null pointer.
Any attempts to dereference such a smart pointer will result in undefined behavior
typically leading to a crash. scoped_ptr supports implicit conversion to a Boolean
value; so we can use a scoped_ptr object like wgt in Boolean contexts to check
whether the encapsulated pointer is null or not. In this case, we know that it should
be null because it is default-constructed; hence, we assert on wgt being null (line 10).

There are two ways to change the pointer contained inside a scoped_ptr and
one of them is to use the reset member method of scoped_ptr. When we call
reset on a scoped_ptr, the encapsulated pointer is deallocated and scoped_ptr
takes ownership of the newly passed pointer in its place. Thus, we can use reset
to change the pointer owned by a scoped_ptr instance (line 12). Following this,
scoped_ptr contains a non-null pointer, and we assert as much using the ability
to implicitly convert scoped_ptr to a Boolean value (line 13). Next, we call reset
again to store a new pointer in wgt (line 15). In this case, the earlier stored pointer is
deallocated, and the underlying object is destroyed before the new pointer is stored.

We can get at the underlying pointer by calling the get member function of scoped_
ptr (line 18). We can also get a reference to the object pointed to by the smart pointer
by dereferencing the smart pointer (line 19). We assert the fact that this reference and
the pointer returned by get both point to the same object (line 20).

Memory Management and Exception Safety

[84]

There is of course a second way to change the pointer contained inside a
scoped_ptr. By swapping two scoped_ptr objects, their encapsulated pointers
are swapped (lines 24-26). This is the only way to change the owning scoped_ptr
of a dynamically-allocated object.

In summary, we can say that once you have wrapped an object in a scoped_ptr, it
can never be detached from a scoped_ptr. The scoped_ptr could destroy the object
and take on a new object (using the reset member function), or it could swap its
pointer with that in another scoped_ptr. In that sense, scoped_ptr exhibits unique,
transferrable ownership semantics.

Uses of scoped_ptr
scoped_ptr is a lightweight and versatile smart pointer that is capable of more than
just acting as a scope guard. Here is a look at how it can be used in code.

Creating exception-safe scopes
scoped_ptr is useful in creating exception-safe scopes, when objects are
dynamically-allocated in some scope. C++ allows objects to be created on the stack
and often that is the route you would take to create objects instead of allocating them
dynamically. But, in some cases, you would need to instantiate an object by calling
factory functions that return pointers to the dynamically-allocated objects. This
could be from some legacy library and scoped_ptr can be a handy wrapper for such
pointers. In the following example, makeWidget is one such factory function that
returns a dynamically-allocated Widget:

 1 class Widget { ... };
 2
 3 Widget *makeWidget() // Legacy function
 4 {
 5 return new Widget;
 6 }
 7
 8 void useWidget()
 9 {
10 boost::scoped_ptr<Widget> wgt(makeWidget());
11 wgt->display(); // widget displayed
12 } // Widget destroyed on scope exit

In general, useWidget in the preceding form would be exception-safe, provided the
function makeWidget called from within useWidget also is exception-safe.

Chapter 3

[85]

Transferring object ownership across functions
As non-copyable objects, scoped_ptr objects cannot be passed or returned by
value from functions. One may pass a non-const reference to a scoped_ptr as an
argument to a function, which resets its contents and puts a new pointer into the
scoped_ptr object.

Listing 3.3: Ownership transfer using scoped_ptr

 1 class Widget { ... };
 2
 3 void makeNewWidget(boost::scoped_ptr<Widget>& result)
 4 {
 5 result.reset(new Widget);
 6 result->setProperties(...);
 7 }
 8
 9 void makeAndUseWidget()
10 {
11 boost::scoped_ptr<Widget> wgt; // null wgt
12 makeNewWidget(wgt); // wgt set to some Widget object.
13 wgt->display(); // widget #1 displayed
14
15 makeNewWidget(wgt); // wgt reset to some other Widget.
16 // Older wgt released.
17 wgt->display(); // widget #2 displayed
18 }

The makeNewWidget function uses the scoped_ptr<Widget> reference passed
to it as an out parameter using it to return the dynamically-allocated object (line 5).
Each call to makeNewWidget (line 12, 15) replaces its previous content with a new
Widget object allocated dynamically and deletes the previous object. This is one
way to transfer ownership of an object allocated dynamically inside a function to a
scope outside the function. It is not frequently used, and there are more idiomatic
ways of achieving the same effect in C++11 using std::unique_ptr, as discussed in
the next section.

As a class member
Among the smart pointers from Boost, scoped_ptr is often used only as a local
scope guard in functions, when in fact, it can be a useful tool for ensuring exception
safety as a class member as well.

Memory Management and Exception Safety

[86]

Consider the following code in which the class DatabaseHandler creates two
dynamically-allocated objects of the imaginary types FileLogger and DBConnection
for logging to a file and connecting to a database. FileLogger and DBConnection
as well as their constructor parameters are imaginary classes that are used for
illustrative purposes.

// DatabaseHandler.h
 1 #ifndef DATABASEHANDLER_H
 2 #define DATABASEHANDLER_H
 3
 4 class FileLogger;
 5 class DBConnection;
 6
 7 class DatabaseHandler
 8 {
 9 public:
10 DatabaseHandler();
11 ~DatabaseHandler();
12 // other methods here
13
14 private:
15 FileLogger *logger_;
16 DBConnection *dbconn_;
17 };
18
19 #endif /* DATABASEHANDLER_H */

The preceding code is the listing for the DatabaseHandler class definition in the
header file DatabaseHandler.h. FileLogger and DBConnection are incomplete types
having only been forward-declared. We only declare pointers to them, and since the
size of pointers is not dependent on the size of the underlying types, the compiler does
not need to know the definitions of FileHandler and DBConnection to determine the
total size of the DatabaseHandler class in terms of its pointer constituents.

There is an advantage to designing classes like this. The clients of DatabaseHandler
include the DatabaseHandler.h file listed earlier but do not depend on the actual
definitions of FileLogger or DBConnection. If their definitions change, the clients
remain unaffected and do not need to recompile. This, in essence, is the idiom that
Herb Sutter popularized as the Pimpl Idiom. The actual implementation of the class
is abstracted in a separate source file:

// DatabaseHandler.cpp
 1 #include "DatabaseHandler.h"
 2

Chapter 3

[87]

 3 // Dummy concrete implementations
 4 class FileLogger
 5 {
 6 public:
 7 FileLogger(const std::string& logfile) {...}
 8 private:
 9 ...
10 };
11
12 class DBConnection
13 {
14 public:
15 DBConnection(const std::string& dbhost,
16 const std::string& username,
17 const std::string& passwd) {...}
18 private:
19 ...
20 };
21
22 // class methods implementation
23 DatabaseHandler::DatabaseHandler(const std::string& logFile,
24 const std::string& dbHost,
25 const std::string& user, const std::string& passwd)
26 : logger_(new FileLogger(logFile)),
27 dbconn_(new DBConnection(dbHost, user, passwd))
28 {}
29
30 ~DatabaseHandler()
31 {
32 delete logger_;
33 delete dbconn_;
34 }
35
36 // Other methods

In this source file, we have access to the concrete definitions of FileLogger and
DBConnection. Even if these definitions and other parts of our implementation
change, the clients of DatabaseHandler need not change or recompile as long as
DatabaseHandler's public methods and the class layout do not change.

Memory Management and Exception Safety

[88]

But this code is very brittle and can potentially leak memory and other resources.
Consider what happens if the FileLogger constructor throws an exception (line 26).
The memory allocated for the logger_ pointer is freed automatically and no further
damage is done. The exception propagates from the DatabaseHandler constructor to
the calling context and no object of DatabaseHandler is instantiated; so far so good.

Now consider if the FileLogger object was constructed successfully and then
the DBConnection constructor threw an exception (line 27). In this case, upon the
exception the memory allocated for the dbconn_ pointer would be automatically
freed, but not the memory allocated for the logger_ pointer. When an exception
occurs destructors of any fully constructed members of non-POD types would be
called. But logger_ is a raw pointer, which is a POD-type and therefore it does not
have a destructor. Thus, the memory pointed to by logger_ is leaked.

In general, if your class has multiple pointers pointing to dynamically-allocated
objects, ensuring exception safety becomes a challenge, and most procedural
solutions around using try/catch blocks scale quite badly. A smart pointer is the
perfect ingredient to fix these kinds of problems with very little code that scales.
We use a scoped_ptr below to fix the preceding example. Here is the header file:

Listing 3.4: Using scoped_ptr as class members

// DatabaseHandler.h
 1 #ifndef DATABASEHANDLER_H
 2 #define DATABASEHANDLER_H
 3
 4 #include <boost/scoped_ptr.hpp>
 5
 6 class FileLogger;
 7 class DBConnection;
 8
 9 class DatabaseHandler
10 {
11 public:
12 DatabaseHandler(const std::string& logFile,
13 const std::string& dbHost, const std::string& user,
14 const std::string& passwd);
15 ~DatabaseHandler();
16 // other methods here
17
18 private:

Chapter 3

[89]

19 boost::scoped_ptr<FileLogger> logger_;
20 boost::scoped_ptr<DBConnection> dbconn_;
21
22 DatabaseHandler(const DatabaseHandler&);
23 DatabaseHandler& operator=(const DatabaseHandler&);
24 };
25 #endif /* DATABASEHANDLER_H */

The logger_ and dbconn_ are now scoped_ptr instances rather than raw pointers
(lines 19 and 20). On the flip side, scoped_ptr being non-copyable, the compiler
cannot generate the default copy constructor and copy assignment operator. We
could either disable them like we have done here (line 22 and 23) or define them
ourselves. In general, defining copy semantics for scoped_ptr would make sense
only when the encapsulated type is copyable. On the other hand, move semantics
might be easier to define using the swap member function of scoped_ptr. Let us now
look at the changes to the source file:

// DatabaseHandler.cpp
 1 #include "DatabaseHandler.h"
 2
 3 // Dummy concrete implementations
 4 class FileLogger
 5 {
 6 public:
 7 FileLogger(const std::string& logfile) {...}
 8 private:
 9 ...
10 };
11
12 class DBConnection
13 {
14 public:
15 DBConnection(const std::string& dbhost,
16 const std::string& username,
17 const std::string& passwd) {...}
18 private:
19 ...
20 };
21
22 // class methods implementation
23 DatabaseHandler::DatabaseHandler(const std::string& logFile,

Memory Management and Exception Safety

[90]

24 const std::string& dbHost, const std::string& user,
25 const std::string& passwd)
26 : logger_(new FileLogger(logFileName)),
27 dbconn_(new DBConnection(dbsys, user, passwd))
28 {}
29
30 ~DatabaseHandler()
31 {}
32
33 // Other methods

We initialize the two scoped_ptr instances in the constructor initializer lists
(lines 26 and 27). If the DBConnection constructor throws (line 27), the destructor
of logger_, which is a scoped_ptr, is invoked, and it cleanly deallocates the
dynamically-allocated FileLogger object it encapsulated.

The DatabaseHandler destructor is empty (line 31) because there are no POD-
type members, and the destructors of the scoped_ptr members are automatically
invoked. But we still have to define the destructor. Can you guess why? If we left
it to the compiler to generate a definition, it would have generated the destructor
definition in the scope of the class definition in the header file. In that scope,
FileLogger and DBConnection were not completely defined, and the scoped_ptr
destructors would have failed to compile, as they use boost::checked_delete
(Chapter 2, The First Brush with Boost's Utilities)

boost::scoped_array
The scoped_ptr class template works great for single, dynamically-allocated objects.
Now if you remember our motivating example of writing an image rotation utility,
we needed to wrap a dynamic array in our custom ScopeGuard class to make
the rotateImage function exception-safe. Boost provides the boost::scoped_
array template as an array analogue for boost::scoped_ptr. The semantics of
boost::scoped_array are identical to those of boost::scoped_ptr, except that
this one has an overloaded subscript operator (operator[]) to access individual
elements of the wrapped array and does not provide overloaded operators for other
forms of indirection (operator* and operator->). Rewriting the rotateImage
function using scoped_array will be instructive at this point.

Listing 3.5: Using scoped_array

 1 #include <boost/scoped_array.hpp>
 2
 3 typedef unsigned char byte;

Chapter 3

[91]

 4
 5 byte *rotateImage(const std::string &imgFile, double angle,
 6 size_t& sz) {
 7 // open the file for reading
 8 std::ifstream imgStrm(imgFile, std::ios::binary);
 9
10 if (imgStrm) {
11 imgStrm.seekg(0, std::ios::end);
12 sz = imgStrm.tellg(); // determine file size
13 imgStrm.seekg(0);
14
15 // allocate buffer and read
16 boost::scoped_array<byte> img(new byte[sz]);
17 // read the image contents
18 imgStrm.read(reinterpret_cast<char*>(img.get()), sz);
19
20 byte first = img[0]; // indexed access
21 return img_rotate(img.get(), sz, angle);
22 }
23
24 sz = 0;
25 return 0;
26 }

We now use boost::scoped_array template in place of our ScopeGuard class to
wrap the dynamically-allocated array (line 16). Upon scope exit, due to normal
execution or exception, the destructor of scoped_array will invoke the array
delete operator (delete[]) on the contained dynamic array and deallocate it in
an exception-safe way. To highlight the ability to access array elements from the
scoped_array interface, we access the first byte using the overloaded operator[]
of scoped_array (line 20).

The scoped_array template is mainly useful while dealing with legacy code with
lots of dynamic arrays. Thanks to the overloaded subscript operator, scoped_arrays
are a drop-in replacement for dynamically-allocated arrays. Boxing up the dynamic
arrays in scoped_arrays is thus a fast path to exception safety. C++ advocates using
std::vectors over dynamic arrays and that might be your eventual goal. Yet as
wrappers with hardly any space overhead compared to vectors, scoped_arrays
could help transition faster to exception-safe code.

Memory Management and Exception Safety

[92]

std::unique_ptr
C++ 11 introduces the std::unique_ptr smart pointer template, which supersedes
the deprecated std::auto_ptr, supports the functionality of boost::scoped_ptr
and boost::scoped_array, and can be stored in Standard Library containers.
It is defined in the standard header file memory along with other smart pointers
introduced in C++11.

The member functions of std::unique_ptr are easily mapped to those of
boost::scoped_ptr:

• A default-constructed unique_ptr contains a null pointer (nullptr) just
like a default-constructed scoped_ptr.

• You can call the get member function to access the contained pointer.
• The reset member function frees the older pointer and takes ownership

of a new pointer (which could be null).
• The swap member function swaps contents of two unique_ptr instances

and always succeeds.
• You can dereference non-null unique_ptr instances with operator* and

access members using operator->.
• You can use unique_ptr instances in Boolean contexts to check for nullness

just like scoped_ptr instances.
• However, std::unique_ptr is more versatile than boost::scoped_ptr

in certain matters.
• A unique_ptr is movable, unlike scoped_ptr. Thus, it can be stored in

C++11 Standard Library containers and returned from functions.
• You can detach the pointer owned by a std::unique_ptr and manage

it manually if you have to.
• There is a unique_ptr partial specialization available for dynamically-

allocated arrays. scoped_ptr does not support arrays, and you have to
use the boost::scoped_array template for this purpose.

Ownership transfer using unique_ptr
The std::unique_ptr smart pointer can be used as a scope guard just like the
boost::scoped_ptr. Like boost::scoped_ptr, the type of the object pointed to by
the encapsulated pointer must be completely known at the point where unique_ptr
goes out of scope. However, unlike boost::scoped_ptr, a unique_ptr instance
need not be bound to a single scope and can be moved from one scope to another.

Chapter 3

[93]

The std::unique_ptr smart pointer template cannot be copied but does support
move semantics. Support for move semantics makes it possible to use std::unique_
ptr as a function return value that transfers ownership of dynamically-allocated
objects across functions. Here is such an example:

Listing 3.6a: Using unique_ptr

// Logger.h
 1 #include <memory>
 2
 3 class Logger
 4 {
 5 public:
 6 Logger(const std::string& filename) { ... }
 7 ~Logger() {...}
 8 void log(const std::string& message, ...) { ... }
 9 // other methods
10 };
11
12 std::unique_ptr<Logger> make_logger(
13 const std::string& filename) {
14 std::unique_ptr<Logger> logger(new Logger(filename));
15 return logger;

16 }

The make_logger function is a factory function that returns a new instance of
Logger, wrapped in a unique_ptr (line 14). A function could use make_logger
this way:

Listing 3.6b: Using unique_ptr

 1 #include "Logger.h"
 2
 3 void doLogging(const std::string& msg, ...)
 4 {
 5 std::string logfile = "/var/MyApp/log/app.log";
 6 std::unique_ptr<Logger> logger = make_logger(logfile);
 7 logger->log(msg, ...);
 8 }

Memory Management and Exception Safety

[94]

In function doLogging, the local variable logger is move-initialized by the unique_
ptr returned from make_logger (line 6). So the contents of the unique_ptr instance
created inside make_logger are moved into the variable logger. When logger goes
out of scope as doLogging returns (line 8), its destructor destroys the underlying
Logger instance and deallocates its memory.

Wrapping arrays in unique_ptr
To illustrate the use of unique_ptr for wrapping dynamic arrays, we will
rewrite the image rotation example (listing 3.5) yet again, replacing scoped_ptr
with unique_ptr:

Listing 3.7: Using unique_ptr to wrap arrays

 1 #include <memory>
 2
 3 typedef unsigned char byte;
 4
 5 byte *rotateImage(std::string imgFile, double angle, size_t& sz)
 6 {
 7 // open the file for reading
 8 std::ifstream imgStrm(imgFile, std::ios::binary);
 9
10 if (imgStrm) {
11 imgStrm.seekg(0, std::ios::end);
12 sz = imgStrm.tellg(); // determine file size
13 imgStrm.seekg(0);
14
15 // allocate buffer and read
16 std::unique_ptr<byte[]> img(new byte[sz]);
17 // read the image contents
18 imgStrm.read(reinterpret_cast<char*>(img.get()),sz);
19 // process it
20 byte first = img[0]; // access first byte
21 return img_rotate(img.get(), sz, angle);
22 }
23
24 sz = 0;
25 return 0;
26 }

Chapter 3

[95]

Apart from including a different header file (memory in place of boost/scoped_
ptr.hpp), there is only one other line of code that needed an edit. In place of
boost::scoped_array<byte>, the declared type of img is changed to std::
unique_ptr<byte[]> (line 16)—a definitive drop-in replacement. The overloaded
operator[] is available only for the array-specialization of unique_ptr and is used
to refer to elements of the array.

make_unique in C++14
The C++14 Standard Library contains a function template std::make_unique, which
is a factory function for creating an instance of an object on dynamic memory and
wrap it in std::unique_ptr. The following example is a rewrite of listing 3.6b that
illustrates the use of make_unique:

Listing 3.8: Using make unique

 1 #include "Logger.h" // Listing 3.6a
 2
 3 void doLogging(const std::string& msg, ...)
 4 {
 5 std::string filename = "/var/MyApp/log/app.log";
 6 std::unique_ptr<Logger> logger =
 7 std::make_unique<Logger>(filename);
 8 logger->log(msg, ...);
 9 }

The std::make_unique function template takes the type of the underlying object to
construct as a template argument and the arguments to the object's constructor as
function arguments. We directly pass to make_unique, the filename argument, which
it forwards to the constructor of Logger (line 7). make_unique is a variadic template;
it takes a variable number of arguments that match the constructor parameters of
the type instantiated, in number and type. If there was a two-parameter constructor
of Logger, say one that took a filename and a default log level, we would pass two
arguments to make_unique:

// two argument constructor
Logger::Logger(const std::string& filename, loglevel_t level) {
 ...
}

std::unique_ptr<Logger> logger =
 std::make_unique<Logger>(filename, DEBUG);

Memory Management and Exception Safety

[96]

Assuming loglevel_t describes the type used to represent log levels, and DEBUG
describes a valid value for that type, the preceding snippet illustrates the use of
make_unique with multiple constructor arguments.

If you have moved your codebase to C++11, you should prefer using std::unique_
ptr to boost::scoped_ptr.

Shared ownership semantics
Unique ownership semantics with the ability to transfer ownership is good enough
for most purposes that you would use a smart pointer for. But in some real-world
applications, you will need to share resources across multiple contexts without any
of these contexts being a clear owner. Such a resource can be released only when all
of the contexts holding references to the shared resource release them. When and
where this happens cannot be determined in advance.

Let us understand this with a concrete example. Two threads in a single process read
data from different sections of the same dynamically-allocated region in memory.
Each thread does some processing on the data and then reads more data. We need
to ensure that the dynamically-allocated memory region is cleanly deallocated when
the last thread terminates. Either thread could terminate before the other; so who
deallocates the buffer?

By encapsulating the buffer in a smart wrapper that can keep a count of the number
of contexts referring to it, and deallocating the buffer only when the count goes to
zero, we can encapsulate the logic of deallocation completely. The users of the buffer
should switch to using a smart wrapper, which they can freely copy, and when all
copies go out of scope, the reference count goes to zero and the buffer is deallocated.

boost::shared_ptr and std::shared_ptr
The boost::shared_ptr smart pointer template provides reference-counted shared
ownership semantics. It keeps track of the number of references to it using a shared
reference count that it maintains alongside the wrapped, dynamically-allocated
object. Like other smart pointer templates we have seen so far, it implements the
RAII idiom, taking responsibility of destroying and deallocating the wrapped object
in its destructor, but it does so only when all references to it are destroyed, that is, the
reference count goes to zero. It is a header-only library made available by including
boost/shared_ptr.hpp.

Chapter 3

[97]

shared_ptr was included in C++ Standards Committee Technical Report in 2007
(colloquially TR1), which was a precursor to the C++11 standard and was made
available as std::tr1::shared_ptr. It is now part of the C++11 Standard Library
as std::shared_ptr available through the standard C++ header file memory. If
you have moved your codebase to C++11, you should use std::shared_ptr.
Much of the discussion in this section applies to both versions; differences, if any,
are called out.

You create shared_ptr instances to take ownership of a dynamically-allocated
object. Unlike boost::scoped_ptr and std::unique_ptr, you can copy shared_
ptr instances. std::shared_ptr also supports move semantics. It stores the
dynamically-allocated pointer and a shared reference count object. Each time
shared_ptr is copied via copy construction, the pointer and the reference count
object are shallow-copied. Copying shared_ptr instances causes reference counts
to be bumped up. shared_ptr instances going out of scope causes reference counts
to be decremented. The use_count member function can be used to get the current
reference counts. Here is an example that shows shared_ptr in action:

Listing 3.9: shared_ptr in action

 1 #include <boost/shared_ptr.hpp>
 2 #include <iostream>
 3 #include <cassert>
 4
 5 class Foo {
 6 public:
 7 Foo() {}
 8 ~Foo() { std::cout << "~Foo() destructor invoked." << '\n';}
 9 };
10
11 typedef boost::shared_ptr<Foo> SPFoo;
12
13 int main()
14 {
15 SPFoo f1(new Foo);
16 // SPFoo f1 = new Foo; // Won't work, explicit ctor
17 assert(f1.use_count() == 1);
18
19 // copy construction
20 SPFoo f2(f1);
21 assert(f1.use_count() == f2.use_count() &&

Memory Management and Exception Safety

[98]

22 f1.get() == f2.get() && f1.use_count() == 2);
23 std::cout << "f1 use_count: " << f1.use_count() << '\n';
24
25 SPFoo f3(new Foo);
26 SPFoo f4(f3);
27 assert(f3.use_count() == 2 && f3.get() == f4.get());
28 std::cout << "f3 use_count: " << f3.use_count() << '\n';
29
30 // copy assignment
31 f4 = f1;
32 assert(f4.use_count() == f1.use_count() &&
33 f1.use_count() == 3 && f1.get() == f4.get());
34 assert(f3.use_count() == 1);
35 std::cout << "f1 use_count: " << f1.use_count() << '\n';
36 std::cout << "f3 use_count: " << f3.use_count() << '\n';
37 }

In the preceding code, we define a class Foo with a default constructor and a
destructor that prints some message (lines 5-9). We include boost/shared_ptr.hpp
(line 1), which provides the boost::shared_ptr template.

In the main function, we define two shared_ptr<Foo> instances f1 (line 15) and
f3 (line 25), initialized with two different dynamically-allocated instances of class
Foo. Note that the shared_ptr constructor is explicit and thus, you cannot use an
assignment expression to copy-initialize shared_ptr using implicit conversion (line
16). The reference count of each shared_ptr<Foo> instance after construction is 1
(lines 17 and 25). Next, we create f2 as a copy of f1 (line 20) and f4 as a copy of f3
(line 26). The copying causes the reference counts to bump up. The get member
function of shared_ptr returns the encapsulated pointer, and the use_count member
function of shared_ptr returns the current reference count. Using use_count, we
assert that f1 and f2 have the same reference count, and using get, we assert that
they contain the same pointer (lines 21-22). Similar assertions hold true for f3 and
f4 (line 27).

Next, we copy-assign f1 to f4 (line 31). As a result, f4 now contains the same
pointer as f1 and f2, and no longer shares a pointer with f3. Now f1, f2, and f4
are three shared_ptr<Foo> instances pointing to the same pointer and their shared
reference count goes to 3 (lines 32-33). f3 no longer shares its pointer with another
instance, so its reference count goes to 1 (line 34).

Chapter 3

[99]

Running the preceding code, you can expect the following output:

f1 use_count: 2
f3 use_count: 2
f1 use_count: 3
f3 use_count: 1
~Foo() destructor invoked.
~Foo() destructor invoked.

The reference counts duly go to zero at the end of the main function, and both the
dynamically created instances of Foo are destroyed by the shared_ptr destructors.

Uses of shared_ptr
In pre-C++11 code, boost::shared_ptr or std::tr1::shared_ptr tends to be the
default choice for a smart pointer owing to its flexibility and ease of use, compared
to boost::scoped_ptr. It is used for purposes beyond pure shared-ownership
semantics and this makes it the best-known smart pointer template. In C++11, such
pervasive use should be curbed in favor of std::unique_ptr, and shared_ptr
should only be used to model true shared-ownership semantics.

As a class member
Consider a scenario where multiple components of an application may share a single
database connection for better performance. Such a connection could be created the
first time it is requested and cached as long as there is some component using it.
When all components are done using it, the connection ought to be closed. This is
definitive of shared-ownership semantics and shared_ptr is useful in this scenario.
Let us see how an application component might use shared_ptr to encapsulate a
shared database connection:

Listing 3.10: Using shared_ptr as class members

 1 class AppComponent
 2 {
 3 public:
 4 AppComponent() : spconn_(new DatabaseConnection(...))
 5 {}
 6
 7 AppComponent(
 8 const boost::shared_ptr<DatabaseConnection>& spc)
 9 : spconn_(spc) {}
11
12 // Other public member

Memory Management and Exception Safety

[100]

13 ...
14
15 boost::shared_ptr<DatabaseConnection> getConnection() {
16 return spconn_;
17 }
18
19 private:
20 boost::shared_ptr<DatabaseConnection> spconn_;
21 // other data members
22 };

The AppComponent is a component of the application that uses a database connection
wrapped in a shared_ptr (line 20). The default-constructed AppComponent creates
a new database connection (line 4), but you can always create an AppComponent
instance by passing it an existing database connection wrapped in a shared_ptr (lines
7-9). The getConnection member function retrieves the shared pointer-wrapped
DatabaseConnection object wrapped in a shared_ptr (line 16). Here is an example:

 1 AppComponent c1;
 2 AppComponent c2(a.getConnection());

In this example, we create two AppComponent instances c1 and c2 that share
the same database connection. The second instance is created using the shared_
ptr-wrapped database connection cached by the first instance, obtained using the
getConnection method. Irrespective of the order in which c1 and c2 are destroyed,
the shared connection is destroyed only when the last of the two is destroyed.

Storing dynamically-allocated objects in Standard Library
containers
Objects stored by Standard Library containers are copied or moved into the container
and are destroyed with the container. Objects are retrieved too by copying or
moving. Prior to C++11, there was no support for move semantics and copying was
the sole mechanism for storing objects in containers. Standard Library containers do
not support reference semantics. You may store pointers to dynamically-allocated
objects in containers but, at the end of its life cycle, the container not attempt to
destroy and deallocate these objects via their pointers.

Chapter 3

[101]

You can wrap dynamically-allocated objects in shared_ptr or unique_ptr and
store them in containers. Assuming that you can use C++11, std::unique_ptr is
good enough if storing them in a single container is all you are ever going to need.
But if you need to store the same dynamically-allocated object across multiple
containers, shared_ptr is the best choice for the wrapper. When the container is
destroyed, the destructor of each shared_ptr instance is called and the reference
count of that shared_ptr is decremented. If the reference count goes to zero for any
shared_ptr, the underlying dynamic object stored in it is deallocated. The following
example illustrates how objects wrapped in shared_ptr can be stored in multiple
STL containers:

Listing 3.11: Storing shared_ptr in containers

 1 class Person;
 2 typedef boost::shared_ptr<Person> PersonPtr;
 3 std::vector<PersonPtr> personList;
 4 std::multimap<std::string, PersonPtr> personNameMap;
 5 ...
 6
 7 for (auto it = personList.begin();
 8 it != personList.end(); ++it) {
 9 personNameMap.insert(std::make_pair((*it)->name(), *it));
10 }

In the preceding example, let us assume that there is a class called Person (line 1).
Now, given a list of objects of type Person, we would like to create a mapping of
names to Person objects. Assume that Person objects cannot be copied, and so they
need to be stored in containers as pointers. We define a type alias called PersonPtr
for shared_ptr<Person> (line 2). We also define the data structures for storing a list
of Person objects, (std::vector<PersonPtr> (line 3)) and the mapping of Person
names to Person objects (std::multimap<std::string, PersonPtr> (line 4)).
Finally, we construct the mapping from the list (lines 7-9).

Each entry into the personNameMap container is created as a std::pair of the name
of a person and the PersonPtr object (using std::make_pair). Each such entry is
inserted into the multimap using its insert member function (line 9). We assume
that there is a member function in Person called name. The PersonPtr object being
a shared_ptr is shared across the vector and the multimap containers. The Person
objects are destroyed when the last of the two containers is destroyed.

Memory Management and Exception Safety

[102]

Besides shared_ptr, Boost's Pointer Containers provide an alternative means of
storing dynamically-allocated objects in containers. We cover Pointer Containers
in Chapter 5, Effective Data Structures beyond STL. In Chapter 9, Files, Directories, and
IOStreams, which deals with Boost Threads, we will see how shared_ptr instances
can be shared across threads.

Nonowning aliases – boost::weak_ptr and std::weak_ptr
In the last section, one of the examples we looked at was that of a database
connection shared among multiple application components. This form of use
has certain shortcomings. While instantiating application components that are
meant to reuse the open database connection, you need to refer to another existing
component that uses the connection and pass that connection to the constructor of
the new object. A more scalable approach is to decouple the connection creation and
application component creation so that application components are not even aware
of whether they got a new connection or an existing reusable connection. But the
requirement still remains that the connection must be shared across all clients,
and it must be closed when the last reference to it has gone.

One approach to building such a mechanism is to use a database connection factory,
which creates connections to a specific database instance based on connection
parameters passed by the caller. It then passes the connection back to the caller
wrapped in a shared_ptr and also stores it in a map that can be looked up. When
a new client requests a connection to the same instance for the same database user,
the factory can simply look up the existing connection from the map and return
it wrapped in a shared_ptr. The following and illustrative code implements this
logic. It assumes that all information needed to connect to a database instance is
encapsulated in a DBCredentials object:

 1 typedef boost::shared_ptr<DatabaseConnection> DBConnectionPtr;
 2
 3 struct DBConnectionFactory
 4 {
 5 typedef std::map<DBCredentials, DBConnectionPtr>
 6 ConnectionMap;
 7
 8 static DBConnectionPtr connect(const DBCredentials& creds)
 9 {
10 auto iter = conn_map_.find(creds);
11
12 if (iter != conn_map_.end()) {
13 return iter->second;

Chapter 3

[103]

14 } else {
15 DBConnectionPtr dbconn(new DatabaseConnection(creds));
16 conn_map_[creds] = dbconn;
17 return dbconn;
18 }
19 }
20
21 static ConnectionMap conn_map_;
22 };
23
24 DBConnectionFactory::ConnectionMap
25 DBConnectionFactory::conn_map_;
26 int main()
27 {
28 DBCredentials creds(...);
29 DBConnectionPtr dbconn = DBConnectionFactory::connect(creds);
30 DBConnectionPtr dbconn2 =DBConnectionFactory::connect(creds);
31 assert(dbconn.get() == dbconn2.get()
32 && dbconn.use_count() == 3);
33 }

In the preceding code, DBConnectionFactory provides a static method
called connect that takes a DBCredentials object and returns a shared_ptr-
wrapped DatabaseConnection (DBConnectionPtr) (lines 8-19). We call
DBConnectionFactory::connect twice, passing the same credentials. The
first call (line 28) should result in the creation of a new connection (line 15), while
the second call should just look up and return the same connection (lines 10-13).

There is one major problem with this code: DBConnectionFactory stores
the connection wrapped in a shared_ptr inside a static std::map called
conn_map_ (line 21). As a result, its reference count goes to 0 only at the end of
the program, when the conn_map_ is destroyed. Otherwise, even when there
are no contexts using the connection, the reference count remains at 1. We require
that, when all contexts using the shared connection exit or expire, the connection
should be destroyed. This is clearly not met.

Storing the raw pointer (DatabaseConnection*) instead of the shared_ptr
(DBConnectionPtr) in the map would be no good because, we need the first
shared_ptr instance we gave out for the connection, to be able to create more
shared_ptr instances for that connection. Even with ways to get around this
problem (as we will see later with enable_shared_from_this), by just looking
up the raw pointer in the connection map we would not know whether it is still
in use or has already been deallocated.

Memory Management and Exception Safety

[104]

The boost::weak_ptr template, also available in C++11 as std::weak_ptr, is
the right tool to fix this problem. You can refer to a shared_ptr instance using
one or more weak_ptr instances, without contributing to the reference count that
determines its lifetime. Using the weak_ptr instances, you can safely determine
whether the shared_ptr it refers to is still active or expired. If not expired, you can
use the weak_ptr instance to also create another shared_ptr instance referring to
the same object. We will now rewrite the preceding example using weak_ptr:

Listing 3.12: Using weak_ptr

 1 typedef boost::shared_ptr<DatabaseConnection> DBConnectionPtr;
 2 typedef boost::weak_ptr<DatabaseConnection> DBConnectionWkPtr;
 3
 4 struct DBConnectionFactory
 5 {
 6 typedef std::map<DBCredentials, DBConnectionWkPtr>
 7 ConnectionMap;
 8
 9 static DBConnectionPtr connect(const DBCredentials& creds) {
10 ConnectionIter it = conn_map_.find(creds);
11 DBConnectionPtr connptr;
12
13 if (it != conn_map_.end() &&
14 (connptr = it->second.lock())) {
15 return connptr;
16 } else {
17 DBConnectionPtr dbconn(new DatabaseConnection(creds));
18 conn_map_[creds] = dbconn; // weak_ptr = shared_ptr;
19 return dbconn;
20 }
21 }
22
23 static ConnectionMap conn_map_;
24 };
25
26 DBConnectionFactory::ConnectionMap
27 DBConnectionFactory::conn_map_;
28 int main()
29 {
30 DBCredentials creds(...);
31 DBConnectionPtr dbconn = DBConnectionFactory::connect(creds);
32 DBConnectionPtr dbconn2 =DBConnectionFactory::connect(creds);
33 assert(dbconn.get() == dbconn2.get()

Chapter 3

[105]

34 && dbconn.use_count() == 2);
35 }

In this example, we alter the definition of ConnectionMap to store weak_
ptr<DatabaseConnection> instead of shared_ptr<DatabaseConnection>
(line 6-7). When the DBConnectionFactory::connect function is called with
appropriate credentials, the code looks up the entry (line 10), and on failure, creates
a new database connection, wraps it in a shared_ptr (line 17), and stores it as a
weak_ptr in the map (line 18). Note that we assign a shared_ptr to a weak_ptr
using the copy assignment operator. The newly constructed shared_ptr is returned
(line 19). If the lookup succeeded, it calls the lock method on the retrieved weak_ptr
in an attempt to construct a shared_ptr from it (line 12). If the retrieved weak_
ptr represented by it->second refers to a valid shared_ptr, the lock call will
automatically return another shared_ptr referring to the same object and this would
be assigned to the connptr variable and returned (line 15). Otherwise, the lock
call will return a null shared_ptr, and we will create a new connection in the else
block, as described earlier.

If you just wanted to check whether the weak_ptr instance refers to a valid
shared_ptr or not without creating a new shared_ptr referent, just call the
expired method on the weak_ptr. It will return false only if at least one
shared_ptr instance is still around.

How does the weak_ptr achieve this? Actually, shared_ptr and weak_ptr are
designed to work with each other. Each shared_ptr instance has two pieces of
memory: the dynamically-allocated object it encapsulates and a chunk of memory
called the shared counter, which contains not one but two atomic reference counts.
Both chunks of memory are shared between all related shared_ptr instances. The
shared counter chunk is also shared with all weak_ptr instances that refer to these
shared_ptr instances.

The first reference count in the shared counter, the use count, keeps a count of
the number of references to the shared_ptr. When this count goes to zero, the
encapsulated, dynamically-allocated object is deleted and the shared_ptr expires.
The second reference count, the weak count, is the number of weak_ptr references,
plus one if and only if there are shared_ptr instances around. The shared counter
chunk is deleted only when the weak count goes to zero, that is, when all shared_ptr
and weak_ptr instances have expired. Thus, any remaining weak_ptr instance is able
to tell whether the shared_ptr has expired by checking the use count, which is still
accessible to it, and seeing if it is 0. The lock method of weak_ptr atomically checks
the use count and increments it only if it is non-zero, returning a valid shared_ptr
wrapping the encapsulated pointer. If the use count was already zero, lock returns
an empty shared_ptr.

Memory Management and Exception Safety

[106]

A shared_ptr critique – make_shared and enable_shared_
from_this
shared_ptr has been used widely, beyond its appropriate use case for shared-
ownership semantics. This is partly due to its availability as part of the C++
Technical Report 1 (TR1) release in 2007, whereas other viable options like Boost's
Pointer Containers (see Chapter 5, Effective Data Structures beyond STL) were not
part of the TR1. But shared_ptr requires an extra allocation for the shared counter,
because of which construction and destruction is slower than it is for unique_ptr
and scoped_ptr. The shared counter itself is an object containing two atomic
integers. If you never need shared-ownership semantics but use shared_ptr,
you pay for one extra allocation of the shared counter and for the increment and
decrement operations on atomic counters, which make copying shared_ptr slower.
If you need shared-ownership semantics but don't care about weak_ptr observers,
you pay for the extra space occupied by the weak reference counter that you would
not need.

One way to mitigate this problem is to somehow coalesce the two allocations—one
for the object and one for the shared counter—into one. The boost::make_shared
function template (also std::make_shared in C++11) is a variadic function template
that does exactly this. Here is how you would use it:

Listing 3.13: Using make_shared

 1 #include <boost/make_shared.hpp>
 2
 3 struct Foo {
 4 Foo(const std::string& name, int num);
 5 ...
 6 };
 7
 8 boost::shared_ptr<Foo> spfoo =
 9 boost::make_shared<Foo>("Foo", 10);
10

The boost::make_shared function template takes the type of object as a template
argument and the arguments to the object's constructor as function arguments. We
call make_shared<Foo>, passing it the arguments we want to construct the Foo object
with (lines 8-9). The function then allocates a single block of memory in which it lays
out the object and also appends the two atomic counts, in one fell swoop. Note that
you need to include the header file boost/make_shared.hpp to use make_shared.
This is not as perfect as it seems but might be a good enough trade-off. It is not
perfect because now it is a single block of memory not two, and is shared between
all shared_ptr and weak_ptr referents.

Chapter 3

[107]

Even when all the shared_ptr referents are gone and the object destructed, its
memory is reclaimed only when the last weak_ptr is gone. Again, this is a problem
only if you use lingering weak_ptr instances and your object size is large enough to
be a worry.

There is yet another problem with shared_ptr that we briefly looked at earlier. If
we create two independent shared_ptr instances from the same raw pointer, then
they have independent reference counts and both try to delete the encapsulated
object in due course. The first will succeed, but the destructor of the second instance
will most likely crash, trying to delete an already deleted entity. Also, any attempts
to dereference the object through the second shared_ptr after the first goes out of
scope would be equally disastrous. The general solution to this problem is to not
use shared_ptr at all but rather use boost::intrusive_ptr—something that we
explore in the next section. An alternate way to get around the problem is to equip
an instance method of the wrapped class to return a shared_ptr using the this
pointer. For this, your class must derive from the boost::enable_shared_from_
this class template. Here is an example:

Listing 3.14: Using enable_shared_from_this

 1 #include <boost/smart_ptr.hpp>
 2 #include <boost/current_function.hpp>
 3 #include <iostream>
 4 #include <cassert>
 5
 6 class CanBeShared
 7 : public boost::enable_shared_from_this<CanBeShared> {
 8 public:
 9 ~CanBeShared() {
10 std::cout << BOOST_CURRENT_FUNCTION << '\n';
11 }
12
13 boost::shared_ptr<CanBeShared> share()
14 {
15 return shared_from_this();
16 }
17 };
18
19 typedef boost::shared_ptr<CanBeShared> CanBeSharedPtr;
20
21 void doWork(CanBeShared& obj)
22 {

Memory Management and Exception Safety

[108]

23 CanBeSharedPtr sp = obj.share();
24 std::cout << "Usage count in doWork "<<sp.use_count() <<'\n';
25 assert(sp.use_count() == 2);
26 assert(&obj == sp.get());
27 }
28
29 int main()
30 {
31 CanBeSharedPtr cbs = boost::make_shared<CanBeShared>();
32 doWork(*cbs.get());
33 std::cout << cbs.use_count() << '\n';
34 assert(cbs.use_count() == 1);
35 }

In the preceding code, the class CanBeShared derives from boost:: enable_
shared_from_this<CanBeShared> (line 7). If you are wondering how come
CanBeShared inherits from a class template instantiation, which takes CanBeShared
itself as a template argument, let me refer you to the Curiously Recurring Template
Pattern, a C++ idiom you can read more about on the Web. Now, CanBeShared
defines a member function called share that returns the this pointer wrapped in
a shared_ptr (line 13). It does so using the member function shared_from_this
(line 15), which it inherits from its base class.

In the main function, we create an instance cbs of CanBeSharedPtr (which is a
typedef for boost::shared_ptr<CanBeShared>) from a dynamically-allocated
object of type CanBeShared (line 31). Next, we call the function doWork passing it the
raw pointer inside cbs (line 32). The doWork function is passed a reference (obj) to
CanBeShared, and calls the share method on it to get a shared_ptr wrapper of the
same object (line 23). The reference count of this shared_ptr goes to 2 now (line 25),
and the pointer it contains points to obj (line 26). Once doWork returns, the usage
count on cbs goes back to 1 (line 34).

The shared_ptr instance that is returned from the call to shared_from_this is
constructed from a weak_ptr member instance in the enable_shared_from_this<>
base and is only constructed at the end of the constructor of the wrapped object.
Thus, if you called shared_from_this inside the constructor of your class, you
would encounter a runtime error. You should also avoid calling it on raw pointers
that are not already wrapped in a shared_ptr object or objects that are
not dynamically constructed to start with. The C++11 Standard standardizes
this facility as std::enable_shared_from_this available through the standard
header file memory. We use enable_shared_from_this extensively while writing
asynchronous TCP servers in Chapter 11, Network Programming Using Boost Asio.

Chapter 3

[109]

If you are eagle-eyed, you would have noticed that we included just a single header
file boost/smart_ptr.hpp. This is a convenient header file that brings together all
the available smart pointer functionality into a single header file so that you don't
have to remember to include multiple headers.

If you can use C++11, then you should use std::unique_ptr in
the majority of cases, and use shared_ptr only when you need
shared ownership. If you are still on C++03 for some reason, you
should look to leverage boost::scoped_ptr wherever possible,
or use boost::shared_ptr with boost::make_shared for
better performance.

Intrusive smart pointers – boost::intrusive_ptr
Consider what happens when you wrap the same pointer in two different
shared_ptr instances that are not copies of each other.

 1 #include <boost/shared_ptr.hpp>
 2
 3 int main()
 4 {
 5 boost::shared_ptr<Foo> f1 = boost::make_shared<Foo>();
 6 boost::shared_ptr<Foo> f2(f1.get()); // don't try this
 7
 8 assert(f1.use_count() == 1 && f2.use_count() == 1);
 9 assert(f1.get() == f2.get());
10 } // boom!

In the preceding code, we created a shared_ptr<Foo> instance (line 5) and a second
independent instance of shared_ptr<Foo>, using the same pointer as for the first
one (line 6). The net effect is that two shared_ptr<Foo> instances both have a
reference count of 1 (asserts on line 8) and both contain the same pointer (asserts
on line 9). At the end of the scope, reference counts of both f1 and f2 go to zero
and both try to call delete on the same pointer (line 10). The code almost certainly
crashes as a result of the double delete. The code is well-formed in the sense that
it compiles, but hardly well-behaved. You need to guard against such usage of
shared_ptr<Foo> but it also points to a limitation of shared_ptr. The limitation is
due to the fact that there is no mechanism, given just the raw pointer, to tell whether
it is already referenced by some smart pointer. The shared reference count is outside
the Foo object and not part of it. shared_ptr is said to be nonintrusive.

Memory Management and Exception Safety

[110]

An alternative is to maintain the reference count as part of the object itself. This may
not be feasible in some cases but will be perfectly acceptable in others. There may
even be existing objects that actually maintain such reference counts. If you have
ever used Microsoft's Component Object Model, you have used such objects. The
boost::intrusive_ptr template is an intrusive alternative to shared_ptr that
puts the onus of maintaining reference counts on the user, and uses user-provided
hooks to increment and decrement the reference counts. If the user so wishes, the
reference count could be part of the class layout. This has two advantages. The
object and the reference count are located next to each other in memory, so there is
better cache performance. Secondly, all instances of boost::intrusive_ptr use
the same reference count to manage the life cycle of the object. Thus, independent
boost::intrusive_ptr instances don't create any problems of double deletion. In
fact, you can potentially use multiple different smart pointer wrappers for the same
object at the same time as long as they use the same intrusive reference count.

Using intrusive_ptr
To manage dynamically-allocated instances of type X, you create boost::intrusive_
ptr<X> instances just as you would create other smart pointer instances. You just need
to make sure that two global functions intrusive_ptr_add_ref(X*) and intrusive_
ptr_release(X*) are available that take care of incrementing and decrementing
the reference counts, and calling delete on the dynamically-allocated object if the
reference count goes to zero. If X be part of a namespace, the two global functions too
should ideally be defined in the same namespace to facilitate Argument Dependent
Lookup. Thus, the reference counting and deletion mechanisms are both in control of
the user, and boost::intrusive_ptr provides an RAII framework, which they are
hooked into. Do note how the reference count is maintained is the user's prerogative
and incorrect implementations could cause leaks, crashes, or at the very least,
inefficient code. Finally, here is some sample code that uses boost::intrusive_ptr:

Listing 3.15: Using intrusive_ptr

 1 #include <boost/intrusive_ptr.hpp>
 2 #include <iostream>
 3
 4 namespace NS {
 5 class Bar {
 6 public:
 7 Bar() : refcount_(0) {}

Chapter 3

[111]

 8 ~Bar() { std::cout << "~Bar invoked" << '\n'; }
 9
10 friend void intrusive_ptr_add_ref(Bar*);
11 friend void intrusive_ptr_release(Bar*);
12
13 private:
14 unsigned long refcount_;
15 };
16
17 void intrusive_ptr_add_ref(Bar* b) {
18 b->refcount_++;
19 }
20
21 void intrusive_ptr_release(Bar* b) {
22 if (--b->refcount_ == 0) {
23 delete b;
24 }
25 }
26 } // end NS
27
28
29 int main()
30 {
31 boost::intrusive_ptr<NS::Bar> pi(new NS::Bar, true);
32 boost::intrusive_ptr<NS::Bar> pi2(pi);
33 assert(pi.get() == pi2.get());
34 std::cout << "pi: " << pi.get() << '\n'
35 << "pi2: " << pi2.get() << '\n';
36 }

We use boost::intrusive_ptr to wrap dynamically-allocated objects of class Bar
(line 31). We can also copy one intrusive_ptr<NS::Bar> instance into another (line
32). The class Bar maintains its reference count in a member variable refcount_ of
type unsigned long (line 14). The intrusive_ptr_add_ref and intrusive_ptr_
release functions are declared as friends of the class Bar (lines 10 and 11) and are
in the same namespace NS as Bar (lines 3-26). intrusive_ptr_add_ref increments
refcount_ each time it is called. intrusive_ptr_release decrements refcount_
and calls delete on the pointer argument passed to it once refcount_ goes to zero.

Memory Management and Exception Safety

[112]

The class Bar initializes the variable refcount_ to zero. We pass true for the
Boolean second argument to the intrusive_ptr constructor so that the constructor
increments Bar's refcount_ through a call to intrusive_ptr_add_ref(NS::Bar*)
(line 31). This is the default behavior, and the Boolean second argument to the
intrusive_ptr constructor defaults to true, so we did not really need to pass it
explicitly. On the other hand, if we were dealing with a class that sets its reference
count to 1 on initialization, not 0 as Bar does, then we would not like the constructor
to increment the reference count again. In such cases, we should pass false for the
second parameter to the intrusive_ptr constructor. The copy constructor always
increments the reference count via a call to intrusive_ptr_add_ref. The destructor
of each intrusive_ptr instance calls intrusive_ptr_release, passing it the
encapsulated pointer.

While the preceding example illustrates how you can use the boost::intrusive_
ptr template, Boost provides some conveniences if you are managing dynamically-
allocated objects. The boost::intrusive_ref_counter wraps some generic
boilerplate code so that you don't have to roll out so much of it yourself. The
following example illustrates this use:

Listing 3.16: Lesser code with intrusive_ptr

 1 #include <boost/intrusive_ptr.hpp>
 2 #include <boost/smart_ptr/intrusive_ref_counter.hpp>
 3 #include <iostream>
 4 #include <cassert>
 5
 6 namespace NS {
 7 class Bar : public boost::intrusive_ref_counter<Bar> {
 8 public:
 9 Bar() {}
10 ~Bar() { std::cout << "~Bar invoked" << '\n'; }
11 };
12 } // end NS
13
14 int main() {
15 boost::intrusive_ptr<NS::Bar> pi(new NS::Bar);
16 boost::intrusive_ptr<NS::Bar> pi2(pi);
17 assert(pi.get() == pi2.get());
18 std::cout << "pi: " << pi.get() << '\n'

Chapter 3

[113]

19 << "pi2: " << pi2.get() << '\n';
20
21 assert(pi->use_count() == pi2->use_count()
22 && pi2->use_count() == 2);
23 std::cout << "pi->use_count() : " << pi->use_count() << '\n'
24 << "pi2->use_count() : " << pi2->use_count() << '\n';
25 }

Instead of maintaining reference counts and providing namespace level overloads
for intrusive_ptr_add_ref and intrusive_ptr_release, we just publicly inherit
the class Bar from boost::intrusive_ref_counter<Bar>. This is all we need to
do. This also makes it easy to get the reference count at any point, using the use_
count() public member inherited from intrusive_ref_counter<> into Bar. Note
that use_count() is not a member function of intrusive_ptr itself, so we have to
use the dereference operator (operator->) to invoke it (lines 21-24).

The reference counter used in the preceding example is not thread-safe. If you
want to ensure reference count thread safety, edit the example to use the
boost::thread_safe_counter policy class as the second type argument to
boost::intrusive_ref_counter:

 7 class Bar : public boost::intrusive_ref_counter<Bar,
 8 boost::thread_safe_counter>

Curiously, Bar inherits from an instantiation of the boost::intrusive_ref_
counter template, which takes Bar itself as a template argument. This is once
 again the Curiously Recurring Template Pattern at work.

shared_array
Just like boost::scoped_ptr had a corresponding template for specifically
managing dynamically-allocated arrays, there is a template called boost::shared_
array that can be used to wrap dynamically-allocated arrays and manage them
with shared ownership semantics. Like scoped_array, boost::shared_array has
an overloaded subscript operator (operator[]). Like boost::shared_ptr, it uses
a shared reference count to manage the lifetime of the encapsulated array. Unlike
boost::shared_ptr, there is no weak_array for shared_array. It is a convenient
abstraction that can be used as a reference counted vector. I leave it to you to explore
this further.

Memory Management and Exception Safety

[114]

Managing non-memory resources using smart
pointers
All the smart pointer classes we have seen so far assume that their resource is
dynamically-allocated using the C++ new operator and requires deletion using the
delete operator. The scoped_array and shared_array classes as well as unique_
ptr's array partial specialization assume that their resources are dynamically-
allocated arrays and use the array delete operator (delete[]) to deallocate them.
Dynamic memory is not the only resource that a program needs to manage in an
exception-safe way, and smart pointers would be remiss to ignore this use case.

The shared_ptr and std::unique_ptr templates can work with alternative user-
specified deletion policies. This makes them fit to manage not just dynamic memory
but almost any resource with explicit APIs for creation and deletion, such as C-style
heap memory allocation and deallocation using malloc and free, open file streams,
Unix open file descriptors and sockets, platform-specific synchronization primitives,
Win32 API handles to various resources, and even user-defined abstractions. Here is
a short example to round off the chapter:

 1 #include <boost/shared_ptr.hpp>
 2 #include <stdio.h>
 3 #include <time.h>
 4
 5 struct FILEDeleter
 6 {
 7 void operator () (FILE *fp) const {
 8 fprintf(stderr, "Deleter invoked\n");
 9 if (fp) {
10 ::fclose(fp);
11 }
12 }
13 };
14
15 int main()
16 {
18 boost::shared_ptr<FILE> spfile(::fopen("tmp.txt", "a+"),
19 FILEDeleter());
20 time_t t;
21 time(&t);
22
23 if (spfile) {
24 fprintf(spfile.get(), "tstamp: %s\n", ctime(&t));
25 }
26 }

Chapter 3

[115]

We wrap the FILE pointer returned by fopen in a shared_ptr<FILE> object (line
18). However, the shared_ptr template knows nothing about FILE pointers, so
we must also specify the deletion policy. For this, we define a function object called
FILEDeleter (line 5), whose overloaded function call operator (operator(), line
7) takes a parameter of type FILE and calls fclose on it if it is not null (line 10). A
temporary instance of FILEDeleter is passed to the constructor of shared_ptr<FILE>
as a second, deleter argument (line 19). The destructor of shared_ptr<FILE> invokes
the overloaded function call operator on the passed deleter object, passing the stored
FILE pointer as argument. There is little use of the overloaded operator-> in this case,
so all operations on the wrapped pointer are performed by accessing the raw pointer
using the get member function (line 24). We can also use a lambda expression in place
of the FILEDeleter function object. We introduce lambda expressions in Chapter 7,
Higher Order and Compile-time Programming.

If you have access to C++11, it is always better to use std::unique_ptr for such
purposes. With std::unique_ptr, you have to specify a second template argument
for the type of the deleter. The preceding example will use a std::unique_ptr with
just the following edits:

 1 #include <memory>
...
18 std::unique_ptr<FILE, FILEDeleter> spfile(::fopen("tmp.txt",
19 "a+"), FILEDeleter());

We include the C++ standard header file memory instead of boost/shared_ptr.hpp
(line 1), and wrap the FILE pointer returned by the call to fopen in a unique_ptr
instance (line 18), passing it a temporary instance of FILEDeleter (line 19). The only
additional detail is the second type argument to the unique_ptr template, specifying
the type of the deleter. We can also use a C++ 11 Lambda expression in place of the
FILEDeleter function object. We will look at such use in later chapters, after we have
introduced Lambda expressions.

Self-test questions
For multiple choice questions, choose all options that apply:

1. What are the Abraham's Exception Safety Guarantees?
a. Basic, weak, and strong
b. Basic, strong, and no-throw
c. Weak, strong, and no-throw
d. None, basic, and strong

Memory Management and Exception Safety

[116]

2. What are the main differences between boost::scoped_ptr and
std::unique_ptr?
a. boost::scoped_ptr does not support move semantics
b. std::scoped_ptr has no partial specialization for arrays
c. std::unique_ptr can be stored in STL containers
d. std::unique_ptr supports custom deleters

3. Why is boost::shared_ptr heavier than other smart pointers?
a. It uses a shared reference counter
b. It supports both copy and move semantics
c. It uses two allocations per encapsulated object
d. It is not heavier than other smart pointers

4. What is the disadvantage of using boost::make_shared to create a shared_
ptr?
a. It is slower than directly instantiating boost::shared_ptr
b. It is not thread safe
c. It does not release object memory until all weak_ptr referents expire
d. It is not available in C++11 Standard

5. What are the primary differences between boost::shared_ptr and
std::unique_ptr?
a. std::unique_ptr does not support copy semantics
b. std::unique_ptr does not support move semantics
c. boost::shared_ptr does not support custom deleters
d. boost::shared_ptr cannot be used for arrays

6. If you want to return a shared_ptr<X> wrapping the this pointer from a
member function of class X, which of the following would work?

a. return boost::shared_ptr<X>(this)
b. boost::enable_shared_from_this
c. boost::make_shared
d. boost::enable_shared_from_raw

Chapter 3

[117]

Summary
This chapter formalized the requirements for exception safety of a piece of code,
and then defined various means of managing dynamically-allocated objects in an
exception-safe way using smart pointers. We looked at smart pointer templates
both from Boost and ones that have been introduced by the new C++11 Standard,
and understood the different ownership semantics and intrusive and nonintrusive
reference counting. We also got a chance to look at ways of adapting some of the
smart pointer templates for managing non-memory resources.

Hopefully, you have understood the various ownership semantics and would be
able to judiciously apply the techniques in this chapter to such scenarios. There are
facilities in the smart pointer library that we did not cover in any significant detail,
like boost::shared_array and boost::enable_shared_from_raw. You should
explore them further on your own, focusing on their applicability and their pitfalls.
In the next chapter, we will learn about some nifty and useful techniques for dealing
with text data using Boost's string algorithms.

References
• Rule of Zero: http://en.cppreference.com/w/cpp/language/rule_of_

three

• Designing C++ Interfaces - Exception Safety, Mark Radford: http://accu.org/
index.php/journals/444

• Exception Safety Analysis, Andrei Alexandrescu and David B. Held:
http://erdani.com/publications/cuj-2003-12.pdf

http://en.cppreference.com/w/cpp/language/rule_of_three
http://en.cppreference.com/w/cpp/language/rule_of_three
http://accu.org/index.php/journals/444
http://accu.org/index.php/journals/444
http://erdani.com/publications/cuj-2003-12.pdf

[119]

Working with Strings
Text data is the most important and pervasive form of data that modern applications
deal with. The ability to process text data efficiently through intuitive abstractions
is a key marker of effectiveness in dealing with text data. Boost has a number of
libraries dedicated toward effective text processing that enhance and extend the
capabilities provided by the C++ Standard Library.

In this chapter, we will look at three key Boost libraries for processing text data.
We will start with the Boost String Algorithms library, a library of general-purpose
algorithms for text data that provides a host of easy text operations, often missed in
the Standard Library. We will then look at the Boost Tokenizer library, an extensible
framework for tokenizing string data based on various criteria. Thereafter, we will
examine a regular expression library for searching and parsing strings, Boost.Regex,
which has been included in the C++11 standard as well. The following topics appear
in the following sections:

• Text processing with Boost String Algorithms library
• Splitting text using the Boost Tokenizer library
• Regular expressions with Boost.Regex

This chapter should help you get a good grasp of text processing techniques
available in the Boost libraries. We do not deal with internationalization issues in
this book, but most of the concepts discussed in this chapter will apply to text in
languages with writing systems based on non-Latin character sets.

Working with Strings

[120]

Text processing with Boost String
Algorithms library
Text data is commonly represented as a sequence or string of characters laid out
contiguously in memory and terminated by a special marker (the null terminator).
While the actual data type used to represent a character can vary case by case,
the C++ Standard Library abstracts the string concept in the class template
std::basic_string, which takes the character data type as a parameter.
The std::basic_string template takes three type parameters:

• The character type
• Some of the intrinsic properties and behaviors of the character type

encapsulated in a traits class
• An allocator type that is used to allocate the internal data structures for

std::basic_string

The traits and allocator parameters are defaulted, as shown in the following snippet:

template <typename charT,
 typename Traits = std::char_traits<chart>,
 typename Allocator = std::allocator<chart>>
std::basic_string;

The C++03 Standard Library also provides two specializations of std::basic_string:

• std::string for narrow characters (8-bit char)
• std::wstring for wide characters (16- or 32-bit wchar_t)

 In C++11, we have two more:

• std::u16string (for u16char_t)
• std::u32string (for u32char_t)

In addition to these classes, plain old C-style strings, which are just arrays of char
or wchar_t terminated by a null character, are also quite commonly used, especially
in legacy C++ code.

There are two major shortcomings in the Standard Library, which makes dealing
with text data types overly tedious at times. For one, there is only a limited set of
readily available algorithms that can be applied to string and wstring. Moreover,
most of these algorithms are member functions of std::basic_string and are not
applicable to other string representations like character arrays. Even the algorithms
available as non-member function templates deal in iterators rather than containers,
making the code tedious and less flexible.

Chapter 4

[121]

Consider how you would convert a string to its uppercase using the C++ Standard
library:

Listing 4.1: Changing a string to uppercase using std::transform

 1 #include <string>
 2 #include <algorithm>
 3 #include <cassert>
 4 #include <cctype>
 5
 6 int main() {
 7 std::string song = "Green-tinted sixties mind";
 8 std::transform(song.begin(), song.end(), song.begin(),
 9 ::toupper);
10
11 assert(song == "GREEN-TINTED SIXTIES MIND");
12 }

We use the std::transform algorithm to convert a sequence of characters to their
uppercase forms, using the toupper function from the Standard Library applied
to each character (lines 8-9). The sequence of characters to transform is specified
by a pair of iterators to the first character of the string song (song.begin()) and
one past its last character (song.end())—passed as the first two arguments to
std::transform. The transformed sequence is written back in-place starting at
song.begin(), which is the third argument to std::transform. You may not see
a lot amiss if you have programmed in C++ for a while, but the generality of the
transform function somewhat obscures the expression of intent. This is where
Boost String Algorithms library helps by providing a slew of useful string algorithm
function templates that are intuitively named and work effectively, sometimes even
on different string abstractions. Consider the following alternative to the preceding
code:

Listing 4.2: Changing a string to uppercase using boost::to_upper

 1 #include <string>
 2 #include <boost/algorithm/string.hpp>
 3 #include <cassert>
 4
 5 int main()
 6 {
 7 std::string song = "Green-tinted sixties mind";
 8 boost::to_upper(song);
 9 assert(song == "GREEN-TINTED SIXTIES MIND");
10 }

Working with Strings

[122]

To convert the string song to uppercase, you call boost::to_upper(song) (line 8).
We include the header boost/algorithm/string.hpp (line 2) to access boost::to_
upper, which is an algorithm function template from Boost String Algorithms
library. It is named to_upper, not transform, and takes just one argument instead
of four and no iterators—what's not to like? Also, you can run the same code on
bare arrays:

Listing 4.3: Changing a character array to uppercase using boost::to_upper

 1 #include <string>
 2 #include <boost/algorithm/string.hpp>
 3 #include <cassert>
 4
 5 int main()
 6 {
 7 char song[17] = "Book of Taliesyn";
 8 boost::to_upper(song);
 9 assert(std::string(song) == "BOOK OF TALIESYN");
10 }

But iterators let you choose the range you want to transform to uppercase and here,
we only seem to be able to apply anything to the whole string. Actually, that's not a
problem either as we shall see.

Boost.Range

The algorithms from Boost String Algorithms library actually work
on abstractions called ranges, not containers or iterators. A range
is just a sequence of elements that can be completely traversed in
some order. Loosely speaking, a container like std::string is a
sequence of contiguous single-byte characters and a container like
std::list<Foo> is a sequence of elements of type Foo. Thus, they
qualify as valid ranges.

A simple range can be represented by a pair of iterators—one pointing
to the first element in the range, and the other pointing to one past the
last element in the range. A range can represent the entire sequence of
elements in a container. Generalizing further, a range can be described
as a subsequence of a container, that is, a subset of the elements in
the container with their relative ordering preserved. For example, the
subsequence of elements of a container with odd-numbered indexes is
a valid range. A single iterator pair may not be sufficient to represent
such a range; we need more constructs to represent them.

Chapter 4

[123]

The Boost.Range library provides the necessary abstractions and
functions needed to generate and deal with all kinds of ranges. The class
template boost::iterator_range is used to represent different
kinds of ranges using a pair of iterators. The algorithms in Boost String
Algorithms take parameters that are ranges and also return them,
enabling chaining of calls, something that is not possible with most STL
algorithms. We will not venture into too many details of Boost.Range in
this chapter but will develop an intuitive understanding needed to use
ranges with the String Algorithms library.

If we want to transform the case of only a part of a string, we will need to construct
a range representing that section. We can use the boost::iterator_range class
template to generate arbitrary ranges. Here is how we do it:

Listing 4.4: Changing a section of a string to uppercase using to_upper

 1 #include <string>
 2 #include <boost/algorithm/string.hpp>
 3 #include <cassert>
 4
 5 int main()
 6 {
 7 std::string song = "Green-tinted sixties mind";
 8 typedef boost::iterator_range<std::string::iterator>
 9 RangeType;
10 RangeType range = boost::make_iterator_range(
11 song.begin() + 13, song.begin() + 20);
12 boost::to_upper(range);
13 assert(song == "Green-tinted SIXTIES mind");
14 }

Specifically, we want to construct the range using two iterators to a string. So, the
type of the range will be boost::iterator_range<std::string::iterator>. We
create a typedef for this rather long type name (lines 8-9). We wish to change the word
"sixties" in the string "Green-tinted sixties mind" to uppercase. This word
starts at index 13 of the string song and is seven characters long. So, the iterators that
define the range containing "sixties" are song.begin() + 13 and song.begin()
+ 13 + 7, that is, song.begin() + 20. The actual range (range) is constructed by
passing these two iterators to the function template boost::make_iterator_range
(lines 10-11). We pass this range to the boost::to_upper algorithm, which changes
the case of the substring "sixties" (line 12), and we assert on the expected
change (line 13).

Working with Strings

[124]

This may look like a lot of code but remember that you don't have to construct an
explicit range when you apply an algorithm to the whole string or container. Also,
if you are using C++11, the auto keyword can help reduce verbosity; thus you can
replace the highlighted lines (8-11) like this:

 8 auto range = boost::make_iterator_range(song.begin() + 13,
 9 song.begin() + 20);

You can learn more about the auto keyword in Appendix, C++11 Language
Features Emulation.

Constructing iterator ranges from arrays is not all that different either:

Listing 4.5: Changing a section of a char array to uppercase using to_upper

 1 #include <string>
 2 #include <boost/algorithm/string.hpp>
 3 #include <cassert>
 4
 5 int main()
 6 {
 7 char song[17] = "Book of Taliesyn";
 8
 9 typedef boost::iterator_range<char*> RangeType;
10 RangeType rng = boost::make_iterator_range(song + 8,
11 song + 16);
12 boost::to_upper(rng);
13 assert(std::string(song) == "Book of TALIESYN");
14 }

The range is defined to be of type boost::iterator_range<char*>, the type of the
iterator for the array being char* (line 9). Once again, we can use auto to eliminate
all the syntactic pain if we are on C++11. We create the iterator range using the
appropriate offsets (8 and 16), bounding the word "Taliesyn" (lines 10-11) and
transform the range using boost::to_upper (line 12).

Using Boost String Algorithms
In this section, we explore the various string algorithms available to us and understand
the conditions under which they can be applied. Before we look at specific algorithms
though, we will try to understand the general scheme of things first.

Consider the algorithm boost::contains. It checks whether the string passed,
as its second argument, is a substring of the string passed as its first argument:

Chapter 4

[125]

Listing 4.6: Using boost::contains

 1 #include <boost/algorithm/string.hpp>
 2 #include <string>
 3 #include <cassert>
 4
 5 int main() {
 6 std::string input = "linearize";
 7 std::string test = "near";
 8 assert(boost::contains(input, test));
 9 }

The algorithm boost::contains should return true because "linearize" contains
the substring "near" (line 8). While this call to boost::contains returns true, had
we set test to "Near" instead of "near", it would return false. If we want to check
for substrings without caring about the case, we have to use boost::icontains
instead as a drop-in replacement for boost::contains. Like boost::contains,
most algorithms from Boost String Algorithms have a case insensitive version with
an i- prefix.

Unlike boost::contains, some string algorithms generate a modified string content
based on the string passed to it. For example, boost::to_lower converts the string
content passed to it to lowercase. It does so by changing the string in-place thus,
modifying its argument. A non-mutating version of the algorithm called boost::
to_lower_copy copies the passed string, transforms the case of the copied string,
and returns it, without modifying the original string. Such non-mutating variants
have the _copy suffix in their names. Here is a short example:

Listing 4.7: Using _copy versions of Boost String Algorithms

 1 #include <boost/algorithm/string.hpp>
 2 #include <string>
 3 #include <cassert>
 4
 5 int main() {
 6 std::string str1 = "Find the Cost of Freedom";
 7 std::string str2 = boost::to_lower_copy(str1);
 8 assert(str1 != str2);
 9 boost::to_lower(str1);
10 assert(str1 == str2);
11 assert(str1 == "find the cost of freedom");
12 }

Working with Strings

[126]

The string str1 is first copied and converted to lowercase using the non-mutating
variant boost::to_lower_copy, and the result is assigned to str2 (line 7). At this
point, str1 remains unchanged. Next, str1 is converted to lowercase in-place, using
boost::to_lower (line 9). At this point, both str1 and str2 have the same content
(line 10). In most of what follows, we will work with case-sensitive variants and
mutating variants where applicable, with the understanding that the case-insensitive
and non-mutating (copy) versions of the algorithms also exist. We now start look at
specific algorithms.

Find algorithms
There are several variants of find algorithm available from the Boost String Algorithms
library, all of which search for a string or pattern in another input string. Each
algorithm takes the input string and the search string as parameters, converts them
to ranges, and then performs the search. Each find-variant returns the contiguous
subsequence in the input, which matches the search string or pattern, as a range.
An empty range is returned if no match was found.

find_first
We start by looking at boost::find_first, which looks for a string in
another string:

Listing 4.8: Using boost::find_first

 1 #include <boost/algorithm/string.hpp>
 2 #include <string>
 3 #include <iostream>
 4
 5 int main()
 6 {
 7 const char *haystack = "Mary had a little lamb";
 8 const char *needles[] = {"little", "Little", 0};
 9
10 for (int i = 0; needles[i] != 0; ++i) {
11 auto ret = boost::find_first(haystack, needles[i]);
12
13 if (ret.begin() == ret.end()) {
14 std::cout << "String [" << needles[i] << "] not found in"
15 << " string [" << haystack << "\n";
16 } else {
17 std::cout << "String [" << needles[i] << "] found at "
18 << "offset " << ret.begin() - haystack

Chapter 4

[127]

19 << " in string [" << haystack << "\n";
20 }
21
22 std::cout << "'" << ret << "'" << '\n';
23 }
24 }

We have an array of strings we want to search for, called needles (line 8). We also
have a C-style string called haystack, in which we want to look for the search strings
which contains the text we want to search for (line 7). We loop through each string
in needles and call the boost::find_first algorithm to look for it in haystack
(line 11). We check whether the search failed to find a match (line 13). If a match was
found, then we compute the offset in haystack where the match was found (line 18).
The range ret defines a range of the input string haystack; hence, we can always
perform offset computations like ret.begin() – haystack.

The first iteration would be able to find "little", while the second iteration would
fail to find "Little" because boost::find_first is case-sensitive. If we used
boost::ifind_first which performs case-insensitive search, then both would match.

We use the C++11 auto keyword to escape writing an ungainly type for ret
(line 11), but if we had to write, it would be boost::iterator_range<char*>.
Note that we can actually stream the range ret returned from the algorithm to
an output stream (line 22).

This example illustrates the technique on C-style character arrays but to apply
it to std::string would require surprisingly little change. If haystack was a
std::string instance, then the only change will be in the way we calculate
offsets (line 18):

 << "offset " << ret.begin() – haystack.begin()

Since haystack is not a character array but an std::string, the iterator to its
start is obtained via a call to its begin() member function.

If we want to find the last instance of the search string in haystack instead of the
first, we can replace boost::find_first with boost::find_last. If there are
potentially multiple matching tokens, we may ask for a specific match by index.
For this, we would need to call boost::find_nth, passing it a third argument,
which would be a zero-based index of the match. We may pass a negative index
to ask for matches from the end. Thus, passing -1 would give us the last match, -2
the second-last match, and so on.

Working with Strings

[128]

find_all
To find all matching substrings in an input string, we must use boost::find_all
and pass it a sequence container to put all the matched substrings into. Here is a
short example of how to do it:

Listing 4.9: Using boost::find_all to find all matching substrings

 1 #include <boost/algorithm/string.hpp>
 2 #include <string>
 3 #include <iostream>
 4 #include <vector>
 5
 6 int main()
 7 {
 8 typedef boost::iterator_range<std::string::const_iterator>
 9 string_range;
10 std::vector<string_range> matches;
11 std::string str = "He deserted the unit while they trudged "
12 "through the desert one night.";
13
14 boost::find_all(matches, str, "desert");
15 for (auto match : matches) {
16 std::cout << "Found [" << "desert" << "] at offset "
17 << match.begin() - str.begin() << ".\n";
18 }
19 }

We first create a typedef string_range for the appropriate range type (lines 8-9).
The boost::find_all algorithm copies all the matching ranges into the vector of
ranges, matches (line 14). We iterate over the vector matches using C++11's new
range-based for-loop syntax (line 15), and print the offsets at which each match was
found (line 17). The nifty range-based for-loop declares a loop variable match to
iterate over successive elements of the container matches. Using the auto keyword,
the type of match is automatically deduced based on the type of values contained
in matches. Using a vector of ranges rather than a vector of strings, we are able to
calculate the exact offsets in str at which the matches occur.

find_token
One more interesting find algorithm is the boost::find_token algorithm. Using this
algorithm, we can find substrings whose characters satisfy some predicate we specify.
We can use a set of predefined predicates or define our own, although the latter
approach requires a fair bit of work, and we will not attempt it in this book. In the next
example, we search for hexadecimal numbers with four or more digits in a string. This
will also illustrate how you can use functions to perform repeated searches.

Chapter 4

[129]

For this purpose, we use the boost::is_xdigit predicate, which returns true if
a particular character passed to it is a valid hexadecimal character. Here is the
sample code:

Listing 4.10: Finding substrings using boost::find_token and predicates

 1 #include <boost/algorithm/string.hpp>
 2 #include <string>
 3 #include <iostream>
 4
 5 int main()
 6 {
 7 std::string str = "The application tried to read from an "
 8 "invalid address at 0xbeeffed";
 9
10 auto token = boost::find_token(str, boost::is_xdigit(),
11 boost::token_compress_on);
12 while (token.begin() != token.end()) {
13 if (boost::size(token) > 3) {
14 std::cout << token << '\n';
15 }
16
17 auto remnant = boost::make_iterator_range(token.end(),
18 str.end());
19 token = boost::find_token(remnant, boost::is_xdigit(),
20 boost::token_compress_on);
21 }
22 }

The string str contains an interesting hexadecimal token (0xbeeffed). We pass str
to boost::find_token along with an instance of the predicate boost::is_xdigit,
which identifies valid hexadecimal digits (line 10). We indicate, using boost::token_
compress_on, that contiguous matching characters should be concatenated (line 11);
this option is turned off by default. The returned range token represents the currently
matched substring. We loop as long as the returned range token is not empty, that is,
token.begin() != token.end() (line 12), and print its contents if it is longer than 3
in length (line 13). Note the use of the function boost::size on token. This is one of
several functions that can be used to compute properties of a range like its beginning
and end iterators, size, and so on. Also, note that we can directly stream a range object
like a token to an ostream object, such as std::cout, to print all the characters in the
range (line 14).

Working with Strings

[130]

In each iteration, we search the remaining string after the match using find_token.
The remaining string is constructed as a range called remnant (lines 17-18). The
beginning of remnant is token.end(), which is the first position after the last
matching token. The end of remnant is simply the end of the string str.end().

iter_find
Iterating through a string and finding all substrings matching some criterion is a
common enough use case, and Boost provides an easier way to do this. By using
boost::iter_find algorithm, passing it the input string, a finder functor, and a
sequence container to hold the matched ranges, we can get the matching substrings
back in the container passed. Here is the above example rewritten using boost::
iter_find:

Listing 4.11: Using boost::iter_find with boost::token_finder

 1 #include <boost/algorithm/string.hpp>
 2 #include <string>
 3 #include <iostream>
 4 #include <vector>
 5 #include <iterator>
 6 #include <algorithm>
 7
 8 struct MinLen
 9 {
10 bool operator()(const std::string& s) const
11 { return s.size() > 3; }
12 };
13
14 int main() {
15 std::string str = "The application tried to read from an "
16 "invalid address at 0xbeeffed";
17
18 std::vector<std::string> v;
19 auto ret = boost::iter_find(v, str,
20 boost::token_finder(boost::is_xdigit(),
21 boost::token_compress_on));
22
23 std::ostream_iterator<std::string> osit(std::cout, ", ");
24 std::copy_if(v.begin(), v.end(), osit, MinLen());
25 }

The boost::find_regex algorithm can search a string for substrings that match a
regular expression pattern. We will cover this algorithm when we deal with regular
expressions using Boost.Regex, later in this chapter.

Chapter 4

[131]

find
There is a generic boost::find algorithm in terms of which most of the other find
algorithms are implemented. Using the available finder-functor templates,
as part of the string algorithms library, or writing our own, we can make the generic
boost::find string algorithm do a variety of search tasks for us. Here is an example
of using the boost::last_finder functor with boost::find algorithm to find the
last matching substring—exactly what boost::ifind_last does. The boost::last_
finder functor and others like it take an optional predicate and can be used to
influence how character comparisons are done. To simulate the case-insensitive
comparisons that ifind_last does, we need to pass a predicate that compares two
characters in a case-insensitive way. For this, we use the boost::is_iequal predicate:

 1 std::string haystack = "How little is too little";
 2 std::string needle = "Little";
 3
 4 auto ret = boost::find(haystack,
 5 boost::last_finder(needle,
 6 boost::is_iequal()));

We call boost::find on haystack passing it the boost::last_finder functor.
Since we want last_finder to perform case insensitive comparisons, we pass it an
instance of the boost::is_iequal predicate. This works like boost::ifind_last
and is essentially the way it is implemented. You can even pass your own predicates
for character comparisons. Say you received an encoded message, where each
character is shifted by 4, and it wraps around so that a is e and z is d. You can use
the equalsShift functor in the following code to check whether a particular real
word exists in the encoded text:

Listing 4.12: Using custom predicates with Boost substring finders

 1 struct EqualsShift {
 2 EqualsShift(unsigned int n) : shift(n) {}
 3
 4 bool operator()(char input, char search) const
 5 {
 6 int disp = tolower(input) - 'a' - shift;
 7 return tolower(search) == (disp >= 0)?'a':'z' + disp;
 8 }
 9
10 private:
11 unsigned long shift;
12 };
13

Working with Strings

[132]

14 // encoded ... How little is too little
15 std::string encoded = "Lsa pmxxpi mw xss pmxxpi";
16 std::string realWord = "little";
17 auto ret = boost::find(encoded,
18 boost::first_finder(realWord,
19 EqualsShift(4)));

Without decoding the whole string contained in the variable encoded, we want
to find a substring of encoded that, when decoded would match the string contained
in the variable realWord. In order to do this, we call boost::find with two
arguments, the encoded input string called encoded and a predicate that returns
true only if a matching substring is found (line 17-19).

For the predicate, we construct a temporary class of type boost::first_finder,
passing two arguments to its constructor: the word to look for is realWord and
a binary predicate EqualShift(4). The EqualsShift functor performs a case-
insensitive comparison of two characters: one from the encoded input and one
from the word to look up. It returns true if the first character is an encoding of
the second character, according to the scheme of shifting by a fixed integer N,
as described earlier (N=4 in our case).

find_head and find_tail
There are a few more find algorithms like boost::find_head and boost::find_
tail, which could well have been named prefix and suffix for that is exactly
what they do—carve out a prefix or suffix of a specified length from a string:

1 std::string run = "Run Forrest run";
2 assert(boost::find_head(run, 3) == "Run");
3 assert(boost::find_head(run, -3) == "Run Forrest ");
4 assert(boost::find_tail(run, 3) == "run");
5 assert(boost::find_ tail(run, -3) == " Forrest run");

You call find_head with the input string and an offset. If the offset is a positive
number N, find_head returns the first N characters in the input string or the whole
string if N is larger than the size of the string. If the offset is a negative number -N,
find_head returns the first size - N characters, where size represents the total
number of characters in the string run.

You call find_tail with a string and an integer. When a positive integer N is passed,
find_tail returns the last N characters of the input string or the whole string if N is
larger than the size of the string. When a negative integer -N is passed, find_tail
returns the last size - N characters in the string, where size represents the total
number of characters in the string, an empty string if N > size.

Chapter 4

[133]

Other algorithms for testing string properties
There exist several convenience functions, which make certain common
operations very easy to code. Algorithms like boost::starts_with and
boost::ends_with (and their case-insensitive variants), test whether a particular
string is a prefix or suffix of another. To determine the dictionary order of two
strings, you can use boost::lexicographical_compare. You can check for equality
using boost::equals, and check whether a string is a substring of another using
boost::contains. Corresponding case-insensitive variants exist for each of these
functions, and the case-sensitive variants take an optional predicate for comparing
characters. The Boost online documentation provides an adequately detailed listing
of these functions and their behavior.

Case-conversion and trimming algorithms
Changing the case of a string or some part of it and trimming extra whitespace that
is preceding or trailing a string are very common tasks, which take a bit of effort to
be done using only the Standard Library. We have already seen boost::to_upper,
boost::to_lower, and their copying versions for performing case changes in action.
In this section, we will apply these algorithms to more interesting ranges and also
look at trimming algorithms.

Case-conversion algorithms
How does one convert alternate characters in a string to uppercase leaving the rest
untouched? Since the boost::to_upper function takes a range, we need to somehow
generate the range that contains alternate elements from the string. The way to do this
is to use range adaptors. Boost Range library provides a number of adaptors that allow
the generation of newer patterns of ranges from existing ones. The adaptor that we are
looking for is the strided adaptor that allows traversing the range by skipping a fixed
number of elements at each step. We need to skip just one element per step:

Listing 4.13: Generating non-contiguous ranges with Boost.Range adaptors

 1 #include <boost/range.hpp>
 2 #include <boost/range/adaptors.hpp>
 3 #include <string>
 4 #include <iostream>
 5 #include <boost/algorithm/string.hpp>
 6 #include <cassert>
 7

Working with Strings

[134]

 8 int main()
 9 {
10 std::string str = "funny text";
11 auto range = str | boost::adaptors::strided(2);
12 boost::to_upper(range);
13 assert(str == "FuNnY TeXt");
14 }

In order to apply the boost::to_upper algorithm to the even-indexed characters,
we first generate the correct range. The pipe operator (operator |) is overloaded
to create an intuitive chaining syntax for adaptors, such as strided. Using the
expression str | strided(2), we are essentially applying the strided adaptor
with an argument of 2 to the string str to get a range containing the even-indexed
elements of str (line 11). Note that the strided adaptor always starts from the first
character of the input.

The same effect can be achieved by writing:

auto range = boost::adaptors::stride(str, 2);

I prefer the piped notation, as it seems a lot more expressive, especially when more
adaptors need to be chained. Following the generation of this range, we apply to_
upper to it (line 12) and expectedly, the even-index characters of str are transformed
to uppercase (line 13).

If we want to perform the same operation, but on all the odd indexes, there is one
problem we need to solve. The strided adaptor takes the number to skip between
two elements as an argument but always starts from the first character of the input.
To start from the element at index 1 instead of 0, we have to take a slice of the
container starting at the element we intend to start from (index 1 in this case), and
then apply strided with an argument of 2.

To take the slice first, we use another adaptor, called boost::adaptors::sliced.
It takes the indexes to the starting location and one past the ending location as
arguments. In this case, we would like to start from index 1 and slice the rest of the
container. So, we can write the entire expression like this:

auto range = str | boost::adaptors::sliced(1, str.size() – 1)
 | boost::adaptors::strided(2);

Chaining adaptors in this way is a powerful way to generate ranges on the fly with
a very readable syntax. The same techniques apply to C-style character arrays also.

Chapter 4

[135]

Trimming algorithms
For trimming strings, there are three main algorithms: boost::trim_left for
trimming leading whitespace in a string, boost::trim_right for trimming trailing
whitespace in a string, and boost::trim for trimming both. Trimming algorithms
potentially change the length of the output. Each algorithm has an _if variant that
takes a predicate, which is used to identify what characters to trim. For example, if
you want to drop only trailing newlines from a string read from the console (a
frequent chore), you may write an appropriate predicate to identify only newlines.
Finally, there are copy variants of all these algorithms. If we wrote an expanded list
of the available algorithms, there would be twelve of them; four for trim_left: trim_
left, trim_left_copy, trim_left_if, and trim_left_if_copy; and similarly four
for trim_right and trim each. Here is an example of performing trims on strings:

Listing 4.14: Using boost::trim and its variants

 1 #include <boost/algorithm/string.hpp>
 2 #include <string>
 3 #include <iostream>
 4 #include <cassert>
 5
 6 bool isNewline(char c) {
 7 return c == '\n';
 8 }
 9
10 int main()
11 {
12 std::string input = " Hello ";
13 std::string input2 = "Hello \n";
14
15 boost::trim(input);
16 boost::trim_right_if(input2, isNewline);
17
18 assert(*(input.end() - 1) != ' ');
19 assert(*(input2.end() - 1) != '\n' &&
20 *(input2.end() - 1) == ' ');
21 }

In listing 4.14, we have two strings: input with leading and trailing spaces (line
12), and input2 with trailing spaces and a newline at the end (line 13). By applying
boost::trim on the input, the leading and trailing spaces are trimmed (line 15). If
we had applied boost::trim_right on input2, it would have removed all trailing
whitespaces, including the spaces and the newline. We only wanted to drop the
newline, not the spaces; so we wrote a predicate isNewline to help choose what
needs to be trimmed. This technique can be used for non-whitespace characters too.

Working with Strings

[136]

These functions do not work on C-style arrays and the non-copy versions expect a
member function called erase. They work with the basic_string specializations in
the Standard Library, and other classes that provide an erase member function with
similar interface and semantics.

The replace and erase algorithms
The replace and erase algorithms are handy functions to perform search and replace
operations on strings. The basic idea is to find one or more matches for a search
string and replace the matches with a different string. Erase is a special case of
replace, when we replace the matches with a null string.

These operations may change the length of the input when performed in-place
because the matched content and its replacement may have different lengths.
The core algorithm in the library is boost::find_format in terms of which all
other algorithms are implemented. The algorithms boost::replace_first,
boost::replace_last, boost::replace_nth, and boost::replace_all
respectively replace the first, last, nth, or all matching occurrences of a search string
in the input with an alternative string. The corresponding erase algorithms simply
erase the matched sections. These algorithms do not work on C-style arrays:

Listing 4.15: Using boost::replace and boost::erase variants

 1 #include <boost/algorithm/string.hpp>
 2 #include <string>
 3 #include <iostream>
 4 #include <cassert>
 5
 6 int main()
 7 {
 8 std::string input = "Hello, World! Hello folks!";
 9 boost::replace_first(input, "Hello", "Hola");
10 assert(input == "Hola, World! Hello folks!");
11 boost::erase_first(input, "Hello");
12 assert(input == "Hola, World! folks!");
13 }

In listing 4.15, we first use the boost::replace_first algorithm to replace the first
instance of the string "Hello" with "Hola" (line 9). Had we used boost::replace_
all instead, both instances of "Hello" would be replaced, and we would get "Hola,
World! Hola folks!". We then call boost::erase_first to remove the remaining
"Hello" in the string (line 11). Each of these algorithms has a case-insensitive
variant, which matches in a case-insensitive way. Predictably, they are named
with an i- prefix: ireplace_first, ierase_first, and so on.

Chapter 4

[137]

There is a _copy variant of each algorithm returning too, a new string rather than
changing in place. Here is a short illustration:

std::string input = "Hello, World! Hello folks!";
auto output = boost::ireplace_last_copy(input, "hello", "Hola");
assert(input == "Hello, World! Hello folks!"); // input unchanged
assert(output == "Hello, World! Hola folks!"); // copy changed

Note how the boost::ireplace_last_copy variant worked here, matching "hello"
in a case-insensitive manner and performing the replacement in a copy of the input.

You can replace or erase a prefix or suffix of a string using boost::replace_head
or boost::replace_tail (and their erase variants). The boost::replace_regex
and boost::replace_regex_all algorithms take a regular expression for finding
matches, and replace them with a replacement string. The replacement string may
contain a special syntax to refer back to parts of the matched string, the details of
which we will defer till the section on Boost.Regex, later in this chapter.

The split and join algorithms
Boost provides an algorithm called boost::split, which is essentially used to split
an input string into tokens based on some separators. The algorithm is passed an
input string, a predicate for identifying separators, and a sequence container to store
the parsed tokens. Here is an example:

Listing 4.16: Splitting a string on simple tokens using boost::split

 1 #include <boost/algorithm/string.hpp>
 2 #include <string>
 3 #include <iostream>
 4 #include <vector>
 5 #include <cassert>
 6
 7 int main()
 8 {
 9 std::string dogtypes = "mongrel, puppy, whelp, hound";
10 std::vector<std::string> dogs;
11 boost::split(dogs, dogtypes, boost::is_any_of(" ,"),
12 boost::token_compress_on);
13
14 assert(dogs.size() == 4);
15 assert(dogs[0] == "mongrel" && dogs[1] == "puppy" &&
16 dogs[2] == "whelp" && dogs[3] == "hound");
17 }

Working with Strings

[138]

The listing 4.16 will list out the four types of dogs that appear in the string
dogtypes separated by commas and spaces (line 9). It uses the boost::split
algorithm to do so. The dogtypes string is tokenized using the predicate boost::
is_any_of(" ,"), which identifies any space or comma as a separator (line 11).
The boost::token_compress_on option ensures that the boost::split algorithm
does not return an empty string for each adjacent pair of separator characters but
clubs them together, treating it as a single separator (line 12). If we want to split
a string at any punctuation mark, we will use boost::is_punct() instead of
boost::is_any_of(…). However, it is a somewhat inflexible scheme of tokenizing
with only a limited set of predicates available.

If you simply want to split a string using another string as a separator, you may
use boost::iter_split instead:

Listing 4.17: Using boost::iter_split to tokenize strings

 1 #include <boost/algorithm/string.hpp>
 2 #include <string>
 3 #include <iostream>
 4 #include <vector>
 5
 6 int main()
 7 {
 8 std::string dogtypes =
 9 "mongrel and puppy and whelp and hound";
10 std::vector<std::string> dogs;
11 boost::iter_split(dogs, dogtypes,
12 boost::first_finder(" and "));
13 assert(dogs.size() == 4);
14 assert(dogs[0] == "mongrel" && dogs[1] == "puppy" &&
15 dogs[2] == "whelp" && dogs[3] == "hound");
16 }

The main difference between boost::split and boost::iter_split is that in the
latter, you use a finder to identify a separator, which can thus be a specific string. Both
boost::iter_split and boost::iter_find take the same kind of arguments and
use a finder to search for a matching substring, but boost::iter_split returns tokens
that lie between two matching substrings, while its complement boost::iter_find
returns the matching substring.

Chapter 4

[139]

Finally, the boost::join and boost::join_if algorithms are pretty useful when
you are trying to string together a sequence of values with some separator between
successive values. While boost::join concatenates all the values in the sequence,
boost::join_if concatenates only those values from the sequence that satisfy a
passed predicate. Here is boost::join in action taking a vector of strings and a
separator, and returning the joined string:

std::vector<std::string> vec{"mongrel", "puppy", "whelp", "hound"};
std::string joined = boost::join(vec, ", ");
assert(joined == "mongrel, puppy, whelp, hound");

In the preceding example, we see yet another useful C++11 feature in action: uniform
initialization. We initialize the vector vec with a sequence of four strings enclosed
in braces and separated by a comma. This initialization syntax works for all STL
containers and can be used with regular classes with specific types of constructors.
Now, if we wanted to pick and choose which strings were concatenated and which
were not, we would use boost::join_if like this:

bool fiveOrLessChars(const std::string& s) { return s.size() <= 5; }

std::vector<std::string> vec{"mongrel", "puppy", "whelp", "hound"};
std::string joined = boost::join_if(vec, ", ", fiveOrLessChars);
assert(joined == "puppy, whelp, hound");

The fiveOrLessChars predicate checks whether the string passed to it is of length
five or less. Thus, the string "mongrel" does not feature in the joined string as its
length is more than five.

Splitting text using the Boost Tokenizer
library
The boost::split algorithm, we saw in the last section, splits a string using a
predicate and puts the tokens into a sequence container. It requires extra storage
for storing all the tokens, and the user has limited choices for the tokenizing criteria
used. Splitting a string into a series of tokens based on various criteria is a frequent
programming requirement, and the Boost.Tokenizer library provides an extensible
framework for accomplishing this. Also, this does not require extra storage for storing
tokens. It provides a generic interface to retrieve successive tokens from a string.
The criterion to split the string into successive tokens is passed as a parameter. The
Tokenizer library itself provides a few reusable, commonly used tokenizing policies for
splitting, but, most importantly, it defines an interface using which we can write our
own splitting policies. It treats the input string like a container of tokens from which
successive tokens may be parsed out.

Working with Strings

[140]

Tokenizing based on separators
To begin with, let's see how we can split a string into its constituent words:

Listing 4.19: Using Boost Tokenizer to tokenize strings into words

 1 #include <iostream>
 2 #include <boost/tokenizer.hpp>
 3 #include <string>
 4
 5 int main()
 6 {
 7 std::string input =
 8 "God knows, I've never been a spiritual man!";
 9
10 boost::tokenizer<> tokenizer(input);
11
12 for (boost::tokenizer<>::iterator token = tokenizer.begin();
13 token != tokenizer.end(); ++token) {
14 std::cout << *token << '\n';
15 }
16 }

The boost::tokenizer class template abstracts the tokenization process. We create
an instance of the default specialization of boost::tokenizer, passing it our input
string input (line 10). Next, using the iterator interface of boost::tokenizer, we
split input into successive tokens (lines 12-14). In general, you can customize how
strings are split by passing appropriate tokenizing policies. As we did not pass one
explicitly to the boost::tokenizer template, the default tokenizing policy splits
the string using whitespace and punctuation as token delimiters or separators. The
preceding code will print the following output to the standard output:

God
knows
I
ve
never
been
a
spiritual
man

Thus, it splits not only on spaces but also commas and apostrophes; "I've" is split
into "I" and "ve" due to the apostrophe.

Chapter 4

[141]

If we wanted to split the input based on spaces and punctuation but not split on an
apostrophe, we would need to do more. Boost provides a few reusable templates for
commonly used splitting policies. The boost::char_delimiter template splits the
string using specified characters as delimiters. Here is the code:

Listing 4.20: Using Boost Tokenizer with boost::char_separator

 1 #include <boost/tokenizer.hpp>
 2 #include <string>
 3 #include <iostream>
 4
 5 int main()
 6 {
 7 std::string input =
 8 "God knows, I've never been a spiritual man!";
 9
10 boost::char_separator<char> sep(" \t,.!?;./\"(){}[]<>");
11 typedef boost::tokenizer<boost::char_separator<char> >
12 tokenizer;
13 tokenizer mytokenizer(input, sep);
14 for (auto& token: mytokenizer)
16 {
17 std::cout << token << '\n';
18 }
19 }

In this case, we first construct the splitting policy sep using the boost::char_
separator template (line 10). Since we are splitting text of type std::string
whose character type is char, we must pass char as argument to boost::char_
separator to specify that the delimiters are of type char. We can also write
boost::char_separator<std::string::value_type> instead of boost::char_
separator<char> to better express the relationship. We construct the list of
punctuation marks and whitespace characters we would like to use as delimiters
and pass it as the constructor argument of sep. Finally, we construct the tokenizer,
passing it the input string input and the splitting policy sep. We iterate through
the successive tokens using a range-based for-loop, which makes for less verbose
code than when using a token iterator.

Working with Strings

[142]

Tokenizing records with fields containing
metacharacters
The boost::char_delimiter policy is not the only available splitting policy.
Consider a comma-separated data format, as shown in the following output:

Joe Reed,45,Bristol UK
Ophir Leibovitch,28,Netanya Israel
Raghav Moorthy,31,Mysore India

We have one record per line and three fields per record: the name, age, and city of
residence of a person. We can parse such records with the boost::char_separator
policy, passing it a comma as a separator character. Now, if we want to make the
format a little richer, we may include full addresses of people instead of their current
city. But addresses are longer fields, sometimes with embedded commas, and such
addresses would break the parsing, which is based on using a comma as a separator.
So, we decide to quote strings that may have embedded commas:

Joe Reed,45,"33 Victoria St., Bristol UK"
Ophir Leibovitch,28,"19 Smilanski Street, Netanya, Israel"
Raghav Moorthy,31,"156A Railway Gate Road, Mysore India"

Quoting itself may not be enough. Some addresses might have quoted strings,
and we would like to preserve those. To fix this, we decide on using backslash (\)
as an escape character. Here is a fourth record with quoted strings in the address:

Amit Gupta,70,"\"Nandanvan\", Ghole Road, Pune, India"

The trouble now is that it is no longer possible to parse the preceding records
using the boost::char_separator policy. For such records, we should instead
use boost::escaped_list_char. The boost::escaped_list_char policy is
tailor-made for this kind of use. By default, it uses comma (,) as a field separator,
double quotes (") as the quoting character, and backslash (\) as the escape character.
To include commas in fields, quote the fields. To include quotes in the fields, escape
the embedded quotes. We can now attempt to parse the most complex of the four
persons' records, as discussed earlier:

Listing 4.21: Using boost::tokenizer with boost::escaped_list_separator

 1 #include <iostream>
 2 #include <boost/tokenizer.hpp>
 3 #include <string>
 4
 5 int main()
 6 {

Chapter 4

[143]

 7 std::string input = "Amit Gupta,70,\"\\\"Nandanvan\\\", "
 8 "Ghole Road, Pune, India\"";
 9
10 typedef boost::tokenizer<boost::escaped_list_separator<char> >
11 tokenizer;
12 tokenizer mytokenizer(input);
13
14 for (auto& tok: mytokenizer)
15 {
16 std::cout << tok << '\n';
17 }
18 }

An instance of boost::tokenizer<boost::escaped_list_separator<char> >
is created (line 12) using the typedef (lines 10-11). This is really the only operative
change to take care of for this new format. The record, hardcoded in the variable
input, needs some extra level of escaping to be made into a valid C++ string literal
(lines 7-8).

If the record had a different set of metacharacters, say hyphen (-) for field
separator, forward slash (/) for quotes, and tilde (~) for escaping, we would need
to specify these explicitly, as the default options for boost::escaped_list_
separator<<char> > would no longer work. Consider a person named Alon Ben-
Ari, aged 35, who lives at 11/5 Zamenhoff St., Tel Aviv. Using the specified quote,
field separators, and escape characters, this could be represented as:

/Alon Ben-Ari/-35-11~/5 Zamenhoff St., Tel Aviv

The name field has a hyphen in the last name Ben-Ari. As hyphen is also a field
separator, the name field must be quoted using forward slashes. The address field
has a forward slash and since a forward slash is the quote character, the address field
must be escaped with the escape character (~). Now it is our turn to tokenize it:

Listing 4.22: Using boost::escaped_list_separator with funky delimiters

 1 #include <iostream>
 2 #include <boost/tokenizer.hpp>
 3 #include <string>
 4
 5 int main()
 6 {
 7 std::string input =
 8 "/Alon Ben-Ari/-35-11~/5 Zamenhoff St., Tel Aviv";
 9

Working with Strings

[144]

10 typedef boost::tokenizer<boost::escaped_list_separator<char> >
11 tokenizer;
12 boost::escaped_list_separator<char> sep('~', '-', '/');
13 tokenizer mytokenizer(input, sep);
14
15 for (auto& tok: mytokenizer) {
16 std::cout << tok << '\n';
17 }
18 }

This is the output:

Alon Ben-Ari
35
11/5 Zamenhoff Str., Tel Aviv

Tokenizing records with fixed-length fields
One class of data formats that frequently occurs in financial transactions and several
other domains consists of records at fixed offsets. Consider the following record
format representing a payment instruction:

201408091403290000001881303614419ABNANL2AWSSDEUTDEMM720000000412000EUR…

Here, the record is barely human readable and is meant for consumption only by a
program. It has fields at fixed offsets whose meanings must be known by the parsing
program. The individual fields are described here:

Offset 0, length 8: date of record in YYYYMMDD format.
Offset 8, length 9: time of record in HHMMSSmmm format where mmm
represents milliseconds.
Offset 17, length 16: the transaction identifier for the transaction,
numeric format.
Offset 33, length 11: the Swift Bank Identifier Code for the bank from
which money is transferred.
Offset 44, length 11: the Swift Bank Identifier Code for the bank to
which money is transferred.
Offset 55, length 12: the transaction amount.
Offset 67, length 3: the ISO code for the currency of transaction.

In order to parse records like these, we use the boost::offset_separator splitting
policy. This class (note that it isn't a template) takes lengths of successive tokens to
parse in the form of a pair of iterators, bounding the sequence of lengths.

Chapter 4

[145]

A code example to parse the preceding payment instruction should help illustrate
the idea:

Listing 4.23: Tokenizing records with fixed-length fields

 1 #include <boost/tokenizer.hpp>
 2 #include <string>
 3 #include <iostream>
 4
 5 int main()
 6 {
 7 std::string input =
 8 "201408091403290000001881303614419ABNANL2AWSSDEUTDEMM72"
 9 "0000000412000EUR";
10 int lengths[] = {8, 9, 16, 11, 11, 12, 13};
11
12 boost::offset_separator ofs(lengths, lengths + 7);
13 typedef boost::tokenizer<boost::offset_separator> tokenizer;
14 tokenizer mytokenizer(input, ofs);
15
16 for (auto& token: mytokenizer) {
17 std::cout << token << '\n';
18 }
19 }

We first define an array containing the lengths of successive fields (line 10), and
use it to initialize an object ofs of type boost::offset_separator (line 12). We
could have also used a vector instead of an array and passed its begin() and end()
iterators to the offset_separator constructor. We then create a tokenizer, which
tokenizes a string based on offsets specified in ofs (lines 13-14), and print the
successive tokens using a range-based for-loop (lines 16-18).

This program produces the following output:

20140809
140329000
0001881303614419
ABNANL2AWSS
DEUTDEMM720
000000412000
EUR

We see listed on successive lines, we see listed the values of the date, time, ID,
sender SWIFT bank code (an identifier for the sender bank), receiver SWIFT bank
code, amount, and currency of the transaction.

Working with Strings

[146]

Now, what happens if all the fields have been parsed and there is still some input left?
The default behavior is to start parsing afresh the remaining text, applying the length
offsets to it from the start. This may make sense for some formats and may not make
sense for some. If you want to turn this behavior off so that the parsing stops once all
the length offsets have been used, you should pass a third argument to the constructor
of boost::offset_separator, and its value should be false, as shown here:

boost::offset_separator ofs(lengths, lengths + nfields,
 false);

Here, lengths is the array of length offsets and nfields is the number of fields we
expect to parse.

Conversely, what happens if the input is shorter than the sum of the lengths? The
default behavior is to return the last partially parsed field and stop. Suppose you
have a format in which the payer's comments are appended to each transaction
record. A comment is optional and need not be there. If it is there, it may or may
not have a maximum size limit. The first behavior can be used to parse the last
comment field by specifying the maximum size, or an arbitrarily large size that
you don't expect the comments to reach, and thus leverage the partial parse of the
last record. Again, if you want to turn this behavior off so that the first partial field
encountered stops the parsing, you should pass a fourth argument of type bool to
the boost::offset_separator constructor and its value should be false:

boost::offset_separator ofs(lengths, lengths + nfields, restart,
 false);

Writing your own tokenizer functions
There are many instances when you will need to parse a string according to
some criteria that are not available in a reusable class or template in Boost.
While you could use alternative libraries like boost::split, you can use the
boost::tokenizer facility by plugging in a custom token generator. A token
generator class encapsulates the tokenizing strategy and is passed as a template
argument to boost::tokenizer.

A token generator can be defined as a functor that conforms to the
following requirements:

• Is copy-assignable.
• Is copy-constructible.

Chapter 4

[147]

• Has an overloaded public function call operator (operator()) with
the following signature:
template <typename InputIterator, typename StringType>
bool operator()(InputIterator& next,
 InputIterator end,
 StringType& token)

This operator is passed two iterators that define a section of a string in which
it looks for the next token it is passed. If and only if a new token is found, it
returns true. In such case, it sets its third parameter to the token and its first
parameter to the first position in the string after the end of the token, from
where parsing may continue. It returns false if no token is found. We must
write the logic to identify successive tokens in this function.

• Has a public member function void reset(). This can be used to clear any
member variables used to keep parsing state for a string. Then, the same
instance of the object may be used to parse multiple inputs.

These functions are called by the boost::tokenizer implementation, never directly
by the programmer.

We now write a token generator class to pick from some text, strings that are quoted
or bracketed. For example, given the string "I'm taking a train from Frankfurt
(am Main) to Frankfurt (an der Oder)", we want to pick out the tokens "am
Main" and "an der Oder". To simplify our implementation, given strings with
nested brackets or quotes, only the content of innermost quotes need be retrieved.
Thus, given the string "tokenizer<char_separator<char> >", it should return
"char", the innermost bracketed entity. Here is the code for such a class, named
qstring_token_generator:

Listing 4.24a: The qstring_token_generator interface

 1 class qstring_token_generator
 2 {
 3 public:
 4 typedef std::string::const_iterator iterator;
 5
 6 qstring_token_generator(char open_q = '"',
 7 char close_q = '"', char esc_c = '\\',
 8 bool skip_empty = true);
 9
10 bool operator() (iterator& next, iterator end,
11 std::string& token);
12

Working with Strings

[148]

13 void reset();
14
15 private:
16 // helper functions to be defined
17
18 char start_marker;
19 char end_marker;
20 char escape_char;
21 bool skip_empty_tokens;
22 bool in_token;
23 bool in_escape;
24 };

The qstring_token_generator class has a constructor that takes the necessary inputs:

• The start and end marker characters, which are by default both double
quotes (")

• The escape character, which is by default the backslash (\)
• A Boolean indicating whether to skip empty tokens, which is by default true

(lines 6-8)

The corresponding private variables for storing these values are defined (lines 18-21).
The class uses two additional state variables to keep track of parsing state: the in_
token variable (line 22) which is true while parsing content inside quotes and false
otherwise, and the in_escape variable (line 23) which is true if the current character
is part of an escape sequence and false otherwise. Here is the implementation of the
constructor:

Listing 4.24b: The qstring_token_generator constructor

 1 qstring_token_generator::qstring_token_generator
 2 (char open_q, char close_q, char esc_c,
 3 bool skip_empty) :
 4 start_marker(open_q), end_marker(close_q),
 5 escape_char(esc_c), skip_empty_tokens(skip_empty),
 6 in_token(false), in_escape(false)
 7 {}

Note that in_token and in_escape are initialized to false. Each time we iterate
through the successive tokens in the input using the tokenizer interface, the tokenizer
implementation calls the token generator to parse the input again. To start parsing
afresh, any internal parsing state must be reset. The reset function encapsulates
these actions and is called by the tokenizer when new token iterators are created.

Chapter 4

[149]

 Here is the implementation of the reset function:

Listing 4.24c: The qstring_token_generator reset function

 1 void qstring_token_generator::reset()
 2 {
 3 in_token = false;
 4 in_escape = false;
 5 }

The reset function makes sure that the internal variables used to maintain parsing
state are reset appropriately for the parsing to restart.

Finally, the parsing algorithm is implemented in the overloaded function call
operator member (operator()). To parse the string, we look for start and end
markers to identify the start and end of tokens and count-escaped start and end
markers as part of the tokens, and handle the case where the start and end markers
are the same characters. We also handle cases where quoted tokens are nested.
We will write the algorithms in terms of a few helper private functions in
qstring_token_generator class.

Listing 4.24d: The parsing algorithm helpers

 1 iterator qstring_token_generator::start_token(iterator& next)
 2 {
 3 in_token = true;
 4 return ++next;
 5 }
 6
 7 std::string qstring_token_generator::end_token(iterator& next,
 8 iterator token_start)
 9 {
10 in_token = false;
11 auto token_end = next++;
12 return std::string(token_start, token_end);
13 }

The start_token function is meant to be called each time we identify the beginning
of a new token (line 1). It sets the in_token flag to true, increments the iterator next,
and returns its value.

The end_token function is meant to be called each time we identify the end of a
token (line 7). It sets the in_token flag to false, increments the iterator next, and
returns the complete token as a string.

Working with Strings

[150]

We now need to write the logic to identify the start and end of tokens and call the
preceding function appropriately. We do this directly in the overloaded operator():

Listing 4.24e: The parsing algorithm

 1 bool operator() (iterator& next, iterator end,
 2 std::string& token)
 3 {
 4 iterator token_start;
 5
 6 while (next != end) {
 7 if (in_escape) {
 8 // unset in_escape after reading the next char
 9 in_escape = false;
10 } else if (*next == start_marker) { // found start marker
11 if (!in_token) { // potential new token
12 token_start = start_token(next);
13 continue;
14 } else { // already in a quoted string
15 if (start_marker == end_marker) {
16 // Found end_marker, is equal to start_marker
17 token = end_token(next, token_start);
18 if (!token.empty() || !skip_empty_tokens) {
19 return true;
20 }
21 } else {
22 // Multiple start markers without end marker.
23 // Discard previous start markers, consider
24 // inner-most token only.
25 token_start = start_token(next);
26 continue;
27 }
28 }
29 } else if (*next == end_marker) {
30 // Found end_marker, is not equal to start_marker
31 if (in_token) {
32 token = end_token(next, token_start);
33 if (!token.empty() || !skip_empty_tokens) {
34 return true;
35 }
36 }
37 } else if (*next == escape_char) {

Chapter 4

[151]

38 in_escape = !in_escape; // toggle
39 }
40 ++next;
41 }
42
43 return false;
44 }

We loop through the successive characters of the input using a while loop (line 6). For
each character, we check whether it is preceded by the escape character (line 7), or if it
is the start marker (line 10), end marker (line 29), or the escape character (line 37).

If an unescaped start marker is found, and we are not already in the middle of parsing
a token (line 11), then it potentially represents the start of a new token. So, we call
start_token, note the starting position of the token, and continue to the next iteration
(lines 12-13). But if we are already in the middle of parsing a token, and we find the
start marker, then there are two possibilities. If the start and end markers happen to
be the same, then this represents the end of the token (line 15). In this case, we call
end_token to get the complete token and return it unless it is empty and skip_empty_
tokens is set (lines 16-20). If start and end markers are not the same, then a second
start marker represents a nested token. Since we want to only extract the most nested
token, we discard the previous token and call start_token to indicate that we have
the start of a new token (lines 25-26).

If the end marker is distinct from the start marker, and we find it (line 29), then
we call end_token generating and returning the complete token found, unless it
is empty and skip_empty_tokens is set. Finally, if we find the escape character,
we set the in_escape flag (lines 37-38).

We use the qstring_token_generator class to tokenize our input string:

Listing 4.25: Extracting bracketed strings using the custom tokenizer

 1 std::string input = "I'm taking a train from Frankfurt "
 2 "(am Main) to Frankfurt (an der Oder)";
 3 bool skipEmpty = true;
 4 qstring_token_generator qsep('(', ')', '\\', skipEmpty);
 5 typedef boost::tokenizer<qstring_token_generator> qtokenizer;
 6 qtokenizer tokenizer(input, qsep);
 7
 8 unsigned int n = 0;
 9 for (auto& token: tokenizer) {
10 std::cout << ++n << ':' << token << '\n';
11 }

Working with Strings

[152]

The preceding highlighted code shows the key changes in our code. We define a
qstring_token_generator object that takes a left and right quote character (in
this case, left and right parentheses) and skips empty tokens (line 4). We then create
a typedef for boost::tokenizer<qstring_token_generator> (line 4), create a
tokenizer of that type to parse input (line 6), and print successive tokens (line 10).

Regular expressions using Boost.Regex
When we write a line of code like boost::find_first("Where have all the
flowers gone?", "flowers"), we are asking for the string "flowers" (call it the
needle) to be found in the larger string "Where have all the flowers gone?"
(call it the haystack). The needle is the pattern; seven specific characters in a
particular order whose presence must be looked up in the haystack. Sometimes,
however, we don't know the exact string we are looking for; we only have an
abstract idea or a pattern in mind. Regular expressions is a powerful language
to express this abstract pattern.

Regular expression syntax
Regular expressions are strings that encode a pattern of text using a mix of regular
characters and some characters with special interpretation, collectively called
metacharacters. The Boost.Regex library provides functions that consume regular
expression strings and generate the logic to search and verify text conforming to
particular patterns. For example, to define the pattern, "a followed by zero or more
b's", we use the regular expression ab*. This pattern will match text like a, ab, abb,
abbb, and so on.

Atoms
At a very basic level, regular expressions consist of groups of one or more characters
called atoms, each with an associated quantifier that trails the atom and optionally,
anchors that define how some text is located relative to the surrounding text.
The quantifier may be implicit. An atom can be a single character (or an escaped
metacharacter), a character class, a string, or a wildcard. If it is a string, it must
be enclosed in parentheses to indicate that it is an atom. A wildcard matches any
character (other than a newline) and is written using the dot (.) metacharacter.

Chapter 4

[153]

Quantifiers
A single atom without a trailing quantifier just matches a single occurrence of itself.
When present, the trailing quantifier determines the minimum and maximum allowed
occurrences of the preceding atom. The general quantifier looks like {m, M}, where
m denotes minimum and M denotes maximum occurrence frequency. Omitting the
maximum as in {m,} indicates that the maximum number of times the atom may
be present is unbounded. One may also use a single number as {n} to match a fixed
number of instances. More often, we use the following shortcut quantifiers:

• *: Equivalent to {0,}, called the Kleene star. Represents an atom that
may not occur, or may occur any number of times.

• +: Equivalent to {1,}. Represents an atom that must occur at least once.
• ?: Equivalent to {0,1}. Represents an optional atom.

Using the above syntax rules, we construct summary examples in the following table:

Regular
Expression

Atoms Quantifier Equivalent
quantifier

Matching text

W w None (implicit) {1} w
a* a * {0,} (blank), a, aa, aaa, aaaa, …

(abba)+ abba + {1,} abba, abbaabba,
abbaabbaabba, …

a?b a, b ? {0,1} b, ab
(ab){2,4} (ab) {2,4} {2,4} abab, ababab, abababab

.*x . and x * and None {0,} and
{1}

x and any string ending
in x

By default, quantifiers are greedy and match as many characters as possible. Thus,
given the string "abracadabra", the regular expression "a.*a" will match the
entire string instead of the smaller substrings "abra", "abraca", or "abracada", all
of which also start and end in 'a'. If we want to match only the smallest matching
substring, we need to override the greedy semantics. To do this, we put the question
mark (?) metacharacter after the quantifier "a.*?a".

Working with Strings

[154]

Character classes
Characters can also be matched against character classes, which are shorthand
representations of a group of functionally related characters. The following is a
partial list of predefined character classes in the Boost libraries:

Character class Short form Meaning Complement
[[:digit:]] \d Any decimal digit (0-9) \D
[[:space:]] \s Any whitespace character \S
[[:word:]] \w Any word character: letter,

number, and underscore
\W

[[:lower:]] \l Any lowercase character
[[:upper:]] \u Any uppercase character
[[:punct:]] None Any punctuation character

For example, \d is a character class that matches a single decimal digit. Its
complement \D matches any single character, except decimal digits. \s matches a
whitespace character and \S matches a non-whitespace character. Ad hoc character
classes can be created with square brackets; [aeiouAEIOU] matches any character
that is an English vowel, [1-5] matches a digit between 1 and 5 both inclusive. The
expression [^2-4] matches any character except 2, 3, and 4, and the leading caret
inside the square brackets having the effect of negating the characters following it.
We can combine multiple character classes something like—[[:digit:][:lower:]]—to
indicate the set of lowercase letters and decimal digits.

Anchors
Certain metacharacters, referred to as anchors, do not match characters but can
be used to match specific locations in text. For example, a caret (^) in a regular
expression (outside a character class) matches text at the start of a line (just after a
newline). A dollar($) matches text before the end of a line (just before a newline).
Also, \b represents a word boundary, while \B matches any location other than a
word boundary.

Sub-expressions
In general, each character in a string of characters is interpreted as a distinct atom.
In order to treat a string of characters as a single atom, we must parenthesize it.
Parenthesized substrings of a regular expression are called sub-expressions. A
quantifier following a sub-expression applies to the entire sub-expression:

([1-9][0-9]*)(\s+\w+)*

Chapter 4

[155]

The preceding expression represents a number ([1-9][0-9]*) followed by zero or
more words (\w+) separated from it and from each other by one or more whitespace
characters (\s+). The second Kleene star applies to the entire sub-expression \s+\w+
due to the parentheses.

Regular expression libraries, including Boost.Regex keep track of substrings of a
string that match the parenthesized sub-expressions. Matched sub-expressions can
be referred back from within the regular expression using back-references, such as
\1, \2, \3, and so on. For example, in the previous regular expression, the term \1
matches the leading number, while \2 matches the last matched word with leading
spaces. It matches nothing if there are no trailing words. Sub-expressions can be
nested and are numbered incrementally starting at 1 in the order that their left
parentheses appear in the string from left to right.

If you want to use sub-expressions to be able to apply quantifiers and anchors
to groups of characters, but do not need to capture them for later reference, you
can use non-capturing sub-expressions of the form (?:expr), where the leading
metacharacter sequence ?: inside the parentheses indicates that it is a non-capturing
sub-expression, and expr is some valid regular expression. This will treat expr
as an atom, but will not capture it. Sub-expressions without the leading ?: inside
parentheses are thus called capture groups or capturing sub-expressions.

Disjunctions
You can create a regular expression that is a logical-or of one or more regular
expressions. To do this, you use the |disjunction operator. For example, to match
a word that contains a mix of lowercase and uppercase characters, you can use the
expression (\l|\u)+.

You can use the disjunction operator to combine regular expressions and form more
complex expressions. For example, to match either a word containing upper or
lowercase characters, or a positive integer, we can use the expression (\l|\u)+|\d+.

Using Boost.Regex to parse regular
expressions
Regular expressions are a rich topic that we have barely scratched the surface of in
the preceding paragraphs. But this basic familiarity is sufficient for us to start using
the Boost.Regex library. The Boost.Regex library was one of the libraries that was
accepted into the C++ 11 Standard and is now part of the C++ 11 Standard Library,
minus its ability to handle Unicode characters.

Working with Strings

[156]

The Boost Regular Expressions library is not header-only and requires linking against
the Boost.Regex shared or static library. It is available from the header file boost/
regex.hpp. On my Linux desktop with Boost libraries installed via the native
package manager, I use the following command line to build regex programs:

$ g++ source.cpp -o progname -lboost_regex

On Linux systems, where Boost has been installed from source, the header files
could be under a nonstandard location like /opt/boost/include and libraries
under /opt/boost/lib. On such systems, I have to use the following command
line to build my programs:

$ g++ source.cpp -o progname -I/opt/boost/include -L/opt/boost/lib
-lboost_regex-mt -Wl,-rpath,/opt/boost/lib

The -Wl, -rpath, /opt/boost/lib directive tells the linker to hard-code the path
from where shared libraries, like libboost_regex-mt, are loaded, and helps our
program to run without additional settings. On Windows using Visual Studio,
linking is automatic.

It uses the boost::basic_regex template to model regular expressions and
provides its specializations boost::regex for type char and boost::wregex
for type wchar_t as typedefs. Using this library, we can check whether a string
conforms to a pattern or contains a substring conforming to a pattern, extract all
substrings of a string conforming to a pattern, replace a substring matching a
pattern with another formatted string, and split a string based on a matching
expression to name the few most commonly used operations.

Matching text
Consider the string "Alaska area". We want to match this against the regular
expression a.*a to see whether the string fits the pattern. To do this, we need to
call the boost::regex_match function, which returns a Boolean true to indicate
a successful match and false otherwise. Here is the code for it:

Listing 4.26: Matching a string with a regular expression

1 #include <boost/regex.hpp>
2 #include <string>
3 #include <cassert>
4 int main()
5 {
6 std::string str1 = "Alaska area";
7 boost::regex r1("a.*a");
8 assert(!boost::regex_match(str1, r1));
9 }

Chapter 4

[157]

The regular expression "a.*a" is encapsulated in an instance of boost::regex.
When we match the string against this expression, the match fails (line 8) because the
string starts with an uppercase 'A', while the regular expression expects a lowercase
'a' at the start. We could have asked for a case insensitive regular expression by
constructing and passing boost::regex::icase as a flag to the boost::regex
constructor:

7 boost::regex r1("a.*a", boost::regex::icase);
8 assert(boost::regex_match(str1.begin(), str1.end(), r1));

Note that we called a different overload of boost::regex_match, which takes two
iterators to a std::string (line 8) just to illustrate an alternative signature. You can
also call boost::regex_match with a const char* or a std::string like in listing
4.25. The outcome of the function is not dependent on the variant.

Searching text
If we want to search for substrings of a string that matches a particular regular
expression, we should use the boost::regex_search function instead of
boost::regex_match. Consider the string "An array of papers from the
academia on Alaska area's fauna". We want to find all substrings that are part
of the same word in this phrase and start and end with 'a'. The regular expression
to use would be a\w*a. Let us see how we can do this using boost::regex_search:

Listing 4.27: Searching for substrings matching a regular expression

 1 #include <boost/regex.hpp>
 2 #include <string>
 3 #include <iostream>
 4
 5 int main() {
 6 std::string str2 = "An array of papers from the academia "
 7 "on Alaska area's fauna";
 8 boost::regex r2("a\\w*a");
 9 boost::smatch matches;
10 std::string::const_iterator start = str2.begin(),
11 end = str2.end();
12
13 while (boost::regex_search(start, end, matches, r2)) {
14 std::cout << "Matched substring " << matches.str()
15 << " at offset " << matches[0].first - str2.begin()
16 << " of length " << matches[0].length() << '\n';
17 start = matches[0].second;
18 }
19 }

Working with Strings

[158]

This prints the following lines, each with a word or part of the word that begins and
ends in 'a':

Matched substring arra at offset 3 of length 4.
Matched substring academia at offset 28 of length 8.
Matched substring aska at offset 42 of length 4.
Matched substring area at offset 47 of length 4.
Matched substring auna at offset 58 of length 4.

In the code example, we construct the string (line 6), the regular expression (line 8),
and an instance of boost::smatch (line 9), which is a specialization of the template
boost::match_results to be used when the input is of type std::string. We
search for successive matching substrings in a loop, calling boost::regex_search.
We pass to boost::regex_search two iterators to the input string, the smatch
instance called matches, and the regular expression r2 (line 13). You must pass
const iterators to boost::regex_search (lines 10, 11), or the compilation will fail
to resolve the function call with a ton of gratuitous messages.

The object matches of type boost::smatch stores information about the substring
that matches a regular expression after a call to regex_search. Its str member
returns the substring that was matched by the regular expression. boost::smatch
is a sequence collection of boost::ssub_match objects. When a regular expression
matches a substring, the pair of iterators to the start and one part to the end of that
substring is stored in an object of type boost::ssub_match. This is stored at index 0
of matches and accessed as matches[0]. The members first and second of ssub_
match are iterators to the start of the match (line 15) and one past the end of the
match. The member function length() returns the length of the match (line 16). At
the end of each iteration, we set the start iterator to the first location past the end of
the last match (line 17) to begin looking for the next match. The boost::ssub_match
is a specialization of the template boost::sub_match to be used when the input
string is of type std::string.

Suppose that, for each match, we want to extract what lies between the two a's
at the two ends. To do this, we can use capturing sub-expressions. The regular
expression would be modified slightly to a(\\w*)a. To access what matches
the parenthesized sub-expression, we again use the boost::smatch object. An
additional boost::ssub_match object is constructed for each such sub-expression in
the regular expression and added to successive indexes of the boost::smatch object
passed. If the sub-expression matched anything in the string, then the start and end
of the substring matching that sub-expression are stored in the ssub_match object.

Chapter 4

[159]

This is how we would use it with the modified regular expression:

Listing 4.28: Parsing matching substrings and sub-expressions

 1 #include <boost/regex.hpp>
 2 #include <string>
 3 #include <iostream>
 4 int main()
 5 {
 6 std::string str2 = "An array of papers from the academia "
 7 "on Alaska area's fauna";
 8 boost::regex r2("a(\\w*)a");
 9 boost::smatch matches;
10 std::string::const_iterator start = str2.begin(),
11 end = str2.end();
12
13 while (boost::regex_search(start, end, matches, r2)) {
14 std::cout << "Matched substring '" << matches.str()
15 << "' following '" << matches.prefix().str()
16 << " preceding '" << matches.suffix().str() << "'\n";
17 start = matches[0].second;
18 for (size_t s = 1; s < matches.size(); ++s) {
19 if (matches[s].matched) {
20 std::cout << "Matched substring " << matches[s].str()
21 << " at offset " << matches[s].first – str2.begin()
22 << " of length " << matches[s].length() << '\n';
23 }
24 }
25 }
26 }

In the inner loop (line 18), we iterate through all sub-expressions and for the ones
that match any substring (line 19), we print that matching substring using the str
member function of boost::ssub_match (line 20), the offset of the substring (line
21), and its length (line 22). The prefix and suffix methods of the matches object
return respectively, the parts preceding and following the matched substring as
boost::ssub_match objects (lines 15, 16).

The boost::match_results and boost::sub_match templates have different
available specializations appropriate for different types of inputs, like an array
of narrow or wide characters, or a specialization of std::basic_string
(std::string or std::wstring).

Working with Strings

[160]

The following table summarizes these specializations:

Input type std::match_results specialization std::sub_match specialization
std::string std::smatch std::ssub_match

std::wstring std::wmatch std::wsub_match

const char* std::cmatch std::csub_match

const
wchar_t*

std::wcmatch std::wcsub_match

Tokenizing text using regex
This is a lot of work to parse an input using a regular expression, and there ought to
be better abstractions available for the application programmer. Indeed, this is the
kind of job you can simplify using a boost::regex_iterator and boost::regex_
token_iterator. Let us suppose we want to pick all words in the string that start
and end in 'a'. Here is a relatively painless way to do it:

Listing 4.29: Parsing strings using boost::regex_iterator

 1 #include <boost/regex.hpp>
 2 #include <string>
 3 #include <iostream>
 4
 5 int main()
 6 {
 7 std::string str2 = "An array of papers from the academia "
 8 "on Alaska area's fauna";
 9 boost::regex r1("\\ba\\w*a\\b", boost::regex::icase);
10 boost::sregex_iterator rit(str2.begin(), str2.end(), r1), rend;
11
12 while (rit != rend) {
13 std::cout << *rit++ << '\n';
14 }
15 }

This program prints the following text to the output, consisting of the three words
that begin and end in 'a':

academia

Alaska

area

Chapter 4

[161]

The boost::sregex_iterator is a specialization of the template boost::regex_
iterator to be used when the input string is of type std::string. Its instance rit is
initialized with the string iterators, defining the input string and the regular expression
used to look for successive tokens (line 10). It is then used to iterate through successive
tokens like any other iterator (line 12).

In the previous example, we didn't deal with sub-expressions. So, let us look at an
example with sub-expressions. Consider a string "animal=Llama lives_in=Llama
and is related_to=vicuna". It consists of some key-value pairs separated by the
equals sign, among other content. If we want to extract all such key-value pairs, we
can use a regular expression like \w+=\w+. We assume that the keys and values are
single words without embedded punctuation or spaces. If we also want to pick out
the key and value separately, we can use capture-groups like (\w+)=(\w+) for sub-
expression matching:.

By using the boost::sregex_token_iterator, we can actually pick out substrings
matching individual sub-expressions relatively easily. The boost::sregex_token_
iterator is a specialization of the template boost::regex_token_iterator for use
with input string of type std::string. It takes the iterators to the input string, regular
expression, and optional arguments specifying which sub-expressions to iterator over.
Here is the code to boot:

Listing 4.30: Parsing input strings with boost::regex_token_iterator

 1 #include <boost/regex.hpp>
 2 #include <string>
 3 #include <iostream>
 4
 5 int main()
 6 {
 7 std::string str3 = "animal=Llama lives_in=Chile "
 8 "and is related_to=vicuna";
 9 boost::regex r3("(\\w+)=(\\w+)");
10 int subindx[] = {2, 1};
11 boost::sregex_token_iterator tokit(str3.begin(), str3.end(),
12 r3, subindx), tokend;
13 while (tokit != tokend) {
14 std::cout << *tokit++ << '\n';
15 }
16 std::cout << '\n';
17 }

Working with Strings

[162]

This code prints the following output:

Llama
animal
Chile
lives_in
vicuna
related_to

You may have noticed that we print the values followed by the keys. We initialize
a boost::sregex_token_iterator using the iterators defining the input string,
the regular expression, and the array subindx specifying the sub-expressions we
are interested in (line 11). As subindx has value {2, 1} (line 10), the second field is
printed before the first. Besides an array, we could have also passed a vector of integers
identifying the sub-expression indexes, or a single integer identifying the index of the
only sub-expression we are interested in. If we omit this argument, the behavior of
boost::regex_token_iterator is identical to that of boost::regex_iterator.
The size of the array does not need to be passed and is automatically deduced via
template argument deduction.

Some algorithms in the Boost String Algorithms library provide convenient wrappers
around the functionality in Boost.Regex. The boost::find_all_regex algorithm takes
a sequence container, an input string, and a regular expression, and puts all substrings
of the input string that match the regular expression into the sequence container with
a single function call. The boost::split_regex container splits a string into tokens
separated by text that matches some regular expression and puts the tokens into a
sequence container. Here are both in action; find_all_regex splitting a sentence into
words, and split_regex splitting a record with pipe character separators into fields:

Listing 4.31: Using find_all_regex and split_regex

 1 #include <boost/algorithm/string_regex.hpp>
 2 #include <boost/regex.hpp>
 3 #include <string>
 4 #include <iostream>
 5 #include <vector>
 6
 7 int main()
 8 {
 9 std::string line = "All that you touch";
10 std::vector<std::string> words;
11 boost::find_all_regex(words, line, boost::regex("\\w+"));
12
13 std::string record = "Pigs on the Wing|Dogs| Pigs| Sheep";
14 std::vector<std::string> fields;

Chapter 4

[163]

15 boost::split_regex(fields, record, boost::regex("[\\|]"));
16
17 for (auto word: words) { std::cout << word << ","; }
18 std::cout << '\n';
19 for (auto field: fields) { std::cout << field << ","; }
20 }

This prints the following output:

All,ll,l,that,hat,at,t,you,ou,u,touch,ouch,ch,h,
Pigs on the Wing,Dogs, Pigs, Sheep,

Note that the first line prints all possible substrings that match the regular
expression \w+ (line 11), not just the largest disjoint matching substrings. This
is because find_all_regex finds every matching substring in the input.

Replacing text
One frequent use of regular expressions is to search for text and replace matching
text by other text. For example, we may want to scan a particular paragraph for
possessive phrases (England's Queen, India's culture, people's choice, and so on.)
and convert them to an alternative form (Queen of England, culture of India, choice
of people, and so on). The boost::regex_replace function template can come in
handy for the purpose.

To begin with, we define the regular expression \w+'s\s+\w+. Since we have to
reorder the phrase, we must capture parts of the match using sub-expressions. We
use the regular expression (\w+)'s\s+(\w+) to match. We can use numbered back-
references in the replacement string to refer to the submatches, so the replacement
string is "\2 of \1". We pass these along with the input string to boost::regex_
replace, which returns a string with the matched sections replaced appropriately.
Here is the code:

Listing 4.32: Finding/Replacing strings with regular expressions

 1 #include <boost/regex.hpp>
 2 #include <cassert>
 3
 4 int main()
 5 {
 6 std::string str4 = "England's Queen, India's President, "
 7 "people's choice";
 8 boost::regex r4("(\\w+)'s\\s+(\\w+)");
10 std::string rep = boost::regex_replace(str4, r4, "\\2 of \\1");
11

Working with Strings

[164]

12 assert(rep == "Queen of England, President of India, "
13 "choice of people");
14 }

By default, regex_replace replaces all matching substrings. If we want to replace
only the first matching substring instead, then we need to pass boost::regex_
constants:: format_first_only as a fourth argument to regex_replace.

Self-test questions
For multiple choice questions, choose all options that apply:

1. How does Boost Range help Boost Algorithms provide a better interface?
a. Any character range expressed as a single argument, not iterator pair
b. It is faster than iterator pairs
c. It supports C-style arrays, and is extensible to other abstractions
d. It provides better exception safety

2. Which algorithm produces the shortest code for searching all substrings
matching a search string or pattern?
a. boost::find_all
b. boost::find_all_regex
c. boost::find_first
d. boost::regex_iterator

3. Which of these are tokenizer functions provided by the Boost
Tokenizer library?
a. boost::char_separator
b. boost::split
c. boost::escaped_list_separator
d. boost::tokenizer

4. The regular expression "\ba.*a" matches which part of the string "two
giant anacondas creeping around"?
a. "ant anacondas creeping a"
b. "anacondas creeping a"
c. "ant anaconda"
d. "anaconda"

Chapter 4

[165]

5. Which of the following is true of boost::smatch?
a. It is a specialization of boost:: match_results
b. It stores only matched sub-expressions
c. It stores a boost::ssub_match object for each sub-expression
d. Its str member returns the matched substring

Summary
In this chapter, we learned the use of miscellaneous functions from the Boost String
Algorithms library for performing various operations on string data types. We then
looked at the generic Boost String Tokenizer framework that provides an efficient
and extensible way to tokenize strings based on criteria that the user can define.
We finally looked at regular expressions, and the Boost.Regex library that provides
the ability to match character data against regular expressions, search for patterns,
tokenize, and replace patterns using regular expressions.

This chapter should have given you a broad perspective of basic text handling
facilities available from the Boost libraries. Along the way, we also picked up some
useful techniques from the Boost Range abstraction. In the next chapter, we turn
our attention to various data structures available from the Boost libraries.

[167]

Effective Data Structures
beyond STL

The C++ Standard Library provides a rich set of generic containers that can
be employed for a wide variety of common programming tasks. These include
sequence containers like std::vector, std::deque, std::list, std::forward_
list, and ordered and unordered associative containers like std::map, std::set,
std::unordered_map, std::unordered_set, and so on.

Containers are traversed, and their individual elements accessed, using iterators.
C++ defines a hierarchy of iterator categories based on the kind of access they
provide to the elements of the container (read, write, forward traversal, bidirectional
traversal, and random access). The type of iterator available for traversing a
container is dependent on the internal structure of a container.

Available alongside the containers is a library of generic algorithms that read and
manipulate generic containers, using one or more iterators. These libraries heavily
rely on generic programming, in which program interfaces are abstracted from and
are parameterized in terms of data types.

This collection of generic containers, algorithms, and a bunch of accompanying
utilities originated in the Standard Template Library or STL, developed at HP
Labs by Alexander Stepanov and Meng Lee, and were accepted as part of the C++
Standard Library in 1994. The name STL has stuck on for those parts of the Standard
Library that originated in this work, and we will loosely use it to mean such parts
of the library. STL containers and algorithms have been heavily used in C++
software ever since, but have had several limitations. Before C++11, you could only
store copyable objects in containers. Certain classes of containers like hash-based
associative containers, were absent in the Standard Library while others, like priority
queues, were under-represented.

Effective Data Structures beyond STL

[168]

As of C++14, there are no containers yet in the Standard Library suitable for
storing pointers to dynamically-allocated objects, though with the availability of
std::unique_ptr, this is easier to deal with since C++11. You cannot efficiently
search the contents of an associative container, like std::map by value rather than
key, nor can you easily write iterators for your custom container classes that work
well with STL algorithms. There is no easy library to read property sets or key-
value pairs from various standard formats (XML, JSON, etc.) into in-memory data
structures. There are many more such routine uses that require significant effort
if you are limited to the Standard Library.

In this chapter and the next, we will look at the leading Boost libraries that fill
many of these gaps. The chapter is divided into the following sections:

• The Boost Container library
• Fast lookups using Boost Unordered containers
• Containers for dynamically-allocated objects
• Expressive initialization and assignment using Boost.Assign
• Iteration patterns with Boost.Iterator

This chapter should provide you a solid foundation for using the wide variety
of data structure libraries in Boost.

Boost Container library
The Boost Container library implements majority of the STL container templates
in addition to providing a few nifty nonstandard containers. So, what is the point
of reimplementing STL containers? To understand this, let us look at what kind of
objects can be stored in STL containers and what kind cannot be.

To store objects of type T in a std::vector, for example, the type T must be a
complete type (that is, must be completely defined, not just declared) at the point
where the object of type std::vector<T> is defined. Moreover, in pre-C++11,
objects of type T must be copyable and assignable. These requirements generally
hold for other STL containers besides std::vector. In general, till before C++11,
STL was a copy-intensive framework: you copied objects into STL containers to store
them, the containers copied them around while being resized or restructured, and
the containers destroyed those copies when they went out of scope. Copying being
an expensive operation in terms of time and memory is also more error prone and
thus the exception safety of several operations on STL containers was weak.

Chapter 5

[169]

C++11 introduced move semantics that made it possible to move-construct new
objects by moving or usurping the state of an existing object, typically by only
exchanging integers and pointers and completely avoiding any non-trivial and error-
prone copy operations. Likewise, the state or contents of an object could be moved
into another existing object in an operation called move-assignment. Move semantics
are applied by default when constructing or assigning from a temporary object while
it can be explicitly enforced when copying from an l-value object (see Appendix,
C++11 Language Features Emulation). These capabilities allow operations on Standard
Library containers in C++11 to be significantly optimized and independent of copy
semantics. The objects stored in C++11 STL containers need not be copyable if they
are move constructible. C++11 also allows objects to be constructed in-place in the
container's layout instead of requiring them to be constructed first and then copied.

The Boost Container library provides move-aware implementations of Standard
Library containers that work not only with C++11 compilers, but also with Boost
move emulation for C++03 compilers (see Appendix, C++11 Language Features
Emulation emulation). In addition, they also support in-place construction of objects.
This is a significant functionality if you are on a C++03 compiler. In addition, the
containers in Boost Container library can hold objects of incomplete types, making
it possible to define interesting recursive structures that are simply not possible
with the standard containers.

In addition to the standard containers, the Boost Container library also implements
several useful nonstandard containers that are useful for various specific uses.

Move-awareness and in-place construction
Consider the following class for encapsulating char strings, which is movable
but not copyable. We use the Boost move emulation macros to define its move
semantics. In a C++11 environment, this code translates to C++11 move syntax,
while on C++03, it emulates the move semantics:

Listing 5.1: Movable but not copyable String

 1 #include <boost/move/move.hpp>
 2 #include <boost/swap.hpp>
 3 #include <cstring>
 4
 5 class String
 6 {
 7 private:
 8 BOOST_MOVABLE_BUT_NOT_COPYABLE(String)
 9
10 public:

Effective Data Structures beyond STL

[170]

11 String(const char *s = nullptr) : str(nullptr), sz(0) {
12 str = heapcpy(s, sz);
13 }
14
15 ~String() {
16 delete[] str;
17 sz = 0;
18 }
19
20 String(BOOST_RV_REF(String) that) : str(nullptr), sz(0) {
21 swap(that);
22 }
23
24 String& operator = (BOOST_RV_REF(String) rhs) {
25 String tmp(boost::move(rhs));
28
29 return *this;
30 }
31
32 void swap(String& rhs) {
33 boost::swap(this->sz, rhs.sz);
34 boost::swap(this->str, rhs.str);
35 }
36
37 const char *get() const {
38 return str;
39 }
40
41 private:
42 char *str;
43 size_t sz;
44
45 static char *heapcpy(const char *str, size_t& sz) {
46 char *ret = nullptr;
47
48 if (str) {
49 sz = std::strlen(str) + 1;
50 ret = new char[sz];
51 std::strncpy(ret, str, sz);
52 }
53
54 return ret;
55 }
56 };

Chapter 5

[171]

On a pre-C++11 compiler, trying to store instances of String in a standard container
will result in compiler errors because String is not copyable. Here is some code
that moves String instances into a boost::container::vector, which is the Boost
counterpart of std::vector:

Listing 5.2: Pushing String objects onto Boost vectors

 1 #include <boost/container/vector.hpp>
 2 #include "String.h" // for class String
 3 #include <cassert>
 4
 5 int main() {
 6 boost::container::vector<String> strVec;
 7 String world("world");
 8 // Move temporary (rvalue)
 9 strVec.push_back(String("Hello"));
10 // Error, copy semantics needed
11 //strVec.push_back(world);
12 // Explicit move
13 strVec.push_back(boost::move(world));
14 // world nulled after move
15 assert(world.get() == nullptr);
16 // in-place construction
17 strVec.emplace_back("Hujambo Dunia!"); // Swahili
18
19 BOOST_FOREACH(String& str, strVec) {
20 std::cout <<str.get() << '\n';
21 }
22 }

In the preceding code, we create a Boost vector (line 6) and append a temporary
String "Hello" to it (line 9). This automatically invokes move semantics, as the
expression String("Hello") is an rvalue. We construct a String variable called
world (line 7), but if we tried to append it to strVec, it would fail because it would
try to copy world, but it is not copyable (line 11).

In order to put world into strVec, we need to explicitly move it, using boost::move
(line 13). Once world is moved into strVec, its contents are moved out into a String
object stored in strVec, and hence, its contents become null (line 15).Finally, we
construct a String object in-place by calling the emplace_back member of the vector
and passing it the constructor arguments of String (line 17). The code in listings 5.1
and 5.2 will compile and work correctly on pre-C++11 compilers as well as C++11.
Moreover, on C++11, the Boost macros for move emulation simply translate to the
C++ rvalue reference syntax. Note that we use the BOOST_FOREACH macro instead
of a C++11 range-based for-loop to iterate through the vector (see Appendix, C++11
Language Features Emulation).

Effective Data Structures beyond STL

[172]

The code prints the following lines:

Hello
world
Hujambo Dunia!

Notice that in the range-based for-loop, the loop variable str is introduced using
auto&. If we did not use the trailing ampersand after auto, the compiler would try
to generate code to copy each element of strVec into str, which would fail because
String is not copyable. Using the trailing ampersand ensures that str is a reference
to successive elements.

In addition to vector, the Boost Container library implements other standard
containers, like deque, list, set, multiset, map and multimap, and also basic_
string. These are move-aware containers that are very similar to their C++11
counterparts and can be used in pre-C++11 environments using move emulation
(via Boost.Move).

Nonstandard containers
In addition to the standard containers, the Boost Container library provides several
useful nonstandard containers. This section is a quick overview of these containers
and their applicability.

Flat associative containers
There are two flavors of the standard associative containers: ordered and unordered.
Ordered containers like std:set, std::multiset, std::map, and std::multimap
are typically implemented using a balanced search tree (an optimized Red-Black
Tree implementation is de facto). Thus, they store their elements in sorted order.
The unordered containers std::unordered_set, std::unordered_multiset,
std::unordered_map, and std::unordered_multimap, are based on hash tables.
They originated in the Boost Container library before becoming part of the C++TR1
release and C++11 Standard Library. These containers store objects in an array of
buckets called a hash table, based on hash value computed for the object. There is
no inherent ordering in how the objects are stored in the hash tables, hence the name
unordered containers.

Chapter 5

[173]

Associative containers support fast lookup. Ordered containers use balanced search
trees which support logarithmic time searches, and unordered containers use hash
tables which support amortized constant-time searches. These are not the only data
structures that support fast lookups. Binary search on a sorted sequence that allows
random positional access to its elements also performs in logarithmic time. The four
flat associative containers: flat_set, flat_multiset, flat_map, and flat_multimap
use a sorted vector to store data and use binary search on the vector to perform
lookups. They are drop-in replacements for their ordered and unordered counterparts
from the Standard Library but have different performance characteristics for insertions
and lookups:

Listing 5.3: Using flat maps

 1 #include <iostream>
 2 #include <string>
 3 #include <boost/container/flat_map.hpp>
 4
 5 int main()
 6 {
 7 boost::container::flat_map<std::string, std::string>
 8 newCapitals;
 9
10 newCapitals["Sri Lanka"] = "Sri Jayawardenepura Kotte";
11 newCapitals["Burma"] = "Naypyidaw";
12 newCapitals["Tanzania"] = "Dodoma";
13 newCapitals["Cote d'Ivoire"] = "Yamoussoukro";
14 newCapitals["Nigeria"] = "Abuja";
15 newCapitals["Kazakhstan"] = "Astana";
16 newCapitals["Palau"] = "Ngerulmud";
17 newCapitals["Federated States of Micronesia"] = "Palikir";
18
19 for (const auto& entries : newCapitals) {
20 std::cout<< entries.first << ": " << entries.second
21 << '\n';
22 }
23 }

Effective Data Structures beyond STL

[174]

This first example lists a set of countries, whose capitals were moved in the last
few decades. If you thought Lagos is still Nigeria's capital, you're in for a surprise.
Geography apart, there isn't a whole lot surprising going on in the preceding
code. We create a typedef for boost::container::flat_map<std::string,
std::string>, and instantiate a map newCapitals of this type, inserting string pairs
of countries and their new capitals. If we replace boost::container::flat_map
with std::map, the code will work without any changes.

The flat associative containers can store objects that are either copyable or movable.
Objects are stored in a contiguous layout without using pointers for indirection.
Thus, in order to store a given number of objects of a certain type, the flat containers
will less memory than the tree-based and hash-based containers too. Insertions
maintain sorted order and are thus costlier than in the other associative containers;
in particular, for value types that are copyable but not movable. Also, unlike with
the standard associative containers, all the iterators are invalidated by insertion of
any new element or deletion of existing elements.

Iterations and lookups tend to be faster, and cache performance better than that
of the standard containers due to the contiguous layout and faster performance of
binary search. Insertions into flat containers can cause reallocations and elements to
get moved or copied if the initial capacity of flat containers is exceeded. This can be
prevented by reserving sufficient space using the reserve member function before
performing insertions. The following example illustrates this aspect:

Listing 5.4: Using flat sets

 1 #include <boost/container/flat_set.hpp>
 2 #include <iostream>
 3 #include <string>
 4
 5 template<typename C>
 6 void printContainerInternals(const C& container) {
 7 std::cout << "Container layout" << '\n'
 8 << "-------------\n";
 9
10 for (const auto& elem : container) {
11 std::cout << "[Addr=" << &elem
12 << "] : [value=" << elem << "]\n";
13 }
14 }
15
16 int main()
17 {
18 boost::container::flat_set<std::string> someStrings;
19 someStrings.reserve(8);

Chapter 5

[175]

20
21 someStrings.insert("Guitar");
22 printContainerInternals(someStrings);
23
24 someStrings.insert("Mandolin");
25 printContainerInternals(someStrings);
26
27 someStrings.insert("Cello");
28 printContainerInternals(someStrings);
29
30 someStrings.insert("Sitar");
31 printContainerInternals(someStrings);
32 }

This example shows one way to figure out how the internal layout of the flat
associative containers changes with successive insertions. We define a flat_set
container called someStrings (line 18) and insert names of eight string instruments.
The printContainer template is called on the container after each insertion to print
out the successive address in the internal vector, where each string is present. We
reserve capacity for eight elements before the insertion (line 19), and insert eight
elements thereafter. As there is sufficient capacity at the outset, none of the insertions
should trigger reallocations and you should see a fairly stable set of addresses with
only the order of strings changing to maintain sorted order. If we commented out
the call to reserve (line 19) and ran the code, we might see reallocations and
changing addresses.

slist
The boost::container::slist container is a singly-linked list abstraction similar to a
container template of the same name that was available in the SGI STL implementation
but never made it to the standard. The std::list container is a doubly linked list.
C++ finally got its own singly linked list with std::forward_list introduced in
C++11. The slist is move-aware.

Singly-linked lists have a lesser memory overhead than doubly linked lists,
although the time complexity of certain operations goes from constant to linear.
If you need a sequence container that should support relatively frequent insertions
and you do not need backward traversals, singly linked lists are a good choice:

Listing 5.5: Using slist

 1 #include <boost/container/slist.hpp>
 2 #include <iostream>
 3 #include <string>
 4

Effective Data Structures beyond STL

[176]

 5 int main()
 6 {
 7 boost::container::slist<std::string> geologic_eras;
 8
 9 geologic_eras.push_front("Neogene");
10 geologic_eras.push_front("Paleogene");
11 geologic_eras.push_front("Cretaceous");
12 geologic_eras.push_front("Jurassic");
13 geologic_eras.push_front("Triassic");
14 geologic_eras.push_front("Permian");
15 geologic_eras.push_front("Carboniferous");
16 geologic_eras.push_front("Devonian");
17 geologic_eras.push_front("Silurian");
18 geologic_eras.push_front("Ordovician");
19 geologic_eras.push_front("Cambrian");
20
21 for (const auto& str : geologic_eras) {
22 std::cout << str << '\n';
23 }
24 }

In this simple example, we use an slist to store successive geologic eras. Unlike
the standard sequence container std::list, slist does not have a push_back
method to append an element to the end of the list. This is because computing the
end of the list for each append would make it a linear operation instead of a constant
one. Instead, we use the push_front member to add each new element at the head
of the list. The final order of the strings in the list is the reverse of the order of
insertion (and in the chronological order of the periods, oldest first).

Certain operations on singly-linked lists have higher time-complexity than their
equivalents on doubly linked lists. The insert method which inserts an element before
another is constant time in std::list but is linear time in slist. This is because
the element preceding the position of insertion can be located using the link to the
previous element in a doubly linked list like std::list but would require traversal
from the beginning of the list in slist. For the same reason, the erase member
function for erasing an element at a given position and the emplace member function
for the in-place construction of an element before another also have linear complexity
compared to their std::list counterparts. For this reason, slist provides member
functions insert_after, erase_after, and emplace_after that provide similar
functionality with slightly altered semantics of inserting, erasing, and emplacing
objects in constant time after a given position. In order to allow these functions to add
an element to the beginning of an slist, you can use the before_begin member
function to get an iterator to a head pointer—a non-dereferenceable iterator which
when incremented, points to the first element in the slist.

Chapter 5

[177]

We can now rewrite listing 5.5 to insert the geologic periods into the slist in
chronological order:

Listing 5.6: Adding elements to the end of slist

 1 #include <boost/container/slist.hpp>
 2 #include <iostream>
 3 #include <string>
 4 #include <cassert>
 5
 6 int main()
 7 {
 8 boost::container::slist<std::string> eras;
 9 boost::container::slist<std::string>::iterator last =
10 eras.before_begin();
11
12 const char *era_names [] = {"Cambrian", "Ordovician",
13 "Silurian", "Devonian", "Carboniferous",
14 "Permian", "Triassic", "Jurassic",
15 "Cretaceous", "Paleogene", "Neogene"};
16
17 for (const char *period :era_names) {
18 eras.emplace_after(last, period);
19 ++last;
20 }
21
22 int i = 0;
23 for (const auto& str : eras) {
24 assert(str == era_names[i++]);
25 }
26 }

Splicing
Besides insert and emplace, you can also add elements at any given position in an
slist using an operation called splice. Splicing is a useful operation on linked lists
in which one or more successive elements from one given list are moved to a particular
position in another linked list or to a different position in the same list. The std::list
container provides a splice member function that allows you to do this in constant
time. In an slist, the time complexity of the splice member function is linear in the
number of elements spliced, due to the need for linear traversal to locate the element
before the position of insertion. The splice_after member function, like insert_
after and emplace_after, moves elements into a list after a specified position:

Effective Data Structures beyond STL

[178]

Listing 5.7: Splicing slists

 1 #include <boost/container/slist.hpp>
 2 #include <string>
 3 #include <iostream>
 4
 5 typedef boost::container::slist<std::string> list_type;
 6 typedef list_type::iterator iter_type;
 7
 8 int main()
 9 {
10 list_type dinos;
11 iter_type last = dinos.before_begin();
12
13 const char *dinoarray[] = {"Elasmosaurus", "Fabrosaurus",
14 "Galimimus", "Hadrosaurus", "Iguanodon",
15 "Appatosaurus", "Brachiosaurus",
16 "Corythosaurus", "Dilophosaurus"};
17
18 // fill the slist
19 for (const char *dino : dinoarray) {
20 dinos.insert_after(last, dino);
21 ++last;
22 }
23
24 // find the pivot
25 last = dinos.begin();
26 iter_type iter = last;
27
28 while (++iter != dinos.end()) {
29 if (*last > *iter) {
30 break;
31 }
32 ++last;
33 }
34
35 // find the end of the tail
36 auto itend = last;
37 while (iter != dinos.end()) {
38 ++itend;
39 ++iter;
40 }
41

Chapter 5

[179]

42 // splice after
43 dinos.splice_after(dinos.before_begin(), dinos,
44 last, itend);
45 for (const auto& str: dinos) {
46 std::cout <<str<< '\n';
47 }
48 }

In this code example, we have an array of eight dinosaur names, starting with the
first eight letters of the English alphabet (lines 13-16). It is a sorted list, which is
rotated by four positions, so it starts with Elasmosaurus and has Appatosaurus
somewhere in the middle. We make an slist out of these, using insert_after (line
20), and then locate the pivot at which the lexically smallest string lies (lines 29-30).
At the end of the loop, iter points to the lexically smallest string in the dinos list
and last points to the element immediately before iter. Here is the prototype of the
splice_after overload we want to use to move the tail of the list to the beginning:

void splice_after(const_iterator add_after, slist& source,
 const_iterator start_after, const_iterator end);

The sequence of elements that are to be moved from the source container to the target
starts at the element following start_after and ends at end, both ends inclusive,
that is, the half-open interval (start_after, end). These elements are inserted into the
target slist after the position is identified by add_after. We can use the iterator last
for the third argument. For the fourth argument, we compute the position of the last
element in the list (lines 36-40). The iterator itend now points to the last element in the
list. Using the chosen splice_after overload, we move all elements, following last
and till the end of the list, to the beginning of the list (lines 43-44).

The std::forward_list container does not provide a size member function to
return the number of elements in a list. This helps ensure that its splice_after
implementation is constant time. Otherwise, during each splice_after operation,
the number of elements transferred to the list would need to be counted, and the
total count of elements need to be incremented by that much. Solely to support this,
splice_after would have to be linear in the number of elements transferred instead
of constant time. The slist container provides a size member and several overloads
of splice_after. The overload of splice_after that we used is linear in the
number of elements transferred, as it computes this number using a linear traversal.
However, if we computed this number in our code without extra loops and passed it
to the splice_after function, then it could avoid iterating again and use the passed
number. There are two overloads of splice_after that take the count of the elements
from the user and avoid the linear computation, thus providing constant-time splice.

Effective Data Structures beyond STL

[180]

Here is a slightly altered snippet to do this:

35 // find the end of the tail
36 size_t count = 0;
37 auto itend = last;
38
39 while (iter != dinos.end()) {
40 ++itend;
41 ++iter;
42 ++count;
43 }
44
45 // splice after
46 dinos.splice_after(dinos.before_begin(), dinos,
47 last, itend, count);

We compute count while determining the iterator range to move, and pass that
to splice_after. We must make sure that our computation of count is correct,
or the behavior will be undefined. This overload is useful because we had a way
to determine the count without increasing the complexity of our calling code.

For std::forward_list, the splice_after signature differs slightly in semantics
from that of boost::container::slist. Here is the prototype of one overload of
the splice_after member of std::forward_list:

void splice_after(const_iterator pos, std::forward_list& list,
 const_iterator before_first, const_iterator after_last);

The iterators before_first and after_last identify an open interval, and the
actual elements transferred would be the sequence starting at the element following
before_first and ending at the element before after_last, that is, the open interval
(before_first, after_last). Using this function, we would not need to write the
loop to determine the last element in this case because we could simply use dinos.
end() as the marker for one-past-the-end position. If dinos were an instance of
std::forward_list, we would have edited listing 5.7, thus saving six lines of code:

37 dinos.splice_after(dinos.before_begin(), dinos,
38 last, dinos.end());

Chapter 5

[181]

All splice_after overloads in std::forward_list that transfer a range of elements
are linear in the number of elements transferred. While we saw a constant-time
overload in boost::container::slist, we had to write linear complexity logic
to pass the correct count of elements to it. So, in many cases, code using
std::forward_list might be more maintainable and no less efficient if you can
make do without the constant-time size member function.

stable_vector
The std::vector container stores objects in contiguous memory. The vector
reallocates internal storage and copies or moves objects to new storage as needed,
so as to accommodate additional new objects. It allows fast random access to the
stored objects using an index. Inserting elements at arbitrary positions in the vector
is expensive compared to appending elements at the end, because insertion requires
elements after the point of insertion to be moved in order to make room for the new
element. There is one more implication of this behavior. Consider the following code:

Listing 5.8: Iterator invalidation in std::vector

 1 #include <vector>
 2 #include <cassert>
 3
 4 int main() {
 5 std::vector<int>v{1, 2, 3, 5};
 6 auto first = v.begin();
 7 auto last = first + v.size() - 1;
 8 assert(*last == 5);
 9 v.insert(last, 4);
10 // *last = 10; // undefined behavior, invalid iterator
11 for (int i = 0; i < 1000; ++i) {
12 v.push_back(i);
13 }
14
15 // *first = 0; // likely invalidated
16 }

Effective Data Structures beyond STL

[182]

In the preceding code, we create a vector of integers v and initialize it with four
integers (line 5). The brace-enclosed list of comma-separated values used to initialize
the vector is a very handy C++11 construct called initializer list. In pre-C++11, you
had to manually append values or, as we will see later in this chapter, use the Boost.
Assign library. We then compute the iterator to the last element of the object as an
offset from the first iterator (line 7). We assert that the last element is 5 (line 8). Next,
we insert an element before the last element (line 9). Past this point, the iterator last
will be invalidated and any access of the iterator last will be undefined behavior. In
fact, in the two random access containers, vectors and deques, iterator invalidations
happen all too often. Any write operation on the vector can invalidate iterators. For
example, if you erase an element at a particular iterator position, all existing iterators
to later positions are invalidated. Even appending an element to the end of the vector
could trigger a resize of the vector's internal storage, requiring elements to be moved.
Such an event will invalidate all existing iterators. The Standard Library vector is an
unstable container. The boost::container::stable_vector is a sequence container
that provides random access coupled with stable iterators, which are not invalidated
unless the element they point to is erased. Have a look at the following image from
the Boost documentation pages on stable_vector (http://www.boost.org/doc/
libs/1_58_0/doc/html/container/non_standard_containers.html#container.
non_standard_containers.stable_vector):

As illustrated here, stable_vector does not store the objects in a contiguous
memory layout. Instead, each object is stored in a separate node, and a contiguous
array stores pointers to these nodes in the order of insertion. Each node contains
the actual object and also a pointer to its position in the array. The iterators point to
these nodes rather than to positions in the array. Thus, nodes with existing objects
do not change after insertion of new objects or deletion of some existing objects and
their iterators also remain valid. Their back pointers are updated however when they
change positions due to insertions/removals. The contiguous array of node pointers
still allows random access to elements. Because of the extra pointers and indirections,
stable_vector tends to be slower than std::vector, but that is the trade-off for
stable iterators. Here is some code to boot:

http://www.boost.org/doc/libs/1_58_0/doc/html/container/non_standard_containers.html#container.non_standard_containers.stable_vector
http://www.boost.org/doc/libs/1_58_0/doc/html/container/non_standard_containers.html#container.non_standard_containers.stable_vector
http://www.boost.org/doc/libs/1_58_0/doc/html/container/non_standard_containers.html#container.non_standard_containers.stable_vector

Chapter 5

[183]

Listing 5.9: Stable vector example

 1 #include <boost/container/stable_vector.hpp>
 2 #include <cassert>
 3 #include <string>
 4
 5 int main()
 6 {
 7 const char *cloud_names[] = {"cumulus", "cirrus", "stratus",
 8 "cumulonimbus", "cirrostratus", "cirrocumulus",
 9 "altocumulus", "altostratus"};
10
11 boost::container::stable_vector<std::string> clouds;
12 clouds.reserve(4);
13 clouds.resize(4); // To circumvent a bug in Boost 1.54
14
15 size_t name_count = sizeof(cloud_names)/sizeof(const char*);
16 size_t capacity = clouds.capacity();
17
18 size_t i = 0;
19 for (i = 0; i < name_count && i < capacity; ++i) {
20 clouds[i] = cloud_names[i];
21 }
22
23 auto first = clouds.begin();
24
25 for (; i < name_count; ++i) {
26 clouds.push_back(cloud_names[i]);
27 }
28
29 auto sixth = clouds.begin() + 5;
30
31 // 1 erase @4
32 clouds.erase(clouds.begin() + 4);
33 // 2 inserts @3
34 clouds.insert(clouds.begin() + 3, "stratocumulus");
35 clouds.insert(clouds.begin() + 3, "nimbostratus");
36
37 assert(*first == cloud_names[0]);
38 assert(sixth == clouds.begin() + 6); // not +5
39 assert(*sixth == cloud_names[5]);
40 }

Effective Data Structures beyond STL

[184]

Using stable_vector is no different from using vector, and it is move-aware too.
In the preceding example, we want to store the names of different types of clouds
in a stable_vector of std::string. There are eight cloud names present in an
array called cloud_names (lines 7-9). We create a stable_vector called clouds
to store these names, and reserve a capacity for only four elements (lines 12-13).
What we want to show is that once we add elements beyond the capacity of the
stable_vector, requiring an expansion of the underlying array and movement of
the existing data, iterators computed before the change in capacity still remain valid.
It is entirely possible for reserve to allocate more capacity than that requested, and
if this is more than the total number of cloud names we have, our example is moot.

We first store names of clouds (lines 18-21) without overshooting the capacity, and
compute the iterator to the first element (line 23). We then append remaining cloud
names, if any (lines 25-27). If there were any remaining cloud names, then they
would have caused a resize when the first of them got stored.

We compute the iterator to the sixth element (line 29), erase the fifth element (line
32), and insert two more cloud names before the fourth element (lines 34-35). After
all this, the iterator first still points to the first element (line 37). At the time we
computed the iterator sixth, it pointed to the sixth element and its value was
"cirrocumulus", the sixth string in the cloud_names array. Now with one deletion
and two insertions before it, it should be the seventh element (line 38), but its value
should remain unchanged (line 39)—as stable as iterators get!

Since Boost 1.54, the capacity member function of stable_vector
returns an incorrect value for the capacity after a call to reserve. By
calling the resize member function with an argument as large as
what was passed to reserve (line 13) before calling capacity, we
can circumvent the bug and ensure that a subsequent call to capacity
returns the correct value. Once the bug is fixed in a later release, the
call to resize following the call to reserve should not be needed.

static_vector
The boost::container::static _vector template is a vector-like container with an
upper limit on the size defined at compile time. It allocates a fixed size, uninitialized
storage in its layout, rather than dynamically in a separate buffer. It does not try to
value-initialize all the elements upon instantiation, unlike vector or stable_vector,
both of which try to value-initialize elements when an initial size is specified as a
constructor argument. The absence of heap allocation and value-initialization makes
static_vector instantiation almost zero overhead.

Chapter 5

[185]

A static_vector is used just as a regular vector with one important caveat. Trying
to insert one element too many into a static_vector would result in a runtime
error, so you should always make sure that there is enough room in the static_
vector before trying to insert an additional element:

Listing 5.10: Using a static_vector

 1 #include <boost/current_function.hpp>
 2 #include <boost/container/static_vector.hpp>
 3 #include <iostream>
 4
 5 class ChattyInit
 6 {
 7 public:
 8 ChattyInit() {
 9 std::cout << BOOST_CURRENT_FUNCTION << '\n';
10 }
11 };
12
13 int main()
14 {
15 boost::container::static_vector<ChattyInit, 10> myvector;
16 std::cout << "boost::container::static_vector initialized"
17 <<'\n';
18 while (myvector.size() < myvector.capacity()) {
19 myvector.push_back(ChattyInit());
20 }
21
22 // cisv.push_back(ChattyInit()); // runtime error
23 }

We construct a static_vector of ChattyInit objects, ChattyInit being a simple
class whose constructor prints its own name. The fixed size of the static_vector
is specified as a numeric template argument (line 15). Running the preceding code
prints the following on my GNU Linux box with a g++ 4.9 compiler:

boost::container::static_vector initialized
ChattyInit::ChattyInit()
ChattyInit::ChattyInit()
… 8 more lines …

Effective Data Structures beyond STL

[186]

We can see that no objects are created as part of static_vector initialization, and
individual objects are instantiated as they are appended. We make sure that the total
number of elements inserted does not exceed the capacity of the container (line 18).
Because the elements of static_vector are not value-initialized by default, the size
member function returns zero when no elements are explicitly added. Compare this
with std::vector:

std::vector<ChattyInit> myvector(10); // 10 elems value-inited
assert(myvector.size() == 10);

If we actually tried appending one element too many (line 22), the program would
crash. boost::container::static_vector is a useful container if you are looking
for a fast, size-bounded vector replacement.

Fast lookups using Boost Unordered
containers
The four standard associative containers in C++03: std::set, std::map,
std::multiset, and std::multimap are ordered containers and store their keys
in some sorted order using balanced binary search trees. They require an ordering
relationship to be defined for their keys and provide logarithmic complexity
insertions and lookups. Given the ordering relationship and two keys, A and B, we
can determine whether A precedes B or B precedes A in the relationship. If neither
precedes the other, the keys A and B are said to be equivalent; this does not mean
A and B are equal. In fact, the ordered containers are agnostic to equality and there
need not be a notion of equality defined at all. This is the reason, such a relation is
called a strict weak ordering.

Consider the following example:

 1 #include <string>
 2 #include <tuple>
 3
 4 struct Person {
 5 std::string name;
 6 int age;
 7 std::string profession;
 8 std::string nationality;
 9 };
10
11 bool operator < (const Person& p1, const Person& p2)
12 {
13 return std::tie(p1.nationality, p1.name, p1.age)

Chapter 5

[187]

14 < std::tie(p2.nationality, p2.name, p2.age);
15 }

We define a type Person that represents a human individual, using the fields name,
age, profession, and nationality (lines 3-9), and then define an ordering relation
using the operator< that does not take the profession field into account (lines 11-
15). This allows Person objects to be ordered, but not compared for equality. Two
Person objects p1 and p2 would be deemed equivalent if !(p1 < p2) and !(p2 <
p1) both hold. This would be true of any two Person objects with the same name, age,
and nationality, irrespective of their profession. The ordered container std::set
does not allow multiple keys that are equivalent to each other while std::multiset
does. Likewise, std::map does not allow multiple key-value pairs, whose keys are
equivalent, while std::multimap does. Thus, adding a key-value pair to a std::map
that already contains an equivalent key overwrites the older value.

The ordered containers are implemented using a kind of balanced binary search tree
known as Red-Black Trees, with several optimizations. They offer one key capability
besides the ability to lookup and insert keys in logarithmic time—an ordered traversal
of the keys in the container. However, if you do not need ordered traversal, then
there are more efficient alternatives available—hash tables being the most obvious
one. Appropriate implementations of hash tables support constant-time lookups on
average, and amortized constant-time inserts that outperform the ordered containers
with better cache performance, while having a somewhat higher space overhead.

The Boost Unordered library introduced four hash table-based counterparts
of the ordered containers: boost::unordered_set, boost::unordered_map,
boost::unordered_multiset, and boost::unordered_multimap, which became
part of the C++ TR1 release in 2007 and were included in the Standard Library in
C++11. Of course, you can use Boost Unordered even with a C++03 compiler.

Unordered containers require the notion of equality to be defined for the objects
they store, but not the notion of ordering. Thus, for unordered containers,
equivalence is defined in terms of equality rather than ordering. In addition,
unordered containers need a way to compute a hash value of each key to determine
the position in the table, where the key is stored. In the following code examples,
we will see how to use unordered containers and compute hash values for objects,
reusing the Person type we introduced earlier:

Listing 5.11: Using unordered_sets

 1 #include <boost/unordered_set.hpp>
 2 #include <boost/functional/hash.hpp>
 3 #include <iostream>
 4 #include <cassert>

Effective Data Structures beyond STL

[188]

 5 #include "Person.h" // struct Person definition
 6
 7 bool operator==(const Person& left, const Person& right){
 8 return (left.name == right.name
 9 && left.age == right.age
10 && left.profession == right.profession
11 && left.nationality == right.nationality);
12 }
13
14 namespace boost
15 {
16 template <>
17 struct hash<Person>
18 {
19 size_t operator()(const Person& person) const{
20 size_t hash = 0;
21 boost::hash_combine(hash,
22 boost::hash_value(person.name));
23 boost::hash_combine(hash,
24 boost::hash_value(person.nationality));
25 return hash;
26 }
27 };
28 }
29
30 int main() {
31 boost::unordered_set<Person> persons;
32
33 Person p{"Ned Land", 40, "Harpooner","Canada"};
34 persons.insert(p); // succeeds
35
36 Person p1{"Ned Land", 32, "C++ Programmer","Canada"};
37 persons.insert(p1); // succeeds
38
39 assert(persons.find(p) != persons.end());
40 assert(persons.find(p1) != persons.end());
41
42 Person p2 = p;
43 persons.insert(p2); // fails
44 assert(persons.size() == 2);
45 }

Chapter 5

[189]

The preceding example shows how an unordered_set is used to store objects of
the user-defined type Person that we defined in the earlier listing. We define an
unordered_set of Person objects (line 31), create two Person objects p and p1, and
insert them into the unordered_set called Persons (lines 34, 37). We define a third
Person object p2, which is a copy of p, and try to insert this element but fail (line 43).
The container being a set (unordered_set) contains unique elements. Since p2 is a
copy of p and is equal to it, its insertion fails.

There are a couple of ways for the unordered_set to compute the hash value of each
object it stores. We demonstrate one such way: open the boost namespace (line 14)
to define a specialization for the function template boost::hash for the type Person
in question (line 21-24). To compute the hash of a Person object, we consider only
two of its fields: name and nationality. We use the utility functions boost::hash_
value and boost::hash_combine (to generate the hash values for individual fields
and combine them). Since we only consider the name and nationality of a person
while determining the hash value for that Person object, the objects p and p1, both
of which represent individuals with the same name and nationality, end up having
the same hash value. However, they are not equal, as their other fields are different,
and therefore, both objects are successfully added to the set. On the other hand,
the object p2 is a copy of p, and when we try inserting p2 into the persons set, the
insertion fails because sets do not contain duplicates and p2 is a duplicate of p. The
boost::unordered_multiset and boost::unordered_multimap containers are
hash-based containers that can store duplicate objects.

Computing good hash values is important in ensuring that objects are well
distributed in the hash table. While the boost::hash_value and boost::hash_
combine utility function templates help compute hash values for more complex
objects, their indiscriminate application can result in inefficient hashing algorithms.
For user-defined types, it may be better in many cases to roll out a mathematically
validated hashing algorithm that exploits the semantics of the user-defined type.
If you use primitives or standard types like std::string as keys in your
unordered_set or unordered_map, then you need not roll out your own
hash function, as boost::hash does an adequate job.

Looking up values is typically done using the find and count member functions
of the unordered associative containers. While find returns an iterator to the actual
object stored in the container, corresponding to the key passed, count returns just
the count of occurrences of the key. The equal_range member function of
unordered_multiset and unordered_multimap return the range of matching
objects. For unordered_set and unordered_map, the count member function can
never return a value greater than 1.

Effective Data Structures beyond STL

[190]

Containers for dynamically-allocated
objects
Object-oriented programming relies heavily on using polymorphic base class
references to manipulate objects of an entire class hierarchy. More often than not,
these objects are dynamically allocated. When dealing with a whole collection of
such objects, STL containers come a cropper; they store concrete objects of a single
type and require copy or move semantics. It is impossible to define a single container
that can store objects of different classes across a hierarchy. While you may store
polymorphic base class pointers in containers, pointers are treated as POD-types and
with little support for deep-copy semantics. The life cycle of dynamically-allocated
objects is none of STL's business. But it is unwieldy to define a container of pointers
whose lifetimes have to be managed separately without any help from the container.

The Boost Pointer Container library addresses these gaps by storing pointers to
dynamically-allocated objects and deallocating them at the end of the container's
life. The pointer containers provide an interface through which you can operate
on the underlying objects without the need for pointer indirection. As they store
pointers to objects, these containers naturally support polymorphic containers
without any extra machinery.

The following table shows pointer containers and their Standard Library
counterparts:

Pointer container from Boost Standard Library container
boost::ptr_array std::array
boost::ptr_vector std::vector
boost::ptr_deque std::deque
boost::ptr_list std::list
boost::ptr_set / boost::ptr_multiset std::set / std::multiset
boost::ptr_unordered_set / boost::ptr_
unordered_multiset

std::unordered_set / std::unordered_
multiset

boost::ptr_map / boost::ptr_multimap std::map / std::multimap
boost::ptr_unordered_map /
boost::ptr_unordered_multimap

std::unordered_map /
std::unordered_multimap

Chapter 5

[191]

Boost defines the pointer container equivalents for all the standard containers.
These containers can be used to store polymorphic pointers, and the underlying
objects pointed to by the stored pointers need not be copyable or movable. Here
is a basic example to get started with:

Listing 5.12: Using Boost pointer containers

1 #include <boost/ptr_container/ptr_vector.hpp>
 2 #include <boost/noncopyable.hpp>
 3 #include <iostream>
 4 #include <boost/current_function.hpp>
 5
 6 class AbstractJob {
 7 public:
 8 virtual ~AbstractJob() {}
 9
10 void doJob() {
11 doStep1();
12 doStep2();
13 }
14
15 private:
16 virtual void doStep1() = 0;
17 virtual void doStep2() = 0;
18 };
19
20 class JobA : public AbstractJob
21 {
22 void doStep1() override {
23 std::cout << BOOST_CURRENT_FUNCTION << '\n';
24 }
25
26 void doStep2() override {
27 std::cout << BOOST_CURRENT_FUNCTION << '\n';
28 }
29 };
30
31 class JobB : public AbstractJob

Effective Data Structures beyond STL

[192]

32 {
33 void doStep1() override {
34 std::cout << BOOST_CURRENT_FUNCTION << '\n';
35 }
36
37 void doStep2() override {
38 std::cout << BOOST_CURRENT_FUNCTION << '\n';
39 }
40 };
41
42 int main()
43 {
44 boost::ptr_vector<AbstractJob> basePtrVec;
45
46 basePtrVec.push_back(new JobA);
47 basePtrVec.push_back(new JobB);
48
49 AbstractJob& firstJob = basePtrVec.front();
50 AbstractJob& lastJob = basePtrVec.back();
51
52 for (auto& job : basePtrVec) {
53 job.doJob();
54 }
55 }

In the preceding example, AbstractJob is an abstract base class (line 5) which
defines two private pure virtual functions doStep1 and doStep2 (lines 16, 17), and
a non-virtual public function doJob which calls these two functions (line 10). JobA
and JobB are two concrete implementations of AbstractJob, which implement the
virtual functions doStep1 and doStep2. The override keyword trailing the function
signature (lines 22, 26, 33, and 37) is a C++11 feature that clarifies that a particular
function overrides a virtual function in the base class. In the main function, we create
a ptr_vector of AbstractJobs. Note that the template argument is not the pointer
type (line 44). We then append two concrete instances of JobA and JobB to the vector
(lines 46 and 47). We access the first and last elements in the vector using the front
(line 49) and back (line 50) member functions, both of which return references to the
underlying objects rather than their pointers. Finally, we read off the stored objects
in a range-based for-loop (line 52). The loop variable job is declared as a reference
(auto&), not a pointer. Member functions of the pointer containers as well as iterators
return references not to the stored pointers but to the underlying objects they point
to, providing for syntactic ease.

Chapter 5

[193]

While range-based for-loops and BOOST_FOREACH make it easy to iterate through
collections, you can also use the iterator interface directly if you need to:

49 typedef boost::ptr_vector<AbstractJob>::iterator iter_t;
50
51 for (iter_t it = basePtrVec.begin();
52 it != basePtrVec.end(); ++it) {
53 AbstractJob& job = *it;
54 job.do();
55 }

Once again, notice that the iterator returns a reference to the underlying object, not
to the pointer (line 53), even though the container stores pointers. The variable job
is a reference because AbstractJob is abstract and cannot be instantiated. But what
if the base class was not abstract? Consider the following example of a non-abstract
polymorphic base class:

Listing 5.13: Pitfalls of copyable concrete base classes

 1 struct ConcreteBase
 2 {
 3 virtual void doWork() {}
 4 };
 5
 6 struct Derived1 : public ConcreteBase
 7 {
 8 Derived1(int n) : data(n) {}
 9 void doWork() override { std::cout <<data <<"\n"; }
10 int data;
11 };
12
13 struct Derived2 : public ConcreteBase
14 {
15 Derived2(int n) : data(n) {}
16 void doWork() override { std::cout <<data << "\n"; }
17 int data;
18 };
19
20 int main()
21 {
22 boost::ptr_vector<ConcreteBase> vec;
23 typedef boost::ptr_vector<ConcreteBase>::iterator iter_t;
24

Effective Data Structures beyond STL

[194]

25 vec.push_back(new Derived1(1));
26 vec.push_back(new Derived2(2));
27
28 for (iter_t it = vec.begin(); it != vec.end(); ++it) {
29 ConcreteBase obj = *it;
30 obj.doWork();
31 }
32 }

The preceding code compiles cleanly but may not do what you expect it to do. In the
body of the for-loop, we assign each object of a derived class to a base class instance
(line 29). The copy constructor of ConcreteBase takes effect, and what we get is a
sliced object and incorrect behavior.

Thus, it is a good idea to prevent copying at the outset by deriving the base class
itself from boost::noncopyable, as follows:

 1 #include <boost/noncopyable.hpp>
 2
 3 class ConcreteBase : public boost::noncopyable

This would prevent slicing due to an inadvertent copy by causing such code to be
flagged as compilation error. Note that this would make all classes in the hierarchy
noncopyable. We will look at ways of adding copy semantics to such a hierarchy in
the next section. But before that, a look at using associative pointer containers.

We can store dynamically-allocated objects, including polymorphic objects in
boost::ptr_set or boost::ptr_multiset. Since these are ordered containers, we
must define a strict weak ordering relation for the value-type stored in the container.
This is typically done by defining the bool operator< for the type. If you store
polymorphic pointers to objects of a class hierarchy, you must define an ordering
relationship for all objects of the hierarchy, not just among objects of a particular
concrete type:

Listing 5.14: Using associative pointer containers – ptr_set

 1 #include <boost/ptr_container/ptr_set.hpp>
 2 #include <boost/noncopyable.hpp>
 3 #include <string>
 4 #include <iostream>
 5
 6 class Animal : boost::noncopyable
 7 {
 8 public:
 9 virtual ~Animal()
10 {};

Chapter 5

[195]

11
12 virtual std::string name() const = 0;
13 };
14
15 class SnowLeopard : public Animal
16 {
17 public:
18 SnowLeopard(const std::string& name) : name_(name) {}
19
20 virtual ~SnowLeopard() { std::cout << "~SnowLeopard\n"; }
21
22 std::string name() const override
23 {
24 return name_ + ", the snow leopard";
25 }
26
27 private:
28 std::string name_;
29 };
30
31 class Puma : public Animal
32 {
33 public:
34 Puma(const std::string& name) : name_(name) {}
35 virtual ~Puma() { std::cout << "~Puma\n"; }
36
37 virtual std::string name() const
38 {
39 return name_ + ", the puma";
40 }
41
42 private:
43 std::string name_;
44 };
45
46 bool operator<(const Animal& left, const Animal& right)
47 {
48 return left.name() < right.name();
49 }
50
51 int main()
52 {
53 boost::ptr_set<Animal>animals;
54 animals.insert(new Puma("Kaju"));

Effective Data Structures beyond STL

[196]

55 animals.insert(new SnowLeopard("Rongi"));
56 animals.insert(new Puma("Juki"));
57
58 for (auto&animal :animals) {
59 std::cout <<animal.name() << '\n';
60 }
61 }

This shows the use of std::ptr_set to store polymorphic pointers to dynamically-
allocated objects. The Animal abstract base declares a pure virtual function name.
Two two derived classes, SnowLeopard and Puma, (representing two real mammal
species) override them. We define a ptr_set of Animal pointers called animals (line
53). We create two pumas named Kaju and Juki and a snow leopard named Rongi,
inserting them into the set animals (lines 54-56). When we iterate through the list,
we get references to the dynamically-allocated objects, not pointers (lines 58, 59). The
operator< (line 46) compares any two animals and orders them lexically by name.
Without this operator, we would not be able to define the ptr_set. Here is
the output of the preceding code:

Juki, the puma
Kaju, the puma
Rongi, the snow leopard
~Puma
~Puma
~SnowLeopard

The three animals are listed in the first three lines, and then the destructor of each
object is invoked and prints its identity as the ptr_set container instance goes out
of scope.

Another common use of associative pointer containers is to store polymorphic
objects in a map or a multimap:

Listing 5.15: Using associative pointer containers

 1 #include <boost/ptr_container/ptr_map.hpp>
 2 #include <iostream>
 3 // include definitions of Animal, SnowLeopard, Puma
 4
 5 int main() {
 6 boost::ptr_multimap<std::string, Animal> animals;
 7 std::string kj = "Puma";
 8 std::string br = "Snow Leopard";
 9
10 animals.insert(kj, new Puma("Kaju"));
11 animals.insert(br, new SnowLeopard("Rongi"));

Chapter 5

[197]

12 animals.insert(kj, new Puma("Juki"));
13
14 for (const auto&entry : animals) {
15 std::cout << "[" << entry.first << "]->"
16 << entry.second->name() << '\n';
17 }
18 }

We create a multimap called animals (line 6) that keeps the species name as a key of
type std::string, and stores one or more polymorphic pointers to animals of that
species for each key (lines 10-12). We use the same Animal hierarchy we used
in listing 5.14. We loop through all the entries in the multimap, printing the name of
the species followed by the given name of the specific animal. Here is the output:

[SnowLeopard]->Rongi, the snow leopard
[Puma]->Kaju, the puma
[Puma]->Juki, the puma

Each Animal entry is of type std::pair<std::string, Animal*>, and thus the
key and value are accessed using the members first and second. Note that entry.
second returns the stored pointer, not a reference to the underlying object (line 16).

Ownership semantics of pointer containers
We have already seen that pointer containers "own" the dynamically-allocated
objects we store in them, in the sense that the container takes care of deallocating
them at the end of its own life. The objects themselves need to support neither copy
nor move semantics, so it is natural to wonder what it would mean to copy a pointer
container. Actually, the pointer containers are copyable and support simple copy
semantics—upon copy-construction or copy assignment of a pointer-container, it
dynamically allocates a copy of each object in the source container and stores the
pointer to that object. This works fine for any non-polymorphic type that is either a
POD-type or has a copy constructor. For polymorphic types, this behavior leads to
slicing or failure to compile when the base classes are abstract or noncopyable. In
order to create deep copies of containers with polymorphic objects, the objects must
support the clone interface.

To support creating copies of objects of a polymorphic type T, in a namespace X,
you must define a free function in the namespace X with the following signature:

1 namespace X {
2 // definition of T
3 ...
4
5 T* new_clone(const T& obj);
6 }

Effective Data Structures beyond STL

[198]

The function new_clone is found via Argument Dependent Lookup (ADL) and is
expected to return a copy of the object obj passed to it, whose runtime type should
be the same as that of obj. We can extend the animal example; we can do this by
defining a clone virtual function that is overridden in each subclass of Animal to
return a copy of the object. The new_clone free function then simply has to call the
clone function on the passed object and return the cloned pointer:

Listing 5.16: Making objects and pointer containers cloneable

1 #include <boost/ptr_container/ptr_vector.hpp>
 2 #include <boost/noncopyable.hpp>
 3 #include <string>
 4 #include <iostream>
 5
 6 namespace nature
 7 {
 8
 9 class Animal : boost::noncopyable
10 {
11 public:
12 // ...
13 virtual Animal *clone() const = 0;
14 };
15
16 class SnowLeopard : public Animal
17 {
18 public:
19 // ...
20 SnowLeopard *clone() const override
21 {
22 return new SnowLeopard(name_);
23 }
24
25 private:
26 std::string name_;
27 };
28
29 class Puma : public Animal
30 {
31 public:
32 // ...
33 Puma *clone() const override
34 {
35 return new Puma(name_);

Chapter 5

[199]

36 }
37
38 private:
39 std::string name_;
40 };
41
42 Animal *new_clone(const Animal& animal)
43 {
44 return animal.clone();
45 }
46
47 } // end of namespace nature
48
49 int main()
50 {
51 boost::ptr_vector<nature::Animal> animals, animals2;
52
53 animals.push_back(new nature::Puma("Kaju"));
54 animals.push_back(new nature::SnowLeopard("Rongi"));
55 animals.push_back(new nature::Puma("Juki"));
56
57 animals2 = animals.clone();
58
59 for (auto&animal : animals2) {
60 std::cout <<animal.name() << '\n';
61 }
62 }

For full generality, we put the Animal and its derived classes into a namespace called
nature (line 6), and add a pure virtual function called clone in Animal (line 13).
We override the clone method in each of the two derived classes (line 33, 42), and
implement the new_clone free function in terms of the clone method. We declare
two ptr_vector containers of nature::Animal pointers: animals and animals2
(line 51), initialize animals with three furry mammals (lines 53-55), and finally,
assign the clone of animals to animals2 (line 57). What if instead of the call to
clone, we write the following:

57 animals2 = animals;

In this case, the line would fail to compile because Animal is abstract and
noncopyable, and the preceding line would try to slice each stored object in animals
and copy it to animals2. If Animal was copyable and nonabstract, such a line would
have compiled, but animals2 would contain some hapless, sliced Animals.

Effective Data Structures beyond STL

[200]

The pointer containers support moving ownership of objects from one container
to another, even when the containers are of different types. You can move a single
element, a range of elements, or the entire contents of one container to another, in
operations reminiscent of slice in Standard Library std::list. The following
example illustrates some of these techniques:

Listing 5.17: Moving pointers between containers

 1 #include <boost/ptr_container/ptr_vector.hpp>
 2 #include <boost/ptr_container/ptr_list.hpp>
 3 #include <cassert>
 4 #include <iostream>
 5 // definitions of Animal, SnowLeopard, Puma in namespace nature
 6
 7 int main()
 8 {
 9 boost::ptr_vector<nature::Animal> mountA;
10 boost::ptr_vector<nature::Animal> mountB;
11 boost::ptr_list<nature::Animal> mountC;
12
13 mountA.push_back(new nature::Puma("Kaju"));
14 mountA.push_back(new nature::SnowLeopard("Rongi"));
15 mountA.push_back(new nature::Puma("Juki"));
16 mountA.push_back(new nature::SnowLeopard("Turo"));
17
18 size_t num_animals = mountA.size();
19
20 for (auto&animal : mountA) {
21 std::cout << "MountA: " <<animal.name() << '\n';
22 }
23
24 // Move all contents
25 mountB = mountA.release();
26 assert(mountA.size() == 0);
27 assert(mountB.size() == num_animals);
28
29 // move one element
30 mountC.transfer(mountC.begin(), mountB.begin() + 1, mountB);
31 assert(mountB.size() == num_animals - 1);
32 assert(mountC.size() == 1);
33
34 // move one element, second way
35 auto popped = mountB.pop_back();
36 mountC.push_back(popped.release());

Chapter 5

[201]

37
38 assert(mountB.size() + mountC.size() == num_animals);
39 assert(mountC.size() == 2);
40
41 // move a range of elements
42 mountC.transfer(mountC.end(), mountB.begin(),
43 mountB.end(), mountB);
44 assert(mountB.size() + mountC.size() == num_animals);
45 assert(mountC.size() == num_animals);
46
47 for (auto&animal : mountC) {
48 std::cout << "MountC: " <<animal.name() << '\n';
49 }
50 }

The preceding example illustrates all the different techniques of moving elements
from one container to another. Two Pumas (Kaju and Juki) and two SnowLeopards
(Rongi and Turo) are on mountain A, so the vector mountA stores the animals on
mountain A. The four animals decide to move to mountain B; the vector mountB
is empty to start with. Then, the four Animals move to mountain B, so we move
the contents of mountA to mountB, using the release method of mountA (line 25).
Following this, there are no more Animals in mountA (line 26) while mountB contains
all four (line 27). Now the animals want to cross over to mountain C, and it is a
different kind of mountain that is difficult to climb. The animals on mountain C
are tracked in a ptr_list called mountC (rather than a ptr_vector). To start with,
Rongi, the snow leopard (the second element in mountB) shows the way and is
the first to climb mountain C. So we move the second element of mountB to the
beginning of mountC, using the transfer member function of mountC (line 30). Next,
Turo, the other snow leopard ventures to cross over to C. We move the last element
of mountB to the end of mountC by first popping it off the end of mountB (line 35),
then calling release on the popped object, and appending the returned pointer to
mountC (line 36). At this point, there are two more Animals on mountB (line 39). The
remaining elements (two pumas) are moved from mountB to the end of mountC by a
call to the transfer member function of mountC (lines 42, 43), thus completing the
exodus of the animals (line 45).

The first argument to transfer is the iterator identifying the position in the
destination container, where the moved elements are inserted. In the three-parameter
overload (line 30), the second argument identifies the iterator to the element in the
source container, which needs to be moved, and the third argument is a reference
to the source container. In the four-parameter overload, the second and third
arguments identify the range of elements from the source container that need to
be moved, and the fourth argument is the reference to the source container.

Effective Data Structures beyond STL

[202]

If you are on pre-C++11, you cannot use the auto keyword to do away with type
names you do not care about (line 35). In that case, you will need to store the result
of pop_back() (or other methods that remove and return an element from the
container) in a variable of type container::auto_type. For example:

33 boost::ptr_vector<nature::Animal>::auto_type popped =
34 mountB.pop_back();

Null pointers in pointer containers
Given the fact that pointer containers store pointers and give out references to the
underlying objects, what happens if you store a null pointer? By default, pointer
containers do not allow null pointers and trying to store a null pointer would duly
cause an exception to be thrown at runtime. You can override this behavior and tell
the compiler to allow storing nulls. To do this, you have to modify your container
definition slightly, to use:

boost::ptr_container<boost::nullable<Animal>> animals;

Instead of:

boost::ptr_container< Animal> animals;

The advantages are limited, and you have to additionally make sure you do not
dereference a potential null pointer. Your code becomes complex, and it becomes
difficult to use range-based for-loops. Here is an example:

 1 std::ptr_vector< boost::nullable<Animal>> animalsAndNulls;
 2 ... // assign animals
 3
 4 for (auto it = animalsAndNulls.begin();
 5 it != animalsAndNulls.end(); ++it)
 6 {
 7 if (!boost::is_null(it)) {
 8 Animal& a = *it;
 9 // do stuff ...
10 }
11 }

It is best to avoid storing null pointers, and instead, use the Null Object Pattern
that the library author recommends. You can see the Boost online documentation
for more details on the Null Object Pattern (http://www.boost.org/doc/
libs/1_57_0/libs/ptr_container/doc/guidelines.html#avoid-null-
pointers-in-containers-if-possible).

http://www.boost.org/doc/libs/1_57_0/libs/ptr_container/doc/guidelines.html#avoid-null-pointers-in-containers-if-possible
http://www.boost.org/doc/libs/1_57_0/libs/ptr_container/doc/guidelines.html#avoid-null-pointers-in-containers-if-possible
http://www.boost.org/doc/libs/1_57_0/libs/ptr_container/doc/guidelines.html#avoid-null-pointers-in-containers-if-possible

Chapter 5

[203]

In summary, the Boost Pointer Containers are a full-featured set of containers for
pointers to dynamically-allocated objects and are well suited for handling polymorphic
objects. In C++11, one alternative way of achieving similar semantics is via containers
of std::unique_ptr<T>. With sufficient optimization, the overhead of the unique_
ptr wrapper is likely to be minimal, and the performance comparable to that of Boost's
pointer container. While using containers of boost::shared_ptr<T> (T being the type
of the dynamically-allocated objects) serves the use cases described here, they have
higher memory and runtime overhead and are not optimal unless shared ownership
semantics are needed.

Expressive initialization and assignment
using Boost.Assign
Initializing an object or assigning some literal value to it using a single statement is
a succinct way of generating the contents of the object. It is easy to do this for simple
variables like numeric variables or strings, because there are readily available literals.
On the other hand, there are no simple syntactic means of initializing containers
with arbitrary sets of values. This is because expressing more complex objects with
nontrivial internal data structures as literals is difficult. Using some ingenious
patterns and overloaded operators, the Boost.Assign library makes it possible to
initialize and assign values to a whole host of STL and Boost containers, using a
very expressive syntax.

With the availability of the new initializer list and uniform initialization syntax
in C++11, these tasks can be accomplished without Boost.Assign. Still Boost.Assign
is the only means of getting the job done on pre-C++11, and also provides some
nifty additional capabilities not easily available via initializer lists and uniform
initialization.

Assigning lists of values to containers
Boost.Assign is one of those nifty little libraries in Boost, which you get into the
habit of using at the smallest opportunity. Here is an example:

Listing 5.18: Assigning a list of values to a vector

 1 #include <string>
 2 #include <vector>
 3 #include <boost/assign.hpp>
 4 #include <cassert>
 5

Effective Data Structures beyond STL

[204]

 6 using namespace boost::assign;
 7
 8 int main()
 9 {
10 std::vector<std::string>greetings;
11 greetings += "Good morning", "Buenos dias", "Bongiorno";
12 greetings += "Boker tov", "Guten Morgen", "Bonjour";
13
14 assert(greetings.size() == 6);
15 }

Assigning a list of values to a vector was never as much fun as with Boost.Assign.
By overloading the comma operator (operator,) and operator+=, the Boost Assign
library provides an easy way to append a list of values to a vector. In order to use the
operators, we include boost/assign.hpp (line 3). The using namespace directive
makes the operators defined in Boost Assign available in the global scope (line 6).
Without this, we would not be able to freely use the operators and the expressiveness
would be gone. We append three "good morning" greetings in English, French, and
Italian to the vector greetings (line 11), and then three more in Hebrew, German,
and French (line 12). The net effect is a vector with six strings (line 14). We could
have replaced the vector with a deque and this would have still worked. If you
wanted an alternate mode of insertion like inserting at the head of a list or deque or
inserting into a map, Boost Assign can still work for you. Here is one more example:

Listing 5.19: Assigning elements to other containers

 1 #include <string>
 2 #include <map>
 3 #include <list>
 4 #include <deque>
 5 #include <boost/assign.hpp>
 6 #include <iostream>
 7 #include <boost/tuple/tuple.hpp>
 8
 9 using namespace boost::assign;
10
11 int main(){
12 std::deque<std::string>greets;
13 push_front(greets) = "Good night", "Buenas noches",
14 "Bounanotte", "Lyla tov", "Gute nacht", "Bonne nuit";
15
16 std::map<std::string, std::string> rockCharacters;
17 insert(rockCharacters)
18 ("John Barleycorn", "must die") // Traffic
19 ("Eleanor Rigby", "lives in a dream") // Beatles
20 ("Arnold Layne", "had a strange hobby") // Floyd

Chapter 5

[205]

21 ("Angie", "can't say we never tried") // Stones
22 ("Harry", "play the honkytonk"); // Dire Straits
23
24 std::list<boost::tuple<std::string, std::string,
25 std::string>> trios;
25 push_back(trios)("Athos", "Porthos", "Aramis")
26 ("Potter", "Weasley", "Granger")
27 ("Tintin", "Snowy", "Haddock")
28 ("Geller", "Bing", "Tribbiani")
29 ("Jones", "Crenshaw", "Andrews");
30
31 std::cout << "Night greets:\n";
32 for (const auto& greet: greets) {
33 std::cout << greet << '\n';
34 }
35
36 std::cout << "\nPeople:\n";
37 for (const auto&character: rockCharacters) {
38 std::cout << character.first << ": "
39 << character.second << '\n';
40 }
41
42 std::cout << "Trios:\n";
43 for (auto& trio: trios) {
44 std::cout << boost::get<0>(trio) << ", "
45 << boost::get<1>(trio) << ", "
46 << boost::get<2>(trio) << '\n';
47 }
48 }

Here, we see examples of assigning values to three different kinds of containers.
We first push six "good night" greets in different languages into the head of a
std::deque (lines 13-14). We do this using the push_front adaptor from Boost
Assign which invokes the method of the same name push_front on the deque
greets. It should be clear that after this operation, the last string in the list
("Bonne nuit") sits at the front of the queue.

If you have had a thing for rock 'n' roll and are as old as I am, you would perhaps
identify the characters in the next example: an std::map of characters from rock 'n' roll
songs and albums, and what they did (according to those songs). Using the insert
adaptor, which calls the method of the same name, on the map rockCharacters,
we insert five pairs of strings—each mapping a character to an act (lines 17-22).
The insert adaptor and other adaptors like it return an object with an overloaded
operator() which can be chained. By chaining calls to this operator, the list of values
is created.

Effective Data Structures beyond STL

[206]

The last container we use is a std::list, and for fun, we keep a list of famous trios
from fiction. The boost::tuple template can be used to define tuples of an arbitrary
number of elements of different types. Here, we use a boost::tuple of three strings
to represent a trio, and keep a list of such trios in the variable trios (line 24). The
push_back adaptor from Boost Assign is used to append the trios to the end of the
list. The operator += used in listing 5.17 with std::vector calls push_back on the
underlying container. However, in this case, the push_back adaptor needs to be used
to allow tuples of values to be pushed into the list.

Next, we print the content of the data structures. To access each element of each tuple
in the list trios, we use the boost::get template that accesses the elements in tuples
by a 0-based index (lines 44-45). Running this code prints the following output:

Night greets:
Bonne nuit
Gute nacht
Lyla tov
Bounanotte
Buenas noches
Good night
People:
Angie: can't say we never tried
Arnold Layne: had a strange hobby
Eleanor Rigby: lives in a dream
John Barleycorn: must die
Harry: play the honkytonk
People:
Athos,Porthos, Aramis
Potter,Weasley, Granger
Tintin,Snowy, Haddock
Jones,Crenshaw, Andrews

Initializing containers with lists of values
In the previous examples, we saw various ways of appending or inserting values
into a container, but Boost.Assign also lets you initialize containers with values
at the time of construction. The syntax is slightly different from what is used for
assignments:

Listing 5.20: Aggregate initialization with Boost Assign

 1 #include <boost/assign.hpp>
 2 #include <boost/rational.hpp>
 3 #include <iterator>
 4

Chapter 5

[207]

 5 using namespace boost::assign;
 6
 7 int main()
 8 {
 9 std::cout << "Catalan numbers:\n";
10 const std::vector<int> catalan = list_of(1)(1)(2)(5)
11 (14)(42) (132)(429)(1430)(4862);
12
13 std::ostream_iterator<int>os(std::cout, " ");
14 std::copy(catalan.begin(), catalan.end(), os);
15
16 std::cout << "\nBernoulli numbers:\n";
17 const std::map<int, boost::rational<int>>bernoulli =
18 map_list_of(0, boost::rational<int>(1))
19 (1, boost::rational<int>(1, 2))
20 (2, boost::rational<int>(1, 6))
21 (3, boost::rational<int>(0))
22 (4, boost::rational<int>(-1, 30))
23 (5, boost::rational<int>(0))
24 (6, boost::rational<int>(1, 42))
25 (7, boost::rational<int>(0));
26
27 for (auto&b : bernoulli) {
28 std::cout << 'B' << b.first << ": " << b.second << ", ";
29 }
30 std::cout << '\n';
31 }

The preceding example constructs a vector of the first ten Catalan Numbers.
The nth Catalan number (n being a nonnegative integer) equals the number of
permutations of a string containing n left parentheses and n right parentheses in
which all parentheses are correctly matched. We use the list_of adaptor from the
boost::assign namespace to construct the list of first ten Catalan numbers with
which the vector catalan is initialized (lines 10-11). We use an ostream_iterator
to print this list (lines 13-14).

Next, we create a std::map containing the first eight Bernoulli numbers: the keys are
the ordinal positions and the values are the numbers themselves. Bernoulli numbers
are a sequence of rational numbers (expressible as a ratio of two integers) that arise
in number theory and combinatorics. For initializing such a map, we use the map_
list_of adaptor passing keys and values as shown (lines 17-25). For representing
a rational number, we use the boost::rational template defined in the header
boost/rational.hpp.

Effective Data Structures beyond STL

[208]

This code prints the following output:

Catalan numbers:
1 1 2 5 14 42 132 429 1430 4862
Bernoulli numbers:
B0: 1/1, B1: 1/2, B2: 1/6, B3: 0/1, B4: -1/30, B5: 0/1, B6: 1/42, B7:
0/1,

Interestingly, you can also create anonymous sequences using Boost Assign. These
sequences can be constructed either as a sequence of non-constant l-value references
or as a sequence of const l-value references that can admit literals. They are more
efficient to construct than list_of and can be used in its place for initializing
sequence containers like vectors. These sequences comply with the Boost Range
concept and can be used anywhere a range can be used. Here is an example:

Listing 5.21: Creating anonymous sequences

1 #include <boost/assign.hpp>
 2 #include <iostream>
 3
 4 using namespace boost::assign;
 5
 6 template<typename RangeType>
 7 int inspect_range(RangeType&& rng)
 8 {
 9 size_t sz = boost::size(rng);
10
11 if (sz > 0) {
12 std::cout << "First elem: " << *boost::begin(rng) << '\n';
13 std::cout <<"Last elem: " << *(boost::end(rng) - 1) << '\n';
14 }
15
16 return sz;
17 }
18
19 int main()
20 {
21 std::cout << inspect_range(
22 cref_list_of<10>(1)(2)(3)(4)(5)(6)(7)(8));
23
24 typedef std::map<std::string, std::string> strmap_t;
25 strmap_t helloWorlds =
26 cref_list_of<3, strmap_t::value_type>

Chapter 5

[209]

27 (strmap_t::value_type("hello", "world"))
28 (strmap_t::value_type("hola", "el mundo"))
29 (strmap_t::value_type("hallo", "Welt"));
30 }

We create an anonymous sequence of size ten using the cref_list_of adaptor, but
actually put only eight values in it (line 22). If we had variables to put in the sequence
instead of character literals, we could have used the ref_list_of adaptor, and this
would have created a mutable sequence. We use boost::size, boost::begin and
boost::end functions for operating on ranges to determine the length of the sequence
(line 9) and its first and last elements (lines 12-13). Next, we use an anonymous list of
string pairs to initialize a std::map (lines 26-29). Note that value_type nested typedef
in a map represents the type of each key-value pair in the map.

C++11 introduces the very handy aggregate initialization syntax using which arbitrary
containers can be initialized. It is syntactically simpler to perform initialization using
the aggregate initializer syntax than Boost Assign and is likely more efficient. In
pre-C++11 environments, Boost Assign's initialization syntax remains the only choice.
Here are a few examples of C++11 aggregate initialization:

 1 std::vector<std::string>scholars{"Ibn Sina", "Ibn Rushd",
 2 "Al Khwarizmi", "Al Kindi"};
 3std::map<std::string, std::string> scholarsFrom
 4={{scholars[0], "Bukhara"},
 5 {scholars[1], "Cordoba"},
 6{scholars[2], "Khwarezm"},
 7 {scholars[3], "Basra"}};

This snippet shows the way to use a comma-separated list of values enclosed in
curly braces to initialize collections. The scholars vector is initialized with names
of four Muslim scholars from the Middle Ages, and then the scholarsFrom map is
initialized with the names of those scholars as keys and their places of origin as the
values. Note how each key-value pair is enclosed in braces in a comma-separated
list of such pairs. Also, note that we freely use l-values (like scholars[0]) as well
as literals in the initializer.

Initializing pointer containers and assigning
values
The Boost Assign library provides special support for assigning values to pointer
containers and initializing pointer containers in an exception-safe way.

Effective Data Structures beyond STL

[210]

The following short example summarizes the usage:

Listing 5.22: Boost Assign with pointer containers

 1 #include <boost/ptr_container/ptr_vector.hpp>
 2 #include <boost/ptr_container/ptr_map.hpp>
 3 #include <boost/assign/ptr_list_inserter.hpp>
 4 #include <boost/assign/ptr_map_inserter.hpp>
 5 #include <boost/assign/ptr_list_of.hpp>
 6 #include <string>
 7 #include <iostream>
 8
 9 using namespace boost::assign;
10
11 struct WorkShift
12 {
13 WorkShift(double start = 9.30, double end = 17.30)
14 : start_(start), end_(end)
15 {}
16
17 double start_, end_;
18 };
19
20 std::ostream& operator<<(std::ostream& os, const WorkShift& ws)
21 {
22 return os << "[" << ws.start_ <<" till " << ws.end_ << "]";
23 }
24
25 int main()
26 {
27 boost::ptr_vector<WorkShift> shifts = ptr_list_of<WorkShift>
28 (6.00, 14.00)();
29 ptr_push_back(shifts)(14.00, 22.00)(22.00, 6.00);
30
31 boost::ptr_map<std::string, WorkShift> shiftMap;
32 ptr_map_insert(shiftMap)("morning", 6.00, 14.00)("day")
33 ("afternoon", 14.00, 22.00)("night", 22.00, 6.00);
34
35 for (const auto& entry: shiftMap) {
36 std::cout << entry.first <<" " <<shiftMap.at(entry.first)
37 << '\n';
38 }
39 }

Chapter 5

[211]

In this example, we define a type WorkShift that represents a shift at a workplace and
encapsulates information about work hours for a particular shift. Its constructor takes
two arguments, the start and end time of the shift, and defaults them to 9.30 and 17.30
(line 12). We create a ptr_vector of WorkShift objects and initialize them, using the
ptr_list_of adaptor. Instead of passing constructed objects, we pass constructor
arguments for two objects: a shift between 6.00 and 14.00 and another shift with a
default start and end time (line 28).

The template argument to ptr_list_of denotes which type to instantiate. We add two
more shifts to the ptr_vector called shifts, using the ptr_push_back adaptor. Next,
we make a ptr_map called shiftMap with string keys, identifying the type of shifts and
pointers to shift objects for values (line 31). We then use the ptr_map_insert adaptor
to insert the elements into the map. We create each entry by invoking operator(),
passing the string key as the first argument and the constructor arguments for the
WorkShift object as the remaining arguments (lines 32-33). We print the contents of
the ptr_map (line 35-38), using the overloaded streaming operator for WorkShift
(line 19). The following is the output of this program:

afternoon [14 till 22]
general [9.3 till 17.3]
morning [6 till 14]
night [22 till 6]

It is important to understand why a separate class of adaptors is used for initializing
pointer containers. The following, for example, is a perfectly a valid code:

 1 boost::ptr_vector<WorkShift> shifts;
 2 boost::assign:push_back(shifts)(new WorkShift())
 3 (new WorkShift(6.00, 14.00));

However, in this example, the user of the library (that is us) manually allocates
two new WorkShift objects. The order in which these get allocated is not
guaranteed by the compiler. Only the order in which they are appended to shifts
is guaranteed (via calls to the overloaded operator() in the adaptor returned by
boost::assign::push_back). So, for the preceding sample, the compiler could
generate code roughly equivalent to the following:

 1 boost::ptr_vector<WorkShift> shifts;
 2 WorkShift *w1 = new WorkShift(6.00, 14.00);
 3 WorkShift *w2 = new WorkShift();
 4 boost::assign::push_back(shifts)(w2)(w1);

Effective Data Structures beyond STL

[212]

If the constructor of WorkShift threw while w2 was constructed (line 3), then w1
would be leaked. In order to ensure exception-safety, we should use ptr_push_back:

1 boost::ptr_vector<WorkShift> shifts;
2 boost::assign::ptr_push_back(shifts)()(6.00, 14.00);

Instead, the overloaded operator() in the boost::assign::ptr_push_back
adaptor takes the constructor arguments for each WorkShift object that needs to
be in the shifts container and constructs each WorkShift object, forwarding those
arguments to the WorkShift constructor. The call returns only after the constructed
object is in the container. This ensures that at the time of construction of a WorkShift
object, all previously constructed WorkShift objects are already part of the container.
So if the constructor throws, the container along with the previously-constructed
objects are released.

Iteration patterns using Boost.Iterator
Iteration is a fundamental task in most programming problems, whether it is
iterating through the elements of a container, a series of natural numbers, or the files
in a directory. By abstracting how a collection of values is iterated through, we can
write generic code to process such a collection without depending on methods of
iteration specific to each collection.

The Standard Library containers expose iterators for this purpose, and the generic
algorithms in the Standard Library can operate on any conforming container
through its iterators, without depending on the specific type of the container
or its internal structure.

The Boost.Iterator library provides a framework for writing iterators for custom
classes that conform to the standards and are compatible with algorithms in the
Standard Library. It also helps generalize iteration concepts to more abstract
object collections, not limited to containers.

Smart iteration using Boost.Iterator
The Boost Iterator library provides a number of iterator adaptors that make iterating
over containers and sequences of values more expressive and efficient. An iterator
adaptor wraps an iterator to produce another iterator. The adapted iterator may
or may not iterate over the entire range of elements addressed by the underlying
iterator. Also, they can be designed to return a different value, potentially of a
different type than the underlying iterator. In this section, we look at a few
examples of such iterator adaptors from Boost.

Chapter 5

[213]

Filter Iterator
The filter iterators iterate over a subsequence of an underlying sequence of elements.
They wrap an underlying iterator sequence and take a unary Boolean predicate,
which is used to determine which elements to include from the underlying range,
and which ones to skip. The predicate takes an element of the underlying sequence
as a single argument and returns true or false. The ones for which true is returned
are included in the iteration, the rest are filtered out; hence the name.

You can create filter iterators by using the boost::make_filter_iterator function
template. You pass it a unary function object (functor, lambda, or function pointer)
that returns bool. You also pass it not one, but two iterators: the one it wraps and
another one marking the end of sequence. In the following example, we have a list
of Person objects, and we need to write code to make a payout of 100 dollars to the
bank account of each person who is seventy years of age or older:

Listing 5.23: Using filter iterators

 1 #include <boost/iterator/filter_iterator.hpp>
 2 #include <boost/assign.hpp>
 3 #include <vector>
 4 #include <string>
 5 #include <iostream>
 6
 7 struct Person
 8 {
 9 std::string name;
10 int age;
11 std::string bank_ac_no;
12
13 Person(const std::string& name, int years,
14 const std::string& ac_no) :
15 name(name), age(years), bank_ac_no(ac_no) {}
16 };
17
17 void payout(double sum, const std::string& ac_no) {
19 std::cout << "Credited a sum of "<< sum
20 <<" to bank account number " << ac_no << '\n';
21 }
22
23 template<typename Itertype>
24 void creditSum(Itertype first, Itertype last, double sum)

Effective Data Structures beyond STL

[214]

25 {
26 while (first != last) {
27 payout(sum, first->bank_ac_no);
28 first++;
29 }
30 }
31
32 bool seventyOrOlder(const Person& person)
33 {
34 return person.age >= 70;
35 }
36
37 int main()
38 {
39 std::vector<Person> people{{"A Smith", 71, "5702750"},
40 {"S Bates", 56, "3920774"},
41 {"L Townshend", 73, "9513914"},
42 {"L Milford", 68, "1108419"},
43 {"F Cornthorpe", 81, "8143919"}};
44
45 auto first = boost::make_filter_iterator(seventyOrOlder,
46 people.begin(), people.end());
47
48 auto last = boost::make_filter_iterator(seventyOrOlder,
49 people.end(), people.end());
50
51 creditSum(first, last, 100);
52 }

In this example, the function payout takes an account number and an amount and
initiates a payment to the account (line 17). The function creditSum takes a pair
of iterators defining a sequence of Person objects and an amount, and initiates a
payment of that amount to each Person in the sequence, calling payout for each
(line 23-24). We have a vector of Person objects (line 39), which we initialize with the
details of five people, using the uniform initialization syntax from C++11. We cannot
directly call creditSum on the entire range of elements in the vector because we
only want to credit it to people who are seventy or older. To do this, we first define
the predicate function seventyOrOlder (line 32) that helps us select the candidate
entries, and then define the filter iterators first and last (lines 45-49). Finally, we
call creditSum with the pair of filter iterators and the sum to credit (line 51).

Chapter 5

[215]

Transform Iterator
Transform iterators allow you to traverse a sequence, and when dereferenced, return
the result of applying a unary function to the underlying element of the sequence.
You can construct transform iterators using boost::make_tranform_iterator,
passing it the unary function object and the underlying iterator.

Consider std::map objects containing subject names as keys and subjects scores
as values. We use transform iterators to compute the sum of the scores in all the
subjects, as shown in the following example:

Listing 5.24: Using transform iterators

 1 #include <iostream>
 2 #include <string>
 3 #include <vector>
 4 #include <map>
 5 #include <algorithm>
 6 #include <functional>
 7 #include <boost/assign.hpp>
 8 #include <boost/iterator/transform_iterator.hpp>
 9 #include <numeric> // for std::accumulate
10 using namespace boost::assign;
11
12 typedef std::map<std::string, int> scoremap;
13
14 struct GetScore : std::unary_function<
15 const scoremap::value_type&, int>
16 {
17 result_type operator()(argument_type entry) const
18 {
19 return entry.second;
20 }
21 };
22
23 int main()
24 {
25 scoremap subjectScores{{"Physics", 80}, {"Chemistry", 78},
26 {"Statistics", 88}, {"Mathematics", 92}};
27
28 boost::transform_iterator<GetScore,

Effective Data Structures beyond STL

[216]

29 scoremap::iterator>
30 first(subjectScores.begin(), GetScore()),
31 last(subjectScores.end(), GetScore());
32
33 std::cout << std::accumulate(first, last, 0) << '\n';
34 }

The map subjectScores contains the scores in individual subjects stored against
each subject name. We use the C++11 uniform initialization syntax to initialize the
map (lines 25-26). We want to iterate through the values in this map and compute
their sum. Iterating through subjectScores will give us key-value pairs of subject
names and scores. To extract the score from a pair, we define a functor GetScore
(lines 14-15). We then define a pair of transform iterators first and last, each
constructed using an instance of the GetScore functor and the underlying iterator,
and pointing to the beginning and end of the subjectScores map (lines 28-31). By
calling std::accumulate from first to last, we sum over the scores in the map
(line 33) and print the result.

Notice that GetScore derives from std::unary_function<ArgType, RetType>,
where ArgType is the type of the functor's single argument and RetType is return
type of the functor. This is not required for C++11, and you do not need to derive
GetScore from any specific class in C++11.

Like boost::transform_iterator, the std::transform algorithm allows applying
a transform to each element in a sequence, but you must also store the results in
a sequence. The transform iterator allows you to create a lazy sequence whose
elements are evaluated, as they are accessed without the binding need to store
them anywhere.

Function Output Iterator
The function output iterators apply a unary function to each element that is
assigned to them. You can create a function output iterator using the boost::
make_function_output_iterator function template, passing it a unary function
object. You can then use std::copy or a similar algorithm to assign elements from
a sequence to the function output iterator. The function output iterator simply calls
the function on each element assigned to it. You can encapsulate any logic in the
function object you provide, print them enclosed in quotes, add them to another
container, keep a count of elements processed, and so on.

In the following example, we have a list of directory names, and using the
boost::function_output_iterator, we concatenate them together separated
by spaces, making sure to quote any strings with embedded spaces:

Chapter 5

[217]

Listing 5.25: Using function output iterators

 1 #include <iostream>
 2 #include <string>
 3 #include <vector>
 4 #include <algorithm>
 5 #include <boost/assign.hpp>
 6 #include <boost/function_output_iterator.hpp>
 7
 8 struct StringCat
 9 {
10 StringCat(std::string& str) : result_(str) {}
11
12 void operator()(const std::string& arg) {
13 if (arg.find_first_of(" \t") != std::string::npos) {
14 result_ += " \"" + arg + "\"";
15 } else {
16 result_ += " " + arg;
17 }
18 }
19
20 std::string& result_;
21 };
22
23 int main()
24 {
25 std::vector<std::string> dirs{"photos", "videos",
26 "books", "personal docs"};
27
28 std::string dirString = "";
29 std::copy(dirs.begin(), dirs.end(),
30 boost::make_function_output_iterator(
31 StringCat(dirString)));
32 std::cout << dirString << '\n';
33 }

We define a functor StringCat that stores a non-const reference to a std::string
passed to its constructor (line 12) in a member called result_. It defines a unary
operator(), which takes a single string parameter and appends it to result_. If
the passed string has embedded spaces or tabs, it is quoted and appended with
a leading space (line 14). Otherwise it is appended with a leading space without
quoting (line 16).

Effective Data Structures beyond STL

[218]

We have a list of directory names called dirs (line 25-27), and we want to append
them following this scheme to a string called dirString (line 28). To do this, we
create an instance of StringCat, passing it a reference to dirString (line 31), and
pass this to boost:: make_function_output_iterator, which returns an output
iterator (line 30). We use std::copy to copy the elements from dirs into the output
iterator returned, which has the effect of concatenating the strings by making
repeated calls to the StringCat functor. When std::copy returns, dirString
has the following content:

photos videos books "personal docs"

You can see that personal docs, which is the name of a single directory, is
appropriately quoted.

There are other iterator adaptors besides the ones listed above that we did not cover
here, including boost::indirect_iterator, boost::function_input_iterator,
boost::zip_iterator, boost::counting_iterator, and boost::permutation_
iterator. Use the documentation on the Boost website to familiarize yourself with
the patterns of their uses, and explore how you can use them in your own code.

Iterator adaptors provide a set of common idioms from functional programming
languages and libraries like Python's itertools. Iterator adaptors are particularly
useful when you have APIs that take a pair of iterators but have no option to filter
or adapt the elements via functors or predicates. Much of what iterator adaptors
enable can also be achieved by using the more modern Boost Range Adaptors,
perhaps with less verbose syntax. However, if your APIs expect iterators instead
of ranges, then these iterator adaptors will be handy.

Creating conforming iterators for custom
classes
In addition to providing iterator adaptor templates, the Boost.Iterator library provides
a framework for creating conforming iterators. In this section, we will use the Boost.
Iterator library to create conforming iterators for a threaded binary search tree. A
binary search tree is an abstract data type that stores elements in a tree structure.
Loosely speaking, each node in the tree has zero, one, or two children. All elements in
the left sub-tree of a node are smaller than the node, and all elements in the right sub-
tree of a node are larger than the node. Nodes with zero children are called leaves. A
threaded binary search tree is optimized for traversing its elements in a sorted order,
the so-called inorder traversal.

Chapter 5

[219]

We implement a naïve version of a threaded binary search tree, in which we will
maintain pointers to the predecessor and successor of a node in each node. We will
then provide a bidirectional iterator interface that will allow forward and reverse
traversal of the tree in the order of its elements.

Listing 5.26: A naïve threaded binary search tree

 1 #include <iostream>
 2 #include <algorithm>
 3 #include <vector>
 4 #include <boost/assign.hpp>
 5 #include <boost/iterator.hpp>
 6 #include <boost/iterator/iterator_facade.hpp>
 7
 8 template<typename T>
 9 struct TreeNode
 10 {
 11 T data;
 12 TreeNode<T> *left, *right;
 13 TreeNode<T> *prev, *next;
 14
 15 TreeNode(const T& elem) : data(elem),
 16 left(nullptr), right(nullptr),
 17 prev(nullptr), next(nullptr)
 18 {}
 19
 20 ~TreeNode()
 21 {
 22 delete left;
 23 delete right;
 24 }
 25 };
 26
 27 template<typename T>
 28 class BSTIterator :
 29 public boost::iterator_facade <BSTIterator<T>, T,
 30 boost::bidirectional_traversal_tag>
 31 {
 32 public:
 33 BSTIterator() : node_ptr(nullptr) {}
 34 explicit BSTIterator(TreeNode<T> *node) :
 35 node_ptr(node) {}
 36 BSTIterator(const BSTIterator<T>& that) :
 37 node_ptr(that.node_ptr) {}
 38

Effective Data Structures beyond STL

[220]

 39 private:
 40 TreeNode<T> *node_ptr;
 41
 42 friend class boost::iterator_core_access;
 43
 44 void increment() { node_ptr = node_ptr->next; }
 45 void decrement() { node_ptr = node_ptr->prev; }
 46
 47 bool equal(const BSTIterator<T>& that) const {
 48 return node_ptr == that.node_ptr;
 49 }
 50
 51 T& dereference() const { return node_ptr->data; }
 52 };
 53
 54 template<typename T>
 55 class BinarySearchTree
 56 {
 57 public:
 58 BinarySearchTree() : root(nullptr), first(nullptr),
 59 last(nullptr) {}
 60 ~BinarySearchTree() {
 61 delete root;
 62 delete last;
 63 }
 64
 65 void insert(const T& elem) {
 66 if (!root) {
 67 root = new TreeNode<T>(elem);
 68 first = root;
 69 last = new TreeNode<T>(T());
 70 first->next = last;
 71 last->prev = first;
 72 } else {
 73 insert(elem, root);
 74 }
 75 }
 76

Chapter 5

[221]

 77 BSTIterator<T>begin() { return BSTIterator<T>(first); }
 78 BSTIterator<T>end() { return BSTIterator<T>(last); }
 79
 80 BSTIterator<T>begin() const {
 81 return BSTIterator<const T>(first);
 82 }
 83 BSTIterator<T>end() const {
 84 return BSTIterator<const T>(last);
 85 }
 86
 87 private:
 88 TreeNode<T> *root;
 89 TreeNode<T> *first;
 90 TreeNode<T> *last;
 91
 92 void insert(const T& elem, TreeNode<T> *node) {
 93 if (elem < node->data) {
 94 if (node->left) {
 95 insert(elem, node->left);
 96 } else {
 97 node->left = new TreeNode<T>(elem);
 98 node->left->prev = node->prev;
 99 node->prev = node->left;
100 node->left->next = node;
101
102 if (!node->left->prev) {
103 first = node->left;
104 } else {
105 node->left->prev->next = node->left;
106 }
107 }
108 } else if (node->data < elem) {
109 if (node->right) {
110 insert(elem, node->right);
111 } else {
112 node->right = new TreeNode<T>(elem);
113 node->right->next = node->next;
114 node->next = node->right;
115 node->right->prev = node;
116

Effective Data Structures beyond STL

[222]

117 if (node->right->next) {
118 node->right->next->prev = node->right;
119 }
120 }
121 }
122 }
123 };

We can use the BinarySearchTree template in the following code:

125 int main()
126 {
127 BinarySearchTree<std::string> bst;
128 bst.insert("abc");
129 bst.insert("def");
130 bst.insert("xyz");
131
132 for(auto& x: bst) {
133 std::cout << x << '\n';
134 }
135 }

This example helps us illustrate the techniques for creating custom iterators for a
not too trivial data structure, using the Boost Iterator framework. The threaded tree
implementation is made deliberately simple to aid understanding. TreeNode<T>
represents each node in a tree containing values of a parameterized type T.
BinarySearchTree<T> represents a binary search tree that supports inorder traversal.
It stores three pointers of type TreeNode<T>: the root of the tree, the pointer first to
the smallest element, and a sentinal pointer last, representing the end of the traversal
(lines 68-70). Finally, BSTIterator<T> represents the type of a bidirectional iterator to
BinarySearchTree<T>, one that allows inorder traversal through the elements of the
tree in both directions.

TreeNode<T> stores two pointers to its left and right children and two more
to its nodes that precede (prev) and follow (next) it in order of the values they store
(lines 12-13). A new node is always inserted as a leaf node, and the prev and next
pointers of the new node and the ones that precede and follow it in a traversal
order are readjusted appropriately. New elements are inserted into the tree using
the insert public method, and the actual logic for insertion is in the private
overload of the insert method (lines 72-102).The begin and end methods of
BinarySearchTree return iterators to the first element in the tree and another
node, marking the end of traversal.

Chapter 5

[223]

The BSTIterator template, which is the iterator implementation that we are most
interested in, derives from a specialization of boost::iterator_facade (lines
29-30). The specialization takes three arguments: BSTIterator<T> itself, the type
parameter T, and a tag boost::bidirectional_traversal_tag to identify the
type of traversal the iterator supports (bidirectional in this case). The base template
taking the derived class as an argument is a well-known C++ idiom called Curiously
Recurring Template Parameter and is used to achieve the effect of virtual method
calls without the runtime cost of it. We now define a set of members to finish the
implementation.

The BSTIterator template keeps a TreeNode<T> pointer to a node in the tree (line
40). This is initialized using a default constructor and the one that takes a node
pointer (lines 33-35). Also, importantly, we must make BSTIterator copyable (lines
36-37). We define a set of private member functions, which are accessed by the Boost
Iterator framework. The framework code accesses these functions via a class called
boost::iterator_core_access, which is therefore defined as a friend class (line
42). The functions increment (line 44) and decrement (line 45) are called when we
increment or decrement the iterator using operator++ or operator--. They change
the internal node pointer to point to the next or previous node in the traversal order
(inorder). The function dereference is called when we dereference the iterator using
operator*. It returns a reference to the data element stored in each node (line 51).
The equal method is used to check whether two iterators are equal to each other.
This is invoked when, for example, you check if an iterator has reached the end of
the sequence of values in a container with code like:

if (it == container.end())

This is all we need to do to define a fully functional iterator. There is one additional
bit of work that has to be done inside the container. We define the begin and end
methods that return the start and end of the sequence of values in the container
(lines 77-78). These pointers, first (line 89) and last (line 90), are maintained as
additional members and suitably updated by the BinarySearchTree template.
The pointer first is updated each time a new smallest element is inserted into the
container. The pointer last, which represents a sentinel beyond which the forward
traversal can never proceed, is created initially and never updated (line 69). Each
time a new largest element is added to the tree, its next pointer points to last. The
const versions of begin and end member functions (lines 80-85) are provided to
ensure that calling them on a constant container give immutable iterators. Following
essentially the same pattern, you can roll out your own iterators for your containers
that are compliant with the Standard Library's iterator concepts. A number of
Standard Library algorithms may be used on your custom container via such an
iterator interface. The concise implementation of the iterator (lines 27-51) is made
possible by the abstractions provided by the Boost Iterator framework.

Effective Data Structures beyond STL

[224]

Self-test questions
For multiple choice questions, choose all the options that apply:

1. Which of the following are true for flat associative containers compared to
ordered/unordered associative containers?
a. Require less memory
b. Insertion is faster
c. Traversal is slower
d. Lookups are faster

2. The std::forward_list does not provide a size() member function
because:
a. Linear time size members cannot be supported for singly-linked lists
b. Both splice and size members cannot be constant time
c. It would be thread-unsafe
d. All of the above

3. Where is the internal memory of a static_vector allocated:
a. Stack
b. Depends on where the static vector is created
c. Free store
d. Depends on the allocator used

4. In order to store objects of type X in an unordered container, which of the
following must be defined/available for objects of type X?
a. Ordering relation
b. Hash function
c. Equality comparison
d. Copy constructor

5. Which data structure allows random access to its elements and supports
iterators that are not invalidated upon insertion and erase of other elements?

a. static_vector
b. unordered_map
c. stable_vector
d. circular_buffer

Chapter 5

[225]

Summary
This chapter laid out a wide array of Boost libraries that provide different kinds
of containers or make it easier to work with them. We looked at several useful
nonstandard containers that extend the Standard Library containers, looked at
containers designed to store dynamically-allocated object pointers, saw some
expressive ways of assigning elements to containers, learned about hash-based
unordered containers, and learned different patterns of iterating over collections
and enabling iteration for custom collections.

In the next chapter, we will continue our study of container libraries from Boost
and focus on specialized containers that support efficient lookup of objects based
on multiple criteria.

References
Avoid null-pointers in containers (if possible): http://www.boost.org/doc/
libs/1_57_0/libs/ptr_container/doc/guidelines.html#avoid-null-
pointers-in-containers-if-possible

http://www.boost.org/doc/libs/1_57_0/libs/ptr_container/doc/guidelines.html#avoid-null-pointers-in-containers-if-possible
http://www.boost.org/doc/libs/1_57_0/libs/ptr_container/doc/guidelines.html#avoid-null-pointers-in-containers-if-possible
http://www.boost.org/doc/libs/1_57_0/libs/ptr_container/doc/guidelines.html#avoid-null-pointers-in-containers-if-possible

[227]

Bimap and Multi-index
Containers

The Standard Library has ordered and unordered associative containers for storing
objects and looking them up efficiently using some key. The key could be a text
type, numeric type, or first-class objects. For ordered containers such as std::set
and std::map, the keys must have a well-defined ordering relation that allows any
set of keys to be sorted. For unordered containers, it must be possible to compute
an integer hash value for each key, and additionally, determine whether any two
keys are equivalent for some definition of equivalence. The key represents an index
or criterion for lookup, and all the Standard Library associative containers support
lookup using only a single criterion. In other words, you cannot efficiently look up
objects using multiple, independent criteria.

Let us suppose you have a type called PersonEntry to describe a person. The
PersonEntry type has attributes like name, age, phone number, and so on. You
would end up storing several objects of type PersonEntry in containers and at
different times, you may need to look up PersonEntry objects using different
attributes like name, age, phone number, and so on. While the Standard Library
containers do an admirable job for a lot of common tasks involving collections, they
cut a sorry figure when you want a data structure that stores data and searches
them efficiently based on multiple criteria. Boost provides a small number of generic
containers geared for this need, two of which we study in this chapter. The chapter
is divided into the following sections:

• Containers for multi-criteria lookups
• Boost Multi-index containers
• Boost Bimap

Bimap and Multi-index Containers

[228]

Containers for multi-criteria lookups
Consider a collection of objects of type PersonEntry, as defined in the
following code:

 1 struct PersonEntry
 2 {
 3 std::string name;
 4 std::string phoneNumber;
 5 std::string city;
 6 };

An object of this type represents an entry in a telephone directory perhaps.
How would you design a data structure that allows you to look up a person by
name? We can use a std::set of PersonEntry objects for it, with an appropriate
ordering relation defined for PersonEntry. Since we want to search by name, we
should define the ordering relationship by name:

 1 bool operator<(const PersonEntry& left,
 2 const PersonEntry& right) {
 3 return left.name< right.name;
 4 }

Now std::set stores only unique elements and any two PersonEntry objects with
the same name would be considered duplicates. Since namesakes are common in real
life, we should choose a container that allows duplicates, that is, std::multiset. We
can then insert elements and look them up by name using the following code:

Listing 6.1: Lookups using multimaps

 1 #include <set>
 2 #include <iostream>
 3 #include <string>
 4
 5 struct PersonEntry {
 6 std::string name;
 7 std::string phoneNumber;
 8 std::string city;
 9 };
10
11 int main() {

Chapter 6

[229]

12 std::multiset<PersonEntry> directory;
13 PersonEntry p1{"Arindam Mukherjee", "550 888 9999", "Pune"};
14 PersonEntry p2{"Arindam Mukherjee", "990 770 2458",
15 "Calcutta"};
16 directory.insert(p1);
17 directory.insert(p2);
18 auto it1 = directory.lower_bound(
19 PersonEntry{ "Arindam Mukherjee", "", "" });
20 auto it2 = directory.upper_bound(
21 PersonEntry{ "Arindam Mukherjee", "", "" });
22
23 while (it1 != it2) {
24 std::cout << "Found: [" <<it1->name << ", "
25 <<it1->phoneNumber << ", " <<it1->city << "]\n";
26 ++it1;
27 }
28 }

We create two PersonEntry objects of two people with the same name (lines 13-15)
and insert them into a multiset (lines 16-17). The objects are initialized using C++11's
nifty uniform initializer syntax. We then look up the name "Arindam Mukherjee".
The correct way to do this in a multiset is to determine the range of matching
elements. The lower_bound member function returns the iterator to the first matching
element (lines 18-19). The upper_bound member function returns the iterator to the
first element to follow the last matching element (lines 20-21). If there are no matching
elements, both return the iterator to the first element that would follow a matching
element if there was one. We then iterate over the range defined by [low, high) and
print all matching elements. If you noticed, we constructed temporary PersonEntry
objects to perform the lookups. Now, it is perfectly reasonable to want to do a reverse
lookup, given a phone number, and find out who it belongs to. How can we do this
with the preceding arrangement? We could always perform a linear search through
the container, or we could use a separate container of references to the PersonEntry
objects in a dictionary that stores objects ordered by phone number; neither method is
particularly elegant or efficient. This is where the Boost Multi-index library steps in.

Bimap and Multi-index Containers

[230]

Boost Multi-index containers
The Boost Multi-index library actually provides a single generic container called
multi_index_container to store your objects and options to specify one or more
indexes, using which you may look up the objects. Each index will use a different
criterion on potentially different fields of the object. The indexes are defined and
specified as template parameters to the container and this does make the container
declaration a little daunting. But, this ultimately makes the container implementation
tighter with a lot of compile-time optimizations. Indeed, the hardest part of using
these containers is really getting their declaration right; so let us deconstruct a
declaration of such a container of PersonEntry objects:

Listing 6.2: Defining multi-index containers

 1 #include <boost/multi_index_container.hpp>
 2 #include <boost/multi_index/indexed_by.hpp>
 3 #include <boost/multi_index/ordered_index.hpp>
 4 #include <boost/multi_index/identity.hpp>
 5
 6 using namespace boost::multi_index;
 7
 8 typedef ordered_non_unique<identity<PersonEntry>> by_person;
 9 typedef multi_index_container<PersonEntry,
10 indexed_by<by_person>> directory_t;

In the preceding snippet, we create a typedef for a multi_index_container of
the PersonEntry objects (lines 9-10). We use a single index called person_index
that we defined earlier (line 8). The person_index is the type of index that
will be used for looking up objects in the container. It is defined as ordered_
non_unique<identity<PersonEntry>>. This means that the index keeps
the PersonEntry objects ordered by their defined ordering relationship and
allows for duplicates (non-unique). This index provides the same semantics as
std::multiset<PersonEntry>. Now, if we want to look up PersonEntry objects
by telephone number, we would need to define additional indexes:

Listing 6.3: Defining multi-index containers

 1 #include <boost/multi_index_container.hpp>
 2 #include <boost/multi_index/indexed_by.hpp>
 3 #include <boost/multi_index/ordered_index.hpp>
 4 #include <boost/multi_index/identity.hpp>
 5 #include <boost/multi_index/member.hpp>

Chapter 6

[231]

 6 #include "PersonEntry.h" // contains PersonEntry definition
 7 using namespace boost::multi_index;
 8
 9 typedef ordered_non_unique<member<PersonEntry, std::string,
10 &PersonEntry::name>> by_name;
11 typedef ordered_unique<member<PersonEntry, std::string,
12 &PersonEntry::phoneNumber>>by_phone;
13
14 typedef multi_index_container<PersonEntry,
15 indexed_by<by_name,
16 by_phone>> directory_t;

Here we define two index types: an index type by_name for looking up objects by the
name field and a second index type phone_index for looking up by phone numbers
(lines 9-12). We use the member template to indicate that we want an index based on
a data member of PersonEntry called name or phoneNumber of type std::string.

We pass a specialization of the indexed_by template to the multi_index_container
template as an argument. All the indexes that we want to enable are listed as
arguments of this specialization (lines 15-16). Let us now see these types in action.
We assume that all the header files from the listing 6.3 are included and all the types
defined in listing 6.3 are available in the following listing:

Listing 6.4: Using Boost Multi-index containers

 1 int main()
 2 {
 3 directory_t phonedir;
 4 PersonEntry p1{"Arindam Mukherjee", "550 888 9999", "Pune"};
 5 PersonEntry p2{"Arindam Mukherjee", "990 770 2458",
 6 "Calcutta"};
 7 PersonEntry p3{"Ace Ventura", "457 330 1288", "Tampa"};
 8
 9 phonedir.insert(p1);
10 phonedir.insert(p2);
11 phonedir.insert(p3);
12
13 auto iter = phonedir.find("Ace Ventura");
14 assert(iter != phonedir.end() && iter->city == "Tampa");
15
16 auto& ph_indx = phonedir.get<1>();

Bimap and Multi-index Containers

[232]

17 auto iter2 = ph_indx.find("990 770 2458");
18 assert(iter2 != ph_indx.end());
19 assert(iter2->city == "Calcutta");
20
21 for (auto& elem: ph_indx) {
22 std::cout << elem.name <<" lives in " << elem.city
23 << " and can be reached at "<< elem.phoneNumber
24 << '\n';
25 }
26 }

In this example, we create a multi-index container of PersonEntry objects
indexed by name and phoneNumber fields, as defined in listing 6.3. We insert three
PersonEntry objects (lines 8-10). We then perform a lookup by name on the
container (lines 12-13). The container's behavior defaults to that of the first index,
which is by_name (listing 6.3, lines 9-10). Thus, the call to the find method uses the
first index (by_name) for the lookup. To look up by phone numbers, we need to get a
reference to the second index. To do this, we use the get member template of multi_
index_container, passing it 1, which is the zero-based position of the by_phone
index (line 15). We can then call methods on the returned index reference just like on
std::set (lines 16-18). We can even iterate through the index using a range-based
for-loop construct (line 21) or using actual iterators.

In the preceding example both indexes are ordered, which requires that whichever
element they are based on (name or phoneNumber fields) should define an ordering
relationship. In this case, both fields are of type std::string, so the ordering
relationship is well-defined. But if it is not available, we need to roll our own
definition of ordering as an overloaded operator<. Alternatively, we can define a
functor to perform the ordering comparisons between two elements of the type in
question and pass its type as a trailing argument to the member template. The online
documentation for Boost Multi-index has more details.

If specifying numeric positions for index types seems less than ideal, you can use
tags instead. This changes the declaration of the by_phone index a wee bit but makes
for more readable code where it matters. Here is how to do it for the phone_index:

 1 struct phone_tag {};
 2 typedef ordered_unique< <tag<phone_tag>, member<PersonEntry,
 3 std::string, &PersonEntry::phoneNumber>> by_phone;
 4
 5 auto& ph_indx = phonedir.get<phone_tag>();

Chapter 6

[233]

In the preceding snippet, we define an empty struct called phone_tag just to act
as a tag for a particular index (line 1). We then define the index type by_phone,
as specialization of the ordered_unique template. The first parameter of the
ordered_unique template specifies the tag to use for retrieving this index (phone_
tag). The second template parameter to ordered_unique is member<PersonEntry,
std::string, &PersonEntry::phoneNumber>; it specifies that the phoneNumber
member of each PersonEntry object is to be used as the key for this index, and that
it is of type std::string (lines 2-3). Finally, we access the index by calling the get
member template of phonedir, but pass it the tag phone_tag rather than a numeric
index (line 5).

Index types
The ordered_unique and ordered_non_unique indexes correspond to the semantics
of std::set and std::multiset respectively. Using these indexes, you not only
get logarithmic lookup and insertions, but can also perform an ordered traversal of
the container's elements. If you do not care about ordered traversal, you can also use
hashed_unique and hashed_non_unique indexes, which provide excellent insertion
and lookup performance (constant expected time). Naturally, the hashed indexes
do not require any ordering relationship to be defined on the elements but require a
way to generate their hash values. This can be enabled using the techniques shown
for unordered containers in listing 5.11.

Sometimes, it is important to get objects in the order of insertion and also perform
lookups based on different criteria. To get objects in the order in which they were
inserted, we need to use the sequenced index. Sequenced indexes do not take any
arguments other than an optional tag. We can add the sequenced<> index to the
directory_t type we defined in listing 6.3, as shown in the following code:

 1 #include <boost/multi_index/sequenced_index.hpp>
 2 typedef multi_index_container<PersonEntry,
 3 indexed_by<by_name,
 4 by_phone,
 5 sequenced<>>> directory_t;

We could have passed a tag as a template argument to sequenced if we wanted to.
If we also want a random access iterator to this sequence in insertion order, we may
use the random_access<> index instead:

 1 #include <boost/multi_index/random_access_index.hpp>
 2 typedef multi_index_container<PersonEntry,
 3 indexed_by<by_name,
 4 by_phone,
 5 random_access<>>> directory_t;

Bimap and Multi-index Containers

[234]

Now let us suppose that you look up a PersonEntry by name using the by_name
index and want to find out the position of the element in insertion order. Iterators are
associated with an index and the iterator we have is associated with the by_phone
index. Now you want an iterator to the same element on the random_access index
as well. You can then compute the difference between that iterator and the beginning
iterator of the random_access index to compute the ordinal position of the element.
The general way to do this is to use the project member template of the multi_
index_container, as shown in the following example:

Listing 6.5: Using iterator projections

 1 // the necessary includes for Boost Multi-index
 2
 3 typedef multi_index_container<PersonEntry,
 4 indexed_by<by_name,by_phone,
 5 random_access<>>> directory_t;
 6
 7 int main()
 8 {
 9 directory_t phonedir; // directory_t defined in listing 6.3
10
11 phonedir.insert(PersonEntry{"Dr. Dolittle", "639 420 7624",
12 "Atlanta"});
13 phonedir.insert(PersonEntry{"Arindam Mukherjee",
14 "990 770 2458", "Calcutta"});
15 phonedir.insert(PersonEntry{"Ace Ventura", "457 330 1288",
16 "Tampa"});
17 phonedir.insert(PersonEntry{"Arindam Mukherjee",
18 "550 888 9999", "Pune"});
19
20 auto& name_index = phonedir.get<0>();
21 auto it = name_index.find("Ace Ventura");
22 auto& random_index = phonedir.get<2>();
23 if (it != name_index.end()) {
24 auto rit = phonedir.project<2>(it);
25 std::cout << "Element found: " << it->name
26 << ", position = " <<rit - random_index.begin() << '\n';
27 }
28 }

Chapter 6

[235]

We look up an element by name using the find member, which returns an iterator it
to the element (line 21). We then get a reference to the random access index at index
2, using the get member template (line 22). Using the project member template of
phonedir, we get the iterator corresponding to it in the random_access index (line
24). The returned iterator rit being a random access iterator, we compute the zero-
based position of the element as the difference between rit and the begin iterator on
random_index. If we had used a sequenced<> index in place of random_access<>
(line 5), we would not be able to compute the position by computing the difference
of the two iterators (line 26). Instead, we would need to use the std::distance
Standard Library function to compute the offset between the beginning of the
sequenced container and the looked up iterator. This would be of linear time
complexity rather than constant.

Range lookups using lambda
Sometimes we want to find elements whose attributes fall in a certain range
of values. Instead of using the lower_bound and upper_bound members of the
multi_index_container and its indexes, we can perform range lookups using a
more expressive syntax that uses Boost Lambda. Lambda expressions are discussed
later in this book (see Chapter 7, Higher Order and Compile-time Programming), but you
really do not need to understand any of it to follow the example:

Listing 6.6: Expressive range lookup

 1 // include required Boost Multi-index headers
 2 #include <boost/lambda/lambda.hpp>
 3
 4 namespace bl = boost::lambda; // lambda placeholder
 5
 6 int main()
 7 {
 8 directory_t phonedir; // directory_t defined in listing 6.3
 9
10 phonedir.insert(PersonEntry{"Dr. Dolittle", "639 420 7624",
11 "Atlanta"});
12 phonedir.insert(PersonEntry{"Arindam Mukherjee",
13 "990 770 2458", "Calcutta"});
14 phonedir.insert(PersonEntry{"Ace Ventura", "457 330 1288",
15 "Tampa"});
16 phonedir.insert(PersonEntry{"Arindam Mukherjee",

Bimap and Multi-index Containers

[236]

17 "550 888 9999", "Pune"});
18
19 auto& name_index = phonedir.get<0>();
20 auto range = name_index.range("Ar" <= bl::_1, "D" > bl::_1);
21
22 for (auto start = range.first; start != range.second;
23 ++start) {
24 std::cout << start->name << ", " << start->phoneNumber
25 << ", " << start->city << "\n";
26 }
27 }

Using the multi_index_container type called directory_t defined in listing 6.3,
which uses the indexes by_name and by_phone, we define a multi-index container
of PersonEntry objects called phonedir (line 8) and insert four entries into it
(lines 10-17). We then look for all entries with names lexically greater or equal to
"Ar" and lexically less than "D". To do this, we first get the appropriate index, the
by_name index, which is the zeroth index or default index. We then call the range
member function on this index, passing it the two criteria for determining the ends
of the range using a lambda placeholder _1 (boost::lambda::_1). Semantically,
std::string("Ar") <= _1 says we are looking for strings, which are lexically not
smaller than "Ar", and std::string("D") > _1 says we are looking for strings that
are lexically smaller than "D". These two criteria together determine which elements
fall in the range and which ones fall outside. Turns out, my two namesakes are in the
range while their more famous friends are out. This program prints:

Arindam Mukherjee, 550 888 9999, Pune
Arindam Mukherjee, 990 770 2458, Calcutta

Insertions and updates
You can add new elements into the multi_index_container and erase them
using the container interface or any of its indexes. How you add and erase elements
via the index interfaces depends on the type of the index. How you add and erase
them via the container's public interface is defined by the type of the first index of the
container.

Chapter 6

[237]

We already used the insert member function in previous examples to add a single
element to multi_index_containers. We used the overload of insert that takes
a single object and adds it to the container at the appropriate location. We may also
use this method on an individual index of type ordered_unique, ordered_non_
unique, hashed_unique, or hashed_non_unique. But on the random_access or
sequenced indexes, and on containers that use such an index as their first index, a
single argument overload of insert is not available. You may use push_back or
push_front to add elements to the ends. You may also use an overload of insert
that takes the iterator to the position to insert at as an additional argument. Likewise
for erase, with sequenced<> and random_access<> indexes, you can only use
overloads that specify the element to erase with an iterator; while with ordered and
hashed indexes, you can actually use an overload that takes a value to look up and
erases all matching elements.

You can also update values in a multi-index container using either the replace or
the modify method. The following snippet illustrates these concepts:

Listing 6.7: Inserts, erases and updates on multi-index containers

 1 // include required Boost Multi-Index headers
 2 #include <boost/lambda/lambda.hpp>
 3
 4 // by_name, by_phone defined Listing 6.3
 5 using namespace boost::multi_index;
 6
 7 typedef ordered_non_unique<member<PersonEntry, std::string,
 8 &PersonEntry::name>> by_name;
 9 typedef ordered_unique<member<PersonEntry, std::string,
10 &PersonEntry::phoneNumber>> by_phone;
11 typedef multi_index_container<PersonEntry,
12 indexed_by<random_access<>,
13 by_name, by_phone>> phdir_t;
14
15 int main()
16 {
17 phdir_t phonedir;
18
19 phonedir.push_back(PersonEntry{"Dr. Dolittle",
20 "639 420 7624", "Atlanta"}); // insert won't work
21 auto& phindx = phonedir.get<2>();

Bimap and Multi-index Containers

[238]

22 phindx.insert(PersonEntry{"Arindam Mukherjee",
23 "550 888 9999", "Pune"});
24 auto& nameindx = phonedir.get<1>();
25 nameindx.insert(PersonEntry{"Arindam Mukherjee",
26 "990 770 2458", "Calcutta"});
27 phonedir.push_front(PersonEntry{"Ace Ventura",
28 "457 330 1288", "Tampa"});
29
30 nameindx.erase("Arindam Mukherjee"); // erases 2 matching
31 phonedir.erase(phonedir.begin()); // erases Ace Ventura
32 assert(phonedir.size() == 1);
33 std::cout <<"The lonesome "<< phonedir.begin()->name << '\n';
34
35 phonedir.push_back(PersonEntry{"Tarzan", "639 420 7624",
36 "Okavango"});
37 assert(phonedir.size() == 1);
38 std::cout <<"Still alone "<< phonedir.begin()->name << '\n';
39
40 phonedir.push_back(PersonEntry{"Tarzan", "9441500252",
41 "Okavango"});
42 assert(phonedir.size() == 2);
43
44 PersonEntry tarzan = *(phonedir.begin() + 1);
45 tarzan.phoneNumber = "639 420 7624";
46 assert(!phonedir.replace(phonedir.begin() + 1, tarzan));
47 }

In this example, we create a multi-index container of PersonEntry objects with three
indexes: the default random_access index, an ordered non-unique index on the name
field, and an ordered unique index on the phoneNumber field. We first use the public
interface of the container to add a PersonEntry record using the push_back method
(lines 19-20). We then access a reference to the phone index (line 21) and name index
(line 24). We add a second record using the single argument insert overload on the
phone index (line 22), and a third record using the same overload on the name index
(lines 25-26). Next, we use the push_front method on the container to add a fourth
record (lines 27-28), which puts this record at the front or beginning of the random_
access index.

Chapter 6

[239]

We then call the single argument erase overload on the name index passing it the
string to match against the name field (line 30). This erases the two matching records
(inserted on lines 22-23 and 25-26). We then erase the record at the beginning of the
container (line 31), which deletes the "Ace Ventura" record. The sole remaining
record (line 32) is printed to the console (line 33) and this should print:

The lonesome Dr. Dolittle

Next we use push_back to add another record for a person called Tarzan
(line 35-36). Interestingly, Mr. Tarzan has the same phone number as Dr. Dolittle.
But because there is a unique index on the phoneNumber field, this insertion does not
succeed and the container still retains the record of Dr. Dolittle (lines 37, 38). We fix
this by adding a new record for Tarzan with a unique phone number (lines 40-41),
which succeeds (line 42).

Next, we access the record for Tarzan, which would be the second record in insertion
order, and create a copy of that object (line 44). We then change the phoneNumber
field of the tarzan object to the same number as Dr. Dolittle's. We try to replace
the object for Tarzan in the container with this modified object using the replace
member function, but because the replacement violates the uniqueness constraint
on the phone number, the replace method fails to update the record returning a
Boolean false. We can also use the more efficient modify method instead of replace.
We will not cover modify in this book; the online documentation is a good place to
look for reference.

Each insertion updates all indexes and like the associative containers and std::list
from the Standard Library, they do not invalidate any existing iterators, not even
those generated from other indexes. Erase operations invalidate only iterators to the
erased elements.

Boost Bimap
Storing objects and looking them up using a key is a very common programming
chore, and every language has some measure of support for it through native
constructs or libraries in the form of dictionaries or lookup tables. In C++, the
std::map and std::multimap containers (and their unordered variants) provide
the lookup table abstraction. Traditionally, such libraries support lookups in one
direction. Given a key you can look up a value and this is adequate for many cases.
But sometimes, we also need a way to look up a key given a value, and the standard
library associative containers are of little help in such cases; what we need there is
the Boost Bimap library.

Bimap and Multi-index Containers

[240]

The Boost Bimap library provides bimaps or bidirectional map data structures that
allow lookups using keys as well as values. Let us start with an example to get a feel
of how it works. We will use a Boost bimap to store names of countries and
territories, with their capitals:

Listing 6.8: Using a bimap

 1 #include <boost/bimap.hpp>
 2 #include <boost/assign.hpp>
 3 #include <string>
 4 #include <iostream>
 5 #include <cassert>
 6 using namespace boost::assign;
 7
 8 typedef boost::bimap<std::string, std::string> string_bimap_t;
 9
10 int main()
11 {
12 string_bimap_t countryCapitals;
13
14 insert(countryCapitals)("Slovenia", "Ljubljana")
15 ("New Zealand", "Wellington")
16 ("Tajikistan", "Bishkek")
17 ("Chile", "Santiago")
18 ("Jamaica", "Kingston");
19
20 string_bimap_t::left_map& countries = countryCapitals.left;
21 string_bimap_t::left_map::const_iterator it
22 = countries.find("Slovenia");
23 if (it != countries.end()) {
24 std::cout << "Capital of "<< it->first << " is "
25 << it->second << "\n";
26 }
27
28 string_bimap_t::right_map& cities = countryCapitals.right;
29 string_bimap_t::right_map::const_iterator it2
30 = cities.find("Santiago");
31 if (it2 != cities.end()) {
32 std::cout << it2->first <<" is the capital of "
33 << it2->second << "\n";
34 }

Chapter 6

[241]

35
36 size_t size = countryCapitals.size();
37 countryCapitals.insert(
38 string_bimap_t::value_type("Chile", "Valparaiso"));
39 assert(countries.at("Chile") == "Santiago");
40 assert(size == countryCapitals.size());
41
42 countryCapitals.insert(
43 string_bimap_t::value_type("Norfolk Island", "Kingston"));
44 assert(cities.at("Kingston") == "Jamaica");
45 assert(size == countryCapitals.size());
46 }

The type bimap<string, string> that will hold names of the countries and map
them to the capitals is named string_bimap_t (line 8). We define a bimap of this
type called countryCapitals (line 12), and add the names of five countries and their
capitals using the insert adaptor from Boost Assign (lines 14-18).

A bimap defines a relation or mapping between values in two containers: a left
container consisting of country names and a right container consisting of names of
capital cities. We can get a left view of the bimap that maps the keys (country names)
to values (capitals) and a right view that maps the values (capitals) to the keys
(country names). These represent two alternative views of the bimap. We can access
these two alternate views using the members left and right of the bimap (lines 20,
28). These two views have a very similar public interface as std::map or, to borrow
a succinct description from the online documentation, they are signature-compatible
with std::map.

So far, there is a one-to-one mapping between the set of countries and the set
of capitals. We now try to insert an entry for Chile's second capital, Valparaiso
(lines 37-38). It fails (lines 39-40) because, just like std::map and unlike
std::multimap, the keys must be unique.

Now consider what happens if we try to insert a new entry into the bimap
(lines 42-43) for a new country Norfolk Island (a territory under Australia), whose
capital Kingston shares its name with that of another country on the map (Jamaica).
Unlike what would have happened in a std::map, the insertion fails and there is no
change in the number of entries in the bimap (lines 44-45). In this case, the values too
must be unique, which is not a constraint for std::map. But what if we actually want
to represent a one-to-many or many-to-many kind of a relation using Boost Bimap?
We will see the options we have in the next section.

Bimap and Multi-index Containers

[242]

Collection types
The default behavior of Boost Bimap is one-to-one mapping, that is, unique keys and
unique values. But, we can support one-to-many and many-to-many mappings by
varying a couple of template parameters. To illustrate such use with an example, we
use a map of given names to nicknames (listing 6.9). A given name can sometimes
be associated with multiple nicknames and a nickname too can occasionally apply
to multiple given names. So we would like to model a many-to-many relationship.
To define a bimap that allows many-to-many relations, we have to choose a
collection type for the left and right containers different from the default (which has
set semantics). Since both names and nicknames can be non-unique, both the left
and right containers should have the semantics of multisets instead. Boost Bimap
provides collection type specifiers (refer to the following table), which can be used
as template arguments to the boost::bimap template. Depending on the collection
type, the semantics of the left or right view of the bimap also change. Here is a
short table summarizing the available collection types, their semantics, and the
corresponding views (based on the online documentation at www.boost.org):

Collection type Semantics View type
set_of Ordered, unique. map
multiset_of Ordered, non-unique. multimap
unordered_set_of Hashed, unique. unordered_map
unordered_multiset_
of

Hashed, non-unique. unordered_multimap

unconstrained_set_of Unconstrained. No view available
list_of Non-ordered, non-unique. Linked list of key-value pairs
vector_of Non-ordered, non-unique,

random access sequence.
Vector of key-value pairs

Note that the collection types are defined in the boost::bimaps namespace and each
collection type comes in its own header, which must be included separately. The
following example shows you how to use collection types in conjunction with the
boost::bimap template to define many-to-many relations:

Listing 6.9: Bimaps for many-to-many relations

 1 #include <boost/bimap.hpp>
 2 #include <boost/bimap/multiset_of.hpp>
 3 #include <boost/assign.hpp>
 4 #include <string>
 5 #include <iostream>

www.boost.org

Chapter 6

[243]

 6 #include <cassert>
 7 using namespace boost::assign;
 8 namespace boostbi = boost::bimaps;
 9
10 typedef boost::bimap<boostbi::multiset_of<std::string>,
11 boostbi::multiset_of<std::string>> string_bimap_t;
12
13 int main()
14 {
15 string_bimap_t namesShortNames;
16
17 insert(namesShortNames)("Robert", "Bob")
18 ("Robert", "Rob")
19 ("William", "Will")
20 ("Christopher", "Chris")
21 ("Theodore", "Ted")
22 ("Edward", "Ted");
23
24 size_t size = namesShortNames.size();
25 namesShortNames.insert(
26 string_bimap_t::value_type("William", "Bill"));
27 assert(size + 1 == namesShortNames.size());
28
29 namesShortNames.insert(
30 string_bimap_t::value_type("Christian", "Chris"));
31 assert(size + 2 == namesShortNames.size());
32
33 string_bimap_t::left_map& names = namesShortNames.left;
34 string_bimap_t::left_map::const_iterator it1
35 = names.lower_bound("William");
36 string_bimap_t::left_map::const_iterator it2
37 = names.upper_bound("William");
38
39 while (it1 != it2) {
40 std::cout << it1->second <<" is a nickname for "
41 << it1->first << '\n';
42 ++it1;
43 }
44
45 string_bimap_t::right_map& shortNames =

Bimap and Multi-index Containers

[244]

46 namesShortNames.right;
46
47 auto iter_pair = shortNames.equal_range("Chris");
48 for (auto it3 = iter_pair.first; it3 != iter_pair.second;
49 ++it3) {
50 std::cout << it3->first <<" is a nickname for "
51 << it3->second << '\n';
52 }
53 }

The specific bimap container type we need to use is bimap<multiset_of<string>,
multiset_of<string>> (lines 10-11). Using bimap<string, string> would have
given us a one-to-one mapping. If we wanted a one-to-many relation, we could have
used bimap<set_of<string>, multiset_of<string>>, or simply bimap<string,
multiset_of<string>> since set_of is the default collection type used when
we do not specify one. Note that in the code, we use boostbi as an alias for the
boost::bimaps namespace (line 8).

We define the namesShortNames bimap to hold the name and nickname entries
(line 15).We add some entries, including a duplicate name Robert and a duplicate
nickname Ted (lines 17-22). Using the insert member function of bimap, add one
more duplicate name William (lines 25-26) and one more duplicate nickname Chris
(lines 29-30); both insertions succeed.

We access the left view with names as keys and the right view with nicknames as
keys, using the left and right members of bimap (lines 33, 45). Both the left and
right views are signature compatible with std::multimap, and we perform lookups
on them just as we would on std::multimaps. Thus, given a name, to find the first
matching entry for it, we use the lower_bound member function (line 35). To find the
first entry lexically greater than the name, we use the upper_bound member function
(line 37).We can iterate over the range of matching entries using the iterators returned
by these two functions (line 39). In general, lower_bound returns the first element
with name lexically equal or greater than the passed key; so if there are no matching
elements, lower_bound and upper_bound return the same iterator. We can also use the
equal_range function, which returns both the lower bound and upper bound iterators
as an iterator pair (line 47).

If we did not care about ordered traversal of the maps, we could have used
unordered_set_of or unordered_multiset_of collection types. Like with all
unordered containers, the notion of equality of elements and a mechanism to
compute the hash values of the elements must be available.

Chapter 6

[245]

A container such as std::map<T, U>, has the same semantics as bimap<T,
unconstrained_set_of<U>>. The unconstrained_set_of collection type does not
provide a way to iterate through elements in it or look them up, and does not require
the elements to be unique. While bimap<T, multiset_of<U>> allows non-unique
values, it also supports looking up by values, something that std::map does not.

The list_of and vector_of collection types, like the unconstrained_set_of
collection type, do not enforce either uniqueness or any structure that allows look up.
However, they can be iterated through element by element, unlike unconstrained_
set_of and thus, you can use a Standard Library algorithm like std::find to
perform linear searches. vector_of provides random access. One can sort the
entities it contains using its sort member function following which one could
perform binary searches using std::binary_search.

More ways to use bimaps
There are several ways to make the use of bimaps more expressive. In this section,
we explore a few of these.

Tagged access
Instead of using left and right to access each of the two opposing views in the
container, you may like to use a more descriptive name to access them. You can do
this using tags or empty structures that are used as markers. This is very similar
to how indexes in Boost's multi-index containers are accessed by a tag instead of a
numeric position. The following code snippet illustrates this technique:

 1 struct name {};
 2 struct nickname {};
 3
 4 typedef boost::bimap<
 5 boostbi::multiset_of<
 6 boostbi::tagged<std::string, name>>,
 7 boostbi::multiset_of<
 8 boostbi::tagged<std::string, nickname>>>
 9 string_bimap_t;
10
11 string_bimap_t namesShortNames;
12
13 auto& names = namesShortNames.by<name>();
14 auto& nicknames = namesShortNames.by<nickname>();

Bimap and Multi-index Containers

[246]

We define an empty struct for a tag for each view we want to access by name
(lines 1-2). We then define the bimap container type, tagging the individual
collections with our tags using the tagged template (lines 6, 8). We finally use the by
member template to access the individual views. While the syntax for using tags is
not the most straightforward, the expressiveness of accessing views using by<tag>
can certainly make your code clearer and less error-prone.

Searches on views can be written more succinctly using the range member
function and Boost Lambda placeholders, just like we did with Boost Multi-index.
Here is an example:

 1 #include <boost/bimap/support/lambda.hpp>
 2
 3 …
 4 string_bimap_t namesShortNames;
 5 …
 6 using boost::bimaps::_key;
 7 const auto& range = namesShortNames.right.range("Ch" <= _key,
 8 _key < "W");
 9
10 for (auto i1 = range.first; i1 != range.second; ++i1) {
11 std::cout << i1->first << ":" << i1->second << '\n';
12 }

The call to the range member function of the right view returns a Boost.Range
object called range, which is really a pair of iterators (lines 7-8). We extract the two
individual iterators (line 10) and then run through the returned range, printing
the nicknames and the full names (lines 10-11).With range-aware algorithms,
we can simply pass the range object without bothering to extract iterators
from them. If you want to constrain only one end of the range, you can use
boost::bimaps::unbounded for the other end.

Projections
From an iterator on one view, you can get to an iterator on another view using the
project member template or the project_left/project_right member functions.
Let us suppose that given a name, you want to find out all other names that share the
same nickname. Here is one way to do this:

 1 auto i1 = names.find("Edward");
 2 auto i2 = namesShortNames.project<nickname>(i1);
 3
 4 const auto& range = shortNames.range(_key == i2->first,

Chapter 6

[247]

 5 _key == i2->first);
 6
 7 for (auto i3 = range.first; i3 != range.second; ++i3) {
 8 std::cout << i3->first << ":" << i3->second << '\n';
 9 }

We first obtain an iterator to a matching name by using the find member function
on the names view (line 1).We then project this iterator to the nicknames view using
the project member template. If we do not use tagged keys and values, we should
use project_left and project_right member functions instead, depending on
which view we want to project to. This returns an iterator to the same element on the
nicknames view (line 2). Next, using the range member function, we find all entries
whose nickname equals i2->first (lines 4-5). We then print the pairs of nicknames
by looping through the iterator range returned by range (lines 7-9).

There are several other useful features of Boost Bimap, including a view of the
container as a collection of relations between pairs of elements and the ability to
modify keys and values in a bimap, in-place. The online Bimap documentation on
www.boost.org is comprehensive and you should refer to it for more details on
these features.

Self-test questions
For multiple choice questions, choose all options that apply:

1. The ordered_non_unique index on Boost multi_index_container has the
semantics of:
a. std::set
b. std::multiset
c. std::unordered_set
d. std::unordered_multiset

2. Deleting an element in a multi_index_container will only invalidate the
iterator to the deleted element, irrespective of the index.
a. True
b. False
c. Depends on the type of index

www.boost.org

Bimap and Multi-index Containers

[248]

3. Which of the following bimap types has semantics equivalent to a
multimap<T, U>?

a. bimap<T, multiset_of<U>>
b. bimap<multiset_of<T>, U>
c. bimap<multiset_of<T>, unconstrained_set_of<U>>
d. bimap<multiset_of<T>, multiset_if<U>>

Summary
In this chapter, we focused on containers specialized for looking up objects based on
multiple criteria. Specifically, we looked at Boost Bimap which is a bidirectional map
object, whose keys and values can both be looked up efficiently. We also looked at
Boost Multi-index containers, which are generic associative containers with multiple
associated indexes, each assisting the efficient look up of an object on one criterion.

In the next chapter, we change gears to look at functional composition and
metaprogramming techniques that enable us to write powerful and expressive
applications with excellent runtime performance.

References
Multi-index modify method: http://www.boost.org/doc/libs/release/libs/
multi_index/doc/reference/ord_indices.html#modif

http://www.boost.org/doc/libs/release/libs/multi_index/doc/reference/ord_indices.html#modif
http://www.boost.org/doc/libs/release/libs/multi_index/doc/reference/ord_indices.html#modif

[249]

Higher Order and
Compile-time Programming

A number of Standard Library algorithms take callable entities called function objects
(function pointers, functors, and so on) as parameters. They call these function objects
on individual elements of containers to compute some value or perform some action.
Thus, a part of the runtime logic of the algorithm is encapsulated in a function or
functor and supplied as an argument to the algorithm. A function may also return
function objects instead of data values. The returned function object can be applied on
a set of parameters and may in turn return either a value or another function object.
This gives rise to higher order transforms. This style of programming involving
passing and returning functions is called higher order programming.

C++ templates enable us to write type generic code. Using templates, it is possible
to execute branching and recursive logic at compile time and conditionally include,
exclude, and generate code from simpler building blocks. This style of programming
is called compile-time programming or template metaprogramming.

In the first part of this chapter, we will learn the applications of higher order
programming in C++ using the Boost Phoenix Library and C++11 facilities like
bind and lambda. In the next part of this chapter, we will learn C++ template
metaprogramming techniques that execute at compile time to help generate more
efficient and expressive code. In the last part of this chapter we look at domain-
specific languages created within C++ by applying higher order programming
techniques in combination with metaprogramming. The topics of this chapter are
divided into the following sections:

• Higher order programming using Boost
• Compile-time programming using Boost
• Domain Specific Embedded Languages

Higher Order and Compile-time Programming

[250]

In this chapter, we will explore an alternate paradigm of programming, which is
different from object-oriented and procedural programming and draws heavily from
functional programming. We will also develop generic programming techniques that
ultimately help us implement more efficient template libraries.

Higher order programming with Boost
Consider a type Book with three string fields: the ISBN, title, and author (for our
purposes, assume that there is only one author). Here is how we can choose to
define this type:

 1 struct Book
 2 {
 3 Book(const std::string& id,
 4 const std::string& name,
 5 const std::string& auth)
 6 : isbn(id), title(name), author(auth)
 7 {}
 8
 9 std::string isbn;
10 std::string title;
11 std::string author;
12 };
13
14 bool operator< (const Book& lhs, const Book& rhs)
12 { return lhs.isbn < rhs.isbn; }

It is a struct with three fields and a constructor that initializes these three fields.
The isbn field uniquely identifies the book and therefore is used to define an
ordering of Book objects, using the overloaded operator< (line 14).

Now imagine that we have a list of these Book objects in a std::vector, and we
want to sort these books. Thanks to the overloaded operator<, we can easily sort
them using the Standard Library sort algorithm:

 1 #include <vector>
 2 #include <string>
 3 #include <algorithm>
 4 #include <iostream>
 5
 6 // include the definition of struct Book
 7
 8 int main()
 9 {

Chapter 7

[251]

10 std::vector<Book> books;
11 books.emplace_back("908..511..123", "Little Prince",
12 "Antoine St. Exupery");
13 books.emplace_back("392..301..109", "Nineteen Eighty Four",
14 "George Orwell");
15 books.emplace_back("872..610..176", "To Kill a Mocking Bird",
16 "Harper Lee");
17 books.emplace_back("392..301..109", "Animal Farm",
18 "George Orwell");
19
20 std::sort(books.begin(), books.end());
21 }

In the preceding code, we put four Book objects in the vector books. We do this by
calling the emplace_back method (lines 11-18) rather than push_back. The emplace_
back method (introduced in C++11) takes the constructor arguments for the stored
type (Book) and constructs an object in the vector's layout rather than copying or
moving in a pre-constructed object. We then sort the vector using std::sort, which
ultimately uses the operator< for Book objects. Without this overloaded operator,
std::sort would have failed to compile.

This is all great, but what if you wanted to sort the books in descending order of the
ISBN? Or you could want to sort the books by their authors instead. Also, for two
books with the same author, you might want to sort them further by their title. We
will see a method to sort them this way in the next section.

Function objects
There is a three-argument overload of std::sort algorithm that takes a function object
for comparing two elements as the third argument. This function object should return
true if the first argument appears before the second argument in the final ordering and
false otherwise. So, even without an overloaded operator<, you can tell std::sort
how to compare two elements and sort the vector. Here is how we do the sorting using
an ordering function:

Listing 7.1: Passing functions to algorithms

 1 bool byDescendingISBN(const Book& lhs, const Book& rhs)
 2 { return lhs.isbn > rhs.isbn; }
 3
 4 ...
 5 std::vector<Book> books;
 6 ...
 7 std::sort(books.begin(), books.end(), byDescendingISBN);

Higher Order and Compile-time Programming

[252]

The function byDescendingISBN takes const references to two books and returns
true if the ISBN of the first book (lhs) is lexically greater than that of the second
(rhs) and false otherwise. The signature of the function compatible with the function
object that std::sort algorithm expects as its third argument. To sort the books
vector in descending order, we pass to std::sort, a pointer to this function (line 7).

Function pointers are by no means the only callable entities you can pass around.
A functor is a type that overloads the function call operator member (operator()).
By applying or calling an instance of a functor on a set of arguments, you invoke
the overloaded operator() member. In the following example, we define a functor
to order books by author names, and in case of a tie with author names, by titles:

Listing 7.2: Defining and passing functors to algorithms

 1 ...
 2 struct CompareBooks
 3 {
 4 bool operator()(const Book& b1, const Book& b2) const {
 5 return (b1.author < b2.author)
 6 || (b1.author == b2.author
 7 && b1.title < b2.title);
 8 }
 9 };
10
11 ...
12 std::vector<Book> books;
13 ...
14 std::sort(books.begin(), books.end(), CompareBooks());

We define a functor called CompareBooks with an overloaded operator() that takes
two Book objects to compare (line 4). It returns true if the name of the first book's
author is lexicographically smaller than the name of second book's author. In case
the authors of the two books are same, it returns true if the title of the first book is
lexicographically smaller than that of the second. To use this functor as the sorting
criterion, we pass a temporary instance of CompareBooks as the third argument of
the std::sort algorithm (line 14). Functors like CompareBooks, that map one or
more arguments to a Boolean truth value are called predicates.

Chapter 7

[253]

A note on terminology
We use the term function object to refer to all callable entities that can
be passed around and stored for later use by the application. These
include function pointers and functors as well as other kinds of callable
entities like unnamed functions or lambdas, which we will explore in
this chapter.
A functor is simply a class or struct that defines an overloaded function
call operator.
A function object that takes one or more arguments and maps them
to a Boolean truth value is usually called a predicate.
The arity of a function object is the number of arguments it takes. A
function with no arguments has 0-arity or is nullary, a function with
one argument has 1-arity or is unary, a function with two arguments
has 2-arity or is binary, and so on.
A pure function is a function whose return value depends solely on
the values of the arguments passed to it and which has no side effects.
Modifying states of objects not local to the function, performing I/O,
or otherwise modifying the execution environment—all qualify as
side effects.

Functors are especially useful when you want them to retain some state between
calls. For example, imagine you have an unsorted list of names, and you just want to
make a comma-separated list of all names, starting with a particular letter. Here is a
way to do this:

Listing 7.3: Functors with states

 1 #include <vector>
 2 #include <string>
 3 #include <iostream>
 4 #include <algorithm>
 5
 6 struct ConcatIfStartsWith {
 7 ConcatIfStartsWith(char c) : startCh(c) {}
 8
 9 void operator()(const std::string& name) {
10 if (name.size() > 0 && name.at(0) == startCh) {
11 csNames += name + ", ";
12 }

Higher Order and Compile-time Programming

[254]

13 }
14
15 std::string getConcat() const {
16 return csNames;
17 }
18
19 void reset() { csNames = ""; }
20
21 private:
22 char startCh;
23 std::string csNames;
24 };
25
26 int main() {
27 std::vector<std::string> names{"Meredith", "Guinnevere",
28 "Mabel", "Myrtle", "Germaine", "Gwynneth", "Mirabelle"};
29
30 const auto& fe = std::for_each(names.begin(), names.end(),
31 ConcatIfStartsWith('G'));
32 std::cout << fe.getConcat() << '\n';
33 }

We define a functor called ConcatIfStartsWith (line 6), which stores some
state, namely the starting character to match (startCh) and a string to contain
the comma-separated list of names (csNames). When the functor is invoked on a
name, it checks whether it starts with the specified character, and if so, concatenates
it to csNames (lines 10-11). We use the std::for_each algorithm to apply the
ConcatIfStartsWith functor to each name in a vector of names (lines 30-31),
looking for names starting with the letter G. The functor we pass is a temporary
one (line 31), but we need a reference to it in order to access the concatenated
string stored in it. The std::for_each algorithm actually returns a reference to
the passed functor, which we then use to get the concatenated string. Here is the
output, listing the names starting with G:

Guinnevere, Germaine, Gwynneth,

This illustrates an important point about functors; they are particularly useful
when you want to maintain state that persists between successive calls to the
function. They are also great if you need to use them at multiple places in your code.
By naming them intuitively, their purpose can be made evident at the point of use:

 const auto& fe = std::for_each(names.begin(), names.end(),
 ConcatIfStartsWith('G'));

Chapter 7

[255]

But sometimes, what a functor needs to do is trivial (for example, to check whether a
number is even or odd). Often, we don't need it to maintain any state between calls.
We may not even need to use it at multiple places. Sometimes, the functionality we
are looking for may already be there in some form, maybe as a member function
of the objects. In such cases, writing a new functor seems like overkill. C++11
introduced lambdas or unnamed functions to address precisely such cases.

Lambdas – unnamed function literals
The character string "hello" is a valid C++ expression. It has a well-defined type
(const char[6]), can be assigned to variables of type const char*, and passed to
functions that take arguments of type const char*. Likewise, there are numeric
literals like 3.1415 or 64000U, Boolean literals like true and false, and so on.
C++11 introduces lambda expressions for generating anonymous functions defined
at the site, where they are invoked. Often, simply called lambdas (from Alonzo
Church's λ-calculus), they consist of a function body not bound to a function name
and are used to generate a function definition at any point in the lexical scope of a
program, where you would expect to pass a function object. Let us first understand
how this is done with the help of an example.

We have a list of integers, and we want to find the first odd number in the list using
the std::find_if algorithm. The predicate passed to std::find_if is defined
using a lambda.

Listing 7.4: Using lambdas

 1 #include <vector>
 2 #include <algorithm>
 3 #include <cassert>
 4
 5 int main() {
 6 std::vector<int> vec{2, 4, 6, 8, 9, 1};
 7
 8 auto it = std::find_if(vec.begin(), vec.end(),
 9 [](const int& num) -> bool
10 { return num % 2 != 0; }
11);
12
13 assert(it != vec.end() && *it == 9);
14 }

Higher Order and Compile-time Programming

[256]

The lambda to compute whether a number is odd or even is a block of code passed as
the third argument to std::find_if (lines 9-10). Let us look at the lambda in isolation
to understand the syntax. First, consider what this function does; given an integer, it
returns true if it is odd and false otherwise. So, we have an unnamed function that
maps an int to a bool. The way to write this in lambda-land is as follows:

[](const int& num) -> bool

We introduce the unnamed function with an empty pair of square brackets, and we
describe the mapping by writing a parameter list like that of a conventional function,
followed by an arrow and the return type. Following this, we write the body of the
function just like you would for a normal function:

{ return num % 2 != 0; }

The pair of square brackets, often called lambda introducers, need not be empty, as
we will see shortly. There are several other variations possible with this syntax, but
you can define a lambda using just this bit of syntax. The return type specification for
lambdas is optional in simple cases, where the compiler can easily deduce the return
type from the function body. Thus, we could have rewritten the lambda from the
preceding example without the return type because the function body is really simple:

[](const int& num) { return num % 2 != 0; }

Lambda captures
The lambda we defined in the previous example was a pure function without any
state. In fact, how could a lambda conceivably store the state that persists between
calls? Actually, lambdas can access local variables from the surrounding scope
(in addition to global variables). To enable such an access, we can specify capture
clauses in the lambda introducer to list which variables from the surrounding scope
are accessible to the lambda and how. Consider the following example in which
we filter out names longer than a user-specified length from a vector of names and
return a vector containing only the shorter names:

Listing 7.5: Lambdas with captures

 1 #include <vector>
 2 #include <string>
 3 #include <algorithm>
 4 #include <iterator>
 5 typedef std::vector<std::string> NameVec;
 6
 7 NameVec getNamesShorterThan(const NameVec& names,

Chapter 7

[257]

 8 size_t maxSize) {
 9 NameVec shortNames;
10 std::copy_if(names.begin(), names.end(),
11 std::back_inserter(shortNames),
12 [maxSize](const std::string& name) {
13 return name.size() <= maxSize;
14 }
15);
16 return shortNames;
17 }

The getNamesShorterThan function takes two parameters: a vector called names and
a variable maxSize that caps the size of strings to be filtered. It copies names shorter
than maxSize from the names vector into a second vector called shortNames, using
the std::copy_if algorithm from the standard library. We use a lambda expression
(lines 12-14) to generate the predicate for std::copy_if. You can see that we name
the maxSize variable from the surrounding lexical scope inside the square brackets
(line 12), and access it inside the body of the lambda to compare the size of the
passed string (line 13). This enables read-only access to the maxSize variable inside
the lambda. If we wanted to potentially access any variable from the surrounding
scope instead of a specific one, we could instead write the lambda with an equals
sign in the square brackets; this would implicitly capture any variable used from the
surrounding scope:

[=](const std::string& name) {
 return name.size() <= maxSize;
}

You may want to modify a local copy of a variable from the surrounding scope,
without affecting its value in the surrounding scope. To enable your lambda to do
this, it must be declared as mutable:

[=](const std::string& name) mutable -> bool {
 maxSize *= 2;
 return name.size() <= maxSize;
}

The mutable keyword trails the parameter list but appears before the return type if
you specify one. This does not affect the value of maxSize in the surrounding scope.

You can also modify a variable from the surrounding scope inside a lambda. To do
this, you must capture the variable by reference, by prefixing an ampersand to its
name in the square brackets.

Higher Order and Compile-time Programming

[258]

Here is listing 6.3 rewritten using a lambda:

Listing 7.6: Reference captures in lambda

 1 #include <vector>
 2 #include <string>
 3 #include <algorithm>
 4 #include <iostream>
 5
 6 int main() {
 7 std::string concat;
 8 char startCh = 'M';
 9 std::vector<std::string> names{"Meredith", "Guinnevere", "Mabel"
10 , "Myrtle", "Germaine", "Gwynneth", "Mirabelle"};
11
12 std::for_each(names.begin(), names.end(),
13 [&concat, startCh](const std::string& name) {
14 if (name.size() > 0 && name[0] == startCh) {
15 concat += name + ", ";
16 }
17 });
18 std::cout << concat << '\n';
19 }

In the preceding example, we concatenate all names from the vector names that start
with a specific character. The starting character is picked up from the variable startCh.
The concatenated string is stored in the variable concat. We call std::for_each on
the elements of the vector and pass a lambda, which explicitly captures concat as
a reference (with a leading ampersand) and startCh as a read-only value from the
surrounding scope (line 13). Thus, it is able to append to concat (line 15). This code
prints the following output:

Meredith, Mabel, Myrtle, Mirabelle

In the latest revision of the C++ Standard, dubbed C++14, lambdas get a little niftier.
You can write a generic lambda whose parameter types are deduced based on the
context. For example, in C++14, you can write the call to std::for_each in the
previous example, as follows:

 std::for_each(names.begin(), names.end(),
 [&concat, startCh](const auto& name) {
 if (name.size() > 0 && name[0] == startCh) {
 concat += name + ", ";
 }
 });

Chapter 7

[259]

The type of the argument to lambda is written as const auto&, and the compiler
deduces it as const std::string& based on the type of elements in the
iterated sequence.

Delegates and closures
Let us suppose you are writing a high-level C++ API for reading incoming messages
on a message queue. The client of your API must register for the types of messages
it is interested in and pass a callback—a function object that will be invoked when
messages of your interest arrive. Your API could be a member of a Queue class.
Here is one possible API signature:

class Queue
{
public:
 ...
 template <typename CallbackType>
 int listen(MsgType msgtype, CallbackType cb);
 ...
};

The listen member template takes two parameters: the message type msgtype,
which identifies the messages of interest, and a callback function object cb that will be
called when a new message arrives. Since we want the client to be able to pass function
pointers, pointer to member functions, functors, as well as lambdas for the callback, we
make listen a member template parameterized on the type of the callback. Of course,
the callback should have a specific signature. Let us suppose it should be compatible
with the signature of the following function:

void msgRead(Message msg);

Here, Message is the type of messages read from the queue. The listen member
template is a little too permissive because it can be instantiated with function
objects that do not conform to the preceding signature. For a signature-incompatible
callback, a compilation error occurs at the point where the callback is invoked inside
listen rather than the point where the nonconforming callback is passed. This can
make debugging the compiler errors more difficult.

The Boost.Function library and its C++11 incarnate std::function offer function
object wrappers that are tailor-made to fix such problems. We can write the type
of the function msgRead as void (Message). The general syntax for the type of a
function of arity N is as follows:

return-type(param1-type, param2-type, ..., paramN-type)

Higher Order and Compile-time Programming

[260]

The more familiar function pointer type corresponding to the preceding function
type would be:

return-type (*)(param1-type, param2-type, ..., paramN-type)

Thus, the type of a function int foo(double, const char*) would be:

int(double, const char*);

A pointer to will be of type:

int (*)(double, const char*);

Using std::function with the appropriate function type, we can declare listen so
that it accepts only function objects that conform to the correct signature:

#include <boost/function.hpp>

class Queue
{
public:
 ...
 int listen(MsgType msgtype, boost::function<void(Message)> cb);
 ...
};

The callback is now declared to be of type boost::function<void(Message)>. You
can now call listen with a pointer to a global function, a functor, or even a lambda,
and it will only compile if the function object has a conforming signature. We could
have used std::function in place of boost::function if we were using a C++11
compiler. On pre-C++11 compilers, boost::function supports signatures with up
to ten arguments, while std::function does not have any such limitation as it uses
C++11 variadic templates. For more features of boost::function and its differences
from std::function (which are minor), you can refer to the online documentation.

Passing a nonstatic member function as a callback requires a little bit more work,
because a non-static member must be called on an instance of its class. Consider the
following class MessageHandler with a member handleMessage:

class MessageHandler
{
public:
 ...
 void handleMessage(Message msg);
};

Chapter 7

[261]

The handleMessage member function is implicitly passed a pointer to the
MessageHandler object on which it is invoked as its first parameter; so its
effective signature is:

void(MessageHandler*, Message);

When we want to pass this as a callback to Queue::listen, we probably already
know which object we want handleMessage to be called on, and it would be great
if we could somehow attach that object instance too in the call to listen. There are a
couple of ways in which this can be done.

The first method involves wrapping the call to handleMessage in a lambda and
passing it to listen. The following snippet illustrates this:

Listing 7.7: Member function callbacks using closures

 1 MessageHandler *handler = new MessageHandler(...);
 2 Queue q(...);
 3 ...
 4 q.listen(msgType, [handler](Message msg)
 5 { handler->handleMessage(msg); }
 6);

Here, the second argument to listen is generated using a lambda expression, which
also captures a pointer to the handler object from the surrounding scope. In this
example, handler is a local variable in the calling scope, but the lambda captures it
and binds it into the function object it generates. This function object is not invoked
immediately on it but delayed until a message of interest is received on the queue,
when it forwards the call to the handleMessage method on the handler object pointer.

The handler pointer is created in the calling scope but becomes indirectly accessible
in another scope via the lambda capture. This is referred to as dynamic scoping, and
functions of this kind that bind to variables in the lexical scope, in which they are
created, are called closures. Of course, the handler pointer must still point to a valid
MessageHandler object at the time when handleMessage is called on it, not just
when the lambda is created.

More often than not, such lambdas would be generated from inside a member
function, like a member function of the MessageHandler class and would capture
the this pointer with some consequent syntactic simplifications:

Listing 7.8: Capturing this-pointer in lambdas

 1 class MessageHandler
 2 {
 3 public:

Higher Order and Compile-time Programming

[262]

 4 ...
 5 void listenOnQueue(Queue& q, MessageType msgType) {
 6 q.listen(msgType, [this](Message msg)
 7 { handleMsg(msg); });
 8 }
 9
10 void handleMsg(Message msg) { ... }
11 };

In the preceding example, we create a closure using a lambda expression that
captures the this pointer (line 6). The call to handleMsg inside the lambda
automatically binds to the this pointer, just as it would in a member function.
Callbacks, especially when bound to specific objects, as mentioned earlier, are
sometimes called delegates.

The boost::function / std::function wrapper provides an effective and
type-checked way of passing and returning function objects as callbacks or delegates.
They are sometimes called polymorphic function wrappers because they completely
abstract the type of the underlying callable entity (function pointer, functor, and so
on) from the caller. Most implementations allocate memory dynamically though, so
you should pay due diligence to assess their impact on runtime performance.

Partial function application
Given the Standard Library function pow:

double pow(double base, double power);

Consider the effect of the line of code x = pow(2, 3). When this line is encountered,
the function pow is immediately called with two arguments, the values 2 and 3. The
function pow computes 2 raised to 3 and returns the value 8.0, which is then assigned
to x.

Now, say you have a list of numbers, and you want to put their cubes into another
list. The Standard Library algorithm std::transform is a perfect fit for this. We
just need to find the right functor to raise the numbers to their cubic power. The
following functor takes a single numeric argument and raises it to a specific power,
using the pow function:

#include <cmath>

struct RaiseTo {
 RaiseTo(double power) : power_(power) {}

 double operator()(double base) const {

Chapter 7

[263]

 return pow(base, power_);
 }

 double power_;
};

We could also have used a lambda expression to generate the function object,
as shown in listing 7.7 and 7.8 in the last section. Using RaiseTo with the
std::transform algorithm, the following code does the job:

std::vector<double> nums, raisedToThree;
...
std::transform(nums.begin(), nums.end(),
 std::back_inserter(raisedToThree),
 RaiseTo(3));

The core computation in RaiseTo is done by the pow function. The RaiseTo functor
provides a way to fix the power through the constructor argument and a call
signature compatible with what std::transform expects.

Imagine if you could do this in C++ without functors or lambdas. What if using the
following imaginary syntax, you could do the same thing?

std::transform(nums.begin(), nums.end(),
 std::back_inserter(raisedToThree),
 pow(_, 3));

It is as if you are passing the pow function with one of its two arguments fixed at 3
and asking the transform algorithm to fill in the blank; supply the number to raise
to. The expression pow(_, 3) would have evaluated to a function object, taking
one argument instead of 2. We essentially achieved this using the RaiseTo functor,
but the Boost Bind library and its C++11 incarnate std::bind help us do this with
less syntax. Formally, what we have just done is referred to as partial function
application.

To create a partially applied function object for pow using bind, you would need
to write:

boost::bind(pow, _1, 3)

The preceding expression generates an unnamed functor which takes a single
argument and returns its value raised to the power of 3, using the standard library
function pow. The similarity with our imaginary syntax should be evident. The value
to be cubed is passed as the sole argument of the generated functor and is mapped
to the special placeholder _1.

Higher Order and Compile-time Programming

[264]

Listing 7.9: Using Boost Bind

 1 #include <boost/bind.hpp>
 2
 3 std::vector<double> nums, raisedToThree;
 4 std::transform(nums.begin(), nums.end(),
 5 std::back_inserter(raisedToThree),
 6 boost::bind(pow, _1, 3));

If the generated functor takes more arguments, then they could be mapped to the
placeholders _2, _3, and so on, based on their positions in the argument list. In
general, the nth argument maps to the placeholder _n. Boost Bind by default supports
maximum nine positional placeholders (_1 through _9); std::bind might support
more (varies from one compiler to the next), but you will need to access them from the
std::placeholders namespace, using one of the following directives:

using std::placeholders::_1;
using std::placeholders::_2;
// etc. OR
using namespace std::placeholders;

You may adapt functions by reordering their arguments without changing function
arity to achieve a new functionality. For example, given the functor std::less that
returns true if its first argument is less than its second argument, we can generate a
functor, which returns true if its first argument is greater than its second argument
by swapping the arguments. The following expression generates this:

boost::bind(std::less<int>(), _2, _1)

Here, std::less<int> takes two arguments, and we generate a wrapper function
object, which also takes two arguments but swaps their positions before passing
them to std::less. We can directly call the generated functor in-place, like this:

boost::bind(std::less<int>(), _2, _1)(1, 10)

We can safely assert that 1 is not greater than 10 but is, in fact, less:

assert(std::less<int>()(1, 10));
assert(!boost::bind(std::less<int>(), _2, _1)(1, 10));

Boost Bind is also useful for generating delegates, and other methods of generating
delegates were illustrated in listing 7.7 and 7.8. Here is Listing 7.8 rewritten using
boost::bind:

Listing 7.10: Generating delegates with Boost Bind

 1 class MessageHandler
 2 {
 3 public:

Chapter 7

[265]

 4 ...
 5 void listenOnQueue(Queue& q, MessageType msgType) {
 6 q.listen(msgType, boost::bind(&MessageHandler::handleMsg,
 7 this, _1));
 8 }
 9
10 void handleMsg(Message msg) { ... }
11 };

We must bind a member function to an object instance. We do this by binding this
to the first argument of MessageHandler::handleMsg (lines 6-7). This technique
is generally useful for invoking member functions on each object in a collection.
Moreover, boost::bind / std::bind intelligently deal with objects, pointers,
smart pointers, and so on, so you do not need to write different binders, depending
on whether it is a copy of an object, a pointer, or a smart pointer. In the following
example, we take a vector of std::strings, compute their lengths using the size
member function, and put them in a vector of lengths:

Listing 7.11: Generating delegates with Boost Bind

 1 #include <functional>
 2 ...
 3 std::vector<std::string> names{"Groucho", "Chico", "Harpo"};
 4 std::vector<std::string::size_type> lengths;
 5 using namespace std::placeholders;
 6
 7 std::transform(names.begin(), names.end(),
 8 std::back_inserter(lengths),
 9 std::bind(&std::string::size, _1));

The lengths are computed by calling the size member function on each std::string
object. The expression std::bind(&std::string::size, _1) generates an unnamed
functor, which calls the size member on the string object passed to it.

Even if names was a vector of pointers to std::string objects, or smart pointers,
the bind expression (line 9) would not need to change. The bind function takes its
parameters by value. Thus, in the preceding example, each string is copied into the
generated functor—a source of potential performance issue.

Another function template called boost::mem_fn and its Standard Library counterpart
std::mem_fn make it a tad easier to call member functions on objects and generate
delegates. The mem _fn function template creates a wrapper around pointers to class
members. For a member function f of arity N in class X, mem_fn(&X::f) generates
a functor of arity N+1, whose first argument must be a reference, pointer, or smart
pointer to the object on which the member function is invoked.

Higher Order and Compile-time Programming

[266]

We can write listing 7.11 to use mem_fn instead:

 1 #include <boost/mem_fn.hpp> // <functional> for std
 2
...
 7 std::transform(names.begin(), names.end(),
 8 std::back_inserter(lengths),
 9 boost::mem_fn(&std::string::size));

Because std::string::size is nullary, the functor generated by boost::mem_fn
is unary and can be readily used with transform, without additional binding.
The savings are in not having to write the _1 placeholder, and thus have less
syntactic noise.

When we generate a function object using bind, it does not immediately check
whether the type and number of arguments match the signature of the function
being bound to. Only when the generated function object is invoked, does the
compiler detect parameter type and arity mismatch:

1 std::string str;
2 auto f = boost::bind(&std::string::size, 5); // binds to literal 5
3 auto g = boost::bind(&std::string::size, _1, 20); // binds two args

For example, the preceding code would compile even though you cannot call the
size member function of std::string on a numeric literal 5 (line 2). Nor does the
size member function take an additional numeric argument (line 3). But as soon as
you try to call these generated function objects, you will get errors due to type
and arity mismatch:

4 f(); // error: operand has type int, expected std::string
5 g(str); // error: std::string::size does not take two arguments

Binding member functions that are overloaded requires more syntactic effort.
Generating functions of even moderate complexity with bind is an exercise in nesting
binds, which more often than not produces unmaintainable code. In general, with the
availability of C++11 lambda and its further refinement in C++14, lambdas rather than
bind should be the preferred mechanism of generating unnamed functors. Use bind
only when it makes your code more expressive than a lambda can.

Chapter 7

[267]

Compile-time programming with Boost
Templates allow us to write C++ code that is independent of specific types of
operands and can thus work unchanged with a large family of types. We can create
both function templates and class templates (or struct templates), which take
type parameters, nontype parameters (like constant integers), as well as template
parameters. When a specialization of a class template is instantiated, member functions
that are not directly or indirectly called are never instantiated.

The power of C++ templates goes beyond the ability to write generic code though.
C++ templates are a powerful computation subsystem using which we can introspect
C++ types, glean their properties, and write sophisticated recursive and branching
logic that executes at compile time. Using these capabilities, it is possible to define
generic interfaces to implementations that are highly optimized for each type they
operate upon.

Basic compile-time control flow using
templates
In this section, we briefly look at branching and recursive logic generated
using templates.

Branching
Consider the function template boost::lexical_cast, introduced in Chapter 2, The
First Brush with Boost's Utilities. To convert a string to a double, we would write
code like the following:

std::string strPi = "3.141595259";
double pi = boost::lexical_cast<double>(strPi);

The primary template of lexical_cast is declared this way:

template <typename Target, typename Source>
Target lexical_cast(const Source&);

Higher Order and Compile-time Programming

[268]

The default implementation of lexical_cast (called the primary template) writes the
source object to a memory buffer via an interface like ostringstream and reads back
from it via another interface like istringstream. This conversion may incur some
performance overhead but has an expressive syntax. Now let us suppose that for a
particularly performance-intensive application, you want to improve the performance
of these string-to-double conversions, but do not want to replace lexical_cast
with some other function calls. How would you do it? We can create an explicit
specialization of the lexical_cast function template to perform a branching at
compile time based on the types involved in the conversion. Since we want to override
the default implementation for string to double conversions, this is how we would
write the specialization:

Listing 7.12: Explicit specialization of function templates

 1 namespace boost {
 2 template <>
 3 double lexical_cast<double, std::string>(
 4 const std::string& str)
 5 {
 6 const char *numstr = str.c_str();
 7 char *end = nullptr;
 8 double ret = strtod(numstr, &end);
 9
10 if (end && *end != '\0') {
11 throw boost::bad_lexical_cast();
12 }
13
14 return ret;
15 }
16 } // boost

The template keyword with an empty argument list (template<>) indicates that
this is a specialization for specific type arguments (line 2). The template identifier
lexical_cast <double, std::string> lists the specific types for which the
specialization takes effect (line 3). With this specialization available, the compiler
invokes it whenever it sees code like this:

std::string strPi = "3.14159259";
double pi = boost::lexical_cast<double>(strPi);

Note that it is possible to overload function templates (not just functions). For example:

template<typename T> void foo(T); // 1
template<typename T> void foo(T*); // 2
template<typename T> T foo(T, T); // 3

Chapter 7

[269]

void foo(int); // 4
template<> void foo<double>(double); // 5

int x;
foo(&x); // calls 2
foo(4, 5); // calls 3
foo(10); // calls 4
foo(10.0); // calls 5

In the preceding example, foo is a function template (1) that is overloaded (2 and
3). The function foo itself is overloaded (4). The function template foo (1) is also
specialized (5). When the compiler encounters a call to foo, it first looks for a
matching non-template overload, failing which it looks for the most specialized
template overload. In the absence of a matching specialized overload, this would
simply resolve to the primary template. Thus, the call to foo(&x) resolves to
template<typename T> void foo(T*). If such an overload was not present, it
would resolve to template<typename T> void foo(T).

It is possible to create specializations for class templates too. In addition to explicit
specializations, which specialize a class template for a fixed set of type and non-
type arguments, we can also create partial specializations of class templates that
specialize a class template for a family or category of types:

template <typename T, typename U>
class Bar { /* default implementation */ };

template <typename T>
class Bar<T*, T> { /* implementation for pointers */ };

In the preceding example, the primary template Bar takes two type arguments.
We create a partial specialization for Bar for those cases, where the first of these
two arguments is a pointer-type and the second argument is the pointer-type for
the first. Thus, instantiating Bar<int, float> or Bar<double, double*> will
instantiate the primary template, but Bar<float*, float>, Bar<Foo*, Foo>,
etc. will instantiate the partially specialized template. Note that functions cannot
be partially specified.

Recursion
Recursion using templates is best illustrated using an example of calculating
factorials at compile time. Class templates (as well as function templates) can
take integer arguments as long as the values are known at compile time.

Higher Order and Compile-time Programming

[270]

Listing 7.13: Compile-time recursion using templates

 1 #include <iostream>
 2
 3 template <unsigned int N>
 4 struct Factorial
 5 {
 6 enum {value = N * Factorial<N-1>::value};
 7 };
 8
 9 template <>
10 struct Factorial<0>
11 {
12 enum {value = 1}; // 0! == 1
13 };
14
15 int main()
16 {
17 std::cout << Factorial<8>::value << '\n'; // prints 40320
18 }

The primary template for calculating factorials defines a compile-time constant enum
value. The value enum in Factorial<N> contains the value of the factorial of N.
This is calculated recursively by instantiating the Factorial template for N-1 and
multiplying its nested value enum with N. The stopping condition is provided by
the specialization of Factorial for 0. These calculations happen at compile time,
as the Factorial template gets instantiated with successively smaller arguments
until Factorial<0> stops further instantiation. Thus, the value 40320 is computed
completely at compile time and baked into the binary that is built. For example, we
could have written the following and it would have compiled and generated an array
of 40320 integers on the stack:

int arr[Factorial<8>::value]; // an array of 40320 ints

Boost Type Traits
The Boost Type Traits library provides a set of templates used to query types for
properties and generate derivative types at compile time. They are useful in generic
code, that is, code which uses parameterized types, for purposes such as choosing
an optimal implementation based on the properties of a type parameter.

Chapter 7

[271]

Consider the following template:

 1 #include <iostream>
 2
 3 template <typename T>
 4 struct IsPointer {
 5 enum { value = 0 };
 6 };
 7
 8 template <typename T>
 9 struct IsPointer <T*> {
10 enum { value = 1 };
11 };
12
13 int main() {
14 std::cout << IsPointer<int>::value << '\n';
15 std::cout << IsPointer<int*>::value << '\n';
16 }

The IsPointer template has a nested enum called value. This is set to 0 in the
primary template. We also define a partial specialization of IsPointer for pointer-type
arguments and set the nested value to 1. How is this class template useful? For any
type T, IsPointer<T>::value is 1 if and only if T is a pointer-type and 0 otherwise.
The IsPointer template maps its type argument to a compile-time constant value 0
or 1, which can be used for further branching decisions at compile time.

The Boost Type Traits library is chock full of such templates (including boost::is_
pointer) that can glean information about types and also generate new types at
compile time. They can be used for selecting or generating the optimal code for the
types at hand. Boost Type Traits was accepted for the C++ TR1 release in 2007 and
as of C++11, there is a Type Traits library in the Standard Library.

Each type trait is defined in its own header so that you can include only those type
traits that you need. For example, boost::is_pointer would be defined in boost/
type_traits/is_pointer.hpp. The corresponding std::is_pointer (introduced
in C++11) is defined in the standard header type_traits, there being no separate
standard header for it. Each type trait has an embedded type called type, and in
addition, it may have a member value of type bool. Here is an example of using a
few type traits.

Listing 7.14: Using type traits

 1 #include <boost/type_traits/is_pointer.hpp>
 2 #include <boost/type_traits/is_array.hpp>

Higher Order and Compile-time Programming

[272]

 3 #include <boost/type_traits/rank.hpp>
 4 #include <boost/type_traits/extent.hpp>
 5 #include <boost/type_traits/is_pod.hpp>
 6 #include <string>
 7 #include <iostream>
 8 #include <cassert>
 8
 9 struct MyStruct {
10 int n;
11 float f;
12 const char *s;
13 };
14
15 int main()
16 {
17 // check pointers
18 typedef int* intptr;
19 std::cout << "intptr is "
20 << (boost::is_pointer<intptr>::value ?"" :"not ")
21 << "pointer type\n";
22 // introspect arrays
23 int arr[10], arr2[10][15];
24 if (boost::is_array<decltype(arr)>::value) {
25 assert(boost::rank<decltype(arr)>::value == 1);
26 assert(boost::rank<decltype(arr2)>::value == 2);
27 assert(boost::extent<decltype(arr)>::value == 10);
28 assert(boost::extent<decltype(arr2)>::value == 10);
29 assert((boost::extent<decltype(arr2), 1>::value) == 15);
30 std::cout << "arr is an array\n";
31 }
32
33 // POD vs non-POD types
34 std::cout << "MyStruct is "
35 << (boost::is_pod<MyStruct>::value ?"" : "not ")
36 << "pod type." << '\n';
37 std::cout << "std::string is "
38 << (boost::is_pod<std::string>::value ?"" : "not ")
40 << "pod type." << '\n';
41 }

In this example, we use a number of type traits to query information about types.
We define a type intptr as an integer pointer (line 18). Applying boost::is_
pointer to intptr yields true (line 20).

Chapter 7

[273]

The decltype specifier used here was introduced in C++ 11. It generates the type
of the expression or entity it is applied to. Thus, decltype(arr) (line 24) yields the
declared type of arr, including any const or volatile qualifiers. It is a useful means
of computing the type of an expression. We apply the boost::is_array trait to an
array type, which obviously yields true (line 24). To find the number of dimensions
or the rank of an array, we use the trait boost::rank (lines 25 and 26). The rank of
arr[10] is 1 (line 25), but the rank of arr2[10][15] is 2 (line 26). The boost::extent
trait is used to find the extent of an array's rank. It must be passed the array's type
and rank. If the rank is not passed, it defaults to 0 and returns the extent for one-
dimensional arrays (line 27) or the zeroth dimension of multi-dimensional arrays
(line 28). Otherwise, the rank should be explicitly specified (line 29).

The boost::is_pod trait returns whether a type is a Plain Old Data type or not. It
returns true for a simple struct without any constructors or destructors like MyStruct
(line 34) and false for std::string, which is obviously not a POD type (line 38).

As mentioned before, there is also an embedded type in these traits called type. This
is defined as boost::true_type or boost::false_type, depending on whether the
trait returned true or false. Now consider that we are writing a generic algorithm to
copy arrays of arbitrary objects into an array on the heap. For POD-types, a shallow
copy or memcpy of the whole array is good enough, while for non-POD types, we
need to perform element by element copies.

Listing 7.15: Leveraging type traits

 1 #include <boost/type_traits/is_pod.hpp>
 2 #include <cstring>
 3 #include <iostream>
 4 #include <string>
 5
 6 struct MyStruct {
 7 int n; float f;
 8 const char *s;
 9 };
10
11 template <typename T, size_t N>
12 T* fastCopy(T(&arr)[N], boost::true_type podType)
13 {
14 std::cerr << "fastCopy for POD\n";
15 T *cpyarr = new T[N];
16 memcpy(cpyarr, arr, N*sizeof(T));
17
18 return cpyarr;
19 }

Higher Order and Compile-time Programming

[274]

20
21 template <typename T, size_t N>
22 T* fastCopy(T(&arr)[N], boost::false_type nonPodType)
23 {
24 std::cerr << "fastCopy for non-POD\n";
25 T *cpyarr = new T[N];
26 std::copy(&arr[0], &arr[N], &cpyarr[0]);
27
28 return cpyarr;
29 }
30
31 template <typename T, size_t N>
32 T* fastCopy(T(&arr)[N])
33 {
34 return fastCopy(arr, typename boost::is_pod<T>::type());
35 }
36
37 int main()
38 {
39 MyStruct podarr[10] = {};
40 std::string strarr[10];
41
42 auto* cpyarr = fastCopy(podarr);
43 auto* cpyarr2 = fastCopy(strarr);
44 delete []cpyarr;
45 delete []cpyarr2;
46 }

The fastCopy function template creates a copy of the array on the heap (lines 31-
35). We create two overloads of it: one for copying POD-types (lines 11-12) and the
other for copying non-POD types (lines 21-22), by adding a second parameter of type
boost::true_type in the first case and boost::false_type in the second case. We
create two arrays: one of the POD-type MyStruct and the other of the non-POD type
std::string (lines 42-43). We call fastCopy on both, which are resolved to the one
argument overload (line 32). This forwards the call to the two argument overloads of
fastCopy, passing an instance of boost::is_pod<T>::type as the second argument
(line 34). This automatically routes the call to the correct overload, depending on
whether the stored type T is POD-type or not.

There are many, many more type traits than we can cover in the scope of this book.
You have type traits to check whether one type is a base class of another (boost::is_
base), whether a type is copy constructible (boost::is_copy_constructible), has
specific operators (for example, boost::has_pre_increment), is same as another type
(boost::is_same), and so on. The online documentation is a good place to go dig
traits and see which ones fit a job at hand.

Chapter 7

[275]

SFINAE and enable_if / disable_if
Each time a compiler encounters a call to a function with the same name as a
function template, it creates an overload resolution set of matching template and
non-template overloads. The compiler deduces template arguments as needed to
determine which function template overloads (and specializations thereof) qualify,
and the qualifying template overloads are instantiated in the process. If substitution
of the deduced type arguments in the template's argument list or the function
parameter list causes an error, this does not cause the compilation to abort. Instead,
the compiler removes the candidate from its overload resolution set. This is referred
to as Substitution Failure Is Not An Error or SFINAE. The compiler only flags an
error if, at the end of the process, the overload resolution set is empty (no candidates)
or has multiple equally good candidates (ambiguity).

Using a few clever tricks involving compile-time type computation, it is possible
to leverage SFINAE to conditionally include templates or exclude them from the
overload resolution set. The most succinct syntax to do this is provided by the
boost::enable_if / boost::disable_if templates that are part of the Boost.
Utility library.

Let us write a function template to copy an array of elements into another array.
The signature of the primary template is as follows:

template <typename T, size_t N>
void copy(T (&lhs)[N], T (&rhs)[N]);

Thus, you pass two arrays of same size storing the same type of elements, and the
elements of the second arguments are copied into the first array in the correct order.
We also assume that the arrays never overlap; this keeps the implementation simple.
Needless to say this is not the most general setting in which such an assignment can
take place, but we will relax some of these restrictions a little later. Here is a generic
implementation for this template:

 1 template <typename T, size_t N>
 2 void copy(T (&lhs)[N], T (&rhs)[N])
 3 {
 4 for (size_t i = 0; i < N; ++i) {
 5 lhs[i] = rhs[i];
 6 }
 7 }

Higher Order and Compile-time Programming

[276]

The first opportunity for optimization here is when T is a POD-type and a bitwise
copy is good enough and possibly faster. We will create a special implementation
for POD-types and use SFINAE to choose this implementation only when we are
dealing with arrays of POD-types. Our technique should exclude this overload
from the overload set when dealing with non-POD type arrays. Here is the special
implementation for POD-types:

 1 // optimized for POD-type
 2 template <typename T, size_t N>
 3 void copy(T (&lhs)[N], T (&rhs)[N])
 4 {
 5 memcpy(lhs, rhs, N*sizeof(T));
 6 }

If you noticed, the two implementations have identical signature and obviously
cannot coexist. This is where the boost::enable_if template comes in. The
boost::enable_if template takes two parameters: a type T and a second type E,
which defaults to void. enable_if defines an embedded type called type, which
is typedef'd to E only when T has an embedded type called type and T::type is
boost::true_type. Otherwise, no embedded type is defined. Using enable_if,
we modify the optimized implementation:

Listing 7.16: Using enable_if

#include <boost/utility/enable_if.hpp>
#include <boost/type_traits/is_pod.hpp>

// optimized for POD-type
template <typename T, size_t N>
typename boost::enable_if<boost::is_pod<T>>::type
copy(T (&lhs)[N], T (&rhs)[N])
{
 memcpy(lhs, rhs, N*sizeof(T));
}

The typename keyword is required because otherwise the compiler has no way of
knowing whether the expression boost::enable_if<boost::is_pod<T>>::type
names a type or a member.

If we now instantiate an array of a non-POD type, it will resolve to the
default implementation:

std::string s[10], s1[10];
copy(s1, s); // invokes the generic template

Chapter 7

[277]

The call to copy causes the compiler to instantiate both templates but boost::is_
pod<std::string>::type is boost::false_type. Now enable_if<false_type>
does not have a nested type as required by the return type specification of the
version of copy optimized for POD-arrays. Therefore, there is a substitution failure,
and this overload is removed from the overload resolution set, and the first or
generic implementation is invoked. Now consider what happens in the following
case, where we try to copy an array of POD-types (double):

double d[10], d1[10];
copy(d1, d);

In the current state of affairs, the POD-optimized version will no longer encounter
a substitution failure, but the default implementation would also be signature-
compatible with this call. Thus, there would be ambiguity and this would result
in a compiler error. To fix this, we would have to make sure that the generic
implementation excuses itself from the overload set this time. This is done using
boost::disable_if (which is really boost::enable_if negated) in the return
type of the generic implementation.

Listing 7.17: Using disable_if

 1 template <typename T, size_t N>
 2 typename boost::disable_if<boost::is_pod<T>>::type
 3 copy(T (&lhs)[N], T (&rhs)[N])
 4 {
 5 for (size_t i = 0; i < N; ++i) {
 6 lhs[i] = rhs[i];
 7 }
 8 }

When T is a POD-type, is_pod<T>::type is boost::true_type. boost::disable_
if<true_type> does not have a nested type and thus a substitution failure occurs
with the generic implementation. This way, we build two mutually exclusive
implementations that are correctly resolved at compile time.

We can also use the boost::enable_if_c<> template which takes a Boolean
parameter instead of a type. boost::enable_if_c<true> has an embedded type,
while boost::enable_if_c<false> does not. With these, the return type in listing
7.17 would look like this:

typename boost::disable_if_c<boost::is_pod<T>::value>::type

The Standard Library, as of C++11, has std::enable_if only, and it behaves like
boost::enable_if_c, taking a Boolean argument rather than a type. It is available
from the standard header type_traits.

Higher Order and Compile-time Programming

[278]

The Boost Metaprogramming Library (MPL)
The Boost Metaprogramming Library, MPL for short, is a general purpose library
for template metaprogramming. It is ubiquitous in the Boost codebase, and most
libraries use some metaprogramming facility from MPL. Some libraries like Phoenix,
BiMap, MultiIndex, and Variant use it very heavily. It is used heavily for type
manipulation and optimization through conditional selection of specific template
implementations. This section is a short overview of some of the concepts and
techniques involving MPL.

Metafunctions
The heart of the MPL library is a metafunction. Formally, a metafunction is either
a class template with only type parameters or a class, which exposes a single
embedded type called type. In effect, type parameters if any are analogous to
parameters to a function and the embedded type, which is computed at compile
time based on the parameters, is analogous to the return value of a function.

Type traits provided by Boost Type Traits library are first-class metafunctions.
Consider the boost::add_pointer type trait:

template <typename T>
struct add_pointer;

The type add_pointer<int>::type is int*. The add_pointer template is a unary
metafunction with a single type parameter and an embedded type called type.

Sometimes, the effective result of a type computation is numeric – case in point
boost::is_pointer<T> (Boolean truth value) or boost::rank<T> (a positive
integer). In such cases, the embedded type will have a static member called value
containing this result, and it will also be directly accessible from the metafunction as
a non-type member called value. Thus, boost::is_pointer<T>::type::value and
boost::is_pointer<T>::value are both valid, the latter being more concise.

Using MPL metafunctions
The MPL working in conjunction with Boost Type Traits makes a lot of
metaprogramming jobs easy. For this, the MPL provides a number of metafunctions
to compose existing metafunctions together.

Chapter 7

[279]

Like type traits, MPL facilities are partitioned into independent, highly granular
header files. All metafunctions are in the boost::mpl namespace. We can compose
unnamed metafunctions together into composite metafunctions using the MPL
library. This is not unlike lambdas and bind at runtime. The following snippet uses
boost::mpl::or_ metafunction to check whether a type is either an array or a pointer:

Listing 7.18: Using MPL metafunctions

 1 #include <boost/mpl/or.hpp>
 2 #include <boost/type_traits.hpp>
 3
 4 if (boost::mpl::or_<
 5 boost::is_pointer<int*>,
 6 boost::is_array<int*>
 7 >::value) {
 8 std::cout << "int* is a pointer or array type\n";
 9 }
10
11 if (boost::mpl::or_<
12 boost::is_pointer<int[]>,
13 boost::is_array<int[]>
14 >::value) {
15 std::cout << "int* is a pointer or array type\n";
16 }

The boost::mpl::or_ metafunction checks whether any of its argument
metafunctions evaluates to true. We can create our own reusable metafunction that
packages the preceding logic by using a technique called metafunction forwarding:

Listing 7.19: Creating your own metafunction

 1 #include <boost/mpl/or.hpp>
 2 #include <boost/type_traits.hpp>
 3
 4 template <typename T>
 5 struct is_pointer_or_array
 6 : boost::mpl::or_<boost::is_pointer<T>,
 7 boost::is_array<T>>
 8 {};

We combine the existing type trait metafunctions using boost::mpl::or_ and
inherit from the composed entity, as shown in the preceding listing (line 6). We
can now use is_pointer_or_array like any type trait.

Higher Order and Compile-time Programming

[280]

Sometimes, we need to pass numeric arguments, which are clearly non-type, to
metafunctions. For example, to compare whether the size of a type T is smaller than
that of another type U, we ultimately need to compare two numeric sizes. Let us
write the following trait to compare the size of two types:

template <typename T, typename U> struct is_smaller;

is_smaller<T, U>::value will be true if and only if sizeof(T) is less than
sizeof(U), and will be false otherwise.

Listing 7.20: Using integral wrappers and other metafunctions

 1 #include <boost/mpl/and.hpp>
 2 #include <boost/mpl/int.hpp>
 3 #include <boost/mpl/integral_c.hpp>
 4 #include <boost/mpl/less.hpp>
 5 #include <iostream>
 6 namespace mpl = boost::mpl;
 7
 8 template <typename L, typename R>
 9 struct is_smaller : mpl::less<
10 mpl::integral_c<size_t, sizeof(L)>
11 , mpl::integral_c<size_t, sizeof(R)>>
12 {};
13
14 int main()
15 {
16 if (is_smaller<short, int>::value) {
17 std::cout << "short is smaller than int\n";
18 } else { ... }
19 }

MPL provides a metafunction boost::mpl::integral_c to wrap integral values of
a specified type (size_t, short, etc.). We use it to wrap the sizes of the two types.
The boost::mpl::less metafunction compares the two sizes and its nested value is
set to true only if the first argument is numerically less than the second. We can use it
like any other trait.

We will now try to write something slightly less trivial. We want to write a function
to assign arrays. Here is the function template signature:

template <typename T, size_t M,
 typename S, size_t N>
void arrayAssign(T(&lhs)[M], S(&rhs)[N]);

Chapter 7

[281]

The type T(&)[M] is a reference to an array of M elements of type T; likewise for S
(&)[N]. We want to assign the second argument rhs to the first argument lhs.

You can assign an array of type S[] to an array of type T[] as long as S and T are
the same types, or the conversion from S to T is allowed and does not cause loss of
information. Also, M must not be smaller than N. We will define a trait is_array_
assignable which captures these constraints. Thus, is_array_assignable<T(&)
[M], S(&)[N]>::value will be true only if the preceding constraints are met.

First, we need to define three helper metafunctions: is_floating_assignable,
is_integer_assignable, and is_non_pod_assignable. The is_floating_
assignable<T, S> metafunction checks whether it is possible to assign a numeric
value of type S to a floating point type T. The is_integer_assignable<T, S>
metafunction checks whether both T and S are integers, and an assignment for T
and S does not cause any potential loss or narrowing. Thus, signed integers cannot
be assigned to unsigned integers, unsigned integers can only be assigned to larger
signed integer types, and so on. The is_non_pod_assignable<T, S> trait checks
whether at least one of S and T is non-POD type and whether an assignment
operator from S to T exists.

We will then define is_array_assignable using these and other metafunctions.

Listing 7.21: Defining useful type traits using MPL

 1 #include <boost/type_traits.hpp>
 2 #include <type_traits>
 3 #include <boost/mpl/and.hpp>
 4 #include <boost/mpl/or.hpp>
 5 #include <boost/mpl/not.hpp>
 6 #include <boost/mpl/greater.hpp>
 7 #include <boost/mpl/greater_equal.hpp>
 8 #include <boost/mpl/equal.hpp>
 9 #include <boost/mpl/if.hpp>
10 #include <boost/mpl/integral_c.hpp>
11 #include <boost/utility/enable_if.hpp>
12 #include <iostream>
13
14 namespace mpl = boost::mpl;
15
16 template <typename T, typename S>
17 struct is_larger
18 : mpl::greater<mpl::integral_c<size_t, sizeof(T)>
19 , mpl::integral_c<size_t, sizeof(S)>>
20 {};

Higher Order and Compile-time Programming

[282]

21 template <typename T, typename S>
22 struct is_smaller_equal
23 : mpl::not_<is_larger<T, S>>
24 {};
25
26 template <typename T, typename S>
27 struct is_floating_assignable
28 : mpl::and_<
29 boost::is_floating_point<T>
30 , boost::is_arithmetic<S>
31 , is_smaller_equal<S, T>
32 >
33 {};
34
35 template <typename T, typename S>
36 struct is_integer_assignable
37 : mpl::and_<
38 boost::is_integral<T>
39 , boost::is_integral<S>
40 , is_smaller_equal<S, T>
41 , mpl::if_<boost::is_signed<S>
42 , boost::is_signed<T>
43 , mpl::or_<boost::is_unsigned<T>
44 , mpl::and_<boost::is_signed<T>
45 , is_larger<T, S>>
46 >
47 >
48 >
49 {};
50
51 template <typename T, typename S>
52 struct is_non_pod_assignable
53 : mpl::and_<
54 mpl::not_<mpl::and_<boost::is_pod<T>
55 , boost::is_pod<S>>
56 >
57 , std::is_assignable<T, S>
58 >
59 {};
60
61 template <typename T, typename U>
62 struct is_array_assignable

Chapter 7

[283]

63 : boost::false_type
64 {};
65
66 template <typename T, size_t M, typename S, size_t N>
67 struct is_array_assignable<T (&)[M], S (&)[N]>
68 : mpl::and_<
69 mpl::or_<
70 boost::is_same<T, S>
71 , is_floating_assignable<T, S>
72 , is_integer_assignable<T, S>
73 , is_non_pod_assignable<T, S>
74 >
75 , mpl::greater_equal<mpl::integral_c<size_t, M>
76 , mpl::integral_c<size_t, N>>
77 >
78 {};
79
80
81 template <typename T, size_t M, typename S, size_t N>
82 typename boost::enable_if<is_array_assignable<T(&)[M],
83 S(&)[N]>>::type
84 assignArray(T (&target)[M], S (&source)[N])
85 { /* actual copying implementation */ }

The primary template of the is_array_assignable metafunction always returns
false (lines 61-64). The partial specialization of is_array_assignable (line 66-78)
is the heart of the implementation. It uses the mpl::or_ metafunction to check
whether any one of the following conditions is met:

• The source and target types are the same (line 70)
• The target type is a floating point, the source type is numeric, and an

assignment is possible without narrowing (line 71)
• The target type is integral (signed or unsigned), the source type is integral,

and an assignment is possible without narrowing (line 72)
• At least one of the source and target types is a non-POD type and a

conversion from the source to the target type is possible (line 73)

The mpl::or_ metafunction is analogous to the logic or operator of C++, and its
static member value is set to true if any one of the passed conditions is true. Along
with this composite condition being true, the following condition must also hold:

The number of elements in the target array should be at least as much as the
elements in the source array.

Higher Order and Compile-time Programming

[284]

We use the mpl::greater_equal metafunction to compare these two values M and N.
Since the metafunction needs to take type parameters, we generate type parameters
corresponding to M and N using boost::mpl::integral_c wrapper (lines 75-76). We
compute the logical-OR of conditions 1-4 and its logical-AND with condition 5 using
the mpl::and_ metafunction (line 61).

We use boost::enable_if that leverages SFINAE to disable assignArray when
is_array_assignable returns false.

Let us now look at the implementation of the is_integer_assignable. It checks
if the target and source types are both integral, (lines 38-39) and the source type
is not bigger than the target type (line 40). In addition, we use boost::mpl::if_
metafunction, which takes three metafunctions; if the first metafunction evaluates
to true, the second metafunction is returned, otherwise the third metafunction is
returned. Using mpl::if_, we express the constraints on the source and target types
(lines 41-47). If the source type is a signed integer (line 41), then the target type must
also be a signed integer (line 42). But if the source type be an unsigned integer, then
the target type must either be an unsigned integer (line 43) or a signed integer larger
than the source type (lines 44-45). The rest of the traits are similarly defined using
Boost MPL library facilities.

Metaprogramming is not just a tool for choosing optimal implementations or
catching violations at compile time. It actually helps create expressive libraries like
boost::tuple or boost::variant, involving significant type manipulation. We
introduced only a few basic abstractions from the Boost MPL library to help you ease
into template metaprogramming. If you have worked through the examples in this
chapter, you should have no problems exploring MPL further on your own.

Domain Specific Embedded Languages
In the last third of this chapter, we look at the applications of higher order and
compile-time programming mainly in the area Domain Specific Embedded Languages.

Lazy evaluation
In C++, when we see the following code:

z = x + y();

Chapter 7

[285]

We know that the value of z is immediately computed when the control reaches past
the statement z = x + y(). In fact, the act of computing the sum involves evaluating
the expressions x and y() themselves. Here, y is presumably a function or a functor
instance, so the call to y() will in turn trigger more evaluations. Irrespective of
whether z is ever used for anything later, its value would still be computed. This is
the model of eager evaluation that a lot of programming languages follow. The actual
story is slightly more complex because compilers can reorder and optimize away
computations but there is little control the programmer has on the process.

What if we could defer the evaluation of such expressions and any of their
sub-expressions until we have to make use of the result? This is the lazy evaluation
model seen in a lot of functional programming languages, like Haskell. If we
could construct arbitrary language expressions that are lazily evaluated, then
such expressions could be passed around just like functors and evaluated where
necessary. Imagine a function called integrate that evaluates definite integrals
of arbitrary functions, given boundary values:

double integrate(std::function<double(double)> func,
 double low, double high);

Imagine being able to evaluate the integral ()
10

1

1/x x dx+∫ by calling the following code:

double result = integrate(x + 1/x, 1, 10);

The key would be to not evaluate the expression x + 1/x eagerly but pass it to
the integrate function as a lazy expression. Now C++ does not have any built-in
mechanism to create lazy expressions like these using regular variables. But we
can quite easily write a lambda to get our job done:

result = integrate([](double) { return x + 1/x; }, 1, 10);

This works albeit with some syntactic noise, but in many applications, lambda and
bind just do not scale with complexity. In this section, we briefly study expression
templates and more generally, Domain Specific Embedded Languages (DSELs),
which are the means of constructing lazily evaluated function objects within C++
that get your job done without sacrificing on expressive syntax.

Expression templates
So, how do we express a function f(x)=x+1/x in the language of the domain rather
than through a syntactic compromise within the confines of C++? To create a generic
solution, we must be able to support a variety of algebraic expressions. Let us start
with the most basic function—a constant function, such as f(x)=5. Irrespective of the
value of x, this function should always return 5.

Higher Order and Compile-time Programming

[286]

The following functor can be used for this purpose:

Listing 7.22a: An expression template mini-library – lazy literals

 1 #include <iostream>
 2
 3 struct Constant {
 4 Constant(double val = 0.0) : val_(val) {}
 5 double operator()(double) const { return val_; }
 6
 7 const double val_;
 8 };
 9
10 Constant c5(5);
11 std::cout << c5(1.0) << '\n'; // prints 5

The operator() returns the stored val_ and ignores its argument, which is
unnamed. Now let us see how we can represent a function like f(x)=x, using a
similar functor:

Listing 7.22b: An expression template mini-library – lazy variables

 1 struct Variable {
 2 double operator()(double x) { return x; }
 3 };
 4
 5 Variable x;
 6 std::cout << x(8) << '\n'; // prints 8
 7 std::cout << x(10) << '\n'; // prints 10

We now have a functor that yields whatever value is passed to it; exactly what
f(x)=x does. But how do we express an expression like x + 1/x? The general form of a
functor that represents an arbitrary function of a single variable should be as follows:

struct Expr {
 ...
 double operator()(double x) {
 return (value computed using x);
 }
};

Both Constant and Variable conform to this form. But consider a more complex
expression like f(x)=x+1/x. We can break it down to two sub-expressions x and 1/x
acted upon by the binary operation +. The expression 1/x can be further broken
down to two sub-expressions 1 and x acted upon by the binary operation /.

Chapter 7

[287]

This can be represented by an Abstract Syntax Tree (AST), as shown here:

The non-leaf nodes in the tree represent operations. Binary operation nodes have
two children: the left operand is the left child and the right operand is the right child.
The AST has an operation (+) at the root and two sub-expressions as two children.
The left sub-expression is x, while the right sub-expression is 1/x. This 1/x is further
deconstructed in a sub-tree with operation (/) at the root, 1 as the left child, and x
as the right child. Notice that values like 1 and x only appear at the leaf level and
correspond to the Constant and Variable classes we defined. All non-leaf nodes
represent operators.

We can model a complex expression as one that is composed of two sub-expressions
with an operator:

Listing 7.22c: An expression template mini-library – complex expressions

 1 template <typename E1, typename E2, typename OpType>
 2 struct ComplexExpression {
 3 ComplexExpression(E1 left, E2 right) : left_(left),
 4 right_(right)
 5 {}
 6
 7 double operator()(double x) {
 8 return OpType()(left_(x), right_(x));
 9 }
10
11 E1 left_; E2 right_;
12 };

When the ComplexExpression functor is invoked, that is, when it evaluates its
left and right sub-expressions and then applies the operator on them (line 7), this
in turn triggers the evaluation of the left and right sub-expressions. If they are
ComplexExpressions themselves, then they trigger further evaluations that
traverse down the tree, depth-first. This is definitive lazy evaluation.

Higher Order and Compile-time Programming

[288]

Now, in order to easily generate complex expression functors, we need to overload
the arithmetic operators to combine sub-expressions of type Constant, Variable,
ComplexExpression<>, or primitive arithmetic types. To do this better, we create
an abstraction for all kinds of expressions called Expr. We also modify our definition
of ComplexExpression to use Expr.

Listing 7.22d: An expression template mini-library – generic expressions

 1 template <typename E, typename Enable = void>
 2 struct Expr {
 3 Expr(E e) : expr_(e) {}
 4
 5 double operator()(double x) { return expr_(x); }
 6
 7 private:
 8 E expr_;
 9 };
10
11 template <typename E1, typename E2, typename Op>
12 struct ComplexExpression
13 {
14 ComplexExpression(Expr<E1> left, Expr<E2> right) :
15 left_(left), right_(right) {}
16
17 double operator()(double d) {
18 return Op()(left_(d), right_(d));
19 }
20
21 private:
22 Expr<E1> left_;
23 Expr<E2> right_;
24 };

We will pass around all kinds of expressions wrapped in Expr, for example,
Expr<Constant>, Expr<ComplexExpression>, and so on. If you are unsure why
we need the second template parameter Enable, then hang on for the answer in a bit.
Before that, we will define the arithmetic operators between any two Exprs, starting
with operator+:

Listing 7.22e: An expression template mini-library – overloaded operators

 1 #include <functional>
 2

Chapter 7

[289]

 3 template <typename E1, typename E2>
 4 Expr<ComplexExpression<E1, E2, std::plus<double>>>
 5 operator+ (E1 left, E2 right)
 6 {
 7 typedef ComplexExpression <E1, E2,
 8 std::plus<double>> ExprType;
 9 return ExprType(Expr<E1>(left), Expr<E2>(right));
10 }

Any binary operation will produce a ComplexExpression. Since we will pass
everything abstracted as Expr, we return Expr<ComplexExpression<…>> from the
arithmetic operators. It is easy to write an operator-, operator*, or operator/ on
the same lines. We can replace std::plus with std::minus, std::multiples, or
std::divides in the preceding implementation.

There is only one more detail to take care of. With the preceding code, we can write
expressions of the following form:

Variable x;
Constant c1(1);
integrate(x + c1/x, 1, 10);

But we cannot write x + 1/x using numeric literals. To do this, we must automatically
convert numeric literals to Constant. For this, we will create a partial specialization
of Expr and use boost::enable_if to enable it for numeric types. This is where
the Enable argument of the Expr template comes in handy. It defaults to void for
the primary template, but it helps us write the partial specialization for wrapping
arithmetic-type literals.

Listing 7.22f: An expression template mini-library – a small trick

 1 #include <boost/utility/enable_if.hpp>
 2 #include <boost/type_traits/is_arithmetic.hpp>
 3
 4 template <typename E>
 5 struct Expr<E, typename boost::enable_if<
 6 boost::is_arithmetic<E>>::type>
 7 {
 8 Expr(E& e) : expr_(Constant(e)) {}
 9
10 double operator()(double x) { return expr_(x); }
11
12 Constant expr_;
13 };

Higher Order and Compile-time Programming

[290]

This partial specialization is invoked only when E is an arithmetic type (int, double,
long, etc.). This stores the arithmetic value as a Constant. With this change, we can
use numeric literals in our expressions, and as long as there is a single Variable in the
expression, the literals would get wrapped in a Constant via the partial specialization
in listing 7.22f. We can now generate a functor using just natural algebraic expressions:

Listing 7.22g: An expression template mini-library – using the expressions

Variable x;
std::cout << (x + 1/x)(10) << '\n';
std::cout << ((x*x - x + 4)/(2*x))(10) << '\n';

We can add many more refinements to this very basic expression template library
of not even a hundred lines of code. But it already allows us to generate arbitrary
algebraic functions of a single variable using very simple syntax. This is an example
of a Domain Specific Language. Also, specifically, because we use valid C++ syntax to
do all this instead of defining a new syntax, it is specifically called Domain Specific
Embedded Language (DSEL) or sometimes Embedded Domain Specific Language
(EDSL). We will now look at Boost Phoenix, an elaborate library of lazy expressions.

Boost Phoenix
Boost Phoenix 3 is a library for enabling functional programming constructs in C++.
It defines an elaborate and very readable DSEL with scores of functors and operators,
which can be used to generate fairly involved lambdas. It provides a comprehensive
library for constructing lazy expressions and an excellent example of what expression
templates can achieve. This section features a very short introduction to using Phoenix
expressions as lambdas, and we will see some examples of using Phoenix with Boost
Spirit Parser Framework. It is too extensive a library to cover in a single chapter, let
alone a subsection of it, but this introduction should still provide enough tail wind to
master Phoenix, with the benefit of the excellent online documentation.

Phoenix expressions are composed of actors, which are abstractions for lazy
functions. Actors are used to generate unnamed functions or lambdas. They support
partial function application by binding some arguments to values and keeping others
unspecified. They can be composed to generate more complex functors. In that sense,
Phoenix is a lambda language library.

Chapter 7

[291]

Actors are categorized based on functionality and exposed through a set of header
files. The most basic actor is val which represents a lazy immutable value (not
unlike the Constant functor in our expression template example). The ref actor
is used to create a lazy mutable variable reference, and the cref actor generates a
lazy immutable reference. There is a whole set of actors that define lazy operators,
including arithmetic (+, -), comparison (<, ==, >), logical (&&, ||), bitwise operators
(|, ^, &), and other kinds of operators. Using just these, we can construct algebraic
expressions, as we do in the following example:

Listing 7.23: Lazy algebraic expressions with Phoenix

 1 #include <boost/phoenix/core.hpp>
 2 #include <boost/phoenix/operator.hpp>
 3 #include <iostream>
 4
 5 int main() {
 6 namespace phx = boost::phoenix;
 7 double eX;
 8 auto x = phx::ref(eX);
 9
10 eX = 10.0;
11 std::cout << (x + 1/x)() << '\n'; // prints 10.1
12 std::cout << ((x*x -x + 4) / (2*x))() << '\n'; // prints 4.7
13 }

Using boost::phoenix::ref, we generate an actor for lazily evaluating the variable
eX (e for eager) and cache it in a variable x. The expressions x + 1/x and x*x – x
+ 4 generate anonymous functors just like the expression templates from listing
7.22, except that x is already bound to the variable eX. The actor x is said to infect
the numeric literals in the expressions by its presence; the literals get wrapped in
boost::phoenix::val. The operators +, -, *, and / used in the expression are
lazy operators from Phoenix (just like the operators we defined for our expression
template in listing 7.22e) and generate anonymous functors.

Writing simple lambdas can sometimes be extremely succinct using Phoenix.
Look at how we can print each element in a vector using std::for_each and
Phoenix's lazy operator<<:

Listing 7.24: Simpler lambdas with Phoenix

 1 #include <boost/phoenix/core.hpp>
 2 #include <boost/phoenix/operator.hpp>
 3 #include <vector>

Higher Order and Compile-time Programming

[292]

 4 #include <string>
 5 #include <iostream>
 6 #include <algorithm>
 7
 8 int main() {
 9 using boost::phoenix::arg_names::arg1;
10 std::vector<std::string> vec{"Lambda", "Iota",
11 "Sigma", "Alpha"};
12 std::for_each(vec.begin(), vec.end(),
13 std::cout << arg1 << '\n');
14 }

The expression std::cout << arg1 is actually a lambda that generates a functor. The
actor arg1 (boost::phoenix::arg_names::arg1) represents the first argument to
the functor and is lazily evaluated. The presence of arg1 in the expression std::cout
<< arg1 invokes the lazy operator<< and infects the entire expression to generate
an unnamed function that prints its argument to the standard output. In general,
you can use arg1 through argN to refer to the lazy arguments of an N-ary functor
generated with Phoenix. By default, up to ten argument actors (arg1 through arg10)
are supported. These are akin to _1, _2, etc. for boost::bind. You can also use
boost::phoenix::placeholders::_1, _2, etc.

Phoenix actors are not limited to expressions involving operators. We can generate
actors that lazily evaluate entire blocks of code with branching and looping
constructs. Let us say we have a vector of the names of personnel in a band's lineup,
and we want to print whether a person is a vocalist or instrumentalist:

Listing 7.25: Lazy control structures with Phoenix

 1 #include <boost/phoenix/core.hpp>
 2 #include <boost/phoenix/statement/if.hpp>
 3 #include <boost/phoenix/operator.hpp>
 4 #include <algorithm>
 5 #include <vector>
 6 #include <iostream>
 7
 8 int main() {
 9 namespace phx = boost::phoenix;
10 using namespace phx;
11 using phx::arg_names::arg1;
12
13 std::vector<std::string> names{"Daltrey", "Townshend",
14 "Entwistle", "Moon"};
15 std::for_each(names.begin(), names.end(),
16 if_(arg1 == "Daltrey") [

Chapter 7

[293]

17 std::cout << arg1 << ", vocalist" << '\n'
18].else_[
19 std::cout << arg1 << ", instrumentalist" << '\n'
20]
21);
22 }

We want to run through the vector of last names of the four legendary members of
The Who and list them with their roles. For (Roger) Daltrey, the role would be of a
vocalist and for the others, instrumentalist. We use std::for_each to iterate the list
of names. We pass a unary functor to it generated using Phoenix's statement actors,
specifically boost::phoenix::if_.

The syntax is intuitive enough to look at and understand what is going on. The
actual statements in the if_ and else_ blocks are put in square brackets instead
of braces (which cannot be overloaded) and are lazily evaluated. If there were
multiple statements, they would need to be separated by commas. Notice how
the else_ is a member call invoked with a dot on the preceding expression (line
18). The presence of arg1 is said to infect the statements, that is, it invokes the lazy
operator<< and causes the literal character strings to be automatically wrapped in
boost::phoenix::val (lines 16, 17, 19). Running this code prints the following:

Daltrey, vocalist
Townshend, instrumentalist
Entwistle, instrumentalist
Moon, instrumentalist

The power of Phoenix should be evident already. It defines an expressive sub-
language using, standard C++ operator overloading and functors that easily
generates unnamed functions or lambdas as needed, and starts to mimic the host
language itself. There is more to the Phoenix library. It is chock-full of actors for
lazy evaluation of STL container member functions and STL algorithms. Let us look
at an example to understand this better:

Listing 7.26: Actors for STL algorithms and container member functions

 1 #include <vector>
 2 #include <string>
 3 #include <iostream>
 4 #include <boost/phoenix/core.hpp>
 5 #include <boost/phoenix/stl/algorithm.hpp>
 6 #include <boost/phoenix/stl/container.hpp>
 7 #include <cassert>
 8
 9 int main() {

Higher Order and Compile-time Programming

[294]

10 namespace phx = boost::phoenix;
11 using phx::arg_names::arg1;
12 std::vector<std::string> greets{ "Hello", "Hola", "Hujambo",
13 "Hallo" };
14 auto finder = phx::find(greets, arg1);
15 auto it = finder("Hujambo");
16
17 assert (phx::end(greets)() != it);
18 std::cout << *it << '\n';
19 assert (++it != greets.end());
20 std::cout << *it << '\n';
21 }

We have a vector greets of hello greetings in different languages (English,
Spanish, Swahili, and German), and we want to search for a specific greet. We
want to do so lazily using Phoenix. Phoenix provides actors for generating lazy
versions of most STL algorithms. We use the lazy form of the std::find algorithm
available via the header boost/phoenix/stl/algorithm.hpp (line 5), and call the
boost::phoenix::find actor to generate a unary functor named finder (line 14).
The finder functor takes as its only argument, the string to look for in greets. The
call boost::phoenix::find(greets, arg1) takes two arguments and generates
a unary functor. The first argument is a reference to the vector greets, which is
automatically wrapped in a cref actor and stored for lazy evaluation later. The
second argument to find is the Phoenix placeholder arg1.

When finder is called with the string to lookup as its sole argument, it evaluates
the arg1 actor to get this string argument. It also evaluates the cref actor it stored
earlier to get a reference to greets. It then calls std::find on the greets vector,
looking for the string passed, which returns an iterator. We look for the string
Hujambo which is the present in the vector(line 15).

To check whether the iterator returned is valid, we need to compare it against
greets.end(). Just to show that it can be done, we generate the lazy version
of the end member function call using the boost::phoenix::end actor
available from the header boost/phoenix/stl/algorithm.hpp. The call
boost::phoenix::end(greets) generates a functor, and we call it in-place by
suffixing parentheses. We compare the result with the iterator returned by finder
(line 17). We print the greeting pointed by the iterator returned by find and the
element after that (lines 18-20):

Hujambo
Hallo

Chapter 7

[295]

Actors from Phoenix are polymorphic. You can apply boost::phoenix::find on
any kind of container that supports searching via std::find, and you can look up
an object of any type that the underlying container can store.

In the final example on Phoenix, we look at how we can define our own actors,
which can fit in with the rest of Phoenix. We have a vector of names from which
we print the first name in each entry, using std::for_each and functors generated
using Phoenix. We extract first names from a name string by looking up the first
space character in the string and extracting the prefix up to that point. We can use
the find actor to locate the space but to extract the prefix, we need a lazy way to call
the substr member of std::string. There is no substr actor currently available in
Phoenix, so we need to roll out our own:

Listing 7.27: User defined actors and STL actors

 1 #include <vector>
 2 #include <string>
 3 #include <iostream>
 4 #include <algorithm>
 5 #include <boost/phoenix/core.hpp>
 6 #include <boost/phoenix/function.hpp>
 7 #include <boost/phoenix/operator.hpp>
 8 #include <boost/phoenix/stl/container.hpp>
 9 #include <boost/phoenix/stl/algorithm.hpp>
10
11 struct substr_impl {
12 template<typename C, typename F1, typename F2>
13 struct result {
14 typedef C type;
15 };
16
17 template<typename C, typename F1, typename F2>
18 C operator()(const C& c, const F1& offset,
19 const F2& length) const
20 { return c.substr(offset, length); }
21 };
22
23 int main() {
24 namespace phx = boost::phoenix;
25 using phx::arg_names::arg1;
26
27 std::vector<std::string> names{"Pete Townshend",
28 "Roger Daltrey", "Keith Moon", "John Entwistle"};
29 phx::function<substr_impl> const substr = substr_impl();
30

Higher Order and Compile-time Programming

[296]

31 std::for_each(names.begin(), names.end(), std::cout <<
32 substr(arg1, 0, phx::find(arg1, ' ')
33 - phx::begin(arg1))
34 << '\n');
35 }

We write the substr_impl functor, which has a member template operator() (line
17) and a metafunction called result (line 12). The operator() is a template used to
make substr_impl polymorphic. Any type C with a member function called substr,
which takes two parameters of type F1 and F2 (which may or may not be of different
types) can be covered by this single implementation (lines 17-20). The embedded type
in the result metafunction is the return type of the wrapped function (substr). The
actual substr actor is an instance of type boost::phoenix::function<substr_
impl> (line 29). We use the substr actor, we just defined, to generate a unary functor,
which we pass to the std::for_each algorithm (lines 32-33). Since we want to extract
the first name from each string in the names vector, the first argument is arg1 (the
name passed to the functor), the second offset argument is 0, while the third length
argument is the offset of the first space character in the string. The third argument
is calculated lazily as the expression boost::phoenix::find(arg1, ' ') –
boost::phoenix::begin(arg1). The find(arg1, ' ') is an actor that looks up the
first space in the string passed to it using the generic find actor from Phoenix that we
also used in listing 7.26. The begin(arg1) is an actor that returns the begin iterator of
its argument (in this case the string). The difference between them returns the length
of the first name.

Boost Spirit Parser Framework
Boost Spirit is a very popular DSEL used for generating lexers and parsers, which
uses Boost Phoenix. Writing custom lexers and parsers used to be heavily reliant on
specialized tools like lex/flex, yacc/bison, and ANTLR that generated C or C++ code
from a language neutral specification in the Extended Backus-Naur Form (EBNF).
Spirit eliminates the need for creating such a specification outside the language, and
for tools to translate from such specifications. It defines a declarative DSEL with
intuitive syntax in C++ and uses only the C++ compiler to generate parsers. Spirit
makes heavy use of template metaprogramming, resulting in slower compile times
but generates parsers that are efficient at runtime.

Spirit is a rich framework that includes Spirit Lex – a lexer, Spirit Qi – a parser,
and Spirit Karma – a generat. You can use these separately, or use them all in
collaboration to build powerful data translation engines.

Chapter 7

[297]

In this book we only look at Spirit Qi. It is used primarily to parse text data
according to some specified grammar that the data is supposed to obey, with
the following objectives:

• Verifying that the input conforms to the grammar
• Decomposing a conforming input into meaningful semantic components

For example, we can parse some input text to verify whether it is a valid timestamp,
and if it is, extract the components of the timestamp, such as year, month, day, hours,
minutes, and so on. For this, we need to define a grammar for the timestamp, and we
need to define the actions to be taken, as we parse the data in terms of its semantic
constituents. Let us see a concrete example.

Using Spirit Qi
Spirit provides predefined parsers, which can be combined using parser operators
defined by Spirit, to define a parser for our needs. Once defined, we can store the
parser or its components as rules that can be combined with other rules. Or we can
directly pass it to a Qi parsing API, such as parse or phrase_parse, along with the
input to parse.

Predefined parsers
Qi provides a number of predefined parsers that can be used to parse basic pieces of
data. The parsers are available or aliased under the namespace boost::spirit::qi.
Here is a listing of these parsers with their purpose:

Input class Parsers Purpose
Integers int_, uint_, short_, ushort_,

long_, ulong_, long_long,
ulong_long

Parse signed and unsigned
integers

Real numbers float_, double_, long_double Parse real numbers with
decimal points

Boolean bool_, true_, false_ Parse either or both the
strings, true and false

Characters char_, alpha, lower, upper,
digit, xdigit, alnum,
space, blank,
punct, cntrl, graph, print

Parse characters of different
classes, like letters, digits,
hexadecimal digits,
punctuation, etc.

Strings String Parse specific strings

Higher Order and Compile-time Programming

[298]

The parsers listed in the preceding table are predefined objects rather than types.
There are generic parser templates corresponding to each of these parsers. For
example, the template boost::spirit::qi::int_parser can be used to define
custom parsers for signed integers. There are many other templates, including
boost::spirit::qi::uint_parser, boost::spirit::qi::bool_parser, and so on.

The parsing API
Qi provides two function templates, parse and phrase_parse, that are used to
parse text input. Each takes a pair of iterators that define the input range and a
parser expression. In addition, phrase_parse takes a second parser expression that
is used to match and skip whitespace. The following short example shows you the
essence of using Spirit:

Listing 7.28: A simple Spirit example

 1 #include <boost/spirit/include/qi.hpp>
 2 #include <cassert>
 3 namespace qi = boost::spirit::qi;
 4
 5 int main()
 6 {
 7 std::string str = "Hello, world!";
 8
 9 auto iter = str.begin();
10 bool success = qi::parse(iter, str.end(), qi::alpha);
11
12 assert(!success);
13 assert(iter - str.begin() == 1);
14 }

We include the header file boost/spirit/include/qi.hpp in order to access
Spirit Qi functions, types, and objects. Our input is the string Hello, world!, and
using the predefined parser alpha, we want to enforce that the first character is a
letter from the Latin alphabet, as opposed to a digit or a punctuation symbol. For
this, we use the parse function, passing it a pair of iterators defining the input
and the alpha parser (line 10). The parse function returns true if the parser
successfully parses the input and false otherwise. The iterator to the start of the
range is incremented to point to the first unparsed character in the input. Since
the first character of Hello, world! is H, the alpha parser parses it successfully,
incrementing the iter by 1 (line 13) and parse returns true (line 12). Note that
the first iterator is passed as a non-const reference to parse and is incremented by
parse; the reason we pass a copy of str.begin().

Chapter 7

[299]

Parser operators and expressions
Spirit defines a number of overloaded operators called parser operators which can
be used to compose a complex parser expression out of simpler parsers, including
the predefined ones. The following table summarizes some of these operators:

Operator Type Purpose Example
>> (Sequence
operator)

Binary, infix Two parsers
serially parse two
tokens

string("Hello") >>
string("world")

Matches Helloworld.
| (Disjunction
operator)

Binary, infix Any one of the two
parsers is able to
parse the token,
but not both

string("Hello") |
string("world")

Matches either Hello or world
but not Helloworld.

* (Kleene
operator)

Unary, prefix Parses the empty
string or one or
more matching
tokens

*string("Hello")

Matches the empty string, Hello,
HelloHello, and so on.

+ (Plus
operator)

Unary, prefix Parses one or more
matching tokens

+string("Hello")

Matches Hello, HelloHello,
and so on, but not the empty
string.

~ (Negation
operator)

Unary, prefix Parses a token that
does not match the
parser

~xdigit

Will parse any character that is
not a hexadecimal digit.

- (Optional
operator)

Unary, prefix Parses the empty
string or a single
matching token

-string("Hello")

Matches Hello or the empty
string.

- (Difference
operator)

Binary, infix P1 - P2 parses
any token that P1
can parse and P2
cannot

uint_ - ushort_

Matches any unsigned int that
is not also an unsigned short.
Matches 65540 but not 65530 on a
system with 2-byte short.

% (List
operator)

Binary, infix P1 % D splits the
input into tokens
that match P1 at
delimiters that
match D

+alnum % +(space|punct)

Splits input text strings into
alphanumeric strings, using
spaces and punctuations as
delimiters.

|| (Sequential
OR operator)

Binary, infix P1 || P2 is
equivalent to P1 |
(P1 >> P2)

string("Hello") ||
string("world")

Matches either Hello or
Helloworld but not world.

Higher Order and Compile-time Programming

[300]

Note that there is a unary operator-, which is the optional operator, and binary
operator-, which is the difference operator.

The boost::spirit::qi::parse function template does not skip any characters
whitespaces while parsing. Sometimes, it is convenient to ignore intervening spaces
between tokens while parsing, and the boost::spirit::qi::phrase_parse does
this. For example, the parser string("Hello") >> string("world") would parse
Helloworld when we use boost::spirit::qi::parse, but not Hello, world!.
But if we used phrase_parse and ignored spaces and punctuation, then it would
parse Hello, world! too.

 Listing 7.29: Using phrase_parse

 1 #include <boost/spirit/include/qi.hpp>
 2 #include <cassert>
 3 namespace qi = boost::spirit::qi;
 4
 5 int main()
 6 {
 7 std::string str = "Hello, world!";
 8
 9 auto iter = str.begin();
10 bool success = qi::parse(iter, str.end(),
11 qi::string("Hello") >> qi::string("world"));
12
13 assert(!success);
14
15 iter = str.begin();
16 success = qi::phrase_parse(iter, str.end(),
17 qi::string("Hello") >> qi::string("world"),
18 +(qi::space|qi::punct));
19
20 assert(success);
21 assert(iter - str.begin() == str.size());
22 }

Note that we pass +(space|punct) as the fourth argument to phrase_parse,
which tells it which characters to ignore; spaces and punctuation.

Chapter 7

[301]

Parsing directives
Parsing directives are modifiers that can be used to alter the behavior of parsers in
some way. For example, we can perform case-insensitive parses using the no_case
directive, as shown in the following snippet:

1 std::string str = "Hello, WORLD!";
2 iter = str.begin();
3 success = qi::phrase_parse(iter, str.end(),
4 qi::string("Hello") >>
5 qi::no_case[qi::string("world")],
6 +(qi::space|qi::punct));
7 assert(success);

The skip directive can be used to skip whitespace over a section of the input:

 1 std::string str = "Hello world";
 2 auto iter = str.begin();
 3 bool success = qi::parse(iter, str.end(),
 4 qi::skip(qi::space)[qi::string("Hello") >>
 5 qi::string("world")]);
 6 assert(success);

The directive qi::skip(qi::space)[parser] ignores spaces even though we called
parse and not phrase_parse. It can be selectively applied to parser sub-expressions.

Semantic actions
More often than not, while using Spirit, we are not just looking to verify that a piece
of text conforms to a certain grammar; we want to extract the tokens and perhaps use
them in some kind of calculation or store them away. We can associate some action
to a parser instance to be run when it successfully parses text, and this action can
perform the necessary computation using the result of the parse. Such actions are
defined using a function object enclosed in square brackets, trailing the parser it is
associated with.

Listing 7.30: Defining actions associated with parsers

 1 #include <boost/spirit/include/qi.hpp>
 2 #include <iostream>
 3 namespace qi = boost::spirit::qi;
 4
 5 void print(unsigned int n) {

Higher Order and Compile-time Programming

[302]

 6 std::cout << n << '\n';
 7 }
 8
 9 int main() {
10 std::string str = "10 20 30 40 50 60";
11
12 auto iter = str.begin();
13 bool success = qi::phrase_parse(iter, str.end(),
14 +qi::uint_[print],
15 qi::space);
16 assert(success);
17 assert(iter == str.end());
18 }

In the preceding example, we parse a list of unsigned integers separated by spaces
(line 10) using the uint_ parser (line 14). We define a function print (line 5) to print
unsigned integers and associate it as an action with the uint_ parser (line 14). For
each unsigned integer parsed, the preceding code prints it on a new line by invoking
the specified action. Actions can also be specified using functors, including those
generated by Boost Bind and Boost Phoenix.

Each parser, from the primitive to the most complex, has an associated attribute,
which is set to the result of a successful parse, that is, the text it matches when it is
applied to some input converted to the appropriate type. For a simple parser like
uint_, this attribute would be of type unsigned int. For complex parsers, this
could be an ordered tuple of attributes of its constituent parsers. When an action
associated with a parser is invoked, it is passed the value of the parser's attribute.

The expression +qi::uint_[print] associates the print function with the uint_
parser. If instead we wanted to associate an action with the composite parser
+qi::uint_, then we would need to use a function with a different signature—one
with a parameter of type std::vector<unsigned int> that would contain all the
parsed numbers:

 1 #include <vector>
 2
 3 void printv(std::vector<unsigned int> vn)
 4 {
 5 for (const int& n: vn) {
 6 std::cout << n << '\n';

Chapter 7

[303]

 7 }
 8 }
 9
10 int main() {
11 std::string str = "10 20 30 40 50 60";
12
13 auto iter = str.begin();
14 bool success = qi::phrase_parse(iter, str.end(),
15 (+qi::uint_)[printv],
16 qi::space);
17 }

We can use Boost Bind expressions and Phoenix actors too for generating the action.
Thus, we could have written +qi::uint_[boost::bind(print, ::_1)] to call
print on each parsed number. The placeholders ::_1 through ::_9 are defined
by the Boost Bind library in the global namespace. Spirit provides Phoenix actors
that can be used for a variety of actions. The following snippet shows a way to add
parsed numbers into a vector:

 1 #include <boost/spirit/include/qi.hpp>
 2 #include <boost/spirit/include/phoenix_core.hpp>
 3 #include <boost/spirit/include/phoenix_operator.hpp>
 4 #include <boost/spirit/include/phoenix_stl.hpp>
 5
 6 int main() {
 7 using boost::phoenix::push_back;
 8
 9 std::string str = "10 20 30 40 50 60";
10 std::vector<unsigned int> vec;
11 auto iter = str.begin();
12 bool status = qi::phrase_parse(iter, str.end(),
13 +qi::uint_[push_back(boost::phoenix::ref(vec),
14 qi::_1)],
15 qi::space);
16 }

The action expression push_back(boost::phoenix::ref(vec), qi::_1) uses the
boost::phoenix::push_back actor to append each parsed number (represented by
the placeholder qi::_1) to the vector vec.

Higher Order and Compile-time Programming

[304]

There are overloads of the parse and phrase_parse function templates that take
an attribute argument in which you can directly store the data parsed by the parser.
Thus, we can pass a vector of unsigned ints as the attribute argument, while
parsing the list of unsigned integers:

std::vector<unsigned int> result;
bool success = qi::phrase_parse(iter, str.end(),
 +qi::uint_, result,
 qi::space);
for (int n: result) {
 std::cout << n << '\n';
}

Rules
So far, we have generated parsers using inline expressions. When dealing with more
complex parsers, it is useful to cache the components and reuse them. For this purpose,
we use the boost::spirit::qi::rule template. The rule template takes up to four
arguments of which the first, that is, the iterator type for the input, is mandatory. Thus,
we can cache a parser that parses spaces in std::string objects, as shown here:

qi::rule<std::string::iterator> space_rule = qi::space;

Notice that space_rule, defined as above, is a parser that follows the same
grammar as qi::space.

More often than not, we are interested in consuming the value parsed by the
parser. To define a rule containing such a parser, we need to specify the signature
of a method that would be used to obtain the parsed value. For example, the
boost::spirit::qi::double_ parser's attribute is of type double. So, we consider
a function taking no arguments and returning a double as the appropriate signature
double() to use. This signature is passed as the second template argument to the rule:

qi::rule<std::string::iterator, double()> double_rule =
 qi::double_;

If the rule is meant to skip spaces, we specify the type of parser that is used to
identify the characters to skip as the third template argument to rule. Thus, to
define a parser for a list of doubles separated by spaces, we can use the following
rule with qi::space_type, specifying the type of the space parser:

qi::rule<std::string::iterator, std::vector<double>(),
 qi::space_type> doubles_p = +qi::double_;

Chapter 7

[305]

When a rule is defined in terms of a combination of parsers, the value parsed by the
rule is synthesized from the values parsed by the individual component parsers.
This is called the synthesized attribute of the rule. The signature argument to the
rule template should be compatible with the type of the synthesized attribute. For
example, the parser +qi::double_ returns a sequence of doubles, and therefore,
the type of the synthesized attribute is std::vector<std::double>:

qi::rule<std::string::iterator, std::vector<double>(),
 qi::space_type> doubles_p;
doubles_p %= +qi::double_;

Notice that we assign the parser to the rule on a separate line, using operator %=.
If we did not use the %= operator and used the plain assignment operator instead,
then the result of a successful parse using +qi::double_ would not be propagated
to the synthesized attribute of doubles_p. Thanks to the %= operator, we can
associate a semantic action with doubles_p to access its synthesized value as a
std::vector<double>, as shown in the following example:

std::string nums = "0.207879576 0.577215 2.7182818 3.14159259";
std::vector<double> result;
qi::phrase_parse(iter1, iter2,
 doubles_p[boost::phoenix::ref(result) == qi::_1],
 qi::space);

Parsing timestamps
Consider timestamps of the form YYYY-mm-DD HH:MM:SS.ff, in which the
date part is mandatory and the time part is optional. Moreover, the seconds and
fractional seconds part of the time are also optional. We need to define a suitable
parser expression.

The first thing we require is a way to define parsers for fixed-length unsigned integers.
The boost::spirit::qi::int_parser template comes in handy for this purpose.
Using template parameters of int_parser, we specify the base integral type to use,
the radix or base of the number system, and the minimum and maximum number of
digits to allow. Thus, for 4-digit years, we can use a parser type int_parser<unsigned
short, 10, 4, 4>, both the minimum and maximum width being 4, as we need
fixed-length integers. The following are the rules constructed using int_parser:

#include <boost/spirit/include/qi.hpp>

namespace qi = boost::spirit::qi;

qi::int_parser<unsigned short, 10, 4, 4> year_p;

Higher Order and Compile-time Programming

[306]

qi::int_parser<unsigned short, 10, 2, 2> month_p, day_p, hour_p,
 min_p, sec_p;
qi::rule<std::string::iterator> date_p =
 year_p >> qi::char_('-') >> month_p >> qi::char_('-') >> day_p;

qi::rule<std::string::iterator> seconds_p =
 sec_p >> -(qi::char_('.') >> qi::ushort_);

qi::rule<std::string::iterator> time_p =
 hour_p >> qi::char_(':') >> min_p
 >> -(qi::char_(':') >> seconds_p);

qi::rule<std::string::iterator> timestamp_p = date_p >> -
 (qi::space >> time_p);

Of course, we need to define actions to capture the components of the timestamp.
For simplicity, we will associate actions with the component parsers. We will define
a type to represent timestamps and associate actions with parsers to set attributes
of an instance of this type.

Listing 7.31: Simple date and time parser

1 #include <boost/spirit/include/qi.hpp>
 2 #include <boost/bind.hpp>
 3 #include <cassert>
 4 namespace qi = boost::spirit::qi;
 5
 6 struct timestamp_t
 7 {
 8 void setYear(short val) { year = val; }
 9 unsigned short getYear() { return year; }
10 // Other getters / setters
11
12 private:
13 unsigned short year, month, day,
14 hours, minutes, seconds, fractions;
15 };
16
17 timestamp_t parseTimeStamp(std::string input)
18 {

Chapter 7

[307]

19 timestamp_t ts;
20
21 qi::int_parser<unsigned short, 10, 4, 4> year_p;
22 qi::int_parser<unsigned short, 10, 2, 2> month_p, day_p,
23 hour_p, min_p, sec_p;
24 qi::rule<std::string::iterator> date_p =
25 year_p [boost::bind(×tamp_t::setYear, &ts, ::_1)]
26 >> qi::char_('-')
27 >> month_p [boost::bind(×tamp_t::setMonth, &ts, ::_1)]
28 >> qi::char_('-')
29 >> day_p [boost::bind(×tamp_t::setDay, &ts, ::_1)];
30
31 qi::rule<std::string::iterator> seconds_p =
32 sec_p [boost::bind(×tamp_t::setSeconds, &ts, ::_1)]
33 >> -(qi::char_('.')
34 >> qi::ushort_
35 [boost::bind(×tamp_t::setFractions, &ts, ::_1)]);
36
37 qi::rule<std::string::iterator> time_p =
38 hour_p [boost::bind(×tamp_t::setHours, &ts, ::_1)]
39 >> qi::char_(':')
40 >> min_p [boost::bind(×tamp_t::setMinutes, &ts, ::_1)]
41 >> -(qi::char_(':') >> seconds_p);
42
43 qi::rule<std::string::iterator> timestamp_p = date_p >> -
44 (qi::space >> time_p);
45 auto iterator = input.begin();
46 bool success = qi::phrase_parse(iterator, input.end(),
47 timestamp_p, qi::space);
48 assert(success);
49
50 return ts;
51 }

The timestamp_t type (line 6) represents a timestamp, with getters and setters for
each of its fields. We have omitted most of the getters and setters for conciseness. We
define actions associated with parsers for individual fields of the timestamp, setting
appropriate attributes of a timestamp_t instance using boost::bind (lines 25, 27,
29, 32, 35, 38, 40).

Higher Order and Compile-time Programming

[308]

Self-test questions
For multiple choice questions, choose all the options that apply:

1. Which of the following overloads/specializations does the call foo(1.0,
std::string("Hello")) resolve to?
a. template <typename T, typename U> foo(T, U);
b. foo(double, std::string&);
c. template <> foo<double, std::string>
d. There is ambiguity

2. What is the interface that a metafunction must satisfy?
a. It must have a static value field
b. It must have an embedded type called type
c. It must have a static type field
d. It must have an embedded type called result

3. What does the following statement do: boost::mpl::or_<boost::is_
floating_point<T>, boost::is_signed<T>>?
a. Checks whether type T is signed and a floating point type
b. Generates a metafunction that checks (a)
c. Checks whether type T is signed or a floating point type
d. Generates a metafunction that checks (b)

4. We have a template declared as: template <typename T, typename
Enable = void> class Bar and does not use the Enable parameter in
any way. How do you declare a partial specialization of Bar that would be
instantiated only when T is a non-POD type?
a. template <T> class Bar<T, boost::is_non_pod<T>>
b. template <T> class Bar<T, boost::enable_if<is_non_
pod<T>>::type>

c. template <T> class Bar<T, boost::mpl::not<boost::is_pod<T>>>
d. template <T> class Bar<T, boost::disable_if<is_pod<T>>::type>

Chapter 7

[309]

5. Which of the following is true of C++ lambda expressions and Boost
Phoenix actors?

a. Lambda expressions are unnamed, Phoenix actors are not
b. Phoenix actors are polymorphic, while polymorphic lambda expressions
are only available from C++14
c. Phoenix actors can be partially applied, while lambda expressions cannot
d. Lambda expressions can be used as closures but Phoenix actors cannot

Summary
This chapter was an interlude in our exploration of the Boost libraries. There were
two key underlying themes: more expressive code and faster code. We saw how
higher order programming helps us achieve more expressive syntaxes using functors
and operator overloading. We saw how template metaprogramming techniques
allow us to write code that executes at compile time and chooses the most optimal
implementations for the task at hand.

We covered a diverse amount of material in a single chapter and introduced a
paradigm of programming that may be new to some of you. We solved a few
problems with different functional patterns and saw the power of C++ functors,
templates, and operator overloading put together. Understanding the subject of
this chapter will be of immediate help if you are reading the implementation of
most Boost libraries or trying to write a fast general purpose library that is efficient,
expressive, and extensible.

There is a lot that we did not cover in this chapter and do not cover in this book,
including many, but the most basic details of Boost Spirit, a DSEL construction kit,
Boost Proto; an expression template-based fast regular expression library, Boost
Xpressive; and a more advanced tuple library, Boost Fusion. Hopefully, this chapter
gives you enough of a head start to explore them further. Starting with the next
chapter, where we cover Boost libraries for date and time calculations, we switch
gears to focus on systems programming libraries in Boost.

References
• C++ Common Knowledge, Stephen C. Dewhurst, Addison Wesley Professional
• Modern C++ Design, Andrei Alexandrescu, Addison Wesley Professional
• C++ Template Metaprogramming, David Abrahams and Aleksey Gurtovoy,

Addison Wesley Professional

Higher Order and Compile-time Programming

[310]

• Proto: http://web.archive.org/web/20120906070131/http://cpp-
next.com/archive/2011/01/expressive-c-expression-optimization/

• Boost Xpressive FTW: http://ericniebler.com/2010/09/27/boost-
xpressive-ftw/

• Fusion: www.boost.org/libs/fusion

http://web.archive.org/web/20120906070131/http://cpp-next.com/archive/2011/01/expressive-c-expression-optimization/
http://web.archive.org/web/20120906070131/http://cpp-next.com/archive/2011/01/expressive-c-expression-optimization/
http://ericniebler.com/2010/09/27/boost-xpressive-ftw/
http://ericniebler.com/2010/09/27/boost-xpressive-ftw/
www.boost.org/libs/fusion

[311]

Date and Time Libraries
This is a short chapter that shows you how to use different Boost libraries for
performing basic date and time calculations. Most practical software use date and time
measurements in some form. Applications compute current date and time to produce
chronological logs of application activity. Specialized programs compute schedules for
jobs based on complex scheduling policies, and wait for specific points in time, or time
intervals to elapse. Sometimes, applications even monitor their own performance and
speed of execution, taking remedial steps as needed or raising notifications.

In this chapter, we look at Boost libraries for performing date and time calculations,
and measuring code performance. These topics are divided into the following sections:

• Date and time calculations with Boost Date Time
• Using Boost Chrono to measure time
• Measuring program performance using Boost Timer

Date and time calculations with Boost
Date Time
Date and time calculations are important in many software applications, yet C++03
had limited support for manipulating dates and performing calculations with them.
The Boost Date Time library provides a set of intuitive interfaces for representing
dates, timestamps, durations, and time intervals. By allowing simple arithmetic
operations involving dates, timestamps, durations, and supplementing them with a
set of useful date/time algorithms, it enables fairly sophisticated time and calendar
calculations using little code.

Date and Time Libraries

[312]

Dates from the Gregorian calendar
The Gregorian calendar, also known as the Christian calendar, was introduced by
Pope Gregory XIII in February 1582 and over the next few centuries, replaced the
Julian calendar in the vast majority of the western world. The Date_Time library
provides a set of types for representing dates and related quantities:

• boost::gregorian::date: We use this type to represent a date in the
Gregorian calendar.

• boost::gregorian::date_duration: In addition to dates, we also
need to represent durations—the length of time between two given
dates in the calendar—in the unit of days. For this, we use the type
boost::gregorian::date_duration. It refers to the same type as
boost::gregorian::days.

• boost::date_period: A fixed date period of the calendar starting at a
given date and extending for a specific duration is represented using the
type boost::date_period.

Creating date objects
We can create objects of type boost::gregorian::date using constituent parts
of a date, namely the year, month, and day of the month. In addition, there are a
number of factory functions that parse date strings in different formats to create
objects of date. In the following example, we illustrate the different ways of
creating date objects:

Listing 8.1: Using boost::gregorian::date

 1 #include <boost/date_time.hpp>
 2 #include <iostream>
 3 #include <cassert>
 4 namespace greg = boost::gregorian;
 5
 6 int main() {
 7 greg::date d0; // default constructed, is not a date
 8 assert(d0.is_not_a_date());
 9 // Construct dates from parts
10 greg::date d1(1948, greg::Jan, 30);
11 greg::date d2(1968, greg::Apr, 4);
12
13 // Construct dates from string representations
14 greg::date dw1 = greg::from_uk_string("15/10/1948");
15 greg::date dw2 = greg::from_simple_string("1956-10-29");
16 greg::date dw3 = greg::from_undelimited_string("19670605");

Chapter 8

[313]

17 greg::date dw4 = greg::from_us_string("10-06-1973");
18
19 // Current date
20 greg::date today = greg::day_clock::local_day();
21 greg::date londonToday = greg::day_clock::universal_day();
22
23 // Take dates apart
24 std::cout << today.day_of_week() << " " << today.day() << ", "
25 << today.month() << ", " << today.year() << '\n';
26 }

A default-constructed date represents an invalid date (line 7); the is_not_a_date
member predicate returns true for such dates (line 8). We can construct dates
from its constituent parts: year, month, and day. Months can be indicated using
enum values named Jan, Feb, Mar, Apr, May, Jun, Jul, Aug, Sep, Oct, Nov, and Dec,
which are abbreviated English names of the months of the year. Using special
factory functions, dates can be constructed from other standard representations.
We use the boost::gregorian::from_uk_string function to construct a date
object from a string in the DD/MM/YYYY format, which is standard in UK (line
14). The boost::gregorian::from_us_string function is used to construct
a date from a string in the MM/DD/YYYY format used in the US (line 17).
The function boost::gregorian::from_simple_string is used to construct
a date from a string in the ISO 8601 YYYY-MM-DD format (line 15), and its
undelimited form YYYYMMDD can be converted into a date object, using the
boost::gregorian::from_undelimited_string function (line 16).

Clocks provide a way to retrieve the current date and time on a system. Boost provides
a couple of clocks for this purpose. The day_clock type provides the local_day (line
20) and universal_day (line 21) functions, which return the current date in the local
and UTC time zones, which could be same or differ by a day, depending on the time
zone and time of the day.

Using convenient accessor member functions like day, month, year, and day_of_week,
we can get at parts of a date (lines 24-25).

The Date_Time library is not a header-only library, and in order to run
examples in this section, they must be linked to the libboost_date_
time library. On Unix, with g++, you can use the following command
line to compile and link examples involving Boost Date Time:
$ g++ example.cpp -o example -lboost_date_time

See Chapter 1, Introducing Boost, for more details.

Date and Time Libraries

[314]

Handling date durations
The duration of time between two dates is represented by boost::gregorian::date_
duration. In the following example, we compute time durations between dates, and
add durations to dates or subtract durations from dates to derive new dates:

Listing 8.2: Basic date arithmetic

 1 #include <boost/date_time.hpp>
 2 #include <iostream>
 3 namespace greg = boost::gregorian;
 4
 5 int main() {
 6 greg::date d1(1948, greg::Jan, 30);
 7 greg::date d2(1968, greg::Apr, 4);
 8
 9 greg::date_duration day_diff = d2 - d1;
10 std::cout << day_diff.days()
11 << " days between the two dates\n";
12
13 greg::date six_weeks_post_d1 = d1 + greg::weeks(6);
14 std::cout << six_weeks_post_d1 << '\n';
15
16 greg::date day_before_d2 = d2 - greg::days(1);
17 std::cout << day_before_d2 << '\n';
18 }

We compute durations (which can be negative) as the difference of two
dates (line 9), and print it in the unit of days (line 10). The date_duration
object internally represents durations in unit of days. We can also use the
types boost::gregorian::weeks, boost::gregorian::months, and
boost::gregorian::years to construct date_duration objects in units
of weeks, months, or years. Note that boost::gregorian::days and
boost::gregorian::date_duration refer to the same types. We get new
dates by adding durations to or subtracting them from dates (lines 13, 16).

Date periods
A period starting at a fixed date is represented by the type boost::gregorian::
date_period. In the following example, we construct two date periods, a calendar
year, and a US fiscal year. We calculate their overlap period, and then determine the
date of the last Friday of each month in the overlapping period.

Chapter 8

[315]

Listing 8.3: Date periods and calendar calculations

 1 #include <boost/date_time.hpp>
 2 #include <iostream>
 3 namespace greg = boost::gregorian;
 4 namespace dt = boost::date_time;
 5
 6 int main() {
 7 greg::date startCal(2015, greg::Jan, 1);
 8 greg::date endCal(2015, greg::Dec, 31);
 9
10 greg::date startFiscal(2014, greg::Oct, 1);
11 greg::date endFiscal(2015, greg::Sep, 30);
12
13 greg::date_period cal(startCal, endCal);
14 greg::date_period fisc(startFiscal, endFiscal);
15
16 std::cout << "Fiscal year begins " << fisc.begin()
17 << " and ends " << fisc.end() << '\n';
18
19 if (cal.intersects(fisc)) {
20 auto overlap = cal.intersection(fisc);
21 greg::month_iterator miter(overlap.begin());
22
23 while (*miter < overlap.end()) {
24 greg::last_day_of_the_week_in_month
25 last_weekday(greg::Friday, miter->month());
26 std::cout << last_weekday.get_date(miter->year())
27 << '\n';
28 ++miter;
29 }
30 }
31 }

We define date periods in terms of a start and an end date (lines 13, 14). We can check
whether two periods overlap using the intersects member function of date_period
(line 19), and obtain the overlap period using the intersection member function
(line 20). We iterate over a period by creating a month_iterator at the start date
(line 21) and iterating till the end date (line 23) using the preincrement operator (line
28). There are different kinds of iterators with different periods of iteration. We use
boost::gregorian::month_iterator to iterate over successive months in the period.
The month_iterator advances the date by a month, each time it is incremented. You
can also use other iterators like year_iterator, week_iterator, and day_iterator,
which increment the iterator by a year, a week, or a day at a time.

Date and Time Libraries

[316]

For each month in the period, we want to find the date of the last Friday in that
month. The Date Time library has some interesting algorithm classes for calendar
calculations of this sort. We use the boost::gregorian::last_day_of_the_week_
in_month algorithm for performing such calculations as the date of the last Friday of a
month. We construct an object of last_day_of_the_week_in_month, the constructor
arguments being the day of the week (Friday) and the month (lines 24, 25). We then
call its get_date member function, passing to it the particular year for which we want
the date (line 26).

Posix time
The Date_Time library also provides a set of types for representing time points,
durations, and periods.

• boost::posix_time::ptime: A specific point in time, or a time point,
is represented by the type boost::posix_time::ptime.

• boost::posix_time::time_duration: Like date durations, the length
of time between two time points is called a time duration and is
represented by the type boost::posix_time::time_duration.

• boost::posix_time::time_period: A fixed interval starting at a specific
time point and ending at another is called a time period and is represented
by the type boost::posix_time::time_period.

These types and the operations on them together define a time system. Posix Time
uses boost::gregorian::date to represent the date part of time points.

Constructing time points and durations
We can create an instance of boost::posix_time::ptime from its constituent parts,
that is, date, hours, minutes, seconds, and so on or use factory functions that parse
timestamp strings. In the following example, we show different ways in which we
can create ptime objects:

Listing 8.4: Using boost::posix_time

 1 #include <boost/date_time.hpp>
 2 #include <iostream>
 3 #include <cassert>
 4 #include <ctime>
 5 namespace greg = boost::gregorian;
 6 namespace pt = boost::posix_time;
 7
 8 int main() {
 9 pt::ptime pt; // default constructed, is not a time

Chapter 8

[317]

10 assert(pt.is_not_a_date_time());
11
12 // Get current time
13 pt::ptime now1 = pt::second_clock::universal_time();
14 pt::ptime now2 = pt::from_time_t(std::time(0));
15
16 // Construct from strings
17 // Create time points using durations
18 pt::ptime pt1(greg::day_clock::universal_day(),
19 pt::hours(10) + pt::minutes(42)
20 + pt::seconds(20) + pt::microseconds(30));
21 std::cout << pt1 << '\n';
22
23 // Compute durations
24 pt::time_duration dur = now1 - pt1;
25 std::cout << dur << '\n';
26 std::cout << dur.total_microseconds() << '\n';
27
28 pt::ptime pt2(greg::day_clock::universal_day()),
29 pt3 = pt::time_from_string("2015-01-28 10:00:31.83"),
30 pt4 = pt::from_iso_string("20150128T151200");
31
32 std::cout << pt2 << '\n' << to_iso_string(pt3) << '\n'
33 << to_simple_string(pt4) << '\n';
34 }

Just as with date objects, a default-constructed ptime object (line 9) is not a valid time
point (line 10). There are clocks that can be used to derive the current time of the day,
for example, second_clock and microsec_clock, which give the time with second
or microsecond units. Calling the local_time and universal_time functions (line
13) on these clocks returns the current date and time in the local and UTC time zones
respectively.

The from_time_t factory function is passed the Unix time, which is the number of
seconds elapsed since the Unix epoch (January 1, 1970 00:00:00 UTC), and constructs
a ptime object representing that point in time (line 14). The C library function time,
when passed 0, returns the current Unix time in UTC time zone.

The duration between two time points, which can be negative, is computed as the
difference between two time points (line 24). It can be streamed to an output stream for
printing the duration, by default, in terms of hours, minutes, seconds, and fractional
seconds. Using accessor functions hours, minutes, seconds, and fractional_
seconds, we can get the relevant parts of a duration. Or we can convert the entire
duration to a second or subsecond unit using the accessors total_seconds, total_
milliseconds, total_microseconds, and total_nanoseconds (line 26).

Date and Time Libraries

[318]

We can create a ptime object from a Gregorian date and a duration of type
boost::posix_time::time_duration (lines 18-20). We can use the shim types
hours, minutes, seconds, microseconds, and so on in the boost::posix_time
namespace to generate durations of type boost::posix_time::time_duration
in appropriate units and combine them using operator+.

We can construct a ptime object from just a boost::gregorian::date object (line 28).
This represents the time at midnight on the given date. We can use factory functions
to create ptime objects from different string representations (lines 29-30). The function
time_from_string is used to construct an instance of ptime from a timestamp
string in "YYYY-MM-DD hh:mm:ss.xxx…" format, in which the date and time parts
are separated by a whitespace (line 29). The function from_iso_string is used to
construct a ptime instance from a non-delimited string in the "YYYYMMDDThhmmss.
xxx…" format, where an uppercase T separates the date and time parts (line 30). In
both cases, the minutes, seconds, and fractional seconds are optional and are taken to
be zero if not specified. The fractional seconds can follow the seconds, separated by a
decimal point. These formats are locale dependent. For example, in several European
locales, a comma is used instead of the decimal point.

We can stream ptime objects to output streams like std::cout (line 32). We can also
convert ptime instances to string using conversion functions like to_simple_string
and to_iso_string (lines 32-33). In English locales, the to_simple_string function
converts it to the "YYYY-MM-DD hh:mm:ss.xxx…" format. Notice that this is the same
format expected by time_from_string and is also the format used when ptime is
streamed. The to_iso_string function converts it to the "YYYYMMDDThhmmss.
xxx…" format, same as that expected by from_iso_string.

Resolution
The smallest duration that can be represented using a time system is called its
resolution. The precision with which time can be represented on a particular system,
and therefore, the number of digits of the fractional seconds that are significant,
depends on the resolution of the time system. The default resolution used by Posix
Time is microsecond (10-6 seconds), that is, it cannot represent durations shorter than
a microsecond and therefore cannot differentiate between two time points less than a
microsecond apart. The following example demonstrates how to obtain and interpret
the resolution of a time system:

Listing 8.5: Time ticks and resolution

 1 #include <boost/date_time.hpp>
 2 #include <iostream>
 3 namespace pt = boost::posix_time;
 4 namespace dt = boost::date_time;

Chapter 8

[319]

 5
 6 int main() {
 7 switch (pt::time_duration::resolution()) {
 8 case dt::time_resolutions::sec:
 9 std::cout << " second\n";
10 break;
11 case dt::time_resolutions::tenth:
12 std::cout << " tenth\n";
13 break;
14 case dt::time_resolutions::hundredth:
15 std::cout << " hundredth\n";
16 break;
17 case dt::time_resolutions::milli:
18 std::cout << " milli\n";
19 break;
20 case dt::time_resolutions::ten_thousandth:
21 std::cout << " ten_thousandth\n";
22 break;
23 case dt::time_resolutions::micro:
24 std::cout << " micro\n";
25 break;
26 case dt::time_resolutions::nano:
27 std::cout << " nano\n";
28 break;
29 default:
30 std::cout << " unknown\n";
31 break;
32 }
33 std::cout << pt::time_duration::num_fractional_digits()
34 << '\n';
35 std::cout << pt::time_duration::ticks_per_second()
36 << '\n';
37 }

The resolution static function of the time_duration class returns the resolution
as an enumerated constant (line 7); we interpret this enum and print a string to
indicate the resolution (lines 7-32).

The num_fractional_digits static function returns the number of significant
digits of the fractional second (line 33); on a system with microsecond resolution,
this would be 6, and on a system with nanosecond resolution, this would be 9. The
ticks_per_second static function converts 1 second to the smallest representable
time unit on the system (line 35); on a system with microsecond resolution, this
would be 106, and on a system with nanosecond resolution, this would be 109.

Date and Time Libraries

[320]

Time periods
Just as with dates, we can represent fixed time periods using boost::posix_
time::time_period. Here is a short example that shows how you can create time
periods and compare different time periods:

Listing 8.6: Using time periods

 1 #include <boost/date_time.hpp>
 2 #include <iostream>
 3 #include <cassert>
 4 namespace greg = boost::gregorian;
 5 namespace pt = boost::posix_time;
 6
 7 int main()
 8 {
 9 // Get current time
10 pt::ptime now1 = pt::second_clock::local_time();
11 pt::time_period starts_now(now1, pt::hours(2));
12
13 assert(starts_now.length() == pt::hours(2));
14
15 auto later1 = now1 + pt::hours(1);
16 pt::time_period starts_in_1(later1, pt::hours(3));
17
18 assert(starts_in_1.length() == pt::hours(3));
19
20 auto later2 = now1 + pt::hours(3);
21 pt::time_period starts_in_3(later2, pt::hours(1));
22
23 assert(starts_in_3.length() == pt::hours(1));
24
26 std::cout << "starts_in_1 starts at " << starts_in_1.begin()
27 << " and ends at " << starts_in_1.last() << '\n';
28
29 // comparing time periods
30 // non-overlapping
31 assert(starts_now < starts_in_3);
32 assert(!starts_now.intersects(starts_in_3));
33
34 // overlapping
35 assert(starts_now.intersects(starts_in_1));
36
37 assert(starts_in_1.contains(starts_in_3));
38 }

Chapter 8

[321]

We create a time period called starts_now that starts at the current instant and
extends for 2 hours into the future. For this, we use the two-argument constructor
of time_period, passing it the current timestamp and a duration of 2 hours (line 11).
Using the length member function of time_period, we verify that the length of the
period is indeed 2 hours (line 13).

We create two more time periods: starts_in_1 that starts 1 hour later and extends
for a duration of 3 hours (line 16), and starts_in_3 that starts 3 hours later and
extends for 1 hour (line 20). The member functions begin and last of time_period
return the first and last time points in the period (lines 26-27).

We express the relationships between the three time periods, starts_now, starts_
in_1, and starts_in_3, using relational operators and two member functions called
intersects and contains. Clearly, the first hour of starts_in_1 overlaps with the
last hour of starts_now, so we assert that starts_now and starts_in_1 intersect
with each other (line 35). The last hour of starts_in_1 coincides with the entire
period starts_in_3, so we assert that starts_in_1 contains starts_in_3 (line 37).
But starts_now and starts_in_3 do not overlap; therefore, we assert that starts_
now and starts_in_3 do not intersect (line 32).

The relational operator< is defined such that for two time periods tp1 and tp2, the
condition tp1 < tp2 holds if and only if tp1.last() < tp2.begin(). Likewise,
operator> is defined such that the condition tp1 > tp2 holds if and only if tp1.
begin() > tp2.last(). These definitions imply that tp1 and tp2 are disjoint.
Thus, for the disjoint time_periods starts_now and starts_in_3, the relation
starts_now < starts_in_3 holds (line 31). These relations do not make sense
for overlapping time periods.

Time iterator
We can iterate over a time period using boost::posix_time::time_iterator,
not unlike how we used boost::gregorian::date_iterator. The following
example shows this:

Listing 8.7: Iterating over a time period

 1 #include <boost/date_time.hpp>
 2 #include <iostream>
 3
 4 namespace greg = boost::gregorian;
 5 namespace pt = boost::posix_time;
 6
 7 int main()
 8 {
 9 pt::ptime now = pt::second_clock::local_time();

Date and Time Libraries

[322]

10 pt::ptime start_of_day(greg::day_clock::local_day());
11
12 for (pt::time_iterator iter(start_of_day,
13 pt::hours(1)); iter < now; ++iter)
14 {
15 std::cout << *iter << '\n';
16 }
17 }

The preceding example prints the timestamp for each completed hour in the current
day. We instantiate a time_iterator (line 12), passing it the time point from where
to begin the iteration (start_of_day) and the duration added for each increment
of the iterator (1 hour). We iterate till the current time, incrementing printing the
timestamp obtained by dereferencing the iterator (line 15) and incrementing the
iterator (line 13). Notice that in the expression iter < now, we compare the iterator
with a time point to decide when to stop iteration—a peculiar property of posix_
time::time_iterator, which is not shared with other iterators.

Using Chrono to measure time
Boost Chrono is a library for time calculations having some overlapping functionality
with the Posix Time part of the Date Time library. Like Posix Time, Chrono too uses
the notion of time points and durations. Chrono does not deal with dates. It is a newer
library than Date Time, and implements the facilities proposed in a paper from the
C++ Standards Committee working group (WG21). Parts of that proposal made it
to the C++11 Standard Library as the Chrono library, and much of the discussion on
Boost Chrono also applies to Chrono Standard Library (std::chrono).

Durations
A duration represents an interval of time. The duration has a numeric magnitude
and must be expressed in units of time. The boost::chrono::duration template
is used to represent any such duration and is declared as follows:

template <typename Representation, typename Period>
class duration;

Chapter 8

[323]

The Representation type parameter identifies the underlying arithmetic type used
for the magnitude of durations. The Period type parameter identifies tick period,
which is the magnitude of one unit of time used to measure the duration. The
period is usually expressed as a ratio or fraction of 1 second, using a template called
boost::ratio.

Thus, if we want to express a duration in hundredths of seconds (centiseconds), we can
use int64_t as the underlying type, and the tick period can be represented using the
ratio (1/100) because the tick period is a hundredth of a second. Using boost::ratio,
we can specialize duration to express centisecond intervals as follows:

typedef boost::chrono::duration<int64_t, boost::ratio<1, 100>>
 centiseconds;
centiseconds cs(1000); // represents 10 seconds

We create a typedef called centiseconds and pass 1000, which is the number of
centiseconds in the duration, as a constructor argument. 1000 centiseconds amounts
to (1/100)*1000 seconds, that is, 10 seconds.

The boost::ratio template is used to construct a type representing a rational
number, that is, a ratio of two integers. We specialize ratio by passing the numerator
and denominator of our rational number as its two non-type template arguments,
in that order. The second argument defaults to 1; therefore, to express an integer,
say 100, we can simply write boost::ratio<100> instead of boost::ratio<100,
1>. The expression boost::ratio<100> does not represent a value 100 but a type
encapsulating the rational number 100.

The Chrono library already provides a set of predefined specializations of duration
for constructing durations expressed in commonly used time units. These are:

• boost::chrono::hours (tick period = boost::ratio<3600>)
• boost::chrono::minutes (tick period = boost::ratio<60>)
• boost::chrono::seconds (tick period = boost::ratio<1>)
• boost::chrono::milliseconds (tick period = boost::ratio<1, 1000>)
• boost::chrono::microseconds (tick period = boost::ratio<1,

1000000>)
• boost::chrono::nanoseconds (tick period = boost::ratio<1,

1000000000>)

Date and Time Libraries

[324]

Duration arithmetic
Durations can be added and subtracted, and durations in different units can be
combined to form other durations. Durations in larger units can be implicitly
converted to durations in smaller units. Implicit conversion from smaller to larger
units is only possible if you are using a floating point representation; with integral
representations, such conversions would incur a loss of precision. To handle this,
we must use a function akin to a casting operator for explicit conversions from
smaller to larger units with integral representations:

Listing 8.8: Using chrono durations

 1 #include <boost/chrono/chrono.hpp>
 2 #include <boost/chrono/chrono_io.hpp>
 3 #include <iostream>
 4 #include <cstdint>
 5 namespace chrono = boost::chrono;
 6
 7 int main()
 8 {
 9 chrono::duration<int64_t, boost::ratio<1, 100>> csec(10);
10 std::cout << csec.count() << '\n';
11 std::cout << csec << '\n';
12
13 chrono::seconds sec(10);
14 chrono::milliseconds sum = sec + chrono::milliseconds(20);
15 // chrono::seconds sum1 = sec + chrono::milliseconds(20);
16
17 chrono::milliseconds msec = sec;
18
19 // chrono::seconds sec2 = sum;
20 chrono::seconds sec2 =
21 chrono::duration_cast<chrono::seconds>(sum);
22 }

This example illustrates the different operations you can perform with durations.
The boost/chrono/chrono.hpp header includes most of the Boost Chrono facilities
we need (line 1). We first create a duration of 10 centiseconds (line 9). The count
member function returns the tick count of the duration, that is, the number of time
units in the duration in the chosen unit, centiseconds (line 10). We can directly
stream a duration to an output stream (line 11) but need to include the additional
header boost/chrono/chrono_io.hpp for accessing these operators (line 2).
Streaming csec prints the following:

10 centiseconds

Chapter 8

[325]

Boost Ratio provides the appropriate SI unit prefixes based on the time unit used by
the duration, and these are used to intelligently print the appropriate SI prefix. This
is not available in the C++11 Standard Library Chrono implementation.

We create second and millisecond durations using the appropriate duration
specializations, and compute their sum using an overloaded operator+ (lines 13,
14). The sum of a second and a millisecond duration is a millisecond duration.
Implicit conversion of a duration in milliseconds to a duration in a larger unit like
seconds would involve loss of precision when the representation of the larger type
is an integral type. Hence, such implicit conversions are not supported (line 15). For
example, 10 seconds + 20 milliseconds would be computed as 10020 milliseconds.
The boost:::chrono::seconds typedef uses a signed integral type representation,
and to express 10020 milliseconds in seconds, the 20 milliseconds would need to be
implicitly rounded off.

We use the duration_cast function template, akin to C++ cast operators, to perform
this conversion (lines 20-21), making the intent explicit. The duration_cast will effect
the rounding off. On the other hand, a duration in seconds can always be implicitly
converted to a duration in milliseconds, as there is no loss in precision (line 17).

The Chrono library is a separately-built library, which also depends
on Boost System library. Thus, we must link the examples in this section
to libboost_system. On Unix with g++, you can use the following
command line to compile and link examples involving Boost Chrono:
$ g++ example.cpp -o example -lboost_system -lboost_
chrono

For Boost libraries installed at nonstandard locations, refer to Chapter 1,
Introducing Boost.

If we specialized the duration to represent seconds using a double instead of a signed
integer, then things will be different. The following code will compile because the
double representation would be able to accommodate fractional parts:

boost::chrono::milliseconds millies(20);
boost::chrono::duration<double> sec(10);

boost::chrono::duration<double> sec2 = sec + millies;
std::cout << sec2 << '\n';

Date and Time Libraries

[326]

We do not cover Boost Ratio in detail in this book, but this chapter
introduces enough details needed for the purposes of dealing with
Boost Chrono. Additionally, you can get at the parts of a ratio and
print a ratio as a rational number or an SI prefix, where that makes
sense. The following code illustrates this:

#include <boost/ratio.hpp>

typedef boost::ratio<1000> kilo;

typedef boost::ratio<1, 1000> milli;

typedef boost::ratio<22, 7> not_quite_pi;

std::cout << not_quite_pi::num << "/"

 << not_quite_pi::den << '\n';

std::cout << boost::ratio_string<kilo, char>::prefix()

 << '\n';

std::cout << boost::ratio_string<milli, char>::prefix()

 << '\n';

Note how we use the ratio_string template and its prefix member
function to print SI prefixes. The code prints the following:

22/7

kilo

milli

The std::ratio template in the C++11 Standard Library
corresponds to Boost Ratio and is used by std::chrono. There is
no ratio_string in the Standard Library and therefore, SI prefix
printing is absent.

Clocks and time points
A time point is a fixed point in time as opposed to a duration. Given a time point,
we can add or subtract a duration from it to derive another time point. An epoch
is a reference time point in some time system that can be combined with durations
to define other time points. The most famous epoch is the Unix or POSIX epoch
January 1, 1970 00:00:00 UTC.

Boost Chrono provides several clocks for the purpose of measuring time in different
contexts. A clock has the following associated members:

• A typedef called duration, which represents the smallest duration that
can be expressed using the clock

Chapter 8

[327]

• A typedef called time_point, which is the type used to represent time
points for that clock

• A static member function now, which returns the current time point

Boost Chrono defines several clocks, some of which may or may not be available
on your system:

• The system_clock type represents the wall clock or system time.
• The steady_clock type represents a monotonic time system, which

means that if the now function is called twice serially, the second call will
always return a time point later than what the first call returned. This is not
guaranteed for system_clock. The steady_clock type is available if and only
if the BOOST_CHRONO_HAS_STEADY_CLOCK preprocessor macro is defined.

• The high_resolution_clock type is defined to be a steady_clock if it is
available or else it is defined to be a system_clock.

The preceding clocks are available as part of std::chrono as well. They use an
implementation-defined epoch and provide functions to convert between time_point
and Unix time (std::time_t). The following example illustrates how clocks and time
points are used:

Listing 8.9: Using chrono system_clock

 1 #include <iostream>
 2 #include <boost/chrono.hpp>
 3
 4 namespace chrono = boost::chrono;
 5
 6 int main()
 7 {
 8 typedef chrono::system_clock::period tick_period;
 9 std::cout
10 << boost::ratio_string<tick_period, char>::prefix()
11 << " seconds\n";
12 chrono::system_clock::time_point epoch;
13 chrono::system_clock::time_point now =
14 chrono::system_clock::now();
15
16 std::cout << epoch << '\n';
17 std::cout << chrono::time_point_cast<chrono::hours>(now)
18 << '\n';
19 }

Date and Time Libraries

[328]

In this example, we first print the tick period of the duration associated
with system_clock. The system_clock::period is a typedef for system_
clock::duration::period and is the boost::ratio type representing the
tick period of the duration associated with system_clock (line 8). We pass it
to boost::ratio_string, and use the prefix member function to print the
correct SI prefix (lines 9-10).

It constructs two time points: a default-constructed time point for system_clock
that represents the epoch of the clock (line 12), and the current time returned by
the now function provided by the system_clock (lines 13-14). We then print the
epoch (line 16), followed by the current time (line 17). Time points are printed as
the number of time units since the epoch. Note that we use the time_point_cast
function to convert the current time to hours since the epoch. The preceding code
prints the following on my system:

nanoseconds
0 nanoseconds since Jan 1, 1970
395219 hours since Jan 1, 1970

Boost Chrono also provides the following clocks, none of which are available as
part of the C++ Standard Library Chrono:

• The process_real_cpu_clock type for measuring the total time since a
program started.

• The process_user_cpu_clock type for measuring the time a program runs
for in the user space.

• The process_system_cpu type for measuring the time the kernel runs
some code on behalf of the program.

• The thread_clock type for measuring the total time for which a
particular thread is scheduled. This clock is available if and only if the
BOOST_CHRONO_HAS_THREAD_CLOCK preprocessor macro is defined.

The process clocks are available if and only if the BOOST_CHRONO_HAS_PROCESS_
CLOCKS preprocessor macro is defined. These clocks can be used akin to the system
clocks but their epochs are at program start-up for CPU clocks, or thread start-up
for the thread clocks.

Chapter 8

[329]

Measuring program performance using
Boost Timer
As programmers, we often need to measure performance of a section of code. While
there are several excellent profiling tools available for this purpose, sometimes, being
able to instrument our own code is both simple and more precise. The Boost Timer
library provides an easy-to-use, portable interface for measuring the execution times
and reporting them by instrumenting your code. It is a separately compiled library,
not header-only, and internally uses Boost Chrono.

cpu_timer
The boost::timer::cpu_timer class is used to measure the execution time of a
section of code. In the following example, we write a function that reads the contents
of a file and returns it in a dynamic array wrapped in a unique_ptr (see Chapter 3,
Memory Management and Exception Safety). It also calculates and prints the time taken
to read the file using cpu_timer.

Listing 8.10: Using cpu_timer

 1 #include <fstream>
 2 #include <memory>
 3 #include <boost/timer/timer.hpp>
 4 #include <string>
 5 #include <boost/filesystem.hpp>
 6 using std::ios;
 7
 8 std::unique_ptr<char[]> readFile(const std::string& file_name,
 9 std::streampos& size)
10 {
11 std::unique_ptr<char[]> buffer;
12 std::ifstream file(file_name, ios::binary);
13
14 if (file) {
15 size = boost::filesystem::file_size(file_name);
16
17 if (size > 0) {
18 buffer.reset(new char[size]);
19
20 boost::timer::cpu_timer timer;

Date and Time Libraries

[330]

21 file.read(buffer.get(), size);
22 timer.stop();
23
24 std::cerr << "file size = " << size
25 << ": time = " << timer.format();
26 }
27 }
28
29 return buffer;
30 }

We create an instance of cpu_timer at the start of the section of code (line 20),
which starts the timer. At the end of the section, we call the stop member function
on the cpu_timer object (line 22), which stops the timer. We call the format member
function to obtain a readable representation of the elapsed time and print it to the
standard error (line 25). Calling this function with a file name, prints the following
to the standard input:

file size = 1697199: 0.111945s wall, 0.000000s user + 0.060000s
system = 0.060000s CPU (53.6%)

This indicates that the call to the read member function of fstream (line 21) was
blocked for 0.111945 seconds. This is the wall clock time, that is, the total elapsed time
measured by the timer. 0.000000 seconds were spent by the CPU in user mode, and
0.060000 seconds were spent by the CPU in the kernel mode (that is, in system calls).
Note that the read happened entirely in kernel mode, which is expected, because it
involves invoking system calls (like read on Unix) to read the content of the file from
the disk. The percentage of elapsed time spent by the CPU executing this code is 53.6.
It is computed as the sum of the durations spent in user mode and in kernel mode,
divided by the total elapsed time, that is, (0.0 + 0.06)/0.111945, which is around 0.536.

Code using Boost Timer must link with libboost_timer and
libboost_system. To build examples involving Boost Timer with g++
on a POSIX system, use the following command line:
$ g++ source.cpp -o executable -std=c++11 -lboost_system
-lboost_timer

For Boost libraries installed at nonstandard locations, refer to Chapter 1,
Introducing Boost.

If we want to measure the cumulative time taken to open the file, read from it and
close the file, then we can use a single timer to measure the execution times of
multiple sections, stopping and resuming the timer as needed.

Chapter 8

[331]

The following snippet illustrates this:

12 boost::timer::cpu_timer timer;
13 file.open(file_name, ios::in|ios::binary|ios::ate);
14
15 if (file) {
16 size = file.tellg();
17
18 if (size > 0) {
19 timer.stop();
20 buffer.reset(new char[size]);
21
22 timer.resume();
23 file.seekg(0, ios::beg);
24 file.read(buffer.get(), size);
25 }
26
27 file.close();
28 }
29
30 timer.stop();
31

The resume member function is called on a stopped timer and it restarts the timer,
adding to any previous measurements. In the preceding snippet, we stop the timer
before allocating heap memory (line 19), and resume it immediately afterwards
(line 22).

There is also a start member function, which is called inside the cpu_timer
constructor to start measurements. Calling start instead of resume on a stopped
timer would wipe out any previous measurements and effectively reset the timer.
You can also check whether the timer has stopped using the is_stopped member
function, which returns true if the timer has stopped and false otherwise.

We can get at the elapsed time (wall clock time), CPU time spent in user mode,
and CPU time spent in kernel mode in nanoseconds by calling the elapsed member
function of cpu_timer:

20 file.seekg(0, ios::beg);
21 boost::timer::cpu_timer timer;
22 file.read(buffer.get(), size);
23 timer.stop();
24
25 boost::timer::cpu_times times = timer.elapsed();
26 std::cout << std::fixed << std::setprecision(8)

Date and Time Libraries

[332]

27 << times.wall / 1.0e9 << "s wall, "
28 << times.user / 1.0e9 << "s user + "
29 << times.system / 1.0e9 << "s system. "
30 << (double)100*(timer.user + timer.system)
31 / timer.wall << "% CPU\n";

The elapsed member function returns an object of type cpu_times (line 25), which
contains three fields called wall, user, and system that carry the appropriate
durations in units of nanoseconds (10-9 seconds).

auto_cpu_timer
The boost::timer::auto_cpu_timer is a subclass of cpu_timer that automatically
stops the counter at the end of its enclosing scope and writes the measured execution
time to the standard output or another output stream provided by the user. You
cannot stop and resume it. When you need to measure the execution of a section of
code till the end of a scope, you can use just one line of code using auto_cpu_timer,
as shown in the following snippet adapted from listing 8.10:

17 if (size > 0) {
18 buffer.reset(new char[size]);
19
20 file.seekg(0, ios::beg);
21
22 boost::timer::auto_cpu_timer timer;
23 file.read(buffer.get(), size);
24 }

This will print the measured execution time in the familiar format to the
standard output:

0.102563s wall, 0.000000s user + 0.040000s system = 0.040000s CPU
(39.0%)

To print it to a different output stream, we would need to pass the stream as a
constructor argument to timer.

To measure the time taken to read the file, we simply declare the auto_cpu_timer
instance before the call to read (line 22). If the call to read was not the last statement
in the scope, and we did not want to measure the execution time of what followed,
then this would not have worked. Then, we could either use cpu_timer instead of
auto_cpu_timer, or put only the statements that we are interested in a nested scope
with an auto_cpu_timer instance created at the start:

17 if (size > 0) {
18 buffer.reset(new char[size]);

Chapter 8

[333]

19
20 file.seekg(0, ios::beg);
21
22 {
23 boost::timer::auto_cpu_timer timer(std::cerr);
24 file.read(buffer.get(), size);
25 }
26 // remaining statements in scope
27 }

In the preceding example, we create a new scope (lines 22-25) to isolate the section of
code to measure, using auto_cpu_timer.

Self-test questions
For multiple choice questions, choose all options that apply:

1. Which of the following lines of code is/are not well-formed? Assume that the
symbols are from the boost::chrono namespace.
a. milliseconds ms = milliseconds(5) + microseconds(10);
b. nanoseconds ns = milliseconds(5) + microseconds(10);
c. microseconds us = milliseconds(5) + microseconds(10);
d. seconds s = minutes(5) + microseconds(10);

2. What does the type boost::chrono::duration<std::intmax_t,
boost::ratio<1, 1000000>> represent?
a. A millisecond duration with integral representation
b. A microsecond duration with integral representation
c. A millisecond duration with floating point representation
d. A nanosecond duration with integral representation

3. What are the differences between boost::timer::cpu_timer and
boost::timer::auto_cpu_timer?

a. auto_cpu_timer calls start in the constructor, cpu_timer does not
b. auto_cpu_timer cannot be stopped and resumed
c. auto_cpu_timer writes to an output stream at the end of a scope, cpu_
timer does not
d. You can extract the wall, user, and system time from cpu_timer, but not
auto_cpu_timer

Date and Time Libraries

[334]

Summary
This chapter introduced libraries for measuring time and calculating dates. This
chapter gets you up and running with the basics of date and time calculations,
without covering the intricate details about sophisticated calendar calculations,
time zone awareness, and custom and locale-specific formatting. The Boost online
documentation is an excellent source for these details.

References
• The C++ Standard Library: A Tutorial and Reference Guide (2/e), Nicolai M.

Josuttis, Addison Wesley Professional
• A Foundation to Sleep On: Howard E. Hinnant, Walter E. Brown, Jeff Garland,

and Marc Paterno (http://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2008/n2661.htm)

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2661.htm
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2661.htm

Chapter 9

[335]

Files, Directories, and
IOStreams

Programming for real-world systems requires interacting with various subsystems
of the operating system to utilize their services. Starting with this chapter, we look
at the various Boost libraries that provide programmatic access to OS subsystems.

In this chapter, we look at the Boost libraries for performing input and output,
and interacting with filesystems. We cover these libraries in the following sections
of the chapter:

• Managing files and directories with Boost Filesystem
• Extensible I/O with Boost IOStreams

Using the libraries and techniques covered in this chapter, you will be able to write
portable C++ programs that interact with filesystems and perform all kinds of I/O
using a standard interface. We do not cover network I/O in this chapter, but devote
Chapter 10, Concurrency with Boost, to this topic.

Files, Directories, and IOStreams

[336]

Managing files and directories with Boost
Filesystem
Software written using the Boost libraries runs on multiple operating systems,
including Linux, Microsoft Windows, Mac OS, and various other BSD variants. How
these operating systems access paths to files and directories may differ in several
ways; for example, MS Windows uses backward slashes as the directory separator
while all Unix variants, including Linux, BSD, and Mac, use forward slashes. Non-
English operating systems may use other characters as directory separators, and
sometimes, multiple directory separators may be supported. The Boost Filesystem
library hides these platform-specific peculiarities and lets you write code that is
much more portable. Using the functions and types in the Boost Filesystem library,
you can write OS-agnostic code to perform common operations on the filesystem that
an application needs to run, like copying, renaming, and deleting files, traversing
directories, creating directories and links, and so on.

Manipulating paths
Filesystem paths are represented using objects of type boost::filesystem::path.
Given an object of type boost::filesystem::path, we can glean useful information
from it and derive other path objects from it. A path object allows us to model a real
filesystem path and derive information from it, but it need not represent a path that
really exists in the system.

Printing paths
Let us look at our first example of using Boost Filesystem to print the current
working directory of a process:

Listing 9.1: The first example of using Boost Filesystem

 1 #include <boost/filesystem.hpp>
 2 #include <iostream>
 3
 4 namespace fs = boost::filesystem;
 5
 6 int main() {
 7 // Get the current working directory
 8 fs::path cwd = fs::current_path();
 9
10 // Print the path to stdout

Chapter 9

[337]

11 std::cout << "generic: " << cwd.generic_string() << '\n';
12 std::cout << "native: " << cwd.string() << '\n';
13 std::cout << "quoted: " << cwd << '\n';
14
15 std::cout << "Components: \n";
16 for (const auto& dir : cwd) {
17 std::cout <<'[' <<dir.string() << ']'; // each part
18 }
19 std::cout << '\n';
20 }

In this example, the program determines its current working directory by calling the
current_path (line 8), which is a namespace level function in the boost::filesystem
namespace. It returns an object of type boost::filesystem::path representing the
path to the current working directory. Most functions in boost::filesystem work on
boost::filesystem::path objects rather than strings.

We print the path by calling the generic_string member function of path (line 11),
by calling the string member function (line 12), and also by streaming cwd, the path
object, to the output stream (line 13). The generic_string member returns the path
in a generic format supported by Boost Filesytem with forward slashes as separators.
The string member function returns the path in the native format, which is an
implementation-defined format dependent on the operating system. On Windows,
the native format uses backslashes as path separator, while on UNIX there is no
difference between the generic and native formats. Boost Filesystem recognizes
both forward and backward slashes as path separators on Windows.

Streaming the path object too writes the path in the native format but additionally
puts double quotes around the path. Putting double quotes around paths with
embedded spaces makes it easy to use the result as arguments to commands. If
there be embedded double quote characters (") in the path, those are escaped with
an ampersand (&).

On Windows, the full paths are stored as wide character (wchar_t) strings, so
generic_string or string return the path as a std::string after performing
conversion. Depending on the specific Unicode characters in the path, there may
not be a meaningful conversion of the path to a single-byte character string. On such
systems, it is only safe to call the generic_wstring or wstring member functions,
which return the path as a std::wstring in generic or native formats.

Files, Directories, and IOStreams

[338]

We print each directory component in the path, iterating through them using a
range-based for-loop in C++11 (line 15). If range-based for-loop is not available,
we should use the begin and end member functions in path to iterate through
path elements. On my Windows box, this program prints the following:

generic: E:/DATA/Packt/Boost/Draft/Book/Chapter07/examples
native:E:\DATA\Packt\Boost\Draft\Book\Chapter07\examples
quoted: "E:\DATA\Packt\Boost\Draft\Book\Chapter07\examples"
Components:
[E:][/][DATA][Packt] [Boost][Draft][Book][Chapter07][examples]

On my Ubuntu box, this is the output I get:

generic: /home/amukher1/devel/c++/book/ch07
native: /home/amukher1/devel/c++/book/ch07
quoted: "/home/amukher1/devel/c++/book/ch07"
Components:
[/][home][amukher1] [devel][c++][book][ch07]

The program prints its current working directory in the generic and native formats.
You can see that there is no difference between the two on Ubuntu (and generally
on any Unix).

On Windows, the first component of the path is the drive letter, generally referred
to as the root name. This is followed by / (the root folder) and each subdirectory in
the path. On Unix, there is no root name (as is usually the case), so the listing starts
with / (the root directory) followed by each subdirectory in the path.

The cwd object of type path is streamable (line 19) and printing it to standard output
prints it in the native format, enclosed in quotes.

Chapter 9

[339]

Compiling and linking examples with Boost Filesystem
Boost Filesystem is not a header-only library. The Boost Filesystem
shared libraries are installed as part of the Boost operating system
packages, or built from source as described in Chapter 1, Introducing Boost.
On Linux
If you installed Boost libraries using your native package manager, then
you can use the following commands to build your programs. Note that
the library names are in system layout.
$ g++ <source>.c -o <executable> -lboost_filesystem
-lboost_system

If you built Boost from source as shown in Chapter 1, Introducing Boost,
and installed it under /opt/boost, you can use the following commands
to compile and link your sources:

$ g++ <source>.cpp -c -I/opt/boost/include

$ g++ <source>.o -o <executable> -L/opt/boost/lib
-lboost_filesystem-mt -lboost_system-mt -Wl,-rpath,/
opt/boost/lib

Since we built the libraries with names in tagged layout, we link against
appropriately named versions of Boost Filesystem and Boost System.
The -Wl,-rpath,/opt/boost/lib part embeds the path to the Boost
shared libraries in the generated executable so that the runtime linker
knows from where to pick the shared libraries for the executable to run.
On Windows
On Windows, under Visual Studio 2012 or later, you can enable auto-
linking and need not explicitly specify the libraries to link. For this,
you need to edit the Configuration Properties settings in the Project
Properties dialog box (brought up using Alt + F7 in the IDE):
1. Under VC++ Directories, append <boost-install-path>\
include to the Include Directories property.
2. Under VC++ Directories, append <boost-install-path>\lib to
the Library Directories property.
3. Under Debugging, set the Environment property to
PATH=%PATH%;<boost-install-path>\lib.
4. Under C/C++ > Preprocessor, define the following preprocessor symbols:
BOOST_ALL_DYN_LINK

BOOST_AUTO_LINK_TAGGED (only if you built using tagged layout)
5. Build by hitting F7 from the Visual Studio IDE and run your program
by hitting Ctrl + F5 from the IDE.

Files, Directories, and IOStreams

[340]

Constructing paths
You can construct instances of boost::filesystem::path using one of the path
constructors or by combining existing paths in some way. Strings and string literals
are implicitly convertible to path objects. You can construct relative as well as
absolute paths, convert relative paths to absolute paths, append or strip elements
from the path and "normalize" paths, as shown in listing 9.2:

Listing 9.2a: Constructing empty path objects

 1 #define BOOST_FILESYSTEM_NO_DEPRECATED
 2 #include <boost/filesystem.hpp>
 3 #include <iostream>
 4 #include <cassert>
 5 namespace fs = boost::filesystem;
 6
 7 int main() {
 8 fs::path p1; // empty path
 9 assert(p1.empty()); // does not fire
10 p1 = "/opt/boost"; // assign an absolute path
11 assert(!p1.empty());
12 p1.clear();
13 assert(p1.empty());
14 }

A default constructed path object represents an empty path, as illustrated by the
preceding example. You can assign a path string to an empty path object (line 10)
and it ceases to be empty (line 11). On calling the clear member function on the
path (line 12), it once again turns empty (line 13). Over the years, some parts of the
Boost Filesystem library have been deprecated and replaced by better alternatives.
We define the macro BOOST_FILESYSTEM_NO_DEPRECATED (line 1) to ensure that
such deprecated member functions and types are not accessible.

Listing 9.2b: Constructing relative paths

15 void make_relative_paths() {
16 fs::path p2(".."); // relative path
17 p2 /= "..";
18 std::cout << "Relative path: " << p2.string() << '\n';
19
20 std::cout << "Absolute path: "
21 << fs::absolute(p2, "E:\\DATA\\photos").string() << '\n';
22 std::cout << "Absolute path wrt CWD: "
23 << fs::absolute(p2).string() << '\n';
24

Chapter 9

[341]

25 std::cout << fs::canonical(p2).string() << '\n';
26 }
27

We construct a relative path by using .. (double dot), which is a common way to
refer to the parent directory relative to any directory on most filesystems (line 16).
We then use operator/= to append an additional .. path element to the relative
path (line 17). We then print the relative path in its native format (line 18) and create
absolute paths using this relative path.

The boost::filesystem::absolute function constructs an absolute path given a
relative path. You may pass it an absolute path to which the relative path must be
appended to construct a new absolute path (line 21). Note that we pass a Windows
absolute path and make sure to escape the backslashes. If you omit the second
parameter to absolute, it constructs the absolute path from the relative path by
using the current working directory of the process as the base path (line 23).

A file path such as /opt/boost/lib/../include can be normalized to the equivalent
form, /opt/boost/include. The function boost::filesystem::canonical
generates a normalized absolute path from a given path (line 25), but requires that
the path exist. Otherwise, it throws an exception that needs to be handled. It also
reads and follows any symbolic links in the path. The preceding code prints the
following output on my Windows box:

Relative path: ..\..
Absolute path: E:\DATA\photos\..\..
Absolute path wrt CWD: E:\DATA\Packt\Boost\Draft\Book\Chapter07\
examples\..\..
Canonical: E:/DATA\Packt\Boost\Draft\Book

Note that the output for the canonical path has the double dots collapsed.

Listing 9.2c: Handling errors

28 void handle_canonical_errors() {
29 fs::path p3 = "E:\\DATA"; // absolute path
30 auto p4 = p3 / "boost" / "boost_1_56"; // append elements
31 std::cout << p4.string() << '\n';
32 std::cout.put('\n');
33
34 boost::system::error_code ec;
35 auto p5 = p4 / ".." / "boost_1_100"; // append elements
36 auto p6 = canonical(p5, ec);
37
38 if (ec.value() == 0) {

Files, Directories, and IOStreams

[342]

39 std::cout << "Normalized: " << p6.string() << '\n';
40 } else {
41 std::cout << "Error (file=" << p5.string()
42 << ") (code=" << ec.value() << "): "
43 << ec.message() << '\n';
44 }
45 }

This example illustrates how canonical errors out when it is passed a path that
does not exist. We create a path object, p3, for the absolute path E:\DATA on
Windows (line 29). We then create a second path object p4 by appending successive
path elements (boost and boost_1_56) to p3 using the overloaded operator/ for
path objects (line 30). This constructs a path that is equivalent of E:\DATA\boost\
boost_1_56.

Next, we append the relative path ../boost_1_100 to p4 (line 35), which constructs
a path that is equivalent of E:\DATA\boost\boost_1_56\..\boost_1_100. This
path does not exist on my system so when I call canonical on this path, it errors out.
Notice that we passed an object of type boost::system::error_code as a second
argument to canonical, to capture any error. We check for a non-zero error code
returned using the value member function of error_code (line 38). In case an error
occurred, we can also retrieve a system-defined descriptive error message using the
message member function (line 43). Alternatively, we can invoke another overload
of canonical, which does not take an error_code reference as argument and
instead throws an exception if the path passed does not exist. A throwing and a non-
throwing overload is a common pattern seen in functions in the Filesystem library
and other system programming libraries from Boost.

Breaking paths into components
In the previous section, we saw how we can get the parent directory of a path by
calling the parent_path member function. In fact, there is a whole slew of member
functions in boost::filesystem::path to extract the components in a path. Let us
first take a look at a path and its components.

We will first understand the Boost Filesystem terminology for path components
using the following path from a UNIX system:

/opt/boost/include/boost/filesystem/path.hpp

The leading / is called the root directory. The last component, path.hpp, is called the
filename, even when the path represents a directory rather than a regular file. The
path stripped of the filename (/opt/boost/include/boost/filesystem) is called
the parent path. The part following the leading slash (opt/boost/include/boost/
filesystem/path.hpp) is called the relative path.

Chapter 9

[343]

In the preceding example, .hpp is the extension (including the period or dot) and
path is the stem of the filename. In case of a filename with multiple embedded dots
(for example, libboost_filesystem-mt.so.1.56.0), the extension is considered to
start from the last (right-most) dot.

Now consider the following Windows path:

E:\DATA\boost\include\boost\filesystem\path.hpp

The component E: is called the root name. The leading backslash following
E: is called the root directory. The concatenation of the root name with the
root directory (E:\) is called the root path. The following is a short function
that prints these different components of a path using member functions of
boost::filesystem::path:

Listing 9.3: Splitting a path into components

 1 #include <boost/filesystem.hpp>
 2 #include <iostream>
 3 #include <cassert>
 4 namespace fs = boost::filesystem;
 5
 6 void printPathParts(const fs::path& p1)
 7 {
 8 std::cout << "For path: " << p1.string() << '\n';
 9
10 if (p1.is_relative()) {
11 std::cout << "\tPath is relative\n";
12 } else {
13 assert(p1.is_absolute());
14 std::cout << "\tPath is absolute\n";
15 }
16
17 if (p1.has_root_name())
18 std::cout << "Root name: "
19 << p1.root_name().string() << '\n';
20
21 if (p1.has_root_directory())
22 std::cout << "Root directory: "
23 << p1.root_directory().string() << '\n';
24
25 if (p1.has_root_path())
26 std::cout << "Root path: "
27 << p1.root_path().string() << '\n';

Files, Directories, and IOStreams

[344]

28
29 if (p1.has_parent_path())
30 std::cout << "Parent path: "
31 << p1.parent_path().string() << '\n';
32
33 if (p1.has_relative_path())
34 std::cout << "Relative path: "
35 << p1.relative_path().string() << '\n';
36
37 if (p1.has_filename())
38 std::cout << "File name: "
39 << p1.filename().string() << '\n';
40
41 if (p1.has_extension())
42 std::cout << "Extension: "
43 << p1.extension().string() << '\n';
44
45 if (p1.has_stem())
46 std::cout << "Stem: " << p1.stem().string() << '\n';
47
48 std::cout << '\n';
49 }
50
51 int main()
52 {
53 printPathParts (""); // no components
54 printPathParts ("E:\\DATA\\books.txt"); // all components
55 printPathParts ("/root/favs.txt"); // no root name
56 printPathParts ("\\DATA\\books.txt"); // Windows, relative
57 printPathParts ("boost"); // no rootdir, no extn
58 printPathParts (".boost"); // no stem, only extn
59 printPathParts (".."); // no extension
60 printPathParts ("."); // no extension
61 printPathParts ("/opt/boost/"); // file name == .
62 }

In the preceding example, the function printPathParts(line 6) prints as many
components of a path as are available. To access a path component, it uses a
corresponding member function of path. To check whether a component is available,
it uses one of the has_ member functions of path. It also checks whether a path is a
relative path or an absolute path using the is_relative and is_absolute member
functions of path (lines 10, 13).

Chapter 9

[345]

We call printPathParts with different relative and absolute paths. The results
may vary across operating systems. For example, on Windows, a call to has_root_
name (line 17) returns false for all the paths except the Windows path E:\DATA\
books.txt (line 54), which is considered an absolute path. Calling root_name on
this path returns E:. On UNIX however, the backslashes are not recognized as
separators and considered part of the path components, so E:\DATA\books.txt will
be interpreted as a relative path with the filename E:\DATA\books.txt, the stem
E:\DATA\books, and the extension .txt. This, coupled with the fact that forward
slashes are recognized on Windows as path separators, is a good reason to never use
backslashes in path literals like we have done here.

For maximum portability, always use forward slashes in path literals or
generate paths using the overloaded operator/ and operator/=.

We can also compare two paths to see whether they are equal and equivalent.
Two paths can be compared for equality using the overloaded operator==, which
returns true only if the two paths are decomposable to the same components.
Note that this means the paths /opt and /opt/ are not equal; in the former, the
filename component is opt, while in the latter, it is . (dot). Two paths that are
not equal can still be equivalent if they represent the same underlying filesystem
entry. For example, /opt/boost and /opt/cmake/../boost/ are equivalent
although they are not equal paths. To compute equivalence, we can use the
boost::filesystem::equivalent function, which returns true if the two paths
refer to the same entry in the filesystem:

boost::filesystem::path p1("/opt/boost"), p2("/opt/cmake");
if (boost::filesystem::equivalent(p1, p2 / ".." / "boost") {
 std::cout << "The two paths are equivalent\n";
}

As with boost::filesystem::canonical, the equivalent function also
actually checks for the existence of the paths and throws an exception if either
path does not exist. There is also an overload that does not throw but sets a
boost::system::error_code out-parameter.

The path object can be looked upon as a sequence container of path elements and
these elements can be iterated through using an iterator interface exposed by path.
This allows easy application of several standard algorithms to path objects. To iterate
through each path element, we can use the following snippet:

boost::filesystem::path p1("/opt/boost/include/boost/thread.hpp");
for (const auto& pathElem: p1) {
 std::cout <<pathElem.string() <<" ";
}

Files, Directories, and IOStreams

[346]

This will print the components separated by a pair of spaces:

/ optboost include boost thread.hpp

The begin and end member functions of boost::filesystem::path return a
random-access iterator of type boost::filesystem::path::iterator, which you
can use with Standard Library algorithms in interesting ways. For example, to find
the number of components in a path, you can use:

size_t count = std::distance(p1.begin(), p1.end());

Now, consider two paths: /opt/boost/include/boost/filesystem/path.hpp
and /opt/boost/include/boost/thread/detail/thread.hpp. We will now
write a function that computes the common subdirectory under which both paths
are located:

Listing 9.4: Finding the common prefix path

 1 #include <boost/filesystem.hpp>
 2 #include <iostream>
 3 namespace fs = boost::filesystem;
 4
 5 fs::path commonPrefix(const fs::path& first,
 6 const fs::path& second) {
 7 auto prefix =
 8 [](const fs::path& p1, const fs::path& p2) {
 9 auto result =
10 std::mismatch(p1.begin(), p1.end(), p2.begin());
11 fs::path ret;
12 std::for_each(p2.begin(), result.second,
13 [&ret](const fs::path& p) {
14 ret /= p;
15 });
16 return ret;
17 };
18
19 size_t n1 = std::distance(first.begin(), first.end());
20 size_t n2 = std::distance(second.begin(), second.end());
21
22 return (n1 < n2) ? prefix(first, second)
23 : prefix(second, first);
24 }

Chapter 9

[347]

Calling the commonPrefix function on the two paths correctly returns /opt/boost/
include/boost. For this function to work correctly, we should pass paths that do
not have . or .. components, something that a more complete implementation can
take care of. To compute the prefix, we first define a nested function called prefix
using a lambda expression (lines 7-17), which performs the actual computation.
We compute the element count of the two paths (lines 19, 20) and pass the shorter
path as the first argument and the longer one as the second argument to the prefix
function (lines 22-23). In the prefix function, we use the std::mismatch algorithm
on the two paths to compute the first component where they do not match (line 10).
We then construct the common prefix as the path up to this first mismatch and return
it (lines 12-15).

Traversing directories
Boost Filesystem provides two iterator classes, directory_iterator and
recursive_directory_iterator, that make iterating through directories fairly
simple. Both conform to the input iterator concept and provide an operator++ for
forward traversal. In the first example here, we see directory_iterator in action:

Listing 9.5: Iterating directories

 1 #include <boost/filesystem.hpp>
 2 #include <iostream>
 3 #include <algorithm>
 4 namespace fs = boost::filesystem;
 5
 6 void traverse(const fs::path& dirpath) {
 7 if (!exists(dirpath) || !is_directory(dirpath)) {
 8 return;
 9 }
10
11 fs::directory_iterator dirit(dirpath), end;
12
13 std::for_each(dirit, end, [](const fs::directory_entry& entry) {
14 std::cout <<entry.path().string() << '\n';
15 });
16 }
17
18 int main(int argc, char *argv[1]) {
19 if (argc > 1) {
20 traverse(argv[1]);
21 }
22 }

Files, Directories, and IOStreams

[348]

The traverse function takes a parameter dirpath of type boost::filesystem::path
representing the directory to traverse. Using the namespace level functions, exists
and is_directory (line 7), the function checks to see that dirpath actually exists and
is a directory before proceeding.

To perform the iteration, we create an instance dirit of
boost::filesystem::directory_iterator for the path and a second
default-constructed directory_iterator instance called end (line 11). The
default-constructed directory_iterator acts as the end-of-sequence marker.
Dereferencing a valid iterator of type directory_iterator returns an object of type
boost::filesystem::directory_entry. The sequence represented by the iterator
range [dirit, end) is the list of entries in the directory. To iterate through them, we
use the familiar std::for_each standard algorithm. We use a lambda to define the
action to perform on each entry, which is to simply print it to the standard output
(lines 13-14).

While we can write recursive logic around boost::directory_iterator to iterate
through a directory tree recursively, boost::recursive_directory_iterator
provides an easier alternative. We can replace boost::directory_iterator
with boost::recursive_directory_iterator in listing 9.5 and it will still
work, performing a depth-first traversal of the directory tree. But the recursive_
directory_iterator interface provides additional capabilities like skipping
descent into specific directories and keeping track of the depth of descent. A
hand-written loop serves better to fully leverage these capabilities, as shown in
the following example:

Listing 9.6: Recursively iterating directories

 1 void traverseRecursive(const fs::path& path)
 2 {
 3 if (!exists(path) || !is_directory(path)) {
 4 return;
 5 }
 6
 7 try {
 8 fs::recursive_directory_iterator it(path), end;
 9
10 while (it != end) {
11 printFileProperties(*it, it.level());
12
13 if (!is_symlink(it->path())
14 && is_directory(it->path())
15 && it->path().filename() == "foo") {
16 it.no_push();

Chapter 9

[349]

17 }
18 boost::system::error_code ec;
19 it.increment(ec);
21 if (ec) {
22 std::cerr << "Skipping entry: "
23 << ec.message() << '\n';
24 }
25 }
26 } catch (std::exception& e) {
27 std::cout << "Exception caught: " << e.what() << '\n';
28 }
29 }

We create a recursive_directory_iterator and initialize it with a path (line 8)
just as we did for a directory_iterator in listing 9.5. The recursive_directory_
iterator constructor may throw an exception if the path does not exist or cannot
be read by the program. To catch such exceptions, we put the code in the try-catch
block.

We use a while-loop to iterate through entries (line 10) and advance the iterator by
calling the increment member function (line 19). When the increment member
function encounters a directory, it tries to descend into it in depth-first order. This
can sometimes fail due to system issues, like when the program does not have
sufficient permissions to look into the directory. In such cases, we want to continue
on to the next available entry rather than abort the iteration. For this reason, we
do not use operator++ on the iterator because it throws an exception when it
encounters an error and handling this makes the code more convoluted. The
increment function takes a boost::system::error_code argument, and in case of
an error, it sets the error_code and advances the iterator to the next entry. In such a
case, we can get the system-defined error message associated with the error using the
message member function of error_code.

Behavior of boost::filesystem::recursive_directory_iterator
Prior to Boost version 1.56, when the operator++ and increment
member functions encountered an error, they would only throw an
exception or set an error_code, without advancing the iterator. This
made writing a correct loop that skips on errors more complex. As of
Boost 1.56, these functions also advance the iterator to the next entry
making the loop code a lot simpler.

Files, Directories, and IOStreams

[350]

We process each entry by a call to a fictitious function printFileProperties
(line 11), which takes two arguments—the result of dereferencing the recursive_
directory_iterator instance, and the depth of traversal obtained by a call to the
level member function of the iterator. The level function returns zero for first-
level directories and its return value is incremented by 1 for each additional level
of descent. The printFileProperties function can use this to indent entries in
subdirectories, for example. We will implement the printFileProperties function
in the next section.

To add dimension to the example, we decide not to descend into directories named
foo. For this, we check for directories named foo (lines 13-15) and call the no_push
member function on the recursive_directory_iterator to prevent descending
into the directory (line 16). Likewise, we can call the pop member function on
the iterator at any time to go up a level in the directory tree without necessarily
completing iteration at the current level.

On systems that support symbolic links, if the recursive_directory_iterator
encounters a symbolic link pointing to a directory, it does not follow the link to
descend into the directory. If we want to override this behavior, we should pass a
second argument of the enum type boost::filesystem::symlink_option to the
recursive_directory_iterator constructor. The symlink_option enum provides
the values none (or no_recurse), which is the default, and recurse, which indicates
that symbolic links should be followed to descend into directories.

Querying filesystem entries
Boost Filesystem provides a set of functions to perform useful operations on files and
directories. Most of these are functions in the boost::filesystem namespace. Using
these functions, we can check whether a file exists, its size in bytes, its last modification
time, the file type, whether it is empty, and so on. We use this slew of functions to
write the printFileProperties function we used in the preceding section:

Listing 9.7: Querying file system entries

 1 #include <boost/filesystem.hpp>
 2 #include <iostream>
 3 #include <boost/date_time.hpp>
 4 namespace fs = boost::filesystem;
 5 namespace pxtm = boost::posix_time;
 6
 7 void printFileProperties(const fs::directory_entry& entry,
 8 int indent = 0) {
 9 const fs::path& path= entry.path();
10 fs::file_status stat = entry.symlink_status();

Chapter 9

[351]

11 std::cout << std::string(2*indent, '');
12
13 try {
14 if (is_symlink(path)) {
15 auto origin = read_symlink(path);
16 std::cout <<" L " << " - - "
17 << path.filename().string() << " -> "
18 << origin.string();
19 } else if (is_regular_file(path)) {
20 std::cout << " F " << " "
21 << file_size(path) << " " << " "
22 << pxtm::from_time_t(last_write_time(path))
23 << " " << path.filename().string();
24 } else if (is_directory(path)) {
25 std::cout << " D " << " – " << " "
26 << pxtm::from_time_t(last_write_time(path))
27 << " " << path.filename().string();
28 } else {
29 switch (stat.type()) {
30 case fs::character_file:
31 std::cout << " C ";
32 break;
33 case fs::block_file:
34 std::cout << " B ";
35 break;
36 case fs::fifo_file:
37 std::cout << " P ";
38 break;
39 case fs::socket_file:
40 std::cout << " S ";
41 break;
42 default:
43 std::cout << " - ";
44 break;
45 }
46 std::cout << pxtm::from_time_t(last_write_time(path))
47 << " ";
48 std::cout << path.filename().string();
49 }
50 std::cout << '\n';
51 } catch (std::exception& e) {
52 std::cerr << "Exception caught: " <<e.what() << '\n';
53 }
54 }

Files, Directories, and IOStreams

[352]

The printFileProperties is used to print a short summary for a given file,
including attributes like type, size, last modification time, name, and for symbolic
links, the target file. The first argument to this function is of type directory_entry,
the result of dereferencing a directory_iterator or recursive_directory_
iterator. The second argument is the depth of traversal. We obtain the path to the
file referenced by the directory_entry object by calling the path member function
of directory_entry (line 9). We obtain a reference to a file_status object by
calling the symlink_status member function of directory_entry (line 10). The
file_status object contains additional details about a filesystem entry, which
we use in our example to print the status of special files. The symlink_status
function acts on all kinds of files not just symbolic links, but it returns the status of
the symbolic link itself without following it to the target. If you need the status of
the target each time you query the symbolic link, use the status member function
instead of symlink_status. The status and symlink_status member functions
are faster than the global functions of the same name because they keep the file stats
cached instead of querying the filesystem on every call.

We determine the type of each entry before printing information appropriate for the
type. To do this, we use the convenience functions is_symlink, is_regular_file
and is_directory (lines 14, 19, 24). On POSIX systems like Linux, there are other
kinds of files like block and character devices, fifos, and Unix domain sockets. To
identify such files, we use the file_status object we obtained earlier (line 10). We
call the type member function on the file_status object to determine the exact
type of special file (line 29). Note that we first check if the file is a symbolic link and
then perform other tests. That is because is_regular_file or is_directory may
also return true for a symbolic link, based on the type of the target file.

This function prints each entry in the following format:

file_type sizetime name -> target

The file type is indicated by a single letter (D: directory, F: regular file, L: symbolic
link, C: character device, B: block device, P: fifo, S: Unix domain socket). The size
is printed in bytes, the last modification time is printed as a long integer, and the
file name is printed without the full path. Only for symbolic links, a trailing arrow
followed by the target path is appended after the name. Hyphens (-) appear for
missing fields when file size or last write time are not available. For each level of
descent, the entry is indented with an extra pair of spaces (line 11).

Chapter 9

[353]

Here is a sample output from running this function on my Linux system:

You can also run this on the /dev directory on Linux to look at how device files
are listed.

To get the target file pointed to by a symbolic link, we call the read_symlink
function (line 15). To get the size of a file in bytes, we call the file_size function
(line 21), and to get the last modification time of a file, we call the last_write_time
function (lines 22, 26, and 46). The last_write_time function returns the Unix time
at which the file was last modified. We print a meaningful representation of this time
stamp by calling the boost::posix_time::from_time_t function to convert this
numeric timestamp into a printable date time string (see Chapter 7, Higher Order and
Compile-time Programming).

In order to build this program, you must additionally link against the Boost
DateTime library, as shown here:

$ g++ listing8_7.cpp -o listing8_7 -std=c++11 -lboost_filesystem -lboost_
date_time

There are several such functions for querying objects in the filesystem for different
kinds of information—for example, finding the number of hard links to a file. We
can query the file_status object (line 10) for file permissions. Notice that we do
not qualify these namespace level functions with the namespace; they are correctly
resolved using Argument Dependent Lookup based on the type of their arguments
(boost::filesystem::path).

Files, Directories, and IOStreams

[354]

Performing operations on files
In addition to querying filesystem entries for information, we can also use the Boost
Filesystem library to perform operations on files like creating directories and links,
copying files and moving them, and so on.

Creating directories
It is easy to create directories using the function boost::filesystem::create_
directory. You pass it a path and it creates a directory at that path if one does not
exist; it does nothing if the directory already exists. If the path exists but is not a
directory, create_directory throws an exception. There is also a non-throwing
version that takes a boost::system::error_code reference, which it sets on error.
These functions returns true if they create the directory and false if they do not:

Listing 9.8: Creating directories

 1 #include <boost/filesystem.hpp>
 2 #include <iostream>
 3 #include <cassert>
 4 namespace fs = boost::filesystem;
 5
 6 int main() {
 7 fs::path p1 = "notpresent/dirtest";
 8 boost::system::error_code ec;
 9 if (!is_directory(p1.parent_path()) || exists(p1)) {
10 assert(!create_directory(p1, ec));
11
12 if (is_directory(p1)) assert(!ec.value());
13 else assert(ec.value());
14 }
15
16 try {
17 if (create_directories(p1)) {
18 assert(!create_directory(p1));
19 }
20 } catch (std::exception& e) {
21 std::cout << "Exception caught: " << e.what() << '\n';
22 }
23 }

Chapter 9

[355]

In this example, calling create_directory on the path notpresent/dirtest
relative to the current directory fails (line 10) either if there is no directory called
notpresent already in your current directory, or if notpresent/dirtest exists.
This is because create_directory expects the parent directory of the path passed
to exist, and it does not create a path that already exists. If we did not pass the error
code parameter, this call to create_directory would have thrown an exception that
would need to be handled. If notpresent/dirtest already exists and is a directory,
then create_directory fails, but does not set the error code (line 12).

The function boost::filesystem::create_directories creates all path
components needed, akin to mkdir –p on Unix systems. The call to it (line 17)
succeeds unless there are permission issues or the path already exists. It creates
the directory, including any missing directories along the path. Calls to create_
directory and create_directories are idempotent; if the target directory exists,
no error is returned or exception thrown, but the functions return false because no
new directory was created.

Creating symbolic links
Symbolic links, sometimes called soft links, are entries in the filesystem that act
like aliases to other files. They can refer to files as well as directories and are often
used to provide alternate, simplified names and paths for files and directories.
Symbolic links have been around on UNIX systems for quite a while now and
have been available in some form on Windows since Windows 2000. We can use
the function boost::filesystem::create_symlink to create symbolic links. For
creating symbolic links to directories, the function boost::filesystem::create_
directory_symlink is recommended for better portability.

Listing 9.9: Creating symbolic links

 1 #include <boost/filesystem.hpp>
 2 namespace fs = boost::filesystem;
 3
 4 void makeSymLink(const fs::path& target, const fs::path& link) {
 5 boost::system::error_code ec;
 6
 7 if (is_directory(target)) {
 8 create_directory_symlink(target, link);
 9 } else {
10 create_symlink(target, link);
11 }
12 }

Files, Directories, and IOStreams

[356]

This shows a function makeSymLink that creates a symbolic link to a given path.
The first parameter to the function is the target path that the link must alias, and the
second parameter is the path to the link itself. This order of arguments is reminiscent
of the UNIX ln command. If the target is a directory, this function calls create_
directory_symlink (line 8), while for all other cases it calls create_symlink (line
10). Note that the target path need not exist at the time of creation of the symbolic
link and a dangling symbolic link will be created in such a case. Calling these
functions has the same effect as the command ln –s target link on POSIX
systems. On Windows, you get the same effect by running the command mklink /D
link target when target is a directory, or by running the command mklink link
target when target is not a directory. The function makeSymLink will throw if
create_directory_symlink or create_symlink threw an exception.

Copying files
Copying files is another common chore that Boost Filesystem helps in. The
boost::filesystem::copy_file function copies regular files from source to
destination and fails if the file already exists at the destination. Using an appropriate
override, it can be made to overwrite the file at the destination instead. The
boost::filesystem::copy_symlink takes a source symbolic link and creates
a second symbolic link at the destination that aliases the same file as the source.
You cannot pass a directory as the destination to either function. There is also
a boost::copy_directory function, which does not seem to do what its name
suggests. It creates directories and copies attributes of the source directory to the
target directory. So, we will roll out our own recursive directory-copying utility
function instead:

Listing 9.10: Recursively copying directories

 1 void copyDirectory(const fs::path& src, const fs::path& target) {
 2 if (!is_directory(src)
 3 || (exists(target) && !is_directory(target))
 4 || !is_directory(absolute(target).parent_path())
 5 || commonPrefix(src, target) == src) {
 6 throw std::runtime_error("Preconditions not satisfied");
 7 }
 8
 9 boost::system::error_code ec;
10 fs::path effectiveTarget = target;
11 if (exists(target)) {
12 effectiveTarget /= src.filename();
13 }
14 create_directory(effectiveTarget);

Chapter 9

[357]

15
16 fs::directory_iterator iter(src), end;
17 while (iter != end) {
18 auto status = iter->symlink_status();
19 auto currentTarget = effectiveTarget/
20 iter->path().filename();
21
22 if (status.type() == fs::regular_file) {
23 copy_file(*iter, currentTarget,
24 fs::copy_option::overwrite_if_exists);
25 } else if (status.type() == fs::symlink_file) {
26 copy_symlink(*iter, currentTarget);
27 } else if (status.type() == fs::directory_file) {
28 copyDirectory(*iter, effectiveTarget);
29 } // else do nothing
30 ++iter;
31 }
32 }

Listing 9.10 defines the copyDirectory function, which recursively copies a
source directory to a target directory. It performs basic validations and throws an
exception if the requisite initial conditions are not met (line 6). If any of the following
conditions hold true, then a necessary precondition is violated:

1. The source path is not a directory (line 2)
2. The target path exists, but is not a directory (line 3)
3. The parent of the target path is not a directory (line 4)
4. The target path is a subdirectory of the source path (line 5)

To detect violation 4, we reuse the commonPrefix function we defined in listing 9.4.
If the target path already exists, a subdirectory with the same name as the source
directory is created under it to hold the copied contents (lines 11-12, 14). Otherwise,
the target directory is created and the content is copied into it.

Beyond this, we iterate recursively through the source directory using directory_
iterator instead of recursive_directory_iterator (line 17). We use copy_file
to copy regular files, passing the copy_option::overwrite_if_exists option
to make sure a destination file that already exists is overwritten (lines 23-24). We
use copy_symlink to copy a symbolic link (line 26). Each time we encounter a
subdirectory, we recursively call copyDirectory (line 28). If an exception is thrown
from the Boost Filesystem functions called by copyDirectory, it terminates the copy.

Files, Directories, and IOStreams

[358]

Moving and deleting files
You can move or rename files and directories using the
boost::filesystem::rename function, which takes the old and new paths as
arguments. The two-argument overload throws an exception if it fails, while the
three-argument overload sets an error code:

void rename(const path& old_path, const path& new_path);
void rename(const path& old_path, const path& new_path,
 error_code& ec);

If new_path does not exist, it is created provided its parent directory exists;
otherwise, the call to rename fails. If old_path is not a directory, then new_path, if
it exists, cannot be a directory either. If old_path is a directory, then new_path, if it
exists, must be an empty directory or the function fails. When a directory is moved
to another empty directory, the contents of the source directory are copied inside
the target empty directory, and then the source directory is removed. Renaming
symbolic links acts on the links, not on the files they refer to.

You can delete files and empty directories by calling boost::filesystem::remove
passing it the path to the filesystem entry. To recursively remove a directory that is
not empty, you must call boost::filesystem::remove_all.

bool remove(const path& p);
bool remove(const path& p, error_code& ec);
uintmax_t remove_all(const path& p);
uintmax_t remove_all(const path& p, error_code& ec);

The remove function returns false if the file named by the path does not exist. This
removes symbolic links without impacting the files they alias. The remove_all
function returns the total number of entries it removes. On error, the single-argument
overloads of remove and remove_all throw an exception, while the two-argument
overloads set the error code reference passed to it without throwing an exception.

Path-aware fstreams
In addition, the header file boost/filesystem/fstream.hpp provides versions
of Standard file stream classes that work with boost::filesystem::path objects.
These are very handy when you are writing code that uses boost::filesystem and
also needs to read and write files.

A C++ Technical Specification based on the Boost Filesystem library
has been recently approved by ISO. This makes way for its inclusion
in a future revision of the C++ Standard Library.

Chapter 9

[359]

Extensible I/O with Boost IOStreams
The Standard Library IOStreams facility is meant to provide a framework for
operations of all kinds on all manner of devices, but it has not proven to be the
easiest of frameworks to extend. The Boost IOStreams library supplements this
framework with a simpler interface for extending I/O facilities to newer devices,
and provides some pretty useful classes that address common needs while reading
and writing data.

Architecture of Boost IOStreams
The Standard Library IOStreams framework provides two basic abstractions,
streams and stream buffers. Streams provide a uniform interface to the application
for reading or writing a sequence of characters on an underlying device. Stream
buffers provide a lower-level abstraction for the actual device, which is leveraged
and further abstracted by streams.

The Boost IOStreams framework provides the boost::iostreams::stream and
boost::iostreams::stream_buffer templates, which are generic implementations
of the stream and stream buffer abstractions. These two templates implement their
functionality in terms of a further set of concepts, which are described as follows:

• A source is an abstraction for an object from which a sequence of characters
can be read.

• A sink is an abstraction for an object to which a sequence of characters can
be written.

• A device is a source, a sink, or both.
• An input filter modifies a sequence of characters read from a source,

while an output filter modifies a sequence of characters before it is written
to a sink.

• A filter is an input filter or an output filter. It is possible to write a filter that
can be used either as an input filter or as an output filter; this is known as a
dual use filter.

To perform I/O on a device, we associate a sequence of zero or more filters plus
the device with an instance of boost::iostreams::stream or an instance of
boost::iostreams::stream_buffer. A sequence of filters is called a chain and a
sequence of filters with a device at the end is said to be a complete chain.

Files, Directories, and IOStreams

[360]

The following diagram is a unified view of input and output operation, illustrating
the I/O path between a stream object and the underlying device:

stream

device

chain
filter1

filter2

filter3

filter4

filter5

stream_buffer

Use

Use

The Boost IOStreams architecture

Input is read from the device and passed through an optional stack of filters to
reach the stream buffer from where it is accessible via the stream. Output is written
from the stream via the stream buffer and passed through a stack of filters before
reaching the device. The filters, if any, act on the data read from the device to present
a transformed sequence to the reader of the stream. They also act on the data to be
written to the device and transform it before it is written. The preceding diagram
is meant for visualizing these interactions but is slightly inaccurate; in code, a filter
cannot act both as an input filter and an output filter at the same time.

The Boost IOStreams library comes with several built-in device and filter classes,
and it is easy to create our own too. In the following sections, we illustrate the use
of different components of the Boost IOStreams library with code examples.

Chapter 9

[361]

Using devices
A device provides an interface to read and write characters to an underlying
medium. It abstracts a real medium like a disk, memory, or network connection. In
this book, we will focus on using the number of readily available devices shipped as
part of the Boost IOStreams library. Methods of writing our own device classes are
beyond the scope of this book, but you should have little difficulty in picking them
up from the online documentation once you are familiar with the content we cover in
this chapter.

Devices for file I/O
Boost defines a number of devices for performing I/O on files and the one we look
at first is a device that abstracts platform-specific file descriptors. Each platform
uses some native handle for open files, different from how standard C++ represents
open files using fstreams. These could be integer file descriptors on POSIX systems
and HANDLEs on Windows, for example. The Boost IOStreams library provides
the boost::iostreams::file_descriptor_source, boost::iostreams::file_
descriptor_sink, and boost::iostreams::file_descriptor devices that
adapt POSIX file descriptors and Windows file handles into devices for input and
output. In the following example, we use a file_descriptor_source object to
read successive lines from a file on a POSIX system using the stream interface. This
is useful if you want to use a stream interface for I/O on a file that is opened using
system calls that deal in file descriptors.

Listing 9.11: Using the file_descriptor device

 1 #include <boost/iostreams/stream.hpp>
 2 #include <boost/iostreams/device/file_descriptor.hpp>
 3 #include <iostream>
 4 #include <string>
 5 #include <cassert>
 6 #include <sys/types.h>
 7 #include <fcntl.h>
 8 namespace io = boost::iostreams;
 9
10 int main(int argc, char *argv[]) {
11 if (argc < 2) {
12 return 0;
13 }
14
15 int fdr = open(argv[1], O_RDONLY);

Files, Directories, and IOStreams

[362]

16 if (fdr >= 0) {
17 io::file_descriptor_source fdDevice(fdr,
18 io::file_descriptor_flags::close_handle);
19 io::stream<io::file_descriptor_source> in(fdDevice);
20 assert(fdDevice.is_open());
21
22 std::string line;
23 while (std::getline(in, line))
24 std::cout << line << '\n';
25 }
26 }

Using this program, we open the first file named on the command line and read
successive lines off it. We first open the file using the Unix system call, open (line
15), for which we include the Unix headers sys/types.h and fcntl.h (lines 6-7).
If the file is opened successfully (indicated by a positive value of the file descriptor
returned by open), then we create an instance of file_descriptor_source passing
it the open file descriptor and a flag close_handle to indicate that the descriptor
should be appropriately closed when the device is destroyed (lines 17-18).

If we did not want the device to manage the descriptor's lifetime, then we had
to pass the flag never_close_handle instead. We then create an instance of
boost::iostreams::stream<file_descriptor_source> (line 19) passing it the
device object, and read successive lines from it using the std::getline function
just as we would use any std::istream instance (line 23). Note that we assert the
device is open for reading using the is_open member function (line 19). This code is
meant to compile on Unix and Unix-like systems. On Windows, the Visual Studio C
Runtime library provides compatible interfaces so that you may be able to compile
and run this on Windows as well by including one additional header file io.h.

The types and functions in Boost IOStreams library are split into a set
of fairly independent header files, and there is no single header file
including which will give you all symbols. Device headers are available
under boost/iostreams/device directory and filter headers are
under boost/iostreams/filter directory. The rest of the interfaces
are available under boost/iostreams.

To build this program, we must link it with the libboost_iostreams library. I use
the following command line on my Ubuntu box to build the program using the Boost
libraries installed under default paths via the native package manager:

$ g++ listing8_11.cpp -o listing8_11 -std=c++11 -lboost_iostreams

Chapter 9

[363]

We may also want to build our program to use the Boost libraries we built from
source in Chapter 1, Introducing Boost. For this, I use the following command line to
build this program on my Ubuntu box, specifying the include path and the library
path, as well as the libboost_iostreams-mt library to link against:

$ g++listing8_11.cpp -o listing8_11-I /opt/boost/include -std=c++11 -L /
opt/boost/lib -lboost_iostreams-mt -Wl,-rpath,/opt/boost/lib

To write to a file via a file descriptor, we need to use a file_descriptor_sink
object. We can also use a file_descriptor object to both read and write to the same
device. There are other devices that allow writing to files—the file_source, file_
sink, and file devices allow you to read and write named files. The mapped_file_
source, mapped_file_sink, and mapped_file devices allow you to read and write
to files via memory mappings.

Devices for reading and writing to memory
The Standard Library std::stringstream family of classes is commonly used for
reading and writing formatted data to memory. If you want to read and write from
any given contiguous memory area, like an array or byte buffer, the array family
of devices (array_source, array_sink, and array) from Boost IOStreams library
comes in handy:

Listing 9.12: Using array devices

 1 #include <boost/iostreams/device/array.hpp>
 2 #include <boost/iostreams/stream.hpp>
 3 #include <boost/iostreams/copy.hpp>
 4 #include <iostream>
 5 #include <vector>
 6 namespace io = boost::iostreams;
 7
 8 int main() {
 9 char out_array[256];
10 io::array_sink sink(out_array, out_array + sizeof(out_array));
11 io::stream<io::array_sink> out(sink);
12 out << "Size of out_array is " << sizeof(out_array)
13 << '\n' << std::ends << std::flush;
14
15 std::vector<char> vchars(out_array,
16 out_array + strlen(out_array));
17 io::array_source src(vchars.data(),vchars.size());
18 io::stream<io::array_source> in(src);

Files, Directories, and IOStreams

[364]

19
20 io::copy(in, std::cout);
21 }

This example follows the same pattern as Listing 9.11, but we use two devices, a sink
and a source, instead of one. In each case, we do the following:

• We create an appropriately initialized device
• We create a stream object and associate the device with it
• We perform input or output on the stream

We first define an array_sink device, which is used to write to a contiguous region
of memory. The region of memory is passed to the device constructor as a pair of
pointers to the first element of an array of chars and the one past the last element
(line 10). We associate this device with a stream object out (line 11) and then write
some content to the stream using insertion operators (<<). Note that this content can
be of any streamable type, not just textual. Using the manipulator std::ends (line
13), we make sure that the array has a terminating null character after the text. Using
the std::flush manipulator, we make sure that this content is not held in the device
buffer but finds its way to the backing array out_array of the sink device before we
call strlen on out_array (line 16).

Next, we create a vector of chars called vchars initialized with the content of out_
array (lines 15-16). We then define an array_source device backed by this vector,
passing to the constructor an iterator to the first element of vchars and the number
of characters in vchars (line 17). Finally, we construct an input stream associated
with the device (line 18) and then use the boost::iostreams::copy function
template to copy characters from the input stream to the standard output (line 20).
Running the preceding code writes the following line to out_array through the
array_sink device:

The size of out_array is 256

It then reads each word in this phrase and prints it to the standard output on a
new line.

In addition to the array devices, the back_insert_device device can be used to
adapt several standard containers as sinks. The difference between back_insert_
device and array_sink is that array_sink requires a fixed memory buffer to
operate on, whereas back_insert_device can use as its backing store any standard
container with an insert member function. This allows the underlying memory
area for a back_insert_device to grow as required by the size of input. We rewrite
listing 9.12 using a back_insert_device in place of the array_sink:

Chapter 9

[365]

Listing 9.13: Using back_insert_device

 1 #include <boost/iostreams/device/array.hpp>
 2 #include <boost/iostreams/device/back_inserter.hpp>
 3 #include <boost/iostreams/stream.hpp>
 4 #include <boost/iostreams/copy.hpp>
 5 #include <iostream>
 6 #include <vector>
 7 namespace io = boost::iostreams;
 8
 9 int main() {
10 typedef std::vector<char> charvec;
11 charvec output;
12 io::back_insert_device<charvec> sink(output);
13 io::stream<io::back_insert_device<charvec>> out(sink);
14 out << "Size of outputis "<< output.size() << std::flush;
15
16 std::vector<char> vchars(output.begin(),
17 output.begin() + output.size());
18 io::array_source src(vchars.data(),vchars.size());
19 io::stream<io::array_source> in(src);
20
21 io::copy(in, std::cout);
22 }

Here, we write to out_vec, which is a vector<char> (line 11), and do so using the
back_insert_device sink (line 12). We write the size of out_vec to the stream, but
this may not print the total number of characters already written to the device at
that point, because the device may buffer some of the output before flushing it to the
vector. Since we intend to copy this data to another vector for reading (lines 16-17),
we ensure that all the data is written to out_vec using the std::flush manipulator
(line 14).

There are other interesting devices, like the tee_device adaptor that allows writing
a character sequence to two different devices, reminiscent of the Unix tee command.
We will now look at how you can write your own device.

Using filters
Filters act on the character stream that is written to a sink or read from a source,
either transforming it before it is written and read, or simply observing some
properties of the stream. The transformation can do a variety of things, like tagging
keywords, translating text, performing regular expression substitution, and
performing compression or decompression. Observer filters can compute line and
word counts or compute a message digest among other things.

Files, Directories, and IOStreams

[366]

Regular streams and stream buffers do not support filters and we need to use
filtering streams and filtering stream buffers instead in order to use filters. Filtering
streams and stream buffers maintain a stack of filters with the source or sink at the
top and the outermost filter at the bottom in a data structure called a chain.

We will now look at several utility filters that are shipped as part of the Boost
IOStreams library. Writing our own filters is outside the scope of this book, but the
excellent online documentation covers this topic in adequate detail.

Basic filters
In the first example of using filters, we use boost::iostreams::counter filter to
keep a count of characters and lines in text read from a file:

Listing 9.14: Using the counter filter

 1 #include <boost/iostreams/device/file.hpp>
 2 #include <boost/iostreams/filtering_stream.hpp>
 3 #include <boost/iostreams/filter/counter.hpp>
 4 #include <boost/iostreams/copy.hpp>
 5 #include <iostream>
 6 #include <vector>
 7 namespace io = boost::iostreams;
 8
 9 int main(int argc, char *argv[]) {
10 if (argc <= 1) {
11 return 0;
12 }
13
14 io::file_source infile(argv[1]);
15 io::counter counter;
16 io::filtering_istream fis;
17 fis.push(counter);
18 assert(!fis.is_complete());
19 fis.push(infile);
20 assert(fis.is_complete());
21
22 io::copy(fis, std::cout);
23
24 io::counter *ctr = fis.component<io::counter>(0);
25 std::cout << "Chars: " << ctr->characters() << '\n'
26 << "Lines: " << ctr->lines() << '\n';
27 }

Chapter 9

[367]

We create a boost::iostream::file_source device for reading the contents of a
file named on the command line (line 14). We create a counter filter for counting
the number of lines and characters read (line 15). We create an object of filtering_
istream (line 16) and push the filter (line 17) followed by the device (line 19). Till the
device is pushed, we can assert that the filtering stream is incomplete (line 18) and it
is complete once the device is pushed (line 20). We copy the contents read from the
filtering input stream to the standard output (line 22) and then access the character
and line counts.

To access the counts, we need to refer to the counter filter object sitting in the chain
inside the filtering stream. To get to this, we call the component member template
function of filtering_istream passing in the index of the filter we want and the
type of the filter. This returns a pointer to the counter filter object (line 24) and we
retrieve the number of characters and lines read by calling the appropriate member
functions (lines 25-26).

In the next example, we use boost::iostreams::grep_filter to filter out
blank lines. Unlike the counter filter which did not modify the input stream, this
transforms the output stream by removing blank lines.

Listing 9.15: Using the grep_filter

 1 #include <boost/iostreams/device/file.hpp>
 2 #include <boost/iostreams/filtering_stream.hpp>
 3 #include <boost/iostreams/filter/grep.hpp>
 4 #include <boost/iostreams/copy.hpp>
 5 #include <boost/regex.hpp>
 6 #include <iostream>
 7 namespace io = boost::iostreams;
 8
 9 int main(int argc, char *argv[]) {
10 if (argc <= 1) {
11 return 0;
12 }
13
14 io::file_source infile(argv[1]);
15 io::filtering_istream fis;
16 io::grep_filter grep(boost::regex("^\\s*$"),
17 boost::regex_constants::match_default, io::grep::invert);
18 fis.push(grep);
19 fis.push(infile);
20
21 io::copy(fis, std::cout);
22 }

Files, Directories, and IOStreams

[368]

This example is on the same lines as the listing 9.14 except that we use a different
filter, boost::iostreams::grep_filter, to filter out blank lines. We create an
instance of the grep_filter object, passing three arguments to its constructor.
The first argument is the regular expression ^\s*$ that matches blank lines—lines
that contain zero or more whitespace characters (line 16). Note that the backslash
is escaped in code. The second argument is the constant match_default to
indicate that we use Perl regular expression syntax (line 17). The third argument
boost::iostreams::grep::invert tells the filter to let only those lines that match
the regular expression to be filtered out (line 17). The default behavior is to filter out
only those lines that do not match the regular expression.

To build this program on Unix, you must additionally link against the Boost
Regex library:

$ g++ listing8_15.cpp -o listing8_15 -std=c++11 -lboost_iostreams-lboost_
regex

On a system without the Boost native packages and with Boost installed at a custom
location, use the following more elaborate command line:

$ g++ listing8_15.cpp -o listing8_15-I /opt/boost/include -std=c++11 -L /
opt/boost/lib -lboost_iostreams-mt-lboost_regex-mt -Wl,-rpath,/opt/boost/
lib

On Windows, using Visual Studio and enabling auto linking against DLLs, you do
not need to explicitly specify the Regex or IOStream DLLs.

Filters for compression and decompression
Boost IOStreams library comes with three different filters for compressing and
decompressing data, one each for gzip, zlib, and bzip2 formats. The gzip and zlib
formats implement different variants of the DEFLATE algorithm for compression,
while the bzip2 format uses the more space-efficient Burrows-Wheeler algorithm.
Since these are external libraries, they must be built and linked to our executables if
we use these compression formats. If you have followed the detailed steps outlined
in Chapter 1, Introducing Boost, to build Boost libraries with support for zlib and
bzip2, then the zlib and bzip2 shared libraries should have been built along with the
Boost Iostreams shared library.

In the following example, we compress a file named on the command line and write it
to the disk. We then read it back, decompress it, and write it to the standard output.

Listing 9.16: Using gzip compressor and decompressor

 1 #include <boost/iostreams/device/file.hpp>
 2 #include <boost/iostreams/filtering_stream.hpp>

Chapter 9

[369]

 3 #include <boost/iostreams/stream.hpp>
 4 #include <boost/iostreams/filter/gzip.hpp>
 5 #include <boost/iostreams/copy.hpp>
 6 #include <iostream>
 7 namespace io = boost::iostreams;
 8
 9 int main(int argc, char *argv[]) {
10 if (argc <= 1) {
11 return 0;
12 }
13 // compress
14 io::file_source infile(argv[1]);
15 io::filtering_istream fis;
16 io::gzip_compressor gzip;
17 fis.push(gzip);
18 fis.push(infile);
19
20 io::file_sink outfile(argv[1] + std::string(".gz"));
21 io::stream<io::file_sink> os(outfile);
22 io::copy(fis, os);
23
24 // decompress
25 io::file_source infile2(argv[1] + std::string(".gz"));
26 fis.reset();
27 io::gzip_decompressor gunzip;
28 fis.push(gunzip);
29 fis.push(infile2);
30 io::copy(fis, std::cout);
31 }

The preceding code first uses the boost::iostreams::gzip_compressor
filter (line 16) to decompress the file as it is read (line 17). It then writes this
content to a file with the .gz extension appended to the original file name using
boost::iostreams::copy (lines 20-22). The call to boost::iostreams::copy
also flushes and closes the output and input streams passed to it. Thus, it is safe
to read back from the file immediately after the call to copy returns. To read this
compressed file back, we use a boost::iostreams::file_source device with
a boost::iostreams::gzip_decompressor in front (lines 27-28) and write the
decompressed output to the standard output (line 30). We reuse the filtering_
istream object for reading the original file and again for reading the compressed file.
Calling the reset member function on the filtering stream closes and removes the
filter chain and device associated with the stream (line 26), so we can associate a new
filter chain and device (lines 27-28).

Files, Directories, and IOStreams

[370]

It is possible to override several defaults by supplying additional arguments to the
constructor of the compressor or decompressor filter, but the essential structure
does not change. By changing the header from gzip.hpp to bzip2.hpp (line 4), and
replacing the gzip_compressor and gzip_decompressor with bzip2_compressor
and bzip2_decompressor in the preceding code, we can test the code for the bzip2
format; likewise for the zlib format. Ideally, the extensions should be changed aptly
(.bz2 for bzip2 and .zlib for zlib). On most Unix systems, it will be worthwhile to
test the generated compressed files by uncompressing them independently using
gzip and bzip2 tools. Command-line tools for zlib archives seem scanty and less
standardized. On my Ubuntu system, the qpdf program comes with a raw zlib
compression/decompression utility called zlib-flate, which can compress to
and decompress from zlib format.

The steps to build this program are the same as the steps outlined to build listing
9.15. Even if you use the zlib_compressor or bzip2_compressor filters instead,
the necessary shared libraries will be automatically picked up by the linker (and
later, the runtime linker during execution) as long as the option -Wl,-rpath,/opt/
boost/lib is used during linking and the path /opt/boost/lib contains the shared
libraries for zlib and bzip2.

Composing filters
Filtering streams can apply multiple filters to a character sequence in a pipeline.
Using the push method on the filtering stream, we form the pipeline starting with the
outermost filter, inserting the filters in the desired order, and ending with the device.

This means that for filtering an output stream, you first push the filter that gets
applied first and work forward pushing each successive filter, followed at the end by
the sink. For example, in order to filter out some lines and compress before writing to
a sink, the sequence of pushes would be like the following:

filtering_ostream fos;
fos.push(grep);
fos.push(gzip);
fos.push(sink);

For filtering input streams, you push the filters, starting with the filter that gets
applied last and work backward pushing each preceding filter, followed at the end
by the source. For example, in order to read a file, decompress it and then perform a
line count, the sequence of pushes will look like this:

filtering_istream fis;
fis.push(counter);
fis.push(gunzip);
fis.push(source);

Chapter 9

[371]

Pipelining
It turns out that a little operator overloading can make this much more expressive.
We can write the preceding chains using the pipe operator (operator|) in the
following alternative notation:

filtering_ostream fos;
fos.push(grep | gzip | sink);

filtering_istream fis;
fis.push(counter | gunzip | source);

The preceding snippet is clearly more expressive with fewer lines of code. From left
to right, the filters are strung together in the order you push them into the stream,
with the device at the end. Not all filters can be combined in this way, but many
readily available ones from the Boost IOStreams library can; more definitively, filters
must conform to the Pipable concept to be combined this way. Here is a complete
example of a program that reads the text in a file, removes blank lines, and then
compresses it using bzip2:

Listing 9.17: Piping filters

 1 #include <boost/iostreams/device/file.hpp>
 2 #include <boost/iostreams/filtering_stream.hpp>
 3 #include <boost/iostreams/stream.hpp>
 4 #include <boost/iostreams/filter/bzip2.hpp>
 5 #include <boost/iostreams/filter/grep.hpp>
 6 #include <boost/iostreams/copy.hpp>
 7 #include <boost/regex.hpp>
 8 #include <iostream>
 9 namespace io = boost::iostreams;
10
11 int main(int argc, char *argv[]) {
12 if (argc <= 1) { return 0; }
13
14 io::file_source infile(argv[1]);
15 io::bzip2_compressor bzip2;
16 io::grep_filter grep(boost::regex("^\\s*$"),
17 boost::regex_constants::match_default,
18 io::grep::invert);
19 io::filtering_istream fis;
20 fis.push(bzip2 | grep | infile);
21 io::file_sink outfile(argv[1] + std::string(".bz2"));
22 io::stream<io::file_sink> os(outfile);
23
24 io::copy(fis, os);
25 }

Files, Directories, and IOStreams

[372]

The preceding example strings together a grep filter for filtering out blank lines (lines
16-18) and a bzip2 compressor (line 15) with a file source device using pipes (line 20).
The rest of the code should be familiar from listings 9.15 and 9.16.

Branching data streams with tee
While using filter chains with multiple filters, it is sometimes useful,
especially for debugging, to capture the data flowing between two filters. The
boost::iostreams:: tee_filter is an output filter akin to the Unix tee command
that sits interposed between two filters and extracts a copy of the data stream
flowing between the two filters. Essentially, when you want to capture data at
different intermediate stages of processing, you can use a tee_filter:

filter1

outputfilter1 Tee filter2
filter3

input filter3

filte
r1

o
u
tp

u
t

You can also multiplex two sink devices to create a tee device, such that writing
some content to the tee device writes it to both the underlying devices. The
boost::iostream::tee_device class template combines two sinks to create such
a tee device. By nesting tee devices or pipelining tee filters, we can generate several
parallel streams that can be processed differently. The boost::iostreams::tee
function template can generate tee filters and tee streams. It has two overloads—a
single-argument overload that takes a sink and generates a tee_filter, and a two-
argument overload that takes two sinks and returns a tee_device. The following
example shows how to compress a file to three different compression formats (gzip,
zlib, and bzip2) using very little code:

Listing 9.18: Branching output streams with tees

 1 #include <boost/iostreams/device/file.hpp>
 2 #include <boost/iostreams/filtering_stream.hpp>
 3 #include <boost/iostreams/stream.hpp>
 4 #include <boost/iostreams/filter/gzip.hpp>
 5 #include <boost/iostreams/filter/bzip2.hpp>
 6 #include <boost/iostreams/filter/zlib.hpp>
 7 #include <boost/iostreams/copy.hpp>
 8 #include <boost/iostreams/tee.hpp>
 9 namespace io = boost::iostreams;
10

Chapter 9

[373]

11 int main(int argc, char *argv[]) {
12 if (argc <= 1) { return 0; }
13
14 io::file_source infile(argv[1]); // input
15 io::stream<io::file_source> ins(infile);
16
17 io::gzip_compressor gzip;
18 io::file_sink gzfile(argv[1] + std::string(".gz"));
19 io::filtering_ostream gzout; // gz output
20 gzout.push(gzip | gzfile);
21 auto gztee = tee(gzout);
22
23 io::bzip2_compressor bzip2;
24 io::file_sink bz2file(argv[1] + std::string(".bz2"));
25 io::filtering_ostream bz2out; // bz2 output
26 bz2out.push(bzip2 | bz2file);
27 auto bz2tee = tee(bz2out);
28
29 io::zlib_compressor zlib;
30 io::file_sink zlibfile(argv[1] + std::string(".zlib"));
31
32 io::filtering_ostream zlibout;
33 zlibout.push(gztee | bz2tee | zlib | zlibfile);
34
35 io::copy(ins, zlibout);
36 }

We set up three compression filters for gzip, bzip2, and zlib (lines 17, 23, and 29). We
need one filtering_ostream for each output file. We create the gzout stream for the
gzip-compressed output (line 20) and the bz2out stream for the bzip2-compressed
output (line 26). We create tee filters around these two streams (lines 21 and 27).
Finally, we string together the filters gztee, bz2tee, and zlib in front of the zlibfile sink
and push this chain into the zlibout filtering_ostream for the zlib file (line 33).
Copying from the input stream ins into the output stream zlibout generates the
three compressed output files in a pipeline, as shown in the following diagram:

gztee bz2teeins zlibout

gzout bz2out

Files, Directories, and IOStreams

[374]

Notice that the calls to tee are not namespace-qualified but get correctly resolved due
to Argument Dependent Lookup (see Chapter 2, The First Brush with Boost's Utilities).

The Boost IOStreams library provides a very rich framework for writing and using
devices and filters. This chapter introduces only the basic uses of this library and
there is a whole host of filters, devices, and adaptors that can be combined into
useful patterns for I/O.

Self-test questions
For multiple-choice questions, choose all options that apply:

1. What is unique to the canonical and equivalent functions for
manipulating paths?
a. The arguments cannot name real paths.
b. Both are namespace-level functions.
c. The arguments must name real paths.

2. What is the problem with the following code snippet assuming the path is
of type boost::filesystem::path?
if (is_regular_file(path)) { /* … */ }
else if (is_directory(path)) { /* … */ }
else if (is_symlink(path)) { /* … */ }

a. It must have static value field.
b. It must have an embedded type called type.
c. It must have static type field.
d. It must have an embedded type called result.

3. Given this code snippet:
boost::filesystem::path p1("/opt/boost/include/boost/thread.hpp");
size_t n = std::distance(p1.begin(), p1.end());

What is the value of n?
a. 5, the total number of components in the path.
b. 6, the total number of components in the path.
c. 10, the sum of the number of slashes and components.
d. 4, the total number of directory components.

Chapter 9

[375]

4. You want to read a text file, remove all blank lines using a grep_filter,
replace specific keywords using the regex_filter, and count the characters
and lines in the result. Which of the following pipelines will you use?
a. file_source | grep_filter| regex_filter | counter
b. grep_filter | regex_filter | counter | file_source
c. counter | regex_filter | grep_filter |file_source
d. file_source | counter | grep_filter | regex_filter

5. True or false: A tee filter cannot be used with an input stream.

a. True.
b. False.

Summary
In this chapter, we covered the Boost Filesystem library for reading file metadata
and state of files and directories, and performing operations on them. We also
covered the high-level Boost IOStreams framework for performing type-safe I/O
with rich semantics.

Working with files and performing I/O are basic system programming tasks that
almost any useful piece of software needs to perform and the Boost libraries we
covered in this chapter ease those tasks through a set of portable interfaces. In the
next chapter, we will turn our attention to another systems programming topic—
concurrency and multithreading.

[377]

Concurrency with Boost
Threads represent concurrent streams of execution within a process. They are a
low-level abstraction for concurrency and are exposed by the system programming
libraries or system call interfaces of operating systems, for example, POSIX threads,
Win32 Threads. On multiprocessor or multicore systems, operating systems can
schedule two threads from the same process to run in parallel on two different cores,
thus achieving true parallelism.

Threads are a popular mechanism to abstract concurrent tasks that can potentially
run in parallel with other such tasks. Done right, threads can simplify program
structure and improve performance. However, concurrency and parallelism
introduce complexities and nondeterministic behavior unseen in single-threaded
programs, and doing it right can often be the biggest challenge when it comes
to threads. A wide variance in the native multithreading libraries or interfaces
across operating systems makes the tasks of writing portable concurrent software
using threads even more difficult. The Boost Thread library eases this problem by
providing a portable interface to create threads and higher level abstractions for
concurrent tasks. The Boost Coroutine library provides a mechanism to create
cooperative coroutines or functions which can be exited and resumed, retaining states
of automatic objects between such calls. Coroutines can express event-driven logic in
a simpler way, and avoid the overhead of threads in some cases.

This chapter is a hands-on introduction to using the Boost Thread library and
also features a short account of the Boost Coroutine library. It is divided into the
following sections:

• Creating concurrent tasks with Boost Thread
• Concurrency, signaling, and synchronization
• Boost Coroutines

Concurrency with Boost

[378]

Even if you have never written multithreaded programs or concurrent software, this
would be a good starting point. We will also touch upon the thread library in the
C++11 Standard Library, which is based on the Boost Thread library and introduces
additional refinements.

Creating concurrent tasks with Boost
Thread
Consider a program that prints greetings in different languages. There is one list of
greetings in Anglo-Saxon languages, such as English, German, Dutch, Danish, and so
on. There is a second list of greetings in Romance languages, such as Italian, Spanish,
French, Portuguese, and so on. Greetings from both language groups need to be
printed, and we do not want to delay printing the greetings from one group because
of the other, that is, we want to print greetings from both the groups concurrently.
Here is one way to print both the groups of greetings:

Listing 10.1: Interleaved tasks

 1 #include <iostream>
 2 #include <string>
 3 #include <vector>
 4
 5 int main()
 6 {
 7 typedef std::vector<std::string> strvec;
 8
 9 strvec angloSaxon{"Guten Morgen!", "Godmorgen!",
10 "Good morning!", "goedemorgen"};
11
12 strvec romance{"Buenos dias!", "Bonjour!",
13 "Bom dia!", "Buongiorno!"};
14
15 size_t max1 = angloSaxon.size(), max2 = romance.size();
16 size_t i = 0, j = 0;
17
18 while (i < max1 || j < max2) {
19 if (i < max1)
20 std::cout << angloSaxon[i++] << '\n';

Chapter 10

[379]

21
22 if (j < max2)
23 std::cout << romance[j++] << '\n';
24 }
25 }

In the preceding example, we have two vectors of greetings, and printing the
greetings in each is an independent task. We interleave these two tasks by printing
one greeting from each array, and thus the two tasks progress concurrently. From the
code, we can tell that a Latin and an Anglo-Saxon greeting will be printed alternately
in the exact order as shown:

Buenos dias!
Guten Morgen!
Bonjour!
Godmorgen!
Bom dia!
Good morning!
Buongiorno!
goedemorgen

While the two tasks were run interleaved, and in that sense concurrently, the
distinction between them in code was totally muddled to the extent that they were
coded in a single function. By separating them into separate functions and running
them in separate threads, the tasks can be totally decoupled from each other yet be
run concurrently. In addition, threads would allow for their parallel execution.

Using Boost Threads
Every running process has at least one thread of execution. A traditional "hello world"
program with a main function also has a single thread, often called the main thread.
Such programs are called single-threaded. Using Boost Threads, we can create
programs with multiple threads of execution that run concurrent tasks. We can rewrite
the listing 10.1 using Boost Threads so that the code for an individual task is cleanly
factored out, and the tasks potentially run in parallel when parallel hardware
is available. Here is how we can do this:

Listing 10.2: Concurrent tasks as threads

 1 #include <boost/thread.hpp>
 2 #include <string>
 3 #include <vector>

Concurrency with Boost

[380]

 4 #include <iostream>
 5
 6 typedef std::vector<std::string> strvec;
 7
 8 void printGreets(const strvec& greets)
 9 {
10 for (const auto& greet : greets) {
11 std::cout << greet << '\n';
12 }
13 }
14
15 int main()
16 {
17 strvec angloSaxon{"Guten Morgen!", "Godmorgen!",
18 "Good morning!", "goedemorgen"};
19
20 strvec romance{"Buenos dias!", "Bonjour!",
21 "Bom dia!", "Buongiorno!"};
15
16 boost::thread t1(printGreets, romance);
17 printGreets(angloSaxon);
18 t1.join();
19 }

We define a function printGreets that takes a vector of greetings and prints all
the greetings in the vector (lines 8-13). This is the code for the task, simplified and
factored out. This function is invoked once each on the two greeting vectors. It is
called once from the main function, which executes in the main thread (line 17), and
once from a second thread of execution that we spawn by instantiating an object of
type boost::thread, passing it the function to invoke and its arguments (line 16).
The header file boost/thread.hpp provides types and functions needed for using
Boost Threads (line 1).

The object t1 of type boost::thread wraps a native thread, for example, pthread_t,
Win32 thread HANDLE, and so on. For conciseness, we simply refer to "the thread t1" to
mean the underlying thread as well as the boost::thread object wrapping it, unless
it is necessary to distinguish between the two. The object t1 is constructed by passing
a function object (the initial function of the thread) and all the arguments to pass to
the function object (line 16). Upon construction, the underlying native thread starts
running immediately by calling the passed function with the arguments provided.
The thread terminates when this function returns. This happens concurrently with
the printGreets function called from the main function (line 17).

Chapter 10

[381]

One possible output from this program is:

Guten Morgen!
Buenos dias!
Godmorgen!
Bonjour!
Bom dia!
Good morning!
Buongiorno!
goedemorgen

The Latin greets are printed in the order they appear in the romance vector, and
the Anglo-Saxon greets are printed in the order they appear in the angloSaxon
vector. But there is no predictable order in which they are interleaved. This lack of
determinism is a key feature in concurrent programming and a source of some of
the difficulty. What is possibly more unnerving is that even the following output
is possible:

Guten Morgen!
Buenos dGodmorgeias!
n!
Bonjour!
Bom dia! Good morning!
Buongiorno!
goedemorgen

Notice that the two greets Buenos dias! (Spanish) and Godmorgen! (Dutch) are
interleaved, and Good morning! was printed before the new line following Bom
dia! could be printed.

We call the join member function on t1 to wait for the underlying thread to
terminate (line 18). Since the main thread and the thread t1 run concurrently, either
can terminate before the other. If the main function terminated first, it would terminate
the program and the printGreets function running in the thread t1 would be
terminated before it finished execution. By calling join, the main function ensures
that it does not exit while t1 is still running.

Concurrency with Boost

[382]

Linking against Boost Thread Library

Boost Thread is not a header-only library but has to be built from the
sources. Chapter 1, Introducing Boost, describes the details of building
the Boost libraries from their sources, their name layout variants, and
naming conventions.

To build a running program from listing 10.2, you need to link your
compiled objects with these libraries. To build the preceding example,
you must link with Boost Thread and Boost System libraries. On Linux,
you must also link against libpthread, which contains the Pthreads
library implementation.

Assuming the source file is Listing9_2.cpp, here is the g++
command line on Linux to compile and link the source to build a binary:
$ g++ Listing9_2.cpp -o Listing9_2 -lboost_thread
-lboost_system –lboost_chrono –pthread

Linking to libboost_chrono is necessary only if we use the Boost
Chrono library. The option -pthread sets the necessary preprocessor
and linker flags to enable compiling a multithreaded application and
linking it against libpthread. If you did not use your native package
manager to install Boost on Linux, or if you are trying to build on
another platform, such as Windows, then refer to the detailed build
instructions in Chapter 1, Introducing Boost.

If you are on C++11, you can use the Standard Library threads instead of Boost
Threads. For this, you have to include the Standard Library header thread, and use
std::thread instead of boost::thread. Boost Thread and std::thread are not
drop-in replacements of each other, and therefore some changes would be necessary.

Moving threads and waiting on threads
An object of std::thread is associated with and manages exactly one thread in a
process. Consider the following code snippet:

 1 void threadFunc() { ... }
 2
 3 boost::thread makeThread(void (*thrFunc)()) {
 4 assert(thrFunc);
 5 boost::thread thr(thrFunc);
 6 // do some work
 7 return thr;
 8 }
 9
10 int main() {
11 auto thr1 = makeThread(threadFunc);

Chapter 10

[383]

12 // ...
13 thr1.join();
14 }

When the boost::thread object thr is created (line 4), it gets associated with a new
native thread (pthread_t, handle to a Windows thread, and so on), which executes
the function pointed to by thrFunc. Now boost::thread is a movable but not a
copyable type. When the makeThread function returns thr by value (line 7), the
ownership of the underlying native thread handle is moved from the object thr in
makeThread to thr1 in the main function (line 11). Thus you can create a thread in
one function and return it to the calling function, transferring ownership in the process.

Ultimately though, we wait for the thread to finish execution inside the main
function by calling join (line 13). This ensures that the main function does not
exit until the thread thr1 terminates. Now it is entirely possible that by the time
makeThread returned thr, the underlying thread had already completed execution.
In this case, thr1.join() (line 13) returns immediately. On the other hand, the
underlying thread could well continue to execute while the control on the main
thread is transferred to the main function, and even as join was called on thr1 (line
13). In this case, thr1.join() would block, waiting for the thread to exit.

Sometimes, we may want a thread to run its course and exit, and we would never
bother to check on it again. Moreover, it may not matter whether the thread
terminated or not. Imagine a personal finance desktop application that features a
nifty stock ticker thread that keeps displaying stock prices of a configurable set of
companies in one corner of the window. It is started by the main application and
keeps doing its job of fetching the latest prices of stocks and showing them until the
application exits. There is little point for the main thread to wait on this thread before
exiting. When the application terminates, the stock ticker thread is also terminated
and cleaned up in its wake. We can explicitly request this behavior for a thread by
calling detach on the boost::thread object, as shown in the following snippet:

 1 int main() {
 2 boost::thread thr(thrFunc, arg1, ...);
 3 thr.detach();
 4 // ...
 5 }

When we call detach on a boost::thread object, the ownership of the underlying
native thread is passed to the C++ runtime, which continues to execute the thread until
either the thread terminates or the program terminates, killing the thread. After the
call to detach, the boost::thread object no longer refers to a valid thread, and the
program can no longer check the status of the thread or interact with it in any way.

Concurrency with Boost

[384]

A thread is said to be joinable if and only if neither detach nor join has been
called on the boost::thread object. The joinable method on the boost::thread
returns true if and only if the thread is joinable. If you call detach or join on a
boost::thread object that is not joinable, the calls return immediately with no other
effect. If we do not call join on a boost::thread object, then detach is called in its
destructor, when the thread goes out of scope.

Differences between boost::thread and std::thread

You must call either join or detach on a std::thread object;
otherwise, the destructor of std::thread calls std::terminate
and aborts the program. Moreover, calling join or detach on a
std::thread that is not joinable will result in a std::system_error
exception being thrown. Thus you call any one of join and detach on
std::thread, and you do so once and only once. This is in contrast to
the behavior of boost::thread we just described.

We can get boost::thread to emulate this behavior of std::thread
by defining the following preprocessor macros, and it is a good idea to
emulate the behavior of std::thread in any new code that you write:

BOOST_THREAD_TRHOW_IF_PRECONDITION_NOT_SATISFIED
BOOST_THREAD_PROVIDES_THREAD_DESTRUCTOR_CALLS_
TERMINATE_IF_JOINABLE

Thread IDs
At any time, each running thread in a process has a unique identifier. This identifier
is represented by the type boost::thread::id and can be obtained from a
boost::thread object by calling the get_id method. To get the ID of the current
thread, we must use boost::this_thread::get_id(). A string representation of
the ID can be printed to an ostream object, using an overloaded insertion operator
(operator<<).

Thread IDs can be ordered using an operator< so they can easily be stored in
ordered associative containers (std::set / std::map). Thread IDs can be compared
using an operator== and can be stored in unordered associative containers too
(std::unordered_set / std::unordered_map). Storing threads in associative
containers indexed by their IDs is an effective means of supporting lookups on threads:

Listing 10.3: Using thread IDs

 1 #include <boost/thread.hpp>
 2 #include <boost/chrono/duration.hpp>
 3 #include <vector>
 4 #include <map>

Chapter 10

[385]

 5 #include <iostream>
 6 #include <sstream>
 7 #include <boost/move/move.hpp>
 8
 9 void doStuff(const std::string& name) {
10 std::stringstream sout;
11 sout << "[name=" << name << "]"
12 << "[id=" << boost::this_thread::get_id() << "]"
13 << " doing work\n";
14 std::cout << sout.str();
15 boost::this_thread::sleep_for(boost::chrono::seconds(2));
16 }
17
18 int main() {
19 typedef std::map<boost::thread::id, boost::thread> threadmap;
20 threadmap tmap;
21
22 std::vector<std::string> tnames{ "thread1", "thread2",
23 "thread3", "thread4", "thread5" };
24 for (auto name : tnames) {
25 boost::thread thr(doStuff, name);
26 tmap[thr.get_id()] = boost::move(thr);
27 }
28
29 for (auto& thrdEntry : tmap) {
30 thrdEntry.second.join();
31 std::cout << thrdEntry.first << " returned\n";
32 }
33 }

In the preceding example, we create five threads and each runs the function doStuff.
The function doStuff is passed an assigned name of the thread it runs; we name the
threads thread1 through thread5, and put them in a std::map indexed by their IDs
(lines 26). Because boost::thread is movable but not copyable, we move the thread
objects into the map. The doStuff function simply prints the ID of the current thread
using the method boost::this_thread::get_id (line 12), as part of some diagnostic
message, and then sleeps for 2 seconds using boost::this_thread::sleep_for,
which is passed a duration of type boost::chrono::duration (see Chapter 8,
Date and Time Libraries). We can also use duration types provided by Boost Date
Time, that is, boost::posix_time::time_duration and its subtypes, instead of
boost::chrono, but for that we would need to use the boost::this_thread::
sleep function rather than sleep_for.

Concurrency with Boost

[386]

Cores and threads
Many modern computers have multiple CPU cores on a single die and there might
be multiple dice in a processor package. To get the number of physical cores on the
computer, you can use the static function boost::thread::physical_concurrency.

Modern Intel CPUs support Intel's HyperThreading technology, which maximizes
utilization of a single core by using two sets of registers allowing two threads to
be multiplexed on the core at any given point and reducing the costs of context
switching. On an Intel system with eight cores and supporting HyperThreading, the
maximum number of threads that can be scheduled to run in parallel at any given
time is then 8x2 = 16. The static function boost::thread::hardware_concurrency
returns this number for the local machine.

These numbers are useful in deciding the optimal number of threads in your
program. However, it is possible for these functions to return 0 if the numbers
are not available from the underlying system. You should test these functions
thoroughly on each platform where you plan to use them.

Managing shared data
All threads in a process have access to the same global memory, so the results of
computations performed in one thread are relatively easy to share with other threads.
Concurrent read-only operations on shared memory do not require any coordination,
but any write to shared memory requires synchronization with any read or write.
Threads that share mutable data and other resources need mechanisms to arbitrate
access to shared data and signal each other about events and state changes. In this
section, we explore the mechanisms for coordination between multiple threads.

Creating and coordinating concurrent tasks
Consider a program that generates the difference between two text files à la the Unix
diff utility. You need to read two files, and then apply an algorithm to identify the
parts that are identical and the parts that have changed. For most text files, reading
both the files and then applying a suitable algorithm (based on the Longest Common
Subsequence problem) works perfectly well. The algorithm itself is beyond the scope
of this book and not germane to the present discussion.

Consider the tasks we need to perform:

• R1: Read complete contents of the first file
• R2: Read complete contents of the second file
• D: Apply the diff algorithm to the contents of the two files

Chapter 10

[387]

The tasks R1 and R2 conceivably produce two arrays of characters containing the
file content. The task D consumes the content produced by R1 and R2 and produces
the diff as another array of characters. There is no ordering required between R1 and
R2, and we can read the two files concurrently in separate threads. For simplicity,
D commences only once both R1 and R2 are complete, that is, both R1 and R2 must
happen before D. Let us start by writing the code to read a file:

Listing 10.4a: Reading contents of a file

 1 #include <vector>
 2 #include <string>
 3 #include <fstream>
 4 #include <boost/filesystem.hpp>
 5
 6 std::vector<char> readFromFile(const std::string& filepath)
 7 {
 8 std::ifstream ifs(filepath);
 9 size_t length = boost::filesystem::file_size(filepath);
10 std::vector<char> content(length);
11 ifs.read(content.data(), length);
12
13 return content;
14 }
15
16 std::vector<char> diffContent(const std::vector<char>& c1,
17 const std::vector<char>& c2) {
18 // stub - returns an empty vector
19 return std::vector<char>();
20 }

Given a file name, the function readFromFile reads the contents of the entire file
and returns it in a vector<char>. We read the file contents into the underlying
array of the vector, to get at which we call the data member function introduced in
C++11 (line 11). We open the file for reading (line 8), and obtain the size of the file
using the boost::filesystem::size function (line 9). We also define a stub of a
method diffContent to compute the diff between the contents of two files.

How can we employ the readFromFile function to read a file in a separate thread
and return the vector containing the contents of the file to the calling thread? The
calling thread needs a way to wait for the read to complete in the reader thread, and
then get at the content read. In other words, the calling thread needs to wait for the
future result of an asynchronous operation. The boost::future template provides
an easy way to enforce such ordering between tasks.

Concurrency with Boost

[388]

boost::future and boost::promise
The boost::future<> template is used to represent the result of a computation that
potentially happens in the future. An object of type boost::future<T> represents a
proxy for an object of type T that will potentially be produced in the future. Loosely
speaking, boost::future enables a calling code to wait or block for an event to
happen—the event of producing a value of a certain type. This mechanism can be
used to signal events and pass values from one thread to another.

The producer of the value or the source of the event needs a way to communicate with
the future object in the calling thread. For this, an object of type boost::promise<T>,
associated with the future object in the calling thread, is used to signal events and send
values. Thus boost::future and boost::promise objects work in pairs to signal
events and pass values across threads. We will now see how we can guarantee that the
two file read operations in two threads precede the diff operation using Boost futures
and promises:

Listing 10.4b: Returning values from a thread using futures and promises

 1 #define BOOST_THREAD_PROVIDES_FUTURE
 2 #include <boost/thread.hpp>
 3 #include <boost/thread/future.hpp>
 4 // other includes
 5
 6 std::vector<char> diffFiles(const std::string& file1,
 7 const std::string& file2) {
 8 // set up the promise-future pair
 9 boost::promise<std::vector<char>> promised_value;
10 boost::future<std::vector<char>> future_result
11 = promised_value.get_future();
12 // spawn a reader thread for file2
13 boost::thread reader(
14 [&promised_value, &file2]() {
15 std::cout << "Reading " << file2 << '\n';
16 auto content = readFromFile(file2);
17 promised_value.set_value(content);
18 std::cout << "Read of " << file2
19 << " completed.\n";
20 });
21
22 std::cout << "Reading " << file1 << '\n';
23 auto content1 = readFromFile(file1);
24 std::cout << "Read of " << file1 << " completed.\n";
25
26 auto content2 = future_result.get(); // this blocks

Chapter 10

[389]

27 auto diff = diffContent(content1, content2);
28 reader.join();
29 return diff;
30 }

To be able to use boost::future and boost::promise, we need to include boost/
thread/future.hpp (line 3). If we did not define the preprocessor symbol BOOST_
THREAD_PROVIDES_FUTURE (line 1), then we would need to use boost::unique_
future instead of boost::future. This example would work unchanged if we
replaced boost::future with boost::unique_future, but in general there are
differences in the capabilities of the two facilities, and we stick to boost::future
throughout this book.

The function diffFiles (lines 6 and 7) takes two file names and returns their diff.
It reads the first file synchronously (line 23) using the readFromFile function in
listing 10.4a, and creates a thread called reader to read the second file concurrently
(line 13). In order to be notified, when the reader thread is done reading and gets
the content read, we need to set up a future-promise pair. Since we want to return
a value of type std::vector<char> from the reader thread, we define a promise
called promised_value of type boost::promise<std::vector<char>> (line 9). The
get_future member of the promise object returns the associated future object and is
used to move-construct future_result (lines 10-11). This sets up promised_value
and future_result as the promise-future pair we work with.

To read contents of file2, we create the reader thread passing a lambda (lines
14-20). The lambda captures promised_value and the name of the file to read (line
14). It reads the contents of the file and calls set_value on the promise object,
passing in the content read (line 17). It then prints a diagnostic message and returns.
Concurrently, with this, the calling thread also reads in the other file file1 into the
buffer content1 and then calls get on future_result (line 26). This call blocks
until the associated promise is set via the call to set_value (line 17). It returns the
vector<char> set in the promise and this is used to move-construct content2. If
the promise was already set, when get is called on the future, it returns the value
without blocking the calling thread.

We now have the data needed to compute the diff, and we do so by passing the
buffers content1 and content2 to the diffContent function (line 27). Note that
we call join on the reader thread before returning diff (line 28). This would be
necessary only if we wanted to ensure that the reader thread exited before returning
from the function. We could also call detach instead of join to not wait for the
reader thread to exit.

Concurrency with Boost

[390]

Waiting for future
The get member function of boost::future<> blocks the calling thread until the
associated promise is set. It returns the value set in the promise. Sometimes, you
might want to block for a short duration and go ahead if the promise is not set. To
do this, you have to use the wait_for member function and specify the duration to
wait using boost::chrono::duration (see Chapter 8, Date and Time Libraries):

Listing 10.5: Waiting and timing out on a future

 1 #define BOOST_THREAD_PROVIDES_FUTURE
 2 #include <boost/thread.hpp>
 3 #include <boost/thread/future.hpp>
 4 #include <boost/chrono.hpp>
 5 #include <ctime>
 6 #include <cassert>
 7 #include <cstdlib>
 8 #include <iostream>
 9
10 int main() {
11 boost::promise<void> promise;
12 boost::future<void> future = promise.get_future();
13
14 std::cout << "Main thread id="
15 << boost::this_thread::get_id() << '\n';
16 boost::thread thr([&promise]() {
17 srand(time(0));
18 int secs = 10 + rand() % 10;
19 std::cout << "Thread " << boost::this_thread::get_id()
20 << " sleeping for "
21 << secs << " seconds\n";
22 boost::this_thread::sleep_for(
23 boost::chrono::seconds(secs));
24 promise.set_value();
25 });
26
27 size_t timeout_count = 0;
28 size_t secs = 2;
29
30 while (future.wait_for(boost::chrono::seconds(secs))
31 == boost::future_status::timeout) {
32 std::cout << "Main thread timed out\n";
33 ++timeout_count;
34 }
35 assert(future.is_ready());

Chapter 10

[391]

36 assert(future.get_state() == boost::future_state::ready);
37
38 std::cout << "Timed out for " << timeout_count * secs
39 << " seconds \n";
40 thr.join();
41 }

This example demonstrates how we can wait for a fixed duration on a future
object. We create a promise-future pair (lines 11-12), but the template argument for
boost::future<> and boost::promise<> is void. This means that we can use this
pair purely for signaling/waiting, but not for transferring any data across threads.

We create a thread thr (line 16) passing it a lambda, which captures the promise
object. This thread simply sleeps for a random duration between 10 and 19 seconds
by passing a random duration to boost::this_thread::sleep_for (line 22) and
then exits. The duration is constructed using the boost::chrono::seconds function
(line 23) and passed a random interval secs computed using the rand function
(line 18). We use rand for brevity, although more reliable and robust facilities are
available in Boost and C++11. To use rand, we need to call srand to seed the random
number generator. On Windows, we must call srand in each thread that calls rand
as we have shown here (line 17), while on POSIX, we should call srand once per
process, which could be at the start of main.

After sleeping for a specific duration, the thread thr calls set_value on the
promise and returns (line 24). Since the promise is of type boost::promise<void>,
set_value does not take any parameters.

In the main thread, we run a loop calling wait_for on the future associated with
promise, passing a duration of 2 seconds each time (line 30). The function wait_for
returns a value of the enum type boost::future_state. Each time wait_for times
out, it returns boost::future_state::timeout. Once the promise is set (line 24),
the wait_for call returns boost::future_state::ready and the loop breaks.
The is_ready member function of boost::future returns true (line 35), and the
future's state as returned by the get_state member function is boost::future_
state::ready (line 36).

Throwing exceptions across threads
If the initial function passed to the boost::thread constructor allows any exceptions
to propagate, then the program is immediately aborted by a call to std::terminate.
This creates a problem if we need to throw an exception from one thread to indicate
a problem to another thread, or propagate an exception we caught in one thread
to another. The promise/future mechanism comes in handy for this purpose too.
Consider how, in Listing 10.4a and 10.4b, you would handle the case when a file does
not exist or is not readable:

Concurrency with Boost

[392]

Listing 10.6: Transporting exceptions across threads

 1 #define BOOST_THREAD_PROVIDES_FUTURE
 2 #include <boost/thread.hpp>
 3 #include <boost/thread/future.hpp>
 4 // other includes
 5
 6 std::vector<char> readFromFile(const std::string& filepath)
 7 {
 8 std::ifstream ifs(filepath, std::ios::ate);
 9 if (!ifs) {
10 throw std::runtime_error(filepath + " unreadable");
11 }
12 ... // rest of the code – check Listing 10.4a
13 }
14
15 std::vector<char> diffFiles(const std::string& file1,
16 const std::string& file2) {
17 // set up the promise-future pair
18 boost::promise<std::vector<char> > promised_value;
19 boost::future<std::vector<char> > future_result
20 = promised_value.get_future();
21 // spawn a reader thread for file2
22 boost::thread reader(
23 [&promised_value, &file2]() {
24 try {
25 auto content = readFromFile(file2);
26 promised_value.set_value(content);
27 } catch (std::exception& e) {
28 promised_value.set_exception(
29 boost::copy_exception(e));
30 }
31 });
32 ...
33 std::vector<char> diff;
34 try {
35 auto content2 = future_result.get(); // this blocks
36 diff = diffContent(content1, content2);
37 } catch (std::exception& e) {
38 std::cerr << "Exception caught: " << e.what() << '\n';
39 }
40 reader.join();
41 return diff;
42 }

Chapter 10

[393]

If file2 is the name of a file that does not exist or is not readable (line 25), then the
function readFromFile throws an exception (line 10) that is caught by the reader
thread (line 27). The reader thread sets the exception in the promise object by using
the set_exception member function (lines 28-29). Notice that we create a copy of
the exception object using boost::copy_exception and set it in the promise object
(line 29). Once an exception is set in the promise, the call to get on the future object
(line 35) throws that exception, which needs to be caught and handled (line 38).

shared_future
The boost::future object can only be waited upon by one thread. It is not copyable
but is movable; thus, its ownership can be transferred from one thread to another
and one function to another, but never shared. If we want multiple threads to wait
on the same condition using the future mechanism, we need to use boost::shared_
future. In the following example, we create a publisher thread that waits for a fixed
duration before setting a promise with its thread ID. We also create three subscriber
threads, which poll a boost::shared_future object associated with the promise
object at different periodicities until it is ready, and then retrieves the thread ID of
the publisher object from the shared_future:

Listing 10.7: Using shared_future

 1 #include <string>
 2 #include <vector>
 3 #include <iostream>
 4 #define BOOST_THREAD_PROVIDES_FUTURE
 5 #include <boost/lexical_cast.hpp>
 6 #include <boost/thread.hpp>
 7 #include <boost/thread/future.hpp>
 8 #include <boost/chrono.hpp>
 9
10 int main() {
11 boost::promise<std::string> prom;
12 boost::future<std::string> fut(prom.get_future());
13 boost::shared_future<std::string> shfut(std::move(fut));
14 boost::thread publisher([&prom]() {
15 std::string id =
16 boost::lexical_cast<std::string>(
17 boost::this_thread::get_id());
18 std::cout << "Publisher thread " << id
19 << " starting.\n";
20 boost::this_thread::sleep_for(
21 boost::chrono::seconds(15));
22 prom.set_value(id);

Concurrency with Boost

[394]

23 });
24 auto thrFunc = [](boost::shared_future<std::string> sf,
25 int waitFor) {
26 while (sf.wait_for(boost::chrono::seconds(waitFor))
27 == boost::future_status::timeout) {
28 std::cout << "Subscriber thread "
29 << boost::this_thread::get_id()
30 << " waiting ...\n";
31 }
32
33 std::cout << "\nSubscriber thread "
34 << boost::this_thread::get_id()
35 << " got " << sf.get() << ".\n";
36 };
37
38 boost::thread subscriber1(thrFunc, shfut, 2);
39 boost::thread subscriber2(thrFunc, shfut, 4);
40 boost::thread subscriber3(thrFunc, shfut, 6);
41
42 publisher.join();
43 subscriber1.join();
44 subscriber2.join();
45 subscriber3.join();
46 }

Following the familiar pattern, we create a promise (line 11) and a boost::future
(line 12). Using the future object, we move-initialize a shared_future object shfut
(line 13). The publisher thread captures the promise (line 14) and sleeps for 15
seconds (line 21) before setting its ID string into the promise (line 22).

For the subscriber threads, we store the function object generated by the lambda
expression in a variable called thrFunc (line 24) so that it can be reused multiple
times. The initial function for the subscriber thread takes a shared_future
parameter by value, and also the waitFor parameter, which specifies the frequency
of polling the shared_future in seconds. The subscriber spins in a loop calling
wait_for on the shared future, timing out after waitFor seconds. It comes out of
the loop once the promise is set (line 22) and retrieves the value set in the promise
(the publisher's thread ID) by calling get on the shared_future (line 35).

Three subscriber threads are spawned (lines 38-40). Note how the arguments to
their initial function, the shared_future object, and the wait period in seconds,
are passed as additional arguments to boost::thread object's variadic constructor
template. Note that shared_future is copyable and the same shared_future object
shfut is copied into the three subscriber threads.

Chapter 10

[395]

std::future and std::promise
The C++11 Standard Library provides std::future<>, std::shared_future<>,
and std::promise<> templates that are pretty much identical in behavior to
their Boost library counterparts. The Boost version's additional member functions
are experimental, but leaving those aside, they mirror their Standard Library
counterparts. For example, we can rewrite listing 10.5 and 10.7 by replacing the
following symbols in the program text:

• Replace boost::thread with std::thread
• Replace boost::future with std::future
• Replace boost::promise with std::promise
• Replace boost::shared_promise with std::shared_promise
• Replace boost::chrono with std::chrono

In addition, we would need to replace the included headers boost/thread.hpp,
boost/thread/future.hpp, and boost/chrono.hpp with the Standard Library
headers thread, future, and chrono respectively.

In listing 10.6, we used the set_exception member function of boost::promise
to enable passing an exception across thread boundaries. This would require some
changes to work with std::promise. C++11 introduces std::exception_ptr,
a special smart pointer type with shared ownership semantics that must wrap
exception objects so that they can be passed across functions and threads (see
Appendix, C++11 Language Features Emulation). The set_exception member
function of std::promise takes a parameter of type std::exception_ptr instead
of a std::exception. The following snippet shows how you would change listing
10.6 to use the Standard Library:

 1 // include other headers
 2 #include <exception>
... // other code
22 boost::thread reader(
23 [&promised_value, &file2]() {
24 try {
25 auto content = readFromFile(file2);
26 promised_value.set_value(content);
27 } catch (std::exception& e) {
28 promised_value.set_exception(
29 std::current_exception());
30 }
31 });

Concurrency with Boost

[396]

Here, we call std::current_exception (line 29), which returns a std::exception_
ptr object that wraps the currently active exception in the catch block. This
exception_ptr is passed to the set_exception member function of std::promise
(line 28). These type and function declarations are available from the Standard
Library header exception (line 2).

We can also create a std::exception_ptr object from an exception object using
std::make_exception_ptr, as shown in the following snippet (line 29):

22 boost::thread reader(
23 [&promised_value, &file2]() {
24 try {
25 auto content = readFromFile(file2);
26 promised_value.set_value(content);
27 } catch (std::exception& e) {
28 promised_value.set_exception(
29 std::make_exception_ptr(e));
30 }
31 });

The exception stored in a std::exception_ptr can be thrown using
std::rethrow_exception, as shown here:
01 void throwAgain(std::exception_ptr eptr) {
02 // do stuff
03 std::rethrow_exception(eptr);
04 }

std::packaged_task and std::async
While threads are powerful constructs, the full generality and control that they
provide comes at the cost of simplicity. In a lot of cases, it works best to operate at a
higher level of abstraction than creating explicit threads to run tasks. The Standard
Library provides the std::async function template and std::packaged_task class
template that provide different levels of abstractions for creating concurrent tasks,
freeing the programmer from having to write a lot of boilerplate code in the process.
They have counterparts in the Boost library (boost::async and boost::packaged_
task) that are incompletely implemented and less portable to use as of this writing
(Boost version 1.57), especially in pre-C++11 environments.

std::packaged_task
The std::packaged_task<> class template is used to create asynchronous tasks.
You need to explicitly create a thread that runs the task or calls the task manually
using the overloaded operator() in packaged_task. But you do not need to
manually set up promise-future pairs or deal with promises in any way. Here is
listing 10.6, rewritten using std::packaged_task:

Chapter 10

[397]

Listing 10.8: Using std::packaged_task

 1 #include <future>
 2 #include <thread>
 3 #include <vector>
 4 // other includes
 5
 6 std::vector<char> readFromFile(const std::string& filepath)
 7 {
 8 std::ifstream ifs(filepath, std::ios::ate);
 9 if (!ifs) {
10 throw std::runtime_error(filepath + " unreadable");
11 }
12 ... // rest of the code – check Listing 10.4a
13 }
14
15 std::vector<char> diffFiles(const std::string& file1,
16 const std::string file2)
17 {
18 typedef std::vector<char> buffer_t;
19 std::packaged_task<buffer_t(const std::string&)>
20 readerTask(readFromFile);
21 auto future = readerTask.get_future();
22
23 try {
24 std::thread thread2(std::move(readerTask), file2);
25 auto content1 = readFromFile(file1);
26 std::cout << "Read from file " << file1 << " completed.\n";
27
28 auto content2 = future.get();
29 thread2.detach();
30 return diffContent(content1, content2);
31 } catch (std::exception& e) {
32 std::cout << "Exception caught: " << e.what() << '\n';
33 }
34
35 return std::vector<char>();
36 }

In this example, we read two files and compute their diff. To read the files, we use
the function readFromFile, which returns the file contents in a vector<char> or
throws an exception if the file is not readable. We read one of the two files by a
blocking call to readFromFile (line 25), and read the other file on a separate thread.

Concurrency with Boost

[398]

To read the second file concurrently with the first one, we wrap the readFromFile
function in a std::packaged_task called readerTask (lines 19-20) and run
it in a separate thread. The specific type of readerTask is std::packaged_
task<buffer_t(const std::string&)>. The template argument to packaged_
task is the wrapped function type. Before starting this task on a separate thread, we
must first get a reference to the associated future object. We get this reference to the
future object by calling the get_future member function of packaged_task (line
21). Next, we create a thread and move the packaged task to this thread (line 24).
This is necessary because packaged_task is movable but not copyable, which is why
the get_future method must be called on the packaged_task object before it
is moved.

The thread thread2 reads file2 by calling the readFromFile function passed to it
in a packaged_task. The vector<char> returned by readFromFile can be obtained
from the future object associated with readerTask by a call to the get member
function of the future (line 28). The get call will throw any exception originally
thrown by readFromFile, such as when the named file does not exist.

std::async
The std::async function template creates a task from a function object that can
potentially run concurrently in a separate thread. It returns a std::future object,
which can be used to block on the task or wait for it. It is available through the
Standard Library header file future. With std::async, we no longer need to
explicitly create threads. Instead, we pass to std::async the function to execute,
the arguments to pass, and an optional launch policy. std::async runs the function
either asynchronously in a different thread or synchronously on the calling thread
based on the launch policy specified. Here is a simple rewrite of listing 10.5 using
std::async:

Listing 10.9: Using std::async to create concurrent tasks

 1 #include <iostream>
 2 #include <thread>
 3 #include <future>
 4 #include <chrono>
 5 #include <ctime>
 6 #include <cstdlib>
 7
 8 int main()
 9 {
10 int duration = 10 + rand() % 10;
11 srand(time(0));
12 std::cout << "Main thread id="
13 << std::this_thread::get_id() << '\n';

Chapter 10

[399]

14
15 std::future<int> future =
16 std::async(std::launch::async,
17 [](int secs) -> int {
18 std::cout << "Thread " << std::this_thread::get_id()
19 << " sleeping for "
20 << secs << " seconds\n";
21 std::this_thread::sleep_for(
22 std::chrono::seconds(secs));
23 return secs;
24 }, duration);
25
26 size_t timeout_count = 0, secs = 2;
27
28 while (future.wait_for(std::chrono::seconds(secs))
29 == std::future_status::timeout) {
30 std::cout << "Main thread timed out\n";
31 ++timeout_count;
32 }
33 std::cout << "Launched task slept for "
34 << future.get() << '\n';
35 std::cout << "Timed out for " << timeout_count * secs
36 << " seconds \n";
37 }

While packaged_task abstracts promises, std::async abstracts threads themselves,
and we no longer deal with objects of std::thread. Instead, we call std::async,
passing it a launch policy std::launch::async (line 16), a function object (line 17),
and any number of arguments that the function object takes. It returns a future
object and runs the function passed to it asynchronously.

Like the constructor of thread, std::async is a variadic function and is passed all
the arguments that need to be forwarded to the function object. The function object
is created using a lambda expression and does little, besides sleeping for a duration
passed to it as a parameter. The duration is a random value between 10 and 19
seconds and is passed to the async call as the sole argument for the function object
(line 24). The function object returns the duration of sleep (line 23). We call the
wait_for member function on the future object to wait for short periods till the
future is set (line 28). We retrieve the return value of the task from the future
object by calling its get member function (line 34).

Concurrency with Boost

[400]

Launch policy
We used the launch policy std::launch::async to indicate that we want the task
to run on a separate thread. This would launch the task immediately in a separate
thread. Using the other standard launch policy std::launch::deferred , we can
launch the task lazily, when we first call get or wait (non-timed wait functions) on
the associated future object. The task would run synchronously in the thread that
calls get or wait. This also means that the task would never be launched if one used
the deferred policy and did not call get or wait.

We could not have used std::launch::deferred in the listing 10.10. This is because
we wait for the future to be ready (line 28) before calling get in the same thread
(line 34). The task would never be launched until we called get, but the future could
never be ready unless the task was launched and returned a value; so we would spin
eternally in the while loop.

While creating a task using std::async, we may also omit the launch policy:

auto future = std::async([]() {...}, arg1, arg2);

In such cases, the behavior is equivalent to the following call:

auto future = std::async(std::launch::async|std::launch::deferred,
 []() {...}, arg1, arg2);

It is up to the implementation to choose the behavior conforming to either
std::launch::async or std::launch::deferred. Moreover, the implementation
would only create a new thread if the runtime libraries needed to support
multithreading are linked to the program. With the default policy, when
multithreading is enabled, std::async either launches new tasks in new threads or
posts them to an internal thread pool. If there are no free threads in the pool or free
cores, the tasks would be launched synchronously.

Lock-based thread synchronization methods
So far, we saw how we can delegate functions to be run on separate threads
using boost::thread and std::thread. We saw the use of boost::future and
boost::promise to communicate results and exceptions between threads and to
impose order between tasks through blocking calls. Sometimes, you can break down
your program into independent tasks that can be run concurrently, producing a
value, a side effect, or both, which is then consumed by another part of the program.
Launching such tasks and waiting on them using futures is an effective strategy.
Once the tasks have returned, you can start on the next phase of computations that
consume the results of the first phase.

Chapter 10

[401]

Often though, multiple threads need to access and modify the same data structures
concurrently and repeatedly. These accesses need to be ordered reliably and isolated
from each other to prevent inconsistencies from creeping into the underlying data
structure due to uncoordinated, concurrent accesses. In this section, we look at the
Boost libraries that help us take care of these concerns.

Data races and atomic operations
Consider the following code snippet. We create two threads, and each thread
increments a shared integer variable a fixed number of times in a loop:

int main() {
 int x = 0;
 const int max = 1000000;

 auto thrFunc = [&x]() {
 for (int i = 0; i < max; ++i) {
 ++x;
 }
 };

 boost::thread t1(thrFunc);
 boost::thread t2(thrFunc);
 t1.join();
 t2.join();

 std::cout << "Value of x: " << x << '\n';
}

What value of x would be printed at the end of the program? Since each thread
increments x a million times and there are two threads, one could expect it to be
2000000. You can verify for yourself that the increment operator is called on x no
less and no more than N*max times, where N=2 is the number of threads and max is
a million. Yet I saw 2000000 being printed not for once; each time it was a smaller
number. This behavior might vary depending on the OS and hardware, but it is
common enough. Clearly, some increments are not taking effect.

Concurrency with Boost

[402]

The reason becomes clear when you realize that the operation ++x involves reading
the value of x, adding one to the value, and writing this result back into x. Say the
value of x is V and two threads perform the operation ++x on V. Each of the two
threads can read V as the value of x, perform the increment, and write back V+1.
Therefore, after two threads, each incrementing x once, the value of x could still
be as if it was incremented only once. Depending on the machine architecture, for
some "primitive" data types, it may require two CPU instructions to update the value
of a variable. Two such operations executing concurrently could end up
setting the value to what neither intended due to partial writes.

Interleaved operations like these represent a data race—the threads performing
them are said to race against each other in performing the operation steps and their
exact sequence, and therefore, the results are unpredictable.

Let us use the notation [r=v1, w=v2] to indicate that a thread read the value v1
from the variable x and wrote back v2. Note that there can be an arbitrary duration
between the time a thread reads the value of x and the time when it writes back a
value. So the notation [r=v1, … is used to indicate that a value v1 was read but the
write back is yet to happen, and the notation … w=v2] indicates that the pending
write happened. Now consider two threads each incrementing x a million times,
as shown in the following sequence:

Chapter 10

[403]

For simplicity, assume that partial writes cannot happen. At time t1, both Thread 1
and Thread 2 read the value of x as 0. Thread 2 increments this value and writes back
the value 1. Thread 2 continues reading and incrementing the value of x for 999998
more iterations until it writes back the value 999999 at time t999999. Following this,
Thread 1 increments the value 0 that it had read at t1 and writes back the value
1. Next, both Thread 1 and Thread 2 read the value 1, and Thread 1 writes back 2
but Thread 2 hangs on. Thread 1 goes on for 999998 more iterations, reading and
incrementing the value of x. It writes the value 1000000 to x at time t1999999 and
exits. Thread 2 now increments the value 1 that it had read at t1000001 and writes
back. For two million increments, the final value of x could well be 2. You can change
the number of iterations to any number greater than or equal to 2, and the number of
threads to any number greater than or equal to 2, and this result would still hold—a
measure of the nondeterminism and nonintuitive aspects of concurrency. When we
see the operation ++x, we intuitively think of it as an indivisible or atomic operation,
when it really is not.

An atomic operation runs without any observable intermediate states. Such
operations cannot interleave. Intermediate states created by an atomic operation
are not visible to other threads. Machine architectures provide special instructions
for performing atomic read-modify-write operations, and operating systems often
provide library interfaces for atomic types and operations that use these primitives.

The increment operation ++x is clearly nonatomic. The variable x is a shared resource
and between a read, increment, and a subsequent write to x by one thread, any
number of read-modify-writes to x can take place from other threads—the operations
can be interleaved. For such nonatomic operations, we must find means of making
them thread-safe, that is, by preventing interleaving of operations, such as ++x,
across multiple threads.

Mutual exclusion and critical sections
One way to make the ++x operation thread-safe is to perform it in a critical section.
A critical section is a section of code that cannot be executed simultaneously by
two different threads. Thus, two increments of x from different threads can be
interleaved. Threads must adhere to this protocol and can use a mutex to do so. A
mutex is a primitive used for synchronizing concurrent access to shared resources,
such as the variable x. We use the boost::mutex class for this purpose, as shown in
the following example:

Concurrency with Boost

[404]

Listing 10.10: Using mutexes

 1 #include <boost/thread/thread.hpp>
 2 #include <boost/thread/mutex.hpp>
 3 #include <iostream>
 4
 5 int main()
 6 {
 7 int x = 0;
 8 static const int max = 1000000;
 9 boost::mutex mtx;
10
11 auto thrFunc = [&x, &mtx]() {
12 for (int i = 0; i < max; ++i) {
13 mtx.lock();
14 ++x;
15 mtx.unlock();
16 }
17 };
18
19 boost::thread t1(thrFunc);
20 boost::thread t2(thrFunc);
21
22 t1.join();
23 t2.join();
24
25 std::cout << "Value of x: " << x << '\n';
26 }

We declare a mutex object of type boost::mutex (line 9), capture it in the lambda
that generates the initial function for the threads (line 11), and then protect the
increment operation on the variable x by locking the mutex before performing it (line
13) and unlocking it afterwards (line 15). The increment operation on x (line 14) is the
critical section. This code prints the following each and every time:

2000000

Chapter 10

[405]

How does this work? The mutex object has two states: locked and unlocked. The
first thread to call the lock member function on a mutex that is unlocked, locks
it and the call to lock returns. Other threads that call lock on the already-locked
mutex simply block, which means the OS scheduler does not schedule these threads
to run, unless some event (like the unlocking of the mutex in question) takes place.
The thread with the lock then increments x and calls the unlock member function
on the mutex to relinquish the lock it is holding. At this point, one of the threads that
is blocked in the lock call is woken up, the call to lock in that thread returns, and
the thread is scheduled to run. Which waiting thread is woken up depends on the
underlying native implementation. This goes on until all the threads (in our example,
just two) have run to completion. The lock ensures that at any point in time, only
one thread exclusively holds the lock and is thus free to increment x.

The section we choose to protect with the mutex is critical. We could have
alternatively protected the entire for-loop, as shown in the following snippet:

12 mtx.lock();
13 for (int i = 0; i < max; ++i) {
14 ++x;
15 }
16 mtx.unlock();

The final value of x would still be the same (2000000) as with listing 10.10, but the
critical section would be bigger (lines 13-15). One thread would run its entire loop
before the other thread could even increment x once. By limiting the extent of the
critical section and the time a thread holds the lock, multiple threads can make more
equitable progress.

A thread may choose to probe and see whether it can acquire a lock on a mutex but
not block if it cannot. To do so, the thread must call the try_lock member function
instead of the lock member function. A call to try_lock returns true if the mutex
was locked and false otherwise, and does not block if the mutex was not locked:

boost::mutex mtx;
if (mtx.try_lock()) {
 std::cout << "Acquired lock\n";
} else {
 std::cout << "Failed to acquire lock\n";
}

A thread may also choose to block for a specified duration while waiting to acquire
a lock, using the try_lock_for member function. The call to try_lock_for returns
true if it succeeds in acquiring the lock and as soon as it does. Otherwise, it blocks
for the entire length of the specified duration and returns false once it times out
without acquiring the lock:

Concurrency with Boost

[406]

boost::mutex mtx;
if (mtx.try_lock_for(boost::chrono::seconds(5))) {
 std::cout << "Acquired lock\n";
} else {
 std::cout << "Failed to acquire lock\n";
}

Mutexes should be held for as short a duration as possible over as
small a section of code as necessary. Since mutexes serialize the
execution of critical sections, holding a mutex over longer durations
delays the progress of other threads waiting to lock the mutex.

boost::lock_guard
Acquiring a lock on a mutex and failing to release it is disastrous, as any other thread
waiting on the mutex will never make any progress. The bare lock / try_lock and
unlock calls on the mutex are not a good idea, and we need some means of locking
and unlocking mutexes in an exception-safe way. The boost::lock_guard<>
template uses the Resource Acquisition Is Initialization (RAII) idiom to lock and
unlock mutexes in its constructor and destructor:

Listing 10.11: Using boost::lock_guard

 1 #include <boost/thread/thread.hpp>
 2 #include <boost/thread/mutex.hpp>
 3 #include <iostream>
 4
 5 int main()
 6 {
 7 int x = 0;
 8 static const int max = 1000000;
 9 boost::mutex mtx;
10
11 auto thrFunc = [&x, &mtx]() {
12 for (int i = 0; i < max; ++i) {
13 boost::lock_guard<boost::mutex> lg(mtx);
14 ++x;
16 }
17 };
18
19 boost::thread t1(thrFunc);
20 boost::thread t2(thrFunc);
21
22 t1.join();

Chapter 10

[407]

23 t2.join();
24
25 std::cout << "Value of x: " << x << '\n';
26 }

Using a boost::lock_guard object (line 13), we lock the section of code following
the instantiation of the lock guard till the end of the scope. The lock_guard acquires
the lock in the constructor and releases it in the destructor. This ensures that even in
the face of an exception arising in the critical section, the mutex is always unlocked
once the scope is exited. You pass the type of the lock as a template argument to
lock_guard. boost::lock_guard can be used not only with boost::mutex but with
any type that conforms to the BasicLockable concept, that is, has accessible lock and
unlock member functions.

We can also use boost::lock_guard to encapsulate a mutex that is already locked.
To do so we need to pass a second argument to the lock_guard constructor
indicating that it should assume ownership of the mutex without trying to lock it:

 1 boost::mutex mtx;
 2 ...
 3 mtx.lock(); // mutex locked
 4 ...
 5 {
 6 boost::lock_guard<boost::mutex> lk(mtx, boost::adopt_lock);
 7 ...
 8 } // end of scope

boost::lock_guard either locks the underlying mutex in its constructor or adopts
an already-locked mutex. The only way to release the mutex is to let the lock_guard
go out of scope. lock_guard is neither copyable nor movable, so you cannot pass
them around from one function to the next, nor store them in containers. You cannot
use lock_guard to wait on a mutex for specific durations.

boost::unique_lock
The boost::unique_lock<> template is a more flexible alternative that still uses
RAII to manage mutex-like locks but provides an interface to manually lock and
unlock as required. For this additional flexibility, unique_lock has to maintain an
additional data member to keep track of whether the mutex is owned by the thread
or not. We can use unique_lock to manage any class conforming to the Lockable
concept. A class conforms to the Lockable concept if it conforms to BasicLockable
and additionally, defines an accessible try_lock member function—just as
boost::mutex does.

Concurrency with Boost

[408]

We can use boost::unique_lock as a drop-in replacement for boost::
lock_guard, but unique_lock should not be used if lock_guard suffices for a
purpose. unique_lock is typically useful when we want to mix manual locking
with exception-safe lock management. For example, we can rewrite listing 10.11
to use unique_lock, as shown in the following snippet:

 7 int x = 0;
 8 static const int max = 1000000;
 9 boost::mutex mtx;
10
11 auto thrFunc = [&x, &mtx]() {
12 boost::unique_lock<boost::mutex> ul(mtx, boost::defer_lock);
13 assert(!ul.owns_lock());
14
15 for (int i = 0; i < max; ++i) {
16 ul.lock();
17 ++x;
18 assert(ul.owns_lock());
19 assert(ul.mutex() == &mtx);
20
21 ul.unlock();
22 }
23 };

Unlike in listing 10.11, we do not create a new lock_guard object in each iteration
of the loop. Instead, we create a single unique_lock object encapsulating the mutex
before the loop begins (line 12). The boost::defer_lock argument passed to the
unique_lock constructor tells the constructor not to lock the mutex immediately.
The mutex is locked before incrementing the shared variable by calling the lock
member function of unique_lock (line 16) and unlocked after the operation by
calling the unlock member function of unique_lock (line 21). In the event of an
exception, the unique_lock destructor unlocks the mutex only if it is locked.

The owns_lock member function of unique_lock returns true if the unique_lock
owns a lock on the mutex, and false otherwise (lines 13 and 18). The mutex member
function of unique_lock returns a pointer to the stored mutex (line 19) or nullptr
if unique_lock does not wrap a valid mutex.

Chapter 10

[409]

Deadlocks
Mutexes provide for exclusive ownership of shared resources and many
real-world problems deal with multiple shared resources. Take the case of a
multiplayer first-person shooting game. It maintains and updates two lists in real
time. There is a set A of shooters who are players with ammunition of some sort,
and a second set U of players that are unarmed. When a player exhausts her ammo,
she is moved from A to U. When her ammo is replenished, she is moved back from
U to A. Thread 1 handles moving elements from A to U and thread 2 handles
moving elements from U to A.

When a new player joins the game, she is added to either U or A, depending on
whether she has ammo. When a player is killed in the game, she is removed from
whichever set (U or A) she was part of. But when ammo is either exhausted or
replenished, the player is moved between U and A; so both U and A need to be
edited. Consider the following code in which one thread is responsible for moving
players from A to U when ammo is exhausted, and another thread is responsible
for the movement back (U to A) when ammo is replenished:

Listing 10.12: Deadlock example

 1 #include <iostream>
 2 #include <cstdlib>
 3 #include <ctime>
 4 #include <set>
 5 #include <boost/thread.hpp>
 6
 7 struct player {
 8 int id;
 9 // other fields
10 bool operator < (const player& that) const {
11 return id < that.id;
12 }
13 };
14
15 std::set<player> armed, unarmed; // A, U
16 boost::mutex amtx, umtx;
17
18 auto a2u = [&](int playerId) {
19 boost::lock_guard<boost::mutex> lka(amtx);
20 auto it = armed.find(player{playerId});
21 if (it != armed.end()) {
22 auto plyr = *it;
23 boost::unique_lock<boost::mutex> lku(umtx);
24 unarmed.insert(plyr);

Concurrency with Boost

[410]

25 lku.unlock();
26 armed.erase(it);
27 }
28 };
29
30 auto u2a = [&](int playerId) {
31 boost::lock_guard<boost::mutex> lku(umtx);
32 auto it = unarmed.find(player{playerId});
33 if (it != unarmed.end()) {
34 auto plyr = *it;
35 boost::unique_lock<boost::mutex> lka(amtx);
36 armed.insert(plyr);
37 lka.unlock();
38 unarmed.erase(it);
39 }
40 };
41
42 void onAmmoExhausted(int playerId) { // event callback
43 boost::thread exhausted(a2u, playerId);
44 exhausted.detach();
45 }
46
47 void onAmmoReplenished(int playerId) { // event callback
48 boost::thread replenished(a2u, playerId);
49 replenished.detach();
50 }

Each time a player's ammo is exhausted, the onAmmoExhausted (line 42) function is
called with the ID of the player. This function creates a thread that runs the function
a2u (line 18) to move this player from set A (armed) to set U (unarmed). Similarly,
when player's ammo is replenished, the onAmmoReplenished (line 47) function is
called and this, in turn, runs the function u2a in a separate thread to move the player
from the set U (unarmed) to the set A (armed).

The mutexes amtx and umtx control access to the sets armed and unarmed. To move a
player from A to U, the function a2u first acquires a lock on amtx (line 19) and looks
up the player in armed (line 20). If the player is found, the thread acquires a lock on
umtx (line 23), puts the player in unarmed (line 23), releases the lock on umtx (line 24),
and removes the player from armed (line 25).

Chapter 10

[411]

The function u2a has essentially the same logic but acquires the lock on umtx first,
followed by amtx, and this leads to a fatal flaw. If one player exhausts ammo and
another replenishes ammo at around the same time, two threads could run a2u
and u2a concurrently. Perhaps rarely, it could happen that the exhausted thread
locks amtx (line 19), but before it can lock umtx (line 23), the replenished thread
locks umtx (line 31). Now the exhausted thread waits for umtx, which is held by the
replenished thread, and the replenished thread waits for amtx, which is held by
the exhausted thread. There is no conceivable way for the two threads to proceed
from this state, and they are locked in a deadlock.

A deadlock is a state in which two or more threads vying for shared resources are
blocked, waiting on some resources while holding others, such that it is impossible for
any of the threads to progress from that state.

In our example, only two threads were involved, and it is relatively easy to debug
and fix the problem. The gold standard for fixing deadlocks is to ensure fixed lock-
acquisition order—any thread acquires two given locks in the same order. By
rewriting u2a, as shown in the following snippet, we can ensure that a deadlock is
not possible:

30 auto u2a = [&](int playerId) {
31 boost::unique_lock<boost::mutex>
32 lka(amtx, boost::defer_lock),
33 lku(umtx, boost::defer_lock);
34
35 boost::lock(lka, lku); // ordered locking
36 auto it = unarmed.find(player{playerId});
37 if (it != unarmed.end()) {
38 auto plyr = *it;
39 armed.insert(plyr);
40 lka.unlock();
41 unarmed.erase(it);
42 }
43 };

In the preceding code, we make sure that u2a locks amtx first before locking umtx,
just like a2u does. We could have manually acquired the locks in this order but
instead, we demonstrate the use of boost::lock to do this. We create the unique_
lock objects, lka and lku, with the defer_lock flag to indicate we do not want
to acquire the locks yet. We then call boost::lock, passing the unique_locks in
the order we would like to acquire them, and boost::lock ensures that order is
observed.

Concurrency with Boost

[412]

There are two reasons for using boost::unique_lock instead of boost::lock_guard
in this example. First, we can create unique_locks without immediately locking the
mutex. Second, we can call unlock to release the unique_lock early (line 40) and
increase lock granularity, which promotes concurrency.

Besides fixed lock-acquisition order, another way to avoid deadlocks is for threads
to probe locks (using try_lock) and backtrack if they fail to acquire a particular lock.
This typically makes code more complex, but may be necessary sometimes.

There are many real-world examples of code with deadlocks, like the one in our
example, which might be working correctly for years but with deadlocks lurking in
them. Sometimes, the probability of hitting the deadlock could be very low when run
on one system, and you might immediately hit it when you run the same code on
another system,
all purely because of variances in thread scheduling on the two systems.

Synchronizing on conditions
Mutexes serialize access to shared data by creating critical sections. A critical section
is like a room with a lock and a waiting area outside. One thread acquires the lock
and occupies the room while others arrive outside, wait for the occupant to vacate
the room, and then take its place in some defined order. Sometimes, threads need to
wait on a condition becoming true, such as some shared data changing state. Let us
look at the producer-consumer problem to see examples of threads waiting
on conditions.

Condition variables and producer-consumer problem
The Unix command-line utility grep searches files for text patterns specified using
regular expressions. It can search through a whole list of files. To search for a
pattern in a file, its complete contents must be read and searched for the pattern.
Depending on the number of files to search, one or more threads can be employed
to concurrently read contents of files into buffers. The buffers can be stored in some
data structure that indexes them by file and offset. Multiple threads can then process
these buffers and search them for the pattern.

What we just described is an example of a producer-consumer problem in which a
set of threads generates some content and puts them in a data structure, and a second
set of threads reads the content off the data structure, and performs computations
on it. If the data structure is empty, the consumers must wait until a producer adds
some content. If data fills up the data structure, then the producers must wait for
consumers to process some data and make room in the data structure before trying
to add more content. In other words, consumers wait on certain conditions to fulfill
and these are fulfilled as a result of the actions of the producers, and vice versa.

Chapter 10

[413]

One way to model such conditions, wait on them, and signal them, is by using
boost::condition_variable objects. A condition variable is associated with a
testable runtime condition or predicate in the program. A thread tests the condition
and if it is not true, the thread waits for that condition to become true using a
condition_variable object. Another thread that causes the condition to become
true signals the condition variable, and this wakes up one or more waiting threads.
Condition variables are inherently associated with shared data and represent
some condition being fulfilled for the shared data. In order for the waiting thread
to first test a condition on the shared data, it must acquire the mutex. In order for
the signaling thread to change the state of shared data, it too needs the mutex.
In order for the waiting thread to wake up and verify the result of the change, it
again needs the mutex. Thus we need to use boost::mutex in conjunction with a
boost::condition_variable.

We will now solve the producer-consumer problem for a fixed-sized queue using
condition variables. There is a queue of a fixed size, which means the maximum
number of elements in the queue is bounded. One or more threads produce content
and enqueue them (append them to the queue). One or more threads dequeue content
(remove content from the head of the queue) and perform computations on the
content. We use a circular queue implemented on top of a fixed size boost::array
rather than any STL data structure, such as std::list or std::deque:

Listing 10.13: Using condition variables for a thread-safe, fixed-size queue

 1 #include <boost/thread/thread.hpp>
 2 #include <boost/thread/mutex.hpp>
 3 #include <boost/thread/condition_variable.hpp>
 4 #include <boost/array.hpp>
 5
 6 template <typename T, size_t maxsize>
 7 struct CircularQueue
 8 {
 9 CircularQueue () : head_(0), tail_(0) {}
10
11 void pop() {
12 boost::unique_lock<boost::mutex> lock(qlock);
13 if (size() == 0) {
14 canRead.wait(lock, [this] { return size() > 0; });
15 }
16 ++head_;
17 lock.unlock();
18 canWrite.notify_one();
19 }

Concurrency with Boost

[414]

20
21 T top() {
22 boost::unique_lock<boost::mutex> lock(qlock);
23 if (size() == 0) {
24 canRead.wait(lock, [this] { return size() > 0; });
25 }
26 T ret = data[head_ % maxsize];
27 lock.unlock();
28
29 return ret;
30 }
31
32 void push(T&& obj) {
33 boost::unique_lock<boost::mutex> lock(qlock);
34 if (size() == capacity()) {
35 canWrite.wait(lock, [this]
36 { return size() < capacity(); });
37 }
38 data[tail_++ % maxsize] = std::move(obj);
39 lock.unlock();
40 canRead.notify_one();
41 }
42
43 size_t head() const { return head_; }
44 size_t tail() const { return tail_; }
45
46 size_t count() const {
47 boost::unique_lock<boost::mutex> lock(qlock);
48 return (tail_ - head_);
49 }
50
51 private:
52 boost::array<T, maxsize> data;
53 size_t head_, tail_;
54
55 size_t capacity() const { return maxsize; }
56 size_t size() const { return (tail_ - head_); };
57
58 mutable boost::mutex qlock;
59 mutable boost::condition_variable canRead;
60 mutable boost::condition_variable canWrite;
61 };
62
63 int main()

Chapter 10

[415]

64 {
65 CircularQueue<int, 200> ds;
66
67 boost::thread producer([&ds] {
68 for (int i = 0; i < 10000; ++i) {
69 ds.push(std::move(i));
70 std::cout << i << "-->"
71 << " [" << ds.count() << "]\n";
72 }
73 });
74
75 auto func = [&ds] {
76 for (int i = 0; i < 2500; ++i) {
77 std::cout << "\t\t<--" << ds.top() << "\n";
78 ds.pop();
79 }
80 };
81
82 boost::thread_group consumers;
83 for (int i = 0; i < 4; ++i) {
84 consumers.create_thread(func);
85 }
86
87 producer.join();
88 consumers.join_all();
89 }

In this listing, we define the CircularQueue<> template and its member functions,
including the pop (line 11) and push (line 32) member functions, which are of
particular interest. A call to push blocks until there is space in the queue to add a
new element. A call to pop blocks until it is able to read and remove an element from
the top of the queue. The utility function top (line 21) blocks until it is able to read an
element from the top of the queue, a copy of which it returns.

To implement the necessary synchronization, we define the mutex qlock (line 58)
and two condition variables, canRead (line 59) and canWrite (line 60). The canRead
condition variable is associated with a predicate that checks whether there are any
elements in the queue which could thus be read. The canWrite condition variable is
associated with a predicate that checks whether there is any space left in the queue
where a new element can be added. The mutex qlock needs to be locked to edit the
queue and to check the state of the queue in any way.

Concurrency with Boost

[416]

The pop method first acquires a lock on qlock (line 12) and then checks whether
the queue is empty (line 13). If the queue is empty, the call must block until there
is an item available to read. To do this, pop calls the wait method on the canRead
condition variable, passing it the lock lock and a lambda predicate to test (line 14).
The call to wait unlocks the mutex in lock and blocks. If a call to the push method
from another thread succeeds and thus data is available, the push method unlocks
the mutex (line 39) and signals the canRead condition variable by calling the notify_
one method (line 40). This wakes up exactly one thread blocked in the wait call
inside a pop method call. The wait call atomically locks the mutex, checks whether
the predicate (size() > 0) is true and if so, returns (line 14). If the predicate is not
true, it once again unlocks the mutex and goes back to waiting.

The pop method is either woken up from its wait, and verifies that there is an
element to read after reacquiring the mutex lock, or it never has to wait because there
were elements to read already. Thus, pop proceeds to remove the element at the head
of the list (line 16). After removing the element, it unlocks the mutex (line 17) and
calls notify_one on the canWrite condition (line 18). In case it popped an element
from a queue that was full, and there were threads blocked in push, waiting for some
room in the queue, the call to notify_one wakes up exactly one thread blocked in
canWrite.wait(...) inside push (line 35) and gives it the chance to add an item to
the queue.

The implementation of push is really symmetrical and uses the same concepts we
described for pop. We pass the mutex to the wait method on the condition variable,
wrapped in a unique_lock and not a lock_guard because the wait method needs
to access the underlying mutex to unlock it manually. The underlying mutex is
retrieved from a unique_lock by calling the mutex member function of unique_
lock; lock_guard does not provide such a mechanism.

To test our implementation, we create a CircularQueue of 200 elements of type int
(line 65), a producer thread that pushes 10,000 elements into the queue (line 67), and
four consumer threads that pop 2,500 elements each (lines 82-85).

The consumer threads are not created individually but as part of a thread group. A
thread group is an object of type boost::thread_group, which provides an easy
way to manage multiple threads together. Since we want to create four consumer
threads using the same initial function and join them all, it is easy to create a
thread_group object (line 82), create four threads in a loop using its create_thread
member function (line 84), and wait on all the threads in the group by calling the
join_all method (line 88).

Chapter 10

[417]

Condition variable nuances
We call notify_one to signal the canRead condition variable and wake up exactly
one thread waiting to read (line 39). Instead, we could have called notify_all to
broadcast the event and wake up all waiting threads, and it would still have worked.
However, we only put one new element in the queue in each call to push, so exactly
one of the threads woken up would read the new element off the queue. The other
threads would check the number of elements in the queue, find it empty, and go
back to waiting, resulting in unnecessary context switches.

But if we added a load of elements to the queue, calling notify_all might be a
better alternative than notify_one. Calling notify_one would wake up only one
waiting thread, which would process the elements serially in a loop (lines 63-65).
Calling notify_all would wake up all the threads, and they would process the
elements concurrently much quicker.

One common conundrum is whether to call notify_one/notify_all while holding
the mutex, as we have done in our examples earlier, or after releasing it. Both
options work equally well, but there might be some difference in the performance.
If you signal a condition variable while holding the mutex, the woken up threads
would immediately block, waiting for the mutex until you release it. So there are
two additional context switches per thread and these can have an impact on the
performance. Therefore, if you unlock the mutex first before signaling the condition
variable, you could see some performance benefits. Therefore, signaling after
unlocking is the often preferred approach.

The Readers-Writers problem
Take the case of an online catalog of a library. The library maintains a look-up
table of books. For simplicity, let us imagine that the books can only be looked up
by titles, and titles are unique. Multiple threads representing various clients perform
look-ups on the library concurrently. From time to time, the librarian adds new
books to the catalog and rarely, takes a book off the catalog. A new book can be
added only if a book with the same title is not already present, or if an older
edition of the title is present.

In the following snippet, we define a type representing a book entry and the public
interface of the LibraryCatalog class that represents the library catalog:

Concurrency with Boost

[418]

Listing 10.14a: Library catalog types and interfaces

 1 struct book_t
 2 {
 3 std::string title;
 4 std::string author;
 5 int edition;
 6 };
 7
 8 class LibraryCatalog
 9 {
10 public:
11 typedef boost::unordered_map<std::string, book_t> map_type;
12 typedef std::vector<book_t> booklist_t;
13
14 boost::optional<book_t> find_book(const std::string& title)
15 const;
16 booklist_t find_books(const std::vector<std::string>&
17 titles) const;
18 bool add_book(const book_t& book);
19 bool remove_book(const std::string& title);
20 };

The member function find_book is used to look up a single title and returns it as
book_t object wrapped in boost::optional. Using boost::optional, we can
return an empty value if a title is not found (see Chapter 2, The First Brush with Boost's
Utilities). The member function find_books looks up a list of titles passed to it as
a vector and returns a vector of book_t objects. The member function add_book
adds a title to the catalog and remove_book removes a title from the catalog.

We want to implement the class to allow multiple threads to look up titles
concurrently. We also want to allow the librarian to add and remove titles
concurrently with the reads, without hurting correctness or consistency.

As long as data in the catalog does not change, multiple threads can concurrently
look up titles without the need for any synchronization; because read-only
operations cannot introduce inconsistencies. But since the catalog does allow the
librarian to add and remove titles, we must make sure that these operations do
not interleave with read operations. In thus formulating our requirements, we just
stated the classic concurrency problem known as the Readers-Writers problem.
The Readers-Writers problem lays down the following constraints:

• Any writer thread must have exclusive access to a data structure
• Any reader thread can share access to the data structure with other reader

threads, in the absence of a writer thread

Chapter 10

[419]

In the above statements, reader thread refers to threads performing only read-only
operations like looking up titles, and writer thread refers to threads that modify the
contents of the data structure in some way, such as adding and removing titles. This
is sometimes referred to as Multiple Readers Single Writer (MRSW) model, as it
allows either multiple concurrent readers or a single exclusive writer.

While boost::mutex allows a single thread to acquire an exclusive lock, it does
not allow multiple threads to share a lock. We need to use boost::shared_mutex
for this purpose. boost::shared_mutex conforms to the SharedLockable concept,
which subsumes the Lockable concept, and additionally, defines lock_shared
and unlock_shared member functions, which should be called by reader threads.
Because shared_mutex also conforms to Lockable, it can be locked for exclusive
access using boost::lock_guard or boost::unique_lock. Let us now look at the
implementation of LibraryCatalog:

Listing 10.14b: Library catalog implementation

 1 #include <vector>
 2 #include <string>
 3 #include <boost/thread.hpp>
 4 #include <boost/optional.hpp>
 5 #include <boost/unordered/unordered_map.hpp>
 6
 7 struct book_t { /* definitions */ };
 8
 9
10 class LibraryCatalog {
11 public:
12 typedef boost::unordered_map<std::string, book_t> map_type;
13 typedef std::vector<book_t> booklist_t;
14
15 boost::optional<book_t> find_book(const std::string& title)
16 const {
17 boost::shared_lock<boost::shared_mutex> rdlock(mtx);
18 auto it = catalog.find(title);
19
20 if (it != catalog.end()) {
21 return it->second;
22 }
23 rdlock.unlock();
24
25 return boost::none;
26 }

Concurrency with Boost

[420]

27
28 booklist_t find_books(const std::vector<std::string>& titles)
29 const {
30 booklist_t result;
31 for (auto title : titles) {
32 auto book = find_book(title);
33
34 if (book) {
35 result.push_back(book.get());
36 }
37 }
38
39 return result;
40 }
41
42 bool add_book(const book_t& book) {
43 boost::unique_lock<boost::shared_mutex> wrlock(mtx);
44 auto it = catalog.find(book.title);
45
46 if (it == catalog.end()) {
47 catalog[book.title] = book;
48 return true;
49 }
50 else if (it->second.edition < book.edition) {
51 it->second = book;
52 return true;
53 }
54
55 return false;
56 }
57
58 bool remove_book(const std::string& title) {
59 boost::unique_lock<boost::shared_mutex> wrlock(mtx);
60 return catalog.erase(title);
61 }
62
63 private:
64 map_type catalog;
65 mutable boost::shared_mutex mtx;
66 };

Chapter 10

[421]

The method find_book performs read-only operations on the catalog and therefore
acquires a shared lock using the boost::shared_lock template (line 17). It releases
the lock after retrieving a matching book, if any (line 23). The method find_books
is implemented in terms of find_book, which it calls in a loop for each title in the
list passed to it. This allows for better overall concurrency between reader threads
at the cost of a slight performance hit, due to repeated locking and unlocking of the
shared_mutex.

Both add_book and remove_book are mutating functions that potentially change
the number of elements in the catalog. In order to modify the catalog, both methods
require exclusive or write locks on the catalog. For this reason, we use unique_lock
instances to acquire an exclusive lock on the shared_mutex (lines 43 and 59).

Upgradable locks
There is one glaring problem in the implementation of add_book and remove_book
methods in listing 10.14b. Both methods modify the catalog conditionally, based on the
outcome of a look-up that is run first. Yet an exclusive lock is acquired unconditionally
at the start of both operations. One could conceivably call remove_book with a
nonexistent title or add_book with an edition of a book that is already in the catalog,
in a loop, and seriously hamper the concurrency of the system doing nothing.

If we acquired a shared lock to perform the look up, we would have to release
it before acquiring an exclusive lock for modifying the catalog. In this case, the
results of the look up would no longer be reliable, as some other thread could have
modified the catalog between the time the shared lock is released and the exclusive
lock acquired.

This problem can be addressed by using boost::upgrade_lock and a set of
associated primitives. This is shown in the following rewrite of add_book:

 1 bool LibraryCatalog::add_book(const book_t& book) {
 2 boost::upgrade_lock<boost::shared_mutex> upglock(mtx);
 3 auto it = catalog.find(book.title);
 4
 5 if (it == catalog.end()) {
 6 boost::upgrade_to_unique_lock<boost::shared_mutex>
 7 ulock(upglock);
 8 catalog[book.title] = book;
 9 return true;
10 } else if (it->second.edition > book.edition) {
11 boost::upgrade_to_unique_lock<boost::shared_mutex>
12 ulock(upglock);

Concurrency with Boost

[422]

13 it->second = book;
14 return true;
15 }
16
17 return false;
18 }

Instead of acquiring an exclusive lock to start with, we acquire an upgrade lock before
performing the look up (line 2), and then upgrade it to a unique lock only if we need
to modify the catalog (lines 6-7 and 11-12). To acquire an upgrade lock, we wrap the
shared mutex in an upgrade_lock<boost::shared_mutex> instance (line 2). This
blocks if there is an exclusive lock or another upgrade lock on the mutex in effect,
but proceeds otherwise even if there be shared locks. Thus, at any point in time,
there can be any number of shared locks and at most one upgrade lock on a mutex.
Acquiring an upgrade lock thus does not impact read concurrency. Once the look
up is performed, and it is determined that a write operation needs to be performed,
the upgrade lock is promoted to a unique lock by wrapping it in an instance of
upgrade_to_unique_lock<boost::shared_mutex> (lines 6-7 and 11-12). This
blocks until there are no remaining shared locks, and then atomically releases the
upgrade ownership and acquires an exclusive ownership on the shared_mutex.

Acquiring an upgrade lock indicates intent to potentially upgrade it
to an exclusive lock and perform writes or modifications.

Performance of shared_mutex
boost::shared_mutex is slower than boost::mutex but acquiring additional read
locks on an already read-locked mutex is much faster. It is ideally suited for frequent
concurrent reads with infrequent need for exclusive write access. Any time you deal
with frequent writes, just use boost::mutex to provide exclusive write access.

Most solutions to the MRSW problem either prefer readers over writers or the other
way round. In read-preferring solutions, when a shared lock is in effect, new reader
threads can acquire a shared lock even with a writer waiting to acquire an exclusive
lock. This leads to write-starvation as the writer only ever gets an exclusive lock at a
point when no readers are around. In write-preferring solutions, if there is a writer
thread waiting on an exclusive lock, then new readers are queued even if existing
readers hold a shared lock. This impacts the concurrency of reads. Boost 1.57 (current
release) provides a shared/exclusive lock implementation that is completely fair and
does not have either a reader- or a writer-bias.

Chapter 10

[423]

Standard Library primitives
The C++11 Standard Library introduces std::mutex and a whole host of RAII
wrappers for locks, including std::lock_guard, std::unique_lock, and
std::lock, available in the header mutex. C++11 Standard Library also introduces
std::condition_variable available in the header condition_variable. The C++14
Standard Library introduces std::shared_timed_mutex, which corresponds to
boost::shared_mutex and std::shared_lock, both available in the header mutex.
They correspond to their Boost counterparts of the same names, and have very
similar interfaces. There is no upgrade lock facility in the Standard Library as of
C++14, nor any equivalent of the convenient boost::thread_group.

Boost Coroutine
Coroutines are functions that can yield or relinquish control to another coroutine,
and then given control back, resuming from the point at which they earlier yielded.
The state of automatic variables is maintained between a yield and the resumption.
Coroutines can be used for complex control flow patterns with surprisingly simple
and clean code. The Boost Coroutine library provides two types of coroutines:

• Asymmetric coroutines: Asymmetric coroutines distinguish between a caller
and a callee coroutine. With asymmetric coroutines, a callee can only yield
back to the caller. They are often used for unidirectional data transfer from
either the callee to caller, or the other way.

• Symmetric coroutines: Such coroutines can yield to other coroutines,
irrespective of who the caller was. They can be used to generate complex
cooperative chains of coroutines.

When a coroutine yields control, it is said to be suspended—its registers are saved
and it relinquishes control to another function. On resumption, the registers are
restored and execution continues beyond the point of yield. The Boost Coroutine
library utilizes the Boost Context library for this purpose.

A distinction is made between stackful coroutines versus stackless coroutines. A stackful
coroutine can be suspended from within a function called by the coroutine, that is,
from a nested stackframe. With stackless coroutines, only the top level routine may
suspend itself. In this chapter, we only look at asymmetric stackful coroutines.

Concurrency with Boost

[424]

Asymmetric coroutines
The core template used to define asymmetric coroutines is called
boost::coroutines::asymmetric_coroutine<>. It takes a single type parameter
that represents the type of value transferred from one coroutine to the other. It can be
void if no value needs to be transferred.

Coroutines that call other coroutines or yield to them must have a way to refer
to other coroutines. The nested type asymmetric_coroutine<T>::push_type
represents a coroutine that provides data of type T, and the nested type asymmetric_
coroutine<T>::pull_type represents a coroutine that consumes the data of type
T. Both the types are callable types, with an overloaded operator(). Using these
types, we shall now write a program that uses coroutines to read data from a vector
of elements:

Listing 10.15: Using asymmetric coroutines

 1 #include <iostream>
 2 #include <boost/coroutine/all.hpp>
 3 #include <boost/bind.hpp>
 4 #include <vector>
 5 #include <string>
 6
 7 template <typename T>
 8 using pull_type = typename
 9 boost::coroutines::asymmetric_coroutine<T>::pull_type;
10
11 template <typename T>
12 using push_type = typename
13 boost::coroutines::asymmetric_coroutine<T>::push_type;
14
15 template <typename T>
16 void getNextElem(push_type<T>& sink,
17 const std::vector<T>& vec)
18 {
19 for (const auto& elem: vec) {
20 sink(elem);
21 }
22 }
23
24 int main()
25 {
26 std::vector<std::string> vec{"hello", "hi", "hola",
27 "servus"};
28 pull_type<std::string> greet_func(

Chapter 10

[425]

29 boost::bind(getNextElem<std::string>, ::_1,
30 boost::cref(vec)));
31
32 while (greet_func) {
33 std::cout << greet_func.get() << '\n';
34 greet_func();
35 }
36 }

To start with, we define two alias templates called pull_type and push_type
referring to asymmetric_coroutine<T>::pull_type and asymmetric_
coroutine<T>::push_type for a type parameter T (lines 7-9 and 11-13).

The function getNextElem (line 16) is meant to be used as a coroutine that passes
the next element from a vector to the caller each time it is called. The main function
populates this vector (lines 26-27) and then calls getNextElem repeatedly to get each
element. Thus data is transferred from getNextElem to main, main being the caller
routine, and getNextElem, the callee routine.

Depending on whether the coroutine pushes data to the caller or pulls data from it,
it should have one of the following two signatures:

• void (push_type&): Coroutine pushes data to caller
• void(pull_type&): Coroutine pulls data from caller

The pull_type or push_type reference passed to the coroutine refers to the calling
context and represents the conduit through which it pushes data to, or pulls data
from the caller.

The caller routine must wrap the function in pull_type or push_type, depending
on whether it intends to pull data from it or push data to it. In our case, the main
function must wrap getNextElem in an instance of pull_type. However, the
signature of getNextElem is:

void (push_type&, const std::vector<T>&)

Thus we must adapt it to a conforming signature using some mechanism such as
lambda or bind. We use boost::bind to bind the second parameter of getNextElem
to the vector (lines 29-30) and wrap the resulting unary function object in a pull_
type instance called greet_func. Creating the instance of pull_type invokes the
getNextElem coroutine for the first time.

Concurrency with Boost

[426]

We can use greet_func in a Boolean context to check whether a value is available
from the callee, and we use this to spin in a loop (line 32). In each iteration of the
loop, we call the get member function on the pull_type instance to obtain the
next value furnished by getNextElem (line 33). We then invoke the overloaded
operator() of pull_type to relinquish control to the getNextElem coroutine
(line 34).

On the other side, the getNextElem coroutine does not use a conventional return
value to send data back to the caller. It iterates through the vector and uses the
overloaded operator() on the calling context to return each element (line 20). If the
caller had to push data to the callee instead, then the caller would have wrapped the
callee in push_type, and the callee would be passed the caller's reference wrapped
in pull_type. In the next chapter, we will see how Boost Asio uses coroutines to
simplify asynchronous, event-driven logic.

Self-test questions
For multiple choice questions, choose all options that apply:

1. What happens if you do not call join or detach on a boost::thread
object and a std::thread object?
a. join is called on underlying thread of boost::thread.
b. std::terminate is called for std::thread, terminating the program.
c. detach is called on underlying thread of boost::thread.
d. detach is called on underlying thread of std::thread.

2. What happens if an exception is allowed to propagate past the initial
function with which a boost::thread object is created?
a. The program is terminated via std::terminate.
b. It is undefined behavior.
c. The call to get on the future object throws an exception in the
 calling thread.
d. The thread is terminated but the exception is not propagated.

3. Should you call notify_one or notify_all on a condition_variable
object without holding the associated mutex?
a. No, the call will block.
b. Yes, but it may result in priority inversion in some cases.
c. No, some waiting threads may miss the signal.
d. Yes, it may even be faster.

Chapter 10

[427]

4. What is the advantage of using boost::unique_lock over boost::lock_
guard?
a. boost::unique_lock is more efficient and lightweight.
b. boost::unique_lock can or adopt an already acquired lock.
c. boost::lock_guard cannot be unlocked and relocked mid-scope.
d. boost::unique_lock can defer acquiring a lock.

5. Which of the following are true of boost::shared_mutex?

a. shared_mutex is more lightweight and faster than boost::mutex.
b. Boost implementation of shared_mutex does not have
 reader- or writer-bias.
c. shared_mutex can be used as an upgradable lock.
d. shared_mutex is ideal for systems with high-write contention.

Summary
In this chapter, we looked at how to write concurrent logic in terms of threads and
tasks using the Boost Thread library and the C++11 Standard Library. We learned
how to use the futures and promises paradigm to define ordering of operations
across concurrent tasks, and some abstractions around futures and promises in
the Standard Library. We also studied various lock-based thread synchronization
primitives and applied them to some common multithreading problems.

Multithreading is a difficult and complex topic, and this chapter merely introduces
the portable APIs available in Boost to write concurrent programs. The Boost Thread
library and the concurrent programming interfaces in the C++ Standard Library
are an evolving set, and we did not cover several features: the C++ memory model
and atomics, Boost Lockfree, thread cancellation, experimental continuations with
boost::futures, and several more topics. Architectural concerns in designing
concurrent systems and concurrent data structures are other relevant topics that are
outside the scope of this book. Hopefully, the concepts and methods presented in
this chapter will help you explore further in these directions.

Concurrency with Boost

[428]

References
• C++ Concurrency in Action, Anthony Williams, Manning Publications
• Lockfree data structures: http://www.boost.org/libs/lockfree
• A proposal to add coroutines to the C++ standard library (Revision 1), Oliver

Kowalke and Nat Goodspeed: http://www.open-std.org/jtc1/sc22/wg21/
docs/papers/2014/n3985.pdf

• Lock-Free Programming, Herb Sutter: https://youtu.be/c1gO9aB9nbs
• atomic<> Weapons (video), Herb Sutter:

 ° https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-
Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2

 ° https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-
Beyond-2012-Herb-Sutter-atomic-Weapons-2-of-2

http://www.boost.org/libs/lockfree
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3985.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3985.pdf
https://youtu.be/c1gO9aB9nbs
https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2
https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-1-of-2
https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-2-of-2
https://channel9.msdn.com/Shows/Going+Deep/Cpp-and-Beyond-2012-Herb-Sutter-atomic-Weapons-2-of-2

Chapter 11

[429]

Network Programming
Using Boost Asio

In today's networked world, Internet servers handling thousands of requests per
second have a tough mandate to fulfill—of maintaining responsiveness and not
slowing down even with increasing volumes of requests. Building reliable processes
that efficiently handle network I/O and scale with the number of connections is
challenging because it often requires the application programmer to understand
the underlying protocol stack and exploit it in ingenious ways. What adds to the
challenge is the variance in the programming interfaces and models for network
programming across platforms, and the inherent difficulties of using low-level APIs.

Boost Asio (pronounced ay-see-oh) is a portable library for performing efficient
network I/O using a consistent programming model. The emphasis is on performing
asynchronous I/O (hence the name Asio), where the program initiates I/O
operations and gets on with its other jobs, without blocking for the OS to return
with the results of the operation. When the operation is complete in the underlying
OS, the program is notified by the Asio library and takes an appropriate action. The
problems Asio helps solve and the consistent, portable interfaces it uses to do so,
make Asio compellingly useful. But the asynchronous nature of interactions also
makes it more complex and less straightforward to reason about. This is the reason
we will study Asio in two parts: to first understand its interaction model and then
use it to perform network I/O:

• Task execution with Asio
• Network programming using Asio

Network Programming Using Boost Asio

[430]

Asio provides a toolkit for performing and managing arbitrary tasks, and the
focus of the first part of this chapter is to understand this toolkit. We apply this
understanding in the second part of this chapter, when we look specifically at how
Asio helps write programs that communicate with other programs over the network,
using protocols from the Internet Protocol (IP) suite.

Task execution with Asio
At its core, Boost Asio provides a task execution framework that you can use to
perform operations of any kind. You create your tasks as function objects and post
them to a task queue maintained by Boost Asio. You enlist one or more threads to
pick these tasks (function objects) and invoke them. The threads keep picking up
tasks, one after the other till the task queues are empty at which point the threads
do not block but exit.

IO Service, queues, and handlers
At the heart of Asio is the type boost::asio::io_service. A program uses the
io_service interface to perform network I/O and manage tasks. Any program
that wants to use the Asio library creates at least one instance of io_service and
sometimes more than one. In this section, we will explore the task management
capabilities of io_service, and defer the discussion of network I/O to the latter
half of the chapter.

Here is the IO Service in action using the obligatory "hello world" example:

Listing 11.1: Asio Hello World

 1 #include <boost/asio.hpp>
 2 #include <iostream>
 3 namespace asio = boost::asio;
 4
 5 int main() {
 6 asio::io_service service;
 7
 8 service.post(
 9 [] {
10 std::cout << "Hello, world!" << '\n';
11 });
12
13 std::cout << "Greetings: \n";
14 service.run();
15 }

Chapter 11

[431]

We include the convenience header boost/asio.hpp, which includes most of the
Asio library that we need for the examples in this chapter (line 1). All parts of the
Asio library are under the namespace boost::asio, so we use a shorter alias for this
(line 3). The program itself just prints Hello, world! on the console but it does so
through a task.

The program first creates an instance of io_service (line 6) and posts a function object
to it, using the post member function of io_service. The function object, in this case
defined using a lambda expression, is referred to as a handler. The call to post adds
the handler to a queue inside io_service; some thread (including that which posted
the handler) must dispatch them, that is, remove them off the queue and call them.
The call to the run member function of io_service (line 14) does precisely this. It
loops through the handlers in the queue inside io_service, removing and calling
each handler. In fact, we can post more handlers to the io_service before calling run,
and it would call all the posted handlers. If we did not call run, none of the handlers
would be dispatched. The run function blocks until all the handlers in the queue have
been dispatched and returns only when the queue is empty. By itself, a handler may
be thought of as an independent, packaged task, and Boost Asio provides a great
mechanism for dispatching arbitrary tasks as handlers. Note that handlers must be
nullary function objects, that is, they should take no arguments.

Asio is a header-only library by default, but programs using Asio
need to link at least with boost_system. On Linux, we can use the
following command line to build this example:
$ g++ -g listing11_1.cpp -o listing11_1 -lboost_system
-std=c++11

Most examples in this chapter would require you to link to additional
libraries. You can use the following command line to build all the
examples in this chapter:
$ g++ -g listing11_25.cpp -o listing11_25 -lboost_system
-lboost_coroutine -lboost_date_time -std=c++11

If you did not install Boost from a native package, and for installation
on Windows, refer to Chapter 1, Introducing Boost.

Running this program prints the following:

Greetings: Hello, World!

Note that Greetings: is printed from the main function (line 13) before the call
to run (line 14). The call to run ends up dispatching the sole handler in the queue,
which prints Hello, World!. It is also possible for multiple threads to call run on
the same I/O object and dispatch handlers concurrently. We will see how this can
be useful in the next section.

Network Programming Using Boost Asio

[432]

Handler states – run_one, poll, and poll_one
While the run function blocks until there are no more handlers in the queue, there
are other member functions of io_service that let you process handlers with greater
flexibility. But before we look at this function, we need to distinguish between
pending and ready handlers.

The handlers we posted to the io_service were all ready to run immediately
and were invoked as soon as their turn came on the queue. In general, handlers
are associated with background tasks that run in the underlying OS, for example,
network I/O tasks. Such handlers are meant to be invoked only once the associated
task is completed, which is why in such contexts, they are called completion
handlers. These handlers are said to be pending until the associated task is awaiting
completion, and once the associated task completes, they are said to be ready.

The poll member function, unlike run, dispatches all the ready handlers but does
not wait for any pending handler to become ready. Thus, it returns immediately
if there are no ready handlers, even if there are pending handlers. The poll_one
member function dispatches exactly one ready handler if there be one, but does not
block waiting for pending handlers to get ready.

The run_one member function blocks on a nonempty queue waiting for a handler to
become ready. It returns when called on an empty queue, and otherwise, as soon as
it finds and dispatches a ready handler.

post versus dispatch
A call to the post member function adds a handler to the task queue and returns
immediately. A later call to run is responsible for dispatching the handler. There
is another member function called dispatch that can be used to request the io_
service to invoke a handler immediately if possible. If dispatch is invoked in a
thread that has already called one of run, poll, run_one, or poll_one, then the
handler will be invoked immediately. If no such thread is available, dispatch adds
the handler to the queue and returns just like post would. In the following example,
we invoke dispatch from the main function and from within another handler:

Listing 11.2: post versus dispatch

 1 #include <boost/asio.hpp>
 2 #include <iostream>
 3 namespace asio = boost::asio;
 4
 5 int main() {

Chapter 11

[433]

 6 asio::io_service service;
 7 // Hello Handler – dispatch behaves like post
 8 service.dispatch([]() { std::cout << "Hello\n"; });
 9
10 service.post(
11 [&service] { // English Handler
12 std::cout << "Hello, world!\n";
13 service.dispatch([] { // Spanish Handler, immediate
14 std::cout << "Hola, mundo!\n";
15 });
16 });
17 // German Handler
18 service.post([&service] {std::cout << "Hallo, Welt!\n"; });
19 service.run();
20 }

Running this code produces the following output:

Hello
Hello, world!
Hola, mundo!
Hallo, Welt!

The first call to dispatch (line 8) adds a handler to the queue without invoking it
because run was yet to be called on io_service. We call this the Hello Handler, as it
prints Hello. This is followed by the two calls to post (lines 10, 18), which add two
more handlers. The first of these two handlers prints Hello, world! (line 12), and in
turn, calls dispatch (line 13) to add another handler that prints the Spanish greeting,
Hola, mundo! (line 14). The second of these handlers prints the German greeting,
Hallo, Welt (line 18). For our convenience, let's just call them the English, Spanish,
and German handlers. This creates the following entries in the queue:

Hello Handler
English Handler
German Handler

Now, when we call run on the io_service (line 19), the Hello Handler is dispatched
first and prints Hello. This is followed by the English Handler, which prints Hello,
World! and calls dispatch on the io_service, passing the Spanish Handler.
Since this executes in the context of a thread that has already called run, the call to
dispatch invokes the Spanish Handler, which prints Hola, mundo!. Following this,
the German Handler is dispatched printing Hallo, Welt! before run returns.

Network Programming Using Boost Asio

[434]

What if the English Handler called post instead of dispatch (line 13)? In that case,
the Spanish Handler would not be invoked immediately but would queue up after
the German Handler. The German greeting Hallo, Welt! would precede the
Spanish greeting Hola, mundo!. The output would look like this:

Hello
Hello, world!
Hallo, Welt!
Hola, mundo!

Concurrent execution via thread pools
The io_service object is thread-safe and multiple threads can call run on it
concurrently. If there are multiple handlers in the queue, they can be processed
concurrently by such threads. In effect, the set of threads that call run on a given
io_service form a thread pool. Successive handlers can be processed by different
threads in the pool. Which thread dispatches a given handler is indeterminate, so the
handler code should not make any such assumptions. In the following example, we
post a bunch of handlers to the io_service and then start four threads, which all
call run on it:

Listing 11.3: Simple thread pools

 1 #include <boost/asio.hpp>
 2 #include <boost/thread.hpp>
 3 #include <boost/date_time.hpp>
 4 #include <iostream>
 5 namespace asio = boost::asio;
 6
 7 #define PRINT_ARGS(msg) do {\
 8 boost::lock_guard<boost::mutex> lg(mtx); \
 9 std::cout << '[' << boost::this_thread::get_id() \
10 << "] " << msg << std::endl; \
11 } while (0)
12
13 int main() {
14 asio::io_service service;
15 boost::mutex mtx;
16
17 for (int i = 0; i < 20; ++i) {
18 service.post([i, &mtx]() {
19 PRINT_ARGS("Handler[" << i << "]");
20 boost::this_thread::sleep(

Chapter 11

[435]

21 boost::posix_time::seconds(1));
22 });
23 }
24
25 boost::thread_group pool;
26 for (int i = 0; i < 4; ++i) {
27 pool.create_thread([&service]() { service.run(); });
28 }
29
30 pool.join_all();
31 }

We post twenty handlers in a loop (line 18). Each handler prints its identifier (line
19), and then sleeps for a second (lines 19-20). To run the handlers, we create a group
of four threads, each of which calls run on the io_service (line 21) and wait for all
the threads to finish (line 24). We define the macro PRINT_ARGS which writes output
to the console in a thread-safe way, tagged with the current thread ID (line 7-10). We
will use this macro in other examples too.

To build this example, you must also link against libboost_thread, libboost_
date_time, and in Posix environments, with libpthread too:

$ g++ -g listing9_3.cpp -o listing9_3 -lboost_system -lboost_thread
-lboost_date_time -pthread -std=c++11

One particular run of this program on my laptop produced the following output
(with some lines snipped):

[b5c15b40] Handler[0]
[b6416b40] Handler[1]
[b6c17b40] Handler[2]
[b7418b40] Handler[3]
[b5c15b40] Handler[4]
[b6416b40] Handler[5]
…
[b6c17b40] Handler[13]
[b7418b40] Handler[14]
[b6416b40] Handler[15]
[b5c15b40] Handler[16]
[b6c17b40] Handler[17]
[b7418b40] Handler[18]
[b6416b40] Handler[19]

Network Programming Using Boost Asio

[436]

You can see that the different handlers are executed by different threads (each thread
ID marked differently).

If any of the handlers threw an exception, it would be propagated
across the call to the run function on the thread that was executing
the handler.

io_service::work
Sometimes, it is useful to keep the thread pool started, even when there are no
handlers to dispatch. Neither run nor run_one blocks on an empty queue. So in
order for them to block waiting for a task, we have to indicate, in some way, that
there is outstanding work to be performed. We do this by creating an instance of io_
service::work, as shown in the following example:

Listing 11.4: Using io_service::work to keep threads engaged

 1 #include <boost/asio.hpp>
 2 #include <memory>
 3 #include <boost/thread.hpp>
 4 #include <iostream>
 5 namespace asio = boost::asio;
 6
 7 typedef std::unique_ptr<asio::io_service::work> work_ptr;
 8
 9 #define PRINT_ARGS(msg) do {\ …
...
14
15 int main() {
16 asio::io_service service;
17 // keep the workers occupied
18 work_ptr work(new asio::io_service::work(service));
19 boost::mutex mtx;
20
21 // set up the worker threads in a thread group
22 boost::thread_group workers;
23 for (int i = 0; i < 3; ++i) {
24 workers.create_thread([&service, &mtx]() {
25 PRINT_ARGS("Starting worker thread ");
26 service.run();
27 PRINT_ARGS("Worker thread done");
28 });
29 }

Chapter 11

[437]

30
31 // Post work
32 for (int i = 0; i < 20; ++i) {
33 service.post(
34 [&service, &mtx]() {
35 PRINT_ARGS("Hello, world!");
36 service.post([&mtx]() {
37 PRINT_ARGS("Hola, mundo!");
38 });
39 });
40 }
41
42 work.reset(); // destroy work object: signals end of work
43 workers.join_all(); // wait for all worker threads to finish
44 }

In this example, we create an object of io_service::work wrapped in a unique_
ptr (line 18). We associate it with an io_service object by passing to the work
constructor a reference to the io_service object. Note that, unlike listing 11.3, we
create the worker threads first (lines 24-27) and then post the handlers (lines 33-39).
However, the worker threads stay put waiting for the handlers because of the calls
to run block (line 26). This happens because of the io_service::work object we
created, which indicates that there is outstanding work in the io_service queue.
As a result, even after all handlers are dispatched, the threads do not exit. By calling
reset on the unique_ptr, wrapping the work object, its destructor is called, which
notifies the io_service that all outstanding work is complete (line 42). The calls to
run in the threads return and the program exits once all the threads are joined (line
43). We wrapped the work object in a unique_ptr to destroy it in an exception-safe
way at a suitable point in the program.

We omitted the definition of PRINT_ARGS here, refer to listing 11.3.

Serialized and ordered execution via strands
Thread pools allow handlers to be run concurrently. This means that handlers that
access shared resources need to synchronize access to these resources. We already saw
examples of this in listings 11.3 and 11.4, when we synchronized access to std::cout,
which is a global object. As an alternative to writing synchronization code in handlers,
which can make the handler code more complex, we can use strands.

Think of a strand as a subsequence of the task queue with the constraint
that no two handlers from the same strand ever run concurrently.

Network Programming Using Boost Asio

[438]

The scheduling of other handlers in the queue, which are not in the strand, is not
affected by the strand in any way. Let us look at an example of using strands:

Listing 11.5: Using strands

 1 #include <boost/asio.hpp>
 2 #include <boost/thread.hpp>
 3 #include <boost/date_time.hpp>
 4 #include <cstdlib>
 5 #include <iostream>
 6 #include <ctime>
 7 namespace asio = boost::asio;
 8 #define PRINT_ARGS(msg) do {\
...
13
14 int main() {
15 std::srand(std::time(0));
16 asio::io_service service;
17 asio::io_service::strand strand(service);
18 boost::mutex mtx;
19 size_t regular = 0, on_strand = 0;
20
21 auto workFuncStrand = [&mtx, &on_strand] {
22 ++on_strand;
23 PRINT_ARGS(on_strand << ". Hello, from strand!");
24 boost::this_thread::sleep(
25 boost::posix_time::seconds(2));
26 };
27
28 auto workFunc = [&mtx, ®ular] {
29 PRINT_ARGS(++regular << ". Hello, world!");
30 boost::this_thread::sleep(
31 boost::posix_time::seconds(2));
32 };
33 // Post work
34 for (int i = 0; i < 15; ++i) {
35 if (rand() % 2 == 0) {
36 service.post(strand.wrap(workFuncStrand));
37 } else {
38 service.post(workFunc);
39 }
40 }

Chapter 11

[439]

41
42 // set up the worker threads in a thread group
43 boost::thread_group workers;
44 for (int i = 0; i < 3; ++i) {
45 workers.create_thread([&service, &mtx]() {
46 PRINT_ARGS("Starting worker thread ");
47 service.run();
48 PRINT_ARGS("Worker thread done");
49 });
50 }
51
52 workers.join_all(); // wait for all worker threads to finish
53 }

In this example, we create two handler functions: workFuncStrand (line 21) and
workFunc (line 28). The lambda workFuncStrand captures a counter on_strand,
increments it, and prints a message Hello, from strand!, prefixed with the value
of the counter. The function workFunc captures another counter regular, increments
it, and prints Hello, World!, prefixed with the counter. Both pause for 2 seconds
before returning.

To define and use a strand, we first create an object of io_service::strand
associated with the io_service instance (line 17). Thereafter, we post all handlers
that we want to be part of that strand by wrapping them using the wrap member
function of the strand (line 36). Alternatively, we can post the handlers to the strand
directly by using either the post or the dispatch member function of the strand, as
shown in the following snippet:

33 for (int i = 0; i < 15; ++i) {
34 if (rand() % 2 == 0) {
35 strand.post(workFuncStrand);
37 } else {
...

The wrap member function of strand returns a function object, which in turn calls
dispatch on the strand to invoke the original handler. Initially, it is this function
object rather than our original handler that is added to the queue. When duly
dispatched, this invokes the original handler. There are no constraints on the order
in which these wrapper handlers are dispatched, and therefore, the actual order in
which the original handlers are invoked can be different from the order in which
they were wrapped and posted.

Network Programming Using Boost Asio

[440]

On the other hand, calling post or dispatch directly on the strand avoids an
intermediate handler. Directly posting to a strand also guarantees that the handlers
will be dispatched in the same order that they were posted, achieving a deterministic
ordering of the handlers in the strand. The dispatch member of strand blocks until
the handler is dispatched. The post member simply adds it to the strand and returns.

Note that workFuncStrand increments on_strand without synchronization (line
22), while workFunc increments the counter regular within the PRINT_ARGS
macro (line 29), which ensures that the increment happens in a critical section. The
workFuncStrand handlers are posted to a strand and therefore are guaranteed to
be serialized; hence no need for explicit synchronization. On the flip side, entire
functions are serialized via strands and synchronizing smaller blocks of code is not
possible. There is no serialization between the handlers running on the strand and
other handlers; therefore, the access to global objects, like std::cout, must still
be synchronized.

The following is a sample output of running the preceding code:

[b73b6b40] Starting worker thread
[b73b6b40] 0. Hello, world from strand!
[b6bb5b40] Starting worker thread
[b6bb5b40] 1. Hello, world!
[b63b4b40] Starting worker thread
[b63b4b40] 2. Hello, world!
[b73b6b40] 3. Hello, world from strand!
[b6bb5b40] 5. Hello, world!
[b63b4b40] 6. Hello, world!
…
[b6bb5b40] 14. Hello, world!
[b63b4b40] 4. Hello, world from strand!
[b63b4b40] 8. Hello, world from strand!
[b63b4b40] 10. Hello, world from strand!
[b63b4b40] 13. Hello, world from strand!
[b6bb5b40] Worker thread done
[b73b6b40] Worker thread done
[b63b4b40] Worker thread done

There were three distinct threads in the pool and the handlers from the strand were
picked up by two of these three threads: initially, by thread ID b73b6b40, and later
on, by thread ID b63b4b40. This also dispels a frequent misunderstanding that all
handlers in a strand are dispatched by the same thread, which is clearly not the case.

Different handlers in the same strand may be dispatched by different
threads but will never run concurrently.

Chapter 11

[441]

Network I/O using Asio
We want to use Asio to build scalable network services that perform I/O over the
network. Such services receive requests from clients running on remote machines
and send them information over the network. The data transfer between processes
across machine boundaries, happening over the wire, is done using certain protocols
of network communication. The most ubiquitous of these protocols is IP or the
Internet Protocol and a suite of protocols layered above it. Boost Asio supports
TCP, UDP, and ICMP, the three popular protocols in the IP protocol suite. We do not
cover ICMP in this book.

UDP and TCP
User Datagram Protocol or UDP is used to transmit datagrams or message units
from one host to another over an IP network. UDP is a very basic protocol built over
IP and is stateless in the sense that no context is maintained across multiple network
I/O operations. The reliability of data transfer using UDP depends on the reliability
of the underlying network, and UDP transfers have the following caveats:

• A UDP datagram may not be delivered at all
• A given datagram may be delivered more than once
• Two datagrams may not be delivered to the destination in the order in

which they were dispatched from the source
• UDP will detect any data corruption in the datagrams and drop such

messages without any means of recovery
For these reasons, UDP is considered to be an unreliable protocol.

If an application requires stronger guarantees from the protocol, we choose
Transmission Control Protocol or TCP. TCP deals in terms of byte streams rather
than messages. It uses a handshake mechanism between two endpoints of the
network communication to establish a durable connection between the two points
and maintains state during the life of the connection. All communications between
the two endpoints happen over such a connection. At the cost of a somewhat higher
latency than UDP, TCP guarantees the following:

• On a given connection, the receiving application receives the stream of bytes
sent by the sender in the order they were sent

• Any data lost or corrupted on the wire can be retransmitted, greatly
improving the reliability of deliveries

Network Programming Using Boost Asio

[442]

Real-time applications that can handle unreliability and data loss for themselves
often use UDP. In addition, a lot of higher level protocols are run on top of UDP.
TCP is more frequently used, where correctness concerns supersede real-time
performance, for example, e-mail and file transfer protocols, HTTP, and so on.

IP addresses
IP addresses are numeric identifiers used to uniquely identify interfaces connected to
an IP network. The older IPv4 protocol uses 32-bit IP addresses in an address space
of 4 billion (232) addresses. The emergent IPv6 protocol uses 128-bit IP addresses
in an address space of 3.4 × 1038 (2128) unique addresses, which is practically
inexhaustible. You can represent IP addresses of both types using the class
boost::asio::ip::address, while version-specific addresses can be represented
using boost::asio::ip::address_v4 and boost::asio::ip::address_v6.

IPv4 addresses
The familiar IPv4 addresses, such as 212.54.84.93, are 32-bit unsigned integers
expressed in the dotted-quad notation; four 8-bit unsigned integers or octets
representing the four bytes in the address, the most significant on the left to the least
significant on the right, separated by dots (period signs). Each octet can range from
0 through 255. IP addresses are normally interpreted in network byte order, that is,
Big-endian.

Subnets
Larger computer networks are often divided into logical parts called subnets.
A subnet consists of a set of nodes that can communicate with each other using
broadcast messages. A subnet has an associated pool of IP addresses that have a
common prefix, usually, called the routing prefix or network address. The remaining
part of the IP address field is called the host part.

Given an IP address and the length of the prefix, we can compute the prefix using the
netmask. The netmask of a subnet is a 4-byte bitmask, whose bitwise-AND with an
IP address in the subnet yields the routing prefix. For a subnet with a routing prefix
of length N, the netmask has the most significant N bits set and the remaining 32-N
bits unset. The netmask is often expressed in a dotted-quad notation. For example,
if the address 172.31.198.12 has a routing prefix that is 16 bits long, then its netmask
would be 255.255.0.0 and the routing prefix would be 172.31.0.0.

Chapter 11

[443]

In general, the length of the routing prefix must be explicitly specified. The Classless
Interdomain Routing (CIDR) notation augments the dotted-quad notation with a
trailing slash and a number between 0 and 32 that represents the prefix length. Thus,
10.209.72.221/22 represents an IP address with a prefix length of 22. An older scheme
of classification, referred to as the classful scheme, divided the IPv4 address space
into ranges and assigned a class to each range (see the following table). Addresses
belonging to each range were said to be of the corresponding class, and the length
of the routing prefix was determined based on the class, without being specified as,
with the CIDR notation.

Class Address range Prefix length Netmask Remarks
Class A 0.0.0.0 – 127.255.255.255 8 255.0.0.0
Class B 128.0.0.0 – 191.255.255.255 16 255.255.0.0
Class C 192.0.0.0 – 223.255.255.255 24 255.255.255.0
Class D 224.0.0.0 – 239.255.255.255 Not specified Not specified Multicast
Class E 240.0.0.0 – 255.255.255.255 Not specified Not specified Reserved

Special addresses
Some IPv4 addresses have special meanings. For example, an IP address with all bits
set in the host part is known as the broadcast address for the subnet and is used to
broadcast messages to all hosts in the subnet. For example, the broadcast address in
the network 172.31.0.0/16 is 172.31.255.255.

Applications listening for incoming requests use the unspecified address 0.0.0.0
(INADDR_ANY) to listen on all available network interfaces, without the need to know
addresses plumbed on the system.

The loopback address 127.0.0.1 is commonly associated with a virtual network
interface that is not associated with any hardware and does not require the host
to be connected to a network. Data sent over the loopback interface immediately
shows up as received data on the sender host itself. Often used for testing networked
applications within a box, you can configure additional loopback interfaces and
associate loopback addresses from the range 127.0.0.0 through 127.255.255.255.

Handling IPv4 addresses with Boost
Let us now look at a code example of constructing IPv4 addresses and glean useful
information from them, using the type boost::asio::ip::address_v4:

Listing 11.6: Handling IPv4 addresses

 1 #include <boost/asio.hpp>
 2 #include <iostream>

Network Programming Using Boost Asio

[444]

 3 #include <cassert>
 4 #include <vector>
 5 namespace asio = boost::asio;
 6 namespace sys = boost::system;
 7 using namespace asio::ip;
 8
 9 void printAddrProperties(const address& addr) {
10 std::cout << "\n\n" << addr << ": ";
11
12 if (addr.is_v4()) {
13 std::cout << "netmask=" << address_v4::netmask(addr.to_v4());
14 } else if (addr.is_v6()) { /* ... */ }
15
16 if (addr.is_unspecified()) { std::cout << "is unspecified, "; }
17 if (addr.is_loopback()) { std::cout << "is loopback, "; }
18 if (addr.is_multicast()) { std::cout << "is multicast, "; }
19 }
20
21 int main() {
22 sys::error_code ec;
23 std::vector<address> addresses;
24 std::vector<const char*> addr_strings{"127.0.0.1",
25 "10.28.25.62", "137.2.33.19", "223.21.201.30",
26 "232.28.25.62", "140.28.25.62/22"};
27
28 addresses.push_back(address_v4()); // default: 0.0.0.0
29 addresses.push_back(address_v4::any()); // INADDR_ANY
30
31 for (const auto& v4str : addr_strings) {
32 address_v4 addr = address_v4::from_string(v4str, ec);
33 if (!ec) {
34 addresses.push_back(addr);
35 }
36 }
37
38 for (const address& addr1: addresses) {
39 printAddrProperties(addr1);
40 }
41 }

Chapter 11

[445]

This example highlights a few basic operations on IPv4 addresses. We create a
vector of boost::asio::ip::address objects (not just address_v4) and push
IPv4 addresses constructed from their string representations using the address_
v4::from_string static function (line 32). We use the two-argument overload of
from_string, which takes the address string, and a non-const reference to an error_
code object that is set if it is unable to parse the address string. A one-argument
overload exists, which throws if there is an error. Note that you can implicitly
convert or assign address_v4 instances to address instances. Default constructed
instances of address_v4 are equivalent to the unspecified address 0.0.0.0 (line 28),
which is also returned by address_v4::any() (line 29).

To print the properties of the address, we have written the printAddrProperties
function (line 9). We print IP addresses by streaming them to std::cout (line
10). We check whether an address is an IPv4 or IPv6 address using the is_v4 and
is_v6 member functions (lines 12, 14), print the netmask for an IPv4 address using
the address_v4::netmask static function (line 13), and also check whether the
address is an unspecified address, loopback address, or IPv4 multicast address
(class D) using appropriate member predicates (lines 16-18). Note that the address_
v4::from_string function does not recognize the CIDR format (as of Boost version
1.57), and the netmask is computed based on the classful scheme.

In the next section, following a brief overview of IPv6 addresses, we will augment
the printAddrProperties (line 14) function to print IPv6 specific properties as well.

IPv6 addresses
In its most general form, an IPv6 address is represented as a sequence of eight
2-byte unsigned hexadecimal integers, separated by colons. Digits a through f in the
hexadecimal integers are written in lowercase by convention and leading zeros in each
16-bit number are omitted. Here is an example of an IPv6 address in this notation:

2001:0c2f:003a:01e0:0000:0000:0000:002a

One sequence of two or more zero terms can be collapsed completely. Thus, the
preceding address can be written as 2001:c2f:3a:1e0::2a. All leading zeros have
been removed and the contiguous zero terms between bytes 16 and 63 have been
collapsed, leaving the colon pair (::). If there be multiple zero-term sequences, the
longest one is collapsed, and if there is a tie, the one that is leftmost is collapsed.
Thus, we can abbreviate this 2001:0000:0000:01e0:0000:0000:001a:002a to this
2001::1e0:0:0:1a:2a. Note that the leftmost sequence of two zero-terms is collapsed,
while the other between bits 32 and 63 are not collapsed.

Network Programming Using Boost Asio

[446]

In environments transitioning from IPv4 to IPv6, software frequently supports both
IPv4 and IPv6. IPv4-mapped IPv6 addresses are used to enable communication between
IPv6 and IPv4 interfaces. IPv4 addresses are mapped to an IPv6 address with
the ::ffff:0:0/96 prefix and the last 32-bits same as the IPv4 address. For example,
172.31.201.43 will be represented as ::ffff:172.31.201.43/96.

Address classes, scopes, and subnets
There are three classes of IPv6 addresses:

• Unicast addresses: These addresses identify a single network interface
• Multicast addresses: These addresses identify a group of network interfaces

and are used to send data to all the interfaces in the group
• Anycast addresses: These addresses identify a group of network interfaces,

but data sent to an anycast address is delivered to one or more interfaces
that are topologically closest to the sender and not to all the interfaces in the
group

In unicast and anycast addresses, the least significant 64-bits of the address represent
the host ID. In general, the higher order 64-bits represent the network prefix.

Each IPv6 address also has a scope, which identifies the segment of the network in
which it is valid:

• Node-local addresses, including loopback addresses are used for
communication within the node.

• Global addresses are routable addresses reachable across networks.
• Link-local addresses are automatically assigned to each and every IPv6-

enabled interface and are accessible only within a network, that is, routers
do not route traffic headed for link-local addresses. Link-local addresses are
assigned to interfaces even when they have routable addresses. Link-local
addresses have a prefix of fe80::/64.

Special addresses
The IPv6 loopback address analogous to 127.0.0.1 in IPv4 is ::1. The unspecified
address (all zeros) in IPv6 is written as :: (in6addr_any). There are no broadcast
addresses in IPv6, and multicast addresses are used to define groups of recipient
interfaces, a topic that is outside the scope of this book.

Chapter 11

[447]

Handling IPv6 addresses with Boost
In the following example, we construct IPv6 addresses and query properties of these
addresses using the boost::asio::ip::address_v6 class:

Listing 11.7: Handling IPv6 addresses

 1 #include <boost/asio.hpp>
 2 #include <iostream>
 3 #include <vector>
 4 namespace asio = boost::asio;
 5 namespace sys = boost::system;
 6 using namespace asio::ip;
 7
 8 void printAddr6Properties(const address_v6& addr) {
 9 if (addr.is_v4_mapped()) { std::cout << "is v4-mapped, "; }
10 else {
11 if (addr.is_link_local()) { std::cout << "is link local";}
12 }
13 }
14
15 void printAddrProperties(const address& addr) { ... }
16
17 int main() {
18 sys::error_code ec;
19 std::vector<address> addresses;
20 std::vector<const char*> addr_strings{"::1", "::",
21 "fe80::20", "::ffff:223.18.221.9", "2001::1e0:0:0:1a:2a"};
22
23 for (const auto& v6str: addr_strings) {
24 address addr = address_v6::from_string(v6str, ec);
25 if (!ec) { addresses.push_back(addr); }
26 }
27
28 for (const auto& addr : addresses) {
29 printAddrProperties(addr);
30 }
31 }

This example augments listing 11.6 with IPv6-specific checks. The function
printAddrProperties (line 15) is the same as that from listing 11.6, so it is not
repeated in full. The printAddr6Properties function (line 8) checks whether the
address is an IPv4-mapped IPv6 address (line 9) and whether it is a link-local address
(line 11). Other relevant checks are already performed through version-agnostic
members of address in printAddrProperties (see listing 11.6).

Network Programming Using Boost Asio

[448]

We create a vector of boost::asio::ip::address objects (not just address_v6)
and push IPv6 addresses constructed from their string representations, using the
address_v6::from_string static function (line 24), which returns address_v6
objects, which are implicitly convertible to address. Notice that we have the
loopback address, the unspecified address, IPv4-mapped address, a regular IPv6
unicast address, and a link-local address (lines 20-21).

Endpoints, sockets, and name resolution
Applications bind to IP addresses when providing network services, and multiple
applications initiate outbound communication with other applications, starting
from an IP address. Multiple applications can bind to the same IP address using
different ports. A port is an unsigned 16-bit integer which, along with the IP address
and protocol (TCP, UDP, etc.), uniquely identifies a communication endpoint. Data
communication happens between two such endpoints. Boost Asio provides distinct
endpoint types for UDP and TCP, namely, boost::asio::ip::udp::endpoint and
boost::asio::ip::tcp::endpoint.

Ports
Many standard and widely used network services use fixed, well-known ports.
Ports 0 through 1023 are assigned to well-known system services, including the
likes of FTP, SSH, telnet, SMTP, DNS, HTTP, and HTTPS. Widely used applications
may register standard ports between 1024 and 49151 with the Internet Assigned
Numbers Authority (IANA). Ports above 49151 can be used by any application,
without the need for registration. The mapping of well-known ports to services
is often maintained on a disk file, such as /etc/services on POSIX systems and
%SYSTEMROOT%\system32\drivers\etc\services on Windows.

Sockets
A socket represents an endpoint in use for network communication. It represents
one end of a communication channel and provides the interface for performing all
data communication. Boost Asio provides distinct socket types for UDP and TCP,
namely, boost::asio::ip::udp::socket and boost::asio::ip::tcp::socket.
Sockets are always associated with a corresponding local endpoint object. The
native network programming interfaces on all modern operating systems use some
derivative of the Berkeley Sockets API, which is a C API for performing network
communications. The Boost Asio library provides type-safe abstractions built around
this core API.

Chapter 11

[449]

Sockets are an example of I/O objects. In Asio, I/O objects are the class of objects
that are used to initiate I/O operations. The operations are dispatched to the
underlying operating system by an I/O service object, which is an instance of
boost::asio::io_service. Earlier in this chapter, we saw the I/O service objects
in action as task managers. But their primary role is as an interface for operations on
the underlying operating system. Each I/O object is constructed with an associated
I/O service instance. In this way, high-level I/O operations are initiated on the
I/O object, but the interactions between the I/O object and the I/O service remain
encapsulated. In the following sections, we will see examples of using UDP and TCP
sockets for network communication.

Hostnames and domain names
Identifying hosts in a network by names rather than numeric addresses is often
more convenient. The Domain Name System (DNS) provides a hierarchical naming
system in which hosts in a network are each identified by a hostname qualified with
a unique name identifying the network, known as the fully-qualified domain name
or simply domain name. For example, the imaginary domain name elan.taliesyn.
org could be mapped to the IP address 140.82.168.29. Here, elan would identify the
specific host and taliesyn.org would identify the domain that the host is part of.
It is quite possible for different groups of machines in a single network to report to
different domains and even for a given machine to be part of multiple domains.

Name resolution
A hierarchy of DNS servers across the world, and within private networks, maintain
name-to-address mappings. Applications ask a configured DNS server to resolve
a fully-qualified domain name to an address. The DNS server either resolves the
request to an IP address or forwards it to another DNS server higher up in the
hierarchy if there is one. The resolution fails if none of the DNS servers, all the
way up to the root of the hierarchy, has an answer. A specialized program or a
library that initiates such name resolution requests is called a resolver. Boost Asio
provides protocol-specific resolvers: boost::asio::ip::tcp::resolver and
boost::asio::ip::udp::resolver for performing such name resolutions. We
query for services on hostnames and obtain one or more endpoints for that service.
The following example shows how to do this, given a hostname, and optionally, a
service name or port:

Listing 11.8: Looking up IP addresses of hosts

 1 #include <boost/asio.hpp>
 2 #include <iostream>
 3 namespace asio = boost::asio;

Network Programming Using Boost Asio

[450]

 4
 5 int main(int argc, char *argv[]) {
 6 if (argc < 2) {
 7 std::cout << "Usage: " << argv[0] << " host [service]\n";
 8 exit(1);
 9 }
10 const char *host = argv[1];
11 const char *svc = (argc > 2) ? argv[2] : "";
12
13 try {
14 asio::io_service service;
15 asio::ip::tcp::resolver resolver(service);
16 asio::ip::tcp::resolver::query query(host, svc);
17 asio::ip::tcp::resolver::iterator end,
18 iter = resolver.resolve(query);
19 while (iter != end) {
20 asio::ip::tcp::endpoint endpoint = iter->endpoint();
21 std::cout << "Address: " << endpoint.address()
22 << ", Port: " << endpoint.port() << '\n';
23 ++iter;
24 }
25 } catch (std::exception& e) {
26 std::cout << e.what() << '\n';
27 }
28 }

You run this program by passing it a hostname and an optional service name on
the command line. This program resolves these to an IP address and a port, and
prints them to the standard output (lines 21-22). The program creates an instance of
io_service (line 14), which would be the conduit for operations on the underlying
operating system, and an instance of boost::asio::ip::tcp::resolver (line 15)
that provides the interface for requesting name resolution. We create a name lookup
request in terms of the hostname and service name, encapsulated in a query object
(line 16), and call the resolve member function of the resolver, passing the query
object as an argument (line 18). The resolve function returns an endpoint iterator
to a sequence of endpoint objects resolved by the query. We iterate through this
sequence, printing the address and port number for each endpoint. This would
print IPv4 as well as IPv6 addresses if any. If we wanted IP addresses, specific to
one version of IP, we would need to use the three-argument constructor for query
and specify the protocol in the first argument. For example, to look up only IPv6
addresses, we can use this:

asio::ip::tcp::resolver::query query(asio::ip::tcp::v6(),
 host, svc);

Chapter 11

[451]

On lookup failure, the resolve function throws an exception unless we use the
two-argument version that takes a non-const reference to error_code, as a second
argument and sets it on error. In the following example, we perform the reverse
lookup. Given an IP address and a port, we look up the associated hostname and
service name:

Listing 11.9: Looking up hosts and service names

 1 #include <boost/asio.hpp>
 2 #include <iostream>
 3 namespace asio = boost::asio;
 4
 5 int main(int argc, char *argv[]) {
 6 if (argc < 2) {
 7 std::cout << "Usage: " << argv[0] << " ip [port]\n";
 8 exit(1);
 9 }
10
11 const char *addr = argv[1];
12 unsigned short port = (argc > 2) ? atoi(argv[2]) : 0;
13
14 try {
15 asio::io_service service;
16 asio::ip::tcp::endpoint ep(
17 asio::ip::address::from_string(addr), port);
18 asio::ip::tcp::resolver resolver(service);
19 asio::ip::tcp::resolver::iterator iter =
20 resolver.resolve(ep), end;
21 while (iter != end) {
22 std::cout << iter->host_name() << " "
23 << iter->service_name() << '\n';
24 iter++;
25 }
26 } catch (std::exception& ex) {
27 std::cerr << ex.what() << '\n';
28 }
29 }

We pass the IP address and the port number to the program from the command line,
and using them, we construct the endpoint (lines 16-17). We then pass the endpoint
to the resolve member function of the resolver (line 19), and iterate through the
results. The iterator in this case points to boost::asio::ip::tcp::query objects,
and we print the host and service name for each, using the appropriate member
functions (lines 22-23).

Network Programming Using Boost Asio

[452]

Buffers
Data is sent or received over the network as a byte stream. A contiguous byte stream
can be represented using a pair of values: the starting address of the sequence and
the number of bytes in the sequence. Boost Asio provides two abstractions for such
sequences, boost::asio::const_buffer and boost::asio::mutable_buffer.
The const_buffer type represents a read-only sequence that is typically used as a
data source when sending data over the network. The mutable_buffer represents
a read-write sequence that is used when you need to add or update data in your
buffer, for example, when you receive data from a remote host:

Listing 11.10: Using const_buffer and mutable_buffer

 1 #include <boost/asio.hpp>
 2 #include <iostream>
 3 #include <cassert>
 4 namespace asio = boost::asio;
 5
 6 int main() {
 7 char buf[10];
 8 asio::mutable_buffer mbuf(buf, sizeof(buf));
 9 asio::const_buffer cbuf(buf, 5);
10
11 std::cout << buffer_size(mbuf) << '\n';
12 std::cout << buffer_size(cbuf) << '\n';
13
14 char *mptr = asio::buffer_cast<char*>(mbuf);
15 const char *cptr = asio::buffer_cast<const char*>(cbuf);
16 assert(mptr == cptr && cptr == buf);
17
18 size_t offset = 5;
19 asio::mutable_buffer mbuf2 = mbuf + offset;
20 assert(asio::buffer_cast<char*>(mbuf2)
21 - asio::buffer_cast<char*>(mbuf) == offset);
22 assert(buffer_size(mbuf2) == buffer_size(mbuf) - offset);
23 }

In this example, we show how a char array is wrapped in a mutable_buffer and
a const_buffer (lines 8-9). While constructing a buffer, you specify the starting
address of the memory region and the length of the region in number of bytes.
A const char array can only be wrapped in a const_buffer, not in a mutable_
buffer. These buffer wrappers do not allocate storage, manage any heap-allocated
memory, or perform any data copying.

Chapter 11

[453]

The function boost::asio::buffer_size returns the length of the buffer in bytes
(lines 11-12). This is the length you passed while constructing the buffer, and it is
not dependent on the data present in the buffer. Default-initialized buffers have
zero length.

The function template boost::asio::buffer_cast<> is used to obtain a pointer
to the underlying byte array of a buffer (lines 14-15). Note that we get a compilation
error if we try to use buffer_cast to get a mutable array from a const_buffer:

asio::const_buffer cbuf(addr, length);
char *buf = asio::buffer_cast<char*>(cbuf); // fails to compile

Finally, you can create a buffer from an offset into another buffer, using the
operator+ (line 19). The length of the resultant buffer would be less than that
of the original buffer by the length of the offset (line 22).

Buffer sequences for vectored I/O
Sometimes, it is convenient to send data from a series of buffers or split the received
data across a series of buffers. Calling network I/O functions once per sequence
would be inefficient, because these calls ultimately translate to system calls and
there is an overhead in making each such call. An alternative is to use network I/O
functions that can process a sequence of buffers passed to it as an argument. This
is often called vectored I/O or gather-scatter I/O. All of Boost Asio's I/O functions
deal in buffer sequences, and so they must be passed buffer sequences rather than
single buffers. A valid buffer sequence for use with Asio I/O functions satisfies the
following conditions:

• Has a member function begin that returns a bidirectional iterator, which
points to a mutable_buffer or const_buffer

• Has a member function end that returns an iterator pointing to the end of
the sequence

• Is copyable

For a buffer sequence to be useful, it must either be a sequence of const_buffers or
a sequence of mutable_buffers. Formally, these requirements are summarized in
the ConstBufferSequence and MutableBufferSequence concepts. This is a slightly
simplified set of conditions, but is good enough for our purposes. We can make such
sequences using Standard Library containers, such as std::vector, std::list, and
so on, as well as Boost containers. However, since we frequently deal with only a
single buffer, Boost provides the boost::asio::buffer function that makes it easy
to adapt a single buffer as a buffer sequence of length one. Here is a short example
illustrating these ideas:

Network Programming Using Boost Asio

[454]

Listing 11.11: Using buffers

 1 #include <boost/asio.hpp>
 2 #include <vector>
 3 #include <string>
 4 #include <iostream>
 5 #include <cstdlib>
 6 #include <ctime>
 7 namespace asio = boost::asio;
 8
 9 int main() {
10 std::srand(std::time(nullptr));
11
12 std::vector<char> v1(10);
13 char a2[10];
14 std::vector<asio::mutable_buffer> bufseq(2);
15
16 bufseq.push_back(asio::mutable_buffer(v1.data(),
17 v1.capacity()));
18 bufseq.push_back(asio::mutable_buffer(a2, sizeof(a2)));
19
20 for (auto cur = asio::buffers_begin(bufseq),
21 end = asio::buffers_end(bufseq); cur != end; cur++) {
22 *cur = 'a' + rand() % 26;
23 }
24
25 std::cout << "Size: " << asio::buffer_size(bufseq) << '\n';
26
27 std::string s1(v1.begin(), v1.end());
28 std::string s2(a2, a2 + sizeof(a2));
29
30 std::cout << s1 << '\n' << s2 << '\n';
31 }

In this example, we create a mutable buffer sequence as a vector of two mutable_
buffers (line 14). The two mutable buffers wrap a vector of chars (lines 16-17) and
an array of chars (line 18). Using the buffers_begin (line 20) and buffers_end
functions (line 21), we determine the entire range of bytes encapsulated by the buffer
sequence bufseq and iterate through it, setting each byte to a random character (line
22). As these get written to the underlying vector or array, we construct strings using
the underlying vector or array and print their contents (lines 27-28).

Chapter 11

[455]

Synchronous and asynchronous
communications
In the following sections, we put together our understanding of IP addresses,
endpoints, sockets, buffers, and other Asio infrastructure we learned so far to write
network client and server programs. Our examples use the client-server model
of interaction, in which a server program services incoming requests, and a client
program initiates such requests. Such clients are referred to as the active endpoints,
while such servers are referred to as passive endpoints.

Clients and servers may communicate synchronously, blocking on each network I/O
operation until the request has been handled by the underlying OS, and only then
proceeding to the next step. Alternatively, they can use asynchronous I/O, initiating
network I/O without waiting for them to complete, and being notified later upon
their completion. With asynchronous I/O, unlike the synchronous case, programs do
not wait idly if there are I/O operations to perform. Thus, asynchronous I/O scales
better with larger numbers of peers and higher volumes of data. We will look at both
synchronous and asynchronous models of communication. While the programming
model for asynchronous interactions is event-driven and more complex, the use of
Boost Asio coroutines can keep it very manageable. Before we write UDP and TCP
servers, we will take a look at the Asio deadline timer to understand how we write
synchronous and asynchronous logic using Asio.

Asio deadline timer
Asio provides the basic_deadline_timer template, using which you can wait
for a specific duration to elapse or for an absolute time point. The specialization
deadline_timer is defined as:

typedef basic_deadline_timer<boost::posix_time::ptime>
 deadline_timer;

It uses boost::posix_time::ptime and boost::posix_time::time_duration as
the time point and duration type respectively. The following example illustrates how
an application can use deadline_timer to wait for a duration to elapse:

Listing 11.12: Waiting synchronously

 1 #include <boost/asio.hpp>
 2 #include <boost/date_time.hpp>
 3 #include <iostream>
 4
 5 int main() {

Network Programming Using Boost Asio

[456]

 6 boost::asio::io_service service;
 7 boost::asio::deadline_timer timer(service);
 8
 9 long secs = 5;
10 std::cout << "Waiting for " << secs << " seconds ..."
11 << std::flush;
12 timer.expires_from_now(boost::posix_time::seconds(secs));
13
14 timer.wait();
15
16 std::cout << " done\n";
17 }

We create an object of io_service (line 6), which acts as the conduit for operations
on the underlying OS. We create an instance of deadline_timer associated with the
io_service (line 7). We specify a 5 second duration to wait for using the member
function expires_from_now of deadline_timer (line 12). We then call the wait
member function to block until the duration elapses. Notice that we do not need to
call run on the io_service instance. We can instead use the expires_at member
function to wait until a specific time point, as shown here:

using namespace boost::gregorian;
using namespace boost::posix_time;

timer.expires_at(day_clock::local_day(),
 hours(16) + minutes(12) + seconds(58));

Sometimes, programs do not want to block waiting for the timer to go off, or in
general, for any future event it is interested in. In the meantime, it can finish off
other valuable work and therefore be more responsive than if it were to block,
waiting on the event. Instead of blocking on an event, we just want to tell the timer
to notify us when it goes off, and proceed to do other work meanwhile. For this
purpose, we call the async_wait member function and pass it a completion handler. A
completion handler is a function object we register using async_wait to be
called once the timer expires:

Listing 11.13: Waiting asynchronously

 1 #include <boost/asio.hpp>
 2 #include <boost/date_time.hpp>
 3 #include <iostream>
 4
 5 void on_timer_expiry(const boost::system::error_code& ec)

Chapter 11

[457]

 6 {
 7 if (ec) {
 8 std::cout << "Error occurred while waiting\n";
 9 } else {
10 std::cout << "Timer expired\n";
11 }
12 }
13
14 int main()
15 {
16 boost::asio::io_service service;
17 boost::asio::deadline_timer timer(service);
18
19
20 long secs = 5;
21 timer.expires_from_now(boost::posix_time::seconds(secs));
22
23 std::cout << "Before calling deadline_timer::async_wait\n";
24 timer.async_wait(on_timer_expiry);
25 std::cout << "After calling deadline_timer::async_wait\n";
26
27 service.run();
28 }

There are two essential changes in listing 11.13 compared to listing 11.12. We call
the async_wait member function of deadline_timer instead of wait, passing it a
pointer to the completion handler function on_timer_expiry. We then call run on
the io_service object. When we run this program, it prints the following:

Before calling deadline_timer::async_wait
After calling deadline_timer::async_wait
Timer expired

The call to async_wait does not block (line 24) and therefore the first two lines are
printed in quick succession. Following this, the call to run (line 27) blocks until the
timer expires, and the completion handler for the timer is dispatched. Unless some
error occurred, the completion handler prints Timer expired. Thus, there is a time
lag between the appearance of the first two messages and the third message, which is
from the completion handler.

Network Programming Using Boost Asio

[458]

Asynchronous logic using Asio coroutines
The async_wait member function of deadline_timer initiates an asynchronous
operation. Such a function returns before the operation it initiates is completed.
It registers a completion handler, and the completion of the asynchronous event
is notified to the program through a call to this handler. If we have to run such
asynchronous operations in a sequence, the control flow becomes complex. For
example, let us suppose we want to wait for 5 seconds, print Hello, then wait for
10 more seconds, and finally, print world. Using synchronous wait, it is as easy as
shown in the following snippet:

boost::asio::deadline_timer timer;
timer.expires_from_now(boost::posix_time::seconds(5));
timer.wait();
std::cout << "Hello, ";
timer.expires_from_now(boost::posix_time::seconds(10));
timer.wait();
std::cout << "world!\n";

In many real-life scenarios, especially with network I/O, blocking on synchronous
operations is just not an option. In such cases, the code becomes considerably more
complex. Using async_wait as a model asynchronous operation, the following
example illustrates the complexity of asynchronous code:

Listing 11.14: Asynchronous operations

 1 #include <boost/asio.hpp>
 2 #include <boost/bind.hpp>
 3 #include <boost/date_time.hpp>
 4 #include <iostream>
 5
 6 void print_world(const boost::system::error_code& ec) {
 7 std::cout << "world!\n";
 8 }
 9
10 void print_hello(boost::asio::deadline_timer& timer,
11 const boost::system::error_code& ec) {
12 std::cout << "Hello, " << std::flush;
13
14 timer.expires_from_now(boost::posix_time::seconds(10));
15 timer.async_wait(print_world);
16 }
17
18 int main()
19 {
20 boost::asio::io_service service;

Chapter 11

[459]

21 boost::asio::deadline_timer timer(service);
22 timer.expires_from_now(boost::posix_time::seconds(5));
23
24 timer.async_wait(boost::bind(print_hello, boost::ref(timer),
25 ::_1));
26
27 service.run();
28 }

The move from synchronous to asynchronous logic for the same functionality incurs
more than double the lines of code and a complex control flow. We register the
function print_hello (line 10) as the completion handler for the first 5-second wait
(lines 22, 24). print_hello in turn starts a 10-second wait using the same timer, and
registers the function print_world (line 6), as the completion handler for this wait
(lines 14-15).

Notice that we use boost::bind to generate the completion handler for the first
5-second wait, passing the timer from the main function to the print_hello
function. The print_hello function thus uses the same timer. Why did we need to
do it this way? First of all, print_hello needs to use the same io_service instance
to initiate the 10-second wait operation and the earlier 5-second wait. The timer
instance refers to this io_service instance and is used by both completion handlers.
Moreover, creating a local deadline_timer instance in print_hello would be
problematic because print_hello would return before the timer would go off,
and the local timer object would be destroyed, so it would never go off.

Example 11.14 illustrates the problem of inversion of control flow, which is a source
of significant complexity in asynchronous programming models. We can no longer
string together a sequence of statements, and assume that each initiates an operation
only once the operation initiated by the preceding statement is completed—a safe
assumption for the synchronous model. Instead, we depend on notifications from
io_service to determine the right time to run the next operation. The logic is
fragmented across functions, and any data that needs to be shared across these
functions requires more effort to manage.

Asio simplifies asynchronous programming using a thin wrapper around the Boost
Coroutine library. Like with Boost Coroutine, it is possible to use stackful as well as
stackless coroutines. In this book, we only look at stackful coroutines.

Using the boost::asio::spawn function template, we can launch tasks as
coroutines. If a coroutine is dispatched and it calls an asynchronous function,
the coroutine is suspended. Meanwhile, the io_service dispatches other tasks,
including other coroutines. Once an asynchronous operation is completed, the
coroutine that initiated it is resumed, and it proceeds to the next step. In the
following listing, we rewrite listing 11.14 using coroutines:

Network Programming Using Boost Asio

[460]

Listing 11.15: Asynchronous programming using coroutines

 1 #include <boost/asio.hpp>
 2 #include <boost/asio/spawn.hpp>
 3 #include <boost/bind.hpp>
 4 #include <boost/date_time.hpp>
 5 #include <iostream>
 6
 7 void wait_and_print(boost::asio::yield_context yield,
 8 boost::asio::io_service& service)
 9 {
10 boost::asio::deadline_timer timer(service);
11
12 timer.expires_from_now(boost::posix_time::seconds(5));
13 timer.async_wait(yield);
14 std::cout << "Hello, " << std::flush;
15
16 timer.expires_from_now(boost::posix_time::seconds(10));
17 timer.async_wait(yield);
18 std::cout << "world!\n";
19 }
20
21 int main()
22 {
23 boost::asio::io_service service;
24 boost::asio::spawn(service,
25 boost::bind(wait_and_print, ::_1,
26 boost::ref(service)));
27 service.run();
28 }

The wait_and_print function is the coroutine and takes two arguments: an object
of type boost::asio::yield_context and a reference to an io_service instance
(line 7). yield_context is a thin wrapper around Boost Coroutine. We must use
boost::asio::spawn to dispatch a coroutine, and such a coroutine must have the
signature void (boost::asio::yield_context). Thus, we adapt the wait_and_
print function using boost::bind to make it compatible with the coroutine signature
expected by spawn. We bind the second argument to a reference to the io_service
instance (lines 24-26).

Chapter 11

[461]

The wait_and_print coroutine creates a deadline_timer instance on the stack,
and starts a 5-second asynchronous wait, passing its yield_context to the async_
wait function in place of a completion handler. This suspends the wait_and_print
coroutine, and it is resumed only once the wait is completed. In the meantime, other
tasks if any can be processed from the io_service queue. Once the wait is over and
wait_and_print is resumed, it prints Hello and starts a 10-second wait. Once again,
the coroutine suspends, and it resumes only after the 10 seconds elapse, thereafter
printing world. Coroutines make the asynchronous logic as simple and readable as
the synchronous one, with very little overhead. In the following sections, we will use
coroutines to write TCP and UDP servers.

UDP
The UDP I/O model is relatively simple and the distinction between client and
server is blurred. For network I/O using UDP, we create a UDP socket, and use the
send_to and receive_from functions to send datagrams to specific endpoints.

Synchronous UDP client and server
In this section, we write a UDP client (listing 11.16) and a synchronous UDP server
(listing 11.17). The UDP client tries to send some data to a UDP server on a given
endpoint. The UDP server blocks waiting to receive data from one or more UDP
clients. After sending data, the UDP client blocks waiting to receive a response from
the server. The server, after receiving the data, sends some response back before
proceeding to handle more incoming messages.

Listing 11.16: Synchronous UDP client

 1 #include <boost/asio.hpp>
 2 #include <iostream>
 3 #include <exception>
 4 namespace asio = boost::asio;
 5
 6 int main(int argc, char *argv[]) {
 7 if (argc < 3) {
 8 std::cerr << "Usage: " << argv[0] << " host port\n";
 9 return 1;
10 }
11
12 asio::io_service service;
13 try {
14 asio::ip::udp::resolver::query query(asio::ip::udp::v4(),
15 argv[1], argv[2]);

Network Programming Using Boost Asio

[462]

16 asio::ip::udp::resolver resolver(service);
17 auto iter = resolver.resolve(query);
18 asio::ip::udp::endpoint endpoint = iter->endpoint();
19
20 asio::ip::udp::socket socket(service,
21 asio::ip::udp::v4());
22 const char *msg = "Hello from client";
23 socket.send_to(asio::buffer(msg, strlen(msg)), endpoint);
24 char buffer[256];
25 size_t recvd = socket.receive_from(asio::buffer(buffer,
26 sizeof(buffer)), endpoint);
27 buffer[recvd] = 0;
28 std::cout << "Received " << buffer << " from "
29 << endpoint.address() << ':' << endpoint.port() << '\n';
30 } catch (std::exception& e) {
31 std::cerr << e.what() << '\n';
32 }
33 }

We run the client by passing it the server hostname and the service (or port) to
connect to on the command line. It resolves them to an endpoint (IP address and port
number) for UDP (lines 13-17), creates a UDP socket for IPv4 (line 18), and calls the
send_to member function on it. We pass to send_to, a const_buffer containing the
data to be sent and the destination endpoint (line 23).

Each and every program that performs network I/O using Asio uses an I/O service,
which is an instance of the type boost::asio::io_service. We have already seen
io_service in action as a task manager. But the primary role of the I/O service
is that of an interface for operations on the underlying operating system. Asio
programs use I/O objects that are responsible for initiating I/O operations. Sockets,
for example, are I/O objects.

We call the send_to member function on the UDP socket to send a predefined
message string to the server (line 23). Note that we wrap the message array in
a buffer sequence of length one constructed using the boost::asio::buffer
function, as shown earlier in this chapter, in the section on buffers. Once send_to
completes, the client calls recv_from on the same socket, passing a mutable buffer
sequence constructed out of a writable character array using boost::asio::buffer
(lines 25-26). The second argument to receive_from is a non-const reference to a
boost::asio::ip::udp::endpoint object. When receive_from returns, this
object contains the address and port number of the remote endpoint, which sent
the message (lines 28-29).

Chapter 11

[463]

The calls to send_to and receive_from are blocking calls. The call to send_to does
not return until the buffer passed to it has been written to the underlying UDP buffer
in the system. Dispatching the UDP buffer over the wire to the server may happen
later. The call to receive_from does not return until some data has been received.

We can use a single UDP socket to send data to multiple other endpoints, and we
can receive data from multiple other endpoints on a single socket. Thus, each call
to send_to takes the destination endpoint as input. Likewise, each call to receive_
from takes a non-const reference to an endpoint, and on return, sets it to the sender's
endpoint. We will now write the corresponding UDP server using Asio:

Listing 11.17: Synchronous UDP server

 1 #include <boost/asio.hpp>
 2 #include <exception>
 4 #include <iostream>
 5 namespace asio = boost::asio;
 6
 8 int main()
 9 {
10 const unsigned short port = 55000;
11 const std::string greet("Hello, world!");
12
13 asio::io_service service;
14 asio::ip::udp::endpoint endpoint(asio::ip::udp::v4(), port);
15 asio::ip::udp::socket socket(service, endpoint);
16 asio::ip::udp::endpoint ep;
17
18 while (true) try {
19 char msg[256];
20 auto recvd = socket.receive_from(asio::buffer(msg,
21 sizeof(msg)), ep);
22 msg[recvd] = 0;
23 std::cout << "Received: [" << msg << "] from ["
24 << ep << "]\n";
25
26 socket.send_to(asio::buffer(greet.c_str(), greet.size()),
27 ep);
27 socket.send_to(asio::buffer(msg, strlen(msg)), ep);
28 } catch (std::exception& e) {
29 std::cout << e.what() << '\n';
30 }
31 }

Network Programming Using Boost Asio

[464]

The synchronous UDP server creates a single UDP endpoint of type
boost::asio::ip::udp::endpoint on the port 55000, keeping the address
unspecified (line 14). Notice that we use a two-argument endpoint constructor, which
takes the protocol and port as arguments. The server creates a single UDP socket of
type boost::asio::ip::udp::socket for this endpoint (line 15), and spins in a loop,
calling receive_from on the socket per iteration, waiting until a client sends some
data. The data is received in a char array called msg, which is passed to receive_from
wrapped in a mutable buffer sequence of length one. The call to receive_from returns
the number of bytes received, which is used to add a terminating null character in
msg so that it can be used like a C-style string (line 22). In general, UDP presents the
incoming data as a message containing a sequence of bytes and its interpretation is
left to the application. Each time the server receives data from a client, it echoes back
the data sent, preceded by a fixed greeting string. It does so by calling the send_to
member function on the socket twice, passing the buffer to send, and the endpoint
of the recipient (lines 26-27, 28).

The calls to send_to and receive_from are synchronous and return only once
the data is passed completely to the OS (send_to) or received completely by the
application (receive_from). If many instances of the client send messages to the
server at the same time, the server can still only process one message at a time,
and therefore the clients queue up waiting for a response. Of course, if the clients
did not wait for a response, they could all have sent messages and exited but the
messages would still be received by the server serially.

Asynchronous UDP server
An asynchronous version of the UDP server can significantly improve the
responsiveness of the server. A traditional asynchronous model can entail a more
complex programming model, but coroutines can significantly improve the situation.

Asynchronous UDP server using completion handler
chains
For asynchronous communication, we use the async_receive_from and async_
send_to member functions of socket. These functions do not wait for the I/O
request to be handled by the operating system but return immediately. They are
passed a function object, which is to be called when the underlying operation is
completed. This function object is queued in the task queue of the io_service and is
dispatched when the actual operation on the operating system returns:

template <typename MutableBufSeq, typename ReadHandler>
deduced async_receive_from(
 const MutableBufSeq& buffers,

Chapter 11

[465]

 endpoint_type& sender_ep,
 ReadHandler handler);

template <typename ConstBufSeq, typename WriteHandler>
deduced async_send_to(
 const ConstBufSeq& buffers,
 endpoint_type& sender_ep,
 WriteHandler handler);

The signature for both the read handler passed to async_receive_from and the
write handler passed to async_send_to is as follows:

void(const boost::system::error_code&, size_t)

The handlers expect to be passed a non-const reference to an error_code object,
indicating the status of the completed operation and the number of bytes read or
written. The handlers can call other asynchronous I/O operations and register other
handlers. Thus, the entire I/O operation is defined in terms of a chain of handlers.
We now look at a program for an asynchronous UDP server:

Listing 11.18: Asynchronous UDP server

 1 #include <boost/asio.hpp>
 2 #include <iostream>
 3 namespace asio = boost::asio;
 4 namespace sys = boost::system;
 5
 6 const size_t MAXBUF = 256;
 7
 8 class UDPAsyncServer {
 9 public:
10 UDPAsyncServer(asio::io_service& service,
11 unsigned short port)
12 : socket(service,
13 asio::ip::udp::endpoint(asio::ip::udp::v4(), port))
14 { waitForReceive(); }
15
16 void waitForReceive() {
17 socket.async_receive_from(asio::buffer(buffer, MAXBUF),
18 remote_peer,
19 [this] (const sys::error_code& ec,
20 size_t sz) {
21 const char *msg = "hello from server";
22 std::cout << "Received: [" << buffer << "] "
23 << remote_peer << '\n';

Network Programming Using Boost Asio

[466]

24 waitForReceive();
25
26 socket.async_send_to(
27 asio::buffer(msg, strlen(msg)),
28 remote_peer,
29 [this](const sys::error_code& ec,
30 size_t sz) {});
31 });
32 }
33
34 private:
35 asio::ip::udp::socket socket;
36 asio::ip::udp::endpoint remote_peer;
37 char buffer[MAXBUF];
38 };
39
40 int main() {
41 asio::io_service service;
42 UDPAsyncServer server(service, 55000);
43 service.run();
44 }

The UDP server is encapsulated in the class UDPAsyncServer (line 8). To start the
server, we first create the obligatory io_service object (line 42), followed by an
instance of UDPAsyncServer (line 43) that is passed the io_service instance and the
port number it should use. Finally, a call to the run member function of io_service
starts the processing of incoming requests (line 44). So how does UDPAsyncServer
work?

The constructor of UDPAsyncServer initializes the member UDP socket with a
local endpoint (lines 12-13). It then calls the member function waitForReceive (line
14), which in turn calls async_receive_from on the socket (line 18), to start waiting
for any incoming messages. We call async_receive_from, passing a mutable
buffer made from the buffer member variable (line 17), a non-const reference to
the remote_peer member variable (line 18), and a lambda expression that defines
a completion handler for the receive operation (lines 19-31). async_receive_from
initiates an I/O operation, adds the handler to the task queue in io_service, and
returns. The call to run on the io_service (line 43) blocks as long as there are I/O
tasks in the queue. When a UDP message comes along, the data is received by the
OS, and it invokes the handler to take further action. To understand how the UDP
server keeps handling more and more messages ad infinitum, we need to understand
what the handlers do.

Chapter 11

[467]

The receive handler is invoked when the server receives a message. It prints the
message received and the details of the remote sender (lines 22-23), and then issues
a call to waitForReceive, thus restarting the receive operation. It then sends a
message hello from server (line 21) back to the sender identified by the remote_
peer member variable. It does so by calling the async_send_to member function of
the UDP socket, passing the message buffer (line 27), the destination endpoint (line
28), and another handler in the form of a lambda (lines 29-32), which does nothing.

Note that we capture the this pointer in the lambdas to be able to access the member
variables from the surrounding scope (line 20, 29). Also, neither handler does error
checking using the error_code argument, which is a must in real-world software.

Asynchronous UDP server using coroutines
Handler chaining fragments the logic across a set of handlers and sharing state
across handlers becomes particularly complex. It is the price for better performance,
but it is a price we can avoid, as we saw earlier using Asio coroutines to handle
asynchronous waits on boost::asio::deadline_timer in listing 11.15. We will
now use Asio coroutines to write an asynchronous UDP server:

Listing 11.19: Asynchronous UDP server using Asio coroutines

 1 #include <boost/asio.hpp>
 2 #include <boost/asio/spawn.hpp>
 3 #include <boost/bind.hpp>
 4 #include <boost/shared_ptr.hpp>
 5 #include <boost/make_shared.hpp>
 6 #include <iostream>
 7 namespace asio = boost::asio;
 8 namespace sys = boost::system;
 9
10 const size_t MAXBUF = 256;
11 typedef boost::shared_ptr<asio::ip::udp::socket>
12 shared_udp_socket;
13
14 void udp_send_to(boost::asio::yield_context yield,
15 shared_udp_socket socket,
16 asio::ip::udp::endpoint peer)
17 {
18 const char *msg = "hello from server";
19 socket->async_send_to(asio::buffer(msg, std::strlen(msg)),
20 peer, yield);
21 }
22

Network Programming Using Boost Asio

[468]

23 void udp_server(boost::asio::yield_context yield,
24 asio::io_service& service,
25 unsigned short port)
26 {
27 shared_udp_socket socket =
28 boost::make_shared<asio::ip::udp::socket>(service,
29 asio::ip::udp::endpoint(asio::ip::udp::v4(), port));
30
31 char buffer[MAXBUF];
32 asio::ip::udp::endpoint remote_peer;
33 boost::system::error_code ec;
34
35 while (true) {
36 socket->async_receive_from(asio::buffer(buffer, MAXBUF),
37 remote_peer, yield[ec]);
38
39 if (!ec) {
40 spawn(socket->get_io_service(),
41 boost::bind(udp_send_to, ::_1, socket,
42 remote_peer));
43 }
44 }
45 }
46
47 int main() {
48 asio::io_service service;
49 spawn(service, boost::bind(udp_server, ::_1,
50 boost::ref(service), 55000));
51 service.run();
52 }

With the use of coroutines, the structure of the asynchronous UDP server changes
considerably from listing 11.18 and is closer to the synchronous model of listing
11.17. The function udp_server contains the core logic for the UDP server (line
23). It is meant to be used as a coroutine; hence, one of its arguments is of type
boost::asio::yield_context (line 23). It takes two additional arguments: a
reference to an io_service instance (line 24) and the UDP server port (line 25).

In the main function, we create an instance of io_service (line 48), and then add
a task to run udp_server as a coroutine, using the boost::asio::spawn function
template (lines 49-50). We bind the service and port arguments of udp_server
appropriately. We then call run on the io_service instance to start processing I/O
operations. The call to run dispatches the udp_server coroutine (line 51).

Chapter 11

[469]

The udp_server coroutine creates a UDP socket associated with the unspecified
IPv4 address (0.0.0.0) and the specific port passed as an argument (lines 27-29). The
socket is wrapped in a shared_ptr, the reasons for which will become clear in a bit.
There are additional variables on the coroutine stack to hold the data received from
clients (line 31) and to identify the client endpoint (line 32). The udp_server function
then spins in a loop calling async_receive_from on the socket, passing the yield_
context for the receive handler (lines 36-37). This suspends the execution of the
udp_server coroutine until async_receive_from completes. In the meantime, the
call to run resumes and processes other tasks if any. Once a call to async_receive_
from function completes, the udp_server coroutine resumes execution and proceeds
to the next iteration of its loop.

For each completed receive operation, udp_server sends a fixed greeting string
("Hello from server") in response to the client. The task to send this greeting is also
encapsulated in a coroutine, udp_send_to (line 14), which the udp_server coroutine
adds to the task queue using spawn (line 40). We pass the UDP socket and the
endpoint identifying the client as arguments to this coroutine. Notice that the local
variable called remote_peer is passed by value to the udp_send_to coroutine (line
42). This is used inside udp_send_to, as an argument to async_send_to, to specify
the recipient of the response (lines 19-20). We pass a copy rather than a reference
to remote_peer because when the call to async_send_to is issued, another call
to async_receive_from can be active and can overwrite the remote_peer object,
before it is used by async_send_to. We also pass the socket wrapped in a shared_
ptr. Sockets are not copyable unlike endpoints. If the socket object was on automatic
storage in the udp_server function, and udp_server exited while there were still a
pending udp_send_to task, the reference to the socket inside udp_send_to would be
invalid and possibly lead to crashes. For this reason, the shared_ptr wrapper is the
correct choice.

If you noticed, the handler to async_receive_from is written as yield[ec] (line
37). The yield_context class has an overloaded subscript operator using which
we can specify a mutable reference to a variable of type error_code. When the
asynchronous operation completes, the variable passed as the argument of the
subscript operator is set to the error code if any.

Prefer using coroutines over handler-chaining, when writing
asynchronous servers. Coroutines enable simpler code and a
more intuitive control flow.

Network Programming Using Boost Asio

[470]

Performance and concurrency
We claimed that the asynchronous mode of communication improves responsiveness
of the server. Let us understand exactly what factors contribute to this improvement.
In the synchronous model of listing 11.17, a call to receive_from could not be issued
unless the send_to function returned. In the asynchronous code of listing 11.18,
waitForReceive is called as soon as a message is received and consumed (lines
23-25), and it does not wait for the async_send_to to complete. Likewise, in listing
11.19 which illustrates the use of coroutines in asynchronous models, coroutines help
suspend a function waiting for an asynchronous I/O operation to complete, and to
continue processing other tasks in the queue meanwhile. This is the principal source
of improvement in the responsiveness of the asynchronous servers.

It is worth noting that in listing 11.18, all I/O happens on a single thread. This
means that at any given point in time, our program handles only one incoming UDP
message. This allows us to reuse the buffer and remote_peer member variables,
without worrying about synchronization. We must still ensure that we print the
received buffer (lines 22-23) before calling waitForReceive again (line 24). If we
inverted that order, the buffer could potentially be overwritten by a new incoming
message before it could be printed.

Consider what would have happened if we called waitForReceive inside the
receive handler rather than the send handler like this:

18 socket.async_receive_from(asio::buffer(buffer, MAXBUF),
19 remote_peer,
20 [this] (const sys::error_code& ec,
21 size_t sz) {
... ...
26 socket.async_send_to(
27 asio::buffer(msg, strlen(msg)),
28 remote_peer,
29 [this](const sys::error_code& ec,
30 size_t sz) {
31 waitForReceive();
32 });
33 });

In this case, the receive would be started only after the send completed; so even with
asynchronous calls it would be no better than the synchronous example in listing 11.17.

Chapter 11

[471]

In listing 11.18, we do not need the buffer received from the remote peer while
sending content back, so we do not need to hold on to that buffer till the send is
complete. This allows us to start the asynchronous receive (line 24) without waiting
for the send to complete. The receive can complete first and overwrite the buffer, but
as long as the send operation does not use the buffer, everything is fine. Too often in
the real world, this is not the case, so let us see how to fix this without delaying the
receive till after the send. Here is a modified implementation of the handlers:

 17 void waitForReceive() {
 18 boost::shared_array<char> recvbuf(new char[MAXBUF]);
 19 auto epPtr(boost::make_shared<asio::ip::udp::endpoint>());
 20 socket.async_receive_from(
 21 asio::buffer(recvbuf.get(), MAXBUF),
 22 *epPtr,
 23 [this, recvbuf, epPtr] (const sys::error_code& ec,
 24 size_t sz) {
 25 waitForReceive();
 26
 27 recvbuf[sz] = 0;
 28 std::ostringstream sout;
 29 sout << '[' << boost::this_thread::get_id()
 30 << "] Received: " << recvbuf.get()
 31 << " from client: " << *epPtr << '\n';
 32 std::cout << sout.str() << '\n';
 33 socket.async_send_to(
 34 asio::buffer(recvbuf.get(), sz),
 35 *epPtr,
 36 [this, recvbuf, epPtr](
 37 const sys::error_code& ec, size_t sz) {
 38 });
 39 });
 40 }

Now, instead of relying on a buffer that is a shared member variable, we allocate
a buffer for receiving each new message (line 18). This obviates the need for the
buffer member variable in listing 11.18. We use the boost::shared_array wrapper
because this buffer needs to be passed from the waitForReceive call to the receive
handler and further; it should be released only when the last reference to it is gone.
Likewise, we remove the remote_peer member variable that represented the remote
endpoint, and use a shared_ptr-wrapped endpoint for each new request.

Network Programming Using Boost Asio

[472]

We pass the underlying array to async_receive_from (line 21), and make sure it
survives long enough by capturing its shared_array wrapper in the completion
handler for async_receive_from (line 23). For the same reason, we also capture
the endpoint wrapper epPtr. The receive handler calls waitForReceive (line 25),
and then prints the message received from the client, prefixed with the thread ID of
the current thread (with an eye on the future). It then calls async_send_to, passing
the buffer received instead of some fixed message (line 34). Once again, we need to
ensure that the buffer and remote endpoint survive till the send completes; so we
capture the shared_array wrapper of the buffer and the shared_ptr wrapper of the
remote endpoint in the send completion handler (line 36).

The changes for the coroutine-based asynchronous UDP server (listing 11.19) are on
the same lines:

 1 #include <boost/shared_array.hpp>
...
14 void udp_send_to(boost::asio::yield_context yield,
15 shared_udp_socket socket,
16 asio::ip::udp::endpoint peer,
17 boost::shared_array<char> buffer, size_t size)
18 {
19 const char *msg = "hello from server";
20 socket->async_send_to(asio::buffer(msg, std::strlen(msg)),
21 peer, yield);
22 socket->async_send_to(asio::buffer(buffer.get(), size),
23 peer, yield);
24 }
25
26 void udp_server(boost::asio::yield_context yield,
27 asio::io_service& service,
28 unsigned short port)
29 {
30 shared_udp_socket socket =
31 boost::make_shared<asio::ip::udp::socket>(service,
32 asio::ip::udp::endpoint(asio::ip::udp::v4(), port));
33
34 asio::ip::udp::endpoint remote_peer;
35 boost::system::error_code ec;
36
38 while (true) {
39 boost::shared_array<char> buffer(new char[MAXBUF]);
40 size_t size = socket->async_receive_from(

Chapter 11

[473]

41 asio::buffer(buffer.get(), MAXBUF),
42 remote_peer, yield[ec]);
43
44 if (!ec) {
45 spawn(socket->get_io_service(),
46 boost::bind(udp_send_to, ::_1, socket, remote_peer,
47 buffer, size));
43 }
44 }
45 }

As the data received from the client needs to be echoed back, the udp_send_to
coroutine must have access to it. Thus, it takes the buffer containing the received
data and the number of bytes read as arguments (line 17). In order to make sure that
this data is not overwritten by a subsequent receive, we must allocate buffers for
receiving the data in each iteration of the loop in udp_server (line 39). We pass this
buffer, and also the number of bytes read as returned by async_receive_from (line
40) to udp_send_to (line 47). With these changes, our asynchronous UDP servers
can now maintain the context of each incoming request until it has responded to that
peer, without the need to delay the handling of newer requests.

These changes also make the handlers thread-safe because essentially, we removed
any shared data across handlers. While the io_service is still shared, it is a thread-
safe object. We can easily turn the UDP server into a multithreaded server. Here is
how we do this:

46 int main() {
47 asio::io_service service;
48 UDPAsyncServer server(service, 55000);
49
50 boost::thread_group pool;
51 pool.create_thread([&service] { service.run(); });
52 pool.create_thread([&service] { service.run(); });
53 pool.create_thread([&service] { service.run(); });
54 pool.create_thread([&service] { service.run(); });
55 pool.join_all();
56 }

This would create four worker threads that handle incoming UDP messages
concurrently. The same would work with coroutines.

Network Programming Using Boost Asio

[474]

TCP
In terms of network I/O, the programming model for UDP is about as simple as it
gets—you either send a message, or receive a message, or do both. TCP is a fairly
complex beast in comparison and its interaction model has a few additional details
to understand.

In addition to reliability guarantees, TCP implements several nifty algorithms to
ensure that an overeager sender does not swamp a relatively slow receiver with lots
of data (flow control), and all senders get a fair share of the network bandwidth
(congestion control). There is a fair amount of computation that happens at the TCP
layer for all of this, and TCP needs to maintain some state information to perform
these computations. For this TCP uses connections between endpoints.

Establishing a TCP connection
A TCP connection consists of a pair of TCP sockets, potentially on different hosts
connected by an IP network and some associated state data. Relevant connection
state information is maintained at each end of the connection. A TCP server typically
starts listening for incoming connections and is said to constitute the passive end of the
connection. A TCP client initiates a request to connect to a TCP server and is said
to be the active end of the connection. A well-defined mechanism known as the TCP
3-way handshake is used for establishing TCP connections. Similar mechanisms exist
for coordinated connection termination. Connections can also be unilaterally reset or
terminated, like in case of applications or hosts going down for various reasons or in
case of an irrecoverable error of some sort.

Client- and server-side calls
For a TCP connection to be set up, a server process must be listening on an endpoint,
and a client process must actively initiate a connection to that endpoint. The server
performs the following steps:

1. Create a TCP listener socket.
2. Create a local endpoint for listening to incoming connections and bind the

TCP listener socket to this endpoint.
3. Start listening for incoming connections on the listener.
4. Accept any incoming connections, and open a server-side endpoint (different

from the listener endpoint) to serve that connection.
5. Perform communication on that connection.
6. Handle the termination of the connection.
7. Continue to listen for other incoming connections.

Chapter 11

[475]

The client in turn performs the following steps:

1. Create a TCP socket and, optionally, bind it to a local endpoint.
2. Connect to a remote endpoint serviced by a TCP server.
3. Once connection is established, perform communication on that connection.
4. Handle termination of the connection.

Synchronous TCP client and server
We will now write a TCP client which connects to a TCP server on a specified host
and port, sends some text to the server, and then receives some messages back from
the server:

Listing 11.20: Synchronous TCP client

 1 #include <boost/asio.hpp>
 2 #include <iostream>
 3 namespace asio = boost::asio;
 4
 5 int main(int argc, char* argv[]) {
 6 if (argc < 3) {
 7 std::cerr << "Usage: " << argv[0] << " host port\n";
 8 exit(1);
 9 }
10
11 const char *host = argv[1], *port = argv[2];
12
13 asio::io_service service;
14 asio::ip::tcp::resolver resolver(service);
15 try {
16 asio::ip::tcp::resolver::query query(asio::ip::tcp::v4(),
17 host, port);
18 asio::ip::tcp::resolver::iterator end,
19 iter = resolver.resolve(query);
20
21 asio::ip::tcp::endpoint server(iter->endpoint());
22 std::cout << "Connecting to " << server << '\n';
23 asio::ip::tcp::socket socket(service,
24 asio::ip::tcp::v4());
25 socket.connect(server);
26 std::string message = "Hello from client";
27 asio::write(socket, asio::buffer(message.c_str(),
28 message.size()));

Network Programming Using Boost Asio

[476]

29 socket.shutdown(asio::ip::tcp::socket::shutdown_send);
30
31 char msg[BUFSIZ];
32 boost::system::error_code ec;
33 size_t sz = asio::read(socket,
34 asio::buffer(msg, BUFSIZ), ec);
35 if (!ec || ec == asio::error::eof) {
36 msg[sz] = 0;
37 std::cout << "Received: " << msg << '\n';
38 } else {
39 std::cerr << "Error reading response from server: "
40 << ec.message() << '\n';
41 }
34 } catch (std::exception& e) {
35 std::cerr << e.what() << '\n';
36 }
37 }

The TCP client resolves the host and port (or service name) passed to it on the
command line (lines 16-19) and creates an endpoint representing the server to
connect to (line 21). It creates an IPv4 socket (line 23) and calls the connect member
function on it to initiate a connection to the remote server (line 25). The connect
call blocks until a connection is established, or throws an exception if the attempt to
connect fails. Once the connection is successful, we use the boost::asio::write
function to send the text Hello from client to the server (lines 27-28). We call the
shutdown member function of the socket with the argument shutdown_send (line 29)
to close the write channel to the server. This shows up as an EOF on the server-side.
We then use the read function to receive any message sent by the server (lines 33-34).
Both boost::asio::write and boost::asio::read are blocking calls. The call to
write would throw an exception on failure, for example, if the connection was reset
or the send timed out because of a busy server. We call a non-throwing overload of
read, and on failure, it sets the non-const reference to the error code we pass to it.

The function boost::asio::read tries to read as many bytes as it can to fill the
buffer passed, and blocks until either all the data has arrived, or an end-of-file is
received. Although an end-of-file is flagged as an error condition by read, it could
simply indicate that the server was done sending data, and we would be interested
in whatever data was received. For this reason, we specifically use a non-throwing
overload of read, and in case an error was set in the error_code reference, we
distinguish between end-of-file and other errors (line 35). For the same reason, we
called shutdown to close the write channel on this connection (line 29) so that the
server did not wait for more input.

Chapter 11

[477]

Unlike UDP, TCP is stream-oriented and does not define message
boundaries. An application must define its own mechanism to identify
message boundaries. Some strategies include prefixing the length of the
message to the message, using character sequences as message
end-markers, or using messages of a fixed length. In the examples in
this book, we use the shutdown member function of tcp::socket,
which causes an end-of-file to be read by the receiver, indicating that
we are done sending messages. This keeps the examples simple, but in
practice, this is not the most flexible strategy.

Let us now write the TCP server, which will handle requests from this client:

Listing 11.21: Synchronous TCP server

 1 #include <boost/asio.hpp>
 2 #include <boost/thread.hpp>
 3 #include <boost/shared_ptr.hpp>
 4 #include <boost/array.hpp>
 5 #include <iostream>
 6 namespace asio = boost::asio;
 7
 8 typedef boost::shared_ptr<asio::ip::tcp::socket> socket_ptr;
 9
10 int main() {
11 const unsigned short port = 56000;
12 asio::io_service service;
13 asio::ip::tcp::endpoint endpoint(asio::ip::tcp::v4(), port);
14 asio::ip::tcp::acceptor acceptor(service, endpoint);
15
16 while (true) {
17 socket_ptr socket(new asio::ip::tcp::socket(service));
18 acceptor.accept(*socket);
19 boost::thread([socket]() {
20 std::cout << "Service request from "
21 << socket->remote_endpoint() << '\n';
22 boost::array<asio::const_buffer, 2> bufseq;
23 const char *msg = "Hello, world!";
24 const char *msg2 = "What's up?";
25 bufseq[0] = asio::const_buffer(msg, strlen(msg));
26 bufseq[1] = asio::const_buffer(msg2, strlen(msg2));
27
28 try {
29 boost::system::error_code ec;

Network Programming Using Boost Asio

[478]

30 char recvbuf[BUFSIZ];
31 auto sz = read(*socket, asio::buffer(recvbuf,
32 BUFSIZ), ec);
33 if (!ec || ec == asio::error::eof) {
34 recvbuf[sz] = 0;
35 std::cout << "Received: " << recvbuf << " from "
36 << socket->remote_endpoint() << '\n';
37 write(*socket, bufseq);
38 socket->close();
39 }
40 } catch (std::exception& e) {
41 std::cout << "Error encountered: " << e.what() << '\n';
42 }
43 });
44 }
45 }

The first thing that a TCP server does is to create a listener socket and bind
it to a local endpoint. With Boost Asio, you do this by creating an instance of
asio::ip::tcp::acceptor and passing it the endpoint to bind to (line 14). We
create an IPv4 endpoint specifying only the port and not the address so that it uses
the unspecified address 0.0.0.0 (line 13). We bind the endpoint to the listener by
passing it to the constructor of the acceptor (line 14). We then spin in a loop waiting
for incoming connections (line 16). We create a new socket as we need a distinct
socket to serve as the server-side endpoint for each new connection (line 17). We
then call the accept member function on the acceptor (line 18), passing it the new
socket. The call to accept blocks until a new connection is established. When accept
returns, the socket passed to it represents the server-side endpoint of the connection
established.

We create a new thread to serve each new connection established (line 19). We
generate the initial function for this thread using a lambda (line 19-44), capturing the
shared_ptr-wrapped server-side socket for this connection (line 19). Within the
thread, we call the read function to read data sent by the client (lines 31-32), and then
write data back using write (line 37). To show how it is done, we send data from a
multi-buffer sequence set up from two character strings (lines 22-26). The network
I/O in this thread is done inside a try-block to make sure that no exception escapes
the thread. Note that we call close on the socket after the call to write returns (line
38). This closes the connection from the server-side, and the client reads an end-of-
file in the received stream.

Chapter 11

[479]

Concurrency and performance
The TCP server handles each connection independently. But creating a new thread
for each new connection scales badly, and the server's resources could be overrun if
a large number of connections hit it over a very short interval. One way to handle
this is to limit the number of threads. Earlier, we modified the UDP server example
from listing 11.18 to use a thread pool and limit the total number of threads. We can
do the same with our TCP server from listing 11.21. Here is an outline for how this
can be done:

12 asio::io_service service;
13 boost::unique_ptr<asio::io_service::work> workptr(
14 new dummyWork(service));
15 auto threadFunc = [&service] { service.run(); };
16
17 boost::thread_group workers;
18 for (int i = 0; i < max_threads; ++i) { //max_threads
19 workers.create_thread(threadFunc);
20 }
21
22 asio::ip::tcp::endpoint ep(asio::ip::tcp::v4(), port);
23 asio::ip::tcp::acceptor acceptor(service, ep);
24 while (true) {
25 socket_ptr socket(new asio::ip::tcp::socket(service));
26 acceptor.accept(*socket);
27
28 service.post([socket] { /* do I/O on the connection */ });
29 }
30
31 workers.join_all();
32 workptr.reset(); // we don't reach here

First, we create a pool of a fixed number of threads (lines 15-20), and make sure
they do not exit by posting a dummy work to the io_service's task queue
(lines 13-14). Instead of creating a thread for each new connection, we post a handler
for the connection to the task queue of the io_service (line 28). This handler can be
exactly the same as the initial function of the per-connection thread in listing 11.21.
The threads in the pool then dispatch the handlers on their own schedule. The
number of threads represented by max_threads can be tweaked easily based on
the number of processors in the system.

While using the thread pool limits the number of threads, it does little to improve the
responsiveness of the server. In the event of a large influx of new connections, handlers
of the newer connections would form a big backlog in the queue, and these clients
would be kept waiting while the server services earlier connections. We have already
addressed similar concerns in our UDP server by using asynchronous I/O. In the next
section, we will use the same strategy to scale our TCP servers better.

Network Programming Using Boost Asio

[480]

Asynchronous TCP server
The synchronous TCP server is inefficient mainly because the read and write
operations on the sockets block for a finite amount of time, waiting for the operations
to complete. During this time, even with thread pools around, the thread serving the
connection just waits idly for an I/O operation to go through, before it can proceed
to handle the next available connection.

We can eliminate these idle waits using asynchronous I/O. Just as we saw with the
asynchronous UDP server, we could either use chains of handlers or coroutines to
write the asynchronous TCP server. While handler chains make the code complex,
and therefore error-prone, coroutines make it far more readable and intuitive. We
will first write an asynchronous TCP server using coroutines, and then use the more
traditional handler-chaining, just to put the difference between the two approaches
in perspective. You can skip the handler-chaining implementations on first reading.

Asynchronous TCP server using coroutines
The following is the complete code for a TCP server employing asynchronous I/O
via coroutines:

Listing 11.22: Asynchronous TCP server using coroutines

 1 #include <boost/asio.hpp>
 2 #include <boost/asio/spawn.hpp>
 3 #include <boost/thread.hpp>
 4 #include <boost/shared_ptr.hpp>
 5 #include <boost/make_shared.hpp>
 6 #include <boost/bind.hpp>
 7 #include <boost/array.hpp>
 8 #include <iostream>
 9 #include <cstring>
10
11 namespace asio = boost::asio;
12 typedef boost::shared_ptr<asio::ip::tcp::socket> socketptr;
13
14 void handle_connection(asio::yield_context yield,
15 socketptr socket)
16 {
17 asio::io_service& service = socket->get_io_service();
18 char msg[BUFSIZ];
19 msg[0] = '\0';
20 boost::system::error_code ec;
21 const char *resp = "Hello from server";
22

Chapter 11

[481]

23 size_t size = asio::async_read(*socket,
24 asio::buffer(msg, BUFSIZ), yield[ec]);
25
26 if (!ec || ec == asio::error::eof) {
27 msg[size] = '\0';
28 boost::array<asio::const_buffer, 2> bufseq;
29 bufseq[0] = asio::const_buffer(resp, ::strlen(resp));
30 bufseq[1] = asio::const_buffer(msg, size);
31
32 asio::async_write(*socket, bufseq, yield[ec]);
33 if (ec) {
34 std::cerr << "Error sending response to client: "
35 << ec.message() << '\n';
36 }
37 } else {
38 std::cout << ec.message() << '\n';
39 }
40 }
41
42 void accept_connections(asio::yield_context yield,
43 asio::io_service& service,
44 unsigned short port)
45 {
46 asio::ip::tcp::endpoint server_endpoint(asio::ip::tcp::v4(),
47 port);
48 asio::ip::tcp::acceptor acceptor(service, server_endpoint);
49
50 while (true) {
51 auto socket =
52 boost::make_shared<asio::ip::tcp::socket>(service);
53 acceptor.async_accept(*socket, yield);
54
55 std::cout << "Handling request from client\n";
56 spawn(service, boost::bind(handle_connection, ::_1,
57 socket));
58 }
59 }
60
61 int main() {
62 asio::io_service service;
63 spawn(service, boost::bind(accept_connections, ::_1,
64 boost::ref(service), 56000));
65 service.run();
66 }

Network Programming Using Boost Asio

[482]

We use two coroutines: accept_connections handles incoming connection requests
(line 42), while handle_connection performs I/O on each new connection (line 14).
The main function calls the spawn function template to add the accept_connections
task to the io_service queue, to be run as a coroutine (line 63). The spawn function
template is available through the header boost/asio/spawn.hpp (line 2). The call
to the run member function of the io_service invokes the accept_connections
coroutine, which spins in a loop awaiting new connection requests (line 65).

The accept_connections function takes two arguments in addition to the
obligatory yield_context. These are a reference to the io_service instance, and
the port to listen on for new connections—values bound by the main function when
it spawns this coroutine (lines 63-64). The accept_connections function creates an
endpoint for the unspecified IPv4 address and the specific port it is passed (lines 46-
47), and creates an acceptor for that endpoint (line 48). It then calls the async_accept
member function of the acceptor in each iteration of the loop, passing a reference to
a TCP socket, and the local yield_context as the completion handler (line 53). This
suspends the accept_connections coroutine until a new connection is accepted.
Once a new connection request is received, async_accept accepts it, sets the socket
reference passed to it to the server-side socket for the new connection, and resumes
the accept_connections coroutine. The accept_connections coroutine adds the
handle_connection coroutine to the io_service queue for handling the I/O on
this specific connection (lines 56-57). In the next iteration of the loop, it again waits
for new incoming connections.

The handle_connection coroutine takes a TCP socket wrapped in a shared_ptr,
as a parameter in addition to yield_context. The accept_connections coroutine
creates this socket, and passes it to handle_connection, wrapped in the shared_
ptr. The handle_connection function receives any data sent by the client using
async_read (lines 23-24). If the receive is successful, it sends back a response
string Hello from server, and then echoes back the received data, using a buffer
sequence of length 2 (lines 28-30).

Asynchronous TCP server without coroutines
We now look at how to write an asynchronous TCP server without coroutines. This
involves a more complex handshake between handlers, and hence, we want to split
the code into appropriate classes. We define two classes in two separate header
files. The class TCPAsyncServer (listing 11.23) represents the server instance that
listens for incoming connections. It goes in the asyncsvr.hpp header file. The class
TCPAsyncConnection (listing 11.25) represents the processing context of a single
connection. It goes in the asynconn.hpp header file.

Chapter 11

[483]

TCPAsyncServer creates a new instance of TCPAsyncConnection for each new
incoming connection. The TCPAsyncConnection instance reads incoming data from
the client and sends back messages to the client until the client closes the connection
to the server.

To start the server, you create an instance of TCPAsyncServer, passing the instance
of io_service and a port number, and then call the run member function of the io_
service to start processing new connections:

Listing 11.23: Asynchronous TCP server (asyncsvr.hpp)

 1 #ifndef ASYNCSVR_HPP
 2 #define ASYNCSVR_HPP
 3 #include <boost/asio.hpp>
 4 #include <boost/shared_ptr.hpp>
 5 #include <boost/make_shared.hpp>
 6 #include <iostream>
 7 #include "asynconn.hpp"
 8
 9 namespace asio = boost::asio;
10 namespace sys = boost::system;
11 typedef boost::shared_ptr<TCPAsyncConnection>
12 TCPAsyncConnectionPtr;
13
14 class TCPAsyncServer {
15 public:
16 TCPAsyncServer(asio::io_service& service, unsigned short p)
17 : acceptor(service,
18 asio::ip::tcp::endpoint(
19 asio::ip::tcp::v4(), p)) {
20 waitForConnection();
21 }
22
23 void waitForConnection() {
24 TCPAsyncConnectionPtr connectionPtr = boost::make_shared
25 <TCPAsyncConnection>(acceptor.get_io_service());
26 acceptor.async_accept(connectionPtr->getSocket(),
27 [this, connectionPtr](const sys::error_code& ec) {
28 if (ec) {
29 std::cerr << "Failed to accept connection: "
30 << ec.message() << "\n";
31 } else {
32 connectionPtr->waitForReceive();
33 waitForConnection();

Network Programming Using Boost Asio

[484]

34 }
35 });
36 }
37
38 private:
39 asio::ip::tcp::acceptor acceptor;
40 };
41
42 #endif /* ASYNCSVR_HPP */

The TCPAsyncServer class has an acceptor member variable of type
boost::asio::ip::tcp::acceptor, which is used to listen for and accept incoming
connections (line 39). The constructor initializes the acceptor with a local TCP
endpoint on the unspecified IPv4 address and a specific port (lines 17-19), and then
calls the waitForConnection member function (line 20).

The waitForConnection function creates a new instance of TCPAsyncConnection
wrapped in a shared_ptr called connectionPtr (lines 24-25) to handle each new
connection from a client. We have included our own header file asynconn.hpp to
access the definition of TCPAsyncConnection (line 7), which we will look at shortly.
It then calls the async_accept member function on the acceptor to listen for new
incoming connections and accept them (line 26-27). We pass to async_accept, a non-
const reference to a tcp::socket object that is a member of TCPAsyncConnection,
and a completion handler that is called each time a new connection is established
(lines 27-35). It is an asynchronous call and returns immediately. But each time a new
connection is established, the socket reference is set to the server-side socket for serving
that connection, and the completion handler gets called.

The completion handler for async_accept is written as a lambda, and it captures the
this pointer pointing to the TCPAsyncServer instance and the connectionPtr (line
27). This allows the lambda to call member functions on both the TCPAsyncServer
instance, and on the TCPAsyncConnection instance serving this specific connection.

The lambda expression generates a function object and the captured
connectionPtr is copied to a member of it. Since connectionPtr
is a shared_ptr, its reference count is bumped up in the process.
The async_accept function pushes this function object into the
task handler queue of io_service, so the underlying instance of
TCPAsyncConnection survives, even after waitForConnection
returns.

Chapter 11

[485]

Upon connection establishment, when the completion handler is called, it does two
things. If there were no errors, it initiates I/O on the new connection by calling
the waitForReceive function on the TCPAsyncConnection object (line 32). It then
restarts the wait for the next connection by calling waitForConnection on the
TCPAsyncServer object, via the captured this pointer (line 33). In case of an error, it
prints a message (lines 29-30). The waitForConnection call is asynchronous, and we
will soon find out that so is the waitForReceive call because both call asynchronous
Asio functions. Once the handler returns, the server proceeds to handle I/O on
existing connections or accepts new connections:

Listing 11.24: Running the async server

 1 #include <boost/asio.hpp>
 2 #include <boost/thread.hpp>
 3 #include <boost/shared_ptr.hpp>
 4 #include <iostream>
 5 #include "asyncsvr.hpp"
 6 #define MAXBUF 1024
 7 namespace asio = boost::asio;
 8
 9 int main() {
10 try {
11 asio::io_service service;
12 TCPAsyncServer server(service, 56000);
13 service.run();
14 } catch (std::exception& e) {
15 std::cout << e.what() << '\n';
16 }
17 }

To run the server, we simply instantiate it with the io_service and port number
(line 12), and then call the run method on io_service (line 13). The server we are
building will be thread-safe, so we can as well call run from each of the pool of
threads to introduce some concurrency in the processing of incoming connections.
We will now see how I/O on each connection is handled:

Listing 11.25: Per-connection I/O Handler class (asynconn.hpp)

 1 #ifndef ASYNCONN_HPP
 2 #define ASYNCONN_HPP
 3
 4 #include <boost/asio.hpp>
 5 #include <boost/thread.hpp>
 6 #include <boost/shared_ptr.hpp>

Network Programming Using Boost Asio

[486]

 7 #include <iostream>
 8 #define MAXBUF 1024
 9
10 namespace asio = boost::asio;
11 namespace sys = boost::system;
12
13 class TCPAsyncConnection
14 : public boost::enable_shared_from_this<TCPAsyncConnection> {
15 public:
16 TCPAsyncConnection(asio::io_service& service) :
17 socket(service) {}
18
19 asio::ip::tcp::socket& getSocket() {
20 return socket;
21 }
22
23 void waitForReceive() {
24 auto thisPtr = shared_from_this();
25 async_read(socket, asio::buffer(buf, sizeof(buf)),
26 [thisPtr](const sys::error_code& ec, size_t sz) {
27 if (!ec || ec == asio::error::eof) {
28 thisPtr->startSend();
29 thisPtr->buf[sz] = '\0';
30 std::cout << thisPtr->buf << '\n';
31
32 if (!ec) { thisPtr->waitForReceive(); }
33 } else {
34 std::cerr << "Error receiving data from "
35 "client: " << ec.message() << "\n";
36 }
37 });
38 }
39
40 void startSend() {
41 const char *msg = "Hello from server";
42 auto thisPtr = shared_from_this();
43 async_write(socket, asio::buffer(msg, strlen(msg)),
44 [thisPtr](const sys::error_code& ec, size_t sz) {
45 if (ec) {
46 if (ec == asio::error::eof) {
47 thisPtr->socket.close();
48 }
49 std::cerr << "Failed to send response to "

Chapter 11

[487]

50 "client: " << ec.message() << '\n';
51 }
52 });
53 }
54
55 private:
56 asio::ip::tcp::socket socket;
57 char buf[MAXBUF];
58 };
59
60 #endif /* ASYNCONN_HPP */

We saw in listing 11.23 how an instance of TCPAsyncConnection gets created,
wrapped in a shared_ptr, to handle each new connection, and I/O is initiated on
it by a call to the waitForReceive member function. Let us now understand its
implementation. TCPAsyncConnection has two public members for performing
asynchronous I/O on the connection: waitForReceive to perform asynchronous
receives (line 23) and startSend to perform asynchronous sends (line 40).

The waitForReceive function initiates a receive by calling the async _read function
on the socket (line 25). The data is received into the buf member (line 57). The
completion handler for this call (line 26-37) is invoked when the data is completely
received. If there were no errors, it calls startSend, which asynchronously sends
a message to the client (line 28), and then calls waitForReceive again, provided
an end-of-file was not encountered by the previous receive (line 32). Thus, as long
as there was no read error, the server keeps waiting to read more data on the
connection. If there was an error, it prints a diagnostic message (lines 34-35).

The startSend function uses the function async_write to send the text Hello
from server to the client. Its handler does not do anything on success but prints
a diagnostic message on failure (lines 49-50). For EOF write errors, it closes the
socket (line 47).

Lifetime of TCPAsyncConnection
Each instance of TCPAsyncConnection needs to survive as long as the client remains
connected to the server. This makes it difficult to bind the scope of this object to
any function in the server. This is the reason we create the TCPAsyncConnection
object wrapped in a shared_ptr, and then capture it in handler lambdas. The
TCPAsyncConnection member functions for performing I/O on the connection,
waitForReceive and startSend, are both asynchronous. So they push a handler
into the io_service's task queue before returning. These handlers capture the
shared_ptr wrapped instance of TCPAsyncConnection to keep the instance alive
across calls.

Network Programming Using Boost Asio

[488]

In order for the handlers to have access to the shared_ptr-wrapped instance of
the TCPAsyncConnection object from within waitForReceive and startSend,
it is required that these member functions of TCPAsyncConnection have access
to the shared_ptr wrapped instance on which they are called. The enable
shared from this idiom, which we learned in Chapter 3, Memory Management and
Exception Safety, is tailor-made for such purposes. This is the reason we derive
TCPAsyncConnection from enable_shared_from_this<TCPAsyncConnection>.
By virtue of this, TCPAsyncConnection inherits the shared_from_this member
function, which returns the shared_ptr-wrapped instance we need. This means that
TCPAsyncConnection should always be allocated dynamically and wrapped in a
shared_ptr, and any other way would result in undefined behavior.

This is the reason we call shared_from_this in both waitForReceive (line 24)
and startSend (line 42), and it is captured by the respective handlers (lines 26, 44).
As long as the waitForReceive member function keeps getting called from the
completion handler for async_read (line 32), the TCPAsyncConnection instance
survives. If an error is encountered in receive, either because the remote endpoint
closed the connection or for another reason, then this cycle breaks. The shared_ptr
wrapping the TCPAsyncConnection object is no longer captured by any handler and
is destroyed at the end of the scope, closing the connection.

Performance and concurrency
Notice that both implementations of TCP asynchronous server, with and without
coroutines, are single-threaded. However, there are no thread-safety issues in either
implementation, so we could have as well employed a thread pool, each of whose
threads would call run on the io_service.

Inversion of control flow
The most significant difficulty with programming asynchronous systems is the
inversion of control flow. To write the code for a synchronous server, we know we
have to call the operations in the following sequence:

1. Call accept on the acceptor.
2. Call read on the socket.
3. Call write on the socket.

We know that accept returns only when the connection has been established, so it is
safe to call read. Also, read returns only after it has read the number of bytes asked
for, or encountered an end-of-file. So it is safe for a write call to follow. This made
writing code incredibly easy compared to the asynchronous model, but introduced
waits that affected our ability to handle other waiting connections, while our
requests were being serviced.

Chapter 11

[489]

We eliminated that wait with asynchronous I/O, but lost the simplicity of the model
when we used handler chaining. As we cannot deterministically tell at which point
an asynchronous I/O operation is completed, we ask the io_service to run specific
handlers on completion of our requests. We still know which operation to perform
after which, but we no longer know when. So we tell the io_service what to run,
and it uses the appropriate notifications from the OS to know when to run them.
The biggest challenge in this model is to maintain object states and managing object
lifetimes across handlers.

Coroutines eliminate this inversion of control flow by allowing the sequence of
asynchronous I/O operations to be written in a single coroutine, which is suspended
instead of waiting for an asynchronous operation to complete, and resumed when
the operation is completed. This allows for wait-free logic without the inherent
complexities of handler chaining.

Always prefer coroutines over handler chaining when writing
asynchronous servers.

Self-test questions
For multiple choice questions, choose all options that apply:

1. What is the difference between io_service::dispatch and io_
service::post?
a. dispatch returns immediately while post runs the handler before returning
b. post returns immediately while dispatch may run the handler on the
current thread if it can, or it behaves like post
c. post is thread-safe while dispatch is not
d. post returns immediately while dispatch runs the handler

2. What happens if a handler throws an exception when it is dispatched?
a. It is undefined behavior
b. It terminates the program with a call to std::terminate
c. The call to run, on the io_service that dispatched the handler, will throw
d. The io_service is stopped

Network Programming Using Boost Asio

[490]

3. What is the role of the unspecified address 0.0.0.0 (IPv4) or ::/1 (IPv6)?
a. It is used to communicate with local services on a system
b. Packets sent to this address are echoed back to the sender
c. It is used to broadcast to all connected hosts in the network
d. It is used to bind to all available interfaces without the need to
know addresses

4. Which of the following statements about TCP are true?
a. TCP is faster than UDP
b. TCP detects data corruption but not data loss
c. TCP is more reliable than UDP
d. TCP retransmits lost or corrupted data

5. What do we mean when we say that a particular function, for example,
async_read, is asynchronous?
a. The function returns before the requested action is complete
b. The function starts the operation on a different thread and returns
immediately
c. The requested action is queued for processing by the same or another thread
d. The function performs the action if it immediately can, or returns an error
if it cannot immediately perform the action

6. How can we ensure that an object created just before calling an asynchronous
function would still be available in the handler?

a. Make the object global.
b. Copy/capture the object wrapped in a shared_ptr in the handler.
c. Allocate the object dynamically and wrap it in a shared_ptr.
d. Make the object a member of the class.

Chapter 11

[491]

Summary
Asio is a well-designed library that can be used to write fast, nimble network servers
that utilize the most optimal mechanisms for asynchronous I/O available on a
system. It is an evolving library and is the basis for a Technical Specification that
proposes to add a networking library to a future revision of the C++ Standard.

In this chapter, we learned how to use the Boost Asio library as a task queue
manager and leverage Asio's TCP and UDP interfaces to write programs that
communicate over the network. Using Boost Asio, we were able to highlight some
of the general concerns of network programming, the challenges to scaling for a
large number of concurrent connections, and the advantages and complexity of
asynchronous I/O. In particular, we saw how using stackful coroutines makes
writing asynchronous servers a breeze, compared to the older model of chaining
handlers. While we did not cover stackless coroutines, the ICMP protocol, and serial
port communications among other things, the topics covered in this chapter should
provide you with a solid foundation for understanding these areas.

References
• Thinking Asynchronously in C++ (blog), Christopher Kohlhoff: http://blog.

think-async.com/

• Networking Library Proposal, Christopher Kohlhoff: http://www.open-std.org/
jtc1/sc22/wg21/docs/papers/2014/n4332.html

http://blog.think-async.com/
http://blog.think-async.com/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4332.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n4332.html

[493]

C++11 Language Features
Emulation

In this section, we will review some concepts from C++ programming that will be
conceptually important in understanding several topics covered in this book. Many
of these concepts have been introduced relatively recently as part of C++11. We will
look at: RAII, copy- and move-semantics, auto, range-based for-loops, and C++11
exception handling enhancements. We will look at how these features can
be emulated under a pre-C++11 compiler using parts of the Boost libraries.

RAII
C++ programs frequently deal with system resources like memory, file and socket
handles, shared memory segments, mutexes, and so on. There are well-defined
primitives, some from the C Standard Library and many more from the native
systems programming interfaces, which are used to request and relinquish these
resources. Failing to guarantee the release of acquired resources can cause grave
problems to an application's performance and correctness.

The destructor of a C++ object on the stack is automatically invoked during stack
unwinding. The unwinding happens when a scope is exited due to control reaching
the end of the scope, or by executing return, goto, break, or continue. A scope is
also exited as a result of an exception being thrown. In either case, the destructor is
guaranteed to be called. This guarantee is limited to C++ objects on the stack. It does
not apply to C++ objects on the heap because they are not associated with a lexical
scope. Furthermore, it does not apply to the aforementioned resources like memory
and file descriptors, which are objects of Plain Old Data types (POD-types) and
therefore do not have a destructor.

C++11 Language Features Emulation

[494]

Consider the following C++ code using the
new[] and delete[] operators:

char *buffer = new char[BUFSIZ];
… …
delete [] buffer;

The programmer was careful to release the buffer allocated. However, if another
programmer came and flippantly wrote code to exit the scope somewhere between
the calls to new and delete, then buffer would never be released and you would
leak memory. Exceptions could arise in the intervening code too with the same
result. This is true not just of memory but of any resource which requires a manual
step to release, like delete[] in this case.

This is where we can utilize the guaranteed invocation of a destructor when exiting
a scope to guarantee the clean-up of resources. We can create a wrapper class whose
constructor acquires ownership of the resource and whose destructor releases the
resource. A few lines of code can explain this technique that usually goes by the
name Resource Acquisition is Initialization or RAII.

Listing A.1: RAII in action

 1 class String
 2 {
 3 public:
 4 String(const char *str = 0)
 5 { buffer_ = dupstr(str, len_); }
 6
 7 ~String() { delete [] buffer_; }
 8
 9 private:
10 char *buffer_;
11 size_t len_;
12 };
13
14 // dupstr returns a copy of s, allocated dynamically.
15 // Sets len to the length of s.
16 char *dupstr(const char *str, size_t& len) {
17 char *ret = nullptr;
18
19 if (!str) {
20 len = 0;

Appendix

[495]

21 return ret;
22 }
23 len = strlen(str);
24 ret = new char[len + 1];
25 strncpy(ret, str, len + 1);
26
27 return ret;
28 }

The String class encapsulates a C-style string. We pass it a C-style string during
construction, and it creates a copy of the passed string on the free store if it is not
null. The helper function dupstr allocates memory for the String object on the
free store using the the new[] operator (line 24). If allocation fails, operator new[]
throws std::bad_alloc, and the String object never comes into being. In other
words, resource acquisition must succeed for initialization to succeed. This is the
other key aspect of RAII.

We use the String class in code as shown here:

 {
 String favBand("Led Zeppelin");

 } // end of scope. favBand.~String() called.

We create an instance of String called favBand, which internally allocates a
character buffer dynamically. When favBand goes out of scope normally or due
to an exception, its destructor is called and it releases this buffer. You can apply
this technique to all forms of resources that require manual release, and it will
never let a resource leak creep in. The String class is said to own the buffer
resource, that is, it has unique ownership semantics.

Copy semantics
An object keeps state information in its data members, which can themselves be
of POD-types or class types. If you do not define a copy constructor for your class, then
the compiler implicitly defines one for you. This implicitly-defined copy constructor
copies each member in turn, invoking the copy constructor of members of class
type and performing a bitwise copy of POD-type members. The same is true of the
assignment operator. The compiler generates one if you do not define your own, and
it performs member-wise assignment, invoking the assignment operators of member
objects of class-type, and performing bitwise copies of POD-type members.

C++11 Language Features Emulation

[496]

The following example illustrates this:

Listing A.2: Implicit destructor, copy constructor, and assignment operator

 1 #include <iostream>
 2
 3 class Foo {
 4 public:
 5 Foo() {}
 6
 7 Foo(const Foo&) {
 8 std::cout << "Foo(const Foo&)\n";
 9 }
10
11 ~Foo() {
12 std::cout << "~Foo()\n";
13 }
14
15 Foo& operator=(const Foo&) {
16 std::cout << "operator=(const Foo&)\n";
17 return *this;
18 }
19 };
20
21 class Bar {
22 public:
23 Bar() {}
24
25 private:
26 Foo f;
27 };
28
29 int main() {
30 std::cout << "Creating b1\n";
31 Bar b1;
32 std::cout << "Creating b2 as a copy of b1\n";
33 Bar b2(b1);
34
35 std::cout << "Assigning b1 to b2\n";
36 b2 = b1;
37 }

Appendix

[497]

Class Bar contains an instance of class Foo as a member (line 25). Class Foo defines a
destructor (line 11), a copy constructor (line 7), and an assignment operator, (line 15)
each of which prints some message. Class Bar does not define any of these special
functions. We create an instance of Bar called b1 (line 30) and a copy of b1 called b2
(line 33). We then assign b1 to b2 (line 36). Here is the output when the program is run:

Creating b1
Creating b2 as a copy of b1
Foo(const Foo&)
Assigning b1 to b2
operator=(const Foo&)
~Foo()
~Foo()

Through the messages printed, we can trace the calls made to Foo's special functions
from Bar's implicitly generated special functions.

This works adequately for all cases except when you encapsulate a pointer or
non-class type handle to some resource in your class. The implicitly-defined copy
constructor or assignment operator will copy the pointer or handle but not the
underlying resources, generating an object which is a shallow copy of another.
This is rarely what is needed and this is where a user-defined copy constructor and
assignment operator are needed to define the correct copy semantics. If such copy
semantics do not make sense for the class, the copy constructor and assignment
operator ought to be disabled. In addition, you would also need to manage resource
lifetimes using RAII, and therefore define a destructor rather than relying on the
compiler-generated one.

There is a well-known rule called the Rule of Three that regularizes this common
idiom. It says that if you need to define your own destructor for a class, you should
also define your own copy constructor and assignment operator or disable them.
The String class we defined in listing A.1 is such a candidate and we will add the
remaining two of the three canonical methods shortly. As we noted, not all classes
need to define these functions, only those that encapsulate resources. In fact, it is
recommended that a class using these resources should be different from the class
managing the lifetime of these resources. Thus, we should create a wrapper around
each resource for managing that resource using specialized types like smart pointers
(Chapter 3, Memory Management and Exception Safety), boost::ptr_container (Chapter
5, Effective Data Structures beyond STL), std::vector, and so on. The class using
the resources should have the wrappers rather than the raw resources as members.
This way, the class using the resource does not have to also bother about managing
the resource life cycles, and the implicitly-defined destructor, copy constructor, and
assignment operator would be adequate for its purposes. This has come to be called
the Rule of Zero.

C++11 Language Features Emulation

[498]

The nothrow swap
Thanks to Rule of Zero, you should rarely need to bother about the Rule of Three.
But when you do have to use the Rule of Three, there are a few nitty-gritties to
take care of. Let us first understand how you would define a copy operation for
the String class in listing A.1:

Listing A.1a: Copy constructor

 1 String::String(const String &str) : buffer_(0), len_(0)
 2 {
 3 buffer_ = dupstr(str.buffer_, len_);
 4 }

The implementation of copy constructor is no different than that of the constructor
in listing A.1. The assignment operator requires more care. Consider how String
objects are assigned to in the following example:

 1 String band1("Deep Purple");
 2 String band2("Rainbow");
 3 band1 = band2;

On line 3, we assign band2 to band1. As part of this, band1's old state should be
deallocated and then overwritten with a copy of band2's internal state. The problem
is that copying band2's internal state might fail, and so band1's old state should not
be destroyed until band2's state has been copied successfully. Here is a succinct way
to achieve this:

Listing A.1b: Assignment operator

 1 String& String::operator=(const String& rhs)
 2 {
 3 String tmp(rhs); // copy the rhs in a temp variable
 4 swap(tmp); // swap tmp's state with this' state.
 5 return *this; // tmp goes out of scope, releases this'
 6 // old state
 7 }

We create tmp as a copy of rhs (line 3) and if this copying fails, it should throw an
exception and the assignment operation would fail. The internal state of the assignee,
this, should not change. The call to swap (line 4) executes only if the copying
succeeded (line 3). The call to swap exchanges the internal states of this and the tmp
object. As a result, this now contains the copy of rhs and tmp contains the older
state of this. At the end of this function, tmp goes out of scope and releases the old
state of this.

Appendix

[499]

It is possible to optimize this implementation further by considering
special cases. If the assignee (left-hand side) already has storage that
is at least as large as needed to contain the contents of rhs, then we
can simply copy the contents of rhs into the assignee, without the
need for extra allocation and deallocation.

Here is the implementation of the swap member function:

Listing A.1c: nothrow swap

 1 void String::swap(String&rhs) noexcept
 2 {
 3 using std::swap;
 3 swap(buffer_, rhs.buffer_);
 4 swap(len_, rhs.len_);
 5 }

Exchanging variables of primitive types (integers, pointers, and so on) should not
cause any exceptions to be thrown, a fact we advertise using the C++11 keyword
noexcept. We could have written throw() instead of noexcept, but exception
specifications are deprecated in C++11 and noexcept is more efficient than a throw()
clause. This swap function, written entirely in terms of exchanging primitive
data types, is guaranteed to succeed and would never leave the assignee in an
inconsistent state.

Move semantics and rvalue references
Copy semantics are for creating clones of objects. It is useful sometimes, but not
always needed or even meaningful. Consider the following class that encapsulates a
TCP client socket. A TCP socket is an integer that represents one endpoint of a TCP
connection and through which data can be sent or received to the other endpoint.
The TCP socket class can have the following interface:

class TCPSocket
{
public:
 TCPSocket(const std::string& host, const std::string& port);
 ~TCPSocket();

 bool is_open();
 vector<char> read(size_t to_read);
 size_t write(vector<char> payload);

private:

C++11 Language Features Emulation

[500]

 int socket_fd_;

 TCPSocket(const TCPSocket&);
 TCPSocket& operator = (const TCPSocket&);
};

The constructor opens a connection to a host on a specified port and initializes
the socket_fd_ member variable. The destructor closes the connection. TCP does
not define a way to make clones of open sockets (unlike file descriptors with dup/
dup2) and therefore cloning TCPSocket would not be meaningful either. Therefore,
we disable copy semantics by declaring the copy constructor and copy assignment
operators private. In C++11, the preferred way to do this is to declare these members
as deleted:

TCPSocket(const TCPSocket&) = delete;
TCPSocket& operator = (const TCPSocket&) = delete;

Although not copyable, it would make perfect sense to create a TCPSocket object
in one function and then return it to a calling function. Consider a factory function
that creates connections to some remote TCP service:

TCPSocket connectToService()
{
 TCPSocket socket(get_service_host(), // function gets hostname
 get_service_port()); // function gets port
 return socket;
}

Such a function would encapsulate the details about which host and port to connect
to, and would create an object of TCPSocket to be returned to the caller. This would
not really call for copy semantics at all, but move semantics, in which the contents
of the TCPSocket object created in the connectToService function would be
transferred to another TCPSocket object at the call site:

TCPSocket socket = connectToService();

In C++03, this would not be possible to write without enabling the copy constructor.
We could subvert the copy constructor to provide move semantics, but there are
many problems with this approach:

TCPSocket::TCPSocket(TCPSocket& that) {
 socket_fd_ = that.socket_fd_;
 that.socket_fd_ = -1;
}

Appendix

[501]

Note that this version of the "copy" constructor actually moves the contents out of
its argument, which is why the argument is non-const. With this definition, we can
actually implement the connectToService function, and use it as shown earlier. But
nothing would prevent situations like the following:

 1 void performIO(TCPSocket socket)
 2 {
 3 socket.write(...);
 4 socket.read(...);
 5 // etc.
 6 }
 7
 8 TCPSocket socket = connectToService();
 9 performIO(socket); // moves TCPSocket into performIO
10 // now socket.socket_fd_ == -1
11 performIO(socket); // OOPs: not a valid socket

We obtain an instance of TCPSocket called socket by calling connectToService
(line 8) and pass this instance to performIO (line 9). But the copy constructor used
to pass socket by value to performIO moves its contents out, and when performIO
returns, socket no longer encapsulates a valid TCP socket. By disguising a move as
a copy, we have created an unintuitive and error-prone interface; if you are familiar
with std::auto_ptr, you would have seen this before.

rvalue references
In order to support move semantics better, we must first answer the question:
which objects can be moved from? Consider the TCPSocket example again. In the
function connectToService, the expression TCPSocket(get_service_host(),
get_service_port()) is an unnamed temporary object of TCPSocket whose sole
purpose is to be transferred to the caller's context. There is no way for anyone to
refer to this object beyond the statement where it gets created. It makes perfect
sense to move the contents out of such an object. But in the following snippet:

TCPSocket socket = connectToService();
performIO(socket);

It would be dangerous to move out the contents of socket object because in the
calling context, the object is still bound to the name socket and can be used in
further operations. The expression socket is called an lvalue expression—one
that has an identity and whose address can be taken by prefixing the &-operator to
the expression. Non-lvalue expressions are referred to as rvalue expressions. These
are unnamed expressions whose address cannot be computed using the &-operator
on the expression. An expression, such as TCPSocket(get_service_host(),
get_service_port()) is an rvalue expression.

C++11 Language Features Emulation

[502]

We can say that, in general, it is dangerous to move contents from an lvalue expression
but safe to move contents from rvalue expressions. Thus, the following is dangerous:

TCPSocket socket = connectToService();
performIO(socket);

But the following is alright:

performIO(connectToService());

Note here that the expression connectToService() is not an lvalue expression and
therefore qualifies as an rvalue expression. In order to distinguish between lvalue
and rvalue expressions, C++11 introduced a new class of references called rvalue
references that can refer to rvalue-expressions but not lvalue-expressions. Such
references are declared using a new syntax involving double ampersands as
shown below:

socket&& socketref = TCPSocket(get_service_host(),
 get_service_port());

The other class of references that were earlier simply called references are now
called lvalue references. A non-const lvalue reference can only refer to an lvalue
expression, while a const lvalue reference can also refer to an rvalue expression:

/* ill-formed */
socket& socketref = TCPSocket(get_service_host(),
 get_service_port());

/* well-formed */
const socket& socketref = TCPSocket(get_service_host(),
 get_service_port());

An rvalue reference can be, and usually is, non-const:

socket&& socketref = TCPSocket(...);
socketref.read(...);

In the preceding snippet, the expression socketref itself is an lvalue-expression
because you can compute its address using &-operator. But it is bound to an rvalue-
expression, and object referred to by the non-const rvalue reference can be modified
through it.

Appendix

[503]

rvalue-reference overloads
We can create overloads of a function based on whether they take lvalue expressions
or rvalue expressions. In particular, we can overload the copy constructor to take
rvalue expressions. For the TCPSocket class, we can write the following:

TCPSocket(const TCPSocket&) = delete;

TCPSocket(TCPSocket&& rvref) : socket_fd_(-1)
{
 std::swap(socket_fd_, rvref.socket_fd_);
}

While the lvalue overload is the deleted copy constructor, rvalue overload is called
the move constructor because this is implemented to usurp or "steal" the contents of
the rvalue expression passed to it. It moves the contents of the source to the target,
leaving the source (rvref) in some unspecified state that is safe to destruct. In this
case, this amounts to setting the socket_fd_ member of the rvref to -1.

With this definition of the move constructor, TCPSocket becomes movable but not
copyable. The connectToService implementation would work correctly:

TCPSocket connectToService()
{
 return TCPSocket(get_service_host(),get_service_port());
}

This would move the temporary object back to the caller. But the following call
to performIO would be ill-formed because socket is an lvalue expression and
TCPSocket only defines move semantics for which an rvalue expression was necessary:

TCPSocket socket = connectToService();
performIO(socket);

This is a good thing because you cannot move contents out of an object like socket
that you could potentially use later. An rvalue-expression of a movable type can be
passed by value and thus the following will be well-formed:

performIO(connectToService());

Note that the expression connectToService()is an rvalue expression because it is
not bound to a name and its address cannot be taken.

C++11 Language Features Emulation

[504]

A type can be both copyable and movable. For example, we could implement a
move constructor for the String class in addition to its copy constructor:

 1 // move-constructor
 2 String::String(String&& source) noexcept
 3 : buffer_(0), len_(0)
 4 {
 5 swap(source); // See listing A.1c
 6 }

The nothrow swap plays a central role in the implementation of move semantics. The
contents of the source and target objects are exchanged. So when the source object
goes out of scope in the calling scope, it releases its new contents (the target object's
old state). The target object lives on with its new state (the source object's original
state). The move is implemented in terms of the nothrow swap, which just swaps
pointers and values of primitive types, and it is guaranteed to succeed; hence, the
noexcept specification. In fact, moving objects usually requires less work involving
swapping pointers and other data bits, while copying often requires new allocations
that could potentially fail.

Move assignment
Just as we can construct an object by stealing the contents of another object, we can
also move the contents of one object to another after both have been constructed. To
do this, we can define a move assignment operator, an rvalue-overload of the copy
assignment operator:

 1 // move assignment
 2 String& String::operator=(String&& rhs) noexcept
 3 {
 4 swap(rhs);
 5 return *this;
 6 }

Alternatively, we can define a universal assignment operator that works for both
lvalue and rvalue expressions:

 1 // move assignment
 2 String& String::operator=(String rhs)
 3 {
 4 swap(rhs);
 5 return *this;
 6 }

Note that the universal assignment operator cannot coexist with either the lvalue or
the rvalue overload, else there would be ambiguity in overload resolution.

Appendix

[505]

xvalues
When you call a function with an rvalue expression, the compiler resolves function
calls to an rvalue-overload of the function if one is available. But if you call the
function with a named variable, it gets resolved to an lvalue overload if one is
available or the program is ill-formed. Now you might have a named variable that
you can move from because you have no use for it later:

void performIO(TCPSocket socket);

TCPSocket socket = connectToService();
// do stuff on socket
performIO(socket); // ill-formed because socket is lvalue

The preceding example will fail to compile because performIO takes its sole
parameter by value and socket is of a move-only type but it is not an rvalue
expression. By using std::move, you can cast an lvalue expression to an rvalue
expression, and pass it to a function that expects an rvalue expression. The
std::move function template is defined in the standard header utility.

#include <utility> // for std::moves
performIO(std::move(socket));

The call to std::move(socket) gives us an rvalue reference to socket; it does not
cause any data to be moved out of socket. When we pass this expression of rvalue-
reference type to the function performIO, which takes its parameter by value, a
new TCPSocket object is created in the performIO function, corresponding to its
by-value parameter. It is move initialized from socket, that is, its move constructor
steals the contents of socket. Following the call to performIO, the variable socket
loses its contents and therefore should not be used in further operations. If the move
constructor of TCPSocket is correctly implemented, then socket should still be safe
to destruct.

The expression std::move(socket) shares the identity of socket, but it would
potentially be moved from within the function it is passed to. Such expressions are
called xvalues, the x standing for expired.

xvalues have a well-defined identity like lvalues, but can be moved from
like rvalues. xvalues bind to rvalue reference parameters of a function.

If performIO did not take its parameter by value but as an rvalue-reference then
one thing would change:

void performIO(TCPSocket&& socket);
performIO(std::move(socket));

C++11 Language Features Emulation

[506]

The call to performIO(std::move(socket)) would still be well-formed, but
would not automatically move out the contents of socket. This is because we pass
a reference to an existing object here, whereas we create a new object that is move
initialized from socket when we pass by value. In this case, unless the performIO
function implementation explicitly moves out the contents of socket, it would still
remain valid in the calling context after the call to performIO.

In general, if you have cast your object to an rvalue-expression and
passed it to a function that expects an rvalue-reference, you should
just assume that it has been moved from and not use it beyond the call.

An object of type T that is local to a function can be returned by value from that function
if T has an accessible move or copy constructor. If a move constructor is available, the
returned value will be move-initialized, else it would be copy-initialized. If however,
the object is not local to the function, then it must have an accessible copy constructor
to be returned by value. Additionally, compilers, whenever they can, optimize away
copies and moves.

Consider the implementation of connectToService and how it is used:

 1 TCPSocket connectToService()
 2 {
 3 return TCPSocket(get_service_host(),get_service_port());
 4 }
 5
 6 TCPSocket socket = connectToService();

In this case, the compiler will actually construct the temporary (line 3) directly in the
storage for the socket object (line 6) where the return value of connectToService
was meant to be moved to. This way, it would simply optimize away the move
initialization of socket (line 6). This optimization is effected even if the move
constructor has side effects, which means that those side effects may not take effect
as a result of this optimization. In the same way, the compiler can optimize away
copy initialization and directly construct the returned object at the target site. This is
referred to as Return Value Optimization (RVO) and has been the norm for all major
compilers since C++03, when it optimized away only copies. Although the copy or
move constructors are not invoked when RVO takes effect, they must nevertheless
be defined and accessible for RVO to work.

While RVO applies when rvalue expressions are returned, the compiler can
sometimes optimize away a copy or move, even when a named local object on
the stack is returned from a function. This is known as Named Return Value
Optimization (NRVO).

Appendix

[507]

Return Value Optimization is a specific case of Copy Elision, in which the compiler
optimizes away a move or copy of an rvalue expression to construct it directly in the
target storage:

std::string reverse(std::string input);

std::string a = "Hello";
std::string b = "World";
reverse(a + b);

In the preceding example, the expression a + b is an rvalue expression that
generates a temporary object of type std::string. This object will not be copied
into the function reverse instead the copy would be elided, and the object resulting
from the expression a + b would be constructed directly in the storage for
reverse's parameter.

Passing and returning an object of type T by value requires either move
or copy semantics to be defined for T. If a move constructor is available,
it is used, otherwise the copy constructor is used. Whenever possible, the
compiler optimizes away copy or move operations and constructs the
object directly at the target site in the calling or called function.

Move emulation using Boost.Move
In this section, we look at how, with relative ease, you can actually retrofit much of
the move semantics for your own legacy classes using the Boost.Move library. First,
consider the interface of the String class in C++ 11 syntax:

 1 class String
 2 {
 3 public:
 4 // Constructor
 5 String(const char *str = 0);
 6
 7 // Destructor
 8 ~String();
 9
10 // Copy constructor
11 String(const String& that);
12
13 // Copy assignment operator
14 String& operator=(const String& rhs);
15
16 // Move constructor

C++11 Language Features Emulation

[508]

17 String(String&& that);
18
19 // Move assignment
20 String& operator=(String&& rhs);
21 …
22 };

Let us now see how you would define an equivalent interface using Boost's facilities:

Listing A.2a: Move emulation with Boost.Move

 1 #include <boost/move/move.hpp>
 2 #include <boost/swap.hpp>
 3
 4 class String {
 5 private:
 6 BOOST_COPYABLE_AND_MOVABLE(String);
 7
 8 public:
 9 // Constructor
10 String(const char *str = 0);
11
12 // Destructor
13 ~String();
14
15 // Copy constructor
16 String(const String& that);
17
18 // Copy assignment operator
19 String& operator=(BOOST_COPY_ASSIGN_REF(String) rhs);
20
21 // Move constructor
22 String(BOOST_RV_REF(String) that);
23
24 // Move assignment
25 String& operator=(BOOST_RV_REF(String) rhs);
26
27 void swap(String& rhs);
28
29 private:
30 char *buffer_;
31 size_t size_;
32 };

Appendix

[509]

The key changes are as follows:

• Line 6: The macro BOOST_COPYABLE_AND_MOVABLE(String) defines some
internal infrastructure to support copy and move semantics, and distinguish
between lvalues and rvalues of type String. This is declared as private.

• Line 19: A copy assignment operator that takes the type BOOST_COPY_
ASSIGN_REF(String). This is a wrapper type for String to which String
lvalues can be implicitly converted.

• Line 22 and 25: A move constructor and a move-assignment operator that
take the wrapper type BOOST_RV_REF(String). String rvalues implicitly
convert to this type.

• Note that on line 16, the copy constructor does not change.

Under a C++ 03 compiler, the emulation of move-semantics is provided without
any special support from the language or the compiler. With a C++ 11 compiler, the
macros automatically use C++ 11 native constructs for supporting move-semantics.

The implementation is pretty much the same as the C++ 11 version except for the
parameter types.

Listing A.2b: Move emulation with Boost Move

 1 // Copy constructor
 2 String::String(const String& that) : buffer_(0), len_(0)
 3 {
 4 buffer_ = dupstr(that.buffer_, len_);
 5 }
 6
 7 // Copy assignment operator
 8 String& String::operator=(BOOST_COPY_ASSIGN_REF(String)rhs)
 9 {
10 String tmp(rhs);
11 swap(tmp); // calls String::swap member
12 return *this;
13 }
14
15 // Move constructor
16 String::String(BOOST_RV_REF(String) that) : buffer_(0),
17 size_(0)
18 {
19 swap(that); // calls String::swap member
20 }

C++11 Language Features Emulation

[510]

21 // Move assignment operator
22 String& String::operator=(BOOST_RV_REF(String)rhs)
23 {
24 swap(rhs);
25 String tmp;
26 rhs.swap(tmp);
27
28 return *this;
29 }
30
31 void String::swap(String& that)
32 {
33 boost::swap(buffer_, that.buffer_);
34 boost::swap(size_, that.size_);
35 }

If we wanted to make our class only support move semantics but not copy semantics,
then we should have used the macro BOOST_MOVABLE_NOT_COPYABLE in place of
BOOST_COPYABLE_AND_MOVABLE and should not have defined the copy constructor
and copy assignment operator.

In the copy/move assignment operators, we could check for self-assignment if
we wanted by putting the code that does the swapping/copying inside an if-block
like this:

if (this != &rhs) {
 …
}

This will not change the correctness of the code as long the implementation of copy/
move is exception-safe. But it would help to improve the performance by avoiding
further operations in case of assignment to the self.

So in summary, the following macros help us emulate move-semantics in C++ 03:

#include <boost/move/move.hpp>

BOOST_COPYABLE_AND_MOVABLE(classname)
BOOST_MOVABLE_BUT_NOT_COPYABLE(classname)
BOOST_COPY_ASSIGN_REF(classname)
BOOST_RV_REF(classname)

You can also use BOOST_RV_REF(…) encapsulated types for parameters of other
member methods, besides the move constructors and assignment operators.

Appendix

[511]

If you want to move from an lvalue, you would naturally have to cast it to an
"rvalue-emulating" expression. You do this using boost::move, which corresponds
to std::move in C++ 11. Here are some examples of invoking different copy and
move operations on String objects using the Boost move emulation:

 1 String getName(); // return by value
 2 void setName(BOOST_RV_REF(String) str); // rvalue ref overload
 3 void setName(const String&str); // lvalue ref overload
 4
 5 String str1("Hello");
 6 String str2(str1); // copy ctor
 7 str2 = getName(); // move assignment
 8 String str3(boost::move(str2)); // move ctor
 9 String str4;
10 str4 = boost::move(str1); // move assignment
11 setName(String("Hello")); // rvalue ref overload
12 setName(str4); // lvalue ref overload
13 setName(boost::move(str4)); // rvalue ref overload

C++11 auto and Boost.Auto
Consider how you declare an iterator to a vector of strings:

std::vector<std::string> names;
std::vector<std::string>::iterator iter = vec.begin();

The declared type of iter is big and unwieldy and it is a pain to write it explicitly
every time. Given that the compiler knows the type of the initializing expression on
the right-hand side, that is, vec.begin(), this is also superfluous. Starting with C++11,
you can use the auto keyword to ask the compiler to deduce the type of a declared
variable using the type of the expression it is initialized with. Thus, the preceding
tedium is replaced by the following:

std::vector<std::string> names;
auto iter = vec.begin();

Consider the following statement:

auto var = expr;

The deduced type of var is the same as the deduced type T, when the following
function template is called with the argument expr:

template <typename T>
void foo(T);

foo(expr);

C++11 Language Features Emulation

[512]

Type deduction rules
There are a few rules to keep in mind. First, if the initializing expression is a
reference, the reference is stripped in the deduced type:

int x = 5;
int& y = x;
auto z = y; // deduced type of z is int, not int&

If you want to declare an lvalue-reference, you must explicitly adorn the auto
keyword with an ampersand (&), as shown here:

int x = 5;
auto& y = x; // deduced type of y is int&

If the initializing expression is not copyable, you must make the assignee a reference
in this way.

The second rule is that const and volatile qualifiers of the initializing expression
are stripped in the deduced type, unless the variable declared with auto is explicitly
declared as a reference:

int constx = 5;
auto y = x; // deduced type of y is int
auto& z = x; // deduced type of z is constint

Again, if you want to add a const or volatile qualifier, you must do so explicitly,
as shown:

intconst x = 5;
auto const y = x; // deduced type of y is constint

Common uses
The auto keyword is very convenient to use in a lot of situations. It lets you get away
from having to type long template IDs, in particular when the initializing expression
is a function call. Here are a couple of examples to illustrate the advantages:

auto strptr = boost::make_shared<std::string>("Hello");
// type of strptr is boost::shared_ptr<std::string>

auto coords(boost::make_tuple(1.0, 2.0, 3.0));
// type of coords is boost::tuple<double, double, double>

Appendix

[513]

Note the savings in the type names achieved through the use of auto. Also, note
that while creating the tuple called coords using boost::make_tuple, we do not
use the assignment syntax for initialization.

Boost.Auto
If you are on a pre-C++11 compiler, you can emulate this effect using the BOOST_
AUTO and BOOST_AUTO_TPL macros. Thus, you can write the last snippet as follows:

#include <boost/typeof/typeof.hpp>

BOOST_AUTO(strptr, boost::make_shared<std::string>("Hello"));
// type of strptr is boost::shared_ptr<std::string>

BOOST_AUTO(coords, boost::make_tuple(1.0, 2.0, 3.0));
// type of coords is boost::tuple<double, double, double>

Note the header file boost/typeof/typeof.hpp that needs to be included to use
the macro.

If you want to declare a reference type, you can adorn the variable with a leading
ampersand (&). Likewise, to qualify your variable with const or volatile, you
should add the const or volatile qualifier before the variable name. Here is an
example:

BOOST_AUTO(const& strptr, boost::make_shared<std::string>("Hello"));
// type of strptr is boost::shared_ptr<std::string>

Range-based for-loops
Range-based for-loops are another syntactic convenience introduced in C++11.
Range-based for-loops allow you to iterate through a sequence of values like arrays,
containers, iterator ranges, and so on, without having to explicitly specify boundary
conditions. It makes iterating less error-prone by obviating the need to specify
boundary conditions.

The general syntax for range-based for-loop is:

for (range-declaration : sequence-expression) {
 statements;
}

C++11 Language Features Emulation

[514]

The sequence expression identifies a sequence of values like an array or a container,
that is to be iterated through. The range declaration identifies a variable that would
represent each element from the sequence in successive iterations of the loop.
Range-based for-loops automatically recognize arrays, brace-enclosed sequences
of expressions, and containers with begin and end member functions that return
forward iterators. To iterate through all elements in an array, you write this:

T arr[N];
...
for (const auto& elem : arr) {
 // do something on each elem
}

You can also iterate through a sequence of expressions enclosed in braces:

for (const auto& elem: {"Aragorn", "Gandalf", "Frodo Baggins"}) {
 // do something on each elem
}

Iterating through elements in a container that exposes forward iterators through
begin and end member functions is not all that different:

std::vector<T> vector;
...
for (const auto& elem: vector) {
 // do something on each elem
}

The range expression declares a loop variable called elem using auto to deduce its
type. This use of auto in range-based for-loops is idiomatic and common. To traverse
sequences encapsulated within other kinds of objects, range-based for-loops require
that two namespace-level methods, begin and end, be available and be resolved
via Argument Dependent Lookup (see Chapter 2, The First Brush with Boost's Utilities).
Range-based for-loops are great for traversing sequences whose lengths remain
fixed during traversal.

Boost.Foreach
You can use the BOOST_FOREACH macro to emulate the basic uses of C++11's
range-based for-loops:

#include <boost/foreach.hpp>

Appendix

[515]

std::vector<std::string> names;
...
BOOST_FOREACH(std::string& name, names) {
 // process each elem
}

In the preceding example, we use the BOOST_FOREACH macro to iterate through the
elements of a vector of strings called names, using a loop variable called name of type
string. Using BOOST_FOREACH, you can iterate over arrays, containers with member
functions begin and end that return forward iterators, iterator pairs, and null-
terminated character arrays. Note that C++11 range-based for-loops do not readily
support the last two types of sequences. On the other hand, with BOOST_FOREACH,
you cannot deduce the type of the loop variable using the auto keyword.

C++11 exception-handling improvements
C++11 introduced the ability to capture and store an exception that can be passed
around and rethrown later. This is particularly useful for propagating exceptions
across threads.

Storing and rethrowing exceptions
To store an exception, the type std::exception_ptr is used. std::exception_ptr
is a smart pointer type with shared ownership semantics, not unlike std::shared_
ptr (see Chapter 3, Memory Management and Exception Safety). An instance of
std::exception_ptr is copyable and movable and can be passed to other functions
potentially across threads. A default-constructed std::exception_ptr is a null
object that does not point to any exception. Copying a std::exception_ptr object
creates two instances that manage the same underlying exception object. The
underlying exception object continues to exist as long as the last exception_ptr
instance containing it exists.

The function std::current_exception, when called inside a catch-block, returns
the active exception for which the catch-block was executed, wrapped in an instance
of std::exception_ptr. When called outside a catch-block, it returns a null
std::exception_ptr instance.

The function std::rethrow_exception is passed an instance of std::exception_
ptr (which must not be null) and throws the exception contained in the
std::exception_ptr instance.

C++11 Language Features Emulation

[516]

Listing A.3: Using std::exception_ptr

 1 #include <stdexcept>
 2 #include <iostream>
 3 #include <string>
 4 #include <vector>
 5
 6 void do_work()
 7 {
 8 throw std::runtime_error("Exception in do_work");
 9 }
10
11 std::vector<std::exception_ptr> exceptions;
12
13 void do_more_work()
14 {
15 std::exception_ptr eptr;
16
17 try {
18 do_work();
19 } catch (...) {
20 eptr = std::current_exception();
21 }
22
23 std::exception_ptr eptr2(eptr);
24 exceptions.push_back(eptr);
25 exceptions.push_back(eptr2);
26 }
27
28 int main()
29 {
30 do_more_work();
31
32 for (auto& eptr: exceptions) try {
33 std::rethrow_exception(eptr);
34 } catch (std::exception& e) {
35 std::cout << e.what() << '\n';
36 }
37 }

Running the preceding example prints the following:

Exception in do_work
Exception in do_work

Appendix

[517]

The main function calls do_more_work (line 30), which in turn calls do_work (line
18), which simply throws a runtime_error exception (line 8) that finds its way
down to a catch-block in do_more_work (line 19). We declare an object eptr of type
std::exception_ptr in do_more_work (line 15) and inside the catch-block, we call
std::current_exception and assign the result to eptr. Later, we create a copy
of eptr (line 23), and push both instances into a global vector of exception_ptrs
(lines 24-25).

In the main function, we run through the exception_ptr instances in the global
vector, throw each using std::rethrow_exception (line 33), catch it and print its
message. Note that in the process, we print the message from the same exception twice
because we have two instances of exception_ptr containing the same exception.

Storing and rethrowing exception using Boost
In pre-C++11 environments, you can use the boost::exception_ptr type to store
exceptions and boost::rethrow_exception to throw the exception stored in
boost::exception_ptr. There is also the boost::current_exception function
which works akin to std::current_exception. But without underlying language
support, it requires help from the programmer to function.

In order for boost::current_exception to return the currently active exception
wrapped in boost::exception_ptr, we must modify the exception before throwing
it to make it amenable to be handled using this mechanism. To do this, we call
boost::enable_current_exception on the exception to be thrown. The following
snippet illustrates this:

Listing A.4: Using boost::exception_ptr

 1 #include <boost/exception_ptr.hpp>
 2 #include <iostream>
 3
 4 void do_work()
 5 {
 6 throw boost::enable_current_exception(
 7 std::runtime_error("Exception in do_work"));
 8 }
 9
10 void do_more_work()
11 {
12 boost::exception_ptr eptr;
13
14 try {
15 do_work();

C++11 Language Features Emulation

[518]

16 } catch (...) {
17 eptr = boost::current_exception();
18 }
19
20 boost::rethrow_exception(eptr);
21 }
22
23 int main() {
24 try {
25 do_more_work();
26 } catch (std::exception& e) {
27 std::cout << e.what() << '\n';
28 }
29 }

Self-test questions
1. The Rule of Three states that if you define your own destructor for a class,

you should also define:
a. Your own copy constructor
b. Your own assignment operator
c. Both a and b
d. Either a or b

2. Assuming the class String has both copy and move constructors, which of
the following does not invoke a move constructor:
a. String s1(getName());
b. String s2(s1);
c. String s2(std::move(s1));
d. String s3("Hello");

3. The purpose of std::move function is to:
a. Move contents of its argument out
b. Create an lvalue reference from an rvalue reference
c. Create an xvalue from an lvalue expression
d. Swap contents of its argument with another object

Appendix

[519]

4. In which of the following cases does Return Value Optimization apply?:

a. return std::string("Hello");
b. string reverse(string);
string a, b;
reverse(a + b);

c. std::string s("Hello");
return s;

d. std::string a, b;
return a + b.

References
• Effective Modern C++: 42 Specific Ways to Improve Your Use of C++11

and C++14, Scott Meyers, O'Reilly Media
• A Tour of C++, Bjarne Stroustrup, Addison Wesley Professional
• The C++ Programming Language (4/e), Bjarne Stroustrup, Addison

Wesley Professional

[521]

Index
A
ABI (application binary interface) 6
Abstract Syntax Tree (AST) 287
active endpoints 455
actors 290
anchors 152, 154
Argument Dependent Lookup

(ADL) 64, 198
arity 253
Asio deadline timer 455-457
assignment operator

about 497
implementing 498

asymmetric coroutines
about 424
using 425

asynchronous communication 455
asynchronous TCP server

about 480
concurrency 488
coroutines, used 480-482
inversion of control flow 488
lifetime of TCPAsyncConnection 487
performance 488
without coroutines 482-487

asynchronous UDP server
about 464-467
completion handler chains, used 464, 465
coroutines, used 467-469

atomic operation 403
atoms 152

B
BasicLockable concept 407
bimaps

for many-to-many relations 242
projections 246, 247
tagged access 245, 246
using 245

binary 253
blocking calls 463
Boost

about 2
evolution 1
history 1
URL 2

boost::intrusive_ptr 109
boost::scoped_array 90, 91
boost::scoped_ptr 81-83
boost::shared_ptr 96, 98
boost::weak_ptr 102-105
Boost.Any

about 47
used, for storing heterogeneous values

of data 47
using 48-50

Boost.Assign
containers, initializing with

lists of values 206-209
list of values, assigning to

containers 203-206
object initialization 203
pointer containers, initializing 209-212
used, for assignment 203
values, assigning 209-212

[522]

Boost.Auto 513
Boost Bimap library

about 239-241
collection types 242-245

Boost binary distribution
installing 8
installing, on Linux 9
installing, on Windows 8

Boost Chrono 322
Boost Container library

about 168, 169
in-place construction 169-172
move-awareness 169-172
nonstandard containers 172

Boost.Conversion
about 50
lexical_cast function template, using 51, 52
used, for storing heterogeneous values

of data 50
Boost.Core 60
Boost Coroutine library

about 377, 423
asymmetric coroutines 423
symmetric coroutines 423

BOOST_CURRENT_FUNCTION
about 61
using 62

Boost.Foreach 514, 515
Boost IOStreams

about 359
architecture 359, 360

Boost.Iterator
conforming iterators, creating for

custom classes 218-223
filter iterator 213, 214
function output iterator 216, 217
transform iterator 215, 216
using, for smart iteration 212
using, with iteration patterns 212

Boost libraries
about 3
Boost binary distribution, installing 8
Boost sandbox, planning 5
building 5
building, from source 10

building, on Linux 11, 12
building, on Windows 13, 14
categories 2, 3
code listings, building 20
installing, from source 10
library name components 5
library name layouts 6
library naming conventions 5
linking against, on Linux 16
linking against, on Windows 17-19
obtaining 5
optional packages 10
software support 3
using 15

boost::lock_guard
about 406
using 406, 407

Boost Metaprogramming Library (MPL)
about 278
metafunction 278
MPL metafunctions, using 278-284

Boost.Move library
using, for move emulation 507-510

Boost Multi-index containers
defining 230-232
index types 233-235
insertion updates 236-239
range lookups, using lambda 235, 236

Boost.Optional
about 26
get_value_or member function, using 29
implementation 26-28
stored values, accessing 28, 29
used, for creating simple data

structures 25, 26
versus pointers 30

Boost Phoenix
about 290
actors, for STL algorithms and container

member functions 293-295
lazy algebraic expressions 291
lazy control structures 292, 293
simpler lambdas 291, 292
STL actors 295, 296
user defined actors 295, 296

[523]

Boost.Program_Options
multiple option values, parsing 59, 60
positional parameters, parsing 58, 59
using 55, 56

Boost.Range library 123
Boost.Regex

text, matching 156, 157
text, replacing 163
text, searching 157-159
text, tokenizing with regex 160-162
used, for parsing regular

expressions 155, 156
used, for regular expressions 152

Boost Spirit Parser Framework
about 296
Spirit Qi, using 297, 298

Boost String Algorithms library
Boost.Range library 122
find algorithms 126
string, modifying to uppercase 121
used, for text processing 120-124
using 124, 125

Boost.Swap
about 63
using 64

Boost Threads
cores 386
moving 382, 383
thread IDs, using 384, 385
using 379-382
waiting on 383

Boost Tokenizer library
custom tokenizer functions,

writing 146-152
used, for text splitting 139
used, for tokenizing based on

separators 140, 141
used, for tokenizing records with

fixed-length fields 144-146
used, for tokenizing records with

metacharacters fields 142, 143
Boost.Tuple

about 30
generic code, writing with tuples 34
tuple elements, accessing 32
tuples, comparing 33

tuples, creating 32
used, for creating simple data structures 30

Boost Type Traits
about 270-274
enable_if / disable_if 275-277
SFINAE 275

boost::unique_lock
about 407
using 408

Boost unordered containers
using, for fast lookups 186-189

Boost.Utility 60
Boost.Variant

about 35
compile-time visitation, of variants 38-40
generic visitors, creating 40
JSON content, representing with

recursive variants 43, 44
recursive variants, defining 41
recursive variants, defining in

JSON format 41, 42
recursive variants, visiting 45-47
used, for storing heterogeneous

values of data 35
values, accessing in variant 37, 38
variants, creating 36
variants, using 36
visitors, applying to variants

in container 41
broadcast address 443
buffers

about 452, 453
buffer sequences for vectored I/O 453, 454

Burrows-Wheeler algorithm 368
Bzip2 library

URL 10

C
C++ 75
C++11

exception-handling improvements 515
C++11 auto

about 511
common uses 512
type deduction rules 512

[524]

capturing sub-expressions 155
case-conversion algorithms

for text processing 133, 134
chain 359, 366
character class 152, 154
class templates 267
client program 455
client-server model 455
clocks 313
clocks, Boost Chrono

process_real_cpu_clock type 328
process_system_cpu type 328
process_user_cpu_clock type 328
thread_clock type 328

closures 261
CMake

about 20
for Linux 20
for Windows 20
URL 20

code listings
building 20
example source code 20-22

command-line arguments
Boost.Program_Options, using 55, 56
command-line options, designing 52, 53
handling 52

command-line options
designing 52, 53
diff command example 53, 54

compile-time asserts
about 65
example 65
using 66-68

compile-time control flow, using templates
about 267
branching 267-269
recursion 269, 270

compile-time programming 249
compile-time programming, with Boost

about 267
basic compile-time control flow 267
Boost Metaprogramming Library

(MPL) 278
Boost Type Traits 270

complete chain 359
completion handlers 432
concurrency 377
concurrent tasks

boost::future 388, 389
boost::promise 388, 389
coordinating 386, 387
creating 386, 387
creating, with Boost Thread 378, 379
exceptions, throwing across

threads 391-393
launch policy, std::async 400
shared_future 393, 394
std::async 398, 399
std::future 395
std::packaged_task 396-398
std::promise 395, 396
wait_for member function 390, 391

condition variables
about 412, 413
nuances 417
using 413-416

conforming iterators
creating, for custom classes 218-223

congestion control 474
ConstBufferSequence 453
containers, for dynamically-allocated

objects
about 190-196
pointer containers 197

containers, for multi-criteria
lookups 228, 229

copy constructor
about 497
implementing 498

Copy Elision 507
copy operation 498
copy semantics 169, 495-501
counter filter

using 366, 367
critical section 403
Curiously Recurring Template

Parameter 223
custom tokenizer functions

writing 146-152

[525]

D
data race 401-403
date and time calculations, with

Boost Date Time
about 311
Posix time 316

dates, from Gregorian calendar
about 312
date durations, handling 314
date objects, creating 312, 313
date periods 314-316

Date_Time library
about 312
boost::gregorian::date 312
boost::gregorian::date_duration 312
boost::posix_time::ptime 316
boost::posix_time::time_duration 316
boost::posix_time::time_period 316

deadlock 409-412
DEFLATE algorithm 368
delegates 262
dequeue 413
device

about 359
for file I/O 361-363
for reading and writing to memory 363-365
using 361

diagnostic macros
using, from Predef library 70-72

disjunctions 155
domain name 449
Domain Specific Embedded

Languages (DSELs)
about 284, 290
Boost Phoenix 290
Boost Spirit Parser Framework 296
expression templates 285-290
lazy evaluation 285

dual use filter 359
dynamic memory allocation 76, 77
dynamic scoping 261
dynamically-allocated objects

containers 190

E
eager evaluation 285
Embedded Domain Specific Language

(EDSL) 290
enable_shared_from_this

defining 106-108
endpoint 448
endpoint iterator 450
enqueue 413
exception-handling improvements, C++11

exceptions, re-throwing 515-517
exceptions, re-throwing with Boost 517
exceptions, storing 515-517
exceptions, storing with Boost 517

exception safety
about 76, 77
and RAII 78, 79

Expat library
URL 11

expression templates 285-290
Extended Backus-Naur Form (EBNF) 296
extensible I/O, with Boost IOStreams

about 359
devices, using 361
filters, using 365

extension 343

F
filename 342
files and directories, managing with

Boost Filesystem
about 336
directories, traversing 347-350
filesystem entries, querying 350-353
operations, performing on files 354
paths, breaking into components 342-347
paths, constructing 340, 341
paths, manipulating 336
paths, printing 336-338

filtering stream buffers 366
filtering streams 366

[526]

filters
about 365
basic filters 366-368
composing 370
data streams, branching with tee 372-374
for compression and

decompression 368-370
pipelining 371

find algorithms, Boost String
Algorithms library

algorithms, for testing string properties 133
find 131
find_all 128
find_first 126, 127
find_head 132
find_tail 132
find_token 128, 129
iter_find 130

fixed lock-acquisition order 411
flow control 474
fully-qualified domain name 449
function objects

about 251-253
closures 261
delegates 259, 260
lambdas 255
partial function application 262-266

function pointer type 260
function templates 267
functor 253

G
gather-scatter I/O 453
generic algorithms 167
generic containers 167
generic format 337
generic programming 167
GNU Compiler Collection (GCC) 3
grep_filter

using 367, 368
guarantees

basic guarantee 78
gzip compressor and decompressor

using 368

H
handler 431
hash table 172
heterogeneous values, of data

about 34
storing 35
storing, Boost.Any used 47-50
storing, Boost.Conversion used 50
storing, Boost.Variant used 35

higher order programming 249
higher order programming, with Boost

about 250, 251
function objects 251-254

hostnames 449

I
ICU library

URL 11
img_rotate function 77
initializer list 182, 203
inorder traversal 218
input filter 359
input iterator 347
insert method 176
Internet Assigned Numbers

Authority (IANA) 448
Internet Protocol 441
intrusive_ptr

using 110-113
I/O objects 449
I/O service object 449
IP addresses

about 442
IPv4 addresses 442
IPv6 addresses 445

IPv4 addresses
about 442
handling, with Boost 443, 445
special addresses 443
subnets 442

IPv6 addresses
about 445
address classes 446
anycast addresses 446

[527]

global addresses 446
handling, with Boost 447
link-local addresses 446
loopback address 446
multicast addresses 446
node-local addresses 446
scope 446
special addresses 446
subnets 446
unicast addresses 446
unspecified address 446

iterator projections
using 234, 235

iterators 167
itertools 218

K
key 227
Kleene star 153

L
lambda expressions 255
lambdas

about 255
capture clauses, specifying 256
lambda captures 256-258
lambda introducers 256
using 256

lazy evaluation 285, 287
lexical_cast function template

using 51, 52
libboost-all-dev package

/usr/include 9
/usr/lib/arch-linux-gnu 9

library name components
ABI 6
about 5
extensions 6
prefix 5
threading model 6
toolset identifier 5
version 6

library name layouts
about 6

system layout 7
tagged layout 7
versioned layout 6

library naming conventions 5
Linux

Boost binary distribution, installing 9
Boost libraries, building on 11, 12
Boost libraries, linking against 16

Linux toolchain 4
Lockable concept 407
lock-based thread synchronization methods

about 400
atomic operation 403
critical sections 403
data races 401, 402
mutual exclusion 403
Readers-Writers problem 417
Standard Library primitives 423
synchronizing, on conditions 412

lookups
multimaps, used 228, 229

loopback address 443
lvalue expression 501
lvalue references 502

M
make_shared

defining 106-108
metafunction 34
metafunction forwarding 279
move assignment operator

defining 504
move-construct 169
move emulation

Boost.Move library, using 507-510
multi-criteria lookups

containers 228, 229
multi-index containers

defining 230, 231
Multiple Readers Single Writer

(MRSW) model 419
MutableBufferSequence 453
mutex

about 403
using 403-405

[528]

mutex object
locked state 405
unlocked state 405

N
Named Return Value Optimization

(NRVO) 506
native format 337
netmask 442
network I/O, using Asio

about 441
Asio deadline timer 455-457
asynchronous communication 455
asynchronous logic, using Asio

 coroutines 458-461
buffers 452
domain names 449
endpoints 448
hostnames 449
IP addresses 442
name resolution 449-451
ports 448
sockets 448, 449
synchronous communication 455
TCP 441, 474
UDP 441, 461

non-capturing sub-expressions 155
nonmemory resources

managing, smart pointers used 114, 115
nonstandard containers

about 172
flat associative containers 172-175
slist 175, 176
slist, splicing operation 177-180
stable_vector 181-184
static_vector 184-186

normalized absolute path 341
nullary 253
Null Object Pattern

URL 202

O
operations, performing on files

about 354
directories, creating 354, 355

files, copying 356, 357
files, deleting 358
files, moving 358
path-aware fstreams 358
symbolic links, creating 355, 356

output filter 359

P
parallelism 377
parent path 342
parser expressions 299, 300
parser operators 297-300
parsing directives 301
parsing timestamps 305-307
partial function application 262-266
partial specializations 269
passive endpoints 455
Pimpl Idiom 86
Pipable concept 371
Plain Old Data (POD) types 34
pointer containers

null pointers 202, 203
ownership semantics 197-201

pointers
versus Boost.Optional 30

poll member function 432
poll_one member function 432
ports 448
Posix time

about 316
resolution 318, 319
time iterator 321, 322
time periods 320, 321
time points and durations,

constructing 316-318
predefined parsers 297
Predef library

about 70
diagnostic macros, using 70-72

predicates 252
preprocessor macros

using 69-72
primary template 268
producer-consumer problem 412, 413
program performance

auto_cpu_timer 332

[529]

cpu_timer 329-331
measuring, Boost Timer used 329

pure function 253

Q
Qi parsing API 297, 298
quantifiers 153

R
RAII

about 78, 79, 406, 493, 494
implementing 494, 495

range 122
range adaptors 133
range-based for-loops

about 513
Boost.Foreach 514

range declaration 514
range lookups

using 235, 236
Readers-Writers problem 417-421
read-preferring solutions 422
recursive variants

defining 41, 42
JSON content, representing 43, 44
visiting 45-47

regular expressions
Boost.Regex, using 152
parsing, with Boost.Regex 155, 156
syntax 152

regular expressions syntax
anchors 154
atoms 152
character class 154
disjunctions 155
quantifiers 153
sub-expressions 154, 155

relative path 342
replace and erase algorithms

for text processing 136
Representation type parameter 323
resolver 449
Resource Acquisition Is

Initialization. See RAII
Return Value Optimization (RVO) 506
root directory 342, 343

root name 338, 343
root path 343
Rule of Three 497
Rule of Zero 497
run function 432
run_one member function 432
Runtime Type Identification (RTTI) 47
rvalue expressions 501
rvalue references

about 501, 502
move assignment 504
overloads 503
xvalues 505, 506

S
scoped_ptr

about 84
exception-safe scopes, creating 84
object ownership across functions,

transferring 85
uses 84
using, as class member 85-90

semantic actions 301-303
sequence expression 514
shallow copy 497
shared_array 113
shared data, managing

about 386
concurrent tasks, coordinating 386, 387
concurrent tasks, creating 386, 387
lock-based thread synchronization

methods 400
shared_mutex

about 422
performance 422

shared ownership semantics
about 96
boost::intrusive_ptr 109, 110
boost::shared_ptr 96, 97
shared_array 113
std::shared_ptr 97, 98

shared_ptr
dynamically-allocated objects, storing in

Standard Library containers 100-102
used, as class member 99, 100
uses 99

[530]

simple data structures
creating, with Boost.Optional 25
creating, with Boost.Tuple 25

sink 359
smart pointer

about 80
shared ownership semantics 96
unique ownership semantics 81

smart pointers
about 75
used, for managing nonmemory

resources 114, 115
socket 448
source 359
Spirit Qi

parser expression 299, 300
parser operators 299, 300
parsing API 298
parsing directives 301
parsing timestamps 305-307
predefined parsers 297, 298
rules 304
semantic actions 301-303
using 297

split and join algorithms
for text processing 137, 138

standard associative containers
ordered 172
unordered 172

Standard Template Library (STL) 167
std::shared_ptr 96-98
std::unique_ptr 92
std::weak_ptr 102-105
strands

using 438-440
stream buffers 359
streams 359
strict weak ordering 186
sub-expressions 154, 155
subnets 442
Substitution Failure Is Not An Error

(SFINAE) 275
swap member function

implementing 499
symmetric coroutines 423
synchronous communication 455

synchronous TCP client 475, 476
synchronous TCP server 477, 478
synchronous UDP client 461-463
synchronous UDP server 463, 464
synthesized attribute 305
system layout 7

T
tagged layout 7
task execution, with Asio

about 430
concurrent execution, via

thread pools 434, 435
handlers 431
handler states 432
IO Service 430
io_service::work 436, 437
post, versus dispatch 432, 433
queues 431
serialized and ordered execution,

via strands 437-440
TCP

about 441, 474
asynchronous TCP server 480
concurrency 479
performance 479
synchronous TCP client 475, 476
synchronous TCP server 477, 478
TCP connection, establishing 474

TCP 3-way handshake 474
TCP client 474
TCP connection

client- and server-side calls 474
TCP server 474
TCP socket 499
Technical Report 1 (TR1) 106
tee device 372
template identifier 268
template metaprogramming 249
text processing

with Boost String Algorithms
library 120-124

with case-conversion algorithms 133, 134
with replace and erase algorithms 136
with split and join algorithms 137, 138
with trimming algorithms 133-135

[531]

text splitting
Boost Tokenizer library, using 139

The Abrahams exception safety
guarantees 78

thread group 416
thread pool 434
threads 377
time calculations, with Chrono

about 322
clocks 326-328
duration 322, 323
duration arithmetic 324, 325
time point 326-328

token generator class 146
Transmission Control Protocol. See TCP
trimming algorithms

for text processing 135
tuples

comparing 33
creating 31, 32
elements, accessing 32
generic code, writing 34

U
UDP

about 441, 461
asynchronous UDP server 464
asynchronous UDP server, using

completion handler chains 464-467
asynchronous UDP server, using

coroutines 467-469
caveats 441
concurrency 470-473
performance 470-473
synchronous UDP client 461-463
synchronous UDP server 464

unique ownership semantics
about 81

boost::scoped_array 90, 91
boost::scoped_ptr 81-83
std::unique_ptr 92

unique_ptr
arrays, wrapping 94, 95
make_unique, in C++14 95
used, for ownership transfer 92, 93

universal assignment operator
defining 504

Unix time 353
unspecified address 443
unstable container 182
upgradable locks 421
User Datagram Protocol. See UDP

V
vectored I/O

about 453
buffer sequences for 453

versioned layout 6

W
wildcard 152
Windows

Boost binary distribution, installing 8
Boost libraries, building on 13, 14
Boost libraries, linking against 17-19

Windows toolchain 4
write-preferring solutions 422

X
xvalues 505

Z
Zlib library

URL 10

Thank you for buying
Learning Boost C++ Libraries

About Packt Publishing
Packt, pronounced 'packed', published its first book, Mastering phpMyAdmin for Effective
MySQL Management, in April 2004, and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution-based books
give you the knowledge and power to customize the software and technologies you're using
to get the job done. Packt books are more specific and less general than the IT books you have
seen in the past. Our unique business model allows us to bring you more focused information,
giving you more of what you need to know, and less of what you don't.

Packt is a modern yet unique publishing company that focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website at www.packtpub.com.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should
be sent to author@packtpub.com. If your book idea is still at an early stage and you would
like to discuss it first before writing a formal book proposal, then please contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

www.packtpub.com

Boost C++ Application
Development Cookbook
ISBN: 978-1-84951-488-0 Paperback: 348 pages

Over 80 practical, task-based recipes to create
applications using Boost libraries

1. Explores how to write a program once and
then use it on Linux, Windows, MacOS, and
Android operating systems.

2. Take advantage of the real power of Boost
and C++ to get a good grounding in using it
in any project.

Boost.Asio C++ Network
Programming
ISBN: 978-1-78216-326-8 Paperback: 156 pages

Enhance your skills with practical examples for
C++ network programming

1. Augment your C++ network programming
using Boost.Asio.

2. Discover how Boost.Asio handles synchronous
and asynchronous programming models.

3. Practical examples of client/server applications.

4. Learn how to deal with threading when writing
network applications.

Please check www.PacktPub.com for information on our titles

C++ Multithreading Cookbook
ISBN: 978-1-78328-979-0 Paperback: 422 pages

Over 60 recipes to help you create ultra-fast
multithreaded applications using C++ with
rules, guidelines, and best practices

1. Create multithreaded applications using
the power of C++.

2. Upgrade your applications with parallel
execution in easy-to-understand steps.

3. Stay up to date with new Windows 8
concurrent tasks.

4. Avoid classical synchronization problems.

Getting Started with C++
Audio Programming for
Game Development
ISBN: 978-1-84969-909-9 Paperback: 116 pages

A hands-on guide to audio programming in
game development with the FMOD audio library
and toolkit

1. Add audio to your game using FMOD
and wrap it in your own code.

2. Understand the core concepts of audio
programming and work with audio at
different levels of abstraction.

3. Work with a technology that is widely
considered to be the industry standard
in audio middleware.

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Introducing Boost
	How it all started
	What is Boost?
	Getting started with Boost libraries
	Necessary software
	Linux toolchain
	Windows toolchain

	Obtaining and building Boost libraries
	Planning your Boost sandbox
	Library naming conventions
	Library name components
	Library name layouts
	Installing a Boost binary distribution
	Building and installing the Boost libraries from source

	Using Boost libraries in your projects
	Linking against Boost libraries on Linux
	Linking against Boost libraries on Windows

	Building the code listings in this book
	CMake
	Code examples

	Self-test questions
	Summary

	Chapter 2: The First Brush with Boost's Utilities
	Simple data structures
	Boost.Optional
	Accessing values stored in boost::optional
	get_value_or
	Boost.Optional versus pointers

	Boost.Tuple
	Creating tuples
	Accessing tuple elements
	Comparing tuples
	Writing generic code using tuples

	Working with heterogeneous values
	Boost.Variant
	Accessing values in a variant
	Defining recursive variants

	Boost.Any
	Boost.Conversion
	lexical_cast

	Handling command-line arguments
	Designing command-line options
	The diff command – a case study

	Using Boost.Program_Options
	Parsing positional parameters
	Multiple option values

	Other utilities and compile-time checks
	BOOST_CURRENT_FUNCTION
	Boost.Swap
	Compile-time asserts
	Diagnostics using preprocessor macros

	Self-test questions
	Summary
	References

	Chapter 3: Memory Management and Exception Safety
	Dynamic memory allocation and exception safety
	Exception safety and RAII

	Smart pointers
	Unique ownership semantics
	boost::scoped_ptr
	boost::scoped_array
	std::unique_ptr

	Shared ownership semantics
	boost::shared_ptr and std::shared_ptr
	Intrusive smart pointers – boost::intrusive_ptr
	shared_array

	Managing non-memory resources using smart pointers

	Self-test questions
	Summary
	References

	Chapter 4: Working with Strings
	Text processing with Boost String Algorithms library
	Using Boost String Algorithms
	Find algorithms
	Case-conversion and trimming algorithms
	The replace and erase algorithms
	The split and join algorithms

	Splitting text using the Boost Tokenizer library
	Tokenizing based on separators
	Tokenizing records with fields containing metacharacters
	Tokenizing records with fixed-length fields
	Writing your own tokenizer functions

	Regular expressions using Boost.Regex
	Regular expression syntax
	Atoms
	Quantifiers
	Character classes
	Anchors
	Sub-expressions
	Disjunctions

	Using Boost.Regex to parse regular expressions
	Matching text
	Searching text
	Tokenizing text using regex
	Replacing text

	Self-test questions
	Summary

	Chapter 5: Effective Data Structures beyond STL
	Boost Container library
	Move-awareness and in-place construction
	Nonstandard containers
	Flat associative containers
	slist
	stable_vector
	static_vector

	Fast lookups using Boost Unordered containers
	Containers for dynamically-allocated objects
	Ownership semantics of pointer containers
	Null pointers in pointer containers

	Expressive initialization and assignment using Boost.Assign
	Assigning lists of values to containers
	Initializing containers with lists of values
	Initializing pointer containers and assigning values

	Iteration patterns using Boost.Iterator
	Smart iteration using Boost.Iterator
	Filter Iterator
	Transform Iterator
	Function Output Iterator

	Creating conforming iterators for custom classes

	Self-test questions
	Summary
	References

	Chapter 6: Bimap and Multi-index Containers
	Containers for multi-criteria lookups
	Boost Multi-index containers
	Index types
	Range lookups using lambda
	Insertions and updates

	Boost Bimap
	Collection types
	More ways to use bimaps
	Tagged access
	Projections

	Self-test questions
	Summary
	References

	Chapter 7: Higher Order and Compile-time Programming
	Higher order programming with Boost
	Function objects
	Lambdas – unnamed function literals
	Delegates and closures
	Partial function application

	Compile-time programming with Boost
	Basic compile-time control flow using templates
	Branching
	Recursion

	Boost Type Traits
	SFINAE and enable_if / disable_if

	The Boost Metaprogramming Library (MPL)
	Metafunctions
	Using MPL metafunctions

	Domain Specific Embedded Languages
	Lazy evaluation
	Expression templates
	Boost Phoenix
	Boost Spirit Parser Framework
	Using Spirit Qi

	Self-test questions
	Summary
	References

	Chapter 8: Date and Time Libraries
	Date and time calculations with Boost Date Time
	Dates from the Gregorian calendar
	Creating date objects
	Handling date durations
	Date periods

	Posix time
	Constructing time points and durations
	Resolution
	Time periods
	Time iterator

	Using Chrono to measure time
	Durations
	Duration arithmetic

	Clocks and time points

	Measuring program performance using Boost Timer
	cpu_timer
	auto_cpu_timer

	Self-test questions
	Summary
	References

	Chapter 9: Files, Directories, and IOStreams
	Managing files and directories with Boost Filesystem
	Manipulating paths
	Printing paths
	Constructing paths
	Breaking paths into components

	Traversing directories
	Querying filesystem entries
	Performing operations on files
	Creating directories
	Creating symbolic links
	Copying files
	Moving and deleting files
	Path-aware fstreams

	Extensible I/O with Boost IOStreams
	Architecture of Boost IOStreams
	Using devices
	Devices for file I/O
	Devices for reading and writing to memory

	Using filters
	Basic filters
	Filters for compression and decompression
	Composing filters

	Self-test questions
	Summary

	Chapter 10: Concurrency with Boost
	Creating concurrent tasks with Boost Thread
	Using Boost Threads
	Moving threads and waiting on threads
	Thread IDs
	Cores and threads

	Managing shared data
	Creating and coordinating concurrent tasks
	boost::future and boost::promise
	Waiting for future
	Throwing exceptions across threads
	shared_future
	std::future and std::promise
	std::packaged_task and std::async

	Lock-based thread synchronization methods
	Data races and atomic operations
	Mutual exclusion and critical sections
	Synchronizing on conditions
	The Readers-Writers problem
	Standard Library primitives

	Boost Coroutine
	Asymmetric coroutines

	Self-test questions
	Summary
	References

	Chapter 11: Network Programming Using Boost Asio
	Task execution with Asio
	IO Service, queues, and handlers
	Handler states – run_one, poll, and poll_one
	post versus dispatch

	Concurrent execution via thread pools
	io_service::work

	Serialized and ordered execution via strands

	Network I/O using Asio
	UDP and TCP
	IP addresses
	IPv4 addresses
	IPv6 addresses

	Endpoints, sockets, and name resolution
	Ports
	Sockets
	Hostnames and domain names

	Buffers
	Buffer sequences for vectored I/O

	Synchronous and asynchronous communications
	Asio deadline timer
	Asynchronous logic using Asio coroutines
	UDP
	Synchronous UDP client and server
	Asynchronous UDP server
	Performance and concurrency

	TCP
	Establishing a TCP connection
	Synchronous TCP client and server
	Asynchronous TCP server

	Self-test questions
	Summary
	References

	Appendix: C++11 Language Features Emulation
	RAII
	Copy semantics
	The nothrow swap

	Move semantics and rvalue references
	rvalue references
	rvalue-reference overloads
	Move assignment
	xvalues

	Move emulation using Boost.Move

	C++11 auto and Boost.Auto
	Type deduction rules
	Common uses
	Boost.Auto

	Range-based for-loops
	Boost.Foreach

	C++11 exception-handling improvements
	Storing and rethrowing exceptions
	Storing and rethrowing exception using Boost

	Self-test questions
	References

	Index

